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Preface

This volume contains the papers presented at FCT 2011: The 18th International
Symposium on Fundamentals of Computer Theory held during August 22–25,
2011 in Oslo.

The Symposium on Fundamentals of Computation Theory was established
in 1977 for researchers interested in all aspects of theoretical computer science,
in particular in algorithms, complexity, and formal and logical methods. It is a
biennial conference, which has previously been held in Poznań (1977), Wendisch-
Rietz (1979), Szeged (1981), Borgholm (1983), Cottbus (1985), Kazan (1987),
Szeged (1989), Gosen-Berlin (1991), Szeged (1993), Dresden (1995), Kraków
(1997), Iaşi (1999), Riga (2001), Malmö (2003), Lübeck (2005), Budapest (2007),
and Wroc�law (2009).

The suggested topics of FCT 2011 included algorithms (algorithm design and
optimization; combinatorics and analysis of algorithms; computational complex-
ity; approximation, randomized, and heuristic methods; parallel and distributed
computing; circuits and boolean functions; online algorithms; machine learn-
ing and artificial intelligence; computational geometry; and computational alge-
bra), formal methods (algebraic and categorical methods; automata and formal
languages; computability and nonstandard computing models; database theory;
foundations of concurrency and distributed systems; logics and model checking;
models of reactive, hybrid and stochastic systems; principles of programming
languages; program analysis and transformation; specification, refinement and
verification; security; and type systems) and emerging fields (ad hoc, dynamic,
and evolving systems; algorithmic game theory; computational biology; founda-
tions of cloud computing and ubiquitous systems; and quantum computation).

This year there were 78 reviewed submissions, of which 28 were accepted. The
program included three invited talks, by Yuri Gurevich (Microsoft Research),
Daniel Lokshtanov (UCSD), and José Meseguer (UIUC). This volume contains
the accepted papers, abstracts from Yuri Gurevich and Daniel Lokshtanov, and
a full paper on “The Rewriting Logic Semantics Project”by José Meseguer et al.

The symposium took place in the university informatics buildings,“Ole-Johan
Dahls hus” and “Kristen Nygaards hus”, and was one of the first scientific events
to be held in the new building “Ole-Johan Dahls hus”. The FCT event was
part of the official opening of the new building and therefore augmented with a
half-day program on Monday morning on the importance and future of object
orientation, honoring the work of Ole-Johan Dahl and Kristen Nygaard. An
additional invited speaker, Andrew P. Black (Portland State University), was
invited for this session.

We would especially like to thank the members of the Program Committee for
the evaluation of the submissions and their subreferees for excellent cooperation
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in this work. We are grateful to the contributors to the conference, in particular to
the invited speakers for their willingness to present interesting new developments.

Furthermore we thank the University of Oslo and the Department of Infor-
matics for hosting the event, and we thank the local organization of the PMA
group, in particular Johan Dovland, Cristian Prisacariu (Publicity Chair), Volker
Stolz (Workshop Chair), Thi Mai Thoung Tran, and Ingrid Chieh Yu. Last but
not least, we gratefully thank our sponsors: the Research Council of Norway,
Cisco Systems Norway, DNV (Veritas) Norway, and the Department of Infor-
matics.

June 2011
Olaf Owe

Martin Steffen
Jan Arne Telle
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The Rewriting Logic Semantics Project:

A Progress Report

José Meseguer and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign,

{meseguer,grosu}@illinois.edu

Abstract. Rewriting logic is an executable logical framework well suited
for the semantic definition of languages. Any such framework has to be
judged by its effectiveness to bridge the existing gap between language
definitions on the one hand, and language implementations and language
analysis tools on the other. We give a progress report on how researchers
in the rewriting logic semantics project are narrowing the gap between
theory and practice in areas such as: modular semantic definitions of lan-
guages; scalability to real languages; support for real time; semantics of
software and hardware modeling languages; and semantics-based analysis
tools such as static analyzers, model checkers, and program provers.

1 Introduction

The disconnect between theory and practice is one of the worse evils in com-
puter science. Theory disconnected from practice becomes irrelevant; and prac-
tice without theory becomes brute-force, costly and ad-hoc engineering. One of
the current challenges in formal approaches to language semantics is precisely
how to effectively bridge the gap between theory and practice. There are two
distinct dimensions to this gap:

(1) Given a language L, there is often a substantial gap between: (i) a formal
semantics for L; (ii) an implementation of L; and (iii) analysis tools for L,
including static, dynamic, and deductive tools.

(2) Even if a formal semantics exists for a programming language L, there may
not be any formal semantics available at the higher level of software designs
and models, or at the lower level of hardware.

Regarding (1), a semantics of L may just be a “paper semantics,” such as some
SOS rules on a piece of paper; or it may be a “toy semantics,” not for L itself,
but for a greatly simplified sublanguage. Furthermore, the way a compiler for
L is written may have no connection whatever with a formal semantics for L,
so that different compilers provide different language behaviors. To make things
worse, program analysis tools for L, including tools that supposedly provide some
formal analysis, may not be systematically based on a formal semantics either,
so that the confidence one can place of the answers from such tools is greatly

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 1–37, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J. Meseguer and G. Roşu

diminished. Regarding (2), one big problem is that software modeling notations
often lack a formal semantics. A related problem is that this lack of semantics
manifests itself as a lack of analytic power, that is, as an incapacity to uncover
expensive design errors which could have been caught by formal analysis.

We, together with many other colleagues all over the world, have been work-
ing for years on the rewriting logic semantics project (see [77, 76, 112] for some
overview papers at different stages of the project). The goal of this project is to
substantially narrow the gap between theory and practice in language specifi-
cations, implementations and tools, in both of the above dimensions (1)–(2). In
this sense, rewriting logic semantics is a wide-spectrum framework, where:

1. The formal semantics of a language L is used as the basis on which both
language implementations and language analysis tools are built.

2. The same semantics-based approach is used not just for programming lan-
guages, but also for software and hardware modeling languages.

Any attempt to bridge theory and practice cannot be judged by theoretical con-
siderations alone. One has to evaluate the practical effectiveness of the approach
in answering questions such as the following:

– Executability. Is the semantics executable? How efficiently so? Can semantic
definitions be tested to validate their agreement with an informal semantics?

– Range of Applicability. Can it be applied to programming languages and
to software and hardware modeling languages? Can it naturally support
nontrivial features such as concurrency and real time?

– Scalability. Can it be used in practice to give full definitions of real languages
like Java or C? And of real software and hardware modeling languages?

– Integrability. How well can the semantics be integrated with language imple-
mentations and language analysis tools? Can it really be used as the basis
on which such implementations and analysis tools are built?

This paper is a progress report on the efforts by various researchers in the rewrit-
ing logic semantics project to positively answer these questions. After summa-
rizing some related work below, we give an overview of rewriting logic semantics
in Section 2. Subsequent sections then describe in more detail: (i) modularity
of definitions and the support for highly modular definitions provided by the
K framework (Section 3); (ii) semantics of programming languages (Section 4);
semantics of real-time language (Section 5); (iv) semantics of software modeling
languages (Section 6); (v) semantics of hardware description languages (Section
7); (vi) abstract semantics and static analysis (Section 8); (vii) model checking
verification (Section 9); and (viii) deductive verification (Section 10). We finish
with some concluding remarks in Section 11.

1.1 Related Work

There is much related work on frameworks for defining programming languages.
Without trying to be exhaustive, we mention some of them and point out some
relationships to rewriting logic semantics (RLS).
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Structural Operational Semantics (SOS). Several variants of structural
operational semantics have been proposed. We refer to [112] for an in-depth
comparison between SOS and RLS. A key point made in [112], and also made in
Section 2.5, is that RLS is a framework supporting many different definitional
styles. In particular, it can naturally and faithfully express many diffent SOS
styles such as: small-step SOS [99], big-step SOS [56], MSOS [87], reduction
semantics [129], continuation-based semantics [43], and the CHAM [12].

Algebraic denotational semantics. This approach, (see [125, 49, 26, 85] for
early papers and [47,118] for two more recent books), is the special case of RLS
where the rewrite theory RL defining a language L is an equational theory. Its
main limitation is that it is well suited for giving semantics to deterministic
languages, but not well suited for concurrent language definitions.

Higher-order approaches. The most classic higher-order approach is deno-
tational semantics [109, 110, 108, 86]. Denotational semantics has some similari-
ties with its first-order algebraic cousin mentioned above, since both are based
on semantic equations and both are best suited for deterministic languages.
Higher-order functional languages or higher-order theorem provers can be used
to give an executable semantics to programming languages, including the use of
Scheme in [45], the use of ML in [98], and the use of Common LISP within the
ACL2 prover in [61]. There is also a body of work on using monads [81, 124,65]
to implement language interpreters in higher-order functional languages; the
monadic approach has better modularity characteristics than standard SOS.
Some higher-order approaches are based on the use of higher-order abstract syn-
tax (HOAS) [97, 52] and higher-order logical frameworks, such as LF [52] or
λ-Prolog [88], to encode programming languages as formal logical systems; for a
good example of recent work in this direction see [78] and references there.

Logic-programming-based approaches. Going back to the Centaur project
[22, 35], logic programming has been used as a framework for SOS language
definitions. Note that λ-Prolog [88] belongs both in this category and in the
higher-order one. For a recent textbook giving logic-programming-based lan-
guage definitions, see [113].

Abstract state machines. Abstract State Machine (ASM) [50] can encode
any computation and have a rigorous semantics, so any programming language
can be defined as an ASM and thus implicitly be given a semantics. Both big-
and small-step ASM semantics have been investigated. The semantics of various
programming languages, including Java [114], has been given using ASMs.

Other RLS work. RLS is a collective international project. There is by now
a substantial body of work demonstrating the usefulness of this approach, e.g.,
[23, 120,117,115,72, 119,31, 104,122,42, 40, 55, 25, 73, 77, 30, 28, 41, 34, 106,1, 116,
36,107,58,54,46,39,5], and we describe some even more recent advances in this
paper. A first snapshot of the RLS project was given in [77], a second in [76],
and a third in [112], with this paper as the fourth snapshot.
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2 Rewriting Logic Semantics in a Nutshell

Before describing in more detail the different advances in the rewriting logic se-
mantics project we give here an overview of it. Be begin with a short summary of
rewriting logic as a semantic framework for concurrent systems. Then we explain
how it can be used to give both an operational and a denotational semantics to a
programming language. Thanks to the distinction between equations and rules,
this semantics can be given at various levels abstraction. Furthermore, a wide
range of definitional styles can be naturally supported. We explain how rewrit-
ing logic semantics has been extended to: (i) real-time languages; (ii) software
modeling languages; and (iii) hardware description languages. We finally explain
how a rewriting logic semantics can be used for static analysis, and for model
checking and deductive verification of programs.

2.1 Rewriting Logic

The goal of rewriting logic [69] is to provide a flexible logical framework to
specify concurrent systems. A concurrent system is specified as a rewrite theory
R = (Σ, E, R), where (Σ, E) is an equational theory, and R is a set of (possibly
conditional) rewrite rules. The equational theory (Σ, E) specifies the concurrent
system’s set of states as an algebraic data type, namely, as the initial algebra
of the equational theory (Σ, E). Concretely, this means that a distributed state
is mathematically represented as an E-equivalence class [t]E of terms built up
with the operators declared in Σ, modulo provable equality using the equations
E, so that two state representations t and t′ describe the same state if and only
if one can prove the equality t = t′ using the equations E.

The rules R specify the system’s local concurrent transitions. Each rewrite
rule in R has the form t → t′, where t and t′ are Σ-terms. The lefthand side t
describes a local firing pattern, and the righthand side t′ describes a correspond-
ing replacement pattern. That is, any fragment of a distributed state which is
an instance of the firing pattern t can perform a local concurrent transition in
which it is replaced by the corresponding instance of the replacement pattern t′.
Both t and t′ are typically parametric patterns, describing not single states, but
parametric families of states. The parameters appearing in t and t′ are precisely
the mathematical variables that t and t′ have, which can be instantiated to dif-
ferent concrete expressions by a substitution, that is, a mapping θ sending each
variable x to a term θ(x). The instance of t by θ is then denoted θ(t).

The most basic logical deduction steps in a rewrite theory R = (Σ, E, R) are
precisely atomic concurrent transitions, corresponding to applying a rewrite rule
t → t′ in R to a state fragment which is an instance of the firing pattern t by
some substitution θ. That is, up to E-equivalence, the state is of the form C[θ(t)],
where C is the rest of the state no affected by this atomic transition. Then, the
resulting state is precisely C[θ(t′)], so that the atomic transition has the form
C[θ(t)] → C[θ(t′)]. Rewriting is intrinsically concurrent, because many other
atomic rewrites can potentially take place in the rest of the state C (and in the
substitution θ), at the same time that the local atomic transition θ(t) → θ(t′)
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happens. The rules of deduction of rewriting logic [69,27] (which in general allow
rules in R to be conditional) precisely describe all the possible, complex concur-
rent transitions that a system can perform, so that concurrent computation and
logical deduction coincide.

2.2 Defining Programming Languages

The flexibility of rewriting logic to naturally express many different models of
concurrency can be exploited to give formal definitions of concurrent program-
ming languages by specifying the concurrent model of a language L as a rewrite
theory (ΣL, EL, RL), where: (i) the signature ΣL specifies both the syntax of
L and the types and operators needed to specify semantic entities such as the
store, the environment, input-output, and so on; (ii) the equations EL can be
used to give semantic definitions for the deterministic features of L (a sequential
language typically has only deterministic features and can be specified just equa-
tionally as (ΣL, EL)); and (iii) the rewrite rules RL are used to give semantic
definitions for the concurrent features of L such as, for example, the semantics
of threads.

By specifying the rewrite theory (ΣL, EL, RL) in a rewriting logic language
like Maude1 [32], it becomes not just a mathematical definition but an executable
one, that is, an interpreter for L. Furthermore, one can leverage Maude’s generic
search and LTL model checking features to automatically endow L with powerful
program analysis capabilities. For example, Maude’s search command can be used
in the module (ΣL, EL, RL) to detect any violations of invariants, e.g., a deadlock
or some other undesired state, of a program in L. Likewise, for terminating
concurrent programs in L one can model check any desired LTL property. All
this can be effectively done not just for toy languages, but for real ones such
as Java and the JVM, Scheme, and C (see Section 4 for a discussion of such
“real language” applications), and with performance that compares favorably
with state-of-the-art model checking tools for real languages.

2.3 Operational vs. Denotational Semantics

A rewrite theory R = (Σ, E, R) has both a deduction-based operational seman-
tics, and an initial model denotational semantics. Both semantics are defined
naturally out of the proof theory of rewriting logic [69,27]. The deduction-based
operational semantics of R is defined as the collection of proof terms [69] of the
form α : t −→ t′. A proof term α is an algebraic description of a proof tree
proving R � t −→ t′ by means of the inference rules of rewriting logic. What
such proof trees describe are the different finitary concurrent computations of
the concurrent system axiomatized by R.

A rewrite theory R = (Σ, E, R) has also a model-theoretic semantics, so that
the inference rules of rewriting logic are sound and complete with respect to
1 Other rewriting logic languages, such as ELAN or CafeOBJ, can likewise be used.

Maude has the advantage of efficiencly supporting not only execution, but also LTL
model checking verification.
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satisfaction in the class of models of R [69,27]. Such models are categories with a
(Σ, E)-algebra structure [69]. These are “true concurrency” denotational models
of the concurrent system axiomatized by R. That is, this model theory gives a
precise mathematical answer to the question: when do two descriptions of two
concurrent computations denote the same concurrent computation? The class of
models of a rewrite theory R = (Σ, E, R) has an initial model TR [69]. The initial
model semantics is obtained as a quotient of the just-mentioned deduction-based
operational semantics, precisely by axiomatizing algebraically when two proof
terms α : t −→ t′ and β : u −→ u′ denote the same concurrent computation.

In particular, if a rewrite theory RL = (ΣL, EL, RL) specifies the semantics
of a concurrent programming language L, its denotational semantics is given by
the initial model TRL , and its operational semantics is given by the proof terms
built by the rewriting deduction. As we explain below, many different styles of
operational semantics, including various SOS styles, can be naturally obtained
as special instances of this general, logic-based operational semantics.

2.4 The Abstraction Dial

Unlike formalisms like SOS, where there is only one type of semantic rule, rewrit-
ing logic semantics provides a key distinction between deterministic rules, ax-
iomatized by equations, and concurrent and typycally non-deterministic rules,
axiomatized by non-equational rules. More precisely, for the rewriting logic se-
mantics RL of a language L to have good executabity properties, we require
RL to be of the form RL = (ΣL, EL ∪ BL, RL), where: (i) BL is a collection
of structural axioms, such as associativity and/or commutativity, and/or iden-
tity of certain operators in ΣL; (ii) the equations EL are confluent modulo the
structural axioms BL; and (iii) the rules RL are coherent with the equations EL
modulo the structural axioms BL [123]. Conditions (i)–(iii) make RL executable,
so that using a rewriting logic language like Maude we automatically get an
interpreter for L.

As already mentioned, what the equations EL axiomatize are the deterministic
features of L. Instead, the truly concurrent features of L are axiomatized by the
non-equational rules RL. The assumption of determinism is precisely captured
by EL being a set of confluent equations (modulo BL), so that their evalution,
if terminating, has a unique final result.

All this means that rewriting logic comes with a built-in “abstraction dial.”
The least abstrac possible position for such a dial is to turn the equations EL
into rules, yielding the theory (ΣL, BL, EL ∪RL); this is typically the approach
taken by SOS definitions. The specification RL = (ΣL, EL ∪ BL, RL) can al-
ready achieve an enormous abstraction, which typically makes the difference
between tractable and intractable model checking analysis. The point is that
the equations EL now identify all intermedite execution states obtained by de-
terministic steps, yielding a typically enormous state space reduction. Sometimes
we may be able to turn the dial to an even more abstract position by further
decomposing RL as a disjoint union RL = R′

L ∪ GL, so that the rewrite theory
(ΣL, EL∪GL∪BL, R′

L) still satisfies conditions (i)–(iii). That is, we may be able
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to identify rules GL describing concurrent executions which, by being confluent,
can be turned into equations. For example, for L = Java, the JavaFAN rewriting
logic semantics of Java developed by the late Feng Chen turns the abstraction
dial as far as possible, obtaining a set EJava with hundreds of equations, and a
set RJava with just 5 rules. This enormous state space reduction is a key reason
why the JavaFAN model checker compares favorably with other state-of-the-art
Java model checkers [40].

But the abstraction story does not end here. After all, the semantics (ΣL, EL∪
GL ∪ BL, R′

L) obtained by turning the abstraction dial as much as possible is
still a concrete semantics. We might call it “the most abstract concrete seman-
tics possible.” For many different static analysis purposes one wants to take a
further abstraction step, which further collapses the set of states by defining
a suitable abstract semantics for a language L. The point is that, instead of
a “concrete semantics” describing the actual execution of programs in L, one
can just as easily define an “abstract semantics” (ΣA

L , EA
L , RA

L) describing any
desired abstraction A of L. A good example is type checkig, where the values
manipulated by the abstract semantics are the types. All this means that many
different forms of program analysis, much more scalable than model checking
based on a language’s concrete semantics, become available essentially for free
by using a tool like Maude to execute and analyze one’s desired abstract seman-
tics (ΣA

L , EA
L , RA

L). This is further discussed in Section 8.

2.5 An Ecumenical Movement

For purposes of formally defining the semantics of a programming language,
rewriting logic should be viewed not as a competitor to other approaches, but
as an “ecumenical movement” providing a framework where many different def-
initional styles can happily coexist. From its early stages rewriting logic has
been recognized as ideally suited for SOS definitions [74, 66], and has been
used to give SOS definitions of programming languages in quite different styles,
e.g., [119, 25, 121, 122, 40, 42]. What the paper [112] makes explicit is both the
wide range of SOS styles supported, and the possibility of defining new styles
that may have specific advantages over traditional ones. Indeed, the intrinsic
flexibility of rewriting logic means that it does not prescribe a fixed style for
giving semantic definitions. Instead, many different styles such as, for example,
small-step or big-step semantics, reduction semantics, CHAM-style semantics,
modular structural operational semantics, or continuation semantics, can all be
naturally supported [112]. But not all styles are equally efficient; for example,
small-step semantics makes heavy use of conditional rewrite rules, insists on mod-
eling every single computation step as a rule in RL, and is in practice horribly
inefficient. Instead, the continuation semantics style described in [112] and used
in, e.g., [40] is very efficient. Furthermore, as already mentioned, the distinction
between equations and rules provides an “abstraction dial” not available in some
definitional styles but enormously useful for state space reduction purposes. Of
particular interest are modular definitional styles, which are further discussed in
Section 3.
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2.6 Defining Real-Time Languages

In rewriting logic, real-time systems are specified with real-time rewrite theories
[93]. These are just ordinary rewrite theories R = (Σ, E ∪ B, R) such that: (i)
there is a sort Time in Σ such that (Σ, E) contains an algebraic axiomatization
of a time data type, where time can be either discrete or continuous; (ii) there
is also a sort GlobalState , where terms of sort GlobalState are pairs (t, r), with
t an “untimed state” (which may however contain time-related quantities such
as timers), and r is a term of sort Time (that is, the global state is an untimed
state plus a global clock); and (iii) the rules R are either: (a) instantaneous rules,
which do not change the time and only rewrite the discrete part of the state, or
(b) tick rules, of the form

(t, r) → (t′, r′) if C

where t and t′ are term patterns describing untimed states, r and r′ are terms
of sort Time , and C is the rule’s condition. That is, tick rules advance the
global clock and also update the untimed state to reflect the passage of time
(for example, timers may be decreased, and so on). Real-Time rewrite theories
provide a very expressive semantic framework in which many models of real-time
systems can be naturally expressed [93]. The Real-Time Maude language [94]
is an extension of Maude that supports specification, simulation, and model
checking analysis of real-time systems specified as real-time rewrite theories.

How should the formal semantics of a real-time programming language be
defined? And how can programs in such a language be formally analyzed? The
obvious RLS answers are: (i) “with a real-time rewrite theory,” and (ii) “by real-
time model checking and/or deductive reasoning based on such a theory.” Of
course, the effectiveness of these answers has to be shown in actual languages.
This is done in Section 5.

2.7 Defining Modeling Languages

It is well known that the most expensive errors in system development are not
coding errors but design errors. Since design errors affect the overal structure of
a system and are often discovered quite late in the development cycle, they can
be enormously expensive to fix. All this is uncontroversial: there is widely-held
agreement that, to develop systems, designs themselves should be made machine-
representable, and that tools are needed to keep such designs consistent and to
uncover design errors as early as possible. This has led to the development of
many software modeling languages.

There are however two main limitations at present. The first is that some of
these modeling notations lack a formal semantics: they can and do mean different
things to different people. The second is that this lack of semantics manifests
itself at the practical level as a lack of analytic power, that is, as an incapacity to
uncover expensive design errors which could have been caught by better analysis.
It is of course virtually impossible to solve the second problem without solving
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the first: without a precise mathematical semantics any analytic claims about
satisfaction of formal requirements are meaningless.

The practical upshot of all this is that a semantic framework such as rewriting
logic can play an important role in: (i) giving a precise semantics to modeling lan-
guages; and in (ii) endowing such languages and notations with powerful formal
analysis capabilities. Essentially the approach is the same as for programming
languages. If, say, M is a modeling language, then its formal semantics will be
a rewrite theory of the form (ΣM, EM, RM). If the modeling language M pro-
vides enough information about the dynamic behavior of models, the equations
EM and the rules RM will make M executable, that is, it will be possible to
simulate models in M before they are realized by concrete programs, and of
course such models thus become amenable to various forms of formal analysis.
All these ideas are further discussed in Section 6

2.8 Defining Hardware Description Languages

What is hardware? What is software? It depends in part on the level of abstrac-
tion chosen, and on specific implementation decisions: a given functionality may
sometimes be realized as microcode, other times as code running on an FPGA,
and yet other times may be implemented in custom VLSI. All this means that the
difference between the semantics of digital hardware in some Hardware Descrip-
tion Language (HDL), and that of a programming language is not an essential
one, just one about which level of abstraction is chosen. From the point of view
of rewriting logic, both the semantics of an HDL and that of a programming
language can be expressed by suitable rewrite theories. We further discuss the
rewriting logic semantics of HDLs in Section 7.

2.9 Formal Analysis Methods and Tools

The fact that, under simple conditions, rewriting logic specifications are ex-
ecutable, means that the rewriting logic semantics of a language, whether a
programming language, or a modeling language, or an HDL, is executable and
therefore yields an interpreter for the given language when run on a rewriting
logic system such as Maude. Since the language in question may not have any
other formal semantics, the issue of whether the semantic definitions correctly
capture the language’s informal semantics is a nontrivial matter; certainly not
trivial at all for real languages which may require hundreds of semantic rules.
The fact that the semantics is executable is very useful in this regard, since one
can test the correctness of the definitions by comparing the results from eval-
uating programs in the interpreter obtained from the rewriting logic semantics
and in an actual language implementation. The usefulness of this approach is
further discussed for the case of the semantics of C in Section 4.

Once the language specifier is sufficiently convinced that his/her semantic
definitions correctly capture the language’s informal semantics, various sophisti-
cated forms of program analysis become possible. If some abstract semantics for
the language in question has been defined, then the abstract semantic definition
can be directly used as an static analysis tool. Since various abstract semantics
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may be defined for diverse analysis purposes, a collection of such tools may be
developed. We further discuss this idea in Section 8.

Using a tool like Maude, the concrete rewriting logic semantics of a language
becomes not just an interpreter, but also a model checker for the language in
question. The point is that Maude can model check properties for any user-
specified rewrite theory. Specifically, it can perform reachabilty analysis to detect
violations of invariants using its breadth-first search feature; and it can also
model check temporal logic properties with its LTL model checker. Such features
can then be used to model check programs in the language whose rewriting
semantics one has defined, or in an abstraction of it, as explained in Section 9.

Static analysis and model checking do not exhaust the formal analysis pos-
sibilities. A language’s rewriting logic semantics can also be used as the basis
for deductive reasoning about programs in such a language. The advantage of
directly basing deductive reasonign methods on the semantics is that there is no
gap between the operational semantics and the “program logic.” This approach
has been pioneered by matching logic [103,102], a program verification logic, with
substantial advantages over both Hoare logic and separation logic, which uses a
language’s rewriting logic semantics, including the possibility of using patterns
to symbolically characterize sets of states, to mechanize the formal verification
of programs, including programs that manipulate complex data structures. More
on matching logic and the MatchC tool in Section 10.

3 Modular Definitions and the K Framework

One major impediment blocking the broader use of semantic frameworks is the
lack of scalability of semantic definitions. Lack of modularity is one of the main
causes for this lack of scalability. Indeed, in many frameworks one often needs to
redefine the semantics of the existing language features in order to include new,
unrelated features. For example, in conventional SOS [99] one needs to more than
double the number of rules in order to include an abrupt termination construct
to a language, because the termination “signal” needs to be propagated through
all the language constructs. Mosses’ Modular SOS (MSOS) [87] addresses the
non-modularity of SOS; it was shown that MSOS can be faithfully represented in
rewriting logic, in a way that also preserves its modularity [23,73,25,24,29]. We
here report on the K framework, developed in parallel with the MSOS approach.

K [105] is a modular executable semantic framework derived from rewriting
logic. It works with terms, but its concurrent semantics is best explained in terms
of graph rewriting intuitions [111]. K was first introduced by the second author
in the lecture notes of a programming language design course at the University
of Illinois at Urbana-Champaign (UIUC) in Fall 2003 [101], as a means to define
concurrent languages in rewriting logic using Maude. Programming languages,
calculi, as well as type systems or formal analyzers can be defined in K by making
use of special, potentially nested cell structures, and rules. There are two types of
K rules: computational rules, which count as computational steps, and structural
rules (or “half equations”), which do not count as computational steps. The role
of the structural rules is to rearrange the term so that the computational rules
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Original language syntax K Strictness K Semantics

AExp ::= Int
| Id 〈x

i

···〉k 〈··· x �→ i ···〉state

| AExp +AExp [strict] i1 + i2 → i1 +Int i2
| AExp /AExp [strict] i1 / i2 → i1 /Int i2 where i2 �= 0

BExp ::= Bool
| AExp <=AExp [seqstrict] i1 <= i2 → i1 ≤Int i2
| notBExp [strict] not t → ¬Bool t
| BExp andBExp [strict(1)] true and b → b

false and b → false

Stmt ::= skip skip → ·
| Id :=AExp [strict(2)] 〈x := i

·
···〉k 〈··· x �→

i

···〉state
| Stmt ;Stmt s1 ; s2 ⇀ s1 � s2

| if BExp [strict(1)] if true then s1 else s2 → s1

then Stmt else Stmt if false then s1 else s2 → s2

| while BExp do Stmt 〈 while b do s

if b then (s ; while b do s) else ·
···〉k

Pgm ::= var List{Id} ;Stmt 〈 var xl ; s

s

〉k 〈 ·
xl �→ 0

〉state

Fig. 1. K definition of IMP: syntax (left), annotations (middle) and semantics (right);
x ∈ Id, xl ∈ List{Id}, i, i1, i2 ∈ Int, t ∈ Bool, b ∈ BExp, s, s1, s2 ∈ Stmt

can apply. K rules are unconditional (they may have side conditions, though),
and they are context-insensitive.

We introduce K by means of a simple imperative language, called IMP. In
Section 3.2 we extend IMP with dynamic threads into IMP++, and in Sec-
tion 8.1 we show how one can use K to define a type checker for IMP++. This
language experiment is borrowed from [105], where more details about K can
be found. We also refer the interested reader to http://k-framework.org for
papers, workshops and an implementation. Our implementation of K, the K-
Maude tool, consists of a translator to Maude, which is implemented using Perl
scripting (about 6,000 lines) and Maude (about 9,000 lines).

3.1 K Semantics of IMP

Figure 1 shows the complete K definition of IMP, except for the configuration
(explained below). The left column gives the IMP syntax. The middle column
augments it with K strictness attributes, stating the evaluation strategy of some
language constructs. Finally, the right column gives the semantic rules.

Language syntax is typically defined in K using an “algebraic” context-free
notation, i.e., one which allows users to make use of list, set, multiset and map
structures without defining them. Note, e.g., that we used List{Id} as a non-
terminal in the syntax of IMP in Figure 1. System configurations are defined in
the same style. Configurations in K are organized as potentially nested structures
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of cells, which are typically labeled to distinguish them from each other. We use
angle brackets as cell wrappers. The K configuration of IMP can be defined as:

Configuration
IMP

≡ 〈〈K〉k 〈Map{Id �→ Int}〉state〉�
In words, IMP configurations consist of a top cell 〈. . .〉� containing two other
cells inside: a cell 〈. . .〉k which holds a term of sort K (the computation) and a cell
〈. . .〉state which holds a map from variables to integers. As examples of IMP K

configurations, 〈〈x := 1; y := x+1〉k 〈·〉state〉� is a configuration holding program
“x := 1; y := x+1” and empty state, 〈〈x := 1; y := x+1〉k 〈x �→ 0 y �→ 1〉state〉�
is a configuration holding the same program and a state x �→ 0 and y �→ 1.

The sort K, for computational structures or simply computations, has a special
meaning in K. The intuition for terms of sort K is that they have computational
contents, such as programs or program fragments have. Technically, computa-
tions automatically extend the syntax of the original language (i.e., all syntactic
categories are sunk into K) with a list structure with “�” (read “followed by”)
as binary concatenation of computations and with “·” as the empty computation.
For example, the intuition for a computation of the form T1 � T2 � · · · � Tn is
that the enlisted (computational) tasks should be processed sequentially. Com-
putations give a uniform means to define and handle evaluation contexts and/or
continuations as special cases: a computation “v � c” can be thought of as “c[v],
that is, evaluation context c applied to v” or as “passing v to continuation c”. In
fact, K allows one to define evaluation contexts over the language syntax both
directly, like in [105], or indirectly, by means of strictness attributes like in the
middle column in Figure 1. However, one should be aware that these are nothing
but convenient notations, which desugar into rules. For example, the evaluation
strategies of sum, comparison and conditional in IMP specified by the strictness
attributes in Figure 1 can be defined using the following structural rules (for di-
versity, we assume that the sum + evaluates its arguments non-deterministically
and the comparison <= evaluates its arguments sequentially):

a1 + a2 � a1 � � + a2

a1 + a2 � a2 � a1 + �
a1 <= a2 � a1 � � <= a2

i1 <= a2 � a2 � i1 <= �
if b then s1 else s2 � b � if � then s1 else s2

The symbol � stands for two structural rules, one left-to-right and another
right-to-left. The right-hand sides of the structural rules above contain, besides
the task sequentialization operator �, freezer operators containing � in their
names, such as � + , +�, etc. The first rule above says that in any expression
of the form a1 + a2, a1 can be scheduled for processing while a2 is being held for
future processing. Since these rules are bi-directional, they can be used at will to
structurally re-arrange the computations. Thus, when iteratively applied from
left-to-right they fulfill the role of splitting syntax into an evaluation context (the
tail of the resulting sequence of computational tasks) and a redex (the head of the
resulting sequence), and when applied right-to-left they fulfill the role of plugging
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syntax into context. Our current implementation of K automatically generates
rules like the above, plus heuristics to apply them in one direction or the other,
from strictness annotations to syntax like in Figure 1 (middle column).

Structural rules like those above decompose and eventually push the tasks that
are ready for processing to the top (or the left) of the computation. Semantic
rules then tell how to process the atomic tasks. The right column in Figure 1
shows the K semantic rules of IMP. To explain them, let us first discuss the
important notion of a K rule, which is a strict generalization of the usual notion
of a rewrite rule. K rules explicitly mention the parts of the term that they read,
write, or don’t care about. The underlined parts are those which are written by
the rule; the term underneath the line is the new subterm replacing the one above
the line. All writes in a K rule are applied in one parallel step, and, with some
reasonable restrictions discussed in [111] that avoid read/write and write/write
conflicts, writes in multiple K rule instances can also apply in parallel. The
elipses “ ··· ” represent the volatile part of the term, that is, that part that the
current rule does not care about and, consequently, can be concurrently modified
by other rules. The operations which are not underlined represent the read-only
part of the term: they need to stay unchanged during the application of the rule.
For example, consider the assignment rule in Figure 1:

〈x := i
·

···〉k 〈··· x �→
i
···〉state

It says that once the assignment x := i reaches the top of the computation, the
value of x in the store is replaced by i and the assignment dissolves; in K, “ ”
is a nameless variable of any sort and “·” is the unit (or empty) computation
(“·” is a polymorphic unit of all list, set and multiset structures). The rule for
variable declarations in Figure 1 (last one) expects an empty state and allocates
and initializes with 0 all the declared variables; the dotted or dashed lines signify
that the rule is structural, which is discussed next.

K rules are split in two categories: computational and structural. Computa-
tional rules capture the intuition of computational steps in the execution of
the defined system or language, while structural rules capture the intuition of
structural rearrangement, rather than computational evolution, of the system.
We use dashed or dotted lines in the structural rules. Ordinary rewrite rules are
particular K rules, when the entire term is replaced; in this case, we prefer to use
the standard notation l → r as syntactic sugar for computational rules and the
notation l ⇁ r or l ⇀ r as syntactic sugar for structural rules. Figure 1 shows
three explicit structural rules (as already discussed, the strictness attributes cor-
respond to implicit ones): s1 ; s2 is rearranged as s1 � s2, loops are unrolled
when they reach the top of the computation (unconstrained unrolling leads to
non-termination), and declared variables are allocated in the state.

K rewriting is a hybrid between term rewriting and graph rewriting, aimed
at keeping the syntactic simplicity of the former and achieving the concurrency
semantics benefits of the latter. While rewriting logic can theoretically capture
the intended concurrent semantics of graph rewriting [70], the representation
in [70] is impractical. The concurrent semantics of K is given in terms of graph
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Original language syntax K Strictness K Semantics

AExp ::= . . . | ++ Id 〈 ++x

i +Int 1

···〉k 〈··· x �→ i

i +Int 1

···〉state
Stmt ::= . . .

| printAExp [strict] 〈 print i

·
···〉k 〈··· ·

i

〉output

| halt 〈 halt �

·
〉k

| spawn Stmt 〈 spawn s

·
···〉k ·

〈s � die〉k
K ::= . . . | die 〈die〉k ⇁ ·

Fig. 2. K definition of IMP++ (extends that in Figure 1, without changing anything)

rewriting, taking into account the explicit sharing and variable volatility in K

rules, but avoiding the notational complexity of graph rewriting. However, our
current implementation straightforwardly translates K rules into rewrite rules
and then uses Maude for execution and formal analysis. For example, the rule
for assignment above gets translated into a rewrite rule of the form:

〈x := i � rest〉k 〈before x �→ j after〉state → 〈rest〉k 〈before x �→ i after 〉state
Even though our current translation to Maude loses concurrency, a serializability
result in [111] connecting K rewriting and rewriting logic reasoning guarantees
the soundness of execution and formal analysis of K using Maude.

3.2 Extending IMP

In this section we highlight the modularity of K by extending the IMP language
in Section 3.1 with variable increment and dynamic threads. Figure 2 shows how
the K semantics of IMP is seamlessly extended into a semantics for IMP++.
To accommodate the output, a new cell needs to be added to the configuration:

Configuration
IMP++

≡ 〈〈K〉k 〈Map{Id �→ Int}〉state 〈List{Int}〉output 〉�

However, note that none of the existing IMP rules needs to change, because
each of them only matches what it needs from the configuration. The construct
print is strict and its rule adds the value of its argument to the end of the
output buffer (matches and replaces the unit “·” at the end of the buffer). The
rule for halt dissolves the entire computation, and the rule for spawn creates a
new 〈. . .〉k cell wrapping the spawned statement. The code in this new cell will
be processed concurrently with the other threads. The last rule cools down a
terminated thread by simply dissolving it; it is a structural rule since, again, we
do not want it to count as a computational step.

4 Programming Language Semantics

Having formal semantics for real programming languages, regardless of the for-
malism that is being used, is undoubtedly a very important step, useful not only
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to help us understand those languages better but also to serve as a solid foun-
dation for implementations and for program analysis and verification techniques
and tools. Using rewriting logic as a formalism for such semantics has the ad-
ditional benefit that such techniques and tools can be directly derived from the
language semantics with minimal effort, as shown throughout this paper.

The rewriting logic semantics technique described in Section 3 has been used
to define several programming languages or large fragments of them. Some of
these languages serve as models for teaching various language paradigms, which
we do not mention here but can be found on webpages for programming lan-
guage courses at UIUC and can be reached from http://k-framework.org,
while others are real programming languages, such as C [37], Scheme [67], or
Java 1.4 [40, 42]. In this section we only briefly discuss the rewrite logic se-
mantics of C [37], more precisely of the ISO/IEC 9899:1999 (C99) standard,
as formalized by Chucky Ellison using the K framework. This semantics is cur-
rently being used by several researchers and research groups, both directly in
their tools and indirectly as a basis for understanding (and sometimes criticiz-
ing) the C language. This has led to the “C Semantics” Google code project
repository at http://c-semantics.googlecode.com/.

The C semantics defined by Chucky Ellison defines approximately 120 C syn-
tactic operators and 200 intermediate or auxiliary semantic operators. The def-
initions of these operators are given by 400 semantic rules and 172 helper rules
spread over 2333 lines of code (LOC). However, it takes only 37 of those rules
(201 LOC) to cover the behavior of statements, and another 119 for expressions
(417 LOC). There are 353 rules for dealing with types, memory, and other nec-
essary mechanisms. Finally, there are about 63 rules for the core of the standard
library.

This is the most comprehensive formal semantics of C to date. It is executable
and thoroughly tested. All aspects related to the features mentioned below are
given a direct semantics. Expressions: referencing and dereferencing, casts, array
indexing, structure members, arithmetic, bitwise, and logical operators, sizeof,
increment and decrement, assignments, sequencing, ternary conditional; State-
ments: for, do-while, while, if, if/else, switch, goto, break, continue, return; Types
and Declarations: enums, structs, unions, bitfields, initializers, static storage,
typedefs; Values: regular scalar values (signed/unsigned arithmetic and pointer
types), structs, unions; Standard Library: malloc/free, set/longjmp, basic I/O;
Environment: command line arguments; Conversions: (implicit) argument and
parameter promotions and arithmetic conversion, and (explicit) casts.

No matter what the intended use is for a formal semantics, such a use is limited
if one cannot achieve confidence in its correctness. To achieve this aim, executable
semantics has an immense practical advantage over non-executable semantics, be-
cause one can simply test it. The C semantics in [37] has been encapsulated inside
a drop-in replacement for Gnu’s C Compiler (GCC), called “KCC”. This allows
one to test the semantics as one would test a compiler. Indeed, the C semantics
has been successfully run against all the examples in the Kernigham and Ritchie
manual that supposedly cover all the features of ANSI C. Moreover, a series of
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challenging C programs collected from the Internet, such as programs from the
Obfuscated C programming competition, totaling more than 10,000 LOC are in-
cluded in the regression tests of the C semantics, so these are all executed each
time the semantics is changed. In addition to the above, the GCC C-torture-test
(which contains 715 C programs conforming to the standard semantics of C99)
has been executed in the C semantics and its behavior compared to that of GCC
itself, as well as to Intel’s C Compiler (ICC).

C is so complex that even dedicated and broadly used compilers like GCC
or ICC cannot compile and execute all the programs in the GCC torture-test.
All in all, considering all the tests that the C semantics has been tested on, the
GCC and ICC compilers successfully passed 99% of them, while the C semantics
(compiled into Maude using the K framework tool) passed 96% of them. The
C semantics ran over 90% of these programs in under 5 seconds (each). An
additional 6% completed in 10 minutes, 1% in 40 minutes, and 2% further in
under 2 days. The remaining programs either did not finish because they were
computationally very intensive (such as FFTs), or they made use of features
which were not yet defined (such as, e.g., unicode characters in strings). While
this is not terribly fast performance, especially when compared to compiled C,
the reader should keep in mind that this is an interpreter obtained for free from
a formal semantics and that other existing semantics of C are either “paper”
definitions (e.g., [51]), or not executable (e.g., [91]), or very slow (e.g., we were
not able to execute factorial of 6 or the 4th Fibonacci’s number using the Haskell-
based definition in [95,96]), or covering only a C fragment (e.g., [14]). Moreover,
our semantics of C can be used directly and unchanged for other purposes, such
as for model checking (Section 9) and for deductive verification (Section 10).

5 Real-Time Language Semantics

Three real-time programming languages have been given formal semantics as
real-time rewrite theories [93] in Real-Time Maude [94]. Using the model check-
ing features of Real-Time Maude it then becomes possible to formally analyze
programs in such languages.

In [4], AlTurki et al. present a language for real-time concurrent programming
for industrial use in DOCOMO Labs called L. The goal of L is to serve as
a programming model for higher-level software specifications in SDL or UML.
A related goal is to support formal analysis of L programs by both real-time
model checking and static analysis, so that software design errors can be caught
at design time. The way all this is accomplished is by giving a formal semantics
to L in Real-Time Maude, which automatically provides an interpreter and a
real-time model checker for L. Static analysis capabilities are added to L by
using Maude to define an abstract semantics for L in rewriting logic, which is
then used as the static analyzer.

The Orc model of real-time concurrent computation [79,80,126] has been given
semantics in rewriting logic using real-time rewrite theories [5,6]. Although Orc
is a very simple and elegant language, its real-time semantics is quite subtle
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for two reasons. First, in the evaluation of any Orc expression, internal com-
putation always has higher priority than the handling of external events; this
means that, even without modeling time, a vanilla-flavored SOS semantics is
not expressive enough to capture these different priorities: two SOS relations
are needed [80]. Second, Orc is by design a real-time language, where time is a
crucial feature. Using real-time rewrite theories, this double subtlety of the Orc
semantics was faithfully captured in [5]; furthermore, this semantics yielded of
course an Orc interpreter and a real-time model checker. But Orc is not just
a model of computation: it is also a concurrent programming language. This
suggested the following challenge question: can a correct-by-construction dis-
tributed Orc implementation be derived from its rewriting logic semantics? This
question was answered in two stages. Since, as discussed in Section 2.5, a small-
step SOS semantics is typically horribly inefficient and it was certainly so in the
case of Orc, a much more efficient reduction semantics was first defined in [6],
and was proved to be bisimilar to the small-step SOS semantics. This semantics
provided a much more efficient interpreter and model checker. Furthermore, to
explicitly model different Orc clients and various web sites, and their message
passing communication, the Orc semantics was seamlessly extended in [6] to a
distributed object-based Orc semantics, which modeled what a distributed im-
plementation should look like. The only remaining step was to pass from this
model of a distributed implementation to an actual Maude-based distributed
real-time implementation. This was accomplished in [7] using three main ideas:
(i) the use of sockets in Maude to actually deploy a distributed implementa-
tion; (ii) the systematic replacement of logical time by physical time, supported
by Ticker objects external to Maude, while retaining the rewriting semantics
throughout; and (iii) the experimental estimation of the physical time required
for “zero-time” Maude subcomputations, to ensure that the granularity of time
ticks is such that all “instantaneos transitions” have already happened before
the next tick.

Creol is an object-oriented language supporting concurrent objects which
communicate through asynchronous method calls. Its rewriting-logic-based op-
erational semantics was defined in [55] without real-time features. However, to
support applications such as sensor systems with wireless communication, where
messages expire and may collide with each other, Creol’s design and operational
semantics have been extended in [13] to Timed Creol using rewriting logic. The
notion of time used by Timed Creol is described as a “lightweight” one in [13].
Time is discrete and is represented by a time object. This approach does not
require a full use of the features in Real-Time Maude (Maude itself is sufficient
to define the real-time semantics). The effectiveness of Timed Creol in the mod-
eling and analysis of applications such as sensor networks is illustrasted in [13]
through a case study.

6 Modeling Language Semantics

Modeling languages are quite useful, but they can be made even more useful by
substantially increasing their analytic power through formal analysis, since this
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can make it possible to catch expensive design errors very early. Formal analysis
is impossible or fraudulent without a formal semantics. Early work in developing
rewriting-logic-based formal semantics focused on object-oriented design nota-
tions and languages [127, 90, 89], and stimulated subsequent work on UML and
UML-like notations, e.g., [44, 62, 63, 128,8, 33, 83, 82, 84].

A more ambitious question is: can we give semantics not just to a single
modeling language, but to an entire modeling framework where different mod-
eling languages can be defined? This question has been answered positively
in [16, 15, 17, 19, 20]. This line of research has led to MOMENT2, an algebraic
model management framework and tool written in Maude and developed by Ar-
tur Boronat [15]. It permits manipulating software models in the Eclipse Mod-
eling Framework (EMF). It uses OMG standards, such as Meta-Object Facility
(MOF), Object Constraint Language (OCL) and Query/View/Transformation
(QVT), as a clean interface between rewriting-logic-based formal methods and
model-based industrial tools. Specifically, it supports formal analyses based on
rewriting logic and graph transformations to endow model-driven software en-
gineering with strong analytic capabilties. MOMENT2 supports not just one
fixed modeling language, but any modeling language whose meta-model is spec-
ified in MOF. In more detail, a modeling language is specified as a pair (M, C),
where M is its MOF-based metamodel, and C are the OCL constraints that
M should satisfy. Using rewriting-logic-based reflection and its efficient sup-
port in Maude, MOMENT2 provides an executable algebraic semantics for such
metamodel specifications (M, C) in the form of a theory A(M, C) in membership
equational logic (MEL) [71], so that a model M conformant with the metamodel
(M, C) is exactly a term of sort Model in A(M, C), and so that satisfaction of
OCL constraints is also decidable using the algebraic semantics [18, 20].

Due to the executability of MEL specifications in Maude, the realization of
MOF metamodels as MEL theories enhances the formalization and prototyp-
ing of model-driven development processes, such as: (i) model transformations;
(ii) model-driven roundtrip engineering; (iii) model traceability; and (iv) model
management. These processes permit, for example, merging models, generating
mappings between models, and computing differences between models; they can
be used to solve complex scenarios such as the roundtrip problem. In MOMENT2
the formal semantics of model transformations is given by rewrite theories spec-
ified in a user-friendly QVT-based syntax [17]. Such model transformations can
describe the dynamic evolution of systems at the level of their models. Using the
search and LTL model checking features of Maude, properties about the dynamic
evolution of a model M conformant with a metamodel specification (M, C) can
then be formally analyzed by model checking [17]. Real-time modeling languages
can likewise be supported and analyzed [21]; this is further discussed below.

6.1 Semantics of Real-Time Modeling Languages

There is strong interest in modeling languages for real-time and embedded sys-
tems. The rewriting logic semantics for such modeling languages can be naturally
based on real-time rewrite theories. Using a tool like Real-Time Maude, what
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this means in practice is that such models can then be simulated; and that their
formal properties, in particular their safety requirements, can be model checked.
Furthermore, the simulations and formal analysis capabilities added to the given
modeling language can be offered as “plugins” to already existing modeling tools,
so that much of the formal analysis happens “under the hood,” and somebody
already familiar with the given modeling notation can perform such formal anal-
ysis without having an in-depth understanding of the underlying formalism.

The Ptolemy II modeling language (http://ptolemy.eecs.berkeley.edu) sup-
ports design and simulation of concurrent, real-time, embedded systems ex-
pressed in several models of computation (MoCs), such as state machines, data
flow, and discrete-event models, that govern the interaction between concurrent
components. A user can visually design and simulate hierarchical models, which
may combine different MoCs. Furthermore, Ptolemy II has code generation ca-
pabilities to translate models into other modeling or programming languages
such as C or Java. Discrete-Event (DE) Models are among the most central in
Ptolemy II. Their semantics is defined by the tagged signal model [64]. The work
by Bae et al. in [11] endows DE models in Ptolemy II with formal analysis ca-
pabilities by: (i) defining a semantics for them as real-time rewrite theories; (ii)
automating such a formal semantics as a model transformation using Ptolemy
II’s code generation features; (iii) providing a Real-Time Maude plugin, so that
Ptolemy II users can use an extended GUI to define temporal logic properties of
their models in an intutitive syntax and can invoke Real-Time Maude from the
GUI to model check their models. This work has been further advanced in [9]
to support not just flat DE models, but hierarchical ones. That is, above tasks
(i)–(iii) have been extended to hierarchical DE models; this extension is non-
trivial, because it requires combining synchronous fixpoint computations with
hierarchical structure.

AADL (http://www.aadl.info/) is a standard for modeling embedded systems
that is widely used in avionics and other safety-critical applications. However,
AADL lacks a formal semantics, which severely limits both unambiguous com-
munication among model developers and the formal analysis of AADL models.
In [92] Ölveczky et al. define a formal object-based real-time concurrent se-
mantics for a behavioral subset of AADL in rewriting logic, which includes the
essential aspects of AADL’s behavior annex. Such a semantics is directly exe-
cutable in Real-Time Maude and provides an AADL simulator and LTL model
checking tool called AADL2Maude. AADL2Maude is integrated with OSATE, so
that OSATE’s code generation facility is used to automatically transform AADL
models into their corresponding Real-Time Maude specifications. Such trans-
formed models can then be executed and model checked by Real-Time Maude.
One difficulty with AADL models is that, by being made up of various hierarchi-
cal components that communicate asynchronously with each other, their model
checking formal analysis can easily experience a combinatorial explosion. How-
ever, many such models express designs of distributed embedded systems which,
while being asynchronous, should behave in a virtually synchronous way. This
suggest the possibility of using the PALS pattern [75], which reduces distributed
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real-time systems with virtual synchrony to synchronous ones, to pass from sim-
ple synchronous systems, which have much smaller state spaces and are much
easier to model check, to semantically equivalent asynchronous systems, which
often cannot be directly model checked but can be verified indirectly through
their synchronous counterparts. This has led to the design of the Synchronous
AADL sublanguage in [10], where the user can specify synchronous AADL mod-
els by using a sublanguage of AADL with some special keywords. A synchronous
rewriting semantics for such models has also been defined in [10]. Using OSATE’s
code generation facility, synchronous AADL models can be transformed into
their corresponding Real-Time Maude specifications in the SynchAADL2Maude
tool, which is provided as a plugin to OSATE. Likewise, the user can define
temporal logic properties of synchronous AADL models based on their features,
without requiring knowledge of the underlying formalism, and can model check
such models in Real-Time Maude.

A more ambitious goal is to provide a framework, where a wide range of real-
time Domain-Specific Visual Languages (DSVLs), as well as their dynamic real-
time behavior, can be specified with a rigorous semantics. This is precisely the
goal of two frameworks and associated tools: (i) the e-Motions framework [100];
and (ii) MOMENT2 ’s support for real-time DSVLs [21].

– In e-Motions, DSVLs are specified by their corresponding metamodels, and
dynamic behavior is specified by rules that define in-place model transforma-
tions. But the goals of e-Motions do not remain at the syntax/visual level:
they also include giving a precise rewriting logic semantics in Real-Time
Maude to the different real-time DSVLs that can be defined in e-Motions,
and to automatically support simulation and formal analysis of models by
using the underlying Real-Time Maude engine. The formal semantics trans-
lates the metamodel of a DSVL as an object class, the corresponding models
as object configurations of that class, and the e-Motions rules as rewrite
rules. Since all these translations are automatic and define a DSVL’s formal
semantics, a modeling language designer using e-Motions does not have to
explicitly define the DSVL’s formal semantics: it comes for free, together
with the simulation and model checking features, once the DSVL’s meta-
model and the dynamic behavior rules are specified.

– In [21], the MOMENT2 framework has been extended to support the formal
specification and analysis of real-time model-based systems. This is achieved
by means of a collection of built-in timed constructs for defining the timed
behavior of such systems. Timed behavior is specified using in-place model
transformations. Furthermore, the formal semantics of a timed behavioral spec-
ification in MOMENT2 is given by a corresponding real-time rewrite theory.
In this way, models can be simulated and model checked using MOMENT2’s
Maude-based analysis tools. In addition, by using in-place multi-domain model
transformations in MOMENT2, an existing model-based system can be ex-
tended with timed features in a non-intrusive way, in the sense that no mod-
ification is needed for the class diagram.
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7 Hardware Description Language Semantics

The rewriting logic semantics project has been naturally extended from the level
of programming languages to that of hardware description languages (HDLs). In
this way, hardware designs written in an HDL can be both simulated and ana-
lyzed using the executable rewriting semantics of the HDL and tools like ELAN,
CafeOBJ, or Maude. The first HDL to be given a rewriting logic semantics in
Maude was ABEL [58]; this semantics was used not only for hardware designs,
but also for hardware/software co-designs. An important new development has
been the use of the rewriting logic semantics of an HDL for generating sophis-
ticated test inputs for hardware designs. The point is that random testing can
catch a good number of design errors, but uncovering deeper errors after ran-
dom testing is hard and costly and requires a good understanding of the design
to exercise complex computation sequences. The key insight, due to Michael
Katelman, is that the rewriting semantics can be used symbolically to generate
desired test inputs, not on a device’s concrete states, but on states that are
partly symbolic (contain logical variables) and partly concrete. This symbolic
approach, first outlined in [60] and more fully developed in [59], has a number
of unique features including: (i) the use of SAT solvers to symbolically solve
Boolean constraints; (ii) support for user-guided random generation of partial
instantiations; and (iii) a flexible strategy language, in which a hardware designer
can specify in a declarative, high-level way the kind of test that needs to be gen-
erated. The effectiveness of this approach for generating sophisticated tests on
real hardware designs has already been demonstrated for medium-sized Verilog
designs [59]. The vlogsl tool is currently undergoing further enhancements to
efficiently handle large designs.

But the value of the rewriting semantics of an HDL is not restricted to testing.
For example, the recent Maude-based rewriting logic semantics of Verilog in [68]
is arguably the most complete formal semantics to date, both in the sense of
covering the largest subset of the language and in its faithful modeling of non-
deteministic features. Besides being executable and supporting formal analysis,
this semantics has uncovered several nontrivial bugs in various mature Verilog
tools, and can serve as a practical and rigorous standard to ascertain what the
correct behavior of such tools should be in complex cases.

A more exotic application of rewriting logic semantics, for which it is ideally
suited due to its intrinsically concurrent nature, is that of asynchronous hardware
designs. These are digital designs which do not have a global clock, so that
different gates in a device can fire at different times. Such devices can behave
correctly in much harsher environments (e.g., a satellite in outer space) and
with much wider ranges of physical operating conditions than clocked devices.
Asynchronous designs can be specified with the notation of production rules,
which roughly speaking describe how each gate behaves when inputs to its wires
are available. In [57] a rewriting logic semantics of asynchronous digital devices
specified as sets of production rules is given and is realized in Maude. This is
the first executable formal semantics of such devices we are aware of. It can
be used both for simulation purposes and for model checking verification of
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small-sized devices (about 100 gates). An interesting challenge is how to scale up
model checking for larger devices; this is nontrivial due to the large combinatorial
explosion caused by their asynchronous behavior.

8 Abstract vs. Concrete Semantics and Static Analysis

In addition to helping with understanding and experimenting with language de-
signs, a rewriting logic semantics can have several direct uses without having to
change the semantics at all. Two such uses of unchanged semantics in the context
of program verification are discussed in Sections 9 and 10. Nevertheless, there are
program analysis needs where the desired information is not necessarily available
in the code itself, or where the desired domain of analysis is not included in, and
cannot be obtained from, the concrete domain in which the language semantics
operates. In such cases, one can modify the concrete language semantics to op-
erate within a target abstract domain. We next first show an overly simplified
example, where the concrete semantics of IMP and IMP++ in Sections 3.1 and
3.2 are abstracted into type systems for the defined languages, which yield type
checkers when executed. Then we discuss uses of similar but larger scale and
more practical abstractions of rewrite logic semantics.

8.1 K Definition of a Type System for IMP++

The K semantics of IMP/IMP++ in Sections 3.1 and 3.2 can be used to execute
even ill-typed IMP/IMP++ programs, which may be considered undesirable by
some language designers. In this section we show how to define a type system for
IMP/IMP++ using the very same K framework. The type system is defined like
an (executable) semantics of the language, but one in the more abstract domain
of types rather than in the concrete domain of integer and Boolean values.

The typing policy that we want to enforce on IMP/IMP++ programs is easy:
all variables in a program have by default integer type and must be declared,
arithmetic/Boolean operations are applied only on expressions of corresponding
types, etc. Since programs and program fragments are now going to be rewritten
into their types, we need to add to computations some basic types. Also, in
addition to the computation to be typed, configurations must also hold the
declared variables. Thus, we define the following (the “. . . ” in the definition of
K includes all the default syntax of computations, such as the original language
syntax, �, freezers, etc.):

K ::= . . . | int | bool | stmt | pgm
ConfigurationType

IMP++
≡ 〈〈K〉k 〈List{Id }〉vars〉�

Figure 3 shows the IMP/IMP++ type system as a K system over such con-
figurations. Constants reduce to their types, and types are straightforwardly
propagated through each language construct. Note that almost each language
construct is strict now, because we want to type all its arguments in almost all
cases in order to apply the typing policy of the construct. Two constructs are
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Original language syntax K Strictness K Semantics

AExp ::= Int i → int
| Id 〈 x

int

···〉k 〈··· x ···〉var

| AExp +AExp [strict] int + int → int
| AExp /AExp [strict] int / int → int
| ++ Id 〈 ++x

int

···〉k 〈··· x ···〉var

BExp ::= AExp <=AExp [strict] int <= int → bool
| notBExp [strict] not bool → bool
| BExp andBExp [strict] bool and bool → bool

Stmt ::= skip skip → stmt
| Id :=AExp [strict(2)] 〈x := int

stmt

···〉k 〈··· x ···〉var

| Stmt ;Stmt [strict] stmt ; stmt → stmt
| if BExp

then Stmt else Stmt [strict] if bool then stmt else stmt → stmt
| while BExp do Stmt [strict] while bool do stmt → stmt
| printAExp [strict] print int → stmt
| halt halt → stmt
| spawn Stmt [strict] spawn stmt → stmt

Pgm ::= var List{Id} ;Stmt 〈 var xl ; s

s � pgm

〉k 〈 ·
xl

〉vars

stmt � pgm → pgm

Fig. 3. K type system for IMP++ (and IMP)

exceptional, namely, increment and assignment. The typing policy of these con-
structs is that they take precisely a variable and not something that types to an
integer. If we defined, e.g., the assignment strict and with rule int := int → stmt,
then our type system would allow ill-formed programs like x+y := 0 . Note how
we defined the typing policy of programs var xl ; s: the declared variables xl
are stored into the 〈. . .〉vars cell (which is expected to initially be empty) and the
statement is scheduled for typing (using a structural rule), placing a “reminder”
in the computation that the pgm type is expected; once/if the statement is cor-
rectly typed, the type pgm is generated.

8.2 Examples of Abstract Rewriting Logic Semantics

We briefly discuss three practical uses of abstract rewriting logic semantics.

C Pluggable Policies. Many programs make implicit assumptions about data.
Common examples include assumptions about whether variables have been ini-
tialized or can only contain non-null references. Domain-specific examples are
also common; a compelling example is units of measurement, used in many
scientific computing applications, where different variables and values are as-
sumed to have specific units at specific times/along specific execution paths.
These implicit assumptions give rise to implicit domain policies, such as requiring
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assignments to non-null pointers to also be non-null, or requiring two operands
in an addition operation to have compatible units of measurement.

Mark Hills et al. [53] propose a framework for pluggable policies for C which
allows these implicit policies to be made explicit and checked. The core of the
framework is a shared annotation engine and parser, allowing annotations in
multiple policies to be inserted by developers as comments in C programs, and a
shared abstract rewriting logic semantics of C designed as a number of reusable
modules that allow for new policies to be quickly developed and plugged in. For
instance, a case study for checking non-null references was developed in under
two days; another case study for checking units of measurement reuses the shared
abstract semantics and only adds domain knowledge [53].

Polymorphic Type Inference. The technique in Section 8.1 for defining type
systems using K is very general and has been used to define more complex
type systems, such as higher-order polymorphic ones by Ellison et al. [38]. The
K definition of the type system in [38] is more declarative and thus cleaner
and easier to understand than alternative algorithmic definitions. Moreover, the
K definition is formal, so it is amenable for formal reasoning. Interestingly, as
shown in [38], the resulting K definition, when compiled to and executed using
Maude, was faster than algorithmic implementations of the same type system
found on the internet as teaching material. In fact, experiments in [38] show
that it was comparable to state of the art implementations of type inferencers
in conventional functional languages! For example, it was only about twice as
slow on average than that of OCaml, and had average times comparable, or even
better than those of Haskell ghci and SML/NJ.

Security Policy Checking. An elegant application of a programming lan-
guage’s abstract rewriting logic semantics to Java code security is presented by
Alba-Castro et al. in [2, 3] as part of their rewriting-logic-semantics-based ap-
proach to proof carrying code. The key idea is to use an abstract rewriting logic
semantics of Java that correctly approximates security properties such as nonin-
terference (that is, the specification of what objects should not have any effects
on other objects according to a stated security policy [48]), and erasure (a secu-
rity policy that mandates that secret data should be removed after its intended
use). Since the abstract rewriting semantics is finite-state, it supports the auto-
matic creation of certificates for noninterference and erasure properties of Java
programs that are independently checkable and small enough to be practical.

9 Model Checking Verification

Once a programming language or system is defined as a rewrite theory, one can
use any general-purpose tools and techniques for rewriting logic to obtain tools
and techniques specialized for the defined programming language or system. We
have reported in the past on the use of Maude’s general purpose LTL model
checking capabilities to obtain model checkers specialized for various concurrent
programming languages, including Java and the JVM (see, e.g., [76, 40, 42]).
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In this paper we report on some new model checking experiments performed in
the context of the C definition discussed in Section 4. We thank Chucky Ellison
for extending his C semantics with concurrency primitives and for conducting
these experiments. A more detailed presentation of these can be found in [37].

The C semantics in Section 4 can be extended to include semantics for concur-
rency primitives like “spawn”, “sync”, “lock”, and “unlock”. The former is used
to dynamically spawn a new execution thread, “sync” waits for all of the other
threads to die before continuing, and “lock” and “unlock” synchronize threads
on memory locations (similar to Java locking on references). When formalizing
the semantics of C, we did not plan to introduce concurrency. Despite that,
as hoped for, the existing rules were left unchanged upon adding configuration
support and the semantics of threads.

Dekker’s Algorithm. We now take a look at the classical Dekker’s algorithm, in
order to explore thread interleavings.

void dekker1(void) {
flag1 = 1; turn = 2;
while((flag2 == 1) && (turn == 2)) ;
critical1();
flag1 = 0;

}

void dekker2(void) {
flag2 = 1; turn = 1;
while((flag1 == 1) && (turn == 1)) ;
critical2();
flag2 = 0;

}

These two functions get called by the two threads respectively to ensure mutual
exclusion of the calls to criticaln(). In the program we used for testing, these
threads each contain infinite loops while the function main() waits on a sync().
Thus, the program never terminates.

To test the mutual exclusion property, we model check the following LTL
formula: �¬(enabled(critical1 )∧enabled(critical2 )), stating that the two critical
sections can never be called at the same time. Applying this formula to our
program yields “result Bool: true”, in 400ms. If we break the algorithm by
changing a while to an if, the tool instead returns a list of rules, together with
the resulting states, that represent a counterexample.

Dining Philosophers. Another classic example is the dining philosophers prob-
lem.

void philosopher( int n ) {
while(1) {
// Hungry: obtain chopsticks
if ( n % 2 == 0 ) { // Even number: Left, then right

lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
lock(&chopstick[n]);

} else { // Odd number: Right, then left
lock(&chopstick[n]);
lock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);

}
// Eating
// Finished Eating: release chopsticks
unlock(&chopstick[n]);
unlock(&chopstick[(n+1) % NUM_PHILOSOPHERS]);
// Thinking

}
}

The above code shows a solution to the dining philosophers that has even-
numbered philosophers picking up their left chopstick first, while odd-numbered
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philosophers pick up their right chopstick first. This strategy ensures that there
is no deadlock. We can use Maude’s search command to verify that there is no
deadlock simply by searching for final states. Here are the results:

No Deadlock With Deadlock
n number of states time (s) number of states time (s)
1 19 0.1 – –
2 92 0.8 63 0.6
3 987 14.0 490 7.2
4 14610 293.5 5690 119.8
5 288511 8360.3 84369 2376.5

In the “No Deadlock” column we see the results for the code above. We were
able to verify that with this algorithm, there were no deadlocks for up to five
philosophers. In the “With Deadlock” column, we altered the code so that all
philosophers would try to pick up their left chopstick first. For this algorithm,
we were able to find counterexamples showing that the program has deadlocks.

While the classic programs above are toy examples, which are far from the
complexity of real-life software, we believe that they are sufficient to show that a
programming language semantics can be more than a “useless academic intellec-
tual exercise”. The well-known state-space explosion of model checking cannot
be avoided, no matter whether one uses a formal semantics of the language or
not, but one should note that this is a problem of model checking and not of us-
ing a formal semantics for model checking. Also, there are well-known techniques
to address the state explosion problem, like partial-order reduction, which can
and have also been applied in the context of rewriting logic semantics [41]. And
one can use an abstract semantics (Section 8) as the basis of the model checker
to make it more scalable. The next section shows another use of rewriting logic
semantics of programming languages, for deductive program verification.

10 Deductive Verification and Matching Logic

As discussed above, one of the major advantages of giving a rewriting logic
semantics to a language is that one can use it not only to obtain a reference
implementation of the language, but also to formally analyze programs in the
defined language using general-purpose tools developed for rewriting logic, such
as Maude’s model checker. Moreover, the original rewriting logic semantics of
the language is used unchanged for model checking or other similar analyses,
which is not only immensely convenient but also offers a high confidence in
the results of the analysis (because it excludes the problem of implementing a
wrong language semantics in the analyzer). One question, however, still remains
unanswered: can we use the language semantics, also unchanged, in a program
logic fashion, that is, for deductive verification of programs?

Early work in this direction includes two Hoare logic provers that use directly
the rewriting logic semantics of a Pascal like-language and of a fragment of Java
and the Maude ITP [34,107]. Furthermore, the rewriting logic semantics of Java
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was used in [1] to automatically validate the inference rules of a Java verification
tool. In the remainder of this section we report on an alternative approach.

Matching logic [102, 103] is a new program verification logic, which builds
upon rewriting logic semantics. Matching logic specifications are constrained
symbolic program configurations, called patterns, which can be matched by con-
crete configurations. By building upon an executable semantics of the language
and allowing specifications to directly refer to the structure of the configuration,
matching logic has at least three benefits: (1) one’s familiarity with the formal-
ism reduces to one’s familiarity with the formal semantics of the language, that
is, with the language itself; (2) the verification process proceeds the same way
as the program execution, making debugging failed proof attempts manageable
because one can always see the “current configuration” and “what went wrong”,
almost like in a debugger; and (3) nothing is lost in translation, that is, there is
no gap between the language definition and its verifier. Moreover, direct access
to the structure of the configuration facilitates defining sub-patterns that one
may reason about, such as disjoint lists or trees in the heap, as well as supporting
framing in various components of the configuration at no additional cost.

To use matching logic for program verification, one must know the structure of
the configurations that are used in the executable language semantics. For exam-
ple, the configuration of some language may contain, besides the code itself, an
environment, a heap, stacks, synchronization resources, etc. The configuration
of C (see Section 4 and [37]), for example, consists of 75 cells, each containing
either other cells or some piece of semantic information. Matching logic spec-
ifications, or patterns, allow one to refer directly to the configuration of the
program. Moreover, we can use logical variables and thus combine the desired
configuration structure with first-order constraints. For example, the pattern

〈 〈β, I〉in 〈x �→ x, i �→ i, n �→ n, E〉env 〈list(x, α), H〉heap C 〉config

∧ i ≤ n ∧ |β| = n − i ∧ A = rev(α)@β

specifies the set of configurations where program variables x, i and n are bound
in the environment to some values x, i, and respectively n, such that i ≤ n, the
input buffer contains a sequence β of size n − i, and the heap contains a linked
list starting with pointer x comprising the sequence of elements α such that the
sequence A is the reverse of the sequence α concatenated with β. Here A is a
free variable of type sequence of elements. The other variables play the role of
cell frames: I is a variable matching the rest of the input cell, E matches the rest
of the environment, H the rest of the heap, and C the rest of the configuration.
Note that nothing special needs to be done for framing in matching logic (that
is, framing is a special case of the more general principle of matching).

A major benefit of matching logic is that is can be used to turn an executable
semantics into a program logic without any change to the original semantics.
The idea is that the executable semantics can be regarded as a set of rewrite
rules between matching logic patterns, and one can use first-order reasoning over
patterns to turn the pattern resulting from the application of some rule into a
pattern that the next rule expects to match. This way, one can derive rewrite
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#include <stdlib.h>
#include <stdio.h>

struct listNode { int val; struct listNode *next; };

void readWriteBuffer(int n)
/*@ rule <k> $ => return; </k> <in> A => epsilon <_/in> <out_> epsilon => rev(A) </out>

if n = len(A) */
{

int i; struct listNode *x;
i = 0; x = 0;
/*@ inv <in> ?B <_/in> <heap_> list(x)(?A) <_/heap>

/\ i <= n /\ len(?B) = n - i /\ A = rev(?A) @ ?B */
while (i < n) {
struct listNode *y;
y = x;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = y;
i += 1;

}

//@ inv <out_> ?A </out> <heap_> list(x)(?B) <_/heap> /\ A = rev(?A @ ?B)
while (x) {
struct listNode *y;
y = x->next;
printf("%d ",x->val);
free(x);
x = y;

}
}

void main() {
int n;
//@ assume <in> [5, 1, 2, 3, 4, 5] </in> <out> epsilon </out>
scanf("%d", &n);
readWriteBuffer(n);
//@ assert <in> epsilon </in> <out> [5, 4, 3, 2, 1] </out>

}

Fig. 4. C program making use of the I/O and the heap, verified using MatchC

rules from other rewrite rules, using matching logic reasoning as a mechanism
to rearrange configurations so that rewrite rules can match and apply.

With the help of Andrei Ştefănescu, we implemented a proof-of-concept match-
ing logic verifier for a fragment of C, called MatchC, which can be downloaded
and executed online at http://fsl.cs.uiuc.edu/ml. MatchC builds upon
an executable rewrite-based semantics of this fragment of C, extending it (un-
changed) with semantics for pattern specifications. Both the executable seman-
tics and the verifier are implemented using the K framework (see Section 3).

Figure 4 shows a C program verified using MathC. The main() function
reads n from the standard input and then calls readWriteBuffer(n). Then
readWriteBuffer(n) reads from the standard input n elements and allocates
a linked list putting each element at the top of the list, followed by traversing
the linked list and printing each element while deallocating the list nodes. This
way, we end up with the reversed sequence of elements printed to the the stan-
dard output and with the heap unchanged. There are four types of annotations
in this program: (1) assumptions, which allow one to assume a certain pattern
for the remaining program; (2) assertions, which generate matching logic proof
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obligations, namely, that the current pattern implies the asserted pattern; (3)
rules, which give the claimed K semantics of the subsequent piece of code; and
(4) invariants, which are patterns that should hold at each loop iteration.

Some explanations regarding MatchC’s notation are necessary. MatchC an-
notations are introduced like C comments starting with @, so they are ignored
by C compilers. We use an XML-like notation to specify when cells start and
when they end. We use the usual rewriting relation “=>” for the in-place rewrit-
ing within K rules. The “$” symbol that appears in the computation cell of a
rule stands for the subsequent statement (the function body, in our case here).
Fourth, to avoid writing quantifiers, variables starting with a question mark are
existentially quantified over the pattern. Fifth, we use an underscore in the XML
tag to state that the corresponding cell is open in that direction, which can be
regarded as an abbreviation for using a fresh variable; for example, “<in> ?B
< /in>” in the invariant of the first loop abbreviates “<in> ?B, ?E </in>”. Fi-
nally, to avoid writing the environment cell all the time, MatchC allows users
to refer directly to program variables in patterns; this avoids having to add a
binding of the program variable to a logical variable in the environment cell and
then using the logical variable throughout the pattern.

The rule giving the semantics of readWriteBuffer(n) states that this func-
tion returns nothing (“$ => return;”, that is, its body behaves as if it returns)
and takes a sequence A of length n (see the condition “n = len(A)”) from the
beginning of the input cell (“<in> A => epsilon < /in>”) and places it re-
versed at the end of the output cell (“<out > epsilon => A </out>”). Since
we have a rewrite-based semantics, the fact that no other cells are mentioned im-
plicitly means that nothing else is modified by this function, including the heap.
The invariant of the first loop is exactly the pattern that we discussed at the
beginning of this section. The invariant of the second loop is similar, but dual.
We do not show the axiom (matching logic formula) governing the list pattern
in the heap cell; the interested reader can check [102,103]. Nevertheless, since x
is null at the end of the second loop, it follows that the list it points to is empty,
so the heap changes by the first loop will be cleaned by the end of the second.

MatchC verifies the program in Figure 4 in about 100 milliseconds:
Compiling program ... DONE! [0.311s]
Loading Maude ....... DONE! [0.209s]
Verifying program ... DONE! [0.099s]
Verification succeeded! [82348 rewrites, 4 feasible and 2 infeasible paths]
Output: 5 4 3 2 1

We encourage the reader to run MatchC online at http://fsl.cs.uiuc.edu/ml.

11 Conclusions and Future Work

We have given a progress report on the rewriting logic semantics project. Our
main goal has been to show how research in this area is closing the gap between
theory and practice by supporting executable semantic definitions that scale
up to real languages at the three levels of software modeling languages, pro-
gramming languages, and HDLs, and with features such as concurrencyy and
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real-time semantics. We have also shown how such semantic definitions can be
directly used as a basis for interpreters and for sophisticated program analysis
tools, including static analyzers, model checkers, and program proving tools.

Although reasonably efficient interpreters can be currently generated from
rewriting logic specifications, one important future challenge is the automatic
generation from language definitions of high-performance language implemen-
tations that are correct by construction. Another area that should be further
developed is that of meta-reasoning methods, to prove formal properties not
about programs, but about entire language definitions. A third promising future
research direction is exploring the systematic interplay between abstract seman-
tics and model checking, as well as the systematic application of state space
reduction techniques in the model checking of programs from their rewriting
logic language definitions; the overall goal is achieving a high degree of scal-
ability in model checking analyses, with a wide spectrum of analysis choices
ranging from model checking of programs according to their concrete semantics
to various forms of static analysis based on different kinds of abstract semantics.

Acknowledgments. We thank the organizers of FCT 2011 for giving us the
opportunity of presenting these ideas, and for their helpful suggestions for im-
proving the exposition. We also thank all the researchers involved in the rewrit-
ing logic semantics project for their many contributions, which we have tried
to summarize in this paper without any claims of completeness. This research
has been partially supported by NSF Grants CNS 08-34709, CCF 09-05584, and
CCF-0916893, by NSA contract H98230-10-C-0294, by (Romanian) SMIS-CSNR
602-12516 contract no. 161/15.06.2010, by the Boeing Grant C8088, and by the
Samsung SAIT grant 2010-02664.

References

1. Ahrendt, W., Roth, A., Sasse, R.: Automatic Validation of Transformation Rules
for Java Verification Against a Rewriting Semantics. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 412–426. Springer, Heidelberg
(2005)

2. Alba-Castro, M., Alpuente, M., Escobar, S.: Abstract certification of global non-
interference in rewriting logic. In: de Boer, F.S., Bonsangue, M.M., Hallerstede,
S., Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 105–124. Springer,
Heidelberg (2010)

3. Alba-Castro, M., Alpuente, M., Escobar, S.: Approximating non-interference and
erasure in rewriting logic. In: Proc. SYNASC, pp. 124–132. IEEE, Los Alamitos
(2010)

4. AlTurki, M., Dhurjati, D., Yu, D., Chander, A., Inamura, H.: Formal specification
and analysis of timing properties in software systems. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 262–277. Springer, Heidelberg (2009)

5. AlTurki, M., Meseguer, J.: Real-time rewriting semantics of Orc. In: Proc. PPDP,
Poland, pp. 131–142. ACM Press, New York (2007)

6. AlTurki, M., Meseguer, J.: Reduction semantics and formal analysis of Orc pro-
grams. In: Proc. Workshop on Automated Specification and Verification of Web



The Rewriting Logic Semantics Project: A Progress Report 31

Systems (WWV 2007). ENTCS, vol. 200(3), pp. 25–41. Elsevier, Amsterdam
(2008)

7. AlTurki, M., Meseguer, J.: Dist-Orc: A rewriting-based distributed implementa-
tion of Orc with formal analysis. In: Proc. RTRTS 2010. Electronic Proceedings
in Theoretical Computer Science, vol. 36, pp. 26–45. CoRR (2010)

8. Aoumeur, N.: Integrating and rapid-prototyping UML structural and behavioural
diagrams using rewriting logic. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C.,
Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 296–310. Springer, Heidel-
berg (2002)

9. Bae, K., Ölveczky, P.C.: Extending the Real-Time Maude semantics of Ptolemy
to hierarchical DE models. In: Proc. RTRTS 2010. Electronic Proceedings in The-
oretical Computer Science, vol. 36, pp. 46–66. CoRR (2010)
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Software y Bases de Datos, JISBD 2009, San Sebastián, España, September 8-11,
pp. 178–179 (2009)

20. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. Formal Aspects of
Computing 22(3-4), 269–296 (2010)
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93. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theoretical Computer Science 285(2), 359–405 (2002)
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Impugning Randomness, Convincingly

Yuri Gurevich

Microsoft Research

John organized a state lottery, and his wife won the main prize. One may feel
that the event of her winning isn’t particularly random, but is it possible to
convincingly impugn the alleged randomness, in cases like this, in a fair court of
law? We develop an approach to do just that.

We start with a principle that bridges between probability theory and the real
world. The principle is known under different names in the history of probability
theory. It is often formulated thus: events of sufficiently small probability do not
happen. This formulation of the principle is too liberal, however. Events of small
probability happen all the time. The common way to tighten the principle is to
restrict attention to predicted events of sufficiently small probability. Further,
we better restrict attention to a single probabilistic experiment. If you repeat
the experiment sufficiently many times then there is a good chance that the
predicted event of small probability will happen.

The tightened principle plays an important role in statistics. It justifies Fisher’s
test of statistical significance. Here, the “null hypothesis” is the hypothesis that
the given probability distribution is the actual distribution governing the real-
world experiment in question, and the “critical region” is induced by the pre-
dicted event of small probability.

Our Bridge Principle is a liberalization of the tightened principle above in two
directions. One is that the specification of the small-probability event does not
have to be given ahead of time; it suffices that it is given independently from
the observed outcome of the experiment. The other and bolder liberalization is
that the specification may be implicit. It is the Bridge Principle that we use to
impugn the alleged randomness in cases like the lottery.

Note that traditional probability theory does not even have the notion of
random events. The bolder liberalization above is informed by information com-
plexity theory (also known as Kolmogorov complexity theory and as algorithmic
information theory). Unfortunately, traditional information complexity theory is
not applicable to real-world scenarios like the lottery one. We use logical defin-
ability to generalize information complexity theory (in a way that makes much
of the traditional machinery irrelevant).

The talk touches upon issues that have been hotly discussed in several scien-
tific communities, and we finish with an expansive survey of the ocean of related
work.

The talk reflects joint work with Grant Passmore of Cambridge University.
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Daniel Lokshtanov

University of California, San Diego, La Jolla, CA 92093-0404, USA
daniello@ii.uib.no

Abstract. Kernelization is a mathematical framework for the study of
polynomial time pre-processing. Over the last few years Kernelization
has received considerable attention. In this talk I will survey the recent
developments in the field, and highlight some of the interesting research
directions.

1 Introduction

The use of computers to solve optimization problems has revolutionized society
over the last fifty years. Unfortunately, most computational problems turn out
to be NP-complete, and thus we do not hope for provably efficient programs
that find the optimal solution for all instances of these problems. Determining
whether all NP-complete problems have efficient solutions is known as the P
versus NP problem, perhaps the most important open problem in contemporary
mathematics and theoretical computer science. In practice, however, instances
of NP-complete problems are solved efficiently every day. The reason for this is
that instances arising in applications often exhibit some additional structure.

Parameterized algorithms and complexity (PC) is a subfield of theoretical
computer science devoted to exploiting additional structure of the input data
in order to solve computational problems efficiently. In PC every problem in-
stance comes with a relevant secondary measurement, an integer k called the
parameter. The parameter k could measure the size or quality of the solution
searched for, or reflect how structured the input data is. We seek to contain the
“combinatorial explosion” in the running time to the parameter k, instead of the
entire instance size. Formally, we say that a problem is fixed parameter tractable
(FPT) if instances of size n with parameter k can be solved in time f(k) ·nc for
a function f depending only on k and a constant c independent of k. The idea is
that the parameter k reflects how hard the instance is, with low parameter value
meaning that the instance is somehow “easy” or structured. For an introduction
to PC, see the textbooks [2,3,5].

One way of obtaining efficient FPT algorithms is through polynomial time
preprocessing. When an instance is unreasonably large compared to its parame-
ter, it indicates that the “difficult part” of the instance is very small. For many
problems it is possible to deal with, and remove, the easier parts of the instance
in polynomial time, leaving only a small, hard core. Formally, a problem has an
f(k)-kernel if there is a polynomial time algorithm that given an instance with
parameter k in polynomial time outputs an equivalent instance with size and

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 39–40, 2011.
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parameter value bounded by f(k). Thus kernelization is preprocessing with a
performance guarantee, and the definition of kernels opens up for many inter-
esting questions. Which problems admit f(k)-kernels for any function f? Which
admit kernels where f is polynomial, or even linear? Over the last two decades a
number of polynomial and linear kernels for basic problems has been obtained.
However, after the recent development of a complexity-theoretic framework for
ruling out polynomial kernels [4,1], the field has started to gain considerable
attention.

While early kernelization algorithms relied mostly on simple combinatorics,
the contemporary “kernelization toolbox” is much more diverse. It includes
classical combinatorial min-max theorems, techniques from approximation al-
gorithms, algebraic methods and ideas from logic and automata theory. These
tools have been used to show sufficient conditions for large classes of problems to
have polynomial, or even linear kernels. In some cases, by using the framework
for proving kernelization lower bounds [4,1], the sufficient conditions can even
be showed to also be necessary, thus yielding kernelization dichotomies. The pre-
sentation aims to give a panoramic overview of the field, a tasty sample from
the toolbox and a hazy glimpse of the future.
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Abstract. We study probabilistically checkable proofs (PCPs) in the
real number model of computation as introduced by Blum, Shub, and
Smale. Our main result is NPR = PCPR(O(log n), polylog(n)), i.e., each
decision problem in NPR is accepted by a verifier that generates O(log n)
many random bits and reads polylog(n) many proof components. This
is the first non-trivial characterization of NPR by real PCPR-classes. As
a byproduct this result implies as well a characterization of real nonde-
terministic exponential time via NEXPR = PCPR(poly(n),poly(n)).

1 Introduction

In the last two decades probabilistically checkable proofs PCPs have turned
out to be of major importance in theoretical computer science. They provide a
surprising characterization of the complexity class NP and have had significant
impact in the area of approximation algorithms. The famous PCP theorem [2,1]
states that all problems in NP can be accepted by verifiers which generate a
logarithmic number of random bits and probe a constant number of proof bits
only, i.e., NP = PCP(O(log n), O(1)). A different proof of the theorem has been
given in [7].

In the present paper we study probabilistically checkable proofs in the frame-
work of real number complexity theory as introduced by Blum, Shub, and Smale
[6]. Real number PCPs in the Blum-Shub-Smale model, henceforth BSS model
for short, were first analyzed in [10]. There the existence of long transparent
proofs for problems in NPR, i.e., the inclusion NPR ⊂ PCPR(poly(n), O(1)), was
shown. For precise definitions of the PCPR-classes see below.

Here, we are interested in reducing the number of random bits generated by
verifiers for NPR problems. Our main theorem below states that NPR has veri-
fiers that use a logarithmic number of random bits and inspect a polylogarith-
mic number of proof components. More formally we show the characterization
NPR = PCPR(O(log n), polylog(n)). This provides the first non-trivial charac-
terization of NPR by a PCPR-class. A straightforward corollary of this result is
a characterization of NEXPR as PCPR(poly(n), poly(n)). The proof of the main
result uses two ingredients which are present in classical PCP results as well,

� Partially supported by DFG project ME 1424/7-1.
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namely low-degree testing and the sum-checking procedure introduced in [9].
However, whereas these two procedures in the classical framework are applied
on domains which are finite fields, here we need them to work on appropriately
defined finite subsets of the reals without additional algebraic structure. The ne-
cessity for this is due to the NPR-complete Quadratic Polynomial Systems QPS
problem for which we want to construct a corresponding verifier. The problem
asks for the existence of a real zero of such a system. The verifier expects a proof
to contain such a zero coded as a real valued polynomial. Since the components
of a zero cannot be guaranteed to be located in a specially structured subset of
R the domains on which our algorithms have to work cannot be assumed to be
further restricted any longer.

The paper is organized as follows: In the next section we introduce the neces-
sary notions and define the central real decision problem QPS. It is shown that
verifying solvability of an instance polynomial system in a point a ∈ Rn can be
reduced to evaluate a finite number of canonically derived functions over a not
too large finite subset of some R3k, where k = O( log n

log log n ). We are then in the
framework of performing a variant of the LFKN sum-check procedure [9] and
of testing whether a given real valued function is a low-degree polynomial. Its
variants in our setting are discussed in sections 3.2 and 4. Therein, also the main
theorem is proven.

Due to space limitations full details of all the proofs are given in a full version
of the paper.

2 Basic Notions

We assume the reader to be familiar with real number complexity theory, see [5].
Very briefly, a BSS machine is a uniform Random Access Machine that computes
with real numbers as basic entities. An input x ∈ Rn is given the algebraic size
sizeR(x) := n, and each operation {+,−, ∗, :,≥ 0?} among real numbers can
be performed with (algebraic) costs 1. The complexity class NPR consists of
all decision problems L for which there exists a polynomial time verification
procedure that satisifes the following requirements. Given x ∈ L there is a proof
y of polynomial length in the (algebraic) size of x such that the procedure accepts
(x, y). And for every x �∈ L the procedure rejects all tuples (x, y), no matter how
y looks like. The Quadratic Polynomial Systems problem introduced below is a
typical example of a problem in NPR.

Usually, the natural verification procedures for NPR problems have to inspect
all components of y before the decision is made. The question one studies in
relation with PCPs is whether this has to be the case. It is formalized using
special randomized algorithms.

Definition 1. (Verifiers) Let r, q : N �→ N be two functions. An (r(n), q(n))-
restricted verifier V in the BSS model is a particular randomized real number
algorithm working in three phases. For an input x ∈ R∗ :=

⋃
i≥1 Ri of algebraic

size n and another vector y ∈ R∗ representing a potential membership proof of
x in a certain set L ⊆ R∗, the verifier in a first phase produces non-adaptively
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a sequence of O(r(n)) many random bits (under the uniform distribution on
{0, 1}O(r(n))). Given x and these O(r(n)) many random bits V in the next phase
computes deterministically the indices of O(q(n)) many components of y. Finally,
in the decision phase V uses the input x together with the values of the chosen
components of y in order to perform a deterministic polynomial time algorithm
in the BSS model. At the end of this algorithm V either accepts or rejects x. For
an input x, a guess y and a sequence of random bits ρ we denote by V (x, y, ρ) ∈
{0, 1} the result of V in case the random sequence generated for (x, y) was ρ.

The time used by the verifier in the decision phase 3 is also called its
decision-time.

Though being a real number algorithm the verifier generates discrete random
bits in phase 1. The use of these bits is for addressing registers of the machine
in which the basic units of a proof y, i.e., real numbers are stored. Therefore it
is appropriate to work with this discrete kind of randomness.

We can define the real language accepted by a verifier together with complex-
ity classes PCPR(r(n), q(n)) as follows.

Definition 2. (PCPR-classes) Let r, q : N �→ N; a real number decision problem
L ⊆ R∗ is in class PCPR(r(n), q(n)) iff there exists an (r(n), q(n))-restricted
verifier V such that conditions a) and b) below hold:

a) For all x ∈ L there exists a y ∈ R∗ such that for all randomly generated
strings ρ ∈ {0, 1}O(r(sizeR(x))) the verifier accepts.

b) For any x �∈ L and for each y ∈ R∗ the verifier rejects with probability at
least 3

4 .

In both cases the probability is chosen uniformly over all random strings ρ.

Let poly denote the class of univariate polynomials and polylog be the class of
all univariate functions of type n → c · logk(n) for some constants c > 0, k ∈ N.

2.1 The QPS Problem

In this section we develop the scenario for what a verifier has to check in order
to show the main result. Note that the definition of PCPR-classes is closed under
polynomial time many-one reductions; such a reduction can be included in the
third phase of a verifier’s computation. Starting from a suitable NPR-complete
problem we have to take into account the way in which the real number frame-
work influences the task. It turns out that as in the discrete setting the problem
is to probabilistically check whether the sum of each of finitely many multivariate
polynomials over a particular domain evaluates to zero.

The central NPR-complete problem we consider here is a version of the real
Hilbert-Nullstellensatz decision problem. Below it is defined in a restricted yet
sufficiently general form. This form is needed for elaborating the task the verifier
has to solve.
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Definition 3. An instance of the QPS decision problem is given as follows. Let
m, n ∈ N, where m is polynomially bounded in n; let P = (P1, . . . , Pm) be a
system of real polynomials over n variables x1, . . . , xn such that the following
holds:

a) each Pi has degree at most 2;
b) each Pi depends on at most three variables and is of one of the following

forms
i) Pi := xj − c for some j ∈ {1, . . . , n} and a real c ∈ R; the finitely many

different c in such polynomials are part of the input;
ii) Pi := xj − xk ◦ x�, where j, k, � ∈ {1, . . . , n} and ◦ ∈ {+,−, ·}. Here,

k = � is allowed.

The QPS decision problem asks for the existence of a real zero a ∈ Rn of P, i.e.,
Pi(a) = 0 for all 1 ≤ i ≤ m.

The QPS problem is NPR-complete [6]. The usual NPR-verification procedure for
showing QPS ∈ NPR guesses an a ∈ Rn and plugs it into each Pi in order to see
whether it is a zero of the system. This in general requires reading all components
of a and thus is useless for our purposes. In order to construct a better verifier
we follow the classical approach of coding a via a low degree polynomial on a
suitable domain H as well as on an extension F of H . We shall see next that
checking whether such a polynomial codes a zero of the system results in verifying
that a finite family of certain polynomial functions arising canonically from the
given QPS instance and a potential zero vanishes identically. Whereas this idea
in principle is the same as in the classical PCP proof for constructing verifiers
for 3-SAT using low degree polynomials some differences occur. As a minor one
the polynomial functions that have to be considered on some Hk are different
ones due to their origin in real polynomial systems. As a more serious one the
domains H and F now are subsets of R in contrast to the classical setting where
F is a finite field. The reason for this extension is that a has real components.
This will make it necessary to use low-degree testing on more general domains.
We shall mainly rely on a version of such a test given in [8].

3 Low Degree Polynomials On Suitable Real Subsets

We first set up the framework for the testing. We use the notation in [3] adapted
to our situation.

3.1 What the Verifier Should Check

For a QPS instance of polynomials in n variables let H ⊂ R be a finite set
of cardinality at least �log n�, F a superset of H of cardinality Ω(log4 n) and

k := � log n

log log n
�. Since |H |k ≥ n a point a ∈ Rn can be coded as a function

fa : Hk → R. Our verifiers below frequently pick arguments from H or F
by random and wish to know certain function values in the arguments picked.
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Therefore, though the results of such an oracle call might be real the arguments
picked have to be addressed by bitstrings. The following definition takes this
issue into account. It collects the sets and parameters we are going to use.

Definition 4. a) For n ∈ N let H := {0, 1, . . . , �log n�}, F := {0, 1, . . . , q},
where q := 100 · �log4 n�, d := O(log n) and k := � log n

log log n�.
b) For s, t ∈ N let Fs,t denote the set of all real polynomials P in t variables of
total degree s, i.e., P : F t → R is the restriction of a degree s polynomial over
Rt to F t.

The following is standard.

Lemma 1. For n ∈ N let F be as above and let s, t ∈ N be such that s ≤ |F |.
a) Two distinct polynomials in Fs,t agree on at most s · |F |t−1 elements
of F t.
b) Let f : Ht → R. There is a unique polynomial pf ∈ Ft(|H|−1),t of degree at
most |H | − 1 in each variable and thus of total degree ≤ t · |H | which extends f
to F t.

If s = O(log2 n), then |F | = Ω(log4 n) together with a) imply in particular that
two different polynomials in Fs,t agree on less than a fraction of O(log−2 n) many
points in F t.

We code a potential zero a ∈ Rn of a polynomial system via a function
fa : Hk → R. For fa we consider its low degree extension to F k → R as given
by part b) of the lemma above. Note that the resulting total degree will be at
most O(log2 n).

The verification procedure will check whether certain polynomials defined on
H3k identically vanish. We next introduce the corresponding polynomials that
have to be inspected. The polynomials occuring in an instance of QPS can be
divided into the following different types:

- type 1 are polynomials of form xj − c,
- type 2 are polynomials of form xj − xk · x�,
- type 3 and type 4 are the same as type 2 but with + and − instead of · as

operation combining xk and x�, respectively.

Let us first consider all polynomials of type 2 in P . Denote by χ(2) : H3k → R

the Lagrange polynomial which for i1, i2, i3 ∈ Hk (recall that |H |k ≥ n) gives
result 1 if a polynomial of type 2 in variables xi1 , xi2 , xi3 occurs in P , i.e.,
xi1 −xi2 ·xi3 = 0 is an equation. Otherwise χ(2) has value 0. Note that the order
of i1, i2, i3 has to be respected in the argument.

If a ∈ Rn is a zero of P and χ(2)(i1, i2, i3) = 1, then

p(2)
a (i1, i2, i3) := ai1 − ai2 · ai3 = fa(i1) − fa(i2) · fa(i3)

has to vanish. Consequently, a ∈ Rn is a zero of all type 2 polynomials in P if
and only if ∑

(i1,i2,i3)∈H3k

[
χ(2)(i1, i2, i3) · p(2)

a (i1, i2, i3)
]2

= 0 (1)
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For later purposes we consider the low degree extensions of χ(2) to F 3k and
of fa to F k, respectively, and denote them again by the same symbols. The
following observations are crucial for the further ongoing. First, by Lemma 1

the polynomial g(2) :=
(
χ(2) · p(2)

a

)2

: F 3k → R is of total degree at most

10k|H | = O( log2 n
log log n ) and of degree 6|H | = O(log n) in each variable. Next, for

any r := (i1, i2, i3) ∈ F 3k the value χ(2)(r) is deterministically computable in
polynomial time with respect to the size of the QPS system P . The same is true
for p

(2)
a (r) once the three values fa(i1), fa(i2), fa(i3) are known. It follows that

for all r ∈ F 3k the value g(2)(r) can be computed efficiently once the three values
of fa are available.

For polynomials of type 3 and 4 the same arguments result in the existence
of polynomials g(3), g(4) having analogue properties. For polynomials of type 1
we argue as follows. Suppose the instance involves constants c1, . . . , cs in poly-
nomials of type 1. For a ∈ Rn fixed and each 1 ≤ � ≤ s let χ

(1)
� , p

(1)
a,� : Hk →

R, χ
(1)
� (i1) =

{
1 if xi1 − c� occurs in P
0 else and p

(1)
a,�(i1) := ai1 − c� = fa(i1) − c�.

Let χ
(1)
� , fa once again denote as well the low degree extensions. Define g(1) :

F k → R as g(1)(i1) :=
s∑

�=1

[
χ

(1)
� (i1) · p(1)

a,�(i1)
]2

. Then a ∈ Rn satisfies all equa-

tions Pj(a) = 0 for Pj of type 1 iff
∑

i1∈Hk

g(1)(i1) = 0. The total degree of g(1) is

upper bounded by 4k(|H | − 1) = O( log2 n
log log n ).

We have thus shown

Theorem 1. Given an instance P of QPS a point a ∈ Rn is a zero of all the
polynomials in P iff the polynomials g(j), 1 ≤ j ≤ 4 defined above satisfy∑

r∈Hk

g(1)(r) = 0 and
∑

r∈H3k

g(j)(r) = 0 for j = 2, 3, 4 (2)

The g(j) are all of degree O( log2 n
log log n ). Moreover, evaluating g(j) in a single point

r can be done deterministically in polynomial time in sizeR(P) in case at most
three values of f can be obtained from an oracle at unit cost.

3.2 The Sum-Check Procedure

Let us fix one of the functions g(j), say g := g(2) to explain how condition (2) is
checked probabilistically by the verifier. This is done by applying the well-known
LKFN-procedure [9] and is standard in the area. For sake of self-containment we
thus only briefly explain what is needed to see how the verifier works and why
the necessary probability estimates hold as well for the real domains used here.

The verifier probabilistically evaluates
∑

r∈H3k

g(r) by expecting a proof for solv-

ability of a QPS instance to contain as additional information certain univariate
polynomials. For 1 ≤ i ≤ 3k define gi : F i → F as
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gi(x1, . . . , xi) :=
∑

yi+1∈H

∑
yi+2∈H

. . .
∑

y3k∈H

g(x1, . . . , xi, yi+1, . . . , y3k)

called the partial-sum polynomials of g.
Note that

∑
r∈H3k

g(r) =
∑

x1∈H

g1(x1) and gi(x1, . . . , xi) =
∑

y∈H

gi+1(x1, . . . , xi, y).

The verifier expects a proof to contain for each 1 ≤ i ≤ 3k, (r1, . . . , ri−1) ∈ F i−1

a univariate polynomial x → g′i(r1, . . . , ri−1, x) of degree at most d. The proof
is required to represent such a polynomial by specifying its d + 1 many real co-
efficients. An ideal proof is supposed to use the corresponding restriction x →
gi(r1, . . . , ri−1, x) of the partial-sum polynomial gi as g′i(r1, . . . , ri−1, x). The ver-
ifier then performs the following test for checking whether (2) holds:

Test Sum-Check

INPUT: A function value table for g : F 3k → R; for each 1 ≤ i ≤ 3k, b ∈ F i−1 a
univariate polynomial x → g′i(b, x) of degree d = O(log n) represented by d + 1
many reals (its coeffcients);

1. read the d + 1 real coefficients of x → g′1(x); evaluate
∑

x∈H

g′1(x); reject if

result is �= 0;
2. choose random elements r1, . . . , r3k from F according to the uniform distri-

bution;
3. for i = 2, . . . , 3k read the d + 1 real coefficients of x → g′i(r1, . . . , ri−1, x);

evaluate
∑

x∈H

g′i(r1, . . . , ri−1, x); reject if result is �= g′i−1(r1, . . . , ri−1);

4. evaluate g′3k(r1, . . . , r3k); reject if result is �= g(r1, . . . , r3k).

If none of the checks results in rejection, then accept.
In the theorem below we suppose that g can be evaluated efficiently in a

random point. In the next section we deal with the low degree test for fa in
order to show that this assumption is correct with high probability.

Theorem 2. Let β > 0 be sufficiently small and fixed. Let g : F 3k → R be
a polynomial of total degree d̃ := O( log2 n

log log n ) and degree d = O(log n) in each
single variable. Assume g(r) can be obtained from one call to an oracle for any
randomly chosen r ∈ F 3k. Then a verifier V which performs �log 1

β � many rounds
of Test Sum-Check has the following properties:

a) If
∑

r∈F 3k

g(r) = 0 there is a proof such that V accepts with probability 1;

b) if
∑

r∈F 3k

g(r) �= 0, then for all proofs V rejects with probability ≥ 1 − β in at

least one of its rounds;
c) V uses O(log n) random bits and reads polylog(n) many components of the

proof;
d) the decision time of V is polylog(n).
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Proof. The proof follows the one in the discrete setting. We thus only briefly
indicate how it works and where the stated amount of resources comes in. Part
a) is obvious. For b) assume

∑
r∈F 3k

g(r) �= 0. If g1(x) �= g′1(x) an error is detected

in Step 1. Otherwise, for all 1 ≤ i ≤ 3k and the randomly chosen r1, . . . , r3k

an error is detected if the partial sum polynomial x → gi(r1, . . . , ri−1, x) and
the polynomial x → g′i(r1, . . . , ri−1, x) given in the proof are not identical on
F and this is witnessed by plugging in ri. According to Lemma 1 two different
univariate real polynomials of degree d̃ agree on at most d̃ many points from F
(recall that d̃ < |F |). Thus in each round of Step 3 the difference of gi and g′i
is detected with probability ≥ 1 − d̃

|F | by choosing a random ri. An error in a

single round therefore is detected with probability ≥ (1 − d̃
|F | )

3k ≥ 1 − 3kd̃
|F | > 3

4 .

In �log 1
β � many rounds an error is then detected with probability at least 1−β.

The relevant complexity parameters used by the test are as follows. Note that
since β is a fixed constant it does not have to be listed in the estimates. At the
moment we also disregard what is needed to represent fa in order to evaluate
g in the random point; this analysis is postponed to the low degree test. Each
univariate polynomial of degree d is specified by d + 1 real numbers. For each
1 ≤ i ≤ 3k there are |F |i many random choices for r1, . . . , ri. Thus the proof has

to contain
(

3k∑
i=1

|F |i
)
·(d+1) = O(log n)·|F |3k+1 = poly(n) many reals for coding

the univariate polynomials g′i. The amount of randomness needed is bounded
by 3k log |F | = O(log n) many bits for choosing r1, . . . , r3k ∈ F. The verifier
inspects 3k(d + 1) = polylog(n) components of the proof plus three values of fa

for evaluating g(r). The decision time of V is basically determined by evaluating
O(k) many times the sum of the values of a univariate degree d polynomial
in all points x ∈ H. Since d = O(log n) each single evaluation can be done
with O(log n) many real number operations, summing up to O(k · |H | · log n) =
polylog(n) many operations in total. �

4 Low Degree Test over Unstructured Domains

In order to complete the description of the verifier a test has to be provided which
checks whether a function value table for an f : F k → R indeed corresponds
to a low degree polynomial fa. The verifier has to respect the corresponding
probability requirements. More precisely, if for a given δ > 0 it holds Pr

r∈F k
(f(r) �=

fa(r)) < δ, then the final evaluation in the sum check test of g(r) in a randomly
chosen r ∈ F 3k with probability ≥ 1 − 3δ gives the correct value since it relies
on three oracle calls to a table which claims to represent fa. Thus the task is to
design a verifier performing a low degree test which has the following properties:
Given a proof in form of a function value table for f : F k → R and may be some
additional information the verifier should accept the proof with probability 1 if
f is a polynomial of degree d in each variable. It should reject the proof if f is
not δ-close to the set of such polynomials for a suitable choice of δ. Closeness is
defined as follows:
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Definition 5. Let δ > 0. For a set F ⊆ R, d, k ∈ N two functions f, g : F k → R

are δ-close on domain F k iff the fraction of points x ∈ F k such that f and g
disagree is at most δ,i.e., with respect to the uniform distribution on F k it is
Pr

x∈F k
(f(x) �= g(x)) ≤ δ.

Such tests come in a huge variety of versions depending on the situation for
which they are developed. In relation to the classical PCP theorems they are
usually designed for finite fields as underlying domain F. This turns out to be
crucial in order to optimize parameters like randomness and the number and
structure of queries to the proof, see [2,1].

For proving our main theorem we need such a low degree test to work for
non-structured finite subdomains of R. Here we follow a variant studied and
analyzed in [8].

4.1 Low Degree Test and Proof of Main Theorem

The test in [8] is a max-degree test, i.e., it checks whether a given function is
close to a polynomial of some given degree in each of its variables. Note that
the low degree extension fa we are dealing with is a polynomial of max-degree
d, where d = O(log n). Let F be an arbitrary finite subset of R, k, d ∈ N. The
following test is applied to a function f : F k → R.

Low-degree Test

INPUT: A function value table for f : F k → R.

1. Fix arbitrary elements a1, . . . , ad+1 ∈ F ;
2. choose a random i ∈ {1, . . . , k} and random elements r1, . . . , rk from F

according to the uniform distribution;
3. check if the values of f in the d+2 many points (r1, . . . , ri−1, x, ri+1, . . . , rk)

where x ∈ {ri, a1, . . . , ad+1} lie on a univariate polynomial of degree d with
respect to x. If not reject, otherwise accept.

Remark 1. Certain parameters in tests like the one above depend on the model
of computation used. For the applications below we choose F as a subset of Z;
addressing a random element of F requires log |F | many random bits. Reading
the real value of f in such an argument however in the BSS model corresponds
to reading one proof component instead of log |F̃ | many in the Turing model,
where F̃ denotes the image of f on F k.

The following theorem, adapted to our situation, is proven in [8]:

Theorem 3 ([8]). Let δ > 0 be sufficiently small, k, d ∈ N. Consider a finite
set F ⊂ R that is sufficiently large, i.e., both satisfies |F | > 18 · k · d3 and
|F | > 32 · k2 · d · 1

δ2 . Let f : F k → R be a function given by a table of its values.
Then a verifier performing O(k

δ ) many independent repetitions of Low-degree
Test applied to f has the following properties:
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i) If f is a polynomial of degree d in each of its variables the verifier accepts
the table with probability 1;

ii) if f is not δ-close to such a polynomial the verifier rejects with probability
≥ 7

8 ;
iii) V generates O(1

δ ·k · log |F |) random bits and inspects O(1
δ ·k ·d) many values

in the table for f .

The low degree test together with the sum-check procedure of the previous sec-
tion now allow us to design a verifier for QPS obeying the claimed resource
bounds. For the proof of the main theorem when given a QPS-instance over n
variables we choose F := {0, 1, . . . , c · log4(n)} for an appropriate c > 0; thus
|F | = Θ(log4(n)). Let H := {0, 1, . . . , �log n�} ⊂ F, d := �log n�, k := � log n

log log n�
and δ > 0 sufficiently small to make all tests working with the necessary proba-
bility estimates.

Theorem 4. NPR = PCPR(O(log n), polylog(n)). Moreover, for every problem
in NPR there is a corresponding verifier with decision time polylog(n).

Proof. The inclusion ⊇ is trivial: An NPR-verification procedure for a problem
in PCPR(O(log n), polylog(n)) simulates the given verifier on the polynomially
many random strings it can generate. It then makes its decision according to the
verifier’s result for all its computations.

For the converse let P be a QPS-instance over n variables and with polynomial
size in n. Choose β, δ > 0 sufficiently small such that in addition 4β+12 log 1

β ·δ <
1
8 . This is achievable by first choosing β sufficiently small and then δ according
to the above requirement.

The verifier V to be constructed expects a proof of P ’s satisfiability to contain
a table of function values of an f : F k → R and for each 1 ≤ j ≤ 4 a list of
univariate polynomials x → g

(j)
i (r1, . . . , ri−1, x) of degree d for all 1 ≤ i ≤

3k, (r1, . . . , ri−1) ∈ F i−1 and each given by d + 1 many real coefficients.
In a first step V performs O(k

δ ) many rounds of Low-degree Test, where
{a1, . . . , ad+1} := {0, 1, . . . , d} are chosen as the required fixed elements from
F. If no rejection occurs V continues with four sum-check tests, one for each
g(j), 1 ≤ j ≤ 4. Towards this aim V interprets the g

(j)
i as the restrictions of

the partial-sum polynomials for g(j) as introduced in Section 3.2. The proof
is accepted if none of the four sum-check tests rejects. Given Theorems 1,2
and 3 V has the following properties: If P has a zero a ∈ Rn and V gets a
proof which correctly codes the low-degree extension fa ∈ Fdk,k and the partial-
sum polynomials of the corresponding g(j), 1 ≤ j ≤ 4, then V accepts with
probability 1.

