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Preface

CALCO, the International Conference on Algebra and Coalgebra in Computer
Science, is a high-level, bi-annual event formed by joining CMCS (the Inter-
national Workshop on Coalgebraic Methods in Computer Science) and WADT
(the Workshop on Algebraic Development Techniques). CALCO aims to bring
together researchers and practitioners with interests in foundational aspects,
and both traditional and emerging uses of algebras and coalgebras in computer
science. The study of algebra and coalgebra relates to the data, process and
structural aspects of software systems.

Previous CALCO editions took place in Swansea (UK, 2005), Bergen
(Norway, 2007) and Udine (Italy, 2009). CALCO 2011, the fourth conference
in the series, took place in the city of Winchester (UK), from August 30 to
September 2, 2011.

CALCO 2011 received 41 submissions, out of which 21 were selected for
presentation at the conference. The standard of submissions was generally very
high. The selection process was carried out by the Program Committee, taking
into account the originality, quality and relevance of the material presented in
each submission, based on the opinions of expert reviewers, three or four for
each submission. The selected and revised papers are included in this volume,
together with the contributions from the invited speakers Vincent Danos, Javier
Esparza, Philippa Gardner and Gopal Gupta.

CALCO 2011 was co-located with two workshops. The CALCO Young
Researchers Workshop, CALCO-jnr, was dedicated to presentations by PhD
students and young researchers. CALCO-jnr was organized by Corina Cı̂rstea,
Magne Haveraaen, John Power, Monika Seisenberger and Toby Wilkinson. The
CALCO-tools Workshop, organized by Dorel Lucanu, provided presentations of
tools. The papers presenting the tools also appear in this volume.

We wish to thank all the authors who submitted their papers to CALCO
2011, the Program Committee and the external reviewers who supported the
Committee in the evaluation and selection process.

We are grateful to the University of Southampton for hosting CALCO 2011
at Winchester and to the Organizing Committee, chaired by Corina Cı̂rstea,
for all the local arrangements. We also thank the London Mathematical Soci-
ety, the British Logic Colloquium, and the University of Southampton for their
financial support. At Springer, Alfred Hofmann and his team supported the pub-
lishing process. We gratefully acknowledge the use of EasyChair, the conference
management system by Andrei Voronkov.

June 2011 Andrea Corradini
Bartek Klin

Corina Cı̂rstea
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Jǐŕı Adámek Technical University Braunschweig,
Germany

Lars Birkedal IT University of Copenhagen, Denmark
Filippo Bonchi University of Pisa, Italy
Corina Cı̂rstea University of Southampton, UK
Andrea Corradini (Co-chair) University of Pisa, Italy
Maribel Fernández King’s College London, UK



VIII Organization
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Carlos Caleiro Serguëı Lenglet Michael Shulman
Vincenzo Ciancia Paul Blain Levy Pawe�l Sobociński
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On the Statistical Thermodynamics of

Reversible Communicating Processes

Giorgio Bacci1, Vincent Danos2,�, and Ohad Kammar2

1 DiMI, University of Udine
2 LFCS, School of Informatics, University of Edinburgh

Abstract. We propose a probabilistic interpretation of a class of re-
versible communicating processes. The rate of forward and backward
computing steps, instead of being given explicitly, is derived from a set
of formal energy parameters. This is similar to the Metropolis-Hastings
algorithm. We find a lower bound on energy costs which guarantees that
a process converges to a probabilistic equilibrium state (a grand canon-
ical ensemble in statistical physics terms [19]). This implies that such
processes hit a success state in finite average time, if there is one.

1 Introduction

Regardless of the task a distributed algorithm is trying to complete, it has to
deal with the generic problem of escaping deadlocks. One can solve this problem
in a general fashion for CCS, π-calculus, and similar message-passing models of
concurrency by equipping communicating processes with local memories. The
role of memories is to record what local information will allow processes to
backtrack, if needed. Backtracking preserves the granularity of distribution and
can be seen as a special kind of communication [1,2,8]. A somewhat similar
idea, based on resets rather than memories, can be found in early work from
K.V.S. Prasad [17], and more recently in the context of higher-order π-calculus
[11].

Following this approach, it is enough for the programmer to design a process
that may succeed according to its natural forward semantics, and the same pro-
cess, wrapped in a reversible operational semantics, must succeed. Separating
the concern of deadlocks from the fundamentally different one of advancing lo-
cally towards a distributed consensus - makes the code simpler to understand
and amenable to efficient automated verification [3,9]. What this method does
not do, however, is to generate efficient code - that the code must eventually
succeed does not say anything about the time it will take to do so. In fact, the
general framework of non-deterministic transition systems is ill-equipped to even
discuss the issue, as the worst time of arrival will often be infinite.

In the following, we provide a reinterpretation of our earlier construction of a
reversible CCS in probabilistic terms. This sets the question in a well-understood
quantitative framework. In particular, we can define a notion of exhaustive search
� Corresponding author: vdanos@inf.ed.ac.uk

A. Corradini, B. Klin, and C. Ĉırstea (Eds.): CALCO 2011, LNCS 6859, pp. 1–18, 2011.
� Springer-Verlag Berlin Heidelberg 2011



2 G. Bacci, V. Danos, and O. Kammar

for our distributed reversible processes, namely that the search reaches a prob-
abilistic equilibrium. Better, we can show that under suitable constraints on the
parameters arbitraging between forward and backward moves, a process will
reach such an equilibrium. In other words, when such constraints are met, a par-
ticular event that may happen in a basic forward process, not only must happen
in its reversible form, but must do so in finite average time. Obviously, this is a
stronger guarantee.

1.1 Energy Landscaping

To achieve this, we build an energy function, or simply a potential, on the state
space of a reversible process. This potential generates convergent search be-
haviours, on the transition graph that the process generates. The actual grammar
of processes that we use slightly generalizes CCS [14] in that synchronizations
can be many-way (more than two processes can synchronize together; eg, as in
Petri nets), and can also be non-exclusive (a channel can be used to synchronize
with many others, possibly at different rates; eg, as in Kwiatkowski-Stark’s con-
tinuous π-calculus [10]). Most importantly, the potential we zero in on constrains
the continuous-time Markov chain semantics without altering the granularity of
distribution.

Not any potential works, and some energy policies will be too liberal and
allow some processes to undergo an explosive growth which never reaches an
equilibrium (despite reversibility). Our key finding is that, in order to obtain the
existence of a general equilibrium, processes must have a probability to fork that
decreases exponentially as a function of the size of their local memory. We prove
that any rate of decrease larger than α2β log(4(β + 1)), where α is the maximal
number of processes that can synchronize at once, and β the maximal number
of successive forks that a process can undergo before communicating again, is
sufficient.

This lower bound is reasonably sharp.

1.2 Related Work

Beyond the technical result, this paper borrows from a fundamental physical
intuition, that of driving and deriving the dynamics by shaping the limit proba-
bility distribution it should converge to. A stochastic semantics is simpler in this
respect, but the idea can be adapted to deterministic semantics as well. This is,
in essence, the celebrated Metropolis algorithm which rules supreme in search
and sample problems [13,7]: one first describes the energetic landscape of the
state space, equivalently the probabilistic equilibrium, and then one defines the
probabilistic transitions used to travel this landscape. Transition probabilities
are chosen in a way that guarantees that the dynamics converge to the said
equilibrium (this is explained in more details in �2).

Our work also borrows from Ref. [4], where the question of the existence of an
equilibrium for a recursive Markov chain is proved to be undecidable. The proof
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uses a sequential reduction of an archetypical search problem, namely the Post
correspondence problem, into the equilibrium existence problem. To obtain an
equilibrium, even in the absence of a solution to the underlying Post problem
instance, one introduces an energy penalty on searches. The class of potential
that we use in the present paper is a distributed version of the former (although,
here, we only deal with finding a potential that converges, as opposed to checking
whether a given dynamics admits of one).

Note that the simple syntax of reversible CCS is merely used here for
the sake of a simple reduction of the idea to practice. As for our earlier work
on the qualitative aspects of reversible CCS, other syntaxes could do just as
well.

Finally, and despite its concurrent-theoretic nature, the present work also
draws inspirations from practical applications. In a modeling context, Ollivier’s
et al. recent paper [16] proposes a method to design models of biomolecular
networks of allosteric interactions that is entirely based on the systematic usage
of a certain grammar of local potentials. Among other things, this guarantees
the thermodynamic consistency of the models. This has been a major source
of inspiration for this work, as for the earlier Ref [5] where we prove that the
thermodynamic consistency of mass action Petri nets is decidable (and find a
definite shape for the associated potentials).

1.3 Outline

The paper is organised as follows. The next section (�2) is a reminder of the ba-
sics of discrete-space/continuous-time Markov chains, and the (in the context of
this paper) central notion of equilibrium - in essence, a special kind of fixed point
for the action of the Markov chain. Next, in �3, we turn to the (slightly general-
ized) syntax of reversible CCS and discuss the important property of simplicity
which the transition graph underlying a reversible process enjoys. Roughly, this
means that the transition graph of a reversibilized process is acyclic because it
incorporates its own history, and this has consequences on the construction of
equilibria. As in both cases, we are dealing here with simple or well-understood
objects, �2-3 will be a bit concise, but still, hopefully, reasonably self-contained.

In �4, we introduce and compare different candidate potentials which one
could think of using to lansdcape the reversible CCS state space. The �5 inves-
tigates an example of explosive growth which shows that no equilibrium can be
obtained if energy penalties are purely based on the number of synchronizations
of processes; this prepares the ground for a general approach. Finally, in �6,
which is the technical core of the paper, we obtain our convergence result, which
gives sufficient lower bounds on energy costs for communication to ensure the
existence of a probabilistic equilibrium. The main technicality has to do with
finding lower bounds for the potential of a process as a function of its number of
synchronizations (Lemma 4). The conclusion returns to some of the issues dis-
cussed above, and touches on likely future research and intersections with more
traditional concurrent-theoretic work on rewriting and termination.
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2 Probabilistic Reminders

Throughout the paper we write log(x) for the natural logarithm; we manipulate
multisets as vectors, that is to say additively, and write |a| for the size of a
multiset (equivalently its L1-norm); eg a = a + 2b, and |a| = 3.

We start with a quick reminder on CTMCs.

2.1 Timers and Chains

A random exponential time of parameter λ > 0 is an [0, +∞)-valued random
variable T such that p(T > t) = exp(−λt). Thus, the density of T is λ exp(−λt),
for t ≥ 0; and T ’s mean is

∫ +∞
0 λ exp(−λt)t dt = λ−1.

Suppose given a set X which is at most countably infinite, and a rate function
q(x, y) ∈ R+, for x, y in X , and x �= y.

The transition graph or the support of q, written |q|, is the binary relation,
or the directed graph, on X which contains (x, y) iff q(x, y) > 0.

We suppose |q| has finite out-degree (this also called being image-finite).
We can define a continuous-time Markov chain over X in the following way.

When the chain is at x in X , for each of the finitely many ys such that q(x, y) > 0,
draw a random exponential time τ(x, y) with parameter q(x, y); advance time by
τ = min τ(x, y), and jump to the (almost surely) unique y such that τ(x, y) = τ .

The idea is that all possible next states compete, and the higher the rate of
q(x, y), the more likely it is that y will be the next state. It is easy to calculate
that the probability to jump to y is actually q(x, y)/

∑
z q(x, z); and that for

small ts, the probability to jump to x within t is equivalent to q(x, y)t, hence
one can think of q(x, y) as the rate at which one jumps from x to y.

Note that for the above definition to make sense it is important to suppose
as we have done that |q| is image-finite. We will also suppose thereafter that |q|
is symmetric (not to be confused with the much stronger assumption that q is
a symmetric function, ie q(x, y) = q(y, x)), and define ρ(x, y) = q(y, x)/q(x, y)
when either (equivalently both) of q(x, y) and q(y, x) are > 0.

2.2 Equilibrium

Now, on to the definition of an equilibrium that will be our central concern here.
Consider a function p defined on X and with values in R+. One says p is an

equilibrium for q if p is not everywhere zero, and:
- [detailed balance] for all (x, y) ∈ |q|, p(x)q(x, y) = q(y, x)p(y)
- [convergence] Z =

∑
X p(x) < +∞

If such a p exists, we can obtain a probability on X by normalizing p as p/Z.
Naturally, if X is finite the second condition always holds.

The detailed balance condition implies that p, construed as a probabilistic
state of the system, is a fixed point of the action of the chain q, and as |q| is
symmetric, regardless of the initial state, the chain will converge to p (see Ref. [5,
�2] for more details, or for a comprehensive textbook explanation, see Ref. [15]).
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2.3 Potentials

Suppose given a real-valued function V on X (the energy landscape), together
with a symmetric graph G on X (the moves one can make to travel the land-
scape). One can always define a rate function q(x, y) over G for which pV (x) =
exp(−V (x))/Z is an equilibrium, when X is finite.

For instance, set q(x, y) = 1 if V (x) ≥ V (y) (one is always willing to travel
downhill), q(x, y) = exp(V (x)−V (y)) else (one is increasingly reluctant to travel
uphill).

We can readily see that, with these settings, we have detailed balance:

pV (x)/pV (y) = eV (y)−V (x) = q(y, x)/q(x, y) (1)

When X is finite, this is enough to define an equilibrium, and this particular
choice of a rate function q together with the choice of G is the Metropolis al-
gorithm. In the case which interests us, when X can be countably infinite, the
idea still applies, but one has to make sure that the potential V defines a finite
ZV =

∑
X exp(−V (x)).

The converse problem of, given q, finding a potential for q, is also interest-
ing. In general, we can pick an origin x0 arbitrarily and within the connected
component of x0 in |q|, define the potential V as:

V (x) =
∑

(x,y)∈γ

log ρ(x, y) (2)

for some path γ leading from x0 to x.
Such an assignment is correct, meaning that detailed balance holds for the

pair (q, V ), iff the assignment does not depend on the choice of γ. In this case,
V is defined uniquely on x0’s component up to an additive constant. If there is
a dependency, then there is no solution, ie the dynamics on x0’s component is
not describable by a potential. One says then that the chain is dissipative. Even
for simple CTMCs this property is undecidable [4].

If the transition graph |q| is acyclic, seen as an undirected graph, there is only
one choice for γ, so independence trivially holds.

In the next section, X will be the state space of some reversible communicating
process p0. Reversibility will be obtained by equipping threads with memories
which collectively capture the history of the computation (up to causal equiv-
alence of computation paths, as we will see). Hence, the set of states reachable
from the initial state p0 is nearly equivalent to the space of its computations,
and in particular, the underlying transition graph is (nearly) acyclic. This means
that detailed balance will be for free, and only convergence will be an issue.

We mention in passing that in the case of stochastic mass action Petri nets, we
find the opposite situation. Namely, verifying detailed balance might be involved
as one needs to compute reactions invariants (the Petri net “loops”), whereas
the convergence automatically follows [5].
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3 Qualitative Semantics

We start with a reminder of CCS and its reversible form. In this minimalis-
tic model, communication is devoid of any content, that is to say no value or
name changes hands in a communication event; hence we will talk rather about
synchronizations (synchs for short).

We assume a countable set of channels A, and a finite set of synchronizable
(non-empty) multisets of channels A�.

A process p can be a product p1, . . . , pn, or a guarded sum a1p1 + . . . + anpn

with coefficients ai ∈ A.
Products and sums are considered associative and commutative.
When p = (p1, . . . , pn), p forks into the siblings pis which then run in parallel.

When p = (a1p1 + . . . + anpn), p waits for an opportunity to synch on any of
the channels ai with a set of processes willing to synchronize on a tuple a such
that a + a ∈ A�. When that happens, p runs pi.

Recursive definitions are allowed only if guarded, meaning that a recursively
defined process variable only appears prefixed (aka guarded) by a channel; such
definitions are considered to unfold silently.

As the reader may have noticed, to enhance readability (as we need to compute
some examples in �4-5) we use lightfooted notations. Specifically, we use the
comma to denote the product, and juxtaposition for prefixing.

An example of process (which we analyze from close in �5) is p0 = p, p′, with
p = a(p, p), p′ = a′(p′, p′). Assuming a + a′ ∈ A�, the two top threads p, p′

can synchronize, after what they will fork into two copies of themselves, which
can synchronize too, etc. Clearly p0 has countably many computation traces,
therefore we do need to deal with countable state spaces.

3.1 Memories and Transitions

Reversibility is obtained by adjoining memory stacks to processes in order to
record transitions. One pushes a sibling identifier on the memory, when forking,
and information about the synch partners, when synching.

Thus we have fork transitions (with n > 0):

Γ · (p1, . . . , pn) →f Γ1 · p1, . . . , Γn · pn

where the memory Γ is copied over to each sibling, with a unique integer iden-
tifier for each one of them.

And we also have synch transitions (with m > 0):

Γ1 · (a1p1 + q1), . . . , Γm · (ampm + qm) →s
a

Γ1(Γ , a1, q1) · p1, . . . , Γm(Γ , am, qm) · pm

where Γ is short for Γ1a1, . . . , Γmam. This means that each of the threads taking
part in the synch records the memory and channel of all participants, its own
channel ai, and its sum remainder qi (preempted by the synch).
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We have labelled the transition arrows for convenience, where →s
a means

synch on a multiset a ∈ A�. Naturally, the above transitions can happen in any
product context.

(NB: Memories are reversed in this notation compared to Ref. [1].)
Communicating processes commonly offer additional constructs: name cre-

ation, restrictions, value- or name-passing, etc, which are not considered here.
None should make a difference to our main argument, but this has to be
verified.

Consider a process with an empty memory ∅ · p0, and define p ∈ Ω(p0) if p is
reachable from ∅ · p0 by a sequence of transitions, also known as a computation
trace, as defined above. It is easy to see that within any p ∈ Ω(p0), memories
uniquely identify their respective processes. Thus, both types of transitions store
enough information to be reversed unambiguously. In particular, adding the
symmetric backward transitions leaves Ω(p0) unchanged.

Hereafter, we will suppose that transitions are effectively symmetric.

3.2 Near Acyclicity and Simplicity

Now that we have our symmetric transition graph in place, we can return to the
acyclicity property that we alluded to in �2.

Consider a computation trace γ, taking place in some Ω(p0). If in γ we find
a forward move followed immediately by its symmetric backward move, then we
can cancel both and obtain a new (shorter) trace γ′ with the same end points.
Likewise, if in γ we find two synch moves in immediate succession which are
triggered by entirely disjoint set of threads (one says the synchs are concurrent),
then we can commute the two steps and obtain a new trace γ′ (of equal length)
with the same end points.

This defines a notion of causal equivalence on traces with common end points.
We know from Ref. [1] that any two computation traces γ, γ′ with the same end
points are causally equivalent. We will refer to this as the labeling property.
(The name is chosen in relation to Lévy’s labeling for λ-calculus [12]; indeed,
forward reversible CCS is a Lévy-labeling of CCS.) Essentially, this means that
the transition graph on Ω(p0) is nearly acyclic.

The labeling property implies a convenient property of simplicity, namely
that, for p, p′ in Ω(p0), there is at most one transition from p to p′.

3.3 An Aside on Degenerate Sums

Actually, for the labeling and simplicity properties to be strictly true, one needs
to be precise in the management of degeneracy in sums (as noticed in Ref. [8]).
Consider a simple binary synch, with a = a + a′ ∈ A�:

x := Γ · ap + r, Γ ′ · a′p′ + r′ → Γ (a, Γ , r) · p, Γ ′(a′, Γ , r′) · p′ =: y

Suppose ap and a′p′ occur with multiplicities μ(ap), μ(a′p′), then there are
μ(ap)μ(a′p′) distinct ways to jump from x to y.
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To handle this additional cyclicity/lack of simplicity in the transition graph,
one can forbid p + p in sums altogether; or one can recover simplicity by mem-
orising the particular term in the sum that was used (which introduces non-
commutative sums that are a bit awkward); or simply incorporate such parallel
edges in the causal equivalence - and handle the induced local symmetry factor
in the quantitative part of the development (next section and onwards). The
latter solution seems preferable, as it is more general.

Then, anticipating somewhat on the next section, the compound rate ratio
ρ(x, y) for the above parallel jumps on a + a′ is:

ρ(x, y) =
k−

a

k+
a

· 1
μ(ap)

· 1
μ(a′p′)

(3)

where k+
a , k−

a are the forward and backward rates for a synch on a (which can
depend on x and y in general).

The multiplicity factors appearing above are perfectly manageable, but they
do make the treatment a little less smooth. Henceforth, we will assume such
degeneracies do not happen, and simplicity holds as is.

3.4 Which Potential to Look for?

Returning to the main thrust, we are now looking for a quantitative version of
the above calculus.

As the labeling property guarantees near-acyclicity of the underlying sym-
metrized transition graph, we know from �2 that any rate function q will lead to
a potential V definable as in (2), provided that it respects the causal equivalence,
ie the little cyclicity left in reversible CCS.

By which we mean, specifically, that the ratios ρ should verify: 1) ρ(x, y)ρ(y, z)
= ρ(x, y′)ρ(y′, z) when y, y′ are intermediate forms obtained by interleaving con-
current synchs in either order, and 2) should be equal when coming from degener-
ate sums as above. There is no need to say anything for trivial forward/backward
loops, as by definition ρ(x, y) = ρ(y, x)−1.

The fact that (almost) any rate assignment works notwithstanding, we would
like to derive the rates from some potential, for reasons explained in the intro-
duction. This raises the question of what a good potential is. Two requirements
stand out. Firstly, the potential should be such that the implied dynamics is
implementable concurrently and does not require any global knowledge of the
state of the system. Secondly, it should converge. Besides, one might also want
a potential that is invariant under natural syntactic isomorphisms (eg the num-
bering of siblings), and such that disjoint sums of processes implies independent
dynamics.

The solution we will eventually home in on, ticks all of the above boxes (but
we are not going to be sure until �6).
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4 Concurrent Potentials

We examine now two potentials that seem natural in the light of the discussion
right above, and establish that they are implementable concurrently (within the
abstract model of concurrency on which CCS relies, that is). Convergence issues
are investigated in the next two sections.

Throughout this section we fix an initial process ∅ · p0, and a real-valued
energy vector indexed over A�, and written ε.

4.1 Total Stack Size Potential

The first potential we consider is defined inductively on the syntax of a reversible
process in Ω(p0):

V1(p1, . . . , pn) = V1(p1) + . . . + V (pn)
V1(Γ · p) = V1(Γi) = V1(Γ )
V1(Γ (Γ , a, q)) = V1(Γ ) + εa

with Γ = Γ1a1, . . . , Γmam and a = a1 + . . . + am.
Equivalently, V1(p) is the inner product 〈ε, Γ̃ (p)〉, where Γ̃ (p)(a) is the num-

ber of occurrences of a in p; Γ̃ (p) can be seen as a forgetful and commutative
projection of the memory structure of p.

Note that V1(∅ · p0) = 0 with this definition; one can always choose a zero
energy point in the (strongly) connected component of the initial state, and it
is natural to choose the initial state itself.

For each of the two types of transitions, we can easily compute the energy
balance:

ΔV1 = (n − 1)V1(Γ ) n-ary fork with memory Γ
ΔV1 = mεa synch on a

Now, we need to understand how these constrain the rate function. This is
analogous to what we have done earlier with (1) in �2.3.

Let us write k−
f , k+

f for backward and forward forking rates, and k−
a , k+

a for
backward and forward synching rates. For a fork, and by the simplicity property,
the constraint translates into log ρ(x, y) = log(k−

f /k+
f ) = (n−1)V1(Γ ). A possible

solution is:
k−

f = 1
k+

f = e−(n−1)V1(Γ )

This is an entirely local solution, as the increasing reluctance to fork only depends
on the local memory of the process of interest (and the number of siblings,
but that can be statically controlled). Similarly, for a synch, the constraint is
log ρ(x, y) = log(k−

a /k+
a ) = mεa. A possible solution is:

k−
a = 1

k+
a = e−mεa

not only this is local, but in contrast with the fork case, the assignment does
not depend on the memories of the synching processes.

Note that there are many other solutions compatible with V1.
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4.2 Total Synch Potential

Perhaps the most natural potential is the following.
Given a path γ from ∅ · p0 to p:

V0(p) =
∑

a∈A�

∑
x→s

ay∈γ(−1)v(s)εa

where v(s) = ±1 depending on whether the synch is forward or backward. This
V0 is based on the idea that only communication costs, and forking is done at
constant potential. As for V1, V0(∅ · p0) = 0.

Clearly, this definition is independent of the choice of γ. Indeed, by the label-
ing property, any γ, γ′ linking ∅ · p0 to p are convertible by swaps of concurrent
synchs, and trivial cancellations, both of which leave V0 invariant. The corre-
sponding constraints can be met by a locally implementable rate function, eg,
k−

f = k+
f , and k−

a /k+
a = exp(εa). (We could add a term to V0 to count the forks

as well.)
Differently from V1, there is no inductive formula for V0(p), as to compute it

one essentially needs to replay a reduction to p.

4.3 V1 vs. V0

Let us compare the potentials on two simple examples. Below, we suppose a =
a + a′, b = b + b′ in A�, and εa > 0; we do not represent the entirety of the
memory elements, just what we need to compute the V s.

Here is a first example:

∅ · a(a, b, a′, b′), a′ → 0a · (a, b, a′, b′), 1a ·
→ 0a0 · a, 0a1 · b, 0a2 · a′, 0a3 · b′, 1a ·
→ 0a0a · , 0a1b · , 0a2a · , 0a3b · , 1a · = p

and we get:
V0(p) = 2εa + εb < 7εa + εb = V1(p)

We can use the expansion law, replacing a, b with ab + ba, and similarly for
a′, b′ in p0, and get a variant of the above trace:

∅ · a(ab + ba, a′b′ + b′a′), a′ → 0a · (ab + ba, a′b′ + b′a′), 1a ·
→ 0a0 · (ab + ba), 0a1 · (a′b′ + b′a′), 1a ·
→ 0a0ab · , 0v1ab · , 1a · = p′

with:
V0(p) = V0(p′) = 2εa + εb < 4εa + 2εb = V1(p′) < V1(p)

We see that V1, unlike V0, is truly concurrent in the sense that it is sensitive to
sequential expansions. In fact, according to V1, an expanded form using a sum is
cheaper by an amount of V1(Γ ); a sequentialized version is bolder in its search
(and the backward options are fewer).

In general, V0 ≤ V1, as a synch performed on the way to p is visible at least
once in a memory in p (in fact, at least |a| for a synch on a); and V0(p) = V1(p)
if p has only forks with n ≤ 1.

So which potential should one prefer? Both seem equally good, but the next
section will tell a very different story.
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5 Explosive Growth

Any potential V partitions Ω(p0) into finite level sets Ωv(p0), defined as the set
of reachable ps such that V (p) = v.

Among other things, to address the convergence issue, we will need to control
the cardinality of Ωv(p0), which by the labeling property, is the number of traces
(up to causal equivalence) γ leading to Ωv(p0).

Let us try to see how this plays out with our earlier example, p0 = p, p′, with
p = a(p, p), p′ = a′(p′, p′) (or isomorphically q0 = aq0, a

′q0).
Call φk the following trace (synch partners not represented in memories):

∅ · p0 →f 0 · p, 1 · p′
→fs 0a0 · p, 0a1 · p, 1a0 · p′, 1a1 · p′
= 0a0 · a(p, p), 0a1 · a(p, p),

1a0 · a′(p′, p′), 1a1 · a′(p′, p′)
→fs 0a0a0 · p, 0a0a1 · p, 0a1a0 · p, 0a1a1 · p,

1a0a0 · p′, 1a0a1 · p′, 1a1a0 · p′, 1a1a1 · p′
. . .
→fs

∏
w∈{0,1}k 0w(a) · p,

∏
w∈{0,1}k 1w(a) · p′ = pk

where w(x), for w ∈ {0, 1}k, is defined as the fair interleaving of w and xk -
where x begins, eg 01(a) = a0a1.

Note that φk is maximally synchronous, in the sense that synchronizations are
all intra-generational. In this respect it is a very peculiar trace, and one which
is easy to compute with.

As the computation unfolds symmetrically, φk has 2k − 1 synchs, and its end
process pk has 2k+1 threads, and each has a memory where εa occurs k times.

Hence process pk has respective potentials:

V0(pk) = (2k − 1)εa ≤ k2k+1εa = V1(pk)

Non-causally equivalent realizations of φk, can be obtained by picking different
intra-generational matchings. Each choice leads to distinct end processes pk, all
with the same V1 and V0 potentials - and thus all in the intersection of ΩV0(pk)

and ΩV1(pk).
There are

∏
0≤h<k 2h! distinct such φks, hence, using nne−n ≤ n!, we get the

following lower bound on the cardinality of ΩV0(pk) and ΩV1(pk):

(2k−1)2
k−1

e−2k−1
≤ 2k−1! ≤

∏
0≤h<k

2h! (4)

Thus log |ΩV0(pk)| and | log ΩV1(pk)| grow asymptotically faster than k2k−1 log 2.
This entropic term will trump the term opposed by V0 which is asymptotically

equivalent to −2kεa. The inescapable conclusion is that, no matter how costly
a synch on a + a′ is made to be, V0 will diverge, and, concretely, the process p0

will undergo an infinite growth if it follows this potential. So, we can forget V0

for infinite state spaces.
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On the other hand, V1’s term is −k2k+1εa which can control our lower bound
of the entropic term, if 4εa > log 2. So V1 might still work.

Now (4) only provides a lower bound. As there are many other traces, using
extra-generational matchings, that might end up in the same level set, it is hard
to know how sharp it is. And, anyway, this is just an example. We have yet to
prove that for all p0, there are suitable choices of ε, that will make V1 converge.
This is what we do in the next section.

6 Main Statement

We need a couple of combinatorial lemmas.

Lemma 1. Suppose k > 0 and
∑i=k

i=1 ni = n, then
∑

i ni log ni ≥ n log(n/k).

Proof. ∑
i ni log ni = −n

∑
i −(ni/n) log ni/n + n log n

= −nS(ni/n) + n log n
≥ −n log k + n log n

where, in the last step, we use S(ni/n) ≤ log k, the usual upper bound on the
entropy over a finite set {1, . . . , k}. �
Lemma 2 (lower bound on tree depth). Consider the set of trees t with
maximal branching β, then for some c > 0, ‖t‖ :=

∑
u∈t◦ d(u) ≥ c · n log n with

n = |t◦| the number of internal nodes of t. Specifically, c = 1/ log 4β works.

Proof. For n = 0, 1, the lower bound holds for any c as the rhs is 0.
Suppose n ≥ 2. We partition t into its k immediate subtrees with non-zero

internal nodes, ni > 0; as n ≥ 2, we know that k > 0.

‖t‖ =
∑

i

∑
ui∈t◦i

di(u) + 1
=
∑

i ni + ‖ti‖
= n − 1 +

∑
i ‖ti‖

≥ n − 1 + c
∑

i ni log ni by induction
≥ n − 1 + c(n − 1) log((n − 1)/k) by Lemma 1
= (n − 1)(1 − c log k) + c(n − 1) log(n − 1)

So we need to find c such that for n ≥ 2:

(n − 1)(1 − c log k) + c(n − 1) log(n − 1) ≥ cn log n

Set for x ≥ 1:

g(x) = (x − 1)(1 − c log k) + c(x − 1) log(x − 1) − cx log x

We have g(1+) = 0, g′(x) = 1−c log(xk/(x−1)) ≥ 0 as soon as c ≤ 1/ log(xk/(x−
1)) =: h(x). (1/h)′(x) = −1/(x(x−1)) ≤ 0 for x ≥ 1, so h is increasing on (1,∞),
and if we take c ≤ 1/ log 2k, c ≤ h(x) for x ≥ 2, and g increases for x ≥ 2.

Now g(2) = 1 − c log 4k ≥ 0 as soon as c ≤ 1/ log 4k.
Set c = 1/ log 4β where β is the maximum branching of t.
Clearly β ≥ k, so we have g(x) ≥ 0 for x ≥ 2. �
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Note that the proof gives explicit control in terms of the maximal branching
degree β, namely ‖t‖ ≥ n log n/ log 4β. If one allows arbitrary branching, any
tree t with all n−1 nodes right below the root of t verifies ‖t‖ = n−1. While the
(best) inequality says n− 1 ≥ n log n/(2 log 2 + log(n− 1)), which is true indeed.
Clearly the inequality is more interesting if one imposes a maximal branching
degree.

It is possible to specialize the inequality (which is central to the main con-
vergence result below) to the case of balanced trees. As these minimize depth
for a given number of internal nodes (else one can always move groups of sibling
leaves upwards, and in so doing decrease the potential), they should be a good
test of the sharpness of our lower bound. We consider only binary trees to keep
computations simpler.

Lemma 3 (balanced binary case). Let tk be the balanced binary tree with 2k

leaves, equivalently n = 2k − 1 internal nodes, k ≥ 0:

‖tk‖ =
∑

1≤i<k i2i = (n + 1) log(n + 1)/ log 2 − 2n

Proof. The formula holds for k = 0, 1, and ‖t0‖=‖t1‖=0.
Suppose k, the number of ‘generations’ in tk, is strictly positive.
As tk has 2k leaves, 2k − 1 internal nodes, we have by induction on the last

generation of the tree:
‖t1‖ = 0
‖tk+1‖ = k2k + ‖tk‖

Therefore ‖tk‖ =
∑

1≤i<k i2i.
Set φk(x) = (xk − 1)/(x − 1) =

∑
0≤i<k xi. We have:

φ′
k(x) =

∑
1≤i<k ixi−1 = ((k − 1)xk − kxk−1 + 1)/(x − 1)2

Hence
∑

1≤i<k i2i = 2φ′(2) = 2((k − 1)2k − k2k−1 + 1) = k2k − 2k+1 + 2. �

Therefore, in this case the inequality of Lemma 2 amounts to saying that
(n + 1) log(n + 1)/ log 2 − 2n ≥ n log n/3 log 2 (with β = 2) or equivalently:

(n + 1) log(n + 1) ≥ 1/3 · n log n + (2 log 2)n

which is indeed true for n ≥ 0 and a rather sharp estimate for small values of n.
This means that the lower bound provided by Lemma 2 is good.

6.1 Lower Bound on the Potential

With Lemma 2 in place, we can bound below the energy of a process/trace with
a given number of synchs. But first, we need to fix some notations.

As in �4-5, we suppose given a process p0, and consider only computation
traces starting from the initial state ∅ · p0.

We write T (n) for the set of traces containing n synchs, considered up to
causal equivalence, and set εm := mina∈A� εa, for the minimal energetic cost of
a synch. We also write Ωn(p0) for the set of processes reachable in n synchs.
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As traces originating from the initial state are isomorphic to their end points,
ie T (n) ∼ Ωn(p0), we will treat traces from ∅ · p0 and processes in Ω(p0) as
nearly synonymous.

We suppose given an upper bound α on the number of processes that can
synchronize at once during an execution of ∅ · p0. Eg α = maxa∈A� |a|, the
maximal synch size in A�.

We write δ for the thread increment of a particular forking event in a trace.
This means that one replaces one thread with δ + 1 ones. We suppose also that
we are given two numbers (eg obtained from a trivial syntactic analysis) such
that β− ≤ δ + 1 and δ ≤ β+ always hold. If β− > 1, then δ > 0, which amounts
to saying that the number of threads always increase under fork.

We can establish the following lower bound on the potential:

Lemma 4. Suppose β− > 1, εm > 0, p ∈ Ωn(p0):

εm

log 4 + log(β+ + 1)
· n log n ≤ V1(p)

Proof. Consider the set U(n) of trees with n internal nodes labeled in A�. It
clearly makes sense to extend the definition of V1 to such labeled trees.

Consider t ∈ U(n), n > 0, and u an internal node in t with label a, all the
children of which are leaves (so that u is on the boundary of the set of internal
nodes). Define t�u ∈ U(n−1) as the tree obtained from t by erasing the δ(u)+1
leaves right below u (as well as u’s label).

Write Γ̃ (u) for the multiset of occurences of labels above u, and d(u) for
the depth of u in t (as we have already done above). We can bound below the
difference of potential incurred by erasing the δ(u) + 1 children of u:

V1(t) − V1(t � u) = (δ(u) + 1)εa + δ(u)〈ε, Γ̃ (u)〉
≥ εmδ(u)d(u)
≥ εmd(u)

We have used δ(u) > 0.
It follows that V/εm decreases by chunks of at least d(u) for each deletion of

a node on the internal boundary, therefore V (t)/εm ≥
∑

i d(ui) =: ‖t‖, and we
can apply Lemma 2, to obtain V (t)/εm ≥ n log n/ log 4(β+ + 1).

As any p in Ωn(p0) projects to a labeled tree in U(n), by forgetting the infor-
mation on communication partners and remainders, and this forgetful operation
leaves V1 invariant, the statement follows. �

With the same notations as in the proof above, consider a leaf v ∈ t, and define
t(u, v) as the new tree obtained by moving the leaves below u, to below v;
clearly, if d(v) < d(u), d(t(u, v)) < d(t). If no such move exists, by definition t
is balanced. So, as alluded to earlier, the lower bound we get for the potential
is obtained for balanced concurrent structures of execution - and as they have
lower energies, they will be highly favoured by the dynamics. In other words,
our potential V1 penalizes depth - one could call it a breadth-first potential - and
different threads will tend to stay synchronous.
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We turn now to the other pending question, namely that of binding above the
entropy (that is to say the logarithm of the cardinality) of the set of traces of a
given number of synchs.

6.2 Upper Bound on the Number of Traces

Dually to Lemma 4, which a lower bound on potentials, we can derive an upper
bound on entropies:

Lemma 5. For large ns, log |T (n)| ≤ β+α2O(n log n)

Proof. By induction on n, there are at most δ0+nβ+α threads in the end process
of a trace in T (n), as each synch adds at most δα new threads, where we have
written δ0 for the initial number of threads in p0.

Any trace with n + 1 synchs can be obtained (perhaps in many ways but we
are looking for an upper bound) by synching one of length n, so |T (n + 1)| ≤
|T (n)|(δ0 + nβ+α)α. As T (0) = 1, we get log |T (n)| ≤ α log(δ0 + nβ+α)!.

Since:
1 − n + n log n ≤ log n! ≤ 1 − n + (n + 1) log n

it follows that log(δ0 + nβ+α)! ∼ β+αO(n log n). �

The first inequality is sharp if all synchs are possible, and one has the maximal
thread count, and no sums (as they decrease the number of matches), which is
exactly the situation of the explosive example of �5.

As the arithmetic progression that gives rise to the factorial, samples the fac-
torial only with frequency 1/δα (this is sometimes called a shifted j-factorial [18,
p.46], where j = αδ, and the shift is δ0 in our example), it seems the upper bound
above could be improved. But, if we return to the maximal synchronous traces
computed in �5, we see that the bound above is quite sharp, so it seems unlikely.

6.3 Convergence

Now we can put both bounds to work to get the convergence of our potential.

Proposition 1. Suppose 1 < β−, and β+α2 log(4(β+ + 1)) < εm, then:

Z(p0) :=
∑

p∈Ω(p0)
e−V1(p) < +∞

Proof. We can partition Z(p0) by number of synchs:

Z(p0) :=
∑

n

∑
p∈Ωn(p0)

e−V1(p)

≤
∑

n e−εmn log n/ log 4(β++1) · |T (n)| by Lemma 4

By Lemma 5, the logarithm of the general term of the upper series is equivalent
to −εmn log n/ log 4(β+ + 1) + β+α2O(n log n), so both series converge if εm >
δα2 log(4(β+ + 1)). �

We can summarise our findings:
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Theorem 1. Consider a reversible process ∅ ·p0 equipped with a rate function q
which satisfies the �4.1-constraints of the V1 potential; suppose that for any fork
event in Ω(p0), the thread increment δ verifies 0 < δ ≤ β+ for some constant
β+, and assume that for a ∈ A�, V1 stipulates a synch cost εa which is at least
maxa∈A� |a|2 · β+ log(4(β+ + 1)).

Then q has an equilibrium on Ω(p0) defined as π(p) ∝ e−V1(p).

6.4 Discussion

This concludes the comparison of the potentials introduced in �4. Unlike the
potential V0 which is not enough to control growth (as we have seen in �5), V1

which forces forking costs to increase with the size of the local memory will,
when parametrized suitably, lead to an equilibrium.

Note that 1) the condition given above on the minimal energy cost is a suffi-
cient one, and might not be necessary (we don’t know at the time of writing), 2)
in particular, to obtain refined effects on the equilibrium population of certain
level sets, and therefore modulate the search, one might need more flexibility.
Whether this is possible and useful remains to be seen.

As said in �2, for general reasons in the theory of continuous-time Markov
chains, the symmetry of the underlying transition graph guarantees that the
probabilistic state of the system converges to the invariant probability π(p) de-
fined above. This avoids co-Zenoid situations where the probability of return to
a p is 1, while the mean return time is actually infinite. Here we are guaranteed
finite mean return times. This form of probabilistic termination, which does not
lose itself in infinite branches, is the technical definition of exhaustivity. It is
easy to construct examples (and we have seen one earlier in �5) where one has
an invariant measure, and almost certain returns, but infinite mean return times.
This is why it is fundamental to prove the convergence of Z(p0).

The restriction to a minimum branching degree β− > 0 is not very strong,
as one can always use some padding with null processes to make the minimal
forking degree higher. Nevertheless, it would be nice to have a more elegant way
to deal with non-expansive forks, as surely they cannot seriously stand in the
way of convergence.

7 Conclusion

There has been a lingering desire in concurrency theory for a metaphor of com-
putation as a physical process. We present here evidence that one can promote
this metaphor to an operational conceptualization of a certain, arguably rather
abstract, type of distributed programming. Specifically, we have shown how a
slightly generalized version of reversible CCS can be equipped with a distributed
potential. This potential is parametrized by costs for different types of synchro-
nizations, in a way that any process eventually reaches a probabilistic equilibrium
over its reachable state space - provided that the rate at which processes fork
decreases exponentially as a function of the size of the local history.

Much remains to be done.
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It would be interesting to see how our findings can be adjusted to a less ab-
stract model of distributed computing, and whether one can find examples where
this technique solves problems. We intend to seriously pursue such examples in
the future, perhaps in the field of multi-party and simultaneous transactions. To
talk about efficiency, solutions, and examples, one needs to make room for the
inclusion of irreversible synchronizations expressing success states. This, we have
done already in the qualitative case [2], and the extension should be straightfor-
ward.

Another natural companion question is to optimize parameters for efficiency
of the search mechanism. Instead of minimizing the time to irreversible synchs
(aka commits), which begs the question, one could use as a proxy the following
objective. Namely to maximize the equilibrium residency time of the search re-
flected on success states ps which live on the boundary ∂X of the fully reversible
state space:

argmax ε.
∑

p∈∂X π(ε, p) =
∫

1∂X dπ

(by reflected search we mean that irreversible synchs are de-activated, and,
hence, the process bounces off the success boundary) where π is the equilibrium
probability, and ε its energy vector. Such quantities are nice optimization targets
as they can estimated via the ergodic theorem by the averages 1

n

∑
1∂X(Xk), ie

the empirical time of residence in a success state (under reflective regime). From
there on, it seems one might be in a good position to interface with machine
learning techniques to discover efficient parametrizations.

One can also think of this result as a termination one, more in line with the
tradition of rewriting and proof-theory. Of course, it is a kind of termination, just
as in actual physical systems, which does not mean the complete disappearance
of any activity in the system, but rather the appearance of a steady or stable
form of activity. As such, it introduces a discourse on resources which is not
the one commonly offered in relation to termination proofs in the context of
programming languages and rewriting systems, where one tries to limit copies,
sizes, and iterations. There has been a thread of research studying termination by
various typing systems in process languages (for a recent example, see Ref. [6])
- here we propose what seems a fundamentally different way to achieve the
same, in a probabilistic setting, and one wonders if perhaps there is a fruitful
relationship to be established.

Finally, it seems that one could squeeze more out of the statistical physical
metaphor, and start thinking about the concepts of temperature (which here is
degenerate, as it only measures the energy scale) as they are used in the context
of sequential simulated annealing algorithms, where the potential can change
over time.
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Solving Fixed-Point Equations by Derivation Tree
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Abstract. Systems of equations over ω-continuous semirings can be mapped to
context-free grammars in a natural way. We show how an analysis of the deriva-
tion trees of the grammar yields new algorithms for approximating and even com-
puting exactly the least solution of the system.

1 Introduction

We are interested in computing (or approximating) solutions of systems of fixed-point
equations of the form

X1 = f1(X1, X2, . . . , Xn)
X2 = f2(X1, X2, . . . , Xn)

...
Xn = fn(X1, X2, . . . , Xn)

where X1, X2, . . . , Xn are variables and f1, f2, . . . , fn are n-ary functions over some
common domain S. Fixed-point equations are a natural way of describing the equilib-
rium states of systems with n interacting components (particles, populations, program
points, etc.). Loosely speaking, the function fi describes the next state of the i-th com-
ponent as a function of the current states of all components, and so the solutions of the
system describe the equilibrium states. In computer science, a prominent example of
fixed-point equations are dataflow equations. In this case, the system is a program, the
components are the control points of the program, the common domain is some uni-
verse of data facts, and the fi’s describe the dataflow to (or from) the i-th control point
to all other control points in one program step (see e.g. [NNH99]).

Without further assumptions on the functions f1, . . . , fn and the domain S, little can
be said about the existence and computability of a solution. In the last years we have
studied polynomial systems (systems in which the fi’s are multivariate polynomials) in
which S is an ω-continuous semiring, a well-known algebraic structure [Kui97]. This
setting has the advantage that the system always has a least solution, a result usually
known as Kleene’s theorem [Kui97], which allows us to concentrate on the task of
approximating or computing it.

This paper surveys recent results [EKL07a, EKL07b, EKL08a, EKL10, Lut10] and
some work in progress [Lut]. The presentation emphasizes the connection between the
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algebraic study of equations and formal language theory. In fact, our main goal is to
show how equations can be mapped to context-free grammars in a natural way,1 and
how an analysis of the derivation trees of the grammars yields new algorithms for
approximating and even computing the least solution of the equations.

The paper is structured as follows. After some preliminaries (Section 2), we intro-
duce a known result (Section 3): the least solution of a system is equal to the value of
its associated grammar, where the value of a grammar is defined as the sum of the val-
ues of its derivation trees, and the value of a derivation tree is defined as the (ordered)
product of its leaves. This connection allows us to approximate the least solution of a
system by computing the values of “approximations” to the grammar. Loosely speak-
ing, a grammar G1 approximates G2 if every derivation tree of G1 is a derivation tree
of G2 up to irrelevant details. We show that Kleene’s theorem, which not only proves
the existence of the least solution, but also provides an algorithm for approximating
it, corresponds to approximating G by grammars G[1], G[1], . . . where G[h] generates
the derivation trees of G of height h. We then introduce (Section 4) a faster approxi-
mation by grammars H [1], H [1], . . . where H [h] generates the derivation trees of G of
dimension h [EKL08a, EKL10]. We show that this approximation is a generalization of
Newton’s method for approximating the zero of a differentiable function, and present
a new result about its convergence speed when multiplication is commutative [Lut]2.
In the final part of the paper (Section 5) we apply the insights obtained from Newton’s
and Kleene’s approximation to different classes of idempotent semirings, i.e., semirings
in which the law a + a = a holds. We obtain approximation algorithms that actually
provide the exact solution after a finite number of steps.

2 Polynomial Equations Over Semirings

For the definition of polynomial systems we need a set S and two binary operations on
S, addition and multiplication, satisfying the usual associativity and distributivity laws:

Definition 1. A semiring is a tuple 〈S, +, ·, 0, 1〉, where (i) S is a set with 0, 1 ∈ S
called the carrier of the semiring, (ii) 〈S, +, 0〉 is a commutative monoid with neutral
element 0, (iii) 〈S, ·, 1〉 is a monoid with neutral element 1, (iv) 0 is an annihilator, i.e.
0 · a = a · 0 = 0 for all a ∈ S, and (v) multiplication distributes over addition from the
left and from the right.

When addition and multiplication are clear from the context, we identify a semiring
〈S, +, ·, 0, 1〉 with its carrier S . We also often write ab for a · b. A polynomial over
a semiring S is a finite sum of finite products of variables and semiring elements.
For instance, if X, Y denote variables and a, b, c ∈ S denote semiring elements, then
aY b + XY Xc is a polynomial. Notice that multiplication is not required to be commu-
tative, and so we cannot represent a single polynomial in monomial form, i.e. as a finite
sum of products of the form aX1 · · ·Xm, where a ∈ S is a coefficient and X1 · · ·Xn is

1 We do not claim to be the first to come up with this connection. See e.g. [BR82, Boz99].
2 The proof has not yet been published, but we feel confident it is correct.
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a product of variables. Things change for polynomial systems. In this case, we may in-
troduce auxiliary variables following the procedure used to put a context-free grammar
in Chomsky normal form; for instance, the univariate equation

X = aXb + XcX + e

which is not in monomial form, can be transformed into the multivariate system

X = aXY + XZ + e Y = b Z = cX

which simulates the original system w.r.t. the X-component. Although our results do
not require systems to be in monomial form, for this survey we always assume it to
simplify notation.

Polynomial systems over semirings may have no solution. For instance, X = X + 1
has no solution over the reals. However, if we extend the reals with a maximal element
∞ (correspondingly adapting addition and multiplication so that these operations still
are monotone), we can consider ∞ a solution of this equation. We restrict ourselves to
semirings with these “limit” elements.

Definition 2. Given a semiring S, define the binary relation 
 by

a 
 b :⇔ ∃d ∈ S : a + d = b.

A semiring S is ω-continuous if (i) 〈S,
〉 is a ω-complete partial order, i.e., the supre-
mum supi∈N ai of any ω-chain a0 
 a1 
 . . . exists in S w.r.t. the partial order 
 on
S; and (ii) both addition and multiplication are ω-continuous in both arguments, i.e.,
for any ω-chain (ai)i∈N and semiring element a:

a + sup
i∈N

ai = sup
i∈N

(a + ai) and a · sup
i∈N

ai = sup
i∈N

(a · ai)

and symmetrically in the other argument.

We adopt the following convention:

If not stated otherwise, S denotes an ω-continuous semiring 〈S, +, ·, 0, 1〉.
In an ω-continuous semiring we can extend the summation operator

∑
from finite to

countable families (ai)i∈I by defining

∑
i∈I

ai := sup

{∑
i∈F

ai | F ⊆ I, |F | < ∞
}

.

It then can be shown that
∑

is still associative and multiplication distributes over
∑

from both the left and the right [DKV09]. Note that in a ω-continuous semiring S we
have 0 
 a for all a ∈ S. Hence, the reals extended by ∞ do not constitute an ω-
continuous semiring w.r.t. the canonical order ≤, but the nonnegative reals do.

It is easy to see that Kleene’s fixed-point theorem applies to polynomial systems over
ω-continuous semirings:3

3 The theorem is often also attributed to Tarski. In fact, it can be seen as a slight extension of
Tarski’s fixed-point theorem for complete lattices [Tar55], or as a particular case of Kleene’s
first recursion theorem [Kle38].
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Theorem 1 ([Kui97]). Every polynomial system X = f(X) over an ω-continuous
semiring has a least solution μf w.r.t. 
, and μf is equal to the supremum of the
Kleene sequence:

0 
 f(0) 
 f(f(0)) 
 . . . 
 f i(0) 
 f i+1(0) 
 . . . (1)

Observe that Kleene’s theorem not only guarantees the existence of the least fixed point,
but also provides a first approximation method, usually called fixed-point iteration.

3 From Equations to Grammars

We illustrate by means of examples how Kleene’s theorem allows us to connect
polynomial systems of equations with context-free grammars and the derivation trees
associated with them. For a formal presentation see e.g. [Boz99, EKL10, DKV09].

Consider the equation

X =
1
4
X2 +

1
4
X +

1
2

(2)

over the nonnegative reals extended by ∞, which is an ω-continuous semiring. The
equation is equivalent to (X − 1)(X − 2) = 0, and so its least solution is X = 1. We
introduce identifiers a, b, c for the coefficients, yielding the formal equation

X = f(X) := aX2 + bX + c . (3)

We say that (2) is an instance of (3). Formally, instances correspond to valuations. A
valuation is a mapping V : Σ → S, where Σ is the set of identifiers of the formal
equation (in our example Σ = {a, b, c}), and S is an ω-continuous semiring. So (2) is
the instance of (3) for the valuation where S are the nonnegative reals with ∞, V (a) =
V (b) = 1/4, and V (c) = 1/2. We denote the instance for V by X = fV (X), and its
least solution by μfV .

We associate a context-free grammar with Equation (3) by reading every summand
of the right-hand side as a production:

G : X → aXX | bX | c , (4)

We denote by T (G) the set of derivation trees of G. We depict derivation trees in the
standard way as ordered finite trees and say that a derivation tree t ∈ T (G) yields a
word a1a2 . . . al ∈ Σ∗ if the i-th leaf from the left of t is labeled by ai. For instance,
the following trees t1, t2, t3, t4 yield the words c, bc, acc, abcc, respectively:

X

c

t1: X

b X

c

t2: X

a X

c

X

c

t3: X

a X

b X

c

X

c

t4:

. . .
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Note that the grammar G for an univariate equation has only a single nonterminal, and
thus the axiom of G is clear. In the case of a multivariate polynomial system X =
f(X), we construct in the same way a context-free grammar G, but without an explicit
axiom. T (G) stands for the union of the sets T1(G), . . . , Tn(G) of derivation trees
corresponding to setting X1, . . . , Xn as axiom. In the following, we do not explicitly
distinguish between the univariate and the multivariate case, and adopt the convention:

Given a grammar G without explicit axiom, a result regarding G or T (G) is to
be understood as holding for any possible choice of the axiom.

A valuation V : Σ → S extends naturally to the derivation trees of G: for a tree t ∈
T (G) yielding a1a2 . . . al, we define

V (t) = V (a1) · V (a2) · . . . · V (al),

and for a set of trees T ⊆ T (G), we define V (T ) =
∑

t∈T V (t). For instance, for the
trees t1, t2, t3, t4 shown in the picture above and the valuation mapping a, b, c to 1/4,
1/4, and 1/2, respectively, we get

V ({t1, t2, t3, t4})=V (t1)+V (t2)+V (t3)+V (t4) = 1/2+1/8+1/16+1/64=45/64.

Now, as a last step, we can extend V to a valuation of the complete grammar.

Definition 3. Let G be the grammar of a formal polynomial system X = f(X), and
let V : Σ → S be a valuation over some ω-continuous semiring S. We define V (G) =
V (T (G)) =

∑
t∈T (G) V (t) over S.

The starting point of our paper is a well-known result stating that, given a formal poly-
nomial equation X = f(X) and a valuation V , the least solution of X = fV (X) is
equal to V (G) (see e.g. [Boz99], and, independently, [EKL10]; the essence of the result
can be traced back to [BR82, Tha67, CS63]). In other words, the least solution can be
obtained by adding the values under V of all its derivation trees.

Theorem 2 ([Boz99, EKL10]). Let X = f(X) be a formal polynomial system with a
set Σ of formal identifiers, and let V : Σ → S be a valuation. Then:

μfV = V (G). (5)

By our convention, for a multivariate system Theorem 5 states that for every variable
Xi the Xi-component of μfV is given by the infinite sum of all evaluated derivation
trees derivable from Xi w.r.t. G.

We sketch a proof of this theorem for the particular case of equation (3). Let us “un-
fold” the grammar G of (4) by augmenting the nonterminal X with a counter keeping
track of the height of a derivation:
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X〈1〉 → c

X [1] → X〈1〉

X〈2〉 → aX〈1〉X〈1〉 | bX〈1〉

X [2] → X〈2〉 | X [1]

X〈3〉 → aX〈2〉X〈2〉 | aX [1]X〈2〉 | aX〈2〉X [1] | bX〈2〉

X [3] → X〈3〉 | X [2]

...
X〈h〉 → aX〈h−1〉X〈h−1〉 | aX [h−2]X〈h−1〉 | aX〈h−1〉X [h−2] | bX〈h−1〉

X [h] → X〈h〉 | X [h−1]

...

Let G[h] (G〈h〉) be the grammar consisting of those “unfolded” rules whose left-hand
side is given by one of the variables of X [h] = {X〈0〉, X [0], . . . , X〈h〉, X [h]}, taking
X [h] (X〈h〉) as axiom.4 An easy induction shows the existence of a bijection between
T (G[h]) (T (G〈h〉)) and the trees of T (G) of height at most (exactly) h. In fact, it is easy
to see that G[h] (G〈h〉) and G are both unambiguous5, and the bijection just assigns to
a tree of T (G[h]) the unique tree of G yielding the same word. For instance, the tree of
G[3] shown on the left of the figure below is mapped to the tree of G of height 3 shown
on the right:

X [3]

X〈3〉

a X〈2〉

b X〈1〉

c

X [1]

X〈1〉

c

X

a X

b X

c

X

c

Hence, V (G[h]) (V (G〈h〉)) is the contribution to V (G) of the derivation trees of height
at most (exactly) h to V (G). It therefore suffices to show that fh

V (0) = V (G[h]). Note
that by the extension of V to derivation trees, V (G[h]) and V (G〈h〉) can be computed
recursively as follows (with aV := V (a), bV := V (b), cV := V (c)):

V (G〈h〉) = aV V (G〈h−1〉)2 + aV V (G[h−2])V (G〈h−1〉)

+ aV V (G〈h−1〉)V (G[h−2]) + bV V (G〈h−1〉)

V (G[h]) = V (G[h−1]) + V (G〈h〉)

4 In the multivariate case, for every choice Z of the axiom of G, define G[h] (G〈h〉) analogously
with Z[h] (Z〈h〉) as axiom.

5 A grammar G is unambiguous if for every word w ∈ L(G) there is a unique derivation (tree)
w.r.t. G.
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where V (G〈1〉) = cV and V (G[−1]) := V (G[0]) := 0.
Now, an easy induction proves the stronger claim that

fh
V (0) = V (G[h]) and fh

V (0) = fh−1
V (0) + V (G〈h〉)

and by Kleene’s theorem we get μfV = suph∈N fh
V (0) = suph∈N V (G[h]) = V (G).

Notice that this proof not only reduces the problem of computing the least solution
of X = fV (X) to the problem of computing V (G), it also shows that:

Kleene’s approximation sequence is the result of evaluating
the derivation trees of G by increasing height.

4 Newton’s Approximation

In the last section we have constructed grammars G〈1〉, G〈2〉, . . . that, loosely speaking,
“partition” the derivation trees of G according to height. Formally, there is a bijection
between the derivation trees of G〈h〉 and the derivation trees of G of height exactly
h. Using these grammars we can construct grammars G[1], G[2], . . . such there is a bi-
jection between the derivation trees of G[h] and the derivation trees of G of height at
most h. The grammars G[h] allow us to iteratively compute approximations V (G[h]) to
V (G) = μfV .

We can transform this idea into a general principle for developing approximation al-
gorithms. Given a grammar G, we say that a sequence (G〈i〉)i∈N of grammars partitions
G if T (Gi) ∩ T (Gj) = ∅ for i �= j, and there is a bijection between

⋃
i∈N

T (G〈i〉) and
T (G) that preserves the yield, i.e., the yield of a tree is equal to the yield of its image un-
der the bijection.. Every sequence (G〈i〉)i∈N that partitions G induces another sequence
(G[i])i∈N, defined as in the previous section, such that T (G[i]) =

⋃
j≤i T (G〈i〉). We

say that (G[i])i∈N converges to G. The following proposition follows easily from these
definitions.

Proposition 1. Let X = f(X) be a formal polynomial system with a set Σ of formal
identifiers, and let G be the context-free grammar associated to it. If a sequence (Gi)i∈N

of grammars converges to G, then

μfV = sup
i∈N

V (Gi) .

The unfolding of the last section assigns to every variable in the right-hand-side of a
production a lower index (height) than the variable on the left-hand-side, which for-
bids any kind of unbounded recursion in the unfolded grammars. We now unfold the
grammar G so that nested-linear recursion is allowed [EKL08b, GMM10]. Again we
augment each variable X by a counter, yielding variables X〈i〉, X [i]. A derivation start-
ing from X〈i〉 (X [i]) allows for exactly i (at most i) nested-linear recursions. For the
grammar (4) we get:
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X〈1〉 → c | bX〈1〉

X [1] → X〈1〉

X〈2〉 → aX〈1〉X〈1〉 | aX [1]X〈2〉 | aX〈2〉X [1] | bX〈2〉

X [2] → X〈2〉 | X [1]

...
X〈i〉 → aX〈i−1〉X〈i−1〉 | aX [i−1]X〈i〉 | aX〈i〉X [i−1] | bX〈i〉

X [i] → X〈i〉 | X [i−1]

...

It is instructive to compare the productions of X〈h〉 in Kleene’s approximation, and the
productions of X〈i〉 as defined above:

X〈h〉 → aX〈h−1〉X〈h−1〉 | aX [h−2]X〈h−1〉 | aX〈h−1〉X [h−2] | bX〈h−1〉

X〈i〉 → aX〈i−1〉X〈i−1〉 | aX [i−1]X〈i〉 | aX〈i〉X [i−1] | bX〈i〉

Let H [i] (H〈i〉) denote the grammar with axiom X [i] (X〈i〉) and consisting of those
productions “reachable” from X [i] (X〈i〉) in the above unfolding. As in the case of
Kleene approximation, we can easily show by induction that H [i] is unambiguous, and
that the mapping assigning to a tree of T (H [i]) the unique tree of G deriving the same
word is a bijection. Since every word of L(G) belongs to L(H [i]) for some i ∈ N, the
sequence (H [i])i∈N converges to G.

Again, we can compute V (H〈i〉) and V (H [i]) recursively where μX.g(X) denotes
the the least solution of the equation X = g(X) (again aV := V (a), . . .):

V (H〈i〉) := μX.( aV XV (H [i−1]) + aV V (H [i−1])X + bV X + aV V (H〈i−1〉)2 )

V (H [i]) := V (H〈i〉) + V (H〈i−1〉)

where V (H〈1〉) := μX.( bV X + cV ).
At this point the reader may ask whether any progress has been made: instead of

solving the polynomial system X = fV (X) we have to solve the polynomial systems
X = gi(X). However, these systems are linear, while X = fV (X) may be nonlin-
ear, and in ω-continuous semirings solving linear equations reduces to computing the
Kleene star a∗ :=

∑
i∈N

ai. So, for any ω-continuous semiring which allows for an
efficient computation of a∗, this approximation scheme becomes viable. For instance,
over the nonnegative reals we have a∗ = 1

1−a if a < 1 and a∗ = ∞ otherwise. Thus, if
V is a valuation on the real semiring, then the solution of a linear equation can be easily
computed. For the equations above elementary arithmetic yields

V (G〈i〉) :=
aV V (G〈i−1〉)2

1 − 2aV V (G[i−1]) − bV
V (G[i]) := V (G〈i〉) + V (G[i−1]) (6)

with V (G[1]) = V (G〈1〉) :=
cV

1 − bV
.



Solving Fixed-Point Equations by Derivation Tree Analysis 27

The following table compares the first approximations obtained by using the approx-
imation schemes derived in this and the previos section for our example (2):

Kleene
V (G〈i〉) 1/2 3/8 105/1024 . . .

V (G[i]) 1/2 11/16 809/1024 . . .

Newton
V (H〈i〉) 2/3 4/15 16/255 . . .
V (H [i]) 2/3 14/15 254/255 . . .

(7)

It is now time to explain why we call this scheme Newton’s approximation. For every
valuation V over the reals, the least solution of X = fV (X) is a zero of the polynomial
g(X) = fV (X) − X = aV X2 + (bV − 1)X + cV . Again, an easy induction shows:

V (H〈i〉) = − g(V (H [i−1]))
g′(V (H [i−1]))

V (H [i]) = − g(V (H [i−1]))
g′(V (H [i−1]))

+ V (H [i−1])

starting now from V (H〈0〉) = V (H [0]) = 0, where g′(X) denotes the derivative of g –
in our example: g′(X) = 2aV X + bV − 1. These equations are nothing but Newton’s
classical method for approximating the solution of g(X) = 0 starting at the point 0,
and this is not a coincidence: we have recently shown that this relation holds for every
polynomial equation X = fV (X) over the nonnegative reals [EKL10]. So this approx-
imation scheme generalizes Newton’s method to equations over arbitrary ω-continuous
semirings.

Recall that Kleene’s approximation corresponds to evaluating the derivation trees of
G by increasing height. The question whether we can charaterize Newton’s approxima-
tion in a similar way has been answered positively in [EKL10]. We need the notion of
dimension of a derivation tree.

Definition 4. Let t be a derivation tree. If t consists of a single node, then its dimension
is 1. Otherwise, let d be the maximal dimension of the children of t. If two or more
children have dimension d, then t has dimension d + 1; otherwise, t has dimension d.

For instance, the derivation tree of the grammar (4) shown below on the left has di-
mension 3 (its second and third child have dimension 2, because both of them have two
children of dimension 1).

X

a X

a X

c

X

c

X

a X

c

X

c

X [3]

X〈3〉

a X〈2〉

a X〈1〉

c

X〈1〉

c

X〈2〉

a X〈1〉

c

X〈1〉

c

We can prove:
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Theorem 3 ([EKL10]). For every i ≥ 1, there is a yield-preserving bijection between
T (H [i]) and the trees of T (G) of dimension at most i.

According to this theorem, the tree above must belong to T (H [3]) and indeed this is the
case, as shown by the derivation tree on the right. Note that along any path from the root
to a leaf the sequence of numbers in the superscripts drops atmost by one in each step.
One the other hand, moving from a leaf to the root, the superscript only increases from
i to i + 1 at a given node if this very node has at least a second child with superscript i.
The superscripts in round (square) brackets happen just to be (an upper bound on) the
dimension of the corresponding subtree. So we conclude:

Newton’s approximation sequence is the result of evaluating
the derivation trees of G by increasing dimension.

4.1 Convergence of Newton’s Method in Commutative Semirings

The convergence speed of Newton’s method over the reals is well-understood. In many
cases – for example (7) – it converges quadratically, which in computer science terms
means that the approximation error decreases exponentially in the number of iterations.
In this section we analyze the convergence speed valid for arbitrary commutative semi-
rings, i.e., semirings in which multiplication is commutative.

Recall that, by definition,

V (H [i]) =
∑

t∈T (H[i])

V (t) and V (G) =
∑

t∈T (G)

V (t) .

For every s ∈ S, let α[i](s) be the number of trees t ∈ T (H [i]) such that V (t) = s, if
the number is finite, and α[i](s) = ∞ otherwise. Define α(s) similarly for T (G). Then
we have

V (H [i]) =
∑
s∈S

α[i](s)∑
i=1

s V (G) =
∑
s∈S

α(s)∑
i=1

s

with the convention
∑0

i=1 s = 0. We estimate the convergence speed of Newton’s
method by analyzing how fast the sequence (α[i](s))i∈N converges to α(s). Our result
shows that in a system of n equations after (kn + 1) iterations of Newton’s method we
have α[kn+1](s) ≥ min{α(s), k}.

Theorem 4 ([Lut]). Let X = f(X) be a formal polynomial system with n equa-
tions, and let V be a valuation over a commutative ω-continuous semiring S. We have
α[k·n+1](s) ≥ min{α(s), k} for every s ∈ S and every k ∈ N.

We sketch the proof of the theorem for the (very) special case n = k = 1. We have to
show α[2](s) ≥ min{α(s), 1}, i.e., that α(s) > 0 implies α[2](s) > 0 or, equivalently,
that for every t ∈ T (G) some t′ ∈ T (H [2]) satisfies V (t) = V (t′). As T (H [2]) is in
bijection with the trees of T (G) of dimension at most 2, it suffices to prove that for
every t ∈ T (G) there is t′ ∈ T (G) of dimension at most 2 such that V (t′) = V (t).
If t has dimension 1 or 2, we take t′ = t. Otherwise, we explain how to proceed using
grammar (4) and the tree of dimension 3 deriving the word aaccacc:
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X

a X

a X

c

X

c

X

a X

c

X

c

If we remove the dotted subtree (pump tree), the dimension of the second child of the
root decreases by 1, and we are left with the tree of dimension 2 shown below, on
the left. This tree only derives the word acacc, and so the idea is to reinsert the missing
subtree so that the result (i) is again a derivation tree w.r.t. G, and (ii) we do not increase
the dimension. If we achieve this, then the new tree derives a permutation w of acacacc
and, since the semiring is commutative, we have V (w) = V (aaccacc). Condition (i)
poses no problem in the univariate case, as as all inner nodes correspond to the same
variable (nonterminal). In order to satisfy condition (ii), it suffices to pick any subtree
derived from X of dimension 2 and replace the edge to its father by the missing dotted
subtree as shown below, on the right.

It can be shown that this reallocation of subtrees is also possible in the multivariate
case and allows to generate the required number of distinct derivations trees, although
additional care is needed in order to satisfy the two conditions.

X

a X

c

X

a X

c

X

c

X

a X

c

X

a X

c

X

a X

c

X

c

5 Derivation Tree Analysis for Idempotent Semirings

In the previous section, we have seen how to relocate subtrees of a derivation tree in
order to reduce its dimension. In commutative semirings, relocating subtrees preserves
the value of the tree, and we have used this fact to derive Theorem 4, a quantitative
meassure of the speed at which the Newton approximations V (H [i]) converge to V (G).
In particular, for k = 1 we obtain α[n+1](s) ≥ min{α(s), 1} or, equivalently,

For every tree t ∈ T (G) there is a tree t′ ∈ V (H [i]) such that V (t) = V (t′).

This has an important consequence for idempotent semirings, i.e., for semirings satis-
fying the identity a + a = a for every a ∈ S. For any valuation V over an idempotent
semiring, V (t) = V (t′) implies V (t) + V (t′) = V (t′). So for idempotent and com-
mutative ω-continuous semirings we get V (G) + V (H [n+1]) = V (H [n+1]), which
together with V (H [n+1]) 
 V (G) implies V (H [n+1]) = V (G). It follows:
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Theorem 5 ([EKL10]). Let X = f(X) be a formal polynomial system with n equa-
tions. For every valuation V over an idempotent and commutative ω-continuous semi-
ring

μfV = V (H [n+1]) .

Intuitively, this result states that in order to compute μfV we can safely “forget” the
derivation trees of dimension greater than n + 1, which implies that Newton’s method
terminates after at most n + 1 iterations.

In the rest of the section we study two further classes of idempotent ω-continuous
semirings for which a similar result can be proved: idempotence allows to “forget”
derivation trees, and compute the least solution exactly after finitely many steps.

5.1 1-bounded Semirings

A semiring 〈S, +, ·, 0, 1〉 1-bounded if it is idempotent and a 
 1 for all a ∈ S.
One-bounded semirings occur, for instance, in probabilistic settings when one is in-

terested in the most likely path between two nodes of a Markov chain. The probability
of a path is the product of the probabilities of its transitions, and we are interested on
the maximum over all paths. This results in an equation system over the Viterbi semi-
ring [DKV09] whose carrier is the interval [0, 1], and has max and · as addition and
multiplication operators, respectively.

We show that over 1-bounded semirings we may “forget” all derivation trees of
height greater than n. Fix a formal polynomial system X = f(X) with n equations
and valuation V over a 1-bounded semiring. Let G be the associated context-free gram-
mar. G then has also n nonterminals. A derivation tree t ∈ T (G) is pumpable if it
contains a path from its root to one of its leaves in which some variable occurs at least
twice. Clearly, every tree of height at least n + 1 is pumpable. It is well-known that a
pumpable tree t induces a pumpable factorization w = uvxyz of its yield w such that
uvixyiz ∈ L(G) for every i ≥ 0. In particular, for every i ≥ 0 there is a derivation tree
ti that (i) yields uvixyiz, and (ii) is derived from the same axiom as t. Now we have

V (t) + V (t0) = V (w) + V (uxz)
= V (u)V (v)V (x)V (y)V (z) + V (u)V (x)V (z)

 V (u) 1 V (x) 1 V (z) + V (u)V (x)V (z) (1-boundedness)
= V (uxz) (idempotence)
= V (t0)

Repeating this procedere as long as possible, we eventually arrive from a pumpable
tree t to another tree t̂ of height at most n with V (t) + V (t̂) = V (t̂). So, denoting by
T [n](G) the trees of G of height at most n, we have

Theorem 6 ([EKL08a]). For X = f(X) a formal polynomial system in n variables,
G its associated grammar, and V any valuation over a 1-bounded semiring, we have:

μfV = V (T (G)) = V (T [n](G)) = V (G[n]) = fh
V (0).

Since the Kleene sequence converges after at most n steps we can compute the least
solution even if the semiring is not ω-continuous.
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zyxvu

(a)

zyxvz′y′
x′v′u′

(b)

zyxvz′x′u′

(c)

zxz′y′
x′v′u′

(d)

Fig. 1. “Unpumping” trees

5.2 Star-distributive Semirings

In an ω-continuous semiring we can define the Kleene star operation by a∗ =
∑

i≥0 ai,
where a0 = 1. A semiring 〈S, +, ·, 0, 1〉 is star-distributive if it is ω-continuous, idem-
potent, commutative, and (a + b)∗ = a∗ + b∗ holds for every a, b ∈ S.

The tropical semiring 〈N, min, +,∞, 0〉 is a prominent example of star-distributive
semiring. Actually, any ω-continuous commutative and idempotent semiring in which
the natural order 
 is total is star-distributive. Indeed, for any two elements a, b, assum-
ing w.l.o.g. a 
 b, which implies a∗ 
 b∗, we get:

(a + b)∗ = a∗ = a∗ + b∗ .

Finally, for a last bit of motivation, a recent paper shows that the computation of sev-
eral types of provenance of datalog queries can be reduced to the problem of (in our
terminology) computing the least solution of a formal polynomial system over a com-
mutative semiring S [GKT07]. Specifically, in the case of the why-provenance S is also
idempotent and further augmented by the identity a2 = a for all a ∈ Σ. Clearly, such
semirings are star-distributive.

We show that idempotent together with commutativity and star-distributivity allows
us to forget most derivation trees of a grammar G associated with a formal polynomial
system. In fact, we do not use star-distributivity directly, but the following two identities
implied by it in conjunction with commutativity:

Proposition 2. If S is star-distributive, then for every a, b ∈ S

a∗ + b∗ = a∗b∗ and (ab∗)∗ = a∗ + ab∗.
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Again, fix a formal polynomial system X = f(X) with n equations, and let G be the
grammar (without explicit axiom) associated to the system. Further, let V be a valuation
over some star-distributive semiring S. We have:

Proposition 3. Let t ∈ T (G) be a pumpable tree deriving a word w with pumpable fac-
torization uvxyz. Then there are pumpable trees t1, . . . , tr ∈ T (G) (derived from the
same axiom as t) of height at most n+ 1 such that each ti has a pumpable factorization
uivixiyizi satisfying

V (w) 

r∑

i=1

∞∑
j=0

V (uiv
j
i xiy

j
i zi) . (8)

In essence, this proposition tells us that we only need to evaluate derivation trees of G
which are either of “unpumpable” (thus, of height at most n) or the result of pumping a
fixed factorization in a pumpable derivation tree of height at most n + 1, while we may
“forget” the rest.

We sketch one case of the proof of the proposition. Fix a pumpable tree t with
pumpable factorization uvxyz as schematically described in Figure 1(a) where the mid-
dle (grey) and the lower (dark grey) part are derived from the same nonterminal, and
the top part (white) may be empty. If t has height at most n + 1, we set t1 := t and are
done. Otherwise, one of the three parts of t (white, grey, or dark grey) contains a subtree
of height at least n + 1. Since G only has n variables, this subtree is also pumpable. We
only consider the case that the pumpable tree is on the left part of the white zone (other
cases are similar). Then there is a pumpable factorization of u, i.e. u = u′v′x′y′z′, as
shown in Figure 1(b), and we have u′(v′)ix′(y)iz′uvjxyjz ∈ L(G) for every i, j ≥ 0.
Applying the properties of star-distributive semirings we get

∑
i≥0

∑
j≥0

u′(v′)ix′(y′)iz′vjxyjz

= u′x′z′xz(v′y′)∗(vy)∗ (commutativity)

= u′x′z′xz((v′y′)∗ + (vy)∗) (a∗b∗ = a∗ + b∗)

=
∑
i≥0

u′(v′)ix′(y′)iz′xz +
∑
j≥0

u′x′z′vjxyjz

It is easy to see that G has derivation trees t1 and t2 (schematically shown in Figure 1(c)
and (d)) with pumpable factorizations w1 = u1v1x1y1z1 and w2 = u2v2x2y2z2 given
by

u1 = u′x′z′ v1 = v x1 = x y1 = y z1 = z
u2 = u′ v2 = v′ x2 = x′ y2 = y′ z2 = z′xz

Therefore, we have

V (w) 

∞∑

j=0

V (u1v
j
1x1y

j
1z1) +

∞∑
j=0

V (u2v
j
2x2y

j
2z2)
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If t1 and t2 have height at most n + 1, then we are done; otherwise, the step above is
iterated. This concludes the proof sketch.

Let us now see how to apply the proposition. Let L ⊆ L(G) be the language
containing

– the words derived by the “unpumpable” trees of G, and
– the words of the form uvjxyjz, where uvxyz is a pumpable factorization of a tree

of T (G) of height at most n + 1.

Given w ∈ L(G), there are two possible cases: if w is derived by some “umpumpable”
tree, then w ∈ L, and so V (w) 
 V (L); if w is derived by some pumpable tree, then by
(8) we also have V (w) 
 V (L). So V (w) 
 V (L) holds for every w ∈ L(G). Since S
is idempotent, we get

V (G) =
∑

t∈T (G) V (t)
=
∑

w∈L(G) V (w) (idempotence)


∑

w∈L(G) V (L) (V (w) 
 V (L))
= V (L) (idempotence and ω-continuity)

Looking at the definition of L it is not difficult to show (see [EKL08a]) that it is sub-
sumed by the words of L(G) derived by the bamboos of T (G), a set of derivation trees
defined as follows:

Definition 5. A derivation tree t is a bamboo if there is a path leading from the root of
t to some leaf of t, the stem, such that the height of every subtree of t not containing a
node of the stem is at most n.

≤ n

≤ n

≤ n

≤ n

≤ n

≤ n

≤ n

≤ n

Fig. 2. An example of the structure of a bamboo: it consists of a stem of unbounded length from
which subtrees of height at most n sprout; on the right it is shown with its stem straightened

Figure 2 illustrates the definition. The definition of “bamboo” directly leads to an un-
folding rule for G: in every rule we limit the recursion depth of all but one terminal
to n in the same way as we did in the case of the Kleene approximation. Notice that,
since V (G) = V (L) by idempotence, we do not need to ensure that each derivation
tree of the unfolded grammars uniquely corresponds to a derivation tree of G. This very
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much simplifies the definition of the unfolding. For instance, if G has nonterminals
{X, Y, Z, U, V }, then the productions

X → aXY | bZ | c

are unfolded to
X → aXY [5] | aX [5]Y | bZ | c

X [5] → aX [4]Y [4] | bZ [4] | c
· · ·

X [2] → aX [1]Y [1] | bZ [1] | c

X [1] → c

The structure of the grammar then again allows us to recursively compute the yield
of the derivations trees derived from any nonterminal which gives us an algorithm for
computing the least fixed point of any formal polynomial system w.r.t. any valuation
over some star-distributive semiring:

Theorem 7 ([EKL08a]). Let X = f(X) be formal polynomial system consisting of n
equations and let V be a valuation over a star-distributive semiring S.

Then μfV can be computed using n Kleene iteration steps and then solving a single
linear system over S.

This result can be used to compute the provenance of datalog queries over the tropical
semiring, a problem that was left open in [GKT07].

6 Conclusions

We have presented some old and some new links between computational algebra and
language theory. We have shown how the formal similarity between fixed-point equa-
tions and context-free grammars goes very far, and leads to novel algorithms.

The unfolding of grammars leading to Newton’s approximation has already found
some applications in verification [GMM10, EG11] and Petri net theory [GA11]. Theo-
rem 5 has lead to a simple algorithm for constructing an automaton whose language is
Parikh-equivalent to the language of a given context-free grammar [EGKL11]. Theorem
7 was used in [EKL08a] to improve the complexity bound of [CCFR07] for computing
the throughput of context-free grammars from O(n4) to O(n3).

An interesting question is whether the results we have obtained can be proved by
purely algebraic means, e.g. without using “tree surgery”. Further open questions concern
data structures and efficient algorithms for the approximation schemes we have sketched.

Acknowledgments. Many thanks to Volker Diekert for his help with Theorem 4, to
Rupak Majumdar for pointing us to applications of semirings to the provenance problem
in databases [GKT07], and to Pierre Ganty for many discussions.
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Extended Abstract

Hoare logic ([7]) is an important tool for formally proving correctness properties
of programs. It takes advantage of modularity by treating program fragments
in terms of provable specifications. However, heap programs tend to break this
type of modular reasoning by permitting pointer aliasing. For instance, the spec-
ification that a program reverses one list does not imply that it leaves a second
list alone. To achieve this disjointness property, it is necessary to establish dis-
jointness conditions throughout the proof.

O’Hearn, Reynolds, and Yang ([11]) introduced separation logic for reasoning
locally about heap programs, in order to address this problem. The fundamental
principle of local reasoning is that, if we know how a local computation behaves
on some state, then we can infer the behaviour when the state is extended: it
simply leaves the additional state unchanged. A program is specified in terms
of its footprint — the resource necessary for it to operate — and a frame rule
is used to infer that any additional resource is indeed unchanged. For example,
given a proof that a program reverses a list, the frame rule can directly establish
that the program leaves a second disjoint list alone. Consequently, separation
logic enables modular reasoning about heap programs.

Abstraction (see e.g. Reynolds, [13]; Mitchell and Plotkin, [10]) and refinement
(see e.g. Hoare, [8]; de Roever and Engelhardt, [3]) are also essential for mod-
ular reasoning. Abstraction takes a concrete program and produces an abstract
specification; refinement takes an abstract specification and produces a correct
implementation. Both approaches result in a program that correctly implements
an abstract specification. Such a result is essential for modularity because it
means that a program can be replaced by any other program that meets the
same specification. Abstraction and refinement are well-established techniques
in program verification, but have so far not been fully understood in the context
of local reasoning.

Parkinson and Bierman ([12]) introduced abstract predicates in separation
logic to provide abstract reasoning. An abstract predicate is, to the client, an
opaque object that encapsulates the unknown representation of an abstract
datatype. They inherit some of the benefits of locality from separation logic;
an operation on one abstract predicate leaves others alone. However, the client
cannot take advantage of local behaviour that is provided by the abstraction
itself.

Consider a set module. The operation of removing, say, the value 3 from the
set is local at the abstract level; it is independent of whether any other value is
in the set. Yet, consider an implementation of the set as a sorted, singly-linked
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list in the heap, starting from address h. The operation of removing 3 from the
set must traverse the list from h. The footprint, therefore, comprises the entire
list segment from h up to the node with value 3. With abstract predicates,
the abstract footprint corresponds to the concrete footprint and hence, in this
case, includes all the elements of the set less than or equal to 3. Consequently,
abstract predicates cannot be used to present a local abstract specification for
removing 3.

Calcagno, Gardner, and Zarfaty ([1]) introduced context logic, a generalisa-
tion of separation logic, to provide abstract local reasoning about abstract data
structures. Context logic has been used to reason about programs that manipu-
late data structures, such as sequences, multisets and trees (Calcagno et al., [2]).
In particular, it has been successfully applied to reason about the W3C DOM
tree update library (Gardner et al., [6]). Until recently, context logic reason-
ing has always been justified with respect to an operational semantics defined
at the same level of abstraction as the reasoning. Recently, in Dinsdale-Young
et al. ([4]), we combined abstract local reasoning with data refinement, to refine
abstract module specifications into correct implementations.

Filipović, O’Hearn, Torp-Smith, and Yang ([5]); Mijajlović et al. ([9]) previ-
ously considered data refinement for local reasoning, studying modules built on
the heap model. They observed that a client can violate a module’s abstraction
boundary by dereferencing pointers to the module’s internal state, and thereby
break the refinement between abstract modules and their concrete implemen-
tations. In their motivating example, a simple memory allocator, a client can
violate the concrete allocator’s free list through pointers to memory that has
been deallocated; the abstract allocator, which maintains a free set, is unaf-
fected by such an access, hence the refinement breaks. Their solution was to
“blame the client” by introducing a modified operational semantics that treats
such access violations as faulting executions. Using special simulation relations,
they were able to recover soundness of data refinement. Their techniques adapt
to different data models, however, both module and client use the same model.

We apply data refinement to local reasoning, demonstrating that abstract lo-
cal reasoning is sound for module implementations. By contrast with Filipović
et al. ([5]), we work with the axiomatic semantics, rather than operational seman-
tics, of the language, defining proof transformations that establish that concrete
implementations simulate abstract specifications. This avoids having to consider
badly behaved clients, since the proof system only makes guarantees about well
behaved clients. Furthermore, the abstract and concrete levels in our refinements
typically have different data store models, meaning that the concept of locality
itself is different at each level.

Our motivating example is the stepwise refinement of a tree module T, illus-
trated in Fig. 1. We present two different refinements from the tree module T
to the familiar heap module of separation logic H. The first, labelled τ1, uses a
direct implementation of trees in the heap in which each tree node is represented
by a contiguous block of heap cells.
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τ4 τ3

τ1

τ2

Fig. 1. Stepwise refinement of a tree module T to a heap module H

The second refinement uses an abstract list module L as an intermediate step
in the refinement. We show that the tree module T can be correctly implemented
in the combination of the heap and list modules H + L, using translation τ2. We
also show that the list module L can be correctly implemented using the heap
module H, using translation τ4. Since our approach is modular, this translation
can be lifted to a translation from the combined heap and list module H + L to
the combination of two heap modules H + H. (This is illustrated by the dotted
arrow in Fig. 1.) To complete the refinement, we show that the double-heap
module H + H can be trivially implemented by the heap module H.

Our development introduces two general techniques for verifying module im-
plementations with respect to their local specifications, using the data refine-
ment technique known as forward simulation (L-simulation in de Roever and
Engelhardt, [3]). We introduce locality-preserving and locality-breaking transla-
tions. Locality-preserving translations, broadly speaking, relate locality at the
abstract level with locality of the implementation. However, implementations
typically operate on a larger state than the abstract footprint, for instance, by
performing pointer surgery on the surrounding state. We introduce the notion
of crust to capture this additional state. This crust intrudes on the context,
and breaks the disjointness that exists at the abstract level. We therefore relate
abstract locality with implementation-level locality via a fiction of disjointness.

With locality-breaking translations, locality at the abstract level does not
correspond to locality of the implementation. Even in this case, we can think
about a locality-preserving translation using possibly the whole data structure as
the crust. Instead, we prove soundness by establishing that the specifications of
the module commands are preserved under translation in any abstract context,
showing the soundness of the abstract frame rule. We thus establish a fiction of
locality at the abstract level.
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Abstract. We give an overview of the coinductive logic programming
paradigm. We discuss its applications to modeling ω-automata, model
checking, verification, non-monotonic reasoning, developing SAT solvers,
etc. We also discuss future research directions.

1 Introduction

Coinduction is a technique for reasoning about unfounded sets [12], behavioral
properties of programs [2], and proving liveness properties in model checking
[16]. Coinduction also provides the foundation for lazy evaluation [9] and type
inference [21] in functional programming as well as for interactive computing
[33].

Coinduction is the dual of induction. Induction corresponds to well-founded
structures that start from a basis which serves as the foundation: e.g., natural
numbers are inductively defined via the base element zero and the successor
function. Inductive definitions have 3 components: initiality, iteration and mini-
mality. For example, the inductive definition of lists of numbers is as follows: (i)
[] (empty list) is a list (initiality); (ii) [H|T] is a list if T is a list and H is some
number (iteration); and, (iii) the set of lists is the smallest set satisfying (i) and
(ii) (minimality). Minimality implies that infinite-length lists of numbers are not
members of the inductively defined set of lists of numbers. Inductive definitions
correspond to least fixed point (LFP) interpretations of recursive definitions.

Coinduction eliminates the initiality condition and replaces the minimality
condition with maximality. The coinductive definition of infinite lists of numbers
is: (i) [H|T] is a list if T is a list and H is some number (iteration); and, (ii) the
set of lists is the largest set of lists satisfying (i) (maximality). There is no base
case in a coinductive definition, and while it may appear circular, the definition
is well formed since coinduction corresponds to the greatest fixed point (GFP)
interpretation of recursive definitions: namely, the set of of all infinite lists of
numbers. (Note, however, that if we had a recursive definition with a base case,
then under the coinductive interpretation, the set would contain both finite and
infinite-sized lists.) A coinductive proof is essentially an infinite-length proof.
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2 Coinduction and Logic Programming

Coinduction has been incorporated in logic programming in a systematic way
only recently [30,10,29]. An operational semantics—similar to SLD resolution—
was given for computing those answers to a query that are in the greatest fixed
point of a logic program (the semantics is discussed below).

Consider the list example discussed in Sec. 1. The normal logic programming
definition of a stream (list) of numbers is given as program P1 below:

stream([]).
stream([H|T]) :- number(H), stream(T).

Under SLD resolution, the query ?- stream(X). will systematically produce all
finite streams one by one, starting from the [] stream. Suppose now we remove
the base case and obtain the program P2:

stream([H|T]) :- number(H), stream(T).

In standard logic programming the query ?- stream(X). fails, since the model
of P2 does not contain any instances of stream/1. The problems are two-fold:
(i) the Herbrand universe does not contain infinite terms; (ii) the least Herbrand
model does not allow for infinite proofs, such as the proof of stream(X); yet
these concepts are commonplace in computer science, and a sound mathematical
foundation exists for them in the field of hyperset theory [2]. Coinductive LP
extends the traditional declarative and operational semantics of LP to allow
reasoning over infinite and cyclic structures and properties. In the coinductive
LP paradigm the declarative semantics of the predicate stream/1 above is given
in terms of infinitary Herbrand (or co-Herbrand) universe, infinitary Herbrand
(or co-Herbrand) base [15], and maximal models (computed using greatest fixed-
points).

Under the coinductive interpretation of P2, the query ?- stream(X). should
produce all infinite sized streams as answers, e.g., X = [1, 1, 1, ... ], X =
[1, 2, 1, 2, ... ], etc. The model of P2 does contain instances of stream/1
(but proofs may be of infinite length).

If we take a coinductive interpretation of program P1, then we get all finite
and infinite streams as answers to the query ?- stream(X). Coinductive logic
programming allows programmers to manipulate infinite structures. As a result,
unification must be extended and the “occurs check” removed: unification equa-
tions such as X = [1 | X] are allowed in coinductive logic programming; in fact,
such equations will be used to represent infinite (rational) structures in a finite
manner.

The operational semantics of coinductive logic programming is given in terms
of the coinductive hypothesis rule: during execution, if the current resolvent R
contains a call C′ that unifies with an ancestor call C, then the call C′ succeeds;
the new resolvent is R′θ where θ = mgu(C, C′) and R′ is obtained by deleting
C′ from R. With this extension, a clause such as

p([1|T]) :- p(T).
and the query ?- p(Y). will produce an infinite answer Y = [1|Y].
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In coinductive logic programming the alternative computations started by a
call are not only those that begin with unifying the call and the head of a clause,
but also those that begin with unifying the call and one of its ancestors in a
proof tree.

Regular logic programming execution extended with the coinductive hypoth-
esis rule is termed co-logic programming [29]. The coinductive hypothesis rule
will work for only those infinite proofs that are regular (or rational), i.e., infinite
behavior is obtained by a finite number of finite behaviors interleaved an infinite
number of times. More general implementations of coinduction are possible [29].
More complex examples of coinductive LP program can be found elsewhere [10].

Even with the restriction to rational proofs, there are many applications of
coinductive logic programming, some of which are discussed next. These include
model checking, modeling ω-automata, non-monotonic reasoning, etc. Implemen-
tations of co-LP have been realized: a meta-interpreter that includes both tabled
and coinductive logic programming is available from the authors [14]. Recently,
SWI Prolog [32] and Logtalk have also added support for coinduction.

The traditional model of declarative computing is based on recursion: a prob-
lem is solved by breaking it down into smaller subproblems, which are broken
down further, until base cases are reached that are trivially solved. Solutions
to the subproblems are then used to synthesize a solution to the problem. This
model of computation is based on the theory of well-founded sets, and is not
appropriate for computations that are cyclical in nature. Such cyclical computa-
tions arise when the solutions to the subproblems of a given problem are mutu-
ally interdependent. Solving the problem involves establishing the consistency of
the interdependent solutions to the subproblems, and coinduction/corecursion
provides the necessary framework [2].

Intuitively, a computational model in which both LFP -based and GFP -based
computations can be conveniently expressed will allow one to elegantly express
any computable function. As a result, logic programming extended with coin-
duction provides a basis for many powerful applications, in areas of verification,
non-monotonic reasoning, modal logics, etc. A number of challenges remain in
co-LP. These relate to:

– Nesting of inductive and coinductive computations. In such cases
giving the proper semantics may not be simple. This is illustrated by the
following program

p :- q.
q :- p.

where q has standard inductive semantics while p has coinductive semantics.
A call to q should fail, and so should a call to p (since it calls q), but a call
to p may succeed coinductively. (We will return to this issue in Sec. 6.)

– Reporting isomorphic solutions only once. Consider the coinductive
predicate p/1.

p([1|T]) :- p(T).
The query p(A) will produce a solution A = [1|A]. However, if normal call
expansion is also considered as an alternative along with the coinductive
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hypothesis rule, then an infinite number of solutions will be produced, all of
them isomorphic to the solution A = [1 | A]:

A = [1, 1 | A]
A = [1, 1, 1 | A]
A = [1, 1, 1, 1 | A]
....