Let us then assume that P has no zero. If the f given in the proof is not
δ-close to an f̂ ∈ Fdk,k with degree d in each variable this is detected by V

with probability ≥ 7
8 . So assume f to be δ-close to such an f̂ ∈ Fdk,k and

that â ∈ Rn is the point coded by f̂ ’s restriction to Hk. Since P has no zero
by Theorem 1

∑
r∈H3k

g(j)(r) �= 0 for at least one j, where the g(j)’s are defined
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according to f̂ . By Theorem 2 this is detected in O(log 1
β ) many rounds of

Test Sum-Check (performed for each j) with probability at least 1 − 4β if f̂ is
computed correctly in the 12 · log 1

β points necessary for evaluating each g(j) in

the chosen random points of F 3k. Since f, f̂ are δ-close the latter is satisfied with
probability ≥ (1 − 12 · log 1

β δ) if V performs the evaluations using the values of
f in the required random arguments. Thus, in this case a fault is detected with
probability ≥ 1 − 4β − 12 log 1

β δ. By the choices of β and δ the latter is at least
7
8 . Both parts together detect an error with probability ≥ 1 − 2 · 1

8 = 3
4 .

With β, δ being constants V uses as resources O(k · log |F |) = O(log n) many
random bits for both sequences of tests underlying Theorems 2 and 3. It reads
O(d · k) many real proof components in the low-degree test and O(k · |H |) many
in the sum-check procedure. This results in polylog(n) many components al-
together. Finally, V ’s decision time is basically determined by evaluating O(k)
many times the sum of the values of a univariate polynomial of degree d in all
points x ∈ H. Since d = O(log n) each single evaluation can be done in O(log n)
many real number operations summing up to O(k · |H | ·log n) = polylog(n) many
operations in total. �
The following consequence of the above proof will be established in the paper’s
full version.

Corollary 1. NEXPR = PCPR(poly(n), poly(n)).

4.2 Conclusion and Open Questions

In this paper we have characterized the real number complexity class NPR as
containing precisely those problems in PCPR(O(log n), polylog(n)). This is the
first non-trivial characterization of NPR by real number PCPR-classes. In the full
version of this paper we shall present two further verifiers which are based on
other low-degree tests. They prove the above characterization of NPR once again
but differ with respect to certain additional parameters. The latter classically
played an important role to improve the results further using a technique called
composition-of-verifiers. There are several open questions related. First, is there a
real version of the composition lemma for verifiers? If yes, would it result in a fur-
ther characterization of NPR through verifiers using less many resources? In view
of those other verifiers at least the equality NPR = PCPR(O(log n), O(log n))
seems a reasonable conjecture here. If the latter turns out to be true the next
natural conjecture is NPR = PCPR(O(log n), O(1)), i.e., a full real analogue of
the classical PCP theorem. Whereas a real version of one ingredient of the proof
given in [1], namely the inclusion NPR ⊂ PCPR(poly(n), O(1)) was shown to
be true in [10], a major problem seems to be to establish a real low-degree test
for polynomials defined on arbitrary finite subdomains of R which respects the
parameter restrictions necessary to apply a composition lemma. The problems
with such a test are a lacking structure of the real domains that occur. In the
classical proof, as a major technical issue such tests are considered on suitable
finite fields. It is then heavily used that the uniform distribution on these fields



52 K. Meer

is invariant under scalar multiplication and shift operations. This is not at all
true on the domains needed for our low-degree tests. There are papers dealing
with such tests on more general structures, e.g., [12]. However, the test devel-
oped there enlarges the initial domain too much, thus requiring more random
bits to address particular function values. It remains an open question whether
more efficient low-degree tests can be designed. Of course as another attempt
one might try to prove NPR = PCPR(O(log n), O(1)) along the lines of [7]. We
as well do not know how to do this at the time being.

Another interesting future question concerns consequences of the results with
respect to approximation algorithms over the reals.

Acknowledgement. Thanks to K. Friedl for making available [8].
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8. Friedl, K., Hátsági, Z., Shen, A.: Low-degree tests. In: Proc. SODA, pp. 57–64

(1994)
9. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive

proof systems. Journal of the ACM 39(4), 859–868 (1992)
10. Meer, K.: Transparent long proofs: A first PCP theorem for NPR.. Foundations of

Computational Mathematics 5(3), 231–255 (2005)
11. Meer, K.: On some relations between approximation problems and PCPs over the

real numbers. Theory of Computing Systems 41, 107–118 (2007)
12. Rubinfeld, R., Sudan, M.: Self-testing polynomial functions efficiently and over

rational domains. In: Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 23–32. ACM, Orlando (1992)



The Effect of Homogeneity on the Complexity
of k-Anonymity

Robert Bredereck1,�, André Nichterlein1, Rolf Niedermeier1,
and Geevarghese Philip2

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
2 The Institute of Mathematical Sciences, Chennai, India

{robert.bredereck,andre.nichterlein,rolf.niedermeier}@tu-berlin.de,
gphilip@imsc.res.in

Abstract. The NP-hard k-Anonymity problem asks, given an n×m-
matrix M over a fixed alphabet and an integer s > 0, whether M can
be made k-anonymous by suppressing (blanking out) at most s entries.
A matrix M is said to be k-anonymous if for each row r in M there
are at least k − 1 other rows in M which are identical to r. Comple-
menting previous work, we introduce two new “data-driven” parameter-
izations for k-Anonymity—the number tin of different input rows and
the number tout of different output rows—both modeling aspects of data
homogeneity. We show that k-Anonymity is fixed-parameter tractable
for the parameter tin, and it is NP-hard even for tout = 2 and alphabet
size four. Notably, our fixed-parameter tractability result implies that
k-Anonymity can be solved in linear time when tin is a constant. Our
results also extend to some interesting generalizations of k-Anonymity.

1 Introduction

Assume that data about individuals are represented by equal-length vectors
consisting of attribute values. If all vectors are identical, then we have full ho-
mogeneity and thus full anonymity of all individuals. Relaxing full anonymity
to k-anonymity, in this work we investigate how the degree of (in)homogeneity
influences the computational complexity of the NP-hard problem of making sets
of individuals k-anonymous.

Sweeney [24] devised the notion of k-anonymity to better quantify the degree
of anonymity in sanitized data. This notion formalizes the intuition that entities
who have identical sets of attributes cannot be distinguished from one another.
For a positive integer k we say that a matrix M is k-anonymous if, for each
row r in M , there are at least k − 1 other rows in M which are identical to r.
Thus k-anonymity provides a concrete optimization goal while sanitizing data:
choose a value of k which would satisfy the relevant privacy requirements, and
then try to modify—“at minimum cost”—the matrix in such a way that it be-
comes k-anonymous. The corresponding decision problem k-Anonymity asks,
� Supported by the DFG, research project PAWS, NI 369/10.
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additionally given an upper bound s for the number of suppressions allowed,
whether a matrix can be made k-anonymous by suppressing (blanking out) at
most s entries. While k-Anonymity is our central problem, our results also
extend to several more general problems.

We focus on a better understanding of the computational complexity and on
tractable special cases of these problems; see Machanavajjhala et al. [18] and
Sweeney [24] for discussions on the pros and cons of these models in terms of
privacy vs preservation of meaningful data. In particular, note that in the data
privacy community “differential privacy” (cleverly adding some random noise) is
now the most popular method [9,14]. However, k-Anonymity is a very natural
combinatorial problem (with potential applications beyond data privacy), and—
for instance—in the case of “one-time anonymization”, may still be valuable for
the sake of providing a simple model that does not introduce noise.

k-Anonymity and many related problems are NP-hard [19], even when the
input matrix is highly restricted. For instance, it is APX-hard when k = 3,
even when the alphabet size is just two [4]; NP-hard when k = 4, even when the
number of columns in the input dataset is 8 [4]; MAX SNP-hard when k = 7, even
when the number of columns in the input dataset is just three [7]; and MAX SNP-
hard when k = 3, even when the number of columns in the input dataset is 27 [3].

Confronted with this computational hardness, we study the parameterized
complexity of k-Anonymity as initiated by Evans et al. [10]. The central ques-
tion here is how naturally occurring parameters influence the complexity of
k-Anonymity. For example, is k-Anonymity polynomial-time solvable for con-
stant values of k? The general answer is “no” since already 3-Anonymity is NP-
hard [19], even on binary data sets [4]. Thus, k alone does not give a promising
parameterization.1

k-Anonymity has a number of meaningful parameterizations beyond k, in-
cluding the number of rows n, the alphabet size |Σ|, the number of columns m,
and, in the spirit of multivariate algorithmics [21], various combinations of single
parameters. Here the arity of |Σ| may range from binary (such as gender) to un-
bounded. For instance, answering an open question of Evans et al. [10], Bonizzoni
et al. [5] recently showed that k-Anonymity is fixed-parameter tractable with
respect to the combined parameter (m, |Σ|), whereas there is no hope for fixed-
parameter tractability with respect to the single parameters m and |Σ| [10]. We
emphasize that Bonizzoni et al. [5] made use of the fact that the value |Σ|m is an
upper bound on the number of different input rows, thus implicitly exploiting a
very rough upper bound on input homogeneity. Clearly, |Σ|m denotes the max-
imum possible number of different input rows. In this work, we refine this view
by asking how the “degree of homogeneity” of the input matrix influences the
complexity of k-Anonymity. In other words, is k-Anonymity fixed-parameter
tractable for the parameter “number of different input rows”? In a similar vein,
we also study the effect of the degree of homogeneity of the output matrix on
the complexity of k-Anonymity. Table 1, which extends similar tables due to
Evans et al. [10] and Bonizzoni et al. [5], summarizes known and new results.

1 However, it has been shown that 2-Anonymity is polynomial-time solvable [3].
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Table 1. The parameterized complexity of k-Anonymity. Results proved in this paper
are in bold. The column and row entries represent parameters. For instance, the entry
in row “–” and column “s” refers to the (parameterized) complexity for the single
parameter s whereas the entry in row “m” and column “s” refers to the (parameterized)
complexity for the combined parameter (s,m).

– k s k, s

– NP-hard [19] NP-hard [19] W[1]-hard [5] W[1]-hard [5]
|Σ| NP-hard [2] NP-hard [2] ? ?
m NP-hard [4] NP-hard [4] FPT [10] FPT [10]
n FPT [10] FPT [10] FPT [10] FPT [10]
|Σ|, m FPT [5] FPT [10] FPT [10] FPT [10]
|Σ|, n FPT [10] FPT [10] FPT [10] FPT [10]
tin FPT FPT FPT FPT
tout NP-hard ? FPT FPT

Our contributions. We introduce the “homogeneity parameters” tin, the num-
ber of different input rows, and tout, the number of different output rows, for
studying the computational complexity of k-Anonymity and related problems.
Typically, we expect tin � n and tin � |Σ|m. Indeed, tin is a “data-driven param-
eterization” in the sense that one can efficiently measure in advance the instance-
specific value of tin whereas |Σ|m is a trivial upper bound for homogeneity.

First, we show that there is always an optimal solution (minimizing the num-
ber of suppressions) with tout ≤ tin. Then, we derive an algorithm that solves
k-Anonymity in O(nm+ 2tintouttin(toutm+ t2in · log(tin))) time, which compares
favorably with Bonizzoni et al.’s [5] algorithm running in O(2(|Σ|+1)m

kmn2)
time. Since tout ≤ tin, this shows that k-Anonymity is fixed-parameter tractable
when parameterized by tin. In particular, when tin is a constant, our algorithm
solves k-Anonymity in time linear in the size of the input. In contrast, when
only tout is fixed, then we show that the problem remains NP-hard. More pre-
cisely, opposing the trivial case tout = 1, we show that k-Anonymity is already
NP-hard when tout = 2, even when |Σ| = 4. We remark that tout is an interesting
parameter since it is “stronger” than tin and since, interpreting k-Anonymity as
a (meta-)clustering problem (of Aggarwal et al. [1]), tout may also be interpreted
as the number of output “clusters”.

Finally, we mention that all our results extend to more general problems,
including �-Diversity [18] and “k-Anonymity with domain generalization hi-
erarchies” [23]; we defer the corresponding details to a full version of the paper.
Preliminaries and basic observations. Our inputs are datasets in the form
of n×m-matrices, where the n rows refer to the individuals and the m columns
correspond to attributes with entries drawn from an alphabet Σ. Suppressing
an entry M [i, j] of an n × m-matrix M over alphabet Σ with 1 ≤ i ≤ n
and 1 ≤ j ≤ m means to simply replace M [i, j] ∈ Σ by the new symbol “�”
ending up with a matrix over the alphabet Σ �{�}. A row type is a string
from (Σ �{�})m. We say that a row in a matrix has a certain row type if it
coincides in all its entries with the row type. In what follows, synonymously,
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we sometimes also speak of a row “lying in a row type”, and that the row type
“contains” this row. We say that a matrix is k-anonymous if every row type
contains none or at least k rows in the matrix. A natural objective when trying
to achieve k-anonymity is to minimize the number of suppressed matrix entries.
For a row y (with some entries suppressed) in the output matrix, we call a row x
in the input matrix the preimage of y if y is obtained from x by suppressing in x
the �-entry positions of y. The central problem of this work reads as follows.

k-Anonymity

Input: An n × m-matrix M and nonnegative integers k, s.
Question: Can at most s elements of M be suppressed to obtain a k-

anonymous matrix M ′?

Our algorithmic results mostly rely on concepts of parameterized algorith-
mics [8,12,20]. The fundamental idea herein is, given a computationally hard
problem X , to identify a parameter p (typically a positive integer or a tuple of
positive integers) for X and to determine whether a size-n input instance of X
can be solved in f(p) · nO(1) time, where f is an arbitrary computable func-
tion. If this is the case, then one says that X is fixed-parameter tractable for
the parameter p. The corresponding complexity class is called FPT. If X could
only be solved in polynomial running time where the degree of the polynomial
depends on p (such as nO(p)), then, for parameter p, problem X only lies in the
parameterized complexity class XP.

We study two new parameters tin and tout, where tin denotes the number of
input row types in the given matrix and tout denotes the number of row types
in the output k-anonymous matrix. Note that using sorting tin can be efficiently
determined for a given matrix. To keep the treatment simple, we assume that tout
is a user-specified number which bounds the maximum number of output types.
Clearly, one could have variations on this: for instance, one could ask to mini-
mize tout with at most a given number s of suppressions. We refrain from further
exploration here and treat tout as part of the input specifying an upper bound
on the number of output types.2 The following lemma says that without loss of
generality one may assume tout ≤ tin.

Lemma 1. Let (M, k, s) be a YES-instance of k-Anonymity. If M has tin
row types, then there exists a k-anonymous matrix M ′ with at most tin row
types which can be obtained from M by suppressing at most s elements.

2 Parameter tin

In this section we show that k-Anonymity is fixed-parameter tractable with
respect to the parameter number tin of input row types. Since tin ≤ |Σ|m and
tin ≤ n, k-Anonymity is also fixed-parameter tractable with respect to the
2 Indeed, interpreting k-Anonymity as a clustering problem with a guarantee k for

the minimum cluster size (as in the work by Aggarwal et al. [1]), tout can also be
seen as the number of “clusters” (that is, output row types) that are built.
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Algorithm 1. Pseudo-code for solving k-Anonymity. The function
solveRowAssignment solves Row Assignment in polynomial time, see
Lemma 2.
1: procedure solveKAnonymity(M , k, s, tout)
2: Determine the row types R1, . . . , Rtin � Phase 1, Step 1
3: for each possible A : [0, 1]tin×tout do � Phase 1, Step 2
4: for j ← 1 to tout do � Phase 1, Step 3
5: if A[1, j] = A[2, j] = . . . = A[tin, j] = 0 then
6: delete empty output row type R′

j

7: decrease tout by one
8: else
9: Determine all entries of R′

j

10: if solveRowAssignment then � Phase 2
11: return ‘YES’
12: return ‘NO’

combined parameter (m, |Σ|) and the single parameter n. Both these latter re-
sults were already proved quite recently; Bonizzoni et al. [5] demonstrated fixed-
parameter tractability for the parameter (m, |Σ|), and Evans et al. [10] showed
the same for the parameter n. Besides achieving a fixed-parameter tractabil-
ity result for a more general and typically smaller parameter, we improve their
results by giving a simpler algorithm with a (usually) better running time.

Let (M, k, s) be an instance of k-Anonymity, and let M ′ be the (unknown) k-
anonymous matrix which we seek to obtain from M by suppressing at most s
elements. Our fixed-parameter algorithm works in two phases. In the first phase,
the algorithm guesses the entries of each row type R′

j in M ′. In the second phase,
the algorithm computes an assignment of the rows of M to the row types R′

j

in M ′—see Algorithm 1 for an outline.
We now explain the two phases in detail, beginning with Phase 1. To determine

the row types Ri of M (line 2 in Algorithm 1), the algorithm constructs a trie [13]
on the rows of M . The leaves of the trie correspond to the row types of M . For
later use, the algorithm also keeps track of the numbers n1, n2, . . . , ntin of each
type of row that is present in M ; this can clearly be done by keeping a counter
at each leaf of the trie and incrementing it by one whenever a new row matches
the path to a leaf. All of this can be done in a single pass over M .

For implementing the guess in Step 2 of Phase 1, the algorithm goes over all
binary matrices of dimension tin× tout; such a matrix A is interpreted as follows:
A row of type Ri is mapped3 to a row of type R′

j if and only if A[i, j] = 1 (see
line 3). Note that we allow in our guessing step an output type to contain no row
of any input row type. These “empty” output row types are deleted. Hence, with
our guessing in Step 2, we guess not only output matrices M ′ with exactly tout
types, but also matrices M ′ with at most tout types.

Now the algorithm computes the entries of each row type R′
j , 1 ≤ j ≤ tout,

of M ′ (Step 3 of Phase 1). Assume for ease of notation that R1, . . . , R� are the
3 Note that not all rows of an input type need to be mapped to the same output type.
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row types of M which contribute (according to the guessing) at least one row to
the (as yet unknown) output row type R′

j. Now, for each 1 ≤ i ≤ m, if R1[i] =
R2[i] = ... = R�[i], then set R′

j [i] := R1[i]; otherwise, set R′
j [i] := �. This yields

the entries of the output type R′
j, and the number ωj of suppressions required to

convert any input row (if possible) to the type R′
j is the number of �-entries in R′

j .
The guessing in Step 2 of Phase 1 takes time exponential in the parameter tin,

but Phase 2 can be done in polynomial time. To show this, we prove that Row

Assignment is polynomial-time solvable. We do this in the next lemma, after
formally defining the Row Assignment problem. To this end, we use the two
sets Tin = {1, . . . , tin} and Tout = {1, . . . , tout}.

Row Assignment

Input: Nonnegative integers k, s, ω1, . . . , ωtout and n1, . . . , ntin with∑tin
i=1 ni = n, and a function a : Tin × Tout → {0, 1}.

Question: Is there a function g : Tin × Tout → {0, . . . , n} such that

a(i, j) · n ≥ g(i, j) ∀i ∈ Tin∀j ∈ Tout (1)
tin∑
i=1

g(i, j) ≥ k ∀j ∈ Tout (2)

tout∑
j=1

g(i, j) = ni ∀i ∈ Tin (3)

tin∑
i=1

tout∑
j=1

g(i, j) · ωj ≤ s (4)

Row Assignment formally defines the remaining problem in Phase 2: At
this stage of the algorithm the input row types R1, . . . , Rtin and the number
of rows n1, . . . , ntin in these input row types are known. The algorithm has
also computed the output row types R′

1, . . . , R
′
tout

and the number of suppres-
sions ω1, . . . , ωtout in these output row types. Now, the algorithm computes an
assignment of the rows of the input row types to output row types such that:

– The assignment of the rows respects the guessing in Step 2 of Phase 1. This
is secured by Inequality (1).

– M ′ is k-anonymous, that is, each output row type contains at least k rows.
This is secured by Inequality (2).

– All rows of each input row type are assigned. This is secured by Equation (3).
– The total cost of the assignment is at most s. This is secured by Inequal-

ity (4).

Note that in the definition of Row Assignment no row type occurs and, hence,
the problem is independent of the specific entries of the input or output row
types.

Lemma 2. Row Assignment can be solved in O(t3in · log(tin)) time.
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Fig. 1. Example of the constructed network with tin = 5 and tout = 4. The number on
each arc denotes its cost. The number next to each node denotes its demand.

Proof (Sketch). We reduce Row Assignment to the Uncapacitated Mini-

mum Cost Flow problem, which is defined as follows [22]:

Uncapacitated Minimum Cost Flow

Input: A network (directed graph) D = (V, A) with demands b : V → Z

on the nodes and costs c : V × V → N.
Task: Find a function f which minimizes

∑
(u,v)∈A c(u, v) · f(u, v) and

satisfies:∑
{v|(u,v)∈A}

f(u, v) −
∑

{v|(v,u)∈A}
f(v, u) = b(u) ∀u ∈ V

f(u, v) ≥ 0 ∀(u, v) ∈ A

We first describe the construction of the network with demands and costs.
For each ni, 1 ≤ i ≤ tin, add a node vi with demand −ni (that is, a supply
of ni) and for each ωj add a node uj with demand k. If a(i, j) = 1, then add an
arc (vi, uj) with cost ωj . Finally, add a sink t with demand (

∑
ni)−k · tout and

the arcs (ui, t) with cost zero. See Figure 1 for an example of the construction.
Note that, although the arc capacities are unbounded, the maximum flow over
one arc is implicitly bounded by n because the sum of all supplies is

∑tin
i=1 ni = n.

The Uncapacitated Minimum Cost Flow problem is solvable in O(|V | ·
log(|V |)(|A|+ |V | · log(|V |))) time in a network (directed graph) D = (V, A) [22].
Since our constructed network has tin + tout nodes and tin · tout arcs, we can solve
our Uncapacitated Minimum Cost Flow-instance in O((tin + tout) · log(tin +
tout)(tin · tout + (tin + tout) log(tin + tout))) time. Since, by Lemma 1, tin ≥ tout,
the running time is O(t3in · log(tin)). ��

Putting all these together, we arrive at the following theorem:

Theorem 1. k-Anonymity can be solved in O(nm + 2tintouttin(toutm + t2in ·
log(tin))) time, and so, in O(nm + 2t2int2in(m + tin log(tin))) time.
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We remark that the described algorithm can be modified to use domain gen-
eralization hierarchies (DGH) [23] or to solve �-Diversity [18]. We defer the
details to a full version of the paper.

We end this section by comparing our algorithmic results to the closely related
ones by Bonizzoni et al. [5]. They presented an algorithm for k-Anonymity

with a running time of O(2(|Σ|+1)m

kmn2) which works—similarly to our algo-
rithm—in two phases: First, their algorithm guesses all possible output row types
together with their entries in O(2(|Σ|+1)m

) time. In Phase 1 our algorithm guesses
the output row types producible from M within O(2tintouttintoutm + mn) time
using a different approach. Note that, in general, tin is much smaller than the
number |Σ|m of all possible different input types. Hence, in general the guessing
step of our algorithm is faster. For instances where |Σ|m ≤ tin · tout, one can
guess the output types like Bonizzoni et al. in O(2(|Σ|+1)m

) time.
Next, we compare Phase 2 of our algorithm to the second step of Bonizzoni

et al.’s algorithm. In both algorithms, the same problem Row Assignment

is solved. Bonizzoni et al. did this using maximum matching on a bipartite
graph with O(n) nodes, while we do it using a flow network with O(tin) nodes.
Consequently, the running time of our approach depends only on tin, and its
proof of correctness is—arguably—simpler.

As we mentioned above, our algorithm can easily be modified to solve k-

Anonymity using DGHs with no significant increase in the running time. Since
in the DGH setting the alphabet size |Σ| increases, it is not immediately clear
how the algorithm due to Bonizzoni et al. can be modified to solve this problem
without an exponential increase in the running time. Finally, when the param-
eters tin and (|Σ|, m) are constants, then Bonizzoni et al.’s algorithm runs in
O(kmn2) time while our algorithm runs in linear time O(mn).

3 Parameter tout

There is a close relationship between k-Anonymity and clustering problems
where one is also interested in grouping together similar objects. Such a rela-
tionship has already been observed in related work [1,6,11]. The clustering view
on k-Anonymity makes the number tout of output types (corresponding to the
number of clusters) of a k-anonymous matrix an interesting parameter.

There is also a more algorithmic motivation for investigating the (param-
eterized) complexity of k-Anonymity for the parameter tout. As we saw in
Theorem 1, k-Anonymity is fixed-parameter tractable for the parameter tin.
Due to Lemma 1, we know that tout is a stronger parameter than tin, in the sense
that tout ≤ tin. Hence, it is a natural question whether k-Anonymity is already
fixed-parameter tractable with respect to the number of output types. Answering
this in the negative, we show that k-Anonymity is NP-hard even when there
are only two output types and the alphabet has size four, destroying any hope
for fixed-parameter tractability already for the combined parameter “number
of output types and alphabet size”. The hardness proof uses a polynomial-time
many-one reduction from Balanced Complete Bipartite Subgraph:
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Balanced Complete Bipartite Subgraph (BCBS)

Input: A bipartite graph G = (V, E) and an integer k ≥ 1.
Question: Is there a complete bipartite subgraph of G whose partition classes

are of size at least k each?
BCBS is NP-complete [15]. We provide a polynomial-time many-one reduc-

tion from a special case of BCBS with a balanced input graph, that is, a bipar-
tite graph that can be partitioned into two independent sets of the same size,
and k = |V |/4. This special case clearly is also NP-complete by a simple reduc-
tion from the general BCBS problem: Let V := A � B with A and B being the
two vertex partition classes of the input graph. When the input graph is not
balanced, that is, |A| − |B| �= 0, add ||A| − |B|| isolated vertices to the partition
class of smaller size. If k < |V |/4, then repeat the following until k = |V |/4:
Add one vertex to A and make it adjacent to each vertex from B and add one
vertex to B and make it adjacent to each vertex from A. If k > |V |/4, then
add k − |V |/4 isolated vertices to each of A and B.

We devise a reduction from BCBS with balanced input graph and k = |V |/4
to show the NP-hardness of k-Anonymity.

Theorem 2. k-Anonymity is NP-complete for two output row types and al-
phabet size four.

Proof (Sketch). We only have to prove NP-hardness, since containment in NP is
clear. Let (G, n/4) be a BCBS-instance with G = (V, E) being a balanced bipar-
tite graph and n := |V |. Let A = {a1, a2, . . . , an/2} and B = {b1, b2, . . . , bn/2} be
the two vertex partition classes of G. We construct an (n/4 + 1)-Anonymity-
instance that is a YES-instance if and only if (G, n/4) ∈ BCBS. To this end, the
main idea is to use a matrix expressing the adjacencies between A and B as the
input matrix. Partition class A corresponds to the rows and partition class B
corresponds to the columns. The salient points of our reduction are as follows.
1. By making a matrix with 2x rows x-anonymous we ensure that there are

at most two output types. One of the types, the solution type, corresponds
to the solution set of the original instance: Solution set vertices from A are
represented by rows that are preimages of rows in the solution type and
solution set vertices from B are represented by columns in the solution type
that are not suppressed.

2. We add one row that contains the �-symbol in each entry. Since the �-
symbol is not used in any other row, this enforces the other output type to
be fully suppressed, that is, each column is suppressed.

3. Since the rows in the solution type have to agree on the columns that are
not suppressed, we have to ensure that they agree on adjacencies to model
BCBS. This is done by using two different types of 0-symbols representing
non-adjacency. The 1-symbol represents adjacency.

The matrix D is described in the following and illustrated in Figure 2. There is
one row for each vertex in A and one column for each vertex in B. The value in
the ith column of the jth row is 1 if aj is adjacent to bi and, otherwise, 01 if4 j ≤
4 We assume without loss of generality that n is divisible by four.
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b1 b2 . . . bn/2−1 bn/2

a1 1 1 01 1 1
a2 01 1 01 1 1
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.

an/2 02 1 02 1 1
� � � � � �
1 1 1 1 1 1

Fig. 2. Typical structure of the matrix D of the k-Anonymity instance obtained by
the reduction from Balanced Complete Bipartite Subgraph

n/4 and 02 if j > n/4. Additionally, there are two further rows, one containing
only 1s and one containing only �-symbols. The number of allowed suppressions
is s := (n/4 + 1) · n/2 + (n/4 + 1) · n/4. This completes the construction.

It remains to show that (G, n/4) is a YES-instance of BCBS if and only if
the constructed matrix can be transformed into an (n/4 + 1)-anonymous matrix
by suppressing at most s elements; this part of the proof is deferred to a full
version of the paper. ��

Deconstructing intractability. In the remainder of this section we briefly
discuss the NP-hardness proof for k-Anonymity in the spirit of “deconstruct-
ing intractability” [16,21]. In our reduction the alphabet size |Σ| and the num-
ber tout of output row types are constants whereas the number n of rows, the
number m of attributes, number s of suppressions, and the anonymity quality k
are unbounded. This suggests a study of the computational complexity of those
cases where at least one of these quantities is bounded. Some of the correspond-
ing parameterizations have already been investigated, see Table 1 in Section 1.
While for parameters (|Σ|, m), (|Σ|, n), and n k-Anonymity is fixed-parameter
tractable, it is open whether combining tout with m, k, or s helps to obtain
fixed-parameter tractability. In particular, the parameterized complexity for the
combined parameter (|Σ|, s, k) is still open. In contrast, k-Anonymity is W[1]-
hard for (s, k) [5], that is, it is presumably fixed-parameter intractable for this
combined parameter.

Whereas k-Anonymity is NP-hard for constant m and unbounded tout, one
can easily construct an XP-algorithm with respect to the combined parame-
ter (tout, m): In O(2m·tout · m · tout) time guess the suppressed columns for all
output row types. Then, guess in nO(tout) time one prototype for each output
row type, that is, one input row that is a preimage of a row from the output row
type. Now, knowing the entries for each output row, one can simply apply the
Row Assignment algorithm from Section 2:

Proposition 1. k-Anonymity parameterized by (tout, m) is in XP.
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Next, we prove fixed-parameter tractability for k-Anonymity with respect to
the combined parameter (tout, s) by showing that the number tin of input types
is at most (tout + s). To this end, consider a feasible solution for an arbitrary
k-Anonymity instance. We distinguish between input row types that have rows
which have at least one suppressed entry in the solution (suppressed input row
types in the following) and input row types that do only have rows that re-
main unchanged in the solution (unsuppressed input row types in the following).
Clearly, every unsuppressed input row type needs at least one unsuppressed
output row type. Thus, the number of unsuppressed input row type cannot ex-
ceed tout. Furthermore, the number of rows that have at least one suppressed
entry is at most s. Hence the number of suppressed input row types is also at
most s. It follows that tin ≤ tout + s. Now, fixed-parameter tractability follows
from Theorem 1:

Proposition 2. k-Anonymity is fixed-parameter tractable with respect to the
combined parameter (tout, s).

However, to achieve a better running time one might want to develop a di-
rect fixed-parameter algorithm for (tout, s). Finally, we conjecture that an XP-
algorithm for k-Anonymity can be achieved with respect to the combined
parameter (tout, k).

4 Conclusion

This paper adopts a data-driven approach towards the design of (exact) algo-
rithms for k-Anonymity and related problems. More specifically, the parame-
ter tin measures an easy-to-determine input property. Our central message here is
that if tin is small or even constant, then k-Anonymity and its related problems
are efficiently solvable—for constant tin even in linear time. On the contrary, al-
ready for two output types k-Anonymity becomes computationally intractable.

We contributed to a refined analysis of the computational complexity of k-

Anonymity. The state of the art including several research challenges con-
cerning natural parameterizations for k-Anonymity is surveyed in Table 1 in
the introductory section. Besides running time improvements in general and
open questions indicated in Table 1 such as the parameterized complexity of
k-Anonymity for the combined parameter “number of suppressions plus alpha-
bet size”, it would also be interesting to determine whether our fixed-parameter
tractability result for k-Anonymity with respect to the parameter tin not only
extends to the already mentioned generalizations of k-Anonymity but also to
the (in terms of privacy) more restrictive t-Closeness problem [17].

References

1. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R., Thomas, D.,
Zhu, A.: Achieving anonymity via clustering. ACM Trans. Algorithms 6(3), 1–19
(2010)



64 R. Bredereck et al.

2. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D.,
Zhu, A.: Anonymizing tables. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 246–258. Springer, Heidelberg (2005)

3. Blocki, J., Williams, R.: Resolving the complexity of some data privacy problems.
In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 393–404. Springer, Heidelberg (2010)

4. Bonizzoni, P., DellaVedova, G., Dondi, R.: Anonymizing binary and small tables
is hard to approximate. J. Comb. Optim. 22, 97–119 (2011)

5. Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Parameterized complexity
of k-anonymity: Hardness and tractability. In: Iliopoulos, C.S., Smyth, W.F. (eds.)
IWOCA 2010. LNCS, vol. 6460, pp. 242–255. Springer, Heidelberg (2011)

6. Bredereck, R., Nichterlein, A., Niedermeier, R., Philip, G.: Pattern-guided data
anonymization and clustering. In: Proc. 36th MFCS. LNCS. Springer, Heidelberg
(to appear, 2011)

7. Chakaravarthy, V.T., Pandit, V., Sabharwal, Y.: On the complexity of the k-
anonymization problem. CoRR, abs/1004.4729 (2010)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

9. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54, 86–95
(2011)

10. Evans, P.A., Wareham, T., Chaytor, R.: Fixed-parameter tractability of anonymiz-
ing data by suppressing entries. J. Comb. Optim. 18(4), 362–375 (2009)

11. Fard, A.M., Wang, K.: An effective clustering approach to web query log
anonymization. In: Proc. SECRYPT, pp. 109–119. SciTePress (2010)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

13. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
14. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:

A survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)
15. Johnson, D.S.: The NP-completeness column: An ongoing guide. J. Algorithms 8,

438–448 (1987)
16. Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Deconstructing intractability–A

multivariate complexity analysis of interval constrained coloring. J. Discrete Algo-
rithms 9, 137–151 (2011)

17. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity
and l-diversity. In: Proc. 23rd ICDE, pp. 106–115. IEEE, Los Alamitos (2007)

18. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: �-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 52 (2007)

19. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proc.
23rd PODS, pp. 223–228. ACM, New York (2004)

20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

21. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameter-
ization. In: Proc. 27th STACS. LIPIcs, vol. 5, pp. 17–32. IBFI, Dagstuhl (2010)

22. Orlin, J.: A faster strongly polynomial minimum cost flow algorithm. In: Proc.
20th STOC, pp. 377–387. ACM, New York (1988)

23. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and
suppression. IJUFKS 10(5), 571–588 (2002)

24. Sweeney, L.: k-anonymity: A model for protecting privacy. IJUFKS 10(5), 557–570
(2002)



On the Optimal Compression of Sets in PSPACE

Marius Zimand�

Department of Computer and Information Sciences, Towson University,
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Abstract. We show that if DTIME[2O(n)] is not included in DSPACE
[2o(n)], then, for every set B in PSPACE, all strings x in B of length
n can be represented by a string compressed(x) of length at most
log(|B=n|) + O(log n), such that a polynomial-time algorithm, given
compressed(x), can distinguish x from all the other strings in B=n. Mod-
ulo the O(log n) additive term, this achieves the information-theoretical
optimum for string compression.

Keywords: compression, time-bounded Kolmogorov complexity,
pseudo-random generator.

1 Introduction

In many practical and theoretical applications in computer science, it is impor-
tant to represent information in a compressed way. If an application handles
strings x from a finite set B, it is desirable to represent every x by another
shorter string compressed(x) such that compressed(x) describes unambigously
the initial x. Regarding the compression rate, ideally, one would like to achieve
the information-theoretical bound |compressed(x)| ≤ log(|B|), for all x ∈ B. If
a set B is computably enumerable, a fundamental result in Kolmogorov com-
plexity states that for all x ∈ B=n, C(x) ≤ log(|B=n|) + O(log n), where C(x)
is the Kolmogorov complexity of x, i.e., the shortest effective description of x
(B=n is the set of strings of length n in B). The result holds because x can
be described by its rank in the enumeration of B=n. However enumeration is
typically a slow operation and, in many applications, it is desirable that the
unambiguous description is not merely effective, but also efficient. This leads
to the idea of considering a time-bounded version of Kolmogorov complexity.
An interesting line of research [Sip83, BFL01, BLvM05, LR05], which we also
pursue in this paper, focuses on the time-bounded distinguishing Kolmogorov
complexity, CDt(·). We say that a program p distinguishes x if p accepts x and
only x. CDt,A(x) is the size of the smallest program that distinguishes x and
that runs in time t(|x|) with access to the oracle A. Buhrman, Fortnow, and La-
plante [BFL01] show that for some polynomial p, for every set B, and every string
x ∈ B=n, CDp,B=n

(x) ≤ 2 log(|B=n|) + O(log n). This is an important and very
general result but the upper bound for the compressed string length is roughly
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2 log(|B=n|) instead of log(|B=n|), that one may hope. In fact, Buhrman, La-
plante, and Miltersen [BLM00] show that, for some sets B, the factor 2 is neces-
sary. There are some results where the upper bound is asymptotically log(|B=n|)
at the price of weakening other parameters. Sipser [Sip83] shows that the upper
bound of log(|B=n|) can be achieved if we allow the distinguisher program to use
polynomial advice: For every set B, there is a string wB of length poly(n) such
that for every x ∈ B=n, CDpoly,B=n

(x | wB) ≤ log(|B=n|)+log log(|B=n|)+O(1).
Buhrman, Fortnow, and Laplante [BFL01] show that log(|B=n|) can be achieved
if we allow a few exceptions: For any B, any ε, for all except a fraction of ε strings
x ∈ B=n, CDpoly,B=n

(x) ≤ log(|B=n|) + poly log(n ·1/ε). Buhrman, Lee, and van
Melkebeek [BLvM05] show that for all B and x ∈ B=n, CNDpoly,B=n

(x) ≤
log(|B=n|) + O((

√
log(|B=n|) + log n) log n), wher CND is similar to CD except

that the distinguisher program is nondeterministic.
Our main result shows that under a certain reasonable hardness assumption,

the upper bound of log(|B=n|) holds for every set B in PSPACE.

Main Result. Assume that there exists f ∈ E that cannot be computed by circuits
of size 2o(n) with PSPACE gates. Then for any B in PSPACE, there exists a
polynomial p such that for every x ∈ B=n,

CDp,B=n
(x) ≤ log(|B=n|) + O(log n).

The main result is a corollary of the following stronger result: Under the same
hardness assumption, the distinguisher program p for x of length log(|B=n|) +
O(log n) is simple conditioned by x, in the sense that Cpoly(p | x) = O(log n),
where Cpoly(·) is the polynomial-time bounded Kolmogorov complexity.

We also consider some variations of the main result in which the set B is in
P or in NP. We show that the hardness assumption can be somewhat weakened
by replacing the PSPACE gates with Σp

3 gates. We also show that the distin-
guisher program no longer needs oracle access to B=n in case we allow it to be
nondeterministic and B is in NP.

The hardness assumption in the main result, which we call H1, states that
there exists a function f ∈ E = ∪c≥0DTIME[2cn] that cannot be computed by
circuits of size 2o(n) with PSPACE gates. This looks like a technical hypothesis;
however, Miltersen [Mil01] shows that the more intuitive assumption “E is not
contained in DSPACE[2o(n)]” implies H1. We note that this assumption (or
related versions) has been used before in somewhat similar contexts. Antunes
and Fortnow[AF09] use a version of H1 (with the PSPACE gates replaced by Σp

2

gates) to show that the semi-measure mp(x) = 2−Cp(x) dominates all polynomial-
time samplable distributions. Trevisan and Vadhan [TV00] use a version of H1
(with the PSPACE gates replaced by Σp

5 gates) to build for each k a polynomial-
time extractor for all distributions with min-entropy (1− δ)n that are samplable
by circuits of size nk.

1.1 Discussion of Technical Aspects

We present the main ideas in the proof of the main result. The method is
reminiscent of techniques used in the construction of Kolmogorov extractors
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in [FHP+06, HPV09, Zim10]. Let B in PSPACE. To simplify the argument sup-
pose that |B=n| is a power of two, say |B=n| = 2k. If we would have a polynomial-
time computable function E : {0, 1}n → {0, 1}k, whose restriction on B is 1-to-1,
then every x ∈ B=n could be distinguished from the other elements of B=n by
z = E(x) and we would obtain CDpoly,B=n

(x) ≤ |z| + O(1) = log(|B=n|) + O(1).
We do not know how to obtain such a function E, but, fortunately, we can afford
a slack additive term of O(log n) and therefore we can relax the requirements for
E. We can consider functions E of type E : {0, 1}n ×{0, 1}logn → {0, 1}k. More
importantly, it is enough if E is computable in polynomial time given an advice
string σ of length O(log n) and if every z ∈ {0, 1}k has at most O(n) preimages
in B × {0, 1}logn. With such an E, the string z = E(x, 0log n) distinguishes x
from strings that do not map into z and, using the general result of Buhrman,
Fortnow, and Laplante [BFL01], with additional 2 log n+O(1) bits we can distin-
guish x from the other at most O(n) strings that map into z. With such an E, we
obtain for every x ∈ B=n the desired CDpoly,B=n

(x) ≤ |z|+ |σ|+2 log n+O(1) =
log(|B=n|) + O(log n).

Now it remains to build the function E. An elementary use of the probabilistic
method shows that if we take E : {0, 1}n×{0, 1}logn → {0, 1}k at random, with
high probability, every z ∈ {0, 1}k has at most 7n preimages. The problem is that
to compute a random E in polynomial-time we would need its table and the table
of such a function has size poly(N), where N = 2n. This is double exponentially
larger than O(log n) which has to be the size of σ from our discussion above.

To reduce the size of advice information (that makes E computable in poly-
nomial time) from poly(N) to O(log n), we derandomize the probabilistic con-
struction in two steps.

In the first step we observe that counting (the number of preimages
of z) can be done with sufficient accuracy by circuits of size poly(N)
and constant-depth using the result of Ajtai [Ajt93]. We infer that there
exists a circuit G of size poly(N) and constant depth such that {E |
every z has ≤ 7n preimages in B × {0, 1}logn} ⊆ {E | G(E) = 1} ⊆ {E |
every z has ≤ 8n preimages in B × {0, 1}logn}. Now we can utilize the Nisan-

Wigderson [NW94] pseudo-random generator NW-gen against constant-depth
circuits and we obtain that, for most seeds s (which we call good seeds for
NW-gen), NW-gen(s) is the table of a function E where each element z ∈ {0, 1}k

has at most 8n preimages in B×{0, 1}logn. This method is inspired by the work
of Musatov [Mus10], and it has also been used in [Zim11]. The seed s has size
poly log(N) = poly(n), which is not short enough.

In the second step we use the Impagliazzo-Wigderson pseudo-random gener-
ator [IW97] as generalized by Klivans and van Melkebeek [KvM02]. We observe
that checking that a seed s is good for NW-gen can be done in PSPACE, and we
use the hardness assumption to infer the existence of a pseudo-random generator
H such that for most seeds σ of H (which we call good seeds for H), H(σ) is a
good seed for NW-gen. We have |σ| = log |s| = O(log n) as desired. Finally, we
take our function E to be the function whose table is NW-gen(H(σ)), for some
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good seed σ for H . It follows that, given σ, E is computable in polynomial time
and that every z ∈ {0, 1}k has at most 8n preimages in B=n × {0, 1}log n.

The idea of the 2-step derandomization has been used by Antunes and Fort-
now [AF09] and later by Antunes, Fortnow, Pinto and Souza [AFPS07].

2 Preliminaries

2.1 Notation and Basic Facts on Kolmogorov Complexity

We work over the binary alphabet {0, 1}. A string is an element of {0, 1}∗. If
x is a string, |x| denotes its length; if B is a finite set, |B| denotes its size. If
B ⊆ {0, 1}∗, then B=n = {x ∈ B | |x| = n}.

The Kolmogorov complexity of a string x is the length of the shortest program
that prints x. The t-time bounded Kolmogorov complexity of a string x is the
length of the shortest program that prints x in at most t(|x|) steps. The t-time
bounded distinguishing Kolmogorov complexity of a string x is the length of the
shortest program that accepts x and only x and runs in at most t(|x|) steps. The
formal definitions are as follows.

We fix an universal Turing machine U , which is able to simulate any other
Turing machine with only a constant additive term overhead in the program
length. The Kolmogorov complexity of the string x conditioned by string y,
denoted C(x | y), is the length of the shortest string p (called a program) such
that U(p, y) = x. In case y is the empty string, we write C(x).

For the time-bounded versions of Kolmogorov complexity, we fix an universal
machine U , that, in addition to the above property, can also simulate any Turing
machine M in time tM (|x|) log tM (|x|), where tM (|x|) is the running time of M
on input x. For a time bound t(·), the t-bounded Kolmogorov complexity of x
conditioned by y, denoted Ct(x | y), is the length of the shortest program p such
that U(p, y) = x and U(p, y) halts in at most t(|x| + |y|) steps.

The t-time bounded distinguishing complexity of x conditioned by y, denoted
CDt(x | y) is the length of the shortest program p such that

(1) U(p, x, y) accepts,
(2) U(p, v, y) rejects for all v �= x,
(3) U(p, v, y) halts in at most t(|v| + |y|) steps for all v and y.

In case y is the empty string λ, we write CDt(x) in place of CDt(x | λ). If U is
an oracle machine, we define in the similar way, CDt,A(x | y) and CDt,A(x), by
allowing U to query the oracle A.

For defining t-time bounded nondeterministic distinguishing Kolmogorov
complexity, we fix U a nondeterministic universal machine, and we define
CNDt(x | y) in the similar way.

Strings x1, x2, . . . , xk can be encoded in a self-delimiting way (i.e., an encod-
ing from which each string can be retrieved) using |x1| + |x2| + . . . + |xk| +
2 log |x2| + . . . + 2 log |xk| + O(k) bits. For example, x1 and x2 can be encoded
as (bin(|x2|)01x1x2, where bin(n) is the binary encoding of the natural number
n and, for a string u = u1 . . . um, u is the string u1u1 . . . umum (i.e., the string
u with its bits doubled).
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2.2 Distinguishing Complexity for Strings in an Arbitrary Set

As mentioned, Buhrman, Fortnow and Laplante [BFL01], have shown that for
any set B and for every x ∈ B=n it holds that CDpoly,B=n

(x) ≤ 2 log(|B=n|) +
O(log n). We need the following more explicit statement of their result.

Theorem 1. There exists a polynomial-time algorithm A such that for every
set B ⊆ {0, 1}∗, every n, every x ∈ B=n, there exists a string px of length
|px| ≤ 2 log(|B=n|) + O(log n) such that

• A(px, x) = accept,

• A(px, y) = reject, for every y ∈ B=n − {x}.

2.3 Approximate Counting via Polynomial-Size Constant-Depth
Circuits

We will need to do counting with constant-depth polynomial-size circuits.
Ajtai [Ajt93] has shown that this can be done with sufficient precision.

Theorem 2. (Ajtai’s approximate counting with polynomial size
constant-depth circuits1) There exists a uniform family of circuits {Gn}n∈N,
of polynomial size and constant depth, such that for every n, for every
x ∈ {0, 1}n, for every a ∈ {0, . . . , n − 1}, and for every constant ε > 0,

• If the number of 1’s in x is ≤ (1 − ε)a, then Gn(x, a, 1/ε) = 1,

• If the number of 1’s in x is ≥ (1 + ε)a, then Gn(x, a, 1/ε) = 0.

We do not need the full strength (namely, the uniformity of Gn) of this theorem;
the required level of accuracy (just ε > 0) can be achieved by non-uniform
polynomial-size circuits of depth d = 3 (with a much easier proof, see [Vio10]).

2.4 Pseudo-Random Generator Fooling Bounded-Size
Constant-Depth Circuits

The first step in the derandomization argument in the proof of Theorem 5 is
done using the Nisan-Wigderson pseudo-random generator that “fools” constant-
depth circuits [NW94].

Theorem 3 (Nisan-Wigderson pseudo random generator). For every
constant d there exists a constant α > 0 with the following property. There
exists a function NW-gen : {0, 1}O(log2d+6 n) → {0, 1}n such that for any circuit
G of size 2nα

and depth d,

|Probs∈{0,1}O(log2d+6 n) [G(NW-gen(s)) = 1] − Probz∈{0,1}n [G(z) = 1]| < 1/100.

Moreover, there is a procedure that on inputs (n, i, s) produces the i-th bit of
NW-gen(s) in time poly(log n). 2

1 Ajtai’s actual result is stronger in some aspects than what we state here.
2 The ”Moreover ...” part is not stated explicitly in [NW94], but follows easily from

the proof.
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2.5 Hardness Assumptions and Pseudo-Random Generators

The second step in the derandomization argument in the proof of Theorem 5
uses pseudo-random generators based on the assumption that hard functions ex-
ist in E = ∪cDTIME[2cn]. Such pseudo-random generators were constructed by
Nisan and Wigderson [NW94]. Impagliazzo and Wigderson [IW97] strengthen
the results in [NW94] by weakening the hardness assumptions. Klivans and van
Melkebeek [KvM02] show that the Impagliazzo-Wigderson results hold in rel-
ativized worlds. We use in this paper some instantiations of a general result
in [KvM02].

We need the following definition. For a function f : {0, 1}∗ → {0, 1} and
an oracle A, the circuit complexity CA

f (n) of f at length n relative to A is the
smallest integer t such that there exists an A oracle circuit of size t that computes
f on inputs of length n.

We use the following hardness assumptions.
Assumption H1

There exists f ∈ E such that for some ε > 0 and for some PSPACE complete
set A, CA

f (n) ≥ 2ε·n.

Assumption H2

There exists f ∈ E such that for some ε > 0 and for some Σp
3 complete set A,

CA
f (n) ≥ 2ε·n.
If H1 holds, then for some oracle A that is PSPACE complete, for every k,

there exists H : {0, 1}c log n → {0, 1}n computable in time poly(n) such that for
every oracle circuit C of size nk,

|Probσ∈{0,1}c log n [CA(H(σ)) = 1] − Probs∈{0,1}n [CA(s) = 1]| < o(1).

If H2 holds, then for some oracle A that is Σp
3 complete, for every k, there exists

H : {0, 1}c log n → {0, 1}n computable in time poly(n) such that for every oracle
circuit C of size nk,

|Probσ∈{0,1}c log n [CA(H(σ)) = 1] − Probs∈{0,1}n [CA(s) = 1]| < o(1).

3 Main Result

Theorem 4. Assuming H1, the following holds: For every set B in PSPACE,
there exists a polynomial p such that for every length n, and for every string
x ∈ B=n, there exists a string z with the following properties:

(1) |z| = �log(|B=n|)�,
(2) Cp(z | x) = O(log n),
(3) CDp,B=n

(x | z) = O(log n).

Before proving the theorem, we note that (1) and (3) immediately imply the
following theorem, which is our main result.
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Theorem 5. Assumming H1, the following holds: For every set B in PSPACE
there exists a polynomial p, such that for every length n, and for every string
x ∈ B=n,

CDp,B=n
(x) ≤ log(|B=n|) + O(log n).

Proof. (of Theorem 4) Let us fix a set B in PSPACE and let us focus on B=n,
the set of strings of length n in B. Let k = �log |B=n|� and let K = 2k. Also, let
N = 2n.

Definition 1. Let E : {0, 1}n × {0, 1}logn → {0, 1}k. We say that E is Δ-
balanced if for every z ∈ {0, 1}k,

∣∣E−1(z) ∩ B=n × {0, 1}log n
∣∣ ≤ Δ · |B

=n| · n
K

.

The definition says that if we view E as an N -by-n table with entries colored with
colors in [K], then no color z appears in the rectangle B=n ×{0, 1}log n (formed
by rows in B=n and all the columns of the table) more than Δ× (number of
occurrences of a color in a perfectly balanced coloring).

The plan for the proof is as follows. Suppose that we have a function E :
{0, 1}n × {0, 1}log n → {0, 1}k that is Δ-balanced, for some constant Δ.

Furthermore assume that E can be “described” by a string σ, in the sense
that given σ as an advice string, E is computable in time polynomial in n.

Fix x in B=n and let z = E(x, 0log n). Clearly, the string z satisfies requirement
(1). It remains to show (2) and (3).

Consider the set

U = {u ∈ B=n | ∃v ∈ {0, 1}logn, E(u, v) = z}.

Since E is Δ-balanced, the size of U is bounded by Δ · |B=n|·n
K ≤ Δn.

Now observe that for some polynomial p,

CDp,B=n
(x | z) ≤ |σ| + 2 log(Δn) + O(log n) + self-delimitation overhead.

Indeed, the following is a polynomial-time algorithm using oracle B=n that dis-
tinguishes x (it uses an algorithm A, promised by Theorem 1, that distinguishes
x from the other strings in U , using a string px of length 2 log(|U=n|)+O(log n) ≤
2 log(Δn) + O(log n)).

Input: y; the strings z, σ, px, defined above, are also given.
If y �∈ B=n, then reject.
If for all v ∈ {0, 1}logn, E(y, v) �= z, then reject.
If A(y, px) = reject, then reject.
Else accept.

Clearly, the algorithm accepts input y iff y = x. Also, since z = E(x, 0log n),
Cp(z | x) ≤ |σ| + O(1). For a further application (Theorem 14), note that the
above algorithm queries the oracle B=n a single time.
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Therefore, if we manage to achieve σ = O(log n), we obtain that CDp,B=n
(x |

z) ≤ O(log n) and Cp(z | x) ≤ O(log n).
Thus our goal is to produce a function E : {0, 1}n ×{0, 1}log n → {0, 1}k that

using an advice string σ of length O(log n) is computable in polynomial time
and is Δ-balanced for some constant Δ. Let us call this goal (∗).

We implement the ideas exposed in Section 1.1 and the reader may find con-
venient to review that discussion.

Claim 6. With probability at least 0.99, a random function E : {0, 1}n ×
{0, 1}logn → {0, 1}k is 7-balanced.

Proof. For fixed x ∈ B=n, y ∈ {0, 1}logn, z ∈ {0, 1}m, if we take a random func-
tion E : {0, 1}n × {0, 1}logn → {0, 1}k, we have that Prob[E(x, y) = z] = 1/K.
Thus the expected number of preimages of z in the rectangle B=n × {0, 1}log n

is μ = (1/K) · |B=n| · n. By the Chernoff’s bounds,3

Prob[number of preimages of z in B=n × {0, 1}log n > 7μ] < e−(6 ln 2)μ.

Therefore, the probability of the event “there is some z ∈ {0, 1}k such that
the number of z-cells in B=n × {0, 1}logn is > 7μ” is at most K · e−(6 ln 2)μ

< 0.01.

Claim 7. There exists a circuit G of size poly(N) and constant depth such that
for any function E : {0, 1}n ×{0, 1}logn → {0, 1}k (whose table is given to E as
the input),

(a) If G(E) = 1, then E is 8-balanced,

(b) If E is 7-balanced, then G(E) = 1.

Proof. By Theorem 2, there is a constant-depth, poly(N) size circuit that counts
in an approximate sense the occurrences of a string z in {0, 1}k in the rectangle
B=n × {0, 1}log n. If we make a copy of this circuit for each z ∈ {0, 1}k and link
all these copies to an AND gate we obtain the desired circuit G.

More precisely, let xz be the binary string of length |B=n| · n, whose bits
are indexed as (u, v) for u ∈ B=n, v ∈ {0, 1}logn, and whose (u, v)-bit is 1 iff
E(u, v) = z. By Theorem 2, there is a constant-depth, poly(N) size circuit G′

that behaves as follows:

• G′(xz) = 1 if the number of 1’s in xz is ≤ 7 |B=n|·n
K ,

• G′(xz) = 0 if the number of 1’s in xz is > 8 |B=n|·n
K ,

3 We use the following version of the Chernoff bound. If X is a sum of inde-
pendent Bernoulli random variables, and the expected value E[X] = μ, then
Prob[X ≥ (1 + Δ)μ] ≤ e−Δ(ln(Δ/3))μ. The standard Chernoff inequality Prob(X ≥
(1 + Δ)μ] ≤ ( eΔ

(1+Δ)(1+Δ)

)μ
is presented in many textbooks. It can be checked easily

that eΔ

(1+Δ)(1+Δ) < e−Δ ln(Δ/3), which implies the above form.
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If the number of 1’s is between the two bounds, the circuit G′ outputs either 0
or 1.

The circuit G on input a table of E, will first build the string xz for each
z ∈ {0, 1}k, then has a copy of G′ for each z, with the z-th copy running on xz

and then connects the outputs of all the copies to an AND gate, which is the
output gate of G.

Claim 8. If we pick at random a function E : {0, 1}n × {0, 1}logn → {0, 1}k,
with probability at least 0.99, G(E) = 1.

Proof. This follows from Claim 6 and from Claim 7 (b).

Let Ñ = N ·n ·k. Let d be the depth of the circuit G. We denote ñ = log2d+6Ñ .
Note that ñ = poly(n). We consider the Nisan-Wigderson pseudo-random gen-
erator for depth d given by Theorem 3. Thus,

NW-gen : {0, 1}ñ → {0, 1}Ñ .

For any string s of length ñ, we view NW-gen(s) as the table of a function
E : {0, 1}n × {0, 1}logn → {0, 1}k.

Claim 9. If we pick at random s ∈ ñ, with probability of s at least 0.9, it holds
that NW-gen(s) is 8-balanced.

Proof. Since G is a circuit of constant depth and polynomial size, by Theorem 3,
the probability of the event “G(NW-gen(s)) = 1” is within 0.01 of the proba-
bility of the event “G(E) = 1,” and the second probability is at least 0.99 by
Claim 8. Thus the first probability is greater than 0.9. Taking into account that
if G(NW-gen(s)) = 1 then NW-gen(s) is 8-balanced, the conclusion follows.

Claim 10. Let T = {s ∈ {0, 1}ñ | NW-gen(s) is 8-balanced}. Then T is in
PSPACE.

Proof. We need to count for every z ∈ {0, 1}k, the number of z-cells in the
rectangle B=n×{0, 1}logn of the table of NW-gen(s). Since B is in PSPACE and
since each entry in the table of NW-gen(s) can be computed in time polynomial
in ñ, it follows that the above operation can be done in PSPACE.

Claim 11. Assume H1. There exists a constant c and a function H :
{0, 1}c log ñ → {0, 1}ñ, computable in time poly(ñ) = poly(n), such that if
σ is a string chosen at random in {0, 1}c log ñ, with probability at least 0.8, it
holds that NW-gen(H(σ))) is 8-balanced.

Proof. Under assumption H1, there exists a pseudo-random generator H :
{0, 1}c log ñ → {0, 1}ñ such that for any set A in PSPACE,

|Probσ∈{0,1}c log ñ [H(σ) ∈ A] − Probs∈{0,1}ñ [s ∈ A]| < 0.1.

Since the set T is in PSPACE, Probσ∈{0,1}c log ñ [NW-gen(H(σ)) is 8-balanced] is
within 0.1 from Probs∈{0,1}ñ [NW-gen(s) is 8-balanced]. Since the latter proba-
bility is at least 0.9, the conclusion follows.
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We can now finish the proof of Theorem 5.
Fix σ ∈ {0, 1}c log ñ such that NW-gen(H(σ))) is 8-balanced. Note that |σ| =

O(log n). Given σ, each entry in the table of NW-gen((H(σ))) can be computed
in time poly(n). Thus the function E : {0, 1}n × {0, 1}logn → {0, 1}k, whose
table is NW-gen((H(σ))), satisfies the goal (∗).

4 Variations around the Main Result

We analyze here the polynomial-time bounded distinguishing Kolmogorov of
strings in a set B that is in P or in NP. We start with the case B ∈ P. The
following is the analog of Theorem 4 and its main point is that assumption H1
can be replaced by the presumably weaker assumption H2.

Theorem 12. Assuming H2, the following holds: For every set B in P, there
exists a polynomial p such that, for every length n, and for every string x ∈ B=n,
there exists a string z with the following properties:

(1) |z| = �log(|B=n|)�,
(2) Cp(z | x) = O(log n),
(3) CDp(x | z) = O(log n).

Proof. We follow the proof of Theorem 4. First note that since B ∈ P, the
universal machine does not need oracle access to B. We still need to justify that
assumption H1 can be replaced by the weaker assumption H2.

Assumption H1 was used in Claim 11. The point was that the set T = {s |
NW-gen(s) is 8-balanced} is in PSPACE and H1 was used to infer the exis-
tence of a pseudo-random generator H that fools T . If B ∈ P, we can check
that NW-gen(s) is sufficiently balanced using less computational power than
PSPACE. Basically we need to check that for all z ∈ {0, 1}k,

|NW-gen(s)−1(z) ∩ B=n × {0, 1}logn| ≤ Δ · |B
=n| · n
K

,

for some constant Δ. Using Sipser’s method from [Sip83], there is a Σp
2 predicate

R such that

• R(s, z) = 1 implies |NW-gen(s)−1(z) ∩ B=n × {0, 1}log n| ≤ 16 · n,

• R(s, z) = 0 implies |NW-gen(s)−1(z) ∩ B=n × {0, 1}log n| ≥ 64 · n.

Thus there is a set T ′ ⊆ {0, 1}ñ in Σp
3 such that for all s ∈ T ′, NW-gen(s) is

64-balanced and T ′ contains all s such that NW-gen(s) is 8-balanced. Note that
the second property implies that |T ′| ≥ 0.99 · 2ñ.

Now assumption H2 implies that there exists a pseudo-random generator H :
{0, 1}c log(ñ) → {0, 1}ñ that fools T ′. In particular it follows that with probability
of σ ∈ {0, 1}c log(ñ) at least 0.8, H(σ) ∈ T ′ and thus NW-gen(H(σ)) is 64-
balanced. The rest of the proof is identical with the proof of Theorem 5.

The next result is the analog of Theorem 5 for the case when the set B is in P.
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Theorem 13. Assuming H2, the following holds: For every B ∈ P, there exists
a polynomial p such that for all n, and for all x ∈ B=n,

CDpoly(x) ≤ log(|B=n|) + O(log n).

Proof. This is an immediate consequence of (1) and (3) in Theorem 12.

Next we consider the case when the set B is in NP. The main point is that the
assumption H1 can be replaced by H2, and that the distinguishing program does
not need access to the oracle B=n provided it is nondeterministic.

Theorem 14. Assuming H2, the following holds: For every set B in NP, there
exists a polynomial p such that for every length n, and for every string x ∈ B=n,
there exists a string z with the following properties:

(1) |z| = �log(|B=n|)�,
(2) Cp(z | x) = O(log n),
(3) CDp,B=n

(x | z) = O(log n).
(4) CNDp(x | z) = O(log n).

Proof. (1), (2) and (3). We only need to show that in the proof of Theorem 4,
in case B ∈ NP, the assumption H1 can be replaced by the weaker assumption
H2. This is done virtually in the same way as in the proof of Theorem 13. The
predicate R also needs this time to check that certain strings are in B and this
involves an additional quantifier, but that quantifier can be merged with the
existing quantifiers and R remains in Σp

2 .
(4). We need to show that, at the price of replacing CD by CND, the use

of the oracle B=n is no longer necessary. Note that the distinguisher procedure
given in the proof of Theorem 4, queries the oracle only once, and if the answer
to that query is NO, then the algorithm rejects immediately. Thus, instead of
making the query, a nondeterministic distinguisher can just guess a witness for
the single query it makes.

The following is the analog of Theorem 5 in case the set B is in NP.

Theorem 15. Assuming H2, the following holds:
(a) For every B ∈ NP, there exists a polynomial p, such that for all n, and

for all x ∈ B=n,

CDp,B=n
(x) ≤ log(|B=n|) + O(log n).

(b) For every B ∈ NP, there exists a polynomial p, such that for all n, and
for all x ∈ B=n,

CNDp(x) ≤ log(|B=n|) + O(log n).

Proof. Statement (a) follows from (1) and (3) in Theorem 14, and (b) follows
from (1) and (4) in Theorem 14.
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Abstract. The seminal hardcore lemma of Impagliazzo states that for
any mildly-hard Boolean function f , there is a subset of input, called the
hardcore set, on which the function is extremely hard, almost as hard as a
random Boolean function. This implies that the output distribution of f
given a random input looks like a distribution with some statistical ran-
domness. Can we have something similar for hard functions with several
output bits? Can we say that the output distribution of such a general
function given a random input looks like a distribution containing several
bits of randomness? If so, one can simply apply any statistical extractor
to extract computational randomness from the output of f . However, the
conventional wisdom tells us to apply extractors with some additional
reconstruction property, instead of just any extractor. Does this mean
that there is no analogous hardcore lemma for general functions?

We show that a general hard function does indeed have some kind
of hardcore set, but it comes with the price of a security loss which is
proportional to the number of output values. More precisely, consider a
hard function f : {0, 1}n → [V ] = {1, . . . , V } such that any circuit of size
s can only compute f correctly on at most 1

L
(1 − γ) fraction of inputs,

for some L ∈ [1, V − 1] and γ ∈ (0, 1). Then we show that for some
I ⊆ [V ] with |I | = L + 1, there exists a hardcore set HI ⊆ f−1(I) with
density γ/

(
V

L+1

)
such that any circuit of some size s′ can only compute

f correctly on at most 1+ε
L+1

fraction of inputs in HI . Here, s′ is smaller
than s by some poly(V, 1/ε, log(1/γ)) factor, which results in a security
loss of such a factor. We show that it is basically impossible to guarantee
a much larger hardcore set or a much smaller security loss. Finally, we
show how our hardcore lemma can be used for extracting computational
randomness from general hard functions.

1 Introduction

Impagliazzo’s hardcore lemma [9] is a fundamental result in complexity theory
which states that any mildly-hard function has a subset of inputs on which it
is extremely hard. More precisely, consider a function f : {0, 1}n → {0, 1} such
that any circuit of size s disagrees with f on at least δ fraction of inputs, and
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we call such a function (δ, s)-hard where the parameter δ is called the hardness
of f . Then the hardcore lemma asserts that there exists a subset H ⊆ {0, 1}n

of density δ such that any circuit of size s′ must disagree with f on at least
1−ε
2 fraction of inputs from H , for some s′ slightly smaller than s. This means

that given a random input x in H , although the value of f(x) is fixed and thus
has no randomness at all in a statistical sense, it still looks like a random bit to
small circuits. Because of this nice property, the hardcore lemma has become an
important tool in the study of pseudo-randomness. For example, it was used in
[9] for an alternative proof of Yao’s XOR lemma [20], used in [17] for constructing
a pseudo-random generator directly from a mildly-hard function without going
through the XOR lemma, and more recently used in [15,18,19,6] for amplifying
hardness of functions in NP. The parameters of the hardcore lemma were later
improved by [10,7,2].

Note that Impagliazzo’s hardcore lemma works for Boolean functions. It says
that the output of a hard function given a random input looks like a random bit
and thus contains statistical randomness, when the input falls in the hardcore set.
When using the lemma, the hard function is usually evaluated at several inputs
in order to obtain several output bits, which together can be argued to contain
some sufficient amount of randomness. Usually, the amount of randomness in
a distribution is measured by its min-entropy, where a distribution has min-
entropy at least k if every element occurs with probability at most 2−k. Then
from a distribution with some min-entropy, one applies a so-called randomness
extractor [21,14] to extract a distribution which looks almost random.

On the other hand, there are natural functions with many output bits which
are believed to be hard, such as factoring and discrete logarithm, and one may
be able to extract several bits at once from one output value. This is also related
to the problem of extracting randomness from sources with computational ran-
domness, studied in [3,8,12]. One may wonder if there is an analogous hardcore
lemma for a general non-Boolean function, which can guarantee that the out-
put distribution given a random input will look like one with some min-entropy,
hopefully much larger than one. For example, assume that a one-way permu-
tation g : {0, 1}n → {0, 1}n exists, whose inverse function f = g−1 is hard to
compute by small (say, polynomial-size) circuits. Then, if one could show that the
distribution of x = f(y) given a random y looks like having some min-entropy to
small circuits, one could simply apply any extractor on x. However, the conven-
tional wisdom does not suggest so and the following counter example seems to be
known as a folklore. Given an efficiently-computable extractor E and a one-way
permutation g, the function Ext defined as Ext(x, u) = E(g(x), u) is still an ex-
tractor, but its output can be easily computed (and hence does not look random
at all) given y = g(x) and u. To extract such computational randomness, pre-
vious works all resorted to extractors with some reconstruction property, which
roughly corresponds to error correcting codes with efficient decoders (see, e.g.,
[16] for a definition).

Does this mean that there is no analogous hardcore lemma for general func-
tions? If we consider a hard function f : {0, 1}n → {0, 1}2 with two, instead of
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one, output bits, it may be hard to believe that we can no longer have any kind
of hardcore lemma for it. But can we guarantee the existence of a hardcore set
H such that f(x), for a random x ∈ H , looks like a random value in {0, 1}2?
The answer is no in general because f may in fact have at most three possible
output values, so we have to settle for something weaker. One approach is to see
each output bit of a (δ, s)-hard function f : {0, 1}n → {0, 1}d as a Boolean func-
tion, so some of these d Boolean functions must have hardness Ω(δ/d) and they
have Boolean hardcore sets (with two output values) of density Ω(δ/d) using
Impagliazzo’s lemma. Unfortunately, this only gives a very weak result because
even if f is extremely hard, with δ close to 1 − 2−d, one may still only be able
to guarantee one bit of randomness in the output of f if those Boolean hardcore
sets are disjoint.

We are looking for something stronger, in which more bits of randomness
can be guaranteed. We consider a general (δ, s)-hard function f of the form
f : {0, 1}n → [V ] = {1, . . . , V }. We discover that a good way to see its hardness
is to express it in the form of δ = 1 − 1

L(1 − γ), for some L ∈ [1, V − 1] and
γ ∈ (0, 1), and we obtain the following results.

First, we show that any function with such hardness has a hardcore set with
L + 1 output values. More precisely, we show that for such a hard function f ,
there exist some I ⊆ [V ] with |I| = L + 1 and some HI ⊆ f−1(I) of density
|HI |/2n ≥ γ/

(
V

L+1

)
such that any circuit of size s′ can only compute f correctly

on 1+ε
L+1 fraction of the inputs in HI , where s′ is smaller than s by a factor of

poly(V, 1/ε, log(1/γ)). Let us call such a set HI an (I, ε, s′) hardcore set, and
let us take a close look at what our result says as L varies. At one end of the
spectrum with L = V − 1, our result guarantees the existence of a hardcore set
HI , with I = [V ], such that f restricting to the set HI has almost the largest
possible hardness and it looks like a random function from HI to [V ]. Note that
when V = 2 (and L = 1), we have Impagliazzo’s hardcore lemma as our special
case. As L becomes smaller, the hardness decreases, and it is no longer possible
to always have a hardcore set with V output values. Nevertheless, our result
shows that one can still have a hardcore set HI with |I| = L + 1 output values,
such that f restricting to HI looks like a random function from HI to I.

Notice that in our first result, we can only guarantee a hardcore set of density
γ/
(

V
L+1

)
, and one may wonder if it is possible to guarantee a larger one. Our

second result shows that this is basically impossible. More precisely, we show the
existence of a (δ, s)-hard function f : {0, 1}n → [V ], with δ = 1− 1

L(1−γ) and s ≥
poly(γ, 1/L, 2n), which has no (I, ε, s′) hardcore set of density 4(L + 1)γ/

(
V

L+1

)
for any I ⊆ [V ] with |I| = L + 1, where s′ = poly(n). Note that the density
achieved by out first result and that ruled out by our second result are off by an
O(L) factor, and we believe that the bound of our second result may be improved.
On the other hand, our second result is strong in the sense that even when we
start from a function which is hard against very large circuits of exponential
size, it is still impossible to have a hardcore set of a small density against small
circuits of polynomial size.
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With a small hardcore set, one can only say that the output of a hard function
f looks somewhat random when the input falls into that small set. This alone
is not good enough for the purpose of randomness extraction because the vast
majority of inputs are outside of the hardcore set and may contribute a large
error. Our next result shows that in fact we can have not just one but a collection
of disjoint hardcore sets, and they together cover all but a small fraction of the
inputs, which implies that the output of f looks somewhat random for most
input. More precisely, we show that for a (δ, s)-hard function, with δ ≥ 1− 2−k,
its output distribution given a random input looks close, within some distance ε,
to a distribution with min-entropy Ω(k), by circuits of size s′ = s/poly(V, 1/ε).
This implies that we can simply apply any seeded statistical extractor to extract
computational randomness from the output of f as long as s is large (say, super-
polynomial) or V is small (say, polynomial). This also works for seedless multi-
source extractors, and in particular, it fits nicely with the setting of independent-
symbol sources studied in [12] in which each symbol is considered to come from a
small set. Therefore, we can generalize the result of [12] from a statistical setting
to a computational one: given multiple independent sources, over a small set of
symbols, which look slightly random to polynomial-size circuits but may have
no min-entropy at all, the statistical extractor there can be used to produce an
output which looks almost random to polynomial-size circuits.

Note that in our hardcore set result, there is a security loss of some factor
poly(V, 1/ε) in circuit size. That is, starting from a function which is hard against
circuits of size s, we can only guarantee the hardness of a hardcore set against
circuits of size s′, with s′ smaller than s by that factor. Consequently, with s =
poly(n), we can only extract randomness from a function with V ≤ poly(n) (or
equivalently, with O(log n) output bits). One may wonder if such a security loss of
circuit size can be avoided. Our final result shows that this is basically impossible,
if the proof is done in a certain black box way. Here, we use the notion of black-
box proofs for hardcore sets introduced in [13]. Informally speaking, a black-box
proof is realized by an oracle algorithm R such that for any function f and any
collection G of circuits, if G breaks the hardcore set condition, then R breaks the
hardness of f by using G only as an oracle. In this black-box model, we show that
any algorithm R must make at least q = Ω((V k/ε2) log(1/δ)) queries in order
to show the existence of a hardcore set with k output values. This translates to
a loss of a q factor in circuit size, because the resulting circuit of RG is larger
than those in G by this factor. This explains the need of using reconstructive
extractors, instead of just any extractors, on the input of a one-way permutation
discussed before, since there we have a large V = 2n. Finally, we would like
to clarify a potential confusion with the security loss of using reconstructive
extractors in previous works. When applying reconstructive extractors on the
output of a hard function f , previous results also suffered some loss of circuit
size in the same sense: the outputs of extractors only look random to smaller
circuits compared to those which the hardness of f is measured against. However,
the loss is in terms of the output length m of extractors, instead of the output



82 C.-J. Lee, C.-J. Lu, and S.-C. Tsai

length of f . More precisely, the loss factor is poly(2m), which again limits us to
extracting O(log n) bits when f is hard against circuits of size s = poly(n).

2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}, and let Un denote the uniform
distribution over {0, 1}n. For a set X , we let |X | denote the number of elements
in X , and for a subset S ⊆ X , we say that S has density |S|/|X | in X . For a
set X and an integer n ∈ N, we use the notation

(
X
n

)
to denote the collection of

subsets S ⊆ X such that |S| = n. When we sample from a finite set, the default
distribution is the uniform one. All logarithms used in this paper will have base
two. Let SIZE(s) be the class of functions computable by circuits of size s. We
measure the hardness of computing a function in the following way.

Definition 1. A function f is (δ, s)-hard if any circuit in SIZE(s) must fail to
compute f correctly for at least a δ fraction of inputs.

Impagliazzo [9] considered Boolean functions and show that any hard function
must have a hardcore set such that the function restricted to the hardcore set
is extremely hard. In this paper, we consider general functions of the form f :
X → [V ], for some input set X and for the output set [V ] with integer V ≥ 2.
For such general functions, we introduce our notion of generalized hardcore sets
as follows.

Definition 2. For a function f : X → [V ] and some I ⊆ [V ], we say that
a subset of inputs H ⊆ f−1(I) is an (I, ε, s) hardcore set if for any circuit
C ∈ SIZE(s), Prx∈H [C(x) = f(x)] ≤ (1 + ε)/|I|. We say that such an H is a
hardcore set with |I| output values.

Note that f(x) ∈ I for any x ∈ H , so the above probability bound says that
f restricted to H looks like a random function from H to I. We say that a
distribution looks like another one if there is no distinguisher for them, defined
as follows.

Definition 3. A function D : X → {0, 1} is an ε-distinguisher for two distri-
butions X and Y over X if |Pr[D(X ) = 1] − Pr[D(Y) = 1]| ≥ ε, and we call
such a function D an (ε, s)-distinguisher if D ∈ SIZE(s).

We measure the amount of randomness in a distribution X by its min-entropy,
and we say that X has min-entropy at least k, denoted by H∞(X ) ≥ k, if for
any x, Pr[X = x] ≤ 2−k. From a source which is only weakly random (with some
min-entropy), we would like to have a procedure called an extractor to extract a
distribution which is almost random. When trying to extract randomness from a
single source, one usually needs an additional short seed, and such an extractor
is called a seeded one, which is defined as follows.

Definition 4. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called a (seeded)
(k, ε)-extractor if for any distribution X over {0, 1}n with H∞(X ) ≥ k, there is
no ε-distinguisher for the distributions Ext(X ,Ud) and Um.
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When there are at least two independent sources which are weakly random, it
becomes possible to have a seedless extractor, which is defined as follows.

Definition 5. A function Ext : ({0, 1}n)t → {0, 1}m is called a (seedless)
t-source (k, ε)-extractor if for any t independent distributions X1, . . . ,Xt over
{0, 1}n with

∑
i∈[t] H∞(Xi) ≥ k, there is no ε-distinguisher for the distributions

Ext(X1, . . . ,Xt) and Um.

3 Generalized Hardcore Set

In this section, we generalize Impagliazzo’s hardcore lemma [9] from the case of
Boolean functions to the case of general functions. More precisely, we have the
following.

Lemma 1. Let f : X → [V ] be a (δ, s)-hard function, with δ ≥ 1− 1
L(1− γ) for

some γ ∈ (0, 1) and some integer L ∈ [V − 1]. Then for any ε > 0, there exist
s′ = s/poly(V, 1/ε, log(1/γ)) and I ∈

(
[V ]
L+1

)
such that f has an (I, ε, s′)-hardcore

set HI of density |HI |/|X | ≥ γ/
(

V
L+1

)
.

To prepare for the proof of Lemma 1, let us first recall Nisan’s proof of Impagli-
azzo’s hardcore lemma (for Boolean functions) described in [9]. The proof is by
contradiction, which starts by assuming that a (ρ, s)-hard function f : X → I,
with |I| = 2, has no hardcore set of density ρ. Then the key step there is to
use the min-max theorem of von Neumann to show the existence of a subset of
inputs T ⊆ X of density less than ρ and a collection of circuits AI ⊆ SIZE(s′)
with |AI | ≤ O((1/ε2) log(1/ρ)) such that for any x /∈ T ,

Pr
A∈AI

[A(x) = f(x)] >
1
2
.

Then by letting C be the circuit computing the majority of those circuits in
AI , one has C(x) = f(x) for every x /∈ T , which contradicts the fact that f is
(ρ, s)-hard.

We would like to extend this idea to a general function f : X → [V ], with
V ≥ 3. First, it is straightforward to verify that a similar argument using the
min-max theorem can also prove the following lemma.

Lemma 2. Suppose f : X → [V ] does not have an (I, ε, s′)-hardcore set of
density ρ in X, for some I ⊆ [V ]. Then there exist a subset of inputs TI ⊆ f−1(I)
of density less than ρ in X and a collection of circuits AI ⊆ SIZE(s′) with
|AI | ≤ O((1/ε2) log(1/ρ)) such that for any x ∈ f−1(I) \ TI ,

Pr
A∈AI

[A(x) = f(x)] >
1
|I| .

However, unlike the Boolean case, it is not clear how to construct a circuit C
to approximate f from these collections of circuits. This is because for an input
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x with PrA∈AI [A(x) = f(x)] > 1
|I| , it is still possible that the majority value of

A(x), for A ∈ AI , differs from f(x). Moreover, given an input x, we do not know
which subset I contains f(x), so we do not even know which collection AI of
circuits might help. A more careful analysis is needed, and now we proceed to
prove Lemma 1.

Proof. Assume for the sake of contradiction that there is no (I, ε, s′)-hardcore
set of density γ/

(
V

L+1

)
in X for any I ∈

(
[V ]
L+1

)
. Then we know from Lemma 2

that for any I ∈
(

[V ]
L+1

)
, there exist a collection AI ⊆ SIZE(s′) with |AI | ≤

O((1/ε2) log(
(

V
L+1

)
/γ)) and a subset TI of inputs with density less than γ/

(
V

L+1

)
in X such that for any x ∈ f−1(I) \ TI , PrA∈AI [A(x) = f(x)] > 1

L+1 . Let T be
the union of all such TI ’s, and we have Prx∈X [x ∈ T ] <

(
V

L+1

)
· γ/
(

V
L+1

)
= γ.

Note that for any x /∈ T , we can rule out the value v as a candidate for f(x) if
v is contained in some I ∈

(
[V ]
L+1

)
such that the following condition holds:

Pr
A∈AI

[A(x) = v] ≤ 1
L + 1

. (1)

This suggests the randomized algorithm R described in Figure 1, which tries to
compute f(x) by ruling out the candidates one by one.

1. Let Q = [V ].
2. While |Q| ≥ L + 1 do the following:

(a) Choose any I ⊆ Q with |I | = L + 1.
(b) Delete from Q any v ∈ I such that the condition (1) holds.

3. Output a random element in Q.

Fig. 1. The randomized algorithm R

Observe that each iteration of the while loop in algorithm R has at least
one v deleted from Q, because it is impossible that all the L + 1 outcomes
have probability more than 1

L+1 . Thus, R exits the while loop after at most
V iterations, and for any input x /∈ T , the value f(x) remains in the final Q,
with |Q| ≤ L, which implies that R outputs f(x) correctly with probability at
least 1

L . By an averaging argument, one can fix the randomness of R to obtain
a deterministic circuit C such that C(x) = f(x) for at least 1

L fraction of x /∈ T .
As a result, we have

Pr
x∈X

[C(x) = f(x)] ≥ Pr
x∈X

[x /∈ T ]· Pr
x∈X

[C(x) = f(x) | x /∈ T ] > (1−γ)· 1
L
≥ 1−δ.

On the other hand, the size of the circuit C is at most

poly(V ) ·O
(

(1/ε2) log
((

V

L + 1

)
/γ

))
· s′ ≤ s,

for some s′ = s/poly(V, 1/ε, log(1/γ)), which contradicts the hardness condition
of f . This implies that the assumption of no hardcore set at the beginning is
false, which proves Lemma 1. ��
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4 Density of Hardcore Sets

For the generalized hardcore set lemma in Section 3, one may wonder whether
it is possible to guarantee the existence of a much larger hardcore set. In this
section, we show that this is basically impossible. Formally, we have the following.

Theorem 1. For any δ = 1− 1
L(1−γ), with γ ∈ (0, 1/2(L+1)) and L ≤ V −1,

there is a (δ, s)-hard function f : {0, 1}n → [V ], for some s ≥ poly(γ, 1/L, 2n),
such that the following condition holds:

– For any I ∈
(

[V ]
L+1

)
and ε < 1

2L , there exists some s′ ≤ poly(n) such that f

has no (I, ε, s′)-hardcore set of density 4(L + 1)γ/
(

V
L+1

)
in {0, 1}n.

Note that the theorem says that even for a function which is hard against very
large circuits of exponential size, one can only guarantee a hardcore set of a small
density against small circuits of polynomial size. However, there is a gap of a
4(L + 1) factor between the density of a hardcore set ruled out by Theorem 1
and the density achievable by our Lemma 1.

Proof. We show the existence of such a function f by a probabilistic method. Let
T denote the first 2(L+ 1)γ fraction of the input space {0, 1}n, and let us divide
T into

(
V

L+1

)
disjoint parts of equal size (assuming for simplicity of presentation

that T can be divided evenly), denoted by TI , for I ∈
(

[V ]
L+1

)
. Then we choose

the function f : {0, 1}n → [V ] randomly in the way such that independently for
each input x,

f(x) =
{

a random value in I, if x ∈ TI for some I ∈
(

[V ]
L+1

)
;

a random value in [L], if x /∈ T .

We need the following lemma; the proof is by a standard probabilistic argument
and is omitted here due to the page limit.

Lemma 3. Prf [f is not (δ, s)-hard] < 1, for some s = poly(γ, 1/L, 2n).

This lemma implies the existence of a function f which is (δ, s)-hard, and let
us fix one such f . It remains to show that this f satisfies the condition of the
theorem. For any I ∈

(
[V ]

L+1

)
and any H ⊆ f−1(I) of density 4(L + 1)γ/

(
V

L+1

)
in

{0, 1}n, consider the algorithm A which outputs a random value in I ∩ J when
x ∈ TJ for some J ∈

(
[V ]

L+1

)
, and outputs a random value in [L] when x /∈ T .

Then the probability, over x ∈ H and the randomness of A, that A(x) = f(x) is
at least

Pr
x∈H

[x ∈ TI ] · 1
L + 1

+ Pr
x∈H

[x /∈ TI ] · 1
L

=
1

L + 1
+ Pr

x∈H
[x /∈ TI ] ·

(
1
L
− 1

L + 1

)
which is at least 1

L+1 + 1
2 ·

1
L(L+1) > 1+ε

L+1 for any ε < 1
2L . This means that

there exists a fixing of the randomness of A to get a deterministic circuit which
preserves the above bound. Since we can do this for every I and H , the condition
of the theorem is satisfied, which proves the theorem. ��
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5 Extracting Computational Randomness

In this section, we show that one can extract randomness from the output of a
hard function. For this, we first show that the output of a hard function looks
somewhat random, even given the input. More precisely, we have the following.

Lemma 4. Let f : X → [V ] be a (δ, s)-hard function, with δ ≥ 1 − 2−k for
some positive k ∈ R. Let X be the uniform distribution over X. Then for any
ε ∈ (0, 1), there exist some s′ ≥ s/poly(V, 1/ε) and a distribution V (correlated
with X ) such that the following two conditions hold.

– The distributions (X , f(X )) and (X ,V) have no (ε, s′)-distinguisher.
– Prx∈X [H∞(V|X = x) < 
k/3�] ≤ 2−k/3.

The proof of Lemma 4 is omitted here due to the page limit. The basic idea
is that by applying Lemma 1 repeatedly, we can find a collection of disjoint
hardcore sets covering a large fraction of inputs. Then by extending the idea in
[17], we can show that when a randomly sampled input x falls into one of these
hardcore sets, its output looks like a random value from some set.

According to Lemma 4, the output distribution of a hard function looks like
one with some min-entropy, given a randomly selected input. This suggests the
possibility that one can simply apply any extractor to extract randomness from
the output. Formally, we have the following theorem, for the case of seeded
extractors. Due to the page limit, the proof is omitted here.

Theorem 2. Let f : X → {0, 1}� be a (δ, s)-hard function with δ ≥ 1−2−k, and
let X be the uniform distribution over X. Then for any seeded (k/3, ε)-extractor
Ext : {0, 1}� × {0, 1}d → {0, 1}m computable in SIZE(s0), the distributions
(X ,Ext(f(X ),Ud)) and (X ,Um) have no (ε̄, s̄)-distinguisher, for some ε̄ ≤ 2ε+
2−k/3 and s̄ ≥ s/poly(2�, 1/ε)− s0.

Note that many constructions of seeded extractors are in fact computable by
small circuits, of size s0 ≤ poly(�/ε). Then, for example, when k ≥ Ω(�) and
ε = poly(2−�), we have ε̄ ≤ 2−Ω(�) and s̄ ≥ s/2O(�). This means that as long as
s is large enough (or � is small enough), any single-source seeded extractor can
be used to extract randomness in the computational setting.

For the case of seedless extractors, we have the following. Due to the page
limit, the proof is omitted here.

Theorem 3. For i ∈ [t], let f (i) : X(i) → {0, 1}� be a (δ(i), s)-hard func-
tion with δ(i) ≥ 1 − 2−k(i)

, and let k =
∑

i∈[t] k
(i). Let X = (X (1), . . . ,X (t)),

where each X (i) is an independent uniform distribution over X(i), and let
f(X ) = (f (1)(X (1)), . . . , f (t)(X (t))). Then for any seedless t-source (k/7, ε)-
extractor Ext : ({0, 1}�)t → {0, 1}m computable in SIZE(s0), the distribu-
tions (X ,Ext(f(X ))) and (X ,Um) have no (ε̄, s̄)-distinguisher, for some ε̄ ≤
(t + 1)ε + 2−Ω(k2/t�2) and s̄ ≥ s/poly(2�, 1/ε)− s0.

Let Ext be the seedless t-source extractor in [11], which is computable by a
small circuit, with s0 ≤ poly(t�/ε). Then, for example, when tε = poly(2−�)
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and k ≥ �c for a large enough constant c, we have ε̄ ≤ 2−Ω(�) and s̄ ≥ s/2O(�).
Again, this means that when s is large enough (or � is small enough), any seedless
multi-source extractor can also work in the computational setting.

6 Loss of Circuit Size

Recall that in our generalized hardcore set lemma (Lemma 1), there is a loss of
circuit size by a factor of poly(V ) for functions with V output values. That is,
from a (δ, s)-hard function, we can only guarantee the existence of an (I, ε, s′)-
hardcore set with s′ ≤ s/poly(V ). In this section, we show that such a loss of
circuit size is in fact unavoidable, if the proof is done in a black-box way. Before
we can formally state our result, we need to introduce some definitions. Let FX,V

denote the collection of functions from X to [V ].

Definition 6. Given a collection G ⊆ FX,V , we say that a function f ∈ FX,V is
(k, ρ, ε, G)-easy if for any I ∈

(
[V ]
k

)
and any H ⊆ f−1(I) of density |H |/|X | ≥ ρ,

there is a function g ∈ G such that Prx∈H [g(x) = f(x)] ≥ 1+ε
k .

Next, we define our notion of a black-box proof, which is realized by some oracle
algorithm R(·). We allow R to be non-uniform and randomized, and we use the
notation RG;α

r (x) to denote that R is given an oracle G, an advice string α, a
random string r, and an input x.

Definition 7. We say that an oracle algorithm R(·) realizes a (δ, k, ρ, ε, S) black-
box proof of hardcore sets for functions in FX,V , if the following holds. For any
f ∈ FX,V and any G ⊆ FX,V with |G| = S, if f is (k, ρ, ε, G)-easy, then there
exists some advice α such that

Pr
x,r

[
RG;α

r (x) �= f(x)
]

< δ.

Here we allow R to make adaptive queries, but for simplicity we consider only
the case that R on input x queries functions in the oracle at all x. That is, R
may first queries gi(x) for some gi ∈ G, and depending on the answer, R next
queries gj(x) for some gj ∈ G, and so on. Note that our proof for the generalized
hardcore sets is done in this black-box way, and so do all the known proofs
for Impagliazzo’s hardcore set lemma. Our result in this section shows that any
algorithm realizing such a black-box proof must make many queries to the oracle.

Theorem 4. Suppose V ≥ ω(1), 0 < δ ≤ 1 − (4 log V )/V , 0 < ε ≤ 1/3,
0 < ρ < 1, and S ≥ Ω((V k+1k3/ε2) log(1/ρ)). Consider any oracle algorithm
which uses an advice of length τ ≤ o(δ|X |) and realizes a (δ, k, ε, S, ρ) black-
box proof of hardcore sets for functions in FX,V . Then it must make at least
Ω((V k/ε2) log(1/δ)) oracle queries.

Note that the theorem says that even if we start from a very hard function,
with δ close to one, and even if we only want a hardcore set with k = 2 output
values, any algorithm realizing such a black-box proof still need to make many
queries, which corresponds to a large loss of circuit size. In particular, a loss by
a V factor is unavoidable. Now let us prove the theorem.
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Proof. Consider any R which realizes such a black-box proof. Assume that R
makes at most q = o((V k/ε2) log(1/δ)) oracle queries, and we will show that this
leads to a contradiction. In particular, we will show the existence of a function
f and a collection of functions G = {gI,i : I ∈

(
[V ]
k

)
and i ∈ [T ]}, for some

T = Ω((V k3/ε2) log(1/ρ)), such that f is (k, ρ, ε, G)-easy but Prx,r[RG;α
r (x) �=

f(x)] ≥ δ, for any advice α, which violates the requirement for a black-box proof.
We will prove the existence of such f and G by a probabilistic argument.

We choose f ∈ FX,V randomly such that independently for each input x, f(x)
takes a uniformly random value in [V ]. Then we choose each gI,i in the following
way:

– Independently for each input x ∈ f−1(I), gI,i(x) takes the value f(x) with
probability (1+2ε)/k and each other value in I with probability (1−2ε/(k−
1))/k.

– Independently for each input x /∈ f−1(I), gI,i(x) takes each value in I with
probability 1/k.

Our key lemma is the following.

Lemma 5. For any advice α and any input x, we have Prf,G,r[RG;α
r (x) �=

f(x)] ≥
√

δ.

Due to the page limit, we omit the formal proof of Lemma 5 and only sketch the
proof idea here. Consider any advice α and any input x. Recall that in our model,
any query made by RG;α(x) is of the form gI,i(x), for some gI,i ∈ G, and the
outcome of such a query has a distribution close to the uniform over the k values
in I, which is independent of f . When R makes only a small number of queries,
we can show that the distribution of the sequence of outcomes corresponding
to the queries is still close to a distribution which is independent of f , with the
outcome of each query being independent and uniform over some k values. That
is, such an R cannot fully exploit the small correlation between f and G, and
hence it behaves similarly when the useful oracle G is replaced by a useless one
which is independent of f . However, without a useful oracle, R cannot possibly
predict a random f well, which implies that even given G, R cannot predict f
well either.

Using this lemma together with a Hoeffding bound, one can show that for any
advice α,

Pr
f,G,r

[
Pr
x

[
RG;α

r (x) �= f(x)
]

< δ
]
≤ 2−Ω(δ|X|).

Then, using a union bound, we have

Pr
f,G,r

[
∃α ∈ {0, 1}τ : Pr

x

[
RG;α

r (x) �= f(x)
]

< δ
]
≤ 2τ · 2−Ω(δ|X|) ≤ o(1), (2)

when τ ≤ o(δ|X |). Next, we need the following; the proof is by a simple proba-
bilistic argument and is omitted here due to the page limit.

Lemma 6. Prf,G [f is not (k, ρ, ε, G)-easy] ≤ o(1).
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From Lemma 6 and the bound in (2), we can conclude the existence of some
f and G such that f is (k, ρ, ε, G)-easy but Prf,G,r[RG;α

r (x) �= f(x)] ≥ δ for
any advice α, which contradicts the requirement for a black-box proof of hard-
core sets. Therefore, any R realizing such a black-box proof must make at least
Ω((V k/ε2) log(1/δ)) queries, which proves Theorem 4. ��
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Abstract. This paper studies the kernelization complexity of graph col-
oring problems, with respect to certain structural parameterizations of
the input instances. We are interested in how well polynomial-time data
reduction can provably shrink instances of coloring problems, in terms
of the chosen parameter. It is well known that deciding 3-colorability is
already NP-complete, hence parameterizing by the requested number of
colors is not fruitful. Instead, we pick up on a research thread initiated
by Cai (DAM, 2003) who studied coloring problems parameterized by
the modification distance of the input graph to a graph class on which
coloring is polynomial-time solvable; for example parameterizing by the
number k of vertex-deletions needed to make the graph chordal. We ob-
tain various upper and lower bounds for kernels of such parameterizations
of q-Coloring, complementing Cai’s study of the time complexity with
respect to these parameters.

1 Introduction

Graph coloring is one of the most well-studied and well-known topics in graph
algorithmics and discrete mathematics; it hardly needs an introduction. In this
work we study the kernelization complexity of graph coloring problems, or in
other words the existence of efficient and provably effective preprocessing proce-
dures, using the framework of parameterized complexity [10,15] (Section 2 con-
tains definitions). Parameterized complexity enables us to study qualitatively
and quantitatively how different properties of a graph coloring instance con-
tribute to its difficulty.

The choice of parameter is therefore very important. If we consider the vertex
coloring problem and parameterize by the requested number of colors, then this
problem is already NP-complete for a constant value of 3 for the parameter, re-
sulting in intractability; we should consider different parameterizations to obtain
meaningful questions. In his study of the parameterized complexity of vertex col-
oring problems, Leizhen Cai [7] introduced a convenient notation to talk about
structural parameterizations of graph problems. For a graph class F let F + kv
denote the graphs which can be built by adding at most k vertices to a graph
in G; the neighborhoods of these new vertices can be arbitrary. Equivalently the
class F + kv contains those graphs which contain a modulator X ⊆ V (G) of
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size at most k such that G − X ∈ F . Hence Forest + kv is exactly the class
of graphs which have a feedback vertex set of size at most k. Similarly one may
define classes F + ke and F − ke where the structure is measured through the
number of edges which were added or removed from a member of F to build
the graph. Using this notation we can define a class of parameterized coloring
problems with structural parameters.

q-Coloring on F + kv graphs

Input: An undirected graph G and a modulator X ⊆ V (G) such that
G−X ∈ F .
Parameter: The size k := |X | of the modulator.
Question: Is χ(G) ≤ q?

To decouple the existence of polynomial kernelizations from the difficulties of
finding a modulator, we assume that a modulator is given in the input. The
Chromatic Number on F + kv graphs problem is defined similarly as q-
Coloring, with the important exception that the value q is not fixed, but
part of the input. For the purposes of kernelization, however, there is little left
to explore for Chromatic Number: a superset of the authors showed [2, The-
orem 14] that Chromatic Number does not admit a polynomial kernel when
parameterized by the vertex cover number, or in Cai’s notation: Chromatic

Number on Independent + kv graphs does not admit a polynomial kernel,
unless NP ⊆ coNP/poly and the polynomial hierarchy collapses to the third
level [23] (PH = Σp

3 ). The proof given in that paper shows that even a com-
pound parameterization by the vertex cover number plus the number of colors
that is asked for, does not admit a polynomial kernel. Hence it seems that the
size of the kernel must depend superpolynomially on the number of colors. In
this work we therefore focus on q-Coloring and consider how the structural
parameterizations influence the complexity of the problem when keeping the
number of colors q fixed.

When studying coloring problems with these structural parameterizations,
we feel it is important to look at the relations between the parameters and
consider the parameter space as a hierarchy (Fig. 1), rather than exploring a
table of problems versus parameters one row at a time (cf. [12]). It is known
that there are several coloring problems such as Precoloring Extension and
Equitable Coloring which are W[1]-hard when parameterized by treewidth,
but fixed-parameter tractable parameterized by the vertex cover number [13,11].
These parameters also yield differences in the kernelization complexity of q-
Coloring. Our hierarchy includes these parameters, and several others which
are sandwiched between them.

Our results. In this paper we pinpoint the boundary for polynomial kerneliz-
ability of q-Coloring in the given hierarchy, by exhibiting upper- and lower
bounds for kernel sizes. For all parameters in Fig. 1 for which q-Coloring is in
FPT we either give a polynomial kernel, or prove that the existence of such a
kernel would imply NP ⊆ coNP/poly and is therefore unlikely.

Upper bounds in the hierarchy. We derive a general theorem which asso-
ciates the existence of polynomial kernels for q-Coloring on F + kv graphs to
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q-Coloring ∈ FPT
Polynomial

kernels
� Indepen-

dent + kv

� Cograph

+ kv
[18,14]

� C-Split

+ kv [7]

Interval

+ kv [21]

Chordal

+ kv [21]

Forest

+ kv

� Linear-

Forest

+ kv

Bipartite

+ kv
[19,7,3]

Treewidth

[4]

Chromatic

Number

Perfect

+ kv

Fig. 1. The hierarchy of parameters used in this work. Arrows point from larger pa-
rameters to smaller parameters: an arc P → P ′ signifies that every graph G satis-
fies P (G) + 2 ≥ P ′(G). For parameters with a star we obtain new parameterized
complexity results in this work. The complexity of the Chromatic Number problem
for a given parameterization is expressed through the shading and border style of the
parameters: the complexity status can be NP-complete for fixed k , or contained
in XP but not known to be W[1]-hard , or contained in XP and W[1]-hard ,
or FPT but without polynomial kernel unless NP ⊆ coNP/poly . The complexity
of q-Coloring for a given parameterization is expressed through the containers: the
status is either FPT with a polynomial kernel, FPT but no polynomial kernel unless
NP ⊆ coNP/poly, or NP-complete for fixed k.

properties of the q-List Coloring problem on graphs in F : if the non-list-
colorability of a graph in F is “local” in the sense that for any no-instance
there is a small subinstance on f(q) vertices to which the answer is no, then
q-Coloring on F +kv graphs admits a polynomial kernel for every fixed q. We
then apply this general theorem to give polynomial kernels for Cograph + kv
and C-Split + kv.

Lower bounds in the hierarchy. In the seminal paper on kernelization lower-
bounds, Bodlaender et al. [1, Theorem 2] prove that 3-Coloring parameterized
by treewidth does not admit a polynomial kernel unless all coNP-complete prob-
lems have distillation algorithms. We strengthen their result by showing that un-
less NP ⊆ coNP/poly (an even less likely condition), the problem does not even
admit a polynomial kernel parameterized by vertex-deletion distance to a single
path: 3-Coloring on Path+kv graphs does not admit a polynomial kernel. Un-
der the same assumption, this immediately excludes polynomial kernels on e.g.
Forest + kv or Interval + kv graphs, since the latter are smaller parameters.

We also investigate the degree of the polynomial in the kernels that we ob-
tain for q-Coloring parameterized by vertex cover. Our general scheme yields
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kernels with k + kq vertices, and a small insight allows us to encode these in-
stances in O(kq) bits. Using a connection to Not-All-Equal q-Satisfiability

(q-nae-sat) we prove that for every q ≥ 4 the q-Coloring problem parameter-
ized by vertex cover does not admit a kernel which can be encoded in O(kq−1−ε)
bits for any ε > 0 unless NP ⊆ coNP/poly.

Domination-related parameters. It turns out that the difficulty of a 3-Colo-

ring instance is intimately related to the domination-properties of the graph.
We show the surprising (but not difficult) result that 3-Coloring on a general
graph G can be solved in O∗(3k) time when a dominating set X of size k is
given along with the input. In contrast we show that 3-Coloring parameter-
ized by the size of a dominating set does not admit a polynomial kernel unless
NP ⊆ coNP/poly. To obtain polynomial kernels by exploiting the domination
structure of the graph, we must consider another parameter. Let Dominated

be the graphs where each connected component has a dominating vertex. 3-
Coloring on Dominated+kv graphs admits a polynomial kernel. This cannot
be extended to arbitrary q, since 4-Coloring is NP-complete on Dominated

graphs.

Related work. Structural parameterizations of graph coloring problems were
first studied by Cai [7], and later by Marx [21]. An overview of their results
relevant to this work can be found in Fig. 1. Chor, Fellows, and Juedes [8]
considered the problem of coloring a graph on n vertices with n− k colors and
obtained an FPT algorithm. They also found a polynomial kernel for a related
problem, which can be seen to imply that Chromatic Number on Complete+
kv has a linear-vertex kernel. Finally we observe that the q-Coloring problem
on Interval+kv and Chordal+kv graphs is in FPT since yes-instances have
treewidth O(k + q).

2 Preliminaries

Parameterized complexity and kernels. A parameterized problem Q is a
subset of Σ∗ × N, the second component being the parameter which expresses
some structural measure of the input. A parameterized problem is (strongly
uniform) fixed-parameter tractable if there exists an algorithm to decide whether
(x, k) ∈ Q in time f(k)|x|O(1) where f is a computable function.

A kernelization algorithm (or kernel) for a parameterized problem Q is a
polynomial-time algorithm which transforms an instance (x, k) into an equivalent
instance (x′, k′) such that |x′|, k′ ≤ f(k) for some computable function f , which is
the size of the kernel. If f ∈ kO(1) is a polynomial then this is a polynomial kernel.
Intuitively a polynomial kernel for a parameterized problem is a polynomial-time
preprocessing procedure which reduces the size of an instance to something which
only depends (polynomially) on the parameter k, and does not depend at all on
the input size |x|.
Graphs. All graphs we consider are finite, undirected and simple. We use V (G)
and E(G) to denote the vertex- and edge set of a graph G. For X ⊆ V (G) the
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subgraph induced by X is denoted by G[X ]. The terms Pn, Cn and Kn denote
the path, cycle, and complete graphs on n vertices, respectively. For natural
numbers q we define [q] := {1, 2, . . . , q}. A proper q-coloring of a graph G is a
function f : V (G) → [q] such that adjacent vertices receive different colors. The
chromatic number χ(G) of a graph is the smallest number q for which it has a
proper q-coloring. For a vertex set X ⊆ V (G) we denote by G − X the graph
obtained from G by deleting all vertices of X and their incident edges.

A graph G with E(G) = ∅ is called an independent graph. A graph is a split
graph if there is a partition of V (G) into sets X, Y such that X is a clique
and Y is an independent set. We define the class C-Split of component-wise
split graphs containing all graphs for which each connected component is a split
graph. A graph is a cograph if it does not contain P4 as an induced subgraph.
A linear forest is a disjoint union of paths. The book by Brandstädt, Le, and
Spinrad [6] contains more information about the graph classes used in this work.
For a finite set X and non-negative integer i we write

(
X
i

)
for the collection of

all size-i subsets of X ,
(

X
≤i

)
for all size at most i subsets of X , and X i for the

cartesian product of i copies of X . Proofs of statements marked with a star �
can be found in the full version of this work [16].

3 Positive Results in the Hierarchy

Our positive results are obtained by a general theorem which connects the exis-
tence of polynomial kernelizations for q-Coloring on F + kv graphs with the
existence of small induced certificates for no instances of q-List Coloring on
graphs from F . We introduce some terminology to state the theorem and proof
precisely.

q-List-Coloring

Input: An undirected graph G and for each vertex v ∈ V (G) a list L(v) ⊆
[q] of allowed colors.
Question: Is there a proper q-coloring f : V (G) → [q] such that f(v) ∈
L(v) for each v ∈ V (G)?

An instance (G′, L′) of q-List Coloring is a subinstance of (G, L) if G′ is
an induced subgraph of G and L′(v) = L(v) for all v ∈ V (G′). If (G′, L′) is a
no-instance we say it is a no-subinstance.

Theorem 1. Let F be a hereditary class of graphs for which there is a func-
tion f : N → N such that for any no-instance (G, L) of q-List Coloring on
a graph G ∈ F , there is a no-subinstance (G′, L′) on at most |V (G′)| ≤ f(q)
vertices. The q-Coloring problem on F+kv graphs admits a polynomial kernel
with O(kq·f(q)) vertices for every fixed q.

Proof. Consider an instance (G, X) of q-Coloring on a graph class F + kv
which satisfies the stated requirements. We give the outline of the reduction
algorithm.
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1. For each undirected graph H on t ≤ f(q) vertices {h1, . . . , ht}, do:
For each tuple (S1, . . . , St) ∈

(
X
≤q

)t
, do:

If there is an induced subgraph of G − X on vertices {v1, . . . , vt}
which is isomorphic to H by the mapping hi �→ vi, and Si ⊆
NG(vi) for i ∈ [t], then mark the vertices {v1, . . . , vt} as impor-
tant for one such subgraph, which can be chosen arbitrarily.

2. Let Y contain all vertices of G −X which were marked as important, and
output the instance (G′, X) with G′ := G[X ∪ Y ].

Let us verify that this procedure can be executed in polynomial time for fixed q,
and leads to a reduced instance of the correct size. The number of undirected
graphs on f(q) vertices is constant for fixed q. The number of considered tuples
is bounded by O((q|X |q)f(q)), and for each graph H , for each tuple, we mark
at most f(q) vertices. These observations imply that the algorithm outputs an
instance of the appropriate size, and that it can be made to run in polynomial
time for fixed q beacause we can just try all possible isomorphisms by brute-force.
It remains to prove that the two instances are equivalent: χ(G) ≤ q ⇔ χ(G′) ≤ q.
The forward direction of this equivalence is trivial, since G′ is a subgraph of G.
We now prove the reverse direction.

Assume that χ(G′) ≤ q and let f ′ : V (G′) → [q] be a proper q-coloring of G′.
Obtain a partial q-coloring f of G by copying the coloring of f ′ on the vertices
of X . Since G′[X ] = G[X ] the function f is a proper partial q-coloring of G,
which assigns all vertices of X a color. We will prove that f can be extended
to a proper q-coloring of G, using an argument about list coloring. Consider
the graph H := G − X which contains exactly the vertices of G which are
not yet colored by f . For each vertex v ∈ V (H) define a list of allowed colors
as L(v) := [q] \ {f(u) | u ∈ NG(v)}, i.e. for every vertex we allow the colors
which are not yet used on a colored neighbor in G. From this construction it is
easy to see that any proper q-list-coloring of the instance (H, L) gives a valid
way to augment f to a proper q-coloring of all vertices of G. Hence it remains
to prove that (H, L) is a yes-instance of q-List Coloring.

Assume for a contradiction that (H, L) is a no-instance. Since the problem
definition ensures that H = G −X ∈ F the assumptions on F imply there is a
no-subinstance (H ′, L′) on t ≤ f(q) vertices.

Let the vertices of H ′ be h1, . . . , ht. Since (H ′, L′) is a subinstance of (H, L)
we know by construction of the latter that for every vertex hi with i ∈ [t] and
for every color j ∈ [q]\L′(hi) there is a vertex of NG(hi) which is colored with j.
Now choose sets S1, . . . , St such that Si contains for every j ∈ [q]\L′(hi) exactly
one neighbor v ∈ NG(hi) with f(v) = j, which is be possible by the previous
observation. Since f only colors vertices from X we have Si ⊆ X for all i ∈ [t].

Because H ′ is an induced subgraph on at most f(q) vertices of H = G−X , we
must have considered graph H ′ during the outer loop of the reduction algorithm.
Since each Si contains at most q vertices from X , we must have considered the
tuple (S1, . . . , St) during the inner loop of the reduction algorithm, and because
the existence of H ′ shows that there is at least one induced subgraph of G−X
which satisfies the if-condition, we must have marked some vertices {v1, . . . , vt} of
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an induced subgraph H∗ of G−X isomorphic to H ′ by some isomorphism vi �→ hi

as important, and hence these vertices exist in the graph G′. Recall that f ′ is a
proper q-coloring of G′, and that f and f ′ assign the same colors to vertices of X .
By construction this shows that for each vertex hi with i ∈ [t] of the presumed
no-subinstance (H ′, L′) of q-List Coloring, for each color j ∈ [q] \ L′(hi)
which is not on the list of hi, there is a neighbor of the corresponding vertex vi

(i.e. a vertex in NG(vi)) which is colored j. Using the fact that H∗ is isomorphic
to H ′ we find that we obtain a valid q-list-coloring of H ′ by using the colors
assigned to H∗ by f . But this shows that (H ′, L′) is in fact a yes-instance of q-
List Coloring, which contradicts our initial assumption. This proves that the
instance (H, L) of q-List Coloring that we created must be a yes-instance,
and by our earlier observations this implies that χ(G) ≤ q, which concludes the
proof of the equivalence of the input- and output instance.

Hence we have shown that for each fixed q there is a polynomial-time al-
gorithm which transforms an input of q-Coloring on F + kv graphs into an
equivalent instance of bounded size, which concludes the proof. ��

Next we will show how to apply Theorem 1 to obtain polynomial kernels for var-
ious structural parameterizations of q-Coloring. By noting that a no-instance
of q-List Coloring on an independent graph has an induced no-subinstance
on a single vertex, the proof of Theorem 1 gives the following corollary.

Corollary 1. q-Coloring on Independent + kv graphs (i.e. parameterized
by vertex cover) admits a polynomial kernel with k + kq vertices for every fixed
integer q.

Unlike most kernels with O(kc) vertices (which often require Ω(kc+1) bits to
represent), we can prove that a kernel for q-Coloring on Independent + kv
graphs exists which can be encoded in O(kq) bits.

Lemma 1 (�). For every fixed q ≥ 3, q-Coloring on Independent + kv
graphs (i.e. parameterized by vertex cover) admits a kernel which can be encoded
in O(kq) bits.

We now move to more general graph classes and consider split graphs.

Theorem 2. Component-wise split graphs satisfy the conditions of Theorem 1
and therefore q-Coloring on C-Split + kv graphs admits a polynomial kernel
for every fixed q.

Proof. We prove that component-wise split graphs satisfy the conditions of The-
orem 1 from which the theorem follows. It is well-known that split graphs are
hereditary, and therefore this holds for the class C-Split as well. Consider a
no-instance of q-List Coloring (G, L) with G ∈ C-Split. We may assume
without loss of generality that G is connected, because a graph is list-colorable if
and only if each connected component is list-colorable; hence in any disconnected
no-instance there is a connected no-subinstance. Let X, Y be a partition of V (G)
such that X is a clique and Y is an independent set. If |X | > q then for any
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subset X ′ ⊆ X of size q + 1 we know that G[X ′] is not q-colorable, so in partic-
ular G[X ′] is not q-list-colorable which proves the existence of a no-subinstance
on q +1 vertices. Now consider the more interesting case that |X | ≤ q. We prove
the existence of a small no-subinstance by exploiting the structure of a simple
algorithm to decide q-List Coloring for split graphs.

So consider the following algorithm. For each vertex v ∈ X , try all possi-
ble ways of assigning a color of L(v) to v. Over all vertices of X there are at
most |X |q ≤ qq ways to do this. Now observe that since Y is an independent
set, each vertex in Y only has neighbors in X . For each possible assignment of
colors to X that is proper, test for each vertex in Y if there is a color on its list
which is not yet taken by a neighbor in X . If we can find such an unused color
for each u ∈ Y then we found a valid list coloring and the algorithm outputs
yes; if all assignments to X yield a vertex in Y on which the coloring cannot be
extended, the algorithm outputs no.

It is easy to see that this algorithm is correct. Now consider running this
algorithm on (G, L). By the assumption that (G, L) is a no-instance, for each
assignment of colors to X there must be a vertex u ∈ Y for which all available
colors are already used on a neighbor. Now remember one such vertex u for each
possible color assignment to X , and let Z be the set of at most qq remembered
vertices. Now consider the subinstance on the graph G[X ∪ Z]. It is easy to see
that when we would execute the proposed algorithm, for each failed attempt
at list coloring the graph, we remembered a witness which ensures that this
attempt also fails on G[X ∪ Z]. Hence the algorithm outputs no, and since it
is a correct algorithm this shows that the subinstance on graph G[X ∪ Z] on at
most |X |+qq ≤ q+qq vertices is also no; this shows that the class of component-
wise split graphs satisfies the required condition with f(q) := q + qq. ��

The following theorem can be proven by a similar type of argument, finding
small no-subinstances using the existence of a dynamic programming algorithm
on a cotree decomposition to solve q-List Coloring on cographs.

Theorem 3 (�). Cographs satisfy the conditions of Theorem 1 and therefore
q-Coloring on Cograph + kv graphs admits a polynomial kernel for every
fixed q.

4 Negative Results in the Hierarchy

Our main negative result is that 3-Coloring on Path + kv graphs does not
admit a polynomial kernel unless NP⊆ coNP/poly. This fact nicely complements
Theorem 1 since paths are arguably the simplest graphs where there are no f(q)
no-subinstances of q-List Coloring. We first prove a slightly weaker lower
bound. The reduction in the proof of the following theorem is inspired by a
reduction of Lokshtanov et al. [20, Theorem 6.1]. We learned that Stefan Szeider
independently found a similar result for Forest + kv graphs.

Theorem 4. 3-Coloring on LinearForest + kv graphs does not admit a
polynomial kernel unless NP ⊆ coNP/poly.
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Proof. We give a polynomial-parameter transformation [5, Definition 3] from
cnf-sat parameterized by the number of variables n to 3-Coloring parame-
terized by deletion distance from a linear forest. Consider an input to cnf-sat

which consists of clauses C1, . . . , Cm where each clause is a disjunction of literals
of the form xi or xi for i ∈ [n]. We build a graph G and a modulator X ⊆ V (G)
such that |X | = 2n + 3 and G−X ∈ LinearForest.

Construct a clique on three vertices p1, p2, p3; this clique will serve as our
palette of three colors, since in any proper 3-coloring all three colors must occur
on this clique. For each variable xi for i ∈ [n] we make vertices Ti and Fi and
add the edge {Ti, Fi} to G. We make the vertices Ti, Fi adjacent to the palette
vertex p1. Now we create gadgets for the clauses of the satisfiability instance.

For each clause Cj with j ∈ [m], let nj be the number of literals in Cj and
create a path (a1

j , b
1
j , a

2
j , b

2
j , . . . , a

nj

j , b
nj

j ) on 2nj vertices. We call this the clause-
path for Cj . Make the first and last vertices on the path a1

j and b
nj

j adjacent
to the palette vertex p1. Make the b-vertices b1

j , b
2
j , . . . , b

nj

j adjacent to palette
vertex p3. As the last step we connect the vertices on the path to the vertices
corresponding to literals. For r ∈ [nj ] if the r-th literal of Cj is xi (resp. xi)
then make vertex ar

j adjacent to Ti (resp. Fi). This concludes the construction
of the graph G. We use the modulator X := {Ti, Fi | i ∈ [n]} ∪ {p1, p2, p3}.
It is easy to verify that |X | = 2n + 3 and therefore that the parameter of the
3-Coloring instance is polynomial in the parameter of cnf-sat. Since vertices
on a clause-path are not adjacent to other clause-paths, it follows that G−X is
a linear forest. It remains to prove that the two instances are equivalent. Using
the fact that any proper 3-coloring of G must color at least one a-vertex on each
clause-path with the same color as p3, it is not hard to prove that the truth
assignment which makes all literals true whose vertex has been colored with the
color of p2 is a satisfying assignment. We defer the remainder of the proof to full
version [16] due to space restrictions.

Since the construction can be carried out in polynomial time and guaran-
tees that the parameter of the output instance is bounded polynomially in the
parameter of the input instance, the given reduction is indeed a polynomial-
parameter transformation. The theorem now follows in a well-known manner
from the fact that cnf-sat parameterized by the number of variables does not
admit a polynomial kernel unless NP ⊆ coNP/poly [9] by applying the frame-
work for kernelization lower-bounds of Bodlaender et al. [1,5]. ��

By considering the proof of Theorem 4 we can obtain a corollary for a stronger
parameterization. Consider the graph G and modulator X which is constructed
in the proof: the remainder graph G − X is a linear forest, a disjoint union
of paths. By adding vertices of degree two to G we may connect all the paths
in G−X into a single path. Since degree-2 vertices do not affect the 3-colorability
of a graph, this does not change the answer to the instance and ensures that G−X
is a single path. Hence we obtain:

Corollary 2. 3-Coloring on Path + kv graphs does not admit a polynomial
kernel unless NP ⊆ coNP/poly.
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Using recent machinery developed by Dell and van Melkebeek [9] we can also
prove lower bounds on the coefficient of the polynomial in the kernel size of
q-Coloring on Independent + kv graphs for q ≥ 4. Recall that an instance
of q-nae-sat consists of a CNF formula with at most q literals per clause,
which is satisfied if at least one literal in each clause evaluates to false, and at
least one evaluates to true. By relating q-cnf-sat to (q + 1)-nae-sat (both
parameterized by the number of variables) through a reduction due to Knuth [17,
Section 6] we obtain a compression lower bound for (q + 1)-nae-sat, and by
relating the latter to (q + 1)-Coloring on Independent + kv graphs we can
obtain the following theorem.

Theorem 5 (�). For every q ≥ 4, q-Coloring on Independent+kv graphs
does not have a kernel of bitsize O(kq−1−ε) for any ε > 0 unless NP ⊆ coNP/poly.

The proof of Theorem 5 shows that an improved compression lower bound for q-
nae-sat also yields a better lower bound for q-Coloring on Independent+kv
graphs. In particular, if it would be proven that for q ≥ 3 q-nae-sat on n
variables cannot be compressed in polynomial time into an equivalent instance
on O(nq−ε) bits, then the kernel of Lemma 1 is optimal up to ko(1) factors.

5 Domination-Related Parameters

In this section we show that the complexity of 3-Coloring is strongly related
to the domination-structure of the graph.

Theorem 6. 3-Coloring on a general graph G can be solved in O∗(3k) time
when given a dominating set X of size k.

Proof. Let X be a dominating set in graph G of size k. The algorithm proceeds as
follows. For each of the 3k possible assignments of colors to X , we check in linear
time whether adjacent vertices received the same color. If the partial coloring is
proper then we determine whether it can be extended to the remainder of the
graph, and this check can be modeled as a 3-List Coloring instance on the
graph G −X : for every vertex v ∈ G −X the list of available colors is formed
by those elements of {1, 2, 3} which do not occur on neighbors in X . Since X is
a dominating set, every vertex has at least one colored neighbor and therefore
each vertex of G−X has a list of at most two available colors. It has long been
known that such 3-List Coloring instances can be solved in polynomial time
by guessing a color for a vertex and propagating the implications; see for example
the survey by Tuza [22, Section 4.3]. Hence for each assignment of colors to X
we can test in polynomial time whether it can be extended to G − X or not,
and G is 3-colorable if and only if at least one of these attempts succeeds. ��

The fixed-parameter tractability of 3-Coloring parameterized by the size of
a given dominating set raises the question whether the problem admits a poly-
nomial kernel. Assuming NP �⊆ coNP/poly this is not the case, which can be
seen from the proof of Theorem 4: the modulator X which is constructed in the
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proof is a dominating set in the graph, and therefore the given reduction serves
as a polynomial-parameter transformation from cnf-sat parameterized by n to
3-Coloring parameterized by the size of the dominating set X .

Having a restricted domination-structure in a 3-Coloring instance does
make it more amenable to kernelization, which becomes clear when we use a
different parameter. Recall that the class Dominated contains those graphs in
which each connected component has a dominating vertex.

Theorem 7 (�). 3-Coloring on Dominated + kv graphs admits a polyno-
mial kernel.

6 Conclusions

We studied the kernelizability of q-Coloring within a hierarchy of structural
parameterizations of the graph, obtaining several positive and negative results.
It is interesting to note that in the parameter space we consider, the positive
results obtained through Theorem 1 even hold for q-List Coloring on F + kv
graphs. We can obtain a kernel for q-List Coloring by transforming a list-
coloring instance into a q-Coloring instance by adding a clique on q vertices
to the modulator and using adjacencies to this clique to enforce the color lists,
increasing the parameter by the constant q. The resulting q-Coloring instance
can then be reduced using Theorem 1.

The parameter hierarchy we considered uses vertex-deletion distance to well-
studied graph classes as the parameter. The question of kernelizability can also
been asked for the edge-deletion and edge-completion variants of these parame-
ters [7,21] which will result in quite a different boundary between tractable and
intractable: it is not hard to see that q-Coloring on LinearForest±ke graphs
admits a polynomial kernel by deleting vertices of degree at most two, whereas
Theorem 4 shows that this is not the case on LinearForest + kv graphs.

As a final open question it will be interesting to settle the gap between the
kernelization upper- and lower bounds of q-Coloring on Independent + kv
graphs.

Acknowledgments. We are grateful to an anonymous referee of STACS 2011 [2]
who suggested to investigate Dell and van Melkebeek-type lower bounds for q-
Coloring parameterized by vertex cover.
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Abstract. The defense of computer systems from malicious software attacks,
such as viruses and worms, is a key aspect of computer security. The analogy
between malicious software and biological infections suggested us to use the κ-
calculus, a formalism originally developed for the analysis of biological systems,
for the formalization and analysis of malicious software. By modeling the differ-
ent actors involved in a malicious code attack in the κ-calculus and by simulating
their behavior, it is possible to extract important information that can drive in the
choice of the defense technique to apply.

1 Introduction

The Challenge. According to Grimes, “Malicious code is any software program de-
signed to move from computer to computer and network to network in order to inten-
tionally modify computer systems without the consent of the owner” [16]. Malicious
codes are classified according to their key features: the ability to propagate and the po-
tential to perform a damage (or payload) [21]. The most popular classes of malicious
code include viruses, worms, Trojan horses, spyware, trap doors and logic bombs. In
general, the term malware refers to a malicious code regardless of its classification.

The enlarging size and complexity of modern information systems, together with the
growing connectivity of computers through the Internet, have facilitated the spread of
malware [21]. The past thirty years have seen a continuous growth of the threats of
malware both in the danger and in the complexity of the malicious codes. Nowadays,
one of the most sophisticated techniques used by hackers is to exploit the resources
of some victim machines in order to create and control powerful networks of compro-
mised nodes called botnets. A botnet consists of a collection of victim machines running
specific programs, called bots, that are remotely controlled by the attacker, called bot-
master [20]. Typical applications of botnets are the implementation of distributed denial
of service attacks and of e-mail spamming. Botnets represent a dangerous, potent and
quick evolving threat that is yet to be fully understood. Their potential resides in dis-
tributing the maliciousness over the network. This makes detection much harder and
poses a global threat that can count on the cooperation of many machines.

Since the threat of malware attacks is an unavoidable problem in computer security,
it is crucial to develop both sophisticated models for expressing and understanding dis-
tributed malware, i.e. botnets, and efficient techniques of defense from them. A standard
defense technique is misuse malware detection which consists in detecting malicious
code by scanning for predefined sequences of bytes that act like fingerprints. A novel
promising approach regards the monitoring of malware propagation in a network both

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 102–113, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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for studying properties of the considered malware and/or for finding ways to immunize
the network. While misuse malware detection is based on an abstract representation
of the inner working of a malicious code viewed as a single entity, the propagation
monitoring approach is based on the characterization of the interactions of a malicious
code with the environment. Indeed, the monitoring of malware propagation turns out to
be particularly interesting for analyzing the topology of botnets and for understanding,
detecting and stopping bot propagation [9].

The challenging behavior of malware suggests the development of a formal frame-
work for the specification and analysis of malicious software. The standard formal def-
initions of viruses by Cohen [7] and Adleman [1] are not appropriate for modeling
and analyzing the behavior and the propagation of modern distributed malware. Cohen
characterizes viruses in terms of their ability to replicate with respect to a given Turing
machine, while Adleman provides a more abstract definition of computer viruses based
on recursive functions where an infected program either imitates the behavior of the
original program, injures the machine or propagates infection. Interesting generaliza-
tions of the Adleman’s definition are the ones given by Zou and Zhou [26] and Bonfante
et al. [4]. All these abstract theoretical models based on Turing machines and recursive
functions are used to prove that the malware detection problem is undecidable.

Observethatallthesemodels,basedonTuringmachinesorrecursivefunctions,arenotthe
most appropriate ones fordescribing the interaction and thecooperation between different
systems.Infact,modernmalwareasbotnetscannotbedescribedandspecifiedinaconvenient
anddetailedwaywiththestandardtheoreticalmodels.Theadventoftheseinteraction-based
malwarerequiresthedevelopmentofnewformalmodelsformalwareanalysis.Wemention
here the theoretical model known ask-ary malware that distributes the malicious behavior
intomanyconcurrentcodes[14].Atthemomentthereexistonlytrivialimplementationsofk-
arymalware,butinprinciple,theycouldavertstandardmalwaredetectionstrategies.Another
relatedworkistherecentoneofJacobetal.[17],wheretheauthorsproposeamodelofmalware
basedontheJoincalculus.Theyfoundtheirdefinitionofmalwareonthenotionofvirusgiven
by Cohen [7] and extend it to support concurrent interactions. They focus on the malware
detectionproblemandprovethatingeneralitisundecidableintheJoincalculus.Furthermore,
theyidentifyafragmentoftheJoincalculuswherethisproblembecomesdecidableevenifit
isnotclearwhetherrealmalwarecanbemodeledintheidentifiedfragment.

The idea. The main objective of this work is to design a model for the specification
and analysis of standard and distributed malware together with their propagation mech-
anisms. This accounts to consider formalisms able to express the concurrent interaction
between the multiple actors involved in a malicious attack. When dealing with concur-
rency, languages such as CCS [22], ACP [3] and the π-calculus [24], are among the
most natural choices. This is also the reason why those languages have largely inspired
the design of calculi for the biological world. In this setting, where not only concur-
rent interactions but also spatial aspects such as containment or relative position (i.e.
topology) are essential, new formal frameworks like brane calculus [5], Ambients [6]
and κ-calculus [12] have been proposed. As biological virus are generally associated to
malware, we find it natural to look for a suitable calculus among the ones designed for
computational biology.
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We propose to use the κ-calculus to model distributed malicious attacks. The κ-
calculus is a language for the specification of systems that can be represented as graphs
where nodes are equipped with an internal state and labeled ports, and edges specify
connections between labeled ports of nodes. Rewriting rules associated to each system
model the graph evolution. We believe that the κ-calculus is suitable for assessing the
malware threat, also in the case of distributed malware, for the following reasons:

1. κ allows a detailed specification of the mechanisms of interactions between concur-
rent systems. One of the main advantages of using κ with respect to other process
calculi as the π-calculus or the Join calculus, resides in its graphical nature that
allows the description of spatial properties. Moreover, the set of rules defining the
behavior of malware can be isolated and distinguished from the rules describing the
normal evolution of a system.

2. κ offers a framework where the granularity of the model can be chosen depending
on the specific problem to represent, i.e., one can model programs inside a single
machine, or machines abstracting from the programs they are running.

3. Recent works have shown how topology plays a fundamental role in the analysis
of malware propagation [15]. κ-systems are essentially graphs and this allows a
straightforward definition of different network topologies. Moreover, since κ is a
rewriting model, it is suitable for the specification of networks whose topology
evolves over time as in [23].

4. The analysis of malware formalized in κ can exploit the tools for the simulation of
κ-systems [8]. Moreover, these tools – developed in the biological setting – allow
the specification of stochastic measures that can model the probability of a certain
node to be infected, the rate of propagation of a given infection, etc.

In Section 2 we briefly introduce the κ-calculus. Section 3 formalizes the notion of
malware with respect to an environment and shows how the proposed definition can be
instantiated to the different kinds of standard and distributed malware. In Section 4 we
present and discuss how the proposed model can be employed to study the propagation
strategies of specific malware. Section 5 concludes by discussing future developments.

2 The κ-Calculus

In this section we recall the basic definitions of the κ-calculus [12] independently from
its biological domain of application. Some terminology has been changed and some
constraints (like the separation between destruction and construction rules, typical of
biological settings) have been relaxed. The κ-calculus is a graph rewriting model where
objects are represented by nodes and their relationships by edges. More formally, let
us consider the following countable sets: Nodes with elements A, B, C, . . . ; Gates
with elements a, b, c . . . ; Arms with elements 1, 2, 3, . . . ; Fields with elements
f1, f2, . . . . Let Arms(A) ⊆ Arms, Gates(A) ⊆ Gates and Fields(A) ⊆ Fields
denote, respectively, the set of arms, gates and fields of a node A. A state α is a map
from Fields to a finite set of possible values. An interface S is a map Gates �→
Arms ∪ {ε} where S(a) = ε means that no arm is associated to gate a.

The domain of a partial function f : D �→ C is dom(f) = {d ∈ D | f(d) �= ⊥}.
The union of two partial functions f, g : D �→ C such that dom(f) ∩ dom(g) = ∅,



Hunting Distributed Malware with the κ-Calculus 105

(a) The start up condition of the system (b) The system after the evolution

Fig. 1. Graphical representation of the system A[f = 1](a = ε, b = 1, c = 2), B(a = 1, b =
ε), C(a = 2) and the application of rule A[f = 1](c = 2), B(b = ε), C(a = 2) → A[f =
2](c = ε), B(b = 3), C(a = ε), D(a = 3)

is a partial function f + g : D �→ C with domain dom(f + g) = dom(f) ∪ dom(g)
such that (f + g)(d) = f(d) if d ∈ dom(f), (f + g)(d) = g(d) if d ∈ dom(g), and
f +g(d) = ⊥ otherwise. f ≤ g if dom(f) ⊆ dom(g) and ∀x ∈ dom(g) : f(x) = g(x)
or f(x) undefined.

A component is a node A with a state that specifies all the values of the fields of A,
and an interface that specifies which gates of A are connected to some arms (edges).

Definition 1. A component A[α](S) is a node A equipped with a state map α and an in-
terface map S that are total w.r.t. A: dom(α) = Fields(A) and dom(S) = Gates(A).

If a component has no fields we omit the part [ ]. A system is a multiset of compo-
nents and it can be graphically represented as a non-oriented graph with nodes denoting
components and edges modeling arms (see Fig. 1(a) for an example).

Definition 2. A system Σ is defined as Σ ::= A[α](S) | Σ, Σ, where “,” denotes the
associative operator for composition and each arm occurs exactly twice.

We speak about component-projection when we have a node with a partial specification
of its state and interface.This notion can be naturally extended to systems by saying that
a system-projection is a collection of component-projections. If we consider the system
in Fig. 1(a), B(a1) is a component-projection of B(a1 + bε).

Definition 3. A[α](S) is a component-projection (of A) if α and S are not total with
respect to A i.e., dom(α) ⊆ Fields(A) and dom(S) ⊆ Gates(A).

A1[α1](S1) . . . An[αn](Sn) is a system-projection (of A1 . . . An) if for every i ∈
[1..n] we have that Ai[αi](Si) is a component projection (of Ai) and every arm occurs
exactly twice.

Definition 4. A rule has the form L → R where the left hand side L and the right hand
side R are system-projections:

A1[α1](S1), . . . , An[αn](Sn) → Ai1 [α′
i1 ](S′

i1 ), . . . , Aim [α′
im

](S′
im

),
B1[β1](F1), . . . , Bk[βk](Fk)

where for all j ∈ [1..m]: ij ∈ J ⊆ {1 . . . n}, dom(αij ) = dom(α′
ij

) and S′
ij
≤ Sij ,

for every i ∈ {1 . . . n}� J we have that αi and Si are total with respect to Ai and for
every l ∈ [1..k] we have that βl and Fl are total with respect to Bl.
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The intuition is that a rule can have the following effects: (i) modify the state of the
given components by changing the values of the already specified fields; (ii) add new
arms to the gates that the given components map to ε; (iii) add new components (i.e.
fully specified terms), (iv) delete arms of given components by modifying the interface
in such a way that the corresponding gate maps to ε; (v) remove the elements of the
system-projection only if they are components (i.e., they are fully specified). As an
example see Fig. 1(b).

Definition 5. The structural equivalence relation between systems, denoted ≡, is the
least equivalence satisfying:

– Σ, Π ≡ Π, Σ;
– Σ ≡ Π if there exists an injective renaming ι on arms such that Σ is obtained from

Π by renaming its arms according to ι, denoted Σ = ι(Π).

Two component-projections A[α1](S1) and A[α2](S2) on the same node A are disjoint
when dom(α1) ∩ dom(α2) = ∅ and dom(S1) ∩dom(S2) = ∅. We define the sum of
disjoint component-projections as: A[α1](S1) ⊕ A[α2](S2) = A[α1 + α2](S1 + S2).
This can be extended to systems in the expected way. A component-projection, as well
as a system-projection, can be instantiated to a set of possible components, or systems,
by specifying the values of the undefined fields and the missing gate-arm relations. The
notion of projection allows us to define the reduction relation for the κ-calculus.

Definition 6. Let us consider a set R of rules and the systems Σ, Σ′, Π, Π ′, Γ . The
reduction relation associated to R, denoted →R, is the least relation that satisfies the
followings:

– if L→ R ∈ R, Σ = L⊕Δ, and Π = R⊕Δ then: Σ →R Π;
– if Σ →R Π and (Arms(Π) � Arms(Σ)) ∩ Arms(Γ ) = ∅ then Σ, Γ →R Π, Γ ;
– if Σ ≡ Σ′, Σ′ →R Π ′ and Π ′ ≡ Π , then Σ →R Π .

The first condition specifies how to apply rule L → R to a system Σ with a system-
projection that matches L. The second condition states that rules can be applied to por-
tions of the system only if the arms created by the rule are not present in the rest of the
graph. The third condition says that the reduction relation between systems can be ex-
tended to structurally equivalent systems. We denote with⇒ the reflexive and transitive
closure of→. Given two systems Σ, Π with the respective sets of rules RΣ, RΠ , we use
notation (Σ, RΣ), (Π, RΠ) → (Σ′, RΣ), (Π ′, RΠ) to refer to Σ, Π →RΣ∪RΠ Σ′, Π ′.
Moreover, we denote with Σ

R=⇒ Σ′ the fact that during the evolution we have used
only the rules in the set R.

3 Modeling Malware in κ

Since this is the first time that the κ-calculus is used for modeling programs, we need
to formally specify what is a program and what is an execution environment in the
κ-framework.
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Definition 7. A program P in κ is a pair (ΣP, RP), where ΣP is a system and RP is the
set of rules that describe the behaviour of P in the environment. Let Progr denote the
set of programs in κ. An environment E is a collection of programs P1, . . . ,Pn with
Pi ∈ Progr for all i ∈ [1, n].

We denote with E [P← P′], the environment E where program P has been replaced with
program P′. We extend the notion of structural equivalence to programs by saying that
two programs P = (ΣP, RP) and Q = (ΣQ, RQ) are structurally equivalent, denoted
P≡̇Q, if they have systems that are structurally equivalent and the same set of rules, i.e.,
P≡̇Q if ΣP ≡ ΣQ and RP = RQ up to renaming. Thus, programs that are structurally
equivalent cause structurally equivalent evolutions on structurally equivalent systems.
We can now specify a formal definition of malware in the κ-calculus, where a malware
is a program that behaves in a specific way in an environment. The proposed definition
is inspired by the ones of Cohen [7] and Adleman [1]. In fact, according to Cohen,
we provide a notion of malware with respect to a given environment and, according to
Adleman, our notion of malware specifies the possible behaviors of the malicious code
either as imitate, injure and infect. Moreover, by modeling the malicious behaviors in
the κ-framework we can specify the interactions of the malware with the environment
and we can describe the behavior of distributed malware.

Definition 8. A program M = (ΣM, RM) is a malware w.r.t. environment E if it behaves
in one of the following ways in environment E:

– Imitate: If M assumes the presence of a host program then it has the following
structure M = h(MC,Q) where MC is the malicious code, Q = (ΣQ, RQ) is the
program hosting it, and h : Progr × Progr → Progr is the infection function that
given MC and Q returns the program h(MC,Q) obtained by infecting Q with MC. In
this case we say that program h(MC,Q) is able to imitate the behavior of the host

program Q if the following holds: if Q, E RQ=⇒ Q′, E ′ then h(MC,Q), E RQ=⇒ Im(E ;Q)
and Im(E ,Q) = h(MC,Q′), E ′′ such that E ′′≡̇E ′.

– Injure: M performs the intended payload on E: M, E RM=⇒ M ′, Pl(E ;M), where Pl :
℘(Progr )×Progr → ℘(Progr ) is the payload function that, given an environment
E and a malware M, returns the damaged environment, namely the environment
obtained by performing the malicious actions of malware M on environment E .

– Infect: M replicates itself in E: M, E RM=⇒ M ′, Rep(E ;M), where Rep : ℘(Progr ) ×
Progr → ℘(Progr ) is the replication function that, given an environment E and a
malware M, returns the infected environment, namely the environment obtained by
infecting a program of environment E with malware M.

Let us show how by further specifying functions Pl and Rep we can instantiate the
above general definition to the different kind of existing malware. Given a malicious
code V = (ΣV, RV) and a host program Q = (ΣQ, RQ), sometimes we write h(V,Q) =
(ΣV

Q , RV
Q) where ΣV

Q denotes the system obtained by infecting the system ΣQ with sys-
tem ΣV and RV

Q denotes the rules obtained by infecting the rules of RQ with RV.

Virus. A virus is a self-propagating program that attaches itself to host programs and
propagates when the hosting program executes. Some viruses are designed to damage
the machines on which they execute, while other viruses simply replicate themselves.
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Definition 9. Let E = P1 . . .Pn, with Pi = (Σi, Ri) where every element Pi models
a program. A program V = (ΣV, RV) is a virus w.r.t. E if, given a hosting program
Q = (ΣQ, RQ), we have that h(V,Q) = (ΣV

Q , RV
Q) is a malware w.r.t. E such that:

– Imitate: h(V,Q), E RQ=⇒ Im(E ;Q).

– Injure (optional): h(V,Q), E
R
V
Q=⇒ h(V,Q)′, Pl(E ;V). Function Pl(E ;V) does not

depend on Q, and this models the fact that the payload of a virus does not depend
on the program hosting it.

– Infect: h(V,Q), E
R
V
Q=⇒ h(V ′,Q), E [Pj ← h(V,Pj)].

Given the analogy between the proposed definition and the one of Adleman it is not
surprising that we are able to prove that our notion of virus is at least as expressive as
the one of Adleman. In particular, since κ is Turing equivalent [13] we show that for
every recursive function that is a virus according to Adleman there exists a program in
κ that computes it and that is a virus w.r.t. every environment.

Theorem 1. Every program V = (ΣV, RV) in the κ-framework that computes a func-
tion Tv : Progr → Progr that is a virus according to Adleman is a virus with respect
to every environment according to Definition 9.

As done by Zuo and Zhou, Adleman’s definition could be instantiated to different kinds
of viruses by specifying the infection strategy [26]. The same approach can be applied
to our model by further delineating the infection function h.

Trojan horse, Spyware, Trap Door and Logic Bomb. Here we group together those
malware that do not exhibit an infection behavior. A Trojan horse is a non-replicating
program that hides its malicious intent inside host programs that may look useful, or at
least harmless. Spyware are malicious programs designed to monitor user’s actions in
order to collect private information and send them to an external entity over the Internet.
A trap door is a malicious code that provides a secret entry point into a program that
allows someone that is aware of the trap door to gain access without going through
the usual security access procedure. A logic bomb is a malicious code embedded in a
legitimate program that executes when a certain predefined event occurs.

Definition 10. V = (ΣV, RV) is a Trojan horse or a spyware or a trap door or a logic
bomb w.r.t. E if M = h(V,Q) = (ΣV

Q , R
V
Q) is a malware w.r.t. to E such that:

– Imitate: h(V,Q), E RQ=⇒ Im(E ;Q).

– Injure: h(V,Q), E
R
V
Q=⇒ h(V′,Q), Pl(E ;Q), where Trojan horses, spyware, trap do-

ors and logic bombs are differentiate by the specification of function Pl(E ;Q).

k-ary virus. Interestingly, the theoretical model of k-ary virus can be seen as an in-
stance of our definition of malware. A k-ary virus is a family of k files (some of them
may not be executable) whose union constitutes a computer virus [14]. We can model
the k fragments composing the k-ary virus as a set of k systems: {V1, . . . ,Vk} =
{(ΣV1 , RV1), . . . , (ΣVk

, RVk
)}.



Hunting Distributed Malware with the κ-Calculus 109

Definition 11. Let E = P1, . . . , Pn where each Pi models a program. We say that
programs {V1, . . . ,Vk} form a k-ary virus w.r.t. E if h(V1,Q1) . . . h(Vk,Qk) where
RV = RV1 ∪ · · · ∪ RVk

behave as follows:

– Imitate: h(V1,Q1) . . . h(Vk,Qk), E
RQl=⇒ Im(E ;Ql), for every l ∈ [1, k].

– Injure: h(V1,Q1) . . . h(Vk,Qk), E RV=⇒ h(V1,Q1)′ . . . h(Vk,Qk)′, Pl(E ;V1 . . .Vk)
– Infect: h(V1,Q1) . . . h(Vk,Qk), E RV=⇒ h(V1,Q1)′ . . . h(Vk,Qk)′, E [Pj ← h(V1,Pj)

. . .Pj+k ← h(Vk,Pj+k)].

Worm. A worm is a malicious program that uses a network to send copies of itself to
other systems and, unlike viruses, do not need a host program. In general, worms do not
contain a specific payload but they are only designed to spread. In order to model worms
in the κ-framework we have to observe their behavior in a network. Thus, we consider
an environment E = S1 . . .Sn where each system Si = (Δi, Ri) with i ∈ [1, n],
models a machine in a network. In this setting, when a machine Sk = (Δk, Rk) hosts a
program W = (ΣW, RW) we simply write SWk = Sk,W.

Definition 12. Let E = Si . . .Sn where each Si = (Δi, Ri) is a machine. A program
W = (ΣW, RW) is a worm w.r.t. E if the machine SWk = (Δk, Rk), (ΣW, RW) is a malware
w.r.t. E with the following behavior:

– Injure (optional): (ΣW, RW), (Δk, Rk), E RW=⇒ (Σ′
W, RW), (Δ′

k, Rk), Pl(E ;W) .

– Infect: (ΣW, RW), (Δk, Rk), E RW=⇒ (Σ′
W, RW), (Δk, Rk), E [Si ← Si, (ΣW, RW)].

Botnet. The term botnet refers to a network of compromised machines. A botnet is
controlled by the so called botmaster, that is an attacker machine that performs the
following actions: (1) identifies a set of target machines; (2) installs a bot on each target
machine such that the bot remains dormant until it receives a predefined command form
the botmaster; (3) launches the attack by triggering the bots. Botnet are successfully
used to implement distributed denial of service attacks.

Definition 13. A program B = (ΣB, RB) is a botmaster w.r.t. E = S1 . . .Sn, where

each Si is a machine in a network, if it is a malware w.r.t. E that either infects: B, E RB=⇒
B′, E [Si ← h(Si,bot)], or injures: B, E RB=⇒ B′, Pl(E ;bot,B). A program bot is a
bot if every machine h(Si,bot) hosting it is a malware w.r.t. E that behaves as follows:

– Imitate: B, E [Si ← h(Si,bot)]
RSi=⇒ Im(B, E [Si ← h(Si,bot)];Si).

– Injure: B, E [Si ← h(Si,bot)] Rbot=⇒ Pl(B, E [Si ← h(Si,bot)];B).

Thus, the proposed definition of malware in κ allows for the specification of the main
actors involved in a botnet attack. In particular, thanks to the different levels of gran-
ularity that we can use to model a κ-system, we are able to specify both the botnet as
a whole and the single bots in the same framework, and we can tune the level of ab-
straction of these specifications according to the features that we want to analyze. For
instance, since bots are given by the combination of standard malware, like viruses and
worms, and a communication channel with the botmaster, we can precisely model in κ
both the behavior of the bots and their interaction with the botmaster.
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4 Hunting Malware in κ

The typical approach to malware defense is malware detection, namely the identifica-
tion of the malicious code in order to avoid infection. In literature there are many results
that show the intractability of the malware detection problem (e.g. [1,4,7,17,26]). All
these results share a common pattern: (i) they provide a formalization of malware in a
Turing complete model of computation (e.g., Turing machines, recursive functions); (ii)
they prove the undecidability of the malware detection problem by reducing it to prob-
lems that are known to be undecidable. In Section 3 we have proposed a formalization
of the notion of malware in κ, a Turing complete calculus [13]. In particular, according
to our definition of malware, in order to decide whether a program M is a malware w.r.t.
an environment E we have to verify that every evolution of E is also an evolution of E ,M
(imitate); that E ,M allows more evolutions than E (injure); and that E ,M has evolutions
that lead to the replication of M, namely E ,M ⇒ E ′,M,M′ with M≡̇M′ (infect). Observe
that the problem of deciding whether the evolutions of E are included in the ones of
E ,M can be reduced to the problem of deciding program equivalence which is known
to be undecidable in any Turing complete language. Moreover, the problem of malware
replication can be reduced to a coverability problem which is known to be undecidable
in κ [13]. Thus, as expected, also with our formalization of malware it is possible to
conclude that malware detection is undecidable.

A more recent promising approach to malware defense regards the monitoring of
malware propagation in a network both for studying properties of the considered mal-
ware and malware epidemiology and for finding ways to immunize the network.

Malware Propagation. The problem we want to tackle can be made clear with a simil-
itude with the biological setting. Suppose that a certain infection is taking off and de-
generating into an epidemics: What is the faster way to vaccinate people in order to
minimize the spread of the infection? Rephrasing this problem in our setting: suppose
that a network is under the attack of a fast spreading malware, how can we detect which
are the weak nodes to be immunized? This is not a new approach to the field, several
studies have been conducted to this aim. The first attempt dates back to 1991 when
Kephart and White [18] propose an epidemiological model inspired by the biologi-
cal setting. More recently, this work has been shown to be outdated as modern worms
spread with different kinds of models usually guided by the topology of the network
[15,19,23]. A key aspect of these techniques is that they employ stochastic measures
to represent both the speed of propagation and the likelihood of a node to be infected
(stochastic measures could also model network features such as link capacities, conges-
tion, intermittent connectivity). Interestingly, as mentioned in the introduction, there
exists simulation tools for κ-systems that take into account stochastic measurements
(expressing the probability of a rule to be applied) [8]. Let us detail the main steps for
the investigation of malware propagation by means of κ and its simulation tools:

1. Modeling: Choose the proper level of abstraction of the model and formalize the
main actors as κ-systems and their activities as sets of rules. Then, set the stochastic
metrics either as the result of personal investigation or derived from previous ex-
isting works (e.g. [10,15]). This leads to the specification of a stochastic κ-system
that represents the initial condition of the network.
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Fig. 2. Speed of infection of Example 1

2. Simulation: Choose one of the freely available tools in [8] that, given the specifica-
tion of the model in κ, simulates its evolution and returns the resulting system.

3. Analysis: From the results of the simulation, we extract the network of infected ma-
chines. This accounts in showing which machines have been infected and which
connections have been exploited for malware propagation (the topology of this
network could be substantially different from the original one). By analyzing this
graph it should be possible to determine the best defense strategy to obstruct the
propagation of the considered malware. For instance, the machines to be immu-
nized could be identified by running a discovery algorithm on the graph that counts
the nodes reachable, and therefore corruptible, from each node.

Example 1. We have considered and modeled in the κ-framework a small network of
25 machines and a malware infecting it. In one step the malware infects all its sane
neighbors that are not immunized. We have simulated the spread of the infection when
no machines are immunized and in few seconds all the network has been compromised.
In this simple case, in order to identify the best nodes to be immunized on the network
of infected machines it is enough to count the number of connections of each nodes. We
have considered different immunization scenarios and the experimental results confirm
that the speed of infection decreases with the growth of the number of connections of
the immunized nodes. Fig. 2 shows the speed of infections when different sets of nodes
(and therefore connections) are immunized.

The special case of botnets. As depicted in several works [9,11,25], botnets are difficult
to track. Although being a major threat, their life-cycle is still yet to be understood and
it is almost impossible to prevent systems from being compromised. Lately, researchers
have focused on the study of botnet propagation strategies, in order to make the botnet
harmless by arresting the spread of bots.

The systematic strategy proposed above could be used for the study of the recruit-
ment phase performed by bots infection. Indeed, botnets usually exploit standard ma-
licious techniques to corrupt and therefore recruit target machines. For this reason, we
claim that by modeling botnets in the κ-framework, we could shed light on the life-cycle
of botnets and on their propagation strategies. Roughly speaking, we could represent
different topologies of networks where nodes model the machines and the botmaster.
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Machines are equipped with a special state that indicates if they are clean or infected and
edges represent the physical connections between them. Rules describe both the choice
of potential victims in the recruitment phase and how the network changes along time.
Thus, from the analysis of the network of compromised machines obtained through the
simulation process, we could extract important features about the botnet behavior.

5 Concluding Remarks

In this work we have proposed to apply biological concurrent calculi to the analysis
of malicious code. We have focused on the κ-calculus and we have used it to provide
an unifying formalization of existing malware. We have analyzed and discussed the
potentialities of modeling malware and their propagation in the κ-framework. We be-
lieve that the use of κ will open new challenges in the field of malware analysis and
defense. In particular, we claim that the proposed formalization of malware provides
a powerful framework for understanding the behavior of distributed malware. In fact,
we believe that κ and its tools of analysis provide the right means for investigating
the main aspects of distributed malware: propagation over a network, machines and
programs interactions, launch of a distributed attack. By simulating the distributed mal-
ware behavior it is possible to identify the countermeasures to take in order to defend an
environment from the considered attack, or measure the goodness of existing defense
strategies. As for future work in this direction, we plan to model with κ real types of
botnets [2] and to use the metrics proposed in known works (e.g. [10,15]) in order to
stochastically simulate their behavior. We believe that considerably big portions of the
Internet network can be faithfully compiled into κ and by observing the results of the
simulation, we will be able to better understand the behavior of the considered botnets
and propose an efficient defense strategy.

In this work, we have focused on the distributed features of the κ-calculus to reason
on network properties and spreading behaviors. However, the existence of decidability
results in κ [13] opens the way for the study of interesting reachability malware proper-
ties that could be used for malware detection. This means that this investigation could
lead to the identification of fragments of the κ-calculus where the detection of specific
classes of malware becomes decidable.
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Abstract. Edge-matching problems, also called puzzles, are abstrac-
tions of placement problems with neighborhood conditions. Pieces with
colored edges have to be placed on a board such that adjacent edges
have the same color. The problem has gained interest recently with the
(now terminated) Eternity II puzzle, and new complexity results. In this
paper we consider a number of settings which differ in size of the puzzles
and the manipulations allowed on the pieces. We investigate the effect
of allowing rotations of the pieces on the complexity of the problem, an
aspect that is only marginally treated so far. We show that some prob-
lems have polynomial time algorithms while others are NP-complete.
Especially we show that allowing rotations in one-row puzzles makes the
problem NP-hard. We moreover show that many commonly considered
puzzles can be emulated by simple puzzles with quadratic pieces, so that
one can restrict oneself to investigating those.

1 Introduction

The puzzles considered in this paper consist of quadratic pieces whose edges are
colored. Let c0, c1, . . . , cK denote the colors. The pieces are placed in the cells
of a rectangular N ×M grid. The edges of a piece are denoted right, top, left,
bottom in the obvious way. A piece P can then be specified by its position (i, j)
on the grid and the colors cr,P , ct,P , cl,P , cb,P on its right, top, left, and bottom
edge, in this order. The image below shows a piece specified by the color pattern
(c1, c2, c3, c4).

c1

c2

c3

c4

Two pieces are neighbors if they are placed such that the difference of their row
or column coordinates in the grid is 1, i.e., they share an edge. Given two pieces
P and P ′ on neighboring positions, say at (i, j) and (i, j +1) respectively, we say
that they match, if the adjacent edges have the same color, that is cr,P = cl,P ′ .
In this case we also say that the edge they have in common matches. Similarly, if
they are vertically adjacent, say at (i, j) and (i+1, j), they match, if cb,P = ct,P ′ ,
see example below.

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 114–125, 2011.
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We say that a board is solved if the pieces are placed in such a way that all
edges match. At this point one has to specify rules for the “border edges”, that
is, the edges facing the border of the board. We consider three cases here

Free. There is no restriction, any color matches the border of the board.
Monochrome. There is a single color for all border edges.
Cyclic. We assume that the board actually is a torus, that is, the top edges are

aligned with the bottom ones and the left edges are aligned with the right
ones.

An arrangement of the pieces which solves the board is called a solution.
The manipulations allowed in a board are:

Swap. Two pieces P and P ′ interchange their position, without being rotated.
Rotate. A piece P is rotated counter-clockwise in-place by 0 deg, 90 deg, 180 deg,

or 270 deg.
Edge permutation. The colors on the edges are permuted in one of the 24

possible ways. The position of the piece is unchanged. Note that this manip-
ulation includes rotations.

Flip. The colors of the left and right or up and down edges of piece P are
interchanged (that is P = (c1, c2, c3, c4) becomes Pflipped = (c3, c2, c1, c4) or
P = (c1, c2, c3, c4) becomes Pflipped = (c1, c4, c3, c2)). Flipping is an in-place
operation.

Combinations of the manipulations are possible.
The edge matching problem is then formulated as follows.

Problem 1. Given is a N ×M board with K colors, NM pieces, a border rule
and a set of manipulations. The decision problem is given by the question “is it
possible to solve the board?”

In the optimization version of the problem, a solution has to be produced.

Edge-matching has found applications in biology where it is used in a method
for DNA fragment assembly [1]. The problem has also gained interest recently
with the Eternity II puzzle, a 16× 16-puzzle, with a $2 million prize for a solu-
tion (which was not found, though). Another area where this kind of problems
appears is chip-layout, where interfaces have to be placed on a rectangular chip
but their order is arbitrary.
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1.1 Previous Work

Edge-matching with one row, swaps and no rotation corresponds to domino
tiling [2] and is, as we discuss in this paper (and as covered in [2]), equivalent
to the problem of finding an Eulerian path in a multi-graph. The computational
complexity of edge-matching and related problems has been studied for several
decades. Early results show that the more general tiling problem, i. e., solving the
edge-matching problem with swaps for a quadratic board using only a subset of a
given set of un-rotatable pieces is NP-complete [3]. Goles and Rapaport showed
in [4] that the edge-matching problem with only in-place rotations (disallowing
swaps) and free border rule is NP-complete. More recently, Demaine and De-
maine [5] proved that the edge-matching variant considered here is NP-complete
for quadratic boards with swaps and rotations. In 2010, Antoniadis and Lingas
showed that this problem is even APX-hard, i. e., hard to approximate, already
for boards with at least two rows [6].

1.2 Overview of the Paper

Most of the above-mentioned analyses of the edge-matching problem consider
swaps, but do not allow rotating pieces. The NP-hardness proof in [5], even
though it formally allowed rotations, forces the pieces to be used in a fixed
orientation. Only recently, the APX-hardness proof in [6] explicitly made use of
rotation and swaps at the same time. In this paper we address the question of
what changes in the complexity of the problem occur when rotations of pieces
are allowed.

In Section 2 we consider puzzles with only one row (1×M). For these puzzles
there is a known correspondence to Euler paths, that we describe along with
some previous results. We then show that single-row puzzles where only in-place
rotations are allowed can be efficiently solved. In contrast we show that solving
single-row puzzles with rotations and swaps allowed is an NP-hard problem. The
proofs implicitly use the Euler path formulation of the problem.

In Section 3 we strengthen a result of [5] by showing that already boards with
two rows with swaps only are NP-hard to solve.

In Section 4 it is investigated how the number of solutions of puzzle depends
on the board size, the number of colors, and the manipulations allowed. These
results were used to construct hard to solve instances for the empirical tests.

The paper only considers puzzles with square pieces. In Section 5 we sketch
how other shapes of pieces, e.g. triangular of hexagonal, can be simulated by
square pieces. Moreover, we describe for the multi-row case how unrotatable
pieces can be simulated by rotatable ones and vice versa.

2 Boards with One Row

Edge-matching with one row (N = 1) without rotation is equivalent to the
problem of finding an Eulerian trail in a multi-graph allowing loops. An Eulerian
trail is a trail that visits each edge of the graph exactly once, and the concept
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is applicable to both directed and undirected graphs: An undirected graph is
Eulerian (i.e. contains an Eulerian trail) iff it is connected and has no more
than 2 vertices with an uneven number of edges. An Eulerian circuit (a trail
starting and ending on the same vertex) requires that all vertices must have an
even number of edges. A directed graph has an Eulerian circuit iff it is weakly
connected and all vertices has equal in- and out-degree, while a path requires
connectedness and 0 or 2 vertices with difference in in- and out-degree equal
to 1. The above facts are shown in, e. g., [2].

2.1 Swaps and Flipping

An edge-matching instance with flipping, with M pieces and K colors is trans-
formed to an undirected multigraph containing K vertices and M edges. Each
piece corresponds to an edge connecting the vertices corresponding to the colors
on opposing edges of the piece. A figure of the construction has been omitted
due to space limitations, but can be found in [7] on page 35.

Now traversing a vertex using two different edges corresponds to matching two
pieces having a common color. A trail in the graph corresponds to a matched
chain of pieces, and an Eulerian cycle corresponds to a solution where all pieces
are fitted, and vice versa. Hence this variant of the problem is efficiently solvable.

2.2 Swaps Only

Just like edge-matching with flipping correspond to Eulerian cycles in undirected
multigraphs, edge-matching without flipping correspond to Eulerian cycles in
directed multigraphs, and vice versa (see page 36 in [7]). Hence this variant of
the problem is efficiently solvable.

2.3 Rotations Only

With free border rule, if the board consists of only one piece it will always be
solved. Obviously, for a board with two pieces there will be a solution if the two
pieces can be rotated such that their touching edges fit. This can be generalized:

Theorem 1. Single-row edge matching puzzles with in-place rotations can be
solved or determined to be unsolvable by an algorithm that has time complexity
linear in the number of pieces.

Proof. The proof is by induction. The pieces are numbered from left to right as
p0, p1, ..., pM−1. L(pi) is the set of colors that can be on the left edge of piece pi

which is equivalent to the set of unique colors on the 4 edges of pi. R(pi) is the
set of colors that can be on the right edge of pi such that pi fits pi−1, that is,
such that L(pi)∩R(pi−1) �= ∅. L(pi) and R(pi) can both have at most 4 members
since a piece has 4 edges.

Base case: For p0 there is no constraint, as one piece always represents a
solution to a 1× 1 board: R(p0) = L(p0).
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Induction step: Given that R(pi) is known and the board is solvable up to pi

then piece pi+1 can be fitted if R(pi) ∩ L(pi+1) �= ∅. If not, the board must be
unsolvable. R(pi+1) can be calculated by finding the color on the opposite edge
of pi+1 for each member in R(pi) ∩L(pi+1). This operation takes constant time
because of the bound on the sizes of the two sets.

The theorem holds because each step in the induction, i. e., each additional
piece, only adds a constant time overhead. ��

2.4 Swaps and Rotations

Theorem 2. If both swaps and rotations are allowed, single-row edge-matching
with free border is NP-complete.

Proof. We use a polynomial-time reduction from the NP-complete Monotone
1-in-3-SAT problem [8]: given m monotone (i. e., disallowing negation) clauses
c1, . . . , cm over n variables x1, . . . , xn, the question is whether there exists an
assignment which satisfies exactly one variable in each clause.

Let mi, i = 1, . . . , n, denote the number of occurrences of variable i, i. e.,
m1 + · · · + mn = 3m. The instance of Monotone 1-in-3-SAT is mapped to a
single-row board with free border at the top and bottom and cyclic border to
the left and right (which can be simulated by a free border using a polynomial
number of extra pieces). There are M = 10m pieces and K = 13m − n + 1
colors. We denote colors by lower-case and pieces by upper-case letters. The set
of pieces consists of all Vj,q, V ′

j,q, Sj , where j = 1, . . . , m and q = 1, 2, 3, and
Ai,k, where i = 1, . . . , n and k = 1, . . . , mi. The colors are �, tj,q, t′j,q, fj,q, sj ,
and ai,k, where k = 1, . . . , mi − 1. We define and name the different classes of
pieces as follows:

Value. Vj,q := (fj,q, tj,q, sj , �); V ′
j,q = (�, t′j,q, fj,q, �).

Satisfying. Sj := (sj , sj , sj , sj).
Accordance. If mi = 1 then Ai,1 := (�, �, �, �). Otherwise, let the k-th occur-

rence of xi be at position qk ∈ {1, . . . , 3} in clause cjk
, k = 1, . . . , mi. Then

define Ai,k := (t′jk,qk
, ai,k−1, tjk,qk

, ai,k), where ai,0 := ai,mi := �.

This completes the transformation, which is obviously polynomial-time com-
putable.

Rotations can deactivate up to two colors from a piece, namely those that
are facing the border and thus need not be matched. Active colors must occur
an even number of times in a solved board. When placing a piece Vj,q, either
fj,q and sj , or tj,q and � will be deactivated. Actually, since fj,q only appears in
Vj,q and V ′

j,q, a solution requires that these pieces either both deactivate fj,q or
that both activate this color. If they both activate fj,q (which also activates sj

once), they will be adjacent in a solution. Later, active fj,q will model that the
q-th variable in cj is false, and inactive fj,q will model a true setting. Since sj

appears only in Vj,1, Vj,2, Vj,3 and Sj , but cannot be deactivated in Sj , where it
will be used twice, it is necessary for a solution that an even, positive number
of pieces from Vj,1, Vj,2, Vj,3 use sj. This forces two of the variables in cj to a
“false” and one to a “true” setting.



Edge-Matching Problems with Rotations 119

Finally, the interplay of the tj,q and t′j,q within the V - and A-pieces will ensure
the consistency of the truth assignment. We fix a variable xi and assume mi > 1
as there is nothing to show otherwise. Since color ai,k, k = 1, . . . , mi − 1, is
only used in Ai,k and Ai,k+1, these two pieces must either both be rotated
to activate the t and t′ colors on their edges, or the pieces must be adjacent,
which inductively requires that the solution contains all Ai-pieces as a chain
Ai,1, Ai,2, . . . , Ai,mi in this or reverse order. In the case of a chain, the colors
tjk,qk

and t′jk,qk
must be inactive for all k = 1, . . . , mi, which means that the

pieces Vjk,qk
and V ′

jk,qk
are adjacent by virtue of color fjk,qk

, hence a “false”
setting of xi. Otherwise, the colors are all active, which is (by the uniqueness of
the colors) only possible if Ai,k is fit between the pieces Vjk,qk

and V ′
jk,qk

, both
of which are rotated to a “true” setting. Hence, all mi occurrences of xi must
be consistent.

We now prove that there is a solution to Monotone 1-in-3-SAT if and only if
there is one to the puzzle. Let us first prove the implication ⇒, i. e., we consider
an assignment to x1, . . . , xn which satisfies exactly one variable in each clause.
We lay down the pieces as subsequences in clause-wise order. When considering
a clause cj = (uj,1 ∨ uj,2 ∨ uj,3), j = 1, . . . , m, let q ∈ {1, . . . , 3} be the index
of its unique satisfied variable, say this variable is xi in its k-th occurence. The
subsequence for cj starts with Vj,q rotated by 270◦ (left-hand side has color �),
followed by Ai,k unrotated and V ′

j,q rotated by 90◦. Note that the right-hand
side is �. Let q′ and q′′ be the indices of the other two unsatisfied variables
in cj . We proceed by placing V ′

j,q′ rotated by 180◦, then Vj,q′ rotated by 180◦

and afterwards Sj . The construction for clause j is continued by placing Vj,q′′

and V ′
j,q′′ unrotated, which again ends in color �. Note that we have placed

all Vj,·-pieces and the Sj-piece as well as a single A-piece corresponding to the
occurrence of the satisfied variable. Finally, if they have not been placed before,
we use all A-pieces corresponding to the unsatisfied variables as follows: If uj,q′ =
xr then Ar,1, Ar,2, . . . , Ar,mr are appended in the chained way described above
(again ending in �), completed by the chain for variable uj,q′′ . The construction
ends with � on the right-hand side and is continued with the next clause, resulting
in all pieces being used and the puzzle being solved.

For the implication ⇐, assume now that the puzzle is solved. We have already
argued that for any j, there must be exactly one q such that the pair (Vj,q , V

′
j,q)

is rotated according a “true” setting and two other q such that the pair is in a
“false” setting. We set the variables in cj accordingly. If a variable contains in
another clause, we already know that the corresponding pieces must be rotated
in a consistent way, which proves that we have a solution to Monotone 1-in-3-
SAT. ��

3 Boards with at Least Two Rows

We consider boards with two rows and arbitrarily many columns. Of course, the
roles of columns and rows can be interchanged.

In [5] edge-matching is shown to be NP-complete for quadratic boards. Re-
cently, [6] showed in a much more involved proof that the problem is even
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APX-complete, already for rectangular boards with only two rows. We focus
on Demaine’s and Demaine’s technique from [5], which does not use rotations,
and show that it can be strengthened to also include boards with row-count
two – by extension edge-matching with any width/height ratio is NP-complete,
since it is trivial to force a board to contain more rows by adding uniformly
colored pieces. However, as stated in Section 2, edge-matching without rotation
is efficiently solvable when the row-count is 1.

Theorem 3. Two-row edge matching puzzles with swaps and free or monochro-
matic border is NP-complete.

Proof. The transformation is from 3-partition in which the task is to partition
a set of 3m positive integers into m sets, each consisting of 3 integers such that
the integers in each set sum to the same value S. This problem can be visualized
as the task of, given a collection of bars of varying length, placing the bars in
rows, such that each row has 3 bars and all rows have the width S. Importantly
3-partition is also NP-complete when all the integers are limited to values in the
range (S/4, S/2), meaning that any row with width S must contain exactly 3
bars – this is the version of the problem used in this proof. The problem remains
NP-complete when S and m are polynomially related.

Bar:

x
%

$ x
%

x x
%

x x
%

x $
%

x

Board structure:

a1a0

%
a2a1

%
b1b0

%
b2b1

@

$
@

$

b3b2
%

c1c0

%
c2c1

@

$
@

$

c3c2

%

S S ...

Converting this problem into an edge-matching puzzle with height 2 proceeds
as follows: A section of pieces (a ’bar’) is defined for each of the 3m integers.
The internal left-right edge-color (shown as ’x’ in the figure) is unique for each
bar, and every bar starts and ends on the color ’$’. A board with height N = 2
and width M = mS + m − 1 is constructed, where the upper row is forced to
have a particular layout as illustrated in the figure by using unique colors for
every edge pair, and the lower row is separated into areas of length S, each of
which can contain 3 bars. All separators will fit any bar left and right (color ’$’),
and all bars will fit in any position below the fixed upper row (color ’%’). If the
3-partition has a solution then it will be possible to place the m bars into the
board giving a solution to the edge matching puzzle. If the edge matching puzzle
can be solved it will be because all sections can be placed into the forced layout
of the grid, meaning that there is a solution to the corresponding 3-partition
problem. ��
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4 Number of Solutions

This section presents an analysis of the number of solutions depending on the
number NM of pieces and the number K of colors. This also lead to a conjec-
ture of what settings of these parameters will result in hard instances. Below,
some results are stated for boards with cyclic border, swaps and flipping and no
rotations; we refer to the full version of the paper for detailed derivation.

For small values of NM and K the results are listed in Table 1. The instances
were small enough to count the number of solvable and unsolvable boards by
complete enumeration. Obviously a higher color count K leads to a much faster
growth in number of combinations for increasing NM . It also seems intuitive that
higher K results in a higher proportion of unsolvable boards since the number
of ways colors can be combined without leading to solvable boards increases.

Table 1. Development of the number of single-row boards with given M and K and
of the number of these that are solvable. This table is generated by enumerating all
combinations for each pair (M, K) and deciding for each if a solution exists.

Width (M) Combinations Solvable/Unsolvable

K=2 K=3 K=4 K=2 K=3 K=4

1 3 6 10 2/1 3/3 4/6

2 6 21 55 3/3 6/15 10/45

3 10 56 220 4/6 10/46 20/200

4 15 126 715 6/9 21/105 55/660

5 21 252 2002 8/13 39/213 136/1866

6 28 462 5005 11/17 74/388 346/4659

7 36 792 11440 14/22 129/663 812/10628

8 45 1287 24310 18/27 219/1068 1823/22487

9 55 2002 48620 22/33 351/1651 3832/44788

10 66 3003 92378 27/39 546/2457 7666/84712

By counting Euler paths single-row boards (N = 1) and swaps only (no rota-
tions) the expected number of solutions E1swap can be shown to be

E1swap =
M !
KM

(1)

For multi-row boards (N > 1) and swaps only (no rotations) the expected num-
ber of solutions E2swap can be shown to be

E2swap =
(NM)!
K2NM

(2)

For a given N, M , if K is “too small” then E1swap, E2swap are very large, and if
K is “too large” then these quantities become small. Analyzing the expression for
E1swap and E2swap we conclude that there is an almost linear relation between
NM and K that yield boards which have a small number of solutions. The area
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where the expected number of solutions is close to 1 is known as a phase transi-
tion. For NP-hard problems the hardest variants are generally found around this
phase transition [9]. For edge-matching this seems intuitive: if the number K of
colors is low relative to the board size NM , then there are many opportunities
for fitting pieces together and forming partial solutions (i.e. the problems are
under-constrained) - if K is very small then the problems will tend to become
trivial. Conversely if K is large relative to NM , there will be very few ways
of forming partial solutions (i.e. the problems are over-constrained). When K
becomes very large (almost NM) it tends to become trivial again, in the sense
that no solutions can exist for a particular instance. By setting E1swap = 1 and
E2swap = 1 in (1) and (2), respectively, and solving for K we derive the color
count values which are likely to result in hard puzzles. These are after some
algebraic simplifications:

K∗
1Dswap ∼

M

e
K∗

2Dswap ∼
√

NM

e

For multi-row boards with rotations and swapping the corresponding numbers
are

E2Drotswap ∼
(NM)! 4NM

K2NM
K∗

2Drotswap ∼ 2

√
NM

e
(3)

The Eternity II puzzle mentioned above used a 16 × 16 board with 22 colors
(only 17 on the non-border pieces), while Formula (3) with N = M = 16 yields
K∗

2rotswap ∼ 19.6.
Finally for the multi-row case of rotation without swapping:

E2Drot =
4NM

K2NM

Which means that setting E2Drot = 1 will simply yield K∗
2Drot = 2. Experimen-

tation confirms that boards with two colors (and free border-rule) are indeed
much more difficult to solve than boards with larger number of colors - both
with respect to success-rate of attempted heuristic algorithms, average running
time of a back-tracking algorithm and indeed even for a human player. We say
more about heuristic approaches in Section 6.

5 Simulating Other Puzzles

It turns out, that there are a number simulations that allow one border rule to
be replaced by a different one, or which can prevent rotations and other kinds
of edge-permutations. These simulations are implemented by replacing pieces by
“super-pieces” composed of a number of normal pieces having also additional
colors. Below are given two examples. Details will be given in the full paper.

An edge-matching instance where rotation is forbidden can be simulated by
an instance where rotation is allowed by exchanging each piece px = (a, b, c, d)
with the following construct:
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a
b

c

d

xh

b
c

xv

a

v

xh

v

h

xv

h

d

h

v

h

v

Similarly an edge-matching instance where rotation is forbidden can be sim-
ulated by an instance where flipping is allowed by exchanging each piece px =
(a, b, c, d) with the following construct:

a
b

c

d

x2

b
c

x3

a

r

x2

x1

x4

x3

s

d

s

x1

x4

r

Note that the above-described constructions increase the number of rows,
columns and colors.

Also puzzles with hexagonal or triangular pieces can be simulated by puzzles
with quadratic pieces, as shown in the images below. The construction introduces
a number of new colors, all of which are shown as a single color (pink in the
electronic version) in the pictures.

Fig. 1. On top a sketch simulation of a single hexagonal piece by an arrangement
of four quadratic ones is shown. Below is the resulting simulation of a board with 7
hexagonal pieces with monochrome border.

6 Experiments

On the experimental side we have also implemented a number of heuristics,
namely backtracking, local search and evolutionary algorithms, for solving the
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Fig. 2. Sketch of a simulation of square pieces by triangular ones (top left) and vice
versa (bottom left). A simulation of a larger puzzle with triangular pieces is shown.

various types of edge-matching problems. The results achieved so far indicate
that an “almost solution” (one with a small fraction non-matching edges) can
be found in surprisingly fast, however, complete solutions are hard to find for
most parameter settings. The tests were run on randomly generated instances,
where the color of each edge was chosen under uniform distribution. Afterwards
a random permutation was applied to the pieces, or every piece was randomly
rotated, or both.

The experiments are continuing and detailed results will be given in the full
paper.

7 Summary and Conclusions

Motivated by the Eternity-II puzzle, the computational complexity of edge-
matching problems has recently gained increasing interest. In this paper, we
have focused on several problem aspects whose impact on complexity was un-
known or only marginally treated before, in particular rotating pieces, in-place
pieces, border rules, number of colors and shapes of pieces. With regard to single-
row boards, it has been shown that introducing rotations makes the otherwise
easy problem NP-hard. Furthermore, we have studied the expected number of
solutions for single- and multi-row boards and studied the impact of the number
of colors. Finally, we have argued why the problem is polynomial-time equivalent
under different border rules and shapes of pieces.

The table below summarizes the known results for boards with one row com-
pared to boards with at least two rows.

Rows: 1 ≥ 2
Swap P NP-complete

Rotation P NP-complete
Both NP-complete NP-complete

This paper has raised further questions concerning the hardness of edge-
matching problems. For example, is the problem still hard for a fixed number of
colors? Furthermore, it is unknown whether the single-row case with rotations
is hard to approximate.
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Abstract. Chaotic functions are characterized by sensitivity to initial
conditions, transitivity, and regularity. Providing new functions with
such properties is a real challenge. This work shows that one can associate
with any Boolean network a continuous function, whose discrete-time it-
erations are chaotic if and only if the iteration graph of the Boolean
network is strongly connected. Then, sufficient conditions for this strong
connectivity are expressed on the interaction graph of this network, lead-
ing to a constructive method of chaotic function computation. The whole
approach is evaluated in the chaos-based pseudo-random number gener-
ation context.

Keywords: Boolean network, discrete-time dynamical system,
topological chaos.

1 Introduction

Chaos has attracted a lot of attention in various domains of science and en-
gineering, e.g., hash function [1], steganography [2], pseudo random number
generation [3]. All these applications capitalize fundamental properties of the
chaotic maps [4], namely: sensitive dependence on initial conditions, transitiv-
ity, and density of periodic points. A system is sensitive to initial conditions
if any point contains, in any neighborhood, another point with a completely
different future trajectory. Topological transitivity is established when, for any
element, any neighborhood of its future evolution eventually overlaps with any
other open set. On the contrary, a dense set of periodic points is an element of
regularity that a chaotic dynamical system has to exhibit.

Chaotic discrete-time dynamical systems are iterative processes defined by a
chaotic map f from a domain E to itself. Starting from any configurations x ∈ E,
the system produces the sequence x, f(x), f2(x), f3(x), . . . , where fk(x) is the
k-th iterate of f at x. Works referenced above are instances of that scheme: they
iterate tent or logistic maps known to be chaotic on R.
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As far as we know, no result so far states that the chaotic properties of a
function that has been theoretically proven on R remain valid on the floating-
point numbers, which is the implementation domain. Thus, to avoid the loss of
chaos this work presents an alternative: to construct, from Boolean networks
f : �n → �

n, continuous fonctions Gf defined on the domain �1; n�N × �n,
where �1; n� is the interval of integers {1, 2, . . . , n} and � is the Boolean domain
{0, 1}. Due to the discrete nature of f , theoretical results obtained on Gf are
preserved in implementation.

Furthermore, instead of finding an example of such maps and to prove the
chaoticity of their discrete-time iterations, we tackle the problem of character-
izing all the maps with chaotic iterations according to Devaney’s chaos defi-
nition [4]. This is the first contribution. This characterization is expressed on
the asynchronous iteration graph of the Boolean map f , which contains 2n ver-
tices. To extend the applicability of this characterization, sufficient conditions
that ensure this chaoticity are expressed on the interaction graph of f , which
only contains n vertices. This is the second contribution. Starting thus with
an interaction graph with required properties, all the maps resulting from a
Boolean network constructed on this graph have chaotic iterations. Eventually,
the approach is applied on a pseudo random number generation (PRNG). Uni-
form distribution of the output, which is a necessary condition for PRNGs is
then addressed. Functions with such property are thus characterized again on
the asynchronous iteration graph. This is the third contribution. The relevance
of the approach and the application to pseudo random number generation are
evaluated thanks to a classical test suite.

The rest of the paper is organized as follows. Section 2 recalls discrete-time
Boolean dynamical systems. Their chaoticity is characterized in Sect. 3. Suffi-
cient conditions to obtain chaoticity are presented in Sect. 4. The application
to pseudo random number generation is formalized, maps with uniform output
are characterized, and PRNGs are evaluated in Sect. 5. The paper ends with a
conclusion section where intended future work is presented.

2 Preliminaries

Let n be a positive integer. A Boolean network is a discrete dynamical system
defined from a Boolean map

f : �n → �
n, x = (x1, . . . , xn) �→ f(x) = (f1(x), . . . , fn(x)),

and an iteration scheme (e.g., parallel, sequential, asynchronous. . . ). For in-
stance, with the parallel iteration scheme, given an initial configuration x0 ∈ �n,
the dynamics of the system are described by the recurrence xt+1 = f(xt). The re-
tained scheme only modifies one element at each iteration and is further referred
by asynchronous. In other words, at the tth iteration, only the st−th component
is “iterated”, where s = (st)t∈� is a sequence of indices taken in �1; n� called
“strategy”. Formally, let Ff : �1; n�×�n to �n be defined by

Ff (i, x) = (x1, . . . , xi−1, fi(x), xi+1, . . . , xn).
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With the asynchronous iteration scheme, given an initial configuration x0 ∈ �n

and a strategy s ∈ �1; n�N, the dynamics of the network are described by the
recurrence

xt+1 = Ff (st, x
t). (1)

Let Gf be the map from �1; n�N ×�n to itself defined by

Gf (s, x) = (σ(s), Ff (s0, x)),

where ∀t ∈ N, σ(s)t = st+1. The parallel iteration of Gf from an initial point
X0 = (s, x0) describes the “same dynamics” as the asynchronous iteration of f
induced by x0 and the strategy s (this is why Gf has been introduced).

Consider the space X = �1; n�N × �n. The distance d between two points
X = (s, x) and X ′ = (s′, x′) in X is defined by

d(X, X ′) = dH(x, x′) + dS(s, s′), where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dH(x, x′) =

n∑
i=1

|xi − x′
i|

dS(s, s′) =
9
n

∑
t∈N

|st − s′t|
10t+1

.

Thus, �d(X, X ′)� = dH(x, x′) is the Hamming distance between x and x′, and
d(X, X ′) − �d(X, X ′)� = dS(s, s′) measures the differences between s and s′.
More precisely, this floating part is less than 10−k if and only if the first k terms
of the two strategies are equal. Moreover, if the kth digit is nonzero, then sk �= s′k.

Let f be any map from �
n to itself, and ¬ : �n → �

n defined by ¬(x) =
(x1, . . . , xn). Considering this distance d on X , it has already been proven
that [5]:

– Gf is continuous,
– the parallel iteration of G¬ is regular (periodic points of G¬ are dense in X ),
– G¬ is topologically transitive (for all X, Y ∈ X , and for all open balls BX

and BY centered in X and Y respectively, there exist X ′ ∈ BX and t ∈ �
such that Gt

¬(X ′) ∈ BY ),
– G¬ has sensitive dependence on initial conditions (there exists δ > 0 such

that for any X ∈ X and any open ball BX , there exist X ′ ∈ BX and t ∈ N

such that d(Gt¬(X), Gt¬(X ′)) > δ).

Particularly, G¬ is chaotic, according to the Devaney’s definition recalled below:

Definition 1 (Devaney [4]). A continuous map f on a metric space (X , d) is
chaotic if it is regular, sensitive, and topologically transitive.

In other words, quoting Devaney in [4], a chaotic dynamical system “is unpre-
dictable because of the sensitive dependence on initial conditions. It cannot be
broken down or simplified into two subsystems which do not interact because
of topological transitivity. And in the midst of this random behavior, we never-
theless have an element of regularity”. Let us finally remark that the definition
above is redundant: Banks et al. have proven that sensitivity is indeed implied
by regularity and transitivity [6].
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3 Characterization of Chaotic Discrete-Time Dynamical
Systems

In this section, we give a characterization of Boolean networks f making the iter-
ations of any induced map Gf chaotic. This is achieved by establishing inclusion
relations between the transitive, regular, and chaotic sets defined below:

– T =
{
f : �n → �

n
/
Gf is transitive

}
,

– R =
{
f : �n → �

n
/
Gf is regular

}
,

– C =
{
f : �n → �

n
/
Gf is chaotic (Devaney)

}
.

Let f be a map from �
n to itself. The asynchronous iteration graph associated

with f is the directed graph Γ (f) defined by: the set of vertices is �n; for all
x ∈ �n and i ∈ �1; n�, the graph Γ (f) contains an arc from x to Ff (i, x). The
relation between Γ (f) and Gf is clear: there exists a path from x to x′ in Γ (f)
if and only if there exists a strategy s such that the parallel iteration of Gf from
the initial point (s, x) reaches the point x′. Finally, in what follows the term
iteration graph is a shortcut for asynchronous iteration graph.

We can thus characterize T :

Proposition 1. Gf is transitive if and only if Γ (f) is strongly connected.

Proof. ⇐= Suppose that Γ (f) is strongly connected. Let (s, x) and (s′, x′) be
two points of X , and let ε > 0. We will define a strategy s̃ such that the distance
between (s̃, x) and (s, x) is less than ε, and such that the parallel iterations of
Gf from (s̃, x) reaches the point (s′, x′).

Let t1 = �− log10(ε)�, and let x′′ be the configuration of �n that we obtain
from (s, x) after t1 iterations of Gf . Since Γ (f) is strongly connected, there
exists a strategy s′′ and t2 ∈ N such that, x′ is reached from (s′′, x′′) after t2
iterations of Gf .

Now, consider the strategy s̃ = (s0, . . . , st1−1, s
′′
0 , . . . , s′′t2−1, s

′
0, s

′
1, s

′
2, s

′
3 . . . ).

It is clear that (s′, x′) is reached from (s̃, x) after t1+t2 iterations of Gf , and since
s̃t = st for t < t1, by the choice of t1, we have d((s, x), (s̃, x)) < ε. Consequently,
Gf is transitive.

=⇒ If Γ (f) is not strongly connected, then there exist two configurations x
and x′ such that Γ (f) has no path from x to x′. Let s and s′ be two strategies,
and let 0 < ε < 1. Then, for all (s′′, x′′) such that d((s′′, x′′), (s, x)) < ε, we have
x′′ = x, so that iteration of Gf from (s′′, x′′) only reaches points in X that are
at a greater distance than one with (s′, x′). So Gf is not transitive.

We now prove that:

Proposition 2. T ⊂ R.

Proof. Let f : �n → �
n such that Gf is transitive (f is in T ). Let (s, x) ∈ X

and ε > 0. To prove that f is in R, it is sufficient to prove that there exists a
strategy s̃ such that the distance between (s̃, x) and (s, x) is less than ε, and
such that (s̃, x) is a periodic point.
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Let t1 = �− log10(ε)�, and let x′ be the configuration that we obtain from
(s, x) after t1 iterations of Gf . According to the previous proposition, Γ (f) is
strongly connected. Thus, there exists a strategy s′ and t2 ∈ N such that x is
reached from (s′, x′) after t2 iterations of Gf .

Consider the strategy s̃ that alternates the first t1 terms of s and the first t2
terms of s′: s̃ = (s0, . . . , st1−1, s

′
0, . . . , s

′
t2−1, s0, . . . , st1−1, s

′
0, . . . , s

′
t2−1, s0, . . . ).

It is clear that (s̃, x) is obtained from (s̃, x) after t1 + t2 iterations of Gf . So
(s̃, x) is a periodic point. Since s̃t = st for t < t1, by the choice of t1, we have
d((s, x), (s̃, x)) < ε.

Remark 1. Inclusion of proposition 2 is strict, due to the identity map (which is
regular, but not transitive).

We can thus conclude that C = R ∩ T = T , which leads to the following char-
acterization:

Theorem 1. Let f : �n → �
n. Gf is chaotic (according to Devaney) if and

only if Γ (f) is strongly connected.

4 Generating Strongly Connected Iteration Graph

The previous section has shown the interest of strongly connected iteration
graphs. This section presents two approaches to generate functions with such
property. The first is algorithmic (Sect. 4.1) whereas the second gives a suffi-
cient condition on the interaction graph of the Boolean map f to get a strongly
connected iteration graph (Sect. 4.2).

4.1 Algorithmic Generation of Strongly Connected Graphs

This section presents a first solution to compute a map f with a strongly con-
nected graph of iterations Γ (f). It is based on a generate and test approach.

We first consider the negation function ¬ whose iteration graph Γ (¬) is obvi-
ously strongly connected. Given a graph Γ , initialized with Γ (¬), the algorithm
iteratively does the two following stages:

1. randomly select an edge of the current iteration graph Γ and
2. check whether the current iteration graph without that edge remains strongly

connected (by a Tarjan algorithm [7], for instance). In the positive case the
edge is removed from Γ ,

until a rate r of removed edges is greater than a threshold given by the user. If
r is close to 0% (i.e., few edges are removed), there should remain about n× 2n

edges. In the opposite case, if r is close to 100%, there are about 2n edges left.
In all cases, this step returns the last graph Γ that is strongly connected. It is
now then obvious to return the function f whose iteration graph is Γ .

Even if this algorithm always returns functions with stroncly connected com-
ponent (SCC) iteration graph, it suffers from iteratively verifying connexity on
the whole iteration graph, i.e., on a graph with 2n vertices. Next section tackles
this problem: it presents sufficient conditions on a graph reduced to n elements
that allow to obtain SCC iteration graph.
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4.2 Sufficient Conditions to Strongly Connected Graph

We are looking for maps f such that interactions between xi and fj make its
iteration graph Γ (f) strongly connected. We first need additional notations and
definitions. For x ∈ �n and i ∈ �1; n�, we denote by xi the configuration that we
obtain be switching the i−th component of x, that is, xi = (x1, . . . , xi, . . . , xn).
Information interactions between the components of the system are obtained
from the discrete Jacobian matrix f ′ of f , which is defined as being the map
which associates to each configuration x ∈ �n, the n× n matrix

f ′(x) = (fij(x)), fij(x) =
fi(xj)− fi(x)

xj
j − xj

(i, j ∈ �1; n�).

More precisely, interactions are represented under the form of a signed directed
graph G(f) defined by: the set of vertices is �1; n�, and there exists an arc from
j to i of sign s ∈ {−1, 1}, denoted (j, s, i), if fij(x) = s for at least one x ∈ �n.
Note that the presence of both a positive and a negative arc from one vertex to
another is allowed.

Let P be a sequence of arcs of G(f) of the form

(i1, s1, i2), (i2, s2, i3), . . . , (ir, sr, ir+1).

Then, P is said to be a path of G(f) of length r and of sign Πr
i=1si, and ir+1 is

said to be reachable from i1. P is a circuit if ir+1 = i1 and if the vertices i1,. . . ir
are pairwise distinct. A vertex i of G(f) has a positive (resp. negative) loop, if
G(f) has a positive (resp. negative) arc from i to itself.

Let α ∈ �. We denote by fα the map from �
n−1 to itself defined for any

x ∈ �n−1 by
fα(x) = (f1(x, α), . . . , fn−1(x, α)).

We denote by Γ (f)α the subgraph of Γ (f) induced by the subset �n−1 × {α}
of �n. Let us give and prove the following technical lemma:

Lemma 1. G(fα) is a subgraph of G(f): every arc of G(fα) is an arc of G(f).
Furthermore, if G(f) has no arc from n to a vertex i �= n, then G(fα) = G(f)\n:
one obtains G(fα) from G(f) by removing vertex n as well as all the arcs with
n as initial or final vertex.

Proof. Suppose that G(fα) has an arc from j to i of sign s. By definition, there
exists x ∈ �n−1 such that fα

ij(x) = s, and since it is clear that fα
ij(x) = fij(x, α),

we deduce that G(f) has an arc from j to i of sign s. This proves the first
assertion. To demonstrate the second assertion, it is sufficient to prove that if
G(f) has an arc from i to j of sign s, with i, j �= n, then G(fα) also contains this
arc. So suppose that G(f) has an arc from i to j of sign s, with i, j �= n. Then,
there exists x ∈ �n−1 and β ∈ � such that fij(x, β) = s. If fij(x, β) �= fij(x, α),
then fi depends on the n−th component, in contradiction with the assumptions.
So fij(x, α) = s. It is then clear that fα

ij(x) = s, that is, G(fα) has an arc from
j to i of sign s.
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Lemma 2. Γ (fα) and Γ (f)α are isomorphic.

Proof. Let h be the bijection from �
n−1 to �n−1×{α} defined by h(x) = (x, α)

for all x ∈ �n−1. It is easy to see that h is an isomorphism between Γ (fα) and
Γ (f)α that is: Γ (fα) has an arc from x to y if and only if Γ (f)α has an arc from
h(x) to h(y).

Theorem 2. Let f be a map from �
n to itself such that:

1. G(f) has no cycle of length at least two;
2. every vertex of G(f) with a positive loop has also a negative loop;
3. every vertex of G(f) is reachable from a vertex with a negative loop.

Then, Γ (f) is strongly connected.

Proof. By induction on n. Let f be a map from �
n to itself satisfying the con-

ditions of the statement. If n = 1 the result is obvious: according to the third
point of the statement, G(f) has a negative loop; so f(x) = x and Γ (f) is a
cycle of length two. Assume that n > 1 and that the theorem is valid for maps
from �

n−1 to itself. According to the first point of the statement, G(f) contains
at least one vertex i such that G(f) has no arc from i to a vertex j �= i. Without
loss of generality, assume that n is such a vertex. Then, according to Lemma 1,
f0 and f1 satisfy the conditions of the statement. So, by induction hypothe-
sis, Γ (f0) and Γ (f1) are strongly connected. So, according to Lemma 2, Γ (f)0

and Γ (f)1 are strongly connected. To prove that Γ (f) is strongly connected,
it is sufficient to prove that Γ (f) contains an arc x → y with xn = 0 < yn

and an arc x → y with xn = 1 > yn. In other words, it is sufficient to prove
that:

∀α ∈ �, ∃x ∈ �n, xn = α �= fn(x). (∗)

Assume first that n has a negative loop. Then, by the definition of G(f),
there exists x ∈ �n such that fnn(x) < 0. Consequently, if xn = 0, we have
fn(x) > fn(xn), so xn = 0 �= fn(x) and xn

n = 1 �= fn(xn); and if xn = 1, we
have fn(x) < fn(xn), so xn = 1 �= fn(x) and xn

n = 0 �= fn(xn). In both cases,
the condition (∗) holds.

Now, assume that n has no negative loop. According to the second point
of the statement, n has no loop, i.e., the value of fn(x) does not depend on
the value of xn. According to the third point of the statement, n is not of
in-degree zero in G(f), i.e., fn is not a constant. Consequently, there exists
x, y ∈ �

n such that fn(x) = 1 and fn(y) = 0. Let x′ = (x1, . . . , xn−1, 0)
and y′ = (y1, . . . , yn−1, 1). Since the value of fn(x) (resp. fn(y)) does not de-
pend on the value of xn (resp. yn), we have fn(x′) = fn(x) = 1 �= x′

n (resp.
fn(y′) = fn(y) = 0 �= y′

n). So the condition (∗) holds, and the theorem is
proven.
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Input: a function f , an iteration number b, an initial configuration x0 (n bits)
Output: a configuration x (n bits)
x ← x0;
k ← b + XORshift(b + 1);
for i = 0, . . . , k − 1 do

s ← XORshift(n);
x ← Ff (s, x);

end
return x;

Algorithm 1. PRNG with chaotic functions

5 Application to Pseudo Random Number Generator

This section presents a direct application of the theory developed above.

5.1 Boolean and Chaos Based PRNG

We have proposed in [8] a new family of generators that receives two PRNGs
as inputs. These two generators are mixed with chaotic iterations, leading thus
to a new PRNG that improves the statistical properties of each generator taken
alone. Furthermore, our generator possesses various chaos properties that none of
the generators used as input present. This former family of PRNGs was reduced
to chaotic iterations of the negation function, i.e., reduced to G¬. However, it
is possible to use any function f such that Gf is chaotic (s.t. the graph Γ (f) is
strongly connected).

Input: the internal configuration z (a 32-bit word)
Output: y (a 32-bit word)
z ← z ⊕ (z � 13);
z ← z ⊕ (z 	 17);
z ← z ⊕ (z � 5);
y ← z;
return y;

Algorithm 2. An arbitrary round of XORshift algorithm

This generator is synthesized in Algorithm 1. It takes as input: a function f ;
an integer b, ensuring that the number of executed iterations is at least b and
at most 2b + 1; and an initial configuration x0. It returns the new generated
configuration x. Internally, it embeds two XORshift(k) PRNGs [9] that returns
integers uniformly distributed into �1; k�. XORshift is a category of very fast
PRNGs designed by George Marsaglia, which repeatedly uses the transform of
exclusive or (XOR, ⊕) on a number with a bit shifted version of it. This PRNG,
which has a period of 232 − 1 = 4.29× 109, is summed up in Algorithm 2. It is
used in our PRNG to compute the strategy length and the strategy elements.

We are then left to instantiate the function f in Algorithm 1 according to
approaches detailed in Sect. 4. Next section shows how the uniformity of distri-
bution has been taken into account.
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Fig. 1. Graphs of candidate functions with n = 2

5.2 Uniform Distribution of the Output

Let us firstly recall that a stochastic matrix is a square matrix where all entries
are nonnegative and all rows sum to 1. A double stochastic matrix is a stochastic
matrix where all columns sum to 1. Finally, a stochastic matrix M of size n is
regular if ∃k ∈ �∗, ∀i, j ∈ �1; n�, Mk

ij > 0. The following theorem is well-known:

Theorem 3. If M is a regular stochastic matrix, then M has an unique sta-
tionary probability vector π. Moreover, if π0 is any initial probability vector and
πk+1 = πk.M for k = 0, 1, . . . then the Markov chain πk converges to π as k
tends to infinity.

Let us explain on a small example with 2 elements that the application of such a
theorem allows to verify whether the output is uniformly distributed or not. Let
then g and h be the two functions from �

2 to itself defined in Fig. 1 and whose
iteration graphs are strongly connected. As the XORshift PRNG is uniformly
distributed, the strategy is uniform on �1, 2�, and each edge of Γ (g) and of Γ (h)
has a probability 1/2 to be traversed. In other words, Γ (g) is the oriented graph
of a Markov chain. It is thus easy to verify that the transition matrix of such a
process is Mg = 1

2M̌g, where M̌g is the adjacency matrix given in Fig. 1c, and
similarly for Mh.

Both Mg and Mh are (stochastic and) regular since no element is null either
in M4

g or in M4
h. Furthermore, the probability vectors πg = (0.4, 0.1, 0.3, 0.2)

and πh = (0.25, 0.25, 0.25, 0.25) verify πgMg = πg and πhMh = πh. Thus, due to
Theorem 3, for any initial probability vector π0, we have limk→∞ π0Mk

g = πg and
limk→∞ π0Mk

h = πh. So the Markov process associated to h tends to the uniform
distribution whereas the one associated to g does not. It induces that g shouldn’t
be iterated in a PRNG. On the contrary, h can be embedded into the PRNG
Algorithm 1, provided the number b of iterations between two successive values
is sufficiently large so that the Markov process becomes close to the uniform
distribution.

Let us first prove the following technical lemma.
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Lemma 3. Let f : �n → �
n, Γ (f) its iteration graph, M̌ the adjacency matrix

of Γ (f), and M a n × n matrix defined by Mij = 1
nM̌ij if i �= j and Mii =

1 − 1
n

n∑
j=1,j �=i

M̌ij otherwise. Then M is a regular stochastic matrix iff Γ (f) is

strongly connected.

Proof. Notice first that M is a stochastic matrix by construction. If there exists
k s.t. Mk

ij > 0 for any i, j ∈ �1; 2n�, the inequality M̌k
ij > 0 is thus established.

Since M̌k
ij is the number of paths from i to j of length k in Γ (f) and since such

a number is positive, thus Γ (f) is strongly connected.
Conversely, if Γ (f) is SCC, then for all vertices i and j, a path can be found to

reach j from i in at most 2n steps. There exists thus kij ∈ �1, 2n� s.t. M̌
kij

ij > 0. As

all the multiples l×kij of kij are such that M̌
l×kij

ij > 0, we can conclude that, if k

is the least common multiple of {kij

/
i, j ∈ �1, 2n�} thus ∀i, j ∈ �1, 2n�, M̌k

ij > 0.
So, M̌ and thus M are regular.

With such a material, we can formulate and prove the following theorem.

Theorem 4. Let f : �n → �
n, Γ (f) its iteration graph, M̌ its adjacency matrix

and M a n × n matrix defined as in the previous lemma. If Γ (f) is SCC then
the output of the PRNG detailed in Algorithm 1 follows a law that tends to the
uniform distribution if and only if M is a double stochastic matrix.

Proof. M is a regular stochastic matrix (Lemma 3) that has a unique stationary
probability vector (Theorem 3). Let π be

(
1
2n , . . . , 1

2n

)
. We have πM = π iff the

sum of values of each column of M is one, i.e., iff M is double stochastic.

5.3 Experiments

Let us consider the interaction graph G(f) given in Fig. 2a. It verifies Theorem 2:
all the functions f whose interaction graph is G(f) have then a strongly con-
nected iteration graph Γ (f). Practically, a simple constraint solving has found
520 non isomorphic functions and only 16 of them have a double stochastic ma-
trix. Figure 2b synthesizes them by defining the images of 0,1,2,. . . ,14,15. Let
ej be the unit vector in the canonical basis, the third column gives

max
j∈�1,2n�

{min{k | k ∈ N,
∣∣∣∣πjM

k
f − π

∣∣∣∣
2

< 10−4}}where πj is 1/n.ej,

that is the smallest iteration number that is sufficient to obtain a deviation less
than 10−4 from the uniform distribution. Such a number is the parameter b in
Algorithm 1.

Quality of produced random sequences have been evaluated with the NIST
Statistical Test Suite SP 800-22 [10]. For all 15 tests of this battery, the signif-
icance level α is set to 1%: a p-value which is greater than 0.01 is equivalent
that the keystream is accepted as random with a confidence of 99%. Synthetic
results in Table. 1 show that all these functions successfully pass this statistical
battery of tests.
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(a) Interaction
Graph

Name Function image b
F1 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 1, 0 206
F2 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 5, 4, 3, 2, 0, 1 94
F3 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 5, 4, 3, 2, 1, 0 69
F4 14, 15, 12, 13, 10, 11, 9, 8, 6, 7, 5, 4, 3, 2, 0, 1 56
F5 14, 15, 12, 13, 10, 11, 9, 8, 6, 7, 5, 4, 3, 2, 1, 0 48
F6 14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 4, 5, 2, 3, 0, 1 86
F7 14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 4, 5, 2, 3, 1, 0 58
F8 14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 4, 5, 3, 2, 1, 0 46
F9 14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 5, 4, 3, 2, 0, 1 42
F10 14, 15, 12, 13, 10, 11, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 69
F11 14, 15, 12, 13, 11, 10, 9, 8, 7, 6, 5, 4, 2, 3, 1, 0 58
F12 14, 15, 13, 12, 11, 10, 8, 9, 7, 6, 4, 5, 2, 3, 1, 0 35
F13 14, 15, 13, 12, 11, 10, 8, 9, 7, 6, 4, 5, 3, 2, 1, 0 56
F14 14, 15, 13, 12, 11, 10, 8, 9, 7, 6, 5, 4, 3, 2, 1, 0 94
F15 14, 15, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 0, 1 86
F16 14, 15, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 206

(b) Double Stochastic Functions

Fig. 2. Chaotic Functions Candidates with n = 4

Table 1. NIST Test Evaluation of PRNG instances

Property F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
Frequency 77.9 15.4 83.4 59.6 16.3 38.4 20.2 29.0 77.9 21.3 65.8 85.1 51.4 35.0 77.9 92.4

BlockFrequency 88.3 36.7 43.7 81.7 79.8 5.9 19.2 2.7 98.8 1.0 21.3 63.7 1.4 7.6 99.1 33.5
CumulativeSums 76.4 86.6 8.7 66.7 2.2 52.6 20.8 80.4 9.8 54.0 73.6 80.1 60.7 79.7 76.0 44.7

Runs 5.2 41.9 59.6 89.8 23.7 76.0 77.9 79.8 45.6 59.6 89.8 2.4 96.4 10.9 72.0 11.5
LongestRun 21.3 93.6 69.9 23.7 33.5 30.4 41.9 43.7 30.4 17.2 41.9 51.4 59.6 65.8 11.5 61.6

Rank 1.0 41.9 35.0 45.6 51.4 20.2 31.9 83.4 89.8 38.4 61.6 4.0 21.3 69.9 47.5 95.6
FFT 40.1 92.4 97.8 86.8 43.7 38.4 76.0 57.5 36.7 35.0 55.4 57.5 86.8 76.0 31.9 7.6

NonOverlappingTemplate 49.0 45.7 50.5 51.0 48.8 51.2 51.6 50.9 50.9 48.8 45.5 47.3 47.0 49.2 48.6 46.4
OverlappingTemplate 27.6 10.9 53.4 61.6 16.3 2.7 59.6 94.6 88.3 55.4 76.0 23.7 47.5 91.1 65.8 81.7

Universal 24.9 35.0 72.0 51.4 20.2 74.0 40.1 23.7 9.1 72.0 4.9 13.7 14.5 1.8 93.6 65.8
ApproximateEntropy 33.5 57.5 65.8 53.4 26.2 98.3 53.4 63.7 38.4 6.7 53.4 19.2 20.2 27.6 67.9 88.3
RandomExcursions 29.8 35.7 40.9 36.3 54.8 50.8 43.5 46.0 39.1 40.8 29.6 42.0 34.8 33.8 63.0 46.3

RandomExcursionsVariant 32.2 40.2 23.0 39.6 47.5 37.2 56.9 54.6 53.3 31.5 23.0 38.1 52.3 57.1 47.7 40.8
Serial 56.9 58.5 70.4 73.2 31.3 45.9 60.8 39.9 57.7 21.2 6.4 15.6 44.7 31.4 71.7 49.1

LinearComplexity 24.9 23.7 96.4 61.6 83.4 49.4 49.4 18.2 3.5 76.0 24.9 97.2 38.4 38.4 1.1 8.6

6 Conclusion and Future Work

This work has shown that discrete-time dynamical systems Gf are chaotic iff
embedded Boolean maps f have strongly connected iteration graph Γ (f). Suffi-
cient conditions on its interaction graph G(f) have been further proven to ensure
this strong connexity. Finally, we have proven that the output of such a function
is uniformly distributed iff the induced Markov chain can be represented as a
double stochastic matrix. We have applied such a complete theoretical work on
chaos to pseudo random number generation and all experiments have confirmed
theoretical results. As far as we know, this work is the first one that allows to
compute new functions whose chaoticity is proven and preserved during imple-
mentation. The approach relevance has been shown on PRNGs but is not limited
to that domain. In fact, this whole work has applications everywhere chaoticity
is a possible answer, e.g., in hash functions, digital watermarking. . .
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In a future work, we will investigate whether the characterization of uniform
distribution may be expressed in terms of interaction graph, avoiding thus to
generate functions and to check later whether they induce double stochastic
Markov matrix. The impact of the description of chaotic iterations as Markov
processes will be studied more largely. We will look for new characterizations
concerning other relevant topological properties of disorder, such as topological
entropy, expansivity, Lyapunov exponent, instability, etc. Finally, the relation
between these mathematical definitions and intended properties for each targeted
application will be investigated too, specifically in the security field.
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Abstract. Let F be a CNF formula with n variables and m clauses. F is t-
satisfiable if for any t clauses in F , there is a truth assignment which satisfies all
of them. Lieberherr and Specker (1982) and, later, Yannakakis (1994) proved that
in each 3-satisfiable CNF formula at least 2

3
of its clauses can be satisfied by a

truth assignment. Yannakakis’s proof utilizes the fact that 2
3
m is a lower bound

on the expected number of clauses satisfied by a random truth assignment over
a certain distribution. A CNF formula F is called expanding if for every subset
X of the variables of F , the number of clauses containing variables of X is
not smaller than |X|. In this paper we strengthen the 2

3
m bound for expanding 3-

satisfiable CNF formulas by showing that for every such formula F at least 2
3
m+

ρn clauses of F can be satisfied by a truth assignment, where ρ(> 0.0019) is a
constant. Our proof uses a probabilistic method with a sophisticated distribution
for truth values. We use the bound 2

3
m + ρn and results on matching autarkies

to obtain a new lower bound on the maximum number of clauses that can be
satisfied by a truth assignment in any 3-satisfiable CNF formula.

We use our results above to show that the following parameterized problem
is fixed-parameter tractable and, moreover, has a kernel with a linear number
of variables. In 3-S-MAXSAT-AE, we are given a 3-satisfiable CNF formula F
with m clauses and asked to determine whether there is an assignment which
satisfies at least 2

3
m + k clauses, where k is the parameter. Note that Mahajan

and Raman (1999) asked whether 2-S-MAXSAT-AE, the corresponding problem
for 2-satisfiable formulas, is fixed-parameter tractable. Crowston and the authors
of this paper proved in [9] that 2-S-MAXSAT-AE is fixed-parameter tractable
and, moreover, has a kernel with a linear number of variables. 2-S-MAXSAT-AE
appears to be easier than 3-S-MAXSAT-AE and, unlike this paper, [9] uses only
deterministic combinatorial arguments.

1 Introduction

For a formula F in conjunctive normal form (CNF), let C(F ) = {C1, . . . , Cm} denote
the set of clauses in F . Each clause C ∈ C(F ) has an associated positive integral
weight w(C), and we let w(C(F )) denote the total weight of clauses in C(F ). (We use
weighted clauses rather than letting F be a multiset of clauses; see [13] for a discussion.)
Let sat(F ) be the maximum weight of clauses in C(F ) that can be satisfied by a truth
assignment. The set of variables of F will be denoted by V (F ). In what follows, we
assume that no clause has a variable and its negation and no clause is empty.

For any integer t, we say F is t-satisfiable if for any t clauses in C(F ) there exists
a truth assignment that satisfies all of them. Thus, if F is is 2-satisfiable then C(F )

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 138–147, 2011.
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contains no pair of clauses of the form {x}, {x̄}; if F is 3-satisfiable then the forbidden
sets of clauses are pairs of the form {x}, {x̄} and triplets of the form {x}, {y}, {x̄, ȳ} or
{x}, {x̄, y}, {x̄, ȳ}, as well as any triplets that can be derived from these by switching
positive literals with negative literals.

It is well-known that for any 1-satisfiable CNF formula (i.e., any CNF formula)
F , sat(F ) ≥ 1

2w(C(F )). Lieberherr and Specker [18,19] and, later, Yannakakis [26]

proved the following: if F is 2-satisfiable then sat(F ) ≥ φ̂w(C(F )) (where φ̂ ≈
0.61803 is the positive root of x2 + x = 1); if F is 3-satisfiable then sat(F ) ≥
2
3w(C(F )). These bounds are asymptotically tight (that is, for any ε > 0, there ex-
ists a 3-satisfiable CNF formula F such that sat(F ) < (2

3 + ε)w(C(F )) and similar
inequalities hold for 1-satisfiable and 2-satisfiable formulas).

Mahajan and Raman [20] considered the following parameterized problem SAT-
AE1: we are given a (1-satisfiable) CNF formula F and asked to determine whether
there is an assignment which satisfies at least 1

2w(C(F )) + k clauses, where k is the
parameter. (Basic notions on parameterized algorithms and complexity are given in
Section 2.) For SAT-AE, Mahajan and Raman [20] obtained a kernel with at most
6k + 3 variables and 10k clauses. Crowston et al. [9] improved this to 4k variables and
(2
√

5 + 4)k clauses.
Crowston et al. [9] strengthened the bound sat(F ) ≥ φ̂w(C(F )) for 2-satisfiable

CNF formulas to sat(F ) ≥ φ̂w(C(F )) + γ|V (F )| (where γ ≈ 0.072949) using deter-
ministic combinatorial arguments. The stronger bound allowed them to solve an open
problem of Mahajan and Raman [20] by proving that the following parameterized prob-
lem is fixed-parameter tractable and, moreover, has a kernel with a linear number of
variables. In 2-S-MAXSAT-AE, we are given a 2-satisfiable CNF formula F and asked
to determine whether there is an assignment which satisfies at least φ̂w(C(F )) + k
clauses, where k is the parameter.

In this paper, we strengthen the bound sat(F ) ≥ 2
3w(C(F )) for 3-satisfiable CNF

formulas. The deterministic approach of Crowston et al. [9] cannot be readily extended
to the 3-satisfiability case (which appears to be more complicated) and we use proba-
bilistic arguments instead. The stronger bound is given in Corollary 2 and mainly fol-
lows from Theorems 1 and 2. To prove both theorems, we use a probabilistic argument
based on bounding the expected number of clauses satisfied by a random truth assign-
ment. The difficulty lies in choosing an appropriate probabilistic distribution. While the
distribution in the proof of Theorem 1 is relatively simple and was already used by Yan-
nakakis [26], the distribution in the proof of Theorem 2 is quite complicated and, to the
best of our knowledge, has never been used before. To formulate and prove Theorems 1
and 2, we use a new classification of clauses based on a notion of a hard clause. Another
important ingredient is autarkies, a notion well-studied for the Satisfiability problem,
see, e.g., [5], [17]; we introduce autarkies in the next section and use one of the key
results on matching autarkies in our proofs.2

1 AE stands for Above Expectation.
2 Autarkies were first introduced in [22]. Autarkies in general are the subject of much study, see,

e.g., [11], [17], [24], and see [5] for an overview. In this paper we only make use of a small part
of the research on autarkies, as we may limit ourselves to the concept of matching autarkies
for our proofs.
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The improved bound allows us to prove that the following parameterized problem is
fixed-parameter tractable and, moreover, has a kernel with a linear number of variables.
In 3-S-MAXSAT-AE, we are given a 3-satisfiable CNF formula F and asked to deter-
mine whether there is an assignment which satisfies at least 2

3w(C(F )) + k clauses,
where k is the parameter. This answers a question from [9].

A parameterization of MAX-r-SAT above a tight lower bound was recently studied
in [3,7,8,15]. Approaches used there are completely different from the one used in this
paper.

Our paper is organized as follows. In Section 2, we provide additional terminology
and notation. In Section 3, we prove our main results. A CNF formula F is expanding
if for every subset X of the variables of F , the weight of clauses containing variables of
X is not smaller than |X |. We show that for each expanding 3-satisfiable CNF formula
F , we have sat(F ) ≥ 2

3w(C(F )) + ρ|V |, where ρ is a positive constant. In Section
3, we also prove that 3-S-MAXSAT-AE is fixed parameter tractable, and has a kernel
with a linear number of variables. Our lower bound for sat(F ) above is derived from
Theorems 1 and 2. This lower bound implies a lower bound for sat(F ) for every 3-
satisfiable CNF formula F and the latter lower bound is given in Corollary 2. Theorem
2 is the main technical result in this paper, and we leave its proof for Section 4.

Two open problems on t-satisfiable CNF formulas for any t can be found in [13].

2 Terminology and Notation

For a clause C, we let V (C) be the set of variables such that x ∈ V (C) if x ∈ C or
x̄ ∈ C. We assume that every clause C appears only once in C(F ). If at any stage we
have two clauses C1, C2 containing exactly the same literals, we remove one of them,
say C2, and add the weight w(C2) to w(C1). For a set of clauses C′ ⊆ C(F ), the weight
w(C′) of C′ is

∑
C∈C′ w(C). We will often write w(F ) instead of w(C(F )).

Definition 1. For any 3-satisfiable CNF formula, F , define Vu(F ), Ch(F ), Vh\u(F )
and Vh̄(F ) as follows:

Vu(F ) denotes the variables appearing in unit clauses in F . That is, s ∈ Vu(F ) if and
only if {s} ∈ C(F ) or {s̄} ∈ C(F ).

Ch(F ) denotes the set of hard clauses in F , which are defined as follows: Every unit
clause in F is a hard clause. For s ∈ Vu(F ), t /∈ Vu(F ), every clause of the form
{s̄, t} or {s̄, t̄} is a hard clause if {s} ∈ C(F ), and every clause of the form {s, t}
or {s, t̄} is a hard clause if {s̄} ∈ C(F ).

Vh\u(F ) contains all variables which belong to a hard clause but not to a unit clause.
Vh̄(F ) = V (F ) \ (Vu(F ) ∪ Vh\u(F )). That is, Vh̄(F ) contains all variables which do

not belong to any hard clause.

Remark 1. The hard clauses are so called because they are the clauses that make it
difficult to strengthen the sat(F ) ≥ 2

3w(C) bound. If F contains only non-hard clauses,
then it is easy to improve the bound to sat(F ) ≥ 19

27w(C) (see the proof of Theorem 1).
For a formula containing hard clauses, it is much harder to strengthen the bound, and
this is what makes up the main technical part of the paper.



A New Bound for 3-Satisfiable Maxsat and Its Algorithmic Application 141

For any x ∈ V (F ), let wh(x) denote the weight of all hard clauses containing the literal
x and let wh(x̄) denote the weight of all hard clauses containing the literal x̄.

Any formula F ′ obtained from F by deleting some clauses is called a subformula
of F. If F ′ is a subformula of F then F \ F ′ denotes the formula obtained from F
by deleting all clauses of F ′. Let X be a subset of the variables of a CNF formula F .
Then FX denotes the subformula obtained from F by deleting all clauses not containing
variables from X. Recall that a CNF formula F is expanding if |X | ≤ w(FX ) for each
X ⊆ V (F ).

A truth assignment is a function α : V (F ) → {TRUE, FALSE}. A truth assignment
α satisfies a clause C if there exists x ∈ V (F ) such that x ∈ C and α(x) = TRUE,
or x̄ ∈ C and α(x) = FALSE. We will denote, by satα(F ), the sum of the weight of
clauses in F satisfied by α. We denote the maximum value of satα(F ), over all α, by
sat(F ).

A function β : U → {TRUE, FALSE}, where U is a subset of V (F ), is called a
partial truth assignment. A partial truth assignment β : U → {TRUE, FALSE} is an
autarky if β satisfies all clauses of FU . Autarkies are of interest, in particular, due to the
following simple fact whose trivial proof is omitted.

Lemma 1. Let β : U → {TRUE, FALSE} be an autarky for a CNF formula F . Then
given any truth assignment γ on F \ FU , we can find, in polynomial time, a truth
assignment τ such that satτ (F ) = w(FU ) + satγ(F \ FU ).

In Lemma 1, such a τ can be found by combining the partial truth assignments β and
γ, and letting τ have arbitrary values for the variables not covered by β or γ. A version
of Lemma 1 can be traced back to Monien and Speckenmeyer [22].

A parameterized problem is a subset L ⊆ Σ∗ × N over a finite alphabet Σ. L is
fixed-parameter tractable if the membership of an instance (I, k) in Σ∗ × N can be
decided in time f(k)|I|O(1) where f is a function of the parameter k only [10,12,23].
Given a parameterized problem L, a kernelization of L is a polynomial-time algorithm
that maps an instance (x, k) to an instance (x′, k′) (the kernel) such that (i) (x, k) ∈ L
if and only if (x′, k′) ∈ L, (ii) k′ ≤ h(k), and (iii) |x′| ≤ g(k) for some functions h
and g. It is well-known [10,12,23] that a decidable parameterized problem L is fixed-
parameter tractable if and only if it has a kernel. By replacing Condition (ii) in the
definition of a kernel by k′ ≤ k, we obtain a definition of a proper kernel (sometimes,
it is called a strong kernel); cf. [1,6].