One could avoid this problem by memoing the cyclical solutions, however,
an operational semantics that incorporates this memoing has yet to be in-
vestigated [6].

– Efficient implementation of co-LP. The current operational semantics
of co-LP require that every coinductive call be unified with every ancestor
call to the same predicate: a naive implementation may be quite inefficient.

– Reporting all solutions. Consider the following program where both p
and q are coinductive.

p([a|X]) :- q(X).
q([b|X]) :- p(X).

The query ?- p(A). has an infinite number of solutions, both rational and
irrational. In general, systematic enumeration of even the rational solutions
requires a fair execution strategy (e.g., breadth-first search). Such an execu-
tion strategy should be coupled with a mechanism that eliminates redundant
isomorphic solutions.

As discussed earlier, there are many extensions and applications of coinduction
and co-LP. In the rest of the paper we outline some of them. We discuss the
extension of co-SLD resolution with negation (termed co-SLDNF resolution) and
its use in realizing goal-directed non-monotonic reasoners and SAT solvers. We
also discuss how co-LP can be extended with constraints and used for modeling
complex real-time systems, for example, how timed ω-automata, timed push-
down ω-automata, and timed grammars can be elegantly modeled. Co-LP can
also be used for developing executable operational semantics of Π-calculus and
linear-time temporal logic (LTL). Relationship between co-LP and various ω-
automata (Büchi, Rabin, Streett) is also discussed.

3 Model Checking with Co-LP

Model checking is a popular technique used for verifying hardware and software
systems. It is done by constructing a model of the system as a finite-state Kripke
structure and then determining whether the model satisfies various properties
specified as temporal logic formulae [3]. The verification is performed by means
of systematically searching the state space of the Kripke structure for a counter-
example that falsifies the given formula. The vast majority of properties that
are to be verified can be classified into safety properties and liveness properties.
Intuitively, a safety property asserts that “nothing bad will happen”, while a
liveness property asserts that “something good will eventually happen”.

It is well known that safety properties can be verified by reachability analysis,
i.e., if a counter-example to the postulated property exists, it can be finitely



44 G. Gupta et al.

determined by enumerating all the reachable states of the Kripke structure.
In the context of Logic Programming, verification of safety properties amounts
to computing elements of the LFP of a program, and is thus elegantly han-
dled by standard LP systems extended with tabling [24]. Verification of liveness
properties is less straightforward, because counterexamples take the form of in-
finite traces, which are semantically equivalent to elements of the the GFP of a
logic program: co-LP is more suitable for directly computing such counterexam-
ples without the expensive transformations required by some other approaches
suggested in the literature [24].

Intuitively, a state is live if it can be reached via an infinite loop (cycle). Live-
ness counterexamples can be found by (coinductively) enumerating all possible
states that can be reached via infinite loops and then determining if any of these
states constitute valid counterexamples.

To demonstrate the power of coinductive logic programming, we show how
an interpreter for linear temporal logic can be written very elegantly. In LTL,
one checks if a temporal logic formula is true along a path. Temporal operators
whose meaning is given in terms of LFPs are realized via tabled logic program-
ming, while those whose meaning is given in terms of GFPs are realized using
coinductive logic programming.

The verify/3 predicate in the interpreter of Fig. 1 takes as input a state and
an LTL formula, and produces as an answer a path for which this formula is true.
To verify that an LTL formula F holds in a given state S, it has to be negated.
The negated formula is then converted to negation normal form (i.e., a negation
symbol can appear only next to a proposition), and then given as input to the
verify/3 predicate along with the state S. If the call to verify/3 fails, then
there is no path on which the negated formula holds, implying that the formula
F holds in state S. In contrast, if verify/3 returns a path as an answer, then
that specific path is a counterexample for which the original formula F does not
hold. Note that the Kripke structure is represented as a transition table using
the trans/2 predicate, while information about which proposition(s) holds in
which state(s) is given by the holds/2 predicate. The temporal operators X, F,
G, U and R are represented with corresponding lower case letters, while ^, v,
and ~ represent ∧, ∨, and negation respectively. The program in Fig. 1 should
be self-explanatory.

Note that while this program is elegant, its soundness and completeness de-
pend on the execution strategy used for realizing coinduction, and on how the
interleaving of coinduction and tabling (induction) is handled. The issue of
interleaving of coinduction and induction is discussed in section 6.2.

4 Negation in Co-LP

As mentioned earlier, SLD resolution extended with the coinductive hypothesis
rule is called co-SLD resolution. Co-SLDNF resolution further extends co-SLD
resolution with negation as failure [15]. Essentially, it augments co-SLD with the
negative coinductive hypothesis rule, which states that if a negated call not(p) is
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verify( S, g A, Path ) :- coverify( S, g A, Path ).

verify( S, A r B, Path ) :- coverify( S, A r B, Path ).

verify( S, f A, Path ) :- tverify( S, f A, Path ).

verify( S, A u B, Path ) :- tverify( S, A u B, Path ).

verify( S, A, [ S ] ) :- proposition( A ), holds( S, A ).

verify( S, ~ A, [ S ] ) :- proposition( A ), \+ holds( S, A ).

verify( S, A ^ B, Path ) :- verify( S, A, PathA ),

verify( S, B, PathB ),

prefix( PathA, PathB, Path ).

verify( S, A v B, Path ) :- verify( S, A, Path )

; verify( S, B, Path ).

verify( S, x A, [ S | P ] ) :- trans( S, S2 ), verify( S2, A, P ).

:- tabled tverify/3.

tverify( S, f A, Path ) :- verify( S, A, Path )

; verify( S, x f A, Path ).

tverify( S, A u B, Path ) :- verify( S, B, Path )

; verify( S, A ^ x( A u B), Path ).

:- coinductive coverify/3.

coverify( S, g A, Path ) :- verify( S, A ^ x g A, Path ).

coverify( S, A r B, Path ) :- verify( S, A ^ B, Path ).

coverify( S, A r B, Path ) :- verify( S, B ^ x( A r B ), Path ).

prefix( Prefix, Path, Path ) :- append( Prefix, _, Path ), !.

prefix( Path, Prefix, Path ) :- append( Prefix, _, Path ), !.

Fig. 1. An LTL model-checker

encountered during resolution, and another call to not(p) has been seen before
in the same computation, then not(p) coinductively succeeds [20].

To implement co-SLDNF resolution, the set of positive and negative calls has
to be maintained in the positive hypothesis table (PHT) and negative hypothesis
table (NHT) respectively. An attempt to place the same call in both tables
will induce failure of the computation. The framework based on maintaining a
pair of sets (corresponding to a partial interpretation of success set and failure
set, resulting in a partial model [8]) provides a good basis for the operational
semantics of co-SLDNF resolution [20].

One of the most interesting applications of co-SLDNF resolution is in obtain-
ing goal-directed strategies for executing answer set programs. Answer Set Pro-
gramming (ASP) [1] is a powerful paradigm for performing non-monotonic rea-
soning within logic programming. Current ASP implementations are restricted to
grounded range-restricted function-free normal programs [1] and use essentially
an evaluation strategy that is bottom-up. Co-LP with co-SLDNF resolution has
allowed the development of top-down goal evaluation strategies for ASP [10],
which in turn allows ASP to be extended to predicates [18]. This co-LP based
method eliminates the need for grounding, allows functions, and effectively han-
dles a large class of predicate ASP programs including possibly infinite ASP
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programs. We have designed and implemented the techniques and algorithms to
execute propositional and predicate ASP programs. Our techniques are applica-
ble to the full range of propositional answer set programs, but for predicate ASP
we are restricted to programs that are call-consistent or order-consistent [19].

We illustrate co-SLDNF resolution by showing how a boolean SAT solver can
be readily obtained. A SAT solver attempts to find a truth assignment that
satisfies a propositional formula. Our technique based on co-SLDNF resolution
essentially makes assumptions about truth values of propositions, and checks
that these assumptions bear out throughout the formula. A propositional formula
X must satisfy the following rules:

(1) t(X) :- not( neg(t(X)) ).

(2) neg(t(X)) :- not( t(X) ).

The predicate t/1 is a truth-assignment (or a valuation) where X is a propo-
sitional Boolean formula to be checked for satistifiability. Clause (1) asserts that
t(X) is true if there is no counter-case for neg(t(X)) (that is, neg(t(X)) is
false (coinductively), with the assumption that t(X) is true (coinductively)).
Clause (2) asserts that neg(t(X)) is true if there is no counter-case for t(X).
Next, any well-formed propositional Boolean formula constructed from a set of
propositional symbols and logical connectives and in conjunctive normal form
(CNF) can be translated to a query for the co-LP program as follows: first, each
propositional symbol p is translated to t(p). Second, any negated proposition,
that is ¬t(p), is translated to neg(t(p)). Third, the Boolean operators ∧ and
∨ are translated to Prolog’s conjunction (,) and disjunction (;) respectively.

The predicate t(X) determines the truth-assignment of formula X (if X is true,
t(X) succeeds; else it fails). Note that each query is a Boolean expression whose
satistifiability is to be coinductively determined. As an example, the formula
(p1 ∨ p2 ∨ p3) ∧ (p1 ∨ ¬p3) ∧ (¬p2 ∨ ¬p4) will be translated into the query

(t(p1); t(p2); t(p3)), (t(p1); not(t(p3))), (not(t(p2)); not(t(p4))).
Propositions that must be assigned the value true will be found in the PHT,
while those that must be assigned the value false will be found in NHT. The
answer printed by our prototype SAT solver based on co-LP is shown below (the
print ans command prints the answer):

?- (t(p1);t(p2);t(p3)),(t(p1); neg(t(p3))),

(neg(t(p2)); neg(t(p4))), print_ans.

Answer:

PHT == [t(p1)]

NHT == [t(p2)]

yes

The answer indicates that this propositional formula is satisfiable if p1 is assigned
true and p2 is assigned false.

5 Modeling Complex Real-time Systems

Next, we consider the use of co-LP to model ω-automata and their various ex-
tensions. As is well known, finite state automata as well as grammars can be
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elegantly modeled as inductive logic programs, and recognizers for them are read-
ily obtained (due to the relational nature of logic programming, these recognizers
can also systematically generate all the words of the recognized language). Sim-
ilar recognizers can be obtained for ω-automata and ω-grammars with co-LP.
Moreover, co-LP can be augmented with constraint logic programming (e.g., over
the real numbers [CLP(R)] [13]), allowing elegant modeling of real-time systems.
We next give an overview of application of co-LP (combined with CLP(R)) to
modeling complex real-time systems; in particular, we discuss how pushdown
timed automata, timed grammars and timed π-calculus can be elegantly repre-
sented. The use of co-LP together with CLP(R) for modeling these system leads
one naturally towards coinductive constraint programming, an area that we are
beginning to investigate.

5.1 Pushdown ω-Automata and ω-Grammars

A timed automaton is an ω-automaton extended with clocks or stopwatches.
A pushdown timed automaton (PTA) [4] extends a timed automaton with a
stack, just as a pushdown automaton extends a finite automaton. Transitions
from one state to another are made not only on the alphabet symbols of the
language but also on constraints imposed on clocks (e.g., at least 2 units of time
must have elapsed). Transitions may result in changing the stack by performing
the push and pop operations. A PTA recognizes a language consisting of timed
words, where a timed word is an infinite sequence of symbols from the alphabet,
each of them paired with a time-stamp. The sequence of symbols in an infinite
sequence accepted by a PTA must obey the rules of syntax laid down by the
underlying untimed pushdown automaton, while the time-stamps must obey the
timing constraints. Additionally, the stack must be empty whenever a final state
is entered.

To model and reason about PTA (and timed grammars) we must account
for the fact that: (i) the underlying language is context free, not regular; (ii) ac-
cepted strings are infinite; and (iii) clock constraints are posed over continuously
flowing time. All three aspects can be elegantly handled—and PTAs naturally
modeled—within co-LP. Additionally, the definite clause grammar (DCG) facil-
ity of Prolog allows one to easily obtain a parser for a grammar. Through co-LP,
one can develop language processors that can act as recognizers for ω-pushdown
automata and ω-grammars. Further, with incorporation of CLP(R) one can also
model the timing aspects.

A PTA specification can be automatically transformed to a coinductive pro-
gram extended with CLP(R) [28]. The method takes the description of a PTA
and generates a coinductive constraint logic program over reals. The generated
logic program models the PTA as a collection of transition rules (one rule per
transition): each rule is extended with stack actions as well as clock constraints.
Our coinductive constraint logic programming realization of pushdown timed
automata and timed automata can be regarded as a general framework for mod-
eling/verifying real-time systems.
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Fig. 2. A Pushdown Timed Automaton

Fig. 2 shows an example of a pushdown timed automaton. The following is an
encoding of this PTA in the form of a coinductive logic program with constraints
that was generated automatically by our system:

trans(s0, a, s1, T, Ti, To, [], [1]) :- {To = T}.

trans(s1, a, s1, T, Ti, To, C, [1 | C]) :- {To = Ti}.

trans(s1, b, s2, T, Ti, To, [1 | C], C) :- {T - Ti < 5, To = Ti}.

trans(s2, b, s2, T, Ti, To, [1 | C], C) :- {To = Ti}.

trans(s2, b, s0, T, Ti, To, [1 | C], C) :- {T - Ti < 20, To = Ti}.

:- coinductive(pta/6).

pta([ X | R], Si, T, Ti, C1, [ (X, T) | S]) :-

trans(Si, X, So, T, Ti, To, C1, C2),

{Ta > T}, pta(R, So, Ta, To, C2, S).

Once a timed system is modeled as a coinductive CLP(R) program, the program
can be used to (i) check whether a particular timed string will be accepted or not;
(ii) systematically generate all the possible timed strings that can be accepted;
or, (iii) verify safety and liveness properties by posing appropriate queries.

The co-LP and CLP(R) based framework has been used to study the gener-
alized railroad crossing (GRC) problem [11] and to verify its safety and utility
properties by posing simple queries [28]. This approach based on coinductive
CLP(R) for the GRC is considerably more elegant and simpler than other ap-
proaches (e.g., [22]).

Context Free Grammars can be extended to define languages consisting of
(infinite) timed words. These extended grammars are called timed context-free
ω-grammars (ω-TCFG) [27]. Such languages are useful for modeling complex
real-time systems [25] that run forever.

As an example of an ω-TCFG, consider a language in which each sequence of
a’s is followed by a sequence of an equal number of b’s, with each accepted string
having at least two a’s and two b’s. For each pair of equinumerous sequences of
a’s and b’s, the first symbol b must appear within 5 units of time from the first
symbol a and the final symbol b must appear within 20 units of time from the
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first symbol a. The grammar annotated with clock expressions is shown below:
c is a clock which is reset when the first symbol a is seen.

S → R S
R → a {c := 0} T b {c < 20}
T → a T b
T → a b {c < 5}

Definite Clause Grammars (DCG) [31] together with CLP(R) and coinduction
can be used to develop an effective and elegant method for parsing the languages
generated by ω-TCFGs. Specification of an ω-TCFG can be automatically trans-
formed to a DCG augmented with coinduction and CLP(R) [27]. The resulting
coinductive constraint logic program acts as a practical parser. Given this pro-
gram, one can pose queries to check whether a timed word satisfies the timing
constraints imposed by the timed grammar. Alternatively, one can generate pos-
sible legal timed words (note that in this case a CLP(R) system will output
timed words in which time-stamps will be represented as variables; constraints
that these time-stamps must satisfy will be output as well). Finally, one can ver-
ify properties of this timed language (e.g., checking the simple property that all
the a’s are generated within 5 units of time, in any timed string that is accepted).

5.2 Timed π-calculus

The π-calculus was introduced by Milner et al. [17] with the aim of modeling
concurrent/mobile processes. The π-calculus provides a conceptual framework
for describing systems whose components interact with each other. It contains
an algebraic language for descriptions of processes in terms of the communica-
tion actions they can perform. Theoretically, the π-calculus can model mobility,
concurrency and message exchange between processes as well as infinite compu-
tation (through the ‘!’ operation). Operational semantics of π-calculus can also
be elegantly modeled with the help of coinduction. Specifically, to model the
replication operator faithfully, one needs coinduction. The π-calculus can also
be extended to real time, and executable operational semantics obtained for it
using coinduction and constraints. The extension to time is helpful in modeling
controller processes that control physical devices where a notion of real-time is
important [25]. Several extensions of π-calculus with time have been proposed
to overcome this problem (e.g., [5]); all these approaches discretize time rather
than represent it faithfully as a continuous quantity.

For a complete encoding of the operational semantics of timed π-calculus, we
must model three aspects of timed π-calculus processes: concurrency, infinite
computation and time constraints/clock expressions. An executable operational
semantics of π-calculus in logic programming (LP) has been developed [26,25].
Channels are modeled as streams, rational infinite computations are handled by
coinduction [29,10] and concurrency is handled by allowing coroutining within
logic programming computations. This operational semantics is extended with
continuous real time, which we have modeled with constraint logic program-
ming over reals [13]. The executable operational semantics, thus realized, auto-
matically leads to an implementation of the timed π-calculus in the form of a
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coinductive coroutined constraint logic program that can be regarded as an in-
terpreter for timed π-calculus expressions, and can be used for modeling and
verification of real-time systems.

Note that there is past work on developing LP-based executable operational
semantics of the π-calculus (but not timed π-calculus) [34] but it is unable to
model infinite processes and infinite replication, since coinductive logic
programming has been developed relatively recently [29,10].

Note also that giving proper semantics to coinductive constraint logic
programs is not straightforward, and a formal study of coinductive constraint
programming must be undertaken. In our investigations thus far, to ensure
soundness, we assume that all the clocks involved in a cycle are reset every
time we go around the cycle [25].

6 Integrating Coinduction and Induction

We now turn our attention to the problems resulting from integrating coin-
ductive logic programming with traditional (i.e., inductive) logic programming.
As discussed earlier, the semantics of arbitrary interleaving of induction and
coinduction are unclear. We begin this section with co-logic programming in
its current form, along with some example applications and a discussion of its
limitations, followed by a brief description of our ongoing efforts to relax these
limitations and extend the expressiveness of the formalism.

6.1 Stratified Co-LP: Applications and Limitations

The current (in particular, operational) semantics of inductive and coinductive
logic programming permit either a least or a greatest fixed point interpretation of
a predicate: no reasonable semantics have yet been given to programs that involve
mutual recursion between inductive and coinductive predicates. In practice, pro-
grams lacking this mutual recursion—known as stratified co-logic programs—are
still capable of representing solutions to a wide range of problems.

We begin with the near-canonical example of filters over streams. Let S be
an inductively defined set, such as the set of natural numbers. A stream over
S is an infinite sequence of elements of S. A filter takes a stream as input and
removes elements that are not in a designated subset of S.

Coinductive logic programs cannot construct finite proofs over arbitrary
streams, but they can be applied to streams of the form uvω, where a finite
suffix v is repeated ad infinitum. The following co-logic program filters a stream
over the natural numbers so that only even numbers remain:

:- coinductive filter/2.
filter( [ H | T ], [ H | T2 ] ) :- even( H ), filter( T, T2 ).
filter( [ H | T ], T2 ) :- \+ even( H ), filter( T, T2 ).

even(0).
even( s( s( N ) ) ) :- even( N ).
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Here, the even predicate is the usual inductive definition of even natural
numbers, while filter is a coinductive definition of our desired filter. We can see
that this program is stratified, as filter and even are not mutually recursive.
We can make use of this program with queries such as the following:

?- L = [ 0, s( 0 ), s( s ( 0 ) ) | L ], filter( L, L2 ).

L2 will be bound to the list L2 = [ 0, s( s( 0 ) ) | L2 ].
Let us also consider the case of an inductive list containing coinductive ele-

ments. Let N+ = N ∪ {∞}. The following program filters finite (inductive) lists
over N+ so that only even natural numbers and infinity remain (the latter is
accomplished through a coinductive definition of even):

filter( [], [] ).
filter( [ H | T ], [ H | T2 ] ) :- even( H ), filter( T, T2 ).
filter( [ H | T ], T2 ) :- \+ even( H ), filter( T, T2 ).

:- coinductive even/1.
even( 0 ).
even( s( s( N ) ) ) :- even( N ).

In general, inductive and coinductive predicates can be mixed in co-logic pro-
grams, as long as there exists a clear, acyclic (i.e., stratified) hierarchy between
them. Co-LP provides a natural paradigm for constructing definitions and proofs
over such predicates.

Co-LP can also be used to construct infinite, rational proofs in a finite manner.
In such cases, it is typical to augment SLD resolution with tabling (called SLG
resolution), which memoizes calls and solutions to inductive predicates and by
extension prevents construction of (rational) infinite-depth inductive proofs. The
combination of coinductive and tabled logic programming is particularly useful for
implementing solvers for fixed point and modal logics; for example, tabling by it-
self has been used to implement model checkers for the alternation-free μ-calculus
[34,24]. While the addition of coinduction permits consideration of more expres-
sive forms of such logics, the stratification restriction must still be kept in mind: for
example, co-logic programming cannot be used as a solver for the full μ-calculus,
as it permits unrestricted nesting of least and greatest fixed point operators.

Part of our ongoing work is precisely describing restrictions of such logics
that make them stratified. We have already discovered that the coinductive and
tabled execution strategies, when considered as decision processes over proof
trees (which is their use in constructing solvers for such fixed point logics), are
equivalent to stratified Büchi tree automata, or SBTAs [6]. In SBTAs, cycles (via
automaton transitions) between accepting and non-accepting states are forbid-
den. The class of SBTA-recognizable languages is distinguishable from the class
of deterministic BTA-recognizable languages, though the two classes are not dis-
joint. In our equivalence proof, the non-accepting states of an SBTA correspond
to calls to tabled predicates, while the coinductive calls correspond to the accept-
ing states of the SBTA. The primary practical benefit of this equivalence is that
by proving that solutions to a particular problem can or cannot be computed
by an SBTA, one can determine whether the solutions can be computed directly
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by the co-logic programming execution strategy. If they can, then a declarative
co-logic program can be constructed from the SBTA: the automaton states and
transitions are translated to predicates and clauses (respectively) in the program,
with the predicates for accepting and nonaccepting states respectively declared
as coinductive and tabled.

6.2 Towards Non-stratified Co-LP

One significant hurdle to the use of co-logic programming is that existing co-logic
programming systems perform no analysis to check whether a program is strati-
fied, making the programmer responsible for ensuring the stratification of his pro-
gram. According to the operational semantics of tabling and coinduction, non-
stratified programs exhibit inconsistent behavior and produce non-intuitive an-
swers, and the resulting errors are often difficult to diagnose. To ease the burden
on both the programmer and the implementor of a co-logic programming system,
we want to provide a consistent semantics to non-stratified programs. Because we
consider execution strategies as being tree automata decision processes, we seek an
acceptance condition with sufficient power to represent non-stratified programs.

To this end, we are currently focused on Rabin tree automata (RTAs) [23],
again drawing a correspondence between categories of predicates and categories
of states in an RTA. RTA states can be split into three categories: accepting,
non-accepting, and rejecting. A tree is accepted by an RTA if, along each branch
of the tree, an accepting state is encountered infinitely often without any re-
jecting state also being encountered infinitely often. As before, accepting states
correspond to calls to coinductive predicates. In order to accommodate the other
two categories, we use two categories of inductive predicates: strongly inductive,
whose calls cannot occur infinitely often along any path in a proof and thereby
forbid coinductive success when it would violate this requirement; and weakly
inductive, whose calls cannot occur infinitely often along any proof path by
themselves but still permit coinductive success [7].

By way of a brief example, let us consider the smallest non-stratified program:

:- coinductive p/0.
:- inductive q/0.
p :- q.
q :- p.

Under the existing co-logic programming semantics (using tabling for in-
duction), the query ?- p, q. succeeds, while ?- q, p. fails. To resolve this
inconsistency, we require that inductive predicates be declared to be either
weak inductive or strong inductive, as shown in the following:

:- coinductive p/0.
:- strong_inductive q/0.
p :- q.
q :- p.

Both queries to this program will fail, as both proof trees contain infinite num-
bers of occurrences of the call to p and to q: the latter is forbidden by the
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strong inductive declaration on q. A weak inductive declaration would allow
both queries to succeed. Finally, consider the following program:

:- coinductive p/0.
:- weak_inductive q/0.
p :- q.
q :- q.

Here, only calls to q occur infinitely often in both proofs, causing both queries
to fail (as no coinductive call occurs infinitely often).

Armed with this additional execution strategy and its correspondence to
RTAs, we will use co-logic programming to declaratively implement solvers for
several pertinent domains, in particular, solvers and model checkers for tempo-
ral and modal logics. While it is worth noting that we are still in the process
of deriving the declarative fixed-point semantics for non-stratified co-logic pro-
gramming we already regard co-logic programming as a powerful, declarative
technique for solving a wide range of logical and algebraic problems.

7 Conclusions

In this paper we gave an overview of the coinductive logic programming paradigm
and illustrated many of its applications. Co-LP gives an operational semantics
to declarative semantics that is based on the greatest fixpoint. We believe that a
combination of inductive and coinductive LP allows one to implement any desired
logic programming semantics (well-founded, stable model semantics, etc.). Many
problems still remain open. These include arbitrary interleaving of inductive and
coinductive computations and combining constraints with coinductive LP.
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Abstract. An algebra is called corecursive if from every coalgebra a unique
coalgebra-to-algebra homomorphism exists into it. We prove that free corecur-
sive algebras are obtained as a coproduct of the final coalgebra (considered as an
algebra) and with free algebras. The monad of free corecursive algebras is proved
to be the free corecursive monad, where the concept of corecursive monad is a
generalization of Elgot’s iterative monads, analogous to corecursive algebras gen-
eralizing completely iterative algebras. We also characterize the Eilenberg-Moore
algebras for the free corecursive monad and call them Bloom algebras.

1 Introduction

The study of structured recursive definitions is fundamental in many areas of computer
science. It can use algebraic methods extended by suitable recursion concepts. One such
example are completely iterative algebras: these are algebras in which recursive equa-
tions with parameters have unique solutions, see [14]. In the present paper we study
corecursive algebras, which are algebras for a given endofunctor H in which recursive
equations without parameters have unique solutions or, equivalently, which for every
coalgebra have a unique coalgebra-to-algebra morphism. V. Capretta, T. Uustalu and
V. Vene [10] present applications of corecursive algebras for the semantics of structural
corecursion in languages of total functional programming [18], such as R. Cockett’s
charity [11], and other settings, where unrestricted general recursion is unavailable.
The dual concept, recursive coalgebra, was introduced by G. Osius in [15] to categor-
ically capture well-founded induction. For endofunctors weakly preserving pullbacks
P. Taylor proved that recursive coalgebras are equivalent to parametrically recursive
ones, see [16]. Recursive coalgebras were also studied by V. Capretta et al. [9]. In the
dual situation, since weak preservation of pushouts is rare, the concepts of corecursive
algebra and completely iterative one usually do not coincide. The former was studied by
V. Capretta et al. [10], and various counter-examples demonstrating e.g. the difference
of the two concepts for algebras can be found there.

In the present paper we contribute to the development of the mathematical theory
of corecursive algebras. The goal is to eventually arrive at a useful body of results
and constructions for these algebras. A major ingredient of any theory of algebraic
structures is the study of how to freely endow an object with the structure of interest.
So the main focus of the present paper are corecursive H-algebras freely generated by
an object Y . Let FY denote the free H-algebra on Y and T the final H-coalgebra
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(which, due to Lambek’s Lemma, can be regarded as an algebra). We prove that the
coproduct of these two algebras

MY = T ⊕ FY

is the free corecursive algebra on Y . Here ⊕ is the coproduct in the category of H-
algebras. For example for the endofunctor HX = X × X the algebra MY consists of
all (finite and infinite) binary trees with finitely many leaves labelled in Y .

We also introduce the concept of a corecursive monad. This is a weakening of com-
pletely iterative monads of C. Elgot, S. Bloom and R. Tindell [13] analogous to core-
cursive algebras as a weakening of completely iterative ones. The monad Y �→ MY
of free corecursive algebras is proved to be corecursive, actually, this is the free core-
cursive monad generated by H . For endofunctors of Set we also prove the converse:
whenever H generates a free corecursive monad, then it has free corecursive algebras
(and the free monad is then given by the corresponding adjunction).

Finally, we study the equational properties of the solution operation in corecursive
algebras. In category-theoretic terms, we characterize the Eilenberg-Moore algebras
for the free corecursive monad: they are H-algebras equipped with an operation † that
assigns to every recursive equation without parameters a solution, where † is subject to
one axiom stating that the assignment of solutions is functorial (or uniform). We call
these algebras Bloom algebras; they are analogous to the complete Elgot algebras of
[4] where the corresponding monad was the free completely iterative monad on H . The
characterization of the Eilenberg-Moore algebras for the free corecursive monad can be
understood as a kind of completeness result: all equational properties of † that hold in
every corecursive algebra follow from the properties of † given in the definition of a
Bloom algebra.

2 Corecursive Algebras

The following definition is the dual of the concept introduced by G. Osius in [15] and
studied by P. Taylor [16]. We assume throughout the paper that a category A and an
endofunctor H : A → A are given. We denote by Alg H the category of algebras
a : HA → A and homomorphisms, and by CoalgH the category of coalgebras e :
X → HX and homomorphisms. A coalgebra-to-algebra morphism from the latter to
the former is a morphism f : X → A such that f = a.Hf.e.

Definition 2.1. An algebra a : HA → A is called corecursive if for every coalgebra
e : X → HX there exists a unique coalgebra-to-algebra homomorphism e† : X → A.
That is, the square

X
e†

��

e

��

A

HX
He†

�� HA

a

��

commutes. We call e an equation morphism and e† its solution.
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Example 2.2. (1) V. Capretta et al. [10] studied this concept of corecursive algebras
and compared it with a number of related concepts. A concrete example of corecursive
algebra from [10], for the endofunctor HX = E × X × X of Set, is the set Eω of all
streams. The operation a : E × Eω × Eω → Eω is given by a(e, u, v) having head e
and continuing by the merge of u and v.

(2) If H has a final coalgebra τ : T → HT , then by Lambek’s Lemma τ is invert-
ible and the resulting algebra τ−1 : HT → T is corecursive. In fact, this is the initial
corecursive algebra, that is, for every corecursive algebra (A, a) a unique algebra ho-
momorphism from (T, τ−1) exists, see (the dual of) Proposition 2 in [9]. There also
the converse is proved (dual of Proposition 7), that is, if the initial corecursive algebra
exists, then it is a final coalgebra (via the inverse of the algebra structure).

(3) The trivial final algebra H1 → 1, where 1 is the final object in A, is clearly core-
cursive.

(4) If a : HA → A is a corecursive algebra, then so is Ha : HHA → HA, see the
dual of Proposition 6 in [9].

(5) Combining (3) and (4) we conclude that the final ωop-chain

1 H1
a�� HH1

Ha�� . . .HHa��

consists of corecursive algebras. Indeed, the continuation to Hi1 for all ordinals (with
Hi1 = limk≤i Hk1 for all limit ordinals) also yields corecursive algebras. This follows
from Proposition 2.6 below.

Remark 2.3. For an endofunctor of Set, we can view e : X → HX as a system of
recursive equations using variables from the set X and e† : X → A as the solution of
the system. We illustrate this on classical algebras for a signature Σ. Equivalently, these
are the algebras for the polynomial set functor

HΣX =
∐
σ∈Σ

Xn

where n is the arity of σ. For every set X (of recursion variables) and every system of
mutually recursive equations

x = σ(x1, . . . , xn),

one for every x ∈ X , where σ ∈ Σ has arity n and xi ∈ X , we get the corresponding
coalgebra e : X → HΣXwith x �→ (x1, . . . , xn) in the σ-summand Xn. The square
in Definition 2.1 tells us that the substitution of e†(x) for x ∈ X makes the formal
equations x = σ(x1, . . . , xn) identities in A:

e†(x) = σA(e†(x1), . . . , e†(xn)).

Example 2.4. Binary algebras: For HX = X × X , every algebra (given by the binary
operation “∗” on a set A) which is corecursive has a unique idempotent i = i ∗ i. This
is the solution of the recursive equation

x = x ∗ x
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expressed by the isomorphism e : 1 ∼→ 1 × 1. Moreover the idempotent is completely
factorizable, where the set of all completely factorizable elements is the largest subset
of A such that every element a in it can be factorized as a = b ∗ c, with b, c completely
factorizable. The corecursiveness of A implies that no other element but i is completely
factorizable: consider the system of recursive equations

xε = x0 ∗ x1, x0 = x00 ∗ x01, · · · xw = xw0 ∗ xw1, · · ·

for all binary words w. Every completely factorizable element a provides a solution e†

with e†(xε) = a. Since solutions are unique, a = i.
Conversely, every binary algebra A with an idempotent i which is the only com-

pletely factorizable element is corecursive. Indeed, given a morphism e : X → X ×X ,
the constant map e† : X → A with value i is a coalgebra-to-algebra morphism. Con-
versely, if e† is a coalgebra-to-algebra morphism, then for every x ∈ X , the element
e†(x) is clearly completely factorizable. Therefore, e†(x) = i.

Remark 2.5. Recall the concept of completely iterative algebra (cia for short) from
[14]: it is an algebra a : HA → A such that for every “flat equation” morphism e :
X → HX + A there exists a unique solution, i.e. a unique morphism e† such that

e† = (X e �� HX + A
He†+A

�� HA + A
[a,A]

�� A).

This is obviously stronger than corecursiveness because every coalgebra e : X → HX
yields a flat equation morphism inl.e : X → HX + A, where inl : X → X + A
denotes the left-hand coproduct injection.1 Then solutions of e are in bijective corre-
spondence with coalgebra-to-algebra homomorphisms from e to a. Since the former
exists uniquely, so does the latter. Thus, for example, in the category of complete met-
ric spaces with distance less than one and nonexpanding functions, all algebras for
contracting endofunctors (in the sense of P. America and J. Rutten [7]) are corecursive,
because, as proved in [14], they are cia’s. Here is a concrete example: HX = X × X
equipped with the metric taking 1/2 of the maximum of the two distances is contracting.
Thus every binary algebra whose operation is contracting is corecursive.

Proposition 2.6. Let A be a complete category. Then corecursive algebras are closed
under limits in Alg H . Thus, limits of corecursive algebras are formed on the level of
A.

Lemma 2.7. Every homomorphism h : (A, a) → (B, b) in Alg H with (A, a) and
(B, b) corecursive, preserves solutions. That is, given a coalgebra e : X → HX with
a solution e† : X → A in the domain algebra, then h.e† : X → B is the solution in the
codomain one.

We thus consider corecursive algebras as a full subcategory AlgC H of Alg H . We ob-
tain a forgetful functor AlgC H → A with (A, a) �→ A. In Section 4 we prove that this
forgetful functor has a left adjoint, that is, free corecursive algebras exist, if and only

1 Similarly, inr : A → X + A denotes the right-hand coproduct injection.
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if a terminal coalgebra T exists and every object Y generates a free algebra FY (i.e.,
the forgetful functor Alg H → A has a left adjoint). This equivalence holds for all set
functors, and for them the formula for the free corecursive algebra is T ⊕ FY , where
⊕ is the coproduct in Alg H .

3 Bloom Algebras

For iterative algebras, it was proved in [5] that every finitary functor H of A has a
free iterative algebra, and the resulting monad R of A is a free iterative monad. The
next step was a characterization of the Eilenberg-Moore algebras for R that were called
Elgot algebras, see [4]. An Elgot algebra has for every finitary flat equation e a solution
e†, but not necessarily unique. Instead, Elgot algebras are equipped with a solution
operation e �→ e† satisfying two “natural” axioms.

In the present section we take the corresponding step for corecursive algebras. We
introduce Bloom algebras as algebras equipped with an operation assigning to every
coalgebra e a solution e†, and the operation † forms a functor. Later we prove that Bloom
algebras are (analogously to Elgot algebras) precisely the Eilenberg-Moore algebras for
the free corecursive monad, see Theorem 4.13.

Definition 3.1. A Bloom algebra is a triple (A, a, †) where a : HA → A is an H-
algebra and † is an operation assigning to every coalgebra e : X → HX a coalgebra-
to-algebra homomorphism e† : X → A so that † is functorial. This means that we
can define a functor † : Coalg H → A/A. More explicitly, for every H-coalgebra
homomorphism h : (X, e) → (Y, f) we have f †.h = e† : X → A.

Example 3.2. (1) Every corecursive algebra can be considered as a Bloom algebra. In-
deed, functoriality easily follows from the uniqueness of solutions due to the diagram

X
h ��

e

��

X ′

Hf

��

f†
�� A

HX
Hh

�� HX ′
Hf†

�� HA

a

��

(2) Let A have finite products. An algebra a : A × A → A for HX = X × X can
be equipped with a Bloom algebra structure if and only if it has an idempotent global
element, that is i : 1 → A satisfying a.(i × i) = i (recall that 1 × 1 = 1). More
precisely:

(a) Given an idempotent i, we have a Bloom algebra (A, a, †), where † is given by

e† = (X !→ 1 i→ A).

(b) Given a Bloom algebra (A, a, †), there exists an idempotent i such that † is the
constant function with value e† = i.!.
(3) Every group, considered as a binary algebra in Set, is thus a Bloom algebra in a
unique sense.
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(4) Every continuous algebra is a Bloom algebra if we define e† to be the least solution
of e. More detailed, let H be a locally continuous endofunctor of the category CPO of
complete ordered sets (i.e., partially ordered sets with a least element and with joins of
ω-chains) and continuous functions. For every continuous algebra a : HA → A and
every equation morphism e : X → HA, we can define in CPO(X, A) a function e† :
X → A as the join of the sequence e†n defined by e†0 = const⊥ and e†n+1 = a.He†n.e.
Thus, the least solution is e† =

∨
e†n and (A, a, †) is a Bloom algebra.

(5) Every limit of Bloom algebras is a Bloom algebra. Indeed, this is proved precisely
as Proposition 2.6.

(6) Every complete Elgot algebra in the sense of [4] is a Bloom algebra.

Definition 3.3. By a homomorphism of Bloom algebras from (A, a, †) to (B, b, ‡) is
meant an algebra homomorphism h : (A, a) → (B, b) preserving solutions, that is, for
every coalgebra e : X → HX we have

e‡ = (X e†
��A

h ��B).

We denote by AlgB H the corresponding category of Bloom algebras.

Proposition 3.4. An initial Bloom algebra is precisely a final coalgebra.

More precisely, the statement in Example 2.2(2) generalizes from corecursive algebras
to Bloom algebras. In fact, the proof in [9] can be used again.

Lemma 3.5. If (A, a, †) is a Bloom algebra and h : (A, a) → (B, b) is a homomor-
phism of algebras, then there is a unique structure of a Bloom algebra on (B, b) such
that h is a solution preserving morphism. We call it, the Bloom algebra induced by h.

Remark 3.6. We are going to characterize the left adjoint of the forgetful functor

U : AlgB H → A with (A, a, †) �→ A.

In other words, free Bloom algebras exists. Moreover, these are coproducts T ⊕ FY of
free algebras and the final coalgebra. For that we first attend to the existence of those
ingredients.

Lemma 3.7. Let A be a complete category. If H has a free Bloom algebra on an object
Y with A(Y, HY ) �= ∅, then H has a final coalgebra.

Proof. The free Bloom algebra (A, a, †) on Y is weakly initial in AlgB H . To see this,
choose a morphism e : Y → HY . For every Bloom algebra (B, b, ‡) the solution
e‡ : Y → B extends to a homomorphism h : (A, a, †) → (B, b, ‡) of Bloom algebras.

Since AlgB H is complete by Example 3.2(5), we can use Freyd’s Adjoint Functor
Theorem. The existence of a weakly initial object implies that AlgB H has an initial
object. Now apply Proposition 3.4. ��

Proposition 3.8. Let (T, τ) be a final coalgebra for H . The category of Bloom algebras
for H is isomorphic to the slice category (T, τ−1)/Alg H .
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Construction 3.9. Free-algebra chain. Recall from [2] that if A is cocomplete, we can
define a chain constructing the free algebra on Y as follows:

Y
inr �� HY + Y

Hinr+Y
�� H(HY + Y ) + Y �� · · ·

We mean the essentially unique chain V : Ord → A with

V0 = Y, Vi+1 = HVi + Y, and Vj = colimk<jVk for limit ordinals j,

whose connecting morphisms vij : Vi → Vj are defined by

v0,1 ≡ inr : Y → HY + Y and vi+1,j+1 ≡ Hvi,j + Y,

and for limit ordinals j, (vk,j)k<j is the colimit cocone.
This chain is called the free-algebra chain. If it converges at some ordinal λ, which

means that vλ,λ+1 is an isomorphism, then Vλ is a free algebra on Y . More detailed:
this isomorphism turns Vλ into a coproduct Vλ = HVλ +Y and thus Vλ is an H-algebra
via the right-hand injection, and the left-hand one Y → Vλ is the universal arrow.

Definition 3.10. (See [17]) We say that monomorphisms are constructive provided that

(a) if mi : Ai → Bi are monomorphisms for i = 1, 2 then m1 + m2 : A1 + A2 →
B1 + B2 is a monomorphism,

(b) coproduct injections are monomorphisms, and
(c) if ai : Ai → A, (i < α), is a colimit of an α-chain and m : A → B has all

composites m.ai monic, then m is monic.

Example 3.11. Sets, posets, graphs and abelian groups have constructive monomor-
phisms. If A has constructive monomorphisms, then all functor categories AC do. In
all locally finitely presentable categories (c) holds (see [6]) but (a) and (b) can fail.
For example, in the category of rings (b) fails because the initial ring � has mor-
phisms f : � → A that fail to be monomorphisms. And f is a coproduct injection
of A = A +�.

Proposition 3.12. Let A be a cocomplete, wellpowered category with constructive
monomorphisms. If H has a free Bloom algebra on Y and preserves monomorphisms,
then it also has a free algebra on Y .

Sketch of proof. Given a free Bloom algebra MY the coproduct HMY +Y also carries
the structure of a Bloom algebra. From that we derive MY � HMY + Y and obtain a
cone of the free-algebra chain formed by monomorphisms mi : Vi → MY . Since A is
wellpowered, the chain converges. ��

Notation 3.13. The coproduct in Alg H is denoted by (A, a) ⊕ (B, b).

Theorem 3.14. Suppose that H has a terminal coalgebra T , a free algebra FY on Y ,
and their coproduct T ⊕ FY . Then the last algebra is the free Bloom algebra induced
by inl : T → T ⊕ FY (cf. Lemma 3.5) with the universal arrow inr.η : Y → T ⊕ FY .
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Proof. Given a Bloom algebra (B, b, ‡) and morphism g : Y → B, we obtain a unique
homomorphism g : (FY, ϕY ) → (B, b) with g = g.η. We also have a unique solution
preserving homomorphism f : (T, τ−1, †) → (B, b, ‡), see Proposition 3.4. This yields
a homomorphism [f, g] : T ⊕ FY → B which is solution preserving since solutions in
T ⊕ FY have the form inl.e†. Thus, [f, g].(inl.e†) = f.e† = e‡. And this is the desired
morphism since [f, g].inr.η = g.η = g.

Conversely, given a solution preserving homomorphism h : T ⊕ FY → B with
h.inr.η = g, then h = [f, g], because h.inl : T → B is clearly solution preserving,
hence h.inl = f . Also h.inr is a homomorphism from FY with h.inr.η = g, thus
h.inr = g. ��

Recall from [6] that given an infinite cardinal number λ, a functor is called λ-accessible
if it preserves λ-filtered colimits. An object X whose hom-functor A(X,−) is λ-
accessible is called λ-presentable. A categoryA is locally λ-presentable if it has (a) col-
imits, and (b) a set of λ-presentable objects whose closure under λ-filtered colimits
is all of A. For a λ-accessible endofunctor H , the category Alg H is also locally λ-
presentable (see [6]).

Corollary 3.15. Every accessible endofunctor of a locally presentable category has
free Bloom algebras. They have the form T ⊕ FY .

4 Free Corecursive Algebras

For accessible functors H we now prove that free corecursive algebras MY exist and,
if H preserves monomorphisms, they coincide with the free Bloom algebras MY =
T ⊕ FY . Moreover an iterative construction of these free algebras (closely related to
the free algebra chain in Construction 3.9) is presented.

We first prove that the category of corecursive algebras is strongly epireflective in
the category of Bloom algebras. That is, the full embedding is a right adjoint, and the
components of the unit of the adjunction are strong epimorphisms.

Proposition 4.1. For every accessible endofunctor of a locally presentable category,
corecursive algebras form a strongly epireflective subcategory of the category of Bloom
algebras. In particular, every Bloom subalgebra of a corecursive algebra is corecursive.

Corollary 4.2. Every accessible endofunctor of a locally presentable category has free
corecursive algebras.

Indeed, since the functors AlgC H ↪→ AlgB H and AlgB H → A have left adjoints by
Proposition 4.1 and Corollary 3.15, this composite has a left adjoint, too.

Remark 4.3. We conjecture that in the generality of the above corollary, the free core-
cursive algebras are T ⊕ FY (as in Corollary 3.15). But we can only prove this in case
H preserves monomorphisms and monomorphisms are constructive. We are going to
apply the following transfinite construction of free corecursive algebras closely related
to the free-algebra construction of 3.9
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Construction 4.4. Free Corecursive Chain. Let A be cocomplete and H have a
final coalgebra (T, τ). For every object Y we define an essentially unique chain U :
Ord → A by

U0 = T, Ui+1 = HUi + Y, and Uj = colimk<jUk for limit ordinals j.

The connecting morphisms ui,j : Ui → Uj are defined by

u0,1 = (T τ→ HT
inl→ HT + Y ), ui+1,j+1 = Hui,j + idY

and for limit ordinals j, (uk,j)k<j is the colimit cocone.
We say that the chain converges at λ if the connecting morphism uλ,λ+1 is an isomor-
phism, thus Uλ = HUλ + Y so that Uλ is an H-algebra (via inl) connected to Y via
inr : Y → Uλ.

Proposition 4.5. Let A be a cocomplete and wellpowered category with constructive
monomorphisms, and let H preserve monomorphisms and have a final coalgebra. If the
corecursive chain for Y converges in λ steps, then Uλ = T ⊕ FY .

Sketch of proof. The free algebra FY exists because we have a natural transformation
mi : Vi → Ui+1 from the free-algebra chain to the corecursive chain: put m0 = inr :
Y → HT + Y and mi+1 = Hmi + idY . Since the mi’s are monomorphisms and
Ui converges, so does Vi. Thus FY = Vρ for some ρ ≥ λ. One readily proves that
Uλ is a coproduct (in Alg H) of Vρ and T w.r.t. the injections mρ : FY → MY and
u0,λ : T → MY . ��

Theorem 4.6. Let A be a locally presentable category with constructive monomor-
phisms. Every accessible endofunctor preserving monomorphisms has free corecursive
algebras MY = T ⊕ FY .

Sketch of proof. Let X be an accessible endofunctor of A. From Theorem 3.14 we know
that T ⊕ FY is a free Bloom algebra, thus, it is sufficient to prove that this algebra is
corecursive. For that, we use Proposition 4.1 and find a corecursive algebra such that
T ⊕ FY is its subalgebra; this will finish the proof.

The endofunctor H(−) + Y is also accessible. Thus, it also has a final coalgebra.
We denote it by TY . The components of the inverse of its algebra structure TY

∼→
H(TY ) + Y are denoted by τY : H(TY ) → TY and ηY : Y → TY . As proved in
[14], the algebra TY is a cia for H , cf. Remark 2.5. Next one proves that T ⊕ FY is a
subalgebra of this H-algebra TY .

Then we use the final opchain of H(−) + Y which converges and yields TY . This
yields a canonical monomorphism from T to TY in Alg H , and this is used to start a
cocone of monomorphisms in Alg H on the corecursive chain Ui for H with vertex TY .
Since A is wellpowered, this implies that Ui converges. ��

Example 4.7. Free corecursive algebras MY obtained as Uω.

(1) For H = Id we have

MY = Uω = 1 + Y + Y + Y + · · ·
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Indeed, the final H-coalgebra is T = 1, and

U1 = T + Y, U2 = T + Y + Y, · · ·

with colimit Uω = 1 + Y + Y + Y + · · · .

(2) More generally, let H : A → A preserve countable coproducts and have a final
coalgebra T . Then MY = Uω = T + Y + HY + H2Y + · · · .

(3) For the endofunctor HX = X ×X of Set (of binary algebras) we have that the free
corecursive algebra MY consists of

MY = all binary trees with finitely many leaves which are labelled in Y .

(4) More generally, let Σ = (Σk)k<ω be a signature. Then Σ-algebras are precisely the
algebras for the polynomial endofunctor HΣ as explained in Remark 2.3.

Recall that the final HΣ-coalgebra is the coalgebra of all Σ-trees, that is, (possibly
infinite, rooted and ordered) trees labelled in Σ so that every node with a label of arity
n has precisely n children. And FY is the algebra of all finite (Σ + Y )-trees, where
members of Y are considered to have arity 0. Then Un is the set of all (Σ + Y )-trees
with no leaf of depth greater than n having a label from Y . (That means that all leaves
with level n or more are labelled by a nullary symbol in Σ0.) Consequently, the free
corecursive algebra is

MY = T ⊕ FY = all (Σ + Y )-trees with only finitely many Y -labelled leaves.

Remark 4.8. (1) A pre-fixed point of a functor H is an object A such that HA is a
subobject of A.

(2) A fixed point, i.e. an object A � HA, can be considered as an algebra or a coalgebra
for H . When we speak about corecursive fixed points, we mean fixed points HA

∼→ A
that are corecursive algebras.

Theorem 4.9. For every set endofunctor, the following statements are equivalent:

(i) all free corecursive algebras exist,
(ii) all free algebras and a final coalgebra exist, and

(iii) arbitrarily large pre-fixed points and a corecursive fixed point exist.

They imply that the free corecursive algebra on Y is T ⊕ FY .

Sketch of proof. Without loss of generality, H preserves monomorphisms. Then (i)⇒(ii)
by Propositions 3.8 and 3.12 (which are true for corecursive algebras). The proof of
(ii)⇒(i) is analogous to that of Theorem 4.6, just in lieu of the final coalgebra TY for
H(−) + Y we use members of the final opchain of that functor. The equivalence of (ii)
and (iii) follows from the fact that (a) arbitrarily large pre-fixed points are necessary
and sufficient for the existence of free algebras, see Theorem II.4 in [17] and (b) ev-
ery corecursive fixed point is an initial corecursive algebra, thus, a final coalgebra, see
Proposition 7 in [9]. ��
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Notation 4.10. Let H have free corecursive algebras MY . Denote by δY : HMY →
MY the algebra structure and by ηY : Y → MY the universal map. Then we obtain a
unique homomorphism μY : (MMY, δMY ) → (MY, δY ) with μY .ηMY = id:

HMMY
δMY ��

HμY

��

MMY

μY

��

MY
ηMY��

idMY����
��
��
��
�

HMY
δY

�� MY

(4.1)

The triple M = (M, μ, η) is the monad generated by the adjoint situation AlgC H � A.

Example 4.11. We have MY = N×Y +1 for the identity functor on Set, see Example
4.7(1). And for HX = X × X we have

MY = binary trees with finitely many leaves labelled in Y ;

see Example 4.7(3). The functor HX =
∐

n<ω Xn generates the monad

MY = finitely branching trees with finitely many leaves labelled in Y ,

cf. Example 4.7(4).

Remark 4.12. Since μY is, by definition, a homomorphism we have μY .δMY =
δY .HμY , and the unit law μY .ηMY = id yields δY = μY .δMY .HηMY . It easy to
prove that the δY ’s are the components of a natural transformation δ : HM → M , and
so are η and μ being part of the monad M.

Theorem 4.13. Let A be a locally presentable category with constructive monomor-
phisms. Let H be an accessible endofunctor preserving monomorphisms. Then Bloom
algebras are precisely the Eilenberg-Moore algebras for M, i.e., the category AlgB H
is isomorphic to AM.

Sketch of proof. From Theorem 3.14 and Proposition 4.5 we know that the monad gen-
erated by free Bloom algebras is M. By Beck’s Theorem we only need to verify that the
forgetful functor U of AlgB H creates coequalizers of U -split pairs. ��

5 Corecursive Monads

The iterative theories (or iterative monads) of C. Elgot [12] were introduced as a formal-
ization of iteration in an algebraic setting, and in [13] completely iterative theories are
studied. We first recall the concept of a completely iterative monad, and then introduce
the weaker concept of a corecursive monad. The relationship between these two con-
cepts is analogous to the relationship between cia’s (see Remark 2.5) and corecursive
algebras. The following definition is, for the base category Set, equivalent to completely
iterative theories, as shown in [1].



66 J. Adámek, M. Haddadi, and S. Milius

Definition 5.1. (See [1]) (1) An ideal monad is a six-tuple S = (S, η, μ, S′, σ, μ′) con-
sisting of a monad (S, η, μ), a subfunctor σ : S′ → S (called the ideal of S ) such that
S = S′ + Id with injections σ and η, and a natural transformation μ′ : S′S → S′

restricting μ, i.e., with σ.μ′ = μ.σS.
(2) An equation morphism with parameters for S is a morphism e : X → S(X +Y ),

we call X the variables and Y the parameters of e. It is called ideal if it factorizes
through σX+Y . A solution of e is a morphism e† : X → SY such that

e† = (X e ��S(X + Y )
S[e†,ηY ]

��SSY
μY ��SY ) (5.1)

(3) An ideal monad is called completely iterative provided that every ideal equation
morphism has a unique solution.

Example 5.2. (See [1]) Let H be an endofunctor of A such that for every object Y a
final coalgebra TY of H(−)+Y exists. Then the assignment Y �→ TY yields a monad
(T, η, μ), which is the monad of free cia’s for H . This is an ideal monad w.r.t. T ′ = HT
and μ′ = Hμ. Moreover, this monad is completely iterative, indeed, the free completely
iterative monad on H .

For example the set functor HX = X × X generates the free completely iterative
monad T where TY consists of all binary trees with leaves labelled in Y .

Definition 5.3. Let S be an ideal monad. An equation morphism (without parameters)
is a morphism e : X → SX , and e is called ideal if it factorizes through σX , i.e.,
there exist e0 : X → S′X such that e = σX · e0. The monad S is called corecursive if
every ideal equation morphism e has a unique solution e†, i.e., e† : X → SY such that
e† = μY · Se† · e.

Example 5.4. Examples of corecursive monads on Set.
(1) All the monads of Example 4.11 are corecursive, as we will see in Theorem 6.4
below.

(2) All completely iterative monads are corecursive, e.g, S where SY consists of all
finitely branching trees with leaves labelled in Y . This is the free completely iterative
monad on the functor HX =

∐
n<ω Xn.

(3) The monad

RY = all rational, finitely branching trees with leaves labelled in Y ,

where rational means that the tree has up to isomorphism only finitely many subtrees.
This is a corecursive monad that is neither free on any endofunctor, nor completely
iterative.

(4) More generally, every submonad of S in item (2) containing the complete binary
tree is corecursive.

Proposition 5.5. The monad M = (M, η, μ) of free corecursive algebras (of Notation
4.10) is ideal w.r.t. the ideal M ′ = HM where σ = δ : HM → M and μ′ = Hμ :
HMM → HM .
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Theorem 5.6. The monad M of free corecursive algebras is corecursive.

Sketch of proof. For every ideal equation morphism e : X → MX we form an equation
morphism e : MX → HMX by composing the isomorphism MX � HMX + X
with [HMX, e0] : HMX + X → MX . Every algebra MY has a unique solution of
e, then one proves that e†.ηX is the unique solution of e. ��

6 Free Corecursive Monad

In this section we prove that the corecursive monad M given by the free corecursive
algebras is a free corecursive monad. For that we need the appropriate concept of mor-
phism:

Definition 6.1. (1) An ideal monad morphism from an ideal monad
(S, ηS , μS , S′, σ, μ′S) to an ideal monad (U, ηU , μU , U ′, ω, μ′U ) is a monad morphism
(S, ηS , μS) → (U, ηU , μU ) which has a domain-codomain restriction to the ideal, that
is, there exists a natural transformation λ′ : S′ → U ′ with λ.σ = ω.λ′.
(2) Given a functor H , a natural transformation λ : H → S is called ideal if it
factorizes through σ : S′ → S.

(3) By a free corecursive monad on an endofunctor H is meant a corecursive monad
S = (S, μ, η, S′, σ, μ′) together with an ideal natural transformation κ : H → S
having the following universal property: For every ideal natural transformation λ :
H → S, where S is a corecursive monad, there exists a unique ideal monad morphism
λ̂ : S → S such that λ = λ̂ · κ.

Remark 6.2. Let CMon(A) denote the category of corecursive monads and ideal monad
morphisms. We have a forgetful functor to Fun(A), the category of all endofunctors of
A, assigning to every corecursive monad S its ideal S′. A free corecursive monad on
H ∈ Fun(A) is precisely a universal arrow from H to the above forgetful functor.

Example 6.3. If H has free corecursive algebras, then we have the corecursive monad
M of Proposition 5.5. And the natural transformation

κ = (H
Hη−→ HM

δ−→ M)

is obviously ideal. We prove that κ has the universal property:

Theorem 6.4. If an endofunctor H has free corecursive algebras, then the correspond-
ing monad M is the free corecursive monad on H .

Remark 6.5. The proof is analogous to the corresponding theorem for free completely
iterative monads, see [14], Theorem 4.3.

Are there any other free corecursive monads than the monads M of free corecursive
algebras? Not for endofunctors of Set:

Proposition 6.6. If a set functor generates a free corecursive monad, then it has free
corecursive algebras.
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Proof. Let H : Set → Set generate a free corecursive monad S =
(S, μS , ηS , S′, σ, μ′), and let κ : H → S be the universal arrow. Following Theo-
rem 4.9 we need to prove the existence of (a) arbitrary large pre-fixed points and (b) a
corecursive fixed point.

The main technical statement is the fact that the ideal S′ is naturally isomorphic to
HS. This proof is analogous to the same proof concerning free completely iterative
monads, see Sections 5 and 6 in [14]. We therefore omit it.

Ad (a). Arbitrarily large pre-fixed points. Since SY = S′Y + Y = HSY + Y for
every set Y , we see that SY is a pre-fixed point of cardinality at least card Y .

Ad (b). A corecursive fixed point. The isomorphism σ∅ : HS∅ → S∅ defines a
corecursive algebra for H . To prove this, consider an arbitrary equation morphism e :
X → HX and form the equation morphism e = κX .e : X → SX . Then solutions of
e w.r.t S are precisely the solutions of e (in S∅). This is easy to prove, the details are as
in the proof of Theorem 6.1 of [14]. ��

7 Conclusions and Further Work

Whereas for coalgebras the concept of recursivity has several equivalent formulations
(assuming the given endofunctor weakly preserves pullbacks), as proved by P. Taylor [16],
in the dual situation we need to study non-equivalent variations. The present paper is
dedicated to corecursive algebras A, where corecursity means that every recursive sys-
tem of equations represented by a coalgebra has a unique solution in A. This is strictly
weaker than the concept of a completely iterative algebra, where every parameterized
recursive system of equations has a unique solution. For example, if we consider the
endofunctor X �→ X ×X of one binary operation in Set, the algebra of all binary trees
with finitely many leaves is corecursive, but not completely iterative.

The main result of our paper is the description of free corecursive algebras on Y as co-
products MY = T ⊕FY of the final coalgebra T and a free algebra FY (in the category
of all algebras). The above example of binary trees is the free corecursive algebra M1 on
one generator. Our description is true for all accessible (= bounded) endofunctors of Set
and, moreover, for all endofunctors of Set having free corecursive algebras. For accessi-
ble functors preserving monomorphisms, more general base categories (posets, groups,
monoids etc.) also allow for the above description of the free corecursive algebras.

We introduced the concept of a corecursive monad, a weakening of completely itera-
tive monad. We proved that the assignment Y �→ MY = T⊕FY is the free corecursive
monad on the given accessible endofunctor. And we characterized the Eilenberg-Moore
algebras for this monad. We called them Bloom algebras in honor of Stephen Bloom.
They play the analogous role that Elgot algebras, studied in [4], play for iterative mon-
ads: solutions of recursive equations are not required to be unique, but have to satisfy
some “basic” properties. In the case of Bloom algebras, the only property needed is
functoriality.

One feature that has not been treated in our paper is that of finitariness of equations:
If we consider systems of recursive equations as coalgebras e : X → HX , then finite
systems of recursive equation are represented by coalgebras in which X is a finite set (or
more generally, a finitely presentable object). We can speak about finitely corecursive
algebras as those in which these finite systems have unique solutions.
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Another question is: what is the analogy of the notion of an iteration monad of
S. Bloom and Z. Ésik [8] in the realm of corecursive algebras? We do not know the an-
swer but at least we can formulate the question precisely. The idea of iteration monads
is to collect all “equational” properties that the operation e �→ e† of solving recursive
systems e has in trees for a signature. This can be understood as forming the monad of
free iterative theories (or monads) on the category Fin(A) of finitary endofunctors, and
characterizing its Eilenberg-Moore algebras: these are, as recently proved in [3], pre-
cisely the iteration theories of S. Bloom and Z. Ésik that are functorial. So we state the
following problem for future work: form the monad of free finitely corecursive theories
on Fin(A), what are its Eilenberg-Moore algebras?

Acknowledgment. We are grateful to Paul Levy for interesting discussions and his
formulation of Proposition 3.8.
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[6] Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge Univer-
sity Press, Cambridge (1994)

[7] America, P., Rutten, J.: Solving reflexive domain equations in a category of complete met-
ric. J. Comput. System Sci. 39, 343–375 (1989)
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[17] Trnková, V., Adámek, J., Koubek, V., Reiterman, J.: Free algebras, input processes and free
monads. Comment. Math. Univ. Carolinæ 16, 339–351 (1975)

[18] Turner, D.A.: Total functional programing. J. Univ. Comput. Sci. 10(7), 751–768 (2004)



A Categorical Semantics for Inductive-Inductive

Definitions

Thorsten Altenkirch1,�,��, Peter Morris1,��, Fredrik Nordvall Forsberg2,�,
and Anton Setzer2,�

1 School of Computer Science, University of Nottingham, UK
2 Department of Computer Science, Swansea University, UK

Abstract. Induction-induction is a principle for defining data types in
Martin-Löf Type Theory. An inductive-inductive definition consists of a
set A, together with an A-indexed family B : A → Set, where both A and
B are inductively defined in such a way that the constructors for A can
refer to B and vice versa. In addition, the constructors for B can refer
to the constructors for A. We extend the usual initial algebra semantics
for ordinary inductive data types to the inductive-inductive setting by
considering dialgebras instead of ordinary algebras. This gives a new and
compact formalisation of inductive-inductive definitions, which we prove
is equivalent to the usual formulation with elimination rules.

1 Introduction

Induction is an important principle of definition and reasoning, especially so in
constructive mathematics and computer science, where the concept of inductively
defined set and data type coincide. There are two well-established approaches to
model the semantics of such data types: in Martin-Löf Type Theory [14], each
set A comes equipped with an eliminator which at the same time represents
reasoning by induction over A and the definition of recursive functions out of A.
A more categorical approach [10] models data types as initial T -algebras for a
suitable endofunctor T .

At first, it would seem that the eliminator approach is stronger, as it al-
lows us to define dependent functions (x : A) → P (x), in contrast with the
non-dependent arrows A → B given by the initiality of the algebra. However,
Hermida and Jacobs [12] showed that an eliminator can be defined for every ini-
tial T -algebra, where T is a polynomial functor. Ghani et. al. [9] then extended
this to arbitrary endofunctors. This covers many forms of induction and data
type definitions such as indexed inductive definitions [5] and induction-recursion
[7] (Dybjer and Setzer [8] also give a direct proof for induction-recursion).

There are, however, other meaningful forms of data types which are not cov-
ered by these results. One such example are inductive-inductive definitions [16],
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where a set A and a function B : A → Set are simultaneously inductively de-
fined (compare with induction-recursion, where A is defined inductively and B
recursively). In addition, the constructors for B can refer to the constructors for
A.

In earlier work [16], a subset of the authors gave an eliminator-based axioma-
tisation of a type theory with inductive-inductive definitions and showed it to be
consistent. In this article, we describe a generalised initial algebra semantics for
induction-induction, and prove that it is equivalent to the original axiomatisation.

One could imagine that that inductive-inductive definitions could be described
by functors mapping families of sets to families of sets (similar to the situation for
induction-recursion [8]), but this fails to take into account that the constructors
for B should be able to refer to the constructors for A. Thus, we will see that
the constructor for B can be described by an operation

ArgB : (A : Set)(B : A → Set)(c : ArgA(A, B) → A) → ArgA(A, B) → Set

where c : ArgA(A, B) → A refers to the already defined constructor for A.
However, (ArgA, ArgB) is then no longer an endofunctor and we move to the
more general setting of dialgebras [11,18] to describe algebras of such functors.
The equivalence between initiality and having an eliminator still carries over to
this new setting.

1.1 Examples of Inductive-Inductive Definitions

Danielsson [4] and Chapman [3] define the syntax of dependent type theory in
the theory itself by inductively defining contexts, types in a given context and
terms of a given type. Let us concentrate on contexts and types for simplicity.
There should be an empty context ε, and if we have any context Γ and a valid
type σ in that context, then we should be able to extend the context with a fresh
variable of that type. We end up with the following inductive definition of the
set of contexts:

ε : Ctxt
Γ : Ctxt σ : Type(Γ )

Γ � σ : Ctxt

For types, let us have a base type ι (valid in any context) and a dependent
function type: if σ is a type in context Γ , and τ is a type in Γ extended with a
fresh variable of type σ (the variable from the domain), then Π(σ, τ) is a type
in the original context. This leads us to the following inductive definition of
Type : Ctxt → Set:

Γ : Ctxt
ιΓ : Type(Γ )

Γ : Ctxt σ : Type(Γ ) τ : Type(Γ � σ)
ΠΓ (σ, τ) : Type(Γ )

Note that the definition of Ctxt refers to Type, so both sets have to be defined
simultaneously. Another peculiarity is how the introduction rule for Π explicitly
focuses on a specific constructor in the index of the type of τ .

For an example with more of a programming flavour, consider defining a
data type consisting of sorted lists (of natural numbers, say). With induction-
induction, we can simultaneously define the set SortedList of sorted lists and the
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predicate ≤L: (N× SortedList) → Set with n ≤L � true if n is less than or equal
to every element of �.

The empty list is certainly sorted, and if we have a proof p that n is less than
or equal to every element of the list �, we can put n in front of � to get a new
sorted list cons(n, �, p). Translated into introduction rules, this becomes:

nil : SortedList
n : N � : SortedList p : n ≤L �

cons(n, �, p) : SortedList

For ≤L, we have that every m : N is trivially smaller than every element of the
empty list, and if m ≤ n and inductively m ≤L �, then m ≤L cons(n, �, p):

trivm : m ≤L nil
q : m ≤ n pm,� : m ≤L �

� q, pm,� �m,n,�,p : m ≤L cons(n, �, p)

Of course, there are many alternative ways to define such a data type using
ordinary induction, but the inductive-inductive one seems natural and might be
more convenient for some purposes. It is certainly more pleasant to work with
in the proof assistant/ programming language Agda [17] which allows inductive-
inductive definitions using the mutual keyword. One aim of our investigation
into inductive-inductive definitions is to justify their existence in Agda.

It might be worth pointing out that inductive-inductive and inductive-
recursive definitions are different. Not every inductive-inductive definition can be
directly translated into an inductive-recursive definition, since the inductive defi-
nition of the second type B may not proceed according to the recursive ordering.
The contexts and types example above is an example of this. On the other hand,
inductive-recursive definitions can use negative occurrences of B, which is not
possible for inductive-inductive definitions. For instance, a universe closed under
Π-types can be defined using induction-recursion but not induction-induction.

1.2 Preliminaries and Notation

We work in an extensional type theory [15] with the following ingredients:

Set We use Set to denote our universe of small types, and we write B : A → Set
for an A-indexed family of sets.

Π-types Given A : Set and B : A → Set, then
(
(x : A) → B(x)

)
: Set. Elements

of (x : A) → B(x) are functions f that map a : A to f(a) : B(a).
Σ-types Given A : Set and B : A → Set, then Σx : A. B(x) : Set. Elements

of Σx : A. B(x) are dependent pairs 〈a, b〉 where a : A and b : B(a). We
write π0 : Σx : A. B(x) → A and π1 : (y : Σx : A. B(x)) → B(π0(y)) for the
projections. We write { a : A | B(a)} for Σx : A. B(x) if B : A → Set is
propositional, i.e. there is at most one inhabitant in B(a) for every a : A.

+ Given A, B : Set, we denote their coproduct A + B with coprojections inl :
A → A + B and inr : B → A + B. We use [f, g] for cotupling.

Equality and unit types Given a, b : A we write a = b : Set for the equality
type, inhabitated by refl if and only if a = b. In contrast, the unit type 1
always has a unique element � : 1.
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We call a type expression strictly positive in X if X never appears in the
domain of a Π-type. It is a requirement for inductive definitions in predicative
Type Theory that the inductively defined types appear only strictly positive in
the domain of the constructors.

2 Inductive-Inductive Definitions as Dialgebras

In this section, our goal is to describe each inductive-inductively defined set as
the initial object in a category constructed from a description of the set. Just as
for ordinary induction and initial algebras, this description will be a functor of
sorts, but because of the more complicated structure involved, this will no longer
be an endofunctor. The interesting complication is the fact that the constructor
for the second set B can refer to the constructor for the first set A (as for example
the argument τ : Type(Γ � σ) referring to · � · in the introduction rule for the
Π-type). Thus we will model the constructor for B as (the second component
of) a morphism (c, d) : Arg(A, B, c) → (A, B) where c : ArgA(A, B) → A is the
constructor for A. Here, (c, d) is a morphism in the category of families of sets:

Definition 2.1. The category Fam(Set) of families of sets has as objects pairs
(A, B), where A is a set and B : A → Set is an A-indexed family of sets.
A morphism from (A, B) to (A′, B′) is a pair (f, g) where f : A → A′ and
g : (x : A) → B(x) → B′(f(x)).

Note that there is a forgetful functor U : Fam(Set) → Set sending (A, B) to A
and (f, g) to f . Now, c : ArgA(A, B) → A is not an ArgA-algebra, since ArgA :
Fam(Set) → Set is not an endofunctor. However, we have c : ArgA(A, B) →
U(A, B). This means that c is a (ArgA, U)-dialgebra, as introduced by Hagino [11]:

Definition 2.2. Let F, G : C → D be functors. The category Dialg(F, G) has
as objects pairs (A, f) where A ∈ C and f : F (A) → G(A). A morphism from
(A, f) to (A′, f ′) is a morphism h : A → A′ in C such that G(h) ◦ f = f ′ ◦ F (h).

There is a forgetful functor V : Dialg(F, G) → C defined by V (A, f) = A.
Putting things together, we will model the constructor for A as a morphism

c : ArgA(A, B) → A in Set and the constructor for B as the second component
of a morphism (c, d) : Arg(A, B, c) → (A, B) in Fam(Set). Thus, we see that the
data needed to describe (A, B) as inductively generated with constructors c, d
are the functors ArgA and Arg. However, we must also make sure that the first
component of Arg coincides with ArgA, i.e. that U ◦ Arg = ArgA ◦ V .

Definition 2.3. An inductive-inductive definition is given by two functors

ArgA : Fam(Set) → Set Arg : Dialg(ArgA, U) → Fam(Set)

such that U ◦ Arg = ArgA ◦ V .

Since the first functor is determined by the second, we often write such a pair
as Arg = (ArgA, ArgB) where

ArgB : (A : Set)(B : A → Set)(c : ArgA(A, B) → A) → ArgA(A, B) → Set .
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Example 2.4 (Contexts and types). The inductive-inductive definition of Ctxt :
Set and Type : Ctxt → Set from the introduction is given by

ArgCtxt(A, B) = 1 + Σ Γ :A. B(Γ )
ArgType(A, B, c, x) = 1 + Σ σ :B(c(x)). B(c(inr(c(x), σ))) .

For ArgCtxt, the left summand 1 corresponds to the constructor ε taking no argu-
ments, and the right summand Σ Γ :A. B(Γ ) corresponds to �’s two arguments
Γ : Ctxt and σ : Type(Γ ). Similar considerations apply to ArgType.

Example 2.5 (Sorted lists). The sorted list example does not fit into our frame-
work, since ≤L: (N × SortedList) → Set is indexed by N × SortedList and not
simply SortedList. It is however straightforward to generalise the construction
to include this example as well: instead of considering ordinary families, consider
“N×A-indexed” families (A, B) where A is a set and B : (N × A) → Set. The
inductive-inductive definition of SortedList : Set and ≤L: (N×SortedList) → Set
is then given by

ArgSList(A, B) = 1 + (Σ n :N. Σ � :A. B(n, �))
Arg≤L

(A, B, c, m, inl(�)) = 1

Arg≤L
(A, B, c, m, inr(〈n, �, p〉)) = Σ m ≤ n. B(m, �) .

For ease of presentation, we will only consider ordinary families of sets.

2.1 A Category for Inductive-Inductive Definitions

Given Arg = (ArgA, ArgB) representing an inductive-inductive definition, we
will now construct a category EArg whose initial object (if it exists) is the in-
tended interpretation of the inductive-inductive definition. Figure 1 summarises
the functors and categories involved (U , V and W are all forgetful functors).

Set Fam(Set)

ArgA

��

U

�� Dialg(ArgA, U)

Arg

��

V

�� Dialg(Arg, V )

(V,U)

��

W

��
EArg� ���

Fig. 1. The functors and categories involved

One might think that the category we are looking for is Dialg(Arg, V ), where
V : Dialg(ArgA, U) → Fam(Set) is the forgetful functor. Dialg(Arg, V ) has ob-
jects (A, B, c, (d0, d1)), where A : Set, B : A → Set, c : ArgA(A, B) → A and
(d0, d1) : Arg(A, B, c) → (A, B). The function d0 : ArgA(A, B) → A looks like
the constructor for A that we want, but

d1 : (x : ArgA(A, B)) → ArgB(A, B, c, x) → B(d0(x))

does not look quite right – we need c and d0 to be the same!
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To this end, we will consider the equalizer of the forgetful functor W :
Dialg(Arg, V ) → Dialg(ArgA, U), W (A, B, c, (d0, d1)) = (A, B, c), and the
functor (V, U) defined by

(V, U)(A, B, c, (d0, d1)) := (V (A, B, c), U(d0, d1)) = (A, B, d0)
(V, U)(f, g) := (f, g)

Note that U(d0, d1) : U(Arg(A, B, c)) → U(V (A, B, c)) but U ◦ Arg = ArgA ◦ V ,
so that U(d0, d1) : ArgA(V (A, B, c)) → U(V (A, B, c)). In other words,
(V (A, B, c), U(d0, d1)) is an object in Dialg(ArgA, U), so (V, U) really is a functor
from Dialg(Arg, V ) to Dialg(ArgA, U).

Definition 2.6. For Arg = (ArgA, ArgB) representing an inductive-inductive
definition, let EArg be the underlying category of the equaliser of (V, U) and the
forgetful functor W : Dialg(Arg, V ) → Dialg(ArgA, U).

Explicitly, the category EArg has

– Objects (A, B, c, d), where A : Set, B : A → Set, c : ArgA(A, B) → A,
d : (x : ArgA(A, B)) → ArgB(A, B, c, x) → B(c(x)).

– Morphisms from (A, B, c, d) to (A′, B′, c′, d′) are morphisms
(f, g) : (A, B, c) ⇒Dialg(ArgA,U) (A′, B′, c′) such that in addition

g(c(x), d(x, y)) = d′(ArgA(f, g)(x), ArgB(f, g)(x, y)) .

Example 2.7. Consider the functors ArgCtxt, ArgType from Example 2.4:

ArgCtxt(A, B) = 1 + Σ Γ :A. B(Γ )
ArgType(A, B, c, x) = 1 + Σ σ :B(c(x)). B(c(inr(c(x), σ))) .

An object in E(ArgCtxt,ArgType)
consists of A : Set, B : A → Set and morphisms

c = [εA,B, �A,B] and d = λΓ.[ιA,B(Γ ), ΠA,B(Γ )] which can be split up into1

εA,B : 1 → A , �A,B :
(
(Γ : A) × B(Γ )

) → A ,

ιA,B : (Γ : ArgCtxt(A, B)) → 1 → B(c(Γ )) ,

ΠA,B : (Γ : ArgCtxt(A, B)) → (
(σ : B(c(Γ ))) × (τ : B(�A,B(c(Γ ), σ)))

) → B(c(Γ )) .

Remark 2.8. The intended interpretation of the inductive-inductive definition
given by Arg = (ArgA, ArgB) is the initial object in EArg. Depending on the
meta-theory, this might of course not exist. However, we will show that it does
if and only if an eliminator for the inductive-inductive definition exists.

Remark 2.9. From Figure 1, it should be clear how to generalise the current con-
struction to the simultaneous definition of A : Set, B : A → Set, C : (x : A) →
B(x) → Set, etc.: for a definition of n sets, replace Fam(Set) with the cate-
gory FAMn of families (A1, A2, A3, . . . , An) and consider ArgA : FAMn → Set,
Arg : Dialg(ArgA, U) → Fam(Set), ArgC : EArg → FAM3, . . . taking an equalizer
where necessary to make the constructors in different positions equal.
1 Notice that ιA,B : (Γ : ArgCtxt(A, B)) → . . . and not ιA,B : (Γ : A) → . . . as one

would maybe expect. There is no difference for initial A, as we have ArgCtxt(A, B) ∼=
A by (a variant of) Lambek’s Lemma.
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2.2 How to Exploit Initiality: An Example

Let us consider an example of how to use initiality to derive a program dealing
with the contexts and types from the introduction. Suppose that we want to
define a concatenation ++ : Ctxt → Ctxt → Ctxt of contexts – such an operation
could be useful to formulate more general formation rules, such as:

σ : Type(Γ ) τ : Type(Δ)
σ × τ : Type(Γ ++ Δ)

Such an operation should satisfy the equations

Δ ++ ε = Δ
Δ ++ (Γ � σ) = (Δ ++ Γ )�(wkΓ (σ, Δ)) ,

where wk : (Γ : Ctxt) → (σ : Type(Γ )) → (Δ : Ctxt) → Type(Δ ++ Γ ) is
a weakening operation, i.e. if σ : Type(Γ ), then wkΓ (σ, Δ) : Type(Δ ++ Γ ). A
moment’s thought should convince us that we want wk to satisfy

wkΓ (ιΓ , Δ) = ιΔ++Γ

wkΓ (ΠΓ (σ, τ), Δ) = ΠΔ++Γ (wkΓ (σ, Δ), wkΓ�σ(τ, Δ)) .

Our hope is now to exploit the initiality of (Ctxt, Type) to get such opera-
tions. Recall from Example 2.4 that Ctxt, Type are the underlying sets for the
inductive-inductive definition given by the functors

ArgCtxt(A, B) = 1 + Σ Γ :A. B(Γ )
ArgType(A, B, c, x) = 1 + (Σ σ :B(c(x)). τ :B(c(inr(c(x), σ)))) .

From the types of ++ : Ctxt → Ctxt → Ctxt and wk : (Γ : Ctxt) → (A :
Type(Γ )) → (Δ : Ctxt) → Type(Δ ++ Γ ), we see that if we can equip (A, B)
where A = Ctxt → Ctxt and B(f) = (Δ : Ctxt) → Type(f(Δ)) with an
(ArgCtxt, ArgType) structure, initiality will give us functions of the right type. Of
course, we must choose the right structure so that our equations will be satisfied:

inA : ArgCtxt(A, B) → A
inA(inl(�)) = λΔ. Δ
inA(inr(〈f, g〉)) = λΔ. (f(Δ) � g(Δ)) ,

inB : (x : ArgCtxt(A, B)) → ArgType(A, B, inA, x) → B(inA(x))
inB(Δ, inl(�)) = λΓ. ιinA(Δ)(Γ )

inB(Δ, inr(〈g, h〉)) = λΓ. ΠinA(Δ)(Γ )(g(Γ ), h(Γ )) .

Since (A, B, inA, inB) is an object in EArg, initiality gives us a morphism
(++, wk) : (Ctxt, Type) → (A, B) such that (++, wk) ◦ ([ε, �], [ι, Π ]) =
(inA, inB) ◦ (ArgCtxt, ArgType)(++, wk). In particular, this means that

++(ε) = inA(ArgCtxt(++, wk)(inl(�))) = inA(inl(�)) = λΔ. Δ

++(Γ � σ) = inA(ArgCtxt(++, wk)(inr(〈Γ, σ〉))) = inA(inr(〈++(Γ ), wk(Γ, σ)〉))
= λΔ. ++ (Γ, Δ) � wk(Γ, σ, Δ) .
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Thus, we see that Δ ++ ε = Δ and Δ ++ (Γ � σ) = (Δ ++ Γ ) � wkΓ (σ, Δ) as
required.2 In the same way, the equations for the weakening operation hold.

2.3 Relationship to Induction-Induction as Axiomatised in [16]

In short, the earlier axiomatisation [16] postulated the existence of a universes
SP′

A, SP′
B of codes for inductive-inductive sets, together with decoding functions

Arg′A, Arg′B and Index′
B. Intuitively, Arg′A gives the domain of the constructor

introA for A, Arg′B the domain for the constructor introB for B and Index′
B(x)

the index of the type of introB(x). More formally, they have types

ArgA : γA : SPA A : Set B : A Set Set ,

ArgB : γA : SPA γB : SPB γA

A : Set B0 : A Set B1 : ArgA γA, A,B0 Set

. . . Bn : Arg n
A γA, A, �B n Set Set ,

IndexB γA, γB , A,B0, . . . , Bn :

ArgB γA, γB , A,B0, . . . , Bn

i

i 0

Arg n
A γA, A, �B i ,

where �B(i) = (B0, . . . , Bi−1) and Arg′iA(γA, A, B(i)) is defined by

Arg 0
A γA, A,B 0 : A

Arg n 1
A γA, A, �B n ,Bn 1

: ArgA γA,
n

i 0

Arg i
A γA, A, �B i , B0, . . . , Bn .

The axiomatisation then states that we have introduction and elimination
rules, i.e. that for each code γ = (γA, γB) there exists is a family Aγ : Set,
Bγ : Aγ → Set with constructors introA : Arg′A(γA, Aγ , Bγ) → Aγ and introB :
(x : Arg′B(γ, Aγ , Bγ , B1, . . . , Bn)) → Bγ(index(x)), and a suitable eliminator (see
Section 3). Here, Bi = B ◦ ki and index(x) = [k0, . . . , kn](Index′

B(γ, A, B0, . . . ,
Bn, x)) where k0 = id and ki+1 = introA ◦ Arg′iA([k0, . . . , ki], [id′, . . . , id′]). The
codes are chosen so that all occurrences of A and B in the domains of introA

and introB are strictly positive.
The relationship between the codes from this axiomatisation and the formal-

isation in this article can now be summed up in the following proposition:

Proposition 2.10. For each code γ = (γA, γB), the operations ArgγA
:

Fam(Set) → Set and Argγ = (ArgγA
, ArgγB

) : Dialg(ArgγA
, U) → Fam(Set) given

by

ArgγA
(A, B) := Arg′A(γA, A, B) ,

ArgγB
(A, B, c, x) := { y :Arg′B(γA, γB, A, B0, . . . , Bn) | c(x) = index(y)}

are functorial. ��
2 Actually, the order of the arguments is reversed, so we would have to define

Δ ++′ Γ := ++ (Γ, Δ).
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We will call a functor F strictly positive if it arises as F = Argγ for some code
γ. In Section 3.3 , we show that that the original introduction and elimination
rules hold if and only if EArgγ

has an initial object.

3 The Elimination Principle

In this section, we introduce the elimination principle for inductive-inductive def-
initions. We show that every initial object has an eliminator (Proposition 3.8),
and that every object with an eliminator is weakly initial (Proposition 3.9). Un-
der the added assumption of strict positivity, we can also show uniqueness. Hence
the two notions are equivalent for strictly positive functors (Theorem 3.10).

3.1 Warm-Up: A Generic Eliminator for an Inductive Definition

The traditional type-theoretical way of defining recursive functions like the con-
text concatenation ++ in Section 2.2 is to define them in terms of eliminators.
Roughly, the eliminator for an F -algebra (A, c) is a term

P : A → Set stepc : (x : F (A)) → �F (P, x) → P (c(x))
elimF (P, stepc) : (x : A) → P (x)

with computation rule elimF (P, stepc, c(x)) = stepc(x, dmapF (P, elim(P, stepc),
x)). Here, �F (P ) : F (A) → Set is the type of inductive hypothesis for P ; it
consists of proofs that P holds at all F -substructures of x, and dmapF (P ) : (x :
F (A) → P (x)) → (x : F (A)) → �F (P, x) takes care of recursive calls.

Example 3.1. Let F (X) = 1 + X , i.e. F is the functor whose initial algebra is
(N, [0, suc]). We then have

�1+X(P, inl(�)) ∼= 1 �1+X(P, inr(n)) ∼= P (n)

so that the eliminator for (N, [0, suc]) becomes

P : N → Set
step0 : 1 → P (0)

stepsuc : (n : N) → P (n) → P (suc(n))
elim1+X(P, step0, stepsuc) : (x : N) → P (x)

For polynomial functors F , �F can be defined inductively over the structure
of F as is given in e.g. Dybjer and Setzer [8]. However, �F and dmapF can be
defined for any functor F : Set → Set by defining

�F (P, x) := {y : F (Σ z :A. P (z))|F (π0)(y) = x}
dmapF (P, stepc, x) := F (λy.〈y, stepc(y)〉)(x) .

We see that indeed �1+X(P, inl(�)) ∼= 1 and �1+X(P, inr(n)) ∼= P (n) as in
Example 3.1.
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3.2 The Generic Eliminator for an Inductive-Inductive Definition

Let us now generalise the preceding discussion from inductive definitions (i.e.
endofunctors on Set) to inductive-inductive definitions (i.e. functors Arg =
(ArgA, ArgB) as in Definition 2.3). Since we replace the carrier set A with a carrier
family (A, B), we should also replace the predicate P : A → Set with a “predicate
family” (P, Q) where P : A → Set and Q : (x : A) → B(x) → P (x) → Set. This
forces us to refine the step function stepc : (x : F (A)) → �F (P, x) → P (c(x))
into two functions

stepc : (x : ArgA(A,B)) → �ArgA(P, Q, x) → P (c(x)) ,

stepd : (x : ArgA(A,B)) → (y : ArgB(A, B, c, x)) → (x̃ : �ArgA(P, Q, x))

→ �ArgB (P, Q, c, stepc, x, y, x̃) → Q(c(x), d(x, y), stepc(x, x̃)) .

As can already be seen in the types of stepc and stepd above, we replace �F

with �ArgA
and �ArgB

of type

�ArgA
(P, Q) : ArgA(A, B) → Set ,

�ArgB
(P, Q) :

(
stepc : (x : ArgA(A, B)) → �ArgA

(P, Q, x) → P (c(x))
)
→

(x : ArgA(A, B)) → (y : ArgB(A, B, c, x)) →
(x̃ : �ArgA

(P, Q, x)) → Set

and we replace dmapF with dmapArgA
, dmapArgB

of type

dmapArgA
(P, Q) :

(
f : (x : A) → P (x)

)
→(

g : (x : A) → (y : B(x)) → Q(x, y, f(x))
)
→

(x : ArgA(A, B)) → �ArgA
(P, Q, x)

dmapArgB
(P, Q) :

(
stepc : (x : ArgA(A, B)) → �ArgA

(P, Q, x) → P (c(x))
)
→(

f : (x : A) → P (x)
)
→(

g : (x : A) → (y : B(x)) → Q(x, y, f(x))
)
→

(x : ArgA(A, B)) → (y : ArgB(A, B, c, x))
→ �ArgB

(P, Q, stepc, x, y, dmapArgA
(P, Q, f, g, x)) .

We can define �ArgA
, �ArgB

, dmapArgA
and dmapArgB

for arbitrary functors
representing inductive-inductive definitions. First, define:

Definition 3.2. Let (A, B) ∈ Fam(Set), P : A → Set, Q : (x : A) → B(x) →
P (x) → Set.

(i) Define ΣFam(Set)(A, B) (P, Q) ∈ Fam(Set) by

ΣFam(Set)(A, B) (P, Q) := (Σ A P, λ〈a, p〉.Σb :B(a). Q(a, b, p))

(ii) In addition, for (f, g) : (A, B) → (A′, B′) and

h : (x : A) → P (f(x)) k : (x : A) → (y : B(x)) → Q(f(x), g(x, y), h(x)) ,
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define 〈(f, g), (h, k)〉 : (A, B) → ΣFam(Set)(A′, B′) (P, Q) by

〈(f, g), (h, k)〉 := (λx. 〈f(x), h(x)〉, λx y. 〈g(x, y), k(x, y)〉) .

(iii) For h : (x : A) → P (x) and k : (x : A) → (y : B(x)) → Q(x, y, h(x)),
define (h, k) : (A, B) → ΣFam(Set)(A, B) (P, Q) by (h, k) := 〈id, (h, k)〉.

We have (π0, π
′
0) := (π0, λx. π0) : ΣFam(Set)(A, B) (P, Q) → (A, B) with (π0, π

′
0)◦

(h, k) = id. Note also that we can extend ΣFam(Set) to morphisms by defining
[(f, g), (h, k)] : ΣFam(Set)(A, B) (P, Q) → ΣFam(Set)(A′, B′) (P ′, Q′) for appro-
priate f, g, h, k by [(f, g), (h, k)] = 〈(f, g) ◦ (π0, π

′
0), (h, k)〉. We can now define

�ArgA
and dmapArgA

:

Definition 3.3. Define �ArgA
and dmapArgA

with types as above by

�ArgA (P, Q, x) := {y : ArgA(ΣFam(Set)(A, B) (P, Q)) |ArgA(π0, π
′
0)(y) = x} ,

dmapArgA
(P, Q, f, g) := ArgA((f, g)) .

Note that we have an isomorphism

ϕArgA
: ArgA(ΣFam(Set)(A, B) (P, Q)) → Σ x :ArgA(A, B). �ArgA

(P, Q, x)

defined by ϕArgA
(x) = 〈ArgA(π0, π

′
0)(x), x〉.

Definition 3.4. Given P , Q, stepc, x, y, x̃ as above, define

(i) ΣDialg(A, B, c) (P, Q, stepc) := (ΣFam(Set) (A, B) (P, Q), [c, stepc] ◦ ϕArgA
),

(ii) �ArgB
(P, Q, stepc, x, y, x̃) :=

{z : ArgB((ΣDialg(A, B, c) (P, Q, stepc)), x̃) | ArgB(π0, π
′
0, x̃, z) = y},

(iii) dmapArgB
(P, Q, stepc, f, g) := ArgB((f, g)).

We can now define what the eliminators for inductive-inductive definitions are:

Definition 3.5. We say that (A, B, c, d) in EArg has an eliminator, if there exist
two terms

P : A → Set
Q : (x : A) → B(x) → P (x) → Set

stepc : (x : ArgA(A, B)) → �ArgA
(P, Q, x) → P (c(x))

stepd : (x : ArgA(A, B)) → (y : ArgB(A, B, c, x)) → (x̃ : �ArgA
(P, Q, x))

→ �ArgB
(P, Q, c, stepc, x, y, x̃) → Q(c(x), d(x, y), stepc(x, x̃))

elimArgA
(P, Q, stepc, stepd) : (x : A) → P (x)

elimArgB
(P, Q, stepc, stepd) : (x : A) → (y : B(x)) → Q(x, y, elimArgA

(P, Q, stepc, stepd, x))

with

elimArgA
(P, Q, stepc, stepd, c(x)) = stepc(x, dmap′

ArgA
)

elimArgB
(P, Q, stepc, stepd, c(x), d(x, y)) = stepd(x, y, dmap′

ArgA
, dmap′

ArgB
)

where

dmap′ArgA
= dmapArgA

(elimArgA (P, Q, stepc, stepd), elimArgB (P, Q, stepc, stepd), x)

dmap′
ArgB

= dmapArgB
(stepc, elimArgA(P, Q, stepc, stepd), elimArgB(P, Q, stepc, stepd), x, y) .



A Categorical Semantics for Inductive-Inductive Definitions 81

Example 3.6 (The eliminator for sorted lists). Recall from Example 2.5 that
sorted lists were given by the functors ArgSList, Arg≤L

, where

ArgSList(A, B) = 1 + (Σ n :N. Σ � :A. B(n, �))

Thus, we see that e.g.

�ArgSList
(P, Q, inl(�)) = {y : 1 + . . . | (id + . . .)(y) = inl(�)} ∼= 1

�ArgSList
(P, Q, inr(〈n, �, p〉)) ∼=

{y : Σ n′ :N. Σ 〈�′, �̃〉 : (ΣAP ). Σp′ :B(n, �). Q(n′, �′, p′, �̃) | Σ(id, Σ(π0, π
′
0))(y)

= 〈n, �, p〉}
∼= Σ�̃ :P (�). Q(n, �, p, �̃)

and similarly for �Arg≤L
, so that the eliminators are equivalent to

elimSortedList : (P : SortedList → Set) →
(Q : (n : N) → (� : SortedList) → n ≤L � → P (�) → Set) →
(stepnil : P (nil)) →(
stepcons : (n : N) → (� : SortedList) → (p : n ≤L �) → (�̃ : P (�))

→ Q(n, �, p, �̃) → P (cons(n, �, p))
) →(

steptriv : (n : N) → Q(n, nil, trivn, stepnil)
) →(

step�·� : (m : N) → (n : N) → (� : SortedList) → (p : n ≤L �)

→ (q : m ≤ n) → (p′ : m ≤L �) → (�̃ : P (�))

→ (p̃ : Q(n, �, p, �̃)) → (p̃′ : Q(m, �, p′, �̃))

→ Q(m, cons(n, �, p),� q, p′ �p,m,n,�, stepcons(n, �, p, �̃, p̃))
) →

(� : SortedList) → P (�) ,

elim≤L : . . . →
(n : N) → (� : SortedList) → (p : n ≤L �)

→ Q(n, �, p, elimSortedList(P, Q, stepnil, stepcons, steptriv , step�·�, �)) .