3 Main Results

Let F be a CNF formula, C1, . . . , Cm the clauses of F , and x1, . . . , xn the vari-
ables of F . Let pi be the probability that xi is assigned TRUE independently of all
other variables, i = 1, . . . , n. Let α be a random truth assignment corresponding
to this probability distribution. Then the probability that a clause Cj with variables
{xi1 , . . . , xis} is satisfied, is Pj = 1 −

∏s
�=1 p∗i�

, where p∗i�
= 1− pi�

if xi�
∈ Cj and

p∗i�
= pi�

if x̄i�
∈ Cj . Thus, E(satα(Cj)) = w(Cj)Pj , and by linearity of expecta-

tion, E(satα(F )) =
∑m

j=1 w(Cj)Pj . We can find, in polynomial time, a (deterministic)
truth assignment τ such that E(satτ (F )) ≥

∑m
j=1 w(Cj)Pj using the well-known de-

randomization method of conditional expectations, cf. [4,26].
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Assumption 1. Let F be a 3-satisfiable CNF formula. In what follows, we may assume
without loss of generality that all unit clauses in F are of the form {x}, where x ∈
V (F ).

Indeed, suppose that {x̄} ∈ C(F ), then {x} /∈ C(F ) as F is 3-satisfiable. Thus, we may
replace x̄ by x and x by x̄ in all clauses of F without changing sat(F ). Note that by
Assumption 1, the only non-unit hard clauses are those of the form {s̄, t} or {s̄, t̄}, for
s ∈ Vu(F ), t /∈ Vu(F ).

The following result is an easy extension of the 2
3w(F ) bound on sat(F ). The proof

is almost exactly the same as Yannakakis’s proof in [26]; in particular the probability
distribution involved is the same. The only difference is that our proof involves extra
analysis to get the addition of 1

27w(C(F )\Ch(F )).

Theorem 1. Let F be a 3-satisfiable CNF formula. Then we can find, in polynomial
time, a truth assignment τ such that satτ (F ) ≥ 2

3w(F ) + 1
27w(C(F )\Ch(F )).

Proof. Let C∗ = C(F )\Ch(F ). We will construct a random truth assignment α such
that E(satα(F )) ≥ 2

3w(F ) + 1
27w(C∗). This implies that there exists an assignment

which satisfies at least 2
3w(F ) + 1

27w(C∗) clauses, as required.
We define a random truth assignment α as follows. For x ∈ Vu(F ), we let α(x) be

TRUE with probability 2
3 . For x ∈ V (F )\Vu(F ), we let α(x) be TRUE with probability

1
2 . The values are assigned to the variables independently from each other.

Let C be a clause and let α be the random truth assignment above. We will now
bound E(satα(C)). We first consider a hard clause C and, to simplify notation, assume
that w(C) = 1. By Assumption 1, we have the following cases.

C = {x} : In this case the probability that C is satisfied is exactly 2
3 and, thus,

E(satα(C)) = 2
3 .

C = {x̄, y} or C = {x̄, ȳ} for x ∈ Vu(F ), y /∈ Vu(F ) : Then E(satα(C)) = 1− 2
3 ×

1
2 = 2

3 .

Thus, for every hard clause C with w(C) ≥ 1, we have E(satα(C)) ≥ 2
3w(C). We will

now consider a non-hard clause C and, to simplify notation, assume that w(C) = 1.
The following cases cover all possibilities.

|C| = 2 and |V (C) ∩ Vu(F )| = 2 : C = {x̄, ȳ} is not possible as F is 3-satisfiable
and we cannot satisfy the three clauses {x}, {y} and {x̄, ȳ} simultaneously. There-
fore we may assume that a positive literal x belongs to C(F ), which implies that
E(satα(C)) ≥ 1− 1

3 ×
2
3 = 7

9 , as x ∈ Vu(F ).
|C| = 2 and |V (C) ∩ Vu(F )| = 1 : Then C = {x, y} or C = {x, ȳ} for x ∈

Vu(F ), y /∈ Vu(F ). Then E(satα(C)) = 1− 1
2 ×

1
3 = 5

6
|C| = 2 and |V (C) ∩ Vu(F )| = 0 : Then E(satα(C)) = 1− 1

2 ×
1
2 = 3

4 .
|C| ≥ 3 : Since for each literal the probability of it being assigned FALSE is at most 2

3 ,
we have E(satα(C)) ≥ 1− (2

3 )3 = 19
27 .

Thus, for every non-hard clause C with weight w(C), we have E(satα(C)) ≥ 19
27w(C).

Therefore,

E(satα(F )) ≥ 2
3
w(Ch(F )) +

19
27

w(C∗) =
2
3
w(F ) +

1
27

w(C∗).
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To find the required assignment τ , it remains to apply derandomization as described in
the beginning of this section. ��

This theorem and the definition of an expanding formula imply the following:

Corollary 1. Let F be an expanding 3-satisfiable CNF formula. Then we can find, in
polynomial time, a truth assignment τ such that satτ (F ) ≥ 2

3w(F ) + 1
27 |Vh̄(F )|.

Our aim is to prove a lower bound on sat(F ) that includes a multiple of the number of
variables as a term. It is clear that for general 3-satisfiable F such a bound is impossi-
ble. For consider a formula containing a single clause C containing a large number of
variables. We can arbitrarily increase the number of variables in the formula, and the
maximum number of satisfiable clauses will always be 1. We therefore need a reduction
rule that cuts out ‘excess’ variables. Our reduction rule is based on the following lemma
proved in Fleischner et al. [11] (Lemma 10), Kullmann [17] (Lemma 7.7) and Szeider
[24] (Lemma 9).

Lemma 2. Let F be a CNF formula. Define a bipartite graph, BF , associated with
F as follows: V (F ) and C(F ) are partite sets of BF and there is an edge between
v ∈ V (F ) and C ∈ C(F ) in BF if and only if v ∈ V (C). Given a maximum matching
in BF , in time O(|C(F )|) we can find an autarky β : U → {TRUE, FALSE} such that
F \ FU is expanding.

The papers [11], [17] and [24] actually show that F \ FU is 1-expanding (see [11] or
[24] for a definition), which is a slightly stronger result. For our results it is enough that
F \ FU is expanding. An autarky found by the algorithm of Lemma 2 is of a special
kind, called a matching autarky; such autarkies were used first by Aharoni and Linial
[2]. Note that the autarky found in Lemma 2 can be empty, i.e., U = ∅.

Lemmas 1 and 2 immediately imply the following:

Lemma 3. Let F be a CNF formula and let β : U → {TRUE, FALSE} be an autarky
found by the algorithm of Lemma 2. Then given any truth assignment γ on F \ FU ,
we can find, in polynomial time, a truth assignment τ such that satτ (F ) = w(FU ) +
satγ(F \ FU ), and F \ FU is an expanding formula.

In Section 4 we will give a proof of the following theorem, which is the main technical

result of this paper. Hereafter, we let q = 3

√
1
3 ≈ 0.69336 and q′ =

√
1
3 ≈ 0.57735.

Theorem 2. Let F be a 3-satisfiable CNF formula. Then we can find, in polynomial
time, a truth assignment τ such that

satτ (F ) ≥ 2
3
w(F ) + (q − 2

3
)(1− q′)|Vu(F )|+ (q − 2

3
)(q′ − 1

2
)|Vh\u(F )|.

Using Corollary 1 and Theorem 2, we can show the following main bound:

Theorem 3. Let F be an expanding 3-satisfiable CNF formula. Then there exists a
constant ρ > 0.0019 such that satτ (F ) ≥ 2

3w(F )+ρ|V (F )| for some truth assignment
τ that can be found in polynomial time.
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Proof. First note that |V (F )| = |Vu(F )|+ |Vh\u(F )|+ |Vh̄(F )|. Let β = (q− 2
3 )(q′−

1
2 ), and observe that Theorem 2 implies satτ ′(F ) ≥ 2

3w(F ) +β(|Vu(F )|+ |Vh\u(F )|)
for some truth assignment τ ′ that can be found in polynomial time. Multiplying this
inequality by 1

27 , we obtain 1
27 satτ ′(F ) ≥ 1

27 ×
2
3w(F ) + β

27 (|Vu(F )|+ |Vh\u(F )|).
Similarly, from Corollary 1 we obtain βsatτ ′′(F ) ≥ β 2

3w(F )+ β
27 |Vh̄(F )| for some

truth assignment τ ′′ that can be found in polynomial time. Let τ ∈ {τ ′, τ ′′} such that
satτ (F ) = max{satτ ′(F ), satτ ′′(F )}.

The inequalities for 1
27 satτ ′(F ) and βsatτ ′′(F ) and the definition of τ imply

(
1
27

+ β)satτ (F ) ≥ (
1
27

+ β)
2
3
w(F ) +

β

27
|V (F )|.

Therefore, we have that satτ (F ) ≥ 2
3w(F )+ρ|V (F )|, where ρ = β/27

1/27+β > 0.0019.
This completes the proof. ��

As a direct consequence of Theorem 3 and Lemma 3, we also have the following bound
on sat(F ) for any 3-satisfiable CNF formula F .

Corollary 2. Let F be a 3-satisfiable CNF formula and let β : U → {TRUE, FALSE}
be an autarky found by the algorithm of Lemma 2. Then there exists a constant ρ >
0.0019 such that

satτ (F ) ≥ 2
3
w(F ) +

1
3
w(FU ) + ρ|V (F \ FU )|

for some truth assignment τ that can be found in polynomial time.

Corollary 3. 3-S-MAXSAT-AE is fixed-parameter tractable. Moreover, it has a proper
kernel with O(k) variables.

Proof. Let F be a 3-satisfiable CNF formula, let β : U → {TRUE, FALSE} be an
autarky found by the algorithm of Lemma 2 and let F ′ = F \ FU . We are to decide
whether sat(F ) ≥ 2

3w(F ) + k, where k (an integer) is the parameter.
By Lemma 3, sat(F ) = w(FU ) + sat(F ′). Thus, sat(F ) ≥ 2

3w(F ) + k if and

only if sat(F ′) ≥ 2
3w(F ′) + k′, where k′ = 
k−w(FU )

3 �. Since F ′ is an expanding
3-satisfiable formula, by Theorem 3 we have satτ (F ′) ≥ 2

3w(F ′) + ρ|V (F ′)| for some
truth assignment τ that can be found in polynomial time, where ρ > 0.0019. Thus, if
ρ|V (F ′)| ≥ k′, then the answer to 3-S-MAXSAT-AE is YES and the corresponding
truth assignment can be found in polynomial time. Otherwise, |V (F ′)| < k′

ρ and, thus,

|V (F ′)| = O(k), and so we can find the optimal assignment in time 20(k)mO(1), where
m = |C(F )|.

Let m′ = |C(F ′)|. If m′ ≥ 2|V (F ′)|, we can find sat(F ′) and, thus, sat(F ) in
polynomial time. Therefore, we may assume that m′ < 2|V (F ′)| and, thus, m′ = 2O(k)

implying that F ′ is a kernel. Since k′ ≤ k, F ′ is a proper kernel. ��

4 Proof of Theorem 2

Due to the space limitation, we omit proofs of the lemmas in this section; the proofs
can be found in [13].



A New Bound for 3-Satisfiable Maxsat and Its Algorithmic Application 145

Assumption 2. In what follows, we may assume that for each x ∈ Vu(F ), x is not a
literal in any non-unit clause of F .

Indeed, let F ′ be the formula obtained from F by replacing every clause C with a
literal x ∈ Vu(F ) by {x}. Note that sat(F ′) ≤ sat(F ), Vu(F ′) = Vu(F ), and since
no non-unit hard clause contains the literal x for x ∈ Vu(F ′), we have Vh\u(F ′) =
Vh\u(F ). Note that while F ′ is 3-satisfiable, it is not necessarily expanding, even if F
is expanding.

Since in this section we will only be considering a fixed 3-satisfiable CNF formula
F , we will denote V (F ), C(F ), Vu(F ), Ch(F ), Vh\u(F ) and Vh̄(F ) by V , C, Vu, Ch,
Vh\u and Vh̄, respectively.

In order to prove Theorem 2 we define the following random truth assignment, α.

Recall that q = 3

√
1
3 ≈ 0.69336 and q′ =

√
1
3 ≈ 0.57735.

Definition 2. Let Vh\u = {t1, t2, . . . , ta}, a = |Vh\u|, and let p1, p2, . . . , pa be arbi-
trary real values from the interval [1−q′, q′], i.e., 1−q′ ≤ pi ≤ q′ for all i = 1, 2, . . . , a.
Set the probability of a variable being TRUE as follows, independently of all other vari-
ables.

Let P(α(ti) = TRUE) = pi for all i = 1, 2, . . . , a (that is, the probability that ti is
given the truth value TRUE by α is pi). Let P(α(r) = TRUE) = 1

2 for all r ∈ Vh̄.
Before we assign probabilities to the variables in Vu = {s1, s2, . . . , sr}, we will

define random variables Ai and Bi, for all i = 1, 2, . . . , r as follows. Let Ai be the
weight of the hard clauses containing the literal s̄i which are satisfied by the above par-
tial truth assignment. Analogously let Bi be the weight of the hard clauses containing
the literal s̄i which are not satisfied by the above partial truth assignment.

Observe that wh(si) is the weight of the singleton clause {si}. If E(Bi) ≥ wh(si),
then let P(α(si) = TRUE) = 1− q. If E(Bi) < wh(si), then let P(α(si) = TRUE) = q.

Lemma 4. Given the probability distribution in Definition 2, the following holds.

E(satα(F )) ≥ 2
3
w(F ) +

1
3

r∑
i=1

[E(Ai)− E(Bi)] + (q − 2
3

)
r∑

i=1

E(|Bi − wh(si)|).

We will now assign values to p1, p2, . . . , pa in Definition 2 such that the right-hand side
of the inequality in Lemma 4 becomes as large as possible.

Definition 3. Partition Vh\u into sets T ∗, T1, T2, T3, . . . , Tr, such that the following
holds: T ∗ = {ti ∈ Vh\u | wh(ti) �= wh(t̄i)} and ti ∈ Tj if and only if ti ∈ Vh\u \ T ∗

and j is the minimum value such that {s̄j , ti} ∈ C or {s̄j, t̄i} ∈ C.

For all ti ∈ T ∗ let pi = q′ if wh(ti) > wh(t̄i) and let pi = 1−q′ if wh(ti) < wh(t̄i).

First let pi = 1
2 for all ti ∈ Vh\u \ T ∗, and then modify the values of pi as follows.

For each j = 1, 2, 3, . . . , r (in this order), if E(Bj) > wh(sj), then for all ti ∈ Tj ,
we will let pi = q′ if {s̄j, t̄i} ∈ C and pi = 1 − q′ if {s̄j , ti} ∈ C. Analogously, if
E(Bj) ≤ wh(sj), then for all ti ∈ Tj we will let pi = q′ if {s̄j, ti} ∈ C and pi = 1− q′

if {s̄j, t̄i} ∈ C. (Note that {s̄j, t̄i} and {s̄j, ti} cannot both be in C, as F is 3-satisfiable.)

Note that after having modified the values of pi for ti ∈ Tj these modifications
may affect the values of E(Bj′ ) for j′ > j. But they do not affect any values E(Bj′′ )
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for any j′′ < j. Note also that modifying pi for ti ∈ Tj will not change whether
E(Bj) ≤ wh(sj) or E(Bj) > wh(sj). In fact if E(Bj) ≤ wh(sj) then modifying pi

from 1
2 will decrease E(Bj) by (q′− 1

2 ), and if E(Bj) > wh(sj) then modifying pi will
increase E(Bj) by (q′ − 1

2 ).

The following lemmas now hold.

Lemma 5.
∑r

i=1[E(Ai) − E(Bi)] ≥ (2q′ − 1)|T ∗|, where T ∗ is defined in
Definition 3.

Lemma 6. E(|Bi − wh(si)|) ≥ 1− q′ + (q′ − 1
2 )|Ti| for all i = 1, 2, . . . , r.

The following corollary is equivalent to Theorem 2, and therefore completes the proof
of this theorem.

Corollary 4. We can find, in polynomial time, a truth assignment τ such that

satτ (F ) ≥ 2
3
w(F ) + (q − 2

3
)(1 − q′)|Vu|+ (q − 2

3
)(q′ − 1

2
)|Vh\u|.

Proof. Under the probability distribution given in Definition 2 (which uses Definition
3) the following holds by Lemmas 4, 5 and 6 and the fact that 2q′−1

3 > (q− 2
3 )(q′− 1

2 ):
E(sat(F )) is at least

2
3w(F ) + 1

3

∑r
i=1[E(Ai)− E(Bi)] + (q − 2

3 )
∑r

i=1 E(|Bi − wh(si)|)
≥ 2

3w(F ) + 1
3 (2q′ − 1)|T ∗|+ (q − 2

3 )
[
|Vu|(1− q′) + (q′ − 1

2 )
∑r

i=1 |Ti|
]

≥ 2
3w(F ) + (q − 2

3 )(1 − q′)|Vu|+ (q − 2
3 )(q′ − 1

2 )|Vh\u|.

This completes the proof as sat(F ) ≥ E(sat(F )) and the required deterministic truth
assignment τ can be found using the method of conditional expectations. Although
the probability distribution given in Definition 2 uses irrational probabilities, we can
apply the method of conditional expectations without performing any calculations on
irrationals, by using the identities q3 = 1

3 and q′2 = 1
3 . For a full explanation, see [13].

��
Acknowledgments. This research was partially supported by an International Joint
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Abstract. In two-player games on graph, the players construct an infinite path
through the game graph and get a reward computed by a payoff function over in-
finite paths. Over weighted graphs, the typical and most studied payoff functions
compute the limit-average or the discounted sum of the rewards along the path.
Besides their simple definition, these two payoff functions enjoy the property that
memoryless optimal strategies always exist.

In an attempt to construct other simple payoff functions, we define a class of
payoff functions which compute an (infinite) weighted average of the rewards.
This new class contains both the limit-average and the discounted sum func-
tions, and we show that they are the only members of this class which induce
memoryless optimal strategies, showing that there is essentially no other simple
payoff functions.

1 Introduction

Two-player games on graphs have many applications in computer science, such as
the synthesis problem [7], and the model-checking of open reactive systems [1].
Games are also fundamental in logics, topology, and automata theory [17,14,20].
Games with quantitative objectives have been used to design resource-constrained sys-
tems [27,9,3,4], and to support quantitative model-checking and robustness [5,6,26].

In a two-player game on a graph, a token is moved by the players along the edges
of the graph. The set of states is partitioned into player-1 states from which player 1
moves the token, and player-2 states from which player 2 moves the token. The inter-
action of the two players results in a play, an infinite path through the game graph. In
qualitative zero-sum games, each play is winning exactly for one of the two players;
in quantitative games, a payoff function assigns a value to every play, which is paid by
player 2 to player 1. Therefore, player 1 tries to maximize the payoff while player 2
tries to minimize it. Typically, the edges of the graph carry a reward, and the payoff is
computed as a function of the infinite sequences of rewards on the play.

Two payoff functions have received most of the attention in literature: the mean-
payoff function (for example, see [11,27,15,19,12,21]) and the discounted-sum function
(for example, see [24,12,22,23,9]). The mean-payoff value is the long-run average of
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the rewards. The discounted sum is the infinite sum of the rewards under a discount
factor 0 < λ < 1. For an infinite sequence of rewards w = w0w1 . . . , we have:

MeanPayoff(w) = lim inf
n→∞

1
n
·

n−1∑
i=0

wi DiscSumλ(w) = (1 − λ) ·
∞∑

i=0

λi · wi

While these payoff functions have a simple, intuitive, and mathematically elegant def-
inition, it is natural to ask why they are playing such a central role in the study of
quantitative games. One answer is perhaps that memoryless optimal strategies exist for
these objectives. A strategy is memoryless if it is independent of the history of the play
and depends only on the current state. Related to this property is the fact that the prob-
lem of deciding the winner in such games is in NP ∩ coNP, while no polynomial time
algorithm is known for this problem. The situation is similar to the case of parity games
in the setting of qualitative games where it was proved that the parity objective is the
only prefix-independent objective to admit memoryless winning strategies [8], and the
parity condition is known as a canonical way to express ω-regular languages [25].

In this paper, we prove a similar result in the setting of quantitative games. We con-
sider a general class of payoff functions which compute an infinite weighted average of
the rewards. The payoff functions are parameterized by an infinite sequence of rational
coefficients {cn}n≥0, and defined as follows:

WeightedAvg(w) = lim inf
n→∞

∑n
i=0 ci · wi∑n

i=0 ci
.

We consider this class of functions for its simple and natural definition, and because
it generalizes both mean-payoff and discounted-sum which can be obtained as special
cases, namely for ci = 1 for all1 i ≥ 0, and ci = λi respectively. We study the prob-
lem of characterizing which payoff functions in this class admit memoryless optimal
strategies for both players. Our results are as follows:

1. If the series
∑∞

i=0 ci converges (and is finite), then the discounted sum is the only
payoff function that admits memoryless optimal strategies for both players.

2. If the series
∑∞

i=0 ci does not converge, but the sequence {cn}n≥0 is bounded, then
for memoryless optimal strategies the payoff function is equivalent to the mean-
payoff function (equivalent for the optimal value and optimal strategies of both
players).

Thus our results show that the discounted sum and mean-payoff functions, besides their
elegant and intuitive definition, are the only members from a large class of natural pay-
off functions such that both players have memoryless optimal strategies. In other words,
there is essentially no other simple payoff functions in the class of weighted infinite
average payoff functions. This further establishes the canonicity of the mean-payoff
and discounted-sum functions, and suggests that they should play a central role in the
emerging theory of quantitative automata and languages [10,16,2,5].

In the study of games on graphs, characterizing the classes of payoff functions that
admit memoryless strategies is a research direction that has been investigated in [13]

1 Note that other sequences also define the mean-payoff function, such as ci = 1 + 1/2i .
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which give general conditions on the payoff functions such that both players have mem-
oryless optimal strategies, and [18] which presents similar results when only one player
has memoryless optimal strategies. The conditions given in these previous works are
useful in this paper, in particular the fact that it is sufficient to check that memory-
less strategies are sufficient in one-player games [13]. However, conditions such as
sub-mixing and selectiveness of the payoff function are not immediate to establish, es-
pecially when the sum of the coefficients {cn}n≥0 does not converge. We identify the
necessary condition of boundedness of the coefficients {cn}n≥0 to derive the mean-
payoff function. Our results show that if the sequence is convergent, then discounted
sum (specified as {λn}n≥0, for λ < 1) is the only memoryless payoff function; and if
the sequence is divergent and bounded, then mean-payoff (specified as {λn}n≥0 with
λ = 1) is the only memoryless payoff function. However we show that if the sequence
is divergent and unbounded, then there exists a sequence {λn}n≥0, with λ > 1, that
does not induce memoryless optimal strategies.

2 Definitions

Game graphs. A two-player game graph G = 〈Q, E, w〉 consists of a finite set Q of
states partitioned into player-1 states Q1 and player-2 states Q2 (i.e., Q = Q1 ∪ Q2),
and a set E ⊆ Q×Q of edges such that for all q ∈ Q, there exists (at least one) q′ ∈ Q
such that (q, q′) ∈ E. The weight function w : E → Q assigns a rational valued reward
to each edge. For a state q ∈ Q, we write E(q) = {r ∈ Q | (q, r) ∈ E} for the set of
successor states of q. A player-1 game is a game graph where Q1 = Q and Q2 = ∅.
Player-2 games are defined analogously.

Plays and strategies. A game on G starting from a state q0 ∈ Q is played in rounds
as follows. If the game is in a player-1 state, then player 1 chooses the successor state
from the set of outgoing edges; otherwise the game is in a player-2 state, and player
2 chooses the successor state. The game results in a play from q0, i.e., an infinite path
ρ = 〈q0q1 . . .〉 such that (qi, qi+1) ∈ E for all i ≥ 0. We write Ω for the set of all plays.
The prefix of length n of ρ is denoted by ρ(n) = q0 . . . qn. A strategy for a player is a
recipe that specifies how to extend plays. Formally, a strategy for player 1 is a function
σ : Q∗Q1 → Q such that (q, σ(ρ · q)) ∈ E for all ρ ∈ Q∗ and q ∈ Q1. The strategies
for player 2 are defined analogously. We write Σ and Π for the sets of all strategies for
player 1 and player 2, respectively.

An important special class of strategies are memoryless strategies which do not de-
pend on the history of a play, but only on the current state. Each memoryless strategy
for player 1 can be specified as a function σ: Q1 → Q such that σ(q) ∈ E(q) for all
q ∈ Q1, and analogously for memoryless player 2 strategies.

Given a starting state q ∈ Q, the outcome of strategies σ ∈ Σ for player 1, and π ∈ Π
for player 2, is the play ω(q, σ, π) = 〈q0q1 . . .〉 such that : q0 = q and for all k ≥ 0,
if qk ∈ Q1, then σ(q0, q1, . . . , qk) = qk+1, and if qk ∈ Q2, then π(q0, q1, . . . , qk) =
qk+1.

Payoff functions, optimal strategies. The objective of player 1 is to construct a
play that maximizes a payoff function φ : Ω → R ∪ {−∞, +∞} which is a
measurable function that assigns to every value a real-valued payoff. The value for
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player 1 is the maximal payoff that can be achieved against all strategies of the other
player. Formally the value for player 1 for a starting state q is defined as val1(φ) =
supσ∈Σ infπ∈Π φ(ω(q, σ, π)). A strategy σ∗ is optimal for player 1 from q if the strat-
egy achieves at least the value of the game against all strategies for player 2, i.e.,
infπ∈Π φ(ω(q, σ∗, π)) = val1(φ). The values and optimal strategies for player 2 are
defined analogously.

The mean-payoff and discounted-sum functions are examples of payoff functions
that are well studied, probably because they are simple in the sense that they induce
memoryless optimal strategies and that this property yields conceptually simple fix-
point algorithms for game solving [24,11,27,12]. In an attempt to construct other sim-
ple payoff functions, we define the class of weighted average payoffs which compute
(infinite) weighted averages of the rewards, and we ask which payoff functions in this
class induce memoryless optimal strategies.

We say that a sequence {cn}n≥0 of rational numbers has no zero partial sum if∑n
i=0 ci �= 0 for all n ≥ 0. Given a sequence {cn}n≥0 with no zero partial sum, the

weighted average payoff function for a play 〈q0q1q2 . . .〉 is

φ (q0q1q2 . . . ) = lim inf
n→∞

∑n
i=0 ci · w(qi, qi+1)∑n

i=0 ci
.

Note that we use lim infn→∞ in this definition because the plain limit may not exist
in general. The behavior of the weighted average payoff functions crucially depends on
whether the series S =

∑∞
i=0 ci converges or not. In particular, the plain limit exists

if S converges (and is finite). Accordingly, we consider the cases of converging and
diverging sum of weights to characterize the class of weighted average payoff functions
that admit memoryless optimal strategies for both players. Note that the case where
ci = 1 for all i ≥ 0 gives the mean-payoff function (and S diverges), and the case
ci = λi for 0 < λ < 1 gives the discounted sum with discount factor λ (and S
converges). All our results hold if we consider lim supn→∞ instead of lim infn→∞
in the definition of weighted average objectives.

In the sequel, we consider payoff functions φ : Qω → R that maps an infinite se-
quence of rational numbers to a real value with the implicit assumption that the value of
a play q0q1q2 · · · ∈ Qω according to φ is φ(w(q0, q1)w(q1, q2) . . . ) since the sequence
of rewards determines the payoff value.

We recall the following useful necessary condition for memoryless optimal strategies
to exist [13]. A payoff function φ is monotone if whenever there exists a finite sequence
of rewards x ∈ Q∗ and two sequences u, v ∈ Qω such that φ(xu) ≤ φ(xv), then
φ(yu) ≤ φ(yv) for all finite sequence of rewards y ∈ Q∗.

Lemma 2.1 ([13]). If the payoff function φ induces memoryless optimal strategy for all
two-player game graphs, then φ is monotone.

3 Weighted Average with Converging Sum of Weights

The main result of this section is that for converging sum of weights (i.e., if
limn→∞

∑n
i=0 ci = c∗ ∈ R), the only weighted average payoff function that induce

memoryless optimal strategies is the discounted sum.
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Fig. 1. Examples of one-player game graphs

Theorem 3.1. Let (cn)n∈N be a sequence of real numbers with no zero partial sum
such that

∑∞
i=0 ci = c∗ ∈ R. The weighted average payoff function defined by (cn)n∈N

induces optimal memoryless strategies for all two-player game graphs if and only if
there exists 0 < λ < 1 such that ci+1 = λ · ci for all i ≥ 0.

To prove Theorem 3.1, we first use its assumptions to obtain necessary conditions for
the weighted average payoff function defined by (cn)n∈N to induce optimal memory-
less strategies. By assumptions of Theorem 3.1, we refer to the fact that (cn)n∈N is a
sequence of real numbers with no zero partial sum such that

∑∞
i=0 ci = c∗ ∈ R, and that

it defines a weighted average payoff function that induces optimal memoryless strate-
gies for all 2-player game graphs. All lemmas of this section use the the assumptions of
Theorem 3.1, but we generally omit to mention them explicitly.

Let dn =
∑n−1

i=0 ci, l = lim infn→∞ 1
dn

and L = lim supn→∞
1

dn
. The assumption

that
∑∞

i=0 ci = c∗ ∈ R implies that l �= 0. Note that c0 �= 0 since (cn)n∈N is a sequence
with no zero partial sum. We can define the sequence c′n = cn

c0
which defines the same

payoff function φ. Therefore we assume without loss of generality that c0 = 1.

Discussion about following three lemmas. In the following three lemmas we prove prop-
erties of a sequence (cn)n∈N with the assumption that the sequence induces optimal
memoryless strategies in all game graphs. However note that the property we prove is
about the sequence, and hence in all the lemmas we need to show witness game graphs
where the sequence must satisfy the required properties.

Lemma 3.1. If the weighted average payoff function defined by (cn)n∈N induces opti-
mal memoryless strategies for all two-player game graphs, then 0 ≤ l ≤ L ≤ 1.

Proof. Consider the one-player game graph G1 shown in Fig. 1. In one-player
games, strategies correspond to paths. The two memoryless strategies give the paths
0ω and 1ω with payoff value 0 and 1 respectively. The strategy which takes the
edge with reward 1 once, and then always the edge with reward 0 gets the payoff
φ (10ω) = lim infn→∞ 1

dn
= l. Similarly, the path 01ω has the payoff φ (01ω) =

lim infn→∞
(

1− 1
dn

)
= 1 − lim supn→∞

1
dn

= 1 − L. As all such payoffs must

be between the payoffs obtained by the only two memoryless strategies, we have l ≥ 0
and L ≤ 1, and the result follows (L ≥ l follows from their definition). ��

Lemma 3.2. There exists w0 ∈ N such that w0 > 1, w0l > 1 and the following
inequalities hold, for all k ≥ 0: ckl ≤ 1− dkL and ckw0l ≥ 1− dkL.

Proof. Since 1 ≥ l > 0 (by Lemma 3.1), we can choose w0 ∈ N such that w0l > 1 (and
w0 > 1). Consider the game graph G2 shown in Fig. 1 and the case when w = 1. The
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optimal memoryless strategy is to stay on the starting state forever because φ(10ω) =
l ≤ φ(1w) = 1. Using Lemma 2.1, we conclude that since φ(10ω) ≤ φ(1ω), we must

have φ(0k10ω) ≤ φ(0k1ω) i.e. ckl ≤ 1−
(∑k−1

i=0 ci

)
L which implies ckl ≤ 1− dkL.

Consider the case when w = w0 in Fig. 1. The optimal memoryless strategy is
to choose the edge with reward w0 from the starting state since φ(w00ω) = w0l >
φ(1ω) = 1. Using Lemma 2.1, we conclude that since φ(w00ω) > φ(1ω), we must have

φ(0kw00ω) ≥ φ(0k1ω) i.e. ckw0l ≥ 1−
(∑k−1

i=0 ci

)
L which implies ckw0l ≥ 1−dkL.

��

From the inequalities in Lemma 3.2, it follows that for all k we have ckl ≤ ckw0l; and
since w0 > 1 and l > 0 we must have ck ≥ 0 for all k.

Corollary 3.1. Assuming c0 = 1, we have ck ≥ 0 for all k ≥ 0.

It follows from Corollary 3.1 that the sequence (dn)n≥0 is increasing and bounded
from above (if dn was not bounded, then there would exist a subsequence (dnk

) which
diverges, implying that the sequence { 1

dnk

} converges to 0 in contradiction with the

fact that lim infn→∞ 1
dn

= l > 0). Therefore, dn must converge to some real number
say c∗ > 0 (since c0 = 1). We need a last lemma to prove Theorem 3.1. Recall that
we have ci ≥ 0 for all i and

∑∞
i=0 ci = c∗ > 0. Given a finite game graph G, let W

be the largest reward in absolute value. For any sequence of rewards (wn) in a run on
G, the sequence χn =

∑n
i=0 ci(wi + W ) is increasing and bounded from above by

2 ·W ·dn and thus by 2 ·W · c∗. Therefore, χn is a convergent sequence and
∑∞

i=0 ciwi

converges as well. Now, we can write the payoff function as φ(w0w1 . . . ) =
∑∞

i=0 ciwi

c∗ .
We decompose c∗ into S0 =

∑∞
i=0 c2i and S1 =

∑∞
i=0 c2i+1, i.e. c∗ = S0 + S1. Note

that S0 and S1 are well defined.

Lemma 3.3. For all reals α, β, γ, if αS0 + βS1 ≤ γ(S0 + S1), then (γ − α)ci ≥
(β − γ)ci+1 for all i ≥ 0.

Proof. Consider the game graph G4 as shown in Fig. 1. The condition αS0 + βS1 ≤
γ(S0 + S1) implies that the optimal memoryless strategy is to always choose the edge
with reward γ. This means that φ(γiαβγω) ≤ φ(γω) hence αci+βci+1 ≤ γ(ci+ci+1),
i.e. (γ − α)ci ≥ (β − γ)ci+1 for all i ≥ 0. ��

We are now ready to prove the main theorem of this section.

Proof (of Theorem 3.1). First, we show that S1 ≤ S0. By contradiction, assume that
S1 > S0. Choosing α = 1, β = −1, and γ = 0 in Lemma 3.3, and since S0 − S1 ≤ 0,
we get −ci ≥ −ci+1 for all i ≥ 0 which implies cn ≥ c0 = 1 for all n, which
contradicts that

∑∞
i=0 ci converges to c∗ ∈ R.

Now, we have S1 ≤ S0 and let λ = S1
S0
≤ 1. Consider a sequence of rational numbers

ln
kn

converging to λ from the right, i.e., ln
kn
≥ λ for all n, and limn→∞ ln

kn
= λ. Taking

α = 1, β = kn + ln + 1, and γ = ln + 1 in Lemma 3.3, and since the condition
S0 + (kn + ln + 1)S1 ≤ (ln + 1)(S0 + S1) is equivalent to knS1 ≤ lnS0 which holds
since ln

kn
≥ λ, we obtain lnci ≥ knci+1 for all n ≥ 0 and all i ≥ 0, that is ci+1 ≤ ln

kn
ci

and in the limit for n →∞, we get ci+1 ≤ λci for all i ≥ 0.
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Similarly, consider a sequence of rational numbers rn

sn
converging to λ from the left.

Taking α = rn + sn + 1, β = 1, and γ = sn + 1 in Lemma 3.3, and since the condition
(rn + sn + 1)S0 + S1 ≤ (sn + 1)(S0 + S1) is equivalent to rnS0 ≤ snS1 which holds
since rn

sn
≤ λ, we obtain rnci ≤ snci+1 for all n ≥ 0 and all i ≥ 0, that is ci+1 ≥ rn

sn
ci

and in the limit for n →∞, we get ci+1 ≥ λci for all i ≥ 0.
The two results imply that ci+1 = λci for all i ≥ 0 where 0 ≤ λ < 1. Note that

λ �= 1 because
∑∞

i=0 ci converges. ��

Since it is known that for ci = λi, the weighted average payoff function induces mem-
oryless optimal strategies in all two-player games, Theorem 3.1 shows that discounted
sum is the only memoryless payoff function when the sum of weights

∑∞
i=0 ci con-

verges.

4 Weighted Average with Diverging Sum of Weights

In this section we consider weighted average objectives such that the sum of the weights∑∞
i=0 ci is divergent. We first consider the case when the sequence (cn)n∈N is bounded

and show that the mean-payoff function is the only memoryless one.

4.1 Bounded Sequence

We are interested in characterizing the class of weighted average objectives that are
memoryless, under the assumption the sequence (cn) is bounded, i.e., there exists a
constant c such that |cn| ≤ c for all n. The boundedness assumption is satisfied by
the important special case of regular sequence of weights which can be produced by a
deterministic finite automaton. We say that a sequence {cn} is regular if it is eventually
periodic, i.e. there exist n0 ≥ 0 and p > 0 such that cn+p = cn for all n ≥ n0. Recall
that we assume the partial sum to be always non-zero, i.e., dn =

∑n−1
i=0 ci �= 0 for all

n. We show the following result.

Theorem 4.1. Let (cn)n∈N be a sequence of real numbers with no zero partial sum
such that

∑∞
i=0|ci| = ∞ (the sum is divergent) and there exists a constant c such that

|ci| ≤ c for all i ≥ 0 (the sequence is bounded). The weighted average payoff function
φ defined by (cn)n∈N induces optimal memoryless strategies for all two-player game
graphs if and only if φ coincides with the mean-payoff function over regular words.

Remark. From Theorem 4.1, it follows that all mean-payoff functions φ over bounded
sequences that induce optimal memoryless strategies are equivalent to the mean-payoff
function, in the sense that the optimal value and optimal strategies for φ are the same as
for the mean-payoff function. This is because memoryless strategies induce a play that
is a regular word. We also point out that it is not necessary that the sequence (cn)n≥0

consists of a constant value to define the mean-payoff function. For example, the payoff
function defined by the sequence cn = 1 + 1/(n + 1)2 also defines the mean-payoff
function.

We prove Theorem 4.1 through a sequence of lemmas (using the the assumptions
of Theorem 4.1, but we generally omit to mention them explicitly). In the following
lemma we prove the existence of the limit of the sequence { 1

dn
}n≥0.
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Lemma 4.1. If lim infn→∞ 1
dn

= 0, then lim supn→∞
1

dn
= 0.

Proof. Since l = lim infn→∞ 1
dn

= 0, there is a subsequence {dnk
} which either

diverges to +∞ or −∞.
1. If the subsequence {dnk

} diverges to +∞, assume without loss of generality that
each dnk

> 0. Consider the one-player game graph G3 shown in Figure 1. We consider
the run corresponding to taking the edge with weight−1 for the first nk steps followed
by taking the 0 edge forever. The payoff for this run is given by

lim inf
n→∞

−dnk

dn
= −dnk

· lim sup
n→∞

1
dn

= −dnk
· L.

Since we assume the existence of memoryless optimal strategies this payoff should lie
between −1 and 0. This implies that dnk

· L ≤ 1 for all k. Since L ≥ l ≥ 0 and the
sequence dnk

is unbounded, we must have L = 0.
2. If the subsequence {dnk

} diverges to −∞, assume that each dnk
< 0. Consider

the one-player game graph G1 shown in Figure 1. We consider the run corresponding
to taking the edge with weight 1 for the first nk steps followed by taking the 0 edge
forever. The payoff for this run is given by

lim inf
n→∞

dnk

dn
= −|dnk

| · lim sup
n→∞

1
dn

= −|dnk
| · L.

This payoff should lie between 0 and 1 (optimal strategies being memoryless), and this
implies L = 0 as above. ��

Since lim supn→∞ dn = ∞, Lemma 4.1 concludes that the sequence { 1
dn
} converges

to 0 i.e. limn→∞ 1
dn

= 0. It also gives us the following corollaries which are a simple
consequence of the fact that lim infn→∞(an+bn) = a+lim infn→∞ bn if an converges
to a.

Corollary 4.1. If l = 0, then the payoff function φ does not depend upon any finite
prefix of the run, i.e., φ(a1a2 . . . aku) = φ(0ku) = φ(b1b2 . . . bku) for all ai’s and bi’s.

Corollary 4.2. If l = 0, then the payoff function φ does not change by modifying finitely
many values in the sequence {cn}n≥0.

By Corollary 4.1, we have φ(xaω) = a for all a ∈ R. For 0 ≤ i ≤ k − 1, consider the
payoff Sk,i = φ

(
(0i10k−i−1)ω

)
for the infinite repetition of the finite sequence of k

rewards in which all rewards are 0 except the (i + 1)th which is 1. We show that Sk,i is
independent of i.

Lemma 4.2. We have Sk,0 = Sk,1 = · · · = Sk,k−1 ≤ 1
k .

Proof. If Sk,0 ≤ Sk,1 then by prefixing by the single letter word 0 and using Lemma 2.1
we conclude that Sk,1 ≤ Sk,2. We continue this process until we get Sk,k−2 ≤ Sk,k−1.
After applying this step again we get

Sk,k−1 ≤ φ
(
0(0k−11)ω

)
= φ

(
1(0k−11)ω

)
= φ

(
(10k−1)ω

)
= Sk,0.
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q0

0i10k−i−1

i

10k−1

0

0k−11

k−1. . . . . .

Fig. 2. The game G(k, i)

Hence, we have Sk,0 ≤ Sk,1 ≤ · · · ≤ Sk,k−1 ≤ Sk,0. Thus we have Sk,i is a constant
irrespective of the value of i. A similar argument works in the other case when Sk,0 ≥
Sk,1.

We will show that Sk,i ≤ 1
k for 0 ≤ i ≤ k − 1. For this, we take ai,n to be

the nth term of the sequence whose lim inf is the value φ((0ii0k−i−1)ω) = Sk,i i.e.

ai,n =
∑

j∈{j≥0|jk+i≤n} cjk+i∑
n
j=0 cj

=
∑

j∈{0≤j≤n|j≡i(mod k)} cj∑
n
j=0 cj

. Clearly,
∑k−1

i=0 ai,n = 1 and

hence using the fact that lim infn→∞(a0,n +a1,n + · · ·+ak−1,n) ≥ lim infn→∞ a0,n +
· · ·+lim infn→∞ ak−1,n, we have 1 ≥

∑k−1
i=0 Sk,i = kSk,i (since all Sk,i’s are constant

with respect to i) and therefore, Sk,i ≤ 1
k for 0 ≤ i ≤ k − 1. ��

Let Tk,i = −φ
(
(0i(−1)0k−i−1)ω

)
. By similar argument as in the proof of Lemma 4.2,

we show that Tk,0 = Tk,1 = · · · = Tk,k−1 ≥ 1
k .

We now show that (dn) must eventually have always the same sign, i.e., there exists
n0 such that sign(dm) = sign(dn) for all m, n ≥ n0. Note that by the assumption of
non-zero partial sums, we have dn �= 0 for all n.

Lemma 4.3. The dn’s eventually have the same sign.

Proof. Let c > 0 be such that |cn| < c for all n. Since (dn) is unbounded, there
exists n0 such that |dn| > c for all n > n0 and then if there exists m > n0 such
that dm > 0 and dm+1 < 0, we must have dm > c and dm+1 < −c. Thus we have
cm+1 = dm+1−dm < −2c, and hence |cm+1| > 2c which contradicts the boundedness
assumption on (cn). ��

If the dn’s are eventually negative then we use the sequence {c′n = −cn} to ob-
tain the same payoff and in this case dn = −

∑∞
i=0 ci will be eventually positive.

Therefore we assume that there is some n0 such that dn > 0 for all n > n0. Let
β = max{|c0|, |c1|, . . . , |cn0 |}. We replace c0 by 1 and all ci’s with β for 1 ≤ i ≤ n0.
By corollary 4.2 we observe that the payoff function will still not change. Hence, we
can also assume that dn > 0 for all n ≥ 0.

Lemma 4.4. We have Sk,i = 1
k = Tk,i for all 0 ≤ i ≤ k − 1.

Proof. Consider the game graph G(k, i) which consists of state q0 in which the player
can choose among k cycles of length k where in the ith cycle, all rewards are 0 except
on the (i + 1)th edge which has reward 1 (see Fig. 2).

Consider the strategy in state q0 where the player after every k · r steps (r ≥ 0)
chooses the cycle which maximizes the contribution for the next k edges. Let ir be
the index such that kr ≤ ir ≤ kr + k − 1 and cir = max{ckr, . . . , ckr+k−1} for
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r ≥ 0. The payoff for this strategy is lim infn→∞ tn where tn =
ci0+ci1+···+cir−1

dn
for

ir−1 ≤ n < ir.

Note that cir ≥
∑kr+k−1

i=kr ci

k (the maximum is greater than the average), and we get
the following (where c is a bound on (|cn|)n≥0):

tn ≥
∑n−1

i=0 ci

k · dn
− c

dn
, hence lim inf

n→∞ tn ≥
1
k
− lim inf

n→∞
c

dn
=

1
k

.

By Lemma 4.2, the payoff of all memoryless strategies in G(k, i) is Sk,0, and the fact
that memoryless optimal strategies exist entails that Sk0 = lim infn→∞ tn ≥ 1

k , and
thus Sk,0 = 1

k = Sk,i for all 0 ≤ i ≤ k − 1.
Using a similar argument on the graph G(k, i) with reward −1 instead of 1, we

obtain Tk,0 = 1
k = Tk,i for all 0 ≤ i ≤ k − 1. ��

From Lemma 4.4, it follows that Sk,i = φ((0i10k−i−1)ω) = limn→∞
∑ [ n

k ]
r=0 ckr+i

dn
= 1

k ,
and hence,

φ ((a0a1 . . . ak−1)
ω) = lim inf

n→∞

k−1∑
i=0

⎛⎝ai ·
∑[n

k ]
r=0 ckr+i

dn

⎞⎠ =
k−1∑
i=0

⎛⎝ai · lim
n→∞

∑[n
k ]

r=0 ckr+i

dn

⎞⎠
=

∑k−1
i=0 ai

k
.

We show that the payoff of a regular word u = b1b2 . . . bm(a0a1 . . . ak−1)ω matches
the mean-payoff value.

Lemma 4.5. If u := b1b2 . . . bm(a0a1 . . . ak−1)ω and v = (a0a1 . . . ak−1)ω are two

regular sequences of weights then φ(u) = φ(v) =
∑k−1

i=0 ai

k .

Proof. Let r ∈ N be such that kr > m. If φ(v) ≤ φ(0v) then using Lemma 2.1
we obtain φ(0v) ≤ φ(02v). Applying the lemma again and again, we get, φ(v) ≤
φ(0mv) ≤ φ(0krv). From Corollary 4.1 we obtain φ(0mv) = φ(b1b2 . . . bmv) = φ(u)
(hence φ(v) ≤ φ(0mv) = φ(u)) and φ(0krv) = φ ((a1a2 . . . ak)rv) = φ(v) (hence

φ(u) = φ(0mv) ≤ φ(0krv) = φ(v)). Therefore, φ(u) = φ(v) =
∑k−1

i=0 ai

k . The same
argument goes through for the case φ(v) ≥ φ(0v). ��

Proof (of Theorem 4.1). In Lemma 4.5 we have shown that the payoff function φ must
match the mean-payoff function for regular words, if the sequence {cn}n≥0 is bounded.
Since memoryless strategies in game graphs result in regular words over weights, it
follows that the only payoff function that induces memoryless optimal strategies is the
mean-payoff function which concludes the proof. ��

As every regular sequence is bounded, Corollary 4.3 follows from Theorem 4.1.

Corollary 4.3. Let (cn)n∈N be a regular sequence of real numbers with no zero partial
sum such that

∑∞
i=0|ci| = ∞ (the sum is divergent). The weighted average payoff

function φ defined by (cn)n∈N induces optimal memoryless strategies for all two-player
game graphs if and only if φ is the mean-payoff function.
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4.2 Unbounded Sequence

The results of Section 3 and Section 4.1 can be summarized as follows: (1) if the sum
of ci’s is convergent, then the sequence {λi}i≥0, with λ < 1 (discounted sum), is
the only class of payoff functions that induce memoryless optimal strategies; and (2)
if the sum is divergent but the sequence (cn) is bounded, then the mean-payoff function
is the only payoff function with memoryless optimal strategies (and the mean-payoff
function is defined by the sequence {λi}i≥0, with λ = 1). The remaining natural ques-
tion is that if the sum is divergent and unbounded, then is the sequence {λi}i≥0, with
λ > 1, the only class that has memoryless optimal strategies. Below we show with an
example that the class {λi}, with λ > 1, need not necessarily have memoryless optimal
strategies.

We consider the payoff function given by the sequence cn = 2n. It is easy to
verify that the sequence satisfies the partial non-zero assumption. We show that the
payoff function does not result into memoryless optimal strategies. To see this, we ob-
serve that the payoff for a regular word w = b0b1 . . . bt(a0a1 . . . ak−1)ω is given by

min0≤i≤k−1

(
ai+2ai+1+···+2k−1ai+k−1

1+2+···+2k−1

)
i.e., the payoff for a regular word is the least

possible weighted average payoff for its cycle considering all possible cyclic permuta-
tions of its indices (note that the addition in indices is performed modulo k).

4 1

0 2

Fig. 3. The game G1024

Now, consider the game graph G1024 shown in figure 3. The payoffs for both
the memoryless strategies (choosing the left or the right edge in the start state) are
min

(
5
3 , 4

3

)
and min

(
4
3 , 8

3

)
which are both equal to 4

3 . Although, if we consider the
strategy which alternates between the two edges in the starting state then the payoff ob-
tained is min

(
37
15 , 26

15 , 28
15 , 14

15

)
= 14

15 which is less than payoff for both the memoryless
strategies. Hence, the player who minimizes the payoff does not have a memoryless op-
timal strategy in the game G1024. The example establishes that the sequence {2n}n≥0

does not induce optimal strategies.

Open question. Though weighted average objectives such that the sequence is diver-
gent and unbounded may not be of the greatest practical relevance, it is an interesting
theoretical question to characterize the subclass that induce memoryless strategies. Our
counter-example shows that {λn}n≥0 with λ > 1 is not in this subclass.
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Principal Types for Nominal Theories

Elliot Fairweather, Maribel Fernández, and Murdoch J. Gabbay

Abstract. We define rank 1 polymorphic types for nominal rewrite rules
and equations. Typing environments type atoms, variables, and function
symbols, and since we follow a Curry-style approach there is no need to
fully annotate terms with types. Our system has principal types, and we
give rule and axiom formats to guarantee preservation of types under
both rewriting and equality reasoning. This is non-trivial because sub-
stitution does not avoid capture, so a substituted symbol can—if we are
not careful—appear in inconsistent typing contexts.

Keywords: binding, polymorphism, type inference, rewriting.

1 Introduction

Suppose we want to specify λ-calculus βη-equivalence. We might well write this:

(

object-variable x

↓
λx. (λy.s))t =β λy.((λx.s)t)

freshness side-condition
↓

provided y not free in t
λx.
↑

binding term-former λ

(rx) =η r
↑
meta-variable r

provided x not free in r

Equalities like this are typical, and appear in specifications of the λ-calculus
(as above), substitution, logic with quantifiers, π-calculus, and more. They have
common features as annotated above. To formalise and reason with this kind of
systems, in this paper we follow the nominal approach:

– Nominal terms directly represent syntax with binding using term-formers,
two levels of variable, and freshness side-conditions [20]. The terms and side-
conditions above can be represented symbol-for-symbol in a formal syntax.

– Equality on nominal terms can be formalised in nominal rewriting [10] (for
oriented equality) and nominal algebra [14] (for unoriented equality).

– Nominal terms can be given Hindley-Milner style types [9]. Given a type en-
vironment, principal types for nominal terms can be automatically deduced.

This paper combines types and equality reasoning—so we type terms and equa-
tions between them. This is not trivial because equality gives terms a dynamic
behaviour, and type systems must ensure types are robust with respect to it.

For a large class of closed theories, corresponding to what can be defined in
higher-order rewriting and equality reasoning, nominal rewriting is sound and
complete for nominal algebra [11]. The technical contributions of this paper are
notions of typeable closed rewrite rule and equality axiom such that types are
preserved under rewriting and equality reasoning respectively. To ensure this,
closedness and principal types play a key role, as our examples will demonstrate.

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 160–172, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Related work. Nominal terms support a capturing substitution and the notation,
though formal, is close to standard informal practice. For example β-reduction
may be represented as app(lam[a]X, Y ) → sub([a]X, Y ) where sub([a]X, Y ) is
a term which may be given the behaviour of ‘non-capturing substitution’ by
rewrite rules [12,10].

Now consider static semantics, i.e. types like N for numbers and τ → τ for
functions. Assigning types to terms partitions the language into ‘numbers’, or
‘functions between numbers’, and so on. This paper will not make the case for
types but the interested reader can find compelling practical and theoretical
motivations elsewhere, e.g. Java [17], ML [7], and System F [16].

Two approaches have been used to give static semantics for nominal terms: In
e.g. [20,19,18] atoms have a special type of atoms A. But, when we write lam[a]X
or lam[a]a to represent λx.- (a term with a hole, or context) or λx.x, we might not
expect a to be forbidden from having any type other than A. We can use explicit
casting function symbols to inject A into other types; but the a in lam[a]X still
has type A, so we cannot infer more about a until X is instantiated. This notion of
typing is useful for terms without variables or in systems without polymorphism.
So an alternative approach was proposed in [9] which allows atoms to inhabit
any type. It follows a Curry-style approach, and has rank 1 polymorphism (ML-
style polymorphism or Hindley-Milner types [7]); that is, types are assigned to
terms without requiring type annotations for atoms or variables. Thus, we can
write lam[a]X , or fix[f ]X , or forall[a]X , or app(lam[a]X, lam[b]Y ), and so on, and
expect the type system to make sense of this. The syntax-directed typing rules
for nominal terms given in [9] guarantee that every typeable term has a principal
type (one which subsumes all others in a suitable sense) in a given environment,
and types are compatible with α-equivalence on nominal terms. Type inference is
decidable and an algorithm to compute principal types has been implemented [8].

In [9], a notion of typed nominal rewriting rule is given, with a condition to
ensure type preservation under rewriting. In this paper we consider also nominal
equational axioms, and give sufficient conditions for type preservation under
rewriting and equational deduction that are intuitive and easy to implement.

Overview of the paper. In Section 2 we recall nominal rewriting and equational
reasoning, as well as the Curry-style type system for nominal terms. Section 3
gives examples to motivate the design of the type system for rules and equations.
Section 4 contains the main results of the paper: it defines closed rules and
the closed rewrite relation (which is sound and complete for nominal equational
reasoning when the axioms are closed), and presents a notion of typeable rule and
typeable axiom that guarantee that rewriting and equational reasoning preserve
types. Finally, in Section 5 we draw conclusions and discuss future work.

2 Background

In this section we recall the main notions underlying the nominal approach to
the specification of systems with binders. We focus on equational specifications.
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Fix denumerable sets of atoms, variables, and term-formers. a, b, c will
range over distinct atoms, X, Y, Z, . . . over distinct variables, and f, g, . . . over
distinct term-formers. A permutation π is a bijection on atoms such that
nontriv(π) = {a | π(a)�=a} is finite. Nominal terms r, s, t are defined by:

t ::= a | π·X | f t | (t, . . . , t) | [a]t

π·X is a (moderated) variable; [a]t is an atom-abstraction. We write V (t)
for the variables in t and A(t) for the atoms in t (so A([a]a) = {a} and A(π·X) =
nontriv(π)). We write (a b) for the swapping permutation mapping a to b, b to
a, and all other c to themselves; id for the identity permutation (so id(a) = a);
π ◦ π′ for composition (so (π ◦ π′)(a) = π(π′(a)) and π-1 for inverse).

A substitution σ is a map from variables to terms. Write [X �→r] for the
substitution mapping X to r and all other Y to id ·Y .

Permutation and substitutions act on terms:

π·a = π(a) π·(π′·X) = (π ◦ π′)·X π·(f r) = f π·r
π·(r1, . . . , rn) = (π·r1, . . . , π·rn) π·[a]r = [π(a)]π·r

aσ = a (π·X)σ = π·(σ(X)) (f r)σ = f(rσ)
(r1, . . . , rn)σ = (r1σ, . . . , rnσ) ([a]r)σ = [a](rσ)

Definition 1. α-equality and freshness are defined by the following rules,
where ds(π, π′) = {a | π(a) �= π′(a)} is the difference set of π, π′:

a#b
a#s

a#fs

a#si (1≤i≤n)
a#(s1, . . . , sn) a#[a]s

a#s

a#[b]s
π-1(a)#X

a#π·X
s≈αt

f s≈α f t

a≈αa
s≈αt

[a]s≈α[a]t
s≈α(a b)·t a#t

[a]s≈α[b]t
ds(π, π′)#X

π·X≈απ′·X
si≈αti (1≤i≤n)

(s1, . . . , sn)≈α(t1, . . . , tn)

The intuition of a#t is ‘a is not free in t’, the intuition of s≈αt is ‘s and t are
α-equivalent’. Both are conditional on freshness assumptions on the variables
X . So freshness contexts Δ, ∇, . . . , are finite sets of freshness constraints
a#X , and we write Δ ( a#r when a#r follows from Δ; similarly for Δ ( r≈αs.

For example, [a]a≈α[b]b and ds((a b), id) = {a, b} so a#X, b#X ( (a b)·X≈αX ;
see [20,10] for more examples.

We now recall the Curry-style type system from [9], which can typecheck
nominal terms even if they contain variables (representing unknown subterms);
see [8] for an implementation in Haskell.

Fix denumerable sets of base data types (e.g. δ, N), type variables (e.g.
α), and type-formers (e.g. C , List). Types τ , type-schemes σ, and type-
declarations (arities) ρ are generated by:

τ ::= δ | α | τ1 × . . .× τn | C τ | [τ ′]τ σ ::= ∀α.τ ρ ::= (τ ′)τ
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α denotes any finite set of type variables (if empty we omit ∀); call them bound
in σ and call free type variables mentioned in σ not in α. Write TV (τ) for the
set of type variables in τ , and ≡ for equality modulo α-equivalence.1

We associate a type declaration to each term-former. E.g. we can have succ :
(N)N and 0 : ()N (we may write just 0 : N in this case).

Type substitutions S, T , U are finite partial functions from type variables
to types. Write [α�→τ ′] for the partial function just mapping α to τ ′, and id for
the identity substitution. Substitutions act on types, type schemes and arities as
usual; application is written τS and composition SS′ (apply S then S′). Write
σ � τ when σ ≡ ∀α.τ ′ and τ ′S ≡ τ for S with domain in α. τ may contain
other type variables; only bound type variables in σ may be instantiated; so
∀α.(α×β) � (β×β) but (α×β) �� (β×β). Write ρ � ρ′ when ρS ≡ ρ′ for some
S. All variables in arities are bound, but since they are all bound we omit ∀.

Definition 2. A typing context Γ is a partial function from atoms and vari-
ables to type schemes, with finite domain. We write Γ, a : σ for Γ updated with
a : σ, that is, (Γ \ {a : σ′}) ∪ {a : σ}. Similarly we write Γ, X : σ. We write ΓS
for the typing context obtained by applying S to the types in Γ . Similarly, π·Γ
denotes the context obtained by applying π to the atoms in Γ . TV (Γ ) denotes
the set of type variables occurring free in Γ .

A typing judgement is a tuple Γ ; Δ ( s : τ where Γ is a typing context,
Δ a freshness context, s a term and τ a type (when Δ is empty we omit the
separating ‘;’). Define derivable typing judgements by:

σ � τ

Γ, a : σ; Δ ( a : τ

σ � τ Γ ; Δ ( π·X : )
Γ, X : σ; Δ ( π·X : τ

Γ, a : τ ; Δ ( t : τ ′

Γ ; Δ ( [a]t : [τ ]τ ′

Γ ; Δ ( ti : τi (1 ≤ i ≤ n)
Γ ; Δ ( (t1, . . . , tn) : τ1 × . . .× τn

Γ ; Δ ( t : τ ′ f : ρ � (τ ′)τ
Γ ; Δ ( f t : τ

Γ ; Δ ( π·X : ) holds if, for any a such that π·a �= a, Δ ( a#X or a : σ, π·a : σ ∈
Γ for some σ. The condition f : ρ � (τ ′)τ is shorthand for f : ρ and ρ � (τ ′)τ . If
Γ ; Δ ( s:τ for some τ then call Γ ; Δ ( s typeable; otherwise call it untypeable.

π·X represents an unknown term in which π permutes atoms. The second rule
ensures compatibility between this and α-equivalence (see Theorem 4 below)
since substitution does not avoid capture: e.g. ([a]X)[X �→s] = [a]s.

We refer the reader to [9] for examples and give just the typing of one term
here: ([a](a, b), [a][b](a, b), a, b) : [α1](α1 × β)× [α2][β2](α2 × β2)× α× β).

Lemma 3. If Γ ; Δ ( t : τ then Γ [α�→τ ′]; Δ ( t : τ [α�→τ ′].
If Γ ;Δ ( t:τ and a,b:σ ∈ Γ for some σ, then Γ ;Δ ( (a b)·t:τ .

Theorem 4. Δ ( s ≈α t and Γ ; Δ ( s : τ imply Γ ; Δ ( t : τ .

Definition 5. A typing problem is a triple Γ ; Δ ( s, and its solution is a pair
(S, τ) of a type-substitution S and a type τ such that ΓS; Δ ( s:τ . Write S|Γ for
1 Types could be expressed in nominal syntax; our focus here is the term language.



164 E. Fairweather, M. Fernández, and M.J. Gabbay

the restriction of S to TV (Γ ). Solutions are naturally ordered by instantiation
of substitutions; call a minimal element in a set of solutions principal.

Principal solutions for Γ ; Δ ( s are unique modulo renaming type-variables. A
function pt to compute principal types, generalising Hindley-Milner [7] to
nominal terms, is given in [9, Definition 4]: pt(Γ ; Δ ( s) is a principal solution
(S, τ) such that ΓS; Δ ( s : τ , and is undefined if s is untypeable in Γ ; Δ.

Lemma 6. 1. Type weakening: If Γ ; Δ ( s : τ then Γ, Γ ′; Δ ( s : τ , provided
that Γ ′ and Γ are disjoint.

2. Type strengthening for atoms: If Γ, a : τ ′; Δ ( s : τ then Γ ; Δ ( s : τ
provided that Δ ( a#s.

3. Type strengthening for variables: If Γ, X : τ ′; Δ ( s : τ then Γ ; Δ ( s : τ
provided X does not occur in s.

We now introduce nominal algebra [14] and nominal rewriting [10]. See [11] for
a detailed treatment of their connections.

An equality judgement is a tuple Δ ( s = t of a freshness context and two
terms. Similarly a rewrite judgement is a tuple Δ ( s → t. An equational
theory T = (Σ,Ax) is a pair of a signature Σ and a possibly infinite set of
equality judgements Ax (axioms) in Σ. A rewrite theory R = (Σ,Rw) is a
pair of Σ and a possibly infinite set of rewrite judgements Rw (rewrite rules)
in Σ. Where Σ is clear, we identify T with Ax and R with Rw .

Definition 7. Write Δ ( (φ1, . . . , φn) for Δ ( φ1, . . . , Δ ( φn. A position C
is a pair (s, X) of a term and a distinguished unknown X that occurs precisely
once in s, as id ·X . If C = (s, X) then we write C[t] for s[X �→t].

Nominal rewriting: The one-step rewrite relation Δ ( s
R→ t is the least

relation such that for every (∇ ( l → r) ∈ R, freshness context Δ, position C,
term s′, permutation π, and substitution θ,

s ≡ C[s′] Δ (
(
∇θ, s′ ≈α π·(lθ), C[π·(rθ)] ≈α t

)
(Rew∇�l→r)

Δ ( s
R→ t

. (1)

The rewrite relation Δ (
R

s → t is the reflexive transitive closure of the
one-step rewrite relation. So, in particular, Δ ( s ≈α s′ implies Δ (

R
s → s′.

Nominal algebra: Δ (
T

s = t is the least transitive reflexive symmetric
relation such that for every (∇ ( l = r) ∈ T, freshness context Δ, position C,
permutation π, substitution θ, and fresh Γ (so if a#X ∈ Γ then a �∈ A(Δ, s, t)),

Δ, Γ (
(
∇θ, s ≈α C[π·(lθ)], C[π·(rθ)] ≈α t

)
(Axi∇�l=r)

Δ (
T

s = t
. (2)

3 Examples

Consider a type Λ and term-formers lam : ([Λ]Λ)Λ, app : (Λ × Λ)Λ and sub :
([Λ]Λ × Λ)Λ, sugared to λ[a]s, s t, and s[a �→t]. Then X, Y :Λ ( (λ[a]X)Y : Λ
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by Definition 2. The function pt can automatically infer this type and a most
general type for a, namely Λ, since lam : ([Λ]Λ)Λ. Anticipating Section 4, here
are rewrite rules for β-reduction (note typing and freshness conditions in rules);
types of abstracted atoms can be inferred and are Λ:

X, Y :Λ ( (λ[a]X)Y → X [a �→Y ]:Λ X, Y :Λ; a#X ( X [a �→Y ] → X :Λ
Y :Λ ( a[a �→Y ] → Y :Λ X, Y :Λ; b#Y ( (λ[b]X)[a �→Y ] → λ[b](X [a �→Y ]):Λ

X, Y, Z:Λ ( (XY )[a �→Z] → (X [a �→Z]) Y [a �→Z]:Λ

And here is an equality axiom for η: X :Λ; a#X ( λ[a](Xa) = X :Λ.
Rewriting and axioms are used to compute and reason with terms—not only

ground terms, but also terms with variables. Types should be compatible with
the resulting dynamics on terms. Since a variable might occur several times in a
term, under different abstractions, the interaction between types and rewriting
or equational reasoning is subtle. Closedness [10] ensures the interaction between
abstractions and variables is safe. Later we leverage this to conditions on closed
rewrite rules and axioms to ensure also type preservation. E.g. the rules for β and
η (as a rewrite or an equality) preserve types. Thus, the type Λ of b : Λ ( λ[a](ba)
is preserved in the reduced term b : Λ ( b.

We get more interesting types for λ-terms with a type-former ⇒ of arity 2
and term-formers λ : ([α]β)(α⇒β), ◦ : ((α⇒β)×α)β, and σ : (([α]β)×α)β. As
before, write σ([a]s, t) as s[a �→t]. Then the following rules preserve types:

X :α, Y :β; a#X ( X [a �→Y ] → X : α Y :γ ( a[a �→Y ] → Y : γ

X :α⇒ β, Y :α, Z:γ ( (XY )[a �→Z] → (X [a �→Z])(Y [a �→Z]) : β

X :β, Y :γ; b#Y ( (λ[b]X)[a �→Y ] → λ[b](X [a �→Y ]) : α⇒β

X :β, Y :α ( (λ[a]X)Y → σ([a]X, Y ) : β

Assume types B and N. Then B:B, N :N ( ((λ[a]a)B, (λ[a]a)N) : B × N and
B:B, N :N ( ((λ[a]a)B, (λ[a]a)N) → (B, N) : B× N.

λ[a]a takes different types just like λx.x in the Hindley-Milner type system;
pt(( λ[a]a) = (id , α⇒ α). Our system will not type B:B, N :N ( BN or λ[a]aa—
the previous system with a unique type Λ types the second term.

Below we show that η is compatible with this notion of type: X :α⇒β; a#X (
λ[a](Xa) = X : α ⇒ β. A term obtained from a typeable term by typed equa-
tional reasoning is also typeable.

4 Types for (Closed) Nominal Rewriting and Algebra

We recall closed rewrite rules [10] and closed equational axioms [11], then give
conditions to ensure nominal rewriting and equational reasoning preserve types.

4.1 Closed Rules and Closed Rewriting

Intuitively, a closed term has no unabstracted atoms and all occurrences of X
(representing an unknown subterm) appear under the same abstracted atoms.
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So f([a]X, X) is not closed since a is abstracted in the first X but not the
second, and a#X ( f([a]X, X) is closed, since the freshness constraint ensures
that a cannot occur in X . Closedness was introduced in [12]. Definition 8 tests
to check for closedness using freshened variants [10] (inductive definitions are
also possible [6,13]).

A freshened variant t N of t is t in which atoms and unknowns have been
replaced by ‘fresh’ atoms and unknowns (not in A(t) and V (t), and perhaps also
fresh for some atoms and unknowns from other syntax, which we will always
specify). We omit an inductive definition. Similarly, if ∇ is a freshness context
then ∇ Nwill denote a freshened variant of ∇ (so if a#X ∈ ∇ then a N#X N∈ ∇ N,
where a N and X N are fresh for the atoms and unknowns of ∇). We may extend
this to other syntax, like equality and rewrite judgements. If ∇ N( l N→ r N is a
freshened variant of ∇ ( l → r then V (∇ N( l N→ r N) ∩ V (∇ ( l → r) = ∅.

For example: [a N][b N]X Nis a freshened variant of [a][b]X , a N#X Nis a freshened
variant of a#X , and ∅ ( a N→ b N is a freshened variant of ∅ ( a → b.

Definition 8 (Closedness). Call∇ ( l closed when there exists a substitution
θ with dom(θ) ⊆ V (∇ N( l N) such that ∇, A(∇ N, l N)#V (∇, l) ( (∇ Nθ, l ≈α l Nθ).

Call R = (∇ ( l → r) and A = (∇ ( l = r) closed when ∇ ( (l, r) is closed.
Given a rewrite rule R = (∇ ( l → r) and a term-in-context Δ ( s, the

(one-step) closed rewriting relation Δ ( s
R→c t holds if there are C and θ,

such that, for a freshened variant R Nof R (fresh for R, Δ, s, t):

s ≡ C[s′] and Δ, A(R N) # V (Δ, s, t) ( (∇ Nθ, s′≈αl Nθ, C[r Nθ]≈αt). (3)

Closed rewriting Δ (
R

s →c t is the reflexive transitive closure, as in Def. 7.

The choice of freshened variant in Definition 8 does not matter. Closed rewriting
is sound and complete for nominal algebra, if all axioms are closed [11].

4.2 Typed Closed Rewriting

We define a notion typeable rule such that rewriting preserves types:

Definition 9. A typeable closed rewrite rule R ≡ Φ;∇ ( l → r : τ is a
tuple of a type context Φ which only types the variables in l and has no type-
schemes (in particular, Φ mentions no atoms), a freshness context ∇, and terms
l and r such that
1. V (r,∇, Φ) ⊆ V (l),
2. pt(Φ;∇ ( l) = (id , τ) and Φ;∇ ( r : τ ,
3. RT is closed, where RT is a variant of R in which each abstracted atom

is decorated by appending the type of that atom to its name; a renamed
atom occurring in a freshness constraint in ∇ is replaced by new freshness
constraints, one for each differently decorated variant of the atom.

For example, under the signature f : ([N ]N)N , g : ([Bool]N)N , the variant of the
rule X : N ; a#X ( f([a]X) → g([a]X) : N used in the third condition in Defini-
tion 9 is X : N ; aN#X, aBool#X ( f([aN ]X) → g([aBool]X). The condition is
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satisfied: although one occurrence of X is under an abstraction for aN and the
other is under an abstraction for aBool, we have freshness assumptions for both
atoms: aN#X, aBool#X .

The type decorations for RT can be determined mechanically by running pt
to compute principal types on the left-hand side and right-hand side of R.

The first condition in the definition of typeable closed rule is standard. The
second condition says that l is typeable using Φ and ∇, and r is typeable with a
type at least as general. The third condition ensures that atom abstractions are
typed in a consistent manner throughout the rule. To check this, we compute
types for the abstracted atoms using the type inference algorithm, and annotate
atom abstractions with types. In a Church-style system, we would use the type
annotations provided by the user; thanks to the type inference algorithm, in our
system users need not provide explicit type annotations for every abstraction.

The typed closed rewriting relation is defined using typed matching.

Definition 10. A (typed) matching problem (Φ;∇ ( l) ?≈ (Γ ; Δ ( s) is a
pair of tuples (Φ and Γ are typing contexts, ∇ and Δ are freshness contexts, l
and s are terms) such that variables and type-variables on the left are disjoint
from those in Γ, Δ, s, and Φ mentions no atoms or type-schemes.

A solution to this matching problem, if it exists, is the least pair (S, θ) of
a type- and term-substitution (the ordering on substitutions extends to pairs
component-wise) such that:
1. Xθ ≡ X for X �∈ V (Φ,∇,l), αS ≡ α for α�∈TV (Φ)2, Δ ( lθ≈αs and Δ ( ∇θ.
2. pt(Φ;∇ ( l) = (id , τ), pt(Γ ; Δ ( s) = (id , τS), and for each X : φ′ ∈ Φ, we

have Γ, Γ ′; Δ ( Xθ : φ′S, where Γ ′ = Φ′S and Φ′ contains the typings for
the atoms abstracted above an occurrence of X in l and which may occur in
instances of X .

That is: we want to make l on the left α-equivalent to s on the right. The first
condition defines a matching solution for untyped nominal terms [20,10]. The last
condition enforces type consistency: terms should have compatible types, and the
solution should instantiate the variables consistent with the typing assumptions.
For typeable closed rules, the typing context Φ′ is uniquely defined.

The assumption that Φ mentions no atoms or type-schemes may seem strong,
but is all we need: we give applications in Section 4.4.

For example, (X :α ( X) ?≈ (a:B ( a) has solution ([α�→B], [X �→a]), whereas
(X :B ( X) ?≈ (a:α ( a) has no solution—α on the right is too general.

To see why we must check θ in the second condition, consider g(f True) where
g : (α)N and f : (β)N (i.e. both functions are polymorphic and produce a result
of type N) and a rule X : N ( g(f X) → suc X , where suc : (N)N. Then the
untyped matching problem g(f X)) ?≈ g(f True) has solution [X �→True], but the
typed matching problem (X : N ( g(f X)) ?≈ (( g(f True)) has none: [X �→True]
fails the last condition since X should have type N but is instantiated with a
Boolean. If matching did not fail, this rewrite would not preserve types.
2 So in particular, by the side-conditions on variables being disjoint between left and

right of the problem, Xθ ≡ X for X∈V (Γ, Δ, s) and αS ≡ α for α ∈ TV (Γ ).
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Definition 11 (Typed closed rewriting). Take a typeable term Γ ; Δ ( s:μ
and a typeable closed rule R ≡ Φ;∇ ( l → r : τ . Assume s ≡ C[s′] and
Γ ′; Δ ( s′ : μ′ is the typing of s′ at the corresponding position in s.3 We say s

closed rewrites with R to t in the context Γ ; Δ and write Γ ; Δ ( s
R→c t

when there is some R N a freshened variant of R (fresh for R, Γ , Δ, s, and t),
where Δ′ is the freshness context A(R N) # V (Γ, Δ, s, t), such that:

1. The typed matching problem (Φ N;∇ N(l N) ?≈ (Γ ′; Δ,Δ′(s′) has solution (S,θ).
2. Δ, Δ′ ( C[r Nθ] ≈α t.

The conditions of typed closed rewriting extend those of closed nominal rewrit-
ing, with types. The following lemma, proved by induction, is used to prove that
rewriting preserves types:

Lemma 12. Consider Φ′;∇ ( r′, where r′ is either the right-hand side of a
typeable closed rule R ≡ Φ;∇ ( l → r : τ or a subterm of the right hand side; if
r′ is under atom abstractions in r, we assume Φ′ = Φ ∪ Φ′′ where Φ′′ contains
the atom typings of the removed atom abstractions. Assume Φ′;∇ ( r′ : τ ′ (so
τ ′ = τ if r′ = r) and let (S, θ) be the substitutions that solve the typed matching
problem (Φ;∇ ( l) ?≈ (Γ ; Δ ( s). Then Γ, Φ′′S; Δ ( r′θ : τ ′S.

Theorem 13 (Subject Reduction). Let R ≡ Φ;∇ ( l → r : τ be a typeable
closed rule. If Γ ; Δ ( s : μ and Γ ; Δ ( s

R→c t then Γ ; Δ ( t : μ.

Proof. It suffices to prove that if pt(Γ ; Δ ( s) = (id , ν) and Γ ; Δ ( s
R→c t then

Γ ; Δ ( t : ν. Suppose Γ ; Δ ( s
R→c t. Then (using the notation in the definition

of matching and rewriting above) we know that:

1. R N is a freshened variant of R (fresh for R, Γ , Δ, s, and t) and Δ′ is the
freshness context A(R N) # V (Γ, Δ, s, t).

2. s ≡ C[s′], Δ, Δ′ ( l Nθ ≈α s′, and Δ, Δ′ ( a#Xθ for each a#X in ∇ N.
3. Γ ′; Δ ( s′ : ν′ is the typing of s′, and by the Weakening Lemma 6, also

Γ ′; Δ, Δ′ ( s′ : ν′.
4. pt(Φ N;∇ N( l N) = (id , τ) and pt(Γ ′, Δ ( s′) = (id , τS) so there is some S′

such that Γ ′S′ = Γ ′ and τSS′ = ν′.
5. Δ, Δ′ ( C[r Nθ] ≈α t.

By Theorem 4 (α-equivalence respects types), and 1, 2 and 3, we deduce
Γ ′; Δ, Δ′ ( l Nθ : τSS′. Since pt(Φ N;∇ N ( l N) = (id , τ), by our assumptions on
rewrite rules also Φ N;∇ N( r N : τ , and by Lemma 3 also Φ NSS′;∇ ( r N : τSS′.
Since θ respects the context Φ NSS′;∇ Nby definition of typed matching, then, by
the auxiliary lemma 12, Γ ′; Δ, Δ′ ( r Nθ : τSS′ = ν′. Hence Γ ; Δ, Δ′ ( C[r Nθ] : ν.
By Theorem 4, also Γ ; Δ, Δ′ ( t : ν, and since A(Δ′) �∈ t (by definition of closed
rewriting), then Γ ; Δ ( t : ν as required.

3 Γ ⊆ Γ ′, and Γ ⊂ Γ ′ if C contains abstractions over s′.
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Closure ensures that for each occurrence of X in l and r, instantiation behaves
uniformly with respect to abstraction. This alone does not ensure preservation
of types under reduction: consider f : ([N ]N)N , g : ([Bool]N)N , suc : (N)N .
The rule X : N ( f[a]X → g[a]X : N is closed, and the principal type of the
left-hand side is also the type of the right-hand side, but the term f[a]suc(a) : N
rewrites to g[a]suc(a), which is untypeable. Each X in l and r must be under
the same abstractions, typed in the same way. So condition 3 of Definition 9
annotates abstracted atoms in l → r with types.

4.3 Typed Equational Reasoning

Definition 14. A typeable closed axiom A ≡ Φ;∇ ( l = r : τ is a tuple of a
type context Φ which only types the variables in l and r and has no type-schemes
(so Φ mentions no atoms), a freshness context ∇, and terms l and r such that
pt(Φ;∇ ( l) = pt(Φ;∇ ( r) = (id , τ) and AT is closed, where AT is a decorated
version of A from Definition 11.

Typed nominal equational reasoning is defined as in Definition 7, but with the
additional requirement that the substitution θ applied to l and r solves typed
matching problems, that is, it must respect the types given in the typing context.
Thus, using Lemma 12, equational deduction preserves types.

Theorem 15 (Preservation of types). Let T be a nominal theory with only
typeable closed axioms. If Γ ; Δ ( s:μ and Γ ; Δ (

T
s=t is in the typeable nominal

equality relation generated from T by typed nominal reasoning, then Γ ; Δ ( t : μ.

Proof. By induction on nominal algebra equality. The interesting case is the use
of the rule (AxiΦ;∇�l=r), for a typeable closed axiom A ≡ Φ;∇ ( l = r : τ in T .
The conditions in Definition 14 ensure that pt(Φ;∇ ( l) = pt(Φ;∇ ( r). Since
the substitution used to instantiate l and r to derive Γ ; Δ (

T
s = t respects Φ;∇

(it solves typed matching problems), we can proceed as for Theorem 13.

4.4 Examples

Rewrites for surjective pairing cannot be implemented by compositional trans-
lation to λ-calculus [3]. We can define it; assume fst : (α×β)α and snd : (α×β)β:

X :α, Y :β ( fst(X, Y ) → X :α X :α, Y :β ( snd(X, Y ) → Y :β
Z:α×β ( (fst Z, sndZ) → Z:α×β

Consider a type o and term-formers *,⊥ : o, ∧,⇒,⇔ : (o×o)o, ≈ : (α×α)o,
∀ : ([α]o)o, and substitution σ : ([α]o, α)o sugared as before. Rewrite rules for
equality and simplification for (a fragment of) first-order logic are typeable
closed; we use infix notation for the binary connectives:

X :α ( X ≈ X → *:o X :o; a#X ( ∀[a]X → X :o
X, Y :o ( ∀[a](X ∧ Y ) → ∀[a]X ∧ ∀[a]Y :o
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Using P [a �→T ] as syntactic sugar for the term σ([a]P, T ) representing the sub-
stitution of a by T in P , we also have the following typeable closed axioms:

P : o, T : α ( ∀[a]P⇒P [a �→T ] = * : o
P, Q : o; a#P ( ∀[a](P⇒Q) ⇔ P⇒∀[a]Q = * : o
U, T : α, P : o ( U ≈ T ∧ P [a �→T ]⇒P [a �→U ] = * : o

We can extend this with arithmetic. Consider a type N, term-formers 0 : N,
succ : (N)N, + : (N×N)N. Then [a](a ≈ a) has principal type [α]o, and ∀[a](a ≈
0) is typeable (with type o) whereas ∀[a](* ≈ 0) is not typeable.

We can also axiomatise the λ-calculus by these equalities [15], using the
notation introduced in Section 3:

a[a �→X ] = X a#Z ( Z[a �→X ] = Z c#X ( (λ[c]Z)[a �→X ] = λ[c](Z[a �→X ])
(Z ′Z)[a �→X ] = (Z ′[a �→X ])(Z[a �→X ]) Z[a �→a] = Z

All are typeable closed axioms except for the last, which is not closed: it contains
a free atom a on the left hand side and the atoms in an instance of Z on the left
are under the scope of an abstraction for a, but they escape the abstraction on
the right. The results presented here do not apply to this rule. Non-closed rules
are arguably rare (and the standard higher-order rewriting formalisms do not
accept them), but interesting examples exist—in this case, the rule is needed for
completeness with respect to the models [15]. We conjecture that an extension
with essential typings [9] (type assignments need not be unique but every type
assignment for an occurrence of a variable X on the right must have already
been made for an occurrence of X on the left) would let us deal with non-closed
rules or axioms like this.

5 Conclusions and Future Work

Type inference is well-studied for the λ-calculus and Curry-style systems also
exist for first-order rewriting systems [1] and algebraic λ-calculi (which combine
term rewriting and λ-calculus) [2]. We know of no type assignment system for
the standard higher-order rewriting formats (HRSs use a typed metalanguage,
and restrict rewrite rules to base types). Our system is in Curry style; type
annotations on terms are not required. We do rely on type declarations for
term-formers (arities) and in future we may investigate conditions under which
this assumption and the closedness assumptions could be relaxed.

The types produced resemble the Hindley-Milner polymorphic type system
for the λ-calculus, but are acting on nominal terms which include variables X
representing context holes as well as atoms a representing program variables.

The function pt is implemented [8]. The conditions on typeable closed rules
and typeable closed axioms are decidable and easily mechanisable using pt and
nominal matching, which is also implemented [5].

Theorem 4 proves our types compatible with the powerful notion of
α-equivalence inherited from nominal terms [20]. Theorem 13 shows that a notion
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of typeable closed nominal rewrite rule exists which guarantees the preservation
of types under closed nominal rewriting. Theorem 15 shows that types are also
preserved under equational reasoning using a notion of typeable closed axioms.

Our type system has rank 1 polymorphism. More powerful systems, e.g. rank 2
polymorphic types or intersection types [4], should be possible. The latter have
been used to characterise normalisation properties of λ-terms. Normalisation
of nominal rewriting using type systems is a subject for future work, and one
of our long-term goals is to come closer to applying logical semantics such as
intersection types, to nominal rewriting.

Acknowledgements. Thanks to the anonymous referees.
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Minimal Synchronizing Word
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Abstract. A word w is called synchronizing (recurrent, reset, magic,
directable) word of deterministic finite automaton (DFA) if w sends all
states of the automaton to a unique state. In 1964 Jan Černy found a
sequence of n-state complete DFA possessing a minimal synchronizing
word of length (n − 1)2. He conjectured that it is an upper bound on
the length of such words for complete DFA. Nevertheless, the best upper
bound (n3 − n)/6 was found almost 30 years ago.

We reduce the upper bound on the length of the minimal synchroniz-
ing word to n(7n2 + 6n − 16)/48.

An implemented algorithm for finding synchronizing word with re-
stricted upper bound is described. The work presents the distribution of
all synchronizing automata of small size according to the length of an
almost minimal synchronizing word.

Keywords: deterministic finite automaton, synchronizing word, Černy
conjecture.

Introduction

The problem of synchronization of DFA is natural and various aspects of this
problem were touched upon the literature. Synchronization makes the behavior
of an automaton resistant against input errors since, after detection of an error,
a synchronizing word can reset the automaton back to its original state, as if
no error had occurred. Therefore different problems of synchronization draw the
attention.

A problem with a long story is the estimation of the minimal length of syn-
chronizing word. In 1964 Jan Černy found [3] n-state complete DFA with shortest
synchronizing word of length (n−1)2 for alphabet size q = 2. He conjectured that
it is an upper bound on the length of the shortest synchronizing word for any
n-state complete DFA. Best known now as a Černy’s conjecture, it was raised
independently not once.

The problem encourages a lot of investigations and generalizations [2] and
together with Road Coloring problem [10], [14] was considered as a most fasci-
nating old problem in finite automata theory.

The conjecture holds true for a lot of automata, but in general the prob-
lem still remains open in spite the fact that over hundred papers consider this
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problem from different points of view. Moreover, two conferences (”Workshop
on Synchronizing Automata” (Turku, 2004) and ”Around the Černy conjecture”
(Wroclaw,2008) were dedicated to this longstanding conjecture. The problem
was discussed in ”Wikipedia” - the popular Internet Encyclopedia and on some
other sites.

The problem can be reduced to automata with strongly connected graph [3].
The best known upper bound is now equal to n3−n

6 [5], [9], [10]. This estimation
was not improved almost 30 years.

We reduce the upper bound on the length of a minimal reset word. This length
of n-state strongly connected automaton (and also for not necessary strongly
connected) is not greater than

n(7n2+6n−16)
48

The crucial estimation makes here the value 7n3/48. So the obtained result
improves known upper bound n3−n

6 . A modification of the old bound makes
here the coefficient 7

8 .
The search is essentially based on lemmas from [5] and [9]. The same lemmas

were used in a polynomial time algorithm described below for finding synchro-
nizing word. The algorithm is implemented in the package TESTAS [15]. The
time complexity of the algorithm is O(n3) and the space complexity is quadratic.
An important feature of the algorithm is that the length of the obtained syn-
chronizing word is restricted by some given upper bound. We propose a modi-
fication of the algorithm that reduces this bound to the above-mentioned value
of n(7n2 + 6n− 16)/48.

There are no examples of automata such that the length of the shortest syn-
chronizing word is greater than (n − 1)2. Moreover, the examples of automata
with synchronizing word of length (n − 1)2 are infrequent. After the sequence
found by Černy and the example of Černy, Piricka and Rosenauerova [4] of 1971
for alphabet size q = 2, a next example was found by Kari [7] only in 2001 for
n = 6 and q = 2. Roman [11] had found an analogous example for n = 5 and
q = 3 in 2004.

The package TESTAS has studied all automata with strongly connected tran-
sition graph of size n ≤ 10 for q = 2, of size n ≤ 8 for q ≤ 3 and of size n ≤ 7 for
q ≤ 4 [15]. Our work presents the distribution of all considered synchronizing au-
tomata of small size according to the length of an almost minimal synchronizing
word.

Five new examples of DFA with shortest synchronizing word of length (n−1)2

from this class of automata were found. The size of the alphabet of these and
all presently known examples is two or three.

Preliminaries

We consider a complete n-state DFA with state transition graph Γ and transition
semigroup S over alphabet Σ (|Σ| = q). Let us exclude the trivial cases n ≤ 2
and q = 1.
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The states of the automaton are considered also as vertices of the transition
graph Γ and let |Γ | = n be the number of states.

If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labelled by σ1, ..., σk, then for s = σ1...σk ∈
Σ+ let us write q = ps.

Let Ps be the set of states q = ps for all p from the subset P of states and
s ∈ Σ+. For the transition graph Γ of an automaton let Γs denote the set Ps
for the set P of all states of the automaton.

A word v ∈ Σ+ is called synchronizing word of an automaton A with transition
graph Γ if |Γv| = 1. An automaton (and its transition graph) possessing a
synchronizing word is called synchronizing.

A state p will be called empty state by mapping of the word s if p ∈ Γ \ Γs.
The direct product Γ 2 of two copies of the transition graph Γ over an alphabet

Σ consists of pairs (p,q) and edges (p,q) → (pσ,qσ) labelled by σ. Here p,q ∈
Γ , σ ∈ Σ [13].

1 A State Outside the Image

Lemma 1. Suppose pi �∈ Γs. Then pi �∈ Γus for any word u.

Proof follows from Γu ⊆ Γ .

Lemma 2. Let Γ be transition graph of a DFA. If there are words s and t such
that ps �∈ Γts for some p from Γ \ Γt then Γts is a proper subset of Γs.

Proof. One has Γs = ((Γ \ Γt) ∪ Γt)s = (Γ \ Γt)s ∪ Γts. The state ps from Γs
is outside Γts and also outside (Γ \Γt)s. Now from Γts ⊆ Γs follows Γts ⊂ Γs.

Lemma 3. Let Γ be a transition graph of a synchronizing strongly connected
n-state DFA. Then for any state q there exists a word t of length not greater
than n such that q �∈ Γt. For any k < n there are at least k states qk and a
words uk of length not greater than k such that qk �∈ Γuk.

Proof. The automaton is synchronizing, whence for some letter β, Γβ ⊂ Γ and
at least one state is empty by mapping β. The set Γ \ Γs is the set of empty
states by mapping of the word s. Let Rk be a union of all Γ \ Γt for all words
t such that |t| ≤ k. Obviously that Rk ⊆ Rm for k ≤ m. From Γβ ⊂ Γ follows
that R1 is non-empty.

For complement Ck of the set Rk we have Ck = ∩Γs for all words s of length
not greater than k.

The graph Γ is strongly connected. Therefore for non-empty complement Ck

of Rk there exists a letter γ such that Ckγ �⊂ Ck, whence Ck \Ckγ is not empty.
Suppose r ∈ Ck \ Ckγ.

Ck+1 = ∩Γs for all words s of length not greater than k + 1 and r �∈ Ckγ.
Therefore r �∈ Ck+1. Thus r ∈ Rk+1, whence Rk ⊂ Rk+1 and |Rk| < |Rk+1|.

Consequently, for any k ≤ n there exists a state q and a word u of length not
greater than k such that q �∈ Γu. One has |Rk| ≥ k, whence for given k there
are at least k such states q.
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Lemma 4. Let Γ be a transition graph of synchronizing strongly connected n-
state DFA. Then for every k ≤ n+1

2 there exists a word s such that |s| ≤ k2 and
|Γs| ≤ n− k.

Proof. If |Γs| > n+1
2 for a word s then there is at least one state p ∈ Γs having

only one preimage q by mapping s. In opposite case every state p ∈ Γs has at
least two preimages by mapping s, whence |Γs| ≤ n

2 .
Let us consider for a word si the states from Γsi having only single preimage

by mapping si and let Qi be the set of such single preimages.
Our aim is now to find a short word s such that |Γs| ≤ n+1

2 . We construct a
sequence of mappings si that reduce the size of the set Qi and the size of Γsi

on every step i.
By Lemma 3 for every state q there exists a word tq such that q �∈ Γtq and

for k ≤ n there are at least k states q with tq of length not greater than k.
There exists a letter α such that |Γα| < |Γ |. Let α be the word s1 = t1. Let

Q1 be the set of single preimages of Γt1. Then |Γt1| < n and |Q1| ≤ n − 2. If
n− |Γα| = m then m < n− |Q1| ≤ 2m.

On every next step, let us take the state q from Qi−1 with tq of minimal
length. Suppose ti−1 = tq and si = ti−1si−1. By Lemma 2, Γsi ⊂ Γsi−1 and so
|Γsi| < |Γsi−1|. Also |Qi| < |Qi−1|, at least one state leaves Qi−1 on the step.

If |Γsi−1| − |Γsi| = j then at most 2j states leave Qi−1. One has 2j ≥
|Qi−1| − |Qi| ≥ j. In the worst case, such states q leaving Qi−1 have minimal tq
among the states of Qi−1. So min(|tq|) − |ti−1| ≤ 2j for q in Qi. For j = 1 we
have min(|tq|) − |ti−1| ≤ 2. The first tq = t1 is a letter (a word of length one).
Consequently, for n− |Γsi| = m there exists q ∈ Qi−1 such that |tq| ≤ 2m− 1.

The process continues until the set Qi is not empty (in particular, if |Γsi| >
n/2). Thus the length of sk is restricted by the sum of k (or less) odd integers
for every k ≤ n+1

2 .
Consequently, for some word s and k ≤ n+1

2 the length of s in view of Lemma
3 is restricted by the sum

∑k
i=1(2i− 1) = k2 and |Γs| ≤ n− k.

2 Pairs of States

The next our step is based on the following result of Frankl and Klyachko et al.

Theorem 1. [5], [9] Let N be set of size n with subset D of size i > 1. Then
there exists a word s of length at most

C2
n−i+2 = (n− i + 2) ∗ (n− i + 1)/2

such that |Ds| < |D|.

The next lemma follows the ideas from [9].

Lemma 5. Let Γ be a transition graph of a strongly connected n-state automa-
ton and let Dk of size k be a subset of states of the automaton.

Then the word of length at most C3
n+1 − C3

n−k+2 synchronizes the set Dk.
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Proof. By Theorem 1, every Di has a pair of states with a minimal synchronizing
word of length not greater than C2

n−i+2 = (n − i + 2)(n − i + 1)/2. So Dk has
synchronizing word of length at most S =

∑k
i=2 C2

n−i+2.
Suppose j = n − i + 2. Then n ≥ j ≥ n − k + 2. Now S =

∑n
j=n−k+2 C2

j =∑n
j=2 C2

j −
∑n−k+1

j=2 C2
j .

For every m > 2,
∑m

j=2 C2
j = C3

m+1. So
∑n

j=2 C2
j = C3

n+1 and
∑n−k+1

j=2 C2
j =

C3
n−k+2. Therefore S = C3

n+1 − C3
n−k+2.

Theorem 2. Let Γ be a transition graph of a strongly connected n-state au-
tomaton. Then a word of length not greater than

n(7n2+6n−16)
48

synchronizes the automaton.

Proof. Let us combine the quadratic estimation from Lemma 4 and the cubic
estimation of Lemma 5. The length of some synchronizing word is not greater
than the sum of S1 = C3

n+1 − C3
n−k+2 (Lemma 5) and S2 = k2 (Lemma 4) for

k ≤ n+1
2 .

We must consider k ≤ n+1
2 . Hence the maximum of S = S1 + S2 exists for

even n and k = n
2 (the case of odd n and k = n+1

2 also will be calculated for
clarity). In the case of even n

S1 = C3
n+1 − C3

n−k+2 = C3
n+1 − C3

n/2+2 = n3−n
6 − (n/2+1)3−n/2−1

6 =
8n3−8n−n3−6n2−12n−8+4n+8

48 = n(7n2−6n−16)
48 .

S2 = k2 = n2

4 .
So the length of a minimal synchronizing word has in the case of even n the

following upper bound S1 + S2 = n(7n2−6n−16)
48 + n2

4 = n(7n2+6n−16)
48 .

In the case of odd n
S1 = C3

n+1−C3
n−k+2 = C3

n+1−C3
(n+1)/2+2 = n3−n

6 − ((n+1)/2+1)3−(n+1)/2−1
6 =

8n3−8n−n3−9n2−27n−27+4n+12
48 = 7n3−9n2−31n−15

48 .
S2 = k2 = n2+2n+1

4 .
So the length of a minimal synchronizing word has in the case of odd n the

following upper bound S1 + S2 = 7n3−9n2−31n−15
48 + n2+2n+1

4 = 7n3+3n2−7n−3
48 .

This value is less than n(7n2+6n−16)
48 for n > 2.

Thus the value n(7n2+6n−16)
48 is an upper bound on the length of the minimal

synchronizing word. The obtained result improves the old upper bound n(n2−1)
6

by factor 7
8 .

Remark 1. For odd n a word of length not greater than 7n3+3n2−7n−3
48 synchro-

nizes the automaton.

2.1 An Algorithm for Finding Synchronizing Word of Restricted
Length

The algorithm presents another useful application of the combinatorial ideas
from [9]. The Theorem 1 gives us an estimation of the length of the reset word.
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Let us consider the inverse of the graph Γ 2. So the incoming edges of every
pair (p,q) from Γ 2 together with its ancestors are known. Then let us enumerate
the pairs of vertices. There are vertices p,q from Γ such that for some letter
α pα = qα. For every such pair (p,q) from Γ 2 suppose n(p,q) = 1. Let us
connect with the pair (p,q) the letter α.

Then for every enumerated pair (p,q) from Γ 2 with n(p,q) = k let us consider
all its ancestors without enumeration. These pairs obtain the number k + 1 and
are connected with the letter on the edge of the graph Γ 2 from this pair to the
pair (p,q).

We find a sequence of mappings of the graph of the automaton induced by
the letters on the labels. Let us consider the graph Γs for some word s and find
a pair (p,q) from Γs with a minimal number. The letter α of the pair is the
first letter of the word w we build. The next letter of the word w is the letter
of the pair pα,qα. The number of this pair is less than the number of (p,q).
We proceed on this way until the number of the pair exists. The last pair is
synchronizing by a letter. The obtained word w synchronizes the vertices p and
q. The length of the word w is at most (n−|Γs|+2)(n−|Γs|+1)

2 (theorem 1).
The search of the first letter of the word w needs O(|Γ |(|Γ |−1)/2) steps. Then

the building of the word w needs |Γ | steps. The number of the words w is less
than n. Therefore the time complexity of considered procedure can be estimated
by O(|Γ |3) in the worst case. The space complexity of the algorithm is O(|Γ |2)
because of the size of Γ 2. The algorithm is correct in view of the Lemma 5 and
is implemented in the package TESTAS.

2.2 A Modification of the Algorithm

The modification is based on Lemmas 3 and 4. There exists a letter α and a
state p such that p �∈ Γα. Let R1 be the set of such states p (as in Lemma 3).
We associate the word u1 = α of length one with every state.

Suppose the set Rk of states and its non-empty complement Ck with corre-
sponding words exist. From the proof of Lemma 3 follows that for some letter β
there exists a state q in Ck \Ckβ. For every state r from Ck with corresponding
word u we associate the word uk+1 = uβ and add q to Rk+1.

Let us keep with every state ps ∈ Γs its preimage by mapping s and fix the
case of more than one preimage. If psi has only one preimage by mapping si

then suppose p ∈ Qi.
All states of the graph belong to Q0, after the mapping v1 we have |Q1| ≤ n−2.

The set Qi lost states on every step. If |Γs| > |Γ |/2) then there exists a state in
Γs having only one preimage and so Qi is not empty by mapping s. We proceed
until Qi is not empty.

Let us choose a state p ∈ Qi with word uk of minimal length and suppose
vi+1 = ukvi. The length of the word vi is restricted according to Lemma 3. We
continue until Γvi has states with only one preimage (Qi is not empty). So we
obtain the set of states Γvi of size less than (n + 1)/2 (Lemma 4) and then
proceed by the main algorithm.
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The upper bound on the length of the synchronizing word in virtue of Theorem
2 is n(7n2+6n−16)

48 .

3 Distribution of the Length of Synchronizing Word of
Small Automata

A program based on the synchronization algorithms of the package TESTAS
was used for a search of automata with a minimal reset word of relatively great
length. The program has investigated all complete DFA for n ≤ 10 over an
alphabet of size 2, n ≤ 8 over an alphabet of size 3 and for n ≤ 7 over an
alphabet of size 4 [14].

Maximal value of the length of a synchronizing word for n = 10 found by the
algorithm on the set of considered automata of size n is 93. The length found
by the minimal length algorithm is 81 (Err < 0.13). So the shift of the size of
the synchronizing word is relatively small.

The program consistently sifts non-synchronizing automata, the automata
with a very short reset word and a part of isomorphic automata. The following
table presents the distribution of all remaining automata of size 10 over an al-
phabet of two letters (see also [1]).

interval of size of the automata n - 2n 2n - 3n 3n - 4n 4n - 5n 5n - 6n 6n -7n
percent of automata in interval 81.01 16.2 1.82 0.8 0.05 0.006

The distribution for three and four letters does not differ noticeable and is
omitted.

The synchronizing words of minimal length are found only for automata
having great minimal reset words. The maximal number of considered n-state
automata has its length of the reset word near n+1.

Thus one can conclude that the polynomial synchronizing algorithms of the
package find synchronizing words of a length not far of the minimal, especially
for automata with very great reset words. The presented distribution does not
differ essentially from the distribution of the lengths of the minimal synchronizing
words.
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Abstract. We study an online model for the maximum k-vertex-cove-
rage problem, where given a graph G = (V, E) and an integer k, we
ask for a subset A ⊆ V , such that |A| = k and the number of edges
covered by A is maximized. In our model, at each step i, a new vertex vi

is revealed, and we have to decide whether we will keep it or discard
it. At any time of the process, only k vertices can be kept in memory;
if at some point the current solution already contains k vertices, any
inclusion of a new vertex in the solution must entail the definite dele-
tion of another vertex of the current solution (a vertex not kept when
revealed is definitely deleted). We propose algorithms for several natural
classes of graphs (mainly regular and bipartite), improving on an easy
1
2
-competitive ratio. We next settle a set-version of the problem, called

maximum k-(set)-coverage problem. For this problem we present an al-
gorithm that improves upon former results for the same model for small
and moderate values of k.

1 Introduction

In the maximum k-vertex-coverage (mkvc) problem we are given a graph G =
(V, E) (|V | = n, |E| = m) and an integer k, and we ask for a subset A ⊆ V ,
such that |A| = k and the number of edges covered by A is maximized. The
mkvc problem is NP-hard, since otherwise the optimal solution for the vertex
cover problem could be found in polynomial time: for each k, 1 ≤ k ≤ n, run
the algorithm for the mkvc problem and stop when all elements are covered.

In this paper we consider the following online model for this problem: at each
step i, a new vertex vi with its adjacent edges is revealed, and we have to decide
whether we will include vi in the solution or discard it. At any time of the process,
only k vertices can be kept in memory, so if at some point the current solution
already contains k vertices, any inclusion of any new vertex in the solution must
be compensated with the definite deletion of one vertex of the current solution. Of
course, a vertex that is not kept when it is revealed is also definitely deleted. To
our knowledge, no online model for the mkvc problem has been studied until now.
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A generalization of the mkvc problem is the maximum k-(set)-coverage (de-
noted by mkc) problem, where given a universe of elements E = {e1, e2, . . . , em},
a collection of subsets of E , S = {S1, S2, . . . , Sn}, and an integer k ≤ n, we ask
for a subcollection A = {A1, A2, . . . , A|A|} ⊆ S, such that |A| = k and the num-
ber of elements of E covered by A is maximized. The online model for the mkc

problem is the same as for the mkvc.
Clearly, the mkvc problem is a special case of the mkc problem where: (i) each

element belongs to exactly two sets and (ii) the intersection of any two sets of S
has size at most one, since multiple edges are not permitted.

The weighted generalization of the mkc problem, denoted by weighted mkc,
has been also studied in the literature. In this problem, each element ei ∈ E has
a non-negative weight w(ei), and the goal is to maximize the total weight of the
elements covered by k sets.

The analogous online model for weighted mkc problem, where at each step i
a set Si ∈ S together with its elements is revealed and only k such sets can be
kept in memory, has been studied in [1], where an algorithm of competitive
ratio 1

4 is given. The authors in their so called set-streaming model assume that
the universe of the instance is known a priori. Nevertheless, they do not use this
information in the proposed algorithm.

In the classic offline setting, the mkc problem is known to be non approximable
within a factor 1 − 1

e [2]. On the other hand, even for the weighted version of

the problem, an approximation algorithm of ratio 1 −
(
1− 1

k

)k is known [3].
This ratio tends to 1− 1

e as k increases, closing in this way the approximability
question for the problem.

In [4] the inverse problem (i.e., the hitting set version of mkc), also called
maximum coverage problem, has been studied: given a universe of elements E =
{e1, e2, . . . , em}, a collection of subsets of E , S = {S1, S2, . . . , Sn}, a non-negative
weight w(Si) for each Si ∈ S, and an integer k, a set B ⊆ E is sought, such
that |B| = k and the total weight of the sets in S that intersect with B is
maximized. It is easy to see that this version is equivalent to the weighted

mkc modulo the interchange of the roles between set-system and universe of
elements. An algorithm of approximation ratio 1 −

(
1− 1

p

)p

is presented in [4]
for this problem, where p is the cardinality of the largest set in S. In the case
where each set has cardinality equal to two then this problem coincides with
the mkvc problem; hence a 3

4 approximation ratio is implied by the algorithm
in [4]. Several improvements for some restricted cases of the mkvc problem are
presented in [5,6]. The mkvc problem is NP-complete in bipartite graphs (by a
reduction from the densest k-subgraph problem [7]). Moreover, it is polynomial in
trees by an application of the dynamic programming algorithm for the quadratic
0− 1 knapsack problem presented in [8] using appropriate weights.

In this paper we study the online model described above for both the mkvc

and the mkc problems. In Section 2, we prove several negative results on the
competitiveness of any algorithm for the model handled for both problems. In
Section 3, we present algorithms for regular graphs, regular bipartite graphs,
trees and chains, achieving non-trivial competitive ratios, improving upon an
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easy 1
2 competitiveness result holding for any graph. Finally, in Section 4 the

k-(set)-coverage problem is handled. For this problem, we present an algorithm
that improves upon former results for the same model for small and moderate
values of k.

The following notations will be used in the sequel. They are based upon the
definition of the mkvc problem and are easily extendable to the mkc problem.

For any A ⊆ V , we denote by E(A) the set of edges covered by A and
by m(A) = |E(A)| the number of these edges. Let SOL = m(A) be the number
of edges covered by our algorithms. Moreover, we denote by A∗ ⊆ V an optimal
subset of vertices and by OPT = m(A∗) the number of edges covered by an
optimal solution. The maximum degree (or the degree when it is regular) of the
input graph G = (V, E) is denoted by Δ. Dealing with mkc, Δ denotes the
cardinality of a set of maximum size, that is, Δ = max{|Si| : 1 ≤ i ≤ n}. For a
subset A ⊆ V and a vertex vi ∈ A, we call public the edges incident to vi and
to another vertex in A and private the edges of vi that are covered just by vi

in A. Finally, as it is common in the online setting, the quality of an algorithm
is measured by means of the so-called competitive ratio representing the ratio
of the value of the solution computed by the algorithm over the optimal value
of the whole instance, i.e., the value of an optimal (offline) solution of the final
instance.

Detailed proofs of the results are given in [9].

2 Negative Results

In this section we give negative results for the online maximum k-vertex-coverage
problem and their corresponding adaptations for the maximum k-coverage prob-
lem. We start with a negative result for the case where we don’t allow any
“swaps”, i.e., where the replacement of a vertex or set that belongs to the cur-
rent solution by the newly revealed vertex or set is not permitted.

Proposition 1. Any deterministic online algorithm that does not allow swaps
cannot achieve a competitive ratio better than O

(
1

(n−1)1/(k+1)

)
, for the mkvc

problem, and better than O
(

1
m1/(k+1)

)
, for the mkc problem.

The next negative result for the mkvc problem fits the model addressed in the
paper (swaps are allowed).

Proposition 2. Any deterministic online algorithm cannot achieve a competi-
tive ratio better than 2k

3k−2 ,
2
3 for the mkvc problem.

Proof. Assume that 2k − 1 vertices, v1
1 , v

1
2 , . . . , v1

2k−1, of degree one and 2k − 1
vertices, v2

1 , v2
2 , . . . , v

2
2k−1, of degree two are released, such that (v1

i , v2
i ) ∈ E,

1 ≤ i ≤ 2k − 1, and that the algorithm selects k′ ≤ k of them. Wlog, let
v2
1 , v

2
2 , . . . , v2

k′ be the vertices selected by the algorithm. Next the vertex v3 of
degree k′ is released, where (v2

i , v3) ∈ E, 1 ≤ i ≤ k′. The solution of the algorithm
at this time is 2k′, while the inclusion or not of v3 does not play any role for
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this value. Finally, 2k− 1− k′ vertices, v3
k′+1, v

3
k′+2, . . . , v

3
2k−1, of degree one are

released, such that (v2
i , v3

i ) ∈ E, k′ + 1 ≤ i ≤ 2k − 1. In this last phase, the
algorithm can increase its solution by at most k − k′ more edges. Hence, the
final solution of the algorithm is at most k + k′. The optimum solution consists
of the vertices v2

k+1, v
2
k+2, . . . , v

2
2k−1, v3, and hence is of cardinality 2(k− 1) + k′.

In all, SOL
OPT = k+k′

2(k−1)+k′ ≤ 2k
3k−2 . ��

An analogous result can be proved for the mkc problem. Recall that for the
offline version of the mkc problem an 1 − 1

e , 0.63-inapproximability result is
known [2].

Proposition 3. Any deterministic online algorithm cannot achieve a competi-
tive ratio better than k+2

√
k+1

2k+2
√

k+1
, 1

2 for the mkc problem even in the case where
all sets have the same cardinality.