3.3 The Equivalence between Having an Eliminator and Being
Initial

We now prove the promised equivalence. In what follows, let Arg = (ArgA, ArgB)
be functors for an inductive-inductive definition.

Lemma 3.7. There is an isomorphism

ϕArg = (ϕArgA
, ϕArgB

) : Arg(ΣDialg(A, B, c) (P, Q, stepc))
→ ΣFam(Set)Arg(A, B, c) (�Arg(P, Q, stepc))

such that (π0, π
′
0) ◦ ϕArg = Arg(π0, π

′
0) and

ϕArg ◦ Arg((f, g)) = (dmapArgA(P, Q, f, g), dmapArgB
(P, Q, stepc, f, g)) . ��
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Proposition 3.8. Every initial object (A, B, c, d) in EArg has an eliminator.

Proof. Let P , Q, stepc, stepd as in the type signature for elimArgA
and elimArg

be given. Define inΣ : Arg(ΣDialg(A, B, c) (P, Q, stepc)) → V (ΣDialg(A, B, c)
(P, Q, stepc)) by inΣ = [(c, d), (stepc, stepd)] ◦ ϕArg. This makes ΣDialg(A, B, c)
(P, Q, stepc) an object of EArg.

Since (A, B, c, d) is initial in EArg, we get a morphism (h, h′) : (A, B) →
ΣFam(Set)(A, B) (P, Q) which makes the top part of the following diagram
commute:

Arg(A, B, c)
(c,d) 		

Arg(h,h′)




(A, B)

(h,h′)




Arg(Σ(A, B, c) (P, Q, stepc))
ϕArg 		

Arg(π0,π′
0)





ΣArg(A, B, c) (�(P, Q, stepc))
[(c,d),(stepc,stepd)]

		

(π0,π′
0)�������

�����
�����

�����
�

Σ(A, B) (P, Q)

(π0,π′
0)




Arg(A, B, c)

(c,d)
		 (A, B)

The bottom part commutes by Lemma 3.7 and calculation. Hence (π0, π
′
0) ◦

(h, h′) is a morphism in EArg and we must have (π0, π
′
0) ◦ (h, h′) = id by ini-

tiality. Thus π1 ◦ h : (x : A) → P (x) and π1(h′(x, y)) : Q(x, y, π1(h(x))) for
x : A, y : B(x), so we can define elimArgA

(P, Q, stepc, stepd) = π1 ◦ h and
elimArgB

(P, Q, stepc, stepd, x, y) = π1(h′(x, y)).
To verify the computation rules, note that since (π0, π

′
0)◦(h, h′) = id, we have

(h, h′) = (π1, π′
1) ◦ (h, h′). We only show the calculation for ArgA:

elimArgA
(P, Q, stepc, stepd, c(x))) = π1(h(c(x)))

= stepc(ϕArgA
(ArgA(h, h′)(x)))

= stepc(ϕArgA
(ArgA((π1, π′

1) ◦ (h, h′))(x)))
= stepc(x, dmapArgA

((π1, π
′
1) ◦ (h, h′))(x))

= stepc(x, dmap′
ArgA

)
��

Proposition 3.9. Every (A, B, c, d) with an eliminator is weakly initial in EArg.

Proof. Let (A′, B′, c′, d′) be another object in EArg. Notice that for P (x) = A′,
Q(x, y, x̃) = B′(x̃), the usually dependent second projections π1, π

′
1 become non-

dependent and make up a morphism (π1, π
′
1) : ΣFam(Set)(A, B) (P, Q) → (A′, B′).

Since

π1 ◦ [c, c′ ◦ ArgA(π1, π
′
1) ◦ ϕ−1

ArgA
] ◦ ϕArgA

= c′ ◦ ArgA(π1, π
′
1) ,
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this lifts to (π1, π
′
1) : ΣDialg(A, B, c) (P, Q, c′◦ArgA(π1, π

′
1)◦ϕ−1

ArgA
) → (A′, B′, c′).

By currying (f, g) := (c′, d′) ◦ Arg(π1, π
′
1) ◦ ϕ−1

Arg, we get

f̂ : (x : ArgA(A, B)) → �ArgA
(P, Q, x) → A′

ĝ : (x : ArgA(A, B)) → (y : ArgB(A, B, c, x)) → (x̃ : �ArgA
(P, Q, x))

→ �ArgB
(P, Q, c, f̂ , x, y, x̃) → B′(f̂(x, x̃))

so that (h, h′) := (elimArgA
(P, Q, f̂ , ĝ), elimArgB

(P, Q, f̂ , ĝ)) : (A, B) → (A′, B′).
We have to check that (h, h′) ◦ (c, d) = (c′, d′) ◦ Arg(h, h′).

(h, h′) ◦ (c, d) = (elimArgA(P, Q, f̂ , ĝ), elimArgB(P, Q, f̂ , ĝ)) ◦ (c, d)

= (f̂ , ĝ) ◦ (dmapArgA
(h, h′), dmapArgB

(h, h′))

= (f̂ , ĝ) ◦ ϕArg ◦ Arg(h, h′)

= (c′, d′) ◦ Arg(π1, π
′
1) ◦ Arg(h, h′)

= (c′, d′) ◦ Arg(h, h′)
��

For strictly positive functors, we can say more, since we can argue by induction
over their construction:

Theorem 3.10. The functors Argγ = (ArgγA
, ArgγB

) from the original axioma-
tisation as described in Section 2.3 have eliminators if and only if EArgγ

has an
initial object.

Proof. Putting Proposition 3.8 and Proposition 3.9 together, all that is left to
prove is that given an eliminator, the arrow (h, h′) we construct is actually unique.
Assume that (k, k′) is another arrow with (k, k′) ◦ (c, d) = (c′, d′) ◦ Argγ(k, k′).

We use the eliminator (and extensional equality) to prove that (h, h′) =
(k, k′); let P (x) = (h(x) = k(x)) and Q(x, y, x̃) = (h′(x, y) = k′(x, y)). It is
enough to prove P (c(x)) and Q(c(x), d(x, y), ) for arbitrary x : ArgγA

(A, B), y :
ArgγB

(A, B, c, x), given the induction hypothesis �ArgA
(P, Q) and �ArgB

(P, Q).
By induction on the buildup of ArgγA

and ArgγB
, we can prove that �ArgA

(P, Q)
and �ArgB

(P, Q) give that Arg(h, h′) = Arg(k, k′) , and hence

(h, h′) ◦ (c, d) = (c′, d′) ◦ Arg(h, h′) = (c′, d′) ◦ Arg(k, k′) = (k, k′) ◦ (c, d) .

Using the elimination principle, we conclude that (h, h′) = (k, k′). ��

4 Conclusions and Future Work

We have shown how to give a categorical semantics for inductive-inductive defini-
tions, a principle for defining data types in Martin-Löf Type Theory. In order to
do this, we generalised the usual initial algebra semantics to a dialgebra setting
and showed that there is still an equivalence between this semantics and the
more traditional formulation in terms of elimination and computation rules.
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Future work includes extending the notion of containers [1] to inductive-
inductive definitions. We also conjecture that W-types are enough to ensure
the existence of inductive-inductive definitions in an extensional theory. More
precisely, it should be possible to interpret inductive-inductive definitions as
indexed inductive definitions, for which W-types are enough [2].

It could also be worthwhile to generalise this work to a unified setting includ-
ing other forms of inductive definitions: let F, G : C → D be functors between
categories having all finite limits. One can then extend C and D to Categories
with Families [6,13] and use that structure to define the concept of an eliminator
for F and G. If G is left exact, one can show that having an eliminator and being
initial in (a subcategory of) Dialg(F, G) is equivalent.
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an introduction. Oxford University Press, Oxford (1990)
16. NordvallForsberg,F.,Setzer,A.: Inductive-inductivedefinitions. In:Dawar,A.,Veith,

H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 454–468. Springer, Heidelberg (2010)
17. Norell, U.: Towards a practical programming language based on dependent type

theory. Ph.D. thesis, Chalmers University of Technology (2007)
18. Poll, E., Zwanenburg, J.: From algebras and coalgebras to dialgebras. Electronic

Notes in Theoretical Computer Science 44(1), 289–307 (2001)



Finitary Functors: From Set to Preord and Poset

Adriana Balan1,� and Alexander Kurz2

1 University Politehnica of Bucharest, Romania
2 University of Leicester, UK

Abstract. We investigate how finitary functors on Set can be extended
or lifted to finitary functors on Preord and Poset and discuss applications
to coalgebra.

Keywords: extension, lifting, relator, simulation, (final) coalgebra,
exact square, embedding.

1 Introduction

Endofunctors T : Set → Set play a crucial role in the theory of coalgebras and the
rich body of results on them [4] has been exploited over the years to prove results
about the category Coalg(T ), and about logics for T -coalgebras, uniformly in the
functor T .

Not as dominant as Set-functors, functors on preorders and on posets have
made their appearance, for example, if one is interested in simulation rather than
only bisimulation [8,12]. Moreover, we think of the categories Preord and Poset
as the natural link between universal coalgebra [14] and domain theory [1], as
domains are special posets.

A general plan of work would be the comprehensive study of Preord- and
Poset-functors and their relationship to Set-functors and to coalgebras. In this
paper, we restrict ourselves to the modest approach of transforming Set-functors
into Preord and Poset-functors and study how some properties important from
the coalgebraic point of view are transfered. Two notions arise here: extension
and lifting of a Set-functor T , where extension means a functor which coincides
with T on discrete set and lifting means that underlying sets are kept but some
order is added.

For extensions, the final coalgebra is discrete, but nevertheless the associated
notion of (bi)simulation on posets can be interesting. For liftings, the order on
the final coalgebra is similarity, an insight going back to [13, Thm 4.1] and [17,
Thm 5.9].

We start from the observation that every finitary Set-functor T has a (canon-
ical) presentation as a coequalizer of two polynomial functors. Since sets are
discrete preorders, this coequalizer can be computed in preorders (or posets) to
yield a functor T̃ : Preord → Preord, which simultaneously lifts and extends T .
As shown in [16] this leads to interesting examples: if T is the finite powerset
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functor, then T̃ on Poset yields the finite(ly generated) convex powerset functor.
On the other hand, the final T̃ -coalgebra is always discrete and, therefore, does
not capture a notion of simulation.

So we study quotients of polynomial functors, but now with ordered coeffi-
cients and show that this is equivalent to the notion of an order T̄ : Set → Preord
on a functor T from [8]. The latter investigate conditions under which T̄ can be
lifted to a functor T̂ : Preord → Preord. On the other hand, again interpret-
ing the coequalizer of polynomial functors in Preord, we obtain another lifting
Ť : Preord → Preord, which always exists. We show T̂ = Ť under the conditions
which ensure the existence of T̂ . The table below summarizes the notation for
the various extensions and liftings met in the paper.

T : Set → Set

T̄ : Set → Preord (Def. 9)

T̃ : Preord → Preord Extension (3.2)

T̂ , Ť : Preord → Preord Liftings (Def.-Prop. 16, resp. Def. 24)

The last section of the paper focuses on Poset-functors obtained from the
previous constructions by taking quotients, with similar results obtained.

Finally, further topics pursued in the paper are the preservation of exact
squares (the ordered analogue of weak pullbacks) and of embeddings. The lat-
ter is motivated by the result on the expressiveness of modal logic over posets
[9], while the former comes from the fact that it replaces preservation of weak
pullbacks as a condition for the existence of the relation lifting on preorders or
posets [5].

2 Preliminaries

We denote by Preord and Poset the categories of preordered sets and of posets,
respectively, and monotone maps. We write D ! U : Preord → Set for the
adjunction between the discrete and the forgetful functor. As U has also a right
adjoint (which endows a set with the indiscrete preorder), it preserves all limits
and colimits. In particular, coequalizers in Preord are computed as in Set, namely
for any pair of monotone maps

(X,≤) 		 		 (Y,≤) π 		 Z ,

their Set-coequalizer Z, with the smallest preorder such that π is monotone,
becomes the coequalizer in Preord. We denote by Q ! J : Poset → Preord the
adjunction between the quotient functor (sending every preordered set to the
quotient poset obtained by identifying all x, y with x ≤ y and y ≤ x) and the
inclusion functor. For later use, recall that coequalizers in Poset are computed
in two steps: first, take the coequalizer in Preord, then quotient it to obtain a
poset.
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An embedding in Preord or Poset is an injective, monotone and order
reflecting map. In both categories, the embeddings are precisely the strong
monomorphisms. An exact square [7] in Preord or in Poset is a diagram

P
α 		

β





X

f




Y

g 		 Z

(2.1)

with fα ≤ gβ, such that

∀x ∈ X, y ∈ Y. f(x) ≤ g(y) ⇒ ∃p ∈ P. x ≤ α(p) ∧ β(p) ≤ y . (2.2)

If P is {(x, y) ∈ X × Y | f(x) ≤ g(y)} with the product order and α and β
are the usual projections, then (2.2) is obviously satisfied. (2.1) is then called a
comma square.

The terminology is borrowed from [7], where exact squares where introduced
in the framework of 2-categories. See also [11], where equalizers were similarly
replaced by subequalizers. In Set, an exact square is precisely a weak pullback.
In [12], a commutative square having the property (2.2) is called a preorder
quasi-pullback.

Let T be a Set-functor. It is well-known that T is finitary (commutes with
ω-filtered colimits) if and only if it admits a coend representation

TX ∼=
∫ n<ω

Set(n,X) • Tn ,

that is, TX has a presentation given by the coequalizer

∐
m,n<ω

Set(m,n) × Tm× Xn

λX

		
ρX 		 ∐

n<ω
Tn × Xn

πX 		 TX , (2.3)

where n refers to {0, 1, . . . , n−1}, and the pair (λX , ρX) is given by λX(f, σ, x) =
(Tf(σ), x) and ρX(f, σ, x) = (σ, x ◦ f), for f : m → n, x : n → X and σ ∈ Tm.1

Also, πX(σ, x) = Tx(σ). Intuitively, Tn can be seen as the set of operations of
arity n applied to the variables in X . In the sequel, we shall omit the subscript
X when referring to the maps λX , ρX and πX if the context is clear.

3 From Set to Preord

Section 3.1 considers the notions of extensions and liftings. Section 3.2 intro-
duces the preordification T̃ of a Set-functor T based on the presentation of T .
Section 3.3 shows that putting an order on the coefficients of the presentation
1 We shall identify functions x : n → X with tuples x = (x0, . . . , xn−1), where xi =

x(i),∀i ∈ {0, . . . , n − 1}.
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agrees with the notion of an order T̄ on a Set-functor T from [8]. Section 3.4
recalls how [8] uses relation lifting to extend T̄ to an endofunctor T̂ on Preord
and shows that if T preserves weak pullbacks then T̃ preserves exact squares
and, therefore, embeddings. Section 3.5 emphasizes that the order on the final
T̂ -coalgebra coincides with the similarity given by relation lifting. Whereas [8]
use relation lifting to extend T̄ to a functor T̂ on preorder, we can now also use
the presentation to extend T̄ to a functor Ť on preorders. Section 3.6 shows that
Ť = T̂ under the conditions given in [8] for the existence of T̂ .

3.1 Extension and Lifting

Definition 1. Let T be a Set-functor. An extension of T to Preord is a locally
monotone functor Γ : Preord → Preord such that ΓD = DT . A lifting of T to
Preord is a locally monotone functor Γ : Preord → Preord such that UΓ = TU .

In the following, if T is finitary, we also require Γ (extension or lifting) to be
so.2 Extensions and liftings of a Set-functor to Poset are defined similarly.

It follows that both a lifting and an extension will satisfy the relation T =
UΓD. Intuitively, an extension will coincide with T on discrete sets, while a
lifting means that we put a preorder (respectively a partial order) on TX . Also,
there is an immediate test to decide whether a (finitary) locally monotone Preord
(or Poset)-functor Γ is a lifting or an extension of a Set-functor: namely, compute
T = UΓD and check if ΓD = DT or UΓ = TU .

Remark 2. An extension is not necessarily unique. Let Γ be the functor sending
a preordered set (a poset) to the (discrete) set of its connected components.
Then UΓD = Id3. But also the identity on Preord (respectively on Poset) is an
extension of Id, showing that a Set-functor can have different extensions.

The local monotonicity requirement is natural, as the categories Preord and Poset
are enriched over themselves (in the sense that the hom-sets are ordered) and
enriched functors coincide with locally monotone ones. In all constructions that
we shall perform, the local monotonicity of the lifted/extended functor will come
for free.

Note that although Set is (discretely) enriched over Preord (and over Poset),
the adjunction D ! U is not, since U is not locally monotone. In particular,
Γ = DTU will not in general be an extension/lifting and we shall replace it by
(3.2) instead.

2 An extension Γ of a finitary functor T need not be finitary: consider the finitary
functor TX = {l : IN → X | l(n) = l(n + 1) for all but a finite number of n}.
It admits the Preord-extension Γ (X,≤X) = {l : (IN,≤IN) → (X,≤X) | l(n) ≤
l(n + 1) for all but a finite number of n}. But this Γ is not finitary: take the family
of finite sets (n,≤) ordered as usual, with inclusion maps, whose colimit is (IN,≤IN).
Then one can check that colimΓ (n,≤) 
∼= Γ (colim(n,≤)). We would like to thank the
anonymous referee for pointing us this example. We didn’t succeed in constructing
a similar example for liftings.

3 Here Id stands for the identity functor.
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If T is a (finitary) Set-functor and Γ is an extension of T , then T -coalgebras
and Γ -coalgebras are related by an adjunction C̃ ! D̃ : Coalg(T ) → Coalg(Γ )
which can be easily derived from the adjunction C ! D : Set → Preord between
the connected components functor and the discrete functor, using that T = CΓD
if Γ is an extension of T .4 Consequently, D̃ will preserve limits, in particular,
the final coalgebra (if it exists).

Proposition 3. For any (finitary) extension Γ of a finitary functor T , the final
Γ -coalgebra does exist and is discrete.

The situation slightly changes when we consider a lifting instead of an extension.
In this case there is an obvious forgetful functor Ũ : Coalg(Γ ) → Coalg(T ),
which has a left adjoint still denoted D̃ : Coalg(T ) → Coalg(Γ ) (this is not hard
to check). Thus Ũ preserves limits; in particular the underlying set of the final
Γ -coalgebra (if it exists) will be the final T -coalgebra.

Proposition 4. For any (finitary) lifting Γ of a finitary functor T , the final
Γ -coalgebra exists [10] and is built on the same set as the final T -coalgebra.

3.2 First Construction: Order on the Variables

Going back to (2.3), and following [16], we are now interested in this coequalizer
if we replace the set X by a preorder (X,≤). The other sets involved in (2.3)
remain discretely ordered, except for Xn, which carries the product order from
(X,≤). Then λ, ρ are monotone. The coequalizer in Preord of this monotone pair
of maps (λ, ρ) has the same underlying set TX , but now with a preorder �:

∐
m,n<ω

Set(m,n) × Tm× (Xn,≤)
λ

		
ρ 		 ∐

n<ω
Tn× (Xn,≤)

π 		(TX,�). (3.1)

If f : (X,≤) → (Y,≤) is a monotone map, it follows that Tf : (TX,�) →
(TY,�) is monotone. Thus we obtain a functor which is also locally monotone

T̃ : Preord → Preord, T̃ (X,≤) = (TX,�). (3.2)

It simultaneously defines an extension and a lifting of T . In fact, it is an
enriched coend T̃ (X,≤) ∼=

∫ n<ω[Dn, (X,≤)] • DTn, where [Dn, (X,≤)] refers
to the preordered set (internal hom) of all monotone maps from Dn to X .

A functor may have different presentations, 5 but we have

Proposition 5. T̃ is independent of the chosen presentation of T .

Example 6. 1. Let T = Pf , the finite powerset functor. For (X,≤) a preordered
set, the above construction leads to the Egli-Milner preorder on PfX : u � v
for u, v ⊆ X finite iff ∀a ∈ u ∃b ∈ v. a ≤ b and ∀b ∈ v ∃a ∈ u. a ≤ b.

4 We leave the details to the reader. Notice there is a similar adjunction for Poset-
extensions.

5 For example, the finite powerset functor Pf can be presented as in (2.3), but also as
a quotient of the list-functor

∐
n<ω

Xn.
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2. Take TX = 1 + X the lift functor. For (X,≤) a preordered set, the corre-
sponding order � on 1 + X will be the coproduct order.

3. For the list functor TX = X∗, a preorder on lists is obtained as follows:

[x0 . . . xn−1] � [y0 . . . ym−1] ⇔ m = n ∧ xi ≤ yi, ∀i < n .

In Sect. 3.4 we will see another description of � based on relation liftings.

3.3 Second Construction: Order on the Operations

We now equip a functor T with an order on the coefficients of its presentation.

Definition 7. Let T be a finitary Set-functor. We say that T has a presentation
with a preorder, if for each finite arity n, there is a preorder ≤ on Tn such that
Tf : (Tm,≤) → (Tn,≤) is monotone for all f : m → n.

There are many functors who carry a natural order, as eg the powerset functor
(with the inclusion order), or the lift functor TX = {⊥}+X , with the flat order
⊥≤ x, ∀x ∈ X (see Example 11). The latter is a special case of the following:

Example 8. Let T be a (finitary) Set-functor, but not the constant functor map-
ping everything to the empty set. Then T 1 �= ∅. Specify a preorder on T 1. This
will induce a preorder on Tn for all n < ω via the image of the map n → 1
through T , namely the preorder on Tn is the inverse image of the order on T 1.
Then we obtain an order on T .

Definition 9. Let T be a finitary functor with preorder ≤. Consider on TX the
preorder 
 obtained from the coequalizer

∐
m,n<ω

Set(m,n) × (Tm,≤) × Xn

λ
		

ρ 		 ∐
n<ω

(Tn,≤) × Xn π 		(TX,
). (3.3)

This defines a functor T̄ : Set → Preord, T̄X = (TX,
).

Notice that ρ is always monotone, while λ is so by Def. 7. Therefore it makes
sense to compute the above coequalizer in Preord. The functor T̄ is finitary and
satisfies UT̄ = T . In [8], such a functor is called an order on T . We keep the
same terminology. This means that on each TX there is a preorder 
, and these
preorders must be preserved by renaming: for each map f : X → Y , its image
Tf : (TX,
) → (TY,
) is monotone. Choosing n for X , we find

Proposition 10. (Tn,
) = (Tn,≤).

Example 11. 1. Take all Tn to be discretely ordered. Then T automatically
satisfies Def. 7. The preorder obtained on TX will be the discrete one, as
any coequalizer of discrete preordered sets is again discrete (D preserves all
colimits being left adjoint, in particular coequalizers).
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2. Take all Tn to be indiscretely ordered. If T is finitary then all (TX,
) =
TX ×TX are again indiscrete. Indeed, take any u, v ∈ TX . As T is finitary,
we can find a finite set n and an injection x : n → X such that u, v lie in
the image of the map Tx : Tn → TX . So u = Tx(σ) and v = Tx(τ) with
σ, τ ∈ Tn. As Tx is monotone and σ, τ are comparable, it follows that u 
 v.

3. Let T = Pf be the finite powerset functor, with the inclusion order on Pf(n).
Then the resulting order on any PfX is again the inclusion: take any finite
subsets u, v ⊆ X . Then u 
 v if we can find σ ⊆ n, x : n → X , τ ⊆ m,
y : m → X such that π(σ, x) = u, π(τ, y) = v, and (σ, x) and (τ, y) are
comparable in

∐
n<ω

Pf (n) × Xn. But this can be possible only if both lie in

the same component, so m = n, and share same variables, x = y. It follows
σ ⊆ τ , hence u = Pf (x)(σ) ⊆ Pf(x)(τ) = v. Similarly, if on Pf (n) we
consider the converse inclusion, the resulting preorder 
 is ⊆op.

4. Take now TX = {⊥} + X . On the associated signature Tn = {⊥} + n
consider the flat order ⊥ < i, ∀i < n.

0 1 . . . n − 1

⊥

�������

�������������
�������

.

The quotient function π :
∐
n<ω

Tn×Xn → TX maps (⊥, x : n → X) to ⊥ and

(i, x : n → X) to xi. It follows now easily that ⊥ will be the least element
in ({⊥}+ X,
) and that different elements of X are not comparable, hence
on TX we get the same flat order.

5. Consider the polynomial functor TX = IN × X . On each IN × n, take the
preorder given by (N, i) ≤ (M, j) ⇔ N < M or (N = M and i = j). This
is precisely the lexicographic order with respect to the usual ordering of IN,
when n is considered discrete. Then the induced preorder on the quotient
TX is similar: two pairs (N, x) and (M, y) in IN×X are comparable if either
are equal or the first components are comparable. In the future, we shall
denote this functor by TX = IN � X to emphasize the special preorder.

6. Let T = (−)32 be the functor introduced by Aczel and Mendler in [2], given
on objects by X3

2 = {x = (x1, x2, x3) ∈ X3 | |(x1, x2, x3)| ≤ 2}. There is a
natural (pre)ordering 
 on X3

2 as follows: all triples (x1, x2, x3) ∈ X3
2 with

equal components are minimal elements, all the others are maximals, and
a minimal element is comparable with a maximal one only if they share a
common component, as in the picture below:

. . . (x1, x2, x1)
����

��
����

��
(x2, x2, x3)

����
�� ����

�� . . .

(x1, x1, x1)

�����
(x2, x2, x2) (x3, x3, x3)

					

.

We shall call this the zig-zag preorder. If we restrict it to Tn and compute
(TX,
) as in (3.3), we obtain again precisely the zig-zag order.

7. Take the list functor TX = X∗. Put on each TX the following order

[x0 . . . xn−1] ≤ [y0 . . . ym−1] ⇔ ∃ϕ : n → m . xi = yϕ(i), ∀i < n ,
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see [8, Example 2.2.(3)], where the function ϕ is required to be strictly mono-
tone. It means that two lists are comparable if one can be obtained from the
other by removing some elements. In particular, two lists of same length are
comparable only if they are equal. By a similar reasoning as in the previous
examples, restricting this preorder to all Tn and computing 
 gives the same
order.

The previous examples suggest a correspondence between orders T̄ on T and
preorders on the associated signature as in Def. 7. This is indeed the case.

Proposition 12. Let T be a finitary Set-functor. Then there is a bijective
correspondence between orders on T and presentations with preorders.

3.4 Lifting T to T̂ Using Relators

Starting from an order T̄ on T , we will see in this section how a weak pullback
preserving functor T lifts to a Preord-endofunctor T̂ using relators. We present
below a very brief overview on relators, for more details we refer to [15] or [8].

Let T be a Set-functor. For two sets X,Y and a relation R ⊆ X × Y , the
T -relation lifting of R is

RelT (R) = {(u, v) ∈ TX × TY | ∃w ∈ TR . Tπ1(w) = u ∧ Tπ2(w) = v},

where π1, π2 are the projections X R
π1�� π2 		Y . The relation lifting satisfies

the following properties ([15]):

1. Equality: =TX = RelT (=X).
2. Inclusion: if R ⊆ S then RelT (R) ⊆ RelT (S).
3. Composition: if R ⊆ X × Y and S ⊆ Y × Z, then RelT (S ◦ R) ⊆ RelT (S) ◦

RelT (R), with equality if and only if T preserves weak pullbacks.
4. Inverse images (substitution): given functions f : X → X ′, g : Y → Y ′ and

relation R′ ⊆ X ′ × Y ′, then

RelT ((f × g)−1(R′)) ⊆ (Tf × Tg)−1(RelT (R′)) (3.4)

with equality if T preserves weak pullbacks.

An immediate consequence is the following: if T preserves weak pullbacks and
≤ is a preorder on a set X , then RelT (≤) is a preorder on TX .

Proposition 13. Let T be a finitary Set-functor which preserves weak pullbacks.
Then for each preordered set (X,≤), RelT (≤) coincides with the preorder � on
TX constructed in Sect. 3.2.6

6 Notice that the only thing needed in Prop.13 is that RelT (≤) is a preorder. This
is of course implicit when T preserves weak pullbacks, as mentioned earlier. We do
not know if there are examples when RelT (≤) is a preorder, for any preordered set
(X,≤), without requesting T to preserve weak pullbacks.
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Assume now that there is an order on T , given by T̄X = (TX,
). For any
relation R ⊆ X × Y , the associated relation on TX × TY given by

Rel�T (R) =
 ◦RelT (R)◦ 
,

is usually called a T -relator, or lax T -relation lifting ([15], [8]). Equivalently,

(u, v) ∈ Rel�T (R) ⇐⇒ ∃w ∈ T (R) . u 
 Tπ1(w) and Tπ2(w) 
 v.

The T -relator satisfies the following properties ([8], Lemma 4.2):

1. 
TX = Rel�T (=X).
2. If R ⊆ S then Rel�T (R) ⊆ Rel�T (S).
3. If R ⊆ X × Y and S ⊆ Y × Z, then Rel�T (S ◦ R) ⊆ Rel�T (S) ◦ Rel�T (R).
4. For any functions f : X → X ′, g : Y → Y ′ and any relation R′ ⊆ X ′ × Y ′,

Rel�T ((f × g)−1(R′)) ⊆ (Tf × Tg)−1(Rel�T (R′)).

Definition 14. Let T be a Set-endofunctor. We say that an order on T , given
by T̄ : Set → Preord, T̄X = (TX,
),

1. is stable (preserves inverse images) if for any two functions f : X → X ′,
g : Y → Y ′ and any relation R′ ⊆ X ′ × Y ′,

Rel�T ((f × g)−1(R′)) = (Tf × Tg)−1(Rel�T (R′)). (3.5)

2. preserves composition of relations if for any R ⊆ X × Y and S ⊆ Y × Z,

Rel�T (S ◦ R) = Rel�T (S) ◦ Rel�T (R). (3.6)

3. preserves composition of preorders if for any preordered set (X,≤),

Rel�T (≤) ◦ Rel�T (≤) ⊆ Rel�T (≤). (3.7)

Proposition 15. For any order on T , we have (3.5)⇒(3.6)⇒(3.7).

Now the purpose of all these preparations is the following

Definition-Proposition 16. Let T be a finitary functor having an order T̄
which preserves composition of preorders. Then it lifts to a Preord-endofunctor
T̂ ([8], Lemma 5.5), given by T̂ (X,≤) = (TX,Rel�T (≤)).

The functor T̂ is locally monotone (defining thus a lifting in the sense of Def. 1):
assume f, g : (X,≤) → (Y,≤) are monotone maps such that f ≤ g pointwise.
Then for any u ∈ TX , we have u 
 u and


 = Rel�T (=X) ⊆ Rel�T ((f × g)−1(≤)) ⊆ (Tf × Tg)−1(Rel�T (≤)),

therefore (Tf(u), T g(u)) ∈ Rel�T (≤).



94 A. Balan and A. Kurz

It follows that any finitary functor having an order which preserves compo-
sition of preorders has a lifting7 to Preord. We also point out that having an
order which preserves composition of relations (preorders) is not equivalent nor
implied by the preservation of weak pullbacks by the functor T itself, unless
discrete preorder is involved (see Ex. 17.1 and also Ex. 17.5 and Ex. 17.6). Any
polynomial functor has an order which preserves composition of relations (see [8],
Def. 4.4 and the following paragraph there), but this property is not necessarily
preserved by their quotients (see below Ex. 17.5).

In all examples below, T is a finitary Set-functor.

Example 17. 1. Assume the ordering on the operations of T is discrete. Then

 is equality and Rel�T (R) = RelT (R). Therefore the order on T is stable iff
T preserves weak pullbacks. In this case, the lifting of T to Preord will be
T̂ (X,≤) = (TX,RelT (≤)). In view of Prop. 13, we obtain that T̂ = T̃ .

2. Assume that the order on the operations of T is indiscrete. We have seen that

 = TX × TX , hence Rel�T (R) = TX × TY , for any R ⊆ X × Y , provided
RelT (R) is not empty. Actually, what we only need is that T (≤) to be non
empty, which happens for all (finitary) functors T except for the constant one
mapping everything to the empty set. Then property 4. of T -relators holds
with equality, hence again we get a lifting by T̂ (X,≤) = (TX, TX × TX).

3. Let T be now the finite power-set functor Pf , with inclusion as (pre)order
on each PfX . Then for R ⊆ X × Y , RelPfX(R) can be described as follows
(see for example [15], Thm. 2.3.2):

(u, v) ∈ RelPfX(R) ⇔ ∀a ∈ u ∃b ∈ v . (a, b) ∈ R ∧ ∀b ∈ v ∃a ∈ u . (a, b) ∈ R.

An easy computation shows now that the order X �→ (PfX,⊆) preserves
composition (is even stable), hence Pf lifts to a functor P̂f (X,≤)
= (PfX,Rel⊆PfX

(≤)) on Preord, with ordering

(u, v) ∈ Rel⊆Pf
(≤) ⇔ ∀a ∈ u ∃b ∈ v . a ≤ b.

4. For TX = {⊥}+X , The order from Ex. 11.4 preserves at least composition of
preorders, as the relation extension is RelT (R) = R∪{(⊥,⊥)}. The resulting
functor T̂ will then add a bottom element to any preordered set (X,≤).

5. Take now the finitary functor TX = X3
2 . The relation lifting associated to

this functor is

((x1, x2, x3), (y1, y2, y3)) ∈ Rel(−)32
(R) ⇔ ((x1, y1), (x2, y2), (x3, y3)) ∈ R3

2

for R ⊆ X×Y . It is well-known that this functor does not preserve weak pull-
backs. Recall that we have introduced the zig-zag preorder on TX
(Ex. 11). This order is not stable nor preserves composition: for stability,
take X = {0}, Y = {1} and X ′ = Y ′ = {0, 1}, with f, g the inclusion

7 This is no longer an extension: for discrete sets, T̂ (X, =) = (TX,�) is not necessarily
discrete.
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maps, and relation R′ = =X′ . Then (Tf × Tg)−1(Rel�T (=)) = TX × TY ,
while Rel�T ((f × g)−1(=)) = ∅. For preservation of composition, take again
X = {0, 1} and the (preorder) relation R = {(0, 0), (0, 1), (1, 1)}. Then for
example ((0, 0, 1), (0, 1, 0)) ∈ Rel�

(−)32
(R)◦Rel�

(−)32
(R), but ((0, 0, 1), (0, 1, 0)) /∈

Rel�
(−)32

(R ◦ R) = Rel�
(−)32

(R).
6. For the polynomial functor TX = IN�X lexicographically ordered, a similar

argument to the one in [8] shows that it is not stable. But it preserves
composition with respect to preorders: if (X,≤) is a preordered set, then
Rel�T (≤) is again a preorder, namely the usual lexicographic one on IN � X :

((n, x), (m, y)) ∈ Rel�T (≤) ⇔ n < m or (n = m and x ≤ y)

Proposition 18. Let T be a finitary Set-functor having an order T̄ (X,≤) =
(TX,
). Then the following are equivalent:

1. The order is stable.
2. T̄ maps weak pullbacks to exact squares.
3. The lifted functor T̂ preserves exact squares.

Corollary 19. Let T be a finitary Set-functor which preserves weak pullbacks.
Then the Preord-lifting T̃ from (3.2) preserves exact squares.

Intuitively, we could simply say that if a Set-functor T preserves exact squares,
then its lifting T̃ does so.

It is well known that all Set-functors preserve injective maps with non-empty
domain. In Preord we are more interested in embeddings, and they are preserved
if the functor preserves exact squares, see [7]. Hence we have the following.

Proposition 20. If the order on T is stable, then T̂ preserves embeddings.

Corollary 21. If T preserves weak pullbacks, then T̃ preserves embeddings.

3.5 Preorder on the Final Coalgebra

There are several papers in the literature describing order relations on the final
T -coalgebra (see for example [3] or [8]); as it is expected, there is a connection
with the order on the final coalgebra of the lifted functor, first emphasized in
[12]. This section intends to present a direct approach of that.

We shall assume that T has a stable order T̄X = (TX,
) and we shall work
with the associated lifting T̂ (X,≤) = (TX,Rel�T (≤)). Recall from [8] that a T -
simulation with respect to the order 
 between two coalgebras X

c→ TX and
Y

d→ TY is a relation R ⊆ X×Y such that (x, y) ∈ R ⇒ (c(x), d(y)) ∈ Rel�T (R).
In particular, for any T̂ -coalgebra (X,≤) c→ (TX,Rel�T (≤)), the monotonicity of
c implies the preorder ≤ is a simulation on X . The greatest simulation between
two coalgebras is called similarity and denoted by �. It satisfies the following
([8], Prop. 5.4):
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1. For any T -coalgebra homomorphisms X
f→ Z, Y

g→ W and x ∈ X, y ∈ Y ,
we have x � y ⇔ f(x) � g(y).

2. Similarity on a coalgebra X
c→ TX is a preorder.

Let now Z
z→ TZ be the final T -coalgebra (which exists by the finitarity assump-

tion on T ). As T̂ is also finitary and Ũ preserves limits, the final T̂ -coalgebra is
also Z, but now with some preorder ≤Z such that (Z,≤Z) z→ (TZ,Rel�T (≤Z))
is an isomorphism in Preord. In particular, ≤Z is a simulation, hence ≤Z ⊆ �Z .
Take (X,≤) c→ (TX,Rel�T (≤)) a T̂ -coalgebra, with (monotone) anamorphism

(X,≤) !→ (Z,≤Z). By property (1) above, (X,≤) !→ (Z,�Z) is monotone and a
T̂ - coalgebra map, hence in the following diagram the identity on Z is monotone8,
implying �Z ⊆ ≤Z .

(X,≤) ! 		

! ��










(Z,�Z)

id


(Z,≤Z).

We have thus the following:

Proposition 22. The preorder on the final T̂ -coalgebra is the similarity.9

Remark 23. By [8], Thm. 6.2, if the order satisfies the condition

Rel�T (R1) ∩ Rel�
op

T (R2) ⊆ RelT (R1 ∩ R2) (3.8)

for any two relations R1, R2 ⊆ X × Y , then the two-way similarity � ∩ �op
is the same as bisimilarity. This holds for all coalgebras, in particular for the
final coalgebra. But bisimilarity on final coalgebra is equality, hence the above
condition implies that similarity on the final coalgebra Z is a partial order.

3.6 Third Construction: Order the Variables and Operations

Here we lift an order T̄ on T to a Preord-endofunctor Ť even in the case that
T does not preserve weak pullbacks. The idea is to subsume the constructions
in Sect 3.2 and 3.3 in a single one: putting order on the signature (as in Def. 7)
and building the coequalizer of (2.3) in Preord.

Definition 24. Let T be a functor with preorder 
. Denote by Ť the functor
given by the coequalizer (TX,%) below

∐
m,n<ω

Set(m,n) × (Tm,
) × (Xn,≤)
λ

		
ρ 		 ∐

n<ω
(Tn,
) × (Xn,≤) π

		(TX,%)

8 As (Z, �Z) is a T̂ -coalgebra, there is unique monotone map from it to the final T̂ -
coalgebra. Via the forgetful functor, this is mapped to the unique T -coalgebra map
Z → Z which is obviously the identity.

9 See also [13], Thm. 4.1 and [17], Thm. 5.6.
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where the domain and the codomain of the coequalizer pair carry the coproduct
preorder and each component of the coproduct has the product preorder (Set(m,n)
is discrete, while Xn has the product preorder obtained from the one on X).

Observe that Ť is locally monotone and that 
 ⊆ %. Moreover, we have

Theorem 25. Let T be a finitary Set-endofunctor which preserves weak pull-
backs and has an order which preserves composition of preorders. Then the
liftings Ť and T̂ coincide.

Example 26. The construction presented at the beginning of this section says
that we can still get a lifting, independently of T preserving weak pullbacks or
the order preserving composition of relations; for example, consider the functor
TX = X3

2 with the zigzag order. The corresponding preorder % can then be
described as follows: for (x1, x2, x3), (y1, y2, y3) ∈ X3

2 , (x1, x2, x3) % (y1, y2, y3)
if xi ≤ yi, ∀1 ≤ i ≤ 3, or x1 = x2 = x3 and there is some 1 ≤ i ≤ 3 with xi ≤ yi.

4 From Preord to Poset

Given a finitary Set-functor T , assume that we have an extension (or a lifting) Γ
to Preord. We can move further to Poset by taking the locally monotone functor
T ′ = QΓJ : Poset → Preord, where Q ! J is the (monadic) adjunction between
the quotient and the inclusion functor mentioned in the preliminaries. If Γ is
finitary, then T ′ is also, since both J and Q preserve filtered colimits.10 Regarding
coalgebras, notice that each Γ -coalgebra can be quotiented to a T ′-coalgebra,
thus there is a functor Q′ : Coalg(Γ ) → Coalg(T ′), which sends a Γ -coalgebra

X
c→ ΓX to QX

Qc→ QΓX → T ′QX .
Now the discussion bifurcates according to Γ being an extension or a lifting.
If Γ is an extension, a simple computation shows that T ′ maps discrete sets

to discrete sets, thus it is a Poset-extension of T . Moreover, a similar discussion
to the one in Section 3.1 shows that the final T ′-coalgebra exists and is discrete,
with same carrier as the final T -coalgebra, once we assume T (and Γ ) finitary.

For the particular extension T̃ (X,≤) = (TX,�) of a finitary functor T from
Section 3.2, relations (3.1) and (3.2), let T ′(X,≤) be the quotient Poset-functor,
whose ordering will be denoted for convenience with same symbol �. In case T
preserves weak pullbacks, � on TX has been expressed in terms of the relation
lifting (Prop. 13). An immediate result is

Proposition 27. Let T be a finitary weak pullbacks preserving Set-functor and
T ′ = QT̃J its Poset-extension, with T̃ as in (3.1). Then T ′ preserves exact
squares and embeddings.

Remark 28. If T does not preserve weak pullbacks, then T ′ may fail to preserve
embeddings, as we can see from the following example: take T to be the functor
part of the Boolean algebra monad. On finite sets, we can identify T with the
10 Q is left adjoint, while for J it follows from [6], vol. 2, Prop. 5.5.6.
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composition of the contravariant power-set functor with itself. Then T does not
preserve weak pullbacks [14]. We shall show that the corresponding extension
to Poset does not preserve embeddings. For this, take the embedding of the
discrete two-elements poset {a, b} into the poset {a, b, c} ordered by a < c, b < c.
Then T ′({a, b}, =) is the (discrete) free Boolean algebra on two generators with
16 elements. For the poset (Boolean algebra) (T ′({a, b, c},≤),�), notice that
monotonicity of operations implies ⊥ � a ∧ ¬a � a ∧ ¬c � c ∧ ¬c = ⊥, thus
a � c. Similarly, ⊥ � a ∧ ¬a � c ∧ ¬a � c ∧ ¬c = ⊥ implies c � a. Thus
the images of a and c in T ′({a, b, c},≤) coincide; similarly for the images of b
and c, which makes us conclude that T ′({a, b, c},≤) has only 4 elements (the free
Boolean algebra on only one generator). Hence T ′ cannot preserve the embedding
({a, b}, =) ↪→ ({a, b, c},≤).

In case Γ is a lifting, there is a preorder on TX for each (X,≤) and T ′(X,≤)
is the quotient of TX with respect to the equivalence relation induced by that
preorder. The resulting functor T ′ is, in general, no longer a lifting of T to Poset
nor an extension.

However, if we consider a particular lifting of T , namely T̂ , with respect to an
order 
 which is already a partial order, then by restricting to posets we obtain
that Rel�T (≤) is a partial order on TX (for each poset (X,≤)), once we assume
that 
 preserve compositions of preorders and satisfies (3.8). In this case, QT̂J
can be identified with T̂ J and defines a lifting of T to Poset. In the general case,
however, the best that we can say is that the analogue of Prop. 10 holds, namely
that T ′ will coincide with T on finite sets n, with partial order 
.

Example 29. 1. Let D be the finite subdistribution functor, DX = {d : X →
[0, 1] |

∑
x∈X

d(x) ≤ 1, |supp(d)| < ∞}, with the pointwise order d 
 d′ ⇔

d(x) ≤ d′(x), ∀x ∈ X . The corresponding D̂ maps posets to posets (see
comments after Def. 11 in [12]).

2. Take now Pf , the finite powerset functor, with the inclusion order. Then this
time the Poset-functor is indeed a quotient, namely the finite convex power set.

Although T ′ is not a lifting nor an extension, it still behaves well with respect
to exact squares (and embeddings):

Proposition 30. Let T be a finitary Set-functor having an order T̄ (X,≤) =
(TX,
) which is stable and T ′ = QT̂J as above. Then T ′ preserves exact
squares, thus also embeddings.

5 Conclusion

Considering the rich body of results on Set-functors, see eg [4], our investigations
suggest that analogous results for functors on preorders or on posets would be
of interest to coalgebra. For example, characterizations of functors that preserve
exact squares or embeddings would be of interest. This also links the current
paper with investigations on coalgebraic logic over preorders or posets, where
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first steps have been taken on logics given by predicate liftings in [9] and on
Moss’s ∇ in [5]. Another direction is to follow the connection with coalgebraic
(bi)simulations like in [8,12].

Acknowledgements. We would like to thank J. Velebil for pointing out the
importance of exact squares and the reference [7], and the referees for their
valuable suggestions.
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5. Bilková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders
and Posets. In: Corradini, A., Klin, B., Cârstea, C. (eds.) CALCO 2011. LNCS,
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Abstract. We discuss two model constructions related to the coalge-
braic logic introduced by Moss. Our starting point is the derivation sys-
tem MT for this logic, given by Kupke, Kurz and Venema. Based on the
one-step completeness of this system, we first construct a finite coalge-
braic model for an arbitrary MT -consistent formula. This construction
yields a simplified completeness proof for the logic MT with respect to
the intended, coalgebraic semantics. Our second main result concerns a
strong completeness result for MT , provided that the functor T satisfies
some additional constraints. Our proof for this result is based on the
construction, for an MT -consistent set of formulas A, of a coalgebraic
model in which A is satisfiable.

Keywords: coalgebra, modal logic, completeness, finite model property,
strong completeness.

1 Introduction

Universal Coalgebra [16] provides the notion of a coalgebra as the natural math-
ematical generalization of state-based evolving systems such as streams, (infi-
nite) trees, Kripke models, (probabilistic) transition systems, and many others.
This approach combines simplicity with generality and wide applicability: many
features, including input, output, nondeterminism, probability, and interaction,
can easily be encoded in the coalgebra type, which in this paper we will take
to be an endofunctor T on the category Set of sets as objects with functions as
arrows. Logic enters the picture if one wants to specify and reason about behav-
ior, one of the most fundamental notions admitting a coalgebraic formalization.
With Kripke structures constituting key examples of coalgebras, it should come
as no surprise that most coalgebraic logics are some kind of modification or
generalization of modal logic [5].

� This work is part of the VIDI research programme with number 639.072.904, which
is financed by the Netherlands Organisation for Scientific Research.

�� The research of this author has been made possible by VICI grant 639.073.501 of
the Netherlands Organization for Scientific Research (NWO).
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This approach was initiated by Moss [13], who generalized the so-called ‘cover
modality’ ∇P from Kripke structures to coalgebras of arbitrary type T . The fasci-
nating novelty of Moss’ language is that his modality has a rather non-standard
arity: Moss’ syntax specifies that ∇Tα is a formula for all α ∈ TL (where L
is the collection of formulas), while its semantics is given by a categorical no-
tion of relation lifting T . This approach is completely uniform in the functor T ,
but as a drawback, for T to behave well T must satisfy the category-theoretic
property of preserving weak pullbacks. In order to overcome the shortcomings of
Moss’ logic, Kurz [11], Pattinson [15] and others considered coalgebraic modal
formalisms, that use standard syntax and work for coalgebras of arbitrary type.
The success of this approach, in which the semantics of each modality is de-
termined by a so-called predicate lifting, directed attention away from Moss’
logic.

Interest in Moss’ logic revived when it became clear that an approach based
on his modality could have some advantages. In particular, some key results on
the modal μ-calculus were obtained by Janin & Walukiewicz [8], on the basis of
proofs that crucially involve a reconstruction of the classical modal language on
the basis of the nabla modality (which they introduced, independently of Moss,
as a primitive connective). Kupke & Venema [10] showed that many fundamen-
tal results in the area of (fixpoint) logic and automata theory could be lifted to
the abstraction level of coalgebra.

Given the nonstandard syntax of Moss’ language it was not a priori clear
whether the collection of coalgebraic validities would allow nice derivation sys-
tems. As a first result, Palmigiano & Venema [14] gave a complete axiomatization
for the cover modality ∇P (i.e. in the case of Kripke frames). This calculus was
streamlined into a formulation that admits a straightforward generalization to
a calculus MT for an arbitrary set functor T , by Bı́lková, Palmigiano & Ven-
ema [3], who also provided suitable Gentzen systems for the logic based on ∇P .
Kupke, Kurz & Venema [10] solved the outstanding problem by proving the
soundness and completeness of the calculus MT with respect to the coalgebraic
semantics.

In this paper, which originated in the first author’s MSc thesis [2] supervised
by the second author, we continue the line of investigations of [10], taking their
result on one-step soundness and completeness as our starting point. (As a mi-
nor difference with [10], we add explicit proposition letters to the language.) Our
main contribution is two-fold. First, based on adapting ideas from Schröder [17]
to the setting of Moss’ logic, we provide a coalgebraic construction that, given
an MT -consistent formula a, yields a finite model in which a is satisfied. As a
corollary, we considerably simplify the second part of the completeness proof
of [10] for the logic MT with respect to its intended, coalgebraic semantics. Our
second main result concerns a strong completeness result for MT , provided that
the functor T restricts to finite sets and weakly preserves limits of surjective
ω-cochains of finite sets. Our proof for this result is based on the quasi-canonical
model method of Pattinson & Schröder [18].
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2 Preliminaries

Categories and Coalgebras. We assume familiarity with basic notions from
category theory (such as categories, functors, and natural transformations), and
from coalgebra. Here we fix some notation and terminology. We restrict attention
to Set-based coalgebras, where Set denotes the category with sets as objects and
functions as arrows.

Convention 1. Throughout the paper we fix a functor T : Set → Set, which we
assume to preserve inclusions and weak pullbacks.

The restriction that T preserves inclusions is for reasons of presentation only;
we motivate the other restriction in Remark 1. Many (but not all) examples of
coalgebraically interesting set functors fall in the scope of our work. We mention
the inductively defined class EKPF of extended Kripke polynomial functors given
as follows

T := Id | C | P | Bω | Dω | T0 ◦ T1 | T0 + T1 | T0 × T1 | TD,

where C is an abitrary constant functor, P is power set, Bω is finitary multiset,
Dω is finitary probability distribution and TD is exponentiation with respect to
an arbitrary set. An example of a functor that does not preserve weak pullbacks
is the (monotone) neighborhood functor.

The finitary version Tω : Set → Set of T is given, on objects, by TωX :=⋃
{TY | Y ⊆ X,Y finite }, and on arrows by Tωf := Tf . It can be proved that

Tω also preserves inclusions and weak pullbacks. Given an object α ∈ TωA, we
let BaseA(α) denote the smallest finite subset of A such that α ∈ TBaseA(α);
in fact, the family of operations BaseA : TωA → PωA constitutes a natural
transformation Base : Tω→̇Pω [7].

Definition 1. A T -coalgebra is a pair (S, σ) where S is a set and σ : S → TS
is a function. A morphism of T -coalgebras from (S, σ) to (S′, σ′), written f :
(S, σ) → (S, σ′), is a function f : S → S′ such that Tf ◦ σ = σ ◦ f .

Relation Lifting. The coalgebraic semantics of Moss’ coalgebraic language is
based on the notion of relation lifting that we now briefly discuss (see [10] for
more information). First we introduce some notation for relations and functions.
The graph of a function f : X → X ′ is the relation Grf := {(x, f(x)) ∈ X×X ′ |
x ∈ X}. The diagonal relation on a set X is denoted as IdX , and the converse
of a relation R as R .̆ Given subsets Y ⊆ X , Y ′ ⊆ X ′, the restriction of R to Y
and Y ′ is given as R �Y×Y ′ := R ∩ (Y × Y ′). The composition of two relations
R ⊆ X × X ′ and R′ ⊆ X ′ × X ′′ is denoted by R ; R′, whereas the composition
of two functions f : X → X ′ and f ′ : X ′ → X ′′ is denoted by f ′ ◦ f . Thus, we
have Gr(f ′ ◦ f) = Grf ; Grf ′.

Definition 2. [1] Given a binary relation R ⊆ X1 × X2 with projection func-
tions πi : R → Xi, we define its T -lifting TR ⊆ TX1 × TX2 as follows:

TR := {((TπR1 )ρ, (TπR2 )ρ) | ρ ∈ TR}.
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Throughout the paper, we will use properties of the relation TR; unless explicitly
stated otherwise, these can always be derived by elementary means from the
following fact.

Fact 2 (Properties of Relation Lifting). The relation lifting T satisfies the
following properties, for all functions f : X → X ′, all relations R,S ⊆ X × X ′,
R′ ⊆ X ′ × X ′′, and all subsets Y ⊆ X, Y ′ ⊆ X ′:

1. T extends T : T (Grf) = Gr(Tf);
2. T preserves the diagonal: T (IdX) = IdTX ;
3. T commutes with relation converse: T (R )̆ = (TR)̆ ;
4. T is monotone: if R ⊆ S then T (R) ⊆ T (S);
5. T distributes over composition: T (R ; R′) = (TR) ; (TR′);
6. T commutes with restriction: T (R�Y×Y ′ ) = TR�TY×TY ′ .
7. Tω coincides with T : TωR = (TR)�TωX×TωX′ .

Remark 1. The main reason why we restrict our attention to coalgebra types
T that preserve weak pullbacks is that for these functors, T distributes over
relation composition (Fact 2(5)) [1,19].

Applying relation lifting to the membership relation ∈, we obtain an interesting
operation. Given a set X , we let ∈X ⊆ X×PX denote the membership relation,
restricted to X . We define the map λTX : TPX → PTX by

λTX(Φ) := {α ∈ TX | α T∈X Φ},

and call elements of λTX(Φ) lifted members of Φ. Related to Fact 2(5) is that the
family of maps λTX : TPX → PTX constitutes a distributive laws of T over
the monad P (see [10] for a discussion). Of more immediate importance is the
following distributive law relative to the contravariant power set functor P̆ [4].

Fact 3. The family of maps λT provides a natural transformation λT : T P̆→̇P̆ T .

The following concept is needed in the axioms describing the interaction between
∇ and conjunctions.

Definition 3. An object Φ ∈ TPX is a redistribution of A ∈ PTX if A ⊆
λTX(Φ). In case A ∈ PωTωX, we call a redistribution Φ slim if Φ ∈ TωPω(

⋃
α∈A

Base(α)). The set of slim redistributions of A is denoted as SRD(A).

Fact 4. [21] Given sets X,Y , a set Γ ∈ PTX and a surjection f : X → Y , we
have

{TPf(Φ) | Φ ∈ SRD(Γ )} = SRD(PTf(Γ )).

Propositional Logic. Given a set X , we define the set L0(X) of propositional
formulas over X by the following grammar:

a ::= x | ¬a |
∧

A |
∨

A,
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where x ∈ X , and A ∈ PωL0(X). That is, as the primitive connectives of our
propositional language we take the unary symbol ¬ and the finitary meet and
join symbols,

∧
and

∨
. We abbreviate ⊥ :=

∨
∅ and ' :=

∧
∅.

Given sets X and S, an X-valuation on S is a map V : X → PS; such a map
can be naturally extended to a homomorphism V̂ : L0(X) → PS by putting
V̂ (

∧
A) :=

⋂
{V0(a) | a ∈ A}, etc.

3 Moss’ Logic and Its Axiomatization

In this section we briefly recall the syntax and semantics of Venema’s finitary
version of Moss’ coalgebraic logic [13,20], and the axiomatization of its coalge-
braic valid formulas, given by Kupke, Kurz and Venema [10].

3.1 Moss’ Logic

The finitary version L of Moss’ language is defined as follows.

Definition 4. Given a set Prop of variables, the set L(Prop) of Moss formulas
in Prop is given by the following grammar:

a ::= p | ¬a |
∧

A |
∨

A | ∇α

where p ∈ Prop, A ∈ PωL and α ∈ TωL.

Despite its unconventional appearance, the language L admits fairly standard
definitions of most syntactical notions. For example, we may define the (finite!)
set Sfor (a) of subformulas of a by a straightforward formula induction, of which
the only nonstandard clause concerns the nabla operator:

Sfor(∇α) := {∇α} ∪
⋃

a∈Base(α)

Sfor(a).

The elements of Base(α) ⊆ Sfor(∇α) will be called the immediate subformulas
of ∇α. Given a formula a, we define the single negation of a formula a as ∼a := b
if a = ¬b for some formula b, and as ∼a := ¬a otherwise.

Since in this paper we will not only be dealing with formulas and sets of
formulas, but also with elements of the sets TωL, PωTωL and TωPωL, it will be
convenient to use the following naming convention:

Set Prop L TωL PωL PωTωL TωPωL
Elements p, q, . . . a, b, . . . α, β, . . . A,B, . . . Γ,Δ, . . . Φ, Ψ, . . .

We may see the boolean connectives
∨

and
∧

as maps from finite sets of
formulas to formulas,

∨
,
∧

: PωL → L. Applying the functor to these maps,
we obtain functions T

∨
, T

∧
: TωPωL → TL. In particular, for any object

Φ ∈ TωPωL, we obtain well-formed formulas of the form ∇(T
∨

)Φ and ∇(T
∧

)Φ.
Since we consider a version of Moss’ language with proposition letters, in order

to interpret this language we have to introduce valuations and models.
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Definition 5. A valuation on a T -coalgebra (S, σ) is a valuation V : Prop →
PS; the induced structure (S, σ, V ) will be called a T -model. For such a model,
the satisfaction relation �σ,V ⊆ S × L is defined by the following induction on
the complexity of formulas:

s �σ,V p if s ∈ V (p),
s �σ,V ¬a if s ��σ,V a,
s �σ,V

∧
A if s �σ,V a for all a ∈ A,

s �σ,V
∨

A if s �σ,V a for some a ∈ A,
s �σ,V ∇α if σ(s) T�σ,V α.

When no confusion is likely, we may write � instead of �σ,V . If s �σ,V a we say
that a is true, or holds at s in S, and we may write S, s � a, where S denotes
the T -model (S, σ, V ).

Two important observations about Moss’ logic are that it is adequate with respect
to behavioral equivalence (or, equivalently, bisimilarity), and expressive when we
confine attention to finitely branching coalgebras.

3.2 The Derivation System M

When it comes to axiomatics, following [10] we find it convenient to take an
approach based on derivation systems that manipulate equations, or rather,
inequalities. An inequality is a pair consisting of two formulas a and b, usually
written a � b. Readers may think of this as the formula a → b, as is obvious
from the semantics.

Definition 6. An inequality a � b is valid, notation: |=T a � b, if for every
coalgebraic model S = (S, σ, V ), and any s ∈ S, if S, s � a, then S, s � b.

The following axiomatization for this logic was proved to be sound and complete
in [10].

Definition 7. The derivation system M is given by the derivation rules of Ta-
ble 1, together with any complete set of axioms and rules (in inequational format)
for classical propositional logic.

Observe that unless T restricts to finite sets, M is an infinitary derivation sys-
tem, in that the rules (∇2) and (∇3) may have infinitely many premisses. To
get some intuitive understanding of this derivation system, we first note that
(∇1) functions as a combined congruence and monotonicity rule. It has a side
condition expressing that it may only be applied when the set of premisses is
indexed by a relation Z such that (α, β) belongs to the lifted relation TZ. Each
of the other two rules should be seen as a distributive law (in the logical sense
of the word). To see this, first consider the case that T preserve finiteness. Then
we may replace the rules (∇2) and (∇3) with the following axioms :∧{

∇α | α ∈ Γ
}

�
∨{

∇(T
∧

)Φ | Φ ∈ SRD(Γ )
}

(∇2f )

∇(T
∨

)Φ �
∨{

∇β | β T∈ Φ
}

(∇3f )
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Table 1. Modal derivation rules of the system M

(∇1)
{a � b | (a, b) ∈ Z}

∇α � ∇β
(α, β) ∈ TZ

(∇2)
{∇(T

∧
)(Φ) � a | Φ ∈ SRD(Γ )}∧{∇α | α ∈ Γ} � a

(∇3)
{∇α � a | α T∈ Φ}
∇(T

∨
)(Φ) � a

Roughly speaking, (∇3f ) expresses how ∇ distributes over disjunctions, while
(∇2f ) shows how a conjunction of nabla formulas can be rewritten as a disjunc-
tion of nabla formulas of conjunctions of the collection of immediate subformulas
of the nabla formulas. If T does not restrict to finite sets, we may still think of
(∇2) and (∇3) as these identities: the only problem is that the expressions on
the right hand side of (∇2f ) and (∇3f ) may no longer denote properly defined
formulas.

The notions of derivability with respect to this system is standard. A deriva-
tion is a well-founded tree, labelled with inequalities, such that the leaves of
the tree are labelled with axioms of M, whereas with each parent node we may
associate a derivation rule of which the conclusion labels the parent node itself,
and the premisses label its children. If there is a derivation of the inequality
a � b, we write (T a � b. A formula a is M-consistent if the inequality a � ⊥
is not derivable in M; a set A of formulas is consistent if the formula

∧
A0 is

consistent for each finite subset A0 ⊆ A.
The following theorem is the main result of Kupke, Kurz & Venema [10]

Fact 5 (Soundness and Completeness of M). [10] For each pair of formulas
a, b ∈ L:

|=T a � b iff (T a � b.

The completeness proof in [10] proceeds in two steps. First the authors prove a
so-called one-step completeness result for their system; then they apply Pattin-
son’s stratification method, involving the terminal sequence of the functor T , to
prove Fact 5. The construction given in our paper will provide a much simpler
alternative for the second part of their proof.

3.3 One-Step Soundness and Completeness

Given a set X , we define the set L∇(X) of rank-1 formulas in X by putting

L∇(X) := L0{∇α | α ∈ TωL0X}.

It will sometimes be convenient to think of L∇(X) as a propositional language,
generated from the set T∇

ω (X) := {∇α | α ∈ TωL0X} as proposition letters.
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Any valuation V : X → PS, interpreting elements of X as subsets of some set
S, not only extends to a propositional meaning function V̂ : L0(X) → PS, it also
induces an interpretation Ṽ : L∇(X) → PTS of rank-1 formulas in X as subsets
of TS. For the definition of Ṽ , observe that the map T V̂ : TωL0X → TPS
naturally yields a T∇

ω (X)-valuation λTS ◦ T V̂ on TS given by, for α ∈ TωL0X :

∇α �→ λTS (T V̂ (α)).

Then we define Ṽ := ̂
λT ◦ T V̂ .

We may take the set PS itself as a collection of proposition letters; then
the identity map on PS becomes a special PS-valuation on PS: the identity
valuation on S, notation iS : PS → PS. We say that an L0(PS)-inequality
a � b is a true fact on PS, notation: |=S0 a � b, if îS(a) ⊆ îS(b); an L∇(PS)-
inequality a � b is one-step valid, notation: |=S1 a � b, if ĩS(a) ⊆ ĩS(b).

On the axiomatic side, we modify the derivation M into a one-step derivation
system MS , which only uses L0(PS) and L∇(PS)-formulas. More precisely,
a MS-derivation is a well-founded tree, labelled with L0(PS)- and L∇(PS)-
inequalities, such that (1) the leaves of the tree are labelled with true facts
on PS, whereas (2) with each parent node we may associate a derivation rule
of which (a) the conclusion is an L∇(PS)-inequality labelling the parent node
itself, (b) the premisses label its children, and (c) these premisses are either all
L∇(PS)-inequalities, or all L0(PS)-inequalities; in the latter case the children
are all leaves and the derivation rule is (∇1). Hence if we do induction on the
complexity of one-step derivations, we may assume that the base case is given by
an application of rule (∇1). If there is such a one-step derivation of the inequality
a � b, we write (S1 a � b.

Fact 6 (One-Step Soundness and Completeness). [10] Given a set S, for
each pair of rank-1 formulas a, b ∈ L∇(PS):

|=S1 a � b iff (S1 a � b.

4 A Finite Model Construction

In this section we will give the main construction of this paper, serving to prove
Theorem 7 below. As a corollary we obtain Fact 5, the Soundness and Com-
pleteness Theorem of [10].

Theorem 7. Every consistent formula is satisfied in a finite T -coalgebra.

Our construction is based on ideas from Schröder [17]. To give a rough idea,
we need to introduce some terminology. We call a set of formulas closed if it is
closed under taking subformulas and single negations (∼). Given a closed set R
of formulas, we call a subset A ⊆ R an R-atom if A is a maximal consistent
subset of R. Any R-atom A has the properties, for every a ∈ R, that a ∈ A iff
∼a /∈ A, and for every a ∧ b ∈ R, that a ∧ b ∈ A iff both a ∈ A and b ∈ A, etc.
As usual it is straightforward to prove a Lindenbaum Lemma stating that every
consistent subset of R can be extended to an R-atom.
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Definition 8. Given a formula c, let C(c) denote the smallest closed set
containing c, and define the closed set R(c) by

R(c) := {
∨
A∈A

∧
A,¬

∨
A∈A

∧
A | A ⊆ PC(c)}.

We let S(c) denote the set of R(c)-atoms.

Clearly S(c) is a finite set. Hence, by the Lindenbaum Lemma, in order to
prove Theorem 7, it suffices to build a model (S(c), σ, V ) on the set S(c) for
which we can prove a Truth Lemma stating that for all atoms/states A ∈ S(c)
and all formulas a ∈ C(a):

a ∈ A iff A �σ,V a. (1)

The proof of this Truth Lemma will proceed by a formula induction. It should
be obvious how to define a valuation V : Prop → S(c) ensuring (1) for atomic
formulas a; the earlier mentioned properties of atoms takes care of the boolean
cases of the inductive step of the proof. In order to prove the ∇-case of the
induction, we have to come up with a proper definition of the coalgebra map σ :
S(c) → TS(c). This definition will be crucially based on the one-step soundness
and completeness (Fact 6).

Turning to the technicalities, we fix a consistent formula c, and write C,R and
S instead of C(c), R(c) and S(c). For technical reasons, it will be convenient to
see formulas in R as separate proposition letters; formally we define

R := {b | b ∈ R},

and we assume the existence of a bijection q : R → R given by q(b) := b. In
order to apply the one-step soundness and completeness, we link this set with
PS by defining the valuation j : R → PS as follows:

j(b) := {A ∈ S | q(b) = b ∈ A}.

It is straightforward to verify that j is surjective: For each A ∈ S we have
j(
∧

(A ∩ C)) = {A} and for each Z ⊆ S we have j(
∨
A∈Z

∧
(A ∩ C)) = Z. We

extend j to a function j0 : L0R → L0PS by inductively defining j0(¬b) =
¬j0(b), j0(

∧
B) =

∧
{j0(b′) | b′ ∈ B} and j0(

∨
B) =

∨
{j0(b′) | b′ ∈ B} for all

b ∈ L0R and B ⊆ L0R. We now lift j0 to a function j1 : L∇R → L∇PS, by
putting j1(∇β) = ∇T j0(β), j1(¬b) = ¬j1(b), j1(

∧
B) =

∧
{j1(b′) | b′ ∈ B} and

j1(
∨

B) =
∨
{j1(b′) | b′ ∈ B} for all ∇β ∈ L∇R, b ∈ L∇R and B ⊆ L∇R.

In the same way we obtain q0 and q1 from q. Note that all these functions
are surjective, however, q0 and q1 are not necessarily injective. For example take
any a ∧ b ∈ R, then q0(a ∧ b) = q0(a ∧ b) = a ∧ b.

Lemma 1 below, our main technical lemma, links M-derivations of formulas
in L0R and L∇R to, respectively, true facts on PS, and one-step derivations of
formulas in L∇PS. The R-formulas serve as a bridge between R-formulas and
PS-formulas.
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Lemma 1. 1. For a, b ∈ L0R we have (M q0(a) � q0(b) iff |=S0 j0(a) � j0(b).
2. For a, b ∈ L∇R we have (M q1(a) � q1(b) iff (S1 j1(a) � j1(b).

Proof. For part 1, first observe that by some routine propositional reasoning,
we may reduce the problem to the case where a =

∧
A and b =

∨
B for some

A,B ⊆ R. (To see this, note that
∨

A′ � b corresponds to the set {a′ � b | a′ ∈
A′}, etc.)

First suppose that (M q0(
∧

A) � q0(
∨

B), then the set {q(a′) | a′ ∈ A} ∪
{¬q(b′) | b′ ∈ B} is M-inconsistent. We claim that if {q(a′) | a′ ∈ A} ⊆ D for
some D ∈ S, then q(b′) ∈ D for some b′ ∈ B. (If not, then since D is an R-atom,
we would obtain ¬q(b′) ∈ D for all b′ ∈ B, contradicting the consistency of D.)
Therefore we have îSj0(

∧
A) =

⋂
a′∈A j(a′) ⊆

⋃
b′∈B j(b′) = îSj0(

∨
B), thus

j0(
∧

A) % j0(
∨

B) is a true fact on PS.
For the other direction, suppose that �(M q0(

∧
A) � q0(

∨
B), then the set

{q(a′) | a′ ∈ A}∪ {¬q(b′) | b′ ∈ B} is M-consistent. By the Lindenbaum Lemma
there exists a D ∈ S extending this set. Thus D ∈ îSj0(

∧
A) =

⋂
a′∈A j(a′),

but D /∈ îSj0(
∨

B) =
⋃
b′∈B j(b). Therefore

⋂
a′∈A j(a′) �

⋃
b′∈B j(b′) and thus

j0(
∧

A) % j0(
∨

B) is not a true fact on PS.

For part 2, we only consider the direction from right to left. (The other direc-
tion, which we do not need in the remainder, is proved similarly.) By induction
on the complexity of one-step derivation trees we will show that any one-step
derivation tree D, of which the root is labelled with an inequality j1(a) � j1(b),
can be transformed into an M-derivation tree for the inequality q1(a) � q1(b).

Base case: ∇1 By definition of our one-step derivation tree, we may just as
well assume that in the base case of our inductive proof we are dealing with an
instance of the rule ∇1, of which the premisses are all true facts on PS. More
precisely, in this case the conclusion j1(a) � j1(b) stems from some a = ∇α
and b = ∇β (where α, β ∈ TL0R) in the sense that j1(a) = ∇T j0(α) and
j1(b) = ∇T j0(β), and the last applied rule was

(∇1)
{a′ % b′ | (a′, b′) ∈ Z}
∇T j0(α) % ∇T j0(β)

(T j0(α), T j0(β)) ∈ TZ.

for some relation Z ⊆ L0PS × L0PS. In fact, given the properties of relation
lifting, we may assume without loss of generality that

Z = {(a′, b′) ∈ Base(T j0(α)) × Base(T j0(β)) | a′ � b′ is a true fact }.

By the naturality of Base we have for all δ ∈ TL0R

Base(T j0(δ)) = {j0(d) | d ∈ Base(δ)}. (2)

Now define

Ẑ := {(a′, b′) ∈ Base(α) × Base(β) | q0(a′) � q0(b′) is derivable},
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then by equation (2) and by part 1, we have for all a′ ∈ Base(α), b′ ∈ Base(β)
that (j0(a′), j0(b′)) ∈ Z iff (a′, b′) ∈ Ẑ. From this it follows by the properties of
relation lifting that for all α′ ∈ TBase(α), β′ ∈ TBase(β):

(T j0(α′), T j0(β′)) ∈ TZ iff (α′, β′) ∈ TẐ.

In particular, we obtain that (α, β) ∈ TẐ. Again using the properties of relation
lifting we may conclude from this that

(Tq0(α), T q0(β)) ∈ T
(
{(q0(a′), q0(b′)) | (a′, b′) ∈ Ẑ}

)
.

But then, since q1(a) = ∇Tq0(α) and q1(b) = ∇Tq0(β), we can derive the
inequality q1(a) � q1(b), as follows:

(∇1) {q0(a′) % q0(b′) | (a′, b′) ∈ Ẑ}
∇Tq0(α) % ∇Tq0(β)

,

where all premisses are derivable by definition of Ẑ.

In the inductive step we make a case distinction; we only consider the cases
where the last applied rule was (∇3).

Inductive case: (∇3) Suppose that j1(a) is of the form ∇(T
∨

)(Ψ) for some
Ψ ∈ TPL0PS, and that the last applied rule is:

(∇3)
{∇β % j1(b) | β T∈ Ψ}
∇(T

∨
)(Ψ) % j1(b)

(3)

We claim that a is of the form ∇(T
∨

)(Φ) for some Φ ∈ TωPωL0R such that
Ψ = TPj0(Φ). To see this, first observe that a must obviously be of the form
∇α for some α ∈ TωL0R; we will show that α is of the form T

∨
(Φ) with Φ

as above. For this purpose, note that by definition of j0, if a′ ∈ L0R is such
that j0(a′) =

∨
A for some A ∈ PωL0PS, then a′ must be of the form

∨
B for

some B ∈ PωL0R with A = {j0(b′) | b′ ∈ B}. This condition can be expressed
as Gr(j0) ; (Gr

∨
)̆ ⊆ (Gr

∨
)̆ ; Gr(Pj0). Then by the properties of relation

lifting we find that Gr(T j0) ; (GrT
∨

)̆ ⊆ (GrT
∨

)̆ ; Gr(TPj0). From this the
existence of the required object Ψ is immediate.

In order to find an M-derivation for the inequality q1(a) � q1(b), we calculate
q1(a) = q1(∇(T

∨
)(Φ)) = ∇(T

∨
)(TPq0(Φ)). Aiming to derive ∇(T

∨
)(TPq0

(Φ)) � q1(b) via the rule (∇3), let β be an arbitrary lifted member of TPq0(Φ).
From β ∈ λT (TPq0(Φ)) = PTq0(λT (Φ)), we obtain that β is of the form Tq0(α′),
for some lifted member α′ of Φ. But from α′ ∈ λT (Φ) it follows that T j0(α′) ∈
PTj0(λT (Φ)) = λT (TPj0(Φ)) = λT (Ψ). Now observe that j1(∇α′) = ∇T j0(α′),
and so the inequality j1(∇α′) � j1(b) is one of the premisses of (3). Thus by the
inductive hypothesis, we have a M-derivation for the inequality q1(∇α′) � q1(b),
which is nothing but ∇Tq0(α′) � q1(b), that is, ∇β � q1(b).

It follows that we can derive q1(a) = ∇(T
∨

)(TPq0(Φ)) % q1(b) by

(∇3)
{∇β % q1(b) | β T∈ TPq0(Φ)}
∇(T

∨
)(TPq0(Φ)) % q1(b)
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On the basis of Lemma 1(2) we can prove the existence of a coalgebra map
σ : S → TS with the right properties. Note that jq−1(b) = {B ∈ S | b ∈ B}

Lemma 2 (Existence Lemma). There is a map σ : S → TS such that for all
atoms A ∈ S and all formulas of the form ∇α ∈ R:

∇α ∈ A iff σ(A) T∈ T (jq−1)(α). (4)

Proof. Suppose towards contradiction that for some A ∈ S there is no σ(A) that
satisfies equation (4). Define b :=

∧
∇α∈A∇Tq−1(α) ∨

∧
¬∇α∈A ¬∇Tq−1(α). By

assumption we have

ĩSj1(b) =
⋂

∇α∈A
λT (T (jq−1)(α)) ∩

⋂
¬∇α∈A

TS \ λT (T (jq−1)(α)) = ∅.

In other words, |=S1 j1(b) % ⊥, and so we have (S1 j1(b) % ⊥ by one-step com-
pleteness. Then Lemma 1 provides an M-derivation of q0(b) % ⊥, contradicting
the consistency of A.

Lemma 3 (Truth Lemma). Let (S, σ, v) be a model where S is the set of R(c)-
atoms, σ is any map satisfying condition (4) of Lemma 2, and V : Prop → PS is
given by V (p) := {A ∈ S | p ∈ A}. Then (1) holds for all a ∈ C and all A ∈ S.

Proof. Via a straightforward induction on the complexity of a. We only discuss
the case a = ∇α. By definition of the semantics we have A � ∇β iff σ(A) T� β,
and by Lemma 2 we have ∇β ∈ A iff σ(A) T∈ T (jq−1)(β). So in order to finish
the proof, it suffices to show that T� = T∈ ; Gr(T (jq−1))̆ , or, equivalently,
that (*) T� = T∈ ; Gr(T j)̆ ; Gr(Tq). But inductively, if we restrict to formulas
b ∈ R of smaller complexity than ∇α, we have that jq−1(b) = {B ∈ S | b ∈
B} = {B ∈ S | B � b}. This means that � = ∈ ; Gr (j)̆ ; Gr(q) so that (*)
directly follows by the properties of relation lifting.

The proof of Theorem 7 is now straightforward. If c is a consistent formula, it
belongs to some R-atom A by the Lindenbaum Lemma. Then by the Existence
Lemma and the Truth Lemma, we can endow the (finite!) set S of R-atoms with
a coalgebra structure σ and a valuation V such that A �σ,V a.

5 Strong Completeness

In this section we will prove strong completeness of the axiom system M. That is,
we will prove that, given some restrictions on the functor T , every M-consistent
set of formulas is satisfiable. It might be possible to see our strong completeness
result as a special case of Theorem 8.1 in Kurz & Rosický [12] (see also [9]). Nev-
ertheless, we believe our short, direct proof, which follows the ideas of Pattinson
& Schröder [18], to be of value.

Our purpose is to endow the set S of maximal M-consistent sets of formulas
with a coalgebra structure σ : S → TS and a valuation V such that for all A ∈ S
we can prove the following Truth Lemma, stating that for all formulas a:

a ∈ A iff A �σ,V a. (5)
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The idea underlying the construction of σ is that, for each A ∈ S, we may
approximate σ(A) by considering finite versions of S. For this purpose, enumerate
Prop = {pi | i ∈ ω}, and define Propn := {pi | 0 ≤ i < n}. Let L0 = L0(∅) and
let Ln denote the set L0(Propn+1 ∪ {∇α | α ∈ TLn}). Then clearly L(Prop) =⋃
n∈ω Ln. Let Sn be the set of Ln-atoms. It is not hard to show that if T restricts

to finite sets, then each Ln is finite modulo equivalence, whence each Sn is finite.
We let hn : Sn+1 → Sn and πn : S → Sn be defined by hn(A) := A ∩ Ln and
πn(A) := A ∩ Ln. By the Lindenbaum Lemma all hn and πn are surjective.

On the basis of the results in the previous section we can prove the following
lemma.

Lemma 4. For each maximal consistent set A ∈ S there is a family (τn)n∈ω,
with τn ∈ TSn, and such that for all n:

(Thn)τn+1 = τn, (6)

and for all α ∈ TLn it holds that

∇α ∈ πn+1(A) iff α T∈ τn. (7)

Note that (7) requires a relation between elements of Sn+1 and objects, not in
TSn+1, but in TSn.

Proof. (Sketch) For each n let An ∈ Sn denote the atom πn(A). Using the
methods of the previous section it is straightforward to show that for the atom
An ∈ Sn there is an object ρ ∈ TSn which works for An in the sense that for
all α ∈ TLn−1 it holds that ∇α ∈ An iff α T∈ ρ. It is not hard to show that if
ρ ∈ TSn+1 works for An+1 then (Thn)ρ works for An. Consider the tree with
nodes N :=

⋃
n∈ω{ρ ∈ TSn | ρ works for An}, and edge relation E given by

ρEρ′ iff ρ = (Thn)ρ′ for some n. By König’s Lemma this tree has an infinite
path (τn)n∈ω, and it is a routine exercise to verify that this family satisfies the
required properties.

The point of considering the sequence (τn)n∈ω is that, under some condition on
T , they approximate some object τ ∈ TS, that we can take for our σ(A). To
formulate this condition, we define a surjective ω-cochain of finite sets to be
a sequence (Xn)n∈ω of finite sets, with surjections hn : Xn+1 → Xn that are
called projections. In Set, such a diagram has a limit X with limit projections
Tπn : X → Xn. Clearly also in Set each endofunctor T transforms a surjective
ω-cochain of sets into a surjective ω-cochain of sets. Now, to say that T weakly
preserve limits of these diagrams means that whenever we have a diagram as
above, with limit (X, (πn)n∈ω), the set TX with the maps Tπn : TX → TXn is
a weak limit of the diagram ((TXn)n∈ω, (pn)n∈ω). An equivalent requirement is
that for each so-called coherent family (τn ∈ TXn)n∈ω (that is, satisfying (6) for
all n), there is a (not necessarily unique) element τ ∈ TX such that Tπn(τ) = τn
for all n.

On the basis of Lemma 4 we can now prove the following.
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Lemma 5. Let T restrict to finite sets and weakly preserve limits of surjective
ω-cochains of finite sets. Then there is a coalgebra map σ : S → TS and a
valuation V : Prop → PS such that for all a ∈ L(Prop), and all A ∈ S, the
Truth Lemma (5) holds.

Proof. We define V : Prop → PS by putting V (p) := {A ∈ S | p ∈ A}. For the
definition of σ, take an arbitrary A ∈ S, and consider the coherent family (τn)n∈ω
of Lemma 4. By the assumptions on T , we may fix an element σ(A) ∈ TS such
that Tπn(σ(A)) = τn for each n.

By induction on n we prove that for all a ∈ Ln we have

A �σ,V a iff a ∈ πnA. (8)

Confining our attention to the inductive case where n = k + 1, we prove (8) by
formula induction, and we only cover the case where a = ∇α. Note that here we
have α ∈ TLn, and this enables us to apply the outer induction hypothesis.

Now we prove (8) by the following chain of equivalences (writing � rather
than �σ,V ):

A � ∇α iff (σ(A), α) ∈ T� (definition of �)

iff (σ(A), α) ∈ T
(
��S×Lk

)
(Fact 2)

iff (σ(A), α) ∈ T
(
Gr (πk) ; (∈)̆

)
(inductive hypothesis)

iff α T∈ Tπk(σ(A)) (Fact 2)

iff α T∈ τk (definition of σ)
iff ∇α ∈ πk+1(A) (equation (7))

Finally, the Truth Lemma is immediate from (8) by the fact that L(Prop) =⋃
n∈ω Ln and the definitions.

On the basis of this the following is immediate.

Theorem 8. Let T restrict to finite sets and weakly preserve limits of surjective
ω-cochains of finite sets. Then the logic MT is strongly complete with respect to
its coalgebraic semantics.
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12. Kurz, A., Rosický, J.: Strongly complete logics for coalgebras (unpublished) (2006)
13. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96, 277–317 (1999);

Erratum published APAL 1999, 241–259 (1999)
14. Palmigiano, A., Venema, Y.: Nabla algebras and chu spaces. In: Mossakowski, T.,

Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 394–408.
Springer, Heidelberg (2007)

15. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability
of local consequence. Theoretical Computer Science 309, 177–193 (2003)

16. Rutten, J.: Universal coalgebra: A theory of systems. Theoretical Computer Sci-
ence 249, 3–80 (2000)
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Abstract. The category Rel(Set) of sets and relations can be described
as a category of spans and as the Kleisli category for the powerset monad.
A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak
pullbacks. We show that these results extend to the enriched setting, if
we replace sets by posets or preorders. Preservation of weak pullbacks
becomes preservation of exact lax squares. As an application we present
Moss’s coalgebraic over posets.

1 Introduction

Relation lifting [Ba, CKW, HeJ] plays a crucial role in coalgebraic logic, see eg
[Mo, Bal, V].

On the one hand, it is used to explain bisimulation: If T : Set −→ Set is a
functor, then the largest bisimulation on a coalgebra ξ : X −→ TX is the largest
fixed point of the operator (ξ× ξ)−1 ◦T on relations on X , where T is the lifting
of T to Rel(Set) −→ Rel(Set). (The precise meaning of ‘lifting’ will be given in
the Extension Theorem 5.3.)

On the other hand, Moss’s coalgebraic logic [Mo] is given by adding to propo-
sitional logic a modal operator ∇, the semantics of which is given by applying T
to the forcing relation � ⊆ X × L, where L is the set of formulas: If α ∈ T (L),
then x � ∇α ⇔ ξ(x) T (�) α.

In much the same way as Set-coalgebras capture bisimulation, Pre-coalgebras
and Pos-coalgebras capture simulation [R, Wo, HuJ, Kl, L, BK]. This suggests
that, in analogy with the Set-based case, a coalgebraic understanding of logics
for simulations should derive from the study of Pos-functors together with on
the one hand their predicate liftings and on the other hand their ∇-operator.
The study of predicate liftings of Pos-functors was begun in [KaKuV], whereas
here we lay the foundations for the ∇-operator of a Pos-functor. In order to do
this, we start with the notion of monotone relation for the following reason. Let
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(X,≤) and (X ′,≤′) be the carriers of two coalgebras, with the preorders ≤,≤′

encoding the simulation relations on X and X ′, respectively. Then a simulation
between the two systems will be a relation R ⊆ X×X ′ such that ≥ ; R ; ≥′ ⊆ R,
that is, R is a monotone relation. Similarly, � will be a monotone relation. To
summarise, the relations we are interested in are monotone, which enables us
to use techniques of enriched category theory (of which no prior knowledge is
assumed of the reader).

For the reasons outlined above, the purpose of the paper is to develop the
basic theory of relation liftings over preorders and posets. That is, we replace
the category Set of sets and functions by the category Pre of preorders or Pos
of posets, both with monotone (i.e. order-preserving) functions. Section 2 intro-
duces notation and shows that (monotone) relations can be presented by spans
and by arrows in an appropriate Kleisli-category. Section 3 recalls the notion
of exact squares. Section 4 characterises the inclusion of functions into relations
(−)� : Pre −→ Rel(Pre) by a universal property and shows that the relation lift-
ing T exists iff T satisfies the Beck-Chevalley-Condition (BCC), which says that
T preserves exact squares. The BCC replaces the familiar condition known from
Rel(Set), namely that T preserves weak pullbacks. Section 5 lists examples of
functors (not) satisfying the BCC and Section 6 gives the application to Moss’s
coalgebraic logic over posets.

Related Work. The universal property of the embedding of a (regular) category
to the category of relations is stated in Theorem 2.3 of [He]. Theorem 4.1 below
generalizes this in passing from a category to a simple 2-category of (pre)orders.

Liftings of functors to categories of relations within the realm of regular cat-
egories have also been studied in [CKW].

2 Monotone Relations

In this section we summarize briefly the notion of monotone relations on pre-
orders and we show that their resulting 2-category can be perceived in two ways:

1. Monotone relations are certain spans , called two-sided discrete fibrations .
2. Monotone relations form a Kleisli category for a certain KZ doctrine on the

category of preorders.

Definition 2.1. Given preorders A and B, a monotone relation R from A to
B, denoted by

A �
R �� B

is a monotone map R : Bop × A −→ � where by � we denote the two-element
poset on {0, 1} with 0 ≤ 1.

Remark 2.2. Unravelling the definition: for a binary relation R, R(b, a) = 1
means that a and b are related by R. Monotonicity of R then means that if
R(b, a) = 1 and b1 ≤ b in B and a ≤ a1 in A , then R(b1, a1) = 1.
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Relations compose in the obvious way. Two relations as on the left below

A �
R �� B B �

S �� C A �
S·R �� C

compose to the relation on the right above by the formula

S · R(c, a) =
∨
b

R(b, a) ∧ S(c, b) (2.1)

hence the validity of S · R(c, a) is witnessed by at least one b such that both
R(b, a) and S(c, b) hold.

Remark 2.3. The supremum in formula (2.1) is, in fact, exactly a coend in the
sense of enriched category theory, see [Ke].

The above composition of relations is associative and it has monotone relations

A �
A �� A as units, where A (a, a′) holds, if a ≤ a′. Moreover, the relations

can be ordered pointwise: R −→ S means that R(b, a) entails S(b, a), for every
a and b. Hence we have a 2-category of monotone relations Rel(Pre).

Remark 2.4. Observe that one can form analogously the 2-category Rel(Pos) of
monotone relations on posets . In all what follows one can work either with pre-
orders or posets. We will focus on preorders in the rest of the paper, the modifi-
cations for posets always being straightforward. Observe that both Rel(Pre) and
Rel(Pos) have the crucial property: The only isomorphism 2-cells are identities.

2.A The Functor (−)� : Pre −→ Rel(Pre)

We describe now the functor (−)� : Pre −→ Rel(Pre) and show its main proper-
ties. The case of posets is completely analogous. For a monotone map f : A −→
B define two relations

A �
f� �� B B �

f�
�� A

by the formulas f�(b, a) = B(b, fa) and f�(a, b) = B(fa, b).

Lemma 2.5. For every f : A −→ B in Pre there is an adjunction in Rel(Pre)

f� ! f� : B � �� A .

Remark 2.6. Left adjoint morphisms in Rel(Pre) can be characterized as exactly
those of the form f� for some monotone map f having a poset as its codomain.
Therefore, if L ! R : B � �� A in Rel(Pre) and B is a poset, then there exists
a monotone map f : A −→ B such that f� = L and f� = R.

Observe that if f −→ g, then f� −→ g� holds. For if B(b, fa) = 1 then
B(b, ga) = 1 holds by transitivity, since fa ≤ ga holds. Moreover, taking the
lower diamond clearly maps an identity monotone map idA : A −→ A to
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the identity monotone relation A �
A =(idA )�

�� A Further, taking the lower
diamond preserves composition:

(g · f)�(c, a) = C (c, gfa) =
∨
b

C (c, gb) ∧ B(b, fa) = g� · f�(c, a)

Hence we have a functor (−)� : Pre −→ Rel(Pre) enriched in preorders. Moreover,
(−)� is locally fully faithful , i.e., f� −→ g� holds iff f −→ g holds.

2.B Rel(Pre) as a Kleisli Category

The 2-functor (−)� : Pre −→ Rel(Pre) is a proarrow equipment with power objects
in the sense of Section 2.5 [MRW]. This means that (−)� has a right adjoint (−)†

such that the resulting 2-monad on Pre is a KZ doctrine and Rel(Pre) is (up to
equivalence) the corresponding Kleisli 2-category. All of the following results are
proved in the paper [MRW], we summarize it here for further reference.

The 2-functor (−)† works as follows:

1. On objects, A † = [A op , �], the lowersets on A , ordered by inclusion.
2. For a relation R from A to B, the functor R† : [A op , �] −→ [Bop , �] is de-

fined as the left Kan extension of a �→ R(−, a) along the Yoneda embedding
�A : A −→ [A op , �]. This can be expressed by the formula:

R†(W ) = b �→
∨
a

Wa ∧ R(b, a)

i.e., b is in the lowerset R†(W ) iff there exists a in W such that R(b, a) holds.

It is easy to prove that (−)† is a 2-functor and that (−)† ! (−)� is a 2-adjunction
of a KZ type. The latter means that if we denote by

(�, �,�) (2.2)

the resulting 2-monad on Pre, then we obtain the string of adjunctions �(�A ) !
�A ! ��A , see [M1], [M2], for more details.

The unit of the above KZ doctrine is the Yoneda embedding �A : A −→
[A op , �] and the multiplication �A : [[A op , �]op , �] −→ [A op , �] is the left Kan
extension of identity on [A op , �] along �[A op ,�]. In more detail:

�A (W ) = a �→
∨
W

W (W ) ∧ W (a)

where W is in [[A op , �]op , �] and W is in [A op , �]. Hence a is in the lowerset
�A (W ) iff there exists a lowerset W in W such that a is in W . The following
result is proved in Section 2.5 of [MRW]:

Proposition 2.7. The 2-functor (−)� : Pre −→ Rel(Pre) exhibits Rel(Pre) as a
Kleisli category for the KZ doctrine (�, �,�).
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2.C Relations as Spans

Monotone relations are going to be exactly certain spans, called two-sided dis-
crete fibrations. For more information see [S4].

Definition 2.8. A span (d0,E , d1) : B −→ A from B to A is a diagram

E
d0
����
�� d1

��








A B

of monotone maps. The preorder E is called the vertex of the span (d0,E , d1).

Remark 2.9. Given a span (d0,E , d1) : B −→ A , the following intuitive notation
might prove useful: a typical element of E will be denoted by a wiggly arrow

d0(e) e �������� d1(e)

and d0(e) will be the domain of e and d1(e) the codomain of e.

Definition 2.10. A span (d0,E , d1) : B −→ A in Pre is a two-sided discrete
fibration (we will say just fibration in what follows), if the following three con-
ditions are satisfied. For every situation below on the left, there is a unique fill
in on the right, denoted by (d0)∗(e′), respectively (d1)∗(e):

a

��

a′
e′

�������� b′

a
(d0)∗(e′)

��������

��

b′

a′
e′

�������� b′

a
e �������� b

��

b′

a
e �������� b

��

a
(d1)∗(e)

�������� b′

Every situation on the left can be written as depicted on the right:

a
e ��������

��

b

��

a′
e′

�������� b′

a
e �������� b

��

a ��������

��

b′

a′
e′

�������� b′
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Definition 2.11. A comma object of monotone maps f : A −→ C , g : B −→
C is a diagram

f/g
p1

��

p0

��

↗

B

g

��

A
f

�� C

where elements of the preorder f/g are pairs (a, b) with f(a) ≤ g(b) in C , the
preorder on f/g is defined pointwise and p0 and p1 are the projections. The whole
“lax commutative square” as above will be called a comma square.

Example 2.12. Every span (p0, f/g, p1) : A −→ B arising from a comma object
of f : A −→ C , g : B −→ C is a fibration.

A monotone relation B �
R ��A induces a fibration (d0,E , d1) : B −→ A with

E = {(a, b) | R(a, b) = 1} ordered by (a, b) ≤ (a′, b′), if a ≤ a′ and b ≤ b′; and
(d0,E , d1) induces the relation R(a, b) = 1 ⇔ ∃e ∈ E . d0(e) = a, d1(e) = b.

Proposition 2.13. Fibrations in Pre correspond exactly to monotone relations.
Moreover, if (d0,E , d1) : B −→ A is the fibration corresponding to a relation
R : B � ��A , then R = (d0)� · (d1)�.

Remark 2.14. The proposition can be extended to any category enriched in Pre.

Example 2.15. Suppose that f : A −→ B is monotone. Recall the relations
f� : A � �� B and f� : B � �� A . Their corresponding fibrations are the spans

idB/f
p0

		���
�� p1



��
���

f/idB
p0

		���
�� p1



��
���

B A A B

arising from the respective comma squares.

Example 2.16. The relation (�A )� from �A to A will be called the elementhood
relation and denoted by ∈A , since (�A )�(a,A) = �A (�A a,A) = A(a) holds by
the Yoneda Lemma.

2.D Composition of Fibrations

Suppose that we have two fibrations as on the left below. We want to form their
composite E ⊗ F as a fibration.

E
dE
0

����
��
�� dF

1

��
��

��
��

F
dF
0



��
��
�� dF

1

��
��

��
��

C B B A

E ⊗ F
dE⊗F
0

����
��
��
� dE⊗F

1

���
��

��
��

C A

The idea is similar to the ordinary relations: the composite is going to be a
quotient of a pullback of spans, this time the quotient will be taken by a map
that is surjective on objects, hence absolutely dense.
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Remark 2.17. A monotone map e : A −→ B is called absolutely dense (see
[ABSV] and [BV]) iff there is an isomorphism

B(b, b′) ∼=
∨
a

B(b, ea) ∧ B(ea, b′)

natural in b and b′. Clearly, every monotone map surjective on objects has this
property. The converse is true if B is a poset. If B is a preorder, then e is
absolutely dense when each strongly connected component of B contains at
least an element in the image of e.

In defining the composition of fibrations we proceed as follows: construct the
pullback

E ◦ F
q1 ��

q0

��

F

dF
0

��

E
dE
1

�� B

and define E ⊗ F to be the following preorder:

1. Objects are wiggly arrows of the form c �������� a such that there exists b ∈ B
with (c �������� b, b �������� a) ∈ E ◦ F .

2. Put c �������� a to be less or equal to c′ �������� a′ iff c ≤ c′ and a ≤ a′.

Define a monotone map w : E ◦ F −→ E ⊗ F in the obvious way and observe
that it is surjective on objects.

We equip now E ⊗F with the obvious projections dE⊗F
0 : E ⊗F −→ C and

dE⊗F
1 : E ⊗ F −→ A . Then the following result is obvious.

Lemma 2.18. The span (dE⊗F
0 ,E ⊗ F , dE⊗F

1 ) : A −→ C is a fibration.

3 Exact Squares

The notion of exact squares replaces the notion of weak pullbacks in the preorder
setting and exact squares will play a central rôle in our extension theorem. Exact
squares were introduced and studied by René Guitart in [Gu].

Definition 3.1. A lax square in Pre

P
p1 ��

p0

��

↗

B

g

��

A
f

�� C

(3.3)

is exact iff the canonical comparison in Rel(Pre) below is an iso (identity).
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P

�(p0)�
��

↘

B�
(p1)�

��

�g�
��

A C�
f�

��

(3.4)

Remark 3.2. In defining the canonical comparison, we use the adjunctions (p1)� !
(p1)� and f� ! f� guaranteed by Lemma 2.5.

Using the formula (2.1) we obtain an equivalent criterion for exactness: there
is an isomorphism, natural in a and b,

C (fa, gb) ∼=
∨
w

A (a, p0w) ∧ B(p1w, b) (3.5)

Remark 3.3 ([Gu], Example 1.14). Exact squares can be used to characterise
order embeddings, absolutely dense morphisms, (relative) adjoints, and absolute
Kan extensions. Further, (op-)comma squares are exact.

Example 3.4. Every square (3.3) where f and p1 are left adjoints, is exact iff
p0 · pr1 ∼= f r · g, where we denote by f r and pr1 the respective right adjoints.

Example 3.5. If the square on the left is exact, then so is the square on the right:

P
p1 ��

p0

��

↗

B

g

��

A
f

�� C

Pop
pop0 ��

pop1
��

↗

A op

fop

��

Bop
gop

�� C op

Lemma 3.6. Suppose that (dS0 ,E S , dS1 ) and (dR0 ,E R, dR1 ) are two-sided discrete
fibrations. Then the pullback

E S ◦ E R
q1 ��

q0

��

E R

dR
0

��

E S
dS
1

�� B

considered as a lax commutative square where the comparison is identity, is exact.

Given monotone relations A �
R ��B and B �

S ��C , the two-sided fibration
corresponding to the composition S · R is the composition of the fibrations cor-
responding to S and R as described in Section 2.D. The properties described in
the next Corollary are essential for the proof of Theorem 4.1.
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Corollary 3.7. Form, for a pair R, S, of monotone relations the following com-
mutative diagram

E S·R��

dS·R
0

��

��

dS·R
1

��

E S ◦ E R
q0

��			
			

		 q1

����
���

���

w

��

E S
dS
0

����
��
��
� dS

1

����
���

���
� −→ E R

dR
0

�����
���

��� dR
1

���
���

���

C B A

where the lax commutative square in the middle is a pullback square (hence the
comparison is the identity), and w is a map, surjective on objects, coming from
composing E S and E R as fibrations. Then the square is exact and w is an abso-
lutely dense monotone map.

4 The Universal Property of (−)� : Pre −→ Rel(Pre)

We prove now that the 2-functor (−)� : Pre −→ Rel(Pre) has an analogous
universal property to the case of sets. From that, the result on a unique lifting
of T to T will immediately follow, see Theorem 5.3 below.

Theorem 4.1. The 2-functor (−)� : Pre −→ Rel(Pre) has the following three
properties:
1. Every f� is a left adjoint.
2. For every exact square (3.3) the equality f� · g� = (p0)� · (p1)� holds.
3. For every absolutely dense monotone map e, the relation e� is a split epi-

morphism with the splitting given by e�.

Moreover, the functor (−)� is universal w.r.t. these three properties in the fol-
lowing sense: if K is any 2-category where the isomorphism 2-cells are identities,
to give a 2-functor H : Rel(Pre) −→ K is the same thing as to give a 2-functor
F : Pre −→ K with the following three properties:
1. Every Ff has a right adjoint, denoted by (Ff)r.
2. For every exact square (3.3) the equality Ff r · Fg = Fp0 · (Fp1)r holds.
3. For every absolutely dense monotone map e, Fe is a split epimorphism, with

the splitting given by (Fe)r.

Proof (Sketch.). It is trivial to see that (−)� has the above three properties.
Given a 2-functor H : Rel(Pre) −→ K, define F to be the composite H ·

(−)�. Such F clearly has the above three properties, since 2-functors preserve
adjunctions.

Conversely, given F : Pre −→ K, define HA = FA on objects, and on a
relation R = (dR0 )� · (dR1 )� define H(R) = FdR0 · (FdR1 )r, where (FdR1 )r is the
right adjoint of FdR1 in K.

That H is a well-defined functor follows using Corollary 3.7 and our
assumption on F . ��
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5 The Extension Theorem

Definition 5.1. We say that a locally monotone functor T : Pre −→ Pre
satisfies the Beck-Chevalley Condition (BCC) if it preserves exact squares.

Remark 5.2. A functor satisfying the BCC has to preserve order-embeddings,
absolutely dense monotone maps and absolute left Kan extensions. This follows
from Example 1.14 of [Gu], see also Remark 3.3. Examples of functors (not)
satisfying the BCC can be found in Section 6.

Theorem 5.3. For a 2-functor T : Pre −→ Pre the following are equivalent:

1. There is a 2-functor T : Rel(Pre) −→ Rel(Pre) such that

Rel(Pre) T �� Rel(Pre)

Pre
T

��

(−)�

��

Pre

(−)�

��

(5.6)

2. The functor T satisfies the BCC.
3. There is a distributive law T ·� −→ � ·T of T over the KZ doctrine (�, �,�)

described in (2.2) above.

Proof. The equivalence of 1. and 3. follows from general facts about distributive
laws, using Proposition 2.7 above. See, e.g., [S1]. For the equivalence of 1. and
2., observe that T satisfies the BCC iff

Pre
T �� Pre

(−)�
�� Rel(Pre)

satisfies the three properties of Theorem 4.1 above. ��

Corollary 5.4. If T is a locally monotone functor satisfying the BCC, the lifting
T is computed as follows: T (R) = (Td0)� · (Td1)� where (d0,E , d1) is the two-
sided discrete fibration corresponding to R.

6 Examples

Example 6.1. All the “Kripke-polynomial” functors satisfy the Beck-Chevalley
Condition. This means the functors defined by the following grammar:

T ::= constX | Id | T ∂ | T + T | T × T | �T

where constX is the constant-at-X , T ∂ is the dual of T , defined by putting
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T ∂A = (TA op)op

and �X = [X op , �] (the lowersets on X , ordered by inclusion). Observe that
�∂X = [X , �]op , hence �∂X = �X (the uppersets on X , ordered by reversed
inclusion).

Example 6.2. Recall the adjunction Q ! I : Pos −→ Pre, where I is the inclusion
functor and Q(A ) is the quotient of A obtained by identifying a and b whenever
a ≤ b and b ≤ a. The functors Q and I are locally monotone and map exact
squares to exact squares. Hence, if T : Pre −→ Pre satisfies the BCC, so does
QTI : Pos −→ Pos.

Example 6.3. The powerset functor � : Pre −→ Pre is defined as follows. The
order on �A is the Egli-Milner preorder, that is, �(A,B) = 1 if and only if

∀a ∈ A ∃b ∈ B a ≤ b and ∀b ∈ B ∃a ∈ A a ≤ b (6.7)

�f(A) is the direct image of A. The functor � is locally monotone and satisfies
the BCC.

The finitary powerset functor �ω is defined similarly: �ωA consists of the finite
subsets of A equipped with the Egli-Milner preorder. �ω is locally monotone
and satisfies the BCC.

Example 6.4. Given a preorder A , a subset A ⊆ A is called convex if x ≤ y ≤ z
and x, z ∈ A imply y ∈ A.

The convex powerset functor �c : Pos −→ Pos is defined as follows. �cA is
the set of convex subsets of A endowed with the Egli-Milner order. �cf(A) is
the direct image of A. This is a well defined locally monotone functor. Notice
that �c � Q�I, so by Example 6.2, �c satisfies the BCC.

The finitely-generated convex powerset �cω is defined similarly to �c. The only
difference is that the convex sets appearing in �cωA are convex hulls of finitely
many elements of A . Then �cω is locally monotone and is isomorphic to Q�ωI,
thus it also satisfies the BCC.

Observe that both functors are self-dual: (�c)∂ = �c and (�cω)∂ = �cω.

Example 6.5. Since the lowerset functor � : Pre −→ Pre satisfies the Beck-
Chevalley Condition by Example 6.1, we can compute its lifting � : Rel(Pre) −→
Rel(Pre). We show how � works on the relation A �

R ��B . The value �(R) is,
by Theorems 4.1 and 5.3, given by (�d0)� · (�d1)� where (d0,E R, d1) : A −→ B
is the two-sided discrete fibration corresponding to R. Using the formula (2.1)
for relation composition, we can write

�(R)(B,A) =
∨
W

�B(B,�d0(W )) ∧ �A (�d1(W ), A) (6.8)

where B : Bop −→ � and A : A op −→ � are arbitrary lowersets. Since �d1 is a
left adjoint to restriction along dop

1 : (E R)op −→ A op , we can rewrite (6.8) to

�(R)(B,A) =
∨
W

�B(B,�d0(W )) ∧ �E R(W,A · dop
1 )
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and, by the Yoneda Lemma, to

�(R)(B,A) = �B(B,�d0(A · dop
1 ))

Hence the lowersets B and A are related by �(R) if and only if the inclusion

B ⊆ �d0(A · dop
1 )

holds in [Bop , �]. Recall that

�d0(A · dop
1 ) = b �→

∨
w

B(b, d0w) ∧ (A · dop
1 )(w)

Therefore the inclusion B ⊆ �d0(A · dop
1 ) is equivalent to the statement: For all

b in B there is (b1, a1) such that R(b1, a1) and b ≤ b1 and a1 in A.
Observe that the above condition is reminiscent of one half of the Egli-Milner-

style of the relation lifting of a powerset functor. This is because � is the “lower
half” of two possible “powerpreorder functors”. The “upper half” is given by
� : Pre −→ Pre where � = �∂ .

Example 6.6. The relation liftings �, �c, �ω, �cω of the (convex) powerset func-
tor and their finitary versions yield the “Egli-Milner” style of the relation lift-

ing. More precisely, for a relation B �
R ��A we have �(R)(B,A) (respectively

�ω(R)(B,A), �c(R)(B,A), �cω(R)(B,A)) if and only if

∀a ∈ A ∃b ∈ B R(b, a) and ∀b ∈ B ∃a ∈ A R(b, a).

Example 6.7. To find a functor that does not satisfy the BCC, it suffices, by
Remark 5.2, to find a locally monotone functor T : Pre −→ Pre that does
not preserve order-embeddings. For this, let T be the connected components
functor , i.e., T takes a preorder A to the discretely ordered poset of connected
components of A . T does not preserve embedding f : A −→ B indicated below.

A B

• •
a b

• •
a b

•c

��
� ��
�

7 An Application: Moss’s Coalgebraic Logic over Posets

We show how to develop the basics of Moss’s coalgebraic logic over posets. For
reasons of space, this development will be terse and assume some familiarity
with, e.g., Sections 2.2 and 3.1 of [KuL].

Since the logics will have propositional connectives but no negation (to capture
the semantic order on the logical side) we will use the category DL of bounded
distributive lattices. We write F ! U : DL −→ Pos for the obvious adjunction;
and P : Posop −→ DL where UPX = [X , �] and S : DL −→ Posop where
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SA = DL(A, �). Note that UP = [−, �] and recall � = [(−)op , �]. Further, let
T : Pos −→ Pos be a locally monotone finitary functor that satisfies the BCC.

We define coalgebraic logic abstractly by a functor L : DL −→ DL given as

L = FT ∂U

where the functor T ∂ : Pos −→ Pos is given by T ∂X = (T (X op))op . By Exam-
ple 6.1, T ∂ satisfies the BCC. The formulas of the logic are the elements of the
initial L-algebra FT ∂U(L) −→ L. The formula given by some α ∈ T ∂U(L) is
written as ∇α. The semantics is given by a natural transformation

δ : LP −→ PT op

Before we define δ, we need for every preorder A , the relation1

[A , �] �
�A ��A op

given by the evaluation map evA : A × [A , �] −→ �. Observe that

*A = (�A op )� (7.9)

since (�A op )�(a, V ) = [A , �](�A opa, V ) = V a holds by the Yoneda Lemma.

Lemma 7.1. For every monotone map f : A −→ B we have

[A , �] �
�A �� A op

[B, �] ��B

��

�[f,�]�
��

Bop

� (fop)�
��

Corollary 7.2. For every locally monotone functor T that satisfies the
Beck-Chevalley Condition and for every monotone map f : A −→ B, we have

T [A , �] �
T�A �� TA op

T [B, �] �
T�B

��

�T [f,�]�
��

TBop

� T (fop)�
��

Coming back to δ : LP −→ PT op. It suffices, due to F ! U , to give

τ : T ∂UP −→ UPT op

Observe that, for every preorder X , we have

UPT op(X ) = [T opX , �] = �((T opX )op)

By Proposition 2.7, to define τX it suffices to give a relation from T ∂UPX
to (T opX )op , and we obtain it from Theorem 5.3 by applying T ∂ to the re-
lation *X . That τX so defined is natural, follows from Corollary 7.2. This
follows [KKuV] with the exception that here now we need to use T ∂.
1 The type of 
X conforms with the logical reading of 
 as �. Indeed, 
(x, ϕ) & ϕ ⊆

ψ ⇒ 
(x,ψ) and 
(x,ϕ) & x ≤ y ⇒ 
(y,ϕ), where ϕ, ψ are uppersets of X .
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Example 7.3. Recall the functor �cω of Example 6.4 and consider a coalgebra
c : X −→ �cωX . On the logical side we allow ourselves to write ∇α for any
finite subset α of U(L). Of course, we then have to be careful that the semantics
of α agrees with the semantics of the convex closure of α. Interestingly, this
is done automatically by the machinery set up in the previous section, since
�cω = Q�ωI and all these functors are self-dual. By Example 6.6, the semantics
of ∇α is given by

x � ∇α ⇔ ∀y ∈ c(x)∃ϕ ∈ α.y � ϕ and ∀ϕ ∈ α∃y ∈ c(x).y � ϕ.

8 Conclusions

We hope to have illustrated in the previous two sections that, after getting used
to handle the (−)�, (−)� and (−)op , the techniques developed here work surpris-
ingly smoothly and will be useful in many future developments. For example, an
observation crucial for both [KKuV, KuL] is that composing the singleton map
X −→ PX , x �→ {x}, with the relation *X : PX � ��X is idX . Referring
back to (7.9), we find here the same relationship

*A ◦ (�A op )� = (�A op )� ◦ (�A op )� = idA op

The question whether the completeness proof of [KKuV] and the relationship
between ∇ and predicate liftings of [KuL] can be carried over to our setting are
a direction of future research.

Another direction is the generalisation to categories which are enriched over
more general structures than �, such as commutative quantales. Simulation,
relation lifting and final coalgebras in this setting have been studied in [Wo].
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Abstract. We extend the theory of maximal traces of pointed non-
deterministic coalgebras by providing an automata-based characterisa-
tion of the set of maximal traces for finite such coalgebras. We then
consider linear coalgebraic temporal logics interpreted over non-
deterministic coalgebras, and show how to reduce the model checking
problem for such logics to the problem of deciding the winner in a regu-
lar two-player game. Our approach is inspired by the automata-theoretic
approach to model checking Linear Temporal Logic over transition
systems.

Keywords: coalgebra, trace, temporal logic, automata, model checking.

1 Introduction

A coalgebraic version of the well-established notion of trace of a state in a
transition system was defined in [4] for coalgebras of type P ◦ F or P+ ◦ F ,
with P : Set → Set (P+ : Set → Set) the (non-empty) powerset functor and
F : Set → Set a polynomial functor. This was extended in [2] to coalgebras of
type T ◦ F , with F : C → C an endofunctor and T : C → C a monad that
distributes suitably over F . Here we return to the setting of [4] and provide an
automata-based characterisation of the traces of a pointed P+ ◦ F -coalgebra.

Coalgebra automata were introduced in [8] as devices that accept pointed
coalgebras. For a weak pullback preserving functor F , any pointed F -coalgebra
X = (X, γ, x0) with finite carrier defines a deterministic F -automaton accept-
ing precisely the pointed F -coalgebras that are bisimilar to X. The key idea
underlying this paper is to view a finite, pointed P+ ◦ F -coalgebra X not as a
deterministic P+ ◦F -automaton, but as a non-deterministic F -automaton. Our
first result provides a characterisation of the set of traces of X as those elements
of the final F -coalgebra that are accepted by this automaton.

The second part of the paper exploits this insight in order to obtain a decision
procedure for model-checking the coalgebraic counterparts of linear temporal
logic. Such logics arise as certain fragments of the path-based coalgebraic tem-
poral logics defined in [2], and are interpreted over coalgebras of type P+ ◦ F .
Specifically, we consider logics whose formulas are of the form �ϕ, with ϕ a for-
mula of a coalgebraic fixed point logic determined by a set Λ of predicate liftings
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for the functor F . The formula �ϕ requires all traces of a state in a P+ ◦ F -
coalgebra to satisfy the property expressed by ϕ. We define a regular two-player
graph game for deciding whether a formula ϕ as above holds in some trace of a
finite pointed P+ ◦ F -coalgebra X, by combining the Λ-automaton induced by
ϕ (as defined in [3]) with the non-deterministic F -automaton induced by X.

Our approach is inspired by the automata-theoretic approach to model-
checking Linear Temporal Logic [7]. This exploits the observation that both
the models and the formulas to be checked can be represented as Büchi au-
tomata. Then, checking a formula against a model amounts to verifying that the
product of the model automaton (whose runs correspond to possible traces of
the model) with the automaton induced by the negation of the formula to be
verified (which accepts precisely those traces that violate the original formula)
does not accept any trace. In our setting, the automata-based characterisation
of the traces of pointed P+◦F -coalgebras is not directly useful, as our model au-
tomaton is an F -automaton whereas our formula automaton is a Λ-automaton.
However, our approach is similar in nature: we define a regular game G�=∅(X, A)
for every finite, pointed P+ ◦F -coalgebra X and every Λ-automaton A, with the
crucial property that G�=∅(X, A) admits a winning strategy for ∃ precisely when
X contains a trace that is accepted by A. This constitutes our second result.

2 Preliminaries

Graph Games. A graph game played by two players ∃ and ∀ is a tuple G =
(B∃, B∀, E,Win) where B = B∃∪B∀ is the disjoint union of positions owned by
∃ and respectively ∀, E ⊆ B × B indicates the allowed moves, and Win ⊆ Bω .
A play in G is a finite or infinite sequence of positions (b0, b1, . . . ) such that
(bi, bi+1) ∈ E for all i. A finite play is lost by the player who cannot move,
whereas an infinite play (b0, b1, . . . ) is won by ∃ if and only if (b0, b1, . . . ) ∈ Win.

A strategy in G for a player P ∈ { ∃, ∀ } is a function that maps plays that
end in a position b ∈ BP to a position b′ ∈ B such that (b, b′) ∈ E. Intuitively, a
strategy determines a player’s next move, depending on the history of the play. A
strategy for player P is said to be (i) history-free when next moves only depend
on the current position, and (ii) winning from position b ∈ B if P wins all plays
(b0, b1, . . . ) with b0 = b when playing according to that strategy.

A graph game is called regular if there exists an ω-regular language L over a
finite alphabet C and a map col : B → C such that Win = {(b0, b1, . . .) ∈ Bω |
col(b0)col(b1) . . . ∈ L}. A parity game is a graph game whose winning condition is
defined using a parity map Ω : B → ω with finite range, by Win = { (b0, b1, . . . ) |
max{ k | k = Ω(bi) for infinitely many i ∈ ω } is even }. Any regular game can
be transformed into an equivalent parity game [6]. Regular games are determined,
that is, either ∃ or ∀ has a winning strategy from any given position. In addition,
parity games admit history-free winning strategies.

Maximal Traces and Executions. A definition of infinite traces for coalge-
bras of type P ◦F or P+ ◦F with F a polynomial endofunctor (i.e. constructed
from identity and constant functors using products, coproducts and exponents)
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was given in [4]. This was generalised in [2], where it was shown how to define, for
a coalgebra (X, γ) of type T ◦ F with F : C → C an endofunctor and T : C → C
an affine monad that distributes over F via a distributive law λ : FT =⇒ TF ,
a maximal trace map trγ : X → T (Z) as well as a maximal execution map
execγ : X → T (ZX)1. Here, Z is the carrier of the final F -coalgebra (Z, ζ), and
ZX is the carrier of the final X × F -coalgebra (ZX , ζX). The states of Z and
ZX represent potential maximal traces, respectively executions. In addition to
the information provided by a trace, an execution also records the states visited,
including the initial state. The maximal trace (execution) map then assigns to
each state in X a suitably-structured collection of traces (respectively execu-
tions). For T = P+, this collection is structured as a set.

Example 1. 1. Let T = P+ and F = A × Id. That is, T ◦ F -coalgebras are la-
belled transition systems with the additional requirement that each state has
at least one successor2. In this case, the potential maximal traces (elements
of the final A × Id-coalgebra) are given by infinite sequences of elements of
A. Also, for a P+ ◦F -coalgebra (X, γ), the potential maximal executions are
given by infinite sequences of the form x0a0x1a1 . . . with xi ∈ X and ai ∈ A
for i ∈ ω. The maximal execution map trγ : X → P+(Z) assigns to each
state x0 ∈ X , the set of computation paths (infinite sequences x0a0x1a1 . . .
with (ai, xi+1) ∈ γ(xi) for i ∈ ω) originating in x0. Also, the maximal trace
map assigns to each state x0, the set of infinite sequences of elements of A
that appear in computation paths starting in x0.

2. By changing F to 1 + A× Id with 1 = {∗}, one moves to labelled transition
systems with explicit termination (with the same restriction as above). This
time, the potential maximal traces and executions also include finite ones of
the form a0a1 . . . an∗, and respectively x0a0x1 . . . anxn+1∗.

3. Taking F = A+ Id× Id results in maximal executions for a P+ ◦F -coalgebra
(X, γ) being given by (possibly infinite) binary trees whose nodes (including
any leaves) are labelled by states of X , and whose leaves (if any) are labelled
by elements of A. As before, maximal traces can be obtained from maximal
executions by removing the labelings with elements of X from the nodes.

For T = P+, the trace map of [2] is given by:

trγ(x) = {z ∈ Z | πi(z) ∈ γi(x) for all i ∈ ω} (1)

where (Z, (πi : Z → F i1)i∈ω) defines the limit of the final sequence of F , and
where the maps γi : X → P+(F i1) are defined by induction on i:

– γ0 = η1◦!X : X → P+1, where η : Id =⇒ P+ denotes the unit of the monad
P+, and !X : X → 1 is the unique map from X to the one-element set 1,

– γi+1 = μF i+11 ◦ P+λF i1 ◦ P+Fγi ◦ γ : X → P+(F i+11) for i ∈ ω, where
μ : P+ ◦ P+ =⇒ P+ denotes the multiplication of the monad P+.

1 Some additional assumptions on F and T were needed in loc. cit., including preser-
vation of certain ω

op
-limits by F and X × F .

2 This restriction is typical in logics such as CTL*, where it allows the definition of a
notion of computation path that only accounts for infinite computations.
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Thus, the elements of trγ(x) are given by infinite sequences (zi)i∈ω with zi ∈
γi(x) for i ∈ ω. Here, the elements of F i1 are to be thought of as finite ap-
proximations of maximal traces, and the maps γi can be regarded as finite
approximations of the trace map.

An equivalent definition of the trace map when T = P+ and when the dis-
tributive law λ : FP+ =⇒ P+F arises via relation lifting is given in [4]. For a
relation 〈r1, r2〉 : R 	 X × Y , the relation Rel(F )(R) ⊆ FX × FY is obtained
using the epi-mono factorisation of 〈F (r1), F (r2)〉 as follows:

F (R) �� ��

〈F (r1),F (r2)〉 ����
���

��
Rel(F )(R)

��

��

F (X) × F (Y )

Then, when fixing λ : FP+ =⇒ P+F to be given by:

a ∈ λX(u) iff (a, u) ∈ Rel(F )(∈X) (2)

with ∈X ⊆ X × P+X the membership relation, the trace map trγ : X → P+Z
associated to a P+ ◦ F -coalgebra (X, γ) can be defined by exploiting the obser-
vation that the following set carries F -coalgebra structure:

U := {(ui)i∈ω ∈
∏
i∈ω

F iX | (ui+1, ui) ∈ Bi for i ∈ ω}

where the relations Bi ⊆ F i+1X × F iX are defined inductively by:

– B0 := {(y, x) ∈ FX × X | y ∈ γ(x)},
– Bi+1 := Rel(F )(Bi) for i ∈ ω.

Specifically, [4] shows the existence of an isomorphism ϕ : U− → FU , with
U− := {(ui+1)i∈ω | (ui)i∈ω ∈ U}. This, in turn, yields an F -coalgebra structure
σ : U → FU on U :

U
〈πi+1〉i∈ω

�� U−
ϕ

�
�� FU

The trace map trγ : X → P+Z is now given by:

trγ(x) = {z ∈ Z | z =!U (u) for some u ∈ U with π0(u) = x} (3)

where !U : (U, σ) → (Z, ζ) is the unique F -coalgebra homomorphism arising from
the finality of (Z, ζ).

Path-Based Coalgebraic Temporal Logics. The path-based coalgebraic
temporal logics defined in [2] are interpreted over coalgebras of type T ◦ F ,
with T and F as before, and are parameterised by sets Λ and ΛF of monotone
predicate liftings for the endofunctors T and F , respectively. In [2], a (unary)3

3 To simplify the presentation, we assume all predicate liftings to be either unary or
nullary; however, our results hold for predicate liftings with arbitrary finite arities.
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predicate lifting for an endofunctor F : C → C is taken to be a natural transfor-
mation λ : P =⇒ P ◦F , with P : C → Set a subfunctor of P̂ ◦U , P̂ : Set → Set

op

the contravariant powerset functor, and U : C → Set mapping a state space to
its underlying set. The syntax and semantics of path-based coalgebraic temporal
logics are summarised next.

Definition 2 ([2]). Let Λ and ΛF denote sets of monotone predicate liftings
for T and F , respectively. The language μL ::= μLΛF

Λ (U ,V) over a 2-sorted set
(U ,V) of propositional variables (with sorts for paths and respectively states) is
defined by the following grammar:

μLF * ϕ ::= tt | ff | q | Φ | ϕ ∧ ϕ | ϕ ∨ ϕ | [λF ]ϕ | ηq.ϕ
μL * Φ ::= tt | ff | p | [λ]ϕ | Φ ∧ Φ | Φ ∨ Φ

where q ∈ U , p ∈ V, η ∈ {μ, ν}, λF ∈ ΛF and λ ∈ Λ.

That is, path formulas ϕ are built from propositional variables q and state for-
mulas Φ using positive boolean operators, modal operators [λF ] and fixpoint op-
erators, while state formulas Φ are built from atomic propositions p and modal
formulas [λ]ϕ using positive boolean operators.

Such languages are interpreted over pairs consisting of a T ◦F -coalgebra (X, γ)
and a 2-sorted valuation V : (U ,V) → (PZX , PX) (interpreting path and state
variables as sets of maximal executions and respectively of states), by making
use of the maximal execution map execγ : X → TZX .

Definition 3 ([2]). Given a T ◦F -coalgebra (X, γ) and a 2-sorted valuation V :
(U ,V) → (PZX , PX), the semantics �ϕ�γ,V ∈ PZX of path formulas ϕ ∈ μLF
and �Φ�γ,V ∈ PX of state formulas Φ ∈ μL is defined by:

�q�γ,V = V (q)
�Φ�γ,V = P (π1 ◦ ζX)(�Φ�γ,V )

�[λF ]ϕ�γ,V = (P (π2 ◦ ζX) ◦ (λF )ZX )(�ϕ�γ,V )

�μq.ϕ�γ,V = lfp((ϕ)γ,Vq )

�νq.ϕ�γ,V = gfp((ϕ)γ,Vq )
�p�γ,V = V (p)

�[λ]ϕ�γ,V = (P execγ ◦ λZX )(�ϕ�γ,V )

and the usual clauses for the boolean operators, where, for q ∈ U , (ϕ)γ,Vq :
PX → PX denotes the monotone map defined by (ϕ)γ,Vq (Y ) = �ϕ�γ,V ′ with
V ′(p) = V (p) for p ∈ V, V ′(q) = Y and V ′(r) = V (r) for r ∈ U , r �= q, whereas
lfp( ) and gfp( ) construct least and respectively greatest fixpoints.

Thus, a maximal execution satisfies a state formula Φ (regarded as a path for-
mula) precisely when the first state of that execution (obtained by applying π1 ◦
ζX : ZX → X) satisfies Φ. The F -coalgebra structure π2◦ζX : ZX → FZX on the
set of maximal executions is used to define when an execution satisfies the path
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formula [λF ]ϕ. Finally, to obtain the set of states satisfying the state formula

[λ]ϕ, with ϕ a path formula, one uses the map PZX
(λ)ZX �� PTZX

P execγ
�� PX

to go from a set of maximal executions (those satisfying ϕ) to a set of states.
In what follows, we restrict attention to coalgebras over Set and take U =

Id and P = P̂ . Moreover, we only consider the case T = P+ and take Λ =
{λ�} with λ� : P̂ =⇒ P̂ ◦ P+ given by (λ�)X(Y ) = PY . In this case, one
can consider a fragment of the above language where atomic propositions p ∈
V are regarded as path formulas (and hold on a path if they hold in its first
state), and where state formulas can only be of the form �ϕ with ϕ a path
formula, and can not be viewed as path formulas. This yields what we call linear
coalgebraic temporal logics for P+ ◦ F -coalgebras, where the linearity pertains
to the branching structure arising from the presence of P+: the state formula
�ϕ requires all maximal executions from a particular state to satisfy the path
formula ϕ. The syntax of such a fragment is thus parameterised by a choice ΛF
of monotone predicate liftings for the functor F , and can be described as follows:

ϕ ::= tt | ff | q | p | ϕ ∧ ϕ | ϕ ∨ ϕ | [λF ]ϕ | ηq.ϕ
Φ ::= �ϕ

The semantics inherited by this fragment provides, for each pair consisting of a
P+ ◦ F -coalgebra (X, γ) and a 2-sorted valuation V : (U ,V) → (PZX , PX), an
interpretation of path formulas as subsets of ZX , and an interpretation of state
formulas as subsets of X . In particular, the interpretation of atomic propositions
p ∈ V is given by �p�γ,V = P (π1 ◦ ζX)(V (p)).

Two observations are now worth making. Firstly, the use of the final X × F -
coalgebra (ZX , ζX) in defining the semantics of path formulas is not needed
anymore: since state formulas cannot be viewed as path formulas, the final F -
coalgebra would suffice. Secondly, the syntax of path formulas is that of the
coalgebraic μ-calculus considered in [3], after regarding propositional variables in
V as nullary modal operators. Based on these observations, the above syntactic
fragment can be given an equivalent semantics that makes direct use of the
semantics of the coalgebraic μ-calculus (as given in [3]). This is achieved by
regarding a pair consisting of a P+ ◦F -coalgebra with carrier X and a valuation
of type V → PX as a coalgebra of P+(PV ×F ), and by viewing the elements of
V ∪ΛF as predicate liftings for the functor PV ×F : an atomic proposition p ∈ V
yields a nullary predicate lifting λp : 1 =⇒ P̂(PV × F ) for PV × F given by
(λp)X = {(P, y) ∈ PV×FX | p ∈ P}, whereas a predicate lifting λF : P̂ =⇒ P̂F

for F yields the predicate lifting P̂π2 ◦ λF : P̂ =⇒ P̂(PV × F ) for PV × F .
The next result gives an equivalent semantics for the linear fragments of path-

based coalgebraic temporal logics, solely in terms of maximal trace maps:

Proposition 4. Let (ZPV , ζPV) denote the final PV × F -coalgebra, let (X, γ)
be an arbitrary PV × (P+ ◦ F )-coalgebra (incorporating a P+ ◦ F -coalgebra and
a valuation of type V → P(X)), and let (X, γ̃) be the P+ ◦ (PV × F )-coalgebra
given by stPV,F ◦ γ, where stPV,F : PV × (P+ ◦ F ) =⇒ P+ ◦ (PV × F ) is the
strength of the monad P+:
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X
γ

�� PV × P+(FX)
stPV,F X

�� P+(PV × FX)

Then x |=γ �ϕ iff z |=ζPV ϕ for all z ∈ trγ̃(x), where |=ζPV is the satisfaction
relation between states of (ZPV , ζPV) and variable-free formulas of the coalgebraic
μ-calculus induced by V ∪ΛF , and trγ̃ : X → P+ZPV is the trace map of (X, γ̃).

Example 5. 1. Let F = A× Id and ΛF = {a | a ∈ A} ∪ {◦}, with the predicate
liftings λa : 1 =⇒ P̂ ◦ (A × Id) for a ∈ A and λ◦ : P̂ =⇒ P̂ ◦ (A × Id) being
given by (λa)X(∗) = {a} × X and (λ◦)X(Y ) = A × Y . This yields a linear
temporal logic for P+ ◦ (A × Id)-coalgebras, with, for example, the formula
�μX.(a∨◦X) stating that the label a occurs along every trace of a pointed
P+ ◦ (A × Id)-coalgebra.

2. For F = 1+A×Id, one can obtain a logic that also talks about termination by
extending a variant of the previous set of predicate liftings with the nullary
predicate lifting λ⊥ : 1 =⇒ P̂ ◦ (1 + A × Id) given by (λ⊥)X(∗) = {ι1(∗)}.
In the resulting logic, the formula �μX.(⊥ ∨ ◦X) states that all maximal
executions of a pointed P+ ◦ (1 + A × Id)-coalgebra are finite ones.

3. For F = A+Id×Id, a natural choice for ΛF is the set {a | a ∈ A}∪{[π1], [π2]},
with the predicate liftings λa : 1 =⇒ P̂ ◦(A+ Id× Id) for a ∈ A and λπ1 , λπ2 :
P̂ =⇒ P̂ ◦ (A + Id × Id) being given by (λa)X(∗) = {ι1(a)}, (λπ1)X(Y ) =
ι2(Y ×X) and (λπ2)X(Y ) = ι2(X × Y ). In the resulting temporal logic, the
formula �μX.(a ∨ [π1] X ∨ [π2] X) requires all maximal traces of a pointed
P+ ◦ (A + Id × Id)-coalgebra to have a leaf labelled by a.

Linear coalgebraic temporal logics can thus be viewed as coalgebraic generalisa-
tions of Linear Temporal Logic [7]. In what follows, we consider P+◦F -coalgebras
instead of P+ ◦ (PV ×F )-coalgebras, and assume that the interpretation for any
atomic propositions has already been incorporated into the functor F .

Coalgebra Automata. We now recall the various coalgebraic notions of au-
tomaton that are required for the subsequent development. The definitions that
follow assume that the functor F : Set → Set preserves weak pullbacks.

Definition 6 ([5]). A (parity) alternating F -automaton is a tuple (A, a0, δ, Ω)
with A a finite set of states, a0 the initial state, δ : A → PPFA the transition
function and Ω : A → ω a parity map. If for all a ∈ A, all elements of δ(a) are
singletons, the automaton is called non-deterministic. Also, if for all a ∈ A, δ(a)
is of the form {{ϕa}} for some ϕa ∈ FA, the automaton is called deterministic.

Definition 7 ([5]). Given an F -automaton A = (A, a0, δ, Ω) and an F -coalgebra
S = (S, γ), the acceptance game G(A, S) is the parity game defined by:

Position: b Player: P(b) Admissible moves: E[b] Priority
(s, a) ∈ S × A ∃ {(s, Φ) ∈ S × P(FA) | Φ ∈ δ(a)} Ω(a)
(s, Φ) ∈ S × P(FA) ∀ {(s, ϕ) ∈ S × FA | ϕ ∈ Φ} 0
(s, ϕ) ∈ S × FA ∃ {(Z ⊆ S × A | (γ(s), ϕ) ∈ Rel(F )(Z)} 0
Z ∈ P(S × A) ∀ Z 0
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The automaton A is said to accept a pointed coalgebra (S, s0) if (s0, a0) is a
winning position for ∃ in G(A, S).

Positions (s, a) ∈ S ×A of the acceptance game are called basic positions. Here,
the aim of ∃ is to show that the state s of the coalgebra fits the description
provided by the state a of the automaton. The game also contains intermediary
positions of three other types. Before arriving at a basic position again, ∃ must
provide a witnessing relation Z ⊆ S × A in a position of type S × FA.

The game G(A, S) is closely related to the bisimulation game of [1].

Definition 8 ([1]). Let S = (S, γ) and S′ = (S′, γ′) be two F -coalgebras. The
bisimulation game B(S, S′) is the graph game defined by:

Position: b Player: P(b) Admissible moves: E[b]
(s, s′) ∈ S × S′ ∃ {Z ⊆ S × S′ | (γ(s), γ(s′)) ∈ Rel(F )(Z)}
Z ⊆ S × S′ ∀ Z

Finite plays of B(S, S′) are lost by the player who can not move, whereas infinite
plays are won by ∃.

[1] shows that the bisimilarity of two states s ∈ S and s′ ∈ S′ is equivalent to
the existence of a winning strategy for ∃ from position (s, s′) in B(S, S′).

For a deterministic automaton A, the acceptance game G(A, S) is essentially
the bisimulation game B(S, A′), where A′ = (A,α, a0) is the F -coalgebra given
by α(a) = ϕa for a ∈ A. However, for arbitrary alternating automata, ∃ and ∀
must play a small sub-game in each round starting in a basic position, in order
to arrive at a position where ∃ must provide a witnessing relation Z. The first
occurrence of the powerset functor in the codomain of the transition function of
an alternating automaton indicates a choice for ∃ in this sub-game, whereas the
second occurrence of P indicates a choice for ∀. In the case of non-deterministic
automata, ∀ has no real choice while playing the previously-mentioned sub-game.

Remark 9. Any finite, pointed F -coalgebra S = (S, γ, s0) can be turned into an
F -automaton AS,s0 = (S, s0, Δγ , Ω0), where Δγ(s) = {{γ(s)}} and Ω0(s) = 0
for s ∈ S. Moreover, this automaton accepts a pointed F -coalgebra (D, δ, d0) if
and only if the states s0 and d0 are bisimilar (see e.g. [8] for details).

Automata that account for the satisfaction of coalgebraic μ-calculus formulas
by states of F -coalgebras were considered in [3]. For a set Λ of monotone pred-
icate liftings for F , Λ-automata differ from F -automata in that their transition
functions have type A → L0Λ(A), with L0(X) the set of lattice terms over
X . In the acceptance game for a Λ-automaton, the aim of ∃ is to show that a
pointed coalgebra satisfies the formula encoded by the automaton. Thus, occur-
rences of conjunction in the lattice terms used to define the transition function
of a Λ-automaton correspond to choices of ∀ in the associated acceptance game,
whereas occurrences of disjunction correspond to choices of ∃. These choices are,
however, made implicit by the presentation of the acceptance game given below.
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Definition 10 ([3]). Let Λ be a set of monotone predicate liftings for F . A
Λ-automaton is a tuple (A, a0, δ, Ω) with A a finite set of states, a0 the initial
state, δ : A → L0Λ(A) the transition function and Ω : A → ω a parity map.

The following is a slight reformulation of the acceptance game for a Λ-automaton:

Definition 11 ([3]). Given a Λ-automaton A = (A, a0, δ, Ω) and an F -coalgebra
S = (S, γ), the acceptance game G(A, S) is the parity game defined by:

Position: b Player: P(b) Admissible moves: E[b] Priority
(s, a) ∈ S × A ∃ {(Z ⊆ S × A | γ(s) ∈ �δ(a)�1Z} Ω(a)
Z ∈ P(S × A) ∀ Z 0

where for Z ⊆ S × A and ϕ ∈ L0Λ(A), �ϕ�1Z ∈ P(FS) is defined inductively by

�[λ](a1, . . . , an)�1Z = λS(�a1�Z , . . . , �an�Z)

and the usual clauses for conjunction and disjunction. Here, �a�Z ∈ PS is given
by �a�Z := {s ∈ S | (s, a) ∈ Z}, for a ∈ A. The automaton A is said to accept a
pointed coalgebra (S, s0) if (s0, a0) is a winning position for ∃ in G(A, S).

As shown in [3], any coalgebraic μ-calculus formula ϕ can be mapped to a
Λ-automaton accepting precisely the pointed F -coalgebras that satisfy ϕ.

3 Automata-Based Characterisation of Maximal Traces

We now provide an automata-theoretic characterisation of the set of maximal
traces of a pointed P+ ◦ F -coalgebra (X, γ, x0) with finite carrier, by defining
a non-deterministic F -automaton that accepts exactly those traces (elements of
the final F -coalgebra) which belong to trγ(x0). The construction of this automa-
ton is straightforward: we simply regard the coalgebra map γ as the transition
function of a non-deterministic F -automaton with a trivial parity map. As a
result, for each trace of x0, ∃’s moves in basic positions (z, x) of the acceptance
game for this F -automaton can be chosen so as to select precisely the values
y ∈ γ(x) that generate the given trace.

In what follows, F is assumed to be a polynomial and standard functor (hence
pullback and non-empty intersection preserving), and λ : FP+ =⇒ P+F is
assumed to be as in (2). Both restrictions are required in order to make use of
the alternative definition of the trace map of a P+ ◦ F -coalgebra given in (3).

Definition 12. The trace automaton induced by a pointed P+ ◦ F -coalgebra
(X, γ, x0) is the non-deterministic F -automaton Xγ = (X, δγ , x0, Ω0) where:

– δγ : X → PPFX is given by δγ(x) = {{y} | y ∈ γ(x)} for x ∈ X,
– Ω0 : X → ω is given by Ω0(x) = 0 for x ∈ X.

This definition should be compared with that of the automaton in Remark 9 –
the difference is that the non-determinism provided by the coalgebra γ is now
used to provide a non-deterministic F -automaton, as opposed to a deterministic
P+ ◦ F -automaton. Our first main result can now be stated as follows.
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Theorem 13. Let (X, γ, x0) be a pointed P+◦F -coalgebra, and let (Z, ζ) denote
the final F -coalgebra. Then, for z0 ∈ Z, z0 ∈ trγ(x0) iff Xγ accepts the pointed
coalgebra (Z, ζ, z0).

To prove this result we need the following definition.

Definition 14. For y ∈ FY , let

Base(y) :=
⋂

{Y ′ ⊆ Y | y ∈ FY ′}

For (z, y) ∈ FZ × FY such that (z, y) ∈ Rel(F )(R) for some R ⊆ Z × Y , let

Base(z, y) :=
⋂

{R ⊆ Z × Y | (z, y) ∈ Rel(F )(R)}

The preservation of non-empty intersections by F gives y ∈ FBase(y). Thus,
Base(y) is the smallest set Y ′ with the property that y ∈ FY ′. Similarly, one
can show by induction on the structure of the polynomial functor F that Rel(F )
preserves non-empty intersections. As a result, whenever Base(z, y) exists, it is
the smallest relation R with the property that (z, y) ∈ Rel(F )(R). We now return
to the proof of Theorem 13 which, due to space limitations, is only outlined here.

Proof (sketch). For the if direction, let S denote a winning strategy for ∃ in
G(Xγ , (Z, ζ, z0)), and assume w.l.o.g. that S prescribes the smallest possible
witnessing relations, namely Base(ζ(z), y), in positions (z, y) ∈ Z × FX . The
S-conform G(Xγ , (Z, ζ, z0))-plays can now be visualised as branches of the fol-
lowing tree (where positions in which ∀ has no choice have been omitted):

. . .

(x1, R1)
∃ �� (y1, A1)

∃ �� (Base(y1), Z1)

∀ ��

∀ ��

...

(x0, R0)
∃ �� (y0, A0)

∃ �� (Base(y0), Z0)

∀ ��

∀ ��

...
. . .
. . .

(x′
1, R

′
1)

∃ �� (y′1, A
′
1)

∃ �� (Base(y′1), Z
′
1)

∀ ��

∀ ��

...

. . .

∃’s moves provided by S can then be used to define an F -coalgebra structure
ξ : D → FD on the set D of basic positions reachable from (z0, x0) through an S-
conform G(Xγ , (Z, ζ, z0))-play. Moreover, the winning strategy S can be mirrored
in the bisimulation game B((Z, ζ, z0), (D, ξ, (z0, x0))), by letting ∃ move in a
position (z, (z, x)) to the position {(z′, (z′, x′)) | (z′, x′) ∈ Base(ζ(z), y)}, where
(z, y) is the move prescribed by S in position (z, x). This yields a winning strategy
for ∃ in the bisimulation game, and hence (Z, ζ, z0) ∼ (D, ξ, (z, x0)). Using this
and the definition of λ given in (2), once can show that πi(z0) ∈ γi(x0) for i ∈ ω,
which finally yields z0 ∈ trγ(x0) by the definition of trγ in (1).

For the only if direction one can prove more generally that, for x ∈ X
and z ∈ trγ(x), ∃ has a (history-free) winning strategy from position (z, x)
in G(Xγ , (Z, ζ, z0)). The key idea is to make use of the following property of the
trace map, as proved in [4]:

{ζ(z) | z ∈ trγ(x)} =
⋃

{λZ((F trγ)(y)) | y ∈ γ(x)}
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for each x ∈ X . Using the above, z ∈ trγ(x) yields some y ∈ γ(x) such that ζ(z) ∈
λZ((F trγ)(y)). This, in turn, yields a suitable choice of a trace zx′ ∈ trγ(x′) for
each x′ ∈ Base(y). Our winning strategy now requires ∃ to move in position
(z, x) to (z, y) and then immediately to the relation {(zx′ , x′) | x′ ∈ Base(y)}.
Clearly this guarantees that ∃ will never be stuck in a play, and since all infinite
G(Xγ , (Z, ζ, z0))-plays are won by ∃, it follows that the proposed strategy is a
winning strategy for ∃ in G(Xγ , (Z, ζ, z0)). ��

Remark 15. Under the assumption that the coalgebra (X, γ) contains no du-
plicates (see Definition 16), an alternative proof of the previous result can be
given by showing that the coalgebra (D, ξ) constructed in the above proof is a
sub-coalgebra of the coalgebra (U, σ) defined in Section 2.

4 Model Checking Linear Coalgebraic Temporal Logics

This section defines a regular graph game, called the non-emptiness game, for
deciding whether a formula �ϕ of a linear coalgebraic temporal logic (induced
by a set Λ of predicate liftings for F ) holds in a finite, pointed P+ ◦F -coalgebra
X. We represent the negation of the formula ϕ as a Λ-automaton4, and use the
non-deterministic F -automaton induced by X as a description of its traces. The
game we define has the property that winning strategies of ∃ correspond to traces
of X that are accepted by the Λ-automaton. Thus, the existence of a winning
strategy for ∃ is equivalent to the formula �ϕ not holding in X, while the winning
strategy itself provides a counter-example for the statement X |= �ϕ.

Although such a game can be defined for any pointed P+ ◦ F -coalgebra, the
game has a much simpler presentation for coalgebras with no duplicates. We will
therefore only define the game for such coalgebras, and show that any P+ ◦ F -
coalgebra with finite carrier can be transformed into a P+ ◦ F -coalgebra with
no duplicates, and whose carrier is still finite. The next definition formalises the
idea of a state x occurring more than once in some y ∈ FX .

Definition 16. A P+ ◦F -coalgebra (X, γ) contains duplicates if there exist u ∈
X, y ∈ γ(u), x ∈ Base(y) and y′ ∈ F (X + 1) such that:

– ι1(x), ι2(∗) ∈ Base(y′),
– y = F [1X , x](y′) (where x : 1 → X maps ∗ to x).

We then call y ∈ FX a duplicate type of (X, γ), and x a duplicate state of y.

Thus, an F -coalgebra (X, γ) contains duplicates if there exist x, u ∈ X and
y ∈ γ(u) such that x occurs at least twice in y.

Example 17. Let F = {0, 1}+ Id× Id. The elements of the final F -coalgebra are
(possibly infinite) binary trees with leaves labelled by either 0 or 1. Now let (X, γ)
be the P+ ◦ F -coalgebra given by X = {x0, x}, γ(x0) = {(x, x)}, γ(x) = {0, 1}.
In this case, (x, x) is a duplicate type of (X, γ), and x is a duplicate state of
(x, x). We also note in passing that in this case, trγ(x) = {0, 1}, whereas trγ(x0)
consists of all four binary trees of depth 1 with leaves labelled by either 0 or 1.
4 We assume that Λ contains enough predicate liftings to encode negations of formulas.
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Lemma 18. Assume that F preserves finite sets5. There exists an effective pro-
cedure translating any P+ ◦F -coalgebra (X, γ) with finite carrier into a P+ ◦F -
coalgebra (X ′, γ′) with finite carrier and no duplicates, and with a surjective
P+ ◦ F -coalgebra homomorphism π : (X ′, γ′) → (X, γ).

The next definition will allow the formulation of the winning condition for the
non-emptiness game.

Definition 19. Let Ω : A → ω be a parity map. A trace through a sequence of
relations (Ri)i∈ω with Ri ⊆ A×A for i ∈ ω is an infinite sequence (ai)i∈ω ∈ Aω

such that (ai, ai+1) ∈ Ri for each i ∈ ω. A trace (ai)i∈ω through (Ri)i∈ω is called
bad w.r.t. Ω if max{k | k = Ω(ai) for infinitely many i ∈ ω} is odd.

Definition 20. Let X = (X, γ, x0) be a pointed P+ ◦ F -coalgebra with no du-
plicates, and let A = (A, a0, δ, Ω) be a Λ-automaton. The non-emptiness game
G�=∅(X, A) is the graph game defined by:

Position Player Admissible moves
(x,R) ∈ X × P(A × A) ∃ {(y, ran(R)) ∈ FX × PA | y ∈ γ(x)}
(y,A′) ∈ FX × PA ∃ {(Base(y), Z) | Z : A′ → P(Base(y) × A)

s.t. y ∈ �δ(a)�Za
for a ∈ A′}

(B,Z) ∈ P(X) × P(X × A)A
′ ∀ {(x,

⋃
a∈A′{(a, a′) | (x, a′) ∈ Za}) | x ∈ B}

with initial position (x0, {(a0, a0)}), where ran(R) denotes the range of the rela-
tion R. An infinite match with basic positions (x0, R0), (x1, R1), . . . is won by ∃
if and only if no trace through the sequence of relations R0R1 . . . is bad w.r.t. Ω.

The basic positions of G�=∅(X, A) are given by pairs consisting of a state x ∈ X
and a relation R ⊆ A×A, whereas the witnessing relations for positions of type
(y,A′) can be regarded as families of functions of type Za : X → P(A) (one for
each a ∈ A′). To explain the reasons behind this definition and the assumption
that X has no duplicates, let us imagine that the initial position of G�=∅(X, A)
was (x0, a0) (the obvious choice, given that ∃’s goal in this game is to prove that
x0 admits a trace that ”satisfies the formula a0”). In this position, ∃ would have
to provide a choice of y0 ∈ γ(x0) that ”makes the formula a0 true”. This move
would be followed by ∃ providing a witnessing relation Z ⊆ X × A for (y0, a0).
However, the play would not be able to continue with ∀ choosing an element of
this relation, which would then result in a new basic position (x1, a1), since in
situations where several pairs in Z have the same first component x1 ∈ X , the
second components of those pairs may or may not need to be satisfied by the
same trace of x1. If x1 is not a duplicate state of y0, it is clear that a single
trace of x1 should make all formulas a1 with (x1, a1) ∈ Z true. If, on the other
hand, x1 is a duplicate state of y0, different occurrences of x1 could (and might
need to) be unfolded in different ways in order to satisfy a0 in y0. For instance,
given the pointed coalgebra (X, γ, x0) of Example 17, a Λ-automaton could be
5 This further restricts polynomial functors by only allowing finite exponents and finite

constant functors. However, the restriction to finite constant functors is superfluous.
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devised that accepts only traces with both 0 and 1 as leaves, and to obtain a
trace of x0 with this property, different traces of x would need to be considered
for the two occurrences of x in γ(x0). In the presence of duplicate states, the
witnessing relation Z does not provide sufficient information to decide which
formulas should hold for which unfoldings. On the other hand, by assuming
that (X, γ) has no duplicates, it becomes much easier to define ∃’s possible
moves in positions given by witnessing relations Z: all pairs in Z with the same
first component x1 must be witnessed by the same choice of y1 ∈ γ(x1). Now
to accommodate this, ∃’s moves in basic positions would have to be of type
Z : X → P(A). However, to define a winning condition for infinite games, we
would have to assign priorities to basic positions of type (x,A′) with A′ ∈ P(A),
which is not possible in a meaningful way. We therefore take the fairly standard
approach of using traces through sequences of relations for defining the winning
condition. This leads to basic positions of type X×P(A×A), where in a position
(x,R), ∃’s goal is to prove true all formulas in ran(R). Finally, the presence of
Base(y) in the definition of admissible moves for ∃ in positions (y,A′) is justified
by the fact that only pairs (x, a′) with x ∈ Base(y) are relevant to the satisfaction
by y ∈ FX of the formula represented by a.

Remark 21. A version of the non-emptiness game that also applies to coalgebras
with duplicates could be defined by moving from witnessing relations of type
Za ∈ P(X × A) (or Za : X → P(A)) to witnessing relations of type Z : X →
P(P(A)), where elements of A that must be simultaneously satisfied on some
trace of x are grouped appropriately in Za(x). However, the conditions specifying
that Z is a witnessing relation would become much more complex.

The non-emptiness game proceeds as follows:

– in a basic position (x,R) (in which ∃ must show that some trace of x makes
all formulas in ran(R) true), ∃ chooses y ∈ γ(x) and moves to (y, ran(R));

– in a position (y,A′) (in which ∃ must show that a suitable choice of trace
for each x ∈ Base(y) makes all formulas in A′ true), ∃ provides a suitable
witnessing relation Za ⊆ X × A for each formula a ∈ A′;

– in a position (B,Z) with Z : A′ → P(B × A), ∀ chooses some x ∈ B
and collects all second components of pairs (x, a′) in one of the Zas – these
formulas must all be satisfied by the same trace of x. The resulting position
records the corresponding a for a pair (x, a′), to be used in the formulation
of the winning condition. The game is now again in a basic position.

The game G�=∅(X, A) is ω-regular: there exists a parity P(A×A)-word automaton
accepting exactly those sequences of relations which do not contain a bad trace.

The second main result of the paper now states that winning strategies for ∃
in G�=∅(X, A) correspond to traces of X that are accepted by A. This is proved
with the help of the following lemma.

Lemma 22. Let (X, γ) be a P+ ◦F -coalgebra with no duplicates, and let (U, σ)
be the F -coalgebra defined in Section 2. Then, states u ∈ U are in one-to-one
correspondence with infinite trees of the following shape:
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. . .

x1 �� y1

������

���
��

��
...

x0 �� y0

������

��
��

�
...

. . .

. . .

x′
1

�� y′
1

�������

��






...

. . .

(4)

with yi ∈ γi(xi) and with one child of yi for each xi+1 ∈ Base(yi).

Theorem 23. Let X = (X, γ, x0) be a pointed P+ ◦ F -coalgebra and let A =
(A, a0, δ, Ω) be a Λ-automaton. Then ∃ has a winning strategy in G�=∅(X, A) iff
there exists a trace z ∈ trγ(x0) such that (Z, ζ, z) is accepted by A.

Proof (sketch). For the only if direction, let S denote a winning strategy for ∃
in G�=∅(X, A), and observe that S-conform G�=∅(X, A)-plays can be visualised as
branches of the following tree:

. . .

(x1, R1)
∃ �� (y1, A1)

∃ �� (Base(y1), Z1)

∀ ��

∀ ��

...

(x0, R0)
∃ �� (y0, A0)

∃ �� (Base(y0), Z0)

∀ ��

∀ ��

...
. . .
. . .

(x′
1, R

′
1)

∃ �� (y′1, A
′
1)

∃ �� (Base(y′1), Z
′
1)

∀ ��

∀ ��

...

. . .

where each node of type (Base(yi), Zi) has exactly one child for each xi+1 ∈
Base(yi). A subtree of this tree rooted in some (xi, Ri) determines an infinite
tree of the type required by Lemma 22, and this, in turn, yields a state ui ∈ U .
Moreover, u0 describes the desired behaviour of a trace of x0 that is accepted
by the automaton A, since the above tree provides winning strategies for ∃
in each of the acceptance games G(X, (U, σ, u0)) and G(A, (U, σ, u0)). On the
one hand, S-conform G�=∅(X, A)-plays can be mirrored in the acceptance game
G(X, (U, σ, u0)) by letting ∃ move in a position (xi, ui) to the witnessing relation
{(xi+1, ui+1) | xi+1 ∈ Base(yi)}, and this yields a winning strategy for ∃ in
G(X, (U, σ, u0)). On the other hand, S-conform G�=∅(X, A)-plays can be mirrored
in the acceptance game G(A, (U, σ, u0)): pairs consisting of a path through the
above tree and a trace through the sequence of relations determined by that path
correspond to G(A, (U, σ, u0))-plays in which ∃ plays essentially the witnessing
relations Zai (but with xi substituted by ui) in positions of type (ui, ai) with
ai ∈ Ai. Moreover, the property that any such path is winning for ∃ in G�=∅(X, A)
translates to any G(A, (U, σ, u0))-play that is played according to the proposed
strategy being winning for ∃ in G(A, (U, σ, u0)). Thus, u0 defines a trace of X =
(X, γ, x0) that satisfies the property described by the Λ-automaton A.

For the if direction, note that a trace z ∈ trγ(x0) such that (Z, ζ, z) is accepted
by A yields an element u0 ∈ U that is accepted by A (as acceptance by A
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is invariant under bisimulation), as well as a winning strategy S for ∃ in the
acceptance game G(A, (U, σ, u0)). Lemma 22 can now be used to obtain an infinite
tree similar to that in (4), which, in turn, yields a winning strategy S′ for ∃ in
G�=∅(X, A): the choices of yi ∈ γ(xi) made in the definition of u0 provide the
choices required in basic positions (xi, Ri) reached from (x0, {(a0, a0)}) through
S′-conform plays, whereas in positions of the form (yi, Ai) ∈ FX × PA with
Ai = ran(Ri), S′ prescribes that ∃ moves to (Base(yi), (Za)a∈Ai) with Za ∈
P(Base(yi)×A) being obtained from ∃’s S-conform move in the position (ui, a)
of G(A, (U, σ, u0)), by replacing any ui+1 ∈ Base(ui) with the corresponding
xi+1. The fact that S is winning for ∃ in G(A, (U, σ, u0)) then results in S′ being
winning for ∃ in G�=∅(X, A). ��

5 Concluding Remarks

We provided an automata-theoretic characterisation of the set of traces of a
finite, pointed P+ ◦ F -coalgebra, with F a polynomial endofunctor. Next, we
defined a regular graph game that can be used to decide whether a formula of a
linear coalgebraic temporal logic (also introduced in this paper) holds in a finite,
pointed P+ ◦ F -coalgebra that contains no duplicates.

Future work includes generalising these results to non-polynomial functors F ,
studying model-checking algorithms based on such regular games, and extending
the techniques proposed here to more general coalgebraic types and path-based
temporal logics, as considered in [2].
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ASP ::= S | units UDD1 . . . UDDn result UE
UDD ::= UDEFN | UDECL
UDECL ::= USP given UT1, . . . , UTn

USP ::= SP |SP1 × · · · × SPn → SP
UDEFN ::= A = UE
UE ::= UT | λ A1 : SP1, . . . , An : SPn • UT
UT ::= A | A [FIT1] . . . [FITn] | UT and UT | UT with σ : Σ → Σ′ |

UT hide σ : Σ → Σ′ | local UDEFN1 . . . UDEFNn within UT
FIT ::= UT | UT fit σ : Σ → Σ′
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RSP := refinement R = RSP | USP | arch spec ASP | RSP then RSP |
SP refined [via σ] to RSP | {A1 to RSP1, . . . , An to RSPn}

UDECL ::= A : RSP | A : USP given UT1, . . . , UTn
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����	����� �� ��������� ����	# ��� ��
���� � ��
����	� ��� ������� ���
� �� ��� &���
��	 ��� ����	 �� ��� ���� 
��$
��	������� �� ����	 ��� 
����
���� �����	 &������ ����	� ��������# �� ��� 
�	�
�� 
�������� ���������# ��
� 
�������� �����
�	 � �	�&������

������� �� %��� 2 ���	���	 ��� ��������� ���� �� ��� 	��
��
�����	 �� 71�����
(� +����� �����	 ������ 
��������	# ����� ���&�� �����	 ������ ���������	�
*���
� ���� �� ��� 
�	� �� ���������
��� # �� ���� �� &���� ��� ����	 �� ��� ��
��$
��
����� 	��
��
�����	 ���������������������
 ��� �������� �����
#
	���� ���� �	 
����	������� �� ��� ����	 �� ��� �� �� � 
�������� �����$
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����# �&������� ���	 � 	�� �� ����	# ���� 
����
� ���� �� ��� 
����	�������

��������	 �� ��� ���� �# ���
� ��	� &� 
����
��� ����������


�� �1����� 	���	 ���� ��������� ����	 	����� 
��	�	� �� � 
����
���� �� ����	
��� ���� ���� 
�� ���� ��� ���� �� ��� �����	# &�� ��	� �� ��� ����# ���	 &�
�����
	�&����	� 
��	 ����	 �	 �� ��� ��������� ����������

�����	�
� �� � ��������� ���� RT �	������ 	� � ��� 	� ����� ���
 �	��� ��������
���
 
��� ����������	�� ��� ����� �
�� ��� �� ���
��  �! ��������� ����	 n1 ⇒ n2

�	 ���	�� ��������� 	� ����������	�� 	�  ��! 
�������� ����	 n1 → n2" �
���
n1, n2 ��� �	��� �� RT �	 ���	�� ���
�����
��� ���	��	����	��

/� ���� �� ����� �� ��1������ 	���
���� �� ���� ���
� �� ��� ����	# �����	 ���
����	 �� ��� &���
���� ��
����	�����	0 ���	 ���� ���� ��		�&�� �� 
����	� ��$
������� ����	� /� ����� ���� �� 	���		 ���� ���	 �	 ���� ���� ��� &���$�������
��� �� �	 ��� ��	�&�� �� ��� �	�� �� ���� 6�� �	 ����� ��������� ���� �	������ ��
� ��������� ���� RT �	 ������ ��� ������ ��������� �	������ �� ���� (n1, n2)
���� n1# n2 ����	 �� RT # ���� ��� ��������� ���� ��� ��	� ���� �	 ��� ���� ���
��� 	�
��� ���� �	 ��� ���� �� � 
����*# ���� �����
��� ��������� �	������ ��
���� (n, f)# ����� n �	 � ���� ��� f �	 � ��� �		������ ��������� ���� �������	
�� ���� ����	# �� ����� �	��	���� ��������� �	������ ���
� ��� ���	 �		������
��������� ���� �������	 �� ���� ����	�

6�� �	 ���� � 	����	 �� ��������	 ��� ���������	 ���� ��������� ����	� /�
������ RT ∅ ��� ����� ����� ;� RT �	 � ��������� ����# RT [USP ] �	 �&������
&� ������ �� �� � ��� �	������ ���� ���	� �������� �	 ��	���� ��&����� ���� USP �
%�� RT 1, . . . ,RT k ��������� ����	# RT [n1 → RT 1, . . . ,RT k] ������	 ��� ����
�&������ &� ��	������ 
�������� ����	 ���� ��� ���� n1 �� RT �� ��� ����	 ��
��
� �� ��� �������� ����	� ��������# ��� ��� ��������� ����	RT 1 ���� �������
p1 ���RT 2 ���� ������� p2# �� ������ (p,RT ) ��� 
����	�����RT 1◦p1, p2RT 2

������ �	 ������	!

� �� p1 �	 � 	����� ��������� ������� (n1, n2) ��� p2 �	 � 	����� ���������
������� (m1,m2)# RT �	 �&������ &� ������ � ��������� ���� ���� n2 ��
��� ���� �� ��� 	�&���� �� m1 �� RT 2� 
�� ������� p �	 ���� (n1,m2)� 
��	

����	����	 �� ��������� �� 71����� (# 	�� &���
� ��� ���� � �� %��� 2�

� �� p1 �	 � 	����� ��������� ������� (n1, n2) ��� p2 �	 � &���
���� ���������
������� (m1, f)# RT �	 �&������ &� ������ � ��������� ���� ���� n2 �� m1�

�� ������� p �	 (n1, f)� 
��	 
����	����	 �� �����
�� �� 71����� (# 	��
��� ������� ��������� ���� �� %��� 2�

� �� p1 �	 � &���
���� ��������� ������� (n1, f1) ��� p2 �	 � 
�������� ��$
������� ������� f2# RT �	 �&������ &� ������ ��� ��
� X �� dom(f2) ���

����	����� �� ��� 	�&���� ������� &� f1(X) ���� ��� ���� f2(X)# ���
� ��	�
������	 � ������� pX � 
�� ������� p �	 (n1, f1[f2])# ����� f1[f2] ������	 ���
����� �� X �� f1 ���� ��� ������� pX � 
��	 
����	����	 �� �����
��� ��
71����� ( ��� �������
�	 ��� 	�
��� ����� �� ��������� ����	 �� %��� 2�

� <����� ���� ��� � � ����� ��� ���������



(:= +� ,������ ��� "� +������ ���

� �� p1 �	 � 
�������� ��������� ������� f1 ��� p2 �	 � 
�������� ���������
������� p2# ���� ��� ��������� ���� �	 �&������ &� ������ ��� ��
� X ��
dom(f2) ��� 
����	����� �� ��� 	�&���� ������� &� f1(X) ���� ��� ����
f2(X)# ���
� ��	� ������	 � ������� pX � 
�� ������� p �	 f1[f2]� /� 
�� �&����
�� �1����� ��� ���	 ��	� 
�	� &� ������� ��� ��������� �� ��� 
��������	 ��
� 	������� ��=����� ���!

��������	 � = C
� 	
 ���� ���� ����������	�
���# � 	
 ��������#
� 	
 ���� ���� ������
������ D
	��� C
� 	
 C�� 	
 ���� ���� ���������������������
#

�� 	
 ���� ���� �������� �����
 DD

��� ��� 
����	������� ��������� ����	 ��� �&������ &� �������� ��� ��	�
����� �����	 ���� ��� ���� �� %��� 2�


�� 
����	����� �	 �������� �������	�� *���
� ���� ��� 	��
��
����� �� � ����#
������ �� ��&�� ��� ����	 �� ��������� ����	# ���� &� �&������ �� 	��� 
�	�	
���� ��� ����� 
��
���	 ��� ��������� 	��
��
�����	 ���� �� ���	��� �� +�
����
4 ��� ��������� ��� ��������� ����	 ���� &� &���� ���� ��� ����� 
��
���	 ����	�

� �
� ���� ��������� ��������� ������
	�


�� 	������
	 �� ��������� 	��
��
�����	 �	# �	 �	��� �� ����# �����$��������
! �
	��
��
����� ������	 � 	�������� �	����
 	������
	� ��� � 
��		 �� �����	 ������
	������
	�� /� &���>� ��
��� ��� 	������
	 �� ��
����
����� 	��
��
�����	 �	��
�(4� ��� ������	�� ,��� 	��
��
�����	 ��	
��&� 	���$
�������� ����	 ������	� ��
������
 ����	# ������� 
������&�� �����	 �� ��� ��������	 �� �����	 �� ���
��	��� 	��
��
�����# 	�
� ���� ��� ��������	 ��� ���	����� ����� ����
�� 
����
	����
 	������
	 �	 ����� &� ���� 	��������	# ���
� ��� ����	����	 ������ �����
	��������	 Σ �� ������
 ���� 	��������	 Σ1 × · · ·×Σn → Σ ����� Σ �1����	 ���
����� �� Σ1, . . . , Σn� G���� ���� 	����
 	������
	 �� ��
����
����� 	��
��
�����	

��	�	� �� � ���� 	�������� ��� ��� ��	��� ���� ��� � ������� ������ � ���� 	��$
������ ��� ��� ���� 
��������# ����� ��� ����� 	������
	 
��	�	�	 �� � 
��		 ��
��
����
����� �����	# ���
� ����	����	 ���� � ����� ���� ��� ���� 	�������� ��
��� ��	��� ���� � ������� ������ � ����� ��� ��
� 
���������

%�� ��� 	����
 	������
	 �� ���������	# �(2� �������
�	 ��������� �����#
�
���# RΣ# ���
� ���� ��� �� ��� ��������� ����	! ��� 
��� ��������� ������
���
(UΣ,UΣ′) ���
� 
��	�	� �� ��� ���� 	��������	 ��� 
����	���� �� 	����� ��$
�������	 ���������
��� ��������� ������
��� (UΣ,BΣ′) ���
� 
��	�	� �� � ����
	�������� UΣ ��� � �����
��� ������
�� BΣ′# ���
� �	 ������ � ���� 	��������
UΣ′ ��� ���
� 
�	� ��� &���
���� ��������� 	�������� �	 � ���� ��������� 	��$
������� �� � �����
��� ������ �	����� BstC ′# ���
� �	 �� ���� � ������� ���
�		������ &���
���� 	��������	 �� ���� ����	# ��� 
����	����	 �� ��
����
�����
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��
����	�����	# ��� ������ ����� �	��	���� ��������� ������
��� ���
� ��� ��$
����� ���	 {UN i �→ RΣi}i∈J ���� ���� ����	 �� ��������� 	��������	 ��� ����
	����
 	������
	 ��� ���������	 �� 
��������	�


�� ����	 ��� 	����
 ��� ����� 	������
	 �� ���������	 ��� �������
�� �� �(2�
�	 ����0 ��� �� 	��
� ����������	# �� �� ��� ������ ���� ����� 
�� ���� ����$
�
����� ���� �� &���� ������	 ��� 
�	� �� ����	 ���� ������	# �	 ��������� ��
+�
���� �� 
�� ��������� 	�������� �� � ���� ���� ������	 �	 � &���
���� �����$
���� 	�������� ���� ��� &���
���� 	����
 
����1� ������ ���� ��� �����0 	��
�
��� ��
����
����� 	��
��
����� ���� � ���������� �1���		�	 ����	 ���� ������	 �	
���������# ��� ���� �� ��� ������
 ���� �	 ��� ������&�� �� ��� �	��� 
�� 
��$
������� ���� �� �����	� �	 �� ��B�	� ��� ��������� �� �	��	����	� 	� ���������
������
��� ����� �� �(2��

H���� ��������� 	��������	 RΣ1 ��� RΣ2# ����� �	��	����	� RΣ1 ; RΣ2 �	
������ ����
������ �� ��� ���� �� ��� ��	� ��������� /� �1���� ��� �����$
���� &� ������ ��� 
����	����� RΣ1; RΣ2 ��	� ������ ���� RΣ1 �	 �� ����
(UΣ, BstC ) ���� ���� ��� ���� ���� UN �� ��� ������ �� BstC ��� ��� 
��$
��	����� RΣ′ �� BstC (UN) ���� RΣ2 �	 ������ � ;� ���	 
�	�# RΣ1; RΣ2 =
(UΣ, BstC [UN/RΣ′])�

/� ���� ��	� ���� �	� �� ��� ��������� ������	�� �������
�� �� ��� �����

���� �&���# ���
� ������� � ������ �� ��������� ������ H���� � ���������
	�������� RΣ# ��������� ������	��# R# ��� 
��		�	 �� �����������# R# ���
� ����
��� ��������� ����	!

� 
��� �����������# ��� RΣ = (UΣ,UΣ′)# ��� ����	 (U,U ′) �� ����	 ���� ����
	��������	 UΣ ��� UΣ′# ��	��
������0

� �����
��� �����������# ��� RΣ = (UΣ,BΣ′)# ��� ����	 (U, BM ′)# ����� U
�	 � ���� ���� ��� ���� 	�������� UΣ ��� BM ′ �	 � �����
��� �	��� ����
��� &���
���� 	�������� BΣ′# ���
� �	 ������ � ���� ���� BΣ′ ���� BΣ′

�	 � ���� 	�������� ��� ���
� 
�	� ��� &���
���� �		������� �	 � ���� �	$
	��������# �� � �����
��� ��$��	����� BE ′ ���� ��	 BΣ′ ���� BΣ′ �	 �
&���
���� 	����
 
����1�� I���
���� �����������	 ��� ������� ���	 �		���$
��� &���
���� �����	 �� ���� ����	# ���� ��� �&����	 �� ��������	 �� ��	���

������&����� ���� ��� &���
���� 	��������	 ����
���� �� ��� 
����	�������
&���
���� 	����
 
����1��

� �	��	���� �����������# ��� RΣ = {UN i �→ RΣi}i∈J # ��� ������� ���	
{UN i �→ Ri}i∈J ���� ���� ����	 �� �		�������	 ���� ��� ��	��
���� �����$
���� 	��������	� /��� RΣ �	 � ������$���� 	����
 
����1� ���� 	� ��
� Ri#
i ∈ J # �	 � &���
���� �		�������� �� ����� �� RE = {UN i �→ (Ui, BM i)}i∈J
�	 � ������#
��� ��$��	������ 9�� 	�
� ������$���� ����������� 
�� &� ���$
������ 
���
�� �� � ���� ����������� π1(RE ) = {UN i �→ Ui}i∈J �� ��� �����
���� 	������
	# �	 ���� �	 �� � &���
���� ����������� π2(RE ) = {UN i �→
BM i}i∈J �

9����# ��� ���� 
����� �� ��� ����	 �� ����� 	������
	 �	 �� ����� �� ��� �1��
���
��� ��� �	��	����	� �� ��������� ��������	 �� �

�������� ���������	 �� ����
���� ������	# �� 	������� ���� ��� 
����� �� 	����
 	������
	�



(:) +� ,������ ��� "� +������ ���


�� 	����
 	������
 ����	 ��� �� ���� ( SPR � RΣ ����� ��� ����� 	������

����	 ��� �� ���� ( SPR ⇒ R0 ���� �� ���� ���� �� 	���� ���� SPR ��	 �
���������� ������ ��� 	����
 �� ����� 	������
	# ��� ��	��� �	 �����
�� ���� ���

� ���� ��!	�!��  �� �
� ���� ��������� ��������


�� ���� ���������� ��� �������'��� ��� ����������� ���
�		 �	��� ���� ��$

����
����� 	��
��
�����	 ��� ���������	 �	 ���� ��� 
�� ���� ��	$� ���� ���
���
�		 �	 
����
�� J����
����� �� 
����
���		 ��� � ��������� ���� �	 ���	�����
�	 � ��		� ����
�
�� ;� �(4�# +�
���� 3!4# � ����� 
��
���	 ��� �����
����� �� ��$

����
����� 	��
��
�����	 ��� � 	������� ��	���
��� �������� ��	 �������
�� �	 ��
��������� ��� 
��
���� ������� ��� ��	������ ����	 �� �� ��
����
����� 	��
��
�$
���� 	���	�� � ����� ���� 	��
��
������ 
��	 �	 ������� ( ASP :: USP # ����� ASP
�	 �� ��
����
����� 	��
��
����� ��� USP �	 � ���� 	��
��
������ +��
� ��
����
$
����� 	��
��
�����	 ��� ��� � �����
���� 
�	� �� ���������	# �� ���� �1���� ���	

��
���	 �� 	������ ��� ����� ��������� ���������

%�� 	��
� ���������� ���	��	# �� ���� ��� 
������� ���	�������� �� ��� �����

��
���	 �� ��
����
����� 	��
��
�����	 ��������� �&��� ��� B�	� �1����� ���
����� ���������� ;� 
�� &� �������� �	 ������ ��� 
��������	� 
�� ��	� ��� �	 �
�	����
���$� 
��������# &������� � ����� Γ ���� ����	 ��&���� ���� ���$������

���� 	��������	 ��� ����	 ��&���� ���� 	�������� ������	�	 ����� ������������
	��� �� ��� ����	 ��� &� ��&���� ���� 	��	 �� 	��
��
�����	� ��������# ������

����	 ��
����� �� ASP ��� 	����� �� � ������
 
����1� Γgen� 
�� 	�
��� 
����$
���� �	 ���
���$� ��� �� �	�	 ��� ������� &���� ���� ��� 
��	���
���� 
��������
�� 
��
� ������� �����	 �� � ���� �1���		��� 	���	�� � ����� ���� 	��
��
�����
SP � %��� 3 ���	���	 ��� �� ��� ������	���� ����	 �� ��� 
��
���	# ������ ���	� ���
���� �1���		���	 ����� ���$������
�� /��� �	 �����
���� �&��� ��� ����	 ��� ����
�1���		���	 �	 ���� ���� �	 ����� ��� ��� 
��������	 �� ��� 
��
���	 ����! ���
����� 
��
���	 ����	 ��� ���� ����	 ��� ������ Γgen, Γ ( UT :: Γ ′, A� ������ ���

����1� &� ������ ��� ������� �� ��� ���� ���� ��� ��	� ������ ��� ���� �� ���
���� ����# ��� ���	 ���� �	 ������� �	�� ��� 
��
���� �� Γ ′ ������� ��� �����
	��
��
����� �
������ ����	 �� ���� -� ��� ��������	# R �	 �� ��	�������� ����	$
������ ��������	�� �	 	�$
����� 
�������	�� ���� ����	����	 ���� ��� ��	��������
�� ������	� �� ������� ���� ���� ������������ �������� �����# ����� � �������
��� � ������ �� �����	 
������&�� ���� ��# ���� 
�� &� 
��&���� �� � �����
�� � 
�
��� ��� ��� �������� ��� ��� ��������� 
�������� ������	 ���� ��� ���

Γgen, Γ � UT :: Γ ′, A
��
 ��� U ∈ dom(Γ ′)&  � ���� U :ΣU SPU �� Γ ′

Σ, {ηU}U∈dom(Γ ′) �� �  ����! ����������� ������ ���
 R(Γ ′)

ηA(R(SP )) �J
Σ

⋃
U∈dom(Γ ′) ηU (R(SPU ))

Γgen, Γ � UT '�� UE :: SP

	
�� �� /
��������
�� �
��� �������� 
��� ��
 ��������
�� ���� �1�
�������
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������ �� �����	 
������&�� ���� ��� ������� ��� ����� 
����	������� �� ���
���� A 	���	��	 SP �

9	 � ��	� 	���# �� ������ ��� ����� 
��
���	 	�
� ���� �� &�
���	 ����� 
��$
	���
����! USP �	 �� ������ ��������# &�� ������ �&������ &� ������� ��� 	��
�$
�
����� �� ��
� ���� ���� ����
������ �� ��	 	���
�����

�����	�
� �� %�� ASP �� �� ���
�����
��� ����������	� ��� UE � 
��� ������#
��	�� &
�� �
� ����������	� 	� UE" ���	��� SASP (UE) �� ������ �� �	��	��'

� �� UE �� � 
��� ���� UT " SASP (UT ) �� ������ ���
���$��('

• �� UT �� � 
��� ����" �
�� SASP (UT ) = SP �
��� UT : SP �� �
� �����#
����	� 	� UT �� ASP )

• �� UT = F [A1 fit σ1] . . . [An fit σn]" �
��� SASP (F ) = SP1×· · ·×SPn →
SP ��� �	� ��( i = 1, . . . , n" SASP (Ai) hide σi |= SPi" �
�� SASP (UT ) =
{SP with σ} and SASP (A1) hide σ1 and . . .and SASP (An) hide σn"
�
��� σ = ∪i=1,...,nσi)

• �� SASP (Ai) = SPi �
�� SASP (A1 and . . . and An) = SP1 and . . .
and SPn)

• �� SASP (A) = SP " �
�� SASP (A with σ) = SP with σ)
• �� SASP (A) = SP " �
�� SASP (A hide σ) = SP hide σ)
• SASP (local UDEFN within UT ) = SASP (UT )" �
��� UDEFN �� 
���

�	 	����� �
� ����������	� 	� �
� �	����( ������ 
�����

� �� UE �� � ������ ��������	� λA : SP . UT " �
�� SASP (UE) = SP →
SASP (UT )�


�� 	��
��
����� �� � ���� ���� ��	� ���	 �������� �� �1���		��� ��
��������	
�� ����	 ���� ������	 �	 ������
 ����	! � ��
�������� UN : SP given UT 
�� &�
������� �	 UN : arch spec{units F : SASP (UT ) → SP ; result F[UT]}� 9	
����
�� �� �K�# �� �	 ��� �����	 ��		�&�� �� ���� � ���
�	� �1������'����� �� ���

��		 �� �����	 �����
�� &� ��� ���� �1���		���� "������# �� ���� �	� SASP (UE)
�	 �� �����1�������# 	��
� �����	 �� ��� ���� �1���		��� ��� ��	� �����	 �� ���	
	��
��
������


�� ����� 
��
���	 �	 ���� ������ ���� � ����� 
��	���
���� ������� &� �����$
��� �����
����� 
��������	 ���� ��� ����	 ��� ���� �1���		���	 ��� ��������� ���
	��
��
����� �� ��� ��	��� ���� �1���		��� �� ��� ��
����
����� 	��
��
����� ��$
	���� �� ������ ��� �	 � ����� ��������� �� ��� 
��
���	� 6�� �	 ������ ���

��	���
���� ���	��� �� ��� ��
����
����� ����� 
��
���	 �&���� �	��� SASP (UE)�
&� ( ASP ::c USP �

/��� ��� ��
����
����� �������� �	 ��	���
��� &� �������� ��� ���� ������	 #
��� 
��	���
���� ��� ��� ����
���� ���	���	 �� ��� ����� 
��
���	 ��� ������� &�
��� ��������� 	�������������� ��	����

��
�
��	�
� �� *� 
��� ���	��� ��� 	������" ( ASP � �� ��� ( ASP ::c USP
�
�� ( ASP :: USP �

��������# �� 	��� 
�	�	# ��� �&������ ���� 	��
��
����� �1�
��� 
������	 ���
�����	 �� ��� ��
����
����� 	��
��
�����# �� ��� ������ ��� ���B�
��� ���� ���
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��		�&�� 	������
	 ��� ��� ��	��� ���� ����� 6�� ��������� ProjRes ���� ���
����� �� �� ��
����
����� 	��
��
����� �� ��� �������������� �� ��	 ��	��� ����
���� �� ���	 ������

���
��� �� %�� ASP �� � �	�������� ���
�����
��� ����������	� ���
	
� 
���
���	��� ��� 
��� �������	��" �
��� ���
 ���������� 
��� �� ������� 	��( 	���� *�
( ASP � �� ��� ( ASP ::c USP �
�� ProjRes(Mod(ASP)) = Mod(USP )�

/���� ��� ����� 
��
���	 �� ��
����
����� 	��
��
�����	 
��
�	 ���� ��	��� ����	
	���	�� � ����� ���� 	��
��
�����# �� �������
� � 
���������� ��� ��� 	��
��
�$
���� ���� ���������	 	����� 	���	��# �������� �

������ �� ��� ����� ����	 ��
���������	� 
��	 �����	 �� �1���		 ��� ����� 
��
���	 ���� ��� 
����	�����	 ��
���������	 �� � ���� 
��
�	� �������

�����	�
� �� %�� RΣ �� � ��������� ������
��� � �����
����� 	��
��
����� S
	$�� RΣ �� ������ �� �	��	��'

� �� RΣ = (UΣ1, UΣ2)" S = (USP1, USP2) �
�
 �
�� ( USPi � UΣi" �	� �+�"�)
� �� RΣ = (UΣ,BΣ)" S = (USP,BSP )" �
��� ( USP � UΣ ��� BSP �� �

�����
��� ����������	�" �
��
 �� �� �
�� ���
�� � 
��� ����������	� USP ′ �
�

�
�� ( USP ′�UΣ′" �
�� BΣ = UΣ′ 	� � ��� SPM �
�
 �
�� ��� SPM(X)
�� � $��������	� ����������	� 	$�� BstC (X)" �	� ��( X ∈ dom(BstC )" �
��
BΣ = BstC )

� �� RΣ = {UN i �→ RΣi}i∈J " �
�� S = {UN i �→ Si}i∈J " �
��� Si �� �
$��������	� ����������	� 	$�� RΣi�

9����# ��� ����� 
��
���	 ����	 ���� �� � 
����	����� ��������� �� �����
�����
	��
��
�����	� 
�� 
����	����� S1; S2 �	 ������ ����
������ �	 ������	!

� �� S1 = (USP1, USP2)# ���� S1; S2 �	 ������ ���� ���� S2 = (USP3, SPM)
��� �������� ( USP2 � USP3� 
��� S1; S2 = (USP1, SPM)�

� �� S1 = (USP1, SPM1) ���� S2 ��	� &� �� ���� SPM2� /� ����� S1; S2 =
(USP1, SPM1[SPM2])# ����� SPM1[SPM2](A) = SPM1(A)# ��
A �∈ dom(SPM2) ��� SPM1[SPM2](A) = SPM1(A); SPM2(A) �������	��

� �� S1 = SPM1# ���� S1; S2 �	 ������ ���� �� S2 = SPM2� 
��� S1; S2

������	 ��� ���$������ ����� �� SPM1 ��� SPM2 &� ������� (S1; S2)(A) =
S1(A); S2(A) ��� ��� A ∈ dom(S1) ∩ dom(S2)�


�� ����� 
��
���	 ��� ��
����
����� 	��
��
�����	 �	 
����������� �� ��� �����
�� ��������� 	��
��
�����	 �	 �� %��� 4� 
�� B�������	 �� ��� ����� 
��
���	
��� ���������	 ��� ���� �� ���� ( SPR :: S,RT , p# ����� SPR �	 � ���������
	��
��
�����# S �	 � �����
����� 	��
��
�����# RT �	 � ��������� ���� ��� p �	 �
��������� ���� �������� I� � 	����� �&�	� �� ��������# ���� �� ��� ��� ������	���
�� ��� ��������� ���� ��� ��� �������# �� ���� ���� �	 ��	���	�

*���
� ���� ��� ����� 
��
���	 ��� ��
����
����� 	��
��
�����	 �� �(4� ���� ����	
���� �

���� ��� 
�	� ���� ��� 	��
��
����� �� � ���� �	 � ���� 	��
��
������
;� ��� 
����1� �� ���������	# ��� 	��
��
����� �� � ���� 
�� &� �� ��&������
��������� 	��
��
�����# ��� ��� ����� 
��
���	 �� ��
����
����� 	��
��
�����	
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(n,RT ) = RT ∅[USP ]

� USP :: (USP,USP ),RT , (n, n)

� USP :: (USP,USP ),RT 1, p1
� SPR :: (USP ′, BSP ),RT 2, p2
(RT , p) = RT 1 ◦p1,p2 RT 2

� USP � USP ′

� USP refined to SPR :: (USP ′, BSP ),RT , p

� ASP ::c USP
� SPRi :: (USPi, BSPi),RT i, pi

��� ��� UNi : SPRi �� ASP
SPM(UNi) = BSPi

(n,RT ′) = RT ∅[USP ]
RT = RT ′[n → RT 1, . . . ,RT k]

p = {UNi �→ pi}i=1,...,k

� ASP :: (USP, SPM),RT , p

� SPRi :: Si,RT i, pi
RT = ∪RT i

p = (n, {UNi → pi})
� {UN i to SPRi}i∈J :: {UN i → Si}i∈J ,RT , p

� SPR1 :: S1,RT 1, p1
� SPR2 :: S2,RT 2, p2

S = S1; S2

(p,RT ) = RT 1 ◦p1,p2 RT 2

� SPR1 then SPR2 :: S,RT , p

	
�� �� >
��� �������� ��
 ,��� 
���������

��	� &� ��������� �������� 
��	 ����	 ���� ��� � ���� ��
�������� UN i : SPRi#
�� ����� SASP (UNi) = USPi �� ( SPRi :: (USPi, SPMi)� ��������# �� 
��
	�� SPM(UNi) = SPMi �� ��� �����
����� 	��
��
����� �� ASP � %������# ��
��� 
�	� �� ����� ��������� 	��
��
�����	# �� ���� �� 	���� ����� �����
�����
	��
��
�����	 �� ��� ��&���� ����� ��� �������� ���� &� ����# �� ��� �	��� ����

�����	�
� �� %�� RΣ �� � ��������� ������
��" S � $��������	� ����������	�
	� RΣ ��� R � ��������� ������	� 	$�� RΣ� ,� ����� �
� ����������	� 	� �
$��������	� ����������	� �( � ��������� ������	�" ���	��� R |= S" ���
���$��( ��
�	��	��'

� �� RΣ = (UΣ,UΣ′)" �
�� S = (USP,USP ′) ��� R = {(u, u′)|u ∈ Unit(UΣ),
u′ ∈ Unit(UΣ′)}� &
�� R |= S �- u ∈ Unit(USP ) ��� u′ ∈ Unit(USP ′) �	�
��( (u, u′) ∈ R)

� �� RΣ = (UΣ,BΣ)" �
�� S = (USP, SPM) ��� R = {(u, bm)|u ∈ Unit(UΣ),
bm �� � �����
��� �	��� 	$�� BΣ}� &
�� R |= S �- �	� ��( (u, bm) ∈ R"
u ∈ Unit(USP ) ��� �	� ��( A ∈ dom(SPM) �� 
�$� �
�� bm(A) |= S(A)�
 .	���� �
�� SPM ��� bm 
�$� �
� ���� �	����!)