3 Maximum k-Vertex-Coverage

In this section we deal with the online maximum k-vertex-coverage problem.
Note, first, that there exists an easy 1

2 -competitive ratio for this problem. In
fact, consider selecting k vertices of largest degrees. In an optimum solution
all the edges are, at best, covered once, while in the solution created by this
greedy algorithm, all the edges are, at worst, covered twice. Since the algorithm
selects the largest degrees of the graph, the 1

2 -competitive ratio is immediately
concluded.

Proposition 4. There is a 1
2 -competitive ratio for the online mkvc problem.

In the rest of this section we improve the 1
2 -competitive ratio for several classes

of graphs. But first, we give an easy upper bound for the number of elements
covered by any solution that will be used later. Its proof is straightforward.

Proposition 5. OPT ≤ kΔ.

3.1 Regular Graphs

The following preliminary result that will be used later holds for any algorithm
for the mkvc problem in regular graphs.

Proposition 6. Any deterministic online algorithm achieves a k
n -competitive

ratio for the mkvc problem on regular graphs.

Let us note that the result of Proposition 6 for the mkvc problem also holds for
general graphs in the offline setting [6].

We now present an algorithm for the mkvc problem in regular graphs. Our
algorithm depends on a parameter x which indicates the improvement on the
current solution that a new vertex should entail, in order to be selected for
inclusion in the solution. In other words, we replace a vertex of the current
solution by the released one, only if the solution increases by at least

⌈
Δ
x

⌉
edges.

As we will see in what follows, the best value for x is x = n+2k+
√

4k2+n2

2n ,
leading to the following theorem.
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Algorithm mkvc-R(x)

1: A = ∅; B = ∅;
2: for each released vertex v do
3: if |A| < k then
4: A = A ∪ {v};
5: if |E({v}) \ E(B)| ≥ ⌈Δ

x

⌉
then

6: B = B ∪ {v};
7: else if |B| < k and |E({v}) \ E(B)| ≥ ⌈Δ

x

⌉
then

8: Select a vertex u ∈ A \ B;
9: A = A ∪ {v} \ {u}; B = B ∪ {v};

10: return A;

Theorem 1. Algorithm mkvc-R achieves 0.55-competitive ratio.

Proof (Sketch). Note that B ⊆ A consists of the vertices that improve the solu-
tion by at least

⌈
Δ
x

⌉
; b denotes the number of these vertices, i.e., b = |B|. We

denote by y1 the number of edges with one endpoint in B and the other in V \B,
and by y2 the number of edges with both endpoints in B. By definition:

SOL ≥ y1 + y2 = bΔ− y2 =
bΔ− y1

2
+ y1 =

bΔ + y1

2
(1)

We shall handle two cases, depending on the value of b with respect to k.
If b < k then each vertex v ∈ V \B is not selected by Algorithm mkvc-R(x)

to be in B because it is adjacent to at most
⌈

Δ
x

⌉
− 1 vertices of V \ B. Thus,

there are at least Δ−
⌈

Δ
x

⌉
+1 edges that connect v with vertices in B. Summing

up for all the vertices in V \ B, it holds that y1 ≥ (n − b)
(
Δ−

⌈
Δ
x

⌉
+ 1
)
, and

considering also (1) we get:

SOL ≥ (n− b)
(

Δ−
⌈

Δ

x

⌉
+ 1
)

+ y2 (2)

SOL ≥
bΔ + (n− b)

(
Δ−

⌈
Δ
x

⌉
+ 1
)

2
(3)

Using the upper bound for the optimum provided by Proposition 5 and expres-
sions (2) and (3), respectively, we get the following ratios:

SOL

OPT
≥

(n− b)
(
Δ−

⌈
Δ
x

⌉
+ 1
)

+ y2

kΔ
≥ n(x− 1)− b(x− 1)

kx
(4)

SOL

OPT
≥

bΔ+(n−b)(Δ−
Δ
x �+1)

2

kΔ
≥ n(x− 1) + b

2kx
(5)

Observe that the righthand side of (4) decreases with b while that of (5) increases;
thus, the worst case occurs when righthand sides of them are equal, that is
n(x−1)−b(x−1)

kx = n(x−1)+b
2kx ⇔ b = n(x−1)

2x−1 and hence:

SOL

OPT
≥

n(x− 1) + n(x−1)
2x−1

2kx
=

n(x− 1)
k(2x− 1)

(6)
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If b = k, then trivially it holds that:

SOL

OPT
≥

k
⌈

Δ
x

⌉
kΔ

≥ 1
x

(7)

Note that (6) increases with x while (7) decreases; therefore, for the worst case
we have n(x−1)

k(2x−1) = 1
x ⇔ x = n+2k+

√
4k2+n2

2n . In all, it holds that:

SOL

OPT
≥ 2n

n + 2k +
√

4k2 + n2
(8)

If k < 0.55n, the ratio of (8) leads to SOL
OPT ≥

2n

n+2(0.55n)+
√

4(0.55n)2+n2
= 0.55. On

the other hand, the ratio provided in Proposition 6 that holds for any algorithm,
for k > 0.55n, gives SOL

OPT ≥
k
n ≥

0.55n
n = 0.55. ��

Let us note that, as it can be easily derived from (8), when k = o(n) the com-
petitive ratio of Algorithm mkvc-R is asymptotical to 1.

3.2 Regular Bipartite Graphs

A better ratio can be achieved if we further restrict in regular bipartite graphs.
A key-point of such an improvement is that the maximum independent set can
be found in polynomial time in bipartite graphs (see for example [10]). In what
follows in this section, we consider that the number of vertices, n, is known a
priori.

Our Algorithm mkvc-B initializes its solution with the first k released ver-
tices. At this point, a maximum independent set B, of size b ≤ k, in the graph
induced by these k vertices is found. The vertices of this independent set will
surely appear in the final solution. For the remaining k − b vertices we check if
they cover at least

nΔ
2 −bΔ


n−b
k−b �

edges different from those covered by the independent

set B; if yes, we return the solution consisting of the b vertices of the indepen-
dent set and these k − b vertices. Otherwise, we wait for the next k − b vertices
and we repeat the test. In Algorithm mkvc-B, G[A] denotes the subgraph of G
induced by the vertex-subset A.

Theorem 2. Algorithm mkvc-B achieves a 0.6075-competitive ratio.

Proof (Sketch). Let us call batch the set of the k−b vertices of A\B in Lines 5–10
of Algorithm mkvc-B.

The solution computed by this algorithm contains a maximum independent
set of size b. Since the input graph is bipartite, it holds that b ≥ k

2 .
The number of edges of the graph uncovered by the vertices of the maximum

independent set is in total nΔ
2 − bΔ. Any of these edges is covered by vertices

belonging to at least one of the
⌈

n−b
k−b

⌉
batches. Hence, in average, each batch

covers
nΔ
2 −bΔ


n−b
k−b �

of those edges; so there exists a batch that covers at least
nΔ
2 −bΔ


n−b
k−b �

of
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Algorithm mkvc-B

1: A = {the first k released vertices};
2: Find a maximum independent set B ⊆ A in G[A]; b = |B|;
3: for each released vertex v do
4: if |A| = k then

5: if m(A) ≥ bΔ +
nΔ
2 −bΔ

�n−b
k−b � then

6: return A;
7: else
8: A = B;
9: else

10: A = A ∪ {v}
11: return A;

them. Therefore, the algorithm covers in total at least bΔ+
nΔ
2 −bΔ


n−b
k−b �

edges. Using

Proposition 5, we get SOL
OPT ≥

bΔ+
nΔ
2 −bΔ


n−b
k−b �

kΔ =
b+

n
2 −b


n−b
k−b �
k and since this quantity

increases with b it holds that:

SOL

OPT
≥

k
2 +

n
2 − k

2⌈
n− k

2
k− k

2

⌉
k

=
k + n−k


 2n−k
k �

2k
(9)

If k ≤ 0.6075n, then (9) leads to SOL
OPT ≥ 0.6075. Otherwise, using Proposition 6

we get the same ratio and the theorem is concluded. ��

Note that by (9), Algorithm mkvc-B achieves a competitive ratio asymptotical
to 3

4 when k = o(n).

3.3 Trees and Chains

In this section we give algorithms that further improve the competitive ratios
for the mkvc problem in trees and chains. Dealing with trees the following result
holds.

Proposition 7. The mkvc problem can be solved within
(
1− k−1

Δ∗
)
-competitive

ratio in trees, where Δ∗ is the sum of the k largest degrees in the tree. The ratio
is tight.

Note that, if the number of vertices of degree greater than 1 is r < k then our
algorithm finds an optimum solution using just r vertices, since the edges that
are adjacent to the leaves are covered by their other endpoints.

Furthermore, in the case where all the internal vertices of the tree have the
same degree Δ, the ratio provided by Proposition 7 becomes

(
1− k−1

kΔ

)
. This

ratio is better than the ratio proved for regular bipartite graphs in Theorem 2
for any Δ ≥ 3, but it is worse for Δ = 2, i.e., in the case where the input graph
is a chain.
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An improvement for the mkvc problem in chains follows. The main idea of
the algorithm is to partition the solution, A, into two disjoint parts, whose size
is dynamically adjusted: the set B of vertices that contribute two edges in E(A)
and the set C of vertices that contribute one edge in E(A).

Algorithm mkvc-C

1: A = ∅; B = ∅; C = ∅; In any step A ≡ B ∪ C;
2: for each released vertex v do
3: if |B| ≤ k and v adds two new edges to the solution then
4: if |A| = k then
5: Delete an arbitrary vertex from C;
6: B = B ∪ {v};
7: else if |A| < k and v adds one new edge to the solution then
8: C = C ∪ {v};
9: if the inclusion of v in A has as a result three consecutive vertices to appear

in A then
10: Move v from C to B; Remove the middle vertex from A;
11: return A;

Proposition 8. For the mkvc problem in chains, Algorithm mkvc-C returns
the (offline) optimum, if k <

⌈
n
3

⌉
or k ≥

⌈
2n
3

⌉
, and achieves a 0.75-competitive

ratio, if
⌈

n
3

⌉
≤ k <

⌈
2n
3

⌉
.

4 Maximum k-(set)-Coverage

In this section we present Algorithm mkc for the online maximum k-(set)-
coverage problem. It initializes by selecting the first k released sets. Then, each
time a new set P is released, the algorithm will update the current solution Aj

only if for some suitably selected set Q from Aj , the solution obtained after hav-
ing in Aj the set Q replaced by P covers at least m(Aj)

(
k+1

k

)
elements. We prove

that Algorithm mkc achieves competitive ratio strictly greater than 1
4 , tending

to 1
4 as k increases. Recall that the algorithm presented in [1] achieves also an

1
4 -competitive ratio. However, our analysis is tight and gives better results for
moderately large values of k.

To analyze Algorithm mkc, let Az be the solution computed after having all
the sets released, i.e., SOL = m(Az). Fix also, an optimum solution A∗.

Algorithm mkc

1: j = 1; Aj = {the first k released sets};
2: for each released set P do
3: Find the set Q ∈ Aj that covers privately the smallest number of elements in

Aj ;

4: if m(Aj \ {Q} ∪ {P}) > m(Aj) +
m(Aj )

k
then

5: j = j + 1; Aj = Aj−1 \ {Q} ∪ {P};
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We distinguish the following two types of bad events that may happen during
the execution of the algorithm upon arrival of a set P :

(a) P ∈ A∗ and Algorithm mkc does not select it, and
(b) P �∈ A∗ and Algorithm mkc discards Q ∈ A∗ in order to insert P into its

current solution.

The total number of bad events of both types is a measure of the distance
between Az and A∗; clearly, at most k such events may happen. Notice also that
more than one bad event of type (a) may happen while the current solution is
kept unchanged, i.e. may correspond to some value of j in the algorithm, while at
most one bad event of type (b) might correspond to it; so, let � = |{j : some bad
event of any type happens when the current solution is Aj}|. Let Aji , 1 ≤ i ≤ �,
1 ≤ ji ≤ z, be the i-th of these current solutions, and ki, 1 ≤ i ≤ �, be the
number of events occurred with Aji being the current solution.

We will now provide an upper bound to OPT = m(A∗) by some expression
involving these “event-stroken” Aji s, 1 ≤ i ≤ �. Consider that the s-th bad
event corresponds to ji, i.e.,

∑i−1
r=1 kr < s ≤

∑i
r=1 kr. Let Ps be the new set that

arrives while the current solution is Aji and Qs be the set that covers privately
the smallest number of elements in Aji . Let, also, Q̃s ⊆ Qs be the set of private
elements of Qs in Aji .

If the event is of type (a) then Ps ∈ A∗ is not selected and it covers a subset
of the elements in E(Aji \ {Qs}) plus its private elements, P̃s ⊆ Ps, in E(Aji \
{Qs} ∪ {Ps}). Note that it is m(P̃s) ≤ m(Q̃s) + m(Aji

)

k , otherwise Ps would be

selected by the algorithm. Moreover, m(Q̃s) ≤ m(Aji
)

k , since Qs has the smallest

private part in Aji , and hence m(P̃s) ≤ 2m(Aji
)

k .
In all we get the following inclusion relation E(A∗) ⊆

⋃�
i=1 E(Aji ) ∪

⋃
s P̃s

with s varying on the indices of (a)-type bad events (remark that the sets of the
optimum removed after a (b)-type bad event are always represented in the first
term of the expression, since the union varies among all i for Ajis). This reduces
trivially to E(A∗) ⊆ E(Aj�

) ∪
⋃�

i=2

[
E(Aji−1) \ E(Aji )

]
∪
⋃

s P̃s. Thus, for the
value of the optimum solution A∗ we have the following bound:

OPT ≤ m(Aj�
) +

�∑
i=2

m(E(Aji−1 ) \ E(Aji)) +
�∑

i=1

(
ki

2m(Aji)
k

)

Claim 1. m(E(Aji−1 ) \ E(Aji )) ≤
|Aji−1\Aji

|
k m(Aji−1 ), 2 ≤ i ≤ �.

Using Claim 1 and since m(Aj�
) > m(Aji ), 1 ≤ i ≤ �− 1, and

∑�
i=1 ki = k we

get:

OPT ≤ m(Aj�
)+

�∑
i=2

|Aji−1 \Aji |
k

m(Aji−1)+
�−1∑
i=1

2m(Aji)
k

+(k− �+1)
2m(Aj�

)
k
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By definition, it holds that j� ≤ z and hence m(Aj�
) ≤ m(Az) = SOL. Moreover,

by Algorithm mkc, m(Aj�
) ≥
(
1 + 1

k

)j�−ji
m(Aji). Thus, we have:

SOL

OPT
≥ 1

3 + 1
k

∑�
i=2

ji−ji−1+2

(1+ 1
k )j�−ji−1 −

2(�−1)
k

(10)

Claim 2. For any � ≥ 2, it holds that
∑�

i=2
ji−ji−1+2

(1+ 1
k )j�−ji−1 ≤ g(�)

ln(1+ 1
k ) , where

g(�) = (1+ 1
k )2

e · eg(�−1) and g(2) = (1+ 1
k )2

e .

Using Claim 2 and (10), we get SOL
OPT ≥ 1

3+ 1
k

[
g(�)

ln(1+ 1
k )

−2(�−1)

] , where g(�) =

(1+ 1
k )2

e ·eg(�−1) and g(2) = (1+ 1
k )2

e . This quantity is minimized for some � = o(k).
The ratio r achieved by Algorithm mkc for different values of k is shown in
Table 1.

Table 1. Approximation ratio of Algorithm mkc

k 2 3 5 10 30 50 100 300 500 1000

r 0.333 0.324 0.314 0.300 0.282 0.275 0.268 0.261 0.258 0.256

To see that the ratio achieved by Algorithm mkc is always greater than 1
4 ,

consider the following expression for the ratio, slightly coarser than (10):

SOL

OPT
≥ 1

3 + 1
k

∑�
i=2

ji−ji−1

(1+ 1
k )j�−ji−1 + 1

k

∑�
i=2

(
2

(1+ 1
k )j�−ji−1 − 2

)
Note first that if � = 1 then both sums in the denominator become zero and
hence we have a 1

3 -competitive ratio. For � ≥ 2 we may proceed to the following
analysis. For the first sum, by a similar argument as in Claim 2 we can prove
that

∑�
i=2

ji−ji−1

(1+ 1
k )j�−ji−1 ≤

g(�)

ln(1+ 1
k ) , where g(�) = 1

e · eg(�−1) and g(2) = 1
e . It

is easy to see by simple induction that g(�) ≤ 1 for any � ≥ 2 and hence∑�
i=2

ji−ji−1

(1+ 1
k )j�−ji−1 ≤ 1

ln(1+ 1
k ) ≤ k. For the second sum, we have:

�∑
i=2

(
2(

1 + 1
k

)j�−ji−1
− 2

)
≤

2∑
i=2

(
2(

1 + 1
k

) − 2

)
=

2k

k + 1
− 2 = − 2

k + 1

Therefore, using these bounds to the ratio we get SOL
OPT ≥

1
4 + 1

4
1

2k(k+1)−1 .
It is hopefully clear from the previous discussion, that the analysis of Algo-

rithm mkc works as well for the weighted mkc problem, up to the assumption
that m(·) in Algorithm mkc denotes the total weight of the elements rather than
their number.
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We conclude this section by providing a tight example for the ratio achieved
by Algorithm mkc. The idea of the example strongly relies upon the proof given
above, which indicates the “critical” values of � and ji, 1 ≤ i ≤ �. For simplicity,
we will consider a case where k = 3, but it is easy to extend our example for
any k, by appropriately choosing values for � and ji.

For k = 3, one can see that the ratio of Algorithm mkc is minimized when
� = 2 and j2 − j1 = 1. Hence, consider the scenario shown in Figure 1. Let

S1 S2 S3

Aj1 = A1
S4

S2 S3 S5

Aj2 = A2

S6

S7

Fig. 1. A tight example for Algorithm mkc when k = 3

A1 = {S1, S2, S3} be the solution after the first three sets have been released.
These sets are disjoint and each one covers c elements. Next, the set S4 appears,
which covers 2c− ε new elements plus all elements in S2 and S3. The algorithm
does not select S4, since it may choose S1 as a candidate for swapping; in this
case the new solution would cover m({S2, S3, S4}) = 4c − ε elements which is
smaller than m(A1)+ m(A1)

k = 4c. Then, the set S5 is released, which is disjoint to
the previous sets and covers 2c elements. Thus, the algorithm replaces S1 by S5,
and the new solution is A2 = {S2, S3, S5}. Finally, S6 and S7 are released, each
one covering the elements in S5 plus 8c

3 − ε new elements. Algorithm mkc does
not select any of them, since they do not satisfy the algorithm’s criterion.

So, the final solution, A2, covers m(S2) + m(S3) + m(S5) = 4c elements. The
optimal solution consists of sets S4, S6 and S7 and covers OPT = (4c − ε) +
(2c + 8c

3 − ε) + (8c
3 − ε) = 34c

3 − ε elements. Therefore, the ratio achieved by
Algorithm mkc is SOL

OPT = 4c
34c
3 −ε

, 12
34 = 0.353.

Note that the gap between this ratio and the ratio 0.324 given in Table 1 is
due to the fact that the elements of S1 do not appear to the optimal solution.
Indeed, if S1 was included to the optimal, then OPT = 37c

3 − ε and SOL
OPT =

4c
37c
3 −ε

, 12
37 = 0.324. This gap decreases as k →∞.

5 Conclusions

There exist several interesting questions arising from the results presented in this
paper. The first of them is to improve the easy 1

2 -competitive ratio for mkvc in
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general graphs and the (less easy) worst-case 1
4 -competitive ratio in set systems.

Another open question is to provide tighter upper bounds for the on-line model
handled in regular graphs. We still do not see how one can improve the analysis
of Algorithm mkc in the case of equal cardinalities, or how to tighten the upper
bound of Proposition 3 in Section 2, in order to match (or to get closer to) the
competitive ratio of Algorithm mkc. Let us note that an algorithm in the spirit
of Algorithm mkvc-R of Section 3.1 for the case of equal-cardinality sets, only
achieves ratio 1√

k
.
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Coloring Graphs without Short Cycles and Long
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Abstract. The girth of a graph G is the length of a shortest cycle in
G. For any fixed girth g ≥ 4 we determine a lower bound (g) such
that every graph with girth at least g and with no induced path on (g)
vertices is 3-colorable. In contrast, we show the existence of an integer 
such that testing for 4-colorability is NP-complete for graphs with girth
4 and with no induced path on  vertices.

1 Introduction

Graph coloring involves the labeling of the vertices of some given graph by k
integers called colors such that no two adjacent vertices receive the same color.
Due to the fact that the corresponding decision problem k-Coloring is NP-
complete for any fixed k ≥ 3, there has been considerable interest in studying
its complexity when restricted to certain graph classes, see e.g. the surveys of
Randerath and Schiermeyer [19] and Tuza [22]. We focus on graph classes defined
by forbidden induced subgraphs. Before we summarize the known results and
explain our new results, we first state the necessary terminology and notations.

1.1 Terminology

We only consider finite undirected graphs with no loops and no multiple edges.
We refer to the textbook by Bondy and Murty [1] for any undefined graph
terminology. Let G = (V, E) be a graph. We write G[U ] to denote the subgraph
of G induced by the vertices in U , i.e., the subgraph of G with vertex set U
and an edge between two vertices u, v ∈ U whenever uv ∈ E. The length of
a path or cycle is the number of its edges. The graphs Cn and Pn denote the
cycle and path on n vertices, respectively. The disjoint union of two graphs G
and H is denoted G + H , and the disjoint union of r copies of G is denoted rG.
A linear forest is the disjoint union of a collection of paths. Let G be a graph
and {H1, . . . , Hp} be a set of graphs. We say that G is (H1, . . . , Hp)-free if G
has no induced subgraph isomorphic to a graph in {H1, . . . , Hp}; if p = 1, we
sometimes write H1-free instead of (H1)-free. If G is C3-free, then we also say
that G is triangle-free. The girth g(G) of G is the length of a shortest cycle in

� This work has been supported by EPSRC (EP/G043434/1).

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 193–204, 2011.
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G. Note that G has girth at least p for some integer p ≥ 4 if and only if G is
(C3, . . . , Cp−1)-free.

A k-coloring of a graph G = (V, E) is a mapping φ : V → {1, . . . , k} such
that φ(u) �= φ(v) whenever uv ∈ E. If G has a k-coloring, then G is called
k-colorable. The chromatic number χ(G) of G is the smallest k such that G is k-
colorable. If χ(G) = k, then G is also called k-chromatic. Recall that the problem
k-Coloring is to decide whether a graph admits an k-coloring. Here, k is fixed,
i.e., not part of the input. The problem Vertex Coloring is to determine the
chromatic number of a graph. The problem k-Precoloring Extension is to
decide whether a given mapping φW : W → {1, . . . , k} defined on a (possibly
empty) subset W ⊆ V of a graph G = (V, E) can be extended to an k-coloring
of G.

1.2 Related Work

Král’ et al. [15] completely determined the computational complexity of Vertex

Coloring for graph classes characterized by one forbidden induced subgraph
H . They showed that Vertex Coloring can be solved in polynomial time
for H-free graphs if H is a (not necessarily proper) induced subgraph of P4

or of P1 + P3, and that this problem stays NP-hard if H is any other graph.
The computational complexity of Vertex Coloring for H-free graphs where
H is a family of two graphs is still open, although several partial results are
known. In particular (C3, H)-free graphs, i.e., H-free graphs with girth at least
4, are well studied. Král’ et al. [15] showed that for any graph H that contains
at least one cycle, Vertex Coloring is NP-complete for (C3, H)-free graphs.
Maffray and Preissmann [17] showed that Vertex Coloring is NP-complete for
(C3, K1,5)-free graphs, where K1,5 is the 6-vertex star. Broersma et al. [6] showed
that Vertex Coloring is polynomial-time solvable for (C3, 2P3)-free graphs,
hereby completing a study of Dabrowski et al. [8] who considered the Vertex

Coloring problem restricted to (C3, H)-free graphs for graphs H with |VH | ≤ 6.
The computational complexity classification of k-Coloring for H-free graphs

where k is a fixed integer and H is a fixed graph is still open as well, but the
following is known. Kamiński and Lozin [14] showed that 3-Coloring is NP-
complete for the class of graphs of girth at least p for any fixed p ≥ 3, and
Holyer [13] showed that 3-Coloring is NP-complete for claw-free graphs (graphs
with no induced K1,3). The first result implies that 3-Coloring is NP-complete
for the class of H-free graphs if H contains a cycle. The second result implies
that 3-Coloring is NP-complete for the class of H-free graphs if H is a forest
that contains a vertex with degree at least 3. Hence, only the case in which
H is a linear forest remains. It is known that 4-Coloring is NP-complete for
P8-free graphs [5] and that 6-Coloring is NP-complete for P7-free graphs [4].
In contrast to these hardness results, Couturier et al. [7] generalized a result for
P5-free graphs of Hoàng et al. [12] by proving that for any fixed integers k and r,
the k-Coloring problem can be solved in polynomial time for (P5 + rP1)-free
graphs, whereas Randerath and Schiermeyer [18] showed that 3-Coloring can
be solved in polynomial time for P6-free graphs. Broersma et al. [5] extended
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the latter result by showing that 3-Coloring is polynomial-time solvable for
H-free graphs if H is a linear forest with |VH | ≤ 6 or H = rP3 for any integer r.

Also the k-Coloring problem has been studied for H-free graphs where H is
a family of two graphs. We refer to Randerath and Schiermeyer [19] for a detailed
survey on so-called good Vizing-pairs (A, B) that satisfy the condition that every
(A, B)-free graph is 3-colorable, in particular when A = C3. Brandt [2] showed
that every (C3, sK2)-free graph is (2s− 2)-colorable for any s ≥ 3.

1.3 Our New Results

We consider the relation between the girth of a graph and the length of a for-
bidden induced path for the k-Coloring problem. In Section 2 we determine,
for any fixed girth g ≥ 4, a lower bound k(g) such that every Pk(g)-free graph
with girth at least g is 3-colorable. This extends the result of Sumner [21] who
showed that every P5-free graph of girth at least 4 is 3-colorable in another di-
rection than Randerath and Schiermeyer [19] who show that for all � ≥ 4, every
P�-free graph of girth at least 4 is (�− 2)-colorable. Our results lead to Table 1.
The proofs of them are constructive, i.e., yield polynomial-time 3-coloring algo-
rithms. As an aside, graphs with girth g = ∞ are forests and hence 2-colorable.g
In Section 3 we show that 4-Coloring is NP-complete for (C3, P164)-free graphs.
The gadgets of the proofs of the aforementioned NP-completeness results for k-
Coloring for P�-free graphs are not triangle-free, i.e., have girth equal to 3,
and our aim was to show the existence of an integer � = 164 rather than mini-
mizing �. Our result complements the result of Kratochv́ıl [16] who showed that
5-Precoloring Extension is NP-complete for P13-free bipartite graphs.

Table 1. 3-colorable P�-free graphs of given girth

girth forbidden induced path

4 P5-free [21]
5 P7-free
6 P10-free
7 P12-free

g ≥ 8 P�-free for  = 2g + � g−2
4

� − 3

1.4 Future Work

A classical result of Erdös [9] tells us that for every pair of integers k and g, there
exists a k-chromatic graph of girth g. However, it is not trivial to construct, for
given k and g, a k-chromatic P�-free graph of girth g for � as small as possible,
or, for given k and �, a k-chromatic P�-free graph of girth g for g as large as
possible. For example, the Grötzsch graph [11] is 4-chromatic, P6-free and of
girth 4. Hence, the bound of Sumner [21] is tight. Brinkmann and Meringer [3]
constructed a 4-chromatic P10-free graph with girth 5. Hence, the bound in
Table 1 for P10-free graphs is tight with respect to the girth. We are not aware
of examples of 4-chromatic graphs of girth at least 6 without long induced paths
and expect that some of our bounds in Table 1 can be improved. Also, by fixing
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the girth and making the length of the forbidden induced path longer than
the lengths in Table 1 we could obtain polynomial-time 3-coloring algorithms.
Other open questions are if there exists an integer � such that 3-Coloring is
NP-complete for P�-free graphs, and if 3-Coloring is polynomial-time solvable
for (C3, P7)-free graphs.

2 The Lower Bounds for 3-Colorability

We start with some additional terminology. We say that a path between two
vertices u and v in G is a (u, v)-path. The distance between u and v is the
length of a shortest (u, v)-path in G and is denoted dist(u, v). For a vertex
v and subset U ⊆ V we define dist(v, U) = min{dist(v, u) | u ∈ U}; note
that dist(v, U) = 0 if and only if v ∈ U . We denote the neighborhood of a
vertex u by N(u) = {v | uv ∈ E} and its degree by deg(u) = |N(u)|. For a
subset U ⊆ V and integer s, we define Ns(U) = {v ∈ V | dist(v, U) = s} and
Ns[U ] = {v ∈ V | dist(u, v) ≤ s}.

We make two assumptions that are valid throughout this section. First of
all, we may assume that the graphs we consider are connected. Second, we may
assume that they have minimum degree at least three; this follows from the
observation below.

Observation. Let G be a graph and u be a vertex of degree at most 2. Then G
is 3-colorable if and only if G− u is 3-colorable.

We show the four new bounds in Table 1 in Theorems 1 – 4. Due to page
restrictions we only sketch their proofs.

Theorem 1. Every P7-free graph of girth 5 is 3-colorable.

Proof. Let G = (V, E) be a connected P7-free graph with minimum degree at
least 3 such that g(G) = 5. Consider uv ∈ E and let U = {u, v}. We first prove
some useful properties of the sets Ns(U):

1. N1(U) is an independent set;
2. N2(U) induces a bipartite graph;
3. N3(U) is an independent set;
4. Ns(U) = ∅ for s ≥ 4.

Using these four properties we construct a 3-coloring of G as follows. We color
the vertices u and v by the colors 1 and 2 respectively, and all the vertices of
the independent set N1(U) by 3. The vertices of the bipartite graph G[N2(U)]
are colored by 1 and 2. Finally, the vertices of the independent set N3(U) are
colored by 3. ��
Theorem 2. Every P10-free graph of girth 6 is 3-colorable.

Proof. Let G = (V, E) be a connected P10-free graph with minimum degree at
least 3 and girth 6. Let also U = {x1, . . . , x6} be the vertex set of a C6 in G
(vertices are enumerated in the cycle order). Denote by Xi the set of vertices of
N1(U) adjacent to xi for i = 1, . . . , 6. Using the (C3, C4, C5)-freeness of G, we
observe the following:
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1. each set Xi is independent;
2. Xi ∩Xj = ∅ for i, j ∈ {1, . . . , 6}, i �= j;
3. if yiyj ∈ E for yi ∈ Xi, yj ∈ Xj and 1 ≤ i < j ≤ 6, then j − i = 3.

Denote by H1, . . . , Hk components of G[V \N1[U ]]. We need the following claim.

Claim 1. Each graph Hj is either an isolated vertex or a star K1,r for some
r ≥ 1.

We construct a 3-coloring of G. Using Properties 1–3, we color vertices x1, x3,
x5 and all the vertices of X2, X4, X6 by the color 1, and x2, x4, x6 and X1, X3, X5

are colored by 2. Now we color each Hj . If Hj is an isolated vertex then this
vertex is colored by the color 3. Assume that Hj is a star K1,r with the central
vertex w and the leaves z1, . . . , zr. If w /∈ N2[U ] then z1, . . . , zr are colored by
the color 3 and w is colored by 1. Let w be adjacent to a vertex of Xi for some
i ∈ {1, . . . , 6}. In this case w is colored by the color 3. It remains to prove that
each leaf zs can be colored either by 1 or 2. Assume that it is not so for some zs.
Then this vertex is adjacent to two vertices in the sets X1, . . . , X6 colored by 1
and 2 respectively. By symmetry, we assume that zs is adjacent to y1 ∈ X1. Since
G has no induced C5, zs is not adjacent to vertices X2 and X6, and therefore
zs is adjacent to y4 ∈ X4. Now w is not adjacent to vertices of X1 and X4. By
symmetry, we can assume that i = 2, i.e. w is adjacent to a vertex y2 ∈ X2.
Recall that X3 �= ∅ and let y3 ∈ X3. But then y2wzsy1x1x6 . . . x3y3 is an induced
P10. It means that each zs is adjacent either only to vertices colored by 1 or only
to vertices colored by 2 in the sets X1, . . . , X6. In the first case it can be colored
by 2 and we can use the color 1 in the second. ��

Theorem 3. Every P12-free graphs of girth 7 is 3-colorable.

Proof. Let G = (V, E) be a connected graph of girth 7. Let also U = {x1, . . . , x7}
be the vertex set of a C7 in G (vertices are enumerated in the cycle order).
Denote by Xi the set of vertices of N1(U) adjacent to xi for i = 1, . . . , 7. Using
the absence of cycles of length 3, . . . , 6, we observe the following:

1. Xi ∩Xj = ∅ for i, j ∈ {1, . . . , 7}, i �= j;
2. X1 ∪ . . . ∪X7 is independent.

Let H be the subgraph of G induced by the set V \ ({x1, . . . , x7}∪X1∪ . . .∪X6)
(notice that X7 ⊆ VH). We can prove that H is bipartite. Then we color G as
follows: the vertices x1, x3, x5 are colored by the color 1, x2, x4, x6 by the color
2, the vertices of the set X1 ∪ . . . ∪X6 and x7 are colored by 3, and finally all
the vertices of the bipartite graph H are colored by the colors 1 and 2. ��

Theorem 4. Every Pk-free graph with k = 2g + 
 g(G)−2
4 � − 3 and g ≥ 8 is

3-colorable.

Proof. Let G = (V, E) be a connected graph of girth g ≥ 8. Let also U =
{x1, . . . , xg} be the vertex set of a Cg in G (vertices are enumerated in the cycle
order). Let s = 
 g(G)−2

4 �−1. We need the following properties of the sets N t(U):



198 P.A. Golovach, D. Paulusma, and J. Song

1. for any t ∈ {1, . . . , s}, N t(U) is independent;
2. for any t ∈ {1, . . . , s}, each vertex x ∈ N t(U) is adjacent to the unique

vertex in N t−1(U).

We distinguish two cases. We first consider the case g = 9 and then the case
g �= 9.

Case 1. g = 9. Let X ⊆ N1(U) be the set of vertices adjacent to x9 and let
Y ⊆ N2(U) be the set of vertices adjacent to the vertices of X . Since G has no
cycles of length less than 9, we observe additionally to the properties 1 and 2
that

3. Y is independent;
4. vertices of Y are not adjacent to the vertices of N1(U) \X .

Let H be the subgraph of G induced by the set V \ (N1[U ] ∪ Y ). We can prove
that H is bipartite. Then we color G as follows: the vertices x1, x3, x5, x7 are
colored by the color 1 and the vertices x2, x4, x6, x8 are colored by 2, the vertex
x9 and the vertices of the independent set N1(U) \X are colored by 3, X and
Y are colored by 1 and 3 respectively, and finally the vertices of the bipartite
graph H are colored by the colors 1 and 2.

Case 2. g �= 9. Let H be the subgraph of G induced by the set V \Ns[U ]. We
prove that H is bipartite as in Case 1. Then we color G. If g is even then a
3-coloring is constructed as follows: the vertices x2i−1 are colored by color 1 and
the vertices x2i are colored by 2 for 1 ≤ i ≤ g/2, the vertices of the independent
sets N1(U), . . . , Ns(U) are colored by 1 and 3, and finally the vertices of the
bipartite graph H are colored by colors 1 and 2 if Ns(U) was colored by 3,
and by colors 2 and 3 otherwise. Now suppose that g is odd. Then g ≥ 11. Let
X ⊆ N1(U) be the set of vertices adjacent to xg. By Property 2, the vertices
of X are not adjacent to the vertices x1, . . . , xg−1. Because g ≥ 11, we have
s ≥ 2. We color the vertices x2i−1 by the color 1 and the vertices x2i are colored
by 2 for 1 ≤ i ≤ �g/2�, the vertex xg and the vertices of the independent set
N1(U)\X are colored by 3, the vertices of X are colored by 1. Then the vertices
of the independent sets N2(U), . . . , Ns(U) are colored by 2 and 3, and finally
the vertices of the bipartite graph H are colored by colors 1 and 3 if Ns(U) was
colored by 2, and by colors 1 and 2 otherwise. ��

3 The NP-Completeness Result for 4-Colorability

In this section we show that 4-Coloring is NP-complete for (C3, P164)-free
graphs. As the problem is clearly in NP, we are left to prove NP-hardness. The
NP-hardness reductions for k-Coloring for P�-free graphs are based on the
presence of triangles in the gadgets. Hence, the main task is to design a triangle-
free gadget that can replace a number of edges of a graph G in order to make
G triangle-free. We present this gadget and its properties in Section 3.1. We
show how to incorporate it in our final gadget in Section 3.2, where we present
our NP-hardness reduction, which is from the NP-complete problem Not-All-

Equal-3-Satisfiability (cf. [10]).
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A B

D C

Q

T

R

S

u v

Fig. 1. The graph F ; only one Q-cycle, R-cycle, S-cycle and one T -cycle are displayed

3.1 The Edge-Replacing Gadget

We define four independent sets A, B, C and D where |V (A)| = |V (B)| = 10
and |V (C)| = |V (D)| = 5. We add an edge between every vertex in A and every
vertex in B. We also add an edge between every vertex in C and every vertex
in D. This leads to two vertex-disjoint complete bipartite graphs with partition
classes A, B and C, D, respectively.

For every subset Ai ⊆ A of 5 vertices, we create two cycles Qi and Ti, each
on 5 new vertices. We say that Qi is a Q-cycle and that Ti is a T -cycle. We add
5 edges between the vertices of Qi and Ai in such a way that these edges form a
matching. We do the same for Ti and Ai. We also add 5 matching edges between
the vertices of Qi and D, and do the same for Ti and C. We let Q and T denote
the set of all

(
10
5

)
Q-cycles and T -cycles, respectively. Similarly, we define two

sets R and S of
(
10
5

)
R-cycles and S-cycles, respectively. Here, each R-cycle and

each S-cycle correspond to exactly one subset Bi ⊆ B of 5 vertices. For each
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such Bi there are matchings between its vertices and the vertices in its R-cycle
and S-cycle, respectively. There is also a matching between the vertices of each
R-cycle and C, and between the vertices of each S-cycle and D. Finally, we add
a new vertex u adjacent to every vertex of A ∪D, and a new vertex v adjacent
to every vertex of B ∪ C. The resulting graph called F is C3-free; see Figure 1.

Lemmas 1 and 2 state some useful properties of F that we will use later on.
The proof of Lemma 1 has been omitted.

Lemma 1. Let P be an induced path in F . Then the following statements hold:

(i) If P starts in u and ends in v, then |VP | ≤ 8.
(ii) If P starts in u and contains v as an internal vertex, then |VP | ≤ 9.
(iii) If P starts in u and does not contain v, then |VP | ≤ 45.
(iv) If P does not contain u or v as end-vertices, then |VP | ≤ 90.

Lemma 2. The graph F is 4-colorable. Moreover, u and v are not colored alike
in every 4-coloring of F .

Proof. We first show that F is 4-colorable. We choose a vertex c ∈ C and a
vertex d ∈ D, which we give color 1 and 2, respectively. We give each vertex of
(A ∪D) \ {d} color 3 and each vertex of (B ∪ C) \ {c} color 4. We give u color
1 and v color 3. Consider a Q-cycle. We give its vertex adjacent to d color 1
and color its other four vertices by colors 2 and 4. Consider a T -cycle. We give
its vertex adjacent to c color 4 and color its other four vertices by colors 1 and
2. By symmetry, we can also give the vertices of every R-cycle and S-cycle an
appropriate color such that in the end we have obtained a 4-coloring of F .

We now prove the second statement. Let φ be a 4-coloring of F . First suppose
that |φ(C)| ≥ 2 and |φ(D)| ≥ 2. Because C and D are partition classes of a
complete bipartite graph, we then may without loss of generality assume that
φ(C) = {1, 4} and φ(D) = {2, 3}. This means that u can only get a color from
{2, 3} and v can only get a color from {1, 4}. Hence, u and v are not colored
alike.

In the remaining case, we may assume without loss of generality that |φ(D)| =
1. If |φ(A)| = 4, then we cannot color a vertex in B. Hence, |φ(A)| ≤ 3. If
|φ(A)| = 3, then every vertex of B ∪ {u} receives the same color. Because v is
adjacent to the vertices of B, this means that v must receive a different color.

Suppose that |φ(A)| ≤ 2. Then A contains a subset Ai of five vertices that are
colored alike, say with color 3. We observe that u does not get color 3. Consider
the Q-cycle corresponding to Ai. Its five vertices can neither be colored with
color 3 nor with the color in φ(D). Because this cycle needs at least three colors,
this means that φ(D) = φ(A) = {3}. Because every vertex of A is adjacent
to every vertex of B, color 3 is not used on B, so |φ(B)| ≤ 3. Suppose that
|φ(B)| ≤ 2. Then B contains a subset Bj of five vertices that are colored alike,
say with color 4. We consider the S-cycle corresponding to Bj . Because every
vertex of this cycle is not only adjacent to a vertex of Bj with color 4 but also
adjacent to a vertex of D with color 3, we find that only colors 1 and 2 are
available to color its five vertices. This is not possible. Hence, |φ(B)| = 3, so
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φ(B) = {1, 2, 4}. This means that v must receive color 3, whereas we already
deduced that u does not get color 3. This completes the proof of Lemma 2. ��

3.2 Using the Edge-Replacing Gadget

In this section we present our reduction for showing that 4-Coloring is NP-
complete for the class of (C3, P164)-free graphs. This reduction is from the Not-

All-Equal 3-Satisfiability problem with positive literals only. This problem
is NP-complete [20] and is defined as follows. Given a set X = {x1, x2, . . . , xn} of
logical variables, and a set C = {C1, C2, . . . , Cm} of three-literal clauses over X
in which all literals are positive, does there exist a truth assignment for X such
that each clause contains at least one true literal and at least one false literal?

We consider an arbitrary instance I of Not-All-Equal 3-Satisfiability

that has variables {x1, x2, . . . , xn} and clauses {C1, C2, . . . , Cm}. From I we
first construct the graph G from our previous paper [5]. We then explain how
to incorporate the gadget F from Section 3.1. This will yield a graph G′. In
Lemma 3 we will show that G′ is (C3, P164)-free. In Lemma 4 we will show that
G′ is 4-colorable if and only if I has a satisfying truth assignment in which each
clause contains at least one true literal and at least one false literal.

Here is the construction that defines the graph G.

• For each clause Cj we introduce a gadget with vertex set

{aj,1, aj,2, aj,3, bj,1, bj,2, cj,1, cj,2, cj,3, dj,1, dj,2}

and edge set

{aj,1cj,1, aj,2cj,2, aj,3cj,3, bj,1cj,1, cj,1dj,1, dj,1cj,2, cj,2dj,2, dj,2cj,3, cj,3bj,2, bj,2bj,1},

and a disjoint gadget called the copy that has vertex set

{a′
j,1, a

′
j,2, a

′
j,3, b

′
j,1, b

′
j,2, c

′
j,1, c

′
j,2, c

′
j,3, d

′
j,1, d

′
j,2}

and edge set

{a′
j,1c

′
j,1, a

′
j,2c

′
j,2, a

′
j,3c

′
j,3, b

′
j,1c

′
j,1, c

′
j,1d

′
j,1, d

′
j,1c

′
j,2, c

′
j,2d

′
j,2, d

′
j,2c

′
j,3, c

′
j,3b

′
j,2, b

′
j,2b

′
j,1}.

We say that all these vertices (so, including the vertices in the copy) are of
a-type, b-type, c-type and d-type, respectively.

• Every variable xi is represented by a vertex in G, and we say that these
vertices are of x-type.

• For every clause Cj we fix an arbitrary order of its variables xi1 , xi2 , xi3 and
add edges cj,hxih

and c′j,hxih
for h = 1, 2, 3.

• We add an edge between every x-type vertex and every b-type vertex. We
also add an edge between every x-type vertex and every d-type vertex.

• We add an edge between every a-type vertex and every b-type vertex. We
also add an edge between every a-type vertex and every d-type vertex.
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In Figure 2 we illustrate an example in which Cj is a clause with ordered vari-
ables xi1 , xi2 , xi3 . The thick edges indicate the connection between the variables
vertices and the c-type vertices of the two copies of the clause gadget. The dashed
thick edges indicate the connections between the a-type and c-type vertices of
the two copies of the clause gadget. We omitted the indices from the labels of
the clause gadget vertices to increase the visibility.

a a′a a′a a′
Cj C ′

j

b c

d

c

d

c b b′ c′
d′

c′
d′

c′ b′

x1 xi1 xi2 xi3 xn

Fig. 2. The graph G for the clause Cj = {xi1 , xi2 , xi3}

Before we show how to obtain the graph G′, we introduce the following termi-
nology. Let H be some graph. An F -identification of an edge st ∈ EH is the
following operation. We remove the edge st from H but keep the vertices s and
t. We take a copy of F an remove u and v from it. We then add an edge between
s and NF (u) and an edge between t and NF (v). Note that by symmetry we
could reverse the role of u and v in this operation.

In order to obtain G′ from G we first apply consecutive F -identifications
on all edges between a-type and c-type vertices, on all edges between c-type
and x-type vertices and on all edges between two b-type vertices. We take a
complete graph on four new vertices r1, . . . r4 called r-type vertices, and apply
consecutive F -identifications on each edge between them. This leads to a graph
K. We connect K to the modified graph G by adding an edge between every ai,j

and every vertex in {r2, r3, r4} and an edge between every a′
i,j and every vertex

in {r1, r3, r4}. This completes the construction of G′.
The proof of Lemma 3 has been omitted.

Lemma 3. The graph G′ is (C3, P164)-free (but not P163-free).

Lemma 4. The graph G′ is 4-colorable if and only if I has a satisfying truth
assignment in which each clause contains at least one true literal and at least
one false literal.
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Proof. We need the following claim from [5].
Claim 1. The graph G has a 4-coloring in which every aj,h has color 1 and every
a′

j,h has color 2 if and only if I has a truth assignment in which each clause
contains at least one true and at least one false literal.

Suppose that G′ is 4-colorable. By Lemma 2, the vertices of the edges on which
we applied F -identifications do not have the same color. This means that G is
4-colorable. It also means that the vertices r1, . . . , r4 are not colored alike. We
may assume without loss of generality that ri gets color i for i = 1, . . . , 4. Then,
by construction, every aj,h has color 1 and every a′

j,h has color 2 in G′, and
consequently in G. By Claim 1, I has a truth assignment in which each clause
contains at least one true and at least one false literal.

Suppose that I has a truth assignment in which each clause contains at least
one true and at least one false literal. By Claim 1, G has a 4-coloring in which
every aj,h has color 1 and every a′

j,h has color 2. By Lemma 2 we can extend
the 4-coloring of G to a 4-coloring of G′. ��

The main result of this section follows directly from Lemmas 3 and 4 after re-
calling that 4-Coloring is in NP and that Not-All-Equal-3-Satisfiability

is NP-complete and observing that the construction of G′ can be carried out in
polynomial time.

Theorem 5. The 4-Coloring problem is NP-complete even for (C3, P164)-free
graphs.
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Abstract. We study characterizations of algebraic complexity classes by
branching programs of possibly exponential size, using a succinctness
condition to replace the usual one based on uniformity. We obtain char-
acterizations of VPSPACE, the class corresponding to computations in
polynomial space, and observe that algebraic polynomial space can be seen
as constant algebraic space with auxiliary polynomial space Boolean
computations. We also obtain the first examples of natural complete poly-
nomials for VPSPACE, in particular showing that polynomials like the de-
terminant, the permanent or the Hamiltonian become VPSPACE-complete
when the matrix is succinctly encoded. Using the same techniques we also
characterize VNP. In general, we argue that characterizations by branch-
ing programs apply to different classes, both Boolean and algebraic, with
or without uniformity, and thus provide a general and uniform technique
in these different settings.

1 Introduction

This work stems from two observations in Boolean complexity. The first concerns
circuit characterizations of uniform complexity classes. Consider a uniform se-
quence of circuits (Cn) of possibly exponential size. In this case a Turing machine
cannot produce an encoding of the circuit in polynomial time, so the uniformity
condition employed is often based on the direct connection language of the cir-
cuit [17] and requires that there exists a Turing machine which can decide the
nature of a gate and if a gate is an argument of another, in time logarithmic in
the size of the circuit. We observe that this uniformity has two consequences.
One is that different circuits for different input sizes have a common “structure”,
since they are defined by the same Turing machine. The other consequence is
that each circuit Cn, even though it is of exponential size, has a compact repre-
sentation. We would like to separate these two aspects, namely the uniformity
of the computational objects for different input sizes on the one hand and the
compactness of the representation of the computational object for each given in-
put size on the other. In particular we wish to study circuit characterizations in
the non-uniform case. Note that circuit characterizations have also been studied
in the non-uniform case, for example in [4], which quotes Meyer and Stockmeyer

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 205–216, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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suggesting “making the Turing machines nonuniform by giving them oracles”.
By contrast, we wish to focus directly on going from one type of compact com-
putational object for a given input size to another. In the words of Poizat [16],
we wish to avoid “introducing uniformity with such complicated combinatorial
contraptions as Turing machines, only to artificially destroy it later”.1

The second observation is the strong relationship between Boolean space com-
plexity and accessibility questions in directed graphs (see Chap. 4 of [1]). There
is a strikingly simple reduction in the case of computations done by a Turing
machine in polynomial space: the number of possible configurations is simply
exponential and can thus be seen as vertices in a graph where the existence of
an edge can be decided by a small circuit built from the original Turing machine;
the original computation of the machine then reduces to deciding the existence
of a path in the graph. This argument depends on the Turing model and the
fact that the cells on the tapes contain symbols chosen from a finite alphabet.
We are interested in studying whether a similar result holds when the compu-
tations are algebraic. Note that the graph for polynomial space computations
mentioned above is often built for each given input x but it can naturally be
defined once for each fixed input size. It can therefore be seen in a way which is
consistent with our first remarks, namely as a computational object for a given
input size with a compact representation: the circuit deciding the existence of
an edge.

We show that the uniformity and the notion of configurations provided by a
Turing machine are not necessary and that similar results can be obtained in the
non-uniform algebraic case. We consider weighted acyclic directed graphs with
the sole property that there exists a small circuit which computes the weight
of an edge given its vertices. This graph can be seen as an algebraic branching
program, which we call succinct. After introducing basic definitions in Sect. 2, we
show in Sect. 3 that VPSPACE can be characterized as containing the sequences
of polynomials computed by such succinct algebraic branching programs defined
by a sequence of circuits of polynomial size. This similarity strengthens the idea
that the class VPSPACE is a good analog of PSPACE. We use this result to
get examples of complete polynomials for VPSPACE, in particular showing that
polynomials like the determinant, the permanent or the Hamiltonian become
VPSPACE-complete when the matrix is succinctly encoded. In Sect. 4 we show
that VPSPACE can be characterized by succinct layered algebraic branching
programs of width 3, from which we deduce other characterizations in terms of
succinct circuits. Section 5 applies similar ideas to VNP, an algebraic class simi-
lar to NP or �P, to get a characterization by succinct layered algebraic branching
programs of polynomial length. Finally, Sect. 6 applies our results to Boolean
classes and relates them to similar works, illustrating the fact that our tech-
niques provide a uniform argument valid in different settings. Due to lack of
space, proofs are omitted.

1 “Introduire de l’uniformité par un dispositif combinatoire aussi compliqué qu’une
machine de Turing pour ensuite la détruire par un artifice”.
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2 Preliminaries

We will express most of our results in the setting defined by Valiant [18,19]
for algebraic computations, focusing on sequences of polynomials computed by
arithmetic circuits. We briefly recall here the necessary definitions, more details
can be found in [10,5,15].

An arithmetic circuit is a finite simple directed acyclic graph with vertices of
in-degree 0, called input gates and labeled by a constant or a variable, and ver-
tices of in-degree at least 2 labeled by + or ×. Vertices of out-degree 0 are called
output gates. Unless specified, we will consider circuits with computation gates
of in-degree 2. Circuits where addition gates can have arbitrary in-degree are
called semi-unbounded fan-in circuits, while circuits where both types of com-
putation gates can have arbitrary in-degree are called unbounded fan-in circuits.
The polynomial computed by an arithmetic circuit can be defined in an obvious
way by induction on the gates. If S is a subset of the gates of a circuit C, the
sub-circuit of C at S is the graph induced by the set of all gates of C connected
to a gate in S by a directed path. We will call this circuit CS .

A circuit is a term if all its gates have out-degree at most 1. A circuit is weakly
skew if for every multiplication gate α = β1 × · · · × βk, at most one of the edges
(βi, α) is not a bridge in the circuit, i.e. for all but at most one of the argument
gates, removing the edge disconnects the circuit. A circuit is skew if for every
multiplication gate at most one of its arguments is not an input gate. A circuit
is multiplicatively disjoint if for every multiplication gate all of its argument
sub-circuits are pairwise disjoint.

The size of a circuit is its number of gates. The depth of a circuit is the
greatest length of a path from an input gate to an output gate. If the gates of a
circuit are partitioned in levels so that a computation gate can only receive an
arrow from a gate at the previous level or from an input gate, we say that the
circuit is layered and define the width of the circuit as the maximum number of
gates at a level. The degree of an arithmetic circuit is defined inductively: 1 for
an input gate; the max of the degrees of the arguments for an addition gate ;
the sum of the degrees of the arguments for a multiplication gate.

An algebraic branching program is a tuple (G, s, t) where G is a weighted sim-
ple directed acyclic graph and s and t are vertices in G. The size of a branching
program is the number of its vertices. The weight of a path in a branching pro-
gram is the product of the weights of its edges. The polynomial computed by
a branching program G is the sum of the weights of all the paths from s to t
in G. The length of a branching program is the greatest length of a path. If we
can partition the vertices of a branching program in levels so that there are only
edges between vertices in successive levels, we say that the branching program
is layered and define the width as the greatest number of vertices in a level.

We will also consider arithmetic circuits which also contain gates of in-degree 1
called projection gates. A projection gate is labeled with a variable x and a value
ε ∈ {0, 1}; if it receives an arrow from a gate computing a polynomial f(x, ȳ)
then it computes the polynomial f(ε, ȳ). Circuits with projection gates were
introduced in [2] to study Boolean complexity classes. The equivalent summation
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gates were used in [16] to study polynomial space computations in Valiant’s
theory.

The different kinds of circuits above let us classify sequences of polynomials
into the following classes.

– VPe is the class of sequences of polynomials computed by arithmetic terms
of polynomial size or equivalently by constant-width branching programs of
polynomial length (a width of 3 is sufficient, as shown in see [3]).

– VPws is the class of sequences of polynomials computed by (weakly) skew cir-
cuits of polynomial size or equivalently by branching programs of polynomial
width and length.

– VP is the class of sequences of polynomials computed by multiplicatively
disjoint circuits of polynomial size.

– A sequence of polynomials (fn(x̄)) belongs to VNP if there exists a sequence
(gn(x̄, ȳ)) in VP such that fn(x̄) =

∑
ε gn(x̄, ε̄), where the sum is over all

Boolean tuples ε̄ of appropriate length. It can also be defined via multiplica-
tively disjoint circuits with projections of polynomial size (see [16]).

– VPSPACE is the class of sequences of polynomials computed by circuits
with projections of polynomial size (see [16] for this characterization, the
class was originally defined in [12] via polynomials of possibly exponential
degree and coefficient-size, whose coefficient function can be computed in
bits in PSPACE/poly).

In the above definitions, it is usual to consider circuits which can use arbitrary
constants from a given ring, or constant-free versions, which can only use the
constant −1. In any case all the constructions done here will be purely structural
and as such will work whether we allow arbitrary constants or not.

3 VPSPACE and Succinct Algebraic Branching Programs

As explained in the introduction, we take from PSPACE the idea of the configu-
ration graph with the sole condition that there exists a small circuit testing the
existence of an edge. We adapt it here to algebraic computations.

Definition 1. A succinct algebraic branching program is a tuple (B, s̄, t̄) such
that:

– B is an arithmetic circuit with one output gate and inputs ū, v̄, ā where
|ū| = |v̄| = |s̄| = |t̄| = r, ā is a tuple of variables and constants, and s̄ and t̄
are tuples in {0, 1}r,

– the weighted directed graph GB, whose vertices are all the tuples ū ∈ {0, 1}r

and where the weight of the edge from ū to v̄ is the polynomial computed by
the output of B, is simple and acyclic.

The polynomial computed by (B, s̄, t̄) is the sum of the weights of all the paths
in GB from vertex s̄ to vertex t̄. The complexity of (B, s̄, t̄) is the size of B. If
the polynomial computed by the output of B is a variable or a constant for all
tuples ū, v̄ in {0, 1}r we say that the branching program is simple.
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We will show that succinct algebraic branching programs of polynomial complex-
ity characterize VPSPACE. As mentioned in the definition, a succinct algebraic
branching program can define a graph whose weights are polynomials rather
than just constants or variables. A consequence of our results will be that for
polynomials in VPSPACE we can always assume that the succinct algebraic
branching program is simple. In fact, we could have defined the circuit B as
doing a purely Boolean computation indicating if the weight of an edge is 0, 1
or one of the inputs ā.

First we show that sequences in VPSPACE have succinct algebraic branching
programs. We will always start from the definition of VPSPACE via circuits
with projections stated in Sect. 2.

Lemma 1. If a polynomial can be computed by an arithmetic circuit with pro-
jections of size s, then it can be be computed by a simple succinct algebraic
branching program (B, 0̄, 1̄) of complexity O(s3).

For the converse we will use matrix powers as an intermediate step . The size of
the matrix we will consider (and the powers) may exponential, so that we also
need to define succinct matrices.

Definition 2. A succinct matrix is an arithmetic circuit B with inputs ū, v̄, ā
such that |ū| = |v̄| = r and ā is a tuple of variables and constants. The matrix
defined has lines and columns indexed by all tuples in {0, 1}r. The output gate of
B on inputs ū, v̄ ∈ {0, 1}r is the coefficient (ū, v̄) of the matrix. The complexity
of the matrix is the size of B.

Lemma 2. Let M be a succinct matrix of complexity s and N an integer, then
there exists a circuit with projections of size O(s log N) which, given Boolean
tuples ū and v̄, computes the coefficient (ū, v̄) of MN .

Both results together give us our first characterization of VPSPACE.

Theorem 1. A sequence of polynomials belongs to VPSPACE iff it can be com-
puted by a sequence of succinct algebraic branching programs of polynomial com-
plexity (and possibly exponential size).

One possible question with this definition of succinct algebraic branching pro-
grams and succinct matrices is whether restricting the power of the defining
circuit changes the class. Looking carefully at the proof of Lemma 1 shows that
the circuit built is weakly skew, so that we get an equivalent definition if we im-
pose this restriction. We now consider circuits which instead of projection gates
have two new kinds of gates of in-degree 1:

– a production gate is labeled by πz , where z is a variable; if it receives an
edge from a gate computing a polynomial f(z), it computes the polynomial
f(0)f(1),

– a summation gate is labeled by σz , where z is a variable; if it receives an
edge from a gate computing a polynomial f(z), it computes the polynomial
f(0) + f(1).
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Circuits with one or both of these types of gates are easily seen to be equivalent
to circuits with projections [16]. Using these gates, the proof of Lemma 2 also
gives us a normal form for sequences in VPSPACE, similar to the completeness
of true quantified Boolean formulas for PSPACE.

Corollary 1. A sequence of polynomials (fn) belongs to VPSPACE iff there
exists a polynomial q and a sequence (Cn) of arithmetic circuits (without pro-
jections) of polynomial size such that each polynomial fn can be expressed as
O1

w1
· · ·Oq(n)

wq(n)Cn, where Oi
wi

is a summation or a production gate.

Note also that a slight modification of the proof of Lemma 2 gives a simple proof
of the fact that the class VPSPACE is closed for coefficient functions, as shown
in [16].

We have characterized polynomials in VPSPACE by succinct algebraic branch-
ing programs. We could also have chosen exponential powers of succinct matrices.
We will now use this aspect to get the first examples of natural complete poly-
nomials for VPSPACE. We first need to define a generic succinct matrix of size
n. This will be done by considering a circuit Gn(ū, v̄, x̄, ᾱ), where all the tuples
ū, v̄, x̄ have length n, with the property that for any circuit C(ū, v̄, x̄) of size at
most n2 we can give Boolean values to the extra variables ᾱ so that Gn com-
putes the same polynomial as C. This can be done with a construction similar
to the one given in [14], itself inspired by [5] (Sect. 5.6), so that the size of Gn is
polynomial in n. The generic succinct matrix of size n is then the matrix Mn

defined by Gn. The succinct matrix power polynomial Pn is the coefficient (0̄, 1̄)
of the matrix M2n

n .

Corollary 2. The sequence (Pn) is VPSPACE-complete.

This result can be seen as a “scaled-up” version of the completeness of ma-
trix powers for the class VPws given in [15]. We can also consider the generic
succinct matrix as a succinct encoding of instances, in the spirit of [9,21]. With-
out succinctness, the determinant is VPws-complete, while the permanent is
VNP-complete (in characteristic different from 2) and the Hamiltonian is VNP-
complete. Using techniques given in [15] and [14] which show that these poly-
nomials can express any polynomial computed by a branching program, we can
show that the complexity of the succinct versions all jump to VPSPACE and
get more examples of natural complete polynomials.

Corollary 3. The succinct determinant, the succinct permanent and the suc-
cinct Hamiltonian are VPSPACE-complete.

4 VPSPACE and Succinct Layered Algebraic Branching
Programs

The succinct algebraic branching program of Lemma 1 is produced by inductively
applying series or parallel operations. It may therefore be exponentially long and
exponentially wide. In this section we show how the construction can be modified
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to get a branching program of constant width. Although the width of a branching
program can be defined in general, it will be more convenient to work with the
common notion of layered branching programs, for which we introduce a succinct
variant.

Definition 3. A succinct layered algebraic branching program is a tuple (B, s̄, t̄),
such that:

– B is an arithmetic circuit with one output gate and inputs m̄, ū, v̄, ā where
|ū| = |v̄| = r, ā is a tuple of variables and constants, and s̄ and t̄ are tuples
in {0, 1}r,

– B defines a layered weighted direct acyclic graph GB : B(m̄, ū, v̄, ā) is the
value of the edge from vertex ū of level m̄ to vertex v̄ of level m̄ + 1.2

The polynomial computed is the sum of the weights of all the paths from vertex
s̄ of level 0̄ to vertex t̄ of level 1̄. The complexity of (B, s̄, t̄) is the size of B. If
the polynomial computed by the output of B is a variable or a constant for all
tuples ū, v̄ in {0, 1}r we say that the branching program is simple.

Note that each level in the branching program can be seen as a matrix, so that
we could have equivalently called such a branching program a succinct iterated
matrix multiplication. Depending on the case we will use one terminology or
the other. This notion again characterizes VPSPACE, the main part being the
following lemma, which relies on Ben-Or and Cleve’s result [3] showing that
arithmetic computations can be seen as products of matrices of size 3.

Lemma 3. If a polynomial can be computed by a circuit with projections of
size s, then it can be computed by a simple succinct layered algebraic branching
program (B, 0̄, 1̄) of width 3 and complexity O(s3).

We thus get another characterization of algebraic space, similar to the results
obtained in [11,8] in the Boolean uniform case.

Theorem 2. A sequence of polynomials belongs to VPSPACE iff it can be com-
puted by a sequence of succinct layered algebraic branching programs of width 3,
possibly exponential length and polynomial complexity.

We will now see what happens when we look at an iterated matrix multiplication
and compute it as a circuit. Matrix product is associative, therefore we can
compute it in different ways. A first way is to compute it sequentially, i.e. we
see a product M1 · · ·Mk as

((
(M1M2) · · ·Mk−1

)
Mk

)
. Note that if we build

a circuit for this product, the multiplications are all skew. Since the class of
the determinant, VPws, can also be characterized by matrix products, this is
one way of proving that the determinant can be computed by skew circuits.
Another way is to compute the product as a balanced tree: we see M1 · · ·Mk as
(M1 · · ·Mk/2)(Mk/2+1 · · ·Mk) and proceed recursively for each part. This gives

2 m̄+1 is the Boolean tuple corresponding to the integer obtained when incrementing
the integer coded by m̄.
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a tree of matrix products of depth logarithmic in the number of matrices. Each
matrix product in this tree can then be replaced by a small constant-depth circuit
if we allow addition gates to have unbounded in-degree. Applying this to VPws

and the determinant, this is a very simple way of getting a parallel computation,
a special case of the parallelization result of [20]. Thus, seeing a computation
as a matrix product lets us easily deduce two different computational properties
for a class.

We will now apply this idea to succinct iterated matrix multiplications. As
above, we will compute these products via circuits. Since our matrix products
involve an exponential number of matrices, the resulting circuits may also be of
exponential size. We therefore need a notion of succinct circuits. This has been
done in the Boolean case in [22] and with uniformity in the algebraic case in [13].

Definition 4. A succinct arithmetic circuit is a triple (E(ū, v̄), L(ū), ā), where
E and L are circuits and |ū| = |v̄| = r and the directed graph over all ū ∈ {0, 1}r,
with an edge from ū to v̄ iff E(ū, v̄) is non-zero, is simple and acyclic. If |ā| = q,
L(ū) has outputs gates α1, . . . , αq, α+, α× which take Boolean values for any
Boolean tuple ū, exactly one of them being non-zero, indicating the label of the
gate ū. The polynomial computed by a succinct circuit is defined as it is for
arithmetic circuits. The complexity of a succinct circuit is |E| + |L|.

The circuits E and L in the definition above now perform a purely Boolean
computation and can thus be Boolean circuits or arithmetic circuits. Note that
to simplify notations we have not defined an order on the arguments of a com-
putation gate: the operations we consider are commutative, and we define our
circuits, whether succinct or not, as simple graphs, so that there can only be one
edge from a gate to another. This also allows us to easily consider circuits with
gates of unbounded in-degree.

Setting aside uniformity, which we have replaced by succinctness, we consider
the result of Mahajan and Rao [13] characterizing VPSPACE by circuits of
polynomial width and exponential depth. Computing sequentially the iterated
matrix multiplication of Theorem 2, we show that we can actually go to circuits
which have constant width and which are skew.

Corollary 4. A sequence of polynomials belongs to VPSPACE iff it can be com-
puted by a sequence of succinct skew circuits of constant width, exponential depth
and polynomial complexity.

This does not mean that for our model of computations polynomial space is in
fact constant space: the arithmetic circuit which results from the above theorem
does not take into account the space used by the defining Boolean computa-
tion. But it means that a polynomial space algebraic computation only needs a
constant number of “algebraic” cells to store partial computations and a polyno-
mial number of Boolean cells for auxiliary computations. Note that this result
could also be shown from the definition of VPSPACE as containing polynomials
with PSPACE coefficients, but had apparently not been observed before. This
is related to the notion of serializable languages as defined in [6].
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Computing iterated matrix multiplications in parallel yields a characterization
of VPSPACE via succinct circuits of polynomial depth. This was shown using
uniformity in [12]. We show that it holds without uniformity and also for circuits
of unbounded fan-in.

Corollary 5. A sequence of polynomials belongs to VPSPACE iff it can be com-
puted by a sequence of succinct arithmetic terms of polynomial depth and complex-
ity, iff it can be computed by a sequence of succinct unbounded fan-in arithmetic
circuits of polynomial depth and complexity, iff it can be computed by a sequence
of succinct skew circuits of polynomial complexity and exponential size.

Finally, as in Sect. 3, we can consider complete problems. Using the result
from [3], the polynomial associated to iterated multiplications of a polynomial
number of matrices of constant size is easily seen to be VPe-complete, i.e. it
captures one of the smallest classes in Valiant’s framework. However, the com-
plexity of the succinct version, which could be defined similarly to the examples
of Corollaries 2 and 3, once again jumps all the way to VPSPACE.

Corollary 6. The succinct constant-size iterated matrix multiplication polyno-
mial is VPSPACE-complete.

5 Branching Programs for VNP

In Valiant’s framework, the classes VPe and VPws already have a characteriza-
tion via branching programs. In the previous sections we have given branching
program characterizations for VPSPACE. It is not difficult to obtain a charac-
terization for VNP.

Lemma 4. If f(x̄) is a polynomial which can be written as
∑

ε̄ g(x̄, ε̄), where
g(x̄, ȳ) is computed by an arithmetic term of size s, then f can be computed by
a succinct layered algebraic branching program of width exponential in s and of
length and complexity polynomial in s.

Lemma 5. If f(x̄) is a polynomial which can be computed by a succinct iterated
product of m matrices of complexity s, then there exists a polynomial g(x̄, ȳ) of
size and degree polynomial in ms such that f(x̄) =

∑
ε̄ g(x̄, ε̄).

Theorem 3. A sequence of polynomials belongs to VNP iff it can be computed
by a sequence of succinct layered algebraic branching programs of polynomial
length and complexity (and possibly exponential width).

As we did in Corollary 2, we could use this characterization to define a new
VNP-complete polynomial. We could again use the two ways of computing a
product of of matrices to get characterizations of VNP similar to ones given for
NP in [22]. However, the fact that a sequence of polynomials in VNP can be
computed by the kinds of circuits below is easily seen from the definition of the
class and its equality with the class VNPe (see for example the proof in [15]). The
main point here is that the uniformity condition used in [15] to prove a similar
charcterization for a uniform version of VNP can be replaced by succinctness to
get the analogous result for the original non-uniform version of the class.
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Corollary 7. Let (fn) be a sequence of polynomials. The following are equiva-
lent:

1. (fn) belongs to VNP,
2. (fn) can be computed by a sequence of succinct arithmetic terms of polyno-

mial depth and complexity and exponential size,
3. (fn) can be computed by a sequence of succinct circuits of polynomial depth,

degree and complexity, and exponential size,
4. (fn) can be computed by a sequence of succinct semi-unbounded fan-in cir-

cuits of logarithmic depth, polynomial complexity and exponential size.

6 Uniformity and Boolean Classes

We have used succinctness as a way to ensure that computational objects of
potentially exponential size could be compactly represented, in order to charac-
terize non-uniform complexity classes. Of course, we can add uniformity back,
as all the transformations we have done can easily be seen to be computable in
polynomial time by a Turing machine. Thus our results also apply to uniform
versions of Valiant’s complexity classes. Although the algebraic setting was the
main focus of our work, we can also apply these techniques to Boolean classes.
Because the uniform versions are more common we write the characterizations
in this setting: uniformity based on the direct connection language replaces the
succinctness requirement. We could also write similar characterizations for the
non-uniform versions of these classes. In our mind, the main new characterization
is with layered branching programs or equivalently iterated matrix multiplica-
tions: as we have seen, computing the product sequentially or in parallel implies
characterizations with skew circuits and with parallelized semi-unbounded fan-
in circuits such as those first proved in [22], which were shown using uniformity
and configurations of Turing machines.

Consider Boolean circuits which operate on variables and their negations. If
we interpret + as ∨ and × as ∧ and consider input gates labeled by literals, then
NP is Uniform-VNP. We can thus use our characterizations of VNP to get a new
characterization of NP. We will use a Boolean transposition of the defintion of
algebraic branching programs: a DAG-program is “a layered acyclic graph G with
edges labelled by constants (0 or 1) or literals, and with two special vertices s
and t. It accepts an input x if there is an s � t path where each edge is labelled
by a true literal or the constant 1” [7].3

Corollary 8. A language belongs to NP iff it has uniform DAG-programs of
exponential width and polynomial length.

We can also use the characterization of VNP for �P. First note that a function
f belongs to �P iff it can be computed by a uniform sequence of multiplicatively
disjoint arithmetic circuits with projections whose inputs are labeled by variables
x or by 1 − x (this was shown first in [2] with a different notion to control
multiplications). Theorem 3 then implies the following.
3 These are also called “branching programs” in [7] but in the Boolean setting this

clashes with a related but different notion.
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Corollary 9. A function from {0, 1}∗ to N belongs to �P iff it can be computed
by uniform algebraic branching programs of exponential width and polynomial
length, where the weight of an edge can be 0, 1, xi or 1 − xi for any variable xi.

Finally we can characterize PSPACE. First note that a language L belongs to
PSPACE iff it can be decided by a uniform sequence of Boolean circuits with
projections with input gates labeled by literals (see [2] or [16]). The following
characterization is already known [6,11,8], we repeat it to emphasize that our
techniques work both in the Boolean and the algebraic case.

Corollary 10. A language belongs to PSPACE iff it has uniform algebraic
branching programs of width 3 and exponential length, where the weight of an
edge can be 0, 1, −1, xi or 1 − xi for any variable xi.

7 Conclusion

Adding our results to known characterizations of Valiant’s complexity classes
by branching programs, we get the following landscape: VPe corresponds to
branching programs of width 3 and polynomial length; VPws to polynomial
width and length; VNP to exponential width and polynomial length; VPSPACE
to width either 3 or polynomial and exponential length. Only one class is missing:
VP. This is frustrating since VP is the natural class of feasible computations.
However it is not a complete surprise, as VP is also the class for which we do
not have any examples of natural complete polynomial sequences. We believe
that our results, which place all of Valiant’s classes in the context of branching
programs except VP, help explain this special behaviour. Indeed it would be
difficult to fit VP in this context. It is not hard to show that VP has branching
programs of quasi-polynomial width and length, but a branching program of
quasi-polynomial length can compute a polynomial of quasi-polynomial degree.
Restricting the degree to being polynomially bounded is a semantic condition
which would make it hard to use the resulting characterization to find complete
polynomials, as opposed to the syntactic characterizations of the other classes.

More generally, whether for algebraic or Boolean classes, with or without
uniformity, we think that these results further emphasize the importance of
branching programs as a very simple computation model which can be seen
behind the characterizations and properties of several classes.

Acknowledgements. The author thanks Stefan Mengel and Hervé Fournier
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Abstract. We consider the extension of the last-in-first-out graph
searching game of Giannopoulou and Thilikos to digraphs. We show that
all common variations of the game require the same number of searchers,
and the minimal number of searchers required is one more than the cycle-
rank of the digraph. We also obtain a tight duality theorem, giving a
precise min-max characterization of obstructions for cycle-rank.

1 Introduction

Graph searching games are increasingly becoming a popular way to characterize,
and even define, practical graph parameters. There are many advantages to a
characterization by graph searching games: it provides a useful intuition which
can assist in constructing more general or more specific parameters; it gives
insights into relations with other, similarly characterized parameters; and it is
particularly useful from an algorithmic perspective as many parameters associ-
ated with such games are both structurally robust and efficiently computable.

One of the most common graph searching games is the node-search game. In
this game several searchers and one fugitive occupy vertices of the graph and
make simultaneous moves. The (omniscient) fugitive moves along searcher-free
paths of arbitrary length whereas the searchers’ movements are not constrained
by the topology of the graph. The goal of the game is to minimize the number of
searchers required to capture the fugitive by cornering him in some part of the
graph and placing a searcher on the same vertex. This game has been extensively
studied [5] and several important graph parameters such as treewidth [18], path-
width [12], and tree-depth [15] can be characterized by natural variants of this
game. One variation frequently used, indeed the one which separates treewidth
and pathwidth, is whether the location of the fugitive is known or unknown to
the searchers. Another common variation is whether the searchers use a mono-
tone or a non-monotone searching strategy. Monotone search strategies lead
to algorithmically useful decompositions, whereas non-monotone strategies are
more robust under graph operations and hence reflect structural properties, so
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showing that monotone strategies require no more searchers than non-monotone
strategies is an important and common question in the area. Whilst node-search
games on undirected graphs tend to enjoy monotonicity [4,18,14], on digraphs
the situation is much less clear [2,1,13].

Node-search games naturally extend to digraphs, however, in the translation
another variation arises depending on how one views the constraints on the
movement of the fugitive. One interpretation is that in the undirected case the
fugitive moves along paths, so the natural translation would be to have the fugi-
tive move along directed paths. Another view is that the fugitive moves to some
other vertex in the same connected component, and here the natural transla-
tion would be to have the fugitive move within the same strongly connected
component. Both interpretations have been studied in the literature, the former
giving characterizations of parameters such as DAG-width [3,16] and directed
pathwidth [2] and the latter giving a characterization of directed treewidth [11].

In [9], Giannopoulou and Thilikos define a variant of the node-search game
in which only the most recently placed searchers may be removed; that is, the
searchers must move in a last-in-first-out (LIFO) manner. They show that the
visibility of the fugitive is not relevant to the minimum number of searchers
required, the game is monotone, and that it characterizes tree-depth. In this
paper we consider the extension of this game to digraphs.

We generalize the results of Giannopoulou and Thilikos by showing that the
minimum number of searchers required to capture a fugitive on a digraph with
a LIFO-search is independent of:

– Whether the fugitive is invisible or visible,
– Whether the searchers use a monotone or non-monotone search, and
– Whether the fugitive is restricted to moving in searcher-free strongly con-

nected sets or along searcher-free directed paths.

This result is somewhat surprising: in the standard node-search game these op-
tions give rise to quite different parameters [2,3,13].

We show that on digraphs the LIFO-search game also characterizes a pre-
existing measure, cycle-rank – a generalization of tree-depth to digraphs (though
as the definition of cycle-rank predates tree-depth by several decades, it is per-
haps more correct to say that tree-depth is an analogue of cycle-rank on undi-
rected graphs). The cycle-rank of a digraph is an important parameter relating
digraph complexity to other areas such as regular language complexity and asym-
metric matrix factorization. It was defined by Eggan [6], where it was shown to
be a critical parameter for determining the star-height of regular languages, and
interest in it as an important digraph parameter, especially from an algorithmic
perspective, has recently been rekindled by the success of tree-depth [7,10,8].

It is well known that tree-depth can also be characterized by a node-search
game where a visible fugitive plays against searchers that are only placed and
never moved [8]. In that paper, Ganian et al. considered one extension of this
game to digraphs. Here we consider the other natural extension, where the visible
fugitive moves in strongly connected sets, and show that it also characterizes
cycle-rank.
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Our final result uses these graph searching characterizations to define a dual
parameter that characterizes structural obstructions for cycle-rank. We consider
two obstructions, motivated by the shelters of [9] and the havens of [11], that
define simplified strategies for the fugitive. The game characterization then im-
plies that these structural features are necessarily present when the cycle-rank
of a graph is large. By showing that such strategies are also sufficient for the
fugitive, we obtain a rare instance of an exact min-max theorem relating digraph
parameters.

The results of this paper can be summarized with the following characteriza-
tions of cycle-rank.

Main Theorem. Let G be a digraph, and k a positive integer. The following
are equivalent:

(i) G has cycle-rank ≤ k − 1,
(ii) On G, k searchers can capture a fugitive with a LIFO-search strategy,
(iii) On G, k searchers can capture a visible fugitive restricted to moving in

strongly connected sets with a searcher-stationary search strategy,
(iv) G has no LIFO-haven of order > k, and
(v) G has no strong shelter of thickness > k.

The paper is organised as follows. In Section 2 we recall the definitions and
notation that we use throughout the paper. In Section 3 we define the LIFO-
search and searcher-stationary games and show that they characterize cycle-
rank. In Section 4 we prove the min-max theorem for cycle-rank, and in Section 5
we conclude with a discussion on further research and open problems.

2 Preliminaries

All (di)graphs in this paper are finite, simple, directed and without self-loops,
although the results readily extend to multigraphs with self-loops. For simplic-
ity, we also assume that all digraphs contain at least one vertex unless explicitly
mentioned. We use standard notation and terminology, in particular V (G) and
E(G) denote the sets of vertices and edges respectively of a digraph G and be-
tween digraphs, ⊆ denotes the subgraph relation. We will often interchange an
induced subgraph with the set of vertices which defines it, in particular strongly
connected sets of vertices are sets of vertices that induce a strongly connected
subgraph, and we will often view strongly connected components as sets of ver-
tices. Given a digraph G and a set of vertices X ⊆ V (G), we use G\X to denote
the subgraph of G induced by V (G) \ X . An initial component of a digraph G
is a strongly connected component C with no edges from G \ C to C. H ⊆ G is
successor-closed if there are no edges in G from H to G \ H .

Given a finite set V , we use V ∗ to denote the set of finite words over V , and
V <k to denote the set of words over V of length < k. We use ε to denote the
empty word and · or juxtaposition to denote concatenation. For X, Y ∈ V ∗ we
write X � Y if X is a prefix of Y , that is if there exists a word Z ∈ V ∗ such that
Y = X ·Z. For X = a1a2 · · · an ∈ V ∗, we use |X | to denote the length of X , and
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{|X |} to denote the set {a1, a2, . . . , an}. Given two sets A and B we use AΔB to
denote their symmetric difference, that is AΔB = (A∪B)\ (A∩B). Given a set
S ⊆ P(V ) of subsets of V , a ⊆-chain is a subset {X1, . . . , Xn} ⊆ S such that
X1 ⊆ X2 ⊆ · · · ⊆ Xn. If there is no Y ∈ S such that Y ⊂ X1, Xi ⊂ Y ⊂ Xi+1

for some i, or Xn ⊂ Y , then {X1, . . . , Xn} is a maximal ⊆-chain.
The cycle-rank of a digraph G, cr(G), is defined as follows:

– If G is acyclic then cr(G) = 0.
– If G is strongly connected then cr(G) = 1 + minv∈V (G) cr(G \ {v}).
– Otherwise cr(G) = maxH cr(H) where the maximum is taken over all

strongly connected components H of G.

3 Searching Games for Cycle-Rank

We begin by formally defining the LIFO-search game, and its variants, for di-
graphs. Each variation of the LIFO-search game gives rise to a digraph parameter
corresponding to the minimum number of searchers required to capture the fugi-
tive under the given restrictions. The main result of this section is that for any
digraph all these parameters are equal. Furthermore, we show they are all equal
to one more than the cycle-rank of the digraph.

3.1 LIFO-Search for Digraphs

In summary, for the graph searching game in which we are interested the fugi-
tive can run along searcher-free directed paths of any length, the searchers can
move to any vertex in the graph, and the fugitive moves whilst the searchers
are relocating. The only restriction we place on the searchers is that only the
most recently placed searchers may be removed. If a searcher is placed on the
fugitive then he is captured and the searchers win, otherwise the fugitive wins.
The goal is to determine the minimum number of searchers required to capture
the fugitive. For simplicity we assume that each searcher move consists of ei-
ther placing or removing one searcher and observe that this does not affect the
minimum number of searchers required to capture the fugitive. The variants we
are primarily interested in are whether the searchers use a monotone or a non-
monotone strategy, whether the fugitive is visible or invisible, and whether or
not the fugitive must stay within the same strongly connected component when
he is moving. As our fundamental definitions are dependent on these latter two
options, we define four game variants: i, isc, v, vsc, corresponding to the vis-
ibility of the fugitive and whether he is constrained to moving within strongly
connected components, and parameterize our definitions by these variants.

Let us fix a digraph G. A position in a LIFO-search on G is a pair (X, R)
where X ∈ V (G)∗ and R is a (possibly empty) induced subgraph of G \ {|X |}.
Intuitively X represents the position and ordered placement of the searchers and
R represents the part of G that the fugitive can reach (in the visible case) or
the set of vertices where he might possibly be located (in the invisible case). We
say a position (X, R) is an i-position if R is successor-closed; an isc-position if
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it is a union of strongly connected components of G \ {|X |}; a v-position if R is
successor-closed and has a unique initial component; and a vsc-position if R is
a strongly connected component of G \ {|X |}.

To reflect how the game transitions to a new position during a round of the
game we say, for gv ∈ {i, isc, v, vsc}, a gv-position (X ′, R′) is a gv-successor
of (X, R) if either X � X ′ or X ′ � X , with |{|X |}Δ{|X ′|}| = 1, and

– (for gv ∈ {i, v}) For every v′ ∈ V (R′) there is a v ∈ V (R) and a directed
path in G \ ({|X |} ∩ {|X ′|}) from v to v′, or

– (for gv ∈ {isc, vsc}) For every v′ ∈ V (R′) there is a v ∈ V (R) such that
v and v′ are contained in the same strongly connected component of G \
({|X |} ∩ {|X ′|}).

Ideally we would like to assume games start from (ε, G), however in the visible
variants of the game this might not be a legitimate position. Thus, for gv ∈
{v, vsc}, if (ε, G) is not a gv-position we include it as a special case, and set
as its gv-successors all gv-positions of the form (ε, R). We observe that in all
variants, the successor relation is monotone in the sense that if (X, R) and (X, S)
are positions with S ⊆ R and (X ′, S′) is a successor of (X, S), then there is a
successor (X ′, R′) of (X, R) with S′ ⊆ R′.

For gv ∈ {i, isc, v, vsc}, a (gv-LIFO-)search in a digraph G from gv-position
(X, R) is a (finite or infinite) sequence of gv-positions (X, R) = (X0, R0),
(X1, R1), . . . where for all i ≥ 0, (Xi+1, Ri+1) is a gv-successor of (Xi, Ri).
A LIFO-search is complete if either Rn = ∅ for some n, or it is infinite. We
observe that if Rn = ∅, then Rn′ = ∅ for all n′ ≥ n.

We say a complete LIFO-search is winning for the searchers if Rn = ∅ for
some n, otherwise it is winning for the fugitive. A complete LIFO-search from
(ε, G) is monotone if Ri+1 ⊆ Ri for all i; it is searcher-stationary if Xi � Xi+1

for all i where Ri = ∅; and it uses at most k searchers if |Xi| ≤ k for all i.
Whilst a complete LIFO-search from (ε, G) describes a single run of the game,

we are more interested in the cases where one of the players (particularly the
searchers) can always force a win, no matter what the other player chooses to
do. For this, we introduce the notion of a strategy. For gv ∈ {i, isc, v, vsc}, a
(searcher) gv-strategy is a (partial1) function σ from the set of all gv-positions to
V (G)∗ such that for all (X, R), σ(X, R) is the first component of a gv-successor
of (X, R); so with the possible exception of (X, R) = (ε, G), either σ(X, R) � X
or X � σ(X, R). A gv-LIFO-search (X0, R0), (X1, R1), . . . is consistent with
a gv-strategy σ if Xi+1 = σ(Xi, Ri) for all i ≥ 0. A strategy σ is winning
from (X, R) if all complete LIFO-searches from (X, R) consistent with σ are
winning for the searchers. Likewise, a strategy is monotone (searcher-stationary,
uses at most k searchers) if all consistent complete LIFO-searches from (ε, G)
are monotone (searcher-stationary, use at most k searchers respectively). We
say k searchers can capture a fugitive on G in the gv-game with a (monotone)

1 A strategy need only be defined for all positions (X, R) that can be reached from
(ε, G) in a LIFO-search consistent with the strategy. However, as this definition is
somewhat circular, we assume strategies are total.
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LIFO-search strategy if there is a (monotone) gv-strategy that uses at most k
searchers and is winning from (ε, G).

For gv ∈ {i, isc, v, vsc}, we define the (monotone) gv-LIFO-search number
of G, LIFOgv(G) (LIFOmgv(G)), as the minimum k for which there is a (mono-
tone) winning gv-strategy that uses at most k searchers. We also define the
visible, strongly connected, searcher-stationary search number of G, SSvsc(G)
as the minimum k for which there is a searcher-stationary winning vsc-strategy
that uses at most k searchers.

In Section 4 we will also consider fugitive gv-strategies: a partial function ρ
from V (G)∗×P(G)×V (G)∗ to induced subgraphs of G, defined for (X, R, X ′) if
(X, R) is a gv-position and X ′ is the first component of a gv-successor of (X, R).
A LIFO-search (X0, R0), (X1, R1), . . . is consistent with a fugitive gv-strategy ρ
if Ri+1 = ρ(Xi, Ri, Xi+1) for all i ≥ 0, and a fugitive strategy is winning if all
consistent complete LIFO-searches are winning for the fugitive. In this section,
a strategy will always refer to a searcher strategy.

3.2 Relating the Digraph Searching Parameters

We observe that in all game variants, a strategy that is winning from (X, R)
can be used to define a strategy that is winning from (X, R′) for any R′ ⊆ R:
the searchers can play as if the fugitive is located in the larger space; and from
the monotonicity of the successor relation, the assumption that the actual set
of locations of the fugitive is a subset of the assumed set of locations remains
invariant. One consequence is that a winning strategy on G defines a winning
strategy on any subgraph of G, so the search numbers we have defined are
monotone with respect to the subgraph relation.

Proposition 1. Let G be a digraph and G′ a subgraph of G. Then:

– SSvsc(G′) ≤ SSvsc(G), and
– LIFOgv(G′) ≤ LIFOgv(G) for gv ∈ {i, isc, v, vsc, mi, misc, mv, mvsc}.

Another consequence is that a winning strategy in the invisible fugitive variant
defines a winning strategy when the fugitive is visible; and a winning strat-
egy when the fugitive is not constrained to moving within strongly connected
components defines a winning strategy when he is. This corresponds to our intu-
ition of the fugitive being more (or less) restricted. Also, in all game variants, a
monotone winning strategy is clearly a winning strategy, and because a searcher-
stationary LIFO-search is monotone, a winning searcher-stationary strategy is a
monotone winning strategy. These observations yield several inequalities between
the search numbers defined above. For example LIFOvsc(G) ≤ LIFOmi(G) as
any winning monotone i-strategy is also a winning vsc-strategy. The full set
of these relationships is shown in a Hasse diagram in Figure 1, with the larger
measures towards the top.

The main result of this section is that all these digraph parameters are equal
to one more than cycle-rank.
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Fig. 1. Trivial relations between digraph searching parameters

Theorem 1. For any digraph G:

1 + cr(G) = LIFOmi(G) = LIFOi(G) = LIFOmisc(G) = LIFOisc(G)
= LIFOmv(G) = LIFOv(G) = LIFOmvsc(G) = LIFOvsc(G)
= SSvsc(G).

Proof. From the above observations, to prove Theorem 1 it is sufficient to prove
the following three inequalities:

(1) LIFOvsc(G) ≥ SSvsc(G),
(2) SSvsc(G) ≥ 1 + cr(G), and
(3) 1 + cr(G) ≥ LIFOmi(G).

These are established with the following series of lemmas.

Lemma 1. For any digraph G, LIFOvsc(G) ≥ SSvsc(G).

Proof. We show that if a vsc-strategy is not searcher-stationary then it is not a
winning strategy from (ε, G). The result then follows as this implies every win-
ning vsc-strategy is searcher-stationary. Let σ be a vsc-strategy, and suppose
(X0, R0), (X1, R1), . . . is a complete vsc-LIFO-search from (X0, R0) = (ε, G)
consistent with σ which is not searcher-stationary. Let j be the least index
such that Xj � Xj+1 and Rj = ∅. As X0 = ε, there exists i < j such that
Xi = Xj+1. By the minimality of j, and the assumption that we only place
or remove one searcher in each round, i = j − 1. As Xj−1 � Xj, Rj ⊆ Rj−1,
and as Xj+1 � Xj , Rj ⊆ Rj+1. As Rj = ∅, it follows that Rj−1 and Rj+1

are the same strongly connected component of G \ {|Xj−1|}. Thus (Xj−1, Rj−1)
is a vsc-successor of (Xj , Rj). As σ(Xj , Rj) = Xj+1 = Xj−1, it follows that
(X0, R0), (X1, R1), . . . (Xj−1, Rj−1), (Xj , Rj), (Xj−1, Rj−1), (Xj , Rj), . . . is an in-
finite, and hence complete, vsc-LIFO-search (from (ε, G)) consistent with σ. As
Ri = ∅ for all i ≥ 0, the LIFO-search is not winning for the searchers. Thus σ is
not a winning strategy.



224 P. Hunter

Lemma 2. For any digraph G, SSvsc(G) ≥ 1 + cr(G).

Proof. We prove this by induction on |V (G)|.
If |V (G)| = 1, then SSvsc(G) = 1 = 1 + cr(G).
Now suppose SSvsc(G′) ≥ 1 + cr(G′) for all digraphs G′ with |V (G′)| <

|V (G)|. We first consider the case when G is not strongly connected. From
Proposition 1, SSvsc(G) ≥ maxH SSvsc(H) where the maximum is taken over
all strongly connected components H of G. As G is not strongly connected,
|V (H)| < |V (G)| for all strongly connected components H of G. Therefore, by
the induction hypothesis

SSvsc(G) ≥ max
H

SSvsc(H)

≥ max
H

(1 + cr(H))

= 1 + cr(G).

Now suppose G is strongly connected. Let σ be a winning searcher-stationary
vsc-strategy which uses SSvsc(G) searchers. As (ε, G) is a legitimate
vsc-position, if (X, R) is a vsc-successor of (ε, G) then |X | = 1. Thus |σ(ε, G)| =
1. Let σ(ε, G) = v0. As σ is a searcher-stationary strategy which uses the mini-
mal number of searchers, it follows that SSvsc(G\ {v0}) = SSvsc(G)−1. Thus,
by the induction hypothesis,

SSvsc(G) = SSvsc(G \ {v0}) + 1
≥ (1 + cr(G \ {v0})) + 1
≥ (1 + min

v∈V (G)
cr(G \ {v})) + 1

= 1 + cr(G).

Lemma 3. For any digraph G, 1 + cr(G) ≥ LIFOmi(G).

Proof. We also prove this by induction on |V (G)|.
If |V (G)| = 1, then 1 + cr(G) = 1 = LIFOmi(G).
Now suppose 1 + cr(G′) ≥ LIFOmi(G′) for all digraphs G′ with |V (G′)| <

|V (G)|. First we consider the case when G is not strongly connected. As |V (H)| <
|V (G)| for each strongly connected component H , by the inductive hypothesis,
there is a monotone i-strategy, σH , which captures a fugitive using at most
1 + cr(H) searchers. From the definition of cycle-rank, for each strongly con-
nected component H of G, cr(G) ≥ cr(H), thus σH uses at most 1 + cr(G)
searchers. We define a monotone i-strategy which captures a fugitive on G with
at most 1 + cr(G) searchers as follows. Intuitively, we search the strongly con-
nected components of G in topological order using the monotone strategies σH .
More precisely, let H1, H2, . . . , Hn be an ordering of the strongly connected com-
ponents of G such that if there is an edge from Hi to Hj then i < j. We define
σ as follows.

– σ(ε, G) = σH1(ε, H1),
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– For 1 ≤ i, if {|X |} ⊆ Hi and R = R′ ∪
⋃n

j=i+1 Hj where ∅ = R′ ⊆ Hi,
σ(X, R) = σHi(X, R′),

– For 1 ≤ i < n, if ∅ = {|X |} ⊆ Hi and R =
⋃n

j=i+1 Hj then σ(X, R) = X ′

where X ′ is the maximal proper prefix of X .

From the definition of i-successors and the ordering of the strongly connected
components if (X0, R0), . . . (Xn, Rn) is an i-LIFO-search on G where {|Xn|} ⊆ Hi

and
⋃

j>i Hj ⊆ Rn−1 ⊆
⋃

j≥i Hj , then
⋃

j>i Hj ⊆ Rn ⊆
⋃

j≥i Hj . It follows (by
induction on the length of a LIFO-search) that every LIFO-search from (ε, G)
consistent with σ can be divided into a sequence of LIFO-searches λ1, λ2, . . . , λn,
where λi can be viewed as a LIFO-search consistent with σHi with

⋃
j>i Hj

added to the second component of every position. Thus if each σHi is monotone,
winning and uses at most 1 + cr(G) searchers, then σ is also monotone, winning
and uses at most 1 + cr(G) searchers.

Now suppose G is strongly connected. Let v0 be the vertex which minimizes
f(v) = cr(G \ {v}). Let G′ = G \ {v0}, so cr(G) = 1 + cr(G′). By the induction
hypothesis, there exists a winning monotone i-strategy σ′ which uses at most
1 + cr(G′) searchers to capture a fugitive on G′. We define an i-strategy σ on G
which uses at most 2 + cr(G′) = 1 + cr(G) searchers as follows. Initially, place
(and keep) a searcher on v0, then play the strategy σ′ on G\{v0}. More precisely,
σ(ε, G) = v0 and σ(v0X, R) = v0 · σ′(X, R). Clearly any LIFO-search consistent
with σ can be viewed as a LIFO-search consistent with σ′ prepended with the
position (ε, G) and where the first component of every position is prepended with
v0. Thus if σ′ is monotone, then σ is monotone, and if σ′ is winning then σ is
winning. Thus σ is a monotone winning i-strategy which uses at most 1 + cr(G)
searchers.

3.3 Relation with Other Graph Parameters

With a characterization of cycle-rank in terms of several graph searching games
we can compare it with other digraph measures defined by similar games. In par-
ticular, the directed pathwidth of a digraph, dpw(G), which can be characterized
by an invisble-fugitive graph searching game [2], and the DAG-depth, dd(G)
which can be characterized by a visible-fugitive, searcher-stationary searching
game [8]. Whilst the relationships we present here are known [10,8], using the
game characterizations we obtain a more simple and more intuitive proof.

Corollary 1. For any digraph G, dpw(G) ≤ cr(G) ≤ dd(G) − 1.

4 Obstructions for Cycle-Rank

In this section we consider the dual parameter arising from considering the graph
searching games from the fugitive’s perspective. We show that it can be char-
acterized by two types of structural features, akin to the havens and brambles
used to dually characterize treewidth [18]. The first of these is the natural gen-
eralization of a shelter from [9], a structural obstruction shown to be dual to
tree-depth.
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Definition 1. A strong shelter of a digraph G is a collection S of non-empty
strongly connected sets of vertices such that for any S ∈ S⋂

{S′ : S′ ∈ MS(S)} = ∅,

where MS(S) is the ⊆-maximal elements of {S′ ∈ S : S′ ⊂ S}. The thickness of
a shelter S is the minimal length of a maximal ⊆-chain.

The second structural obstruction we consider is motivated by the definition of
a haven in [11], a structural feature dual to directed treewidth.

Definition 2. A LIFO-haven of order k is a function h from V (G)<k to induced
subgraphs of G such that:

(H1) h(X) is a non-empty strongly connected component of G \ {|X |}, and
(H2) If X � Y and |Y | < k then h(Y ) ⊆ h(X).

Whilst Adler [1] has shown that the havens of [11] do not give an exact min-max
characterization of directed treewidth and Safari [17] has shown that directed
versions of havens and brambles give rise to distinct parameters, we show that
LIFO-havens and strong shelters both give a tight min-max characterization of
cycle-rank.

Theorem 2 (Min-max theorem for cycle-rank). Let G be a digraph and k
a positive integer. The following are equivalent:

(i) G has cycle-rank < k,
(ii) G has no LIFO-haven of order > k, and
(iii) G has no strong shelter of thickness > k.

Proof. (i) ⇒ (ii). Assume that it is not the case that G has no LIFO-haven of
order > k, that is, G has a LIFO-haven h of order k + 1. We show the fugitive
has a winning strategy against k searchers, so by Theorem 1, cr(G) ≥ k. Define
a vsc-strategy ρ for the fugitive (against k searchers) by defining ρ(X, R, X ′) =
h(X ′) for all suitable triples (X, R, X ′). From (H1), (X ′, ρ(X, R, X ′)) is a valid
vsc-position. Furthermore, (H2) implies that if (X, R) is a vsc-position such
that R = h(X), then (X ′, ρ(X, R, X ′)) is a vsc-successor of (X, R), so ρ is
a vsc-strategy (defined for all LIFO-searches that use at most k searchers).
Also, if (X0, R0), (X1, R1) . . . is a complete LIFO-search consistent with ρ then
Ri = h(Xi) for all i > 0. As h(X) = ∅ when |X | ≤ k, it follows that all
consistent complete LIFO-searches that use at most k searchers are winning for
the fugitive. Thus ρ is a winning strategy for the fugitive, so LIFOvsc(G) > k.
By Theorem 1, cr(G) ≥ k.

(ii) ⇒ (iii). We show that a strong shelter S of thickness k can be used to
define a haven of order k. For each X ∈ V (G)<k we define SX ∈ S inductively
as follows. For X = ε, let Sε be any ⊆-maximal element of S. Note that {S ∈
S : S ⊂ Sε} is a strong shelter of thickness k − 1. Now suppose X = X ′v, SX′

is defined, SX′ ∩ {|X ′|} = ∅, and SX′ = {S ∈ S : S ⊂ SX′} is a strong shelter
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of thickness k − 1 − |X ′|. From the definition of a strong shelter, there exists
a ⊆-maximal element of SX′ that does not contain v, as otherwise v ∈ S for
all S ∈ MS(SX′). Let SX be that element. As SX′ ∩ {|X ′|} = ∅ and v /∈ SX , it
follows that SX ∩ {|X |} = ∅. Further, {S ∈ S : S ⊂ SX} is a strong shelter of
thickness (k − 1 − |X ′|) − 1 = k − 1 − |X |, satisfying the assumptions necessary
for the next stage of the induction. Now for all X ∈ V (G)<k, SX is a non-empty
strongly connected set such that SX ∩{|X |} = ∅. Thus there is a unique strongly
connected component of G \ {|X |} that contains SX . Defining h(X) to be that
component we see that h satisfies (H1). For (H2), from the definition of SX , if
X � Y and |Y | < k, then SX ⊇ SY , so h(X) ⊇ h(Y ). Therefore h is a haven of
order k.

(iii) ⇒ (i). Again, we prove the contrapositive, using a proof similar to [9].
Suppose cr(G) ≥ k. Let G′ be a strongly connected component of G which has
cycle-rank ≥ k. We prove by induction on k that G′, and hence G, has a strong
shelter of thickness k + 1. Every digraph with |V (G)| ≥ 1 has a strong shelter
of thickness 1: take S = {{v}} for some v ∈ V (G). Thus for k = 0, the result
is trivial. Now suppose for k′ < k every digraph of cycle-rank ≥ k′ contains a
strong shelter of thickness k′ + 1. For v ∈ V (G′), let G′

v = G′ \ {v}. From the
definition of cycle-rank, cr(G′

v) ≥ k−1 for all v ∈ V (G′). Thus, by the induction
hypothesis, G′

v contains a strong shelter, Sv, of thickness (k − 1) + 1. As v /∈ S
for all S ∈ Sv, it follows that S = {G′} ∪

⋃
v∈V (G′) Sv is a strong shelter. As Sv

has thickness k for all v ∈ V (G′), S has thickness k + 1.

5 Conclusions and Further Work

Combining Theorems 1 and 2 gives our main result:

Main Theorem. Let G be a digraph, and k a positive integer. The following
are equivalent:

(i) G has cycle-rank ≤ k − 1,
(ii) On G, k searchers can capture a fugitive with a LIFO-search strategy,
(iii) On G, k searchers can capture a visible fugitive restricted to moving in

strongly connected sets with a searcher-stationary search strategy,
(iv) G has no LIFO-haven of order > k, and
(v) G has no strong shelter of thickness > k.

This multiple characterization of cycle-rank gives a new perspective on the mea-
sure which can be useful for further investigation. For example, whilst it is known
that computing the cycle-rank is NP-complete [10], the characterization in terms
of a graph searching game with a visible fugitive automatically implies that for
any fixed k, deciding if a digraph has cycle-rank k is decidable in polynomial time.
From a parameterized complexity perspective, techniques based on separators
have shown measures such as directed treewidth are fixed-parameter tractable.
Whether the visible, strongly connected game characterizations of cycle-rank
can improve the known complexity from XP to FPT is part of ongoing research.
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digraph width measures in parameterized algorithmics. In: Chen, J., Fomin, F.V.
(eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)

9. Giannapolou, A., Thilikos, D.: A min-max theorem for LIFO-search. Presented at
the 4th Workshop on Graph Searching, Theory and Applications, GRASTA 2011
(2011)

10. Gruber, H.: Digraph Complexity Measures and Applications in Formal Language
Theory. In: 4th Workshop on Mathematical and Engineering Methods in Computer
Science (MEMICS 2008), pp. 60–67 (2008)

11. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Jour-
nal of Combinatorial Theory (Series B) 82(1), 138–154 (2001)

12. Kirousis, L., Papadimitriou, C.: Searching and pebbling. Theoretical Computer
Science 47(3), 205–218 (1986)

13. Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph
searching. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 336–347. Springer, Heidelberg (2008)

14. LaPaugh, A.S.: Recontamination does not help to search a graph. Journal of the
ACM 40(2), 224–245 (1993)

15. Nesetril, J., de Mendez, P.O.: Tree-depth, subgraph coloring and homomorphism
bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)
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Polynomial Kernels for Proper Interval

Completion and Related Problems�
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LIRMM, Université Montpellier II, France

Abstract. Given a graph G = (V, E) and a positive integer k, the
Proper Interval Completion problem asks whether there exists a set
F of at most k pairs of (V ×V )\E such that the graph H = (V, E∪F ) is
a proper interval graph. The Proper Interval Completion problem
finds applications in molecular biology and genomic research [11]. First
announced by Kaplan, Tarjan and Shamir in FOCS ’94, this problem is
known to be FPT [11], but no polynomial kernel was known to exist.
We settle this question by proving that Proper Interval Completion

admits a kernel with O(k5) vertices. Moreover, we prove that a related
problem, the so-called Bipartite Chain Deletion problem admits a
kernel with O(k2) vertices, completing a previous result of Guo [10].

Introduction

The aim of a graph modification problem is to transform a given graph in or-
der to get a certain property Π satisfied. Several types of transformations can
be considered: mainly vertex deletion problems, edge deletion, addition or edi-
tion problems. The optimization version of such problems consists in finding a
minimum set of edges (or vertices) whose modification makes the graph satisfy
the given property Π . Graph modification problems cover a broad range of NP-
Complete problems and have been extensively studied in the literature [14,17].
Well-known examples include the Vertex Cover [18], Feedback Vertex

Set [20], or Cluster Editing [5] problems. These problems find applications
in various domains, such as computational biology [11], image processing [17] or
relational databases [19]. A natural approach to deal with such problems is to
measure their difficulty with respect to some parameter k, such as the number
of allowed modifications. Parameterized complexity provides a useful theoretical
framework to that aim [7,15]. A problem parameterized by some integer k is
said to be fixed-parameter tractable (FPT for short) whenever it can be solved
in time f(k) · nc for some constant c > 0. As we previously mentioned, a nat-
ural parameterization for graph modification problems thereby consists in the
number of allowed transformations. As one of the most powerful technique to
design FPT algorithms, kernelization algorithms have been extensively stud-
ied in the last decade (see [2] for a recent survey). A kernelization algorithm
� Research supported by the AGAPE project (ANR-09-BLAN-0159).
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is a polynomial-time algorithm (called reduction rules) that given an instance
(I, k) of a parameterized problem P computes an instance (I ′, k′) of P such
that (i) (I, k) is a Yes-instance if and only if (I ′, k′) is a Yes-instance and
(ii) |I ′| ≤ h(k) for some computable function h() and k′ ≤ k. The instance
(I ′, k′) is called the kernel of P . We say that (I ′, k′) is a polynomial kernel if the
function h() is a polynomial. It is well-known that a parameterized (decidable)
problem is FPT if and only if it has a kernelization algorithm [15]. But this
equivalence only yields kernels of super-polynomial size. To design efficient FPT
algorithms, a kernel of small size - polynomial (or even linear) in k - is highly
desirable [16]. However, recent results give evidence that not every parameter-
ized problem admits a polynomial kernel, unless NP ⊆ coNP/poly [3]. On the
positive side, notable kernelization results include a less-than-2k vertex-kernel
for Vertex Cover [18], a 4k2 vertex-kernel for Feedback Vertex Set [20]
and a 2k vertex-kernel for Cluster Editing [5]. We follow this line of research
with respect to graph modification problems. It has been shown that a graph
modification problem is FPT whenever Π is hereditary and can be characterized
by a finite set of forbidden induced subgraphs [4]. However, recent results proved
that several graph modification problems do not admit a polynomial kernel even
for such properties Π [9,12]. In this paper, we are in particular interested in
completion problems, where the only allowed operation is to add edges to the
input graph. We consider the property Π as being the class of proper interval
graphs. This class is a well-studied class of graphs, and several characterizations
are known to exist [13,23]. In particular, there exists an infinite set of forbidden
induced subgraphs that characterizes proper interval graphs [23]. More formally,
we consider the following problem:

Proper Interval Completion:
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Output: A set F of at most k pairs of (V × V ) \ E such that the graph
H = (V, E ∪ F ) is a proper interval graph.

This problem finds applications in molecular biology and genomic research [11].
It is known to be NP-Complete for a long time [8], but FPT due to a result of
Kaplan, Tarjan and Shamir in FOCS ’94 [11]. 1 Nevertheless, it was not known
whether this problem admits a polynomial kernel.

Our results. First, we prove that the Proper Interval Completion problem
admits a kernel with O(k5) vertices. To that aim, we identify nice parts of the
graph that induce proper interval graphs and can hence be safely reduced. Then,
we apply our techniques to the so-called Bipartite Chain Deletion problem,
obtaining a kernel with O(k2) vertices.

1 Notice also that the vertex deletion of the problem is FPT [21].
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claw hole3−sun net

Fig. 1. The forbidden induced subgraphs of proper interval graphs. A hole is an induced
cycle of length at least 4.