� �� RΣ = SPM " �
�� S = {UNi → Si}i∈J ��� R = {UNi → Ri}i∈J � &
��
R |= S �- Ri |= Si �	� ��( i�


�� ��������� ����� 
�� &� ������ &� ����
���� ��� ������ � 
�	� ��	���
����
�� ��������� 	��������	�
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 ���� !"� %�� RΣ1, RΣ2 �� ��	 ��������� ������
��� �
�
 �
�� �
��� �	�#
�	����	� �� ������� %�� Si �� � $��������	� ����������	� 	$�� RΣi ��� Ri �� �
��������� ������	� 	$�� RΣi �
�
 �
�� Ri |= Si" �	� i = 1, 2 �
�
 �
�� R1; R2

��� S1; S2 ��� ������� &
�� R1; R2 |= S1; S2�


�� ��������� ��	��� 	����	 ���� �� � 	����
���� ����$������ ��������� 	��
��
�����
SPR 
�� &� ������ 
����
� ������ � �����
����� 	��
��
����� S �	��� ��� �����

��
���	 ��� ���������	# ���� SPR ��	 � ���������� �

������ �� ��� �����
	������
	 ��� �������� ��� ��������� �������� ���	 �&������ 	���	��	 S�

���
��� !! #$

������%� %�� SPR �� � ��������� ����������	� �
�
 �
��
( SPR � ��� *� ( SPR :: S" �
�� �
��� �� R �
�
 �
�� ( SPR ⇒ R ��� R |= S�

I�
��	� �� �����1����� ��� 	��
��
����� �� ��� ��	��� ���� �� ��
����
����� 	��
$
��
�����	# 
���������		 �	 ��
� ���� ��F
��� �� �&���� ��� �	 ��������� ��	�$
����� �� ������ �����

" �
�	#
�� ����
����	� � ��������� �$�	
�	��
���

/� �������
� � 
��
���	 ��� 
��
���� ������� � ��������� 	��
��
����� �	 
��$
	�	����# ���� �� ��	 � ��������� ������ ;� �(L�# �� ���� 	�

�		����� ������� ���	

��
���	 �� ������ ��� 
��	�	���
� �� ��� ����� �������� 5��
�� ;�����# 5��
� �	
��� ����� ��� 
����������� ����� �����	� ;�	���� �� ����$
������� � ����� ���
	��
��
 �����# �� ���� 	���� ��� 
��	�	���
� �� 5��
� �	��� �� ��
����
�����
���������� 
��	 ��	 ��� ��������� �� ������ � ������� ����� ��� 5��
�# ���� ���
���� 
�� &� 
������ �� ������	 ��
�� ���
�	 �M �����	 �� ��� ��������� �����
������� �=�
���� ��� ��		�&����� �� �		��&�� ���� ��� 	������
	 �� ��
����
�����
	��
��
�����	� � ���&�� ����� �� 5��
��

;����������# � ��������� �	 
��	�	���� �� ��	 ������ �	# ��� �� ��
����
�����
	��
��
����� �	 
��	�	���� �� ��� ��	 ���� 	��
��
�����	 ���� 
��	 ����	 �� 
���� ����
��� 
��
���	 ���������� ���� 
��
���� 
��	�	���
� �� ��� �����	 �� ��� ���������
����� ����	 �� &� &�	�� �� � 
��
���	 ��� ��� 
��	�	���
� �� ���� 	��
��
�����	#
���
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On the Fusion of Coalgebraic Logics

Fredrik Dahlqvist and Dirk Pattinson

Dept. of Computing, Imperial College London

Abstract. Fusion is arguably the simplest way to combine modal logics.
For normal modal logics with Kripke semantics, many properties such as
completeness and decidability are known to transfer from the component
logics to their fusion. In this paper we investigate to what extent these
results can be generalised to the case of arbitrary coalgebraic logics.
Our main result generalises a construction of Kracht and Wolter and
confirms that completeness transfers to fusion for a large class of logics
over coalgebraic semantics. This result is independent of the rank of the
logics and relies on generalising the notions of distance and box operator
to coalgebraic models.

Keywords: modal logic, coalgebra, fusion, completeness.

1 Introduction

The most common and simplest way to combine two modal logics L (for ‘left’)
and R (for ’right’) that we take as having disjoint sets of modal operators is
their fusion L ⊗ R, i.e. the smallest modal logic containing both L and R. In
particular L⊗R does not contain any axioms combining operators from L with
operators from R.

For modal logics with relational semantics, a large number of properties such
as decidability and completeness are known to transfer from the component log-
ics to their fusion [11,17,8,13]. The situation for (non-normal) logics outside the
realm of relational semantics is far less satisfactory, despite the fact that there
is an ever-growing class of logics that fall into this category such as probabilis-
tic modal logic [6] or the logic of (monotone) neighbourhood frames [3]. While
decidability can be established, also in the non-normal case, by purely algebraic
methods [1], transfer of completeness remains largely open.

In fact, the only result we are aware of is negative: it is shown in [7] that
the construction known as ‘modalising’, also discussed in [13] cannot be used to
transfer completeness in the case of non-normal modal logics.

The main result of this paper generalises a model-building construction of
Kracht and Wolter [11] and confirms that completeness transfers to fusion for
a large class of logics over coalgebraic semantics. This technique, also known as
iterated dovetailing [13,9], uses many familiar concepts such as successor states,
distances and necessitation which are readily available in the context of Kripke
semantics but need to be suitably adapted to be put to work in the coalgebraic
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setting. While all concepts above can be expressed in the coalgebraic frame-
work, we have to assume that the component logics allow to express a form of
necessitation.

In contrast to existing work that addresses the combination of modal logics in
the framework of coalgebraic semantics [4,15] our result only assumes complete-
ness of the component logics with respect to a subclass of (coalgebraic) frames,
whereas op.cit assumes completeness with respect to the class of all coalgebras.
In particular, we do not restrict to logics whose axiomatisation only uses so-called
rank-1 axioms and our result can be applied to logics that incorporate arbitrary
frame conditions, as long as they come equipped with a complete semantics and
possess a necessitation operator.

2 Preliminaries

We fix a countable set V of atomic propositions throughout. A modal signature
Λ is a set of (modal) operators with associated arities. A modal signature Λ′

extends a modal signature Λ if Λ′ ⊇ Λ. Given two modal signatures ΛL and ΛR,
their disjoint union is denoted by ΛL + ΛR. The set L(Λ, V0) of Λ-formulae over
the set V0 ⊆ V of propositional variables is given by the grammar

φ ::= p | ⊥ | ¬φ | φ ∧ ψ | ♥(φ1, . . . , φn)

where p ∈ V0 ranges over atomic propositions and ♥ ∈ Λ is n-ary. If V0 = V
is the set of all propositional variables, we write L(Λ) = L(Λ, V ). The set of
propositional variables that occur in a formula φ ∈ L(Λ, V0) is denoted by var(φ),
sf(φ) is the set of subformulae of φ and md(φ) denotes the modal depth, i.e. the
maximal nesting depth of modal operators in φ.

A Λ-logic L is a set of L(Λ)-formulae containing all propositional tautologies,
and closed under modus ponens, uniform substitution and the congruence rules

p1 ↔ q1 ∧ ... ∧ pn ↔ qn
♥(p1, . . . , pn) ↔ ♥(q1, . . . , qn)

for each n-ary operator ♥ ∈ Λ. An L-theorem is a formula φ ∈ L and we write

L φ in this case, and a formula φ ∈ L(Λ) is L-consistent if ¬φ /∈ L. The smallest
congruential Λ-logic is denoted by EΛ.

Given two modal signatures Λ and Λ′ such that Λ′ extends Λ, we will say that
a Λ′-logic M is an extension of a Λ-logic L if L ⊆ M . If, additionally, for every
Λ-formula φ, φ ∈ L iff φ ∈ M , then M is called a conservative extension of L.
The lattice of extensions E (L) of a coalgebraic logic L is the set of all extensions
L ⊆ M of L with the meet and join operations given by the set intersection ∩
and union ∪ operations respectively.

On the semantical side, formulae are interpreted over T -coalgebras, where
T : Set → Set is an endofunctor. A T -coalgebra is a pair F = (W,γ) where
W is a set (of worlds) and γ : W → TW is a (transition) function. Here, T -
coalgebras play the role of frames, and we frequently refer to T -coalgebras as
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T -frames. A T -model is a triple M = (W,γ, σ) where (W,γ) is a T -frame and
σ : V → P(W ) is a valuation (and P(W ) is the powerset of W ). A T -model
(W,γ, σ) is based on the T -frame (W,γ).

Assumption 1. Modulo a modification of its action on the empty set and
empty mappings, any Set-endofunctor T can be assumed to preserve finite in-
tersections, all monos as well as the inverse image of injective maps [10]. Since
modifying T on the empty set only gives an isomorphic category of coalgebras we
will assume throughout that all functors do possess these preservation properties.

The interpretation of Λ-formulae over T -models requires that T extends to a
Λ-structure, i.e. T comes equipped with an interpretation of the operators in
Λ. Concretely, a Λ-structure consists of an endofunctor T : Set → Set together
with an assignment of an n-ary predicate lifting, i.e. a set-indexed family of maps

(�♥�X : P(X)n → P(TX)X∈Set)

to every n-ary operator ♥ ∈ Λ that satisfies the naturality condition

�♥�X ◦ (f−1)n = (Tf)−1 ◦ ♥Y

for all maps f : X → Y . Categorically speaking, �♥� is a natural transformation
2− → 2T− where 2− : Set → Setop is the contravariant powerset functor. We
will usually keep the assignment of predicate liftings implicit and just refer to
Λ-structures by the underlying endofunctor.

Given a modal signature Λ and a Λ-structure T , the satisfaction relation
between worlds of T -models and Λ-formulae is given inductively by

M, w |= p iff w ∈ σ(p) M, w |= ¬φ iff not M, w |= φ

M, w |= ⊥ never M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

M, w |= ♥(φ1, . . . , φn) iff γ(w) ∈ �♥�W(�φ1�, . . . , �φn�)

where M = (W,γ, σ) is a T -model. We write �φ�M = {w ∈ W | M, w |= φ} for
the truth-set of φ relative to M.

A formula φ ∈ L(Λ) is valid in a T -frame F = (W,γ) if M, w |= φ for all
T -models M based on F , this is denoted by F |= φ. If C is a class of T -frames,
we say that φ is valid on C if F |= φ for all F ∈ C , this is denoted C |= φ. The
logic of C is the set of all formulae valid on C , i.e.

Log(C ) = {φ ∈ L(Λ) | C |= φ}.

It is easy to check that Log(C ) is a Λ-logic.

3 Fusion and Transfer of Soundness and Consistency

Given two modal signatures ΛL and ΛR (where the subscripts stand for ‘left’
and ‘right’, respectively), the fusion of a ΛL-logic with a ΛR-logic is the smallest
ΛL + ΛR-logic that extends both. In other words, we may mix ΛL and ΛR
operators freely in the fusion, but not stipulate any interaction between them.
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Definition 2 (Fusion of Logics). Given a ΛL-logic L and a ΛR-logic R where
ΛL and ΛR are two arbitrary modal signatures, the fusion F = L ⊗ R is the
smallest ΛL+ΛR-logic containing both L and R. The fusion is therefore a binary
operation −⊗− : E (EΛL ) × E (EΛR ) → E (EΛL+ΛR).

While we consider the modal operators of L and R to be disjoint by assumption,
propositional connectives are shared. Given two structures for ΛL and ΛR, we
can interpret the fusion over a ΛL + ΛR-structure as follows:

Definition 3 (Fusion of Structures). Given a ΛL-structure S and a ΛR-
structure T over modal signatures ΛL and ΛR, the fusion of S and T is the
ΛL+ΛR-structure over the endofunctor S×T where the assignment of predicate
liftings is given by

�♥�1X = π−1
1 ◦ �♥�X for ♥ ∈ ΛL

�♠�2X = π−1
2 ◦ �♠�X for ♠ ∈ ΛR

where π1 and π2 are the projections SX
π1← SX × TX

π2→ TX . Note that both
�♥�1 and �♠�2 are predicate liftings of type 2(−)n → 2S−×T− for n-ary operators
♥ and ♠.

In other words, the fusion of two structures S and T produces a structure for the
disjoint union of operators. In particular S×T -frames carry both the structure of
an S-frame and a T -frame, and the interpretation of modalities over the product
of S and T is obtained by their interpretation over S and T by just projecting
to the respective component. This induces a fusion operation on frame classes.

Definition 4 (Fusion of Frame Classes). Let S and T be two Set-endo-
functors. If CL and CR are classes of S and T -frames, respectively, the fusion
CL ⊗ CR of CL and CR is the class of S × T -frames given by

CL ⊗ CR = {(X
〈γ,δ〉−→ SX × TX) | (X, γ) ∈ CL and (X, δ) ∈ CR}

where 〈γ, δ〉(x) = (γ(x), δ(x)).

The purpose of this paper is essentially to show that for a large class of functors
Definitions 2 and 4 are counterparts of one another, i.e. L⊗R = Log(CL ⊗ CR)
iff L = Log(CL) and R = Log(CR). For now, let us introduce some examples of
Λ-logics, their coalgebraic semantics as well as some examples of fusion.

Example 5. 1. For Λ = {�}, the logic E{�} is the smallest congruential
modal logic (classical modal logic in the terminology of [3]). It is sound and
complete with respect to neighbourhood frames, i.e. N -coalgebras, where N =
22−

is the neighbourhood functor (see also [14]).
2. The smallest extension of E containing �(p → q) → �p → �q that is

closed under the necessitation rule (p/�p) is the logic K which is sound and
complete with respect to the class of all P-coalgebras, where P is the covariant
powerset functor and ���X(A) = {B ∈ P(X) | B ⊆ A}. A P-coalgebra γ :
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W → PW is equivalent to a relation R on W via (x, y) ∈ R iff y ∈ γ(x). It
follows that a P ×P-coalgebra 〈γ, δ〉 as defined by Def. 4 is equivalent to a pair
of relations RL and RR via (x, y) ∈ RL iff y ∈ π1 ◦ 〈γ, δ〉(x) and (x, y) ∈ RR
iff y ∈ π2 ◦ 〈γ, δ〉(x). We thus recover the standard definition of fusion of Kripke
frames [13,11].

3. If we restrict the previous example to the class CS5 of P-coalgebras corre-
sponding to Kripke frames where the relation is an equivalence, then Log(CS5)
is the epistemic logic S5 [2]. Syntactically S5, is the smallest extension of K
containing the axioms for transitivity (4), reflexivity (T ) and symmetry (B). It
is customary write the operator of S5 as K and to consider the n-fold fusion
S5n =

⊗n
i=1 S5. The modal signature of this logic is

∐n
i=1{K} � {Ki}1≤i≤n.

By Definition 2, S5n is thus the smallest {Ki}1≤i≤n-logic closed under a neces-
sitation rule and a copy of �(p → q) → �p → �q, T , B and 4 per operator.

4. The finitely supported probability distribution functor D(X) = {μ : X →f

[0, 1] |
∑
x∈X μ(x) = 1} (where →f denotes finite support) extends to a Λ-

structure for Λ = {Lu | u ∈ [0, 1] ∩ Q} consisting of unary operators Lu, read
as ‘with probability at least u’. The functor D extends to a Λ-structure by stip-
ulating �Lu�X(A) = {μ ∈ D(X) | μ(A) ≥ p}. We therefore obtain probabilistic
epistemic logic as the fusion of S5n⊗Log(D) where D is the class of all D-frames.

Our first goal is to show that consistency transfers under fusion, i.e. ⊥ /∈ L⊗R
whenever ⊥ /∈ L,R. We will show this algebraically following [9] using termi-
nology adapted from [5]. The transfer of consistency can be proved using purely
coalgebraic arguments, but it requires the assumption that both consitituents of
the fusion be sound and complete w.r.t. some classes of coalgebras. Using alge-
braic arguments we can prove the transfer of consistency under fusion without
any extra hypothesis. The proof is also shorter and more elegant.

Definition 6 (Algebraic Semantics). Given a modal signature Λ, a Λ-modal
algebra A is a boolean algebra (A, 0, 1,¬A,∧A) together with an n-ary function
f♥ : An → A, for each ♥ ∈ Λ. The boolean algebra (A, 0, 1,¬A,∧A) is called the
boolean reduct of A. A variable assignment is a map σ : V → A into the carrier
set of A. Every variable assignment σ extends to an interpretation (denoted by
the same symbol) σ : L(Λ) → A given by

σ(φ ∧ ψ) = σ(φ) ∧A σ(ψ) σ(¬φ) = ¬Aσ(φ)
σ (♥ (φ0, . . . , φn)) = f♥(σ(φ1), . . . , σ(φn))

for ♥ ∈ Λ n-ary. An algebraic model is a pair M = (A, σ) where A is a Λ-modal
algebra and σ is an interpretation of L(Λ), M is said to be based on A. We say
that a formula φ is satisfied in M if σ(φ) �= 0 and we say that φ is true in M
(notation (A, σ) � φ) when σ(φ) = 1. Finally, we say that φ is valid in A if φ is
true for any model (A, σ) based on A.

We will sketch the proof that if L and R are consistent (i.e. ⊥ /∈ L,R) then
L ⊗ R is a conservative extension of both L and R. For more details we refer
the reader to [9] where this theorem is proved for normal unary multi-modal
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logics. However, since the proof does not involve normality or the arity of the
operators it extends trivially to our setup. To show that L⊗R is a conservative
extension of both L and R the first step is to build the Lindenbaum-Tarski
algebra of L which provides us with a ΛL-modal algebra AL which validates all
formulae of L. Secondly, by contraposition consider a ΛL-formula φ such that
�L ¬φ. Then σAL (¬φ) �= 1, where σAL is the interpretation associated with
the Lindenbaum-Tarski algebra of L. Thirdly, we build the Lindenbaum-Tarski
algebra AR of R which validates all formulae in R. It is easy to show that both
AL and AR are countably infinite atomless provided both similarity types are at
most countable [9]. As any countably infinite boolean algebras are isomorphic,
their boolean reducts (and thus carrier sets) can therefore be assumed to be
equal. The ΛL + ΛR-modal algebra consisting of this common boolean algebra
plus all operators from AL and AR provides us with a ΛL + ΛR-modal algebra
AL⊗R which validates L and R and in which σ(¬φ) �= 1. By the completeness of
algebraic semantics we can thus conclude that �L⊗R ¬φ.

Theorem 7. If L and R are consistent logics over at most countable similarity
types ΛL and ΛR (i.e. ⊥ /∈ L,R) then L⊗R is a conservative extension of both
L and R.

A direct consequence of this proposition is that fusion preserves consistency.

Theorem 8 (Consistency Transfers). The fusion of two consistent Λ-logics
is consistent, i.e. ⊥ /∈ L⊗R whenever ⊥ /∈ L,R.

While the transfer of consistency can be based on a purely syntactic argument,
the transfer of soundness involves the (coalgebraic) semantics, and in particular
the fact that a S×T -model can be seen as an S (or T ) model by simply forgetting
the T (or S) structure.

Theorem 9 (Soundness Transfers). Let L and R be ΛL and ΛR-logics, re-
spectively. If CL and CR are classes of S-frames and T -frames, respectively, then
L⊗R ⊆ Log(CL ⊗ CR).

4 Transfer of Completeness

The remainder of the paper is devoted to establishing the converse of Theorem
9: we establish that completeness transfers to the fusion of two logics over coal-
gebraic semantics. While an algebraic approach yields transfer of consistency
without any further assumptions (in particular without assuming a complete
semantics), the situation is different when it comes to transfer of completeness.
A naive approach via categorical duality only yields completeness with respect
to (the coalgebraic analogue of) descriptive general frames, or coalgebras over
Stone spaces [12]. In particular, this form of algebraic completeness does not
appear to yield completeness with respect to the fusion of frame classes, mainly
because constructions like canonical extensions do not have a coalgebraic coun-
terpart. We therefore adapt a classical construction that witnesses satisfiability
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of (fusion-) consistent formulas [11] to the coalgebraic setting, and directly build
(set-theoretic) models.

For the whole section, we fix two modal signatures ΛL and ΛR, two ΛL-
and ΛR-structures over functors S and T respectively and two logics L and
R that are sound and complete with respect to classes CL and CR of S and
T -frames, respectively, that is, L = Log(CL) and R = Log(CR). Our goal is
to show that the fusion L ⊗ R is complete with respect to the fusion of the
corresponding frame classes, i.e. L ⊗ R = Log(CL ⊗ CR). As usual, we consider
the contrapositive and show that every L⊗R-consistent formula can be satisfied
in a model that is based on a CL ⊗ CR-frame. We use the fact that we know
how to build coalgebraic models for L- and R-consistent formulae. So the trick
is to turn L ⊗ R-consistent formulae into L- and R-consistent ones and glue
the satisfying models together in a suitable way. The passage from L(ΛL + ΛR)
formulae to formulae of the component languages L(ΛL) and L(ΛR) is achieved
by the following constructions introduced in [11].

4.1 Ersatz and Reconstruction

Definition 10 (Ersatz). Let ΛL and ΛR be two similarity types. If φ is a
formula in the language of the fusion L(ΛL + ΛR), then its L-ersatz (or left-
ersatz) φL is defined by putting pL = p, (φ ∧ ψ)L = φL ∧ ψL, (¬φ)L = ¬φL

and

(♥ (φ1, ..., φn))L = ♥
(
φL1 , ..., φLn

)
for all ♥ ∈ ΛL

(♠ (φ1, ..., φm))L = q♠(φ1,...,φm) for all ♠ ∈ ΛR

where p ∈ V and q♠(φ1,...,φm) ∈ VR is a fresh variable from a set VR of variables
disjoint from V , called an R-surrogate (or right-surrogate). The R-ersatz (or
right-ersatz) φR of φ is defined dually by switching the role of ♥ and ♠.

The ersatz operations (.)L and (.)R are thus an operations of type

(.)L : L(ΛL+ΛR, V ) → L(ΛL, V ∪VR) (.)R : L(ΛL+ΛR, V ) → L(ΛR, V ∪VL).

Althought not mentioned in [11], the construction relies on the fact that the
ersatz operations preserve consistency.

Lemma 11 (Ersatz Perserves Consistency). If φ is an L ⊗ R-consistent
formula then φL (respectively φR) is L-consistent (respectively R-consistent).

Example 12. Consider the formula φ = LuKiLvp ∧ Luq in the language of
Sn

5 ⊗Prob introduced in Example 5. We obtain

φL = qLuKiLvp ∧ qLuq and φR = LuqKiLvp ∧ Luq.

As can be seen from this example and from the definition, the left-ersatz con-
struction transforms a subformula into a surrogate variable as soon as it sees
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an R-operator. The nesting of operators following the outermost R-operator is
therefore lost. One of the key ideas of the completeness transfer theorem is to
alternate left and right ersatz constructions, building a model at each stage until
we have drilled down to the level of propositional variables. In order to do this we
need to be able to build ersatz formulae deeper inside the nesting of operators.

Definition 13 (Reconstruction). Let φ be free of left (respectively right)
surrogate variables. We define the reconstruction operators ↑L and ↑R by

↑Rφ = φ
(
♠((ψi1)R, ..., (ψim)R)/q♠(ψi

1,...,ψ
i
m), pj

)
for all ♠ ∈ ΛR

↑Lφ = φ
(
♥((ψi1)L, ..., (ψin)L)/q♥(ψi

1,...,ψ
i
n), pj

)
for all ♥ ∈ ΛL

where i ranges over the set of right (resp. left) surrogate variables in φ and j
ranges over the set of non-surrogate variables in φ. These operations have type

↑L : L(ΛL + ΛR, V ∪ VL) → L(ΛL + ΛR, V ∪ VR)
↑R : L(ΛL + ΛR, V ∪ VR) → L(ΛL + ΛR, V ∪ VL),

that is ↑L maps formulae free of R-surrogates to formulae free of L-surrogates,
dually for ↑R. As a consequence, left and right reconstructions can be alternated.
To simplify notation we write ↑ for both and ↑n for the n-fold iteration of ↑.

Example 14. Let φ be as in Example 12. Then we have the following:

↑φL =↑(qLuKiLvp ∧ qLuq) = Lu(KiLvp)R ∧ (Luq)R = LuqKiLvp ∧ Luq
↑2φL =↑(LuqKiLvp ∧ Luq) = LuKi(Lvp)L ∧ Luq = LuKiqLvp ∧ Luq
↑3φL =↑(LuKiqLvp ∧ Luq) = LuKiLv(p)R ∧ Luq = LuKiLvp ∧ Luq = φ

It is intuitively clear that repeated reconstruction reconstructs the original for-
mula step-by-step. We note this as:

Lemma and Definition 15. Let φ be a formula on which the reconstruction
operator ↑ is defined. Then there exists n ∈ ω such that ↑nφ =↑n+1φ This is the
case exactly when the ↑nφ has no surrogate variables (i.e. has the same variables
as φ). We call ↑nφ the total reconstruction of φ, denoted by φ↑.

4.2 Consistency Sets and Consistency Formulae

We are now equiped with two constructions that allow us to ‘project’ an L⊗R-
consistent formula φ onto L- and R-consistent formulae (by Lemma 11) for which
we know how to build coalgebraic models. Let us for instance start by building
φL. Since it is L-consistent and L is complete with respect to a class CL of S-
coalgebras, we can build a coalgebraic model for φL. However, we quickly run
into trouble: any model for φL cannot take into account the actual meaning of
its surrogate variables, i.e. of their indices. In particular, it can assign to two
surrogate variables qφ, qψ a truth value of true at the same point even if φ∧ψ is
L ⊗ R-inconsistent. To avoid this problem we need some way of enforcing that
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a model of φL gives L ⊗ R-consistent valuations to surrogate variables. This
is achieved by using the following constructions. By convention we will always
consider reconstructions based on the left-ersatz (this can be done without loss
of generality, since L ⊗ R � R ⊗ L). To simplify the notation we will write the
ith reconstruction of φL as φi =↑i(φL), and we define for each i the index set Si
of indices of surrogate variables of the ith reconstruction and their subformulae.
Formally:

Si = sf{ψ | qψ ∈ var(φi)} ∪ var(φ)}

S0 for example, regroups the indices of all surrogate variables of φL as well as
their subformulae. To enforce L⊗R-consistent valuations of the surrogate vari-
ables of φL, the idea is to first list all the possible L⊗R-consistent combinations
of formulae in S0 into a ‘consistency set’.

Definition 16 (Consistency Sets). Let L be a logic and let Δ be a finite set
of formulae in the language of L. The L-consistency set Σ(Δ) is defined by

Σ(Δ) = {
∧

M | M ⊆ Δ ∪ ¬Δ | M maximally consistent}

where ¬Δ = {¬φ | φ ∈ Δ} and sLΔ =
∨

Σ(Δ) is the L-consistency formula of Δ.

We read ‘maximally consistent’ above as maximal among the subsets of Δ ∪
¬Δ, and Σ(Δ) contains all different possible realisations of combinations of
formulae in Δ and the consistency formula sΔ amounts to requiring that one
such combination can be satisfied in a model. Returning to our problem and
setting Δ = S0, it is easy to see that if the consistency formula sL

S0
is true at

a certain point of an L-model, then we are guaranteed that the combination
of surrogate variables which are valuated as ‘true’ at that point stand for an
L⊗R-consistent combination of formulae of S0. We crucially have that:

Lemma 17. L-consistency formulae are L-theorems.

Since sS0 is an L ⊗ R-theorem, φ ∧ sS0 is L ⊗ R-consistent, thus by Lemma 11,
φL ∧ sL

S0
is L-consistent, and by completeness of L a model can thus be build for

it. Such a model of φL will necessarily have an L ⊗ R-consistent valuation for
surrogate variables.

4.3 Necessity Operators and Distances

We have just solved a problem in the construction of our model, but we are
almost immediately confronted by another one. Indeed, we may have avoided
L ⊗ R-inconsistencies at one point in the L-model of φL (namely the point w
making φL true), but L⊗R-inconsistent valuations of surrogate variables could
still happen elsewhere in the model. We therefore need to ‘propagate’ consistency.
In Kripke frames we can simply use the necessitation rule and the box operator
� to propagate sL

S0
, but in a coalgebraic interpretation this is in general not

possible. This problem is the biggest hurdle, but also the most interesting, in
generalising Kracht and Wolter’s construction [11] to coalgebraic semantics.
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Definition 18 (One-step Successors). Given a T -coalgebra W
γ→ TW , and

an element w ∈ W , we define the 1-step successors S1(w) of w to be the set

S1(w) =
⋂
{U ⊆ W | γ(w) ∈ T i[TU ]}

where i : U ↪→ W is inclusion and T i[TU ] is the direct image of TU under T i.

Intuitively, S1(w) is the smallest subset of W providing a ‘support’ for γ(w).
Note however, that Definition 18 is in general not well defined, as arbitrary
intersections need not be preserved by Set-endofunctors (unlike finite intersec-
tions, see Assumption 1). The filter functor provides an easy example of such a
behaviour. In fact, [10, Corollary 4.8] provides an elegant criterion for the the
existence of the set of 1-step successors of a point in a coalgebra.

Proposition 19. T preserves infinite intersections iff for any u ∈ TW there is
a smallest U ⊆ W with u ∈ T i[TU ].

Assumption 20. From now on we will therefore assume that we are dealing
with Set-endofunctors that preserve arbitrary intersections. Note that for logics
with the finite model property, since we can always assume that the carrier
set of any coalgebraic model is finite and since all Set-endofunctor preserve
finite intersections, we drop this assumption. In particular, all complete rank-1
coalgebraic logic have the finite model property.

The notion of 1-step successor allows us to define a notion of distance on the
points of a coalgebraic model W

γ→ TW .

Definition 21 (Distance). We say that there is a path of length n between
x, y ∈ W if there is a sequence of elements (xi)1≤i≤n such that x = x1, xn = y
and xi+1 ∈ S1(xi) for all 1 ≤ i < n. The distance dist(x, y) between x, y ∈ W is
the length of the shortest path between x and y, or ∞ if no such path exists. Any
T -coalgebra (W,γ) induces a distance function dist : W ×W → N∪{∞}. Based
on the notion of distance we can generalise the set of one-step successors to the
following sets of n-step successors of w (ball and sphere of radius n around w):

Sn(w) = {x ∈ W | dist(w, x) = n} Bn(w) = {x ∈ W | dist(w, x) ≤ n}

Finally, we will say that there is a path between two points w and x and write
w 
 x if there is a path of finite length between w and x.

Remark 22. 1. The notion of one-step successor is not symmetric and the
notion of distance defined above is therefore not a true metric. However, it is
an (extended) quasimetric, i.e. it is non-negative, satisfies the triangle inequality
and is zero iff the two arguments are equal.

2. For an S × T -coalgebra W
〈γ,δ〉−→ SW × TW , there are three notions of dis-

tance: the S-distance based on the notion of S-successors BS1 (w) :=
⋂
{U ⊆ W |

γ(w) ∈ Si[SU ]}, the T -distance based on the notion of T -successors BT1 (w) :=⋂
{U ⊆ W | δ(w) ∈ T i[TU ]} and the combined S × T -distance based on the

notion of S × T -successors BS×T1 (w) :=
⋂
{U ⊆ W | (γ(w), δ(w)) ∈ Si[SU ] ×

T i[TU ]}.
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A key feature of Kripke semantics is the local aspect of truth, i.e. that the truth of
a formula of modal depth n at a world w depends only on points at most n-steps
away from w. Similarly, in the coalgebraic semantics it is intuitively clear that
if φ ∈ L is of modal depth md(φ) = n and γ : W → TW is a coalgebraic frame,
then the truth value of φ at w ∈ W will also only depends of the valuations of
propositional variables at points x ∈ Bn(w).

Theorem 23 (Coalgebraic Semantics is Local). Let φ be a Λ-formula of
modal depth md(φ) = n. If M = (W,γ, σ) and M ′ = (W,γ, σ′) are T -models
based on the same frame and T preserves arbitrary intersections, then we have
for all w ∈ W that

M,w |= φ ⇐⇒ M ′, w |= φ

whenever σ(p) ∩Bn(w) = σ′(p) ∩Bn(w) for all p ∈ var(φ).

Returning to our problem, this result tells us how far we need to propagate the
truth of our consistency formula sL

S0
: if the modal depth of φL is n, we only

need to concentrate our efforts on enforcing sL
S0

in a ball of radius n around the
point w where φL will be satsified. But how can this be done in an coalgebraic
model? Over relational semantics we can use the box operator � to enforce the
truth of a formula ψ at all 1-step away successors but this ability of Kripke
semantics to enforce truth on successor states is in general not available in the
coalgebraic framework. We will therefore need a coalgebraic generalisation of the
necessitation operator.

Definition 24 (Necessity and Necessity Operators). Let L be a Λ-logic.
Then L has weak necessity over a Λ-structure T if, for every L-consistent formula
φ there exists an L-consistent formula nec(φ) such that

S1(w) ⊆ �φ�M whenever M, w |= nec(φ)

for all T -models M = (W,γ, σ) and all w ∈ W . We will say that L has strong
necessity over T if

S1(w) ⊆ �φ�M iff M, w |= nec(φ)

A unary operator ♥ ∈ Λ is a necessity operator over T if

S1(w) ⊆ �φ�M whenever M, w |= ♥φ

for every T -model M = (W,γ, σ) and all w ∈ W . We usually use the symbol �
for necessity operators.

We will solely focus on notions of necessity arising from necessity operators. In
most practical cases such an operator can either be found directly in the logic
itself or can be simulated within the logic as a boolean combination of existing
operators. The following result shows how frequent necessity operators are.

Proposition 25. Suppose that T : Set → Set preserves weak pullbacks and Λ
is a modal signature containing �. Then there exists a predicate lifting λ : 2− →
2T− making � a necessity operator over T .
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In other words, a necessity operator � exists for any endofunctor T : Set → Set
that preserves weak-pullbacks. It is the predicate lifting associated with the
subset T 1 of T 2 as described in [16].

Example 26. Many logics have a necessitation operator. This is evident for
extensions of (multi-modal) K. It is easy to see that probabilistic modal logic
also has a necessitation operator. In the terminology of Example 5, it can be seen
easily that � = L0 is a necessitation operator over all extensions of probabilistic
modal logic, as long as the latter is interpreted over the structure presented in
loc.cit. An easy calculation shows that this operator indeed arises from the set
D(1) via the construction described in [16].

In the construction of a satisfiable model for L⊗R-consistent formulae, we will
use necessitation operators to propagate consistency formulae.

Lemma 27 (Necessity Operators Satisfy Necessitation). Suppose that L
is a Λ-logic and � ∈ Λ is a necessity operator over a Λ-structure T , φ ∈ L(Λ)
and M is a T -model. Then M |= �φ whenever M |= φ.

We now return to the construction of satisfying S×T -models. We impose L⊗R-
consistency at all relevant points in an L-model of φL as follows: since sS0 is
a L ⊗ R-theorem, so is �≤md(φL)sS0 (by Lemma 27) and by using the same
reasoning as earlier we can thus build an L-model

(W0, γ0, σ0), w |= φL ∧�≤mdL(φ)sLS0
(1)

that satisfies the consistency formula at all points that influence the interpreta-
tion of φ (see Theorem 23).

4.4 Generated Submodels

What do we do with the points of the model in Equation 1 that cannot affect the
truth of φ at w? They may not affect φ at w but we still need to build an L⊗R-
consistent model. We deal with these points in two ways: first we ensure that our
model has no truly excessive points by using generated submodels, secondly we
will use non-standard valuations during the construction of the model for points
that cannot influence φ at w. Only at the last step of the construction will we
return to standard (boolean) valuations. Let us first deal with the first point.

Definition 28 (Generated Submodels). Given a coalgebra W
γ→ TW , we

define the subcoalgebra generated by w ∈ W as the set of points reachable via a

-trace from w, i.e.

Tr(w) = {x ∈ W | w 
 x}

together with the map δ : Tr(w) → T (Tr(w)), x �→ T i−1(γ(x)) where i is the
injection of Tr(w) in W .

It follows from Proposition 19 that the above is well-defined. In fact, we can
show slightly more:
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Proposition 29. Given a coalgebra W
γ→ TW and w ∈ W , Tr(w) is the small-

est subcoalgebra containing w, i.e.

Tr(w) =
⋂

{S ⊆ W | (S, δ) ⊆ (W,γ) is a subcoalgebra for some δ : S → TS}.

Clearly the passage from points in satisfying models to generated submodels
does not change the validity of formulae at that point.

Proposition 30. Let φ be a Λ-formula for some modal signature Λ for which
we assume a Λ-structure has been fixed and let M = (W,γ, σ) be a coalgebraic
model. Then for any w ∈ W

M, w |= φ ⇔ Tr(w), w |= φ.

Once we have pruned our model of irrelevant points by considering only gener-
ated submodels we deal with the remaining points that cannot influence φL by
weakening the valuations at these points with a non-standard valuation [11].

4.5 Characteristic Sets and Formulae

Finally, how do we give the surrogate variables of φL an interpretation that
reflects their index? The idea is to build at each x ∈ W0 an R-model which will
provide an R-interpretation of the index of all surrogate variables true at x. We
must therefore ‘sum-up’ all that is true at a certain point.

Definition 31 (Characteristic Sets). Given an L-model M = (W,σ, γ) and
a set of L⊗R-formulae Δ, the L-characteristic set XV,Δ

L (t) at t ∈ W is

Xσ,Δ
L (t) = {ψ | ψ ∈ Δ and M, t |= ψL} ∪ {¬ψ | ψ ∈ Δ and M, t �|= ψL}

The L-characteristic formula χσ,ΔL (t) is defined as:

χσ,ΔL (t) =
∧

Xσ,Δ
L (t)

The R-characteristic sets and formulae are defined dually.

It is easy to see that by construction characteristic formulae are consistent and
sum-up all the formulae of Δ that are true at a point. By taking Δ to be the
index set S0 we can now give a meaning to the surrogate variables in φL, for if
(χσ0,S0(t))R is satisfied at a point xt1 in an R-model (W t

1 , δ
t
1, σ

t
1), then a surrogate

variable qψ is true at t ∈ W0 iff ψR is true at xt1 ∈ W t
1 .

4.6 Transfer of Completeness

We have just seen how we can unravel the R-meaning of surrogate variables of
φL in our original model (W0, γ0, σ0). The next step in the construction of the
model is to perform this operation at every point of W0, i.e. for each t ∈ W0 we
build an R-model (a ‘fibre’) of (χσ0,S0(t))R. We then glue all our models together
by identifying t and xt1 (which as mentioned above is legitimate from the point
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of view of truth values). This gives us a model for the first reconstruction of φ
which contains a host of R-surrogate variables which much be given a proper L-
interpretation and the process we have described is thus iterated. By alternating
and gluing these L ⊗ R-consistent L and R-models in the way we described we
eventually reach a model of the final reconstruction of φ, i.e. φ itself.

Theorem 32 (Completeness Transfer). Let ΛL and ΛR be two modal sig-
natures and let L and R be consistent ΛL and ΛR-logic respectively. If both L
and R have a necessitation operator over their respective structures, then

L = Log(CL) and R = Log(CR) iff L⊗R = Log(CL ⊗ CR)

that is, completeness transfers to the fusion of coalgebraic logics.

Example 33. Given that both S5 and Prob have necessitation over their
respective structures (Example 26), we may apply Theorem 32 to show that
S5n ⊗Prob is sound and complete with respect to the class

⊗n
i=1 (CS5)i ⊗D .

Note that if L and R have the finite model property, then at any stage of our
construction, the L- and R-models can be chosen to be finite, and since the total
number of steps in the construction is finite (bounded by the modal depth of
the formula), the final model is also finite.

Theorem 34. Under the assumptions of Theorem 32, the finite model property
transfers.

5 Discussion and Future Work

Several questions emerge from our generalisation of Kracht and Wolter’s con-
struction. Firstly, can we drop the assumption that functors need to preserve all
intersections? As we mentioned above, the case of logics with the finite model
property offers a partial solution to this problem which includes any complete
rank-1 logic, and in particular the classical logic E for which the completenss
transfer problem is still open.

Secondly, in order to deal with logics whose semantics is given by non weak-
pullback preserving functors we cannot use notions of necessity that are given
by simply applying a unary necessity operator to formulae. Instead we may need
more complex formulae, i.e. our general notion of necessity (Definition 24). But
can the formula nec(φ) be constructed or be proven to exist in general, and if
not what are the restrictions that prevent it from happening? Less ambitiously,
but perhaps more realistically, is there a generalization of our unary necessity
operators to the n-ary case for weak-pullback preserving functors?

Finally, is the Kracht and Wolter construction necessary at all? Could some
duality argument interpret the syntactic fusion as a binary operation on alge-
bras/theories whose dual would be the semantic fusion operation on (classes
of) coalgebras/models. Syntactically, there is a strong connection between the
fusion and co-product constructions. The signature of a fusion can be seen as
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the co-product ΛL + ΛR of its constituent signatures. Moreover, if we view the
algebraic models of a ΛL-logic L as models of a Lawvere theory TL (the the-
ory of ΛL modal algebras) and the algebraic models of a ΛR-logic R as models
of a Lawvere theory TR, then the models of L ⊗ R are models of the pushout
TL

i1← TB
i2→ TR where TB is the Lawvere theory of boolean algebras and i1, i2

are just the inclusion as boolean reducts. Dually, the fusion of models is based on
products, but the correct categorical framework in which to view the operation
of fusion on classes of coalgebras as a kind of product or pullback is not clear.
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Abstract. This paper extends the fibrational approach to induction and
coinduction pioneered by Hermida and Jacobs, and developed by the cur-
rent authors, in two key directions. First, we present a sound coinduction
rule for any data type arising as the final coalgebra of a functor, thus re-
laxing Hermida and Jacobs’ restriction to polynomial data types. For this
we introduce the notion of a quotient category with equality (QCE), which
both abstracts the standard notion of a fibration of relations constructed
from a given fibration, and plays a role in the theory of coinduction dual
to that of a comprehension category with unit (CCU) in the theory of in-
duction. Second, we show that indexed inductive and coinductive types
also admit sound induction and coinduction rules. Indexed data types
often arise as initial algebras and final coalgebras of functors on slice
categories, so our key technical results give sufficent conditions under
which we can construct, from a CCU (QCE) U : E → B, a fibration with
base B/I that models indexing by I and is also a CCU (QCE).

1 Introduction
Iteration operators provide a uniform way to express common and naturally
occurring patterns of recursion over inductive data types. Categorically, iteration
operators arise from initial algebra semantics: the constructors of an inductive
data type are modelled as a functor F , the data type itself is modelled as the
carrier μF of the initial F -algebra in : F (μF ) → μF , and the iteration operator
fold : (FA → A) → μF → A for μF maps an F -algebra h : FA → A to the
unique F -algebra morphism from in to h. Initial algebra semantics provides a
comprehensive theory of iteration which is i) principled, in that it ensures that
programs have rigorous mathematical foundations that can be used to give them
meaning and prove their soundness; ii) expressive, in that it is applicable to all
inductive types — i.e., all types that are carriers of initial algebras — rather
than just to syntactically defined classes of data types such as polynomial ones;
and iii) sound, in that it is valid in any model — set-theoretic, domain-theoretic,
realizability, etc. — interpreting data types as carriers of initial algebras.

Final coalgebra semantics gives an equally comprehensive understanding of
coinductive types: the destructors of a coinductive data type are modelled as
a functor F , the data type itself is modelled as the carrier νF of the final F -
coalgebra out : νF → F (νF ), and the coiteration operator unfold : (A → FA) →
A → νF for νF maps an F -coalgebra k : A → FA to the unique F -coalgebra
morphism from k to out . Final coalgebra semantics thus provides a theory of
coiteration which is as principled, expressive, and sound as that for induction.

A. Corradini, B. Klin, and C. Cîrstea (Eds.): CALCO 2011, LNCS 6859, pp. 176–191, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Since induction and iteration are closely linked, we might expect initial algebra
semantics to give a principled, expressive, and sound theory of induction as well.
However, most theories of induction for a data type μF , where F : B → B,
are sound only under significant restrictions on the category B, the functor F ,
or the property to be established. Recently a conceptual breakthrough in the
theory of induction was made by Hermida and Jacobs [7]. They show how to
lift an arbitrary functor F on a base category B of types to a functor F̂ on a
category of properties over those types. They take the premises of an induction
rule for μF to be an F̂ -algebra, and their main theorem shows that such a rule
is sound if the lifting F̂ preserves truth predicates. Hermida and Jacobs work in
a fibrational, and hence axiomatic, setting and treat any notion of property that
can be suitably fibred over B. Moreover, they place no stringent requirements on
B. Thus, they overcome two of the aforementioned limitations. But since they
give sound induction rules only for polynomial data types, the limitation on
the functors treated remains in their work. The current authors [3] subsequently
removed this final restriction to give sound induction rules for all inductive types
on the underlying fibration under conditions commensurate with those in [7].

In this paper, we extend the existing body of work in three key directions.
First, Hermida and Jacobs developed a fibrational theory of coinduction to com-
plement their theory of induction. But this theory, too, is sound only for polyno-
mial data types, and so does not apply to final coalgebras of some key functors,
such as the finite powerset functor. In this paper, we derive a sound fibrational
coinduction rule for every coinductive data type, i.e., for every type that is the
carrier of a final coalgebra. Second, data types arising as initial algebras of func-
tors are fairly simple. More sophisticated data types — e.g., untyped lambda
terms and red-black trees — are often modelled as inductive indexed types aris-
ing as initial algebras of functors on slice categories, presheaf categories, and
similar structures. In this paper, we derive sound induction rules for such in-
ductive indexed types. Finally, since we can derive sound induction rules for
inductive types and inductive indexed types, and sound coinduction rules for
coinductive types, we might expect to be able to derive sound coinduction rules
for coinductive indexed types, too. In this paper, we confirm that this is the case.

This rest of this paper is structured as follows. In Section 2 we recall the
fibrational approach to induction pioneered in [7] and extended in [3]. In Section 3
we extend the results of [7] to derive sound coinduction rules for all functors with
final coalgebras. We give sound induction (coinduction) rules for inductive (resp.,
coinductive) indexed types in Section 4 (resp., Section 5). Section 6 summarises
our conclusions, and discusses related work and possibilities for future work.

2 Induction in a Fibrational Setting

Fibrations support a uniform, axiomatic approach to induction and coinduction
that is widely applicable and abstracts over the specific choices of category, func-
tor, and predicate. This is advantageous because i) the semantics of data types in
languages involving recursion and other effects usually involves categories other
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than Set; ii) in such circumstances, the standard set-based interpretations of
predicates are no longer germane; iii) in any setting, there can be more than one
reasonable notion of predicate; and iv) fibrations allow induction and coinduc-
tion rules for many classes of data types to be obtained by instantiation of a
single, generic theory rather than developed an ad hoc, case-by-case basis.

2.1 Fibrations in a Nutshell

We begin with fibrations. More details can be found in, e.g., [9,14].

Definition 2.1. Let U : E → B be a functor. A morphism g : Q → P in E is
cartesian over a morphism f : X → Y in B if Ug = f and, for every g′ : Q′ → P
in E with Ug′ = fv for some v : UQ′ → X, there exists a unique h : Q′ → Q in
E such that Uh = v and gh = g′.

The cartesian morphism f §
P over a morphism f with codomain UP is unique up

to isomorphism. We write f∗P for the domain of f §
P , and omit the subscript P

when it can be inferred from context.

Definition 2.2. Let U : E → B be a functor. Then U is a fibration if for
every object P of E and every morphism f : X → UP in B there is a cartesian
morphism f §

P : f∗P → P in E over f .

If U : E → B is a fibration, we call B the base category of U and E its total
category. Objects of E are thought of as properties, objects of B are thought of
as types, and U is thought to map each property P in E to the type UP about
which it is a property. An object P in E is said to be above its image UP under
U , and similarly for morphisms. For any object X of B, we write EX for the fibre
above X , i.e., the subcategory of E comprising objects above X and morphisms
above idX . Morphisms within a fibre are said to be vertical. If f : X → Y is a
morphism in B, then the function mapping each object P of E to f∗P extends
to a functor f∗ : EY → EX called the reindexing functor induced by f .

Example 2.3. The category Fam(Set) has as objects pairs (X,P ) with X a set
and P : X → Set. We call X the domain of (X,P ), and write P for (X,P )
when convenient. A morphism from P : X → Set to P ′ : X ′ → Set is a pair
(f, f∼) of functions f : X → X ′ and f∼ : ∀x : X.P x → P ′(f x). The functor
U : Fam(Set) → Set mapping (X,P ) to X is called the families fibration.

Example 2.4. The arrow category of B, denoted B→, has morphisms of B as its
objects. A morphism from f : X → Y to f ′ : X ′ → Y ′ in B→ is a pair (α1, α2)
of morphisms in B such that f ′α1 = α2f . The codomain functor cod : B→ → B
maps an object f : X → Y of B→ to the object Y of B. If B has pullbacks, then
cod is a fibration, called the codomain fibration over B. Indeed, given an object
f : X → Y in the fibre above Y and a morphism f ′ : X ′ → Y in B, the pullback
of f along f ′ gives a cartesian morphism over f ′.

We say U : E → B is an opfibration, if Uop : Eop → Bop is a fibration. Concretely:
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Definition 2.5. Let U : E → B be a functor. A morphism g : P → Q in E
is opcartesian over a morphism f : X → Y in B if Ug = f and, for every
g′ : P → Q′ in E with Ug′ = vf for some v : Y → UQ′, there exists a unique
h : Q → Q′ in E such that Uh = v and hg = g′.

As for cartesian morphisms, the opcartesian morphism fP§ over a morphism f
with codomain UP is unique up to isomorphism. We write ΣfP for the domain
of fP§ , and omit the superscript P when it can be inferred from context.

Definition 2.6. If U : E → B is a functor, then U is an opfibration if for every
object P of E and every morphism f : UP → Y in B there is an opcartesian
morphism fP§ : P → ΣfP in E over f . A functor U is a bifibration if it is
simultaneously a fibration and an opfibration.

If f : X → Y is a morphism in the base of an opfibration, then the function
mapping each object P of EX to ΣfP extends to a functor Σf : EX → EY called
the opreindexing functor induced by f . The following useful result is from [10].

Lemma 2.7. Let U : E → B be a fibration. Then U is a bifibration iff, for every
morphism f : X → Y in B, f∗ is right adjoint to Σf .

2.2 Fibrational Induction in Another Nutshell

At the heart of Hermida and Jacobs’ approach to induction is the observation
that if U : E → B is a fibration and F : B → B is a functor, then F can be
lifted to a functor F̂ : E → E and the premises of the induction rule for μF can
be taken to be an F̂ -algebra. Crucially, for this induction rule to be sound, the
lifting must be truth-preserving. These terms are defined as follows.

Definition 2.8. Let U : E → B be a fibration and F : B → B be a functor. A
lifting of F with respect to U is a functor F̂ : E → E such that UF̂ = FU . If each
fibre EX has a terminal object, and if reindexing preserves terminal objects, then
we say that U has fibred terminal objects. In this case, the map assigning to
every X in B the terminal object in EX defines a functor KU which is called the
truth functor for U and is right adjoint to U . We omit the subscript on KU when
this can be inferred. A lifting F̂ of F is called truth-preserving if KF ∼= F̂K.

The codomain fibration cod from Example 2.4, for instance, has fibred terminal
objects: the terminal object in EX is idX . A truth-preserving lifting F→ of F
with respect to cod is given by the action of F on morphisms.

Definition 2.9. A comprehension category with unit (CCU) is a fibration U :
E → B with a truth functor KU which itself has a right adjoint {−}U . In this
case, {−}U is called the comprehension functor for U .

We omit the subscript on {−}U when this can be inferred. The fibration cod is the
canonical CCU: the comprehension functor is the domain functor dom : B→ → B
mapping f : X → Y in B→ to X . Truth-preserving liftings with respect to CCUs
are used in [7] to state and prove soundness of induction rules.
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Theorem 2.10. Let U : E → B be a CCU, let F : B → B be a functor with
initial algebra μF , and let F̂ be a truth-preserving lifting of F . Then the following
induction rule for F is sound:

indF : ∀(P : E). (F̂P → P ) → μF → {P}

Proof. Because F̂ is truth-preserving, the initial F̂ -algebra exists and has carrier
K(μF ). Thus, for any F̂ -algebra h : F̂P → P , we have fold h : K(μF ) → P .
Since K � {−}, this map in turn gives the desired map from μF to {P}.

This very elegant theorem shows that fibrations provide just the right struc-
ture to derive sound induction rules for inductive data types whose underlying
functors have truth-preserving liftings. Although Hermida and Jacobs gave such
liftings only for polynomial functors, [3] showed that every functor has a truth-
preserving lifting with respect to certain bifibrations, called Lawvere categories.

Definition 2.11. A fibration U : E → B is a Lawvere category if it is a CCU
which is also a bifibration.

If ε is the counit of the adjunction K � {−} for a CCU U , then πP = UεP defines
a natural transformation π : {P} → UP . (The domain of πP really is {P} since
UK = Id .) Moreover, π extends to a functor π : E → B→ in the obvious way.

Lemma 2.12. Let U : E → B be a Lawvere category. Then π has a left adjoint
I : B→ → E defined by I (f : X → Y ) = Σf (KX).

For any functor F , the composition F̂ = IF→π : E → E defines a truth-
preserving lifting with respect to the Lawvere category U [4]. Here, F→ is
the lifting given after Definition 2.8. If F also has an initial algebra, then
Theorem 2.10 guarantees that it has a sound induction rule as well.

If B has pullbacks, the following diagram shows that we have actually given
a modular construction of a lifting with respect to a Lawvere category by
factorisation through the lifting for the codomain fibration:

E

U 

�
��

��
��

π
��� B→

I

��

cod����
��
��
��

B

3 Coinduction

In [7], a sound fibrational coinduction rule is given for final coalgebras of polyno-
mial functors. The development is based on a fibration U , but since coinduction is
concerned with relations, a new fibration Rel(U) of relations is first constructed.
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Definition 3.1. Let U : E → B be a fibration, assume B has products, and let
Δ : B → B be the diagonal functor sending an object X to X × X. Then the
fibration Rel(U) : Rel(E) → B is obtained by the pullback of U along Δ.

That the pullback of a fibration along any functor is a fibration is well-known [11].
The process of pulling back a fibration along a functor F , called change of
base along F , is also well-known to preserve fibred terminal objects [6]. The
fibration Rel(U) therefore has a truth functor. Below we denote the pullback
of any functor F : A → B along a functor G : B′ → B by G∗F : G∗A → B′.
The objects of G∗A are pairs (X,Y ) such that GX = FY , and G∗F maps the
pair (X,Y ) to the object X . We write Y for (X,Y ) in G∗F when convenient.
Definition 3.1 entails that the fibre of Rel(E) above X is the fibre EX×X . A
morphism from (X,Y ) to (X ′, Y ′) in Rel(E) consists of a pair of morphisms
α : X → X ′ and β : Y → Y ′ such that Uβ = α × α. Finally, if U has truth
functor K, then the truth functor for Rel(U) is given by KRel(U)X = K(X×X).

In the inductive setting, truth-preserving liftings were needed. In the coinduc-
tive setting, we need equality-preserving liftings, where equality is given by:

Definition 3.2. Let U : E → B be a bifibration with a truth functor and assume
B has products. The equality functor for U is the functor EqU : B → Rel(E)
mapping an object X to ΣδKRel(U) X and a morphism f : X → I to the unique
morphism above f×f induced by the naturality of δ at f and the opcartesian map
δKX§ . Here, δ : IdB → Δ is the diagonal natural transformation with components
δX : X → X × X, and Σδ : E → Rel(E) maps an object P in EX to an object
ΣδXP in EX×X . If EqU has a left adjoint QU , then QU is called the quotient
functor for U . We suppress the subscripts on EqU and QU when convenient.

Definition 3.3. Let U : E → B be a bifibration which has a truth functor,
assume B has products, and let F : B → B be a functor. A lifting F̌ of F with
respect to Rel(U) is called equality-preserving if Eq F ∼= F̌ Eq.

That every polynomial functor has an equality-preserving lifting is shown in [7].
Theorem 3.4 is Hermida and Jacobs’ main theorem about coinduction. Note the
duality: in the inductive, setting the truth functor K must have a right adjoint,
while in the coinductive one, the equality functor Eq must have a left adjoint.

Theorem 3.4. Let U : E → B be a fibration which has a truth functor, assume
B has products, let F : B → B be a functor with final coalgebra νF , and let F̌ be
an equality-preserving lifting of F . If Eq has a left adjoint Q, then the following
coinduction rule for F is sound:

coindF : ∀(R : Rel(E)). (R → F̌R) → QR → νF

Proof. Because F̌ is equality-preserving, the final F̌ -coalgebra exists and has
carrier Eq(νF ). Thus, for any F̌ -coalgebra k : R → F̌R, we have unfold k : R →
Eq(νF ). Since Q � Eq, this map in turn gives the desired map from QR to νF .
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3.1 Generic Coinduction for All Final Coalgebras

The first contribution of this paper is to give a sound coinduction rule for any
functor with a final coalgebra. To do so, we show how to generate liftings that can
be instantiated to give both the truth-preserving liftings required for induction
and, by duality, the equality-preserving liftings required for coinduction.

Lemma 3.5. Consider a quotient category with equality (QCE) over B, i.e.,
a fibration U : E → B with a full and faithful functor E : B → E such that
UE = IdB and E has left adjoint Q with unit η. Define functors ρ, J , and F̌ by

ρ : E → B→ J : B→ → E F̌ : E → E
ρP = UηP J (f : X → Y ) = f∗EY F̌ = J F→ ρ

Then UF̌ = FU and F̌E ∼= EF .

Proof. To prove UF̌ = FU , note that the morphisms ρP each have domain
UP , that dom F→ ρ = FU , and that UJ = dom . Together these give UF̌ =
UJF→ρ = FU . To prove F̌E ∼= EF , we first assume that i) for every X
in B, ρEX is an isomorphism in B, and ii) for every isomorphism f in B,
J f ∼= E(dom f). Then since UE = IdB, i) and ii) imply that F̌E = JF→ρE ∼=
E dom F→ρE = EFUE = EF . To discharge i), note that, since E is full and
faithful, ηE : E → EQE is Eκ for a natural transformation κ : IdE → QE, where
each κX is an isomorphism with inverse εX and ε is the counit of Q � E. Then
ρEX = UηEX = UEκX = κX , so that ρEX is indeed an isomorphism. To dis-
charge ii), let f be an isomorphism in B. Since cartesian morphisms over isomor-
phisms are isomorphisms, we have Jf = f∗(E (codf)) ∼= E (cod f) ∼= E (dom f).
Here, the first isomorphism is witnessed by f § and the second by Ef−1.

The lifting F̌ has as its dual the lifting F̂ given in the following lemma.

Lemma 3.6. Let U : E → B be an opfibration, let K : B → E a full and faithful
functor such that UK = IdB, and let C : E → B be a right adjoint to K with
counit ε. Define functors π, I, and F̂ by

π : E → B→ I : B→ → E F̂ : E → E
πP = UεP I (f : X → Y ) = ΣfKY F̂ = I F→ π

Then UF̂ = FU and F̂K ∼= KF .

Proof. By dualisation of Lemma 3.5. The setting on the left below with U an
opfibration is equivalent to the setting on the right with U a fibration.

�
EC

��
U





�
EopC

��
U




B

K

��       

IdB
		 B Bop

K

��!!!!!!!!

IdBop

		 Bop
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We can instantiate Lemmas 3.5 and 3.6 to derive both the truth-preserving lifting
for all functors from [3] and an equality-preserving lifting for all functors. The
former gives the sound induction rule for all inductive types presented in [3], and
the latter gives a sound coinduction rule for all coinductive types. To obtain the
lifting for induction, let U : E → B be a Lawvere category, K be the truth functor
for U , and C be the comprehension functor for U . Since a Lawvere category is
an opfibration, Lemma 3.6 ensures that any functor F : B → B lifts to a truth-
preserving lifting F̂ : E → E . This is exactly the lifting of [3]. To obtain the
lifting for coinduction, let U : E → B be a bifibration with a truth functor and
products in B, and let E be the equality functor Eq = ΣδKRel(U) for U . Since
both KRel(U) and Σδ are full and faithful, so is Eq. Moreover, since EqX is in
the fibre of Rel(U) above X we have Rel(U) Eq = IdB. We can therefore take
E to be Eq in Lemma 3.5 provided Eq has a left adjoint Q. In this case, every
functor F : B → B has an equality-preserving lifting F̌ : Rel(E) → Rel(E). Thus,
if F has a final coalgebra, then νF has a sound coinduction rule.

The domain functor dom : B→ → B is actually a fibration called the domain
fibration over B. No conditions on B are required. Just as cod is the canonical
CCU, dom is the canonical QCE. A QCE Rel(U) over B which is obtained by
change of base along Δ, and for which the functor E is the equality functor for
U , is called a relational QCE.

Example 3.7. We can take U to be dom : B→ → B, E to map each X in B to
idX , and Q to be cod in Lemma 3.5. Then F̌ is exactly F→, so that F→ and F̌ are
interdefinable. Thus, just as the lifting F̂ with respect to an arbitrary fibration
U satisfying the hypotheses of Lemma 3.6 can be modularly constructed from
the specific lifting F→ with respect to cod [3], so the lifting F̌ with respect to an
arbitrary fibration U satisfying the hypotheses of Lemma 3.5 can be modularly
constructed from the specific lifting F→ with respect to dom .

So dom plays a role role in the coinductive setting similar to that played by cod
in the inductive one. We think of a morphism f : X → Y in the total category
of cod as a predicate on Y whose proofs constitute X . Intuitively, f maps each
p in X to the element y in Y about which it is a proof. Similarly, we think of
a morphism f : X → Y in the total category of dom as a relation on X , the
quotient of X by which has equivalence classes comprising Y . Intuitively, f maps
each x in X to its equivalence class in that quotient.

Example 3.8. If U is the families fibration, then the fibre above X in Rel(U)
consists of functions R : X × X → Set. We think of these as constructive rela-
tions, where R(x, x′) gives the set of proofs that x is related to x′. In Lemma 3.5
we can take U to be the families fibration, E to map each set X to the relation
eqX defined by eqX(x, x′) = 1 if x = x′ and eqX(x, x′) = 0 otherwise, and Q
to map each relation R : X × X → Set to the quotient X/R of X by the least
equivalence relation containing R. We get this instantiation of the definition of
F̌ , for F : Set → Set, from Lemma 3.5: ρ : Rel(U) → Set→ maps a relation
R : X ×X → Set to the quotient map ρR : X → X/R, F→ maps f to Ff , and
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J : Set→ → Rel(U) maps f : X → Y to the relation f̄ mapping (x, x′) to 1 if
fx = fx′ and to 0 otherwise. Thus F̌ : FA×FA → Set is given by F̌R = FρR.

We now derive the coinduction rule, for the functor Pfin , which maps a set to its
finite powerset, with respect to the fibration of relations constructed from the
families fibration in Example 3.8. Since Pfin is not polynomial, it lies outside
the scope of [7], but it is important, since a number of canonical coalgebras are
built from it. For example, a finitely branching labelled transition system with
state space S and labels from an alphabet A is a coalgebra S → Pfin(A× S).

Example 3.9. By Example 3.8, the lifting P̌fin maps a relation R : A×A → Set
to the relation P̌finR : PfinA ×PfinA → Set defined by P̌finR = PfinρR. Thus,
if X and Y are finite subsets of A, then (X,Y ) ∈ P̌finR iff PfinρRX = PfinρRY .
Since the action of Pfin on a morphism f maps any subset of the domain of f
to its image under f , PfinρRX = PfinρRY iff (∀x : X).(∃y : Y ). xRy ∧ (∀y :
Y ).(∃x : X). xRy. From P̌fin we have that the resulting coinduction rule has as
its premises a P̌fin -coalgebra, i.e., a relation R : A × A → Set and a map from
R to P̌finR in Rel(U). An object of Rel(U) is a pair (X, (Y, P )) where X is a
set, (Y, P ) is an object of Fam(Set), and Y = X × X . A morphism in Rel(U)
from (X, (Y, P )) to (X ′, (Y ′, P ′)) consists of a morphism φ : X → X ′ in Set
and a morphism (ψ, ψ∼) : (Y, P ) → (Y ′, P ′) in Fam(Set) such that ψ = φ × φ.
Thus, a P̌fin -coalgebra consists of a function α : A → PfinA together with a
function α∼ : (∀a, a′ : A). aRa′ → (αa) P̌finR (αa′). If we regard α : A → PfinA
as a transition function, i.e., if we define a → b iff b ∈ αa, then α∼ captures the
condition that R is a bisimulation over α. The coinduction rule thus asserts that
any two bisimilar states have the same interpretation in the final coalgebra.

4 Indexed Induction

Data types arising as initial algebras and final coalgebras on traditional semantic
categories such as Set and ωcpo⊥ are of limited expressivity. More sophisticated
data types arise as initial algebras of functors on their indexed versions. To
build intuition about the resulting inductive indexed types, first consider the
inductive type ListX of lists of X . It is clear that the definition of ListX does
not require an understanding of ListY for for any Y �= X . Since, each type ListX
is, in isolation, inductive, List can be considered a family of inductive types. By
contrast, for each n in Nat, let Finn be the data type of n-element sets, and
consider the inductive definition of the Nat-indexed type Lam : Nat → Set of
untyped λ-terms up to α-equivalence with free variables in Finn given by

i : Finn
Var i : Lamn

f : Lamn a : Lamn
App f a : Lamn

b : Lam (n + 1)
Abs b : Lamn

Unlike ListX , the type Lamn cannot be defined in isolation using only the ele-
ments of Lamn that have already been constructed. Indeed, elements of Lam (n+
1) are needed to construct elements of Lamn so that, in effect, all of the types
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Lamn must be inductively constructed simultaneously. The indexed type Lam is
thus an inductive family of types, rather than a family of inductive types.

There is considerable interest in inductive and coinductive indexed types. If
types are interpreted in a category B, and if I is a set of indices considered as
a discrete category, then an inductive I-indexed type can be modelled by the
initial algebra of a functor on the functor category I → B. Alternatively, indices
can be modelled by objects of B, and inductive I-indexed types can be modelled
by initial algebras of functors on slice categories B/I. Coinductive indexed types
can similarly be modelled by final colagebras of functors on slice categories.

Initial algebra semantics for inductive indexed types has been developed ex-
tensively [2,12]. Pleasingly, no fundamentally new insights were required: the
standard initial algebra semantics needed only to be instantiated to categories
such as B/I. By contrast, the theory of induction for inductive indexed types has
received comparatively little attention. The second contribution of this paper is
to use our fibrational framework to derive sound induction rules for such types
by similarly instantiating initial algebra semantics to appropriate categories. The
key technical question to be solved turns out to be: given a Lawvere category of
properties fibred over types, can we construct a new Lawvere category fibred over
indexed types from which induction rules for the indexed types can be derived?
To answer it, we make the simplifying assumption that the inductive indexed
types of interest arise as initial algebras of functors over slice categories, i.e., of
functors F : B/I → B/I, where I is an object of B. Let U/I denote the Law-
vere category to be constructed. We conjecture that the total category of U/I
should be a slice category of E , and so make the canonical choice to slice over
KI, where K is the truth functor for U . We then define U/I : E/KI → B/I by
U/I (f : P → KI) = Uf : UP → I. Here, cod (Uf) really is I because UK = Id .

We first show that U/I is indeed a bifibration. We give a concrete proof before
indicating how the same result can be derived from a more abstract treatment.

Lemma 4.1. If U : E → B is a fibration (bifibration) and I is an object of B,
then U/I is a fibration (resp., bifibration).

Proof. Let α : Y → I and β : X → I be objects of B/I, and let φ : Y → X be a
morphism in B/I from α to β, i.e., be such that α = βφ. First, let f : P → KI

be an object of E/KI such that (U/I)f = Uf = β, and let φ§
P : φ∗P → P be the

cartesian morphism in E over φ with respect to U . Then φ§
P is a morphism in

E/KI with domain fφ§
P and codomain f , and it is cartesian over φ with respect

to U/I. Thus, U/I is a fibration if U is. Now, let g : Q → KI be an object of
E/KI such that (U/I)g = Ug = α, and let φQ§ : Q → ΣφQ be the opcartesian
morphism in E over φ with respect to U . Since α = βφ, the opcartesianness of
φQ§ ensures that there is a unique map k : ΣφQ → KI in E above β such that
g = kφQ§ . Then φQ§ is a morphism in E/KI with domain g and codomain k, and
it is opcartesian over φ with respect to U/I. Thus, U/I is an opfibration if U is.
Combining these results gives that if U is a bifibration then so is U/I.
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There is an alternative characterisation of E/KI which both clarifies the concep-
tual basis of our treatment of indexed induction and simplifies our calculations.
The next lemma is the key observation underlying this characterisation.

Lemma 4.2. Let U : E → B be a fibration with truth functor K, let I be an
object of B, and let α : X → I. Then (E/KI)α ∼= EX .

Proof. One half of the isomorphism maps the object f : P → KI of (E/KI)α
to P . For the other half, note that since truth functors map objects to terminal
objects, and since reindexing preserves terminal objects, we have KX ∼= α∗KI.
Thus, for any object Q above X , we get a morphism from Q to KI by composing
α§
KI and the unique morphism ! from Q to KX . Since ! is vertical and α§

KI is
above α, this composition is above α. Thus each object Q in EX maps to an object
of (E/KI)α. It is routine to verify that these maps constitute an isomorphism.

By Lemma 4.2 we may identify objects (morphisms) of (E/KI)α and objects
(resp., morphisms) of EX . This gives our abstract characterisation of U/I:

Lemma 4.3. Let U : E → B be a fibration and I be an object of B. Then U/I
can be obtained by change of base by pulling U back along dom : B/I → B.

Proof. As noted in Section 3, the pullback of a fibration along a functor is a
fibration. The objects (morphisms) of the fibre above α : X → I of the pullback
of U along dom are the objects (resp., morphisms) of EX . By Lemma 4.2, the
pullback of U along dom is therefore U/I.

As observed in Section 3, pulling back a fibration along a functor preserves fibred
terminal objects, so U/I has fibred terminal objects if U does by Lemma 4.3.
Concretely, the truth functor KU/I : B/I → E/KI maps an object f : X → I
to Kf : KX → KI. To see that U/I is a Lawvere category if U is, we thus need
to show that KU/I has a right adjoint. For this, we use an abstract theorem due
to Hermida [5] to transport adjunctions to pullbacks along fibrations.

Lemma 4.4. Let F � G : A → B be an adjunction with counit ε, and let
U : E → B be a fibration. Then the functor U∗F : U∗A → E has a right adjoint
GU : E → U∗A whose action maps each object E to the object (ε∗UEE,GUE).

Lemma 4.5. Change of base along a fibration preserves CCUs, i.e., if U : E →
B is a CCU and U ′ : E ′ → B is a fibration, then the pullback U ′∗U is a CCU.

Proof. We already have that U ′∗U is a fibration with fibred terminal objects. To
see that KU ′∗U has a right adjoint, consider the pullback of U∗U ′ and KU . This
pullback is given by E ′, KU ′∗U : E ′ → U ′∗E , and U ′ : E ′ → B. Note that U∗U ′

is a fibration since it is obtained by pulling U ′ back along U . Lemma 4.4 then
ensures that, since KU has a right adjoint, so does KU ′∗U . Thus U ′∗U is a CCU.

When U : E → B, I is an object of B, and U ′ is dom : B/I → B, the com-
prehension functor for U ′∗U — i.e., for U/I — maps an object P in EX above
α : X → I to απP : {P} → I. Combining Lemmas 4.1 and 4.5 and the fact that
Uop is a fibration if U is an opfibration, we have
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Lemma 4.6. Let U : E → B be a Lawvere category and U ′ : E ′ → B be a
fibration. Then U ′∗U is a Lawvere category.

Thus, if F is a functor on E ′ with initial algebra μF , then Theorem 2.10 guaran-
tees the existence of a sound induction rule for μF . We use this observation to
derive an induction rule for the indexed containers of Morris and Altenkirch [12].

Example 4.7. If I is a set, then the category of I-indexed sets is the fibre
Fam(Set)I . An I-indexed set is thus a function X : I → Set, and a morphism h
from X to X ′, written h : X →I X ′, is a function of type (Πi : I). Xi → X ′i.
Morris and Altenkirch denote this category I → Set and define an I-indexed
container to be a pair (S, P ) with S : I → Set and P : (Πi : I). Si → I → Set.
An I-indexed container defines a functor [S, P ] : (I → Set) → I → Set by
[S, P ]Xi = (Σs : Si). P i s →I X . Thus, if t : [S, P ] X i, then t is of the form
(s, f), with projections ρ0 and ρ1 defined by ρ0 t = s and ρ1 t = f . The action of
[S, P ] on a morphism g : X →I Y maps a pair (s, f) to (s, gf). The initial alge-
bra of [S, P ] is denoted in : [S, P ]WS,P →I WS,P . Since I → Set is equivalent to
Set/I, we can use the results of this section to extend those of [12] by deriving
an induction rule for WS,P . A predicate over an I-indexed set X is a function
Q : (Πi : I). Xi → Set. To simplify notation, this is written Q : X →I Set.
The lifting [̂S, P ] of [S, P ] maps each Q : X →I Set to the predicate [̂S, P ]Q :
[S, P ]X →I Set defined by [̂S, P ] Q i (s, f) = (Πj : I). (Πp : P i s j). Q j (f j p).
Altogether, this gives the following induction rule for establishing a predicate
Q : WS,P →I Set:

(Πi :I). (Π(s, f) : [S, P ] WS,P i). ((Πj :I). (Πp :P i s j). Q j(f j p) → Q i(in i (s, f))))
→ (Πi :I). (Πt :WS,P i). Q i t

5 Indexed Coinduction

We now present our third contribution: we derive coinduction rules for coinduc-
tive indexed types. Examples of such types are infinitary versions of inductive
indexed types, such as infinitary untyped lambda terms and the interaction struc-
tures of Hancock and Hyvernat [8]. If U : E → B supports coinduction for the
final coalgebra of any functor on B having one, and if U ′ : E ′ → B gives a change
of base to an indexed notion of data described by E ′, then is there a fibration
over E ′ supporting indexed coinduction for the final coalgebra of any functor on
E ′ having one. However, the details in the coinductive setting are much more
involved than in the inductive one, here we present only the following simpler
result, showing that for any relational QCE over a base category B and object
I of B, change of base along dom : B/I → B yields a relational QCE over B/I.

If B has products and U : E → B is a bifibration with truth functor K, then
the equality functor Eq for U is given by Eq = ΣδK. Let Rel(U) : Rel(E) → B
be a QCE, i.e., let Eq have a left adjoint Q. To define a relational QCE over B/I
we must first see that B/I has products. But the product of f and g in B/I is
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determined by their pullback: if W , j : W → Z, and i : W → X give the pullback
of f and g, then their product in B/I is the morphism fi or, equivalently, gj.
Below, we write f2 for the product of f with itself in B/I and XfX for the
domain of f2. Then, if B has pullbacks, we can construct the relation fibration
Rel(U/I) : Rel(E/KI) → B/I from the pullback of U/I along the product
functor Δ/I : B/I → B/I mapping f to f2. Concretely, an object of Rel(E/KI)
above f : X → I is an object of E/KI above f2 with respect to U/I. This is, in
turn, equivalent to an object of E above XfX with respect to U .

5.1 The Equality Functor for U/I

If U is a bifibration with a truth functor then, for any object I of B, U/I is as
well, and so U/I has an equality functor EqU/I . To define this functor concretely,
note that the component of the diagonal natural transformation δ/I : Id → Δ/I
at f : X → I is given by the diagram on the left. Thus, EqU/I maps an object
f : X → I of B/I to the unique morphism above f2 in the diagram on the right
induced by the opcartesian map m above (δ/I)f :

X

id

��

(δ/I)f

��

id




XfX

i





j 		
"#

X

f





KI

X
f

		 I KX

Kf

�������������
m
		 Σ(δ/I)f

KX

EqU/If

��

5.2 The Quotient Functor for U/I

Whereas defining the equality functor for U/I was straightforward, defining its
quotient functor is actually tricky. We have not (yet!) found any abstract fibra-
tional results to deliver it, so we give a concrete construction. For each object I
of B, we define another fibration, denoted Rel(U)/I : Rel(E)/Eq I → B/I, where
Eq : B → Rel(E) is the equality functor for U . The objects of Rel(E)/Eq I above
f : X → I are morphisms α : P → Eq I for some object P of Rel(E) such that
Uα = Δf . Our first result identifies conditions under which Rel(U)/I is a QCE.

Lemma 5.1. Let B have pullbacks, let I be an object of B, and let Rel(U) :
Rel(E) → B be a relational QCE. Then Rel(U)/I is a QCE.

Proof. Let Eq : B → Rel(E) and Q : Rel(E) → B be the equality and quotient
functors for U , respectively. We construct a full and faithful functor E′ : B/I →
Rel(E)/Eq I such that (Rel(U)/I) E′ = IdB/I and a left adjoint Q′ for E′ as
follows. Take E′ to be Eq. Then E′ is full and faithful since Eq is. Moreover, for
any f : X → I, Definition 3.2 ensures that Eq f is above f×f with respect to U ,
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so (Rel(U)/I) E′f = f , and thus (Rel(U)/I) E′ = IdB/I . Finally, we define Q′

to map each object α : P → Eq I of Rel(E)/Eq I to its transpose α′ : QP → I
under the adjunction Q � Eq. That Q′ � E′ follows directly from Q � Eq.

We can now define the quotient functor for Rel(U/I) using the functor Q′ from
the proof of Lemma 5.1. The key step is to define an adjunction τ � σ so that
the diagram below commutes. Then if E′ and Q′ are the functors witnessing the
fact that Rel(U)/I is a QCE, the compositions σE′ and Q′τ give equality and
quotient functors for Rel(U/I).

Rel(E/KI)

Rel(U/I) ����
���

���
��

τ ��
⊥ Rel(E)/E I
σ

��

Rel(U)/I�����
���

���
�

B/I

To define τ and σ, let f : X → I, let i and j be the projections for the pullback
square defining XfX . The universal property of the product X ×X ensures the
existence of a morphism v : XfX → X ×X such that π1v = i and π2v = j. By
the universal property of the pullback of f along itself, v is a monomorphism;
we will use this in the proof of Lemma 5.3. From the diagram on the left below,
we have that δX = v (δ/I)f , which also gives the diagram on the right:

X

id

��

(δ/I)f
��

δX

��

id

��

XfX

f2

��

v

��

XfX

v
��

X

(δ/I)f��$$$$$

f
��

δX

		 X×X
f×f

��

X X×Xπ1




π2
		 X I

δI

		 I×I

We use the right diagram and the opcartesianness of vA§ to define the functor
τ . First recall that, if R : A → KI is an object of Rel(E/KI) above f : X → I
with respect to Rel(U/I), then Rel(U/I)R = (U/I)R = UR = f2. The following
diagram then defines the morphism h above f × f in E to which τ maps R:

A
vA
§ 		

R





ΣvA

h




KI

(δI )KI
§

		 Eq I

So, assuming U satisfies the Beck-Chevalley condition [9], this all gives:

Definition 5.2. The functors τ and σ are given by:

τ : Rel(E/KI) → Rel(E)/Eq I σ : Rel(E)/Eq I → Rel(E/KI)
τ(R : A → KI) = h σ(S : B → Eq I) = v∗B
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Lemma 5.3. τ is a full and faithful left adjoint to σ.

Proof. We exhibit the unit η of the adjunction τ � σ and show that it is an
isomorphism. Because v is a monomorphism, the unit η′ of the adjunction Σv �
v∗ is an isomorphism. Moreover, since objects of Rel(E/KI) above f : X → I in
the fibration Rel(U/I) can be seen as objects of E above XfX in U , η must assign
to every object R above XfX in U a morphism from R to v∗ΣvA. We define
η = η′. The universality of η follows from the fact that η′ is an isomorphism.

Recall that our candidate for the quotient functor for Rel(U/I) is Q′τ . To see
that Q′τ � EqU/I , note that Q′τ � σE′, so we need only verify that EqU/I is
σE′. It is routine to check that τEqU/I = E′, from which EqU/I = σE′ follows.

We now use the results of this section to give a coinduction rule for final
coalgebras of indexed containers that is dual to the induction rule of Example 4.7.

Example 5.4. Let (S, P ) be an I-indexed container with final coalgebra out :
MS,P →I [S, P ]MS,P . A relation over an I-indexed set X : I → Set is an
I-indexed family of relations Ri on Xi. The relational lifting of [S, P ] maps
a relation R over an I-indexed set X to the relation R′ over the I-indexed set
[S, P ]X that relates (s, f) ∈ [S, P ]Xi and (s′, f ′) ∈ [S, P ]Xi iff s = s′ and, for all
j : I and p :P i s j, f j p is related in Rj to f ′ j p. This gives the following notion
of bisimulation for [S, P ] coalgebras k : X →I [S, P ]X : if x, x′ ∈ Xi, then x ∼i x′

iff ρ0(kx) = ρ0(kx′) and, for all j : I and p :P i (π0(kx)) j, ρ1(fx)p ∼j ρ1(fx′)p.

6 Conclusions, Related Work, and Future Work

In this paper, we have extended the fibrational approach to induction and coin-
duction pioneered by Hermida and Jacobs, and further developed by the current
authors, in three key directions: We gave sound coinduction rules for all functors
having final coalgebras provided the fibration interpreting them is a QCE, and
we gave similarly sound generic induction and coinduction rules for all functors
over slice categories having initial algebras and final coalgebras.

The work of Hermida and Jacobs is most closely related to ours, but there
is, of course, a large body of work on induction and coinduction. in a broader
setting. In dependent type theory, for example, data types are usually presented
with elimination rules that are exactly induction rules. Along these lines, [13]
has heavily influenced the development of induction in Coq. Another important
strand of related work concerns inductive families and their induction rules [2].
On the coinductive side, papers such as [1,15,16] have had immense impact in
bringing bisimulation into the mainstream of theoretical computer science.

There are several evident directions for future work. The most immediate
is showing that change of base along a fibration preserves QCEs, just as it
does CCUs; this would yield a compact derivation of the results in Section 5
analogous to that in Section 4. We also expect to exploit the predictive power of
our theory to provide induction and coinduction rules for advanced data types
— such as inductive recursive types — whose rules are not discernible by sheer
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intuition. In such circumstances our generic fibrational approach should provide
rules whose use is justified by their soundness proofs. Finally, we would like to
see our induction and coinduction rules for advanced data types incorporated
into implementations such as Agda and Coq.
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Stone Duality for Nominal Boolean Algebras

with N

Murdoch J. Gabbay, Tadeusz Litak, and Daniela Petrişan

Abstract. We define Boolean algebras over nominal sets with a function-
symbol Nmirroring the N‘fresh name’ quantifier (Banonas), and dual
notions of nominal topology and Stone space. We prove a representation
theorem over fields of nominal sets, and extend this to a Stone duality.

1 Introduction

We study Boolean logic with Nover nominal sets. Na.φ(a) means ‘for fresh a,
φ(a) holds’. Here a is intended to be an atomic resource: examples are a variable
symbol, memory location, channel name, or (in security) nonce.

We introduce Banonas (Boolean Algebra, NOminal with Na) and nominal
Stone spaces, and prove representation and duality theorems. Stone’s represen-
tation does not generalise easily to nominal sets: the ultrafilter lemma breaks
down (since a union of finitely-supported sets need not be finitely-supported).
To ‘fix’ this, something corresponding to Nseems to be required, so the mathe-
matics leads us to Banonas even if we started off just with Boolean algebras in
nominal sets (without N).

Nis interesting from both a mathematical and computational point of view.
It is self-dual (¬ Na.φ(a) ⇔ Na.¬φ(a)) and this gives a computationally useful
some/any property: to prove Nwe check φ(a) for some fresh name, but we can
then use any fresh b. (Definitions below or in [20,16].)

Nalso appears to be useful. It has been applied to syntax-with-binding [20],
resource generation in functional programming [32], local names in incomplete
trees [6], π-calculus name-restriction [3], game semantics [1,36], and nominal
domains [31,35]. A categorical analysis of self-duality has been suggested [27],
and several proof-theories for N[13,17,8,11].

Equational axiomatisation, a representation theorem, and topology with N
have not been studied. As we shall see, algebra and topology with Nare
non-trivial and interesting. For more discussion, see Example 3.6.

2 Background on Nominal Sets and the N-quantifier

A nominal set is a ‘set with names’. The notion of a name being ‘in’ an element
is given by support supp(x) (Definition 2.7). For more details of nominal sets,
see [20,16]. The reader can think of supp(x) as ‘the free names of x’, but without
committing to x being syntax—on the contrary, x could have any structure
provided it admits a permutation action.
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Definition 2.1. Fix a countably infinite set of atoms A. We use a permuta-
tive convention that a, b, c, . . . range over distinct atoms.

Definition 2.2. A (finite) permutation π is a bijection on atoms such that
nontriv(π) = {a | π(a) �= a} is finite.

Write id for the identity permutation such that id(a) = a for all a. Write
π′ ◦ π for composition, so that (π′ ◦ π)(a) = π′(π(a)). Write π-1 for inverse, so
that π-1 ◦ π = id = π ◦ π-1. Write (a b) for the swapping (terminology from
[20]) mapping a to b, b to a, and all other c to themselves, and take (a a) = id.

Definition 2.3. If A ⊆ A define fix(A) = {π | ∀a ∈ A.π(a) = a}.

Definition 2.4. A set with a permutation action X is a pair (|X|, ·) of an
underlying set |X| and a permutation action written π·x which is a group
action on |X|, so that id·x = x and π·(π′·x) = (π ◦ π′)·x for all x ∈ |X| and
permutations π and π′.

Say that A ⊆ A supports x ∈ |X| when ∀π.π ∈ fix(A) ⇒ π·x = x. If a finite
A supporting x exists, call x finitely-supported.

Definition 2.5. Call a set with a permutation action X a nominal set when
every x ∈ |X| has finite support. X, Y, Z will range over nominal sets.

A forms a nominal set where π·a = π(a), and X × Y is a nominal set with
underlying set {(x, y) | x ∈ |X|, y ∈ |Y|} and action π·(x, y) = (π·x, π·y).

Definition 2.6. Call a function f ∈ |X| → |Y| equivariant when π·f(x) =
f(π·x) for all permutations π and x ∈ |X|. In this case write f : X → Y.

Definition 2.7. Suppose X is a nominal set and x ∈ |X|. Define the support of
x by supp(x) =

⋂
{A | A supports x}. Write a#x as shorthand for a �∈ supp(x)

and read this as a is fresh for x.

Theorem 2.8. Suppose X is a nominal set and x ∈ |X|. Then supp(x) is the
unique least finite set of atoms that supports x. (Proofs in [20,16].)

Definition 2.9. Write π|A for the partial function which is π restricted to A.

Corollary 2.10. 1. If π(a) = a for all a ∈ supp(x) then π·x = x.
2. If π|supp(x) = π′|supp(x) then π·x = π′·x.
3. a#x if and only if ∃b.b#x ∧ (b a)·x = x.

Proposition 2.11. supp(π·x) = {π(a) | a ∈ supp(x)} (cf. Definition 4.1).

Our reasoning can be formalised in first-order logic with axioms of set theory with
atoms (the name for this is Zermelo-Fraenkel with atoms, or ZFA). Because one
atom will do as well as any other, we obtain Theorem 2.12, from which concisely
follow results about equivariance and support.1 See e.g. proofs of Lemmas 4.6,
5.8, 5.13, 5.14, 5.19, and Proposition 5.23.
1 Nominal sets can be implemented in ZFA sets such that nominal sets map to equiv-

ariant elements (elements with empty support) and the permutation action maps to
‘real’ permutation of atoms in the model. See [16, Subsection 9.3] and [16, Section 4].
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Theorem 2.12. If x is a list x1, . . . , xn, write π·x for π·x1, . . . , π·xn. Suppose
φ(x) is a first-order logic predicate with free variables x. Suppose χ(x) is a func-
tion specified using a first-order predicate with free variables x. Then we have
the following principles:

1. Equivariance of predicates. φ(x) ⇔ φ(π·x).2
2. Equivariance of functions. π·χ(x) = χ(π·x).
3. Conservation of support. If x denotes elements with finite support

then supp(χ(x)) ⊆ supp(x1)∪ · · · ∪supp(xn).

Definition 2.13. Write Na.φ(a) for ‘{a | ¬φ(a)} is finite’.

Remark 2.14. We can read Nas ‘for all but finitely many a’, ‘for fresh a’, or
‘for new a’. It captures a generative aspect of names, that for any x we can find
plenty of atoms a such that a �∈ supp(x). Nwas designed in [20] to model the
quantifier being used when we informally write “rename x in λx.t to be fresh”,
or “emit a fresh channel name” or “generate a fresh memory cell”.

Nis a ‘for most’ quantifier [38], and is a generalised quantifier [21, Section
1.2.1]. But importantly, Nover nominal sets satisfies the some/any property that
to prove a N-quantified property we test it for one fresh atom; we may then use
it for any fresh atom. This is Theorem 2.15, which we use implicitly when later
we choose a ‘fresh atom’ without proving that it does not matter which one we
choose. See e.g. proofs of Proposition 4.11 and Lemmas 4.7, 5.10, and 6.6.

Theorem 2.15. Suppose φ(z, a) is a predicate with free variables z, a.3 Suppose
z denotes elements with finite support. Then the following are equivalent:

∀a.(a ∈ A ∧ a#z) ⇒ φ(z, a) Na.φ(z, a) ∃a.a ∈ A ∧ a#z ∧ φ(z, a)

3 Nominal Boolean Algebra with N

Definition 3.1. A nominal Boolean algebra with N(with a new-binder) or
Banona is a tuple (B,∧,¬, N) of a nonempty nominal set B, and equivariant
functions (Definition 2.6)

– conjunction ∧ : B×B → B written x ∧ y (for ∧(x, y)),
– negation ¬ : B → B written ¬x, and
– new N: A ×B → B written Na.x (for N(a, x)),

such that the equalities in Figure 1 hold.

Banonas arise naturally as nominal powersets (Section 4), just as Boolean
algebras arise naturally as ‘ordinary’ powersets. See also Example 3.6.
2 x must contain all the variables mentioned in the predicate. It is not the case that

a = a if and only if a = b—but it is the case that a = b if and only if b = a.
3 φ should be provable without the axiom of choice. Every φ used in this paper will

satisfy this property.
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(Commute) x ∧ y = y ∧ x
(Assoc) (x ∧ y) ∧ z = x ∧ (y ∧ z)
(Huntington) x = ¬(¬x ∧ ¬y) ∧ ¬(¬x ∧ y)

(Swap) Na. Nb.x = Nb. Na.x
(Garbage) a#x ⇒ Na.x = x
(Distrib) Na.(x ∧ y) = ( Na.x) ∧ ( Na.y)
(SelfDual) ¬ Na.x = Na.¬x
(Alpha) b#x ⇒ Na.x = Nb.(b a)·x

Fig. 1. Axioms of Banonas

Remark 3.2. (Commute), (Assoc), and (Huntington) axiomatise Boolean al-
gebra (see, e.g., [26]). We write ⊥ for x ∧ ¬x, x ∨ y for ¬(¬x ∧ ¬y), and x ≤ y
for x ∧ y = x. With these definitions, the axioms ensure standard properties of
Boolean algebra including: absorption, distributivity, and poset properties.

The other axioms describe properties of the N-quantifier [20] (Definition 2.13,
in this paper). See Theorem 4.10 for a proof.4

Lemma 3.3. If x ≤ y then Nb.x ≤ Nb.y. In words: Nis monotone.

Proof. By x ≤ y we mean x ∧ y = x. So Nb.(x ∧ y) = Nb.x. We use (Distrib).

Lemma 3.4. a# Na.x. As a corollary, Na. Na.x = Na.x.

Proof. Choose a fresh b (so b#x). By (Alpha) Na.x = Nb.(b a)·x. By equivariance
of N: A×B → B, Nb.(b a)·x = (b a)· Na.x. By Proposition 2.11 a#(b a)· Na.x. The
result follows. The corollary follows using (Garbage).

Definition 3.5. Call a function f ∈ |B′| → |B| a (Banona) morphism when:

f(x ∧ y) = f(x) ∧ f(y) f(¬x) = ¬f(x) f( Na.x) = Na.f(x) f(π·x) = π·f(x)

Write BAnona for the category of Banonas and Banona morphisms.

Example 3.6. – Call a set X ⊆ A cofinite when A \ X is finite. The set of
finite or cofinite sets of atoms is a Banona where conjunction and negation
are interpreted as intersection and complement respectively, and Na.X =
X \ {a} if X is finite, and Na.X = X ∪{a} if X is cofinite (cf. Example 4.5).
Section 4 exhibits nominal powersets as Banonas. Section 5 proves them
complete for all possible examples, in a certain formal sense.

– The discrete nominal restriction set B = {True, False} from [29, Section 3.2]
is also a Banona.

4 The axioms are nominal algebraic because of their freshness side-conditions. In a
sense which has been made formal, nominal algebra is an equational logic [19,14,22],
and is sound and complete for nominal sets.
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– The term model for nominal logic constructed by Cheney and Urban in
[9] is a Banona where we interpret conjunction as conjunction, negation as
negation, and Na.φ as ‘for fresh a, φ’ as specified in Figure 9 of [9].

– Predicates of Cardelli and Gordon’s ambient calculus up to logical equiva-
lence form a (very richly-structured) Banona where Nis interpreted as Nas
defined in Definition 4.3 of [7] (see [7, Corollary 4.5]).

– Formulas of hybrid logic with downarrow ↓x.φ (see, e.g, [2]) up to logical
equivalence, where atoms serve as world variables, permutation is syntactic
permutation and freshness is ‘not free in’, are a Banona where Nmaps to
↓. A broader class of Banonas (with additional operators) is obtained by
adapting an abstract equational class of algebras including sets denotations
for hybrid logic defined in [23] to a nominal setting.

4 The Nominal Powerset as an Algebra

The main (and by Theorem 5.25 canonical) example of a Banona, is a nominal
powerset:

Definition 4.1. Define the nominal powerset pow (X) by:

– U ⊆ |X| has the pointwise action π·U = {π·x | x ∈ U}.
– |pow (X)| is the set of finitely-supported U ⊆ |X|.

Call U ∈ |pow (X)| equivariant when supp(U) = ∅.

Lemma 4.2. U is equivariant if and only if π·x ∈ U if and only if x ∈ U .

Definition 4.3. If X∈|pow (X)| then define na.X = {x | Nb.(b a)·x ∈ X}.

Remark 4.4. Definition 4.3 is the sets-based interpretation of Nwhich we will
prove sound and complete for the axioms in Definition 3.1. Visibly, n is defined
using N. Conversely, Na.φ(a) if and only if a ∈ na.{x ∈ A | φ(x)}.

Intuitively, na.X adds/removes just those elements of X which are ‘responsi-
ble’ for a being in the support of X , and na.X is a ‘nearest set’ to X for which
a is fresh. We see this in Example 4.5, and in a sense part 1 of Lemma 4.7 and
Proposition 4.11 are corollaries of this intuition.

na. is equal to the operation X−a described in [15, Subsection 4.2], used
there for different purposes. The elements added/removed by n are called crucial
elements in [15, Subsection 4.2] and correspond to adding/removing elements
from a-orbits [15, Subsection 4.1].