1 Preliminaries

We consider simple, loopless, undirected graphs G = (V, E) where V (G) denotes
the vertex set of G and E(G) its edge set2. Given a vertex v ∈ V , we use NG(v)
to denote the open neighborhood of v and NG[v] = NG(v) ∪ {v} for its closed
neighborhood. Two vertices u and v are true twins if N [u] = N [v]. If u and v are
not true twins but uv ∈ E, we say that a vertex of N [u] � N [v] distinguishes
u and v. Given a subset of vertices S ⊆ V , NS(v) denotes the set NG(v) ∩ S
and NG(S) denotes the set {NG(s) \ S : s ∈ S}. Moreover, G[S] denotes the
subgraph induced by S, i.e. G[S] = (S, ES) where ES = {uv ∈ E : u, v ∈ S}. A
join in a graph G = (V, E) is a bipartition (X, Y ) of G and an order x1, . . . , x|X|
on X such that for all i = 1, . . . , |X | − 1, NY (xi) ⊆ NY (xi+1). A graph is an
interval graph if it admits a representation on the real line such that: (i) the
vertices of G are in bijection with intervals of the real line and (ii) uv ∈ E if and
only if Iu ∩ Iv = ∅, where Iu and Iv denote the intervals associated to u and v,
respectively. Such a graph is said to admit an interval representation. A graph is
a proper interval graph if it admits an interval representation such that Iu ⊂ Iv

for every u, v ∈ V . In other words, no interval strictly contains another interval.
We will make use of the two following characterizations of proper interval graphs
to design our kernelization algorithm.

Theorem 1 (Forbidden subgraphs [23]). A graph is a proper interval graph
if and only if it does not contain any {hole, claw, net, 3-sun} as an induced
subgraph.

The claw graph is the bipartite graph K1,3. Denoting the bipartition by ({c},
{l1, l2, l3}), we call c the center and {l1, l2, l3} the leaves of the claw.

Theorem 2 (Umbrella property [13]). A graph is a proper interval graph if
and only if its vertices admit an ordering σ (called umbrella ordering) satisfying
the following property: given vivj ∈ E with i < j then vivl, vlvj ∈ E for every
i < l < j.

In the following, we associate an umbrella ordering σG to any proper interval
graph G = (V, E). Remark that in an umbrella ordering σG of a graph G,

2 In all our notations, we do not mention the graph G whenever the context is clear.
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bl′

B1 BR B2

L
b1 bl b|B| R C

B

Fig. 2. A 2-branch of a graph G = (V, E). The vertices of B are ordered according to
the umbrella ordering σB . 3

every maximal set of true twins of G is consecutive, and that σG is unique up
to permutation of true twins of G. We remark also that for any edge uv with
u <σG v, the set {w ∈ V : u ≤σG w ≤σG v} is a clique of G, and for every
i with 1 ≤ i < l, ({v1, . . . , vi}, {vi+1, . . . , vn}) is a join of G. According to this
ordering, we say that an edge uv is extremal if there does not exist any edge u′v′

different of uv such that u′ ≤σG u and v ≤σG v′.
Let G = (V, E) be an instance of Proper Interval Completion. A com-

pletion of G is a set F ⊆ (V × V ) \ E such that the graph H = (V, E ∪ F ) is
a proper interval graph. In a slight abuse of notation, we use G + F to denote
the graph H . A k-completion of G is a completion such that |F | ≤ k, and an
optimal completion F is such that |F | is minimum. We say that G = (V, E) is
a positive instance of Proper Interval Completion whenever it admits a
k-completion.

We now give the main definitions of this Section. The branches that we will
define correspond to some parts of the graph that already behave like proper
interval graphs. They are the parts of the graph that we will reduce in order to
obtain a kernelization algorithm.

Definition 1 (Branch). Let B ⊆ V . We say that B is a branch if the following
properties hold (see Figure 2):

(i) The graph G[B] is a connected proper interval graph admitting an umbrella
ordering σB = b1, . . . , b|B| and,

(ii) The vertex set V \ B can be partitioned into sets L, R and C with:
– no edges between B and C,
– every vertex in L (resp. R) has a neighbor in B,
– no edges between {b1, . . . , bl−1} and R where bl is the neighbor of b|B|

with minimal index in σB ,
– no edges between {bl′+1, . . . , b|B|} and L where bl′ is the neighbor of b1

with maximal index in σB and,
– NR(bi) ⊆ NR(bi+1) for every l ≤ i < |B| and NL(bi+1) ⊆ NL(bi) for

every 1 ≤ i < l′.

3 In all the figures, (non-)edges between blocks stand for all the possible (non-)edges
between the vertices that lie in these blocks, and the vertices within a gray box form
a clique of the graph.
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In the case where L = ∅ (or R = ∅), we say that B is a 1-branch, otherwise we
say that B is a 2-branch. Morever, we denote by B1 (resp. B2) the set of vertices
{v ∈ V : b1 ≤σB v ≤σB bl′} (resp. {v ∈ V : bl ≤σB v ≤σB b|B|}). We call B1

and B2 the attachment cliques of B, and use BR to denote B \ (B1 ∪ B2).
In both cases, in a 1- or 2-branch, whenever the proper interval graph G[B] is

a clique, we say that B is a K-join. Observe that, in a 1- or 2-branch B, for any
extremal edge uv in σB, the set of vertices {w ∈ V : u ≤σB w ≤σB v} defines
a K-join. In particular, this means that a branch can be decomposed into a
sequence of K-joins. Observe however that the decomposition is not unique and
we will precise in Section 2.1, when we will reduce the size of 2-branches, how to
fix a decomposition. Finally, we say that a K-join is clean whenever its vertices
are not contained in any claw or 4-cycle. Remark that a subset of a K-join (resp.
clean K-join) is also a K-join (resp. clean K-join).

2 Kernel for Proper Interval Completion

2.1 Reduction Rules

Basic rules. We say that a rule is safe if when it is applied to an instance (G, k)
of the problem, (G, k) admits a k-completion iff the instance (G′, k′) reduced by
the rule admits a k′-completion.

The first reduction rule gets rid of connected components that are already
proper interval graphs. This rule is trivially safe and can be applied in O(n+m)
time using any recognition algorithm for proper interval graphs [6].

Rule 1 (Connected components). Remove any connected component of G
that is a proper interval graph.

The following reduction rule can be applied since proper interval graphs are
closed under true twin addition and induced subgraphs. For a class of graphs
satisfying these two properties, we know that this rule is safe [1] (roughly speak-
ing, we edit all the large set of true twins in the same way).

Rule 2 (True twins [1]). Let T be a set of true twins in G such that |T | > k.
Remove |T | − (k + 1) arbitrary vertices from T .

We also use the classical sunflower rule, allowing to identify a set of edges that
must be added in any optimal completion.

Rule 3 (Sunflower). Let S = {C1, . . . , Cm}, m > k be a set of claws having
two leaves u, v in common but distinct third leaves. Add uv to F and decrease k
by 1.
Let S = {C1, . . . , Cm}, m > k be a set of distinct 4-cycles having a non-edge uv
in common. Add uv to F and decrease k by 1.

Lemma 1. Rule 3 is safe and can be carried out in polynomial time.
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Extracting a clean K-join from a K-join. Now, we want to reduce the size
of the ’simplest’ branches, namely the K-joins. More precisely, later, we will
bound the number of vertices in a clean K-join (whose vertices are not contain
in any claw or 4-cycle), and so, we first indicate how to extract a clean K-join
from a K-join.

Lemma 2. Let G = (V, E) be a positive instance of Proper Interval Com-

pletion on which Rule 2 and Rule 3 have been applied and B be a K-join of
G. There are at most k3 + 4k2 + 5k + 1 vertices of B that belong to a claw or a
4-cycle.

Since any subset of a K-join forms a K-join, Lemma 2 implies that it is possible
to remove a set of at most k3 + 4k2 + 5k + 1 vertices from any K-join to obtain
a clean K-join.

Bounding the size of the K-joins. Now, we set a rule that will bound the
number of vertices in a clean K-join, once applied. Although quite technical to
prove, this rule is the core tool of our process of kernelization.

Rule 4 (K-join). Let B be a clean K-join of size at least 2k + 2. Let BL be the
k + 1 first vertices of B, BR be its k + 1 last vertices and M = B \ (BR ∪ BL).
Remove the set of vertices M from G.

Lemma 3. Rule 4 is safe.

Sketch of the proof. Let G′ = G\M . Observe that the restriction to G′ of any k-
completion of G is a k-completion of G′, since proper interval graphs are closed
under induced subgraphs. So, let F be a k-completion for G′. We denote by
H = G′ +F the resulting proper interval graph and by σH an umbrella ordering
of H . We prove that we can insert the vertices of M into σH and modify it if
necessary, to obtain an umbrella ordering for G without adding any edge (in fact,
some edges of F might even be deleted during the process). This will imply that
G admits a k-completion as well. To see this, we need the following structural
description of G. We denote by N the set ∩b∈BNG(b) \ B, and abusively still
denote by L (resp. R) the set L \ N (resp. R \ N).

Claim 1. The sets L and R are cliques of G.

Observation 3. By definition of a K-join, given any vertex r ∈ R, if NB(r) ∩
BL = ∅ holds then M ⊆ NB(r). Similarly, given any vertex l ∈ L, if NB(l) ∩
BR = ∅ holds then M ⊆ NB(l).

We use these facts to prove that an umbrella ordering can be obtained for G by
inserting the vertices of M into σH . Let bf and bl be respectively the first and
last vertex of B \ M appearing in σH . We let BH denote the set {u ∈ V (H) :
bf ≤σH u ≤σH bl}. Observe that BH is a clique in H since bfbl ∈ E(G) and that
B \ M ⊆ BH . Now, we modify σH by ordering the true twins in H according
to their neighborhood in M : if x and y are true twins in H , are consecutive in
σH , verify x <σH y <σH bf and NM (y) ⊂ NM (x), then we exchange x and y
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in σH . This process stops when the considered true twins are ordered following
the join between {u ∈ V (H) : u <σH bf} and M . We proceed similarly on the
right of BH . The obtained order is clearly an umbrella ordering too (in fact, we
just re-labeled some vertices in σH), and we abusively still denote it by σH .

Claim 2. The set BH ∪ {m} is a clique of G for any m ∈ M , and consequently
BH ∪ M is a clique of G.

Claim 3. Let m be any vertex of M and σ′
H be the ordering obtained from σH by

removing BH and inserting m to the position of BH . The ordering σ′
H respects

the umbrella property.

Claim 4. Let m ∈ M . Then m can be added to the graph H while preserving
an umbrella ordering.

In order to prove Claim 4 we do not use the fact that the vertices of H do not
belong to M . It follows that we can iteratively insert the vertices of M into σH ,
preserving an umbrella ordering at each step. �

The following observation results from the application of Rule 4 and from
Section 2.1.

Observation 4. Let G = (V, E) be a positive instance of Proper Interval

Completion reduced under Rules 2 to 4. Any K-join of G has size at most
k3 + 4k2 + 7k + 3.

Cutting the 1-branches. We now turn our attention to branches of a graph
G = (V, E), proving how they can be reduced.

Rule 5 (1-branch). Let B be a 1-branch such that |BR| ≥ 2k + 1. Remove
BR \ Bf from G, where Bf denotes the 2k + 1 last vertices of BR.

Lemma 4. Rule 5 is safe.

The following property of a reduced graph will be used to bound the size of our
kernel.

Observation 5. Let G = (V, E) be a positive instance of Proper Interval

Completion reduced under Rules 2 to 5. The 1-branches of G contain at most
k3 + 4k2 + 9k + 4 vertices.

Cutting the 2-branches. To obtain a rule reducing the 2-branches, we need
to introduce a particular decomposition of 2-branches into K-joins. Let B be a
2-branch with an umbrella ordering σB = b1, . . . , b|B|. As usual, we denote by
B1 = b1, . . . , bl′ its first attachment clique and by B2 = bl, . . . , b|B| its second.
The reversal of the permutation σB gives a second possibility to fix B1 and
B2. We fix one of these possibilities and define B, the K-join decomposition
of B. The K-joins of B are defined by B′

i = bli−1+1, . . . , bli where bli is the
neighbor of bli−1+1 with maximal index. The first K-join of B is B1 (so, l0 = 0
and l1 = l′), and once B′

i−1 is defined, we set B′
i: if bli−1+1 ∈ B2, then we set
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B1 B2

B′1 B′2 B′3 B′p−1 B′p

b1 bl2+1 blp−2+1 blp−1
blp−1+1 blpbl1 bl2 bl3bl1+1

Fig. 3. The K-join decomposition

B′
i = bli−1+1, . . . , b|B|, otherwise, we choose B′

i = bli−1+1, . . . , bli (see Figure 3).
Now, we can prove the next lemma, which bounds the number of K-joins in the
K-join decomposition of a 2-branch providing that some connectivity assumption
holds.

Lemma 5. Let G = (V, E) be an instance of Proper Interval Completion

and B be a 2-branch containing p ≥ (k + 4) K-joins in its K-join decomposi-
tion. If the attachment cliques of B belong to the same connected component of
G[V \ BR], then there is no k-completion for G.

In the case where G[V \BR] is not connected, the given 2-branch can be reduced
using the following rule.

Rule 6 (2-branch). Let G be a connected graph and B be a 2-branch such
that G[V \ BR] is not connected. Assume that |BR| ≥ 4(k + 1) and let B′

1

be the 2k + 1 vertices after B1 and B′
2 the 2k + 1 vertices before B2. Remove

B \ (B1 ∪ B′
1 ∪ B′

2 ∪ B2) from G.

Lemma 6. Rule 6 is safe.

Observation 6. Let G = (V, E) be a positive instance of Proper Interval

Completion reduced under Rules 2 to 6. The 2-branches of G contain at most
(k + 3)(k3 + 4k2 + 5k + 1) vertices.

2.2 Detecting the Branches

We now turn our attention to the complexity needed to compute reduction rules 4
to 6. Mainly, we indicate how to obtain the maximum branches in order to reduce
them. The detection of a branch is straightforward except for the attachment
cliques, where several choices are possible. Nevertheless, this can be dealt with,
and we obtain the following results.

Lemma 7. Let G = (V, E) be a graph and x a vertex of G. In time O(n2), it is
possible to detect a maximum 1-branch of G containing x as first vertex.

Lemma 8. Let G = (V, E) be a graph and x and y two adjacent vertices of G.
It is possible to compute in cubic time a maximum (in cardinality) K-join that
admits x and y as ends.
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Now, for every edge xy of G, we compute a maximum K-join that contains x
and y as ends and a reference to all the vertices that this K-join contains. This
computation takes a O(n3m) time and gives, for every vertex, some maximum
K-joins that contain this vertex. Finally, we can detect the 2-branches B with a
set BR non empty. Observe that this is enough for our purpose since we want to
detect 2-branches of size at least (k + 3)(k3 + 4k2 + 5k + 1) and the attachment
cliques contain at most 2(k3 + 4k2 + 7k + 3) vertices.

Lemma 9. Let G = (V, E) be a graph, x a vertex of G and B′ a given maximal
K-join that contains x. There is a quadratic time algorithm to decide if there
exists a 2-branch B of G which contains x as a vertex of BR, and if it exists, to
find a maximum 2-branch with this property.

Altogether, using a O(n4) brute force detection to localize all the 4-cycles and
the claws, we obtain the following result.

Lemma 10. Given a graph G = (V, E), the reduction rules 4 to 6 can be carried
out in polynomial time, namely in time O(n3m).

2.3 Kernelization Algorithm

We are now ready to the state the main result of this Section. The kernelization
algorithm consists of an exhaustive application of Rules 1 to 6.

Theorem 7. The Proper Interval Completion problem admits a kernel
with O(k5) vertices.

Sketch of the proof. Let G = (V, E) be a positive instance of Proper Interval

Completion reduced under Rule 1 to 6, and F be a k-completion for G. Let
H = G + F be the corresponding proper interval graph and σH be its umbrella
ordering. By definition, there are at most 2k vertices of H incident to edges of
F . Let A be the set of such vertices. Using structural properties of the umbrella
ordering σH , one can see that the set of vertices lying between two consecutive
vertices of A in σH define either 1- or 2- branches. The claim bound on the
number of vertices then follow from Observations 5 and 6. �

3 A Special Case: Bi-clique Chain Completion

Bipartite chain graphs are defined as bipartite graphs whose parts are con-
nected by a join. Equivalently, they are known to be the graphs that do not
admit any {2K2, C5, K3} as an induced subgraph [24], a 2K2 being the graph
({u, u′, v, v′}, {(u, u′), (v, v′)}). In [10], Guo proved that the so-called Bipartite

Chain Deletion With Fixed Bipartition problem, where one is given a
bipartite graph G = (V, E) and seeks a subset of E of size at most k whose
deletion from E leads to a bipartite chain graph, admits a kernel with O(k2)
vertices. We define bi-clique chain graphs to be the graphs formed by two dis-
joint cliques linked by a join. They correspond to interval graphs which can be
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covered with two cliques. Since the complement of a bipartite chain graph is a bi-
clique chain graph, this result also holds for the Bi-clique Chain Completion

With Fixed Bi-clique Partition problem. Using similar techniques than in
Section 2, we prove that when the bipartition is not fixed, both problems admit
a quadratic-vertex kernel.

Theorem 8. The Bi-clique Chain Completion and Bipartite Chain

Deletion problems admit kernels with O(k2) vertices.

4 Conclusion

In this paper we prove that the Proper Interval Completion problem admits
a kernel with O(k5) vertices. One natural question arises from our results: does
the Interval Completion problem admit a polynomial kernel? Observe that
this problem is known to be FPT not for long [22]. Finally, we proved that the
Bi-clique Chain Completion problem admits a kernel with O(k2) vertices,
which completes a result of Guo [10]. In all cases, a natural question is thus
whether these bounds can be improved?
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Abstract. Vertex deletion problems are at the heart of parameterized
complexity. For a graph class F , the F-Deletion problem takes as input
a graph G and an integer k. The question is whether it is possible to delete
at most k vertices from G such that the resulting graph belongs to F .
Whether Perfect Deletion is fixed-parameter tractable, and whether
Chordal Deletion admits a polynomial kernel, when parameterized
by k, have been stated as open questions in previous work. We show
that Perfect Deletion (k) and Weakly Chordal Deletion (k) are
W [2]-hard. In search of positive results, we study restricted variants such
that the deleted vertices must be taken from a specified set X, which we
parameterize by |X|. We show that for Perfect Deletion and Weakly

Chordal Deletion, although this restriction immediately ensures fixed
parameter tractability, it is not enough to yield polynomial kernels, unless
NP ⊆ coNP/poly. On the positive side, for Chordal Deletion, the
restriction enables us to obtain a kernel with O(|X|4) vertices.

1 Introduction

The minimum number of vertices to delete from a given graph so that the re-
sulting graph is a member of a graph class F is a way of measuring how close
the input graph is to being in F . Vertex deletion problems correspond to some
of the most fundamental NP-complete graph problems [14]; if we take F to be
the class of complete graphs, we simply get the Clique problem, and if we
take F to be the class of edgeless graphs, we get the Vertex Cover problem.
Vertex deletion problems have received much attention also for more general
graph classes F ; e.g., the number of vertex deletions needed to make a graph
acyclic, corresponding to the Feedback Vertex Set problem, has applica-
tions in deadlock recovery. In addition, seemingly unrelated problems are easier
to solve on graphs which are close to being a member of some simple graph class.
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For example, Graph Isomorphism [18] can be solved efficiently on “almost”
forests. Since all vertex deletion problems for non-trivial, polynomial-time recog-
nizable, hereditary graph classes are NP-complete [19], many of these problems
have been studied with respect to parameterized complexity [12].

Parameterized complexity associates with every instance a non-negative inte-
ger k, called the parameter. A parameterized problem Q ⊆ Σ∗ × N is Fixed Pa-
rameter Tractable (FPT) if there is an algorithm which decides whether (x, k) ∈
Q in time f(k) |x|O(1) for some computable function f . There is a hierarchy
of intractable parameterized problem classes above FPT, the main ones being:
FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [P ] ⊆ XP. An important subfield of parame-
terized complexity is kernelization [17], a formalization of data reduction. For
a parameterized problem Q, if there is an algorithm which transforms an in-
stance (x, k) in time (|x| + k)O(1) into an equivalent instance (x′, k′), with the
guarantee that (x, k) ∈ Q ⇔ (x′, k′) ∈ Q and |x′|, k′ ≤ g(k) for some computable
function g, then we say that Q admits a kernel. In fact, a parameterized problem
is FPT if and only if it is decidable and admits a kernel [12]; unfortunately the
guaranteed size is typically exponential. If g ∈ kO(1) then the obtained kernel is a
polynomial kernel, which is a highly desirable property. Whether or not an FPT
problem admits a polynomial kernel has received considerable attention recently,
especially after the establishment of methods for proving non-existence of poly-
nomial kernels, up to some complexity theoretical assumptions [6,3,4]. Vertex
deletion problems are most commonly defined and parameterized as follows.

F-Deletion (k)

Input: A graph G and an integer k.
Parameter: k.
Question: Is there a set S ⊆ V (G) with |S| ≤ k such that G − S is a
member of graph class F?

Well known FPT problems of this type include Vertex Cover [9] (i.e., Inde-

pendent Deletion (k)), Feedback Vertex Set [25] (i.e., Forest Dele-

tion (k)), Odd Cycle Transversal [24] (i.e., Bipartite Deletion (k)),
Chordal Deletion (k) [21] and Planar Deletion (k) [22]. When F is char-
acterized by a finite set of forbidden induced subgraphs, then F-Deletion (k)
is FPT [8], and admits a polynomial kernel through its correspondence to d-
Hitting Set (k) [1]. If F is characterized by a finite set of forbidden minors,
then F-Deletion (k) is FPT with an O(n3) time algorithm for every fixed value
of k, obtained via the Graph Minors machinery [13]. A recent result of Fomin
et al. shows that if this set of forbidden minors contains an “onion graph”, then
the problem additionally admits a polynomial kernel [13].

For some time it was unknown whether there were vertex deletion problems,
for hereditary graph classes that can be recognized in polynomial time, that
were not FPT by the natural parameterization. This was settled by Lokshtanov,
who showed that Wheel-free Deletion (k) is W [2]-hard [20]. He posed the
FPT-status of Perfect Deletion (k) as an open question.
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We show that Perfect Deletion (k) and Weakly Chordal Deletion (k)
are W [2]-hard. We then turn our focus to kernelization. The Chordal Dele-

tion (k) problem was studied by Marx [21], who gave an involved FPT algorithm
which combines branching with an irrelevant-vertex reduction step and Cour-
celle’s Theorem for bounded treewidth. He posed as an open question whether
Chordal Deletion (k) admits a polynomial kernel. Even an exponential sim-
ple kernel would yield a simple FPT algorithm for Chordal Deletion (k)
through exploring the kernel by brute force, and hence finding a polynomial
kernel seems to be a formidable task. Observing that access to an approximate
solution is often helpful in designing kernels [23,5], and that no good approxi-
mation algorithms for Chordal Deletion (k) are known, one might consider
the effect of supplying a constant-factor approximation to the kernelization al-
gorithm. This does not help much; an exponential-size kernel which has access
to a constant-factor approximation would immediately yield a new algorithm to
solve Chordal Deletion Compression (k) [16], solving the general version
as well. The following restricted problem variant is more amenable to analysis
and provides further insight:

Restricted F-Deletion (|X |)
Input: A graph G, a set of vertices X ⊆ V (G) such that G − X is a
member of class F , and an integer k.
Parameter: |X |.
Question: Is there a set S ⊆ X of size at most k such that graph G−S
is a member of class F?

In this restricted variant of vertex deletion problems, a set X of candidates for
deletion is given in the input, and we are only allowed to delete vertices from
X . The parameter measures the number of candidate vertices, and with this
parameterization the problem becomes trivially FPT. However, we show that
Restricted Perfect Deletion (|X |) and Restricted Weakly Chordal

Deletion (|X |) do not admit polynomial kernels unless NP ⊆ coNP/poly, and
the same holds for Restricted Wheel-free Deletion (|X |) [20]. In contrast
to these hardness results, we show that Restricted Chordal Deletion (|X |)
admits a kernel with O(|X |4) vertices. We hope that this forms a first step
towards a polynomial kernel for Chordal Deletion (k).

Finally, the study of perfect graphs and their subclasses is well established,
with several books (e.g., [7,15]) and thousands of papers. The interest in the field
is boosted by the recent proof of the Perfect Graph Theorem by Chudnovsky et
al. [10], after being a conjecture by Berge [2] for over 40 years. Chordal graphs
are a subset of weakly chordal graphs that are a subset of perfect graphs.

2 Preliminaries

If G is a graph then V (G) and E(G) denote the vertex and edge set, respectively.
We only consider finite, simple, and undirected graphs. For a vertex v ∈ V (G),
the set of vertices adjacent to v is called the (open) neighborhood of v, and is
denoted by NG(v). The closed neighborhood of v is NG[v] = NG(v) ∪ {v}. For
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a vertex set S ⊆ V (G), the neighborhood of S is NG(S) =
⋃

v∈S NG(v) \ S.
The subgraph of G induced by S is denoted by G[S]. The graph G[V (G) \ S]
is denoted by G − S. The contraction of an edge uv ∈ E(G) deletes u and v
from G and replaces them with a new vertex whose neighborhood is NG({u, v}).
The resulting graph is denoted by G/uv. For a finite set X ,

(
X
a

)
denotes the

collection of all subsets of X of size a.
A walk W from vertex v1 to vertex vr in a graph G is a sequence of vertices

(v1, v2, . . . , vr) such that vivi+1 ∈ E(G) for 1 ≤ i ≤ r − 1. The vertices {v1, vr}
are the endpoints of the walk, whereas {v2, . . . , vr−1} are the interior vertices of
the walk. If W is a walk then we use V (W ) to denote the set of its vertices. For
a walk W ′ = (x1, . . . , xt), we will also use the notation (vi, W

′, vj) to denote the
walk (vi, x1, . . . , xt, vj), assuming that vix1, xtvj ∈ E(G). A chord of a walk is an
edge between two vertices which are not successive on the walk. A walk without
chords is an induced walk. A walk is a path if all its vertices are distinct, and it is
a cycle if all interior vertices are distinct and the endpoints coincide.

We denote by Pn and Cn an induced path and an induced cycle on n vertices,
respectively. A hole in a graph is an induced subgraph isomorphic to Ct for
t ≥ 5. An anti-hole is the edge-complement of a hole. A hole or anti-hole is
odd if it contains an odd number of vertices. A graph is chordal if it does not
contain Ct, for t ≥ 4, as an induced subgraph; an equivalent condition is that all
cycles of length at least four have a chord. A graph is perfect if, for each of its
induced subgraphs, the chromatic number equals the size of the largest clique.
As conjectured a long time ago [2], and proved recently [10], a graph is perfect
if and only if it does not contain any odd hole or odd anti-hole as an induced
subgraph. A graph is weakly chordal if it does not contain any hole or anti-hole
as an induced subgraph [15]. A cograph is a graph which does not contain P4 as
an induced subgraph. Weakly chordal graphs, chordal graphs, and cographs are
all perfect. In addition, chordal graphs and cographs are both weakly chordal,
but they are not related to each other with respect to inclusion. It is an easy
observation that each of these graph classes is closed under vertex deletions, i.e.,
hereditary. Furthermore, they can all be recognized in polynomial time. In this
extended abstract, some of the proofs are omitted due to page restrictions.

3 Hardness of Perfect and Weakly Chordal Deletion

In this section we prove several hardness results for deleting vertices to obtain a
perfect or weakly chordal graph. As the main result we will show that Perfect

Deletion (k) is W [2]-hard, by a reduction from Hitting Set (k). We will then
argue that the same reduction yields several interesting results as a corollary.

Hitting Set (k)
Input: A finite set U of size n, a family H of subsets of U , and an
integer k.
Parameter: k.
Question: Is there a set Y ⊆ U of size at most k that has a nonempty
intersection with each set of H?
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Theorem 1. Perfect Deletion (k) is W [2]-hard.

Proof. We give a parameterized reduction from the W [2]-complete Hitting

Set (k) problem [12]. Let (U,H, k) be an instance of Hitting Set (k). We
assume, without loss of generality, that |H | ≥ 2 for every H ∈ H, since sets of
size 1 can easily be eliminated in polynomial time. We construct an equivalent
instance (G, k) of Perfect Deletion (k), by building a graph G as follows:

– Create an independent set X on |U | vertices; X = {vu | u ∈ U}.
– For each set H = {u1, . . . , ut} ∈ H, where t ≥ 2 by assumption, do as follows:

• Add |H |+1 new vertices h1, . . . , ht+1 to G. The set GH = {h1, . . . , ht+1}
is called the set gadget for H .

• Add the edges {h1, vu1}, {vu1 , h2}, {h2, vu2}, . . . , {vut , ht+1}, {ht+1, h1},
creating an odd chordless cycle (h1, vu1 , h2, vu2 , . . . , vut , ht+1) of length
at least 5.

– Take the join of the set gadgets by adding all edges between vertices of
different set gadgets: for each set H ∈ H, make all vertices of GH adjacent
to all vertices of GH′ for every H ′ = H .

This concludes the description of the graph G. To prove the equivalence of the
instances (U,H, k) and (G, k), we first formulate some claims on the structure
of G.

Claim 1. The graph G − X is a cograph and therefore perfect.

Claim 2. Any hole in G intersects X and exactly one set gadget GH .

Proof. Since G−X is a cograph by Claim 1 and therefore contains no hole, any
hole in G contains at least one vertex of X . Moreover, since X is an independent
set, the graph G[X ] contains no holes. This implies that any hole must intersect
at least one set gadget. Since any three vertices from three different set gadgets
induce a triangle K3, no hole contains vertices from more than two different set
gadgets. Now assume for contradiction that G contains a hole D which contains
vertices from exactly two set gadgets. Since we have taken the join of the set
gadgets, graph G[V (D) \ X ] is connected and must hence be an induced path.
This in turn implies that D contains at most one vertex of X , since vertices
of the independent set X cannot be consecutive vertices of D. However, since
holes have at least 5 vertices, this implies that D contains at least 4 consecutive
vertices that belong to G − X . Since these vertices induce a path on at least 4
vertices, this contradicts the fact that G − X is a cograph by Claim 1.

Claim 3. Any anti-hole in G has length 5 and is therefore a hole of length 5.

Proof. Recall that an anti-hole in G is a hole in the edge-complement G of G.
Suppose G contains a hole D. Observe that every set gadget induces a complete
graph minus one edge in G, and that the graphs induced by the set gadgets are
exactly the connected components of G − X . Since a complete graph minus one
edge does not contain a hole, D contains at least one vertex of X . The set X is a
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clique in G, so D contains at most two vertices of X , which must be consecutive
vertices of D. This implies that the graph G[V (D) \ X ] is connected, and is
therefore contained in one connected component of G − X ; let GH be the set
gadget that induces this connected component. Since G[GH ] is a complete graph
minus one edge in G, D contains at most three vertices of GH . This means that
D has length at most 5. Since every hole has length at least 5 by definition, we
conclude that any hole in G, and consequently any anti-hole in G, has length
exactly 5. The claim follows from the fact that C5 is self-complementary.

Claim 4. If S ⊆ V (G) such that G − S is perfect, then there is a set S′ ⊆ X
with |S′| ≤ |S| such that G − S′ is perfect.

Proof. Let S ⊆ V (G) be a set which intersects all odd holes and odd anti-
holes in G, and assume S ⊆ X . Consider a vertex w ∈ S \ X , which must
belong to some set gadget GH . By construction, w has exactly two neighbors
in G[X ∪GH ], and at least one of these is contained in X ; let vu be such a vertex
in NG(w) ∩ X . Let D be a hole in G containing w. As a result of Claim 2, D
is contained in G[X ∪ GH ]. Since w has only two neighbors in G[X ∪ GH ], D
also contains vertex vu. Hence every hole that contains w also contains vu. The
same holds for every anti-hole containing w, since every anti-hole in G is a hole
by Claim 3. This proves that for S′′ = (S \ {w})∪{vu} the graph G−S′′ is also
perfect. By repeating this argument we obtain the desired set S′ ⊆ X .

We are now set to prove correctness of our reduction. First assume that (G, k)
is a yes-instance of Perfect Deletion (k), and let S ⊆ V (G) be a set of
at most k vertices such that G − S is perfect. By Claim 4, we may assume
that S ⊆ X . Let Y ⊆ U contain all u ∈ U for which the corresponding vertex vu

is contained in S. By construction of G, for every set H = {u1, . . . , ut} ∈ H,
the set {vu1 , . . . , vut} ∪ GH induces an odd hole in G. Since S ⊆ X intersects
all odd holes, S contains at least one vertex of vu1 , . . . , vut , which shows that Y
hits set H . Hence Y is a hitting set for H of the requested size, which means
that (U,H, k) is a yes-instance of Hitting Set (k).

For the reverse direction, assume that (U,H, k) is a yes-instance of Hitting

Set (k), and let Y ⊆ U be a set of at most k vertices that intersects every
set in H. We let S ⊆ X ⊆ V (G) contain all vertices vu for which u ∈ Y .
Clearly, |S| ≤ k; we show that G − S is perfect. By Claim 3, it suffices to
check that S contains at least one vertex of every odd hole in G. Let D be an
odd hole in G. By Claim 2, D contains vertices of X and vertices of exactly
one set gadget GH , for some H = {u1, . . . , ut} ∈ H. Recall that the vertices of
{vu1 , . . . , vut} ∪ GH induce an odd hole in G[X ∪ GH ], and it follows from the
construction of G that G[X ∪ GH ] does not contain any other hole. Thus, D is
an odd hole constructed due to some set H ∈ H. Since Y ∩ H = ∅, this implies
that S ∩V (D) = ∅ as well. This shows that the two instances are equivalent. ��

From the construction used in the proof of Theorem 1 it may be verified that all
the holes and anti-holes in G are odd: Claim 3 shows that every anti-hole in G is
an odd hole, and using Claim 2 the chordless cycles of G can be seen to coincide
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with the odd holes used to represent the sets of H. Hence G−S is perfect if and
only if G − S is weakly chordal, and we immediately get the following corollary.

Corollary 1. Weakly Chordal Deletion (k) is W [2]-hard.

For another implication of our reduction, consider the problem Hitting Set (n),
where the parameter is the number of elements n. Dom et al. [11] showed that this
problem does not admit a polynomial kernel unless NP ⊆ coNP/poly. Claim 4
shows that we may demand the deletion set S of our constructed instance to be a
subset of X , without changing the answer. Since the reduction of Theorem 1 can
be performed in polynomial time, we can also interpret it as a polynomial param-
eter transformation from an instance (U,H, k) of Hitting Set (n) with param-
eter n = |U | to an instance (G, X, k) of Restricted Perfect Deletion (|X |)
with parameter |X | = |U | (and also to Restricted Weakly Chordal Dele-

tion (|X |)). By standard techniques for kernelization lower bounds ([11]), this
polynomial parameter transformation yields the following results.

Corollary 2. Neither Restricted Perfect Deletion (|X |) nor Restric-

ted Weakly Chordal Deletion (|X |) admits a polynomial kernel, unless
NP ⊆ coNP/poly.

4 Polynomial Kernel for Restricted Chordal Deletion

In this section, we prove that Restricted Chordal Deletion (|X |) admits a
kernel with at most 2|X |4 + |X |3 + |X |2 + |X | vertices. To simplify the reduction
procedure, we first work on an annotated version of the problem. The annotated
problem is equivalent to our problem when the set of annotated vertices is empty.

Annotated Restricted Chordal Deletion (|X |)
Input: A graph G, a set of vertices X ⊆ V (G) such that G − X is
chordal, a set of critical pairs C ⊆

(
X
2

)
, and an integer k.

Parameter: |X |.
Question: Is there a set S ⊆ X of size at most k such that G − S is
chordal, and S contains at least one vertex of each pair {u, v} ∈ C?

A set S as described above is called a valid solution. For ease of notation, we
will use F to denote the chordal graph G − X . We now present four reduction
rules that will constitute a kernelization algorithm for Annotated Restricted

Chordal Deletion (|X |). Each reduction rule takes as input an instance of this
problem, and if the rule is applicable, it outputs an equivalent reduced instance.
We apply the reduction rules in the given order; whenever we apply a reduction
rule to an instance, we assume that none of the previous reduction rules can
be applied on that instance. For all the rules and proofs below, let (G, X, C, k)
be an instance of Annotated Restricted Chordal Deletion (|X |). The
correctness of some of our rules relies on the following result.

Proposition 1 ([21]). Let G be a graph containing three vertices u, v, w, such
that u, w ∈ NG(v) and uw ∈ E(G). If there is a walk W from u to w none of
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whose interior vertices is in NG[v], then there is a chordless cycle in G containing
{u, v, w} and a non-empty subset of V (W ).

Rule 1. If there is a vertex v ∈ X such that G[{v}∪ V (F )] is not chordal, then
reduce to the instance (G−{v}, X \ {v}, C′, k − 1), where C′ is obtained from C
by deleting all pairs which contain v.

Rule 2. If there are two vertices u, v ∈ X with {u, v} ∈ C, such that G[{u, v}∪
V (F )] is not chordal, then reduce to the instance (G, X, C ∪ {{u, v}}, k).

It is easy to see that Rules 1 and 2 are safe.

Rule 3. If there is an edge uv ∈ E(F ) such that NG(u)∩X = NG(v)∩X, then
reduce to the instance (G/uv, X, C, k).

Lemma 1. Rule 3 is safe.

Proof. Assume that Rule 1 and Rule 2 are not applicable, whereas Rule 3 is
applicable, on (G, X, C, k). Suppose (G, X, C, k) is a yes-instance, and let S
be a valid solution. Since X does not contain u or v, we have S ∩ {u, v} = ∅.
Observe that the class of chordal graphs is closed under contracting edges. Hence,
since G−S is chordal, (G −S)/uv = G/uv −S is also chordal. Consequently, S
is a valid solution for (G/uv, X, C, k), which is thus a yes-instance.

For the reverse direction, suppose that (G/uv, X, C, k) is a yes-instance, and
let S be a valid solution. We will show that S is also a valid solution for
(G, X, C, k). For contradiction, assume that G−S contains an induced cycle D of
length at least 4. Since G−X is chordal, D contains at least one vertex of X \S.
In fact, since Rule 1 and Rule 2 cannot be applied and S contains at least one
vertex of each critical pair, D contains at least three vertices x, y, z ∈ X \S. If D
contains neither u nor v, then D was also present in G/uv−S, contradicting the
assumption that G/uv − S is chordal. If D contains both u and v, then D is an
induced cycle on at least 5 vertices in G − S, containing u, v, x, y, z. This means
that G/uv−S contains an induced cycle on at least 4 vertices, contradicting the
assumption that G/uv − S is chordal.

Consider finally the case where D contains either u or v, say u. At most two of
the vertices x, y, z are adjacent to u, as D has no chords. Assume without loss of
generality that y /∈ NG(u), which implies that y /∈ NG(v) since y ∈ X and NG(u)∩
X = NG(v) ∩ X . Let a, b be the predecessor and successor of vertex y on D,
from which it follows that ab ∈ E(G). Since D is an induced cycle, it contains
a walk from a to b none of whose interior vertices belongs to NG[y]. If we substi-
tute the occurrence of u on this walk by the vertex resulting from the contraction
of u and v, we obtain a walk from a to b in G/uv none of whose interior vertices
belongs to NG/uv[y], and none of the vertices of this walk are contained in S. By
Proposition 1 this shows that G/uv − S contains a chordless cycle of length at
least 4, contradicting the assumption that G/uv−S is chordal. We conclude that
G − S is chordal, and consequently that (G, X, C, k) is a yes-instance. ��

With these first three rules, we are able to bound the length of any induced path
in F .
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Lemma 2. If (G, X, C, k) is a reduced instance with respect to Rules 1-3, and P
is an induced path in F , then P contains at most 2|X | + 1 vertices.

Proof. Suppose F contains an induced path P = (p1, . . . , pt). We say that an
edge pipi+1 of P is promoted by a vertex x ∈ X if x ∈ N(pi) \ N(pi+1) or x ∈
N(pi+1) \ N(pi). For any two consecutive vertices pi and pi+1 of P , we have that
N(pi)∩X = N(pi+1)∩X , since Rule 3 cannot be applied. This means in particular
that there is a vertex x ∈ X such that x ∈ N(pi)\N(pi+1) or x ∈ N(pi+1)\N(pi),
for each i between 1 and t−1. Consequently, every edge of P is promoted by some
vertex of X . Moreover, if a vertex x ∈ X is adjacent to two vertices pi and pj

of P with i < j, then x is also adjacent to each of the vertices pi+1, . . . , pj−1,
as otherwise G[{x} ∪ V (F )] would not be chordal, and Rule 1 would have been
applicable. Thus, each vertex of X can promote at most two edges of P . Since
every edge of P is promoted by some vertex of X , it follows that P contains at
most 2|X | edges, and hence at most 2|X | + 1 vertices. ��

We now give the final reduction rule that will provide the polynomial bound on
the size of a kernel.

Rule 4. Repeat the following for each ordered triple (u, v, w) of distinct vertices
in X: if there is an induced path P between u and w whose internal vertices
are all in F − NG(v), then mark all the internal vertices of P . Let Y be the
set of vertices of F that were not marked during this procedure. Reduce to the
instance (G − Y, X, C, k).

Lemma 3. Rule 4 is safe.

Proof. Assume that Rules 1-3 cannot be applied, whereas Rule 4 can be applied
on (G, X, C, k). Suppose (G, X, C, k) is a yes-instance, and let S be a valid solu-
tion. Since the class of chordal graphs is closed under taking induced subgraphs,
and G − S is chordal, we see that G − Y − S is chordal. It follows that S is also
a valid solution for (G − Y, X, C, k).

For the reverse direction, suppose that (G − Y, X, C, k) is a yes-instance, and
let S be a valid solution for this instance. We will show that S is a valid solution
for (G, X, C, k) as well. Assume for contradiction that it is not. This means that
G−Y −S is chordal, whereas G−S has an induced cycle D of length at least 4.
As G − X is chordal and Rules 1-2 cannot be applied, D contains at least three
vertices x, y, z ∈ X \ S. The subgraph F ′ = F [V (D) \ X ] is a disjoint union of
induced paths. If each of the vertices of F ′ was marked during the application
of Rule 4, then D is also an induced cycle in G − Y − S, which contradicts the
assumption that G − Y − S is chordal.

Suppose there is a path P in F ′ which contains an unmarked vertex. Let x, z ∈
X be the two neighbors on D of the endpoints of P . Note that x and z belong
to X \ S, and they are distinct since D contains at least three vertices of X \ S.
Let y /∈ {x, z} be a third vertex of D which belongs to X \ S. Since D has no
chords, the path (x, P, z) is an induced path from x to z whose interior vertices
are contained in F − NG[y]. Hence, when we tested the triple (x, y, z) in Rule 4,
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we found a path P ′ from x to z, not containing any neighbor of y, all whose ver-
tices we marked. Let a and b be the predecessor and successor of y on D, which
implies ab /∈ E(G). The cycle D contains a walk from a to b none of whose inte-
rior vertices belongs to NG[y]. If we substitute the occurrence of P on this walk
by P ′, we obtain a new walk W ′ from a to b, and since P ′ does not contain any
vertex of NG[y], it follows that none of the interior vertices of W ′ belong to NG[y].
By Proposition 1 this implies that G contains a chordless cycle D′ whose vertices
are a subset of V (W ′) ∪ {y}. By construction, the new walk does not contain any
vertex of S, so the chordless cycle exists in G − S. Since W ′ contains none of the
unmarked vertices of P , the cycle D′ contains strictly fewer of the unmarked ver-
tices than the original cycle D. Consequently, after repeating this procedure at
most |D| times, we find an induced cycle D′′ in G − S containing no unmarked
vertex of F , and at least four vertices: x, y, z and a marked vertex of F . Since all
the vertices of V (D′′)∩V (F ) are marked, D′′ is also an induced cycle in G−Y −S,
which contradicts the assumption that G − Y − S is chordal. ��
We are now ready to state the kernel result on the annotated problem.

Theorem 2. Annotated Restricted Chordal Deletion (|X |) admits a
kernel with at most 2|X |4 + |X |3 + |X | vertices.

Proof. Rules 1-3 can trivially be applied in polynomial time. When we apply
Rule 4, we need to test O(|X |3) triples. For each triple (u, v, w), determining
whether there is a path P from u to w whose internal vertices are contained in
F − NG(v) can be done by simply trying to find a shortest path from u to w in
the subgraph of G induced by u, w and the vertices of F − NG(v). Hence this
rule can also be applied in polynomial time.

Let (G, X, C, k) be an instance that is reduced with respect to Rules 1-4.
Observe that G[F ] can be covered by |X |3 induced paths, and by Lemma 2,
each such path contains at most 2|X | + 1 vertices. Consequently, |V (F )| ≤
2|X |4 + |X |3. Since V (G) = V (F ) ∪ X , the result follows. ��
Finally, the main result of this section is given in Theorem 3 below. Given an
instance (G, X, k) of Restricted Chordal Deletion (|X |), we immediately
get an equivalent instance (G, X, ∅, k) of Annotated Restricted Chordal

Deletion (|X |). From the latter, we can obtain an equivalent reduced instance
(G′, X, C, k), where G′ has at most 2|X |4 + |X |3 + |X | vertices, by Theorem 2. In
this instance, C is most likely not empty. The next theorem shows that we can
turn this instance to an equivalent reduced instance of Restricted Chordal

Deletion (|X |) of slightly larger size. This is done by adding two new vertices
to create a chordless cycle of length 4, for each pair of vertices in C.

Theorem 3. Restricted Chordal Deletion (|X |) admits a kernel with at
most 2|X |4 + |X |3 + |X |2 + |X | vertices.

5 Conclusion

The reduction in the proof of Theorem 1 shows that it is possible to construct
a small set of vertices X which models the universe of a Hitting Set instance,
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and that for every subset X ′ ⊆ X we can add some vertices to create a hole in
the graph which intersects X exactly in X ′, without creating other holes. This
makes it possible to reduce Hitting Set (k) to Perfect Deletion (k), while
also giving a reduction from Hitting Set (n) to Restricted Perfect Dele-

tion (|X |). Our positive result for Restricted Chordal Deletion (|X |)
shows that chordless cycles, the forbidden structures for chordal graphs, do not
have the same modeling power.

It will be very interesting to settle the kernelization complexity of Chordal

Deletion (k). We observe that this problem admits a linear-vertex kernel on
planar and bounded-genus graphs: this follows from the meta-theorem by Bod-
laender et al. [6], since the problem can be formulated in MSOL, has finite in-
teger index, and is quasi-compact because chordal planar graphs have constant
treewidth. Concerning structural parameterizations, it is not hard to prove that
Chordal Deletion admits a polynomial kernel when parameterized by the
size of a minimum vertex cover. A slightly more involved construction shows
that the same good news holds for the parameterization by the size of a min-
imum feedback vertex set. As an intermediate step in obtaining a polynomial
kernel for Chordal Deletion (k), one might consider Chordal Deletion

parameterized by vertex deletion distance to an interval graph.
We conclude with some open questions regarding graph modification prob-

lems. It would be interesting to determine the FPT status of Perfect Edge

Deletion/Completion. Since the class of perfect graphs is closed under tak-
ing the complement, the deletion and completion problems are equally hard.
The question of Interval Vertex Deletion has been open for some time.
Maybe a study of AT-free Vertex Deletion might shed some insight into
this problem. Besides computing these modification sets, using them as parame-
ters to other problems is also an interesting area which has not been thoroughly
explored. For example, what is the status of Feedback Vertex Set parame-
terized by vertex deletion distance to a chordal graph, or Induced Long Path

with the same parameter? These parameterizations have the potential to “beat
treewidth”, since a graph of large treewidth can nevertheless be close to chordal.

Acknowledgments. We would like to thank Dániel Marx for an insightful dis-
cussion on Chordal deletion.
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Abstract. The present paper generalises results by Lutz and Ryabko.
We prove a martingale characterisation of exact Hausdorff dimension.
On this base we introduce the notion of exact constructive dimension of
(sets of) infinite strings.

Furthermore, we generalise Ryabko’s result on the Hausdorff dimen-
sion of the set of strings having asymptotic Kolmogorov complexity ≤ α
to the case of exact dimension.

The paper addresses a problem from Algorithmic Information Theory. In his
papers [8,9] Lutz came up with an effectivisation of Hausdorff dimension, called
constructive dimension. Constructive dimension characterises the algorithmic
complexity of (sets of) infinite strings as real numbers. It turned out to be
equivalent to asymptotic Kolmogorov complexity (cf. [20]) and is related to the
concept of partial randomness of infinite strings [22,1]. However, the results
of Reimann and Stephan [14] show, unlike the case of random infinite strings,
different notions of Kolmogorov complexity (cf. [23,24]) yield different notions
of partial randomness.

To distinguish these types of partial randomness requires a refinement of the
complexity scale of (sets of) infinite strings. The present paper shows that an
effectivisation of Hausdorff’s original concept of dimension [7], referred to as
exact Hausdorff dimension in [10,6,11], is possible and leads, similarly to the
case of “usual” dimensions (cf. [15,16,18,19,8,9]), to close connections between
exact Hausdorff dimension and exact constructive dimension. In contrast to the
“usual” constructive or Hausdorff dimension an exact dimension of a string or
a set of strings is a real function, referred to as gauge function [10,6,11]. This
makes it more difficult to specify uniquely ‘the’ exact Hausdorff dimension of set
of strings.

After introducing some notation, in Section 2, we present Hausdorff’s original
approach [7], give a definition of what is an exact Hausdorff dimension of a set
and generalise the martingale characterisation of Hausdorff dimension [8,9].

In Section 3, using Levin’s and Schnorr’s (cf. [25,17]) optimal left computable
super-martingale, we obtain in a natural way a definition of exact constructive
dimension. Here we also derive the particularly interesting fact that the exact di-
mension of an infinite string ξ can be identified with Levin’s [25] universal left
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computable continuous semi-measure M restricted to the set of finite prefixes
of ξ.

It is well-known (cf. [23,24]) that Levin’s semi-measure M yields the a priori
complexity KA, a particular kind of Kolmogorov complexity. In the fourth sec-
tion we generalise Ryabko’s result that the set of infinite strings having asymp-
totic Kolmogorov complexity ≤ α has Hausdorff dimension α and obtain, for
the special case of the a priori complexity KA and for a large class of gauge
functions, a similar coincidence in the case of exact dimensions.

Finally, in Section 5, we apply our results to the family of functions of the log-
arithmic scale, which was also considered by Hausdorff [7]. Here we give evidence
that, unlike the case of asymptotic Kolmogorov complexity, the results involv-
ing exact dimensions depend on the kind of complexity (cf. [23,24]) we use. We
show, in particular, that an analogous coincidence as proved in Section 4 does
not hold for plain Kolmogorov complexity.

1 Notation and Preliminaries

In this section we introduce the notation used throughout the paper. By IN =
{0, 1, 2, . . .} we denote the set of natural numbers and by Q the set of rational
numbers. Let X be an alphabet of cardinality |X | = r ≥ 2. By X∗ we denote
the set of finite words on X , including the empty word e, and Xω is the set of
infinite strings (ω-words) over X .

For w ∈ X∗ and η ∈ X∗∪Xω let w ·η be their concatenation. This concatena-
tion product extends in an obvious way to subsets W ⊆ X∗ and B ⊆ X∗ ∪ Xω.

We denote by |w| the length of the word w ∈ X∗ and pref(B) is the set of all
finite prefixes of strings in B ⊆ X∗ ∪Xω. We shall abbreviate w ∈ pref(η) (η ∈
X∗ ∪ Xω) by w � η, and η[0..n] is the n-length prefix of η provided |η| ≥ n.
A language W ⊆ X∗ is referred to as prefix-free if w � v and w, v ∈ W imply
w = v. If W ⊆ X∗ then Min�W := {w : w ∈ W ∧ ∀v(v ∈ W → v � w)} is the
(prefix-free) set of minimal w.r.t. � elements of W .

A super-martingale is a function V : X∗ → [0,∞) which satisfies V(e) ≤ 1
and the super-martingale inequality

r · V(w) ≥
∑

x∈X V(wx) for all w ∈ X∗ . (1)

If Eq. (1) is satisfied with equality V is called a martingale. Closely related with
(super-)martingales are continuous (or cylindrical) (semi-)measures μ : X∗ →
[0, 1] where μ(e) ≤ 1 and μ(w) ≥

∑
x∈X μ(wx) for all w ∈ X∗.

Indeed, if V is a super-martingale then μ(w) := r−|w| · V(w) is a continu-
ous (semi-)measure, and vice versa. It should be mentioned that for any con-
tinuous semi-measure μ and every prefix-free subset W ⊆ X∗ the inequality∑

w∈W μ(w) ≤ 1 holds. This proves also the corresponding super-martingale
inequality for prefix-free sets W ⊆ X∗:

V(e) ≥
∑

w∈W r−|w| · V(w) (2)
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For a computable domain D, such as IN, Q or X∗, we refer to a function f : D →
IR as left computable (or approximable from below) provided the set {(d, q) :
d ∈ D ∧ q ∈ Q ∧ q < f(d)} is computably enumerable. Accordingly, a function
f : D → IR is called right computable (or approximable from above) if the set
{(d, q) : d ∈ D∧q ∈ Q∧q > f(d)} is computably enumerable, and f is computable
if f is right and left computable.

If we refer to a function f : D → Q as computable we usually mean that it
maps the domain D to the domain Q, that is, it returns the exact value f(d) ∈ Q.

2 Hausdorff’s Approach

A function h : (0,∞) → (0,∞) is referred to as a gauge function provided h is
positive, right continuous and non-decreasing. The h-dimensional outer measure
of a set F ⊆ Xω on the space Xω is given by

Hh(F ) := lim
n→∞ inf

{ ∑
v∈V

h(r−|v|) : V ⊆ X∗ ∧ F ⊆ V · Xω ∧ min
v∈V

|v| ≥ n
}

. (3)

If limt→0 h(t) > 0 then Hh(F ) < ∞ if and only if F is finite.
The usual α-dimensional Hausdorff measure Hα is defined by the family of

gauge functions hα(t) = tα, that is, Hα = Hhα . Here h0(t) = t0 defines the
counting measure on Xω.

In this case it is possible to define the (usual) Hausdorff dimension of a set
F ⊆ Xω as

dimH F := sup{α : α = 0 ∨ Hα(F ) = ∞} = inf{α : α ≥ 0 ∧ Hα(F ) = 0} . (4)

As we see from Eq. (3) for our purposes the behaviour of gauge function is
of interest only in a small vicinity of 0. Moreover, in many cases we are not
interested in the exact value of Hh(F ) when 0 < Hh(F ) < ∞. Thus we can
often make use of scaling a gauge function and altering it in a range (ε, 1] apart
from 0.

The following properties of gauge functions h and the related measure Hh are
proved in the standard way (see e.g. [4,5]).

Property 1. Let h, h′ be gauge functions.

1. If c1 · h(r−n) ≤ h′(r−n) ≤ c2 · h(r−n) for some c1, c2, 0 < c1 ≤ c2, then
c1 · Hh(F ) ≤ Hh′

(F ) ≤ c2 · Hh(F ).
2. If lim

n→∞
h(r−n)
h′(r−n) = 0 then Hh′

(F ) < ∞ implies Hh(F ) = 0, and Hh(F ) > 0

implies Hh′
(F ) = ∞.

Here the first property could be called equivalence of gauge functions. In fact,
if h and h′ are equivalent in the sense of Property 1 then for all F ⊆ Xω the
measures Hh(F ) and Hh′

(F ) are both zero, finite or infinite. In the same way the
second property gives an pre-order of gauge functions. The pre-order is denoted
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by ≺ where h′ ≺ h is an abbreviation for lim
n→∞

h(r−n)
h′(r−n) = 0, that is, h(r−n) tends

faster to 0 than h′(r−n) as n tends to infinity.
By analogy to the change-over-point dimH F (see Eq. (4)) for Hα(F ) the

partial pre-order ≺ yields a suitable notion of Hausdorff dimension in the range
of arbitrary gauge functions.

Definition 1. We refer to a gauge function h as exact Hausdorff dimension
function for F ⊆ Xω provided

Hh′
(F ) =

{
∞ , if h′ ≺ h , and
0 , if h ≺ h′ .

Remark that, since ≺ is not a total ordering, nothing is said about the measure
Hh′

(F ) for functions h′ which are equivalent or not comparable to h. Hausdorff
called a function h dimension of F provided 0 < Hh(F ) < ∞. This case is
covered by our definition and Property 1.

One easily observes that h0(t) := t yields Hh0(F ) ≤ 1, thus Hh′
(F ) = 0 for

all h′, h0 ≺ h′. Therefore, we can always assume that a gauge function satisfies
h(t) > t2, t ∈ (0, 1).

2.1 Exact Hausdorff Dimension and Martingales

In this section we show a generalisation of Lutz’s theorem to arbitrary gauge
functions. To obtain a transparent notation we do not use Lutz’s s-gale notation
but instead we follow Schnorr’s approach of combining martingales with order
functions. For a discussion of both approaches see Section 13.2 of [3].

Let, for a super-martingale V : X∗ → [0,∞), a gauge function h and a value
c ∈ (0,∞] be Sc,h[V ] :=

{
ξ : ξ ∈ Xω ∧ lim supn→∞

V(ξ[0..n])
rn·h(r−n) ≥ c

}
. In particular,

S∞,h[V ] is the set of all ω-words on which the super-martingale V is successful
w.r.t. the order function f(n) = rn · h(r−n) in the sense of Schnorr [17].

Now we can prove the analogue to Lutz’s theorem. In view of Property 1 we
split the assertion into two parts.

Lemma 1. Let F ⊆ Xω and h, h′ be gauge functions such that h ≺ h′ and
Hh(F ) < ∞. Then F ⊆ S∞,h′ [V ] for some martingale V.

Proof. First we follow the lines of the proof of Theorem 13.2.3 in [3] and show
the assertion for Hh(F ) = 0. Thus there are prefix-free subsets Ui ⊆ X∗ such
that F ⊆

⋂
i∈IN Ui · Xω and

∑
u∈Ui

h(r−|u|) ≤ 2−i.

Define Vi(w) :=
{

r|w| ·
∑

wu∈Ui
h(r−|wu|), if w ∈ pref(Ui) \ Ui , and

sup{r|v| · h(r−|v|) : v � w ∧ v ∈ Ui}, otherwise1.

In order to prove that Vi is a martingale we consider three cases:

w ∈ pref(Ui) \ Ui : Since then Ui ∩ w · X∗ =
⋃

x∈X Ui ∩ wx · X∗, we have
Vi(w) = r|w| ·

∑
wu∈Ui

h(r−|wu|) = r−1 ·
∑

x∈X r|wx|∑
wxu∈Ui

h(r−|wxu|) =
r−1 ·

∑
x∈X Vi(wx).

1 This yields Vi(w) = 0 for w /∈ pref (Ui) ∪ Ui · X∗.
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w ∈ Ui · X∗ : Let w ∈ v ·X∗ where v ∈ Ui. Then Vi(w) = Vi(wx) = r|v| ·h(r−|v|)
whence Vi(w) = r−1 ·

∑
x∈X Vi(wx).

w /∈ pref(Ui) ∪ Ui · X∗ : Here Vi(w) = Vi(wx) = 0.

Now, set V(w) :=
∑

i∈IN Vi(w).
Then, for ξ ∈

⋂
i∈IN Ui · Xω there are ni ∈ IN such that ξ[0..ni] ∈ Ui and we

obtain V(ξ[0..ni])
rni ·h′(r−ni)

≥ Vi(ξ[0..ni])
rni ·h′(r−ni )

= h(r−ni)
h′(r−ni)

which tends to infinity as i tends to
infinity.

Now let Hh(F ) < ∞. Then h ≺
√

h · h′ ≺ h′. Thus H
√

h·h′(F ) = 0 and we
can apply the first part of the proof to the functions

√
h · h′ and h′. ��

The next lemma is in some sense a converse to Lemma 1.

Lemma 2. Let h be a gauge function, c ∈ (0,∞] and V be a super-martingale.
Then Hh(Sc,h[V ]) ≤ V(e)

c .

Proof. It suffices to prove the assertion for c < ∞.
Define Vk := {w : w ∈ X∗ ∧ |w| ≥ k ∧ V(w)

r|w|·h(r−|w|) ≥ c − 2−k} and set
Uk := Min�Vk. Then Sc,h[V ] ⊆

⋂
k∈IN Uk · Xω.

Now
∑

w∈Uk

h(r−|w|) ≤
∑

w∈Uk

h(r−|w|) · V(w)
r|w|·h(r−|w|) ·

1
c−2−k = 1

c−2−k ·
∑

w∈Uk

V(w)
r|w| ≤

V(e)
c−2−k (cf. Eq. (2)). Thus Hh(

⋂
k∈IN Uk · Xω) ≤ V(e)

c . ��

Lemmata 1 and 2 yield the following martingale characterisation of exact Haus-
dorff dimension functions.

Theorem 1. Let F ⊆ Xω. Then a gauge function h is an exact Hausdorff
dimension function for F if and only if

1. for all gauge functions h′ with h ≺ h′ there is a super-martingale V such
that F ⊆ S∞,h′ [V ], and

2. for all gauge functions h′′ with h′′ ≺ h and all super-martingales V it holds
F ⊆ S∞,h′′ [V ].

Proof. Assume h to be exact for F and h ≺ h′. Then h ≺
√

h · h′ ≺ h′. Thus
H

√
h·h′(F ) = 0 and applying Lemma 1 to

√
h · h′ and h′ yields a super-martingale

V such that F ⊆ S∞,h′ [V ].
If h′′ ≺ h then Hh′′

(F ) = ∞ and according to Lemma 2 F ⊆ S∞,h′′ [V ] for all
super-martingales V .

Conversely, let Conditions 1 and 2 be satisfied. Let h ≺ h′, and let V be
a super-martingale such that F ⊆ S∞,h′ [V ]. Now Lemma 2 shows Hh′

(F ) ≤
Hh′

(S∞,h′ [V ]) = 0.
Finally, suppose h′′ ≺ h and Hh′′

(F ) < ∞. Then H
√

h·h′′(F ) = 0 and
Lemma 1 shows that there is a super-martingale V such that F ⊆ S∞,

√
h·h′′ [V ].

This contradicts Condition 2. ��

Lemmata 1 and 2 also show that we can likewise formulate Theorem 1 for
martingales instead of super-martingales.
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3 Constructive Dimension: The Exact Case

The constructive dimension is a variant of dimension defined analogously to
Theorem 1 using only left computable super-martingales. For the usual family
of gauge functions hα(t) = tα it was introduced by Lutz [8] and resulted, sim-
ilarly to dimH in a real number assigned to a subset F ⊆ Xω. In the case of
left computable super-martingales the situation turned out to be simpler be-
cause the results of Levin [25] and Schnorr [17] show that there is an optimal
left computable super-martingale U , that is, every other left computable super-
martingale V satisfies V(w) ≤ cV ·U(w) for all w ∈ X∗ and some constant cV > 0
not depending on w. Thus we may define

Definition 2. Let F ⊆ Xω. We refer to h : IR → IR as an exact constructive
dimension function for F provided F ⊆ S∞,h′ [U ] for all h′, h ≺ h′ and F ⊆
S∞,h′′ [U ] for all h′′, h′′ ≺ h.

Originally, Levin showed that there is an optimal left computable continuous
semi-measure M on X∗.

Thus we might use UM with UM(w) := r|w| · M(w) as our optimal left com-
putable super-martingale. The proof of the next theorem makes use of this fact
and of the inequality M(w) ≥ M(w · v).

Theorem 2. The function hξ defined by hξ(r−n) := M(ξ[0..n]) is an exact
constructive dimension function for the set {ξ}.
Closely related to Levin’s optimal left computable semi-measure is the a priori
entropy (or complexity) KA : X∗ → IN defined by

KA(w) := �− logr M(w)� (5)

First we mention the following bound from [12].

Theorem 3. Let F ⊆ Xω, h be a gauge function and Hh(F ) > 0.
Then for every c > 0 with Hh(F ) > c · M(e) there is a ξ ∈ F such that

KA(ξ[0..n]) ≥ae − logr h(r−n) − logr c.

This lower bound on the maximum complexity of an infinite string in F yields
a set-theoretic lower bound on the success sets Sc,h[U ] of U .

Theorem 4. Let −∞ < c < ∞ and let h be a gauge function. Then there is a
c′ > 0 such that

{ξ : ∃∞n(KA(ξ[0..n]) ≤ logr h(r−n) + c)} ⊆ Sc′,h[U ].

Proof. If ξ has infinitely many prefixes such that KA(ξ[0..n]) ≤ − logr h(r−n)+c
then, since U(w) ≥ c′′ · rn · M(w) for a suitable c′′ > 0, we obtain in view of
Eq. (5) lim supn→∞

U(ξ[0..n])
rn·h(r−n) ≥ lim supn→∞

c′′·rn·M(ξ[0..n])
rn·h(r−n) ≥ c′′ · r−c−1. ��

Corollary 1. Let h, h′ be gauge functions such that h ≺ h′ and c ∈ IR. Then

1. {ξ : KA(ξ[0..n]) ≤io logr h(r−n) + c} ⊆ S∞,h′ [U ], and
2. Hh′({ξ : KA(ξ[0..n]) ≤io − logr h(r−n) + c}

)
= 0.
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4 Complexity

In this section we are going to show that, analogously to Ryabko’s and Lutz’s
results for the “usual” dimension the bound given in Corollary 1 is tight for a
large class of (computable) gauge functions. To this end we prove that certain
sets of infinite strings diluted according to a gauge function h have positive
Hausdorff measure Hh.

4.1 A Generalised Dilution Principle

We are going to show that for a large family of gauge functions, a set of finite
positive measures can be constructed. Our construction is a generalisation of
Hausdorff’s 1918 construction. Instead of his method of cutting out middle thirds
in the unit interval we use the idea of dilution functions as presented in [21]. In
fact dilution appears much earlier (see e.g. [2,18,9]).

We consider prefix-monotone mappings, that is, mappings ϕ : X∗ → X∗

satisfying ϕ(w) � ϕ(v) whenever w � v. We call a function g : IN → IN a modulus
function for ϕ provided |ϕ(w)| = g(|w|) for all w ∈ X∗. This, in particular,
implies that |ϕ(w)| = |ϕ(v)| for |w| = |v| when ϕ has a modulus function.

Every prefix-monotone mapping ϕ : X∗ → X∗ defines as a limit a partial
mapping ϕ :⊆ Xω → Xω in the following way: pref(ϕ(ξ)) = pref(ϕ(pref(ξ)))
whenever ϕ(pref(ξ)) is an infinite set, and ϕ(ξ) is undefined when ϕ(pref(ξ))
is finite.

If, for some strictly increasing function g : IN → IN, the mapping ϕ satisfies
the conditions |ϕ(w)| = g(|w|) and for every v ∈ pref(ϕ(X∗)) there are wv ∈ X∗

and xv ∈ X such that

ϕ(wv) � v � ϕ(wv · xv) ∧ ∀y
(
y ∈ X ∧ y = xv → v � ϕ(wv · y)

)
(6)

then we call ϕ a dilution function with modulus g. If ϕ is a dilution function
then ϕ is a one-to-one mapping.

For the image ϕ(Xω) we obtain the following bounds on its Hausdorff measure.

Theorem 5. Let g : IN → IN be a strictly increasing function, ϕ a corresponding
dilution function and h : (0,∞) → (0,∞) be a gauge function. Then

1. Hh(ϕ(Xω)) ≤ lim inf
n→∞

h(r−g(n))
r−n

2. If c · r−n ≤ae h(r−g(n)) then c ≤ Hh(ϕ(Xω)).

Proof. The first assertion follows from ϕ(Xω) ⊆
⋃

|w|=n ϕ(w) ·Xω and |ϕ(w)| =
g(|w|).

The second assertion is obvious for Hh(ϕ(Xω)) = ∞. Let Hh(ϕ(Xω)) < ∞,
ε > 0, and V ·Xω ⊇ ϕ(Xω) such that

∑
v∈V h(r−|v|) ≤ Hh(ϕ(Xω)) + ε. The set

WV := {wv · xv : v ∈ V ∧ ϕ(wv) � v � ϕ(wv · xv)} (see Eq. (6)) is prefix-free
and it holds WV · Xω ⊇ Xω. Thus WV is finite and

∑
w∈WV

r−|w| = 1.
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Assume now min{|v| : v ∈ V } large enough such that c · r−|v| ≤ae h(r−|v|) for
all v ∈ V .

Then
∑

v∈V h(r−|v|) ≥
∑

wx∈WV
h(r−|ϕ(wx)|) =

∑
wx∈WV

h(r−g(|wx|))
≥
∑

wx∈WV
c · r−|wx| = c .

As ε > 0 is arbitrary, the assertion follows. ��

Corollary 2. If c · r−n ≤ae h(r−g(n)) ≤ c′ · r−n then c ≤ Hh(ϕ(Xω)) ≤ c′.

In connection with Theorem 5 and Corollary 2 it is of interest which gauge
functions allow for a construction of a set of positive finite measure via dilution.
Hausdorff’s cutting out was demonstrated for upwardly convex2 gauge functions.
We consider the slightly more general case of functions fulfilling the following.

Lemma 3. If a gauge function h is upwardly convex on some interval (0, ε) and
limt→0 h(t) = 0 then there is an n0 ∈ IN such that for all n ≥ n0 there is an
m ∈ IN satisfying

r−n < h(r−m) ≤ r−n+1 . (7)

In particular, Eq. (7) implies that the gauge function h does not tend faster to
0 than the identity function id : IR → IR.

Proof. If h is monotone, upwardly convex on (0, ε) and h(0) = 0 then, in partic-
ular, h(γ) ≥ γ · h(γ′)/γ′ whenever 0 ≤ γ ≤ γ′ ≤ ε. Let n ∈ IN and let m ∈ IN be
the largest number such that r−n < h(r−m). Then h(r−m−1) ≤ r−n < h(r−m) ≤
r · h(r−m−1) ≤ r−n+1. ��

Remark 1. Using the scaling factor c = rn0 , that is, considering c · h instead of
h and taking h′(t) = min{c · h(t), r} one can always assume that n0 = 0 and
h′(1) > 1. Defining then g(n) := max{m : m ∈ IN ∧ r−n < h(r−m)} we obtain
via Property 1 and Corollary 2 that for every gauge function h fulfilling Eq. (7)
there is a subset Fh of Xω having finite and positive Hh-measure.

4.2 Computable Gauge Functions

The aim of this section is to show that the modulus function g and thus the
dilution function ϕ can be chosen computable if the gauge function h fulfilling
Eq. (7) is computable.

Lemma 4. Let h : Q → IR be a computable gauge function satisfying the con-
ditions that 1 < h(1) < r and for every n ∈ IN there is an m ∈ IN such that
r−n < h(r−m) ≤ r−n+1. Then there is a computable strictly increasing function
g : IN → IN such that r−n−1 < h(r−g(n)) < r−n+1.

Proof. We define g inductively. To this end we compute for every n ≥ 1 a closed
interval In such that h(r−g(n)) ∈ In ⊂ (r−n, min In−1).

2 A function f : IR → IR is called upwardly convex if f(a + t(b− a)) ≥ f(a) + t(f(b)−
f(a)) for all t ∈ [0, 1].



260 L. Staiger

We start with g(0) := 0 and I−1 = [r, r + 1] and estimate I0 as an sufficiently
small approximating interval of h(r−g(0)) > 1 satisfying I0 ⊆ (1, r).

Assume now that for n the value g(n) and the interval In satisfying h(r−g(n)) ∈
In ⊂ (r−n, min In−1) are computed.

We search for an m and an approximating interval I(m), h(r−m) ∈ I(m),
such that I(m) ⊂ (r−n−1, min In). Since lim inf

m→∞ h(r−m) = 0 and ∃m(r−n−1 <

h(r−m) ≤ r−n) < min In this search will eventually be successful. Define g(n+1)
as the first such m found by our procedure and set In := I(m).

Finally, the monotonicity of h implies g(n + 1) > g(n). ��

With Corollary 2 we obtain the following.

Corollary 3. Under the hypotheses of Lemma 4 there is a computable dilution
function ϕ : X∗ → X∗ such that r−1 ≤ Hh(ϕ(Xω)) ≤ r.

4.3 Complexity of Diluted Infinite Strings

In the final part of this section we show that, for a large class of computable gauge
functions, the set {ξ : KA(ξ[0..n]) ≤io − logr h(r−n)+c} (see Corollary 1) has the
function h as an exact dimension function, that is, a converse to Corollary 1.2.

We use the following estimate on the a priori complexity of a diluted string
from [21].

Theorem 6. Let ϕ : X∗ → X∗ be a one-to-one prefix-monotone recursive func-
tion satisfying Eq (6) with strictly increasing modulus function g. Then∣∣KA

(
ϕ(ξ)[0..g(n)]

)
− KA

(
ξ[0..n]

)∣∣ ≤ O(1) for all ξ ∈ Xω .

This auxiliary result yields that certain sets of non-complex strings have non-null
h-dimensional Hausdorff measure.

Theorem 7. If h : Q → IR is a computable gauge function satisfying Eq. (7)
then there is a c ∈ IN such that

Hh({ζ : KA(ζ[0..�]) ≤ae − logr h(r−�) + c}) > 0.

Proof. From the gauge function h we construct a computable dilution function
ϕ with modulus function g such that r−(l+k+1) < g(r−g(l)) < r−(l+k−1) for a
suitable constant k (cf. Lemma 4 and Remark 1). Then, according to Corollary 3,
Hh(ϕ(Xω)) > 0.

Using Theorem 6 we obtain KA
(
ϕ(ξ)[0..g(l)]

)
≤ KA

(
ξ[0..l]

)
+ c1 ≤ l + c2 for

suitable constants c1, c2 ∈ IN. Let n ∈ IN satisfy g(l) < n ≤ g(n + 1). Then
KA
(
ϕ(ξ)[0..n]

)
≤ KA

(
ϕ(ξ)[0..g(l + 1)]

)
≤ l + 1 + c2.

Now from l +k−1 < − logr h(r−g(l)) ≤ − logr h(r−n) we obtain the assertion
KA
(
ϕ(ξ)[0..n]

)
≤ − logr h(r−n) + k + c2. ��

Now Corollary 1.2 and Theorem 7 the following analogue to Ryabko’s [15] result.

Lemma 5. If h : Q → IR is a computable gauge function satisfying Eq. (7) then
there is a c ∈ IN such that h is an exact Hausdorff dimension for the sets {ξ :
KA(ξ[0..n]) ≤io − logr h(r−n) + c} and {ζ : KA(ζ[0..�]) ≤ae − logr h(r−�) + c}.
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5 Functions of the Logarithmic Scale

The final part of this paper is devoted to a generalisation of the “usual” dimen-
sions using Hausdorff’s family of functions of the logarithmic scale. This family
is, similarly to the family hα(t) = tα, also linearly ordered and, thus, allows for
more specific versions of Corollary 1.2 and Theorem 7.

A function of the form where the first non-zero exponent satisfies pi > 0

h(p0,...,pk)(t) = tp0 ·
∏k

i=1

(
logi 1

t

)pi (8)

is referred to as a function of the logarithmic scale (see [7]). Here we have the
convention that logi t = max{logr . . . logr︸ ︷︷ ︸

i times

t , 1}.

One observes that the lexicographic order on the tuples (p0, . . . , pk) yields an
order of the functions h(p0,...,pk) in the sense that (p0, . . . , pk) >lex (q0, . . . , qk) if
and only if h(q0,...,qk)(t) ≺ h(p0,...,pk)(t).

This gives rise to a generalisation of the “usual” Hausdorff dimension as fol-
lows.

dim(k)
H F := sup{(p0, . . . , pk) : Hh(p0,...,pk)(F ) = ∞}

= inf{(p0, . . . , pk) : Hh(p0,...,pk)(F ) = 0}
(9)

When taking supremum or infimum we admit also values −∞ and ∞ although
we did not define the corresponding functions of the logarithmic scale. E.g.
dim(1)

H F = (0,∞) means that Hh(0,γ)(F ) = ∞ but Hh(α,−γ)(F ) = 0 for all
γ ∈ (0,∞) and all α > 0.

The following theorems generalise Ryabko’s [15] result on the “usual” Haus-
dorff dimension (case k = 0) of the set of strings having asymptotic Kolmogorov
complexity ≤ p0.

Let h(p0,...,pk) be a function of the logarithmic scale. We define its first log-
arithmic truncation as βh(t) := − logr h(p0,...,pk−1). Observe that βh(r−n) =
p0 · n +

∑k−1
i=1 pi · logi n and − log h(p0,...,pk)(r−n) = βh(r−n) + pk · logk n, for

sufficiently large n ∈ IN.
Then from Corollary 1.2 we obtain the following result.

Theorem 8 ([13]). Let k > 0, (p0, . . . , pk) be a (k + 1)-tuple and h(p0,...,pk) be
a function of the logarithmic scale. Then

dim(k)
H

{
ξ : ξ ∈ Xω ∧ lim infn→∞

KA(ξ[0..n])−βh(2−n)

logk n
< pk

}
≤ (p0, . . . , pk) .

Proof. From lim infn→∞
KA(ξ[0..n])−βh(2−n)

logk n
< pk follows KA(ξ[0..n]) ≤ βh(2−n)+

p′k · logk n+O(1) for some p′k < pk. Thus h(p0,...,p′
k) ≺ h(p0,...,pk) and the assertion

follows from Corollary 1.2. ��

Using Theorem 7 we obtain a partial converse to Theorem 8 slightly refining
Satz 4.11 of [13].
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Theorem 9. Let k > 0, (p0, . . . , pk) be a (k + 1)-tuple where p0 > 0 and
p0, . . . , pk−1 are computable numbers. Then for the function h(p0,...,pk) it holds

dim(k)
H

{
ξ : ξ ∈ Xω ∧ lim sup

n→∞
KA(ξ[0..n]) − βh(2−n)

logk n
≤ pk

}
= (p0, . . . , pk) .

Proof. Let p′k < pk be a computable number. Then h(p0,...,p′
k) is a computable

gauge function, h(p0,...,p′
k) ≺ h(p0,...,pk) and Hh({ξ : KA(ξ[0..n]) ≤ − logr h(r−n)+

ch}) > 0 for h = h(p0,...,p′
k) and some constant ch. Moreover KA(ξ[0..n]) ≤

− logr h(r−n) + ch implies lim sup
n→∞

KA(ξ[0..n])−βh(2−n)

logk n
≤ pk. Thus dim(k)

H

{
ξ : ξ ∈

Xω ∧ lim sup
n→∞

KA(ξ[0..n])−βh(2−n)

logk n
≤ pk

}
≥ (p0, . . . , p

′
k).

As p′k can be made arbitrarily close to pk the assertion follows. ��

Ryabko’s [15] theorem is independent of the kind of complexity we use. The
following example shows that, already in case k = 1, Theorem 8 does not hold
for plain Kolmogorov complexity KS (cf. [23,24,3]).

Example 1. It is known that KS(ξ[0..n]) ≤ n − logr n + O(1) for all ξ ∈ Xω

(cf. [3, Corollary 3.11.3]). Thus every ξ ∈ Xω satisfies lim inf
n→∞

KS(ξ[0..n])−n
logr n < − 1

2 .
Consequently,

dim(1)

H

{
ξ : ξ ∈ Xω ∧ lim inf

n→∞
KS(ξ[0..n])−n

log|X| n < − 1
2

}
= (1, 0) >lex (1,− 1

2 ).

It would be desirable to prove Theorem 7 for arbitrary gauge functions or The-
orem 9 for arbitrary (k + 1)-tuples. One obstacle is that, in contrast to the case
of real number dimension where the computable numbers are dense in the re-
als, already the computable pairs (p0, p1) are not dense in the above mentioned
lexicographical order of pairs. This can be verified by the following fact.

Remark 2. Let p0 ∈ (0, 1). If r−p0·n ≤ h(r−n) ≤ n · r−p0·n for a computable
function h : Q → IR and sufficiently large n ∈ IN then p0 is a computable real.
Thus, if p0 is not a computable number, the interval between h(p0,0) and h(p0,1)

does not contain a computable gauge function.
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Abstract. We consider the following graph realization problem. Given a
sequence S :=

(
a1
b1

)
, . . . ,

(
an
bn

)
with ai, bi ∈ Z+

0 , does there exist an acyclic
digraph (a dag, no parallel arcs allowed) G = (V, A) with labeled vertex
set V := {v1, . . . , vn} such that for all vi ∈ V indegree and outdegree of vi

match exactly the given numbers ai and bi, respectively? The complexity
status of this problem is open, while a generalization, the f -factor dag
problem can be shown to be NP-complete. In this paper, we prove that
an important class of sequences, the so-called opposed sequences, admit
an O(n+m) realization algorithm, where n and m =

∑n
i=1 ai =

∑n
i=1 bi

denote the number of vertices and arcs, respectively. For an opposed se-
quence it is possible to order all non-source and non-sink tuples such
that ai ≤ ai+1 and bi ≥ bi+1. Our second contribution is a realization al-
gorithm for general sequences which significantly improves upon a naive
exponential-time algorithm. We also investigate a special and fast real-
ization strategy “lexmax”, which fails in general, but succeeds in more
than 97% of all sequences with 9 tuples.

1 Introduction

The problem. The realization of graphs and digraphs with prescribed degree
sequences has attracted researchers for several decades, with classical contribu-
tions by Havel, Hakimi, Erdös, Gallai, Ryser, Fulkerson, Chen, Kleitman and
Wang [1,2,3,4,5,6,7,8]. We here consider the following problem.

Problem 1 (dag realization problem). Given is a finite sequence S :=
(
a1
b1

)
,

. . . ,
(
an

bn

)
with ai, bi ∈ Z+

0 . Does there exist an acyclic digraph (without parallel
arcs) G = (V, A) with the labeled vertex set V := {v1, . . . , vn} such that we have
indegree d−G(vi) = ai and outdegree d+

G(vi) = bi for all vi ∈ V ?

If the answer is “yes”, we call sequence S dag sequence and the acyclic digraph
G (a so-called “dag”) a dag realization. Unless explicitly stated, we assume that
a sequence does not contain any zero tuples

(
0
0

)
. Moreover, we will tacitly as-

sume that
∑n

i=1 ai =
∑n

i=1 bi, as this is obviously a necessary condition for any
realization to exist, since the number of ingoing arcs must equal the number of
� This work was supported by the DFG Focus Program Algorithm Engineering, grant

MU 1482/4-2.

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 264–275, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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outgoing arcs. Furthermore, we denote tuples
(

ai

bi

)
with ai > 0 and bi = 0 as sink

tuples, those with ai = 0 and bi > 0 as source tuples, and the remaining ones
with ai > 0 and bi > 0 as stream tuples.

To the best of our knowledge there is no previous work dealing with this
problem. On the other hand, there is a relaxed version of this problem omitting
the condition of acyclicity. This problem is called digraph realization problem.
Sequence S is then called digraph sequence and the corresponding digraph G
a digraph realization. There are many beautiful, classical results – a long story
about repeated reinventions of similar results under completely different names
– handling of solving this problem in two different ways. The first approach uses
recursive algorithms to construct digraph realizations. The second one gives a
complete characterization of digraph sequences. Hence, it is possible to check
a polynomial number of inequalities (in the size of the number of tuples in a
sequence) which leads to the correct decision of the realizability of a sequence.
However, these views come from another analogous problem — the graph realiza-
tion problem which asks whether a given undirected sequence S := (d1), . . . , (dn)
with di ∈ Z+

0 possesses a realization as a graph. The characterization approach
was found by Erdös and Gallai [3] and a realization algorithm was introduced
by Havel [1] and Hakimi [2]. All their ideas and algorithms can be used for
the digraph realization problem with only slight modifications. An interesting
point of view is to consider the graph realization problem as a special case of
the digraph realization problem. We consider the symmetric digraph realization
problem, where we only allow digraph realizations containing with an arc (u, v)
also arc (v, u). Clearly, for such sequences

(
a1
b1

)
, . . . ,

(
an

bn

)
we need the necessary

conditions (1) ai = bi for all indices i and (2)
∑

i∈Nn
ai =

∑
i∈Nn

bi is even. To
solve this problem one can consider a sequence S :=

(
a1
a1

)
, . . . ,

(
an

an

)
with the ad-

ditional condition that a digraph should contain a maximum number of directed
2-cycles. Each of these directed 2-cycles C := (u, v, u) can be associated with one
undirected arc {u, v}. Interestingly, there exists a symmetric digraph realization
for S if and only if there is a digraph realization [7]. Hence, the undirected se-
quence Su := (a1), . . . , (an) (with

∑
i∈Nn

ai is even) is a graph sequence if and
only if sequence S :=

(
a1
a1

)
, . . . ,

(
an

an

)
is a digraph sequence. It follows that it is

possible to derive all characterizations of Erdös and Gallai for graph sequences
from the characterizations of digraphs. In this paper we restrict ourselves to real-
ization algorithms. For more details consider our paper about characterizations
of dag sequences [9]. Up to now it remains an open problem whether the dag
realization problem can be solved in polynomial time. We solved this problem
for a special class of sequences — the so-called opposed sequences — which are
realizable in polynomial time. However, the general problem is indeed unsolved
and it is clear that the problem is somewhat more complicated than the digraph
realization problem.

Only for sparse graphs with m ≤ |V | − 1 arcs, we have a characterization,
because then we can construct a digraph realization such that the underlying
undirected graph has no cycles, i.e. is a forest. However, the case m ≥ |V | remains
unclear. For source-sink-sequences, i.e. sequences only containing source and sink
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tuples, testing for dag realizability is equivalent to the digraph realization prob-
lem, since each digraph realization of a source-sink sequence is automatically
a dag, as each vertex either has only incoming or only outgoing arcs. On the
other hand, a generalization of our problem – the f -factor dag problem – is
NP-complete.

Problem 2 (f-factor dag problem). Given is a sequence S :=
(
a1
b1

)
, . . . ,

(
an

bn

)
and a digraph G = (V, A) with a labeled vertex set V := {v1, . . . , vn}. Does there
exist an acyclic subdigraph H = (V, A′) of G with d−H(vi) = ai and d+

H(vi) = bi

for all vi ∈ V ?

Our dag realization problem is a special case of the f -factor dag problem, namely
if G is the complete digraph. If we relax the f -factor dag problem to the f -factor
problem by omitting the property of acyclicity, then we get a polynomial time
algorithm, see [10]. However, let us consider sequence S :=

(
0
1

)
,
(
1
1

)
, . . . ,

(
1
1

)
,
(
1
0

)
.

It possesses only one unique (up to isomorphic ones) dag realization, namely a
Hamiltonian path. Hence, a polynomial time algorithm solving our f -factor dag
realization problem, could find in the same way a directed Hamiltonian path on
digraph G.

Theorem 1 (f-factor dag problem). The f -factor dag problem is NP-
complete.

Related work. There exist four different publications characterizing digraph se-
quences. Gale [4], Ryser [5], Fulkerson [6] and Chen [7] all contributed to a
complete characterization of digraph realizations. Here, we focus on the con-
struction of a dag realization and give an overview about the classical results.
In 1973, Kleitman and Wang [8] proposed two different algorithms to construct
a digraph realization for a given digraph sequence. These algorithms are ex-
tensions of the undirected version of Havel [1] and Hakimi [2] for the graph
realization problem.

Kleitman and Wang did not have their main focus on the digraph realization
problem. Indeed, they gave the proof for an extension of the so-called k-factor
conjecture of Kundu [11]. To solve a directed version of this problem, they devel-
oped two different algorithms for realizing digraph sequences [8]. We summarize
their results and formulate their theorems with a slight, but easy extension for
the reverse implication.

Theorem 2 (digraph realization with arbitrary tuple choice [8])
Let S =

(
a1
b1

)
, . . . ,

(
an

bn

)
be a sequence and

(
ai

bi

)
a tuple with bi > 0. Let Mi be the

set of all stream tuples and sink tuples of S without tuple
(
ai

bi

)
. Furthermore, let(al1

bl1

)
, . . . ,

(al|Mi|
bl|Mi|

)
be a decreasing lexicographical sorting by the first component

of tuples in Mi. Sequence S is a digraph sequence if and only if the following
conditions are true:
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1. |Mi| ≥ bi and
2. sequence Si :=

(ai
1

bi
1

)
, . . . ,

(ai
n

bi
n

)
with

bi
j :=

{
bj if i = j

0 otherwise and ai
j :=

{
aj − 1 if i ∈ {l1, . . . , lbi}
aj otherwise

is a digraph sequence.

This theorem is the analogous version of the algorithm of Havel and Hakimi. For a
digraph sequence an algorithm constructs a digraph G = (V, A) using a repeated
application of this theorem on the current sequence Si. Hence, it is possible to
construct in each step the arcs (vi, vlj ) with j ∈ {1, . . . , bi} or if conditions
1. or 2. are not fulfilled, we can conclude that sequence S is not a digraph
sequence. Kleitman and Wang also give a second algorithm for constructing
realizations. Here, the choice of a tuple

(
ai

bi

)
is not arbitrary but one does not

need a lexicographical sorting of the candidate set M .

Theorem 3 (digraph realization with a special tuple choice [8])
Let S =

(
a1
b1

)
, . . . ,

(
an

bn

)
be a sequence and

(
ai

bi

)
a largest stream tuple or sink tuple

with respect to a lexicographical ordering by the second component. Furthermore,
we define the set M consisting all stream tuples and sink tuples of S without
tuple

(
ai

bi

)
. Consider a decreasing sorting of tuples

(al1
bl1

)
, . . . ,

(al|M|
bl|M|

)
in M such

that we have i < j if and only if ali ≥ alj . Sequence S is a digraph sequence if
and only if:

1. |M | ≥ bi and
2. sequence S′ :=

(a′
1

b′1

)
, . . . ,

(
a′

n
b′n

)
with

b′j :=

{
bj if i = j

0 otherwise and a′
j :=

{
aj − 1 if j ∈ {l1, . . . , lbi}
aj otherwise

is a digraph sequence.

Note that this theorem can be used to realize source-sink sequences. We would
like to point out that the algorithms of Kleitman and Wang are relatively un-
known until today. So it is not surprising that these ideas have been reinvented
several times.

Our contribution. While the complexity status of the general dag realization
remains open, we here show that the problem can be solved in linear time (in
the size of the generated graph) for an important class of sequences, the so-called
opposed sequences. For an opposed sequence it is possible to order all non-source
and non-sink tuples such that ai ≤ ai+1 and bi ≥ bi+1. For opposed sequences,
we introduce a new kind of order on the tuples, which we call opposed sorting,
and show that each opposed sorting is a topological sorting for at least one dag
realization. Systematic experiments with all dag sequences with up to 9 tuples
show that opposed sequences appear quite frequently, depending on the graph
density. In particular, for sequences with low and high density, there is a good
chance that a sequence is opposed.
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We also give an algorithm for general sequences which significantly improves
upon a straightforward exponential time algorithm, but cannot be shown to run
in polynomial time either. The key insight for our general algorithm is the fol-
lowing observation. For each realizable sequence there is a subset of “candidate”
stream tuples containing at least one element by which we can reduce the se-
quence to a smaller and still realizable sequence. This subset of candidates is
often small, in fact for opposed sequences it is exactly one uniquely determined
element.

We disprove our own conjecture that a certain “lexmax strategy”, which selects
from the above mentioned “candidate” set always the lexicographically maximum
element, solves the dag realization in polynomial time by giving an explicit coun-
terexample. However, we observe that this strategy is successful in many cases,
in particular it solves more than 97% of all dag sequences with 9 tuples for all
number of arcs m. We also give a further example showing that no strategy which
selects a fixed candidate from the candidate set can yield a correct algorithm.
Finally, we obtain the nice structural insight that each dag sequence has a dag
realization with a special kind of topological sorting derived from a partial order
— the opposed relation.

Overview. The remainder of the paper is organized as follows. In Section 2, we
present our results for opposed sequences. Afterwards, in Section 3, we introduce
our general dag realization algorithm and a lexmax strategy, and discuss their
limits. All proofs have been omitted due to page limitations. A full version of
the paper is available as a technical report [12].

2 Opposed Sequences

We now turn towards the dag realization problem and define a new ordering
≤opp⊂ Z2 × Z2.

Definition 1 (opposed relation). Given are c1 :=
(

a1
b1

)
∈ Z2 and c2 :=

(
a2
b2

)
∈

Z2. We define: c1 ≤opp c2 ⇔ (a1 ≤ a2 ∧ b1 ≥ b2).

The opposed relation is reflexive, transitive and antisymmetric and therefore a
partial order. On the other hand it is not possible to compare all tuples c1 and c2.
Hence, the opposed order is not a total order. In the following, we consider a special
class of sequences which can easily be handled with respect to our dag realization
problem. We call a sequence S opposed sequence, if it is possible to sort its stream
tuples in such a way, that ai ≤ ai+1 and bi ≥ bi+1 is valid for stream tuples with
indices i and i+1. In this case, we have the property

(
ai

bi

)
≤opp

(
ai+1
bi+1

)
for all stream

tuples. At the beginning of the sequence we insert all source tuples such that the bi

build a decreasing sequence and at the end of sequence S we put all sink tuples in
increasing ordering with respect to the corresponding ai. The notion opposed se-
quence still describes a sequence, where it is possible to compare all stream tuples
among each other and to put them in a “chain”. Indeed, this is not always possi-
ble, because the opposed order is not a total order. With such a labelling we call a
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sequence increasing opposed sequence. If we label an increasing opposed sequence
in its opposite direction we call this sequence decreasing opposed sequence. Obvi-
ously, it is possible that a stream tuple is not comparable with a source tuple or a
sink tuple. However, these sequences turn out to be “good-natured”. Next we fol-
low the classic approach of solving this problem with an inductive construction of
a realization. It turns out that we need a completely new approach to save classic
ideas. We give some interesting insights, for example we found that an increasing
opposed sorting of an opposed dag sequence is a topological sorting of at least one
dag realization, too.

2.1 Realization of Opposed Sequences

The following theorem is the basis of a realization algorithm. It is similar to an
inductive, greedy-like algorithm as in the classic approach of Havel and Hakimi
[1,2]. On the other hand, it differs completely in its details from this algorithm.
In each step, we choose the smallest stream tuple with respect to the opposed
relation and connect it with largest sources — namely with one arc for each
source. After this step, this stream tuple will be a new source. If this step is not
possible we are sure that sequence S is not a dag sequence.

Theorem 4 (Opposed Sequences). Let S be an increasing opposed sequence
which is not a source-sink-sequence. Furthermore, let tuple

(aimin
bimin

)
be the smallest

stream tuple with respect to the opposed ordering. Then sequence S is a dag
sequence if and only if there exist at least aimin source tuples in S and if
S′ :=

(
0

b1−1

)
, . . . ,

(
0

baimin
−1

)
,
(

0
baimin

+1

)
, . . . ,

(
0

bimin−1

)
,
(

0
bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(
an

bn

)
is a dag sequence.

Proof. (Sketch) Let S be a dag sequence and G an arbitrary dag realization.
Using a series of transformations we have to show that G can be modified to a
dag realization G∗∗∗ such that vertex vimin only possesses the maximum sources
in its incoming neighborhood set. After removing all incoming arcs of vertex
vimin we obtain a dag G′ with vertex degree sequence S′. �

This theorem reduces an opposed dag sequence until we get a source-sink-
sequence S′. By applying Theorem 2 for digraph realizations, we can realize
sequence S′. Algorithm 1 combines the insights of both theorems and constructs
a dag realization for any opposed sequence which is realizable.

Using bucket sort, the reordering of a given opposed sequence such that it is
in increasing opposed order requires O(m + n) time. Algorithm 1 can also be
implemented to run in time O(m + n) using a “bucket” technique. The idea is
to maintain the source and sink tuples in buckets (realized as linked lists), one
bucket for each outdegree and indegree, respectively, thus with at most 2n − 2
buckets. Non-empty buckets are ordered decreasingly, and each bucket has a
pointer to its two neighbors in this order.

Moreover, we maintain three pointers, one to the non-empty bucket corre-
sponding to the source with the largest outdegree, one to the sink with largest
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Algorithm 1. Dag Realization Algorithm for Opposed Sequences
Input: An opposed sequence S in increasing, opposed order.
Output: A dag realization G = (V, A) of S or the answer that S is not a dag sequence.

1: initialize realizable ← TRUE;
2: initialize A ← ∅;
3: while (the set of stream tuples in S is not empty) and (realizable == TRUE) do
4: //application of Theorem 4
5: choose the stream tuple

(
aj
bj

)
with smallest index j;

6: if the number of sources in S is smaller than aj then
7: realizable ← FALSE;
8: else
9: set bi ← bi − 1 for the aj largest sources

(
0

bl1

)
, . . . ,

(
0

blaj

)
;

10: set aj ← 0;
11: set A ← A ∪ {(vl1 , vj), (vl2 , vj), . . . , (vlaj , vj)};
12: delete

(
0
0

)
-tuples in S;

13: end if
14: end while
15: while (the set of source tuples in S is not empty) and (realizable == TRUE) do
16: //realization of a source-sink-sequence.
17: choose a largest source tuple

(
0
bj

)
;

18: if the number of sinks in S is smaller than bj then
19: realizable ← FALSE;
20: else
21: set ai ← ai − 1 for the bj largest sinks

(ak1
0

)
, . . . ,

(akbj
0

)
;

22: set A ← A ∪ {(vj , vk1), (vj , vk2), . . . , (vj , vkbj
)};

23: delete
(
0
0

)
-tuples in S;

24: end if
25: end while

indegree, and one to the source with the smallest outdegree. The stream tuples
are kept in a list, sorted according to the increasing opposed order. Thus line
5 can be done in O(1). With our data structure, it is easy to execute line 9
in O(aj) time, that is, to select the aj largest source tuples, to decrease their
outdegree by one and to update our data structure (which means in particular
to shift tuples from their current bucket to the next lower bucket or to delete
them). In line 10, the selected stream tuple with index j becomes a new source
and is inserted into our bucketing data structure. This can also be done in O(aj)
time. Likewise, in line 17 choosing the largest source tuple can be done in O(1)
and line 21 in O(bj). In total, this yields O (

∑n
i=1(ai + bi)) = O(m + n) time.

We point out, that there is the possibility to generalize Theorem 4 and to
formulate an algorithm handling the realization of all sequences. The problem
is, that the opposed order is not a total order. Therefore, there does not exist
a unique minimal stream tuple in each sequence. Hence, we get a realization
algorithm but destroy the polynomial running time in general. More details
are given in Section 3. Theorem 4 leads to a further property connected with
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topological orderings. Let us consider a well-known algorithm determining a
topological ordering of a dag. The iterative deletion of one current source results
in a labeling of vertices representing a possible topological sorting for a dag.
Applying our theorem we can conclude the following: Each stream tuple

(ai+imin
bi+imin

)
with i ∈ {0, . . . , ns − 1} (ns denotes the number of stream tuples) is minimum
stream tuple in the ith iteration of the while statement in line 3. Clearly, tuple(ai+imin

bi+imin

)
is in the (i + 1)th iteration of this loop a new source

(
0

bi+imin

)
(under

the restriction that the sequence is not yet a source-sink-sequence). That means,
if we consider a dag realization G which was constructed by Algorithm 1, then
we could remove sources following the increasing opposed sorting. This yields
the following corollary.

Corollary 1 (topological sorting). An increasing opposed sorting of an op-
posed dag sequence S is a topological sorting of at least one dag realization of S.

This new view enables us to see the dag realization problem as a well-known clas-
sical problem. If we consider the complete acyclic digraph with a vertex labeling
with respect to its topological sorting, we have to find a labeled subdigraph with
sequence S in following the numbering of the increasing opposed sorting. This
problem is nothing else but an f -factor problem on a bipartite graph after an
easy reduction via Tutte [10]. This leads to a polynomial-time algorithm. On
the other hand, we have a necessary criterion for determining the realizability
of opposed sequences.

Corollary 2 (necessary criterion for the realizability of opposed se-
quences). Let S be an increasing opposed dag sequence. Denote the number
of source tuples in S by q and the number of sink tuples by s. Then it follows
ai ≤ min{n − s, i − 1} and bi ≤ min{n − q, n − i} for all i ∈ Nn.

3 General Dag Realization

3.1 The Main Result

In Section 2, we introduced a realization algorithm for opposed sequences. Its
underlying ideas can be extended to the general case – the realization of arbitrary
dag sequences. This new algorithm does not necessary possess a polynomial
running time. On the other hand many dag sequences are realizable in polynomial
running time using the following Theorem 5 and a further “strategy”. We call a
sequence S =

(
a1
b1

)
, . . . ,

(
an

bn

)
with q source tuples and s sink tuples canonically

sorted, if and only if the first q tuples in this labelling are decreasingly sorted
source tuples (with respect to the bi) and the last s tuples are increasingly sorted
sink tuples (with respect to the ai.)

Theorem 5 (characterization of dag realizability). Let S be a canonically
sorted sequence containing k > 0 source tuples. Furthermore, we assume that S

is not a source-sink-sequence. We define the set Vmin :=
{(

ai

bi

)
|
(
ai

bi

)
is a stream
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tuple, ai ≤ k and there is no stream tuple
(aj

bj

)
<opp

(
ai

bi

)}
. S is a dag sequence

if and only if Vmin = ∅ and there exists an element
(aimin

bimin

)
∈ Vmin such that

S′ :=
(

0
b1−1

)
, . . . ,

(
0

baimin
−1

)
,
(

0
baimin

+1

)
, . . . ,

(
0

bimin−1

)
,
(

0
bimin

)
,
(aimin+1

bimin+1

)
, . . . ,

(
an

bn

)
is a dag sequence.

This theorem gives us further interesting insights. Consider the relation Rtop ⊆
V × V , where we define: vRtopw if and only if there exists no directed path
starting in w and ending in v. For each dag sequence we can find a dag re-
alization with a topological ordering such that we have for each pair of tu-
ples with viRtopvj either

(
ai

bi

)
≤opp

(aj

bj

)
or they are not comparable but it

never follows
(
aj

bj

)
<opp

(
ai

bi

)
. Note, that this is not a general property for

acyclic digraphs. Consider for example digraph G = (V, A) with V := {v1 . . . v7}
and A = {(v1, v3), (v2, v3), (v3, v4), (v4, v5), (v4, v6), (v4, v7)}. The corresponding
stream tuples of v3Rtopv4 are

(
a3
b3

)
and

(
a4
b4

)
with

(
a4
b4

)
=
(
1
3

)
<opp

(
a3
b3

)
=
(
2
1

)
.

Corollary 3. Let S be a dag sequence. Then there exists a dag realization G =
(V, A) with a topological ordering vl1 , . . . , vlns

of all ns vertices corresponding to
stream tuples, such that we cannot find

(alj

blj

)
<opp

(ali
bli

)
for all li < lj .

Theorem 5 proves the existence of a dag realization which contains a vertex cor-
responding to an element of Vmin only possessing maximum sources as incoming
neighborhood set. We define a largest possible subset V ′

min ⊆ Vmin with the
property that all elements in V ′

min are pairwise distinct (w.l.o.g. we can restrict
our candidate set to V ′

min). For each
(aij

bij

)
∈ V ′

min we construct the reduced

sequence S′
j , set Sj := S′

j and apply our Theorem 5 repeatedly until S′
j is a

source-sink-sequence or we find out that S′
j is not a dag sequence, because Vmin

is empty.
Theorem 5 ensures the possibility for reducing a dag sequence into a source-

sink-sequence. The latter can be realized by using Theorem 2. The whole algo-
rithm is summarized in Algorithm 2.

The bottleneck of this approach is the size of set V ′
min. We only find stream

tuples in this set which are not comparable with respect to the opposed re-
lation. In an opposed dag sequence we have |V ′

min| = 1, if sequence S is not
a source-sink-sequence, because in this case there exists a unique minimum
stream tuple (up to isomorphic ones). Hence, Theorem 4 is a special case of
our Theorem 5. However, there are many sequences which are not opposed but
Theorem 5 still yields a polynomial decision time. Consider for example dag
sequence S :=

(
0
3

)
,
(
0
3

)
,
(
2
2

)
,
(
3
3

)
,
(
3
0

)
,
(
2
0

)
,
(
1
0

)
which is not an opposed sequence,

because stream tuples
(
2
2

)
and

(
3
3

)
are not comparable with respect to the op-

posed ordering. However, we have |V ′
min| = |{

(
2
2

)
}| = 1 and so we reduce S to

S′ =
(
0
2

)
,
(
0
2

)
,
(
0
2

)
,
(
3
3

)
,
(
3
0

)
,
(
2
0

)
,
(
1
0

)
, leading to the realizable source-sink-sequence(

0
1

)
,
(
0
1

)
,
(
0
1

)
,
(
0
3

)
,
(
3
0

)
,
(
2
0

)
,
(
1
0

)
.
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Algorithm 2. DagRealization(sequence S)
Input: A canonical sorted sequence S.
Output: A Boolean flag indicating whether S is realizable.
1: if S is not a source-sink-sequence then
2: Count the number of sources in S and determine set V ′

min.
3: for all vj ∈ V ′

min do
4: Create a working copy S′ of S with tuples

(a′
i

b′i

)
=
(

ai
bi

)
;

5: Set b′i ← b′i − 1 for a′
j largest sources

(
0
b′i

)
.

6: Set a′
j ← 0.

7: Delete
(
0
0

)
-tuples.

8: if DagRealization(S′) then
9: return TRUE;

10: end if
11: end for
12: return FALSE;
13: else
14: while the set of source tuples in S is not empty do
15: //Realization of a source-sink-sequence.
16: choose a largest source tuple

(
0
bj

)
.

17: if number of sinks in S is smaller than bj then
18: return FALSE;
19: end if ;
20: Set ai ← ai − 1 for bj largest sinks

(
ai
0

)
.

21: Delete
(
0
0

)
-tuples.

22: end while
23: return TRUE;
24: end if

At the beginning of our work, we conjectured that the choice of the lexico-
graphical largest tuple from Vmin would solve our problem. We call this approach
lexmax strategy. Consider our smallest counterexample – dag sequence

S =
(

0
3

)
,

(
0
1

)
,

(
1
1

)
,

(
1
2

)
,

(
2
3

)
,

(
4
4

)
,

(
3
0

)
,

(
2
0

)
,

(
1
0

)
– which cannot be realized with this strategy. The set Vmin = {

(
1
2

)
,
(
2
3

)
} contains

two elements. If we choose the lexicographical larger tuple than we do not get a
dag sequence S′. More interesting is the insight, that there is no general strategy
for choosing a correct element in Vmin without the consideration of all sinks. To
see this, consider the following example.

Example 1. We consider the sequencesS1 :=
(
0
5

)
,
(
0
5

)
,
(
0
5

)
,
(
0
2

)
,
(
0
2

)
,
(
5
5

)
,
(
5
5

)
,
(
2
2

)
,
(
2
2

)
,(

9
0

)
,
(
6
0

)
,
(
2
0

)
,
(
1
0

)
,
(
1
0

)
and S2 :=

(
0
5

)
,
(
0
5

)
,
(
0
5

)
,
(
0
2

)
,
(
0
2

)
,
(
5
5

)
,
(
5
5

)
,
(
2
2

)
,
(
2
2

)
,
(
7
0

)
,
(
6
0

)
,
(
6
0

)
,

only differing in their sink tuples. The setsV S1
min = {

(
2
2

)
,
(
5
5

)
} and V S2

min = {
(
2
2

)
,
(
5
5

)
}

are identical. For realizing sequence S1 we first choose element
(
2
2

)
and for sequence

S2 we only have the possibility to choose tuple
(
5
5

)
. More precisely, we select one
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Fig. 1. The fraction of opposed se-
quences in the set of all non-trivial dag
sequences with 9 tuples and different
densities m ∈ {5, . . . , 35}

Fig. 2. The percentage of non-trivial
dag sequences with n = 9 and differ-
ent densities m ∈ {5, . . . , 35} where the
lexmax strategy failed

after another the tuples
(
2
2

)
,
(
5
5

)
,
(
2
2

)
,
(
5
5

)
to construct a dag realization of S1,while

for S2 we have to choose
(
5
5

)
,
(
5
5

)
,
(
2
2

)
,
(
2
2

)
in this order. In both cases, these orders

cannot be changed — already not for the choice of the first tuple.

Obviously, an efficient correct algorithm has to consider the kind of sinks, oth-
erwise it is not possible to choose the right element in Vmin. Unfortunately, we
cannot give such an approach. However, in a series of systematic experiments
for all dag sequences with 7, 8, 9 tuples, we observed that our lexmax strategy
determines a dag realization for a large fraction of all dag sequences.

3.2 Discussion of Experimental Results

In this subsection we briefly discuss the significance and limitations of our results.
To this end, we consider two questions:

1. Does there exist a large fraction of opposed sequences in the set of all se-
quences or does it turn out to be a rare class of sequences?

2. How large is the fraction of sequences which are realizable by using the
lexmax strategy?

In a first step we generated the set of all non-isomorphic dag sequences with
7, 8 and 9 tuples. We restricted this set by ignoring all “trivial sequences” (i.e.,
source-sink-sequences and sequences with only one stream tuple), since these can
always be decided in O(n + m) time. We implemented a version of Algorithm
2 where we replaced line 3 by the lexmax strategy: “for vertex vj with the
lexicographically largest

(
aj

bj

)
∈ V ′

min do”. Note, that it was not possible to
enumerate dag sequences systematically for larger instances because the number
of them increases exponentially fast and becomes already huge for n = 10. In
experiment (1) we investigated the connection between the fraction of opposed
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sequences (with respect to all non-trivial sequences) and the density (number of
arcs) of sequences with a constant number of tuples. Our observation is that the
fraction of opposed sequences is strongly connected to their density, see Figure 1.
We observe that sequences with a middle density have the smallest fractions of
opposed sequences and can be regarded as “more complicated”. On the other
hand, we see that opposed sequences are a relevant class of sequences because
they are not at all rare. In experiment (2), we analyzed the lexmax strategy. In
Figure 2, one can observe that the lexmax strategy leads to a dag realization for
at least 97% of all (non-trivial) dag sequences. Furthermore, we observe a strong
connection between the density of a sequence and the realizability with the aid of
the lexmax strategy. We see again that sequences with a middle density are the
most difficult ones. Finally, we would like to point out that a number of straight-
forward reduction rules can be used to simplify given sequences. Combined with
the lexmax strategy, these reductions significantly increase the success rate of
our approach.