Example 4.5. |pow (A)| is the set of finite and cofinite subsets of atoms and
na.X is characterised on pow (A) by na.X = X\{a} if X is finite, and na.X =
X∪{a} if X is cofinite.

Lemma 4.6. If X ∈ |pow (X)| then na.X ∈ |pow (X)|.
Proof. By Theorem 2.12 supp(na.X) ⊆ supp(X) ∪ {a}.
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Lemma 4.7. 1. If a#X then na.X = X.
2. na.(X ∩ Y ) = (na.X) ∩ (na.Y ).
3. na.(|X| \X) = |X| \ na.X.

As a corollary, if X ⊆ Y then na.X ⊆ na.Y .

Proof (Sketch). Suppose a#X . Choose x∈|X| and fresh b (so b#x,X). By the
pointwise action and Corollary 2.10 (b a)·x∈X if and only if x∈X .

Choose x ∈ |X| and fresh b (so b#x,X, Y ). Then (b a)·x ∈ X ∩ Y if and only
if (b a)·x ∈ X and (b a)·x ∈ Y .

Choose x ∈ |X| and fresh b (so b#x,X, |X|\X). Then (b a)·x ∈ |X| \X if and
only if (b a)·x �∈ X .

Lemma 4.8. b#X implies na.X = nb.(b a)·X. As a corollary, a#na.X.

Proof (Sketch). Choose fresh b (so b#X) and x∈|X|. By the pointwise action
(b c)·x∈(a b)·X if and only if x∈(b c)·(a b)·X . By Corollary 2.10 (b c)·(a b)·X =
(a c)·X . The result follows.

Lemma 4.9. na.nb.X = nb.na.X.

Proof. By routine calculations using the fact that (a′ a)·(b′ b)·x = (b′ b)·(a′ a)·x.

Theorem 4.10. (pow (X), ∩, |X|\-, n) is an object of BAnona.

Proof. Validity of (Commute), (Assoc), and (Huntington) is by routine sets
calculations. Validity of (Alpha) and (Swap) is by Lemmas 4.8 and 4.9. Validity
of (Garbage), (Distrib), and (SelfDual) is by Lemma 4.7.

Proposition 4.11. If a#x then x ∈ X if and only if x ∈ na.X.

Proof. Choose b fresh (so b#x,X). By definition x ∈ na.X when (b a)·x ∈ X .
By Corollary 2.10 (b a)·x = x. The result follows.

5 A Representation Theorem

We introduce n-filters of a Banona B (Definition 5.1). We define the canonical
extension B• as the nominal powerset of its maximal n-filters (Definition 5.20).
Finally we prove B isomorphic to a subalgebra of B• (Theorem 5.25).

5.1 n-Filters

Definition 5.1. An n-filter is a finitely-supported subset p ⊆ |B| such that:

1. ⊥ �∈ p 2. ∀x, y.(x ∈ p ∧ y ∈ p) ⇔ (x ∧ y ∈ p) 3. Na.∀x.(x∈p ⇒ Na.x∈p)

Remark 5.2. We are proving a representation theorem, so the game we play
is to convert algebra—like ∧, ¬, and N—into operations on (nominal) sets. Con-
ditions 1 and 2 of Definition 5.1 correspond to properties of the empty set and
sets intersection. The third condition corresponds to a property of nominal sets:
Proposition 4.11; as made formal in the proof of Lemma 5.13.
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Definition 5.3. Given C ⊆ A and x ∈ |B| define NC.x by:

NC.x = Nc1 . . . Ncn.x where C ∩ supp(x) = {c1, . . . , cn}

By assumption x has finite support so C∩supp(x) is finite even if C is not. Also,
by (Swap) the order of the ci does not matter.

Lemma 5.4. supp(⊥) = ∅.

Proof. We defined ⊥ = x∧¬x. It follows from the axioms of Boolean algebra in
Figure 1 that x∧¬x = y ∧¬y for any other y, and in particular by equivariance
x ∧ ¬x = π·(x ∧ ¬x). The result follows.

Lemma 5.5. Suppose C ⊆ A and a ∈ C. Then:

1. NC.⊥ = ⊥ 2. NC.(x ∧ y) = ( NC.x) ∧ NC.y 3. NC.x = NC. Na.x

Proof. 1. Follows by (Garbage) and Lemma 5.4. 2. Follows by (Distrib),(Swap)
and (Garbage). 3. If a#x then x = Na.x by Lemma 3.4. If a ∈ supp(x), then
a ∈ C ∩ supp(x) and the result follows by part 2 of Lemma 3.4 and (Swap).

Definition 5.6. If z∈|B| write C=A\supp(z) and define z↑ = {x | z ≤ NC.x}.

Remark 5.7. The standard definition of z↑ is {x | z ≤ x}. This definition
seems to not work, and proofs based on it break. We can view Definition 5.6 as
elaborating the standard definition to respect property 3 of Definition 5.1.

Lemma 5.8. If z∈|B| and z �= ⊥ then supp(z↑) ⊆ supp(z) and z↑ is an n-filter.

Proof. Write C = A \ supp(z). The first part is by Theorem 2.12 and the fact
that supp(C) = supp(z).5 That z↑ is an n-filter follows from Lemma 5.5.

Definition 5.9. Call an n-filter p ⊆ |B| maximal when for all n-filters p′ ⊆ |B|
if p ⊆ p′ then p′ = p.

We now show that every n-filter is contained in a maximal n-filter (Theorem 5.17).
We use Zorn’s lemma, but this requires a bound on support. Thus we consider
n-filters maximal amongst n-filters with no greater support. Surprisingly, these
n-filters are the maximal n-filters (Lemma 5.14).

Lemma 5.10. Suppose q is an n-filter and suppose x �∈ q. Write q′ for the set
q′ = {z | z ∨ x ∈ q}. Then q′ is an n-filter.

Proof. That ⊥ �∈ q′ and ∀z1, z2.(z1 ∈ q′ ∧ z2 ∈ q′) ⇔ (z1 ∧ z2 ∈ q′) is routine.
Na.∀z.(z ∈ q′ ⇒ Na.z ∈ q′) follows from the fact that if a is fresh (so a#q, x) then

by (Garbage), (SelfDual), and (Distrib), Na.(z ∨ x) = ( Na.z)∨ Na.x = ( Na.z)∨x.

Proposition 5.11. q is maximal if and only if ∀x.¬x ∈ q ⇔ x �∈ q.
5 In fact it can be proved by a further calculation that supp(z↑) = supp(z).
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Proof. For q maximal, suppose ¬x �∈ q and x �∈ q. By Lemma 5.10, q′ = {z |
z∨x∈q} is an n-filter. Also, ¬x∈q′ whereas ¬x�∈q, so q � q′, contradicting max-
imality of q. The rest follows from conditions 1 and 2 of Definition 5.1.

Lemma 5.12. If q is an n-filter and C=A\supp(q) then so is q′ = {z | NC.z∈q}.

Proof. Follows from Lemma 5.5.

Lemma 5.13. Suppose q is an n-filter such that for all n-filters q′, q ⊆ q′ and
supp(q′) ⊆ supp(q) imply q = q′. Then Na.(∀x.x ∈ q ⇔ Na.x ∈ q).

Proof. The left-to-right implication is condition 3 of Definition 5.1. Write C =
A \ supp(q). The set q′ = {z | NC.z ∈ q} (Definition 5.3) is an n-filter by
Lemma 5.12. By condition 3 of Definition 5.1 q ⊆ q′, by Theorem 2.12 supp(q′) ⊆
supp(q), hence q′ = q (note that supp(C) = supp(q)). The right-to-left implica-
tion follows.

Lemma 5.14. q is a maximal n-filter if and only if it is maximal amongst n-
filters with no greater support (that is, if and only if for all n-filters q′, q ⊆ q′

and supp(q′) ⊆ supp(q) imply q = q′).

Proof. The left-to-right implication is trivial. Now suppose q is maximal amongst
n-filters with no greater support. By Proposition 5.11 it suffices to show that
¬x ∈ q if and only if x �∈ q.

¬x ∈ q and x ∈ q is impossible by conditions 1 and 2 of Definition 5.1.
Now suppose ¬x �∈ q and also x �∈ q. Write C = A \ supp(q) and x′ = NC.x.

By definition, (SelfDual), and Lemma 5.13 x′ �∈ q and ¬x′ �∈ q.
By Lemma 5.10, q′ = {z | z ∨ x′ ∈ q} is an n-filter. Also, ¬x′ ∈ q′ whereas

¬x′ �∈ q, so q � q′. By Theorem 2.12 supp(q′) ⊆ supp(q) and so q = q′ by
assumption, a contradiction.

Remark 5.15. Given a nominal set X, call Y ⊆ |X| bounded-supported
when

⋃
{supp(x) | x ∈ Y } is finite. By [16, Theorem 2.29] if Y is bounded-

supported then Y is finitely-supported and supp(Y ) =
⋃
{supp(x) | x ∈ Y }. See

also [35, Definition 3.4.2.3] and subsequent discussion.

Lemma 5.16. Consider a nominal set X and ≤ a partial order on |X|. If every
chain C ∈ pow(X) has an upper bound b(C) with supp(b(C)) ⊆ supp(C) then
for every x ∈ |X| the set x◦ = {y ∈ |X| | y ≥ x, supp(y) ⊆ supp(x)} has a
maximal element.

Proof. By Remark 5.15 every chain C in x◦ is finitely-supported and supp(C) ⊆
supp(x). Then C has an upper bound b(C) such that supp(b(C)) ⊆ supp(x).
Thus b(C) ∈ x◦. The result follows using Zorn’s lemma for x◦.

Theorem 5.17. For every n-filter p, there is a maximal n-filter q with p ⊆ q.

Proof. If C is a finitely-supported chain in the nominal set of n-filters on B

ordered by subset inclusion, then
⋃

C = {x | ∃p′ ∈ C.x ∈ p′} is an upper bound
for C. By Theorem 2.12 supp(

⋃
C) ⊆ supp(C). By Lemma 5.16 the set p◦ of

n-filters p′ such that p ⊆ p′ and supp(p′) ⊆ supp(p) has a maximal element q
with respect to inclusion. By Lemma 5.14 q is a maximal n-filter (Definition 5.9).
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5.2 The Canonical Extension -•

Definition 5.18. Define points(B) = {p ⊆ |B| | p is a maximal n-filter}.

Lemma 5.19. points(B) with the pointwise action (Defn. 4.1) is a nominal set.

Proof. By Theorem 2.12 the predicate ‘p is a maximal n-filter’ holds if and only
if the predicate ‘π·p is a maximal n-filter’ holds.

Definition 5.20. Define the canonical extension B•=(pow (points
(B)),∧,¬, N):

A ∧B = A ∩B ¬A = |B•| \A Na.A = na.A

A and B will range over elements of |B•|. (na.A defined in Definition 4.3.)

Proposition 5.21. B• is a nominal Boolean algebra with N.

Proof. From Theorem 4.10.

Definition 5.22. Define a map -• ∈ |B| → |B•| by:

x• = {p ∈ |points(B)| | x ∈ p}

We need to check that -• does map to |B•|. It suffices to show that supp(x•) is
finite. But it follows from Theorem 2.12 that supp(x•) ⊆ supp(x).

Proposition 5.23. -• is an arrow in BAnona (Definition 3.5).

Proof. Equivariance is by Theorem 2.12.

1. (x ∧ y)• = {p ∈ |points(B)| | x ∧ y ∈ p}. By assumption in Definition 5.1
x∧ y ∈ p if and only if x ∈ p and y ∈ p and it follows that (x∧ y)• = x• ∧ y•.

2. (¬x)• = {p ∈ |points(B)| | ¬x ∈ p}. We use Proposition 5.11.
3. ( Na.x)• = {p ∈ |points(B)| | Na.x ∈ p}. Suppose p ∈ ( Na.x)•. Choose fresh a′

(so a′#x, x•, p). By (Alpha) Na.x = Na′.(a′ a)·x. By definition Na′.(a′ a)·x ∈
p. By Lemma 5.13 (a′ a)·x ∈ p. By definition p ∈ (a′ a)·x•. By Proposi-
tion 4.11 p ∈ na′.(a′ a)·x•. By Lemma 4.8 na′.(a′ a)·x• = na.x•.

Remark 5.24. Note the ‘internal’ and ‘external’ names in part 3 of the proof of
Proposition 5.23. We begin with a ‘internally restricted’ with N. We use (Alpha)
to apply an ‘external’ renaming of a to ‘externally’ fresh a′. This is picked up
by the definition of n-filter and Proposition 4.11 moves to the ‘external’ N.

In part 3 a#x implies a#x•—but this does not matter; we choose a fresh.

Theorem 5.25. -• is injective, thus B is isomorphic to a subalgebra of B•.

Proof. Suppose x ∈ |B| and y ∈ |B| are distinct. Suppose without loss of gen-
erality that x �≤ y, so that x ∧ ¬y �= ⊥. By Lemma 5.8 (x ∧ ¬y)↑ is an n-filter.
By Theorem 5.17 there exists a point q containing (x ∧ ¬y)↑. Then x ∧ ¬y ∈ q,
hence q ∈ x• and q �∈ y•. The result follows by Proposition 5.23.
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6 Nominal Stone Duality

Nominal topological spaces (Definition 6.1) are just topology over nominal sets
(finite support can consierably restrict the open sets; see Example 4.5). We
cannot take arbitrary unions of open sets, but only finitely-supported unions.
Banonas correspond to nominal topological spaces with additional properties
which we call nominal Stone spaces with N(Definition 6.7). To the new-binder

Ncorresponds on the topological side the semantic n (Definition 4.3); elements
correspond to clopen sets (sets that are both open and closed), so clopens must
be closed under n. The notion of compactness must also be subtly tweaked to
take into account the role of n. We conclude with a duality theorem.

Definition 6.1. A nominal topological space T is a pair (|T|,OT) of a car-
rier nominal set |T| and equivariant set of open sets OT⊆pow (|T|) such that:

– ∅ ∈ OT and |T| ∈ OT

– U ∈ OT ∧ V ∈ OT implies U ∩ V ∈ OT .
– U ∈ pow(OT) implies

⋃
U ∈ OT; we call this a finitely-supported union.

Call equivariant f ∈ |T1|→|T2| continuous when V ∈OT2 implies f -1(V )∈OT1 .
Write nTop for the category of nominal topological spaces and continuous maps.

Definition 6.2. Given B in BAnona define F (B) in nTop by:

– |F (B)| = points(B) (Definition 5.18).
– OF (B) is the closure of {x• | x ∈ |B|} (Definition 5.22) under finitely-

supported unions. So U ∈ OF (B) when ∃M ∈ pow (|B|).U =
⋃
{x• | x ∈ M}.

Given f : B→B′ in BAnona define F (f) : F (B′)→F (B) by F (f)(p) = f -1(p).

F (B) is indeed a nominal topological space, for if U ∈ pow (OF (B)) then
⋃
U =⋃

{x• | ∃U∈U .x•⊆U} is open. Lemma 6.3 proves F (f) well-defined. We then
pin down the properties that completely characterise nominal topological spaces
arising from banonas.

Lemma 6.3. For f : B → B′ in BAnona and p ∈ points(B′), f -1(p) ∈ points(B).

Proof. It is not hard to use the homomorphism properties of f and Theorem 2.12
to show that f -1(p) is an n-filter. Using Proposition 5.11 ¬x ∈ f -1(p) if and only
if x �∈ f -1(p), and it follows that f -1(p) is also maximal.

Definition 6.4. Call U ∈ pow (OT) n-closed when Na.∀U.(U∈U ⇒ na.U∈U).
Call U ∈ pow(OT) a cover when

⋃
U = |T|. If U is a cover and is n-closed then

call U an n-cover. Call T n-compact when every n-cover has a finite subcover.

Lemma 6.5. If U ∈ pow (OT) is finite then Na.∀U.U ∈ U ⇒ a#U . As a corol-
lary, T is n-compact when every n-cover has an n-closed finite subcover.

Proof. For finite U , supp(U) =
⋃
{supp(U) | U ∈ U} [16, Theorem 2.29]. We use

part 1 of Lemma 4.7.
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Lemma 6.6. If U∈pow (OF (B)) is n-closed then so is V = {x• | ∃U∈U .x•⊆U}.

Proof. Choose b fresh (so b#U ,V). If x• ∈ V then x• ⊆ U ∈ U . By Lemma 4.7
nb.(x•) ⊆ nb.U and by assumption nb.U ∈ U .

Definition 6.7. Call U closed when |T| \U ∈ OT, and clopen when U is open
and closed. Call T totally separated when for every x, y ∈ |T| there is a clopen
U with x ∈ U and y �∈ U .

Say T is a nominal topological space with Nwhen na.U ∈ OT for every
clopen U .6 Write nTop Nfor the full subcategory of nTop on T with N.

A nominal Stone space with Nis a totally separated n-compact nominal
topological space with N. Write nStone Nfor the full subcategory of nTop Non
nominal Stone spaces with N.

Proposition 6.8. F (B) is totally separated and n-compact.

Proof. Consider distinct p, q ∈ |F (B)|. Without loss of generality take x ∈ p \ q.
By Definition 5.20, p ∈ x• and q �∈ x•. So x• is an open set separating p and q.
By Proposition 5.11 points(B) \ x• = (¬x)•, so x• is also closed.

Consider an n-cover U ∈ pow(OF (B)). It suffices to find a finite subcover of
V = {x• | ∃U∈U .x• ⊆ U}, since for every x• ∈ V there exists x• ⊆ U ∈ U .

Write X =
⋂

fin{x′ | ∃x.¬x≤x′∧x•∈V} where
⋂

fin denotes closure under finite
intersections. So V has a finite subcover if and only if ⊥ ∈ X . By Proposition 5.23
and Lemma 6.6 X satisfies conditions 2 and 3 of Definition 5.1. If X satisfied
also ⊥ �∈ X then X would be an n-filter; by Theorem 5.17 X ⊆ p for some point
p; it would follow that p �∈

⋃
V , a contradiction. Therefore ⊥ ∈ X .

Lemma 6.9. If U ∈ F (B) is clopen then U = x• for some x ∈ |B|.

Proof. By assumption U =
⋃
{x• | x• ⊆ U} and |F (B)| \ U =

⋃
{x• | x• ⊆

|F (B)| \ U}. It follows that {x• | x• ⊆ U ∨ x• ∩ U = ∅} covers F (B). This cover
is also n-closed, by part 1 and the corollary in Lemma 4.7. So it has a finite
subcover by Proposition 6.8. The result follows by Proposition 5.23.

Proposition 6.10. F is a functor from BAnona to nStoneopN.

Proof. If U∈OF(B) is clopen then U=x• for some x∈|B| by Lemma 6.9. By part 3
of Proposition 5.23 na.(x•)=( Na.x)•∈OF(B). By Proposition 6.8 F (B) is a nominal
Stone space with N.

Consider f : B → B′ in BAnona. By Lemma 6.3 F (f) maps |F (B′)| to |F (B)|.
Continuity of F (f) follows using the fact that F (f)-1(x•) = (f(x))•.

Definition 6.11. Map T ∈ nStone Nto a G(T) ∈ BAnona defined by:

– |G(T)| = {U ∈ OT | U is clopen}.
– ∧, ¬, and Nare interpreted as intersection, complement, and n.

Given f : T → T′ in nStone Ndefine G(f) : G(T′) → G(T) by G(f)(U) = f -1(U).
6 We do not require na.U to be open for all U . More on this in the Conclusions.
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Lemma 6.12. G is a functor from nStoneopN to BAnona.

Proof. If U is clopen then na.U is open by Definition 6.7. na.U is closed from
the fact that na.(|T| \ U) = |T| \ na.U , immediate from part 3 of Lemma 4.7. It
is routine to check that G(T) is an object of BAnona.

Consider continuous f : T → T′. If U is clopen then so is f -1(U). G(f) is equiv-
ariant because f is, and preserves intersections and complements. Given U ∈ OT′

a clopen, G(f)(na.U) = na.G(f)(U) follows from Definitions 4.3 and 6.11 and
the equivariance of f . Thus G(f) is a morphism in BAnona.

Lemma 6.13. Suppose T ∈ nTop Nis n-compact and U is a finitely-supported set
of closed sets with the finite intersection property: the intersection of finitely
many sets in U is nonempty. Then Nb.∀U.U∈U ⇒ nb.U∈U implies

⋂
U �= ∅.

Proof. If
⋂
U = ∅ then {T \U | U ∈ U} is an n-cover of T. Since T is n-compact

it has a finite subcover. This contradicts the finite intersection property.

Theorem 6.14. G defines an equivalence between BAnona and nStoneopN.

Proof. We use [24, Theorem 1, Chapter IV, Section 4].
G is essentially surjective on objects. Given B in BAnona and x ∈ |B|, x• ∈ OF (B)

is clopen. By Lemma 6.9 if U ∈ OF (B) is clopen then U = x• for some x ∈ |B|.
By Theorem 5.25, the map -• defines an isomorphism between GF (B) and B.
G is faithful. From the fact that nominal Stone spaces are totally separated.
G is full. Given T,T′ in nStone Nand u : G(T′) → G(T) in BAnona we construct
a morphism v : T → T′ in nStone N, such that G(v) = u.

Define αT : T → FG(T) by t �→ {U ∈ G(T) | t ∈ U}.
αT is well defined: αT(t) is supported by supp(t), and is indeed a maximal

n-filter. We must also show that a#t and U ∈ α(t) imply na.U ∈ α(t); this
follows from Proposition 4.11.

That αT is injective follows, as in the classical Stone duality, from total sep-
aration of the spaces. For surjectivity, consider a maximal n-filter U ∈ FG(T).
This is a finitely-supported set of closed sets of T with the finite intersection
property such that U ∈ U and b#U imply nb.U ∈ U . By Lemma 6.13 there
exists some t ∈

⋂
U ⊆ |T|. That U = α(t) follows from maximality of U . αT and

α-1
T are continuous. The proof is analoguous to the classical case, see [5].
We set v = α-1

T′ ◦ F (u) ◦ αT . This is continuous and G(v) = u.

7 Conclusions

Boolean algebras in nominal sets naturally support an operation corresponding
to the N-quantifier from [20]. Nominal sets are different enough that this paper
is not a pure ‘replay’ of the standard proofs—the fine detail can be subtle.

As an empirical observation, our proofs ‘want’ N. They break for nominal
Boolean algebras without N(remove Nand its axioms from Definition 3.1, pre-
sumably to obtain a Bano). Without Nwe would need to use finitely-supported
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filters, rather than n-filters. But then the proofs of Lemma 5.14 and Theorem 5.17
would break. A representation theorem for Banos is future work.

We should also try to adapt the results to subreducts like Heyting algebras
or distributive lattices (in this paper, we use negation in Proposition 5.11) and
expansions with operations/operators. A concrete example of a Hanona (Heyt-
ing algebras with N; weaken the initial three axioms appropriately and add

Na.(x⇒y) = ( Na.x)⇒( Na.y) in Figure 1) is a intuitionistic hybrid logic with ↓ (cf.
Example 3.6 and [30]). We believe that, modulo an easy syntactic translation,
the logic LG by Tiu [34] is another.

On pow (A), n is unique; the only function satisfying the axioms of Defini-
tion 3.1. We do not know whether n is determined by the axioms for arbitrary
nominal powersets. (The map X �→ if a#X then X else ∅ fails (SelfDual).)

At the start of this paper we wanted to represent Nas an operation on nominal
sets, just as ¬ and ∧ are represented as complement and intersection. We found
our representation in n, but this has some curious consequences. Notably, there
is a mismatch between the internal notion of topological space in nominal sets
(Definition 6.1) and the natural notion of nominal Stone space with N: namely,
we have to insist that if U is clopen then so is n.U (because clopens come from
the algebra), but we do not insist this of all open sets (because open sets come
from the internal notion of topology in nominal sets). If add to Definition 6.1
that “U open implies na.U open” then Definition 6.2 would break: we would have
to insist on closure under n, to obtain a topology with N. It remains to check in
future work whether the proofs using Definition 6.2 can be sensibly modified.

Nis a nominal name-restriction (or -generation) operator. The premier such
is Nitself, which acts on predicates. Fernández and the first author added Nto
nominal rewriting [12], and Pitts added it to system T [28, Definition 1]. Name-
restriction on nominal sets X−a was considered in [15, Subsection 4.2] and is
equal to na, and another operation νa on nominal sets (distinct from the na of
this paper) is studied in [18]. This paper locates the original N-quantifier in this
landscape: it can always be represented as na on nominal sets, which is equal to
the X−a of [15].

Sections 5.3 and 5.4 of [37] outline the Jónsson-Tarski representation of
Boolean algebras with operators, i.e., normal modalities. Does it suffice to con-
sider Nand permutations as families of modalities? Yes, but our paper gives a
strictly stronger result. Nominal sets have an ‘external’ theory of names and
freshness given by permutations and support (extending the ‘external’ set inter-
section and complement corresponding to ‘internal’ conjunction and negation of
Boolean algebra). An ‘internal’ notion of freshness is x = Na.x; a similar idea
is used in cylindric/polyadic algebras and Lambda Abstraction Algebras [25].
Our challenge has been to make ‘internal’ and ‘external’ theories coincide for
Boolean connectives, and to represent Nas n (Definition 4.3), permutation as
permutation, and to satisfy e.g. a#x implies x = Na.x.

Nominal powersets (Definition 4.1) have rich structure and can be charac-
terised as nominal complete atomic Boolean algebras. There are two natu-
ral name-restrictions on nominal sets: freshness X#a = {x ∈ X | a#x} and
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restriction νa.X = {π·x | x ∈ X, π ∈ fix(supp(X) \ {a})} [18]. We do not be-
lieve that these can be represented using n. Note that n does not equal ν. For
instance X ⊆ νa.X is true, but X ⊆ na.X is false in general.

Another approach to nominal Stone dualities is to consider the connection
between nominal sets and functor categories. Lifting Stone type dualities point-
wise to functor categories has been used in [4] to give sound and complete logics
for π-calculus. The indexing category I of finite sets and injective maps between
them is closely related to nominal sets: Nom is equivalent to a full reflective sub-
category of SetI. However the category of many-sorted algebras used for their
logical interpretation of π-calculus, DDLI

op

, is not nominal in spirit.
The duality of this paper is related to a different indexing category pI—the

category of finite sets of names and partial injective maps between them—which
is self-dual. According to [29], Staton observed that the category of nominal
restriction sets Res is equivalent to SetpI. Since Banonas are Boolean algebra
objects in Res, BAnona is equivalent to BApI. Lifting Stone duality pointwise
yields a duality between BApI and StonepI

op

� StonepI. Nominal Stone spaces
with Nare equivalent to StonepI but they have an underlying nominal set, rather
than a nominal restriction set. This gives an adjunction between Banonas and
nominal sets which may be useful for a duality-based approach to nominal coalge-
braic logic with built-in name generation. Coalgebras on nominal sets do provide
a natural semantics for name-passing calculi such as π-calculus [10],[33].

Acknowledgements. We would like to thank Alexander Kurz and the anony-
mous referees for very useful comments.
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A Counterexample to Tensorability of Effects
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Abstract. Monads are widely used in programming semantics and in functional
programming to encapsulate notions of side-effect, such as state, exceptions, in-
put/output, or continuations. One of their advantages is that they allow for a mod-
ular treatment of effects, using composition operators such as sum and tensor.
Here, the sum represents the non-interacting combination of effects, while the
tensor imposes a high degree of interaction in the shape of a commutation law. Al-
though many important effects are ranked, i.e. presented by algebraic operations
of bounded arity, there is also a range of relevant unranked effects, with promi-
nent examples including continuations and unbounded non-determinism. While
the sum and tensor of ranked effects always exist, this is not so clear already when
one of the components is unranked, in which case size problems come into play.
In contrast to the case of sums where a counterexample can be constructed rather
trivially, the general existence of tensors has, so far, been an open issue — as the
tensor identifies more terms than the sum, it does exist in many cases where the
sum fails to exist. As a possible counterexample, tensors of continuations with
unranked effects have been discussed; however, we have disproved that possibil-
ity in recent work. In the present work, we nevertheless settle the question in the
negative by presenting a well-order monad whose tensor with a simple ranked
monad fails to exist; as a consequence, we show also that there is an unranked
monad whose tensor with the finite list monad fails to exist.

1 Introduction

In theory and practice of programming, monads are commonly recognized as a standard
formal abstraction for computational effects. An important feature of the monad-based
approach to effects is its native support for modularity, i.e. the assembly of more com-
plex effects from more primitive ones. One possible way to implement such modularity
is by means of monad transformers [4]. Essentially, a monad transformer is a func-
tion that sends monads to monads (additional properties, such as functoriality, are not
in general imposed). In practice, monad transformers usually enrich the given monad
with certain additional features, thus enabling an incremental approach in denotational
semantics and side-effecting programs [16]. Monad transformers have been very suc-
cessful in practice; in particular, they form the core of the treatment of side-effects in
the functional programming language Haskell [17].

Nevertheless, monad transformers have been criticized for their asymmetry [10]
which treats one set of effects as the monad transformer and the other set of effects as an
Æ Research supported by the DFG project A construction kit for program logics (LU 707/9-1)
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argument of the latter. E.g. the approach via monad transformers hides the symmetry in
the combination of exceptions and I/O: this combination can be obtained either by ap-
plying the I/O monad transformer to the exception monad or by applying the exception
monad transformer to the I/O monad, but this equivalence is not apparent from the cor-
responding monad transformer expressions. Moreover, monad transformers are ad hoc
in character, and in particular have been known only for a limited number of effects, a
prominent negative example being nondeterminism. An elegant solution to these prob-
lems was the introduction of binary composition operators over monads, such as sum
and tensor [10, 9]. Whereas the sum of two monads is the simplest monad supporting
both given effects without any interaction between them, the tensor (whose definition
goes back to [6]) moreover requires distribution of these effects over each other, e.g. in
case of tensoring statefulness with finite nondeterminism one has

�x :� a; �b� c�� � ��x :� a; b� � �x :� a; c��

and the like. We refer to the general form of this condition as the tensor law.
An important example of the tensor product is tensoring with global state, in which

case the result is equivalent to application of the state monad transformer [19], e.g.
P � TS � S � P�S � � where P is the powerset monad and TS � S � �S � �
is the (global) state monad. One can look at this case from the opposite perspective and
consider it as an application of a nondeterminism monad transformer T �� P�T . This
transformer yields the universal completely additive monad over T [8], which therefore
allows for a generalized Fischer-Ladner decomposition of control operators, i.e. roughly
the translation

if b then p else q :� b?; p� ��b�?; q
while b do p :� �b?; p�Æ; ��b�?

The catch in all this is that unless one requires both component monads to be ranked, i.e.
generated by algebraic operations of bounded arity, there is no guarantee that sum and
tensor exist [10]. Unranked monads arise as soon as the number of values that can par-
ticipate in a computation is unbounded. Unbounded non-determinism and continuations
are prominent examples of unranked monads; in particular, it has long been unclear that
the above-mentioned non-determinism monad transformer actually exists. It is compar-
atively easy to see that the sum of simple ranked monads with most unranked monads
will typically fail to exist (see, e.g., [11]). The case of tensoring is more subtle. For the
specific example of the (unranked) continuation monad, it has been shown in [9] that
the tensor does exist if the partner monad is ranked. It has been conjectured in op. cit.
(p. 30) that the tensor of unranked monads does not exist in general, and it has been
implicitly indicated (op. cit., p. 33) that the tensor of continuations with a suitable un-
ranked monad might serve as a counterexample, which seemed reasonable insofar as
continuations generally constitute a good source of counterexamples (see, e.g., [20]).

However, we have recently proved that the tensor of two monads always exists if one
of them is uniform, a natural criterion that ensures sufficiently pervasive applicability
of the tensor law [7]. The class of uniform monads is surprisingly broad and includes
not only several variants of non-determinism (which implies that the above-mentioned
non-determinism monad transformer does after all exist), but also continuations, thus
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discharging the latter as a suspect for a potential counterexample to existence of tensors.
In summary, prior to the current work, the question of universal existence of monad
tensors was open, and no good candidates for possible counterexamples were known.

Having said this, we do settle the question in the negative in the present paper. Specif-
ically, we define a quite natural well-order monad (on the category of sets) whose tensor
with a simple free algebra monad (with two binary operations) fails to exist. By an ensu-
ing non-constructive argument, our result implies that already for the non-empty finite
list monad, not all tensors exist (so that, w.r.t. tensorability, unbounded unordered non-
determinism behaves better than finite ordered non-determinism).

The paper is organised as follows. We give an introduction to monads in Section 2,
and recall their equivalence with large Lawvere theories; we then actually base much
of the technical development on Lawvere theories. In Section 3, we discuss tensors and
tensor algebras, a notion that goes back to [14]. To set the mood, we summarize known
existence results for tensors in Section 4 and state a few (easy) new ones, and then
proceed to prove our negative result in Section 5, where tensor algebras appear as a
key technical tool in that we show non-existence of the tensor by exhibiting a family of
reachable tensor algebras of unbounded cardinality.

2 Monads vs. Large Lawvere theories

In a nutshell, the principle of monadic encapsulation of side-effects originally due to
Moggi [15] and subsequently introduced into the functional programming language
Haskell as the principal means of dealing with impure features [21] consists in moving
the side effect from the function arrow into the result type of a function: a side-effecting
function X � Y becomes a pure function X � TY , where TY is a type of side-
effecting computations over Y ; the base example is TY � S � �S � Y � for a fixed
set S of states, so that functions X � TY are functions that may read and update a
global state. Formally, a monad on the category of sets, presented as a Kleisli triple
T � �T, η, Æ�, consists of a function T mapping sets X (of values) to sets TX (of
computations), a family of functions ηX : X � TX , and a map assigning to every
function f : X � TY a function fÆ : TX � TY that lifts f from X to computations
over X . These data are subject to the equations

ηÆ � id fÆη � f �fÆg�Æ � fÆgÆ

(for g : Z � TX) which ensure that the Kleisli category of T, which has sets as objects
and maps X � TY as morphisms, is actually a category, with identities η : X � TY
and composition �f, g� �� fÆg. We are mainly interested in monads on Set, as these
are exactly equivalent to large Lawvere theories. On Set, all monads are strong, i.e.
come with a natural transformation X � TY � T �X � Y � satisfying a number of
coherence conditions [15].

Monads were originally intended as abstract presentations of algebraic theories, with
TX abstracting the free algebra over X , i.e. terms over X , thought of as generated from
basic operations, modulo provable equality. The notion of rank explained in more detail
below refers to the arity of the involved algebraic operations. It has been shown that the
algebraic view of monads gives rise to computationally natural operations for effects;
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e.g. the state monad (with state set S � V L for sets V of values and L of locations) can
be algebraically presented in terms of operations lookup and update [18]. Categorically,
this shift of viewpoint amounts to generating monads from Lawvere theories. To cover
unranked theories, we use the notion of large Lawvere theory [12], introduced into the
theory of generic effects in [9]. Generally, we denote hom-sets of a category C in the
form C�A,B�.

Definition 1 (Large Lawvere theory). A large Lawvere theory is given by a locally
small category L with small (i.e. set-indexed) products, together with a strict product
preserving identity-on-objects functor I : Setop � L. We call I the indexing functor,
and denote If by 	f 
 for a map f . A morphism of large Lawvere theories L1 � L2 is a
functor L1 � L2 that commutes with the indexing functors (and hence preserves small
products). A model of a large Lawvere theory L in a category C with small products is
a small product preserving functor L � C. A homomorphism of such models is just a
natural transformation (which is determined uniquely by its component at 1).

The algebraic intuition behind these definitions is that the objects of a large Lawvere
theory are sets (typically denoted n,m, k, . . . ) of variables, and morphisms n � m
are m-tuples of terms over n, or substitutions from m into terms over n. The index-
ing functor prescribes the effect of rearranging variables in terms. The notion of model
recalled above implies that Lawvere theories provide a representation of effects that
is independent of the base category C, and given enough structure on C a Lawvere
theory will induce a monad on C. E.g., in categories of domains, the theory of finite
non-blocking nondeterminism (Example 3.2 below) induces precisely the Plotkin pow-
erdomain monad (while the Hoare and Smyth powerdomains require enriched Lawvere
theories) [2].

Notation 2. Let L be a large Lawvere theory. For an object n of L and i � n, we let κi
denote the map 1� n that picks i. Thus, the κi induce product projections 	κi
 : n� 1
in L. Given two sets n and m, their Set-product n �m can be viewed as the sum of
m copies of n in Set, and hence as the m-th power of n in L. This induces for every
f : n� k in L the morphisms f �m : n�m� k�m and m� f : m�n� m� k.

It is well-known that large Lawvere theories and monads on Set form equivalent (over-
large) categories [12, 9]. The equivalence maps a large Lawvere theory L to the monad
TLX � L�X, 1� with unit ηL given by ηLX�x� � 	κx
 using notation just introduced.
Noting that f : X � L�Y, 1� induces f̃ � L�Y,X� via the product structure of L,
Kleisli star fÆ is defined by fÆ�g� � gf̃ � L�Y, 1� for g � L�X, 1�. Conversely, a
monad T on Set is mapped to the dual of its Kleisli category. We therefore largely drop
the distinction between monads on Set and large Lawvere theories, and freely transfer
concepts and examples from one setting to the other; occasionally we leave the choice
open by just using the term effect.

We say that a large Lawvere theory L is ranked if it can be presented by operations
(and equations) of arity less than κ for some cardinal κ; otherwise, L is unranked. Cate-
gorically, L having rank κ amounts to preservation of κ-directed colimits by the induced
monad.

We give some standard examples of monadic effects, mostly from [15]:
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Example 3. 1. Global state: as stated initially, TX � S � �S �X� is a monad (for
this and other standard examples, we omit the description of the remaining data),
the well-known state monad.

2. Nondeterminism: the (unranked) large Lawvere theory LP for nondeterminism cor-
responds to the powerset monad P . It has m-tuples of subsets of n as morphisms
n � m. Variants arise on the one hand by restricting to nonempty subsets, thus
ruling out non-termination, and on the other hand by bounding the cardinality of
subsets. We denote nonemptyness by a superscript �, and cardinality bounds by
subscripts. E.g., the large Lawvere theory LP�

ω1
describes countable non-blocking

nondeterminism; its morphisms n � m are m-tuples of nonempty countable sub-
sets of n. Yet another variant arises by replacing sets with multisets, i.e. maps
X � �N 
 {�}�, thus modelling weighted nondeterminism [5] as a large Law-
vere theory Lmult .

3. Continuations: The continuation monad maps a set X to the set �X � R� � R, for
a fixed set R of results. The corresponding unranked large Lawvere theory LRcont

has maps m� ��n� R� � R� as morphisms n� m.
4. Input/Output: For a given set I of input symbols, the Lawvere theory LI for input

is generated by a single I-ary operation; it is an absolutely free theory, i.e. has no
equations. Similarly, given a set O of output symbols, the Lawvere theory LO for
output is generated by unary operations fo for o � O.

Further effects that fit the algebraic framework are exceptions (TX � X�E), resump-
tions (RX � μY. T �X � Y � for a given base effect T ) and many more.

A convenient way of denoting generic computations is the so-called computational met-
alanguage [15], which has found its way into functional programming in the shape of
Haskell’s do-notation. We briefly outline the version of the metalanguage we use be-
low; this version is deliberately simplistic, as it serves only to elucidate the definition
of tensors.

The metalanguage denotes morphisms in the underlying category of a given monad,
using the monadic structure; since large Lawvere theories correspond to monads on
Set, the metalanguage just denotes maps in our setting. We let a signature Σ consist
of a set B of base types, to be interpreted as sets, and a collection of typed function
symbols f : A1 � A2 to be interpreted as functions, where A1, A2 are types. Here, we
assume that the set T of types is generated from the base types by the grammar

T � A1, A2 ::� 1 � B � A1 �A2 � TA1 �B � B�

where� is interpreted as set theoretic product, 1 is a singleton set, and T is application
of the given monad. We then have standard formation rules for terms-in-context Γ � t :
A, read ‘term t has type A in context Γ ’, where a context is a list Γ � �x1 : A1, . . . , xn :
An� of typed variables (later, contexts will mostly be omitted):

x : A � Γ

Γ � x : A

f : A� B � Σ Γ � t : A

Γ � f�t� : B Γ � Æ : 1

Γ � s : A Γ � t : B

Γ � 〈s, t〉 : A�B

Γ � t : A�B

Γ � fst t : A

Γ � t : A�B

Γ � snd t : B
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Γ � t : A

Γ � ret t : TA

Γ � p : TA Γ, x : A � q : TB

Γ � do x� p; q : TB

Only the operations in the last line are specific to monads; they are called return
and binding, respectively. Return is interpreted by the unit η of the monad, and can
be thought of as returning a value. A binding do x � p; q executes p, binds its result
to x, and then executes q, which may use x (if not, mention of x may be omitted). It is
interpreted using Kleisli composition and strength, where the latter serves to propagate
the context Γ [15]. In consequence, one has the monad laws

do x� p; retx � p do x� ret a; p � p	a�x


do x� �do y � p; q�; r � do x� p; y � q; r.

3 Tensors and Tensor Algebras

We proceed to recall the notion of tensor of effects. Roughly speaking, the tensor starts
from the disjoint union of two algebraic theories, i.e. their sum in the language of Law-
vere theories [10], but then imposes a strong degree of interaction between the compo-
nent effects, namely that every operation in one of the theories is homomorphic w.r.t.
the operations of the other theory. In a setting where we cannot take the existence of
tensors for granted, it seems best to start the development coming from the intended
models of the tensor, which just formalize the above:

Definition 4. Given two large Lawvere theories L1, L2, the category of L1 � L2-
algebras and their homomorphisms is the category

Mod�L1,Mod�L2,Set��

of L1-models in Mod�L2,Set�.

Rephrasing the above definition, an L1 �L2-algebra is a set carrying both an L1-model
and an L2-model in such a way that the operations of L1 become homomorphic w.r.t.
the operations of L2 as indicated above, and a homomorphism of L1 � L2-algebras is
just a map between the underlying sets that is homomorphic w.r.t. the operations of both
L1 and L2. Explicitly, if f : n� 1 is an operation of L1 and g : m� 1 is an operation
of L2, then an L1 � L2-algebra must satisfy the equation

f�g�xij�j�m�i�n � g�f�xij�i�n�j�m, (�)

called the tensor law. By the symmetry of the tensor law, it is clear that L1�L2-algebras
are essentially the same as L2 � L1-algebras.

Now the tensor of Lawvere theories is intended to capture precisely the category of
L1 � L2-algebras:

Definition 5. Let L1, L2 be large Lawvere theories. A Lawvere theory L is the tensor
product of L1 with L2, L � L1 � L2, if the category of L-models is isomorphic to the
category of L1 � L2-algebras:

Mod�L1 � L2,Set� � Mod�L1,Mod�L2,Set��.
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As Lawvere theories are determined by their categories of algebras, the above defines
the tensor product of large Lawvere theories uniquely up to isomorphism whenever it
exists. We have the following characterization of tensors:

Proposition 6. [9] For large Lawvere theories L,L1, L2, the following are equivalent:

1. L � L1 � L2.
2. For every category C with small products,

Mod�L,C� � Mod�L1,Mod�L2,C��.

3. L is universal w.r.t. having commuting morphisms L1 � L � L2 (elided in the
notation). Here, commutation is satisfaction of the tensor law, i.e. given f1 : n1 �
m1 in L1 and f2 : n2 � m2 in L2 we demand commutativity of the diagram

n1 � n2
n1�f2 		

f1�n2





n1 �m2

f1�m2




m1 � n2

m1�f2 		 m1 �m2.

For existence of tensors, we have the following criteria:

Proposition 7 (Existence of tensors). [9] Let L1, L2 be large Lawvere theories. The
following are equivalent:

1. The tensor L1 � L2 exists.
2. The forgetful functor Mod�L1,Mod�L2,Set�� � Set is monadic.
3. The forgetful functor Mod�L1,Mod�L2,Set�� � Set has a left adjoint.

Remark 8. The existence of a tensor L1 � L2 is essentially a size issue: one has to
prove that the collection of terms generated from a given set of variables by operations
from L1 and L2 is a set when taken modulo the equations of L1 and L2 and the tensor
law.

For the sake of completeness, we recall explicit reformulations of the above concepts
in terms of monads [14].

Definition 9. Given two monads T and S over Set, T � S-algebras are triples of the
form �X,α, β� where �X,α� is a T -algebra, �X, β� is an S-algebra, and moreover for
all sets Y, Z and all p � SY , q � TZ , f : Y � Z � X ,

β�T �λz. α�Sf ,z p��q� � α�S�λy. β�Tfy, q��p�

where f ,z�y� � fy, �z� � f�y, z� for �y, z� � Y � Z . Morphisms of T � S-algebras
are maps between the respective carriers which are homomorphic for both T and S.

(We avoid the term bialgebra as used in [14], as this has since come to signify simulta-
neous algebra and coalgebra structure.) Then the tensor T � S of monads T, S on Set
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is defined, uniquely up to isomorphism, as the monad whose Eilenberg-Moore algebras
are precisely the T � S-algebras, if such a monad exists. The computational meaning
of the tensor law becomes clearer in the computational metalanguage: if we extended
the metalanguage with subtypes TiA of TA interpreted using the component monads
T1, T2 of the tensor T � T1 � T2, it amounts to the equality

do x1 � p1; x2 � p2; ret〈x1, x2〉 � do x2 � p2; x1 � p1; ret〈x1, x2〉

in context Γ1, Γ2, where Γi � pi : TiAi for i � 1, 2; i.e. programs having effects only
from T1 do not interfere with programs having effects only from T2.

Finally, we also have an obvious translation of the existence criterion for tensors
(Proposition 7) into the language of monads, which we record explicitly:

Proposition 10. The tensor T �S of monads T, S on Set exists iff the forgetful functor
from T � S-algebras to sets is monadic, equivalently has a left adjoint.

Our counterexample will be based on the following simple consequence of this:

Corollary 11. If the tensor T � S of monads T, S on Set exists, then there exists an
initial T � S-algebra.

4 Existence of Tensor Products

We now recall some positive results on existence of tensor products, and establish some
basic additional ones. On the one hand, this helps appreciate that although it has always
been believed that tensors of monads on Set do not exist in general, large classes of
monads are in fact ruled out as counterexamples. On the other hand, some of the results
presented here enable us to derive additional counterexamples from the one we present
in the next section.

It is well-known that the tensor product of two large Lawvere theories with rank does
exist [9], so that any counterexample needs to involve at least one unranked monad. The
following result on a class of monads where the tensor law is applicable in sufficiently
many cases rules out many of the obvious candidates.

Definition 12 (Uniformity). [7] Let L be a large Lawvere theory. The constants of L
are the elements of cL :� L�0, 1�. For every set n we denote by cnL : n � n� cL the
morphism 	id
�

∏
f�cL

f . We say that L is uniform if for every L-morphism f : n� m

there exists a generic morphism, i.e. a morphism f̂ : k � 1 for some set k such that
there exists a set-function u : k �m� n� cL with f � �f̂ � m� � 	u
 � cnL.

Definition 13 (Tensorability). A large Lawvere theory L1 is tensorable if the tensor
L1 � L2 exists for all large Lawvere theories L2.

Theorem 14. [7] Uniform large Lawvere theories are tensorable.

As indicated in the introduction, continuations were previously named as a candidate
for a counterexample to tensorability [9]. However:
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Example 15. Powerset, non-empty powerset, countable powerset, countable non-
empty powerset, multisets, and continuations (i.e. the theories LP , LP� , LPω1

, LP�

ω1
,

Lmult , and LRcont of Example 3) are uniform and, consequently, tensorable.

Remark 16. While tensoring with unbounded non-determinism typically forms a well-
behaved completion of a given Lawvere theory [7], the general effect of tensoring with
continuations is less easy to grasp. However, there are known cases where tensoring
with continuations is a reasonable operation, e.g. in case the partner effect is global
state [9] — in this case, one obtains the underlying monad of Scheme [1].

Sometimes existence of tensors can be inherited along the structure of theories:

Definition 17. A morphism L1 � L2 of large Lawvere theories is full if the underlying
functor L1 � L2 is full.

Intuitively, if L1 � L2 is a full morphism, then L2 has the same operations as L1 but
more equations.

Lemma 18. Let L1, L2, and L be large Lawvere theories and let F : L1 � L2 be a
full morphism of large Lawvere theories. Then existence of L1 � L implies existence of
L2 � L.

Proof. Precomposition of models with F yields a full embedding

α : Mod�L2,Mod�L,Set�� ↪� Mod�L1,Mod�L,Set��.

This embedding is, in fact, reflective, i.e. has a left adjoint. To see this, first note
that Set has a factorization structure (surjective, jointly injective) for sources [3],
which lifts to a factorization structure (surjective, jointly injective) for sources on
Mod�L1,Mod�L,Set��. Therefore, it suffices to show that Mod�L2,Mod�L,Set�� is
closed under jointly injective sources in Mod�L1,Mod�L,Set�� (see op. cit.). Thus,
put C � Mod�L,Set�, let M : L1 � C be a model of L1 in C, let Mi : L2 � C be a
model of L2 in C for all i in some index set I , and let �fi : M �MiF �i�I be a jointly
injective source of homomorphisms in Mod�L1,C�. We have to show that M factors
through an L2-model M̄ , i.e. M � M̄F . We hence define M̄ by M̄Fg �Mg for mor-
phisms g in L1 (which defines M̄ on all of L2 because F is full). This is well-defined
by joint injectivity of the fi; it is then straightforward to show that M̄ is a model of L2.

Now observe that the forgetful functor from Mod�L2,Mod�L,Set�� to Set is pre-
cisely the composition of α with the forgetful functor from Mod�L1,Mod�L,Set�� to
Set. If L1 � L exists then the former functor has a left adjoint, hence the composition
will also have a left adjoint, which by Proposition 7 means that L2 � L also exists. ��

Given a set E, we denote by LE the large Lawvere theory generated by taking constants
from E as the only operations, and no equations (thus, LE�n,m� � �n � E�m for all
n). The sum L � LE exists for every L and E, and in terms of monads yields exactly
the well-known exception monad transformer which maps a monad T to T � �E� [13].

Lemma 19. Given large Lawvere theories L1, L2, if L1�L2 exists then �L1�LE��L2

exists for every E.
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Proof. We have a full embedding

α : Mod�L1 � LE,Mod�L2,Set�� ↪� Mod��L1 � L2� � LE,Set�,

which essentially just forgets that the operations of LE are homomorphic w.r.t. the
operations of L2 in Mod�L1 � LE,Mod�L2,Set��. As in the proof of Lemma 18, it
suffices to show that α has a left adjoint. This is shown similarly as for Lemma 18
by exploiting the (surjective, jointly injective) factorization structure for sources on
Mod��L1 �L2��LE ,Set� and showing that Mod�L1�LE ,Mod�L2,Set�� is closed
under jointly injective sources in Mod��L1 � L2� � LE,Set�, i.e. that the tensor law
for LE vs. L2 is inherited along jointly injective sources. ��

5 Nonexistence of Tensor Products

We now present our main (negative) result, an example of two monads whose tensor
fails to exist. Necessarily, one of these must be unranked; we describe this monad first.

We define a W-algebra to be a set X equipped with an ordinal-indexed family of
operations ικ : Xκ � X satisfying the following conditions.

1. Strictness: ικ�w� � ι0 whenever w�α� � ι0 for some α � κ.
2. Non-repetitiveness: ικ�w� � ι0 whenever w�α1� � w�α2� for some α1 � α2 � κ.
3. Associativity: For every ordinal-indexed family �κμ�μ�ν of ordinals κμ � 0,

ικ�w� � ιν�λμ � ν. ικμ�wμ��

where κ �
∑
μ�ν κμ is regarded as having elements 〈μ, α〉with μ � ν and α � κμ,

and for every such 〈μ, α〉, w�μ, α� � wμ�α�.

Since ι0 : 1 � X is essentially a constant, we omit its argument as above. Moreover,
we regard an ordinal κ as the set of all ordinals α � κ unless we explicitly specify
otherwise, as in the associativity law above where we use a more convenient isomorphic
representation of ordinal sums. Notice that although the above formulations of strictness
and non-repetitiveness employ the word ‘whenever’, these conditions are effectively
equational axioms. By non-repetitiveness, for every κ whose cardinality exceeds �X �,
ικ is identically ι0, which means that the class of operations of a given W-algebra is
effectively a set. As usual, a homomorphism of two W-algebras �X, ικ� and �Y, ικ� is
a map f : X � Y that commutes with the operations:

f�ικ�w�� � ικ�f � w� for w � Xκ.

Lemma and Definition 20. The forgetful functor from W-algebras to Set is monadic.
The associated monad W , the well-order monad, maps a set X to the set

WX � {�Y, ρ� � Y � X, ρ a well-order on Y}.

One may alternatively think of the well-order monad as a monad of infinite non-
repetitive non-empty lists, with the empty well-order �∅, ∅� playing the role of an error
element that is thrown in case of repetitions, and is propagated through composition by
the strictness law. The monad structure of W will become apparent in the proof below.
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Proof. The left adjoint maps a set X to the obvious W-algebra on WX , also denoted
WX ; explicitly, for w � �WX�κ, ικ�w� is the concatenation of the well-orderings
w�α�, α � κ, if the domains of the w�α� are non-empty and disjoint, and ικ�w� �
�∅, ∅� otherwise. The unit ηX : X � WX maps x to the unique well-ordering on
{x}; the universal property is straightforward.

Monadicity now follows by Beck’s monadicity theorem, as creation of split coequal-
izers (and in fact, more generally, coequalizers of congruences) by the forgetful functor
is straightforward thanks to the equational character of W-algebras. ��

The second monad for our example is very simple, and has finite rank: Let ΣÆ

2,2 be the
free monad generated by the signature functor Σ2,2 � λX. 2 � X � X , i.e. by two
binary operations and no equations.

Lemma 21. For every infinite cardinal κ, there exists a �W� � 2� � ΣÆ

2,2�-algebra
Wκ such that Wκ is reachable, i.e. generated from the empty set of generators, and
�Wκ� � κ.

Proof. The domain of Wκ is the union {�, 0, 1}
 U0
κ 
 U1

κ 
 Lκ where the U iκ and
Lκ are sets of terms defined by infinitary mutual recursion according to the the rules

t �Wκ � {0}
〈i, 0, t〉 � U iκ

where i � {0, 1}, and

t : ν ↪� U0
κ 
 U1

κ �μ. μ� 1 � ν ��
(
t�μ� � U0

κ  � t�μ� 1� � U1
κ

)
t � Lκ

where ν is an ordinal such that 1 � �ν� ! κ and ↪� is read as t being injective (not
a subset inclusion). Notice that U0

κ " U1
κ � ∅, so the second premise says that t�μ�

alternates between U0
κ and U1

κ . Let us define a length map # from Wκ to ordinals
as follows: we put #t � 1 for t � {�, 0, 1} 
 U0

κ 
 U1
κ , and #t � ν whenever

t : ν ↪� U0
κ 
 U1

κ � Lκ. Note that this implies #t � 1 iff t � Lκ.
To give a ΣÆ

2,2-algebra structure over Wκ is the same as to define two binary maps
u0, u1 : Wκ �Wκ �Wκ. For i � 0, 1 we put by definition

– ui�t, t� � t if t � {0, 1} ;
– ui�0, t� � 〈i, 0, t〉 � U iκ whenever t � {1}
 Lκ;
– ui�s, t� � � in the remaining cases.

Defining a W� � 2�-algebra structure on Wκ amounts to giving two constants c0, c1 �
Wκ and ordinal-indexed operations ιν : �Wκ�

ν � Wκ satisfying the conditions (1)–(3)
above. Let c0 � 0, c1 � 1, ι0 � �, and ι1 � id. For ν � 1 and t � �Wκ�

ν we define
ιν�t� by the clauses

– ιν�t� � s, provided the map s : ζ � Wκ on ς �
∑
μ�ν #t�μ� defined as follows

is in Lκ: We regard ς as consisting of pairs 〈μ, κ〉 where μ � ν and κ � #t�μ�.
For every such 〈μ, κ〉, put s〈μ, κ〉 � t�μ��κ� if t�μ� � Lκ, and s〈μ, κ〉 � t�μ�
otherwise (in which case necessarily κ � 0).

– ιν�t� � � otherwise.
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It is then clear by construction that Wκ is reachable, as the rules defining Lκ and the U iκ
just amount to closure under the ui and ιν as defined above. Next, we have to check that
Wκ is really a �W� �2��ΣÆ

2,2�-algebra. By definition, for every t, ιν�t� � Lκ
{�},
hence the conditions (1) and (2) are ensured automatically. Condition (3) is less trivial,
but still routine. Finally we need to verify the tensor law (�). In the case at hand it
amounts to proving the equation

ui�ιν�t�, ιν�s�� � ιν�λμ � ν. ui�t�μ�, s�μ���

for every s, t � Wκ, i � 0, 1. It is immediate by definition that both sides of this
equation equal � unless ν � 1. In the latter case the equation also follows since, by
definition, ι1 � id.

Finally, we show that �Wκ� � κ. In order to derive a contradiction, assume that
�Wκ� ! κ and let ς be an ordinal number such that �Wκ� � �ς�. Let ρ be a bijection
ς � Wκ � {0}. Since �ς� ! κ and hence �ς $ 2� ! κ (since κ is infinite), we can
form an element tρ : ς $ 2 ↪� U0

κ 
 U1
κ of Wκ by putting tρ�ς

�, i� � 〈i, 0, ρ�ς ��〉 for
ς � � ς , i � 0, 1. By varying ρ, we can produce as many such elements as there are
isomorphisms from ς to Wκ � {0}, i.e. strictly more than �ς� � �Wκ�, contradiction.

��

Theorem 22. The tensor of the well-order monad W and ΣÆ

2,2 does not exist.

Proof. By Lemma 19, it suffices to prove that the tensor of W� � 2� and ΣÆ

2,2 does
not exist. By Lemma 21, there is no initial �W� � 2�� ΣÆ

2,2�-algebra I , as the unique
homomorphism I � Wκ into the algebras constructed in the lemma would have to be
surjective for every cardinal κ. Now Corollary 11 implies that the tensor �W� � 2��
ΣÆ

2,2� does not exist. ��

The above theorem also yields a (nonconstructive) argument showing that not all tensors
with the non-empty list monad exist.

Theorem 23. The non-empty finite list monad fails to be tensorable.

Proof. Let L be the large Lawvere theory for non-empty finite lists. It is generated by
one binary operation u and the associativity axiom:

u�u�a, b�, c� � u�a, u�b, c��.

The tensor product L � L is generated by u and a duplicate u� of u, associativity for
both u and u�, and the tensor law

u��u�a1, b1�, u�a2, b2�� � u�u��a1, a2�, u
��b1, b2��.

In other words, L � L-algebras are precisely the ΣÆ

2,2-algebras satisfying the men-
tioned equations. According to this, it is easy to see that the algebras Wκ constructed
in Lemma 21 are in fact �L � L� � W� � 2�-algebras. By the same argument as for
Theorem 22, the tensor �L � L��W does not exist. If L �W does not exist, then W
witnesses non-tensorability of L. Otherwise, L � W witnesses non-tensorability of L:
given that L � W exists, it is clear from Definition 5 that existence of L � �L � W�
would imply existence of �L � L��W . ��
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The way we have proved the last counterexample, namely by reducing it to the more
complex one from Theorem 22, seems roundabout, but we do not currently see an al-
ternative. A direct approach to proving that the tensor of, say, W with the non-empty
finite list monad need not exist does not appear to be feasible, as it leads to tensor alge-
bras whose cardinality is extremely difficult to estimate due to broad propagation of the
tensor law.

6 Conclusion

We have shown that the tensor of the well-order monad and a simple finitary monad,
generated by two binary operations and no equations, fails to exist, and we have con-
cluded that the more familiar non-empty finite list monad L fails to be tensorable, i.e.
there exists a monad whose tensor with L fails to exist. We have thus settled in the
negative the open question of universal existence of tensors of set-based monads, which
dates back at least to [14] where it appears in the context of early developments of the
categorical foundations of universal algebra, and which has recently reemerged in the
perspective of work on algebraic effects [10, 9]. The negative answer as such is in ac-
cordance with expectations, but the actual counterexample is rather different from what
was previously suspected. Nevertheless, it has been possible to keep the counterexample
not only natural but also reasonably simple.

The nature of our counterexample seems to indicate that the positive results that
complement it, specifically tensorability of uniform monads [7], leave little room for
improvement. One specific open question that does remain, however, is whether finite
non-determinism is tensorable, i.e. whether every effect can be extended with binary
choice (and deadlock). We do not venture a guess here — on the one hand, both un-
bounded non-determinism and countable non-determinism are uniform and hence ten-
sorable by the results of [7], and on the other hand we have shown here that the closely
related non-empty finite list monad fails to be tensorable.

Our main motivation for the study of tensors as such is to develop a monadic frame-
work for non-interference of effects, noting that the tensor law precisely amounts to
orthogonality of the component effects; these ideas will be further developed in future
research.

Acknowledgements. We wish to thank various contributors to the categories mailing
list, in particular Paul Levy and Peter Johnstone, for useful insights communicated via
the list, and the anonymous referees for valuable pointers to the literature. Erwin R.
Catesbeiana has commented on inconsistent monads.
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The Microcosm Principle and Compositionality of
GSOS-Based Component Calculi
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University of Tokyo, Japan

Abstract. In the previous work by Jacobs, Sokolova and the author, synchronous
parallel composition of coalgebras—yielding a coalgebra—and parallel composi-
tion of behaviors—yielding a behavior, where behaviors are identified with states
of the final coalgebra—were observed to form an instance of the microcosm prin-
ciple. The microcosm principle, a term by Baez and Dolan, refers to the general
phenomenon of nested algebraic structures such as a monoid in a monoidal cat-
egory. Suitable organization of these two levels of parallel composition led to a
general compositionality theorem: the behavior of the composed system relies
only on the behaviors of its constituent parts. In the current paper this frame-
work is extended so that it accommodates any process operator—not restricted
to parallel composition—whose meaning is specified by means of GSOS rules.
This generalizes Turi and Plotkin’s bialgebraic modeling of GSOS, by allowing
a process operator to act as a connector between components as coalgebras.

1 Introduction

1.1 Structural Operational Semantics and Its Bialgebraic Modeling

Structural operational semantics (SOS) [20] is a well-developed mathematical tool for
defining operational semantics of a programming language. It is based on SOS rules
from which transitions between program terms are derived. SOS has been notably suc-
cessful for process calculi: simple programming languages for concurrent processes.
Various syntactic formats—syntactic restrictions on SOS rules—have been proposed to
ensure good properties of SOS (see [1] for a survey); the GSOS format [6] is one of the
most common among them.

In SOS for process calculi, dynamic behaviors of processes—such as (a; b) ‖ b
a→

(0; b) ‖ b—are derived by structural induction on the construction of process terms.
In categorical terms, dynamics of processes (the former) are modeled by a coalgebra
while the set of process terms forms an initial algebra that supports structural induction
(the latter); see e.g. [15]. It is Turi and Plotkin’s seminal work [22] that combines these
two on a categorical level, resulting in a bialgebraic modeling of SOS.

� Thanks are due to Marcelo Fiore, Masahito Hasegawa, Bart Jacobs, Paul-André Melliès,
Bartek Klin, John Power, Ana Sokolova and Sam Staton for helpful discussions. Helpful com-
ments from the reviewers for the earlier versions of this paper are gratefully acknowledged.
Supported by PRESTO Promotion Program, Japan Science and Technology Agency.

A. Corradini, B. Klin, and C. Cı̂rstea (Eds.): CALCO 2011, LNCS 6859, pp. 222–236, 2011.
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Basic Bialgebraic Modeling. In the simplest setting in [22], a bialgebra is a carrier X
equipped with both algebra and coalgebra structures: ΣX → X → FX . Typically,
the functor Σ for the algebra part is Σ =

∐
σ∈Σ( )arity(σ) : Sets → Sets, a functor

that represents a process algebra signature Σ; and the other functor is F = (Pω )A :
Sets → Sets, a functor for coalgebraic modeling of labeled transition systems (LTSs).
Here Pω denotes the finite powerset functor, and A is the set of labels. The algebra
and coalgebra structures are further subject to a certain compatibility condition via a
natural transformation ΣF ⇒ FΣ; this natural transformation is what represents SOS
rules.

The following two are almost only examples of such bialgebras in the literature.

– The one induced by the initial algebra ΣI → I (or, slightly more generally, a free
algebra). Here I is the set of Σ-terms. The induced coalgebra I → FI is the tran-
sition structure between process terms, which is what is derived in the conventional
SOS framework [20].

– The one induced by the final coalgebra Z → FZ (or, slightly more generally,
a cofree coalgebra). Here Z is the set of “behaviors”—specifically bisimilarity
classes of states of LTSs (see e.g. [11, §1.3]).1 Existence of the induced algebra
structure ΣZ → Z implies that the process operators are well-defined modulo
bisimilarity, that is, bisimilarity is a congruence. As laid out shortly in §1.2, this
induced algebraic structure is what is generalized in the current paper.

Bialgebraic Modeling of GSOS Rules. It turns out, however, that only a very lim-
ited class of SOS rules can be represented by a natural transformation of the form
ΣF ⇒ FΣ. Therefore in [22] a couple of extensions of the above basic scheme are
proposed; the most notable among which is for the GSOS format. It is such that: a
natural transformation representing GSOS rules is of the form ΣF• ⇒ FΣ∗. Here
Σ∗ is the free monad over Σ, with Σ∗X being the set of Σ-terms that can contain
elements of X as variables. The functor F• is the cofree copointed functor over F , con-
cretely: F•X = X × FX . In [22] it is shown that any GSOS specification—a set of
SOS rules compliant with the GSOS format—can be represented by a natural transfor-
mation of the form ΣF• ⇒ FΣ∗ and vice versa. See [16] for an introduction to the
development.

The idea of bialgebraic modeling of SOS has been further pursued by many authors.
See [16] and the references therein.

1.2 Parallel Composition of Coalgebras and the Microcosm Principle

In bialgebraic modeling, it is the elements of the carrier of a bialgebra that are combined
using process operators. As described above, typical examples of such are: process
terms (combined syntactically); and “behaviors,” i.e. bisimilarity classes of LTS states
(combined thanks to ‘bisimilarity is a congruence’).

However, the rise of component calculi as a foundation of component-based system
design (see e.g. [4, 7]) poses a new challenge. In component-based design it is existing

1 “Bisimilarity” here is more precisely behavioral equivalence; they coincide for functors F that
weakly preserve pullbacks (see e.g. [15]). This is the case with F = (Pω )A.
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systems that are to be composed; and this lies out of the realm of bialgebraic model-
ing. Specifically, ‘existing systems’ do not always mean ‘process terms’: one may be
given two LTSs S1 and S2 that are generated from two process terms written in two
different process calculi. ‘Existing systems’ do not necessarily mean their ‘behaviors’
either: given two LTSs S1 and S2, calculating their full behaviors is usually expensive.
Therefore it is nice to be able to combine LTSs as they are—much like a product of two
automata (e.g. in [4]), where one takes the product of two state spaces.

This idea of combining LTSs as they are, using a process operator whose mean-
ing is specified by SOS rules, has been in the literature implicitly or explicitly (e.g.
in [8, 5]). However this idea is often regarded as a “cosmetic” extension to SOS and its
mathematical/categorical foundation has not been systematically pursued.

In our previous work [14] we formalized combination of LTSs as: a functor ‖‖‖:
Coalg(F )×Coalg(F ) → Coalg(F ) arising from a natural transformation syncX,Y :
FX × FY → F (X × Y ). If F = (Pω )A this allows us to model synchronous
parallel composition of LTSs (but hardly any other operator). There the carrier of the

LTS (X c→ FX) ‖‖‖ (Y d→ FY ) is X × Y . The natural transformation sync spec-
ifies a “synchronization mechanism,” which represents a very limited class of SOS
rules.

F (Z × Z)
F‖

FZ

Z × Z
ζ‖‖‖ζ

‖ Z

ζ

The operation ‖‖‖ for composing LTSs yields a canonical op-
eration ‖ for composing “behaviors” like the one in the bial-
gebraic modeling (§1.1). Namely, behaviors are identified with
elements of the final coalgebra ζ : Z

∼=→ FZ and ‖ is induced
by the coinduction diagram on the right.

Furthermore in [14], the two composition operators

‖‖‖ : Coalg(F ) × Coalg(F ) −→ Coalg(F ) and ‖ : Z × Z −→ Z

with the latter being a coalgebra morphism ‖: ζ ‖‖‖ ζ → ζ, are identified as an instance
of so-called the microcosm principle. It is a term coined in [2], referring to the phe-
nomenon that: a category C and its object X ∈ C have the “same” algebraic structures,
with X’s inner algebraic structure depending on C’s outer one. A prototypical example
is a monoid object X in a monoidal category C: they both have a multiplication oper-
ator (m : X ⊗ X → X and ⊗ : C × C → C); and the definition of m uses ⊗ in it.
In [14] we formalized what the microcosm principle means—especially what is meant
by the “same” algebraic structures on different levels C and X ∈ C—using Lawvere
theories.

X × Y
beh(c‖‖‖d)

beh(c)×beh(d)

Z

Z × Z
‖

FX
F beh(c)

FZ

X
c

beh(c)
Z
ζ

As an application we proved a compositionality result:

for any coalgebras X
c→ FX and Y

d→ FY we have the
top diagram on the right commute, where maps like beh(c)
are by coinduction (the bottom diagram). This reads: the be-
havior of the composed system c ‖‖‖ d can be computed from
the behaviors of c and d, using ‖. In particular—denoting
bisimilarity by ∼—we have that c ∼ c′ and d ∼ d′ implies
c ‖‖‖ d ∼ c′ ‖‖‖ d′, with regards to an appropriate choice of
initial states.
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1.3 Microcosm Interpretation of Full GSOS Rules

composing behaviors
composing both

LTSs & behaviors

sync. ‖ [22], ΣF ⇒ FΣ [14]
full GSOS [22], ΣF• ⇒ FΣ∗ current work

The state of art in [14] roughly
corresponds to the basic bialgebraic
modeling in §1.1 where an SOS spec-
ification is represented by a natural
transformation ΣF ⇒ FΣ (see the
table). The current work extends [14] by accommodating any process operator whose
meaning is specified by GSOS rules. Some GSOS rules are shown below; we assume
that the set of labels is N ∪ N ∪ {τ}, consisting of names, conames and the internal
action.

x
a→ x′

x ‖ y
a→ x′ ‖ y

(‖L)
y

a→ y′

x ‖ y
a→ x ‖ y′ (‖R)

x
a→ x′ y

a→ y′

x ‖ y
τ→ x′ ‖ y′ (‖SYNC)

a
a→ 0

(AT)

x
a→ x′

x; y
a→ x′; y

(;L)
x

a

�→ (∀a ∈ A) y
b→ y′

x; y
b→ y′

(;R)
x

a→ x′

!x
a→ x′ ‖!x

(!) x
a→ x′

x∗ a→ x′; x∗ (( )∗)

We use these rules for constructing a new LTS from given LTSs. This means:

(‖SYNC) is read as
x

a→ x′ in S y
a→ y′ in T

x ‖ y
τ→ x′ ‖ y′ in S ‖ T

(‖SYNC) (1)

with an additional class of variables (S and T ) that tells in which LTS each transi-
tion takes place. The variables x, y here designate states of LTSs—unlike in the usual
reading where they designate process terms. Different variables can designate states of
distinct LTSs: in (1), x and x′ are states of S, while y and y′ are of T .

1.4 A Technical Challenge: State Spaces

Think of the new reading of the rules (;R) and (!). The challenge is: what is the state
space of the sequential composition S; T ? We can start with X × Y —where X and Y
are the state spaces of S and T , respectively—denoting its element by x; y. According
to the rule (;R), however, a state x; y can “evolve” into y′, which is no longer in X×Y .
So the answer seems to be X × Y + Y . But how about the replication !S ? One would
think of X+ =

∐
1≤nXn or Xω; both seem plausible.

In this paper we introduce a uniform, syntactic and modular way of constructing
such a state space, so that it is compatible with the given set R of GSOS rules. We shall
call it an R-state space. The construction is syntactic in the sense that an R-state space
consists of rather simple sets like X1 × · · · × Xm, summed up over all the relevant
algebraic terms (Def. 2.10). The construction is modular because the R-state space for
a composed term t can be calculated using the state spaces for t’s subterms as building
blocks ((4) later). Such modularity is an essential property of an “algebra.”

As a technical tool in this construction we introduce the notion of term lineage graph
(TLG). A TLG is roughly a graph between two terms (thought of as parse trees) that
keeps track of evolution of terms (like x; y �→ y′ in (; R) above).
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Organization of the Paper. In §2, after fixing notations for GSOS rules we describe
the construction of R-state spaces. In §3 we present a GSOS specification as a natural
transformation: this generalizes ΣF• ⇒ FΣ∗ in [22] (for composing different LTSs)
as well as syncX,Y : FX × FY → F (X × Y ) in [14] (for the full GSOS format).
This results in the two interpretations of process operators in §4, acting on LTSs and
on behaviors. We prove a compositionality result, and show that our framework indeed
generalizes the GSOS fragment of [22]. In §5 we conclude and discuss related work.

2 State Space Compatible with GSOS Rules

2.1 GSOS Specification

We first fix a signature Σ of a process calculus. For each n ∈ N it determines the set
Σn of n-ary operators.

Definition 2.1 (GSOS). A GSOS rule R (as in [22]) over a signature Σ is a syntactic
expression of the following form.

{xi a→ ya,ji }a∈A,j∈[1,Na
i ]

i∈[1,m] {xi
b

�→ }b∈Bi

i∈[1,m]

σ(x1, . . . , xm) e→ t
(2)

Here A is a fixed set of labels; xi, y
a,j
i are distinct variables; Na

i is a natural number
that is 0 for almost every i and a; Bi is a (possibly infinite) subset of A; σ is an m-ary
operator in Σ; and t is a Σ-term where only xi and ya,ji occur as variables. For a GSOS
rule R like (2), the operator σ on the left in the conclusion shall be denoted by σR; the
term t on the right is denoted by tR.

A GSOS specification is a pair (Σ,R) of a signature Σ and an image-finite set R of
GSOS rules over Σ. Here image-finiteness means that there are only finitely many rules
in R, once σ ∈ Σ and c ∈ A are fixed.

Our another reading of (2)—in the sense of (1)—is as follows, deriving a transition in
a new LTS σ(S1, . . . ,Sm).

{xi a→ ya,ji in Si }a∈A,j∈[1,Na
i ]

i∈[1,m] {xi
b

�→ in Si }b∈Bi

i∈[1,m]

σ(x1, . . . , xm) e→ t in σ(S1, . . . ,Sm)

Here S1, . . . ,Sm are a new class of variables that designate LTSs; variables xi and ya,ji
with a subscript i therefore designate states of Si.

We will need a careful inspection of the structure of Σ-terms. We fix some notations.

Notation 2.2. We assume that a Σ-term t always comes with an explicit context of
variables: x1, . . . , xm 
 t. Any occurrence of a variable in t must be that of x1, x2, . . .
or xm; each variable xi can have multiple or no occurrences in t. For example, we
distinguish two terms x1 
 x1 ‖ x1 and x1, x2 
 x1 ‖ x1 because of different contexts.
In the sequel, however, we suppress the context of a Σ-term when it is obvious.
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Definition 2.3 (it, |t| and t�). Given a Σ-term x1, . . . , xm 
 t, the number of occur-
rences of variables in t is denoted by |t|. Note that this is not necessarily the same as m.
Then the term t induces an “indexing” function it : [1, |t|] → [1,m] such that: the i-th
occurrence of variables (counted from left to right) in t is that of xit(i).

The term obtained from t, by replacing all the occurrences of variables by those of
distinct variables x1, . . . , x|t| from left to right, is denoted by t�. This is the linear term
induced by t. An easy consequence is: t = t�[xit(1)/x1, . . . , xit(|t|)/x|t|].

For example, let t be the term x1, x2 
 x2 ‖ (x1 ‖!x1). Then |t| = 3, it : 1 �→
2, 2 �→ 1, 3 �→ 1. The term t� is x1, x2, x3 
 x1 ‖ (x2 ‖!x3).

2.2 Requirements on State Spaces

Shortly we will introduce the notion of term lineage graph (TLG). Since it is technically
rather involved, we shall first lay out what we aim to achieve using TLGs.

We construct state spaces for LTSs like S1 ‖ S2, S1;S2, !S, etc., deriving from given
GSOS rules. Let x1, . . . , xm 
 t be a Σ-term and X1, . . . , Xm be sets, with the idea that
Xi is the state space of the LTS Si. We shall define an R-state space �t�(X1, . . . , Xm).
The following requirements are essential to to base the framework in [14] on it; these
will be exploited in the technical development later in §3.

Requirements 2.4. 1. The set �t�( !X) should accommodate initial states that are there
prior to any evolution—such as x1 ‖ x2 in S1 ‖ S2 or !x in !S (see §1.4). The set
of such initial states are given by

|t|(X1, . . . , Xm) := Xit(1) × · · · ×Xit(|t|) , (3)

where it and |t| are from Def. 2.3. Note that |t|( !X) need not be the same as X1 ×
· · · × Xm. Our definition (3) implies, for example, that we allow x1 ‖ x′

1 (with
x1, x

′
1 ∈ X1 and x1 �= x′

1) as an initial state in an LTS S1 ‖ S1.
2. The set �t�( !X) should also accommodate those states which would arise through

“evolution” specified by GSOS rules (see §1.4).
3. Functoriality: the operation �t� extends to a functor Setsm → Sets.
4. Modularity: the operation � �—applied to a term t and yielding a functor �t� :

Setsm → Sets—is compatible with substitution of terms. That is,

� t[ti/xi] � (X1, . . . , Xm) ∼= �t�
(
�t1�( !X), . . . , �tn�( !X)

)
. (4)

2.3 Term Lineage Graph (TLG)

‖
x1 !

x1

First we note that a Σ-term t can be identified with its parse tree. Its leaves
are variables and 0-ary operators; and its internal nodes are operators with
positive arities with a suitable branching degree. For example the term
x1 ‖!x1 is understood as on the right.

Definition 2.5 (Term Lineage Graph). Let s, t be Σ-terms. We require them to be
in the same variable context (Notation 2.2): x1, . . . , xm 
 s, t. A term lineage graph
(TLG) ρ from s to t, denoted by ρ : s ⇒ t, is an unlabeled directed graph (like in (5))
whose nodes are nodes of s and t (seen as parse trees), such that:
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– any edge is from a node in the domain term s to a node in the codomain term t;
– each node in s has exactly one outgoing edge;
– the edges are monotone: assume that the origin of one edge is a descendant (in the

parse tree s) of the origin of another edge. Then the target of the former is also a
descendant of (or the same as) that of the latter;

– an edge from an operator symbol σ goes into a (not necessarily the same) operator
symbol;

– an edge from a variable xi in s goes into the same variable xi in t.

A TLG is sometimes denoted by x1, . . . , xm 
 ρ : s ⇒ t, making its context explicit.

Definition 2.6 (The TLG ρR). Let R be a GSOS rule of the form (2). It induces a TLG
ρR defined as follows. Its type is ρR : tR[xi/y

a,j
i ] ⇒ σR(x1, . . . , xm). Concretely

– each node in the domain term tR[xi/y
a,j
i ] that is labeled with an operator symbol

is tied to the root node (labeled with σR) of the codomain term σR(x1, . . . , xm);
– each node in the domain term that is labeled with a variable xi is tied to the unique

occurrence of the same variable xi in the codomain σR(x1, . . . , xm).

Intuitively, the substitution ya,ji �→ xi in the domain term tR[xi/y
a,j
i ] forces every

occurrence of a state of Si to be denoted by xi.

Here are some examples of TLGs induced by GSOS rules. The solid lines represent the
order in each parse tree; the dotted lines are the edges of the TLGs.

‖
ρ(!)
=⇒

!

x1 ! x1

x1

x2

ρ(;R)
=⇒ ;

x1 x2

;

ρ(( )∗)
=⇒

( )∗

x1 ( )∗ x1

x1

(5)

Definition 2.7 (Operations on TLGs).

– (Identity) For each Σ-term s, the identity TLG ids : s ⇒ s is the one in which each
node in the domain term is tied to the same node of the codomain term.

– (Composition) Given two successive TLGs ρ : t ⇒ s and ρ′ : s ⇒ u, the compo-
sition ρ′ • ρ : t ⇒ u is obtained by composing two successive edges of ρ and ρ′,
and then forgetting about the mediating term s.

– (Substitution) Let x1, . . . , xn 
 ρ : t ⇒ t′ be a TLG. Assume further that we have
a TLG x1, . . . , xm 
 ρi : ti ⇒ t′i, for each i ∈ [1, n].2 We define the substitution
ρ[ρi/xi], which is a TLG between substituted terms from t[ti/xi] to t′[t′i/xi], as
follows. Pictorially:

t

x1 x2

ρ
=⇒

t′

x2 x1 x1

t1

ρ1=⇒
t′1 t2

ρ2=⇒
t′2

t

t1 t2

ρ[ρ1/x1,ρ2/x2]
=⇒ t′

t′2 t′1 t′1
That is,

2 Distinguish m and n. Note we have the same context for all of ρi.
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• Each node in the (upper) t-part of the domain term t[ti/xi] has the same
outgoing edge as in ρ, into the t′-part of the codomain term.

• As for a node in the (lower) ti-part of the domain term: basically the outgo-
ing edge is the same as the corresponding one in ρi : ti ⇒ t′i. However,
like t′1 in the above example, there can be multiple occurrences of t′i in the
codomain term; we must decide which occurrence the edge points to. There we
use the information in ρ : t ⇒ t′: we follow the edge in ρ that starts from the
corresponding occurrence of a variable.

Let us now illustrate the operations on TLGs. Using three TLGs ρ(;R) : x2 ⇒ x1; x2,
idx1 : x1 ⇒ x1 and idx∗1 : x∗

1 ⇒ x∗
1, we can form the substitution ρ(;R)[idx1/x1, idx∗1

/x2] that is shown below on the left. The equality below asserts that, if we pre-compose
ρ(( )∗) to that substitution, then it is the same as the identity TLG.

( )∗
ρ(;R)[idx1/x1,idx∗

1
/x2]

=⇒ ;

ρ(( )∗)
=⇒

( )∗

x1 x1 ( )∗ x1

x1

= ( )∗
idx∗
=⇒

( )∗

x1 x1

(6)

Finally, a given set R of GSOS rules determines a class of TLGs that are relevant to it.

Definition 2.8 (R-TLG). Let (Σ,R) be a GSOS specification (Def. 2.1). The class of
R-TLGs is a subclass of TLGs between Σ-terms, defined inductively as follows: 1) for
each GSOS rule R ∈ R, the induced TLG ρR (Def. 2.6) is an R-TLG; 2) the class of
R-TLGs is closed under identities, composition, and substitution (Def. 2.7).

2.4 R-State Space

We define an R-state space operator �t�. Let us fix a GSOS specification (Σ,R).

Definition 2.9 (Initial State Space). Given a Σ-term x1, . . . , xm 
 t, we define the
initial state space functor |t| : Setsm → Sets by (3) in §2.2. Its functoriality is obvi-
ous. We are overriding the notation |t| (cf. Def. 2.3); this will not cause any confusion.

Definition 2.10 (R-state Space). Let t be a Σ-term. We define the R-state space func-
tor �t� : Setsm → Sets by:

�t�(X1, . . . , Xm) :=
∐{

|s|(X1, . . . , Xm) | ρ : s ⇒ t, R-TLG
}

. (7)

Here |s| is the initial state space functor (Def. 2.9); the sum
∐

is taken over all the
R-TLGs ρ with a codomain term t. We have one summand for each ρ, not for each s.

Let us now calculate some R-state spaces. We take as R the set of rules presented
in §1.3; we take the corresponding signature Σ = {‖, !, ; , ( )∗} ∪ {a | a ∈ A}.

For a rule R ∈ Rwhose principal operator is ‖—namely (‖L), (‖R) and (‖SYNC)—
the induced TLG ρR coincides with the identity (Def. 2.7). It follows that anyR-TLG of
the form · ⇒ x1 ‖ x2 is the identity TLG. Hence by (7) we have �x1 ‖ x2�(X1, X2) =
|x1 ‖ x2|(X1, X2) = X1 ×X2.
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For the operator ; , an R-TLG whose codomain term is x1, x2 
 x1; x2 is either the
identity or ρ(;R) (see (5)). Hence �x1; x2�(X1, X2) = |x1; x2|(X1, X2) + |x2|(X1, X2)
= X1 × X2 + X2. Here the term x2 inside the expression |x2| is x1, x2 
 x2, to be
precise about its context.

‖
idx1‖x2

[ρ(!)/x2]
=⇒ ‖

ρ(!)
=⇒

!

x1 ‖ x1 ! x1

x1 ! x1

x1

Regarding ! , we have countably many R-TLGs
whose codomain is !x1:

id : !x1 ⇒ !x1 ,
ρ(!) : x1 ‖!x1 ⇒ !x1 ,
ρ(!) • (idx1‖x2 [ρ(!)/x2]) : x1 ‖ (x1 ‖!x1) ⇒ !x1 , etc.

The third one is depicted above. Therefore we have:

� !x1 �(X1) =
∐
i≥0

∣∣∣ x1 ‖ (· · · ‖ (x1︸ ︷︷ ︸
i

‖!x1) · · · )
∣∣∣ (X1) =

∐
i≥0

X i+1
1 = X+

1 .

Regarding ( )∗, from the equality (6) it follows that the situation is similar to
! above. Namely, we have one R-TLG for each of the following types: x∗

1 ⇒ x∗
1,

x1; x∗
1 ⇒ x∗

1, x1; (x1; x∗
1) ⇒ x∗

1, etc. Hence we have �x∗
1�(X1) = X+

1 .
We now verify that Requirements 2.4 are indeed fulfilled. The item 3 is obvious. The

proof is in [12, Appendix A].

Proposition 2.11. 1. There is a canonical embedding (νt) �X : |t|( !X) → �t�( !X). This
extends to a natural transformation νt : |t| ⇒ �t� : Setsm → Sets.

2. Given an R-TLG ρ : s ⇒ t, it induces a canonical map �ρ� �X : �s�( !X) → �t�( !X).
It also extends to a natural transformation �ρ� : �s� ⇒ �t�.

4. The operation � � is compatible with substitution: for Σ-terms x1, . . . , xn 
 t and
x1, . . . , xm 
 ti for each i ∈ [1, n], we have a canonical isomorphism (4). %&

Using the embedding (νt) �X in Prop. 2.11.1, we can also embed the set X1 × · · · ×Xm
in the R-state space �t�(X1, . . . , Xm). This is by the following θX1,...,Xm :

θ �X :=
(

X1 × · · ·×Xm

(ψt)X1,...,Xm−→ Xit(1) × · · ·×Xit(|t|) = |t|( �X)
(νt) �X−→ �t�( �X)

)
, (8)

where (ψt) �X is a function such that (x1, . . . , xm) �→ (xit(1), . . . , xit(|t|)) (cf. Def. 2.3).
It rearranges arguments x1, . . . , xm according to the occurrences of variables in t.

Remark 2.12. Our choice of state spaces (Def. 2.10) is in fact one out of a spec-
trum. The smallest extreme in the spectrum is obtained by: singling out the “reachable”
part of our R-state space and then quotienting it out by the bisimilarity. Although this
yields a smaller state space, calculating such is expensive. Moreover it does not satisfy
Requirements 2.4.4, breaking modularity/algebraicity of the whole framework.

The biggest extreme is to take, as the state space �t�(X1, . . . , Xm), the whole set
of Σ-terms with all states xi ∈ Xi as variables. This satisfies Requirements 2.4 so we
could develop the theory on top of it. However, we claim it to be our finding that we
can trim down this big state space into the one in Def. 2.10. In particular, our refined
definition yields � ‖ �(X1, X2) = X1×X2 which matches with intuition as well as with
the usual definitions of product of automata in e.g. [4].
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In-between is the “Kleene-style” composition of automata. The classic result on
regular language and DFA/NFA has recently seen its vast generalization in coalge-
braic terms; see e.g. [21]. In this approach the Kleene star ( )∗ preserves finiteness
of state spaces, whereas our approach yields the state space X∗ that is inevitably infi-
nite. However the definition of Kleene-style composition calls for different ingenuity
for each operator; it is not clear if that can be done uniformly for any operation defined
in GSOS.

We further note that our choice goes well with first-order representation of LTSs.
(Variants of) the latter are now widely used (e.g. CARML in [3]) because it enables
BDD-based representation and symbolic model checking [9]. In first-order representa-
tion, a state is represented by an assignment of values to variables such as [agent1 �→
critical, agent2 �→ noncritical]; hence a state space is the product of the value
domains for the variables. Combining such state spaces by means of products and co-
products (7) could be done in a programming language with advanced type constructors.

3 Categorical GSOS Specification

We introduced appropriate state spaces for S1 ‖ S2,S1;S2, etc. in §2; we wish to derive
transition structures on those state spaces, making them LTSs. In concrete terms it is via
derivations using GSOS rules, with their reading like (1). In categorical terms, GSOS
rules are first translated into a natural transformation ξt (for each term t, this section);
which gives rise to transition structures (§4).

3.1 Copointed Functors and Copointed Coalgebras

We will need the following notion of copointedness—a technical but standard one in
the field (see e.g. [22, 18]). For the functor F = (Pω )A : Sets → Sets, we set a
functor F• : Sets → Sets by F•X := X × FX = X × (PωX)A. We denote the first
projection F•X(= X × FX) → X by εX .

X × FX
εX

X

X
c

An F•-coalgebra c : X → F•X is said to be copointed if the
diagram on the right commutes. Intuitively, the additional com-
ponent X in F•X = X × FX records the “original” state before
a transition; indeed for a copointed F•-coalgebra c : X → X × (PωX)A we have
c(x) = ( x, λa. {x′ | x a→ x′} ). The next result is standard and easy; see [18].

Lemma 3.1. Let us denote the category of F -coalgebras by Coalg(F ); and the cat-
egory of copointed F•-coalgebras by Coalg•(F•). The two categories are isomor-
phic: Coalg(F ) ∼= Coalg•(F•). In particular, Coalg•(F•) has a final object (a final
copointed F•-coalgebra) that corresponds to a final object in Coalg(F ). %&

Due to this result, in the sequel we identify an LTS with a copointed coalgebra for the
functor F•X = X × (PωX)A. Bisimilarity in LTSs can then be captured by the final
copointed F•-coalgebra—which we denote by ζ• : Z → F•Z . Note that the coalgebra
ζ• has the same carrier set Z as the final F -coalgebra; this is also a standard fact.
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3.2 GSOS Rules, Categorically

We shall translate a set R of GSOS rules into functions of the following type:

(ξt) �X : �t�( F•X1, . . . , F•Xm ) −→ F•
(
�t�(X1, . . . , Xm)

)
, (9)

defined for each Σ-term x1, . . . , xm 
 t and sets X1, . . . , Xm. Here F = (Pω )A,
and m is the length of t’s context x1, . . . , xm 
 t. These functions (ξt) �X form a natural
transformation ξt, defined for each term t. The difference from the natural transforma-
tion ΣF•X ⇒ FΣ∗X in [22] is that ours (ξt) �X is required to be natural in multiple
sets X1, . . . , Xm. This is because we deal with state spaces of multiple LTSs.

Towards the natural transformation ξt in (9) we proceed step by step: we first derive
from a GSOS rule R a natural transformation ξ

(1)
R , from which we derive ξ

(2)
R , ξ

(3)
σ , . . . ,

finally reaching ξt of the desired form.
Step 1. Let R ∈ R be a GSOS rule in (2). It induces the following function

(ξ(1)
R )X1,...,Xm :

|σR| (F•X1, · · · , F•Xm)
(ξ

(1)
R ) �X−→ F

( |tR[xi/ya,j
i ]| (X1, . . . , Xm)

)
,

i.e.
∏

i∈[1,m]

(
Xi × (PωXi)

A
) (ξ

(1)
R

) �X−→
(
Pω

( ∣∣ tR[xi/ya,j
i ]

∣∣( �X)
))A

by
(

(ξ
(1)
R ) �X(x1, ϕ1, . . . , xm, ϕm)

)
(e)

=

{
tR[xi/xi, y

a,j
i /ya,j

i ]
∣∣∣ ∀i.∀b ∈ Bi. ϕi(b) = ∅, and
∀i.∀a.∀j ∈ [1, Na

i ]. y
a,j
i ∈ ϕi(a).

}
.

Here xi and ya,ji denote elements of Xi; ϕi belongs to (PωXi)A; and e ∈ A is a label.
Note that |σR|(F•X1, · · · , F•Xm) = F•X1 × · · · × F•Xm (Def. 2.9). The expression
tR[xi/xi, y

a,j
i /ya,ji ] denotes the obvious element of the set | tR[xi/y

a,j
i ] |(X1, . . . , Xm).

To be precise, the latter set is of the form Xk1 × · · · × Xk|tR| , with each component

Xkl
coming from an occurrence of either xi or ya,ji in tR. If Xkl

is from xi then the
l-th component of tR[xi/xi, y

a,j
i /ya,ji ] is xi; if Xkl

is from ya,ji then it is ya,ji .
Step 2. We exploit properties of � � (Prop. 2.11.1–2) to obtain the following two

successive functions. Here ρR is the R-TLG induced by the GSOS rule R (Def. 2.6).

(ν
tR[xi/y

a,j
i ]

) �X : | tR[xi/ya,j
i ] |( �X) −→ � tR[xi/ya,j

i ] �( �X) ,

�ρR� �X : � tR[xi/ya,j
i ] �( �X) −→ �σR�( �X) .

The functions are natural in X1, . . . , Xm. We compose these arrows, apply the functor
F , and then post-compose it to (ξ(1)

R ) �X in Step 1. The outcome is a natural transforma-

tion (ξ(2)
R )X1,...,Xm : |σR| (F•X1, · · · , F•Xm) −→ F

(
�σR� (X1, . . . , Xm)

)
.

Step 3. The natural transformation ξ
(2)
R has been defined for each rule R ∈ R;

we shall take their “union” to define ξ
(3)
σ , now for each operator σ ∈ Σ. Specifically,

for each operator σ ∈ Σ and e ∈ A, let Rσ,e denote the collection of those rules
R ∈ R whose conclusion is of the form σ(x1, . . . , xm) e→ · . By the image finiteness
assumption (Def. 2.1) the set Rσ,e is finite. We define a function

(ξ
(3)
σ ) �X : |σ| (F•X1, · · · , F•Xm) −→ F

(
�σ� (X1, . . . , Xm)

)
by

(
ξ
(3)
σ (x1, ϕ1, . . . , xm, ϕm)

)
(e)

:=
⋃

R∈Rσ,e

(
ξ
(2)
R (x1, ϕ1, . . . , xm, ϕm)

)
(e) .
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Recall that FX = (PωX)A and F•X = X × (PωX)A; the union is in Pω(�σ�( !X)).

Step 4. We shall extend F in the codomain of ξ
(3)
σ to F•, so that we obtain (ξ(4)

σ ) �X :
|σ|(−−→F•X) → F•(�σ�( !X)). What we need is a function of the type |σ|(−−→F•X) →
�σ�( !X); then we can tuple it with ξ

(3)
σ and obtain ξ

(4)
σ . Such a function is given by

|σ|(−−→F•X)
|σ|( �εX )−→ |σ|( !X)

(νσ) �X−→ �σ�( !X) .

Here εXi : F•Xi → Xi is the first projection (§3.1); νσ is from Prop. 2.11.1. We used
the functoriality of the operation |σ| (Def. 2.9).

We shall further extend this definition of ξ
(4)
σ to (ξ(4)

t ) �X : |t|(−−→F•X) → F•(�t�( !X)),
now defined for each Σ-term t. This is by induction on the formation of Σ-terms.

If t is a variable xi (i.e. x1, . . . , xm 
 xi), we have |xi|(
−−→
F•X) = F•Xi (Def. 2.9) and

�xi�( !X) = Xi (Def. 2.10, the only R-TLG into xi is the identity). Hence the function

(ξ(4)
xi ) �X we are defining is of the type F•Xi → F•Xi; it is defined to be the identity. If

t is a composed term σ(s1, . . . , sn), we define (ξ(4)
t ) �X by the composite:

|σ(s1, . . . , sn)|(F•X1, . . . , F•Xm)
∼= |σ|( |s1|(−−→F•X), . . . , |sn|(−−→F•X)

)
|σ|( (ξ

(4)
s1 ) �X , . . . , (ξ

(4)
sn ) �X

)
|σ|( F•(�s1�( �X)), . . . , F•(�sn�( �X))

)
(ξ

(4)
σ )�s1�( �X),...,�sn�( �X)

F•
(
�σ�

(
�s1�( �X), . . . , �sn�( �X)

) )
∼=

F•
(
�σ(s1, . . . , sn)�(X1, . . . , Xm)

)
.

Here the first isomorphism is a variant of (4), for | | instead of � �, which we readily

obtain. The second one uses functoriality of |σ| applied to functions (ξ(4)
si ) �X ; the latter

are available by the induction hypothesis. The third function is what we defined in the
first half of the current Step 4; the last isomorphism is by Prop. 2.11.4.

Step 5. Finally we shall obtain the goal (9) of the current §3.2, by extending |t| into

�t� in the domain of the previous (ξ(4)
t ) �X : |t|(−−→F•X) → F•(�t�( !X)). By Def. 2.10

of �t�, such an extension can be done through finding, for each R-TLG ρ : s ⇒ t, a

function of the type |s|(−−→F•X) → F•(�t�( !X)). The following composite does this job.

|s|(F•X1, . . . , F•Xm)
(ξ(4)s ) �X−→ F•(�s�( !X))

F•(�ρ� �X )−→ F•(�t�( !X))

Here �ρ� is from Prop. 2.11.2. We take the cotuple of these functions (i.e. definition by
cases) to obtain (ξt) �X .

4 The Microcosm Interpretation of GSOS Rules

Let (Σ,R) be a GSOS specification. We shall define its microcosm interpretation. It
consists of, for each Σ-term x1, . . . , xm 
 t,

the outer interpretation �t� :
(
Coalg•(F•)

)m → Coalg•(F•) ; and
the inner interpretation [t] : Zm → Z .
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Recall (§3.1) that we identify an LTS with c ∈ Coalg•(F•). Hence the outer inter-
pretation is a “process operator” t acting on LTSs. Therefore the two interpretations
combined constitute an instance of the microcosm principle; see §1.2.

Definition 4.1. Let (Σ,R) be a GSOS specification, and t be a Σ-term.

1. We define t’s outer interpretation �t� : (Coalg•(F•))m → Coalg•(F•) as fol-
lows, using functoriality of �t�. The function (ξt) �X was introduced in §3.2 as “cat-
egorical GSOS rules.” Functoriality of thus defined �t� is easy.

( F•X1

X1

c1 , . . . ,
F•Xm

Xm

cm

)
�t��−→

F•
(
�t�(X1, . . . , Xm)

)
�t�(F•X1, . . . , F•Xm)

(ξt)X1,...,Xm

�t�(X1, . . . , Xm)
�t�(c1, . . . , cm)

The copointedness (§3.1) of the resulting F•-coalgebra is easy, too. It has �t�( !X)—
the R-state space from §2—as a carrier.

2. We define t’s inner interpretation [t] : Zm → Z as follows. Once we have the outer
interpretation �t�, we can apply it to the m-tuple (ζ•, . . . , ζ•) of the final copointed
coalgebra ζ• : Z → F•Z . Then the resulting coalgebra �t�(!ζ•) induces a unique
“behavior” map into the final one, as below. This behavior map is almost what we
want; we pre-compose θZ,...,Z : Zm → �t�(!Z) (from (8)) to it and obtain [t]. That
is, [t] := beh(�t�)(!ζ•) ◦ θ�Z : Zm → Z .

F•(�t�(�Z)) F•Z

�t�(�Z)

�t�( �ζ•)

beh(�t�( �ζ•))
Z

finalζ•

Proposition 4.2 (Modularity). Assume Σ-terms t and ti are as in Prop. 2.11.4. The
operations � � and [ ] are compatible with substitution: given LTSs c1, . . . , cm ∈
Coalg•(F•) and “behaviors” z1, . . . , zm ∈ Z , we have

� t[ti/xi] � (c1, . . . , cm) ∼= �t�
(
�t1�(!c), . . . , �tn�(!c)

)
;

[ t[ti/xi] ] (z1, . . . , zm) = [t]
(

[t1](!z), . . . , [tn](!z)
)

. %&

We present our main result on compositionality. It relates the outer and inner interpre-
tations. The latter arose from the former via finality (Def. 4.1); the following result
follows straightforward from finality, too.

Theorem 4.3 (Compositionality). Given a Σ-term x1, . . . , xm 
 t and LTSs
c1, . . . , cm that belong to Coalg•(F•), we have the following diagram commute.

X1 × · · · × Xm

beh(c1) × · · · × beh(cm)

(θt)X1,...,Xm

Z × · · · × Z
[t]

�t�(X1, . . . , Xm)
beh(�t�(c1, . . . , cm))

Z
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Here (θt)X1,...,Xm is the “bookkeeping” function from (8); Z is the carrier of the fi-
nal coalgebra (§3.1). Putting it equationally: for any state xi ∈ Xi of each LTS
we have

beh
(
�t�(c1, . . . , cm)

)
( θt(x1, . . . , xm) ) = [t]

(
beh(c1)(x1), . . . , beh(cm)(xm)

)
.

That is: the behavior of a composed system �t�(!c) can be computed from the behaviors
beh(ci) of its constituent parts, using the inner operator [t]. %&

Let ζ̂ : Σ∗Z → Z be the (Eilenberg-Moore) Σ∗-algebra on Z induced by a GSOS
specification (Σ,R), due to [22, Cor. 7.2]. Here Σ∗ is the free monad induced by the
signature Σ. The following result—claiming that our framework is indeed an extension
of (the GSOS fragment of) [22]—holds because our ξt in §3, when suitably restricted,
coincides with the categorical GSOS in [22].

Theorem 4.4. Let x1, . . . , xm 
 t be a Σ-term; let κt be the corre-
sponding coprojection Zm ↪→ Σ∗Z . For these, the diagram on the
right commutes. %&

Σ∗Z
ζ̂

Z

Zm
κt

[t]

5 Conclusions and Future Work

We have extended our previous work [14] so that any process operator specified by
GSOS rules can now be interpreted as a component connector that combines LTSs as
components. This outer interpretation gives rise to a canonical inner interpretation that
coincides with what is derived by the bialgebraic modeling of SOS [22].

Our framework is categorical, hence comes with great potential generality. This in-
cludes application to systems other than LTS—like bialgebraic modeling applied to
weighted systems [17]—which we wish to pursue. In particular we believe our generic
construction of R-state spaces will carry over.

Regular languages and automata seem to be the first computer science example of
the microcosm principle. Our current framework fails to include it. One difficulty is:
the outer operators (specified in GSOS-like rules) are naturally defined on NFAs, while
the inner operators is on regular languages that form the final DFA. Use of coalgebraic
techniques such as trace semantics [13] is being investigated.

The notion of TLG and operations on them (§2) indicates strong relevance of rewrit-
ing logic [19] and the theory of generalized operads/combinatorial species/clones re-
cently pursued by many authors, including [10]. We are especially interested in the
latter, but not only because of TLGs. Roughly we can call their theory universal al-
gebra in varying contexts. Here a “context” can be a monoidal one (where variables
are not to be deleted, duplicated or swapped), a symmetric monoidal one (where swap-
ping is allowed), a Cartesian one (where all three are allowed), and so on. In fact such
a context can be thought of as algebraic structure itself; hence the theory may be also
called universal (algebra in algebra). The microcosm principle then offers a degenerate
example of such, where we have the same structure on the two levels.
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Abstract. The free algebra adjunction, between the category of alge-
bras of a monad and the underlying category, induces a comonad on the
category of algebras. The coalgebras of this comonad are the topic of
study in this paper (following earlier work). It is illustrated how such
coalgebras-on-algebras can be understood as bases, decomposing each
element x into primitives elements from which x can be reconstructed
via the operations of the algebra. This holds in particular for the free
vector space monad, but also for other monads. For instance, continuous
dcpos or stably continuous frames, where each element is the join of the
elements way below it, can be described as such coalgebras. Further, it
is shown how these coalgebras-on-algebras give rise to a comonoid struc-
ture for copy and delete, and thus to diagonalisation of endomaps like in
linear algebra.

1 Introduction

In general, algebras are used for composition and coalgebras for decomposition.
An algebra a : T (X) → X , for a functor or a monad T , can be used to pro-
duce elements in X from ingredients structured by T . Conversely, a coalgebra
c : X → T (X) allows one to decompose an element in X into its ingredients
with structure according to T . This is the fundamental difference between alge-
braic and coalgebraic data structures. In this paper we apply this view to the
special situation where one has a coalgebra of a comonad on top of an algebra
of a monad, where the comonad is canonically induced by the monad, namely
as arising from the free algebra adjunction, see (1) below. Here it is proposed
that such coalgebras can be seen as bases. In particular, it will be shown that
the concept of basis in linear algebra gives rise to such a coalgebra X →M(X)
for the multiset monad M; this coalgebra decomposes an element x of a vector
space X into a formal sum

∑
i xiei ∈ M(X) given by its coefficients xi for a

Hamel basis (ei), see Theorem 1 for more details.
Other examples arise in an order-theoretic setting, formalised via the notion

of monad of Kock-Zölberlein type (where T (ηX) ≤ ηTX , see [14,7]). We de-
scribe how they fit in the present setting (with continuous dcpos as coalgebras),
and add a new result (Theorem 4) about algebras-on-coalgebras-on-algebras, see
Section 4. This builds on rather old (little noticed) work of the author [10].

A. Corradini, B. Klin, and C. Ĉırstea (Eds.): CALCO 2011, LNCS 6859, pp. 237–252, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.cs.ru.nl/B.Jacobs
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In recent work [5] in the categorical foundations of quantum mechanics it is
shown that orthonormal bases in finite-dimensional Hilbert spaces are equiva-
lent to comonoids structures (in fact, Frobenius algebras). These comonoids are
used for copying and deleting elements. In Section 5 it is shown how bases as
coalgebras (capturing bases-as-decomposition) also give rise to such comonoids
(capturing bases-as-copier-and-deleter). These comonoids can be used to formu-
late in general terms what it means for an endomap to be diagonalisable. This
is illustrated for the Pauli functions.

2 Comonads on Categories of Algebras

In this section we investigate the situation of a monad and the induced comonad
on its category of algebras. We shall see that coalgebras of this comonad capture
the notion of basis, in a very general sense. This will be illustrated later in several
situations see in particular Subsection 3.2.

For an arbitrary monad T : A → A, with unit η and multiplication μ, there is
a category Alg(T ) or (Eilenberg-Moore) algebras, together with a left adjoint F
(for free algebra functor) to the forgetful functor U : Alg(T ) → A. This adjunc-
tion Alg(T ) � A induces a comonad on the category Alg(T ), which we shall
write as T = FU in:

Alg(T )

� U




�� ���� T=FU comonad
��%%

A

F

��

���� T=UF monad�	��
(1)

For an algebra (TX
a→ X) ∈ Alg(T ) there are counit ε : T ⇒ id and comultipli-

cation δ : T ⇒ T maps in Alg(T ) given by:(
TX

X

a



) (
T 2X

TX

μX



)
ε=a�� δ=T (ηX ) 		

(
T 3X

T 2X

μTX



)
(2)

Definition 1. Consider a monad T : A → A together with the induced comonad
T : Alg(T ) → Alg(T ) as in (1). A basis for a T -algebra (TX

a→ X) ∈ Alg(T ) is
a T -coalgebra on this algebra, given by a map of algebras b of the form:(

TX

X

a



)
b 		 T

(
TX

X

a



)
= FU

(
TX

X

a



)
=

(
T 2X

TX

μX



)

Thus, a basis b is a map X
b−→ TX in A satisfying b ◦ a = μX ◦ T (b) and

a ◦ b = id and T (ηX) ◦ b = T (b) ◦ b in:
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T (X)

a





T (b) 		 T 2(X)
μX





X

��
��

��
��

��
��

��
��
b 		 T (X)

ε=a





T (X)
T (b) 		 T 2(X)

X
b

		 T (X) X X

b

��

b
		 T (X)

δ=T (ηX )

��

As we shall see a basis as described above may be understood as providing
a decomposition of each element x into a collection b(x) of basic elements that
together form x. The actual basic elements Xb 	 X involved can be obtained as
the indecomposable ones, via the following equaliser in the underlying category.

Xb 		 e 		 X
b 		
η

		 TX (3)

One can then ask in which cases the map of algebras T (Xb) → X , induced by
the equaliser e : Xb → U(TX → X), is an isomorphism. This is (almost always)
the case for monads on Sets, see Proposition 1 below. But first we observe that
free algebras always carry a basis.

Lemma 1. Free algebras have a canonical basis: each FX =
(
T 2X

μ→ TX
)
∈

Alg(T ) carries a T -coalgebra, namely given by T (ηX). This gives a situation:

CoAlg(T ) 		 Alg(T )

�




�� ���� T
��&&&&

A

F

��

F

��











Proof. It is easy to check that T (ηX) is a morphism in Alg(T ) and a T -
coalgebra:

F (X) =

(
T 2X

TX

μX



)
T (ηX) 		

(
T 3X

T 2X

μTX



)
= T (FX). �

The object Xb of basic element, as in (3), in the situation of this lemma is
the original set X in case the monad T satisfies the so-called equaliser re-
quirement [16], which says precisely that ηX : X → TX is the equaliser of
T (ηX), ηTX : TX ⇒ T 2X .

The comonad T : Alg(T ) → Alg(T ) from (1) gives rise to a category of coalge-
bras CoAlg(T ) → Alg(T ), where this forgetful functor has a right adjoint, which
maps an algebra TY → Y to the diagonal coalgebra δ : μY → μTY as in (2).
Thus we obtain a monad on the category CoAlg(T ), written as T . On a basis
c : a → T (a), for an algebra a : TX → X , there is a unit ηc = c : c → δ and
multiplication μc = T (c) : δ → δ in CoAlg(T ).



240 B. Jacobs

By iterating this construction one obtains alternating monads and comonads.
Such iterations are studied for instance in [3,10,14,18]. In special cases it is
known that the iterations stop after a number of cycles. This happens after 2
iterations for monads on sets, as we shall see next, and after 3 iterations for
Kock-Zölberlein monads in Section 4.

3 Set-Theoretic Examples

It turns out that for monads on the category Sets only free algebras have bases.
This result goes back to [3]. We repeat it in the present context, with a sketch of
proof. Subsequently we describe the situation for the powerset monad (from [10])
and the free vector space monad.

Proposition 1. For a monad T on Sets, if an algebra TX
a→ X has a basis

X
b→ TX with non-empty equaliser Xb 	 X ⇒ TX as in (3), then the induced

map T (Xb) → X is an isomorphism of algebras and coalgebras. In particular, in
the set-theoretic case any algebra with a non-empty basis is free.

Proof. Let’s consider the equaliser Xb 	 X of b, η : X ⇒ T (X) from (3) in
Sets. It is a so-called coreflexive equaliser, because there is a map TX → X ,
namely the algebra a, satisfying a ◦ b = id = a ◦ η. It is well-known—see e.g. [15,
Lemma 6.5] or the dual result in [4, Volume I, Example 2.10.3.a]—that if Xb �= ∅
such coreflexive equalisers in Sets are split, and thus absolute. The latter means
that they are preserved under any functor application. In particular, by applying
T we obtain a new equaliser in Sets, of the form:

T (Xb) 		 T (e) 		 T (X)
T (b) 		
T (η)=δ

		 T 2(X)

X
b

��'''''''''
b′
��#
# (4)

The resulting b′ is the inverse to the adjoint transpose a ◦ T (e) : T (Xb) → X ,
since:

– a ◦ T (e) ◦ b′ = a ◦ b = id;
– the other equation follows because T (e) is equaliser, and thus mono:

T (e) ◦ b′ ◦ a ◦ T (e) = b ◦ a ◦ T (e)

= μ ◦ T (b) ◦ T (e) see Definition 1

= μ ◦ T (η) ◦ T (e) since e is equaliser

= T (e) = T (e) ◦ id.

Hence the homomorphism of algebras a ◦ T (e), from F (Xb) = μXb
to a is

an isomorphism. In particular, b′ : X → T (Xb) in (4) is a map of algebras,
as inverse of an isomorphism of algebras. It is not hard to see that it is also an
isomorphism between the coalgebras b : X → T (X) and T (η) : T (Xb) → T 2(Xb),
as in Lemma 1. �
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3.1 Complete Lattices

Consider the powerset monad P on Sets, with the category CL = Alg(P)
of complete lattices and join-preserving maps as its category of algebras. The
induced comonad P : CL → CL as in (1) sends a complete lattice (L,≤)
to the lattice (P(L),⊆) of subsets, ignoring the original order ≤. The counit
ε : P(L) → L sends a subset U ∈ P(L) to its join ε(U) =

∨
U ; the co-

multiplication δ : P(L) → P2
(L) sends U ∈ P(L) to the subset of singletons

δ(U) = {{x} | x ∈ U}.
An (Eilenberg-Moore) coalgebra of the comonad P on CL is a map b : L →

P(L) in CL satisfying ε ◦ b = id and δ ◦ b = P(b) ◦ b. More concretely, this says
that

∨
b(x) = x and {{y} | y ∈ b(x)} = {b(y) | y ∈ b(x)}. It is then shown in [10]

that a complete lattice L carries such a coalgebra structure b if and only if L is
atomic, where b(x) = {a ∈ L | a is an atom with a ≤ x}. Thus, such a coalgebra
of the comonad P, if it exists, is uniquely determined and gives a decomposition
of lattice elements into the atoms below it. The atoms in the lattice thus form a
basis.

(The complete lattice L is atomic when each element is the join of the atoms
below it. And an atom a ∈ L is a non-zero element with no non-zero elements
below it, satisfying: a ≤

∨
U implies a ≤ x for some x ∈ U .)

The equaliser (3) for the basic elements in this situation, for an atomic com-
plete lattice L, is the set of atoms:

Xb = {x ∈ L | {x} = b(x)} = {x ∈ L | x is an atom}.

If Xb �= ∅, the induced map P(Xb) → L is an isomorphism, by Lemma 1.

3.2 Vector Spaces

For a semiring S one can define the multiset monad MS on Sets by MS(X) =
{ϕ : X → S | supp(ϕ) is finite}. Such an element ϕ can be identified with a
formal finite sum

∑
i sixi with multiplicities si ∈ S for elements xi ∈ X . The

category of algebras Alg(MS) of the multiset monad MS is the category of
ModS of modules over S: commutative monoids with S-scalar multiplication,
see e.g. [6] for more information. The induced comonad MS : ModS → ModS
from (1) sends such a module X = (X, +, 0, •) to the free module MS(X) of
finite multisets (formal sums) on the underlying set X , ignoring the existing
module structure on X . The counit and comultiplication are given by:

X MS(X)ε�� δ 		 M2
S(X)(∑

j sj • xj
) (∑

j sjxj
)#�� # 		

(∑
j sj(1xj)

)
.

(5)

The formal sum (multiset) in the middle is mapped by the counit ε to an actual
sum in X , namely to its interpretation. The comultiplication δ maps this formal
sum to a multiset of multisets, with the inner multisets given by singletons
1xj = η(xj).
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The following is a novel observation, motivating the view of coalgebras on
algebras as bases.

Theorem 1. Let X be a vector space, say over S = R or S = C. Coalgebras
X →MS(X) correspond to (Hamel) bases on X.

Proof. Suppose we have a basis B ⊆ X . Then we can define a coalgebra
b : X →MS(X) via (finite) formal sums b(x) =

∑
j sjaj , where sj ∈ S is the

j-th coefficient of x wrt aj ∈ B ⊆ X . By construction we have ε ◦ b = id. The
equation δ ◦ b = MS(b) ◦ b holds because b(a) = 1a, for basic elements a ∈ B.

Conversely, given a coalgebra b : X →MS(X) take Xb = {a ∈ X | b(a) = 1a}
as in (3). Any finite subset of elements of Xb is linearly independent: if

∑
j sj •

aj = 0, for finitely many aj ∈ Xb, then in MS(X),

0 = b(0) = b(
∑
j sj • aj) =

∑
j sjb(aj) =

∑
j sj(1aj) =

∑
j sjaj .

Hence sj = 0, for each j. Next, since δ ◦ b = MS(b) ◦ b, each aj in b(x) =∑
j sjaj satisfies b(aj) = 1aj, so that aj ∈ Xb. Because ε ◦ b = id, each element

x ∈ X can be expressed as sum of such basic elements. �

A basis for complete lattices in Subsection 3.1, if it exists, is uniquely determined.
In the context of vector spaces bases are unique up to isomorphism.

4 Order-Theoretic Examples

Assume C is a poset-enriched category. This means that all homsets C(X,Y )
are posets, and that pre- and post-composition are monotone. In this context
maps f : X → Y and g : Y → X in opposite direction form an adjunction f � g
(or Galois connection) if there inequalities idX ≤ g ◦ f and f ◦ g ≤ idY ,
corresponding to unit and counit of the adjunction. In such a situation the
adjoints f, g determine each other.

A monad T = (T, η, μ) on such a poset-enriched category C is said to be of
Kock-Zölberlein type or just a Kock-Zölberlein monad if T : C(X,Y ) →
C(TX, TY ) is monotone and T (ηX) ≤ ηTX holds in the homset C

(
T (X), T 2(X)

)
.

This notion is introduced in [14] in proper 2-categorical form. Here we shall use
the special ‘poset’ instance—like in [7] where the dual form occurs. The following
result goes back to [14]; for convenience we include the proof.

Theorem 2. Let T be a Kock-Zölberlein monad on a poset-enriched category
C. For a map a : T (X) → X in C the following statements are equivalent.

1. a : T (X) → X is an (Eilenberg-Moore) algebra of the monad T ;
2. a : T (X) → X is a left-adjoint-left-inverse of the unit η : X → T (X); this

means that a � ηX is a reflection.

Proof. First assume a : T (X) → X is an algebra, i.e. satisfies a ◦ η = id and
a ◦ μ = a ◦ T (a). It suffices to prove id ≤ η ◦ a, corresponding to the unit of
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the reflection, since the equation a ◦ η = id is the counit (isomorphism). This is
easy, by naturality: η ◦ a = T (a) ◦ η ≥ T (a) ◦ T (η) = id.

In the other direction, assume a : T (X) → X is left-adjoint-left-inverse of the
unit η : X → T (X), so that a ◦ η = id and id ≤ η ◦ a. We have to prove
a ◦ μ = a ◦ T (a). In one direction, we have:

μ ≤ T (a), (6)

since μ ≤ μ ◦ T (η ◦ a) = T (a), and thus a ◦ μ ≤ a ◦ T (a). For the reverse
inequality we use:

a ◦ T (a) = a ◦ T (a) ◦ T (id) = a ◦ T (a) ◦ T (μ) ◦ T (η)

≤ a ◦ T (a) ◦ T (μ) ◦ η since T (η) ≤ η

= a ◦ η ◦ a ◦ μ by naturality

= a ◦ μ. �

In a next step we consider the induced comonad T on the category Alg(T ) of
algebra of a Kock-Zöberlein monad T . A first, trivial but important, observation
is that the category Alg(T ) is also poset enriched. It is not hard to see that the
comonad T is also of Kock-Zöberlein type, in the sense that for each algebra
(TX

a→ X) we have:
εT (a) = μ ≤ T (a) = T (εa)

by (6). Thus one may expect a result similar to Theorem 2 for coalgebras of this
comonad T . It is formulated in [14, Thm. 4.2] (and attributed to the present
author). We repeat the poset version in the current context.

Theorem 3. Let T be a Kock-Zölberlein monad on a poset-enriched category C,
with induced comonad T on the category of algebras Alg(T ). Assume an algebra
a : T (X) → X. For a map c : X → T (X), forming a map of algebras in,(

TX

X

a



)
c 		 T

(
TX

X

a



)
=

(
T 2X

TX

μX



)
(7)

the following statements are equivalent.

1. c : a → T (a) is an (Eilenberg-Moore) coalgebra of the comonad T ;
2. c : a → T (a) is a left-adjoint-right-inverse of the counit a : T (a) → a; this

means that c � a is a coreflection.

Proof. Assume c is a T -coalgebra, i.e. c ◦ a = μ ◦ T (c), a ◦ c = id and
T (η) ◦ c = T (c) ◦ c. We have to prove c ◦ a ≤ id, which is obtained in:

c ◦ a = μ ◦ T (c)
(6)

≤ T (a) ◦ T (c) = id.
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Conversely, assume a coreflection c � a, so that a ◦ c = id and c ◦ a ≤ id. We
have to prove T (η) ◦ c = T (c) ◦ c. In one direction we have T (c) ≤ T (η ◦ a) ◦
T (c) = T (η), and thus T (c) ◦ c ≤ T (η) ◦ c. In the other direction, we use:

T (c) ◦ c = T 2(id) ◦ T (c) ◦ c = T 2(a ◦ η) ◦ T (c) ◦ c

≤ T 2(a) ◦ T (η) ◦ T (c) ◦ c since T (η) ≤ η

= T 2(a) ◦ T 2(c) ◦ T (η) ◦ c by naturality

= T (η) ◦ c. �

As mentioned, one can iterate the (−) construction. Below we show that for
Kock-Zölberlein monads the iteration stops after 3 steps. First we need another
characterisation. The proof is as before.

Lemma 2. Let T be a Kock-Zölberlein monad on a poset-enriched category C,
giving rise to comonad T on Alg(T ) and monad T on CoAlg(T ). Assume:

– an algebra a : T (X) → X in Alg(T );
– a coalgebra c : X → T (X) on a in CoAlg(T );
– an algebra b : T (X) → X on c in Alg(T ), where:

• b ◦ c = id and b ◦ T (b) = b ◦ T (a), since b is a T -algebra;
• a ◦ T (b) = b ◦ μ, since b is a map of algebras a → T (a) = μ;
• c ◦ b = T (b) ◦ T (η), since b is a map of algebras δ = c → c.

The following statements are then equivalent.

1. b : T (c) → c is an algebra of the monad T ;
2. b : T (c) → c is a left-adjoint-left-inverse of the unit c : c → T (c). �

The next result shows how such series of adjunctions can arise.

Lemma 3. Assume an algebra a : T (X) → X of a Kock-Zöberlein monad. The
free algebra T (X) then carries multiple (co)reflections (algebras and coalgebras)
in a situation:

T 2(X)

� μ
  

T (a)

��
T (X)

� η

��

� T (η)

��

(8)

This yields a functor T : Alg(T ) → Alg(T ) between categories of algebras.

Proof. We check all (co)reflections from right to left.

– In the first case the counit is the identity since μ ◦ η = id; because T (η) ≤ η
for a Kock-Zöberlein monad, we get a unit η ◦ μ = T (μ) ◦ η ≥ T (μ) ◦
T (η) = id. (This follows already from Theorem 2.)
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– In the next case we have a coreflection T (η) � μ since the unit is the identity
μ ◦ T (η) = id, and: T (η) ◦ μ = μ ◦ T 2(η) ≤ μ ◦ T (η) = id.

– Finally one gets a reflection T (a) � T (η) from the reflection a � η from
Theorem 2: T (a) ◦ T (η) = T (a ◦ η) = id and T (η) ◦ T (a) = T (η ◦ a) ≥
T (id) = id. �

This lemma describes the only form that such structures can have. This is the
main (new) result of this section.

Theorem 4. If we have a reflection-coreflection-reflection chain b � c � a � ηX
on an object X, like in Lemma 2, then X is a free algebra.

Thus: for a Kock-Zöberlein monad T , the functor T : Alg(T ) → Alg(T ) is an
equivalence of categories.

Proof. Assume b � c � a � ηX on X , and consider the equaliser (3) in:

Xc 		 e 		 X
c 		
η

		 T (X)

T (X) b

��(((

X η
!!���

k

��#
# (9)

We use the letter ‘k’ because the elements in Xc will turn out to be compact
elements, in the examples later on. The first thing we note is:

k ◦ e = idXc . (10)

This follows since e is a mono, and:

e ◦ k ◦ e = b ◦ η ◦ e by construction of k

= b ◦ c ◦ e since e is equaliser

= e since b is a T -algebra and c is unit.

Next we observe that the object Xc carries a T -algebra structure ac inherited
from a : T (X) → X , as in:

ac
def=

(
T (Xc)

T (e) 		 T (X) a 		 X
k 		 Xc

)
It is an algebra indeed, since:

ac ◦ η = k ◦ a ◦ T (e) ◦ η = k ◦ a ◦ η ◦ e = k ◦ e
(10)
= id.

The other algebra equation is left to the reader.
Next we show that the transpose a ◦ T (e) : T (Xc) → X of the equaliser

e : Xc 	 X is an isomorphism of algebras μXc
∼= a. The inverse is T (k) ◦

c : X → T (X) → T (Xc), since:
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(
a ◦ T (e)

)
◦
(
T (k) ◦ c

)
= a ◦ T (b ◦ η) ◦ c by (9)

= a ◦ μ ◦ T (η) ◦ c see the assumptions in Lemma 2

= a ◦ c

= id see Theorem 3(
T (k) ◦ c

)
◦
(
a ◦ T (e)

)
= T (k) ◦ μ ◦ T (c) ◦ T (e) since c is a map a → T (a) = μ

= T (k) ◦ μ ◦ T (η) ◦ T (e) since e is equaliser of c and η

= T (k) ◦ T (e)

= id by (10).

We continue to check that the assumed chain of adjunctions b � c � a � ηX
is related to the chain T (ac) � T (η) � μ � η in (8) via these isomorphisms. In
particular we still need to check that the following two square commute.

T 2(Xc)
T (a◦T (e))

∼=
		 T (X) T 2(Xc)

T (ac) 



T (a◦T (e))

∼=
		 T (X)

b


T (Xc)
T (η)

��

a◦T (e)

∼= 		 X

c
��

T (Xc)
a◦T (e)

∼= 		 X

These square commute since:

T (a ◦ T (e)) ◦ T (η) = T (a) ◦ T (η) ◦ T (e) by naturality

= T (e)

= c ◦ a ◦ T (e) see Theorem 3

a ◦ T (e) ◦ T (ac) = a ◦ T (e) ◦ T (k ◦ a ◦ T (e))

= a ◦ T (b ◦ η) ◦ T (a ◦ T (e)) by (9)

= b ◦ μ ◦ T (η) ◦ T (a ◦ T (e)) see in Lemma 2

= b ◦ T (a ◦ T (e)).

We still have to check that the functor T : Alg(T ) → Alg(T ) is an equivalence.
In the reverse direction, given a coalgebra c : T (b) → b on X , we take the induced
algebra T (Xc) → Xc on the equaliser (9). Then T (Xc)

∼=→ X is an isomorphism
of T -algebras, as we have seen.

For the isomorphism in the other direction, assume we start from an algebra
a : T (X) → X , obtain the T -algebra T (a) described in the chain T (a) � T (η) �
μ � η in (8), and then form the equaliser (9); it now looks as follows.

X 		 ηX 		 T (X)
T (η) 		
η

		 T 2(X)
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This is the equaliser requirement [16], which holds since X carries an algebra
structure. Clearly, η ◦ η = T (η) ◦ η by naturality. And if a map f : Y → T (X)
satisfies η ◦ f = T (η) ◦ f , then f factors through η : X → T (X) via f ′ = a ◦ f ,
since

η ◦ f ′ = η ◦ a ◦ f = T (a) ◦ η ◦ f = T (a) ◦ T (η) ◦ f = f.

This f ′ is unique with this property, since if g : Y → X also satisfies η ◦ g = f ,
then f ′ = a ◦ f = a ◦ η ◦ g = g. �

In the remainder of this section we review some examples.

4.1 Dcpos over Posets

The main example from [10] involves the ideal monad Idl on the category PoSets
of partially ordered sets with monotone functions between them. In the light of
Theorems 2 and 3 we briefly review the essentials.

For a poset X = (X,≤) let Idl(X) be the set of directed downsets in X ,
ordered by inclusion. This Idl is in fact a monad on PoSets with unit X →
Idl(X) given by principal downset x �→ ↓x and multiplication Idl2(X) → Idl(X)
by union. This monad is of Kock-Zölberlein type since for U ∈ Idl(X) we have:

Idl(↓)(U) = ↓{↓x | x ∈ U} = {V ∈ Idl(X) | ∃x ∈ U. V ⊆ ↓x}
⊆ {V ∈ Idl(X) | V ⊆ U} since U is a downset

= ↓U.

Applying Theorem 2 to the ideal monad yields the (folklore) equivalence of
the following points.

1. X is a directed complete partial order (dcpo): each directed subset U ⊆ X
has a join

∨
U in X ;

2. The unit ↓ : X → Idl(X) has a left adjoint—which is the join;
3. X carries a (necessarily unique) algebra structure Idl(X) → X , which is also

the join.

Additionally, algebra maps are precisely the continuous functions. Thus we may
use as category Dcpo = Alg(Idl).

The monad Idl on PoSets induces a comonad on Dcpo, written Idl, with
counit ε =

∨
: Idl(X) → X and comultiplication δ = Idl(↓) : Idl(X) → Idl2(X),

so that δ(U) = ↓{↓x | x ∈ U}. In order to characterise coalgebras of this comonad
Idl we need the following. In a dcpo X , the way below relation ' is defined as:
for x, y ∈ X ,

x ' y ⇐⇒ for each directed U ⊆ X, if y ≤
∨

U then ∃z ∈ U. x ≤ z.

A continuous poset is then a dcpo in which for each element x ∈ X the set
↓↓x = {y ∈ X | y ' x} is directed and has x as join. These elements way-below
x may be seen as a (local) basis.
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The following equivalence formed the basis for [14, Thm. 4.2] (of which The-
orem 3 is a special case). The equivalence of points (1) and (2) is known from the
literature, see e.g. [11, VII, Proposition 2.1], [9, Proposition 2.3], or
[8, Theorem I-1.10]. The equivalence of points (2) and (3) is given by
Theorem 3.

For a dcpo X , the following statements are equivalent.

1. X is a continuous poset;
2. The counit

∨
: Idl(X) → X of the comonad Idl on Dcpo has a left adjoint

(in Dcpo); it is x �→ ↓↓ x.
3. X carries a (necessarily unique) Idl-coalgebra structure X → Idl(X), which

is also ↓↓(−).

Theorem 4 says that another iteration Idl yields nothing new.

4.2 Frames over Semi-lattices

For a poset X , the set Dwn(X) = {U ⊆ X | U is downclosed} of downsets of
X is a frame (or complete Heyting algebra, or locale), see [11]. If the poset X
has finite meets (,∧, then the downset map ↓ : X → Dwn(X) preserves meets:
↓( = X and ↓(x ∧ y) = ↓x ∩ ↓y. Hence it is a morphism in the category MSL
of meet semi-lattices. It is not hard to see that Dwn is a monad on MSL that
is of Kock-Zöberlein type. For a (meet) semi-lattice X = (X,(,∧) the following
are equivalent.

1. X is a frame: X has arbitrary joins and its finite meets distribute over these
joins: x ∧

(∨
i yi

)
=
∨
i(x ∧ yi);

2. The unit ↓ : X → Dwn(X) has a left adjoint in MSL—which is the join;
3. X carries a (necessarily unique) algebra structure Dwn(X) → X in MSL,

which is also the join.

Moreover, the algebra maps are precisely the frame maps, preserving arbitrary
joins and finite meets; thus Frm = Alg(Dwn).

In a next step, for a frame X , the following statements are equivalent.

1. X is a stably continuous frame, i.e. a frame that is continuous as a dcpo, in
which ( ' (, and also x ' y and x ' z implies x ' y ∧ z;

2. The counit
∨

: Dwn(X) → X of the comonad Dwn on Frm has a left adjoint
in Frm; it is x �→ ↓↓x.

3. X carries a (necessarily unique) Dwn-coalgebra structure X → Dwn(X),
which is also ↓↓(−). �

One can show that coalgebra homomorphisms are the proper frame homomor-
phisms (from [2]) that preserve '. We recall from [11, VII, 4.5] that for a sober
topological space X , its opens Ω(X) form a continuous lattice iff X is a locally
compact space. Further, the stably continuous frames are precisely the retracts of
frames of the form Dwn(X), for X a meet semi-lattice—here via the coreflection
↓↓ �

∨
.
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5 Comonoids from Bases

A recent insight, see [5], is that orthonormal bases in finite-dimensional Hilbert
spaces can be described via so-called Frobenius algebras. In general, such an
algebra consists of an object carrying both a monoid and a comonoid structure
that interact appropriately. In the self-dual category of Hilbert spaces, it suffices
to have either a monoid or a comonoid, since the dual is induced by the dagger
/ adjoint transpose (−)†. In this section we show that the kind of coalgebras (on
algebras) considered in this paper also give rise to comonoids, assuming that the
category of algebras has monoidal (tensor) structure.

In a (symmetric) monoidal category A a comonoid is the dual of a monoid,
given by maps I

u← X
d→ X ⊗X satisfying the duals of the monoid equations.

Such comonoids are used for copying and deletion, in linear and quantum logic.
If ⊗ is cartesian product ×, each object carries a unique comonoid structure
1 !← X

Δ→ X ×X. The no-cloning theorem in quantum mechanics says that
copying arbitrary states is impossible. But copying wrt a basis is allowed, see
[5,17].

If a monad T on a symmetric monoidal category A is a commutative (aka.
symmetric monoidal) monad, and the category Alg(T ) has enough coequalisers,
then it is also symmetric monoidal, and the free functor F : A → Alg(T ) pre-
serves this monoidal structure. This classical result goes back to [13,12]. We shall
use it for the special case where the monoidal structure on the base category A
is cartesian.

Proposition 2. In the setting described above, assume the category of algebras
Alg(T ) is symmetric monoidal, for a monad T on a cartesian category A. Each
T -coalgebra / basis b : X → F (X), say on algebra a : T (X) → X, gives rise to a
commutative comonoid in Alg(T ) by:

db =
(
X

b 		 FX
T (Δ)		 F (X × X)

ξ−1

∼=
		 FX ⊗ FX

a⊗a 		 X ⊗X
)

ub =
(
X

b 		 F (X)
T (!) 		 F (1) = I

)
,

(11)

where we use the underlying comonoid structure 1 !← X
Δ→ X ×X on X in the

underlying category A.

Proof. It is not hard to see that these db and ub are maps of algebras. For
instance,

μ1 ◦ T (ub) = μ1 ◦ T 2(!) ◦ T (b) = T (!) ◦ μX ◦ T (b) = T (!) ◦ b ◦ a = ub ◦ a.

The verification of the comonoid properties involves lengthy calculations, which
are basically straightforward. We just show that u is neutral element for d, using
the equations from Definition 1.
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(ub ⊗ id) ◦ dd

= (T (!) ⊗ id) ◦ (b ⊗ id) ◦ (a ⊗ a) ◦ ξ−1 ◦ T (Δ) ◦ b

= (T (!) ⊗ id) ◦ (μ⊗ id) ◦ (T (b) ⊗ a) ◦ ξ−1 ◦ T (Δ) ◦ b

= (T (!) ⊗ a) ◦ (μ⊗ T (a)) ◦ (T (b) ⊗ T (b)) ◦ ξ−1 ◦ T (Δ) ◦ b

= (T (!) ⊗ a) ◦ (μ⊗ μ) ◦ ξ−1 ◦ T (b⊗ b) ◦ T (Δ) ◦ b

= (T (!) ⊗ a) ◦ (μ⊗ μ) ◦ ξ−1 ◦ T (Δ) ◦ T (b) ◦ b

= (T (!) ⊗ a) ◦ (μ⊗ μ) ◦ ξ−1 ◦ T (Δ) ◦ T (η) ◦ b

= (T (!) ⊗ a) ◦ (μ⊗ μ) ◦ ξ−1 ◦ T (η × η) ◦ T (Δ) ◦ b

= (T (!) ⊗ a) ◦ (μ⊗ μ) ◦ (T (η) × T (η)) ◦ ξ−1 ◦ T (Δ) ◦ b

= (T (!) ⊗ a) ◦ ξ−1 ◦ T (Δ) ◦ b

= (id ⊗ a) ◦ (T (!) ⊗ id) ◦ ξ−1 ◦ T (Δ) ◦ b

= (id ⊗ a) ◦ ξ−1 ◦ T (! × id) ◦ T (Δ) ◦ b

= (id ⊗ a) ◦ ξ−1 ◦ T (λ−1) ◦ b where λ : 1 ×X
∼=→ X

= (id ⊗ a) ◦ λ−1 ◦ b since ξ is monoidal, where λ : I ⊗X
∼=−→ X

= λ−1 ◦ a ◦ b

= λ−1 : X
∼=−→ I ⊗X. �

Example 1. To make the comonoid construction (11) more concrete, let V be
a vector space, say over the complex numbers C, with a basis, described as a
coalgebra b : V →MC(V ) like in Theorem 1, with basic elements (ej), satisfying
b(ej) = 1ej . The counit ub = MC(!) ◦ b : V → C from (11) is:

v �−→
∑
j vjej �−→

∑
j vj .

Similarly, the comultiplication db : V → V ⊗ V as in (11) is the composite:

v �−→
∑
j vjej �−→

∑
j vj(ej ⊗ ej),

like in [5]. (For Hilbert spaces one uses orthonormal bases instead of Hamel
bases; the counit u of the comonoid then exists only in the finite-dimensional
case. The comultiplication d seems more relevant, see also below, and may thus
also be studied on its own, like in [1], without finiteness restriction.)

In general, given a comonoid I
u← X

d→ X ⊗X , an endomap f : X → X may
be called diagonalisable—wrt. this comonoid, or actually, comultiplication d—if
there is a “map of eigenvalues” v : X → I such that f equals the composite:

X
d 		 X ⊗X

v⊗id 		 I ⊗X
λ

∼=
		 X. (12)

In the special case where the comonoid comes from a coalgebra (basis) b : X →
T (X), like in (11), an endomap of algebras f : X → X , say on a : T (X) → X , is
diagonalisable if there is a map of algebras v : X → I = T (1) such that f is:
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X
b 		 T (X)

T (〈v,id〉)		 T (T (1)×X)
T (st)		 T 2(1 ×X)

∼= 		 T 2(X)
μ 		 T (X) a 		 X,

where st is a strength map of the form T (X) × Y → T (X × Y ), which exists
because the monad T is assumed to be commutative.

We illustrate what this means for Pauli matrices.

Example 2. We consider the set C2 as vector space over C, and thus as al-
gebra of the (commutative) multiset monad MC : Sets → Sets via the map
MC(C2) a−→ C2 that sends a formal sum s1(z1, w1) + · · · + sn(zn, wn) of pairs
in C2 to the pair of sums (s1 · z1 + · · · + sn · zn, s1 · w1 + · · · + sn · wn) ∈ C2.

The familiar Pauli spin functions σx, σy, σz : C2 → C2 are given by:

σx(z, w) = (w, z) σy(z, w) = (−iw, iz) σz(z, w) = (z,−w).

We concentrate on σx; it satisfies σx(1, 1) = (1, 1) and σx(1,−1) = −(1,−1).
These eigenvectors (1, 1) and (1,−1) are organised in a basis bx : C2 →MC(C2),
as in Definition 1, via the following formal sum.

bx(z, w) = z+w
2 (1, 1) + z−w

2 (1,−1).

It expresses an arbitrary element of C2 in terms of this basis of eigenvectors. It
is not hard to see that bx is a MC-coalgebra; for instance:(
a ◦ bx)(z, w) = a

(
z+w

2 (1, 1)+ z−w
2 (1,−1)

)
= ( z+w2 + z−w

2 , z+w2 − z−w
2 ) = (z, w).

The comonoid structure C
ux←− C2 dx−→ C2 ⊗ C2 induced by bx as in (11) is given

by ux(z, w) = z and dx(z, w) = z+w
2

(
(1, 1) ⊗ (1, 1)

)
+ z−w

2

(
(1,−1) ⊗ (1,−1)

)
.

The eigenvalue map vx : C2 → C is given by vx(z, w) = w. The eigenvalues 1,−1
appear by application to the basic elements: vx(1, 1) = 1 and vx(1,−1) = −1.
Further, the Pauli function σx is diagonalised as in (12) via these dx, vx, since:(

λ ◦ (vx ⊗ id) ◦ dx

)
(z, w)

=
(
λ ◦ (vx ⊗ id)

)(
z+w

2

(
(1, 1) ⊗ (1, 1)

)
+ z−w

2

(
(1,−1) ⊗ (1,−1)

))
= λ

(
z+w

2

(
1 ⊗ (1, 1)

)
+ z−w

2

(
− 1 ⊗ (1,−1)

))
= z+w

2 (1, 1) − z−w
2 (1,−1)

= (w, z) = σx(z, w).

In a similar way one defines for the other Pauli functions σy and σz:

by(z, w) = iz+w
2 (−i, 1) + iz−w

2 (i, 1) vy(z, w) = iz

bz(z, w) = z(1, 0)− w(0, 1) vz(z, w) = z − w.
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A Coalgebraic Approach to Supervisory Control

of Partially Observed Mealy Automata

Jun Kohjina1, Toshimitsu Ushio1, and Yoshiki Kinoshita2
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Abstract. Supervisory control is a logical control method of discrete
event systems introduced by Ramadge and Wonham. We propose a novel
coalgebraic formulation of a supervisory control problem and design a
controller called supervisor satisfying a given specification under partial
observations. In this paper, plants, specifications, and supervisors are
modeled by Mealy automata, automata, and Moore automata, respec-
tively. We define a composition of a supervisor and a plant coinductively,
which is called a supervisory composition, to represent a behavior of the
controlled plant. We formulate a supervisory control problem using the
supervisory composition. We define two relations: a partial bisimulation
relation and a modified normal relation. We show that these relations
are related to the controllability/observability and the modified normal-
ity which are the key notions in the supervisory control theory.

Keywords: discrete event systems, supervisory control, coalgebra.

1 Introduction

Supervisory control is a logical control method of discrete event systems intro-
duced by Ramadge and Wonham [1,7]. It gives a method to restrict, or control,
a plant so that it behaves exactly as specified. Restriction is done by disabling
some of the events in the plant.

Ramadge and Wonham formulated the plant as an automaton M whose input
alphabet is the set A of events of the plant. It is controlled by a Moore automaton
S, called a supervisor, whose input alphabet is the same as the input alphabet
of M , and whose output alphabet is a subset of the input plant alphabet of M .
Output symbols of S disables previously determined transitions of M at the next
step. In this way, the automaton M combined with S is defined. Ramadge and
Wonham studied the supervisory control problem: given M and a prefix closed
sublanguage L of the language accepted by M , find S such that the language
generated by the combination of M with S exactly agrees with L. Moreover, the
output symbol of S must be taken from the subset Ac of A specified in advance.
The element of Ac and Au = A \ Ac are called controllable and uncontrollable
events, respectively.

To solve the supervisory control problem, Ramadge and Wonham defined a
notion of controllable languages, showed that the supervisory control problem

A. Corradini, B. Klin, and C. Ĉırstea (Eds.): CALCO 2011, LNCS 6859, pp. 253–267, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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has a solution if and only if L is controllable, and gave a construction of the
supervisor [7].

Observability of events were introduced in [2,6]. The subset Ao of the ob-
servable events is considered. A supervisor is under partial observations if Ao
is a proper subset of A. The notion of observability is extended to specification
languages, and it was shown that there exists a supervisor satisfying the speci-
fication if and only if the specification language is controllable and observable.

The supervisory control problem for Mealy automata is recently studied by
Ushio and Takai [10]. Here, the plant is formulated as a Mealy automaton with
input alphabet A and output alphabet B, and the supervisor is a function from
B∗ to P(Ac). Ushio and Takai introduced the notion of P-observability of speci-
fication languages, and showed that there exists a supervisor satisfying the spec-
ification if and only if the specification is controllable and P-observable [10].
They also gave an explicit construction for the supervisor.

Rutten [8] gave a coalgebraic framework to the notions in supervisory control
problem. In particular, he introduced the coalgebraic notion of controllable rela-
tions corresponding to the controllable language in non-coalgebraic setting, and
proposed an algorithm to compute the supremal controllable sublanguage using
partial bisimulations. Komenda and van Schuppen further extended Rutten’s
work to the case of partial observations [4] and modular control [5].

We focus on extending Ushio and Takai’s work in the light of coalgebraic
techniques developed by Rutten, Komenda and van Schuppen. So, we model
a plant by a partially observed Mealy automaton whose input alphabet (event
set) is partitioned into a controllable and an uncontrollable event set, and whose
output alphabet (event set) is partitioned into an observable and an unobservable
event set. A control specification is given by a nonempty prefix-closed language
over the input event set of the plant. So, the control specification is represented
by an automaton whose input event set is the same as the plant. A supervisor
is a Moore automaton where its input event set is the observed output event
set of the plant and its output event set is the power set of the controllable
event set. Each element of an output event is a controllable event disabled by
the supervisor so that some event sequences of the plant are prevented from
occurring.

Mealy automata and Moore automata coexist in our framework principally
by a historical reason. In this paper, we formulate a plant by a Mealy automa-
ton, but a supervisor tended to be formulated as a Moore automaton [7]. We
could have formulated supervisors as Mealy automata, but the Moore automaton
treatment makes it easier to compare with the previous results. Incidentally, the
specification language was often formulated as a prefix closed language, but the
set of all prefix closed languages is the base set of a final (1+−)A-coalgebra, and
(1+−)A-coalgebras are nothing but finite automata, a special case of Mealy au-
tomata. This is why we formulate the specification as a finite automaton, rather
than its accepting language.

In order to formulate a supervisory control problem, we introduced a no-
tion of supervisory composition for a plant and a supervisor by coinductive



A Coalgebraic Approach to Supervisory Control 255

definition. It is a generalization of Rutten’s supervised product [8]. We define
two relations: a partial bisimulation and a modified normal relation. It is shown
that the partial bisimulations characterize the controllability and observability.
This result makes it easier to compare the current work and the earlier work can
be seen easily, because controllability and observability are the two key notions
in the supervisory control theory. We introduce modified normality, which is a
coalgebraic notion of normality for Mealy automata.

The rest of this paper is organized as follows: Section 2 reviews mathematical
notations and final coalgebra for three type functors. In Section 3, we formulate
the supervisory control using coalgebra, and show a necessary and sufficient
condition for the existence of a supervisor satisfying a specification. In Section
4, we introduce the modified normality, and propose an algorithm to compute
the supremal modified normal and controllable sublanguage. Finally, Section 5
concludes the paper.

2 Preliminaries

In this section, we give mathematical notations and final coalgebras for three
functors (1 + B ×−)A, B × (−)A and (1 +−)A. After setting up the notations,
we review the explicit construction of these final coalgebras.

2.1 Notations

Let X and Y be sets. A function from X to 1 + Y is called a partial function
from X to Y , where 1 = {⊥} and + is the disjoint union; if f(x) = ⊥ holds, f
is considered to be undefined at x. We write f : X ⇀ Y for a partial function f
from X to Y . The composition g ◦ f : X ⇀ Z of f : X ⇀ Y and g : Y ⇀ Z is
defined by

g ◦ f(x) =

{
g(f(x)) if f(x) �= ⊥,

⊥ otherwise.

We also use ◦ for composition of total functions. For a partial function f : X ⇀
Y , dom(f) is defined by

dom(f) = {x ∈ X | f(x) �= ⊥}.

For a set A, A∗ is the Kleene closure of A, that is, the set of all finite sequences
over A, and let ε ∈ A∗ be the empty sequence. The monoid (A∗, ε, ·) is the free
monoid over A, where u·v denotes the concatenation of u and v. We write u ) w,
if u is a prefix of w, that is, there exists v ∈ A∗ such that u · v = w. The length
of a sequence w is denoted by |w|.

A language L ⊆ A∗ is said to be prefix-closed if the following condition holds:

∀u,w ∈ A∗ : (u ) w) ∧ (w ∈ L) ⇒ u ∈ L.
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2.2 Mealy Automata as (1 + B × −)A-coalgebras

A (partial) Mealy automaton is a (1 + B×−)A-coalgebra (see [9], for instance).
By construction of the functor (1 + B ×−)A, we know there exists a final (1 +
B ×−)A-coalgebra, and there is an explicit construction for it [3]. We shall use
the construction later, so we give its overview in this section.

Let (X, ξ : X → (1 + B × X)A) be a Mealy automaton, where X is a set of
states, A is a set of input events, B is a set of output events, and ξ is a transition
function.

For the simplicity, we introduce the following notations:

x
a|−−−→ iff ξ(x)(a) �= ⊥,

x
a|b−−→ x′ iff ξ(x)(a) = 〈b, x′〉 .

We extend these notations to strings in A∗ and B∗ by induction.
We now give a final (1 + B × −)A-coalgebra (M,m). Its state set

M =
{

M : A∗ ⇀ B∗
∣∣∣∣ M is length-preserving and prefix-preserving,

dom(M) �= ∅.

}
consists of prefix-preserving and length-preserving functions. The structure map
m : M → (1 + B ×M)A is defined by is defined as follows:

m(M)(a) =

{
〈M(a),Ma〉 if a ∈ dom(M),
⊥ otherwise,

where a-derivative Ma ∈M of M ∈M is defined by

Ma(w) = tail ◦M(a · w)

and tail : B∗ ⇀ B∗ is defined by

tail(ε) = ⊥, tail(b · w) = w if b ∈ B and w ∈ B∗.

To complete the definition of M and m, we further define length-preserving and
prefix-preserving.

– A partial function f : A∗ ⇀ B∗ is said to be prefix-preserving if dom(f) is
prefix-closed and, for all u,w ∈ dom(f), the following condition holds:

u ) w ⇒ f(u) ) f(w).

– A partial function f : A∗ ⇀ B∗ is said to be length-preserving if the following
condition holds:

∀w ∈ dom(f), |w| = |f(w)|.

Proposition 1 ([3]). (M,m) is the final (1 + B ×−)A-coalgebraD
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2.3 Moore Automata as B × (−)A-coalgebras

A Moore automaton is a B × (−)A-coalgebra [8]. A final B × (−)A-coalgebra
(S, 〈o, t〉) constructed as follows. The state set S is defined by

S = (B∗)A
∗

= {S : A∗ → B∗}

The structure map 〈o, t〉 : S → B × SA is defined by

o(S) = S(ε), t(S)(a) = Sa,

where the a-derivative Sa ∈ S of S ∈ S is defined by

Sa(w) = S(a · w).

The functions o : S → B and t : S → SA are an output function and a transition
function, respectively.

Proposition 2 ([8]). (S, 〈o, t〉) is the final B × (−)A-coalgebra.

2.4 Finite Automata as (1 + −)A-coalgebras

A finite automaton is a (1 + −)A-coalgebra. This is a special case(B = 1) of
(1 + B × −)A-coalgebra. A final (1 + −)A-coalgebra (L, l) is constructed as
follows. The state set L is defined by

L = {L ⊆ A∗ | L is prefix-closed, L �= ∅}.

The structure map l : L → (1 + L)A is defined by

l(L)(a) =

{
La if a ∈ L,

⊥ otherwise,

where La is an a-derivative of the language L defined by

La = {w ∈ A∗ | a · w ∈ L}.

We extend the definition of the derivative to strings in A∗.

Proposition 3. (L, l) is the final (1 + −)A-coalgebraD

For the simplicity, we introduce the following notations:

x
a−→ x′ iff ξ(x)(a) = x′,

x � a−→ iff ξ(x)(a) = ⊥,

x → iff ∃a ∈ A, ξ(x)(a) �= ⊥.

We extend these notations to strings in A∗ by induction. For all M ∈ M,
dom(M) is a prefix-closed language. The following condition holds:

dom(M) a−→ dom(M ′) iff M
a|−−−→ M ′.
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Definition 1 (simulation relation). Let (X, ξ : X → (1 + X)A) and (Y, η :
Y → (1 + Y )A) be (1 + −)A-coalgebras. A binary relation R ⊆ X × Y is said to
be a simulation relation from X to Y if, for all x ∈ X and y ∈ Y , the following
condition holds:

∀a ∈ A : x R y ∧ x
a−→ x′ ⇒ y

a−→ y′ ∧ x′ R y′

The simulation relation closed under the union. Thus, there exists the greatest
simulation relation denoted by *. * is the union of all simulation relations from
X to Y . The simulation relation is symmetric and transitive, that is, it is a
preorder. We shall later use the following lemma.

Lemma 1. For all K,L ∈ L,

K * L ⇒ K ⊆ L.

Lemma 2. Let (X, ξ) and (Y, η) be (1 + −)A-coalgebras and R ⊆ X × Y be a
binary relation. Then, the following conditions are equivalent.

1. R is a (1 + −)A-bisimulation relation.
2. For all a ∈ A, x ∈ X, and y ∈ Y , the following two conditions hold:

(a) ∀x′ ∈ X : x R y ∧ x
a−→ x′ ⇒ y

a−→ y′ ∧ x′ R y′,
(b) ∀y′ ∈ Y : x R y ∧ y

a−→ y′ ⇒ x
a−→ x′ ∧ x′ R y′.

3 Supervisory Control of Mealy Automata

In this section, we give a solution to the supervisory control problem in the
setting of Mealy automata.

3.1 Coalgebraic Formulation of Supervisory Control

Let A be a set and Ac be its subset; our intension is that A is the set of input
events which occurs in the plant. We partition A as A = Ac + Au, where Ac is
intended to be the set of controllable events, and Au be that of uncontrollable
events [7]. Let B be a set of output events and Bo be its subset of observable
output events.

Let M be a Mealy automaton whose set of output symbols is B, and S be a
Moore automaton whose set of input symbols is Bo whose set of output symbols
is the powerset of Ac; so, S is a (P(Ac)×(−)Bo)-coalgebra. The Mealy automaton
M models the plant where input events in A occur sequentially, M changes its
state according to those input events, causing output events in B. Aside from M ,
there is a supervisor S which takes as input only observable output events caused
by A, and reacts by designating a set of input events, for which are forced to be
disabled in M . The designated set of disabled input events remain unchanged
until S designates another set by transition.

The Mealy automaton M induces a partial map from A∗ to B∗. Its behavior is
restricts by specification of a subset of A∗. The subset is specified not arbitrary
subset of A∗, but by means of prefix closed language.
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We consider an automaton (S ×M, spv) which represents so-called a closed
loop system. Its set of inputs is A. So, the automaton is a (1+−)A-coalgebra. Its
set of states is S×M, where M is the set of prefix- and length-preserving partial
functions from A∗ to B∗, and S is the state set of the final (P(Ac) × (−)Bo)-
coalgebra (S, 〈o, t〉). So, the state set S is defined by

S = (P(Ac))(Bo)∗ = {S : (Bo)∗ → P(Ac)}.

The structure map spv : S ×M → (1 + S ×M)A is defined as follows:

spv 〈S,M〉 (a) =

{
〈S(P◦M)(a),Ma〉 if M

a|−−−→ Ma ∧ a /∈ o(S),
⊥ otherwise,

where the projection P : B∗ → (Bo)∗ is inductively defined by

P (ε) = ε, P (w · b) =

{
P (w) · b if b ∈ Bo,

P (w) otherwise.

Since (L, l) is a final (1+−)A-coalgebra, there exists a unique (1+−)A-coalgebra
homomorphism

/ : (S ×M, spv) → (L, l).

In other words, there exists a unique function / : S ×M → L which makes the
following diagram commute:

S ×M
/ 		""""""

spv





L

l final




(1 + S ×M)A

(id1 +/)A

		""" (1 + L)A

If S is a Moore automaton in S and M is a Mealy automaton in M, we write
S/M for / 〈S,M〉, the image of 〈S,M〉 under /. Any event a in o(S) is considered
to be disabled by the supervisor S. If M(a) is an observable event, the supervisor
S transits to the next state SM(a). Otherwise it stays at the same state.

The supervisory composition is an extension of the supervised product defined
by Rutten [8], which is a composition of a plant and a supervisor which generates
specifications. In the case of B = A, M = id |L and S(w) = Ac \ {a ∈ Ac | ∃u ∈
A∗ : (K u·a−−→) ∧ (P (u) = w)}, S/M corresponds to the supervised product K/OUL
introduced by Komenda and van Schuppen [4]. We formulate the supervisory
control problem as follows. Given

– a set A = Ac + Au of input events (and its partition to Ac and Au),
– a set B of output events and its subset Bo of observable output events,
– a Mealy automaton M whose set of inputs is A and whose set of outputs is

B and
– a prefix closed language L, called the specification of the problem,

construct a Moore automaton S whose set of inputs is Bo and whose set of
outputs is P(Ac), so that S/M = L.
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3.2 Solution to the Supervisory Control Problem for Mealy
Automata

Let (X, ξ) be a (1 + −)A-coalgebra and x0 ∈ X be an initial state. The binary
relation ≈x0M0

on X is defined by

≈x0M0
=
{
〈x, x′〉

∣∣∣ ∃w,w′ ∈ A∗, x0
w−→ x, x0

w′
−→ x′, P ◦M0(w) = P ◦M0(w′)

}
.

Intuition behind this definition may be described as follows: x ≈x0M0
x′ if and

only if there are execution paths p from x0 to x and p′ from x0 to x′ in M0

which traces the same observable output events. The binary relation ≈x0M0
is

symmetric. However, ≈x0M0
does not satisfy neither reflexivity nor transitivity in

general. Reflexivity holds if all states are reachable from x0.

Definition 2 ((M0, x0)-partial bisimulation relation). Let (X, ξ) and (Y, η)
be (1+−)A-coalgebras. A binary relation R ⊆ X×Y is said to to be an (M0, x0)-
partial bisimulation relation for x0 ∈ X and M0 ∈ M, if, for all x ∈ X and
y ∈ Y , the following conditions hold:

1. ∀a ∈ A, ∀x′ ∈ X, ∃y′ ∈ Y : x R y ∧ x
a−→ x′ ⇒ y

a−→ y′ ∧ x′ R y′;
2. ∀a ∈ Au, ∀y′ ∈ Y , ∃x′ ∈ X: x R y ∧ y

a−→ y′ ⇒ x
a−→ x′ ∧ x′ R y′;

3. ∀a ∈ Ac, ∀y′ ∈ Y , ∃x′ ∈ X:
x R y ∧ y

a−→ y′ ∧ (∃q ∈ X, (x ≈x0M0
q) ∧ (q a−→)) ⇒ x

a−→ x′ ∧ x′ R y′.

The condition 3 is equivalent to the following condition.
3’. ∀a ∈ Ac, ∀y′ ∈ Y , ∃x′ ∈ X :
x R y ∧ y

a−→ y′ ⇒ (x a−→ x′ ∧ x′ R y′) ∨ (∀q ∈ X, x ≈x0M0
q ⇒ q � a−→).

The partial bisimulation defined in Definition 2 is an extension of the partial
bisimulation defined in [4].

Theorem 1 below gives a solution to the supervisory control problem. It turns
out that the solution does not always exist, but we give a necessary and sufficient
condition for the existence with the construction of the supervisor when it exists.

Theorem 1. Given a specification K0 ∈ L for a plant M0 ∈ M, the following
two conditions are equivalent:

1. ∃S ∈ S, S/M0 = K0.
2. There exists an (M0, x0)-partial bisimulation relation R ⊆ L × L such that

K0 R dom(M0).

Proof. (1 ⇒ 2) Let S0 ∈ S be a supervisor such that S0/M0 = K0. We consider
a binary relation

R = { 〈K, dom(M)〉 | K ∈ L,M ∈ M, ∃S ∈ S, S/M = K } .

Since dom(M) is prefix-closed and nonempty, dom(M) is an element of L. It
suffices to show that R is an (M0, x0)-partial bisimulation relation.

To prove it, we consider K ∈ L and M ∈ M such that K R dom(M).
Then, there exists a supervisor S ∈ S such that S/M = K. We check the three
conditions for (M0, x0)-partial bisimulations below.



A Coalgebraic Approach to Supervisory Control 261

1. Consider a ∈ A such that K
a−→ Ka. S/M = K implies S/M

a−→ SP◦M(a)/Ma

and SP◦M(a)/Ma = Ka. Thus, Ka R dom(Ma) holds. By the definition of /,

M
a|−−−→ Ma, that is, dom(M) a−→ dom(Ma) holds.

2. Consider a ∈ Au such that dom(M) a−→ dom(Ma). dom(M) a−→ dom(Ma)

implies M
a|−−−→ Ma. Since it is an element of Au, a is not an element of

o(S). By the definition of /, S/M
a−→ SP◦M(a)/Ma holds. S/M = K implies

K
a−→ Ka and Ka = SP◦M(a)/Ma, so Ka R dom(Ma) holds.

3. Consider a ∈ Ac such that dom(M) a−→ dom(Ma) and (K ≈K0
M0

L) ∧ (L a−→
) and L ∈ L. S/M = K implies ((S/M) ≈K0

M0
L) ∧ (L a−→). Because

(S/M) ≈K0
M0

L, there exist two sequences w,w′ ∈ A∗ such that K0
w−→ (S/M),

K0
w′
−→ L, and P ◦M0(w) = P ◦M0(w′). Since S0/M0 = K0, we have

S/M = (S0)P◦M0(w)/(M0)w and L = (S0)P◦M0(w′)/(M0)w′ .

The assumption L
a−→ implies (S0)P◦M0(w′)/(M0)w′

a−→. Thus, we have

a /∈ o
(
(S0)P◦M0(w′)

)
= o

(
(S0)P◦M0(w)

)
= o(S).

The assumption dom(M) a−→ dom(Ma) implies M
a|−−−→ Ma. By the definition

of /, we have S/M
a−→ SP◦M(a)/Ma. S/M = K implies K

a−→ Ka. Since
Ka = SP◦M(a)/Ma, Ka R dom(Ma) holds.

(2 ⇒ 1) Let � be an (M0,K0)-partial bisimulation relation such that K0 �
dom(M0). For w ∈ B∗

o , we construct the supervisor Ŝ as follows.

Ŝ(w) = Ac \ {a ∈ Ac | ∃u ∈ A∗ : (K0
u·a−−→) ∧ (P ◦M0(u) = w)}.

We show Ŝ/M0 = K0 by coinduction. Consider a binary relation R ⊆ L× L

R =
{
〈S/M,K〉

∣∣∣ ∃w ∈ A∗ : Ŝ/M0
w−→ S/M,K0

w−→ K,K � dom(M)
}

.

Since (Ŝ/M0) R K0 holds, it is sufficient to prove that R is a bisimulation
relation. We assume that (S/M) R K for S/M and K ∈ L. Then, there exists a
string w ∈ A∗ such that K0

w−→ K and Ŝ/M0
w−→ S/M .

– Take a ∈ A such that S/M
a−→ SP◦M(a)/Ma. By definition of /, M

a|−−−→ Ma,
which means dom(M) a−→ dom(Ma).
• If a ∈ Au, K � dom(M) implies (K a−→ Ka) ∧ (Ka � dom(Ma)). We

have Ŝ/M0
w·a−−→ SP◦M(a)/Ma and K0

w·a−−→ Ka. Thus, (SP◦M(a)/Ma) R
Ka holds.

• If a ∈ Ac, (K � dom(M)) ∧ ((S/M) ≈K0
M0

K), therefore (K a−→ K ′) ∧
(K ′ � dom(M ′)). We have Ŝ/M0

w·a−−→ SP◦M(a)/Ma and K0
w·a−−→ Ka.

Thus, (SP◦M(a)/Ma) R Ka holds.
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– Let a ∈ A and K
a−→ Ka. K � dom(M) implies (dom(M) a−→ dom(Ma)) ∧

(Ka � dom(Ma)). Then, M
a|−−−→ M ′ holds. (K0

w−→ K) ∧ (K a−→ Ka) implies
K0

w·a−−→ Ka. By the definition of Ŝ, we have

a /∈ Ŝ
(
P ◦M0(w)

)
= ŜP◦M0(w)(ε) = o(S).

By the definition of /, we have S/M
a−→SP◦M(a)/Ma, which implies Ŝ/M0

w·a−−→
SP◦M(a)/Ma. Thus, (SP◦M(a)/Ma) R Ka holds.

By Lemma 2, R is a bisimulation relation. %&

4 Modified Normal Relations

It turned out that, for a given specification, there does not always exist a super-
visor. So, we deal with the existence problem of the largest sublanguage of the
specification with a supervisor which satisfies it. In this section, we introduce the
notion of modified normal relations and show that they are closed under arbi-
trary union. So, there is always the largest modified normal relation. Moreover,
there is a supervisor which satisfies it, so it is the solution of our problem.

In this section, we fix a Mealy automaton M and notations such as x
a−→ are

used for M .

4.1 Modified Normality

Definition 3 (controllable and modified normal relation). Let (X, ξ) and
(Y, η) be (1 + −)A-coalgebras. A binary relation R ⊆ X × Y is said to be a
controllable and modified normal relation with respect to x0 ∈ X and M if the
following conditions hold:

1. y simulates x, namely, ∀a ∈ A, ∀x, x′ ∈ X, ∀y ∈ Y , x R y∧x
a−→ x′ ⇒ ∃y′ ∈

Y, y
a−→ y′ ∧ x′ R y′;

2. x simulates y on Au, namely, ∀a ∈ Au, ∀x,∈ X, ∀y, y′ ∈ Y , x R y ∧ y
a−→

y′ ⇒ ∃x′ ∈ X,x
a−→ x′ ∧ x′ R y′;

3. x simulates y on Ac under some condition, namely, ∀a ∈ Ac, ∀x,∈ X,
∀y, y′ ∈ Y , x R y ∧ y

a−→ y′ ∧ (∃q ∈ X, (q −→) ∧ x ≈x0M q) ⇒ x
a−→ x′ ∧ x′ R y′.

It can be shown that controllable and modified normal relations between fixed
sets are closed under union. So, there is the maximum such; we write %&X,Y for it.
We often omit the subscripts X and Y when they are obvious from the context.

Theorem 2. Let (X, ξ) and (Y, η) be (1 + −)A-coalgebras. A controllable and
modified normal relation from X to Y is an (M,x0)-partial bisimulation relation.

Proof. Obvious from the definition of controllable and modified normal relations.
%&

This theorem indicates that if there exists a controllable and modified normal
relation then there exists a supervisor satisfying the specification.
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Definition 4 (modified normal relation). Let (X, ξ) and (Y, η) be (1+−)A-
coalgebras. A binary relation R ⊆ X × Y is a modified normal relation with
respect to x0 ∈ X and M if the following conditions hold:

1. y simulates x; namely, ∀a ∈ A, ∀x, x′ ∈ X, ∀y ∈ Y , x R y ∧ x
a−→ x′ ⇒ ∃y ∈

Y, y
a−→ y′ ∧ x′ R y′;

2. x simulates y under some condition; namely, ∀a ∈ A, ∀x ∈ X, ∀y, y′ ∈ Y ,
x R y ∧ y

a−→ y′ ∧ (∃q ∈ X, (q −→) ∧ x ≈x0M q) ⇒ ∃x ∈ X,x
a−→ x′ ∧ x′ R y′.

Proposition 4. The following conditions are equivalent.

1. A binary relation R is a controllable and modified normal relation.
2. A binary relation R satisfies following two conditions: R is a control relation

defined in [8], and R is a modified normal relation.

Definition 5 (modified normal language). A language K with the same
alphabet as L is said to be modified normal with respect to L and P̃ ◦ M if the
following condition holds:

∀w ∈ L, ∀w′ ∈ K, P̃ ◦M(w) = P̃ ◦M(w′) ⇒ w ∈ K,

where P̃ = P ◦ init and init(ε) = ⊥, init(w · b) = w if w ∈ B∗ and b ∈ B.

Languages which are normal and observable play a key role in supervisory control
under partial observations in [1,2,6]. It is noted that a modified normal language
is a generalization of a normal language, which is defined by

∀w ∈ K, ∀w′ ∈ L,P ◦M(w) = P ◦M(w′) ⇒ w′ ∈ K,

and is not always observable, that is,

∀w,w′ ∈ K, ∀a ∈ Ac, wa ∈ K,w′a ∈ L,P ◦M(w) = P ◦M(w′) ⇒ w′a ∈ K.

So, we introduce the modified normal languages. Since modified normal lan-
guages are closed under union, there always exists the supremal, or maximal,
modified normal sublanguage of a given language K.

Theorem 3. The following two conditions for a sublanguage K0 of L0 are equiv-
alent:

1. K0 is a modified normal language with respect to L0 and P̃ ◦M .
2. There exists a modified normal relation R ⊆ L× L such that K0 R L0.

Proof. (1) ⇒ (2) Let R = {〈(K0)w, (L0)w〉 | w ∈ K0}. Since K0 R L0 holds, it
suffices to show that R is a modified normal relation.

1. Take a ∈ A such that K R L ∧ K
a−→ Ka. K R L implies that there exists

a string w ∈ K0 such that K = (K0)w and L = (L0)w. K
a−→ Ka implies

w · a ∈ K0. Since K0 ⊆ L0, we have w · a ∈ L0, which implies L
a−→ LaD

Recall Ka = (K0)w·a and La = (L0)w·a. Thus, Ka R La holds.
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2. Take a ∈ A such that K R L∧L
a−→ La∧(∃K ′ ∈ L, ∃a′ ∈ A, (K ′ a′−→)∧K ≈K0

M

K ′). K R L implies that there exists a string w ∈ K0 such that K = (K0)w
and L = (L0)w. L

a−→ La implies w · a ∈ L0. Since there exists a language
K ′ ∈ L such that (K ′ −→) ∧ K ≈K0

M K ′, there exists a string w′ ∈ K0 such

that K0
w′
−→ K ′∧P ◦M(w) = P ◦M(w′). Since there exists a′ ∈ A such that

K0
w′·a′−−−→, we have w′ · a′ ∈ K0. Then, P̃ ◦M(w · a) = P̃ ◦M(w′ · a′). Since

K0 is modified normal, we have w · a ∈ K0, that is, Ka R La.

(2) ⇒ (1)
Let R be a modified normal relation such that K0 R L0. Then,

∀w ∈ L0 : ∃w′ ∈ K0, P̃ ◦M(w) = P̃ ◦M(w′) ⇒ w ∈ K0. (1)

We prove (1) by induction on construction of w. If w = ε, then, there exists no
string w′eith w′ �= ε such that P̃ ◦M(w) = P̃ ◦M(w′). Therefore, (1) holds for
εD We consider w ∈ L0 such that (1) holds. We consider any w · a ∈ L0, u ∈ K0

and P̃ ◦M(w · a) = P̃ ◦M(u). Since P̃ ◦M(w · a) = P̃ ◦M(u), we have

∃w′ ) u, P̃ ◦M(w) = P̃ ◦M(w′).

By the induction hypothesis, we have w ∈ K0. Let K = (K0)w and L = (L0)w.
Since K0 R L0 holds, we have K R L by the definition of the modified normal
relation. We can set u = u′ · a′ for some u′ ∈ K0 and a′ ∈ A since w · a �= ε.

Let K ′ = (K0)u′ . Since K ≈K0
M K ′ ∧ K ′ a′−→ holds, we have K

a−→ Ka by the
definition of the modified normal relation. Therefore, w · a ∈ K0 holds. %&
Moreover, Rutten showed following theorem in [8].

Theorem 4. The following two conditions for a sublanguage K0 of L0 are
equivalent:

1. K0 is a controllable language with respect to L0, that is, K0Au ∩ L0 ⊆ K0,
where K0Au is a concatenation of two languages K0 and L0.

2. There exists a control relation R ⊆ L× L such that K0 R L0.

Corollary 1. The following two conditions are equivalent:

1. K0 is a controllable and modified normal language.
2. There exists a controllable and modified normal relation R ⊆ L×L such that

K0 R L0.

4.2 Supremal Controllable and Modified Normal Sublanguage

Let (X, ξ) and (Y, η) be (1 + −)A-coalgebras, and x0 ∈ X and y0 ∈ Y be initial
states. Let R be a binary relation between X and Y . We define an operator
ΦR : P(R) → P(R) as follows:

ΦR(H) =

⎧⎨⎩ 〈x, y〉 ∈ H

∣∣∣∣∣∣
∀a ∈ Au : y

a−→ y′ ⇒ x
a−→ x′ ∧ x′ H y′ and

∀a ∈ Ac : y
a−→ y′ ∧ (∃q ∈ X, (q −→) ∧ x ≈x0M q)

⇒ x
a−→ x′ ∧ x′ H y′.

⎫⎬⎭ .
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Proposition 5. ΦR is monotone, i.e., R1 ⊆ R2 implies ΦR(R1) ⊆ ΦR(R2).

Proof. Let 〈x, y〉 be an element of ΦR(R1). By the definition of ΦR, the element
〈x, y〉 satisfies following conditions:

– 〈x, y〉 ∈ R1 ⊆ R2;
– ∀a ∈ Au : y

a−→ y′ ⇒ x
a−→ x′ ∧ 〈x′, y′〉 ∈ R1 ⊆ R2;

– ∀a ∈ Ac : y
a−→ y′∧ (∃q ∈ X, (q −→)∧x ≈x0M q) ⇒ x

a−→ x′∧〈x′, y′〉 ∈ R1 ⊆ R2.

Therefore, 〈x′, y′〉 is an element of ΦR(R2). %&

Knaster-Tarski fixpoint theorem for the complete lattice P(R) states that ΦR
has its largest fixpoint. We denote it by R̃.

Consider a binary relation

R0 = {〈x, y〉 | ∃w ∈ A∗ : x0
w−→ x and y0

w−→ y}

and construct the greatest fixpoint of ΦR0 denoted by R̃0. We define the (1+−)A-
coalgebra (R̃0, α) as follows:

α 〈x, y〉 (a) =

{
〈x′, y′〉 if x

a−→ x′, y a−→ y′ and x′ R̃0 y′,
⊥ otherwise.

Theorem 5. The following statement holds:

1. For any state v in a (1 + −)A-coalgebra (V, αV ): if v * x and v %& y, then
x R̃0 y and v * 〈x, y〉.

2. If x R̃0 y, then 〈x, y〉 * x and 〈x, y〉 %& y.

Proof. 1. We consider a state v in a (1 + −)A-coalgebra (V, αV ) with v * x
and v %& y. Let H ⊆ V × Y be a simulation relation such that v H x. Let
Q ⊆ V × T be a controllable and modified normal relation such that v Q y.
Define

P = {〈p, q〉 ∈ R | ∃z ∈ V, z H p and z Q q}.
First, we show x R̃0 y. Since x P y and P ⊆ R, it is sufficient to prove
P ⊆ ΦR0(P ). For 〈p, q〉 ∈ P , there exists z ∈ V such that z H p and z Q q.
We consider any a ∈ Au and q

a−→ q′. Since Q is a controllable relation, we
have z

a−→ z′ and z′ Q q′. Since H is a simulation relation, we have p
a−→ p′

and z′ H p′. Thus, we have 〈p′, q′〉 ∈ P . We consider any a ∈ Ac and q′ ∈ X

such that q
a−→ q′ and (∃u ∈ V, (u −→) ∧ x ≈v0M u). Since Q is a modified

normal relation, we have z
a−→ z′ and z′ Q p′. We have 〈p′, q′〉 ∈ P in a

similar way. Therefore, we have 〈p, q〉 ∈ ΦR0(P ). Next, we show v * 〈x, y〉.
Define

P ′ = {〈z, 〈p, q〉〉 | z ∈ V, p R̃0 q, z H p and z Q q}.
We show that P ′ is a simulation relation. We consider the case that z

a−→ z′.
Since H is a simulation relation and Q is a modified normal relation, we have
p
a−→ p′, z′ H p′, q

a−→ q′ and z′ Q q′. Since R̃0 = ΦR0(R̃0), we have p′ R̃0 q′.
Thus, we have 〈p, q〉 a−→ 〈p′, q′〉 and z′ P ′ 〈p′, q′〉.
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2. We assume that x R̃0 y. First we show that 〈x, y〉 * x. By the definition of
(R̃0, α),

{〈〈p, q〉 , p〉 | p R̃0 q}

is a simulation relation obviously. Next we show that 〈x, y〉 %& y. Define

H = {〈〈p, q〉 , q〉 | p R̃0 q}.

We show that H is a controllable and modified normal relation between R̃0

and Y . For a pair 〈p, q〉 H q,

(a) If 〈p, q〉 a−→ 〈p′, q′〉 for a ∈ A, then q
a−→ q′ and 〈p′, q′〉 H q′ by the

definition of (R̃0, α).
(b) If q

a−→ q′ for a ∈ Au, then p
a−→ p′ and p′ R̃0 q′, since 〈p, q〉 ∈ R̃0 =

ΦR0(R̃0). Thus, we have 〈p, q〉 a−→ 〈p′, q′〉 and 〈p′, q′〉 H q′.
(c) We assume q

a−→ q′ and (∃ 〈u, v〉 ∈ R̃0, (〈u, v〉 −→) ∧ 〈p, q〉 ≈〈x0,y0〉
M 〈u, v〉)

for some a ∈ Ac. 〈u, v〉 → and 〈p, q〉 ≈〈x0,y0〉
M 〈u, v〉 implies u → and

p ≈x0M u. Since 〈p, q〉 ∈ R̃0 = ΦR0(R̃0), we have p
a−→ p′ and p′ R q′. Thus,

we have 〈p, q〉 a−→ 〈p′, q′〉 and 〈p′, q′〉 H q′. %&

Corollary 2. Let K and L be two prefix closed languages. We assume that there
exists a prefix closed language K ′ such that K ′ * K and K ′ %& L. The greatest
fixpoint R̃0 satisfies that K R̃0 L and beh 〈K,L〉 is the supremal controllable and
modified normal sublanguage, where beh : (R̃0, α) → (L, l) is a unique homo-
morphism.

Proof. We take (L, l,K) as (X, ξ, x0), (L, l, L) as (Y, η, y0) and (L, l,K ′) as
(V, α, v). By the first part of Theorem 5, if K ′ ⊆ K and K ′ %& L, then K R̃0 L
and K ′ ⊆ beh 〈K,L〉. From the assumption, there exists a prefix closed language
K ′ such that K ′ * K and K ′ %& L. Therefore, 〈K,L〉 is an element of R̃0. By
the second part of Theorem 5, beh 〈K,L〉 ⊆ K and beh 〈K,L〉 %& L. %&

Corollary 2 shows that the language corresponding to the largest fixpoint R̃0

is the supremal controllable and modified normal language if there exists a
nonempty controllable and modified normal language.

5 Conclusion

This paper studied a supervisory control problem of Mealy automata under par-
tial observations. We formulated the supervisory control problem in a coalgebraic
framework, and show a necessary and a sufficient condition for the existence of a
supervisor satisfying a specification. We introduced the notion of modified nor-
mality and propose an algorithm to compute the supremal modified normal and
controllable sublanguage. It is future work to investigate the relationship between



A Coalgebraic Approach to Supervisory Control 267

the (M0, x0)-partial bisimulation relation and the controllable and modified nor-
mal relation. It is also future work to extend the coalgebraic formulation of a
supervisor to modular and decentralized control.
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Abstract. Every variable-free logic program induces a PfPf -coalgebra
on the set of atomic formulae in the program. The coalgebra p sends
an atomic formula A to the set of the sets of atomic formulae in the
antecedent of each clause for which A is the head. In an earlier paper,
we identified a variable-free logic program with a PfPf -coalgebra on Set
and showed that, if C(PfPf ) is the cofree comonad on PfPf , then given
a logic program P qua PfPf -coalgebra, the corresponding C(PfPf )-
coalgebra structure describes the parallel and-or derivation trees of P .
In this paper, we extend that analysis to arbitrary logic programs. That
requires a subtle analysis of lax natural transformations between Poset-
valued functors on a Lawvere theory, of locally ordered endofunctors and
comonads on locally ordered categories, and of coalgebras, oplax maps of
coalgebras, and the relationships between such for locally ordered endo-
functors and the cofree comonads on them.

Keywords: Logic programming, SLD-resolution, Coalgebra, Lawvere
theories, Lax natural transformations, Oplax maps of coalgebras.

1 Introduction

In the standard formulations of logic programming, such as in Lloyd’s book [18],
a first-order logic program P consists of a finite set of clauses of the form

A ← A1, . . . , An

where A and the Ai’s are atomic formulae, typically containing free variables,
and where A1, . . . , An is understood to mean the conjunction of the Ai’s: note
that n may be 0.

SLD-resolution, which is a central algorithm for logic programming, takes a
goal G, typically written as

← B1, . . . , Bn
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where the list of Bi’s is again understood to mean a conjunction of atomic formu-
lae, typically containing free variables, and constructs a proof for an instantia-
tion of G from substitution instances of the clauses in P [18]. The algorithm uses
Horn-clause logic, with variable substitution determined universally to make the
first atom in G agree with the head of a clause in P , then proceeding inductively.

A running example of a logic program in this paper is as follows.

Example 1. Let ListNat denote the logic program

nat(0)←
nat(s(x))← nat(x)

list(nil)←
list(cons x y) ← nat(x), list(y)

The program involves variables x and y, function symbols 0, s, nil and cons,
and predicate symbols nat and list, with the choice of notation designed to
make the intended meaning of the program clear.

Logic programs resemble, and indeed induce, transition systems or rewrite sys-
tems, hence coalgebras. That fact has been used to study their operational se-
mantics, e.g., [4,6]. In [15], we developed the idea for variable-free logic programs.
Given a set of atoms At, and a variable-free logic program P built over At, one
can construct a PfPf -coalgebra structure on At, where Pf is the finite powerset
functor: each atom is the head of finitely many clauses in P , and the body of
each of those clauses contains finitely many atoms. Our main result was that
if C(PfPf ) is the cofree comonad on PfPf , then, given a logic program P qua
PfPf -coalgebra, the corresponding C(PfPf )-coalgebra structure characterises
the parallel and-or derivation trees of P : see Section 2 for a definition and for
more detail.

Modulo a concern about recursion, which can be addressed by extending from
finiteness to countability, one can construct a variable-free logic program from
an arbitrary logic program by taking all ground instances of all clauses in the
original logic program. The resulting variable-free logic program is of equivalent
power to the original one, but one has factored out all the analysis of substitution
that appears in SLD-resolution. So, in order to model the substitution in the
SLD-resolution algorithm, in this paper, we extend our coalgebraic analysis of
logic programming from variable-free logic programs to arbitrary logic programs.
In particular, we study the relationship between coalgebras for an extension of
PfPf and the coalgebras for the comonad induced by it.

There have been several category theoretic models of logic programs and com-
putations, and several of them have involved the characterisation of the first-
order language underlying a logic program as a Lawvere theory, e.g., [2,4,5,14],
and that of most general unifiers (mgu’s) as equalisers, e.g., [3] or as pullbacks,
e.g., [5,2]. We duly adopt those ideas here, see Section 3.

Given a signature Σ of function symbols, let LΣ denote the Lawvere theory
generated by Σ. Given a logic program P with function symbols in Σ, we would
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like to consider the functor category [LopΣ , Set], extending the set At of atoms in
a variable-free logic program to the functor from LopΣ to Set sending a natural
number n to the set At(n) of atomic formulae with at most n variables generated
by the predicate symbols in P . One can extend any endofunctor H on Set to the
endofunctor [LopΣ , H ] on [LopΣ , Set] that sends F : LopΣ → Set to the composite
HF . So we would then like to model P by the putative [LopΣ , PfPf ]-coalgebra
p : At −→ PfPfAt that, at n, takes an atomic formula A(x1, . . . , xn) with at
most n variables, considers all substitutions of clauses in P whose head agrees
with A(x1, . . . , xn), and gives the set of sets of atomic formulae in antecedents,
mimicking the construction for variable-free logic programs. Unfortunately, that
does not work.

Consider the logic program ListNat of Example 1. There is a map in LΣ of
the form 0 → 1 that models the nullary function symbol 0. So, naturality of the
map p : At −→ PfPfAt in [LopΣ , Set] would yield commutativity of the diagram

At(1)

At(0)

PfPfAt(1)

PfPfAt(0)

There being no clause of the form nat(x) ← in ListNat, commutativity of the
diagram would in turn imply that there cannot be a clause in ListNat of the
form nat(0) ← either, but in fact there is one!

In order to model examples such as ListNat, we need to relax the naturality
condition on p: if naturality could be relaxed to a subset condition, so that, in
general,

At(m)

At(n)

≥

PfPfAt(m)

PfPfAt(n)

need not commute, but rather the composite via PfPfAt(m) need only yield a
subset of that via At(n), it would be possible for p1(nat(x)) to be the empty set
while p0(nat(0)) is non-empty in the ListNat example above.

In order to express such a lax naturality condition, we need to extend
Set to Poset and we need to extend Pf from Set to Poset. The category
Lax(LopΣ , Poset) of strict functors and lax natural transformations is not com-
plete, so the usual construction of a cofree comonad on an endofunctor no longer
works directly. On the other hand, Poset is finitely cocomplete as a locally or-
dered category, so we can adopt the subtle work of [13] on categories of lax
natural transformations, which is what we do: see Section 4.
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A mild problem arises in regard to the finiteness of the outer occurrence of Pf
in PfPf . The problem is that substitution can generate infinitely many instances
of clauses with the same head. For instance, suppose one extends ListNat with
a clause of the form A ← nat(x) with no occurrences of x in A. Substitution
yields the clause A ← nat(sn(0)), for every natural number n, giving rise to a
countable set of clauses with head A. We need to allow for possibilities such as
this as the infiniteness arises even from a finite signature. So we extend from
PfPf to PcPf , where Pc extends the countable powerset functor.

Those are the key technical difficulties that we address in the paper. Note
that, in contrast to [15], we do not model the ordering of subgoals and repeti-
tions. These have been modelled in relevant literature, notably in Corradini and
Montanari’s landmark papers [7,8], but we defer making precise the relationship
with the ideas herein.

We end the paper by making a natural construction of a locally ordered endo-
functor to extend PcPf in Section 5, checking how coalgebra models our leading
example, and comparing the trees we obtain with parallel and-or derivation trees.

2 Parallel and-or Derivation Trees and Coalgebra

In this section, we briefly recall from [15] the definition of the parallel and-or
derivation trees generated by an arbitrary logic program, and how, in the case of
variable-free logic programs, they can be seen in terms of coalgebraic structure.

Key motivating texts for the definition of parallel and-or derivation tree are [9]
and [12], as explained in [15]. We freely use the usual logic programming con-
ventions for substitution and most general unifiers, see Section 3.

Definition 1. Let P be a logic program and let ← A be an atomic goal (possibly
with variables). The parallel and-or derivation tree for A is the possibly infinite
tree T satisfying the following properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node.
– Each or-node is given by •.
– Each and-node is an atom.
– For every node A′ occurring in T , if A′ is unifiable with only one clause

B ← B1, . . . , Bn in P with mgu θ, then A′ has n children given by and-
nodes B1θ, . . . Bnθ.

– For every node A′ occurring in T , if A′ is unifiable with exactly m > 1
distinct clauses C1, . . . , Cm in P via mgu’s θ1, . . . , θm, then A′ has ex-
actly m children given by or-nodes, such that, for every i ∈ m, if Ci =
Bi ← Bi1, . . . , B

i
ni

, then the ith or-node has ni children given by and-nodes
Bi1θi, . . . , B

i
ni

θi.

We now recall the coalgebraic development of [15].