Acknowledgement. The authors wish to thank Winfried Hochstättler for
many stimulating discussions on this fascinating problem.
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A Coinductive Calculus for
Asynchronous Side-Effecting Processes

Sergey Goncharov and Lutz Schröder

Safe and Secure Cognitive Systems, DFKI GmbH, Bremen

Abstract. We present an abstract framework for concurrent processes in which
atomic steps have generic side effects, handled according to the principle of
monadic encapsulation of effects. Processes in this framework are potentially in-
finite resumptions, modelled using final coalgebras over the monadic base. As
a calculus for such processes, we introduce a concurrent extension of Moggi’s
monadic metalanguage of effects. We establish soundness and completeness of a
natural equational axiomatisation of this calculus. Moreover, we identify a core-
cursion scheme that is explicitly definable over the base language and provides
flexible expressive means for the definition of new operators on processes, such
as parallel composition. As a worked example, we prove the safety of a generic
mutual exclusion scheme using a verification logic built on top of the equational
calculus.

1 Introduction

Imperative programming languages work with many different side effects, such as I/O,
state, exceptions, and others, which all moreover come with strong variations in detail.
This variety is unified by the principle of monadic encapsulation of side-effects [21],
which not only underlies extensive work in semantics (e.g. [17]) but, following Wadler
[33], forms the basis for the treatment of side-effects in functional languages such as
Haskell [24] and F# [30]. Monads do offer support for concurrent programming, in
particular through variants of the resumption monad transformer [5, 13], which lifts re-
sumptions in the style of Hennessy and Plotkin [15] to the monadic level, and which
has moreover been used in information flow security [14], semantics of functional logic
programming languages such as Curry [31], modelling underspecification of compilers,
e.g. for ANSI C [23], and to model the semantics of the π-calculus [11]. However, there
is to date no concurrent correspondent to Moggi’s computational meta-language [21],
which underlies Haskell’s do-notation; this language is essentially limited to linear se-
quential monadic programs, and does not include native support for concurrency.

The objective of the present work is therefore to develop an extension of the com-
putational meta-language that can serve as a minimal common basis for generic con-
current programming and semantics. We define an abstract meta-calculus for monadic
processes that is based on the resumption monad transformer, and hence generic over
the base effects inherent in individual process steps. Resumptions allow for interleav-
ing concurrency in a setting with asynchronous communication, e.g. through shared
variables (synchronous communication would seem to require additional infrastructure
in the underlying monad). We work with infinite resumptions, which brings tools from

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 276–287, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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coalgebra into play, in particular corecursion and coinduction [27]. We present a com-
plete equational axiomatization of our calculus which includes a simple loop construct
(in coalgebraic terms, coiteration) and then derive a powerful corecursion schema for
the definition of process combinators. It has a fully syntactic justification, i.e. one can
explicitly construct a solution to a corecursive equation system by means of the basic
term language. Even semantically, our corecursion scheme does not seem follow from
previous corecursion results (e.g. [1, 32, 19]), as it permits prefixing corecursive calls
with monadic sequential composition.

We exemplify our corecursion scheme with the definition of a number of basic im-
perative programming and process-algebraic primitives including parallel composition,
and present a worked example, in which we outline a safety proof for a monadic version
of Dekker’s mutual exclusion algorithm, i.e. a concurrent algorithm with generic side-
effects. To this end, we employ a more high-level verification logic that we develop on
top of the basic equational calculus.

Further related work. There is extensive work on axiomatic perspectives on effectful
iteration and recursion, including traced pre-monoidal categories [2], complete iterative
algebras [19], Kleene monads [12], and recursive monadic binding [9]. The abstract
notion of resumption goes back at least to Hennessy and Plotkin [15]. A framework
where infinite resumptions of a somewhat different type than considered here form the
morphisms of a category of processes, which is thus enriched over coalgebras for a cer-
tain functor, has been introduced by Krstic et al. [18], but no metalanguage is provided
for such processes. A metalanguage that essentially adds least fixed points, i.e. induc-
tive data types as opposed to coinductive process types as used in the present work, to
Moggi’s base language has been defined by Filinski [10]; reasoning principles in this
framework are necessarily of a rather different flavour. A resumption monad without
a base effect, the delay monad, has been studied by Capretta [4] with a view to cap-
turing general recursion. Our variant of the resumption monad transformer belongs to
the class of parametrized monads, for which a form of corecursive scheme has been
established [32], which however does not seem to imply the one introduced here.

2 Computational Monads and Resumptions

We briefly recall the basic concepts of the monadic representation of side-effects, and
then present the specific semantic framework required for the present work. Intuitively,
a monad associates to each type A a type TA of computations with results in A; a
function with side effects that takes inputs of type A and returns values of type B is,
then, just a (pure) function of type A → TB. One of the equivalent ways to define
a monad over a category C is by giving a Kleisli triple (T, η, �) (usually referred
to just as T ) where T : Ob C → Ob C is a function, η is a family of morphisms
ηA : A → TA called unit, and � assigns to each morphism f : A → TB a morphism
f� : TA → TB such that η�

A = idTA, f� ◦ ηA = f, and g� ◦ f� = (g� ◦ f)�.
Thus, ηA converts values of type A into side-effect free computations, and � supports
the sequential composition g�f of programs f : A → TB and g : B → TC. A
monad over a Cartesian category is strong if it is equipped with a natural transformation



278 S. Goncharov and L. Schröder

τA,B : A × TB → T (A × B) called strength, subject to certain coherence conditions.
The strength serves to propagate context through computations [21]. Since we are inter-
ested in concurrency, we require additional structure for non-determinism:

Definition 1 (Strong semi-additive monads). In the above notation, a strong monad
T is semi-additive if there exist natural transformations δ : 1 → T and � : T ×T → T
making every TA an internal bounded join-semilattice object so that � and τ respect
the join-semilattice structure in the following sense:

f�δ = δ, f�� = �〈f�, f�〉,
τ(f × δ) = δ, τ(f × �) = �〈τ(f × π1), τ(f × π2)〉.

The above definition forces the nondeterministic choice to be an algebraic operation
in sense of Plotkin and Power [25]. Hence, the semilattice structure distributes over
binding from the left (but not necessarily from the right) as reflected in our calculus in
Section 3.

Example 2. [21] The core examples of strong semi-additive monads are the finite pow-
erset monad Pω, or, in the domain-theoretic setting, various powerdomain constructions.
Moreover, the powerset monad P and more generally, the quantale monad [16] λX.QX

for a quantale [26] Q are strong semi-additive monads. Further examples of semi-
additive monads can be obtained from basic ones by combining them with other effects,
e.g. by applying suitable monad transformers. In particular, the following monad trans-
formers (which produce a new monad Q, given a monad T ) preserve semi-additivity
over any base category with sufficient structure:

1. Exceptions: QA = T (A + E),

2. States: QA = S → T (A × S),

3. I/O: QA = μX. T (A + I → (X × O)),

4. Continuations: QA = (A → TK) → TK .

E.g., the non-deterministic state monad TX = S → P (S × X), is a strong semi-
additive monad both over Set (with P denoting any variant of powerset) and over any
reasonable category of domains (with P denoting a powerdomain construction with
deadlock).

To model processes which are composed of atomic steps to be thought of as pieces of
imperative code with generic side-effects, we use a variant of the resumption monad
transformer [5]: Assuming that for every X ∈ Ob (C) the endofunctor T (Id + X) :
C → C possesses a final coalgebra, which we denote by νγ. T (γ + X), we define a
new monad R by

RX = νγ. T (γ + X)

— R exists, e.g., if the base category is locally presentable and T is accessible [34], a ba-
sic example being TX = S → P (S×X) where P is finite powerset or a powerdomain.
Intuitively, a resumption, i.e. a computation in RX , takes an atomic step in T and then
returns either a value in X or a further computation in RX , possibly continuing in this
way indefinitely. Using a final coalgebra semantics amounts to identifying processes up
to coalgebraic behavioural equivalence, which generalizes strong bisimilarity.
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3 A Calculus for Side-Effecting Processes

As originally observed by Moggi [21], strong monads support a computational meta-
language, i.e. essentially a generic sequential imperative programming language. Here
we introduce a concurrent version of the metalanguage, the concurrent metalanguage,
based semantically on the resumption monad transformer; its distinctive features are
support for non-deterministic choice and resumptions, in particular an infinite loop con-
struct.

The concurrent metalanguage is parametrised over a countable signature Σ including
a set of atomic types W , from which the type system is generated by the grammar

A ::= W | 1 | A × A | A + A | TA | TνA

— that is, we support sums and products, leaving functional types for future work. Base
effects are represented by T , and resumptions by Tν .

Moreover, Σ includes (typed) function symbols f : A → B, where A and B are
types. The terms of the language, also referred to as programs, and their types are then
determined by the rules shown in Fig. 1. The dotted line separates operators for sequen-
tial non-determinism from the process operators; obvious rules for variables, function
application, and Cartesian structure (unit element �, pairing 〈 , 〉, projections fst, snd)
are omitted. Besides the standard term language for sums and products and the bind
and return operators do and ret of the computational metalanguage, the concurrent met-
alanguage includes operations ∅ and + representing deadlock and non-deterministic
choice, respectively, as well as two specific constructs for resumptions: Given a re-
sumption p : TνA, out(p) : T (TνA + A) executes the first step of p, returning either
the remaining resumption or a final value. Moreover, for q : T (A + B) depending on
x : A, initx := p unfold{q} : TνB iterates q indefinitely or until it outputs a value
in B; values x : A are fed through the loop, starting with the initial value p : A.
Judgements Γ � t : A read ‘term t has type A in context Γ ’, where a context is a
list Γ = (x1 : A1, . . . , xn : An) of typed variables. Programs whose type is of the
form TνA are called processes. The notions of free and bound variables are defined in
a standard way, as well as a notion of capture-avoiding substitution.

The semantics of the concurrent metalanguage is defined over MEν-models, referred
to just as models below. A model is based on a distributive category [6] C, i.e. a category
with binary sums and finite products such that the canonical map A × B + A × C →
A × (B + C) is an isomorphism, with inverse dist : A × (B + C) → A × B + A × C.
(E.g., Cartesian closed categories are distributive.) Moreover, it specifies a strong semi-
additive monad T on C such that for every A ∈ Ob (C) the functor T (Id+A) possesses
a final coalgebra denoted RA = νγ. T (γ +A), thus defining a functor R (resumptions).

A model interprets base types as objects of C. The interpretation �A� of types A is
then defined by standard clauses for 1, A×B, and A+B and �TA� = T �A�, �TνA� =
R�A�. For Γ = (x1 : A1, . . . , xn : An) we put �Γ � = �A1�× · · · × �An�. Moreover, a
model interprets function symbols f : A → B as morphisms �f� : �A� → �B�, which
induces an interpretation �t� : �Γ � → �A� of programs Γ � t : A given by the usual
clauses for variables, function application, pairing, projections, injections, and �. The
operations + and ∅ are interpreted by the bounded join semilattice operations � and δ
of T , respectively. For the monad operations and the case operator, we have



280 S. Goncharov and L. Schröder

(case)
Γ � s : A + B Γ, x : A � t : C Γ, y : B � u : C

Γ � case s of inl x �→ t; inr y �→ u : C
(nil)

Γ � ∅ : TA

(inl)
Γ � t : A

Γ � inl t : A + B
(inr)

Γ � t : B

Γ � inr t : A + B
(ret)

Γ � t : A

Γ � ret t : TA

(do)
Γ � p : TA Γ, x : A � q : TB

Γ � do x ← p; q : TB
(plus)

Γ � p + q : TA

Γ � p : TA Γ � q : TA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(out)
Γ � p : TνA

Γ � out(p) : T (TνA + A)
(unf)

Γ � p : A Γ, x : A � q : T (A + B)

Γ � init x := p unfold{q} : TνB

Fig. 1. Typing rules for the concurrent metalanguage (excerpt)

– �Γ � case s of inlx !→ t; inr y !→ u : C� =[
�Γ, x : A � t : C�, �Γ, y : B � u : C�

]
◦ dist ◦

〈
id, �Γ � s : A + B�

〉
,

– �Γ � do x ← p; q : TB� = �Γ, x : A � q : TB�� ◦ τ�Γ �,�A� ◦ 〈id, �Γ � p : TA�〉,
– �Γ � ret t : TA� = ηA ◦ �Γ � t : A�,

where as usual 〈f, g〉 : A → B × C denotes pairing of morphisms f : A → B,
g : A → C, and [f, g] : A + B → C denotes copairing of f : A → C and g : B → C.

It remains to interpret out, which is just the final coalgebra structure of RA, and
the loop construct init x := p unfold{q} which captures coiteration. Formally, let αA :
RA → T (RA + A) be the final coalgebra structure, and for a coalgebra f : X →
T (X + A), let �f : X → RA be the unique coalgebra morphism. Then we put

�Γ � out(p) : T (TνA + A)� = α�A� ◦ �Γ � p : TνA�

�Γ � init x := p unfold{q} : TνB� = Rπ2 ◦ �f ◦ 〈id, �Γ � p : A�〉

where f = T (dist)◦τ〈π1, g〉 with g = �Γ, x : A�q : T (A+B)�. Thus, �f is uniquely
determined by the commutative diagram

�Γ � × �A�
T (dist)◦τ〈π1,g〉

��

�f

��

T (�Γ � × �A� + �Γ � × �B�)

T (�f+id)

��

R(�Γ � × �B�)
α�Γ�×�B�

�� T (R(�Γ � × �B�) + �Γ � × �B�).

A model is said to satisfy a well-typed equation Γ � t = s if �Γ � t : A� = �Γ � s : A�.
As suggestive abbreviations for use in process definitions, we write cont for (ret inl)

and stop for (ret inr). Moreover, we write (next p is rest x !→ q; done y !→ r) for
(do z ← p; case z of inlx !→ q; inr y !→ r) . We also define a converse tuo : T (TνA +
A) → TνA to out by

tuo(p) = init q := p unfold{next q is rest y !→ cont(out(y)); donex !→ stopx}.
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(case inl) case inl p of inl x �→ q; inr y �→ r = q[p/x] (fst) fst〈p, q〉 = p

(case inr) case inr p of inl x �→ q; inr y �→ r = r[p/y] (snd) snd〈p, q〉 = q

(case id) case p of inl x �→ inl x; inr y �→ inr y = p (pair) 〈fst p, snd p〉 = p

(case sub)
case p of inl x �→ t[q/z]; inr y �→ t[r/z]

= t[case p of inl x �→ q; inr y �→ r/z]
(x, y /∈ Vars(r))

(�) p : 1 = � (unit1) do x ← p; ret x = p (unit2) do x ← ret a; p = p[a/x]

(assoc) do x ← (do y ← p; q); r = do x ← p; y ← q; r (y /∈ Vars(r))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(nil) p + ∅ = p (comm) p + q = q + p (idem) p + p = p

(assoc plus) p + (q + r) = (p + q) + r (dist nil) do x ← ∅; r = ∅

(dist plus) do x ← (p + q); r = do x ← p; r + do x ← q; r
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(coiter)
out(p) = next q is rest x �→ cont p; done y �→ stop y

p[y/x] = init x := y unfold{q}

Fig. 2. Axiomatization of the concurrent metalanguage

An axiomatization MEν of the concurrent metalanguage is given in Fig. 2 (where we
omit the standard equational logic ingredients including the obvious congruence rules).
Apart from the standard axioms for products and coproducts, MEν contains three well-
known monad laws, axioms for semi-additivity (middle section) and a novel (bidirec-
tional) rule (coiter) for effectful coiteration.

Theorem 3. MEν is sound and strongly complete over MEν-models.

(Recall that strong completeness refers to completeness for logical consequence from
possibly infinite sets of axioms.)

A core result on the concurrent metalanguage is an expressive corecursion scheme
supported by the given simple axiomatisation. Its formulation is inspired by the treat-
ment of guarded recursive equation systems in ACP [3]. It requires n-ary coproducts
A1 + · · ·+An with coproduct injections injni : Ai → A1 + . . . + An and a correspond-
ingly generalized case construct; all this can clearly be encoded in MEν .

Theorem and Definition 4 (Mutual corecursion). Let fi : Ai → TνBi, i = 1, . . . , k
be fresh function symbols. A guarded corecursive scheme is a system of equations

out(fi(x)) = do z ← pi; case z of injni
1 x1 !→ pi

1; . . . ; injni
ni

xni !→ pi
ni

for i = 1, . . . , k such that for every i, pi : T (Ci1 + · · · + Cini ) does not contain any fj ,
and for every i, j pi

j either does not contain any fm or is of the form pi
j ≡ cont fm(xj)
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for some m. Such a guarded corecursive scheme uniquely defines f1, . . . , fk (as mor-
phisms in the model), and the solutions fi are expressible as programs in MEν .

Roughly, a guarded corecursive scheme defines, for each fi, what happens when execut-
ing the first step of the resumption fi(x). The actual effect of the first step can depend on
x but not on the fm, while the new resumption is defined by corecursive calls to the fm.
As a first application of guarded corecursive schemes, we define a binding operation
doν with the same typing as do but with T replaced by Tν corecursively by

out(doν x ← p; q) = next out(p) is rest x !→ cont(doν x ← p; q); donex !→ out(q).

Similarly, we define operations retν , ∅ν , and +ν as analogues of ret, ∅, and + by
putting retν p = tuo(stop p), ∅ν = tuo(∅), and p+ν q = tuo(out(p) +out(q)). These
operations turn Tν into a strong-semiadditive monad; formally, we can derive (in MEν)
the top and middle sections of Fig. 2 with T replaced by Tν (the monad laws already
follow from results of Uustalu [32]).

Remark 5. Similarly as in Moggi’s metalanguage [21], our models come with an arbi-
trary (distributive) base category C, with Set and ωCpo as prominent instances, thus
establishing our corecursion scheme (Theorem 4) at a high level of generality. Theo-
rem 3 does depend on this broad notion of model. Contrastingly, the FIX-logic of Crole
and Pitts [7] is designed to work with a smaller class of order-theoretic models.

4 Programming with Side-Effecting Processes

Above, we have begun to define operations on processes, namely ∅ν and +ν . We next
show how to define more complex operations, including parallel composition, by means
of guarded corecursive schemes.

Note that over distributive categories, one can define the type of Booleans with
the usual structure as 2 = 1 + 1. We write (if b thenp else q) as an abbreviation for
(case b of inlx !→ p; inr x !→ q) where b has type 2.

Sequential composition. Although Tν is a monad, its binding operator is not quite
what one would want as sequential composition of processes, as it merges the last step
of the first process with the first step of the second process. We can, however, capture
sequential composition (with the same typing) in the intended way by putting

seq x ← p; q = doν x ← p; tuo(cont q).
Branching. Using the effect-free if operator defined earlier, we can define a conditional
branching operator for processes p, q : TνA and a condition b : T 2 by

ifν b then p else q = tuo
(
do z ← b; if z then (cont p) else (cont q)

)
.

Looping. For terms Γ � p; Γ, x : A � b : T 2; and Γ, x : A � q : TνA, we define loops

Γ � init x := p while b do q : TνA and Γ � initx := p do q until b : TνA

as follows. We generalize the until loop to a program U b
x,q(r) for Γ � r : TνA in-

tended to represent seq y ← r; init x := y while b do q (so that (init x := p do q until b)
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= U b
x,q(q[p/x])) and abbreviate W b

x,q(p) = (init x := p while b do q). We then define
the four functions W b

x,q and U b
x,q (for b : 2) by the guarded corecursive scheme

out(W b
x,q(p)) = do v ← b[p/x]; if v then cont(U¬b

x,q(q[p/x])) else stop(p),

out(U b
x,q(r)) = next out(r) is rest z !→ cont(U b

x,q(z)); done y !→ cont(W¬b
x,q(y)).

Exceptions. As the concurrent metalanguage includes coproducts, the exception monad
transformer(T EA = T (A + E)) [5] and the corresponding operations for raising and
handling exceptions are directly expressible in MEν .

Interleaving. We introduce process interleaving ‖ : TνA × TνB → Tν(A × B) by a
CCS-style expansion law [20] (using an auxiliary left merge �)

out(p ‖ q) = out(p � q) + do 〈x, y〉 ← out(q � p); ret〈y, x〉,
out(p � q) = next out(p) is rest r !→ cont(r ‖ q);

donex !→ cont(doν y ← q; retν〈x, y〉).

This is easily seen to be equivalent to the guarded corecursive scheme

out(p ‖ q) = do u ← (p � q + p � q);
case u of inl〈s, t〉 !→ cont(s ‖ t); inr r !→ cont r

where for p : TνA, q : TνB, p � q : T (TνA × TνB + Tν(A × B)) is defined as

p � q = next out(p) is rest r !→ ret inl〈r, q〉; donex !→ ret inr(doν y ← q; retν〈x, y〉)

and p � q : T (TνA × TνB + Tν(A × B)) is the evident dual of p � q.

5 Verification and Process Invariants

We now explore the potential of our formalism as a verification framework, extending
existing monad-based program logics [28, 29] to concurrent processes. A cornerstone
of these frameworks is a notion of pure program:

Definition 6 (Pure programs). A program p : TA is pure if

– p is discardable, i.e., do y ← p; ret � = ret �;
– p is copyable, i.e. do x ← p; y ← p; ret〈x, y〉 = do x ← p; ret〈x, x〉; and
– p commutes with any other discardable and copyable program q, i.e.

(do x ← p; y ← q; ret〈x, y〉) = do y ← q; x ← p; ret〈x, y〉.

Intuitively, pure programs are those that can access internal data behind the computation
but cannot affect it. A typical example of a pure program is a getter method. Pure
programs form a submonad P of T [28]. A test is a program of type P2 (recall that 2
denote the type of Booleans). All logical connectives extend to tests; e.g. ¬b = (do x ←
b; ret¬x) for b : P2.
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Given a program p : TA and tests φ, ψ : P2, the program filter(p, φ, ψ) : TA is
defined by the equation

filter(p, φ, ψ) = do x ← φ; y ← p; z ← ψ; if(x ⇒ z) then ret y else ∅.

Intuitively, filter modifies the given program p by removing those threads that satisfy
the precondition φ but fail the postcondition ψ. This enables us to encode a Hoare triple
by the equivalence

{φ}p{ψ} ⇐⇒ filter(p, φ, ψ) = p

— i.e. the Hoare triple {φ}p{ψ} is satisfied iff filter(p, φ, ψ) does not remove any exe-
cution paths from p. On the other hand, filter extends to processes as follows:

filterν(p, φ, ψ) = init z := p unfold{tuo(filter(out(z), φ, ψ))}.

It turns out that the above definition of Hoare triple is equivalent to a previous generic
definition, which in particular enables use of existing sequential monad-based Hoare
calculi [28, 29]:

Lemma 7. For every program p and tests φ, ψ, {φ}p{ψ} is equivalent to the equation

do x ← φ; y ← p; z ← ψ; ret〈x, y, z, x ⇒ z〉 =
do x ← φ; y ← p; z ← ψ; ret〈x, y, z,&〉.

A test φ is an invariant of process p if filterν(p, φ, φ) = p. We use inv(p, φ) as a short-
hand for this equality. Given a process p : TνA, we define partial execution of p by

exec(p) = tuo(next p is rest x !→ out(x); donex !→ stopx).

For every p, exec(p) is precisely the program obtained by collapsing the first and the
second steps of p into one. We denote by execn(p) the n-fold application of exec to p.
This allows us to formalize satisfaction of a safety property φ by a process p:

‘p is safe w.r.t. ψ at φ’ iff for every n, {φ} execn(p){ψ}.

Note, however, that this definition is not directly expressible in our logic, because it in-
volves quantification over the naturals. Often this problem can be overcome by picking
out a suitable process invariant.

Lemma 8. Let φ, ψ, and ξ be tests such that φ ⇒ ξ and ξ ⇒ ψ, and let p be a process.
Then inv(p, ξ) implies {φ} execn(p){ψ} for every n.

6 Worked Example: Dekker’s Mutual Exclusion Algorithm

We illustrate the use of our calculus by encoding Dekker’s mutual exclusion algorithm.
This algorithm was originally presented as an Algol program, and hence presumes some
fixed imperative semantics, while we present (and verify) a version with generic side-
effects. We introduce the following signature symbols:

set flag : 2 × 2 → T 1, set turn : 2 → T 1,

get flag : 2 → P2, turn is : 2 → P2,
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which can be roughly understood as interface functions accessing variables flag1,
flag2 and turn. This is justified by a suitable equational axiomatization of the above
operators, which includes the following axioms (we assume i = j):

do set flag(i, b); get flag(i) = do set flag(i, b); ret b

do set flag(i, b); set flag(j, c) = do set flag(j, c); set flag(i, b)
do set flag(i, b); set flag(i, c) = set flag(i, c)

do set turn(b); turn is(c) = do set turn(b); ret(b ⇔ c)
do set turn(b); set turn(c) = set turn(c).

(Obvious further axioms are omitted.) The crucial part of Dekker’s algorithm is a (sub)
program implementing busy waiting. In our case this is captured by the function
busy wait : 2 → T 1 defined as follows:

busy wait(i) = while get flag(flip(i)) do ifν turn is(flip(i))
then seq [set flag(i,⊥)]; await(turn is(i))
else [set flag(i,&)]

Here, we used the following shorthands: [p] = tuo(stop p) denotes the one-step process
defined by p : TA, flip : 2 → 2 is the function swapping the coproduct components of
2 = 1 + 1; (while b do q) encodes (init x ← � while b do q); finally, (await b) with b of
type T 2, intuitively meaning ‘wait until b’, is defined by the equation:

await b = while ¬b do retν �.

Finally, we define a generic process accessing the critical section:

proc(i, p) = seq [set flag(i,&)]; busy wait(i);
[in cs(i)]; p; [out cs(i)];
[set turn(flip(i))]; [set flag(i,⊥)].

Here we use the functions in cs, out cs : 2 → T 1 in order to keep track of the beginning
and the end of the critical section. These functions are supposed to work together with
the testing function cs : 2 → T 2 as prescribed by the axioms

do in cs(i); cs(i) = do in cs(i); ret&,

do out cs(i); cs(i) = do out cs(i); ret⊥.

Now the safety condition for the algorithm can be expressed by the formula

∀n. {¬cs(1̄) ∧ ¬cs(2̄)} execn(proc(1̄, p) ‖ proc(2̄, q)){¬cs(1̄) ∨ ¬cs(2̄)}

where 1̄ and 2̄ are the canonical coproduct injections inl � and inr �. By Lemma 8, it
suffices to show that the following formula

¬cs(1̄) ∧ cs(2̄) ∧ get flag(2̄) ∨ ¬cs(2̄) ∧ cs(1̄) ∧ get flag(1̄) ∨ ¬cs(1̄) ∧ ¬cs(2̄)

is an invariant of proc(1̄, p)‖proc(2̄, q). As can be shown by definition of parallel com-
position, this holds iff the same formula is an invariant of both proc(1̄, p) and proc(2̄, q),
which in turn can be shown by coinduction in MEν .
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7 Conclusions and Further Work

We have studied asynchronous concurrency in a framework of generic effects. To this
end, we have combined the theories of computational monads and final coalgebras to
obtain a framework for processes with generic side-effecting steps, the concurrent meta-
language MEν . We have presented a sound and complete equational calculus for MEν ,
and we have obtained a syntactic corecursion scheme in which corecursive functions
are syntactically reducible to a basic loop construct. Within this calculus, we have given
generic definitions for standard imperative constructs and a number of standard process
operators, most notably parallel composition.

In future research, we intend to develop more expressive verification logics for side-
effecting processes, detached from equational reasoning. Initial results of this kind have
already been used in an example verification of a generic mutual exclusion scheme
following Dekker’s algorithm. Specifically, we have provided an encoding of generic
Hoare triples and an associated proof principle for safety properties. An interesting
perspective in this direction is to identify a variant of the assume/guarantee principle
for side-effecting processes (cf. e.g. [8]). A further topic of investigation is to develop
weak notions of process equivalence in our framework, such as testing equivalence [22].

Finally, the decidability status of MEν remains open. Note that in case of a positive
answer, all equations between functions defined by corecursion schemes, e.g. process
algebra identities, become decidable. While experience suggests that even very simple
calculi that combine loop constructs with monadic effects tend to be undecidable, the
corecursion axiom as a potential source of trouble seems rather modest, and no evident
encoding of an undecidable problem appears to be directly applicable.
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Abstract. We consider two graph optimization problems called vector domina-
tion and total vector domination. In vector domination one seeks a small subset
S of vertices of a graph such that any vertex outside S has a prescribed number
of neighbors in S. In total vector domination, the requirement is extended to all
vertices of the graph. We prove that these problems cannot be approximated to
within a factor of c logn, for suitable constants c, unless every problem in NP is
solvable in slightly super-polynomial time. We also show that two natural greedy
strategies have approximation factors O(logΔ(G)), where Δ(G) is the maximum
degree of the graph G. We also provide exact polynomial time algorithms for
several classes of graphs. Our results extend, improve, and unify several results
previously known in the literature.

1 Introduction

The concept of domination in graphs has been extensively studied, both in structural
and algorithmic graph theory, because of its numerous applications to a variety of areas.
Informally, a vertex of a graph is said to dominate itself and all of its neighbors. Gener-
ally, one seeks small sets that dominate the whole graph. Domination naturally arises in
facility location problems, in problems involving finding sets of representatives, in mon-
itoring communication or electrical networks, and in land surveying. The two books [8]
[9] discuss the main results and applications of domination in graphs. Many variants of
the basic concepts of domination have appeared in the literature. Again, we refer to [8]
[9] for a survey of the area.

In this paper we provide hardness results and approximation algorithms for an inter-
esting generalization of the basic concept of domination, firstly introduced in [7]. Here,
a subset of vertices S is said to dominate a vertex v if either v ∈ S, or there are in S
a prescribed number of neighbors of v (see below for formal definitions). Again, one
seeks small subsets that dominate (in this new sense) the whole vertex set of the graph.

Main Definitions. For a graph G = (V,E) and a vertex v ∈ V , denote by N(v) the set of
neighbors of v, by d(v) the degree of v, and by Δ(G) the maximum degree of any vertex
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in G. A dominating set in a graph G = (V,E) is a subset S of the graph’s vertex set such
that every vertex not in the set has a neighbor in the set. A total dominating set in G is
a subset S ⊆ V such that every vertex of the graph has a neighbor in the set: for every
v ∈ V there exists a vertex u ∈ S such that uv ∈ E .

The vector domination is the following problem: Given a graph G = (V,E), and a
vector (kv : v ∈ V ) such that for all v ∈ V , kv ∈ {0,1, . . . ,d(v)}, find a vector dominat-
ing set (VDS) S of minimum size, that is, a set S ⊆ V minimizing |S| and such that
|S∩N(v)| ≥ kv for all v ∈ V\S. The total vector domination is the problem of finding a
minimum-sized total vector dominating set, that is, a set S ⊆V such that |S∩N(v)| ≥ kv

for all v ∈ V . In the context of computer networks, a dominating set D of nodes repre-
sents a set of nodes each of which has a resource, or service capability, and each node
that does not have this resource, or needs this service, can gain access to it by accessing
a neighboring node. A vector dominating set could be useful in those scenarios in which
it is required that nodes not having a resource must have a prescribed number of neigh-
bors possessing said resource. This requirement could be dictated by fault-tolerance
prescriptions, or by other natural needs like security or privacy, in the same spirit of
[14]. Other important applications of vector dominating sets will be subsequently dis-
cussed in the paper.

Of special interest for us will be also the following special cases of vector domina-
tion: For 0 ≤ q < 1, a q-dominating set in G is a subset S ⊆V such that every vertex not
in the set has more than a q-fraction of its neighbors in the set: for every v ∈ V \ S, it
holds that |N(v)∩S| > q|N(v)|. For 0 ≤ q < 1, a total q-dominating set in G is a subset
S ⊆ V such that every vertex has more than a q-fraction of its neighbors in the set: for
every v ∈V , it holds that |N(v)∩S| > q|N(v)|. By γ(G) (γq(G), γt(G), γq

t (G)) we denote
the minimum size of a dominating (q-dominating, total dominating, total q-dominating)
set in G. The problem of finding (for a fixed 0 ≤ q < 1) in a given graph a dominat-
ing (q-dominating, total q-dominating) set of minimum size will be referred to simply
as the domination (q-domination, total q-domination). Notice that for every graph G,
for all q < 1/Δ(G), the (total) q-dominating sets of G correspond to the graph’s (total)
dominating sets, while for all q ≥ 1 − 1/Δ(G), the q-dominating sets of G correspond
to the graph’s vertex covers.

Clearly, the (total) q-domination corresponds to the special case of the (total) vector
domination, in which kv = �q · d(v)�+ 1 for all v ∈ V . In fact, we shall mainly use q-
domination for our inapproximability results, and provide algorithmic results in terms
of the more general problem of vector domination.

Our Results and Related Work. We first provide two natural greedy algorithms for
vector domination and total vector domination in general graphs, having approximation
factor of H2Δ(G) and HΔ(G), respectively. Subsequently, we prove that above results are
essentially best possible, in the sense that both the q-domination and its total variant
are inapproximable within an O(log |V (G)|) factor, unless NP ⊆ DTIME(nO(log logn)).
Notice that our inapproximability result is provided for any fixed 0 ≤ q < 1, hence it
is not subsumed by the standard domination and total domination problems (except for
q = 0). We individuate special classes of graphs for which vector domination and total
vector domination can be optimally solved in polynomial time. More specifically, we
provide polynomial time algorithms for computing minimum size vector domination
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sets and total vector domination sets for trees (P4-free graphs and threshold graphs are
considered in the extended version of the paper [2]).

The algorithmic aspect of total vector domination in strongly chordal graphs (a super-
class of trees) was studied in [6], where polynomial time algorithms for that purpose
were given. However, the authors of [6] point out that their approach cannot be modified
to handle the case of vector domination, and that a new approach is needed.

Strictly related to our results is also the paper [11]. The authors study the hardness of
approximating minimum monopolies in graphs. Monopolies in graphs represent an im-
portant sub-area in graph theory, with many applications in distributed computing (see
the survey [15]). In our language, a monopoly corresponds to a total 1/2-dominating
set, and a partial monopoly to a 1/2-dominating set. Therefore, our inapproximability
results for q-domination and total q-domination can be seen as a significant extensions
of the results of [11] from the case q = 1/2 to arbitrary q (the paper [11] obtains bet-
ter inapproximability multiplicative constants under stronger complexity assumptions).
Conversely, our algorithmic results on trees extend the corresponding result of [12]
from total 1/2-domination to the much more general total vector domination problem.

The paper [5] studies the hardness of approximating k-tuple domination in graphs.
In our framework, their problem is equivalent to vector domination in the special case
where the input vector (kv : v ∈ V ) has all components equal to an integer k. Therefore,
our results generalize also [5].

Our findings are also relevant to the important new area of influence spread in social
networks [4]. For instance, paper [17] investigates algorithmic and complexity aspects
of positive influence dominating sets (PIDS) in social networks. In our language, PIDS
correspond to total vector dominating sets where the vector (kv : v ∈ V ) is such that
kv = )d(v)/2* for each v in the network. In [17] it is proved that PIDS is APX-hard.
Our hardness results for total q-domination are more general, and also stronger since
we prove non approximability within a logarithmic factor. In the same area, the paper
[19] introduced the problem of identifying a minimum set of nodes that could influence
a whole network within a time bound d. There, a set of nodes S influences a new node
x in one step (d = 1) if the majority of neighbors of x is in S. The paper [19] mostly
studies hardness results for the case d = 1. It is clear that our scenario includes that of
[19] (in the case d = 1) and corresponds to a more extensive model of influence among
nodes, similar to the one considered in [13] for a related but different problem.

2 Approximability Results

In this section, we show that vector domination and total vector domination can be
approximated in polynomial time by a factor of H2Δ(G) and HΔ(G), respectively. (We

denote by Hk = ∑k
i=1

1
i the k-th harmonic number.) Since Hk ≤ logk + 1 for k ≥ 1, the

algorithms given by the theorems below provide O(logΔ(G))-approximation for vector
and total vector domination, respectively. (We denote by log the natural logarithm.)

Theorem 1. Vector domination can be approximated in polynomial time by a factor of
H2Δ(G).
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Proof. For a graph G = (V,E) and a vector (kv : v ∈ V ) s.t. for all v ∈ V , kv ∈ {0,1, . . . ,
d(v)}, we define a function f : 2V → N, as follows:

f (S) = ∑
v∈V

τv(S) , where τv(S) =
{

min{|S∩N(v)|,kv}, if v ∈ S;
kv, if v ∈ S.

(1)

The following properties of f can be verified: (i) f is integer-valued; (ii) f ( /0) = 0; (iii)
f is non-decreasing; (iv) A set S ⊆ V satisfies f (S) = f (V ) if and only if S is a vector
dominating set; (v) f is submodular.

A function f : 2V → N is submodular if for all S ⊆ T ⊆ V and for all w ∈ V , the
inequality f (T ∪{w})− f (T ) ≤ f (S∪{w})− f (S) holds. The only non-trivial property
to show is (v), i.e, the submodularity of f . The proof is given below.

Fact 1. The function f : 2V → N, given by (1), is submodular.

Proof. It suffices to show that all the functions τv(·) are submodular, that is, that for all
S ⊆ T ⊆ V and for all w ∈ V ,

τv(T ∪{w})− τv(T ) ≤ τv(S∪{w})− τv(S) . (2)

Observe that τv is non-decreasing.
Suppose first that τv(T ) = kv. Then τv(T ∪{w}) = kv and the left-hand side of in-

equality (2) is equal to 0. Hence inequality (2) holds since τv is non-decreasing.
From now on, we assume that τv(T ) < kv, which implies τv(T ) = |T ∩NG(v)|. Since

τv is non-decreasing, τv(S) < kv, and hence τv(S) = |S∩NG(v)|. Inequality (2) simplifies
to

τv(T )− τv(S) = |(T \ S)∩NG(v)| ≥ τv(T ∪{w})− τv(S∪{w}) . (3)

We may assume that τv(T ∪ {w}) > τv(S ∪{w}), since otherwise the right-hand side
of (3) equals 0, and inequality (3) holds.

Therefore, τv(S ∪ {w}) < kv, implying τv(S ∪ {w}) = |(S ∪ {w}) ∩ NG(v)|. If also
τv(T ∪{w}) < kv then τv(T ∪{w}) = |(T ∪{w})∩NG(v)| and equality holds in (3).

So we may assume that τv(T ∪{w}) = kv. Note that v does not belong to T ∪{w}
(since otherwise either τv(T ) or τv(S ∪{w}) would equal to kv). Suppose that the in-
equality (3) fails. Then

|(T \ S)∩NG(v)| < kv −|(S∪{w})∩NG(v)| ,

which implies
|(T ∪{w})∩NG(v)| < kv .

However, together with the fact that v ∈ T ∪{w}, this contradicts the assumption that
τv(T ∪{w}) = kv. ��

Back to the proof of Theorem 1, by (iv) we have that an optimal solution to the vec-
tor dominating set is provided by a minimum size S such that f (S) = f (V ). In other
words, we have recast vector domination as a particular case of the well known MINIMUM
SUBMODULAR COVER [18].
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Let A denote the natural greedy strategy which starts with S = /0 and iteratively
adds to S the element v ∈ V \ S s.t. f (S ∪{v})− f (S) is maximum, until f (S) = f (V )
is achieved. By a classical result of Wolsey [18], it follows that algorithm A is an
Hτ-approximation algorithm for vector domination, where τ = maxy∈V f ({y}). For ev-
ery y ∈ V , we have f ({y}) = ∑v∈V\{y} τv({y}) + τy({y}) ≤ d(y) + ky ≤ 2d(y). Hence
maxy∈V f ({y}) ≤ 2Δ(G) yielding the desired result. ��

Theorem 2. Total vector domination can be approximated in polynomial time by a
factor of HΔ(G).

Proof. The argument is analogous to the one used for Theorem 1. Given a graph G =
(V,E) and vector (kv : v ∈V ) s.t. for all v ∈V , kv ∈ {0,1, . . . ,d(v)}, we define a function
f : 2V → N, as follows:

f (S) = ∑
v∈V

min{|S∩N(v)|,kv} . (4)

Like (1) this function f also satisfies properties (i)-(iii) defined above. A set
S ⊆ V satisfies f (S) = f (V ) if and only if S is a total vector dominating
set. Moreover, similarly as was done in Fact 1, it can be verified that f is
submodular.

Therefore, again by the results of Wolsey the natural greedy strategy provides an Hτ-
approximation algorithm for total vector domination, where τ = maxy∈V f ({y}). It can
be seen that maxy∈V f ({y}) ≤ Δ(G), which concludes the proof. ��

3 Inapproximability Results

Our inapproximability results are given in terms of the q-domination problem. In fact,
it turns out that both the q-domination and its total variant are inapproximable within a
log |V (G)| factor as shown in Theorems 3 and 4 below. A fortiori the same results hold
for the vector domination problem. Hence, the approximations results of the previous
section are basically best possible. Due to the space constraint, we will limit ourselves
to sketch the inapproximability result on q-domination (Theorem 3). We shall use the
following lemma which is basically an ad hoc extension of the hardness of approximat-
ing domination within c log |V (G)| given in [1] (for the proof, see citeCMV).

Lemma 1. There exists a constant c > 0 such that for every integer B > 0 there is
no polynomial time algorithm approximating domination on input graphs G satisfying
γ(G) ≥ BΔ(G) within a factor of c log |V (G)|, unless NP ⊆ DTIME(nO(log logn)).

Theorem 3. There exists a constant c > 0 such that for every 0 ≤ q < 1 there is no
polynomial time algorithm approximating q-domination within a factor of c log |V (G)|,
unless NP ⊆ DTIME(nO(log logn)).

Proof. Let 0 ≤ q < 1, and let B = ) q
1−q*. Let G be a graph with γ(G) ≥ BΔ(G) and such

that |V (G)| ≥ 4B . We transform G into a graph G′ which consists of G together with a
complete graph K on k = BΔ(G) vertices such that K is disjoint from G.
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In addition, every vertex v from G is adjacent to precisely kv = � qdG(v)
1−q � vertices in K.

(This assignment is done in an arbitrary way.) Finally, every vertex in the clique K has
a private neighbor outside V (G). We denote by X the set of all these private neighbors
(see figure below).

G

clique K

· · ·

v

kv edges

X

The graph G′ in the proof of Theorem 3

Notice that kv =
⌊

qdG(v)
1−q

⌋
≤
⌈

qdG(v)
1−q

⌉
≤⌈

q
1−q

⌉
Δ(G) = k. Hence it is indeed pos-

sible to assign to v precisely kv neighbors
in K. In addition, kv is an integer satisfying

kv
dG(v)+kv

≤ q < kv+1
kv+dG(v) . These inequalities

are instrumental to the following Claim,
whose proof is in [2].

Claim: γq(G′) = γ(G) + k .
Let c be the constant given by Lemma 1, and let c′ = c/4. Let us write n = |V (G)|

and n′ = |V (G′)|. Note that, by the assumption |V (G)| ≥ 4B, it follows that n′ = n +
2k = n + 2BΔ(G) ≤ 1/2n2 + 1/2n2 = n2 . Suppose for a contradiction that there exists
a polynomial time algorithm A which computes a q-dominating set S′ for G′ such that
|S′| ≤ c′(logn′)γq(G′).

Let S = S′ ∩V (G). It is not hard to see that S is a dominating set in G. Moreover, we
can bound the size of S as follows:

|S| ≤ |S′| ≤ c′(logn′)γq(G′) ≤ c′(log(n2))(γ(G) + k) ≤ 2c′(logn)(2γ(G)),

where the second inequality follows by the assumption on A; the third one by n′ ≤ n2

and γq(G′) = γ(G) + k; the fourth one by k = BΔ(G) ≤ γ(G). Finally, by the choice of
c′ we get |S| ≤ c(logn)γ(G), and the conclusion follows by Lemma 1. ��

By means of a slightly more involved construction, we can prove the analogous result
for total q-domination.

Theorem 4. There exists a constant c > 0 such that for every 0 ≤ q < 1, there is no poly-
nomial time algorithm approximating total q-domination within a factor of c log |V (G)|,
unless NP ⊆ DTIME(nO(log logn)).

4 A Polynomial Algorithm for Vector Domination in Trees

Since trees are strongly chordal, total vector domination is solvable in time O(n + m)
on trees [6,16], where n = |V (G))| and m = |E(G)|. As mentioned in [6], their approach
does not apply to the vector domination problem. In this section we describe an O(n2)
algorithm that solves vector domination in trees. The algorithm is based on an efficient
solution to the following problem:

CARDINALITY-CONSTRAINED PARTITION (CCP):
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Given n ordered pairs of real numbers (a1,b1),(a2,b2), . . . ,(an,bn) and an integer k
such that 0 ≤ k ≤ n, find a partition (I,J) of the set {1, . . . ,n} with |I| = k that minimizes
the sum ∑i∈I ai + ∑ j∈J b j.

This problem admits an O(n(k + 1)) solution by dynamic programming: For 1 ≤
i ≤ n and 0 ≤ j ≤ min{i,k}, let vi, j denote the optimum value of the CCP problem
with the input ((a1,b1), . . . ,(ai,bi); j) . Clearly, vn,k is an optimal value of the above
CCP problem. The values vi, j can be computed in O(n(k + 1)) time using the following
recurrences:

(1) v1,0 = b1, v1,1 = a1;
(2) vi,0 = vi−1,0 + bi for all 2 ≤ i ≤ n;
(3) vi,i = vi−1,i−1 + ai for all 2 ≤ i ≤ k;
(4) vi, j = min{vi−1, j−1 + ai,vi−1, j + bi} for all 2 ≤ i ≤ k and 1 ≤ j ≤ min{i,k}.

In what follows, we will denote by CCP(A,k) the optimal value of the CCP problem

on the input ((a11,a21), . . . ,(an1,an2);k), where A =
(

a11 · · · an1

a21 · · · an2

)
is a 2 × n matrix

and k ≤ n is a non-negative integer.

Theorem 5. A minimum vector dominating set in a tree can be found in time O(n2).

Proof. We claim that Algorithm 1 below computes a minimum vector dominating set
for (T,k), where T is a tree. Let us root T at an arbitrary vertex r. For v ∈ V (T ), we
denote by Tv the subtree of T induced by v and all its descendants. For a subgraph H of
G, we denote by k|H the restriction of k to V (H). The algorithm will compute, using a
bottom-up traversal of the tree, the following values, for all v ∈ V (T ):

– γ(v): the minimum size of a vector dominating set for (Tv,k|Tv );
– γ+(v): the minimum size of a vector dominating set for (Tv,k|Tv ) that contains v;
– γ−(v): the minimum size of a vector dominating set for (Tv,k−

v ), where k−
v :

V (Tv) → Z is given by

k−
v (u) =

{
max{k(v)−1,0}, if u = v;
k(u), otherwise.

The following proposition establishes a way to compute these values:

Proposition 1. Let v be an internal node of T , and let C(v) denote the set of children
of v. Let A be the 2 × |C(v)| matrix with A1 j = γ+( j) and A2 j = γ( j) for all j ∈ C(v).
Then:

(i) γ+(v) = ∑ j∈C(v) γ−( j) + 1.
(ii) If k(v) > |C(v)| then γ(v) = γ+(v). Otherwise, γ(v) = min{γ+(v),CCP(A,k(v))}.
(iii) If k(v) > |C(v)| + 1 then γ−(v) = γ+(v). Otherwise, γ−(v) =

min{γ+(v),CCP(A,max{k(v)−1,0})}.

Proof. (i). For all j ∈C(v), let D j denote a minimum vector dominating set for (Tj,k
−
j ).

Then, the set
⋃

j D j ∪{v} is a vector dominating set for (Tv,k|Tv ) that contains v; hence
γ+(v) ≤ ∑ j∈C(v) γ−( j) + 1. Conversely, if D is a minimum-sized vector dominating set
for (Tv,k|Tv ) that contains v, then for every j ∈ C(v), the set D ∩V (Tj) is a vector
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Algorithm 1. Vector domination in trees
Input: A tree T = (V,E), a function k : V → Z.
Output: The minimum size of a VDS for (T,k).

1: Let R = {v ∈ V (T ) : k(v) > d(v)}.
2: Set T to T − R and k to k′ : V (T − R) → Z, given by k′(v) = k(v) − |N(v) ∩ R| for all v ∈

V (T )−R.
3: if T −R is disconnected, with components T1, . . . ,Tp

4: Solve the problem recursively on all (Ti,k|Ti ), for all i.
5: Let γi denote the minimum size of a vector dominating set for (Ti,k|Ti ).
6: return ∑p

i=1 γi + |R|.
7: Let r ∈ V (T ) and root T at r.
8: for all leaves � of T (other than the root) do
9: set γ(�) = k(�). (since at this point k(�) ∈ {0,1}.)

10: set γ+(�) = 1.
11: set γ−(�) = 0.
12: for all internal nodes v of T (traversed in a bottom-up manner) do
13: let C(v) be the set of children of v.
14: set γ+(v) = ∑ j∈C(v) γ−( j)+ 1.
15: let A be the 2×|C(v)| matrix with A1 j = γ+( j) and A2 j = γ( j) for all j ∈ C(v).
16: if k(v) > |C(v)|
17: set γ(v) = γ+(v).
18: else
19: set γ(v) = min{γ+(v),CCP(A,k(v))}.
20: if k(v) > |C(v)|+ 1
21: set γ−(v) = γ+(v).
22: else
23: set γ−(v) = min{γ+(v),CCP(A,max{k(v)−1,0})}.
24: return γ(r).

dominating set for (Tj,k
−
j ). Therefore, |D∩V (Tj)| ≥ γ−( j) and consequently γ+(v) =

|D| ≥ ∑ j∈C(v) γ−( j) + 1.
(ii). If k(v) > |C(v)| then every vector dominating set for (Tv,k|Tv ) contains v, so

we have γ(v) = γ+(v) in this case. Suppose now that k(v) ≤ |C(v)|. First, we show the
inequality “≤". It follows from the definitions that γ(v) ≤ γ+(v). Let (I,J) be an optimal
solution for CCP(A,k(v))}. For all j ∈ C(v) define

D j =
{

a minimum VDS for (Tj,k|Tj ) that contains j, if j ∈ I ;
a minimum VDS for (Tj,k|Tj ), otherwise.

Then, j ∈ D j for all j ∈ I. Therefore, since |I| = k(v), the set D :=
⋃

j∈C(v) D j is a vector
dominating set for (Tv,k|Tv ). Consequently, γ(v) ≤ CCP(A,k(v)).

To see the converse inequality, suppose that γ(v) < γ+(v) (otherwise, we are done).
For every minimum vector dominating set D for (Tv,k|Tv ) it holds that v ∈ D and also
|D∩C(v)| ≥ k(v). Hence, it is enough to show that

γ(v) ≥ min
I⊆C(v)
|I|=k(v)

(
∑
i ∈I

γ+(i) + ∑
i ∈C(v)\I

γ(i)

)
. (5)
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Let D be a minimum vector dominating set for (Tv,k|Tv ) and let I ⊆ D∩C(v) such that
|I| = k(v). Then, for all i ∈ I, the set D∩V (Ti) is a minimum-sized vector dominating
set for (Ti,k|Ti ) that contains i (otherwise, a smaller such set, say D′

i, could be used to
produce a vector dominating set for (Tv,k|Tv ) smaller than D – namely (D\V (Ti))∪D′

i).
Therefore |D∩V(Ti)| = γ+(i). Similarly, |D∩V (Ti)| = γ(i) for all i ∈C(v)\ I. Summing
up over all i, we get ∑i ∈I γ+(i) + ∑i ∈C(v)\I γ(i) = ∑i ∈C(v) |D ∩V (Ti)| = |D| = γ(v).
Inequality (5) follows.

The proof of (iii) is similar to that of (ii). ��

The correctness of the procedure follows from Proposition 1. To analyze the time com-
plexity, observe that at each leaf, a constant amount of computation is performed. The
total time spent at an internal node v is proportional to O(|C(v)|(k(v) + 1)) = O(d(v)2).
Altogether, this results in the time complexity of O(n2). An optimal solution can be
computed with a standard backtracking procedure, via a top-down traversal of the tree.

��

5 Concluding Remarks

We have studied some algorithmic issues related to natural extensions of the well known
concepts of domination and total domination in graphs. We have shown that the prob-
lems are approximable to within a logarithmic factor, and proved that this is essentially
best possible. We have also provided an exact polynomial time algorithm for the vector
domination problem in trees. (Due to lack of space, we will present our exact polyno-
mial time algorithms for P4-free graphs and threshold graphs in the journal version of
the paper; see also [2].)

We leave it as a question for future research to determine the complexity status of
the (total) vector domination problem for graphs of bounded tree-width or bounded
clique-width.
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Abstract. In this paper, we are interested in the enumeration of
minimal dominating sets in graphs. A polynomial delay algorithm with
polynomial space in split graphs is presented. We then introduce a no-
tion of maximal extension (a set of edges added to the graph) that keeps
invariant the set of minimal dominating sets, and show that graphs with
extensions as split graphs are exactly the ones having chordal graphs
as extensions. We finish by relating the enumeration of some variants
of dominating sets to the enumeration of minimal transversals in hyper-
graphs.

1 Introduction

In many areas such as data mining, data bases, biology, social networks, etc.,
people are interested in enumerating a list of objects satisfying some properties
[2,23]. For instance, in social networks, for marketing purposes, it can be useful
to be able to enumerate the maximal communities, which corresponds in graph
theory in enumerating maximal cliques. Classically, an algorithm which scans all
possible solutions and outputs the desired solutions can be used. However, such
a scenario cannot be used since in many cases, the size of outputs can be much
smaller than the number of possible solutions. On the other side, since the size
of the output can be huge compared to the size of the input, to measure the
efficiency of an enumeration algorithm, the size of the input is not relevant for
time complexity, contrary to classical decision problems. A natural parameter
for measuring the time complexity of an enumeration algorithm is the number
of outputs. Therefore, we will say that an enumeration algorithm runs in output-
polynomial time if its running time is bounded by a polynomial depending on
the number of outputs and the size of the input.

Minimum dominating set problem is a classic graph optimization NP-complete
problem. However, contrary to other classic NP-complete graph optimization
problems where there exist output-polynomial time algorithm for enumerating
maximal (or minimal) solutions, e.g. maximal cliques or maximal independent
sets [18,19], there is no known output-polynomial time algorithm that enumer-
ates the set of minimal dominating sets of a graph. This paper is motivated by
the quest for an output-polynomial time algorithm for the enumeration of mini-
mal dominating sets of graphs (Dom for short). The dominating set problem is

O. Owe, M. Steffen and J.A. Telle (Eds.): FCT 2011, LNCS 6914, pp. 298–309, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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related to the well-known transversal problem in hypergraphs. Indeed, the set
of minimal dominating sets of a graph is in bijection with the set of minimal
transversals of its closed neighbourhood hypergraph [5]. It has been shown in [16]
that the enumeration of minimal transversals in hypergraphs (Trans-Hyp for
short) can be polynomially reduced to Dom. Trans-Hyp has been intensively
studied in the last two decades due to its connection to several problems and
particularly problems in data mining where frequently occurring patterns are
of interest [3]. However, the question whether Trans-Hyp admits an output-
polynomial time algorithm is still open. In fact, despite the number of papers
on Trans-Hyp (see for instance these papers [3,13,14] and their bibliography
section), the best known algorithm for Trans-Hyp is the one by Fredman and
Khachiyan [17] which runs in time O(nlog(n)) where n is the size of the hyper-
graph plus the number of minimal transversals.

Despite the link between Dom and Trans-Hyp and the importance of Dom

in other areas such as building protocols in networks [24], to our knowledge,
the only paper dealing with Dom is the one by Fomin et al. [15]. This paper,
based on the Measure and Conquer technique from exact algorithms, gives an
algorithm for Dom. However, its running time is O(1.7159n), where n is the
number of vertices of the input graph. Hence, this algorithm is not an output-
polynomial time one for Dom. It just informs us that the number of minimal
dominating sets in a graph is upper bounded by O(1.7159n). Moreover, the
algorithm does not use the fact that we deal with graphs, and uses instead the
closed neighbourhood hypergraph. In this paper, we tackle Dom by restricting
ourselves to some classes of graphs, as in the case of many output-polynomial
time algorithms for Trans-Hyp.

Our contribution. After some preliminaries in Section 2, we recall some known
output-polynomial time algorithms for Dom in Section 3. These results are of
two types: those that come from meta-theorems in parameterized complexity
theory and those that can be obtained from tractable cases of Trans-Hyp.
In Section 4 we consider Dom in split graphs [5]. Split graphs are interesting
for several reasons. In particular, it is a non trivial sub-class of chordal graphs
where no output-polynomial time algorithm for Dom is known, and two impor-
tant variants of Dom, namely total dominating sets and connected dominating
sets coincide in split graphs. Section 5 is devoted to the extension of the result
in Section 4 to other classes of graphs. For that we introduce a notion of maxi-
mal extension (a set of edges added to the graph) that keeps invariant the set of
minimal dominating sets. We show that graphs that have chordal graphs as max-
imal extensions are exactly the one having split graphs as maximal extensions
and derive a polynomial delay algorithm for chordal P6-free graphs. We discuss
in Section 6 our second goal consisting in studying the relationship between
Trans-Hyp and Dom. We first show that the enumeration of the minimal total
dominating sets is equivalent to Trans-Hyp and the enumeration of connected
dominating sets is Trans-Hyp-Hard. Both are Trans-Hyp-complete when re-
stricted to split graphs. Then, we show that the decision prolem associated to
the enumeration of minimal dominating sets containing a set is co-NP-complete.
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2 Preliminaries

If A and B are two sets, A\B denotes the set {x ∈ A | x /∈ B}. The power-set of
a set V is denoted by 2V . The set of natural integers is denoted by N. The size
of a set A is denoted |A|.

We refer to [10] for our graph terminology. A graph G is a pair (V (G), E(G)),
where V (G) is the set of vertices and E(G) ⊆ V (G) × V (G) is the set of edges.
A graph G is said to be undirected if (x, y) ∈ E(G) implies (y, x) ∈ E(G), hence
we can write xy (equivalently yx). In this paper graphs are simple, loop-free and
undirected. We let G[X ], called the sub-graph of G induced by X ⊆ VG, the
graph (X, E(G)∩ (X ×X)). A graph G is said chordal if it has no induced cycle
of length greater than or equal to 4.

For a graph G, we let NG(x) be the set of neighbours of x, i.e. the set {y |
xy ∈ E(G)}, and we let NG[x] be NG(x) ∪ {x}. For X ⊆ V (G), we write NG[X ]
and NG(X) for respectively

⋃
x∈X

NG[x] and NG[X ] \ X .

A dominating set in a graph G is a set of vertices D such that every vertex of
G is either in D or is adjacent to some vertex of D. It is said minimal if for any
x ∈ D, D \ {x} is not a dominating set. The set of all minimal dominating sets
of G will be denoted by D(G). Let D be a dominating set of G and x ∈ D. We
say that x has a private neighbour y if y ∈ NG[x] \NG[D \ x]. The set of private
neighbours of x in D is denoted PD(x). The following is straightforward.

Lemma 1. Let D be a minimal dominating set of a graph G. Then for all x ∈ D
we have PD(x) = ∅.

A hypergraph H is a pair (V (H), E(H)) where V (H) is a finite set and E(H) ⊆
2V (H). It is worth noticing that graphs are special cases of hypergraphs. By abuse
of notations, we will call the elements of E(H) edges. A transversal (or hitting
set) of H is a set A ⊆ V that meets every edge of E(H). A transversal is minimal
if it does not contain any other transversal as a subset. The set of all minimal
transversals of H is denoted Tr(H). The size of a hypergraph H, denoted ||H||,
is |V (H)| +

∑
e∈E(H)

|e|.

Let f : N → N. For a hypergraph H and C ⊆ 2V (H), we say that an algo-
rithm enumerates C with delay f(||H||) if, after a pre-processing that takes time
p(||H||) for some polynomial p, it outputs the elements of C without repetitions,
the delay between two outputs being bounded by f(||H||). If f is a polynomial,
we call it a polynomial delay algorithm. We denote by Trans-Hyp, the enu-
meration problem of minimal transversals in hypergraphs. Similarly we denote
by Dom, the enumeration problem of minimal dominating sets in graphs.

It is well-known that Dom can be polynomially reduced to Trans-Hyp as
follows. For a graph G, we let N (G), the closed neighbourhood hypergraph, be
(V (G), {NG[x] | x ∈ V (G)}).

Lemma 2. [5] Let G be a graph and D ⊆ V (G). Then D is a dominating set
of G if and only if D is a transversal of N (G).
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Let us finish these preliminaries by some constructions of graphs from hyper-
graphs. If H is a hypergraph, we let I(H), the bipartite incidence graph of H, be
the graph with vertex-set V (H) ∪ {ye | e ∈ E(H)} and edge-set {xye | x ∈ V (G)
and x ∈ e}. I ′(H), the split incidence graph of H, is the graph obtained from
I(H) by replacing I(H)[V (H)] by a clique on V (H). Note that the neighbour-
hood of the vertex ye in I(H) is exactly the set e. See Figure 1 for an example
of I(H) and I ′(H).

Fig. 1. An example of the bipartite incidence graph I(H) and the split incidence
graph I′(H) of the hypergraph H = ({x1, x2, x3, x4}, {e1, e2, e3, e4, e5, e6}) where e1 =
{x1, x2}, e2 = {x1, x2, x3}, e3 = {x1, x3, x4}, e4 = {x2, x4}, e5 = {x3, x4}, e6 =
{x2, x4}

3 Examples of Tractable Cases

Even if Dom is not a well-studied problem, there are some known tractable cases.
We review some of them.

Let us first start with the well-known graph classes in parameterized com-
plexity theory. Tree-width [20] and clique-width [9] are well-known complexity
measures in graph theory. The first is well-known thanks to its important role in
the proof of the Graph Minor Theorem [21] and the notorious Courcelle’s meta-
theorem [6]. Courcelle’s meta-theorem says that every decision and optimiza-
tion graph problem expressible in monadic second-order logic can be solved in
polynomial-time in graph classes of bounded tree-width. Most of the well-known
NP-complete problems are expressible in monadic second-order logic, e.g. 3-
colorability, computing the minimum dominating set, the minimum vertex-cover,
etc. Deciding if a set is a minimal dominating set is also expressible in monadic
second-order logic. Clique-width is important because it not only generalizes
tree-width, but it also yields a meta-theorem (see [8]) similar to the one for tree-
width. Clique-width generalizes tree-width in the sense that every class of graphs
of bounded tree-width has bounded clique-width, but the converse is false, com-
plete graphs have clique-width 2 and unbounded tree-width. A natural question
is whether these meta-theorems [6,8] can be extended to counting and enumera-
tion problems. In fact, the results in [6,8] are also stated for counting problems.
And, in [7], Courcelle extends them to enumeration problems. He proved that if
P (x1, . . . , xm, X1, . . . , Xq) is a graph property, depending on vertices x1, . . . , xm

and sets of vertices X1, . . . , Xq, expressible in monadic second-order logic and C
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is a class of graphs of bounded tree/clique-width then there exists an algorithm
that for every graph G in C enumerates the set {(u1, . . . , um, Z1, . . . , Zq) | G
satisfies P (u1, . . . , um, Z1, . . . , Zq)} with linear delay and uses linear space. The
proof is rather involved and uses, as the other meta-theorems, machinery from
logical tools. However, even if this "enumeration" meta-theorem is interesting
and general, there are many natural graph classes that do not have bounded
tree/clique-width, e.g. interval graphs, split graphs, planar graphs, etc. For some
of them, one can prove that Dom is tractable by using a translation to tractable
cases of Trans-Hyp. The following is an exemple.

Proposition 1. Dom admits a polynomial delay algorithm when restricted to

1. Strongly chordal graphs.
2. Graph classes of bounded degeneracy.

Proof. (1) If a graph G is strongly chordal, then N (G) is β-acyclic (see for
instance [5]). By [11], Trans-Hyp admits a polynomial delay algorithm in β-
acyclic hypergraphs.

(2) In [13], it is defined a notion of degeneracy for hypergraphs that extends
the one on graphs. One easily verifies that if G is k-degenerate, then so is N (G).
Since Trans-Hyp admits a polynomial delay algorithm in degenerate hyper-
graphs [13], we are done. ��

Examples of strongly chordal graphs are directed path graphs (which include in-
terval graphs), comparability chordal graphs, etc. Examples of degenerate graph
classes are planar graphs, bounded-degree graphs, graphs of bounded genus,
graphs of bounded tree-width, etc. Hence, the tractability of Dom in graph
classes of tree-width k can be derived from Proposition 1(2). However, the use of
Courcelle’s result yields better bounds. By using [7], we have that Dom admits
an algorithm with delay f(k) · n for some function f : N → N, while [13] proves
that Dom admits an algorithm with delay ng(k) for some function g : N → N.

The notion of tree-width was extended to hypergraphs. However, there exist
several notions (see for instance [1]). If we define the tree-width of a hypergraph
H as the tree-width of its incidence graph I(H), then Trans-Hyp admits a
polynomial delay algorithm in hypergraphs of bounded tree-width [13]. But, for
the other notions, Trans-Hyp is hard even for classes of simple hypergraphs
with hypertree-width 2 [12]. A natural question is whether there exists a class C
of graphs with unbounded tree-width but such that N (C) := {N (G) | G ∈ C}
has bounded tree-width. The following proposition proves that it is not possible
(twd(G) denotes the tree-width of a graph G). Its proof (as most of the proofs
in this extended abstract) is omitted because of space constraints.

Proposition 2. For every graph G,

twd(I(N (G))) − 1
2

≤ twd(G) ≤ twd(I(N (G))).
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4 Dom in Split Graphs

We recall that a graph G is a split graph if its vertex-set can be partitioned into
an independent set S and a clique C. (Here we consider S maximal.) Hence, we
will denote a split graph G by the pair (C(G) ∪ S(G), E(G)). We prove in this
section that Dom in split graphs admits a linear delay algorithm that uses poly-
nomial space. We first notice that a minimal dominating set D in a split graph
G can be partitioned into a clique and an independent set, denoted respectively
by DC = D ∩ C(G) and DS = D ∩ S(G). Lemma 3 shows that a minimal dom-
inating set D is characterized by DC . Note that DS cannot characterize DC ,
since several minimal dominating sets can have the same set DS .

Lemma 3. Let G be a split graph and D a minimal dominating set of G. Then
DS = S \ NG(DC).

Lemma 4. Let G be a split graph and D be a minimal dominating set of G.
Then for all A ⊆ DC , the set A ∪ (S(G) \ NG(A)) is a minimal dominating set
of G.

Proof. Let D be a minimal dominating set of G and A ⊆ DC . We show that
D′ = A∪(S(G)\NG(A)) is a minimal dominating set. If A = ∅, then D′ = S(G)
and since S(G) is a maximal independent set, it is a minimal dominating set.
Now suppose that A = ∅ and x ∈ A. Clearly PD(x) = ∅ since D is minimal.
This implies that PD′(x) is also not empty. Moreover, for any element y ∈ D′

S ,
we have PD′(y) = {y}. We conclude that D′ is a minimal dominating set. ��

A consequence of Lemmas 3 and 4 is the following.

Corollary 1. Let G be a split graph. Then, there is a bijection between D(G)
and the set DI(G) = {DC | D ∈ D(G)}. The set DI(G) is moreover closed
under inclusion ( i.e., is an independent system).

So the generation of minimal dominating sets of a split graph is equivalent to
the generation of elements in DI(G). In the following we give a linear delay
algorithm to generate DI(G). Let D, D′ ∈ DI(G). We say that D′ covers D if
D ⊆ D′ and D′ \ D is a singleton. We denote by COV (D) the set {x ∈ C \ D |
D ∪ {x} covers D}. If D ∈ DI(G) then y in C \ D belongs to COV (D) if each
vertex in D∪{y} has a private neighbour. In order to enumerate DI(G), we call
Dominant(∅, C(G)).

Theorem 1. Algorithm 1 generates the set DI(G) with O(m + n) delay and
uses space bounded by O(n2).

5 Completion

In this section we introduce the notion of the maximal extension of a graph
by keeping the set of minimal dominating sets invariant. The idea behind this
operation is to maintain invariant the minimal edges, w.r.t. inclusion, in N (G).
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Algorithm 1. Dominant(D,COV)
Data : a split graph G

Result : DI(G)

begin
Output(D)
foreach x ∈ COV do

COV=COV\{x}
NewCOV= ∅
foreach y ∈ COV do

if each vertex in D ∪ {x, y} has a private neighbour then
NewCOV=NewCOV∪{y}

Dominant(D ∪ {x},NewCOV)

end

Let G be a graph. A vertex x ∈ V (G) is said to be irredundant if for all y = x,
NG[y] ⊆ NG[x], otherwise it is called redundant. In case of twins, we choose
arbitrarily one to being irredundant, the others are so redundant. The set of
irredundant (resp. redundant) vertices is denoted by M(G) (resp. RN(G)). The
completion graph of a graph G is the graph Gco with vertex set V (G) and edge
set E(G)∪{xy | x, y ∈ RN(G), x = y}, i.e. Gco is obtained from G by replacing
G[RN(G)] by a clique on RN(G). Note that the completion graph of a split graph
G is G itself. However, the completion operation does not preserve the chordality
of a graph. For instance, trees are chordal graphs but their completion graphs
are not always chordal. Figure 2 gives some examples of completion graphs.

Fig. 2. (a) a non-chordal graph, its completion is a split graph (b) a chordal graph
with an induced P6, its completion is a split graph (c) a path Pn, its completion is not
chordal

Lemma 5. For any graph G, we have D(G) = D(Gco).

In the following we are interested in graphs such that Dom in their completion
graphs has an efficient generation algorithm. For two graphs G and H , we say
that G is H-free if it does not contain H as an induced subgraph. For k ≥ 1, we
let Pk be the path on k vertices. A vertex is simplicial if the graph induced by
its neighbourhood is a clique.
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Lemma 6. If G is a P6-free chordal graph, then for all x ∈ M(G), x is a
simplicial vertex in Gco. Furthermore, the set M(G) is an independent set in
Gco.

Proposition 3. Let G be a P6-free chordal graph. Then Gco is a split graph.

Proof. From Lemma 6, it follows that M(G) forms an independent set in Gco,
and since RN(G) forms a clique, we are done. ��

The next theorem characterizes completion graphs that are split.

Theorem 2. Let G be a graph. Then Gco is a chordal graph if and only if Gco

is a split graph.

6 Related Problems

In this section we discuss some variants of dominating sets and related problems.
The enumeration of total dominating sets polynomially reduces to Trans-Hyp

with respect to the classical Karp reduction. However, another natural variant,
the enumeration of connected dominating sets is not known to have a reduction
to Trans-Hyp, we show here that it is harder than Trans-Hyp. The problem
in Section 6.3 is motivated by the investigation of an enumeration algorithm for
dominating sets, which is inspired from an approach in [4].

6.1 Total Dominating Set

A total dominating set can be viewed as a dominating set in which the vertices
do not cover themselves. A total dominating set of a graph G is a subset of
vertices D ⊆ V (G) such that for all x ∈ V (G), NG(x) ∩ D = ∅; D is minimal if
for all x ∈ D, D \ {x} is not a total dominating set. We note Dt(G) the set of
all minimal total dominating sets of G. For a graph G, we let No(G), the open
neighbourhood hypergraph be (V (G), {NG(x) | x ∈ V (G)}). We let Tds be the
problem of listing Dt(G) for a graph G.

Proposition 4. Tds is equivalent to Trans-Hyp.

Proof. We first show that one can reduce Tds to Trans-Hyp on open neigh-
bourhood hypergraph (the reduction was first noted in [22]). Let G be a graph.
It is enough to show that D ⊆ V (G) is a total dominating set in G if and only
if it is a transversal of No(G). If D is a total dominating set of G, then for each
x ∈ V (G), NG(x) ∩ D = ∅. Therefore, D is a transversal of No(G). Conversely,
if T is a transversal of No(G), then for each x ∈ V (G), T ∩ NG(x) = ∅, i.e. T is
a total dominating set of G.

We show now that Trans-Hyp can be reduced to Tds. Let H be a hy-
pergraph. Assume furthermore that H has no dominating vertex, i.e., a vertex
belonging to all edges. Note that this case is not restrictive since if x ∈ V (H) is
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a dominating vertex, then Tr(H) = {{x}} ∪ Tr(H \ {x}) and consider so this
reduced hypergraph. We then show that Dt(I ′(H)) = Tr(H).

(i) Let D be a minimal total dominating set of I ′(H) and let e ∈ E(H). Then,
there exists x ∈ V (H) ∩ D such that xye ∈ E(I ′(H)), i.e. x ∈ e. We now claim
that ye /∈ D for all e ∈ E(H). Otherwise, there exists x ∈ e ∩ D and since
I ′(H)[V (H)] is a clique, D \ ye is also a total dominating set (D ∩ V (H) ≥ 2),
contradicting the minimality of D. Thus D is a transversal of H.

(ii) Let T be a transversal of H. Then, for all e ∈ E(H), T ∩ e = ∅, i.e. for
all z ∈ V (I ′(H)) \ V (H) there exists x ∈ T such that xz ∈ E(I ′(H)). Since
there is no dominating vertex, |T | ≥ 2, and because I′(H)[V (H)] is a clique, for
all x ∈ V (H), there exists y ∈ T such that xy ∈ E(I ′(H)). Hence, T is a total
dominating set of I ′(H).

From (i) and (ii) we can conclude that Dt(I ′(H)) = Tr(H). ��

Remark 1. The proof of Proposition 4 reveals that Trans-Hyp is reduced to
Tds in split graphs. Hence, Tds in graphs is equivalent to Tds in split graphs.

6.2 Connected Dominating Set

A connected dominating set in a graph G is a subset D of V (G) such that D is a
dominating set of G and such that G[D] is connected. A connected dominating
set D is minimal, if for all x ∈ D, D \ {x} is not a connected dominating set, in
other words either D\{x} is not a dominating set or G[D\{x}] is not connected.
We denote by Dc(G) the set of all minimal connected dominating sets of G. We
let Cds the problem of generating Dc(G) for a graph G.

Proposition 5. Cds in split graphs is equivalent to Trans-Hyp.

Proof. Let H be a hypergraph. Then we show that Dc(I ′(H)) = Tr(H).
(i) Let D ∈ Dc(I ′(H)). Note firstly that D ⊆ V (H). Indeed, suppose that

there is ye ∈ D for some e ∈ E(H). Since, D must be connected, there is a
neighbour z of ye in D. Since {ye | e ∈ E(H)} is an independent set, z must
belong to V (H). But since I ′(H)[V (H)] forms a clique, PD(ye) ⊆ PD(z) and thus
D \ {ye} is yet a connected dominating set, which contradicts the minimality of
D. Now, for each e ∈ E(H), there exists x ∈ D such that xye ∈ E(I ′(H)), hence
D ∩ e = ∅. And so D is a transversal of H.

(ii) Let T be a transversal of H. Since I ′(H)[V (H)] is a clique, T is connected
and, for each x ∈ V (H), there exists y ∈ T such that xy ∈ E(I ′(H)). Further-
more, for each e ∈ E(H), T ∩ e = ∅, i.e. for each ye ∈ V (I ′(H)) \ V (H), there
is z ∈ T such that zye ∈ E(I ′(H)). Hence, T is a connected dominating set of
I ′(H).

From (i) and (ii) we can conclude that Dc(I ′(H)) = Tr(H).
It remains to reduce Cds to Trans-Hyp. For a split graph G, we let H be

the hypergraph (C(G), {NG(x) | x ∈ S(G)}). It is easy to see that G = I ′(H)
and so from above, Dc(I ′(H)) = Tr(H). ��

Remark 2. We do not currently know if Cds is equivalent to Trans-Hyp in all
graphs. However, Cds in bipartite graphs is Trans-Hyp-Hard. Indeed consider,
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for a hypergraph H, the graph B defined as follows: V (B) = V (I(H)) ∪ {x, y}
and E(B) = E(I(H)) ∪ {xy} ∪ {xz | z ∈ V (H)}, then one can easily show that
Tr(H) = Dc(B).

We can remark that Dc(G) and Dt(G) are equal in split graphs, and they also
coincide with another set Dmc(G) := Dc(G) ∩D(G) which is the minimal domi-
nating sets that are connected. Note that Dmc(G) can be empty in general.

6.3 Dominating Sets Containing a Set

For a hypergraph H and a subset A of V (H), we denote by Tr(H, A), the set
of minimal transversals of H containing A. The problem consisting in asking
whether T = Tr(G, A), given T ⊆ 2V (H), is denoted by Tcs.

Proposition 6. [4] Tcs is co-NP-complete.

For a graph G and a subset A of V (G), we denote by D(G, A), the set of minimal
dominating sets containing A. The problem consisting in asking whether T =
D(G, A), given T ⊆ 2V (G), is denoted by Dcs.

Proposition 7. Dcs is co-NP-complete.

Proof. Dcs is in coNP. It suffices to guess a set of vertices and check in poly-
nomial time if this set is a dominating set containing A and not in T . So it is
sufficient to show the reduction from Tcs to Dcs. Let H be a hypergraph and
A ⊆ V (H). We construct the graph B such that V (B) = V (I ′(H))∪{w, x, y, z},
and E(B) = E(I ′(H))∪{wx, xy, yz}∪{{wye} | e ∈ E(H)}. An example is given
in Figure 3. We show that Tr(H, A) is in bijection with D(B, A ∪ {x, y}).

(i) Let T ∈ Tr(H, A) then we claim that T ′ = T ∪ {x, y} ∈ D(B, A ∪ {x, y}).
Indeed A∪{x, y} ⊆ T ′ and all vertices in V (H) are covered because I ′(H)[V (H)]
forms a clique and T = ∅. Furthermore for all e ∈ EH, e∩T = ∅, so NB[ye]∩T ′ =
∅ and w and z are covered by T ′ because {x, y} ⊆ T ′. We must also check that
T ′ is minimal. Since T ∈ Tr(H, A), it is clear that we can not remove a vertex
in T , and we can not remove neither x nor y otherwise, w or z would not be
covered. So T ′ ∈ D(B, A ∪ {x, y}).

(ii) Let now D ∈ D(B, A ∪ {x, y}), we show that D′ = D \ {x, y} ∈ Tr(H, A).
We first claim that D′ ⊆ V (H). Actually, since D is a minimal dominating set,
for all z ∈ D, PD(z) = ∅. But PD(x) ⊆ {w} and so, if ye, for some e ∈ E(H),
belong to T , then PD(x) would be empty, which contradicts the minimality of D.
Also, w and z cannot belong to D, otherwise PD(x) or PD(y) would be empty.
Furthermore, since for all e ∈ E(H), ye must be covered by some vertex in D
and since D ⊆ V (H), D′ is a transversal of H. Finally, by definition, A ⊆ D′,
and then D′ is a transversal of H containing A.

From (i) and (ii) we can conclude that Tr(H, A) = {D\{x, y} | D ∈ D(B, A∪
{x, y})} and hence Tcs is reduced to Dcs. ��
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Fig. 3. An example of B(H) where H = ({x1, x2, x3, x4}, {e1, e2, e3, e4, e5, e6}) with
e1 = {x1, x2}, e2 = {x1, x2}, e3 = {x1, x3, x4}, e4 = {x2, x4}, e5 = {x3, x4}, e6 =
{x2, x4}
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Abstract. Higher-order store means that code can be stored on the
mutable heap that programs manipulate, and is the basis of flexible soft-
ware that can be changed or re-configured at runtime. Specifying such
programs is challenging because of recursion through the store, where
new (mutual) recursions between code are set up on the fly. This paper
presents a series of formal specification patterns that capture increas-
ingly complex uses of recursion through the store. To express the neces-
sary specifications we extend the separation logic for higher-order store
given by Schwinghammer et al. (CSL, 2009), adding parameter passing,
and certain recursively defined families of assertions. Finally, we apply
our specification patterns and rules to an example program that exploits
many of the possibilities offered by higher-order store; this is the first
larger case study conducted with logical techniques based on work by
Schwinghammer et al. (CSL, 2009), and shows that they are practical.

1 Introduction and Motivation

Popular “classic” languages like ML, Java and C provide facilities for manipulat-
ing code stored on the heap at runtime. With ML one can store newly generated
function values in heap cells; with Java one can load new classes at runtime and
create objects of those classes on the heap. Even for C, where the code of the
program is usually assumed to be immutable, programs can dynamically load
and unload libraries at runtime, and use function pointers to invoke their code.
Heaps that contain code in this way have been termed higher-order store.

This important language feature is the basis of flexible software systems that
can be changed or re-configured at runtime. For example, the module mechanism
of the Linux kernel allows one to load, unload and update code which extends
the functionality of the kernel, without rebooting the system [9]. Examples of
modules include drivers for hardware devices and filesystems, and executable
interpreters that provide support for running new kinds of executables; by up-
dating function pointers in the “syscall table”, modules can at run time intercept
any system call that the kernel provides. In [19,14] bugfixing and upgrading C
programs without restarting them is discussed; for instance, a version of the
OpenSSH server is built that can update itself while running when a new ver-
sion becomes available, without disconnecting existing users.

Obtaining logics, and therefore verification methods, for such programs has
been very challenging however, due to the complexity of higher-order heaps (see
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for example the discussion in [15]). Semantically, the denotation of such a heap
is a mixed-variant recursively defined domain. The recursive nature of the heap
complicates matters, because in addition to loading, updating and deallocating
code, programs may “tie knots in the store” [13], i.e. create new recursions on
the fly; this is known as recursion through the store. In fact, this knot-tying is
happening whenever code on the heap is used in a recursive way, such as in
the Visitor pattern [8] which involves a mutual recursion between the visitor’s
methods and the visited structure’s methods.

To enable logical reasoning about software that uses higher-order store, the
contributions of this paper are as follows.

– We present and classify patterns of formal specification for programs that re-
curse through the store, using recursive assertions and nested triples
(Section 4) ([18] considered only a very simple form for specifications).

– We state a generic “master pattern” covering all the recursively defined spec-
ification patterns we identified in this paper, and argue that the fixed points
needed to give semantics to such specifications always exist (Section 4).

– We apply the specification and proof techniques we developed to an exam-
ple program which exploits many of the possibilities offered by higher-order
store (Section 5). This is the first larger case study conducted with logical
techniques based on [18], and shows that they are practical. Note that we use
a slight extension of [18], adding call-by-value procedure parameters, induc-
tively defined predicates and certain recursively defined families of assertions
for lists. There is no space for giving proofs, but it should be pointed out
that proofs have been done and we have developed a verification tool for
support. We refer to this in the Conclusions (Section 6).

2 Our Running Example Program

We now present an example program which demonstrates in a simple way some
of the possibilities offered by higher-order store and recursion through the store,
of which it makes essential use. Our program performs evaluation of (binary)
expressions represented as binary trees. A tree node is either an integer leaf or
a labeled binary fork which identifies the expression operator. The distinction is
effected by a label which is 0 for operators and 1 for leaves. For operations we will
look at some typical examples like plus, but it is inherent to the approach that
any (binary) operation can be interpreted. This flexibility is achieved by giving
each tree node a pointer to the evaluation procedure to be used to evaluate it.
The referenced evaluation procedure “implements” the meaning of the labeled
node. This flexibility goes beyond the classic “visitor” pattern, which only works
for a predefined class of node types.

Importantly the code implementing the various evaluations of different tree
nodes is not fixed by the main program; instead, each operator evaluation pro-
cedure is implemented as a loadable module, which can be loaded on demand
and a pointer to which can be saved in the tree nodes. This results in the data
structures shown in Fig. 1.
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Fig. 1. The data structures used by our example program

The main program. Its code is given in Fig. 2. The eval [e](e) statement
invokes the code stored in the heap at address e, with a vector of (value) pa-
rameters e. The shorthand res (explained later) simulates reference parameters.
The expression ‘λx.C’ denotes an unevaluated procedure with body C, taking
formal parameters x, as a value; thus [e] := ‘λx.C’ is used to store procedures
into the heap. As in ML, all variables in our language are immutable, so that
once they are bound to a value, their values do not change. This property of the
language lets us avoid side conditions on variables when studying frame rules.
Our main program’s code assumes the following to be in the heap:

1. The input: variable tree is a pointer to a binary tree as described above
situated on the heap; res is a reference cell to store the result of the evalu-
ation. In case the expression trees also encode variables, an association list
mapping those variables to values is globally available at address assoclist .

2. Module-loading infrastructure: a linked list storing modules, pointed to by a
globally known pointer modlist , and two procedures pointed to by searchMods
and loader . Calling eval [searchMods ](opID , res codeaddr ) searches the list of
loaded modules for the one implementing operator opID , returning its ad-
dress or null (0) if it is not present. Calling eval [loader ](opID , res codeaddr )
always guarantees a module implementing operator opID is loaded, loading
it if necessary, and returning its address.

3. A“tree visitor” procedure pointed to by evalTree , whose address is known to
all modules and the main program. Note that this visitor does not contain



Specification Patterns and Proofs for Recursion through the Store 313

// constant offsets

const CodePtrO = 1

const LeftO = 2

const RightO = 3

const OpIDO = 4

const ValO = 1

[evalTree ] :=

‘λ tree , resaddr .

let kind = [tree ] in

if kind = 1 then

let val = [tree + ValO] in [resaddr ] := val

else

let codePtr = [tree + CodePtrO] in

eval [codePtr ](tree , resaddr )

’ ;

eval [evalTree ](tree , res res)

Fig. 2. Code for the “main program” part of our running example

the individual procedures for node types as in the standard pattern because
we can directly store pointers to them within the nodes.

The main program first stores the procedure evalTree in the heap before calling
it for the given input tree and result cell. For space reasons this code assumes
that the tree and a suitable global modlist are already set up; we do not describe
the initial construction of these data structures. We will, however, demonstrate
that further loading can be done once the evaluator is already in action, namely
from one of the procedures called by evalTree.

Some illustrative modules. Independently of the main program we can
write the loadable modules starting with the basic ones for the evaluation of
nodes that are labeled VAR, PLUS, TIMES etc. The VAR module evaluates its
left subtree to an integer n, and then looks up the value of xn, the variable with
ID n, from the association list (the right subtree is ignored). Fig. 3 contains
an implementation of PLUS. Note how this implementation calls back evalTree
which in turn makes further calls to modules (either for PLUS again or for other
operators): this is mutual recursion through the store.

As well as implementing arithmetic operators, the module mechanism can be
used to extend the program in more dramatic ways. We can implement an op-
erator ASSIGN, so that expression ASSIGN E1 E2 updates the association list,
giving variable xE1 the new value E2, and returns, say, the variable’s new value.
Then we can turn our expression evaluator into an interpreter for a program-
ming language; we can add modules implementing the usual control constructs
such as sequential composition, alternation and repetition. Fig. 3 gives the im-
plementation for WHILE. We emphasise that the WHILE operator can only be
implemented because the code for each operator decides how often and when
to evaluate the subexpressions; if the main program were in charge of the tree
traversal (i.e. a tree fold was being used), WHILE could not be written.

We finish by examining some further modules (also in Fig. 3) which illustrate
more complex uses of higher-order store. The LOAD OVERWRITE procedure
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PLUS: ‘λ tree , resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

eval [evalTree ](left , res leftVal) ;

eval [evalTree ](right , res rightVal) ;

[resaddr ] := leftVal + rightVal ’

WHILE: ‘λ tree , resaddr .

let left = [tree + LeftO] in

let right = [tree + RightO] in

let b = new 0 in

eval [evalTree ](left , b) ;

while [b] do

(eval [evalTree ](right , resaddr ) ;

eval [evalTree ](left , b)) ;

free b’

LOAD OVERWRITE : ‘λ tree , resaddr .

let opcode = [tree + OpIDO] in

eval [loader ](opcode , res procptraddr ) ;

[tree + CodePtrO] := procptraddr

eval [evalTree ](tree , resaddr )’

OSCILLATE : ‘λ tree , resaddr .

let left = [tree + LeftO] in

eval [evalTree ](left , resaddr ) ;

let selfCodeptr = [tree + CodePtrO] in

let oldCode = [selfCodeptr ] in

[selfCodeptr ] :=

‘λ tree , resaddr .

let right = [tree + RightO] in

eval [evalTree ](right , resaddr ) ;

let selfCodeptr = [tree + CodePtrO] in

[selfCodeptr ] := oldCode ’ ’

Fig. 3. Code for some modules demonstrating various uses of higher order store

first loads the code for the tree node’s opID into the module list, then updates its
own code pointer before calling that to evaluate the tree with the freshly loaded
procedure. Note that next time the same code pointer in the tree is visited the
newly loaded procedure is executed straight away and no more loading occurs.
This update affects only the pointer in the tree data structure. The operator
OSCILLATE chooses to evaluate the left subtree and returns its result. But it
also updates itself with a version that, when evaluated, picks the right subtree
for evaluation and then updates back to the original version. In this case the
code in the module list itself is updated and thus all tree references pointing to
it from the tree are affected by the update.

We have also considered specialisation of code at runtime. We wrote an imple-
mentation of the binomial coefficient

(
n
k

)
:= n!/k!(n−k)! which, when it detects

that its left subtree (i.e. n) is an integer literal, calculates n! (once) and generates
on the fly an optimised implementation of

(
n
k

)
that reuses the value.

3 The Programming and Assertion Languages

The programming language. We work with a simple imperative programming
language extended with operations for stored procedures and heap
manipulation, as described and used in Section 2. The syntax of the language is
shown in Fig. 4, where x (resp. e) represents a vector of distinct variables (resp.
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e ::= 0 | 1 | − 1 | . . . | e1 + e2 | . . . | x | ‘λx.C’ Σ ::= x | {e} | ∅ | Σ1 ∪ Σ2

C ::= [e1] := e2 | let y = [e] in C | eval [e](e) | let x = new e in C

| free e | skip | C1; C2 | if e1 = e2 then C1 else C2

P ::= True | False | P1 ∨ P2 | P1 ∧ P2 | P1 ⇒ P2 | ∀x.P | ∃x.P | e1 = e2 | e1 ≤ e2

| e1 �→ e2 | emp | P1 � P2 | lseg(e1, e2, Σ) | tree(e1, Σ) | . . .

| {P} e(e) {Q} | P ⊗ Q | Σ1 ⊆ Σ2 | (μk R1(x1), . . . , Rn(xn) . A1, . . . , An)(e)

Fig. 4. Syntax of expressions, commands and assertions

a vector of expressions). This language extends that in [18] by providing for the
passing of value parameters. For convenience we employ two abbreviations: we
allow ourselves a looping construct while [e] do C, which can be expressed with
recursion through the store, and we write eval [e](e, res v) ; C as shorthand for
let vaddr = new 0 in (eval [e](e, vaddr ) ; let v = [vaddr ] in C ; free vaddr ).

The assertion language. The assertion language, shown in Fig. 4, follows
[18], adding finite sets, more general recursive definitions and inductive predi-
cates, and with some changes to accommodate parameter passing. The language
is based on first-order intuitionistic logic augmented with the standard connec-
tives of separation logic [17], and several further extensions:

Nested triples: Triples are assertions, so they can appear in pre- and post-
conditions of triples. This nested use of triples is crucial because it allows one
to specify stored code behaviourally, i.e. in terms of properties that it satisfies.
The triple {P} e(e) {Q} means that e denotes code satisfying {P} · {Q} when
invoked with parameters e. For code that does not expect any parameters, e
will have length zero and we write simply {P} e {Q}.

Invariant extension: Intuitively invariant extension P ⊗ Q denotes a mod-
ification of P where all the pre- and post-conditions of triples inside P are
�-extended with Q. The operator ⊗ is from [4,18] and is not symmetric.

Inductively defined predicates: Predicates describing the linked lists and
trees we use are available; their defining axioms are given in Fig. 5. The “. . . ” in
Fig. 4 indicates that any similar predicates can be added as required. lseg(x, y, Σ)
denotes a linked list segment from x to y, of nodes of three cells each, where Σ
is the set of addresses of the nodes. lseg<T (·)>(x, y, Σ) says additionally that
the first value in each of the segment’s nodes satisfies T , which is an assertion
with an expression hole. tree(t, Σ) denotes an expression tree rooted at t where
the code pointers pointing out of the tree point to the set of addresses Σ.

(Mutually) Recursively defined assertions: Recursively defined asser-
tions are the key to our work, because they let us reason naturally about chal-
lenging patterns of execution, such as self-updating code and recursion through
the store. We use the notation μk R1(x1), . . . , Rn(xn) . P1, . . . , Pn to indicate
that n predicates are defined mutually recursively with arguments xi and bodies
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lseg(x, y, σ) ⇔ (x = y ∧ σ = ∅ ∧ emp)

∨ (∃nxt , σ′ . x �→ , ,nxt � lseg(nxt , y, σ′) ∧ nxt �= x ∧ σ = σ′ ∪ {x})
lseg 〈T (·)〉 (x, y, σ) ⇔ lseg(x, y, σ) ∧ ∀a.a ∈ σ ⇒ (a �→ T (·) � True)

tree(t, τ ) ⇔ treefork(t, τ ) ∨ (∃n . t �→ 1, n ∧ τ = ∅)

treefork(t, τ ) ⇔ ∃codePtr , left , right , opId , τ ′, τ ′′. τ = {codePtr} ∪ τ ′ ∪ τ ′′

∧ t �→ 0, codePtr , left , right , opId � tree(left, τ ′) � tree(right , τ ′′)

Fig. 5. Inductively defined predicates used to specify and prove our example program

Pi, respectively, and the superscript k indicates that the k-th such predicate is
selected. Note that (just to save space) we avoid introducing a syntactic cate-
gory for predicates so (μk R1(x1), . . . , Rn(xn).P1, . . . , Pn)(e) is a formula but
without arguments μk R1(x1), . . . , Rn(xn).P1, . . . , Pn is not a syntactically cor-
rect construct. Throughout the paper we will, however, for the sake of brevity,
use abbreviations of the form A := μk R1(x1), . . . , Rn(xn).P1, . . . , Pn that are
understood to be used with proper arguments in formulae. In Section 4 we will
give a grammar for formulae that can be allowed in those recursive definitions
since existence of fixed points is not automatic. We write A for an allowed for-
mula, i.e. one that is of an appropriate form to ensure the existence of a solution;
recursion variables Ri are only allowed to appear inside such an A .

Each assertion describes a property of states, which consist of an (immutable)
environment and a mutable heap. We use some abbreviations to improve read-
ability: e ∈ Σ := {e} ⊆ Σ, e !→ := ∃x. e !→ x and e !→ P [·] := ∃x. e !→ x ∧ P [x]
where P [·] is an assertion with an expression hole, such as {Q} · {R}, · = e or
· ≤ e. Additionally we have e !→ e0, . . . , en := e !→ e0 � · · · � (e+n) !→ en. The set
of free variables of an expression or assertion is largely obvious, but note that
fv(‘λx.C’) := fv (C) − x.

4 Specification Patterns for Recursion through the Store

In this section we present a series of patterns, of increasing complexity, for spec-
ifying recursion through the store. By pattern we mean the shape of the spec-
ification, in particular the shape of the recursively defined assertion needed to
deal with the recursion through the store.

Recursion via one or finitely many fixed pointers. The specification
Φ1 in Fig. 6 describes code that operates on a data structure D and calls itself
recursively through a pointer g into the heap. Φ2 (also in Fig. 6) describes two
pieces of code on the heap that call themselves and each other recursively via two
pointers g1 and g2. Similarly Φ3, Φ4, . . . can be formulated. (The D, D1, D2, . . . in
Fig. 6 are metavariables, and in applications of the patterns they will be replaced
by concrete formulae describing data structures.)
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Fixed pointers: Φ1 := μ1R . g �→ ∀x.{D1 � R } · (p){D2 � R }
Φ2 := μ1R . g1 �→ ∀x1.{D1� R }·(p1){D2� R } � g2 �→ ∀x2.{D3� R }·(p2){D4� R }

With dynamic loader: Φloader := Rloaded(g1) � Rloaded(g2) � LoaderCode where

Rloaded := μ1 R(c),LoaderCode .

c �→ ∀x.{D� R(g1) � R(g2) � LoaderCode }·(p){D� R(g1) � R(g2) � LoaderCode },
loader �→ ∀a, ID. {a �→ } · (a, ID) { R(a) }

List of code: CLseg := μ1R(x, y, σ) . lseg< T0(·) >(x, y, σ) where T0(·) is

∀x.{∃a, σ. D � codelist �→ a � R(a, null, σ) } · (p){∃a, σ. D � codelist �→ a � R(a,null, σ) }

Data structure with pointers: CLseg ′ := μ1R(x, y, σ). lseg< T1(·) >(x, y, σ) where

T1(·) is

∀x .

{
∃a, σ, τ. τ ⊆ σ ∧ D(τ )

� codelist �→ a � R(a, null, σ)

}
· (p)

{
∃a, σ, τ. τ ⊆ σ ∧ D(τ )

� codelist �→ a � R(a,null, σ)

}

The master pattern: μk R1(x1), . . . , Rn(xn) . A1, . . . , An

where the following grammar shows what form each Ai can take (here i1, . . . , im and
i′1, . . . , i

′
m′ are in {1, . . . , n}, and P, P ′ are formulae not containing any of R1, . . . , Rn):

S ::= ∀x1. {∃x2 . Ri1(e1)�· · ·�Rim (em)�P} · (x3) {∃x4 . Ri′1(e′
1)�· · ·�Ri′

m′ (e
′
m′)�P ′}

T ::= t �→ S(·) | t �→ x ∧ S(x) Ai ::= T1 � · · · � Tk | lseg<S>(x)

Fig. 6. Specification patterns for recursion through the store

Specification Φ1 allows the code pointed to by g to update itself (like our
OSCILLATE example). Similarly, specification Φ2 allows pieces of code in g1 and
g2 to update themselves and additionally to update each other. Such updates are
permitted as long as the update is with code that behaves in the same way12.

Note that although in this paper we will focus on proving memory safety, our
patterns encompass full functional correctness specifications too. For instance, a
factorial function that calls itself recursively through the store can be function-
ally specified using the following instance of the Φ1 pattern:

μ1R . g !→ ∀x, n.{x !→ n � r !→ � R } · (x){x !→ 0 � r !→ n! � R }

1 Unlike the types used, say, in [2], our nested triples can handle updates that do not
preserve code behaviour; examples in this paper do not use such updates, however.

2 There are occasions when it is necessary to explicitly disallow update. This happens
when one has a public and a (stronger) private specification for some code; allowing
“external” updates to the code might preserve only the public specification.
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Usage with a dynamic loader. As we pointed out, the preceding specifi-
cations permit in place update of code. This treats behaviour like that of our
OSCILLATE module, which explicitly writes code onto the heap; but it does not
account for behaviour like that of LOAD OVERWRITE, where a loader func-
tion of the main program is invoked to load other code that is required. The
specification Φloader in Fig. 6 describes a situation where two pieces of code are
on the heap, calling themselves and each other recursively; but each may also
call a loader procedure provided by the main program. Note the asymmetry in
the specification of the loader, which could not be expressed using ⊗: R appears
in the postcondition but nowhere in the precondition. Note also that we have
omitted the analogous definition of LoaderCode (using μ2) here for brevity.

Recursion via a list of code. The next step up in complexity is where a
linked list is used to hold an arbitrary number of pieces of code. We suppose that
each list node has three fields: the code, an ID number identifying the code, and
a next pointer. The ID numbers allow the pieces of code to locate each other by
searching through the list. We suppose that the cell at codelist contains a pointer
to the start of the list. To reason about this setup, we use lseg<T> (Fig. 5) to
define recursively a predicate CLseg (Fig. 6) for segments of code lists. Note
the existential quantifiers over a and σ in the auxiliary T0: these mean that the
pieces of code are free to extend or update the code list in any way they like, e.g.
by updating themselves or adding or updating other code, as long as the new
code also behaves again in the same way. One can constrain this behaviour by
varying the specification in several ways; for instance, we can allow the pieces of
code in the list to call each other but prohibit them from updating each other.

We point out the similarity between our idealised code lists and for example
the net device list that the Linux kernel uses to manage dynamically loaded and
unloaded network device drivers [6].

Recursion via a set of pointers stored in a data structure. Instead of
finding the right code to call explicitly within a list of type CLseg (using the
ID numbers) the program might set up code pointers referencing code in such
a list so that the pieces of code can invoke each other directly. We suppose
that these direct code pointers live in the data structure D, writing D(τ) for a
data structure whose code pointers collectively point to the set of addresses τ .
The recursive specification we need is CLseg ′ (in Fig. 6); the constraint τ ⊆ σ
says that all code pointers in D must point into the code list. Our example
program combines this kind of recursion through the store with use of a loader
function; we will see the specifications needed in Section 5 where the D(·) will
be tree(a, ·).

The master pattern. The last part of Fig. 6 presents a master pattern,
which encompasses all the specification patterns seen so far. We have shown that
recursive definitions of this form admit unique solutions; due to space constraints
the proof of this, which uses the model and techniques of [18], is omitted. The ⊗
operator does not appear in the master pattern, but its effect can be expressed
by unfolding its definition using the distributions axioms for ⊗ as found in [18].
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CLseg := μ1 CLseg(x, y, σ),EvalCode ,LoaderCode ,SearchModsCode .

lseg< Mod >(x, y, σ),

evalTree �→ EvalTriple(·) ,

loader �→ ∀opID, codePtraddr , σ1 .⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃a .

modlist �→ a

� CLseg(a, null, σ1)

� codePtraddr �→

⎫⎪⎪⎪⎬⎪⎪⎪⎭ · (opID, codePtraddr )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃a, r, σ2. σ1 ∪ {r} ⊆ σ2 ∧

modlist �→ a

� CLseg(a, null, σ2)

� codePtraddr �→ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

searchMods �→ ∀opID , codePtraddr , a, σ .⎧⎪⎨⎪⎩
modlist �→ a

� CLseg(a, null, σ)

� codePtraddr �→

⎫⎪⎬⎪⎭ · (opID, codePtraddr )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃r. (r ∈ σ ∨ r = null) ∧

modlist �→ a

� CLseg(a, null, σ)

� codePtraddr �→ r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where Mod(F ) abbreviates

∀t, r, τ1, σ1 .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃a. τ1 ⊆ σ1 ∧
modlist �→ a

� CLseg(a, null, σ1)

� treefork(t, τ1)

� EvalCode

� LoaderCode

� SearchModsCode
� r �→

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
F (t, r)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃a, σ2, τ2. τ2 ⊆ σ2 ∧ σ1 ⊆ σ2 ∧
modlist �→ a

� CLseg(a, null, σ2)

� tree(t, τ2)

� EvalCode

� LoaderCode

� SearchModsCode
� r �→

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and EvalTriple(F ) is the same, but with tree in place of treefork in the precondition.

Fig. 7. Definitions of predicates used in the specification of our example program

5 Specifying and Proving Our Example Program

In this section we show how to specify memory safety of our example program;
due to space restrictions we can only hint briefly at the proof. Our program
uses three heap data structures (Fig. 1) as well as various procedures stored
on the heap; Fig. 7 defines the predicates we use to describe these. All uses
of μ fit the master pattern. By convention predicates named ProcCode assert
that the variable proc points to some appropriate code stored in the heap. The
abbreviation Mod(F ) used here says that code F behaves appropriately to be
used as a module in our system. Mod(F ) is almost the same as the specification
for evalTree; the difference is that modules may assume the tree is a fork, because
evalTree has already checked for and handled the leaf case.

In the proof obligation of the main program (Fig. 2) we assume specifications
for the procedures loader and searchMods (for which the code is not given):
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modlist �→ a � CLseg(a, null, σ) � tree(tree , τ ) ∧ τ ⊆ σ
� LoaderCode � SearchModsCode � evalTree �→

}
MainProg

{
True

}
A more specific post-condition could be used to prove the absence of memory

leaks etc., but True is sufficient for memory safety. For the proof we use some
obvious adaptations of rules as presented in [18].

We remark that because the main program doesn’t manipulate the association
list at all, we can omit AssocList from our proof of the main program. Once our
proof is complete, we can use the so-called deep frame rule (⊗–Frame in [18]) to
add AssocList everywhere it is needed. To prove memory safety of the modules
we must show for each module implementation M that Mod(M)⊗AssocList . For
modules that do not directly access the association list (e.g. PLUS), we first prove
Mod(M) and then use ⊗–Frame to add AssocList . For modules that do access
the association list, e.g. VAR and ASSIGN, one must prove Mod(M)⊗AssocList
directly.

The proofs for the modules are very similar to that for the main program.
One difference is that one must apply the �-frame axiom to nested triples as
well: e.g. in the module PLUS, the first eval works only on the left subtree, so we
use �-frame (see [18]) to add the root node and the right subtree as invariants
to the triple for evalTree . Here we see the purpose of the constraint σ1 ⊆ σ2 in
the postconditions of Mod and EvalTriple , which says that modules can update
code in place, and add new code, but may not delete code from the code list.

6 Conclusions and Future Work

We extended the separation logic of [18] for higher-order store, adding several
features needed to reason about larger, more realistic programs, including pa-
rameter passing and more general recursive specification patterns. We classified
and discussed several such specification patterns, corresponding to increasingly
complex uses of recursion through the store.

The work most closely related to ours (other than [18] on which we build) is
that by Honda et al. [10], which also provides a Hoare logic with nested triples.
It discusses the proof of a factorial function which calls itself through the store,
but does not consider more complex patterns of recursion through the store.
In [10] content quantification is used instead of separation logic, consequently
ignoring frame rules, and total rather than partial correctness is treated.

We plan to extend our language and logic with (extensional) operations for
generating code at runtime. We will also study the relationship between nested
triples and the specifications based on abstract predicate families used in [16].

Finally, the complexity of the involved specifications and proofs demands tool
support. We have developed a verification tool Crowfoot [1] supporting a logic
and a language very similar to that used in this paper. We have used Crowfoot,
for example, to verify correctness of runtime module updates [5], and to verify a
version of the example presented in this paper. Use of �-frame by Crowfoot is
automatic, whereas the use of ⊗-frame is presently guided by user annotations.
Our tool has been inspired by tools for separation logic like Smallfoot [3], jStar
[7] and VeriFast [11] (a small survey of related work can be found in [12]).
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Abstract. Every recursively enumerable set of integers (r.e. set) is enu-
merable by a primitive recursive function. But if the enumeration is re-
quired to be one-one, only a proper subset of all r.e. sets qualify. Starting
from a collection of total recursive functions containing the primitive re-
cursive functions, we thus define a sub-computability as an enumeration
of the r.e. sets that are themselves one-one enumerable by total functions
of the given collection. Notions similar to the classical computability ones
are introduced and variants of the classical theorems are shown. We also
introduce sub-reducibilities and study the related completeness notions.
One of the striking results is the existence of natural (recursive) sets
which play the role of low (non-recursive) solutions to Post’s problem
for these sub-reducibilities. The similarity between sub-computabilities
and (complete) computability is surprising, since there are so many miss-
ing r.e. sets in sub-computabilities. They can be seen as toy models of
computability.

Introduction

Many proofs in (basic and also more involved) computability rely on the algebraic
structure of the enumeration of r.e. sets, partial functions, etc., and not really
per se on the notion of “being computable”. The structure is provided by the
properties of an acceptable enumeration, and consequences of being acceptable,
e.g., Kleene’s second recursion theorem. One motivation behind the work of this
article is to develop results similar to the classical computability ones (from
basic results to Turing completeness issues) but in a setting verifying only a
proper subset of the elementary properties of classical computability. In our
case, this translates as the quest of developing computabilities with most of the
nooks and crannies of classical computability without being all of computability.
Here, a computability is meant to be collections of sets and functions which
portray what we consider in this setting to be the r.e. sets and partial computable
functions. Sub-computabilities are computabilities where these collections are
a proper subset of the classical ones and is the focus of this article. Higher
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computability could also be cast in this setting and it will be the subject of a
subsequent article. Our setting can be seen as a toy model for computability, not
based on models of machines, but on the algebraic structure of computability.

A sub-computability is a pair ( · , · ) of enumerations of a sufficiently
closed collection (called the foundation of ) of total recursive functions (called
-fundamental), and of a collection (called the support of ) of r.e. sets (called
-enumerable), which are one-one enumerated1 by functions in . These funda-

mental functions somehow measure the effectiveness of the constructions used in
computability. A partial recursive function is said to be somewhat -computable
if its graph is -enumerable. Building on an enumeration · , we can respectively
build canonical enumerations · (resp. ϕ· ) of -enumerable sets (resp. some-
what -computable functions). Since the collection of -enumerable sets (and
somewhat -computable functions) is completely and uniquely determined by
the collection , we will identify with the foundation ( = ). What could
vary is the enumerations of and , but we will see with the isomorphism
theorem à la Rogers (Theorem 5) that there is no confusion here.

An example of a sub-computability is , the r.e. sets one-one enumerated
by primitive recursive functions. Koz’minyh [2] in 1972 proved a key lemma
on . We generalize this lemma (Lemma 1) to any sub-computability. It gives
insights into the behavior of -enumerable sets and somewhat -computable
functions. Its corollaries make classical constructions possible, even if we do not
have the general μ recursion operator. The (primitive recursive) effectivity of
these corollaries (and of most of our theorems) is especially useful.

Other sub-computability foundations (and thus sub-computabilities) stem
from the field of subrecursion. It provides a great number of examples of closed
collections of ever more increasing total functions which do not contain all of the
total recursive functions. This study is strongly entangled with proof theory and
provides a clear picture of “what is provable and what is not” in a theory for
which one is able to construct an ordinal analysis. In particular, proof theory has
identified for many theories T the set of total recursive functions whose totality
is provable in T . This connection gives another motivation to our work.

Studying sub-computabilities amounts to classifying r.e. sets by measuring
the difficulty of enumerating them by way of subrecursion. On that quest, one
stumbles with the well-known at first surprising result that all r.e. sets are enu-
merable by primitive recursive functions. But if the enumeration is required to
be one-one, the triviality evaporates: some r.e. sets are not one-one enumerable
by primitive recursive functions, e.g., the Ackermann function’s range, but still
many r.e. sets are primitively one-one enumerable, e.g., the graph of the char-
acteristic function of the range of the Ackermann function or the graph of a
universal function.

If a set of integers is enumerable in a sub-computability, then it is recursively
enumerable. If it is not enumerable, then it is either not recursively enumer-
able, or not feasibly enumerable in this sub-computability and necessitates more
power to be seen as effectively enumerable. Thus, a sub-computability is an

1 The complete definition (Def. 2) also incorporates finite sets and ∅.
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approximation of the classical computability: we have the same kind of results
than in computability but with variations on the notions used; Classical (com-
plete) computability is the union of all sub-computabilities.

For example, Post’s theorem —stating that a set is recursive if and only
if it is both recursively enumerable and co-recursively enumerable— does not
hold anymore, leading the way to more restrictive notions of “being recursive”.
Another example is Kleene’s second recursion theorem, which only partially
holds in various ways in our sub-computabilities (Theorem 3).

We also define reducibilities which are refinements of Turing (or stronger)
reducibilities and yield a structure of the associated degrees that looks very
similar to the classical structure of the Turing degrees. Two of the interesting
aspects of this study are the simplicity of some of the proofs of the degree
structure, and the existence of natural (recursive) sets which play the role of low
(non-recursive) solutions to Post’s problem for these sub-reducibilities. To have
this setting as a real toy model for computability, it would be nice to be able to
have ways of transferring those results back in classical computability.

Our study is different from other subrecursive degree theories, especially when
considering the fact that our objects of study are not necessarily recursive. Never-
theless, one of our future goals is to build bridges with these theories, e.g., honest
elementary degrees (see [3,4,5]), to be able to use their techniques and have their
applications, especially the minimal pairs result with a proof-theoretical twist
in [6].

1 Sub-computability Basics

We consider a sub-computability to be a pair ( · , · ) of enumerations of the
foundation and of the support of the sub-computability. A support is a
collection of r.e. sets (the -enumerable sets). It is constituted by sets one-one
enumerated by total recursive functions (the -fundamental functions) belonging
to . Since the is uniquely determined by this foundation, will denote both
the sub-computability and the foundation. It will always be easy to distinguish
between those two uses of notation.

We start with the definition of a sub-computability foundation.

Definition 1. A sub-computability foundation is a set of recursive total func-
tions, called the fundamental functions, containing (at least) the primitive recur-
sive initial functions, closed by composition and primitive recursion, along with
a coding scheme providing fundamental-functions indices in N for the fundamen-
tal functions, such that we can primitively compute a recursive-functions index
from any fundamental-functions index, and such that the characteristic function
of the set {x : x is an index for fundamental f} is primitive recursive, with a
primitive recursive padding function ( n(x) gives an index for the fundamen-
tal function for which x is an index, which is different from all n previous indices,
x, (x), . . . , n−1(x)), and with a primitive recursive composition function2 .
2 (x, y) gives an index for the fundamental function which is the composition of the

two fundamental functions for which x and y are respectively indices.
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[F ] designates ∪F (the foundation to which the functions of F are added)
closed under composition and primitive recursion. [f ], [f, g], etc., designate
respectively [{f}], [{f, g}], etc.

e(x) designates the computation on x of the -fundamental function whose
index is e.

On top of foundations, we build sub-computabilities.

Definition 2. A set of integers X is a -enumerable set if there is a function
f ∈ such that the maximal initial one-one part3 of f enumerates X .

A sub-computability is a pair ( · , · ) of enumerations of a foundation and of
a collection of recursively enumerable sets, the -enumerable sets. is called
the support of the sub-computability. will also denote the sub-computability.

In the following, we will denote by the collection of primitive recursive
functions and the sub-computability based on this foundation.

A partial function is somewhat -computable if its graph is -enumerable.
A partial somewhat -computable function f is said to converge on x if f(x)

is defined. It is denoted by f(x) ↓. Otherwise, it is said to diverge on x and is
denoted by f(x) ↑.

e is a -index for a -enumerable set W if e is a fundamental index for a -
fundamental function that one-one maximally initially enumerates W . We denote
W by e.

e is a -index for a somewhat -computable function f if e is a -index for
the graph of f . We denote f(x) by ϕe(x).

Notice that the honest functions (see for example [3]) are somehow defined in a
similar way, but with an elementary foundation (which does not make possible
enumerations of non recursive graphs). Notice also that there are indices for the
empty set (and thus the nowhere-defined function).

Without the , (We)e∈N denotes the classical enumeration of recursively enu-
merable sets, and (ϕ)e∈N the classical enumeration of recursive functions.

Definition 3. A universal function over a sub-computability support is
a partial function (c, x) !→ (c, x) such that for each somewhat -computable
function ϕe, for all x, if ϕe(x) ↑, then (e, x) ↑, else (e, x) ↓ and = ϕe(x).

A -fundamentally universal function is a function (c, x) !→ (c, x) such
that for each -fundamental function e, for all x, e(x) = (e, x).

As we will see later, a universal function over a sub-computability support will
surprisingly be somewhat -computable. The notation will at the same time
designate the afore defined partial function and its -index.

Definition 2 involving discarding the last enumerated element of the finite set
is a better choice than having the empty set represented artificially because we
3 f is said to one-one maximally initially enumerate (in short, one-one enumerate) X

if X =

{
f“Y if Y = N,

f“Y \ {f(max(Y )} otherwise, that is Y is finite,
where Y is the greatest

initial subset of N (Y is equal to N or to some n ∈ N) such that f � Y is one-one.
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want the set of indices of nowhere-defined somewhat -computable functions to
be as less4 -computable as possible.

Our enumerability notion sticks well with the intuition adopted in classical
computability: a set is -enumerable if and only if it is the domain of a somewhat
-computable function. This property and Definition 2 call for the following

result: a -enumerable set W , for which x is a -index, has infinitely many other
indices computable from x in a -fundamental computable way. To prove it,
we naturally use the padding function for the indices of the -fundamental
functions. The s-m-n theorem also still holds for fundamental functions.

Universal functions are absent of the fundamental functions. Therefore, even
if we have s-m-n, we cannot prove Kleene’s second recursion theorem for fun-
damental functions. It will however partially hold for somewhat -computable
functions (Theorem 3), for which s-m-n does not hold anymore.

Koz’minyh [2] in 1972 proved the following lemma (for the part), which
constitutes a mile stone for understanding sub-computabilities. We call it the
heredity lemma.

Lemma 1. If We is an infinite -enumerable set, and Wi ⊃ We is recursively
enumerable, then Wi is -enumerable.

The following useful corollaries come to mind when proving this lemma. First,
there exists a primitive recursive function such that (〈i,j〉) = i ∪ j .
Also, if X is a -enumerable set and g a -fundamental function, then the fol-
lowing function is somewhat -computable: f(〈x, y〉) = g(〈x, y〉) if x ∈ X , ↑
otherwise.

The first idea to build sub-computabilities is to define a set of total recursive
functions, called fundamental. From these total functions, we can define a col-
lection of sets, called support, that can each be enumerated in a non-repetitive
way5. Finally, thinking of this support as a collection of graphs of partial func-
tions gives rise to a notion of somewhat computable functions. We review these
notions below.

-fundamental functions. As they will be our raw material, it is important to
see what are their capabilities, and limitations. In general, there will not be any
universal function among the fundamental functions. However, thanks to the
Normal Form Theorem, we know we can primitively simulate any finite number
of step of any recursive function ϕe: there is a primitive recursive, function sim
such that sim (e, i, s) = 〈e, i, ϕe(i)〉+1 for at most a unique s, and 0 otherwise.

-computable sets. The recursiveness of a set in classical computability has many
characterizations. These definitions are no longer equivalent in sub-computabili-
ties.
4 It is not χ- -computable, but nonetheless -enumerable and weakly- -computable.

(See Def. 4).
5 As indicates the Normal Form theorem, every recursively enumerable set is enu-

merable by a primitive recursive function. For example, fe : 〈n, s〉 �→ ϕe(n) if it
converges in less than s steps, ϕe(0) otherwise. However, such a function will not be
one-one in general.
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Definition 4. Let E be a set of integers, E is weakly -computable if E and E
are -enumerable. E is somewhat -computable if χE is somewhat -computable.
E is strongly -enumerable if E is -enumerable, enumerated by an increasing
one-one -fundamental function e. E is strongly -computable if E and E are
strongly -enumerable and χ- -computable if E has a -fundamental character-
istic function.

It is easy to see that each of these sub-recursive notions implies classical com-
putability: for a set, being strongly -enumerable, strongly -computable, weakly
-computable, somewhat -computable or χ- -computable implies being recur-

sive. There are also straightforward implications between these sub-recursive
notions: if E is a strongly -enumerable (resp. strongly -computable) set, then
E is -enumerable (resp. weakly -computable) and χ- -computable. Then, if E
is strongly -computable then E is weakly -computable and χ- -computable. If
E is a weakly -computable set or a χ- -computable set, then E is somewhat -
computable. Hence, all our sub-recursive notions for sets imply being somewhat
-computable.

Notice that, as in the classical setting, every infinite -enumerable set A con-
tains an infinite strongly -enumerable set E. Moreover, E is χ- -computable.

Somewhat -computable functions. First, recall that a partial function is some-
what -computable if its graph is -enumerable. Using our simulation function
sim , it is not too difficult to create a one-one enumeration of the graph of an uni-
versal function for all recursive functions. Hence, it is easy to prove, as a corollary
of the heredity lemma (Lemma 1), that there is a somewhat -computable func-
tion T, universal for all recursive functions. The following theorem legitimates
the notion of an effective enumeration of somewhat -computable functions:

Theorem 2. There exists a somewhat -computable universal function over
.

Remarkable functions. There is a universal function among the somewhat -
computable functions. However, not all recursive functions belong to that class.
As expected, the Ackermann function is not part of the fundamental functions of
our primitive computability. It is not even somewhat -computable. This result
may seem contradictory with Theorem 2. It just shows again that enumerating
all functions in one is easier than enumerating some. It also shows that the
somewhat computable functions are not closed by composition. Nevertheless, the
Ackermann function range is χ- -computable, because its inverse does belong to

. Thus, the Ackermann function is linked to somewhat -computable functions:
if a recursive function f is somewhat -computable, then it is less than the
Ackermann function on an infinite subset of the domain.

Halting problem for different classes of function of sub-computabilities. The halt-
ing problem is central in classical computability and is linked to the diagonal
set = {e : ϕe(e) ↓}. In our sub-computabilities, we can define a couple of
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different ’s depending on the set of functions we are interested in (all re-
cursive functions: = {e : ϕe(e) ↓}, somewhat computable (partial) functions:

= {e : (e, e) ↓} = {e : ϕe(e) ↓}, fundamental functions: = {e :
(e, e) > 0} = {e : e(e) > 0}). Notice that the hardness of the different halt-

ing problems gives more sense to the distinctions between our sub-computability
notions.

is -enumerable but not strongly -enumerable. For every sub-computabi-
lity , is not -enumerable, the set is weakly -computable but not χ-
-computable and the set is -enumerable but not strongly -enumerable,

nor recursive and is not -enumerable. Finally, the diagonal set on somewhat
functions is complete: ≡m . The proof6 of the Turing (many-one really)
completeness uses the Half recursion theorem (Theorem 3).

Strong -enumerability implies χ- -computability, thus we have that there
exists a weakly -computable but not strongly -enumerable set. We summarize
the properties of these sets in table 1.

Table 1. Properties in of particular sets

r.e co-r.e -r.e s- -r.e co- -r.e co-s- -r.e w- -comp s- -comp χ- -comp

	 × 	 × × × × × ×
	 	 	 × 	 × 	 × ×
	 × 	 × × × × × ×

-computabilities’ specimens. It is possible to exhibit an infinite family of dif-
ferent -computabilities using a natural extension of the primitive recursive re-
cursion: α-recursion7. The different growing hierarchies give us an easy way to
exhibit functions that require a given α-recursion operator. For example, the
Ackermann function does not belong to , but it belongs to8

ωω . And Good-
stein’s sequences function will only appear in ε0 . Using fundamental sequences,
we can easily design other such examples up to Γ0 thanks to Veblen’s hierarchy
(See [12]) and even beyond.
6 Let a be the -fund. index of a nowhere null function. Show that there is fx ∈ such

that ϕfx(e) : y �→
{

ϕx(x) if y = a or y = e
0 otherwise.

. Use the set A =
{

(n)(z) : z 
 1
}

to

apply the Half recursion part of Theorem 3 and effectively obtain a fixed-point n of
fx. Notice that ϕfx(n)

∼= ϕn since a �∈ A. Then, n ∈ iff x ∈ , for n -computable
from x.

7 Let 〈A, �〉 an elementary ordinal representation system (EORS) and α ∈ A such that
0 � α. A function f on natural numbers is called α-recursive if it can be generated
like the primitive recursive functions albeit plus the following operation:

f(m, n) =

{
h(m, n, f(θ(m, n), n)) if 0 � m � α and θ(m,n) � m,

g(m,n) otherwise,

where g,h,θ are α-recursive. See [1,10] for more details.
8 Denote by α the set of total α-recursive functions based on EORS’ provided by

proof theory.
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2 Common Sub-computability

Apart from the particular functions (like the diagonal Ackermann function9 Ack
or the ones built in the previous section), that dominate every -fundamental
functions, which we have for certain sub-computabilities , there is a simple way
to build for every a total recursive function which is not -fundamental. The
function x !→ (x, x) is a total recursive function that is not -fundamental,
but is somewhat -computable. Also, apart from the diagonal set adapted to -
computability, , we can define -versions of the busy beaver functions of Tibor
Radó: (x) = max{ϕi (0) : i � x} and (x) = max{ i (0) : i � x}+x. The
classical results and proofs carry through: is not somewhat -computable.
Moreover, graph( ) is not -enumerable. is recursive, but not somewhat
-computable.

There is a natural superset of the foundation of a sub-computability : De-
note by the sub-computability of foundation [ ]. Notice that for any sub-
computability , f ∈ does not necessarily10 imply f−1 ∈ . Notice also that,
for any sub-computability , all the functions in stay recursive. This operation
can be seen as some kind of jump since it provides a new sub-computability
in which there is a fundamental universal function for -fundamental functions:
There is a -fundamental universal function for -fundamental functions. As
a corollary, we have that χ ∈ [ ] but ∈ [χ ].

It is easy to see that the fundamental functions of are exactly the func-
tions of [Ack]. First, notice that Ack is in since the -fundamental index
of m !→ Ack2(n, m) is computable from n and can be simulated with the uni-
versal function for -fundamental functions. The converse is true since for any
acceptable enumeration . of -fundamental functions, there exists a primitive
recursive function f such that ∀e, ∀n, Ack2(f(e), n) � e(n)11. Hence, the Ack-
ermann function permits us to compute the -fundamental busy beaver.

Following our s-m-n theorem for -fundamental functions, we obtain general-
izations of Kleene’s second recursion theorem to sub-computabilities.

Theorem 3 (Recursion theorem à la Kleene). Let f be a -fundamental
function.

1. (Unbalanced fundamental recursion) There is an n ∈ N such that n
∼= f(n).

2. (Unbalanced recursion) There is an n ∈ N such that ϕn
∼= ϕf(n).

3. (Half recursion) Let h be a somewhat -computable function defined on an
infinite -enumerable and co-r.e. set A. There is an n ∈ N such that ϕn|A ∼=
ϕf(n)|A and ϕn|A ∼= h.

9 Ack2 denotes the classical binary function and Ack the diagonal unary version.
10 For example, take f a total computable function not in . Transform it into f ′ such

that ∀n, f ′(n) = 〈f(n), steps(f, n)〉 (where steps(f, n) is the number of steps needed
by f on the input n to halt). f ′ still does not belong to , but f ′−1

does.
11 This function works by recursion on the code of e, see [9], thm VII.8.10 p299-300.
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Proof. The function u !→ gx(u) =
{

ϕa(u) if u ∈ A,
ϕ

x(x)
(u) otherwise, (where a is a -index

for h) is somewhat -computable and of -index computable from x by da ∈ .
Let ea be a -fundamental index for f ◦da. Choose n = da(ea), since ϕda(ea)(u) ∼=
ϕa(u) if u ∈ A, and ϕda(ea)(u) ∼= ϕ

ea
(ea)

(u) ∼= ϕf◦da(ea)(u) otherwise.

We also have the usual corollary of a -recursion theorem with parameters. As
it is visible in the various proofs of Theorem 3, the function providing the fixed
point for each parameter is a -fundamental function.

As we have already remarked, we do not have a general s-m-n theorem for
somewhat computable functions, only one for fundamental functions12. The prin-
cipal reason is the fact that somewhat computable functions are not closed by
composition13. And at the same time, there is no14 (balanced) full fixed-point
theorem on fundamental or somewhat computable functions (staying in a par-
ticular sub-computability and not using higher sub-computabilities in an unbal-
anced way like in Theorem 3).

12 There is a duality at play between the fundamental functions and the somewhat -
computable functions. Duality both in their use in theorems, usually generalizations
(or really restrictions) of classical computability theorems, and in the theorems they
verify. The former is used to construct the latter and verifies padding and s-m-n (or
composition) but not fixed-point, nor universality, while the latter verifies padding,
fixed-point and universality, but not s-m-n (nor composition). An example of the use
in theorems is the fixed point theorem: the fixed point is of a fundamental function
over the enumeration of the somewhat computable functions. These facts are to be
put in perspective with the classical results that enumeration alone or even enumer-
ation and fixed point are not enough to ensure having an acceptable computation
system, i.e. a computation system isomorphic to the canonical enumeration of all r.e.
sets, while enumeration and composition are sufficient: Enumeration is not enough
since a Friedberg enumeration, i.e., without repetition, of r.e. sets will obviously not
verify the padding lemma. Enumeration and fixed point is not enough by the follow-
ing counter-example: if e �→ ϕh(e) is a Friedberg enumeration without repetition of
the partial recursive functions, then consider the enumeration e �→ ψe = ϕh(ϕe(0)). It
is not hard to show that ψ· verifies the fixed-point theorem (∃ recursive f , ∀ total ψi,
ψψi(f(i))

∼= ψf(i)) but each partial recursive function is equal to a ϕh(i) for a unique
i and thus equal to a ψe only if ϕe(0) = i. Thus, the set of ψ-indices of each partial
recursive function is r.e., which is in opposition to the fact that the nowhere-defined
function (x �→↑) cannot have an r.e. set of indices in an acceptable enumeration.

13 For well-behaving functions, composition is still possible and in a primitively effective
way. For example, composition f ◦g is possible for somewhat -computable functions
f and g such that g−1 is -fundamental and there is a -enumerable subset of
the intersection of the range of g and the graph of f . If you take the function

: x �→ ϕx(x) as f , then f being somewhat -computable and having a graph
containing many -enumerable subsets, many functions g will make f ◦ g somewhat
-computable.

14 Both fundamental and somewhat (balanced) full fixed-point theorems for would
provide fixed points which would be indices of the Ackermann function. The function
n �→ fundamental -index of y �→∑

x�y n(x) + 1 is also designed not to have any
of those full fixed-points.
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Even though, several corollaries of s-m-n still carry through: the effective
union given by and the following corollary of the existence of a -universal
function in : if f is a -fundamental function, then there exists a -fundamental
function g such that for all x, g(x) = f“ x.

It is worthwhile to remark that a universal function (for fundamental func-
tions) and x !→ x(x) provide examples of functions which are not -fundamental
but which are total and somewhat -computable. Notice also that fundamentals
go beyond total somewhat -computable functions: is not somewhat -
computable but is -fundamental.

We should also notice that as in classical computability, not all partial some-
what -computable functions are extendible to total somewhat -computable
functions. A counterexample is the function x !→ ϕx(x) + 1, since it is somewhat
-computable and differs with all somewhat -computable functions and thus

also with all total ones.
We generalize Rice’s theorem to sub-computabilities. To this end, we define

the following reducibility and notion of set of indices: a set A is somewhat -
reducible to a set B (designated by A �∼ B) if there is a somewhat -computable
function f such that x ∈ A if and only if f(x) ∈ B. A set A ⊆ N is a set of
-somewhat indices (resp. a set of -fundamental indices ) if for all x, y, (x ∈

A and ϕx
∼= ϕy) =⇒ y ∈ A, (resp. (x ∈ A and x

∼= y) =⇒ y ∈ A).

Theorem 4 (Rice for sub-computabilities). If A is a non-trivial (A =
∅, N) set of -indices (resp. -fundamental indices), then we have either �∼
A or �∼ A (resp. �1 A or �1 A).

Productivity and creativity can also be non-trivially ported to our setting: A
set X is -productive if there exists a one-one -fundamental function ψ, called
the productive function for X , such that ∀x, x ⊆ X =⇒ ψ(x) ∈ X \ x. A
-enumerable set X is -creative if X is -productive.

It is a non-trivial generalization of the classical notion, since Ack “ is produc-
tive, but not -productive. As expected, is still -creative. And variants of the
properties carry through: If X is -productive, then X is neither -enumerable
nor weakly -computable. (Hence is not -creative.) If X is -productive,
then X contains a -enumerable infinite subset. And, if X is -productive and
X �1 A by a function f such that f−1 is also one-one -fundamental, then A is

-productive15.
We would like to carry through the characterization of creativity by (cre-

ativity is equivalent16 to m-completeness) to sub-computabilities but we need for
that to have the right notion of m-reducibility. The third property above hints
that it could be challenging.

15 is not -creative, but it is -creative where
(

n

)
n∈N

is replaced by(
n = {y : n(y) > 0}

)
n∈N

in the definition of productivity.
16 If X is productive and X �1 A, then A is productive. And if X is productive then

�1 X.
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We now generalize Rogers’ isomorphism theorem to sub-computabilities. To
this end, we first show that the constructive version, due to Myhill, of the Cantor-
Schröder-Bernstein Theorem can be adapted to -computabilities: (Myhill for
sub-computabilities)17 A ≡1 B ⇐⇒ A ≡ B.

We can generalize the notion of “acceptable system of indices” to sub-compu-
tabilities:

Definition 5. An acceptable system of -computability is a pair ( · , ψ· ) provid-
ing maps from N onto the set of -fundamental functions and the set of somewhat
-computable functions such that there are -fundamental functions f , g, f and

g such that for all e ψe
∼= ϕf(e) and ϕe

∼= ψg(e), e
∼= f(e) and e

∼= g(e)

and g is one-one on indices of finite domain functions.

An acceptable system of sub-computability inherits many properties of the re-
spective canonical sub-computability. In particular, the Half recursion18 for sub-
computabilities (Theorem 3), parametrization19 for fundamentals and the padding
lemma20 for somewhat -computable functions holds in any acceptable system
of sub-computability.

Theorem 5 (Isomorphism theorem à la Rogers). Let be a sub-compu-
tability. For any acceptable system of -computability, ( · , ψ· ), there is a -
fundamental permutation h of ω such that for all e, ϕe

∼= ψh(e).

We thus notice that acceptable systems of indices provide the same structure
theory for a sub-computability as the standard one we have defined and been
using. Things happen not because of the coding used: a foundation induces a
unique sub-computability.

3 Sub-reducibilities

Our interest in sub-reducibilities in the context of sub-computabilities is twofold.

17 A set A is -reducible to a set B (designated by A �1 B) if there is a one-one
-fundamental function f such that x ∈ A if and only if f(x) ∈ B. A set A is -

equivalent to a set B (designated by A ≡1 B) if A �1 B and B �1 A. A set A is
-isomorphic to B (designated by A ≡ ) if there exists a -fundamental permutation

p such that p′′(A) = B.
18 There is a · -fundamental index Kleeneψ such that for all i, j, if domain(ψi ) is

infinite and co-r.e., then ψ
Kleeneψ

(i,j)|domain(ψi)
∼= ψ

j
( Kleeneψ

(i,j))|domain(ψi)
and

ψ
Kleeneψ

(i,j)
∼= ψi .

19 There is a · -fundamental index paramψ such that for all i0, i1, j, the function

ψ
paramψ

(〈i0,i1,j〉)(e)
is equal (when defined) to

{
ψi0

if j (e) = 0,

ψi1
otherwise.

20 In any acceptable system of -computability, given one index of a somewhat -
computable function with infinite domain, we can -fundamentally generate in-
finitely many indices of the same function.
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As we have already seen with the previous theorems, the same kind of results
than the classical ones appear in most sub-computabilities. For example, we
have recursion theorems à la Kleene and an isomorphism theorem à la Rogers.
It is even more striking with the degree structure as will be outlined in this
section. We will see in particular that each Turing degree is divided into infinitely
many different degrees, our sub-reducibilities being a recursive refinement of the
classical ones. Some computable sets are shown to play a role similar to the
classical solutions of Post’s problem, from our sub-reducibilities point of view.
As these results are quite natural and easy to prove, it would be interesting,
and it is one of our goal for the future, to prove some kind of degree-structure
homogeneity theorem to be able to somehow carry the sub-computability proofs
back to the classical computability setting.

Another goal in the study of sub-computabilities is to find real classical com-
putability sets, e.g., solutions to Post’s problem, that are already in a sub-
computability but not in weaker sub-computabilities, i.e., a r.e. set ∅ <T X <T

∅′ that first appears in the -r.e. sets.
Since A �T B means that A is computable in B (really, computable in χB),

and in sub-computabilities, we have several notions of recursiveness (for a set),
we now introduce several associated Turing (or stronger) reducibilities:

Definition 6 (Sub-reducibilities). A function f is χ- -Turing reducible to
B (f �χ

-T B) if f is in [χB].21 A set A is χ- -Turing reducible to B if its
characteristic function is.

A function f is somewhat -Turing reducible to B (f �∼
-T B) if f is somewhat

computable over [χB]. A set A is somewhat -Turing reducible to B if its
characteristic function is.

A set A is χ- -r.e. in B if A is one-one enumerable by a function χ- -Turing
reducible to B.

A set A is weakly -Turing reducible to B (A �w
-T B) if A and A are one-

one enumerable by functions in [eB, eB], for any function eX which one-one
enumerates X .

A set A is strongly- -Turing reducible to B (A �s
-T B) if A is enumerable by

an increasing function in [pB, pB], where pX is the increasing enumeration of
X .

A function is reducible to B if its graph is reducible to B.
When the type of -reducibility is not specified, it usually means that it is

true for each of these reducibilities.

is (weak/strong/χ) -Turing complete: ≡ -T ≡ -T ∅′. There are also
new incomparable sets: for some A and some , A �χ

-T A′, for example, for
A = range(Ack) and = .

�χ
-T is strictly stronger than the truth table reducibility �tt (and thus also

than the weak truth table reducibility �wtt and the Turing reducibility �T).

21 [g] is the primitive closure of ∪ {g} (See Definition 1). We could take a stronger
closure since could be closed by more than composition and primitive recursion
but for our purposes, taking the primitive closure seems to be enough.
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�w
-T and �s

-T are strictly stronger than the Turing reducibility (the inclusion is
trivial and range(Ack) �T ∅ but range(Ack) �w, s

-T ∅). �w
-T is incomparable22

with �tt and �wtt. Ack �χ
-T ∅ but Ack �s

-T ∅, thus �χ
-T does not imply �s

-T.
�χ

-T implies �∼
-T, which in turn implies �wtt.

A generalization of Martin-Arslanov-Lachlan’s completeness criterion holds:
Given a -enumerable set A, ∅′ �∼

-T A is equivalent to the existence of a weakly
-computable set B and function f �∼

-T A, such that f is FPF[B]23.
One of the interests of considering these reducibilities is to see what sub-

computabilities have to say about the computability of sets of integers that are
not necessarily recursively enumerable. A lot of results of classical computability,
especially concerning Δ0

2 sets, can be extended (or really restricted) to sub-
computabilities but we will only consider here ways of providing solutions to
Post’s problem of finding an incomputable yet incomplete recursively enumerable
set.

When considering Post’s problem with regard to these strong reducibilities
� -T, it becomes fast obvious that finding solutions is very simple.

Theorem 6 (Solutions to Post’s sub-problem). There exists an r.e. set X
such that ∅ ≺ -T X ≺ -T ∅′ for ≺ -T=≺χ

-T or ≺s
-T.

A proof of this theorem may use the fact that the χ- -jump24 of is χ- -
reducible to ≡χ

-T ≡χ
-T ∅′. is thus a -low -r.e. set; it represents a low

r.e. set in the sub-computability. The set graph( ) is another example of a
-low set, albeit not -r.e.

There are obvious solutions to Post’s (real) problem in our sub-computabili-
ties, i.e., a -r.e. set X such that ∅ <T X <T ∅′. But the nice thing is that we
can manage to make them appear only starting from a given -computability.
And the same goes for -r.e. low degrees.

These results put together hint to the following lemma: in each 1-degree,
one can find a set as high in the sub-computability hierarchy as desired. More
generally, for any sub-computability , each r.e. 1-degree has a non- -enumerable
r.e. member and a -enumerable member.

A corollary that completes the previous result is that, there exists a non- -
enumerable r.e. set X , such that ∅ <T X <T ∅′. A consequence is that there
exists a low r.e. set W which is not -enumerable.

Using a priority argument, we can even ensure the low promptly simple set
X to be -low (X ′ � -T ∅′) but not −-low for sub-computabilities − weaker25

22 Let A be a set having the property of being Turing complete but not truth table com-
plete, e.g., an effectively hypersimple set. Then, B = {3a : a ∈ A}∪{3n + 1 : n ∈ N}
is weakly -Turing complete and not truth table complete.

23 f is fixed point free relatively to B (FPF[B]) if ∀x,∃n ∈ B, ϕx(n) �= ϕf(x)(n).
24 Since this section is, for now, only an introduction to sub-reducibilities in sub-

computabilities, we will only introduce the χ- -jump in this footnote. The (degree of
the) χ- -jump of A, denoted by A′ , is the �χ

-T maximal equivalence class containing
a set which is χ- -r.e. in A.

25 In the sense that − is strictly included in .
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than , in the same way we can build a low simple set that is not superlow (see
[7, Ex. 1.6.7, p. 386]).

As we saw multiple times in this paper, sub-computabilities are strongly linked
with fast growing functions, which gives evidence of their recursive power. As
this kind of reasoning also appears in honest elementary degrees theory we hope
to soon be able to develop the links between these degree theories.

Other immediate goals are to port some essential computability results to sub-
computabilities, especially various characterization of r.e. sets and reducibilities.

Acknowledgements. We would like to thank Bruno Durand for many challeng-
ing discussions on the ideas of this paper. Many thanks also to the anonymous
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Abstract. We show that polynomial-time randomness (p-randomness)
is preserved under a variety of familiar operations, including addition and
multiplication by a nonzero polynomial-time computable real number.
These results follow from a general theorem: If I ⊆ R is an open interval,
f : I → R is a function, and r ∈ I is p-random, then f(r) is p-random
provided
1. f is p-computable on the dyadic rational points in I , and
2. f varies sufficiently at r, i.e., there exists a real constant C > 0 such

that either

(∀x ∈ I − {r})
[

f(x) − f(r)

x − r
≥ C

]
or

(∀x ∈ I − {r})
[

f(x) − f(r)

x − r
≤ −C

]
.

Our theorem implies in particular that any analytic function about
a p-computable point whose power series has uniformly p-computable
coefficients preserves p-randomness in its open interval of absolute con-
vergence. Such functions include all the familiar functions from first-year
calculus.

Keywords: Randomness, p-randomness, complexity, polynomial-time,
measure, martingale, real analysis.

Subject Classification: Computational complexity.

1 Introduction

Informally, we might call an infinite binary sequence “random” if we see no
predictable patterns in the sequence. Put another way, a sequence is random if
it looks “typical,” that is, it enjoys no easily identifiable properties not shared by
almost all other sequences. Here, the notion of “almost all” comes from Lebesgue
measure on the unit interval [0, 1]. What we mean by “easily identifiable,” on the
other hand, can vary greatly with the situation. In statistics, random sequences
are useful to avoid bias in sampling or in simulating processes (e.g., queueing
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systems) that are too complex for us to determine exactly. In statistics, desirable
properties for random sequences include instances of the law of large numbers:
a fixed sequence of length n should occur in the sequence asymptotically a 2−n

fraction of the time, for example. Other examples include the law of the iterated
logarithm. In cryptography and network security, “easily identifiable” must be
strengthened to “unpredictable by an adversary.” In computer science generally,
random sequences should produce successful results most of the time when used
in various randomized algorithms.

There is always a trade-off between the amount of randomness possessed by
a sequence and the ease with which it can be produced. Random sequences that
can be produced algorithmically (i.e., pseudorandom sequences) are of course
desirable, provided they have enough randomness for the task at hand. The
study of algorithmic randomness has a long and rich history (see, for example,
[4,3] for references to the literature). Complexity theoretic notions of randomness
were first suggested by Schnorr, and resource-bounded measure and randomness
were developed more fully by Lutz (see [8]). For a survey on the subject, see [1].

A natural trade-off in the context of polynomial-time computation is the no-
tion of polynomial-time randomness, or p-randomness for short (see Definition 1,
below), which is closely tied with the notion of p-measure introduced by Lutz
[6,7]. There are p-random sequences that can be computed in exponential time;
in fact, almost all sequences in EXP (in a resource-bounded measure theoretic
sense) are p-random. Yet p-random sequences are still strong enough for many
common tasks, both statistical and computational. For example, p-random se-
quences satisfy the laws of large numbers and the iterated logarithm (see [13]),
and they provide adequate sources for BPP computations and have many other
desirable computational properties (see [8]).

The current work addresses some geometric aspects of p-random sequences.
Recently, connections between the geometry of Euclidean space and effective
and resource-bounded measure and dimension have been found [9,10]. The ques-
tion of how the complexity or measure theoretic properties of a real number are
altered when it is transformed via a real-valued function goes back at least to
Wall [12], who showed that adding or multiplying a nonzero rational number
to a real number whose base-k expansion is normal1 yields another real with a
normal base-k expansion. Doty, Lutz, & Nandakumar recently extended Wall’s
result, showing that the finite-state dimension of the base-k expansion of a real
number is preserved under addition or multiplication by a nonzero rational num-
ber [2]. At the other extreme of the complexity spectrum, it is not hard to show
that algorithmic randomness (Martin-Löf randomness [11]) is preserved under
addition or multiplication by a nonzero computable real, regardless of the base
of the expansion.

In this paper we take a middle ground, considering how polynomial-time
computable functions mapping reals to reals preserve p-randomness. We show

1 An infinite sequence s over a k-letter alphabet Σ is normal iff for any finite string
w ∈ Σ∗, there are nk−|w|(1 + o(1)) occurrences of w as a substring among the first
n letters of s, as n tends to infinity.
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(Theorem 1, below) that such a function f maps a p-random real r to a p-
random real f(r) provided f satisfies a kind of anti-Lipschitz condition in some
neighborhood of r: f(x) varies from f(r) at least linearly in x − r. (This re-
sult still holds even if f is not monotone in any neighborhood of r, or if f is
only polynomial-time computable on dyadic rational inputs, or if f enjoys no
particular continuity properties.)

Our result has a number of corollaries: p-randomness is preserved under ad-
dition and multiplication by nonzero p-computable reals (complementing the
results in [12,2] and the folklore result about algorithmically random reals);
it is also preserved by polynomial and rational functions (with p-computable
coefficients) and all the familiar transcendental functions on the reals, e.g., ex-
ponential, logarithmic, and trigonometric functions.

The polynomial-time case presents some technical challenges not present in
the resource-unbounded case. Roughly speaking, given a polynomial-time ap-
proximable function f : R → R, our goal is to define a betting strategy (i.e., a
martingale; see Section 2) that bets on the next bit of the binary expansion of a
real number r, given previous bits. The strategy is based on the behavior of an
assumed strategy d that successfully bets on f(r). If we had no resource bounds,
then we could approximate f at various points as closely as needed to obtain a
good sample of d’s behavior on f applied to those points, allowing us to mimic
d and thus succeed on r. Since we are polynomial-time-bounded, however, we
have no such luxury, and we have to settle for rougher approximations of f . For
example, d could succeed on f(0.0111111111 · · ·) (where there is a long string of
1’s before the next 0 in the argument to f) but lose everything on f(0.10000 · · · ),
which is close by. If we only have a poor approximation to f , then we cannot
distinguish the two cases above, and so d is no good at telling us how to bet
on the first digit after the decimal point. Fortunately, we may assume that d
is conservative—in the sense that it does not bet drastically—so that d’s assets
are relatively insensitive to slight variations in the real numbers corresponding
to the sequences it bets on.

Section 2 has basic definitions, including martingales and p-randomness. Sec-
tion 3 describes the conditions on real-valued functions sufficient to preserve
p-randomness. Our main results are in Section 4, where we prove that these con-
ditions indeed suffice; Theorem 1 is the main result of that section. In Section 5,
we show that these conditions hold for a variety of familiar functions. We suggest
further research in Section 6.

This paper is an extended abstract, with most of the proofs omitted. A com-
plete draft with all proofs can be found in [5].

2 Notation and Basic Definitions

We let N = {0, 1, 2, . . .}. We let Q be the set of rational numbers. A dyadic
rational is some q ∈ Q expressible as ±a/2b for some a, b ∈ N. We let Q2 denote
the set of dyadic rational numbers.

For real x > 0, we let lg x denote log2 x.
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In this paper, we only consider the binary expansions of real numbers. If need
be, all our results can easily be modified to other bases.

Our basic notions and results about p-computability, martingales, and ran-
domness in complexity theory are standard. See, for example, [7,8,1].

Let w ∈ {0, 1}∗ and s ∈ {0, 1}∞. We let |w| denote the length of w, and for
any 0 ≤ i < |w| we let w[i] be the (i + 1)st bit of w. Similarly, for any i ∈ N

we let s[i] denote the (i + 1)st bit of s. For any n ∈ N we let s[0 . . . (n − 1)] =
s[0]s[1] · · · s[n − 1] ∈ {0, 1}∗ denote the first n bits of s. We let {0, 1}n denote
the set of strings in {0, 1}∗ of length n. If v ∈ {0, 1}∗ ∪ {0, 1}∞, we let w � v
mean that w is a prefix of v, and we let w � v mean that w is a proper prefix of
v. We denote the empty string by λ.

Recall that a martingale is a function d : {0, 1}∗ → R such that for every
w ∈ {0, 1}∗,

0 ≤ d(w) =
d(w0) + d(w1)

2
.

We will also assume without loss of generality that d(λ) ≤ 1. We say that d
succeeds on a sequence s ∈ {0, 1}∞ iff

lim sup
n→∞

d(s[0 . . . (n − 1)]) = ∞ .

We say that d strongly succeeds on s iff

lim inf
n→∞ d(s[0 . . . (n − 1)]) = ∞ .

A function d : {0, 1}∗ → R is p-computable if there is a polynomial time com-
putable function d̂ : {0, 1}∗ × {0, 1}∗ → Q such that∣∣∣d(w) − d̂(w, 0r)

∣∣∣ ≤ 2−r

for every w ∈ {0, 1}∗ and r ∈ N. We say that d̂ is a p-approximator for d. A real
number c is p-computable if the constant function {0, 1}∗ → {c} is p-computable,
and we may suppress the first argument in a p-approximator for c.

Definition 1. A sequence s ∈ {0, 1}∞ is p-random if no p-computable martin-
gale succeeds on s.

Definition 2. We will say that a martingale d is conservative iff

1. for any w ∈ {0, 1}∗ and b ∈ {0, 1},

d(w)
2

≤ d(wb) ≤ 3d(w)
2

,

and
2. for any s ∈ {0, 1}∞, if d succeeds on s, then d strongly succeeds on s.
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Note that if d is conservative, then d(w) ≤ (3/2)|w| for all w. It is well-known
(and easy to show) that if there is a p-computable martingale that succeeds on
s, then there is a conservative p-computable martingale that succeeds on s.

We identify a sequence s ∈ {0, 1}∞ with a real number 0.s ∈ [0, 1] via the
usual binary expansion: 0.s :=

∑∞
i=0 s[i]2−(i+1). This correspondence is one-

to-one except on Q2, where it is two-to-one. For every x ∈ {0, 1}∗, we define
0.x := 0.x000 · · · , and we define the dyadic interval

Γx := [0.x, 0.x + 2−|x|] = {0.s : s ∈ {0, 1}∞ ∧ x � s} .

For s ∈ {0, 1}∞, we define 0.s to be p-random iff s is p-random. If x ∈ R,
then we define x to be p-computable (p-random) just as we do for x − �x�. It is
well-known that no p-computable real number is p-random.

3 Functions of Interest

We will restrict our attention to certain types of real-valued functions of a real
variable. We are only interested in the behavior of these functions on p-random
inputs. For simplicity, we will only consider functions with domain [0, 1], but
this is in no way an essential restriction. Our functions will possess a certain
p-computability property and a certain strong variation property. Both these
properties are local in the sense that we only care about them in the vicinity of
a p-random number.

Definition 3. A function f : [0, 1] → R is weakly p-computable if there exists
a polynomial-time computable function f̂ : {0, 1}∗ × {0, 1}∗ → Q such that for
any w ∈ {0, 1}∗ and r ∈ N,∣∣∣f̂(w, 0r) − f(0.w)

∣∣∣ ≤ 2−r .

Note that a weakly p-computable function can behave arbitrarily on [0, 1] − Q2.

Definition 4. Let f : [0, 1] → R be a function and let Γy ⊆ [0, 1] be some dyadic
interval with y ∈ {0, 1}∗. We say that f is weakly p-computable on Γy iff there
exists a ptime computable function f̂ : {0, 1}∗ × {0, 1}∗ → Q such that for any
w ∈ {0, 1}∗ and r ∈ N, ∣∣∣f̂(w, 0r) − f(0.(yw))

∣∣∣ ≤ 2−r .

If x ∈ [0, 1], then we say that f is weakly p-computable at x iff f is weakly
p-computable on some dyadic interval containing x.

We say that f is locally weakly p-computable if f is weakly p-computable at
all p-random points in [0, 1].

[Note that 0.(yw) ∈ Q2 is the dyadic rational number corresponding to the string
yw (the concatenation of y and w).]
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In other words, f is weakly p-computable at x iff we can approximate f on the
dyadic rationals in some dyadic interval containing x in polynomial time. Notice
that we are not insisting that f have any continuity properties. This means
in particular that f̂ may not uniquely determine f on Γx. Notice also that a
function may be locally weakly p-computable but not “globally” p-computable,
being patched together nonuniformly with various p-computable functions on
different dyadic intervals.

We can extend Definition 4 to weak p-computability at an arbitrary point
x ∈ R in the natural way.

Definition 5. Let I ⊆ R be an interval, let f : I → R be a function, and let
x ∈ I be some point. We say that f strongly varies at x on I iff there is some
real constant C > 0 such that either

1. for all z ∈ I − {x},
f(z) − f(x)

z − x
≥ C ,

or
2. for all z ∈ I,

f(z) − f(x)
z − x

≤ −C .

In case (1) we say that f strongly increases at x on I, and in case (2) f strongly
decreases at x on I.

We say that f strongly varies at x if f strongly varies at x on N for some
open interval N containing x. We define f strongly increasing/decreasing at x
analogously.

The notion of strong variation is illustrated in Figure 1.

Example 1. If f is C1 in a neighborhood of x and f ′(x) = 0, then f strongly
varies at x.

4 Main Result

Here is our main technical theorem, from which the other results in the paper
follow easily.

Theorem 1. Let I ⊆ R be some interval and f : I → R some function. Suppose
r is a p-random point in the interior of I. If f is weakly p-computable at r and
strongly varies at r, then f(r) is p-random.

4.1 Establishing Theorem 1

We start this section with two easy observations which we give without proof.

Observation 1. Let n be any integer, and let a ∈ Q2. A number r ∈ R is p-
random if and only if 2nr is p-random, if and only if r + a is p-random, if and
only if −r is p-random.
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f(r)

r

f(r)

r

Fig. 1. For f to strongly vary at r, its graph must confine itself to the shaded region
on the left (if strongly increasing) or the right (if strongly decreasing) in some neigh-
borhood of r. The thick line on the left has slope C (satisfying y − f(r) = C(x − r)),
and the line on the right has slope −C (satisfying y − f(r) = −C(x − r)), for some
constant C > 0.

Observation 2. Let I ⊆ R be an interval, let f : I → R be a function, let n be
any integer, and let a ∈ Q2. Define

g(x) = 2nf(x) ,

h(x) = f(x) + a ,

j(x) = f(2nx) ,

k(x) = f(x + a) .

Then f strongly varies at some x ∈ I on I (respectively, is p-computable at x)
if and only if all of (−f), g, h strongly vary (respectively, are p-computable) at x
on I, if and only if j strongly varies (respectively, is p-computable) at 2−nx on
2−nI, if and only if k strongly varies (respectively, is p-computable) at x − a on
I − a. The sense of variation (strongly increasing or strongly decreasing) of f is
the same as that of g, h, j, k and opposite that of (−f).

Theorem 1 is a corollary of the next lemma, which gives the theorem its essential
technical content. We prove this lemma later in this section. For convenience,
we will assume that our function f is monotone ascending. We will show later
that this is not an essential restriction.

Lemma 1. Let f : [0, 1] → R be weakly p-computable and monotone ascending
on [0, 1]. Suppose that x0 ∈ [0, 1] and that f strongly increases at x0 on [0, 1].
Then if f(x0) is not p-random, then x0 is not p-random.

To prove Lemma 1, we need to construct a martingale df that succeeds on x0,
given one that succeeds on f(x0). If martingale d succeeds on f(x0) then we can
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define df (w) (for a given string w) by sandwiching it between a lower bound
d−(w; n) and an upper bound d+(w; n). We get d+(w; n) by overestimating d’s
total contribution in an interval around f(0.w) (Equation (1), below), and we
get d−(w; n) by underestimating it (Equation (2)). These estimates become more
refined as n increases, and, provided d is conservative, they reach a common limit
as n goes to infinity, yielding a well-defined martingale df .

Definition 6. Let f : [0, 1] → [0, 1] be monotone ascending on [0, 1] and let d
be a martingale. For every x ∈ {0, 1}∗, let Δx denote the interval f(Γx) =
[f(0.x), f(0.x + 2−|x|)], and for every n ∈ N, define

d+(x; n) = 2−n
∑

y∈{0,1}|x|+n : Γy∩Δx �=∅
d(y) , (1)

and define
d−(x; n) := 2−n

∑
y∈{0,1}|x|+n : Γy⊆Δx

d(y) . (2)

The following lemma is routine and easy to check.

Lemma 2. Let f and d be as in Definition 6. For any x ∈ {0, 1}∗, if Γy is any
dyadic interval contained in Δx (that is, Γy ⊆ Δx), then letting n = |y| − |x|,

2−nd(y) ≤ d−(x; n) ≤ d−(x; n + 1) ≤ d−(x; n + 2) ≤
· · · ≤ d+(x; 2) ≤ d+(x; 1) ≤ d+(x; 0) .

Proof. See [5].

Definition 7. Let f and d be as in Definition 6. We define the upper f -shift
of d to be the function defined for all x ∈ {0, 1}∗ as

d+(x) := lim
n→∞ d+(x; n) .

Similarly, we define the lower f -shift of d to be

d−(x) := lim
n→∞ d−(x; n) .

Since for any fixed x ∈ {0, 1}∗, d+(x; n) and d−(x; n) are both monotone func-
tions of n (decreasing and increasing, respectively) by Lemma 2, the limits in
the definition above clearly exist, and

d−(x; n) ≤ d−(x) ≤ d+(x) ≤ d+(x; n)

for all n.
For some martingales, the upper and lower f -shifts may differ, but they

coincide for conservative martingales.
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Lemma 3. Fix f and d as in Definition 6. Suppose further that d is conserva-
tive. For any x ∈ {0, 1}∗ and n ∈ N,

d+(x; n) − d−(x; n) ≤ 2
(

3
2

)|x|(3
4

)n

.

Proof. See [5].

Corollary 1. Let f and d be as in Definition 6. If d is conservative, then
d+(x) = d−(x) for all x ∈ {0, 1}∗.

Proof. Immediate from Lemma 3.

Definition 8. If f and d are as in Definition 6 and d is conservative, then we
let df (x) denote the common value d+(x) = d−(x), and we call df the f -pullback
of d.

On input string x, df (x) merely samples d over the the interval Δx = f(Γx).

Lemma 4. If f and d are as in Definition 6 and d is conservative, then its
f -pullback df is a martingale.

Proof. See [5].

The next lemma is key. Here is where we make essential use of the strongly
increasing property of f . (The hypothesis here is slightly weaker, though).

Lemma 5. Let f and d be as in Definition 6 with d being conservative. Suppose
that there exist r, s ∈ {0, 1}∞ and a real C > 0 such that

f(x) − 0.r

x − 0.s
≥ C (3)

for all x ∈ [0, 1] − {0.s}. If d succeeds on r and 0.s /∈ Q2, then df succeeds on s.

Proof. See [5].

Finally, we need a lemma regarding p-computability. The challenge in the proof
is in finding an easy (i.e., polynomial-time) way to approximate the d−(x; n) and
d+(x; n).

Lemma 6. Let d be a conservative martingale, let f : [0, 1] → [0, 1] be monotone
ascending on [0, 1], and let df be the corresponding f -pullback of d. Also assume
f(1) = 1. If d is p-computable and f is weakly p-computable on [0, 1], then df is
p-computable.

Proof. See [5].
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Proof (of Lemma 1). Let f and x0 be as in Lemma 1. If x0 ∈ Q2, then it is clearly
not p-random, and we are done. Otherwise, let � = �f(0)�, let h = )f(1)*, and
let m ≥ 0 be the least natural number such that 2m ≥ h − �. For all x ∈ [0, 1),
define

g(x) := 2−m(f(x) − �) ,

and define g(1) := 1. Then g : [0, 1] → [0, 1] is monotone ascending, weakly p-
computable on [0, 1], and strongly increasing at x0 on [0, 1] by Observation 2.
Further, since f(x0) is not p-random, it follows from Observation 1 that g(x0) =
2−m(f(x0)− �) is not p-random, either. Thus there is a conservative, p-comput-
able martingale d that succeeds on g(x0). By Lemmata 5 and 6 (letting 0.s be
x0), the g-pullback dg of d succeeds on x0 and is p-computable. Thus x0 is not
p-random.

To prove Theorem 1, we first show that the monotonicity assumption in Lemma 1
is dispensible. We do this by tweaking a nonmonotone function into a monotone
one with the same desirable properties.

Lemma 7. Let f : [0, 1] → R be weakly p-computable on [0, 1]. Suppose that
there exists x0 ∈ [0, 1] such that f strongly increases at x0 on [0, 1]. Then there
exists a monotone ascending function g : [0, 1] → R that is weakly p-computable
on [0, 1], strongly increases at x0 on [0, 1], and satisfies g(x0) = f(x0).

Proof. See [5].

Proof (of Theorem 1). Let I, f , and r be as in the statement of the theorem. We
can assume that f strongly increases at x, for otherwise we apply the foregoing
argument to −f , using Observations 1 and 2 to get that f(r) is p-random. We
can choose some dyadic interval Γw = [0.w, 0.w + 2−|w|] ⊆ I containing r on
which f is weakly p-computable and strongly increases at x. For all x ∈ [0, 1],
define

g(x) := f(0.w + 2−|w|x) .

By Observation 2, g is weakly p-computable on [0, 1] and strongly increases at
the point s := 2|w|(r−0.w) on [0, 1]. By Lemma 7, there is a monotone ascending
function h that is weakly p-computable on [0, 1], is strongly increasing at s on
[0, 1], and satisfies h(s) = g(s). By Observation 1, s is p-random. By Lemma 1,
h(s) is p-random, and clearly, h(s) = g(s) = f(r), which proves the theorem.

5 Some p-Randomness-Preserving Functions

Here is the class of functions we will consider:

Definition 9. Let I ⊆ R be an open interval. A function f : I → R is well-
behaved on I if f is locally weakly p-computable and strongly varying at each of
the p-random points in I.

Theorem 1 gives us the following corollary:
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Corollary 2. If a function f is well-behaved on an interval I, then f preserves
p-randomness, i.e., f maps p-random points in I to p-random points.

A wide variety of functions are well-behaved and hence preserve p-randomness,
including addition and multiplication by nonzero p-computable numbers, non-
constant polynomial and rational functions with p-computable coefficients, and
all the familiar transcendental functions—exponential, logarithmic, trigonomet-
ric, etc. (Define a function to be 0 where it would otherwise be undefined.)
Although these functions may not be strongly varying at all points, they are
strongly varying at all p-random points.

Definition 10. A sequence c0, c1, c2, . . . ∈ R is uniformly p-computable if there
exists a polynomial-time function ĉ : {0, 1}∗ × {0, 1}∗ → Q such that for all
n, r ∈ N,

|ĉ(0n, 0r) − cn| ≤ 2−r .

Definition 11. Let I ⊆ R be an open interval. We say that a function f : I → R

is p-analytic on I if there exists a p-computable point x0 ∈ I and a uniformly
p-computable sequence c0, c1, c2, . . . such that for all x ∈ I,

f(x) =
∞∑

n=0

cn(x − x0)n ,

and the power series on the right converges absolutely for all x ∈ I.

Note that if f is p-analytic on I, then f is C1 on I. In this section we prove the
following theorem:

Theorem 2. Let I ⊆ R be an open interval. If f : I → R is nonconstant and
p-analytic on I, then f is well-behaved on I.

Theorem 2 follows from the two lemmas below:

Lemma 8. Let J ⊆ R be an open interval and let I be a dyadic interval such
that I ⊆ J . If f is p-analytic on J , then f is weakly p-computable on I.

Proof. See [5].

Lemma 9. Suppose f is p-analytic and nonconstant in some open interval I.
If r ∈ I satisfies f(r) = 0, then r is p-computable.

Proof. See [5].

Proof (of Theorem 2). We know already that, since f has a continuous derivative,
it strongly varies at any point r such that f ′(r) = 0 (hence if r is p-random then
so is f(r)). If f ′(r) = 0, then r is p-computable by Lemma 9, and thus not
p-random.

Corollary 3. Let r be p-random. Then so are er, sin r, and cos r. If r > 0,
then ln r is p-random. If f is any fixed rational function whose numerator and
denominator have p-computable coefficients, and f is defined at r, then f(r) is
p-random.

Proof. All these functions are p-analytic in some neighborhood of any point in
their domains.
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6 Further Research

P-randomness-preserving functions are clearly closed under composition. Are
well-behaved functions closed this way also? Is there a converse to Theorem 1?
Even a partial converse? For example, consider the following:

Conjecture 1. If f is weakly p-computable and monotone in a neighborhood of
r ∈ R but is not strongly varying at r, then f(r) is not p-random.

As evidence for this conjecture, one can concoct monotone functions that deviate
only slightly from strongly varying, but none of whose outputs are p-random.
For example, one could have f(0.σ) = 0.τ , where the sequence τ results from the
sequence σ by inserting zeros very sparsely but infinitely often, in places that
are easy for a martingale to find and bet on.
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Abstract. We propose reactive Turing machines (RTMs), extending
classical Turing machines with a process-theoretical notion of interaction.
We show that every effective transition system is simulated modulo
branching bisimilarity by an RTM, and that every computable transition
system with a bounded branching degree is simulated modulo divergence-
preserving branching bisimilarity. We conclude from these results that
the parallel composition of (communicating) RTMs can be simulated
by a single RTM. We prove that there exist universal RTMs modulo
branching bisimilarity, but these essentially employ divergence to be able
to simulate an RTM of arbitrary branching degree. We also prove that
modulo divergence-preserving branching bisimilarity there are RTMs
that are universal up to their own branching degree. Finally, we establish
a correspondence between RTMs and the process theory TCPτ .

1 Introduction

The Turing machine [19] is widely accepted as a computational model suitable for
exploring the theoretical boundaries of computing. Motivated by the existence of
universal Turing machines, many textbooks on the theory of computation present
the Turing machine not just as a theoretical model to explain which functions
are computable, but as an accurate conceptual model of the computer. There is,
however, a well-known limitation to this view. A Turing machine operates from
the assumptions that: (1) all input it needs for the computation is available on
the tape from the very beginning; (2) it performs a terminating computation;
and (3) it leaves the output on the tape at the very end. Thus, the notion of
Turing machine abstracts from two key ingredients of computing: interaction
and non-termination. Nowadays, most computing systems are so-called reactive
systems [13], systems that are generally not meant to terminate and consist of
computing devices that interact with each other and with their environment.

Concurrency theory emerged from the early work of Petri [16] and has now
developed into a mature theory of reactive systems. We mention three of its
contributions particularly relevant for our work. Firstly, it installed the notion
of transition system as the prime mathematical model to represent discrete
behaviour. Secondly, it offered the insight that language equivalence is too coarse
in a setting with interacting automata; instead one should consider automata up
to some form of bisimilarity. Thirdly, it yielded many algebraic process calculi
facilitating the formal specification and verification of reactive systems.
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In this paper we propose a notion of reactive Turing machine (RTM),
extending the classical notion of Turing machine with interaction in the style of
concurrency theory. The extension consists of a facility to declare every transition
to be either observable, by labelling it with an action symbol, or unobservable,
by labelling it with τ . Typically, a transition labelled with an action symbol
models an interaction of the RTM with its environment (or some other RTM),
while a transition labelled with τ refers to an internal computation step. Thus, a
conventional Turing machine can be regarded as a special kind of RTM in which
all transitions are declared unobservable by labelling them with τ .

The semantic object associated with a conventional Turing machine is either
the function that it computes, or the formal language that it accepts. The
semantic object associated with an RTM is a behaviour, formally represented by
a transition system. A function is said to be effectively computable if it can be
computed by a Turing machine. By analogy, we say that a behaviour is effectively
executable if it can be exhibited by an RTM. In concurrency theory, behaviours
are usually considered modulo a suitable behavioural equivalence. In this paper
we shall mainly use (divergence-preserving) branching bisimilarity [11], which is
the finest behavioural equivalence in Van Glabbeek’s spectrum (see [9]).

In Sect. 3 we set out to investigate the expressiveness of RTMs up to
divergence-preserving branching bisimilarity. We establish that every com-
putable transition system with a bounded branching degree can be simulated, up
to divergence-preserving branching bisimilarity, by an RTM. If the divergence-
preservation requirement is dropped, even every effective transition system can
be simulated. These results will then allow us to conclude that the behaviour of
a parallel composition of RTMs can be simulated on a single RTM.

In Sect. 4 we define a suitable notion of universality for RTMs and investigate
the existence of universal RTMs. We shall find that there are some subtleties
pertaining to the branching degree bound associated with each RTM. Up to
divergence-preserving branching bisimilarity, an RTM can at best simulate other
RTMs with the same or a lower bound on their branching degree. If divergence-
preservation is not required, however, then universal RTMs do exist.

In Sect. 5, we consider the correspondence between RTMs and the process
theory TCPτ . We establish that every executable behaviour is, again up to
divergence-preserving branching bisimilarity, definable by a finite recursive
TCPτ -specification [1]. Recursive specifications are the concurrency-theoretic
counterparts of grammars in the theory of formal languages. Thus, the result in
Sect. 5 may be considered as the process-theoretic version of the correspondence
between Turing machines and unrestricted grammars.

Several extensions of Turing machines with some form of interaction have
been proposed in the literature, already by Turing in [20], and more recently
in [6,12,21]. The goal in these works is mainly to investigate to what extent
interaction may have a beneficial effect on the power of sequential computation.
The focus remains on the computational aspect, and interaction is not treated as
a first-class citizen. Our goal, instead, is to achieve integration of automata and
concurrency theory that treats computation and interactivity on equal footing.
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2 Reactive Turing Machines

We fix a finite set A of action symbols that we shall use to denote the observable
events of a system. An unobservable event will be denoted with τ , assuming that
τ ∈ A; we shall henceforth denote the set A∪{τ} by Aτ . We also fix a finite set
D of data symbols. We add to D a special symbol � to denote a blank tape cell,
assuming that � ∈ D; we denote the set D ∪ {�} of tape symbols by D�.

Definition 1. A reactive Turing machine (RTM) M is a quadruple (S,→, ↑, ↓)
consisting of a finite set of states S, a distinguished initial state ↑ ∈ S, a subset
of final states ↓ ⊆ S, and a (D� ×Aτ ×D� ×{L, R})-labelled transition relation

→ ⊆ S × D� × Aτ × D� × {L, R} × S .

An RTM is deterministic if (s, d, a, e1, M1, t1) ∈ → and (s, d, a, e2, M2, t2) ∈ →
implies that e1 = e2, t1 = t2 and M1 = M2 for all s, t1, t2 ∈ S, d, e1, e2 ∈ D�,
a ∈ Aτ , and M1, M2 ∈ {L, R}, and, moreover, (s, d, τ, e1, M1, t1) ∈ → implies
that there do not exist a = τ , e2, M2, t2 such that (s, d, a, e2, M2, t2) ∈ →

If (s, d, a, e, M, t) ∈ →, we write s
a[d/e]M−−−−−−→ t. The intuitive meaning of such a

transition is that whenever M is in state s and d is the symbol currently read
by the tape head, then it may execute the action a, write symbol e on the tape
(replacing d), move the read/write head one position to the left or one position
to the right on the tape (depending on whether M = L or M = R), and then
end up in state t. RTMs extend conventional Turing machines by associating
with every transition an element a ∈ Aτ . The symbols in A are thought of as
denoting observable activities; a transition labelled with an action symbol in
A will semantically be treated as observable. Observable transitions are used
to model interactions of an RTM with its environment or some other RTM, as
will be explained more in detail below when we introduce a notion of parallel
composition for RTMs. The symbol τ is used to declare that a transition is
unobservable. A classical Turing machine is an RTM in which all transitions are
declared unobservable.

Example 1. Assume that A = {c!d, c?d | c ∈ {i, o} & d ∈ D�}. Intuitively, i and
o are the input/output communication channels by which the RTM can interact
with its environment. The action symbol c!d (c ∈ {i, o}) then denotes the event
that a datum d is sent by the RTM along channel c, and the action symbol c?d
(c ∈ {i, o}) denotes the event that a datum d is received by the RTM along
channel c.

The left state-transition diagram in Fig. 1 specifies an RTM that first inputs
a string, consisting of an arbitrary number of 1s followed by the symbol #,
stores the string on the tape, and returns to the beginning of the string. Then,
it performs a computation to determine if the number of 1s is odd or even. In
the first case, it simply removes the string from the tape and returns to the
initial state. In the second case, it outputs the entire string, removes it from the
tape, and returns to the initial state. The right state-transition diagram in Fig. 1
outputs on channel i the infinite sequence 1#11#111# . . .#1n# . . . (n ≥ 1).
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τ [#/�]L

τ [1/�]L

τ [#/�]L

o!1[1/�]L

o!#[�/�]R

τ [�/�]R

i?1[�/1]R

i?#[�/#]L

τ [1/1]L

τ [�/�]R

τ [1/1]R

τ [1/1]R

τ [�/1]R

τ [�/�]L

τ [1/1]L
τ [�/�]R

i!1[1/1]R

i!#[�/1]R

Fig. 1. Examples of reactive Turing machines

To formalise our intuitive understanding of the operational behaviour of RTMs
we shall below associate with every RTM a transition system. An Aτ -labelled
transition system T is a quadruple (S,→, ↑, ↓) consisting of a set of states S, an
initial state ↑ ∈ S, a subset ↓ ⊆ S of final states, and an Aτ -labelled transition
relation → ⊆ S × Aτ × S. If (s, a, t) ∈ →, we write s a−−→ t. If s is a final state,
i.e., s ∈ ↓, we write s↓. The transition system T is deterministic if, for every
state s ∈ S and for every a ∈ Aτ , s

a−−→ s1 and s
a−−→ s2 implies s1 = s2, and,

moreover, s τ−−→ s1 implies that there do not exist an action a = τ and a state
s2 such that s

a−−→ s2.
With every RTM M we are going to associate a transition system T(M).

The states of T(M) are the configurations of the RTM, consisting of a state
of the RTM, its tape contents, and the position of the read/write head on the
tape. We represent the tape contents by an element of (D�)∗, replacing precisely
one occurrence of a tape symbol d by a marked symbol ď, indicating that the
read/write head is on this symbol. We denote by Ď� = {ď | d ∈ D�} the set of
marked tape symbols; a tape instance is a sequence δ ∈ (D� ∪ Ď�)

∗
such that

δ contains exactly one element of Ď�. Formally, a configuration is now a pair
(s, δ) consisting of a state s ∈ S, and a tape instance δ.

Our transition system semantics defines an Aτ -labelled transition relation
on configurations such that an RTM-transition s

a[d/e]M−−−−−−→ t corresponds with
a-labelled transitions from configurations consisting of the RTM-state s and a
tape instance in which some occurrence of d is marked. The transitions lead to
configurations consisting of t and a tape instance in which the marked symbol d
is replaced by e, and either the symbol to the left or to right of this occurrence
of e is replaced by its marked version, according to whether M = L or M = R.
If e happens to be the first symbol and M = L, or the last symbol and M = R,
then an additional blank symbol is appended at the left or right end of the tape
instance, respectively, to model the movement of the head.

We introduce some notation to concisely denote the new placement of the
tape head marker. Let δ be an element of D∗

�. Then by δ< we denote the element
of (D� ∪ Ď�)

∗
obtained by placing the tape head marker on the right-most

symbol of δ if it exists, and �̌ otherwise. Similarly, by >δ we denote the element
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of (D� ∪ Ď�)
∗

obtained by placing the tape head marker on the left-most symbol
of δ if it exists, and �̌ otherwise.

Definition 2. Let M = (S,→, ↑, ↓) be an RTM. The transition system T(M)
associated with M is defined as follows:

1. its set of states is the set of all configurations of M;
2. its transition relation → is the least relation satisfying, for all a ∈ Aτ ,

d, e ∈ D� and δL, δR ∈ D∗
�:

(s, δLďδR) a−−→ (t, δL
<eδR) iff s

a[d/e]L−−−−−→ t , and

(s, δLďδR) a−−→ (t, δLe >δR) iff s
a[d/e]R−−−−−−→ t ;

3. its initial state is the configuration (↑, �̌); and
4. its set of final states is the set of terminating configurations {(s, δ) | s↓}.

Turing introduced his machines to define the notion of effectively computable
function. By analogy, our notion of RTM can be used to define a notion of
effectively executable behaviour.

Definition 3. A transition system is executable if it is associated with an RTM.

Parallel composition. To illustrate how RTMs are suitable to model a form
of interaction, we shall now define on RTMs a notion of parallel composition,
equipped with a simple form of communication. Let C be a finite set of
channels for the communication of data symbols between one RTM and another.
Intuitively, c!d stands for the action of sending datum d along channel c, while
c?d stands for the action of receiving datum d along channel c.

First, we define a notion of parallel composition on transition systems. Let
T1 = (S1,→1, ↑1, ↓1) and T2 = (S2,→2, ↑2, ↓2) be transition systems, and let C′ ⊆
C. The parallel composition of T1 and T2 is the transition system [T1 ‖ T2]C′ =
(S,→, ↑, ↓), with S, →, ↑ and ↓ defined by

1. S = S1 × S2;
2. (s1, s2) a−−→ (s′1, s

′
2) iff a ∈ Aτ − {c!d, c?d | c ∈ C′, d ∈ D�} and either

(a) s1
a−−→ s′1 and s2 = s′2, or s2

a−−→ s′2 and s1 = s′1, or
(b) a = τ and either s1

c!d−−→ s′1 and s2
c?d−−−→ s′2, or s1

c?d−−−→ s′1 and s2
c!d−−→ s′2

for some c ∈ C′ and d ∈ D�;
3. ↑ = (↑1, ↑2); and
4. ↓ = {(s1, s2) | s1 ∈ ↓1 & s2 ∈ ↓2}.

Definition 4. Let M1 = (S1,→1, ↑1, ↓1) and M2 = (S2,→2, ↑2, ↓2) be RTMs,
and let C′ ⊆ C; by [M1 ‖ M2]C′ we denote the parallel composition of M1

and M2. The transition system T([M1 ‖ M2]C′) associated with the parallel
composition [M1 ‖C M2]C′ of M1 and M2 is the parallel composition of
the transition systems associated with M1 and M2, i.e., T([M1 ‖ M2]C′) =
[T(M1) ‖ T(M2)]C′ .
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Example 2. Let A be as in Example 1, let M denote the left-hand side RTM in
Fig. 1, and let E denote the right-hand side RTM in Fig. 1. Then the parallel
composition [M ‖ E ]i exhibits the behaviour of outputting, along channel o, the
string 11#1111# · · ·#1n# (n ≥ 2, n even).

Equivalences. In automata theory, Turing machines that compute the same
function or accept the same language are generally considered equivalent. In
fact, functional or language equivalence is underlying many of the standard
notions and results in automata theory. Perhaps most notably, a universal
Turing machine is a Turing machine that, when started with the code of some
Turing machine on its tape, simulates this machine up to functional or language
equivalence. A result from concurrency theory is that functional and language
equivalence are arguably too coarse for reactive systems, because they abstract
from all moments of choice (see, e.g., [1]). In concurrency theory many alternative
behavioural equivalences have been proposed; we refer to [9] for a classification.

The results about RTMs that are obtained in the remainder of this paper
are modulo branching bisimilarity [11]. We shall consider both the divergence-
insensitive and the divergence-preserving variant. Let T1 and T2 be transition
systems. If T1 and T2 are branching bisimilar, then we write T1 ↔b T2. If T1

and T2 are divergence-preserving branching bisimilar, then we write T1 ↔Δ
b T2.

(Due to space limitations, the formal definitions had to be omitted; the reader is
referred to the full version [4], or to [10], where the divergence-preserving variant
is called branching bisimilarity with explicit divergence.)

3 Expressiveness of RTMs

We shall establish in this section that every effective transition system can be
simulated by an RTM up to branching bisimilarity, and that every boundedly
branching computable transition system can be simulated up to divergence-
preserving branching bisimilarity. We use this as an auxiliary result to establish
that a parallel composition of RTMs can be simulated by a single RTM.

Let T = (S,→, ↑, ↓) be a transition system; the mapping out : S → 2Aτ×S

associates with every state its set of outgoing transitions, i.e., for all s ∈ S,
out(s) = {(a, t) | s

a−−→ t}, and fin( ) denotes the characteristic function of ↓.

Definition 5. Let T = (S,→, ↑, ↓) be an Aτ -labelled transition system. We
say that T is effective if there exist suitable codings of Aτ and S (into the
natural numbers) such that → and ↓ are recursively enumerable. We say that T
is computable if there exist suitable codings of Aτ and S such that the functions
out( ) and fin( ) are recursive.

The notion of effective transition system originates with Boudol [7]. For the
notion of computable transition system we adopt the definition from [2]. If →
and ↓ are recursively enumerable, then there exist algorithms that enumerate
the transitions in → and the states in ↓. If the functions out( ) and fin( ) are
recursive, then there exists an algorithm that, given a state s, yields the list of
outgoing transitions of s and determines if s ∈ ↓.
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Proposition 1. The transition system associated with an RTM is computable.

Hence, unsurpisingly, if a transition system is not computable, then it is not
executable either. It is easy to define transition systems that are not computable,
so there exist behaviours that are not executable. The full version of this paper
[4] contains an example that illustrates that there exist behaviours that are not
even executable up to branching bisimilarity.

Phillips associates, in [17], with every effective transition system a branching
bisimilar computable transition system of which, moreover, every state has a
branching degree of at most 2. (Phillips actually establishes weak bisimilarity,
but it is easy to see that branching bisimilarity holds.)

Definition 6. Let T = (S,→, ↑, ↓) be a transition system, and let B be a natural
number. We say that T has a branching degree bounded by B if, for every state
s ∈ S, |out(s)| ≤ B. We say that T is boundedly branching if there exists B ∈ N

such that the branching degree of T is bounded by B.

Proposition 2 (Phillips). For every effective transition system T there exists
a boundedly branching computable transition system T′ such that T ↔b T′.

A crucial insight in Phillips’ proof is that a divergence (i.e., an infinite sequence
of τ -transitions) can be exploited to simulate a state of which the set of outgoing
transitions is recursively enumerable, but not recursive. The following example,
inspired by [8], shows that introducing divergence is unavoidable.

Example 3. (In this and later examples, we denote by ϕx the partial recursive
function with index x ∈ N in some exhaustive enumeration of partial recursive
functions, see, e.g., [18].) Assume that A = {a, b}, and consider the transition
system T1 = (S1,→1, ↑1, ↓1) with S1, →1, ↑1 and ↓1 defined by

S1 = {s1,x, t1,x | x ∈ N} , ↑1 = s1,0 ,

→1 = {(s1,x, a, s1,x+1) | x ∈ N} ∪ {(s1,x, b, t1,x) | x ∈ N} , and
↓1 = {t1,x | ϕx(x) converges} .

If T2 is a transition system such that T1 ↔Δ
b T2, as witnessed by some

divergence-preserving branching bisimulation relation R, then it can be argued
that T2 is not computable. A detailed argument can be found in the full
version [4].

By Proposition 2, in order to prove that every effective transition system can
be simulated up to branching bisimilarity by an RTM, it suffices to prove
that every boundedly branching computable transition system can be simulated
by an RTM. Let T = (ST ,→T , ↑T , ↓T) be a boundedly branching computable
transition system, say with branching degree bounded by B. It is reasonably
straightforward to construct an RTM M = (SM ,→M , ↑M , ↓M), which we call
the simulator for T, such that T(M) ↔Δ

b T. The construction is detailed in [4].

Theorem 1. For every boundedly branching computable transition system T
there exists an RTM M such that T(M) ↔Δ

b T .
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Combining Theorem 1 with Proposition 2 we can conclude that RTMs can
simulate effective transition systems up to branching bisimilarity, but, in view
of Example 3, not in a divergence-preserving manner.

Corollary 1. For every effective transition system T there exists a reactive
Turing machine M such that T(M) ↔b T.

All computations involved in the simulation of T are deterministic; if M is non-
deterministic, then this is due to a state of which the menu includes some action
a more than once. Clearly, if T is deterministic, then, for every state s in T,
|out(s)| ≤ |Aτ |. So a deterministic transition system is boundedly branching,
and therefore we get the following corollary to Theorem 1.

Corollary 2. For every deterministic computable transition system T there
exists a deterministic RTM M such that T(M) ↔Δ

b T.

Using Theorem 1 we can now also establish that a parallel composition of RTMs
can be simulated, up to divergence-preserving branching bisimilarity, by a single
RTM. To this end, note that the transition systems associated with RTMs are
boundedly branching and computable. Further note that the parallel composition
of boundedly branching computable transition systems is again computable.
It follows that the transition system associated with a parallel composition of
RTMs is boundedly branching and computable, and hence, by Theorem 1, there
exists an RTM that simulates this transition system up to divergence-preserving
branching bisimilarity. Thus we get the following corollary.

Corollary 3. For every pair of RTMs M1 and M2 and for every set of commu-
nication channels C there is an RTM M such that T(M) ↔Δ

b T([M1 ‖ M2]C).

4 Universality

Recall that a universal Turing machine is some Turing machine that can simulate
an arbitrary Turing machine on arbitrary input. The assumptions are that both
the finite description of the to be simulated Turing machine and its input are
available on the tape of the universal Turing machine, and the simulation is
up to functional or language equivalence. We adapt this scheme in two ways.
Firstly, we let the simulation start by inputting the description of an arbitrary
RTM M along some dedicated channel u, rather than assuming its presence on
the tape right from the start. This is both conceptually desirable —for our aim
is to give interaction a formal status—, and technically necessary —for in the
semantics of RTMs we have assumed that the tape is initially empty. Secondly,
we require the behaviour of M to be simulated up to divergence-preserving
branching bisimilarity.

Thus, we arrive at the following tentative definitions. For an arbitrary RTM
M, denote by M an RTM that outputs a description of M along channel u
and then terminates. A universal RTM is then an RTM U such that, for every
RTM M, the parallel composition

[
U ‖ M

]
{u} simulates T(M).
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Although such a universal RTM U exists up to branching bisimilarity as
we shall see below, it does not exist up to divergence-preserving branching
bisimilarity. To see this, note that the transition system associated with any
particular RTM U has a branching degree that is bounded by some natural
number B. It can then be established that, up to divergence-preserving branching
bisimilarity, U can only simulate RTMs with a branching degree bounded by B.
The argument is formalised in the following proposition; see [4] for a proof.

Proposition 3. There does not exist an RTM U such that for all RTM M it
holds that

[
U ‖ M

]
{u} ↔Δ

b T(M).

If we insist on simulation up to divergence-preserving branching bisimilarity,
then we need to relax the notion of universality. Let B be a natural number.
An RTM UB is universal up to B if for every RTM M with T(M) bounded by
branching degree B it holds that T(M) ↔Δ

b

[
M ‖ UB

]
{u}.

The construction of the simulator for a transition system of which the
branching degree is bounded by B in the proof of Theorem 1 can be adapted
to get the definition of an RTM UB that is universal up to B. It suffices
to slightly modify the initialisation fragment. Instead of writing the codes of
the functions out( ) and fin( ) and the initial state directly on the tape, the
initialisation fragment receives the code M� of an arbitrary M along some
dedicated channel u. Then, it recursively computes the codes of the functions
out( ) and fin( ), and the initial state of T(M) and stores these on the tape.

Theorem 2. For every B there exists an RTM UB such that, for all RTMs M
with a branching degree bounded by B, it holds that T(M) ↔Δ

b

[
M ‖ UB

]
{u}.

If we drop divergence-preservation as a requirement for the simulation, then a
universal RTM does exist. At the heart of the argument is a trick, first described
in [2] and adapted by Phillips in [17], to use a divergence with (infinitely many)
states of at most a branching degree of 2 to simulate, up to branching bisimilarity,
a single state of some arbitrary (even countably infinite) branching degree.

Theorem 3. There exists an RTM U such that, for all RTMs M, it holds that
T(M) ↔b

[
U ‖ M

]
{u}.

5 Recursive Specifications

A well-known result from the theory of automata and formal languages is that
the formal languages accepted by Turing machines correspond with the languages
generated by an unrestricted grammar. A grammar is a formal system for
describing a formal language. The corresponding notion in concurrency theory
is the notion of recursive specification, which is a formal system for describing
behaviour. In this section, we show that the behaviours of RTMs correspond with
the behaviours described by so-called TCPτ recursive specifications. The process
theory TCPτ is a general theory for describing behaviour, encompassing the key
features of the well-known process theories ACPτ [5], CCS [15] and CSP [14].
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We shall briefly introduce the syntax of TCPτ and informally describe its
operational semantics. We refer to the textbook [1] for an elaborate treatment.
We reuse the finite set C of channels and set of data D� introduced in Sect. 2; we
introduce the set of special actions I = {c?d, c!d | d ∈ D�, c ∈ C}. The actions
c?d and c!d denote the events that a datum d is received or sent along channel c.
Let N be a countably infinite set of names. The set of process expressions P is
generated by the following grammar (a ∈ Aτ ∪ I,N ∈ N , C′ ⊆ C):

p ::= 0 | 1 | a.p | p · p | p + p | [p ‖ p]C′ | N .

The constant 0 denotes deadlock, the unsuccessfully terminated process. The
constant 1 denotes skip, the successfully terminated process. For each action
a ∈ A ∪ I there is a unary operator a. denoting action prefix; the process
denoted by a.p can do an a-transition to the process denoted by p. The
binary operator · denotes sequential composition. The binary operator + denotes
alternative composition or choice. The binary operator [ ‖ ]C′ denotes the
special kind of parallel composition that we have also defined on RTMs. It
enforces communication along the channels in C′, and communication results
in τ . (By including the restricted kind of parallel composition, we deviate from
the definition of TCPτ discussed in [1], but we note that our notion of parallel
composition is definable with the operations ‖, ∂ ( ) and τ ( ) of TCPτ in [1].)

A recursive specification E is a set of equations of the form: N def= p, with
as left-hand side a name N and as right-hand side a TCPτ process expression
p. It is required that a recursive specification E contains, for every N ∈ N , at
most one equation with N as left-hand side; this equation will be referred to
as the defining equation for N in N . Furthermore, if some name occurs in the
right-hand side of some defining equation, then the recursive specification must
include a defining equation for it. Let E be a recursive specification, and let p be
a process expression. There is a standard method to associate with p a transition
system TE(p). The details can be found, e.g., in [1].

In [4] we present the details of a construction that associates with an arbitrary
RTM a TCPτ recursive specification that defines its behaviour up to divergence-
preserving branching bisimilarity. Thus, we get the following correspondence.

Theorem 4. For every RTM M there exists a finite recursive specification E
and a process expression p such that T(M) ↔Δ

b TE(p),

As a corollary we find that every executable transition system is definable, up to
divergence-preserving branching bisimilarity, by a TCPτ recursive specification.
Since there exist recursive specifications with an unboundedly branching asso-
ciated transition system (see, e.g., [3], for the converse of the abovementioned
theorem), we have to give up divergence-preservation. Since the transition system
associated with a finite recursive specification is clearly effective, we do get, by
Corollary 1, the following result.

Corollary 4. For every finite recursive specification E and process expression
p, there exists an RTM M such that TE(p) ↔b T(M).
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6 Concluding Remarks and Future Work

We have proposed a notion of reactive Turing machine and discussed its
expressiveness in bisimulation semantics. Although it is not the aim of this
work to contribute to the debate as to whether interactive computation is more
powerful than traditional computation, our notion of RTM may nevertheless
turn out to be a useful tool in the discussion. For instance, our result that the
parallel composition of RTMs can be simulated by an RTM seems to contradict
the implied conjecture in [12, Sect. 11] that interactive computation performed
by multiple machines working together is more expressive than interactive
computation performed by a single machine.

To be sure, however, we would need to firmly establish the robustness of
our notion by showing that variations on its definition (e.g., multiple tracks
or multiple tapes), and by showing that it can simulate the other proposals
(persistent Turing machines [12], interactive Turing machines [21]). We also
intend to consider interactive versions of other computational models. The λ-
calculus would be an interesting candidate to consider, because of the well-known
result that it is inherently sequential; this suggests that an interactive version of
λ-calculus will be less expressive than RTMs. In particular, we conjecture that
the evaluation of parallel-or or McCarthy’s amb can be simulated with RTMs.

RTMs may also prove to be a useful tool in establishing the expressiveness of
process theories. For instance, the transition system associated with a π-calculus
expression is effective, so it can be simulated by an RTM, at least up to branching
bisimilarity. The π-calculus can to some extent be seen as the interactive version
of the λ-calculus. We conjecture that the converse —every executable transition
system can be specified by a π-calculus expression— is also true.

Petri showed already in his thesis [16] that concurrency and interaction may
serve to bridge the gap between the theoretically convenient Turing machine
model of a sequential machine with unbounded memory, and the practically more
realistic notion of extendable architecture of components with bounded memory.
The specification we present in the proof of Theorem 4 (see [4]) is another
illustration of this idea: the unbounded tape is modelled as an unbounded parallel
composition. It would be interesting to further study the inherent tradeoff
between unbounded parallel composition and unbounded memory in the context
of RTMs, considering unbounded parallel compositions of RTMs with bounded
memory.

Acknowledgement. We thank Herman Geuvers for discussions, and Clemens
Grabmayer for suggesting to us the term reactive Turing machine, and the
anonymous referees for their useful comments.
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Virtual Substitution for SMT-Solving

Florian Corzilius and Erika Ábrahám
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Abstract. SMT-solving aims at deciding satisfiability for the existen-
tial fragment of a first-order theory. A SAT-solver handles the logical
part of a given problem and invokes an embedded theory solver to check
consistency of theory constraints. For efficiency, the theory solver should
be able to work incrementally and generate infeasible subsets. Currently
available decision procedures for real algebra – the first-order theory of
the reals with addition and multiplication – do not exhibit these fea-
tures. In this paper we present an adaptation of the virtual substitution
method, providing these abilities.

1 Introduction

The satisfiability problem poses the question of whether a given logical formula
is satisfiable, i.e., whether we can assign values to the variables contained in
the formula such that the formula becomes true. The development of efficient
algorithms and tools (solvers) for satisfiability checking form an active research
area in computer science. A lot of effort has been put into the development of
fast solvers for the propositional satisfiability problem, called SAT. To increase
expressiveness, extensions of the propositional logic with respect to first-order
theories can be considered. The corresponding satisfiability problems are called
SAT-modulo-theories problems, short SMT. SMT-solvers exist, e.g., for equality
logic, uninterpreted functions, predicate logic, and linear real arithmetic.

In contrast to the above-mentioned theories, less activity can be observed for
SMT-solvers supporting the first-order theory of the real ordered field, what we
call real algebra. Our research goal is to develop an SMT-solver for real algebra,
being capable of solving Boolean combinations of polynomial constraints over
the reals efficiently.

Even though decidability of real algebra has been known for a long time
[Tar48], the first decision procedures were not yet practicable. Since 1974 it is
known that the time complexity of deciding formulas of real algebra is in worst
case doubly exponential in the number of variables (dimension) contained in the
formula [DH88, Wei88].

Today, several methods are available which satisfy these complexity bounds,
for example the cylindrical algebraic decomposition (CAD) [CJ98] , the Gröbner
basis, and the virtual substitution method [Wei98]. An overview of these methods
is given in [DSW97]. There are also tools available which implement these meth-
ods. The stand-alone application QEPCAD is a C++ implementation of the CAD
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method [Bro03]. Another example is the REDLOG package [DS97] of the computer
algebra system REDUCE based on Lisp, which offers an optimized combination
of the virtual substitution, the CAD method, and real root counting.

Currently existing solvers are not suited to solve large formulas containing
arbitrary combinations of real constraints. We want to combine the advantages
of highly tuned SAT-solvers and the most efficient techniques currently available
for solving conjunctions of real constraints, by implementing an SMT-solver for
real algebra capable of efficiently solving arbitrary Boolean combinations of real
constraints.

Theory solvers should satisfy specific requirements in order to embed them
into an SMT-solver efficiently:

– Incrementality: The theory solver should be able to accept theory constraints
one after the other. After it receives a new theory constraint it should check
the conjunction of the new constraint with the earlier constraints for satisfi-
ability. For efficiency it is important that the solver makes use of the result
of earlier checks.

– (Minimal) infeasible subsets: If the theory solver detects a conflict, it should
give a reason for the unsatisfiability. The usual way is to determine an unsat-
isfiable subset of the constraints which is ideally minimal in the sense that
if we remove a constraint the remaining ones become satisfiable.

– Backjumping: If a conflict occurs, either in the Boolean or in the theory
domain, the solver should be able to backtrack and continue the search for
a solution at an earlier state, thereby reducing the search space as far as
possible.

To our knowledge, these functionalities are currently not supported by the avail-
able solvers for real algebra. In this paper we extend the virtual substitution
method to support incrementality, backjumping, and the generation of infeasi-
ble subsets.

We have chosen the virtual substitution method because it is a restricted
but very efficient decision procedure for a subset of real algebra. The restric-
tion concerns the degree of polynomials. The method uses solution equations to
determine the zeros of (multivariate) polynomials in a given variable. As such
solution equations exist for polynomials of degree at most 4, the method is a
priori restricted in the degree of polynomials. In this paper we restrict ourselves
to polynomials of degree 2, however it is possible to extend our approach to
polynomials up to degree 4. Furthermore, we want to develop an incremental
adaptation of the CAD method and to call this complete1 but less efficient de-
cision procedure in order to complete the incremental implementation of the
virtual substitution method. This will be part of our future work.

Related work. The SMT-solvers Z3 [dMB08], HySAT [FHT+07] and ABsolver
[BPT07] are able to handle nonlinear real-algebraic constraints. The algorithm
implemented in HySAT and in its successor tool iSAT uses interval constraint
1 The CAD method can handle full real algebra.
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propagation to check real constraints. Though this technique is not complete,
in practice it is more efficient than those based on exact methods [FHT+07].
The structures of ABsolver and Z3 are more similar to our approach. However,
Z3 does not support full real-algebra. Papers on ABsolver do not address the
issue of incrementality. Though ABsolver computes minimal infeasible subsets,
we did not find any information on how they are generated. Other approaches
as, e.g., implemented in the RAHD tool [PJ09], embed real-algebraic decision
procedures in a theorem proving context. The virtual substitution was also
used in its original form for temporal verification within the Stanford Temporal
Solver [Bjo99]. The virtual substitution is used for linear arithmetic in [Bjo10].

The remaining part of the paper is structured as follows: We give an intro-
duction to DPLL-based SMT-solving and to virtual substitution in Section 2.
We introduce our incremental virtual substitution algorithm providing infeasi-
ble subsets and give some first experimental results in Section 3. We conclude
the paper in Section 4. A more detailed description of our work can be found
in [Cor11].

2 Preliminaries

In this paper we focus on satisfiability checking for a subset of the existen-
tial fragment of real algebra (quadratic and beyond). Terms or polynomials p,
constraints c, and formulas ϕ can be built upon constants 0, 1 and real-valued
variables x according to the following abstract grammar:

p ::= 0 | 1 | x | (p + p) | (p · p)
c ::= p = p | p < p
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

Syntactic sugar like True , False , −, /, ∨, →, ∀, . . . is defined as usual; the
equality is added for convenience but could also be defined as syntactic sugar.
We define that ∨ binds stronger than ∧, and ∧ binds stronger than ∃, and
sometimes skip the parentheses. The semantics of real algebra is as expected. We
call a variable x occurring in a formula ∃xϕ bound ; not bound variables are called
free. Formulas with no free variables are called sentences. With R[x1, . . . , xn] we
denote the set of all polynomials containing variables x1, . . . , xn.

With the real numbers R as the domain, the set of all true real-algebraic
sentences is the first-order theory of (R, +, ·, 0, 1, <), called real algebra. In this
paper we restrict to the existential fragment, i.e., to formulas which can be
transformed into the form ∃x1 . . .∃xnϕ with ϕ being quantifier-free.

The satisfiability problem for real-algebraic formulas is decidable as proved
around the 1930s [Tar48]. We use DPLL-based SMT-solving, introduced in
Section 2.1, for the satisfiability check. An SMT-solver combines a SAT-solver,
handling the Boolean structure, and a theory solver to check the theory con-
straints. We apply the virtual substitution method, introduced in Section 3, as
an algorithm for the theory solver, which is very efficient but restricted in the
degree of polynomials that can be handled.
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ϕ

SAT-solver UNSAT

Constraint set Reason

Theory solver SAT

Boolean abstraction

satisfiable

unsatisfiable

unsatisfiable

satisfiable

Fig. 1. The basic scheme of DPLL-based full lazy SMT-solving

2.1 Lazy SMT-Solving

The propositional satisfiability problem (SAT) where the variables range over
the values 1 (True ) and 0 (False ) is NP-complete, but SAT-solvers are quite
efficient in practice due to a vast progress in SAT-solving during recent years.
One of the main achievements in the field of SAT-solving is the DPLL-algorithm,
which is capable of solving existential Boolean formulas.

The DPLL-algorithm can be extended to handle more expressive logics. For
this approach, which is called SAT-modulo-theories (SMT ) solving, a SAT-solver
gets combined with a decision procedure for the satisfiability check of constraints
from the underlying theory (see, e.g., [KS08]).

The basic scheme of full lazy DPLL-based SMT-solving is roughly as follows
(see Fig. 1). The SMT-solver first creates a Boolean skeleton of the input for-
mula, replacing all theory constraints contained in the input formula by fresh
Boolean variables. The resulting Boolean formula is passed to the SAT-solver,
which searches for a satisfying assignment. If it does not succeed, the formula
is unsatisfiable. Otherwise, the assignment found corresponds to certain truth
values for the theory constraints and has to be verified by the theory solver.
If the constraints are satisfiable, then the original formula is satisfiable. Oth-
erwise, if the theory solver detects that the conjunction of the corresponding
theory constraints is unsatisfiable, it then hands over a reason for the unsatis-
fiability, an infeasible subset of the theory constraints, to the SAT-solver. The
SAT-solver uses this piece of information to exclude the detected conflict from
further search. Afterwards, the SAT-solver computes an assignment for the re-
fined Boolean problem again, which in turn has to be verified by the theory
solver. Continuing this iteration decides the satisfiability of the input formula in
the end.

The full lazy procedure is often disadvantageous in practice, because the SAT-
solver may do a lot of needless work by extending an already (in the theory
domain) contradictory partial assignment. Less lazy variants of the procedure
call the theory solver more often, already handing over constraints correspond-
ing to partial assignments. To do so efficiently, the theory solver should accept
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constraints in an incremental fashion, where computation results of previous
steps can be reused.

Note that we strictly separate the satisfiability checks in the Boolean and in
the theory domains, that means, we do not consider theory propagation embed-
ded in the DPLL search like, e.g., Yices does.

2.2 Virtual Substitution

The virtual substitution method is a restricted but very efficient decision pro-
cedure for a subset of real algebra. In this paper we adapt it to support incre-
mentality and infeasible subset generation (see Section 3). In this section we
introduce virtual substitution in its original form.

We are interested in checking satisfiability of existentially quantified formulas
in prenex normal form (PNF) ∃x1 . . . ∃xnϕ with ϕ quantifier-free. The decision
procedure based on virtual substitution produces a quantifier-free equivalent of
a given input formula, by successively eliminating all bound variables starting
with the innermost one. Below we explain how the innermost quantified variable
is eliminated using virtual substitution.

Let ∃y1 . . . ∃yn∃xϕ be the input formula, where ϕ is a quantifier-free Boolean
combination of polynomial constraints. In this paper we handle constraints,
whose degree in x is at most two (y1, . . . , yn may occur with higher degree).
Thus we assume that all polynomial constraints in ϕ are of the form p ∼ 0,
∼∈ {=, <, >, ≤, ≥, =}, where p = ax2 + bx + c is at most quadratic2 in x.

Considering the problems domain, each constraint containing x splits it into
values which satisfy the constraint and values which do not. More precisely, the
satisfying values can be merged to a finite number of intervals whose endpoints
are elements of {∞,−∞} ∪ Lx, where Lx are the zeros of p in x:

Linear in x : x0 = − c
b , if a = 0 ∧ b = 0

Quadratic in x, first solution: x1 = −b+
√

b2−4ac
2a , if a = 0 ∧ b2 − 4ac ≥ 0

Quadratic in x, second solution: x2 = −b−√
b2−4ac

2a , if a = 0 ∧ b2 − 4ac ≥ 0

The conditions on the right are called side conditions. Note that in the case
a = b = c = 0 (constant in x) the solution interval for x is (−∞, ∞), which
does not have finite endpoints.

Assume that {c1, . . . , cn} is the set of constraints in ϕ that contain x. Each
constraint ci, 1 ≤ i ≤ n, has a set of solution intervals {Ii,1, . . . , Ii,ki} for x. If
the constraints have a common solution for x, then for all i ∈ {1, . . . , n} there
exists a ji ∈ {1, . . . , ki} with

I = (
⋂

i∈{1,..., n}
Ii,ji ) = ∅.

The intersection I is an interval, whose endpoints are both endpoints of some of
the intervals we intersect. If I is left-closed, its left endpoint is in I; otherwise
2 The coefficients of x are again polynomials, but do not contain x.
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there exists an infinitesimal value we can add to the left endpoint, such that the
result is an element of I. In both cases we found an element of I being a solution
for x. Candidates for the left endpoint of I are the left endpoints of the possible
solution intervals, i.e. −∞ and all finite endpoints x0, x1, x2 for all constraints.
When searching for a satisfying solution for x, it is sufficient to consider those
candidates if they belong to a left-closed interval, or those candidates plus an
infinitesimal if the corresponding interval is left-open.

In other words, we check if (1) one of the left endpoints of the left-closed
solution intervals, or (2) one of the left endpoints plus an infinitesimal ε of the
left-opened intervals or (3) a very small value, which we denote by −∞, fulfills
all constraints. We call those points belonging to (1), (2), or (3) test candidates.
For the proof of soundness and completeness3 of the method see [Wei88].

Basically, the virtual substitution recursively eliminates all bound variables x
in ϕ by (i) determining all test candidates for x in all constraints in ϕ containing
x, and (ii) checking if one of these test candidates satisfies ϕ.

To check whether a test candidate t for x satisfies a constraint p ∼ 0 in ϕ,
we substitute all occurrences of x by t in p, yielding p[t/x] ∼ 0, and check the
resulting constraint under the test candidate’s side conditions for consistency.
Note that neither p[t/x] ∼ 0 nor the solution conditions refer to x, but they may
contain other bound variables. Thus the consistency check may involve further
quantifier eliminations.

Standard substitution could lead to terms not contained in real algebra, since
the test candidates include −∞, square roots, and infinitesimals ε. Virtual sub-
stitution however, avoids these expressions in the resulting terms: it defines sub-
stitution rules yielding formulas of real algebra that are equivalent to the result
of the standard substitution. However, these substitution rules may increase the
degree of the polynomials.

Assume T is the set of all possible test candidates for x. Given a test candi-
date t ∈ T with side conditions Ct, the virtual substitution method applies the
substitution rules to all constraints in the input formula ϕ and conjugates the
result with Ct. Considering all possible test candidates results in the formula

∃y1 . . .∃yn

∨
t∈T

(ϕ[t/x] ∧ Ct).

Note that test candidates of type (3) do not have side conditions. The virtual
substitution method continues with the elimination of the next variable.

3 The Adapted Virtual Substitution Method

As discussed in Section 1, a theory solver should support incrementality, infea-
sible subset generation, and backjumping in order to be suited for an efficient
embedding into a less lazy SMT-solver.

The original virtual substitution method does not provide these functionalities
yet. Nevertheless, it can be embedded into an SMT-solver. Full lazy SMT-solving
3 For the restricted logic with quadratic constraints.
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does not require incrementality, but is not very profitable compared to a less
lazy approach with an incremental theory solver. We could also embed a non-
incremental theory solver into a less lazy SMT-solver. However, in this case the
theory solver has to re-do a lot of work.

In this section we propose an incremental version of the virtual substitution
method, which is also able to generate an infeasible subset of the checked con-
straints in case they are inconsistent. We show, by way of an example, how the
consistency check works, and give first experimental results using our prototype
implementation.

3.1 Data Structure of the Theory Solver

Assume that the theory solver receives some constraints ϕ = c1, . . . , cn. The
algorithm chooses a variable x to eliminate first and computes the set T of all test
candidates that the constraints provide for x (see Section 2). The formula ϕ is
satisfied if there is a test candidate t ∈ T such that ϕt = c1[t/x]∧. . .∧cn[t/x]∧Ct

is satisfiable, where Ct are the side conditions of t. In contrast to the original
algorithm, we proceed using a depth-first search, first checking consistency for a
single test candidate t as long as ϕt does not turn out to be inconsistent, and
switch to another test candidate otherwise. Applying the substitution ci[t/x],
1 ≤ i ≤ n, may lead to further case distinctions from which we can again choose
a first branch until it turns out to be unsatisfiable. If we succeed to eliminate
all variables without getting any conflict in a certain branch, then the problem
is satisfiable and we stop the search. Otherwise, if all branches lead to conflicts,
the problem is unsatisfiable.

This search structure can be represented by a tree as shown in the examples of
Figure 2. The framed nodes of this tree contain conjunctions of real constraints
and are called conjunction nodes. The other nodes are either indexed substitu-
tions, called substitution nodes, or conflict nodes. The indices of the substitutions
are the side conditions of the test candidate it considers and the labels on the
edges to a substitution are the constraints, which provided the substitutions
test candidate. The successors of a node are formed as follows: Let us consider
a conjunction node N containing the constraints c1, . . . , cn. Let x and T be as
defined before. For each t ∈ T there exists at most one successor of N being the
substitution [t/x] indexed by the side conditions of t. The successors of a sub-
stitution node [t/x]Ct are the substitution cases as explained above (*). If all of
these cases contain a variable-free inconsistent constraint, than the substitution
node has a conflict node as successor (**). We remove variable-free consistent
constraints from the constraint sets. The index of a constraint in a conjunction
node refers to the constraint in the root of the tree, from which it stems. For
a constraint c indexed by ci it means, that we got c from ci by applying sub-
stitutions. We call ci the original constraint of c. The index of a conflict node
is formed by a disjunction of the original constraints of the constraints, which
caused this conflict. It means, that applying the substitution of the antecessor
node to such a constraint just results (according to the substitution rules) in
cases containing variable-free inconsistent constraints.
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(A)
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Fig. 2. Solver state after (A) adding the constraints c0 : (x2 ≤ y) and c1 : (y = 0)
followed by a consistency check, and (B) adding another constraint c2 : (y ≤ −1) and
performing another consistency check

The just described tree represents the data structure the theory solver main-
tains. As you can see in the next subsection, it provides all the information we
need for an incremental implementation of the virtual substitution method and
for the generation of infeasible subsets. Moreover, the tree structure permits an
informed depth-first solution search instead of the breadth-first search given by
the original virtual substitution.

3.2 Functionality of the Theory Solver

Using the above data structure, this subsection shows, by means of an example,
how to initialize the solver, how to add constraints incrementally, how to per-
form a consistency check, and how to generate an infeasible subset of the added
constraints, if the consistency check fails.

We initialize the solver’s data structure with a single conjunction node con-
taining the empty conjunction (representing True ). First we add two constraints
c0 : (x2 ≤ y) and c1 : (y = 0) to the solver, whose conjunction is inserted into
the root.

Now we provoke the consistency check of c0 ∧ c1 (Figure 2 part (A) shows the
data structure after the consistency check). The solver repeats choosing a node
in the data structure and creating successors for it until it either finds an empty
conjunction node or no more nodes, for which we can create successors, exist. The
former implies consistency, the latter inconsistency. Currently, there is only one
node to choose, namely the root. As it is a conjunction node, its successors are
substitution nodes. Hence, we fix a variable to eliminate next and form the test
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candidates for this variable, which the constraints in the root provide. Instead of
creating all successors by determining all test candidates the constraints provide,
the data structure allows us to create only successors corresponding to the test
candidates of a single constraint. We choose the variable x for elimination and
the constraint x2 ≤ y for test candidate generation, as it is the only constraint
containing x. The created successors are formed by the substitution [−∞/x]
without a side condition and the substitutions [−√

y/x] and [
√

y/x] both with
the side condition y ≥ 0.

The data structure now contains four nodes. However, we can only create
successors for the three recently created substitution nodes, since the only con-
straint in the root containing x has already been used to create successors. We
choose the left-most substitution node. Its successors are created by applying
[−∞/x] to the conjunction x2 ≤ y ∧ y = 0 of its antecessor. It results in a con-
flict node with index c0 (statement (**) in Section 3.1), denoting that the test
candidate −∞ for x is not a solution for x2 ≤ y. We call c0 the conflict reason
for the already fixed assignments of variables to test candidates (here just x
to −∞).

The next node we choose is [−√
y/x]y≥0. Applying the substitution yields a

single conjunction node as successor (statement (*) in Section 3.1). We continue
with the newly created node, in which only y can be eliminated. We create
successors for the test candidates provided by y = 0, resulting in the substitution
nodes [−∞/y] and [0/y]. We choose the former one to continue and create its
successor being a conflict node with the index c0 ∨ c1. The test candidate −∞
for y is neither a solution y = 0 nor for y ≥ 0. Therefore, the conflict reason is
either c0 or c1.

We continue with the substitution node [0/y] and create its only successor
being an empty conjunction node. Hence, the consistency check terminates and
reports consistency of c0 ∧ c1.

Next we add the constraint c2 : (y = −1) belatedly to the solver in order to
demonstrate incrementality. The solver uses the resulting data structure of the
previous consistency check, adds y = −1 to its root, and marks all nodes not
being the root or one of its direct successors in order to avoid choosing them
during a subsequent consistency check.

The solver checks the consistency of c0 ∧ c1 ∧ c2 as follows (Figure 2 part
(B) shows the solvers data structure after the consistency check). The only un-
marked nodes for which we can create new successors are the root, [−√

y/x]y≥0,
and [

√
y/x]y≥0. We choose [−√

y/x]y≥0 and apply virtual substitution to the be-
latedly added constraint y = −1. The virtual substitution gives a real algebraic
formula C1 ∨ . . .∨Cn that is equivalent to the result of the standard substitution
but does not contain square roots or fractions. To handle the case splitting, we
copy each successor of the substitution node (including its subtree) n times and
for each i, 1 ≤ i ≤ n, we add the conjunction Ci, and to the ith copy. All nodes
in these copied subtrees except the roots and their direct successors get marked
in order to avoid choosing them in the next step. In the example there is a single
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successor and the resulting formula consists of one constraint, hence we just add
this constraint to the successor and unmark it and its direct successors.

Now, we can choose each node in the data structure, except the empty con-
junction node. We choose [0/y] and create its successor, which is a conflict node
with conflict reason c2.

The next node we choose is the conjunction node y = 0∧y ≥ 0∧y = −1. Until
now we created only the successors considering the test candidates provided by
y = 0. The constraint y ≥ 0 provides the same test candidates. The constraint
y = −1 provides another test candidate −1 for y. We create the according
successor and choose it to continue the consistency check. Its resulting successor
is a conflict node with conflict reason c0 ∨ c1.

Now, we have created all possible successors of the considered conjunction
node y = 0 ∧ y ≥ 0 ∧ y = −1 and all lead to conflicts. It implies that its
conjunction is not consistent. A conflict reason of this node must imply the
conflict reason of each of its successors. We can choose for example the conflict
reason c1 ∧ c2 and, indeed, y = 0 ∧ y = −1, which is the a result of applying
(c1 ∧ c2)[−√

y/x], is inconsistent. Moreover, y = 0 ∧ y = −1 also appears in the
preceding conjunction node, the root. Therefore it is also a conflict reason of the
root and an infeasible subset of the constraints added to the solver.

We can use this information to jump back to the last node that implies the
generated conflict reason. The constraints of that node are already conflicting,
i.e., we do not need to continue the search in that subtree. We call this approach
backjumping. In our example, we jump back to the root, which thus contains a
conflict, and we report inconsistency.

3.3 Experimental Results

We are currently building a prototype implementation of the introduced pro-
cedures. We have already completed an incremental theory solver and a non-
incremental one, both supporting the computation of infeasible subsets.

To get first results for the performance of an SMT-solver involving our theory
solver, we embedded our implementation into an existing SMT-solver. However,
it does not yet make use of the computed infeasible subsets. The SMT-embedding
allows lazy or less lazy theory solver invocation. A lazy invocation calls the theory
solver only when a complete solutions for the Boolean skeleton is found. The less
lazy variant invokes the theory solver for consistency check after the completion
of each decision level of the SAT-solver.

Since we did not yet embed an underlying complete theory solving procedure,
to test our approach we need examples that during solving do not lead to poly-
nomials of degree higher than two. Only after embedding, e.g., the CAD method,
we will be able to handle more relevant case studies.

As benchmarks we have created a random set of test formulas of the form

( x0x1 = c ) ∧
10∧

i=1

5∨
j=1

( xi,j,1 + xi,j,2 + xi,j,3 + xi,j,4 + xi,j,5 = ci,j )
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Table 1. Running times (in seconds) for 4 benchmarks

Solver Example 1 Example 2 Example 3 Example 4

Less lazy, non-incremental, with back-
jumping

18.879 15.805 22.769 13.981

Less lazy, incremental 23.879 43.200 20.103 47.124

Less lazy, non-incremental 49.217 99.714 109.582 68.955

Full lazy, non-incremental 550.988 144.826 162.805 102.458

REDLOG 1147.889 2104.883 1850.559 251.474

where x0, x1, and all xi,j,k are real-valued variables from a set Var with |Var| =
20 such that x0 and x1 are syntactically different, and c and all ci,j are constants
from the set {1, . . . , 50}. The position of the single-literal clause, which is listed
first above, is determined randomly, i.e., it is not always the first clause. Table 1
shows results, which are characteristic for this kind of input formula. All listed
example formulas are satisfiable.

The running times show the expected result. The benefit of involving an SMT-
solver can be observed by comparing the third and fourth row with the last one.
The second row shows the running times of the SMT-solver using an incremental
theory solver, whereas the Solver in the first row makes use of backjumping but
without incrementality. Combining backjumping with incrementality has not yet
been implemented but we expect it to lead to even shorter running times. The
most promising improvement will be the inclusion of the infeasible subsets in
the SMT environment.

4 Conclusion

In this paper we proposed an incremental adaptation of the virtual substitution
method, and introduced methods for backjumping and for the generation of
infeasible subsets. Our next step will be to make use of the infeasible subsets in
our SMT-solver.

Our data model provides possibilities for different decision heuristics, which
we also want to explore. Additionally, we will extend the degree of the constraints
we can handle to its theoretical maximum of 4, and invoke a complete fall-back
procedure.
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Milanič, Martin 288
Müller-Hannemann, Matthias 264

Nichterlein, André 53
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