Proposition 1. For any set At, there is a bijection between the set of variable-
free logic programs over the set of atoms At and the set of PfPf -coalgebra struc-
tures on At, where Pf is the finite powerset functor on Set.
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Proposition 2. Let C(PfPf ) denote the cofree comonad on PfPf . Then, for
p : At −→ PfPf (At), the corresponding C(PfPf )-coalgebra is given as follows:
C(PfPf )(At) is a limit of a diagram of the form

. . . −→ At × PfPf (At × PfPf (At)) −→ At × PfPf (At) −→ At.

Put At0 = At and Atn+1 = At × PfPfAtn, and define the cone

p0 = id : At −→ At(= At0)
pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At × PfPfAtn(= Atn+1)

Then the limiting property determines the coalgebra p : At −→ C(PfPf )(At).

In [15], we gave a general account of the relationship between a variable-free
logic program qua PfPf -coalgebra and the parallel and-or derivation trees it
generates. Here we recall a representative example.

Example 2. Consider the variable-free logic program:

q(b,a)←
s(a,b)←

p(a)← q(b,a), s(a,b)

q(b,a)← s(a,b)

The program has three atoms, namely q(b,a), s(a,b) and p(a). So At =
{q(b,a), s(a,b), p(a)}. The program can be identified with the PfPf -coalgebra
structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Consider the C(PfPf )-coalgebra corresponding to p. It sends p(a) to the
parallel refutation of p(a) depicted on the left side of Figure 1. Note that the
nodes of the tree alternate between those labelled by atoms and those labelled
by bullets (•). The set of children of each bullet represents a goal, made up of
the conjunction of the atoms in the labels. An atom with multiple children is
the head of multiple clauses in the program: its children represent these clauses.
We use the traditional notation � to denote {}.

Where an atom has a single •-child, we can elide that node without losing
any information; the result of applying this transformation to our example is
shown on the right in Figure 1. The resulting tree is precisely the parallel and-or
derivation tree for the atomic goal ← p(a) as in Definition 1. So the two trees
express equivalent information.

In the first-order case, direct use of Definition 2 yields inconsistent derivations, as
explained e.g. in [12]. So composition (and-or parallel) trees were introduced [12].
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← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Fig. 1. The action of p : At −→ C(PfPf )(At) on p(a), and the corresponding parallel
and-or derivation tree

Construction of composition trees involves additional algorithms that synchro-
nise branches created by or-nodes. Composition trees contain a special kind of
composition node used whenever both and- and or-parallel computations are
possible for one goal. Every composition node is a list of atoms in the goal. If,
in a goal G = ← B1, . . . Bn, an atom Bi is unifiable with k > 1 clauses, then
the algorithm adds k children (k composition nodes) to the node G; similarly for
every atom in G that is unifiable with more than one clause. Every such compo-
sition node has the form B1, . . . Bn, and n and-parallel edges. Thus, all possible
combinations of all possible or-choices at every and-parallel step are given. In
this paper, we do not study composition trees directly but rather suggest an
alternative.

3 Using Lawvere Theories to Model First-Order
Signatures and Substitution

In this section, we start to move towards using coalgebra to model arbitrary
logic programs by recalling the relationship between first-order signatures and
Lawvere theories, in particular how the former give rise to the latter. Then we
recall how to use that to model most general unifiers as equalisers.

A signature Σ consists of a set of function symbols f, g, . . . each equipped with
a fixed arity given by a natural number indicating the number of arguments it
is supposed to have. Nullary (0-ary) function symbols are allowed and are called
constants. Given a countably infinite set Var of variables, the set Ter(Σ) of
terms over Σ is defined inductively:

– x ∈ Ter(Σ) for every x ∈ Var .
– If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ), then

f(t1, . . . , tn) ∈ Ter(Σ).
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Definition 2. Given a signature Σ and a category C with strictly associative
finite products, an interpretation of Σ in C is an object X of C, together with,
for each function symbol f of arity n, a map in C from Xn to X.

Proposition 3. Given a signature Σ, there exists a category LΣ with strictly
associative finite products and an interpretation ‖ ‖Σ of Σ in LΣ, such that for
any category C with strictly associative finite products, and interpretation γ of
Σ in C, there exists a unique functor g : LΣ → C that strictly preserves finite
products, such that g composed with ‖ ‖Σ gives γ, as in the following diagram:

LΣ
g

Σ

‖ ‖Σ

C

γ

Proof. Define the set ob(LΣ) to be the set of natural numbers.
For each natural number n, let x1, . . . , xn be a specified list of distinct vari-

ables. Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of terms gener-
ated by the function symbols in Σ and variables x1, . . . , xn. Define composition
in LΣ by substitution. The interpretation ‖ ‖Σ sends an n-ary function symbol
f to f(x1, . . . , xn).

One can readily check that these constructions satisfy the axioms for a cate-
gory and for an interpretation, with LΣ having strictly associative finite products
given by the sum of natural numbers. The terminal object of LΣ is the natural
number 0. The universal property follows directly from the construction.

Definition 3. Given a signature Σ, the category LΣ determined by Proposi-
tion 3 is called the Lawvere theory generated by Σ [17].

One can describe LΣ without the need for a specified list of variables for each
n: in a term t, a variable context is always implicit, i.e., x1, . . . , xm 
 t, and the
variable context is considered as a binder.

In contrast to the usual practice in category theory, sorting is not modelled by
using a sorted finite product theory but rather by modelling predicates for sorts
such as nat or list using the structure of the category [LΣ , Set] or, more subtly,
of Lax(LΣ , Poset), as illustrated below: Lloyd’s book [18] gives a representataive
account of logic programming, and although category theorists may disapprove,
it is not sorted.

Example 3. Consider ListNat. It is naturally two-sorted, with one sort for nat-
ural numbers and one for lists. Traditionally, category theory would not use
Proposition 3 but rather a two-sorted version of it: see [16]. But ListNat is a
legitimate untyped logic program and is representative of such.

The constants O and nil are modelled by maps from 0 to 1 in LΣ , s is modelled
by a map from 1 to 1, and cons is modelled by a map from 2 to 1. The term
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s(0) is therefore modelled by the map from 0 to 1 given by the composite of
the maps modelling s and 0; similarly for the term s(nil), although the latter
does not make semantic sense.

A key construct in standard accounts of SLD-resolution such as [18] is that
of a most general unifier, which we now recall. It is typically expressed using
distinctive notation for substitution. Note that the coalgebraic approach does
not require us to model substitution by most general unifiers; it does not even
require us to take syntax over Lawvere theories, as we may take it over more
general categories: note the generality of Section 4 and see [14].

Definition 4. A substitution is a function θ from Var to Ter(Σ) that is the
identity on all but finitely many variables. Each substitution canonically gener-
ates a function from Ter(Σ) to itself defined inductively by the following:

θ(f(t1, . . . , tn)) ≡ f(θ(t1), . . . , θ(tn))

Following the usual convention in logic programming, we denote θ(t) by tθ[18].

Definition 5. Let S be a finite set of terms. A substitution θ is called a unifier
for S if, for any pair of terms t1 and t2 in S, applying the substitution θ yields
t1θ = t2θ. A unifier θ for S is called a most general unifier (mgu) for S if, for
each unifier σ of S, there exists a substitution γ such that σ = θγ.

The structure of LΣ allows us to characterise most general unifiers in terms
of equalisers as follows, cf [21], where they are modelled by coequalisers in the
Kleisli category for a the monad TΣ on Set induced by LΣ .

Proposition 4. Given a signature Σ, for any pair of terms (s,t) with variables
among x1, . . . , xn, a most general unifier of s and t exists if and only if an
equaliser of s and t qua maps in LΣ exists, in which case the most general
unifier is given by the equaliser.

Example 4. A most general unifier of the terms cons(x,nil) and cons(s(O),y)
of Example 3 exists and is given by the substitution σ : {s(0)/x, nil/y}.

4 Coalgebra on Categories of Lax Maps

Assume we have a signature Σ of function symbols and, for each natural num-
ber n, a specified list of variables x1, . . . , xn. Then, given an arbitrary logic
program with signature Σ, we can extend our study of the set At of atoms for
a variable-free logic program in [15] by considering the functor At : LopΣ → Set
that sends a natural number n to the set of all atomic formulae with variables
among x1, . . . , xn generated by the function symbols in Σ and the predicate
symbols appearing in the logic program. A map f : n → m in LΣ is sent to the
function At(f) : At(m) → At(n) that sends an atomic formula A(x1, . . . , xm)
to A(f1(x1, . . . , xn)/x1, . . . , fm(x1, . . . , xn)/xm), i.e., At(f) is defined by
substitution.
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As explained in the Introduction, we cannot model a logic program by a
natural transformation of the form p : At −→ PfPfAt as naturality breaks down
even in simple examples such as ListNat. We need lax naturality. In order even
to define it, we first need to extend At : LopΣ → Set to have codomain Poset.
That is routine, given by composing At with the inclusion of Set into Poset.
Mildly overloading notation, we denote the composite by At : LopΣ → Poset,
noting that it is trivially locally ordered.

Definition 6. Given locally ordered functors H,K : D −→ C, a lax natural
transformation from H to K is the assignment to each object d of D, of a
map αd : Hd −→ Kd such that for each map f : d −→ d′ in D, one has
(Kf)(αd) ≤ (αd′)(Hf).

Locally ordered functors and lax natural transformations, with pointwise com-
position and pointwise ordering, form a locally ordered category we denote by
Lax(D,C).

As explained in the Introduction, we need to extend the endofunctor PcPf on
Set rather than extending PfPf as, even with finitely many function symbols,
substitution could give rise to countably many clauses with the same head. So we
need to extend PcPf from an endofunctor on Set to a locally ordered endofunctor
on Lax(LopΣ , Poset). A natural way to do that, while retaining the role of PcPf ,
is first to extend PcPf to a locally ordered endofunctor E on Poset, then to
consider the locally ordered endofunctor Lax(LopΣ , E) on Lax(LopΣ , Poset) that
sends H : LopΣ → Poset to the composite EH .

We shall return to the question of extending to PcPf to Poset, but what
about the cofree comonad C(PcPf ) on PcPf?

The locally ordered category Lax(LopΣ , Poset) is neither complete nor cocom-
plete, so it does not follow from the usual general theory that a cofree comonad
on a locally ordered endofunctor on it need exist at all, let alone be given by
a limiting construct resembling that of Proposition 2. Moreover, the laxness in
Lax(LopΣ , Poset) makes the category of coalgebras for an endofunctor on it prob-
lematic, as the strictness in the definition of map of coalgebras does not cohere
well with the laxness in the definition of map in Lax(LopΣ , Poset).

Using techniques developed by Kelly in Section 3.3 of [13], we can nego-
tiate these obstacles. Rather than directly considering a cofree comonad on
Lax(LopΣ , E), we can extend the comonad C(PcPf ) from Set to Lax(LopΣ , Poset),
mimicking our extension of PcPf . We can then use a variant of the fact that, if
it exists, a cofree comonad C(H) on an arbitrary endofunctor H is characterised
by a canonical isomorphism of categories

H-coalg � C(H)-Coalg

where −coalg stands for functor coalgebras while −Coalg is for Eilenberg-Moore
coalgebras. Although the categories of coalgebras and strict maps are problem-
atic in the lax setting, categories of coalgebras and oplax maps do respect the
laxness of Lax(LopΣ , Poset), allowing a suitable variant. The details are as follows.



Coalgebraic Semantics for Derivations in Logic Programming 277

Proposition 5. Given a locally ordered comonad G on a locally ordered category
C, the data given by Lax(D,G) : Lax(D,C) → Lax(D,C) and pointwise liftings
of the structural natural transformations of G yield a locally ordered comonad
we also denote by Lax(D,G) on Lax(D,C).

The proof of Proposition 5 is not entirely trivial as it involves a mixture of
the strict structure in the definition of comonad with the lax structure in the
definition of Lax(D,C). Nevertheless, with attention to detail, a proof is routine,
and it means that, once we have extended the comonad C(PcPf ) to Poset, we
can further extend it axiomatically to Lax(LopΣ , Poset).

Let E be an arbitrary locally ordered endofunctor on an arbitrary locally
ordered category C. Denote by E-coalgoplax the locally ordered category whose
objects are E-coalgebras and whose maps are oplax maps of E-coalgebras, mean-
ing that, in the square

X

EX

≤

Y

EY

the composite via EX is less than or equal to the composite via Y , with the
evident composition and locally ordered structure. Since C and E are arbitrary,
one can replace C by Lax(D,C) and replace E by Lax(D,E), yielding the
locally ordered category Lax(D,E)-coalgoplax. The following result is also not
immediate, but it again follows from routine checking. It is an instance of a
general phenomenon that allows laxness to commute exactly with oplaxness
but not with any other variant of laxness such as laxness itself or strictness or
pseudoness.

Proposition 6. The locally ordered category Lax(D,E)-coalgoplax is canoni-
cally isomorphic to Lax(D,E-coalgoplax).

Proposition 6 gives us an easy way to make constructions with, and check claims
regarding, Lax(D,E)-coalgebras : it characterises such coalgebras in terms of
locally ordered functors into E-coalgoplax; the latter locally ordered category, i.e.,
E-coalgoplax, is simpler to study than Lax(D,E)-coalgoplax as it only involves
one kind of laxness rather than two.

Definition 7. Given a locally ordered comonad G on C, the locally ordered cat-
egory G-Coalgoplax has objects given by (strict) G-coalgebras and maps given by
oplax maps of coalgebras, where maps are defined as in E-coalgoplax.

With care, Proposition 6 can be extended from locally ordered endofunctors to
locally ordered comonads, yielding the following:

Proposition 7. Given a locally ordered comonad G, the locally ordered category
Lax(D,G)-Coalgoplax is canonically isomorphic to Lax(D,G-Coalgoplax).
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The analysis of [13], but expressed there in terms of laxness rather than oplaxness
and in terms of monads rather than comonads, yields the following:

Theorem 1. Given a locally ordered endofunctor E on a locally ordered category
with finite colimits C, if C(E) is the cofree comonad on E, then E-coalgoplax is
canonically isomorphic to C(E)-Coalgoplax.

Combining Proposition 6, Proposition 7 and Theorem 1, we can conclude the
following:

Theorem 2. Given a locally ordered endofunctor E on a locally ordered category
with finite colimits C, if C(E) is the cofree comonad on E, then there is a
canonical isomorphism

Lax(D,E)-coalgoplax � Lax(D,C(E))-Coalgoplax

Corollary 1. For any locally ordered endofunctor E on Poset, if C(E) is the
cofree comonad on E, then there is a canonical isomorphism

Lax(LopΣ , E)-coalgoplax � Lax(LopΣ , C(E))-Coalgoplax

Corollary 1 provides us with the central axiomatic result we need to extend our
analysis of variable-free logic programs in [15] to arbitrary logic programs. The
bulk of the analysis of this section holds axiomatically, so that seems the best
way in which to explain it although we have only one leading example, that
determined by an extension of PcPf to Poset. In Section 5, we shall investigate
such an extension.

5 Coalgebraic Semantics for Arbitrary Logic Programs

The reason we need to extend PcPf from Set to Poset is to allow for lax natu-
rality, and the reason for that is to take advantage of the partial order structure
of the set Pc(X): we neither need nor want to change the set Pc(X) itself; we
just need to exploit its natural partial order structure given by subset inclusion.
Nor do we want to change the nature of the relationship between a variable-free
logic program P and the associated coalgebra p : At −→ PfPf (At): as best we
can, we simply want to extend that relationship by making it pointwise relative
to the indexing category LopΣ .

In order to give a locally ordered endofunctor on Poset, we need to extend
PcPf from acting on a set X to acting on a partially ordered set P , respecting
the partial order structure. This leads to a natural choice as follows:

Definition 8. Define Pf : Poset −→ Poset by letting Pf (P ) be the partial order
given by the set of finite subsets of P , with A ≤ B if for all a ∈ A, there exists
b ∈ B for which a ≤ b in P , with behaviour on maps given by image. Define Pc
similarly but with countability replacing finiteness.
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As Poset is complete and cocomplete, and as PcPf has a rank, a cofree
comonad C(PcPf ) necessarily exists on PcPf . Moreover, it is given by the trans-
finite (just allowing for countability) extension of the construction in Proposi-
tion 2.

By the work of Section 4, the Lax(LopΣ , PcPf )-coalgebra structure, i.e., the
lax natural transformation, p : At −→ PcPfAt associated with an arbitrary
logic program P , evaluated at a natural number n, sends an atomic formula
A(x1, . . . , xn) to the set of sets of antecedents in substitution instances of clauses
in P for which the head of the substituted instance agrees with A(x1, . . . , xn).
Extending Section 2, this can be expressed as a tree of the nature of the left
hand tree in Figure 1, interleaving two kinds of nodes.

Comparing these trees with the definition of parallel and-or derivation tree,
i.e., with Definition 1, these trees are more intrinsic: parallel and-or derivation
trees have most general unifiers built into a single tree, whereas, for each natural
number n, coalgebra yields trees involving at most n free variables, then models
substitution by replacing them by related, extended trees. We shall illustrate
with our leading example.

The two constructs are obviously related, but the coalgebraic one makes fewer
identifications, SLD-resolution being modelled by a list of trees corresponding to
a succession of substitutions rather than by a single tree. We would suggest that
this list of trees may be worth considering as a possible refinement of the notion
of parallel and-or derivation tree, lending itself to a tree-rewriting understanding
of the SLD-algorithm. Providing such an account is a priority for us as future
research.

Example 5. Consider ListNat as in Example 3. Suppose we start with
A(x, y)εAt(2) given by the atomic formula list(cons(x, cons(y, x))). Then
p(A(x, y)) is the element of PcPfAt(2) expressible by the tree on the left hand
side of Figure 2.

This tree agrees with the first part of the parallel and-or derivation tree for
list(cons(x, cons(y, x))) as determined by Definition 1. But the tree here has
leaves nat(x), nat(y) and list(x), whereas the parallel and-or derivation tree
follows those nodes, using substitutions determined by mgu’s. Moreover, those
substitutions need not be consistent with each other: not only are there two ways
to unify each of nat(x), nat(y) and list(x), but also there is no consistent
substitution for x at all.

In contrast, the coalgebraic structure means any substitution, whether deter-
mined by an mgu or not, applies to the whole tree. The lax naturality means
a substitution potentially yields two different trees: one given by substitution
into the tree, then pruning to remove redundant branches, the other given by
substitution into the root, then applying p.

For example, suppose we substitute s(z) for both x and y in
list(cons(x, cons(y, x))). This substitution is given by applying At to the map
(s, s) : 1 −→ 2 in LΣ . So At((s, s))(A(x, y)) is an element of At(1). Its image
under p1 : At(1) −→ PcPfAt(1) is the element of PcPfAt(1) expressible by the
tree on the right hand side of Figure 2.
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list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

Fig. 2. The left hand tree represents p(list(cons(x, cons(y, x)))) and
the right hand tree represents pAt((s, s))(list(cons(x, cons(y, x)))), i.e.,
p(list(cons(s(z), cons(s(z), s(z)))))

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))

Fig. 3. On the left is the tree depicting pAt((s, s))(list(cons(x, cons(y, x)))) as
also appears on the right of Figure 2, and on the right is the tree depicting
pAt(0)At((s, s))(list(cons(x, cons(y, x))))
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The laxness of the naturality of p is indicated by the increased length, in two
places, of the second tree when compared with the first tree. Observe that, before
those two places, the two trees have the same structure: that need not always be
exactly the case, as substitution in a tree could involve pruning if substitution
instances of two different atoms yield the same atom.

Now suppose we make the further substitution of 0 for z. This substitution
is given by applying At to the map 0 : 0 → 1 in LΣ . In Figure 3, we depict
p1At((s, s))(A(x, y)) on the left, repeating the right hand tree of Figure 2, and
we depict p0At(0)At((s, s))(A(x, y)) on the right.

Two of the leaves of the latter tree are labelled by �, but one leaf, namely
list(s(0)) is not, so the tree does not yield a proof. Again, observe the laxness.

6 Conclusions and Further Work

Using sophisticated category theoretic techniques surrounding the notion of lax-
ness, we have extended the coalgebraic analysis of variable-free logic programs
in [15] to arbitrary logic programs. For variable-free logic programs, the cofree
comonad on PfPf allowed us to represent the parallel and-or derivation trees
generated by a logic program. For arbitrary logic programs, the situation is more
subtle, as coalgebra naturally gives rise to a list of trees determined by substitu-
tions, whereas a parallel and-or derivation tree has all the information squeezed
into one tree.

A natural question to arise in the light of this is whether the coalgebraic
structure given here suggests a more subtle semantics for SLD-resolution than
that given by parallel and-or derivation trees, perhaps one based upon tree-
rewriting. That is one direction in which we propose to continue research.

The key fact driving our analysis has been the observation that the implication
← acts at a meta-level, like a sequent rather than a logical connective. That
observation extends to first-order fragments of linear logic and the Logic of
Bunched Implications [10,20]. So we plan to extend the work in the paper to
logic programming languages based on such logics.

The situation regarding higher-order logic programming languages such as
λ-PROLOG [19] is more subtle. Despite their higher-order nature, such logic
programming languages typically make fundamental use of sequents. So it may
well be fruitful to consider modelling them in terms of coalgebra too, albeit
probably on a sophisticated base category such as a category of Heyting algebras.

More generally, the results of this paper can be applied to the studies of
Higher-order recursion schemes, [1].

A further direction is to investigate the operational meaning of coinductive
logic programming [11,22]. That requires a modification to the algorithm of SLD-
resolution we have considered in this paper. In particular, given a logic program
that defines an infinite stream (similarly to our running example of list, but
without the base case for nil), the interpreter for coinductive logic programs of
this kind would be able to deduce a finite atom stream(cons(x,y)) from the
infinite derivations.
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Abstract. Modal logics are successfully used as specification logics for
reactive systems. However, they are not expressive enough to refer to
individual states and reason about the local behaviour of such systems.
This limitation is overcome in hybrid logics which introduce special sym-
bols for naming states in models. Actually, hybrid logics have recently
regained interest, resulting in a number of new results and techniques as
well as applications to software specification.

In this context, the first contribution of this paper is an attempt to
‘universalize’ the hybridization idea. Following the lines of [15], where a
method to modalize arbitrary institutions is presented, the paper intro-
duces a method to hybridize logics at the same institution-independent
level. The method extends arbitrary institutions with Kripke semantics
(for multi-modalities with arbitrary arities) and hybrid features. This
paves the ground for a general result: any encoding (expressed as comor-
phism) from an arbitrary institution to first order logic (FOL) deter-
mines a comorphism from its hybridization to FOL. This second con-
tribution opens the possibility of effective tool support to specification
languages based upon logics with hybrid features.

Keywords: Institution theory, hybrid logic, formal specification.

1 Introduction

Modern societies are increasingly dependent on software systems and services
whose reliability is crucial for their own development, security, privacy, and
quality of life. On the other hand, software is large and complex, deals with
a multitude of different concerns and has to meet requirements formulated (and
verified) at different abstraction levels. For the last three decades this has put
forward a research agenda on mathematically sound development methods that
seem to be finally emerging as a key concern for industry.

Typically, three issues in this agenda need to be rigorously addressed. The
first concerns the sort of mathematical structures suitable to model software sys-
tems; the second focus on the languages in which such models can be specified
and, finally, the last one addresses the satisfaction relation between the (seman-
tic) mathematical structures and the (syntactic) formulation of requirements as
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sentences in the specification language. A fourth concern, which is becoming
more and more relevant in practice, should be added: the fact that the working
software engineer often has to capture and relate different kinds of requirements
entails the need for a uniform specification framework in which different for-
malisms can be expressed and related. A quite canonical way to answer this
challenge resorts to the notion of an institution [16,13] which, as an abstract
representation of a logical system, encompasses syntax, semantics and satisfac-
tion, and provides a formal framework for relating, comparing and combining
specification logics.

Institution theory [16] is a categorical abstract model theory that arose about
three decades ago within specification theory as a response to the explosion in
the population of logics in use there. Its original aim was to develop as much
computing science as possible in a general uniform way independently of partic-
ular logical systems. This has now been achieved to an extent even greater than
originally thought, as institution theory became the most fundamental mathe-
matical theory underlying algebraic specification theory, also being increasingly
used in other area of computer science. Moreover, institution theory constitutes
a major trend in the so-called ‘universal logic’ (in the sense envisaged by Jean-
Yves Béziau) which is considered by many a true renaissance of mathematical
logic.

Modal logics have been successfully used as specification languages for state
transition systems, which, on their turn, are taken as basic, underlying struc-
tures in program development. From a proof theoretic point of view, such logics
have interesting algorithmic proprieties, and, moreover, they can naturally be
translated to first order logic. However, (non-hybrid) modal logics do not allow
explicit references to specific states of the underlying transition system which,
in a number of cases, is a desirable feature in a specification. For instance, such
modal logics are adequate to specify systems as dynamic processes which evolve
in response to events. But, on the other hand, they are not expressive enough
to identify particular states in a system’s evolution, neither to express (local)
properties referring to one such state or a group thereof. Hybrid logic [2], on the
other hand, overcomes this limitation by introducing nominals as references to
specific states in a modal framework, taking together features from first-order
logic and modal logic.

Historically, hybrid logic was introduced by Arthur Prior [22] in the 50’s. Af-
terwards, his student Robert Bull extended the theory significantly by establish-
ing a number of completeness results for generalizations of Prior’s hybrid logic.
After a period without much developments, in the 80’s the Bulgarian school
of logic (namely Passy, Tinchev, Gargov and Goranko) revived the interest in
hybrid logic, studying, in particular, the possible roles of the binder operator
[21]. More recently, Areces and Blackburn intensely expanded the theory (cf.
the dedicated web page at http://hylo.loria.fr/), addressing, notably, the
complexity of the satisfiability problem. The work of Braüner on proof theory for
hybrid logic should also be mentioned [5]. His study of quantified hybrid logic is,
in a sense, at the origin of the results presented in this paper. Actually, the way
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first order and hybrid logics are combined in quantified hybrid logic, was a first
motivation for the quest for a general, institution-independent approach to the
hybridization of logics which constitutes the main contribution of this paper.

In fact, the idea of introducing nominals to explicitly refer to individual states,
can be applied to any logic with a Kripke semantics. Quoting [1], “(...)Strictly
speaking, not all modal logics are hybrid, but certainly any modal logics can
be hybridized, and in our view many of them should be (...)”. This principle is
reflected in a recent trend of hybridization of specification formalisms and process
calculi. Beyond the classical cases of hybrid versions of propositional and first
order logic, hybrid accounts of intuitionistic logic [6], CT L [24,19], LT L [11],
μ-calculus [23] among others, are already studied.

What is, thus, in such a context the contribution of this paper? First of
all, as stated above, we put forward an institution-independent method to hy-
bridize arbitrary logics, shedding light on the generic pattern of hybridization. In
other words, we liberate the essence of hybridization from logical details that are
orthogonal to the hybrid idea and that are tributary to other logics.

The hybridization process is also a mechanism for combining logics. Combi-
nation of logical system (or institutions), in which typically different roles are
played by the different logics to be composed, is, in itself, a relevant research
topic. The approach discussed in this paper is in line with the process of modal-
ization of an institution, proposed in [15], in which a modal logic is combined
with an arbitrary institution in a systematic way. We take a further step by
replacing modal by hybrid logic and allowing multi-modalities.

The paper’s second contribution is also a general result: it is shown that
any encoding (expressed as ‘comorphism’ in the sense of [17]) from an arbi-
trary institution to first order logic (FOL) determines a comorphism from its
(quantifier-free) hybridization to FOL. Moreover, the proof is constructive en-
tailing a method to define such comorphisms. This may be regarded as a first
step towards a general theory of encodings of hybrid logics into FOL as sup-
port for borrowing formal verification tools from FOL-based to hybrid-based
specification languages.

Outline. In order to keep exposition reasonably self-contained, Section 2 reviews
basic concepts on institutions and recalls a number of examples. The paper’s
contributions appear on Sections 3 and 4. The former introduces the hybridiza-
tion process. The latter addresses the construction of comorphisms from hybrid
institutions to FOL. Finally, Section 5 concludes and points out a number of
topics for future work. Proofs of all new results presented can be found in the
appendix.

2 Notation and Definitions

Institutions were defined by Goguen and Burstall in [7], the seminal paper [16]
being printed after a delay of many years. Below we recall the concept of insti-
tution which formalises the intuitive notion of logical system, including syntax,
semantics, and the satisfaction between them.
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Definition 1 (Institution). An institution
(
SignI , SenI , ModI , (|=I

Σ)Σ∈|SignI |
)

consists of

– a category SignI whose objects are called signatures,
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature,
– a functor ModI : (SignI)op → CAT, giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
morphisms, and

– a relation |=I
Σ⊆ |ModI(Σ)|×SenI for each Σ ∈ |SenI |, called the satisfaction

relation,

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=I

Σ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

We recall the notions of amalgamation and quantification space that are crucial
for what follows. The former is intensely used in institution theory, whereas the
latter was introduced rather recently in [14].

Definition 2 (Amalgamation property). Given any functor Mod : Signop →
CAT a commuting square of signature morphisms

Σ
ϕ1 		

ϕ2





Σ1

θ1




Σ2

θ2

		 Σ′

(2)

is a weak amalgamation square for Mod if and only if, for each Σ1-model M1

and a Σ2-model M2 such that Mod(ϕ1)(M1) = Mod(ϕ2)(M2), there exists a Σ′-
model M ′ such that Mod(θ1)(M ′) = M1 and Mod(θ2)(M ′) = M2. When M ′ is
required to be unique, the square is called an amalgamation square. The model
M ′ is called an amalgamation of M1 and M2 and when it is unique it is denoted
by M1 ⊗ϕ1,ϕ2 M2.

When Mod is the model functor ModI of an institution I we say that I has
the respective amalgamation properties.

Definition 3 (Quantification space). For any category Sign a subclass of
arrows D ⊆ Sign is called a quantification space if, for any (χ : Σ → Σ′) ∈ D
and ϕ : Σ → Σ1, there is a designated pushout

Σ
ϕ 		

χ




Σ1

χ(ϕ)


Σ′

ϕ[χ]
		 Σ′

1
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with χ(ϕ) ∈ D and such that the ‘horizontal’ composition of such designated
pushouts is again a designated pushout, i.e. for the pushouts in the following
diagram

Σ
ϕ 		

χ





Σ1

χ(ϕ)




θ 		 Σ2

χ(ϕ)(θ)




Σ′
ϕ[χ]

		 Σ′
1θ[χ(ϕ)]

		 Σ′
2

ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ), and such that χ(1Σ) = χ and
1Σ[χ] = 1Σ.

We say that a quantification space D for Sign is adequate for a functor
Mod : Signop → CAT when the designated pushouts mentioned above are weak
amalgamation squares for Mod.

Example 1 (FOL, ALG, EQ, REL and PL). A well known example of an insti-
tution is FOL — the institution of first order logic FOL (see [13] for a detailed
account). The signatures are tuples (S, F, P ), where S is a set of sort symbols,
F = {Fw→s | w ∈ S∗, s ∈ S} is a family of sets of operation symbols and P =
{Pw | w ∈ S∗} is a family of sets of relational symbols. A signature morphism ϕ is
a triple of functions (ϕsort, ϕops, ϕpred) : (S, F, P ) → (S′, F ′, P ′) that preserves
functionalities, i.e., for any f ∈ Fs1...sn→s, ϕops(f) ∈ F ′

ϕsort(s1)...ϕsort(sn)→ϕsort(s)

and for any π ∈ Ps1...sn , ϕpred(π) ∈ P ′
ϕsort(s1)...ϕsort(sn). A (S, F, P )-model M is

family {Ms | s ∈ S} of sets together with: for each f ∈ Fs1...sn→s, a function fM :
Ms1 ×· · ·×Msn → Ms and for any π ∈ Ps1...sn a relation πM ⊆ Ms1 ×· · ·×Msn .
The (S, F, P )-model homomorphisms are S-families of functions {hs : Ms →
M ′
s}s∈S , such that for any f ∈ Fs1...sn→s, and each mi ∈ Msi , i = 1, . . . , n,

hs(fM (m1, . . . ,mn)) = fM
′
(hs1(m1), . . . , hsn(mn)) and for each π ∈ Ps1,...sn ,

if (m1, . . . ,mn) ∈ πM then (hs1(m1), . . . , hsn(mn)) ∈ πM
′
. The reduct of a

(S′, F ′, P ′)-model M ′ along ϕ consists of the (S, F, P )-model M ′ �ϕ such that,
for each s ∈ S, (M ′ �ϕ)s = M ′

ϕsort(s)
, for each f ∈ Fs1...sn→s fM

′�ϕ = ϕops(f)M
′

and for each π ∈ Ps1...sn πM
′�ϕ = ϕpred(π)M

′
. The set SenFOL((S, F, P )) of

(S, F, P )-sentences consists of the usual first-order (S, F, P )-formulas. A signa-
ture morphism ϕ : (S, F, P ) → (S′, F ′, P ′) induces a translation of sentences,
SenFOL(ϕ) : SenFOL((S, F, P )) → SenFOL((S′, F ′, P ′)), that replaces sym-
bols of (S, F, P ) by the respective ϕ-images in (S′, F ′, P ′). More precisely, let
ϕtrm : T(S,F ) → T(S′,F ′) be defined by

ϕtrm(f(t1, . . . , tn)) = ϕops(f)(ϕtrm(t1), . . . , ϕtrm(tn)).
The translation SenFOL is recursively defined as follows:

– SenFOL(ϕ)(t ≈ t′) = ϕtrm(t) ≈ ϕtrm(t′);
– SenFOL(ϕ)(π(t1, . . . , tn)) = ϕpred(π)(ϕtrm(t1), . . . , ϕtrm(tn));
– SenFOL(ϕ)(¬ρ) = ¬SenFOL(ϕ)(ρ);
– SenFOL(ϕ)(ρ - ρ′) = SenFOL(ϕ)(ρ) - SenFOL(ϕ)(ρ′), - ∈ {∨,∧,→};
– SenFOL(ϕ)(∀X ρ) = ∀Xϕ SenFOL(ϕ′)(ρ), where

Xϕ = {(x, ϕsort(s), (S′, F ′, P ′)) | (x, s, (S, F, P )) ∈ X}, and ϕ′ canonically
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extends ϕ by mapping each (x, s, (S, F, P )) to (x, ϕsort(s), (S′, F ′, P ′)). Note
that we are considered a variable for (S, F, P ) as a triple (x, s, (S, F, P ))
where x is the name of the variable, s its sort, and (S, F, P ) its signature
(see [14]).

Finally, the satisfaction relation is the usual Tarskian satisfaction relation. We
just present the case of quantifiers as an illustration:

– M |=FOL
(S,F,P ) ∀X ρ iff, M′ |=FOL

(S,F�X,P ) ρ for each expansion M ′ of M along
the signature morphism (S, F, P ) ↪→ (S, F .X,P );

– M |=FOL
(S,F,P ) ∃X ρ iff M |=FOL

(S,F,P ) ¬∀X ¬ρ

The institution ALG is obtained from FOL by discarding the relational
symbols and the corresponding interpretations in models. The institution EQ
is defined as the sub-institution of ALG where the sentences are just universally
quantified equations (∀X) t ≈ t′. The institution REL is the sub-institution of
single-sorted first-order logic with signatures having only constants and
relational symbols.

The institution PL (of propositional logic) is the fragment of FOL determined
by signatures with empty sets of sort symbols.

3 A Method to Hybridize Arbitrary Institutions

Let us consider an institution I = (SignI , SenI , ModI , (|=I
Σ)Σ∈|SignI |) with

quantification space DI ⊆ Sign. This section introduces a method to enrich
the expressivity of I with modalities and nominals, defining a suitable seman-
tics for it. Moreover, it is shown that the outcome still defines an institution, to
which we refer as the hybrid I and denote by HI.

The Category of HI-signatures

The category of I-hybrid signatures, denoted by SignHI , is defined as the
following direct (cartesian) product of categories:

SignHI = SignI × SignREL.

The REL-signatures are denoted by (Nom, Λ), where Nom is a set of constants
called nominals and Λ is a set of relational symbols called modalities ; Λn stands
for the set of modalities of arity n. General category theory entails,

Proposition 1. The projection SignHI → SignI lifts small co-limits.

The existence of co-limits of signatures is one of the properties of institutions of
key practical relevance for specification in-the-large (see [16]).

Corollary 1. SignHI has all small co-limits.
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HI-sentences

Let us fix a quantification space DHI for SignHI such that for each χ ∈ DHI

its projection χ|I to SignI belongs to DI . The quantification space DHI is a
parameter of the hybridization process. Whenever DHI consists of identities we
say the hybridization is quantifier-free. Note that a quantifier-free hybridization
does not necessarily mean the absence of ‘local’ quantification, i.e. placed at the
level of base institution I.

Let Δ = (Σ, Nom, Λ). The set of sentences SenHI(Δ) is the least set such
that

– Nom ⊆ SenHI(Δ);
– SenI(Σ) ⊆ SenHI(Δ);
– ρ- ρ′ ∈ SenHI(Δ) for any ρ, ρ′ ∈ SenHI(Δ) and any - ∈ {∨,∧,→};
– ¬ρ ∈ SenHI(Δ), for any ρ ∈ SenHI(Δ);
– @iρ ∈ SenHI(Δ) for any ρ ∈ Sen(Σ) and i ∈ Nom;
– [λ](ρ1, . . . , ρn) ∈ SenHI(Δ), for any λ ∈ Λn+1, ρi ∈ SenHI(Δ), i ∈ {1, . . . , n};
– (∀χ)ρ ∈ SenHI(Δ), for any ρ ∈ SenHI(Δ′) and χ : Δ → Δ′ ∈ DHI ;
– (∃χ)ρ ∈ SenHI(Δ), for any ρ ∈ SenHI(Δ′) and χ : Δ → Δ′ ∈ DHI .

Translations of HI-sentences

Let ϕ = (ϕSig, ϕNom, ϕMS) : (Σ, Nom, Λ) → (Σ′, Nom′, Λ′) be a morphims of
HI-signatures.

The translation SenHI(ϕ) is defined as follows:

– SenHI(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenI(Σ);
– SenHI(ϕ)(i) = ϕNom(i);
– SenHI(ϕ)(¬ρ) = ¬SenHI(ϕ)(ρ);
– SenHI(ϕ)(ρ - ρ′) = SenHI(ϕ)(ρ) - SenHI(ϕ)(ρ′), - ∈ {∨,∧,→};
– SenHI(ϕ)(@iρ) = @ϕNom(i)SenHI(ρ);
– SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](SenHI(ρ1), . . . , SenHI(ρn));
– SenHI(ϕ)

(
(∀χ)ρ

)
= (∀χ(ϕ))SenHI(ϕ[χ])(ρ);

– SenHI(ϕ)
(
(∃χ)ρ

)
= (∃χ(ϕ))SenHI(ϕ[χ])(ρ).

Proposition 2. SenHI is a functor SignHI → Set.

HI-models

The (Σ, Nom, Λ)-models are pairs M = (M,R) where

– R is a (Nom, Λ)-model in REL;
– M is a function |R| → |ModI(Σ)|.

The carrier set |R| forms the set of the states of M; {nR | n ∈ Nom} represents
the interpretations of the nominals Nom, whereas relations {λR | λ ∈ Λn, n ∈ ω}
represent the interpretation of the modalities Λ. We denote M(s) simply by Ms.

A (Σ, Nom, Λ)-model homomorphism h : (M,R) → (M ′, R′) consists of a
pair aggregating
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– a (Nom, Λ)-model homomorphism in REL, hst : R → R′; i.e., a func-
tion hst : |R| → |R′| such that for i ∈ Nom, iR

′
= hst(iR); and for any

s1, . . . , sn ∈ |R|, and λ ∈ Λn, (s1, . . . , sn) ∈ λR, (hst(s1), . . . , hst(sn)) ∈ λR
′
.

– a natural transformation hmod : M ⇒ M ′ ◦ hst; note that hmod is a |R|-
indexed family of Σ-model homomorphisms {hsmod : Ms → M ′

hst(s)
}s∈|R|.

The composition of hybrid model homomorphisms is defined canonically as

h; h′ = (hst; h′
st, hmod; (h′

mod ◦ hst)).

Fact 1. Let Δ be any hybrid signature over an institution I. Then Δ-models
together with their homomorphisms constitute a category.

Reducts of HI-models

Let Δ = (Σ, Nom, Λ) and Δ′ = (Σ′, Nom′, Λ′) be two hybrid signatures, ϕ =
(ϕSig, ϕNom, ϕMS) a morphism between Δ and Δ′ and (M ′, R′) a Δ′-model. The
reduct of (M ′, R′) along ϕ, denoted by ModHI(ϕ)(M ′, R′), is the Δ-model
(M,R) such that

– |R| = |R′|;
– for any n ∈ Nom, nR = ϕNom(n)R

′
;

– for any λ ∈ Λ, λR = ϕMS(λ)R
′
;

– for any s ∈ |R|, Ms = ModI(ϕSig)(M ′
s).

Theorem 1. A pushout square of HI-signature morphisms is a (weak) amal-
gamation square (for ModHI) if the underlying square of signature morphisms
in I is a (weak) amalgamation square.

Corollary 2. DHI is adequate for ModHI.

The Satisfaction Relation

For any (Σ, Nom, Λ)-model (M,R) and for any s ∈ |R|:

– (M,R) |=s ρ iff Ms |=I ρ; when ρ ∈ SenI(Σ),
– (M,R) |=s i iff iR = s; when i ∈ Nom,
– (M,R) |=s ¬ρ iff (M,R) �|=s ρ,
– (M,R) |=s ρ ∨ ρ′ iff (M,R) |=s ρ or (M,R) |=s ρ′,
– (M,R) |=s ρ ∧ ρ′ iff (M,R) |=s ρ and (M,R) |=s ρ′,
– (M,R) |=s ρ → ρ′ iff (M,R) |=s ρ implies that (M,R) |=s ρ′,
– (M,R) |=s [λ](ρ1, . . . ρn) iff (M,R) |=si ρi for 1 ≤ i ≤ n, λ ∈ Λn+1 and any

(s, s1, . . . , sn) ∈ Rλ,
– (M,R) |=s @jρ iff (M,R) |=jR ρ,
– (M,R) |=s (∀χ)ρ iff (M ′, R′) |=s ρ for any (M ′, R′) such that

ModHI(χ)(M ′, R′) = (M,R), and
– (M,R) |=s (∃χ)ρ iff (M ′, R′) |=s ρ for some (M ′, R′) such that

ModHI(χ)(M ′, R′) = (M,R).

We write (M,R) |= ρ iff (M,R) |=s ρ for any s ∈ |R|.
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The Satisfaction Condition

Theorem 2. Let Δ = (Σ, Nom, Λ) and Δ′ = (Σ′, Nom′, Λ′) be two HI-
signatures and ϕ : Δ → Δ′ a morphism of signatures. For any ρ ∈ SenHI(Δ),
(M ′, R′) ∈ |ModHI(Δ′)|, and s ∈ |R|

ModHI(ϕ)(M ′, R′) |=s ρ iff (M ′, R′) |=s SenHI(ϕ)(ρ). (3)

Proof. The proof is by induction on the structure of ρ.

Corollary 3 (The Satisfaction Condition). (SignHI , SenHI , ModHI , |=HI)
is an institution.

Example 2 (HPL). Let APL be the sub-institution of PL whose sentences are
the propositional symbols. Applying the hybridization method described above
to APL and fixing Λ2 = {�} and Λn = ∅ for each n �= 2, we obtain the insti-
tution of the “standard” hybrid propositional logic (without state quantifiers):
the category of signatures is SignHPL = Set × Set with objects denoted by
(P, Nom) and morphisms by (ϕSig, ϕNom); sentences are the usual hybrid propo-
sitional formulas, i.e., modal formulas closed by boolean connectives, �, and by
the operator @i, i ∈ Nom; models consists of pairs P = (M,R) where R consists
of a carrier set, interpretations iR ∈ S for each i ∈ Nom, and a binary relation
�R ⊆ |R|×|R|, and for each s ∈ |R|, Ms is a propositional model, i.e., a function
Ms : P → {(,⊥}. The quantification space DHPL is the trivial one, consisting
of the identities, which means this process is a quantifier-free hybridization. The
satisfaction relation is defined as above on top of the propositional satisfaction
relation, i.e., P |=s p iff Ms(p) = (.

A challenging issue concerns finding suitable quantification spaces to capture
other versions of hybrid propositional logic. For instance, it would be interesting,
along the hybridization process, to capture the quantifiers A and E, where Aρ
(respectively, Eρ) means that “ρ is true in all the states of the model” (respec-
tively, “ρ is true in some state of the model”) [1]. This can be achieved by taking
as a quantification space the extensions of signatures with nominal symbols; for
instance one may express P |= Eρ by P |=s (∃i)@iρ.

Example 3 (HFOL, HEQ). The application of the hybridization method to
FOL taking as a quantification space signature extensions both with FOL vari-
ables and variables over nominals, captures the state-variables quantification of
first-order hybrid logic of [4].

Binding “state variables” to the point of evaluation highly increase the ex-
pressive power of a hybrid logic, which is enabled through the binder operator
↓ (e.g. [2,4]). This may be achieved by taking i-expansions χ : (Σ, Nom, Λ) ↪→
(Σ, Nom . {i}, Λ) as a quantification space and including, when defining
satisfaction, the condition

– P |=s (↓ χ)ρ iff for any χ-expansion P ′ of P such that iR = s, we have
P ′ |=s ρ.
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As a final example, let us mention the hybridization of EQ with the trivial quan-
tification space. The resulting hybrid equational institution provides a suitable
setting for specifying evolving systems in which each state is endowed with a
specific algebra [20].

4 FOL as a Support to Hybrid Specification

This section studies the existence of encodings of hybrid institutions into FOL.
The relevance of such encodings is to provide proof theoretic support to hybrid
specifications. In particular, we show that any encoding of the base institution I
to FOL may be lifted to an encoding of the quantifier-free hybrid institution HI
to FOL. Our approach to logic encodings relies upon the concept of comorphism,
recalled below from the literature (e.g. [17]).

Definition 4 (Comorphisms). Given institutions I = (Sign, Sen, Mod, |=)
and I ′ = (Sign′, Sen′, Mod′, |=′) a comorphism (Φ, α, β) : I → I′ consists of

1. a functor Φ : Sign → Sign′,
2. a natural transformation α : Sen ⇒ Φ; Sen′, and
3. a natural transformation β : Φop; Mod′ ⇒ Mod

such that the following satisfaction condition holds

M ′ |=′
Φ(Σ) αΣ(e) iff βΣ(M ′) |=Σ e

for each signature Σ ∈ |Sign|, Φ(Σ)-model M ′, and Σ-sentence e.
The comorphism is conservative whenever, for each Σ-model M in I, there

exists a Φ(Σ)-model M ′ in I ′ such that M = βΣ(M ′).

The following is a consequence of conservativity, with the important proof theo-
retic implication that can be proved properties in the source institution by using
the proof system of the target institution in a sound and complete way.

Fact 2. For any set Γ ⊆ Sen(Σ) and sentence ρ ∈ Sen(Σ),

Γ |=Σ ρ iff αΣ(Γ ) |=′
Φ(Σ) αΣ(ρ).

Example 4. One may legitimately wonder about the existence of a canonical
embedding of the base institution I into its hybridization HI in the form of a
comorphism (Φ, α, β) : I → HI. The answer is as follows:

– Φ(Σ) = (Σ, {i}, ∅),
– αΣ(ρ) = @iρ, and
– βΣ(M,R) = MiR .

It is easy to show that this is a conservative comorphism.

Thus, let HI be the quantifier-free hybridization of institution I. Given any

comorphism I
(Φ,α,β)		 FOL we define a comorphism HI

(Φ′,α′,β′)		 FOL by
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Translation of Signatures:

Φ′(Σ, Nom, Λ) = (SΣ + {ST}, FΣ + Nom, PΣ + Λ) where

– Φ(Σ) = (SΣ , PΣ , PΣ) (a FOL signature);

– FΣ =

{
(FΣ)STw→s = (FΣ)w→s for any s ∈ SΣ, w ∈ S∗

Σ

∅, for the other cases
;

– PΣ =

{
(PΣ)STw = (PΣ)w for any w ∈ S∗

Σ ;
∅, for the other cases

– Nom = {i : → ST | i ∈ Nom}
– Λ = {λ : STn | λ ∈ Λn}.

Translation of Models:

β′
(Σ,Nom,Λ)(M) = (M ′, R) where

– R is the reduct M �({ST},Nom,Λ), and
– M ′ : STR → |ModI(Σ)| is defined for each s ∈ S by M ′

s = βΣ(Ms) where
Ms is the Φ(Σ) = (SΣ , PΣ , PΣ)-model defined by
• for each sort ∈ SΣ, sortMs = sortM ;
• for each f ∈ FΣ , fMs(m) = fM (s,m);
• for each π ∈ PΣ , m ∈ πMs iff (s,m) ∈ πM .

Translation of Sentences:

α′
(Σ,Nom,Λ)(ρ) = ∀xα′x

(Σ,Nom,Λ)(ρ), where
α′x

(Σ,Nom,Λ) : SenHI(Σ, Nom, Λ) → SenFOL(Φ′(Σ, Nom, Λ) ∪ {x}) with x a
constant of sort ST, is defined by

– for each ρ ∈ SenI(Σ), α′x(ρ) = αx(αΣ(ρ)) where αx(Σ,Nom,Λ) :
SenFOL(Φ(Σ)) → SenFOL(Φ′(Σ, Nom, Λ) ∪ {x}) is defined by
• αx(t ≈ t′) = αx(t) ≈ αx(t′) where αx(f(t1, . . . , tn))

= f(x, αx(t1), . . . , αx(tn));
• αx(π(t)) = π(x, αx(t));
• αx(ρ1 - ρ2) = αx(ρ1) - αx(ρ2), - ∈ {∨,∧,→};
• αx(¬ρ) = ¬αx(ρ);
• αx(∀y ρ) = ∀y αx(ρ);

– α′x(i) = i ≈ x, i ∈ Nom;
– α′x(@iρ) = α′i(ρ);
– α′x([λ](ρ1, . . . , ρn)) = ∀y1, . . . , yn (λ(x, y1, . . . , yn) →

∧
1≤i≤n α′yi(ρi));

– α′x(ρ1 - ρ2) = α′x(ρ1) - α′x(ρ2), - ∈ {∨,∧,→};

Lemma 1. For any Δ ∈ |SignHI |, ρ ∈ SenFOL(Φ(Σ)), M ′ ∈ ModFOL(Φ′(Δ))
and s ∈ S,

M ′
s |=Φ(Σ) ρ iff M ′s |=Φ′(Δ)+x αx(ρ), (4)

where M ′s denotes the expansion of M ′ to Φ′(Δ) + x defined by xM
′s

= s.



294 M.A. Martins et al.

Theorem 3. For any Δ ∈ |SignHI |, ρ ∈ SenHI(Δ) M ′ ∈ ModFOL(Φ′(Δ)) and
s ∈ S,

β′
Δ(M ′)(|=HI

Δ )sρ iff M ′s |=FOL
Φ′(Δ)+x α′x

Δ(ρ), (5)

where M ′s denotes the expansion of M ′ to Φ′(Δ) + x defined by xM
′s

= s.

Proof. The proof is by induction on the structure of ρ.

Corollary 4 (Satisfaction condition for (Φ′, α′, β′)). (Φ′, α′, β′) is comor-
phism HI → FOL, i.e. for any Δ ∈ |SignHI |, ρ ∈ SenHI(Δ) and M ′ ∈
ModFOL(Φ′(Δ)),

β′
Δ(M ′) |=HI

Δ ρ iff M ′ |=FOL
Φ′(Δ) α′

Δ(ρ).

Example 5 (HEQ2FOL). A simple, but useful example of the construction pro-
posed above arises by its application to the embedding of EQL into FOL, en-
tailing a comorphism HEQL → FOL.

5 Conclusions and Further Work

The paper’s contribution is twofold: first it defines a method to hybridize ar-
bitrary institutions; then it is shown that a comorphism from an arbitrary in-
stitution to FOL gives rise to another comorphism from its (quantifier-free)
hybridization to FOL.

Beyond their intrinsic theoretical interest, the application of these results
seems promising. On the one hand, hybridization of logics is achieved, by this
method, in a systematic way which applies to a broad class of logics. On the
other, our second result paves the way to effective tool support to reasoning
about hybrid specifications, by resorting to FOL-oriented verification tools.

This work also opens a number of interesting research directions. We discuss
below the set of main topics in our agenda.

Remark 1. An aspect of our method, which increases the complexity of hybridiz-
ing arbitrary institutions, is the need for “desconstructing” the base institution.
For instance, in order to hybridize FOL, we have to take in the role of a base in-
stitution its sub-institution of atomic formulas (without quantifiers and boolean
connectives). The same happens in the hybridization of propositional logic (see
Ex. 2). In order to overcome this situation, it is necessary to find a way to pro-
scribe the overloading of connectives at the base and hybrid levels. The problem
may be solved by resorting to the (abstract) notion of boolean connective (cf.
[13, Chap. 3]). For instance, suppose that the institution I has semantical nega-
tion, i.e., that for any ρ ∈ SenI(Σ) there is a ρ′ ∈ SenI(Σ) such that for any
M ∈ |ModI(Σ)|, M |=I

Σ ρ′ iff it is false that M |=I
Σ ρ. Then, in order to

avoid the connective negation, we may replace, in the definition of the hybrid
sentences, negation introduction by

If ρ ∈ SenHI(Σ, Nom, Λ) \ SenI(Σ), then ¬ρ ∈ SenHI(Σ, Nom, Λ),

and similarly for the other boolean connectives. This seems to be enough to
obtain the HFOL from FOL.
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Hybridization of modal logics is a more challenging question: how to introduce
nominals into institutions that already have Kripke semantics? For instance it
is known that CT L defines an institution (cf. [8]) and that there are hybrid ex-
tensions of this logic currently being studied (cf. [19,24]). Actually, this sort of
hybridization falls out of the scope of the method discussed in this paper. Its
application to CT L leads to a kind of “graph of graphs”, raising the question of
how such a double modalization can be avoided. Certainly, there are tricky tech-
nical aspects to overcome. However, the hybridization of a (concrete) institution
with Kripke semantics, i.e., the introduction of nominals and a satisfaction op-
erator on a institution whose models are already of the form

(
S, (Ms)s∈S

)
seems

to be an easy task. Hence, an answer to this problem resorts to the decompo-
sition of the hybridization process into two steps: a modalization followed by a
hybridization. The former, may be defined as in [15] just making a straightfor-
ward generalization to sets of modal symbols Λ. The latter is then applied to
the resulting institution.

Remark 2 (Calculus for hybrid institutions). Comparing the calculus of [2] for
hybrid propositional logic with that of [4] for hybrid first-order logic, a common
structure pops out: they “share” rules involving sentences with nominals and
satisfaction operators (i.e., formulas with “hybrid nature”) and have specific
rules to reason about “atomic sentences” that come from the base institution.
Hence, it makes sense to think about the development of a general proof calculus
for hybrid institutions built on top of the calculus equipping the base institution
in the style of [3,10].

Remark 3 (Modal symbols quantification). Another interesting point to explore
is the power of quantification over modal symbols, for instance by considering
in the quantification space inclusions of the form Λ ↪→ Λ + λ. Using this quan-
tification it seems possible to express general properties about the state space of
a model. For instance, P |=s (∀λ)p → [λ]p means that if p holds in s then it is
invariant in all the model and P |=s (∀λ)p → [λ]q says that if p holds on s then
q holds in another state of the model.

Remark 4 (New case studies). There are many interesting hybrid institutions
that may be obtained by application of the method proposed in this paper. Par-
ticularly interesting case studies are the derivation of both intuitionistic hybrid
logic [9,6] and many-valued hybrid logic [18] from their respective bases.

Remark 5 (On encoding hybridizations to FOL). An important property of logic
encodings, which guarantees the sound and complete borrowing of formal rea-
soning from the target into the source of the encoding, is that they keep un-
changed the consequence relation of the encoded logic (see Fact 2). In the
case of the encoding HI → FOL defined as a comorphism in Section 4 this
would have followed immediately if (Φ′, α′, β′) : HI → FOL were conservative
which in its turn, should be a natural consequence of the conservativeness of
(Φ, α, β) : I → FOL. Unfortunately this latter step does not work in general,
unless the approach is extended by considering also a ‘rigid’ part for signatures
and models as in [15].
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Our current encoding of hybridizations to FOL is limited in its applicability
by the fact that it applies only to encodings of the base institution that can be
expressed as plain comorphisms to FOL. This means that our current result
may be in reality applied to hybridizations of various fragments of FOL but not
to any of the myriad of specification logics that are encoded into FOL by the
so-called ‘theoroidal comorphisms’ [17]. We plan to extend our encoding result
to this more general situation, thus widely enlarging the FOL-oriented formal
reasoning support for hybridized logics.

We also plan to extend our encoding result to quantified hybridizations.

Remark 6 (Model theory for hybridized institutions). A deeper development of
the model theory of a specification formalism always results into a better un-
derstanding of its specification power. Our general hybridization method opens
the door for a general institution-independent approach to the model theory of
hybrid(ized) logics by using techniques from [13]. We believe that the end re-
sult of such investigation would make yet another point in favour of the hybrid
variants of modal logics, as they are expected to exhibit better model theoretic
properties than their non-hybrid variants.

In particular we will consider extending the method of ultraproducts of [15]
from modalized to hybridized institutions, to investigate a general method of
diagrams and the existence of initial semantics for hybridized institutions. The
latter has a special specification theoretic significance: it would give foundational
support for classical algebraic specification style with hybrid(ized) logics. The
method of diagrams, which is a very common model theoretic property of logics
and a technique that pervades a lot of model theoretic results (see [12,13] for its
institution-independent rendering), unfortunately fails on modal logics. However
because of the special “hybrid features” we expect it to hold in some form in
hybrid(ized) logics.
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Abstract. We investigate the phenomenon that every monad is a lin-
ear state monad. We do this by studying a fully-complete state-passing
translation from an impure call-by-value language to a new linear type
theory: the enriched call-by-value calculus. The results are not specific to
store, but can be applied to any computational effect expressible using
algebraic operations, even to effects that are not usually thought of as
stateful. There is a bijective correspondence between generic effects in
the source language and state access operations in the enriched call-by-
value calculus.

From the perspective of categorical models, the enriched call-by-value
calculus suggests a refinement of the traditional Kleisli models of effectful
call-by-value languages. The new models can be understood as enriched
adjunctions.

1 Introduction

Computational effects such as store effects, input/output and control effects are
usually associated with the imperative style of programming, and functional
programming languages exhibiting such behaviour are thought of as “impure”.
However, computational effects can be encapsulated within a purely functional
language by the use of monads [12]. The central idea behind this is to distinguish
between a type of values such as (nat), and a type of computations T (nat) that
may return a value of type nat but can also do other things along the way.
Imperative behaviour can then be encoded using generic effects in the sense of
Plotkin and Power [19]. For example, one can add global store by adding a pair
of terms, assignl : Val → T (1) and derefl : T (Val), for each cell l in the store, or
one can add nondeterminism by adding a constant random: T (1 + 1) computing
a random boolean. Computational effects that can be described using generic
effects are called algebraic and these account for a wide range of effects with the
notable exception of control effects such as continuations.

It is striking that there is no notion of state in the theory of monads. After
all, imperative behaviour is often about changing or branching on the state of
the machine. The notion of state is most naturally associated with certain effects
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like store effects, but in this paper we shall see that all algebraic effects can be
viewed in this way.1

The notion of state plays an important role in operational semantics and
Hoare logic. Indeed, Plotkin and Power [15] have suggested that configurations,
i.e. pairs 〈M, s〉 consisting of a term M to be evaluated and the current state s
of the machine, might form a basis for defining general operational semantics.

In this paper we show how the theory of algebraic effects can be formulated by
taking the notion of state as primitive, rather than the notion of monad. On the
syntactic side we introduce the enriched call-by-value calculus (ECBV). We show
that a special state type in ECBV gives rise to a language that is equivalent to a
fine-grained monadic call-by-value calculus (FGCBV) [11]. On the semantic side
we introduce a notion of enriched call-by-value model which generalises monad
models.

Central to our treatment of state is the idea of linear usage: computations
cannot copy the state and save it for later, nor can they discard the state and
insert a new one instead. This special status of the state was already noted by
Strachey [25] and Scott [24] and has been developed by O’Hearn and Reynolds [13].

Linear usage of state can be expressed syntactically using a linear state passing
style, in which a stateful computation of type A → B is considered as a linear
map of type !A⊗S � !B⊗ S. The type S of states must be used linearly, but
A and B can be used arbitrarily. These type constructions form the basis of
ECBV, which can be considered as a kind of non-commutative linear logic that
is expressive enough to describe the linear usage of state.

Earlier metalanguages for effects, such as the monadic metalanguage [12],
call-by-push-value [10], and the enriched effect calculus [2] have an explicit
monadic type constructor. There is no monadic type constructor in ECBV:
there is a state type S instead. Still, in this fragment one can express all al-
gebraic notions of effects, even the ones that we are not used to thinking of as
“state-like”, using what we call state access operations. For example, the generic
effects assignl, derefl, and random correspond to the following state access
operations:

writel : !Val⊗S � S, readl : S � !Val⊗S, random: S � !(1 + 1)⊗S . (1)

The equivalence of FGCBV and ECBV is proved for extensions of the two calculi
along any algebraic effect theory. The generalisation is formulated using a notion
of effect theory [16] which captures notions of algebraic effects.

The categorical models of ECBV provide a new general notion of model for
call-by-value languages. In brief, an enriched model consists of two categories V
and C such that V has products and distributive coproducts, and C is en-
riched in V with copowers and coproducts. The objects of V interpret ordinary
“value” types, and the objects of C interpret “computation” types (such as the
state type S) which must be used linearly. This class of models encompasses all
Kleisli categories (which have been axiomatised as Freyd categories) and many
1 For this reason we use the terminology “store effects” for the specific (memory access

operations) and reserve “state” for the general notion.
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Eilenberg-Moore categories (which provide a natural notion of model for call-
by-push-value and the enriched effect calculus).

Our approach to proving the equivalence of FGCBV and ECBV is semantic.
We show that the traditional models of effectful call-by-value languages, using
monads and Kleisli constructions, form a coreflective subcategory of the models
of ECBV. The state-passing translation is the unit of the coreflection. Our main
semantic result provides a bijective correspondence between comodel structures
on a state object and model structures on the induced linear state monad. This
extends Plotkin and Power’s correspondence between algebraic operations and
generic effects [19] with a third component: state access operations.

The enriched call-by-value calculus is a fragment of the enriched effect cal-
culus (EEC, [2]). In Section 8 we show that EEC is a conservative extension of
ECBV. This shows that the linear state monad translation from FGCBV into
EEC is fully complete: any term of translated type in the target language corre-
sponds to a unique term in the source language. This result indicates that EEC
is a promising calculus for reasoning about linear usage of effects. The related
paper [3] shows how the linear-use continuation passing translation arises from
a natural dual model construction on models of EEC. In fact, from the point of
view of EEC the two translations are surprisingly similar: the linearly used state
translation is essentially dual to the linearly used continuations translation.

2 Source Calculus: Fine-Grained Call-by-Value

Our source language is a call-by-value language equipped with an equational
theory to be thought of as generated by some operational semantics, as in [14].
We use a variant of fine-grained call-by-value [11], because the explicit separation
of judgements into value and producer judgements fits well with a similar division
in the target language.

We use α to range over type constants. The types are given by the grammar

σ ::= α | 1 | σ × σ | 0 | σ + σ | σ ⇀ σ .

The fine-grained call-by-value calculus (FGCBV) has two typing judgements, one
for values and one for producers. These are written Γ 
v V : σ and Γ 
p M : σ.
The latter should be thought of as typing computations which produce values
in the type judged but may also perform side-effects along the way. In both
judgements the variables of the contexts are to be considered as placeholders
for values. The function space ⇀ is a call-by-value one, which takes a value and
produces a computation. In fact this language is equivalent to Moggi’s monadic
λc: the type construction (1 ⇀ (−)) is a monad. Typing rules along with equality
rules are given in Figure 1.
We can define derived case constructs on producer terms:

casep M of (in1(x1).N1; in2(x2).N2)
def= M tox. (case x of (in1(x1).λw : 1. N1; in2(x2).λw : 1. N2))(')

imagep(M) def= M tox. (image(x)) '
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Γ, x : σ, Γ ′ �v x : σ Γ �v � : 1

Γ �v V : σ1 × σ2

Γ �v πi(V ) : σi

Γ �v V : σi

Γ �v
ini(V ) : σ1 + σ2

Γ �v V1 : σ1 Γ �v V2 : σ2

Γ �v 〈V1, V2〉 : σ1 × σ2

Γ �v V : σ1 + σ2 Γ, xi : σi �v Wi : τ (i = 1, 2)

Γ �v
case V of (in1(x1).W1; in2(x2).W2) : τ

Γ �v V : 0

Γ �v
image(V ) : σ

Γ �v V : σ

Γ �p
return V : σ

Γ �p M : σ Γ, x : σ �p N : τ

Γ �p M tox.N : τ

Γ, x : σ �p N : τ

Γ �v λx : σ. N : σ ⇀ τ

Γ �v V : σ ⇀ τ Γ �v W : σ

Γ �p V W : τ

M = � πi(〈V1, V2〉) = Vi 〈π1(V ), π2(V )〉) = V image(V ) = W [V/x]

case ini(V ) of (in1(x1).W1; in2(x2).W2) = Wi[V/xi] λx : σ. M(V ) = M [V/x]

case V of (in1(x1).W [in1(x1)/x]; in2(x2).W [in2(x2)/x]) = W [V/x] λx : σ. (V x) = V

M tox. return x = M return V tox. N = N [V/x]

(M tox. N) to y. P = M tox. (N to y. P )

Fig. 1. Fine-grained call-by-value. (Equality rules subject to usual conventions.)

where z, w are fresh variables. These constructions have derived typing rules

Γ 
p M : σ1 + σ2 Γ, xi : σi 
p Ni : τ (i = 1, 2)

Γ 
p casep M of (in1(x1).N1; in2(x2).N2) : τ

Γ 
p M : 0

Γ 
p imagep(M) : A
(2)

FGCBV is a skeleton on which one can add specific effects. We will make this
precise in Section 2.1, but we begin with some examples. In the case of global
store, given by some set of cells Loc holding values of some type Val, we add the
following generic effects [19] to FGCBV: for each cell l ∈ Loc, we add producer
term constants derefl and assignl with typing judgements Γ 
p derefl : Val
and Γ 
p assignl(V ) : 1 if Γ 
v V : Val. We add to the theory of equality in
Figure 1 the seven equations for global store proposed by Plotkin and Power [18],
for example the two equations

derefl tox. assignl(x) = return (') (3)
assignl(V ) to x. assignl(W ) = assignl(W ) (4)

which state that reading a cell and then writing the same value is the same as
doing nothing, and that the effect of two writes equals that of the second.

In the case of non-determinism, the generic effect is “random” with typ-
ing judgement Γ 
p random : 1 + 1. The equations are perhaps most easily
described using the algebraic operation corresponding to random, defined as
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MorN
def= casep random of (in1(x).M ; in2(x).N). The derived typing rule says

that Γ 
p M orN : σ if Γ 
p M : σ and Γ 
p N : σ. There are three equations:
associativity, commutativity and idempotency of “or”.

2.1 Effect Theories

We do not want to allow arbitrary extensions of FGCBV. In this section we de-
fine effect theories, which are particularly well-behaved extensions that include
the examples above, of global store and nondeterminism. Effect theories are im-
portant from the semantic point of view because they are a kind of presentation
for enriched algebraic theories, as will be clarified in Section 6.

Plotkin and Pretnar have also defined a notion of effect theory [17, §3]. Their
effect theories can be accommodated in our model. The main difference is in the
presentation: we use generic effects rather than algebraic operations.

By a value signature we shall simply mean a signature for a many-sorted
algebraic theory in the usual sense. This means a set of type constants ranged
over by α, β, and a set of term constants f with a given arity f : (α1, . . . , αn) → β,
where the αi, β range over type constants. We can extend FGCBV along a value
signature by adding the type constants and the typing rule

Γ 
v ti : αi (i = 1, . . . , n)

Γ 
v f(t1, . . . , tn) : β
(5)

for every term constant f : (α1, . . . , αn) → β in the signature. A value theory is
a value signature with a set of equations, i.e. pairs of terms typable in the same
context Γ 
v V = W : β, where V,W are formed only using variable introduction
and the rule (5).

An effect signature consists of a value theory and a set of effect constants each
with an assigned arity e : β̄; ᾱ1 + . . . + ᾱn consisting of a list of type constants
and a formal sum of lists of type constants. FGCBV can be extended along an
effect signature by adding, for every e : β̄; ᾱ1 + . . . + ᾱn a typing judgement

Γ 
v V̄ : β̄

Γ 
p e(V̄ ) : ᾱ1 + . . . + ᾱn
(6)

The hypothesis is to be understood as a vector of typing judgements, and in the
conclusion, the vectors ᾱi should be interpreted as the product of the types in
the vector.

For example, the theory for global store has one value type constant Val,
and for each location l ∈ Loc a pair of effect constants (derefl : 1; Val) and
(assignl : Val; 1). In this case term constants in the value theory can be used to
add basic operations manipulating values in Val. In the case of nondeterminism,
the effect constant random has arity 1; 1 + 1.

An effect theory comprises an effect signature and a set of equations. The
equations are pairs of producer terms-in-context Γ 
p M = N : ᾱ1 + . . . + ᾱn of
a restricted kind. We impose the following restrictions: firstly, Γ must consist
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of variables with type constants, i.e., of the form x : α. Secondly, the terms M
and N must be built from a first order fragment of effect terms. This first order
fragment consists of the first nine rules of Figure 1, the derived rules for sum
types in producer terms (2) and the rules (5) and (6).

We write FGCBVE for FGCBV augmented with an effect theory E.

3 Target Calculus: Enriched Call-by-Value

The target language for the linear state translation is a new calculus called the
enriched call-by-value calculus (ECBV), that we now introduce. It is a fragment
of the enriched effect calculus (EEC), which was introduced by Egger et al. [2] as
a calculus for reasoning about linear usage in computational effects. The types of
ECBV can be understood as a fragment of linear logic that is expressive enough
to describe the linear state monad, S � !(−)⊗S. We will not dwell on the
connection with linear logic here.

The enriched call-by-value calculus has two collections of types: value types
and computation types. We use α, β, . . . to range over a set of value type con-
stants, and α, β, . . . to range over a disjoint set of computation type constants.
We then use A,B, . . . to range over value types, and A,B, . . . to range over
computation types, which are specified by the grammar below:

A ::= α | 1 | A × B | 0 | A + B | A � B

A ::= α | 0 | A ⊕ B | !A⊗B .

Note that the construction !A⊗B is indivisible: the strings !A and A ⊗ B are
not well-formed types. Note also that unlike EEC [2] there is no inclusion of
computation types into value types. Moreover, there are no type constructors
corresponding to F or U as known from CBPV [10].

The enriched call-by-value calculus has two basic typing judgements, written

Γ |− 
 t : B and Γ |z : A 
 t : B (7)

In the first judgement, B is a value type, and in the second judgement, both A
and B need to be computation types. The second judgement should be thought
of as a judgement of linearity in the variable z : A. The typing rules are given in
Figure 2. In the figure, Γ is an assignment of value types to variables, and Δ is
an assignment of a computation type to a single variable, as in (7). The equality
theory includes α, β and η rules and is exactly as for EEC [2, Sec. 3].

We can talk about type isomorphisms in ECBV in the usual way. For value
types, an isomorphism A ∼= B is given by two judgements, x : A |− 
 t : B and
y : B |− 
 u : A, such that u[t/y] = x, t[u/x] = y. For computation types, A ∼= B
is witnessed by closed terms of type A � B, B � A composing in both directions
to identities. We note the following type isomorphisms, inherited from EEC:

A ∼= !1⊗A !A⊗ (!B⊗C) ∼= !(A × B)⊗C (8)
0 ∼= !0⊗B (!A⊗C) ⊕ (!B⊗C) ∼= !(A + B)⊗C (9)
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Γ, x : A |− � x : A Γ |z : A � z : A Γ |− � � : 1

Γ |− � t : A Γ |− � u : B

Γ |− � 〈t, u〉 : A × B

Γ |− � t : A1 × A2

Γ |− � πi(t) : Ai

Γ |− � t : Ai

Γ |− � ini(t) : A1 + A2

Γ |Δ � t : Ai

Γ |Δ � ini(t) : A1 ⊕ A2

Γ |− � t : 0

Γ |− � image(t) : A

Γ |− � s : A1 + A2 Γ, xi : Ai |− � ti : C (i = 1, 2)

Γ |− � case s of (in1(x1). t1; in2(x2). t2) : C

Γ |Δ � t : 0

Γ |Δ � image(t) : A

Γ |Δ � s : A1 ⊕ A2 Γ |xi : Ai � ti : C (i = 1, 2)

Γ |Δ � case s of (in1(x1). t1; in2(x2). t2) : C

Γ |z : A � t : B

Γ |− � λz : A. t : A � B

Γ |− � s : A � B Γ |Δ � t : A

Γ |Δ � s[t] : B

Γ |− � t : A Γ |Δ � u : B

Γ |Δ � !t ⊗ u : !A⊗B

Γ |Δ � s : !A⊗B Γ, x : A |z : B � t : C

Γ |Δ � let !x ⊗ z be s in t : C

Fig. 2. Typing rules for the enriched call-by-value calculus

Given an effect signature E (Sec. 2.1), we add effects to ECBV as follows.
We assume that there is a distinguished computation type constant S, called the
state type. For each effect constant e : β̄; ᾱ1 + . . . + ᾱn, we add a closed term,
called a state access operation:

e : !β̄⊗S � !(ᾱ1 + · · · + ᾱn)⊗ S (10)

In order to add the equations from an effect theory to ECBV, we need to
give interpretations to effect terms. In Section 4 we are going to translate all of
FGCBV into ECBV, so we postpone this to there.

We write ECBVS
E for the enriched effect calculus extended over the effect

theory E as described above.

Examples 1. The effect theories of global store and of non-determinism will give
rise to the state access operations readl, writel, and random in (1).

Note that readl : S � !Val⊗ S returns a state that must be used linearly
and a result value of the read operation that can be used arbitrarily. One of
the equations (3) for global store requires writel(readl(s)) = s; another one (4)
says writel(!v ⊗ (writel(!w ⊗ s))) = writel(!v ⊗ s).
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4 The State-Passing Translation

We now describe the state-passing translation from FGCBV to ECBV. We
translate FGCBVE types σ to ECBVS

E value types σ◦:

α◦ = α (σ × τ)◦ = σ◦ × τ◦ 1◦ = 1
(σ ⇀ τ)◦ = !(σ◦)⊗ S � !(τ◦)⊗ S (σ + τ)◦ = σ◦ + τ◦ 0◦ = 0

The translation takes value type judgements Γ 
v V : σ to ECBV judgements
Γ ◦ |− 
 V ◦ : σ◦ and it takes producer judgements Γ 
p M : σ to ECBV judge-
ments Γ ◦ |s : S 
 M◦ : !(σ◦)⊗S, as follows.

x◦ = x �◦ = � 〈V, W 〉◦ = 〈V ◦, W ◦〉
(πi(V ))◦ = πi(V

◦) (image(V ))◦ = image(V ◦) (ini(V ))◦ = ini(V
◦)

(λx : σ. N)◦ = λz : !σ◦ ⊗S. let !x ⊗ s be z in N◦ (V W )◦ = V ◦[!(W ◦) ⊗ s]

(M tox. N)◦ = let !x ⊗ s be M◦ in N◦ (return V )◦ = !(V ◦) ⊗ s

(case V of (in1(x1).W1; in2(x2).W2))◦ = case V ◦ of (in1(x1).W ◦
1 ; in2(x2).W ◦

2 )

We translate generic effects to state operations: (e(V̄ ))◦ = e(!〈V ◦
1 , . . . , V ◦

m〉 ⊗ s).
We are now in a position to add the equations of an effect theory to ECBV.
For each equation Γ 
p M = N : ᾱ1 + . . . + ᾱn in the effect theory, we add the
equation Γ ◦ |s : S 
 M◦ = N◦ : !(ᾱ◦

1 + . . . + ᾱ◦
n)⊗S to ECBVS

E .

Theorem 2 (Soundness). If V = W then V ◦ = W ◦; if M = N then M◦ = N◦.

Theorem 3 (Fullness on types). Let A be a value type of ECBV formed using
no other computation type constants than S. Then there exists a FGCBV type σ
such that σ◦ ∼= A.

Proof. By induction on the structure of types. The interesting case A � B uses
the fact that any computation type not using any α other than S is isomorphic
to one of the form !C⊗ S, which follows from the isomorphisms (8) – (9). %&
We now state our main syntactic result.

Theorem 4 (Full completeness). Suppose Γ 
v V,W : σ and Γ 
p M,N : σ.

1. If V ◦ = W ◦ then V = W . If M◦ = N◦ then M = N .
2. For any Γ ◦ |− 
 t : σ◦ there exists a term Γ 
v V : σ such that t = V ◦.
3. For any Γ ◦ |s : S 
 t : !(σ◦)⊗S there exists Γ 
p M : σ such that t = M◦.

Theorem 4 can be proved syntactically as follows. Consider first the fragment of
ECBV with no other computation type constants than S, and only the value type
constants of FGCBVE . This fragment is equivalent to a variant of ECBV where
the only computation types are the ones of the form !A⊗ S with corresponding
variants of the typing rules for !A⊗B. The translation (−)◦ gives a bijection
from FGCBVE types to value types of ECBVS

E , and one can define an inverse
to this translation. Further type constants can be added to ECBVS

E without
changing the result; this can be proved via a normalization theorem for ECBVS

E

which follows the one for EEC (to appear in [4]).
In Section 7.1 we sketch a semantic proof of Theorems 3 and 4.
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5 Categorical Models

By studying categorical models, we are able to give a canonical, universal status
to the two calculi that we have considered so far, and also to the state-passing
translation. In Section 7, the full completeness of the state-passing translation
will be explained as an equivalence of free categories.

5.1 Monad Models of the Fine-Grained Call-by-Value Calculus

Terminology. Recall that a distributive category is a category with finite prod-
ucts and coproducts, such that the canonical morphisms ((A×B) + (A×C)) →
(A× (B + C)) and 0 → A× 0 are isomorphisms.

Definition 5. A monad model of FGCBV (or simply a monad model) is a
distributive category V with a strong monad T and Kleisli-exponentials (that is,
exponentials of the form (A → T (B))).

A semantics for FGCBV is given in a monad-model in a standard way. For
instance, [[σ ⇀ τ ]] = ([[σ]] → T ([[τ ]])). A value type judgement Γ 
v V : σ is
taken to a morphism [[Γ ]] → [[σ]], and a producer type judgement Γ 
p M : σ is
taken to a morphism [[Γ ]] → T ([[σ]]). This defines a sound and complete notion
of model for FGCBV (e.g. [11]). In particular, the types and terms of FGCBV
form a syntactic model, which is initial (with respect to an appropriate notion
of morphism).

5.2 Enriched Call-by-Value Models

The categorical notion of model for ECBV involves basic concepts from en-
riched category theory [9]. Let us recall some rudiments. Following [7,6], we
begin with actions of categories. Let V be a category with finite products.
Recall that an action of V on a category C is a functor · : V ×C → C to-
gether with coherent natural unit and associativity isomorphisms, (1 ·A) ∼= A
and ((A ×B) · C) ∼= (A · (B · C)). (We underline objects of C to distinguish
them from objects of V.) An enrichment of a category C in V with copowers is
determined by an action of V on C such that each functor (− · A) : V → C has
a right adjoint, C(A,−) : C → V. Then A ·B is called a copower, and C(A,B) is
called enrichment. Recall also that a power is a right adjoint to (A · −) : C → C
(we will need this in Section 6).

If C is enriched in V with copowers, and C has finite coproducts, then the
coproducts in C are enriched if each functor (A · −) : C → C preserves them.

Definition 6. An enriched call-by-value model (or simply enriched model) is
given by a distributive category V and a category C enriched in V with copowers
and enriched finite coproducts. A model of ECBVS is given by an enriched call-
by-value model together with a chosen object S of C.
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A semantics for ECBV in an enriched model is given similarly to the semantics
of EEC [2]. For each value type A, an object [[A]] of V is given, and for each
computation type A, an object [[A]] of C is given. The product and sum types
are interpreted as products and coproducts in V and C. We let [[!A⊗B]] = ([[A]] ·
[[B]]), and [[A � B]] = C([[A]], [[B]]). The specified object S in an ECBVS model
interprets S. A judgement Γ |− 
 t : A is interpreted as a morphism [[Γ ]] → [[A]]
in V, and a judgement Γ |Δ 
 t : A is interpreted as a morphism [[Γ ]]·[[Δ]] → [[A]]
in C. The types and terms of ECBV form a syntactic model which is initial with
respect to an appropriate notion of morphism.

5.3 From Enriched Models to Monad Models and Back

Given a monad model (V, T ) there is a monoidal action V × Kl(T ) → Kl(T )
on the Kleisli category defined on objects as the product functor and defined on
morphisms using the strength of T . The Kleisli category Kl(T ) is V-enriched
because V has Kleisli exponentials.

Proposition 7. If (V, T ) is a monad model (in the sense of Definition 5) then
(V,Kl(T ), 1) is an ECBVS model (in the sense of Definition 6).

On the other hand, if (V,C) is an enriched model, we will say that an adjunction
F � U : C → V is enriched if there is a natural coherent isomorphism F (A×B) ∼=
A · F (B). When V is cartesian closed, this is equivalent to the usual definition,
i.e. a natural isomorphism C(F (−), =) ∼= V(−, U(=)) (see e.g. [8]).

The choice of S in ECBVS models gives an enriched adjunction, since (− · S)
is left adjoint to C(S,−) : C → V. The following proposition (first noted noted
for EEC [3], though it does not appear explicitly there) shows that every enriched
adjunction arises in this way:

Proposition 8 ([3]). Let (V,C) be an enriched model. If F � U : C → V is an
enriched adjunction then it is naturally isomorphic to the enriched adjunction
induced by F (1).

So we can equivalently consider ECBVS models as enriched adjunctions.
Given an enriched adjunction, the corresponding monad gives a monad model.

In particular:

Proposition 9. If (V,C, S) is an ECBVS model then (V,C(S,− · S)) is a
monad model.

If we start with a monad model, take the corresponding ECBVS model (via
Prop. 7) and then go back (via Prop. 9), we get a monad model that is equivalent
to the one that we started with. This is simply because Kl(T )(1, A×1) ∼= T (A).
We have the slogan: Every monad is a linear state monad.

We shall prove later that this connection between monad models and enriched
models can be understood as a coreflection.
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5.4 Remark: Closed Freyd Categories

Closed Freyd categories [20] are an alternative way of presenting monad models.
Freyd categories are usually defined using premonoidal categories [23], but we
will use the following equivalent definition using actions (following [10, App. B]).
A distributive closed Freyd category [22] can be described as an enriched model
(V,C) together with an identity on objects functor J : V → C that preserves
the action (i.e. J(A × B) = A · J(B)).

If (V, T ) is a monad model the inclusion V → Kl(T ) is a distributive closed
Freyd category, and every distributive closed Freyd category arises in this way.
By removing the requirement that V and C have the same objects, we discover
the more general class of enriched models.

6 Models and Comodels of Effect Theories

We define what it means for monad models and enriched models to model an
effect theory (in the sense of Sec. 2.1).

Models of Value Theories. Let V be a distributive category. An interpretation
of a value signature in V is given by interpretations of the type constants α as
objects [[α]] of V, and interpretations of term constants f : ᾱ → β as morphisms
[[f ]] : [[ᾱ]] → [[β]]. This is extended to interpret a term in context Γ 
v V : β as a
morphism [[V ]] : [[Γ ]] → [[β]]. An interpretation of a value theory is an interpreta-
tion of the signature such that [[V ]] = [[W ]] for each equation Γ 
v V = W : β.

Interpreting Effect Theories in Monad Models. An interpretation of an effect
theory E in a monad model (V, T ) is an interpretation of the value theory in V
and an interpretation of each effect constant e : β̄; ᾱ1 + · · ·+ ᾱn in E as a Kleisli
map [[e]] : [[β̄]] → T ([[ᾱ1]] + · · · + [[ᾱn]]), satisfying the equations of the theory.

Effects and Enriched Models. In enriched models, according to (10), every effect
constant should be interpreted as a morphism [[e]] : [[β̄]]·S → ([[ᾱ1]]+ · · ·+[[ᾱn]])·S
in C. We can relate these to the Kleisli maps of the monad model, extending the
bijective correspondence between algebraic operations and generic effects [19]:

Proposition 10. Let (V,C) be an enriched model and consider S in C. The
following sets are in natural bijection:

1. State access operations: morphisms A · S → B · S in C.
2. Generic effects for the induced monad: morphisms A → C(S,B · S) in V.
3. Algebraic operations in C: families of morphisms C(S,X)B → C(S,X)A

natural in X in C.

(Although we do not assume that V is cartesian closed, the exponentials men-
tioned in Item 3 always exist.)

To explain the status of the special object S we provide a general notion of
model for effect theories.
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Interpretations of Effect Theories in General. For a moment, let V be a dis-
tributive category, and let A be a category enriched in V with powers. Consider
an effect signature E and an interpretation of the value theory in V. A model
of E in A consists of an object A of A together with, for each effect constant
e : β̄; ᾱ1 + · · · + ᾱn in E, a morphism [[e]] : A�ᾱ1�+···+[[ᾱn]] → A�β̄� in A.

To describe when a model satisfies equations in an effect theory, we need to
give a semantics to effect terms. (Recall that an effect term is a first order term
of FGCBV.) In any model A of an effect signature, we interpret an effect term
typing judgement Γ 
p M : τ as a morphism [[M ]] : A�τ� → A�Γ � in A, by induc-
tion on the structure of typing derivations. For instance, consider the casep rule
in (2). Given interpretations �M� : A�σ1+σ2� → A�Γ � and �Ni� : A�τ� → A�Γ,σi�

(i = 1, 2), we define �casep M of (in1(x1).N1; in2(x2).N2)� to be the composite

A�τ� (�N1�,�N2�)−−−−−−−→ A�Γ,σ1�×A�Γ,σ2� ∼= A(�σ1+σ2�)×�Γ � �M��Γ �

−−−−−→ A�Γ �×�Γ � AΔ

−−→ A�Γ �.

As another example, �returnV � = A�V �. A model of an effect theory in A is a
model of the effect signature such that every effect equation Γ 
 M = N : τ in
the theory is satisfied, i.e. [[M ]] = [[N ]].

In an enriched model (V,C), we have a category C enriched in V with
copowers. This means that Cop is enriched in V with powers. A comodel in
C is a model in Cop.

Definition 11. An ECBVS
E model is an ECBVS model with a given E-comodel

structure on S.

Proposition 12. Let (V,C) be an enriched model and consider S in C. The
following data are equivalent.

1. An E-comodel structure for the object S.
2. An E-model structure for the induced monad model.
3. For each effect constant e : β̄; ᾱ1 + · · · + ᾱn a family of morphisms∏

iC(S,X)�ᾱi� → C(S,X)�β̄� natural in X

equipping each C(S,X) with the structure of a model of E.

Example 13. Let Val, Loc be sets of values and locations respectively, and let S
be the set of functions (Loc → Val). The category Set is enriched in itself with
copowers given by products, and indeed S is a comodel for the theory for global
store in the enriched model (Set,Set). The induced monad on Set is ((−)×S)S .
Power and Shkaravska [21] showed that S is the final comodel of global store.

7 Categories of Models and Full Completeness

We sketch how the constructions of Propositions 7 and 9 extend to define adjoint
2-functors between a 2-category of monad models and a 2-category of enriched
models. We sketch how to use these results to prove full completeness of the
linear state monad translation.
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Let ENR be the 2-category whose objects are ECBVS models (V,C, S). A
1-cell (V,C, S) → (V′,C′, S′) is a pair of functors F : V → V′, G : C → C′

together with an isomorphism GS ∼= S′ and a natural isomorphism G(A · B) ∼=
(F (A)) · (G(B)) whose mate is an isomorphism F (C(B,C)) ∼= C′(GB,GC), and
such that F preserves products and coproducts and G preserves coproducts (up
to isomorphism). The 2-cells are natural coherent isomorphisms.

Let MND be the 2-category whose objects are monad models (V, T ). A 1-cell
(V, T ) → (V′, T ′) is a functor F : V → V′ together with a natural isomorphism
φ : T ′F ∼= FT making (F, φ) a monad morphism [26], and such that F preserves
products and coproducts, strengths and Kleisli exponentials. The 2-cells are
natural coherent isomorphisms.

These definitions can be extended to 2-categories ENRE , MNDE whose
objects are models of effect theories in the sense of Section 6 and whose 1-cells
are required to preserve the interpretations of the theories.

Theorem 14. The constructions of Propositions 7 and 9 extend to a 2-adjunction
whose unit is an isomorphism: Kleisli � StateMnd : ENRE → MNDE.

The 2-adjunction is a restriction of a well known 2-adjunction between the
category of monads and the category of adjunctions.

7.1 Full Completeness

We now provide a semantic argument to explain Theorems 3 and 4. Since the
2-functor Kleisli : MNDE → ENRE is a left adjoint, it preserves free con-
structions up to equivalence. In particular it takes the syntactic monad model
(Vfgcbv, 1 ⇀ (−)), built from the syntax of FGCBV, to the syntactic enriched
model (Vecbv, Cecbv), built from the syntax of ECBVS with exactly one compu-
tation type constant, S. In consequence, the morphism of monad models that
describes the state-passing translation of Section 4,

(Vfgcbv, 1 ⇀ (−)) −→ (Vecbv, S � (!(−)⊗S))

is equivalent to the unit of the 2-adjunction Kleisli � StateMnd, and thus it
is an equivalence of categories. In other words, it is essentially surjective and
full and faithful, providing a categorical proof of Theorems 3 and 4 respectively
(under the assumption that ECBV has exactly one computation type constant).

8 The Enriched Effect Calculus

The enriched effect calculus (EEC) of Egger et al. [2] extends the enriched call-
by-value calculus that we introduced in Section 3 with some type constructions:

A ::= . . . | A → B | α | 0 | A ⊕ B | !A⊗B | !A
A ::= · · · | 1 | A × B | A → B | !A .
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The additional types have been used to describe other aspects of effectful com-
putation, such as the traditional monadic call-by-name and call-by-value inter-
pretations, and continuation-passing. The additional types of EEC do not affect
the full completeness of the linear state-passing translation (Thm. 4), for the fol-
lowing reason. In Proposition 16 we show that every model of ECBV embeds in
a model of EEC; conservativity of EEC over ECBV then follows from a strong
normalisation result for EEC [4]. Thus the linear state-passing translation of
Section 4 can be understood as a fully complete translation into EEC.

Definition 15 ([2]). A model of EEC (V,C, F, U) is given by a cartesian closed
category V with coproducts, a V-enriched category C with products and coprod-
ucts and powers and copowers, and an enriched adjunction F � U : C → V.

We refer to [2] for the term calculus and interpretation of EEC into EEC models.
Here, for brevity, we work directly with models.

Clearly every EEC model is an enriched model of ECBV in the sense of
Definition 6. Conversely:

Proposition 16. Every enriched model of ECBV embeds in an EEC model.

Proof (sketch). Consider an enriched model (V,C) (in the sense of Def. 6).
For any category A with finite coproducts, let FP(Aop,Set) be the category

of finite product preserving functors Aop → Set and natural transformations
between them. This category is the cocompletion of A as a category with finite
coproducts (e.g. [5], [23], [9, Thms 5.86, 6.11]).

We will show that (FP(Vop,Set), FP(Cop,Set)) is an EEC model, and that
(V,C) embeds in it as an enriched model. For general reasons, FP(Vop,Set)
and FP(Cop,Set) have products and coproducts, and the Yoneda embeddings
(V ↪→ FP(Vop,Set), C ↪→ FP(Cop,Set)) preserve them. Since V is distributive,
FP(Vop,Set) is cartesian closed (see [5]).

We now show that FP(Cop,Set) is enriched in FP(Vop,Set) with powers
and copowers. Recall the construction of Day [1], which induces a monoidal
biclosed structure on Â (= [Aop,Set]) for every monoidal structure on any cat-
egory A. We develop this in two ways. First, the monoidal action of V on C
induces a monoidal action V̂ × Ĉ → Ĉ which has right adjoints in both argu-
ments. Secondly, the monoidal action of V̂ on Ĉ restricts to a monoidal action
FP(Vop,Set) × FP(Cop,Set) → FP(Cop,Set) and the right adjoints restrict
too. (This second observation relies on the fact that V is considered with the
cartesian monoidal structure.) Thus FP(Cop,Set) is enriched in FP(Vop,Set)
with copowers and powers.

Finally, the enriched adjunction F � U : FP(Cop,Set) → FP(Vop,Set) can
be induced by any choice of object of FP(Cop,Set), by Proposition 8. %&

The construction described in this proof is inspired by the following situation.
Let Setf be the category of finite sets, and let T be a Lawvere theory. Then
(Setf , Top) is almost an enriched model, except that the category Top is not
Setf -enriched in general. Our construction, applied to (Setf , Top), yields the
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basic motivating example of an EEC model: FP(Setop
f ,Set) is the category of

sets (since Setf is the free category with finite coproducts on one generator) and
FP(T,Set) is the category of algebras of the theory.

Acknowledgements. We thank Alex Simpson for help and encouragement. Also
thanks to Lars Birkedal, Jeff Egger, Masahito Hasegawa, Shin-ya Katsumata
and Paul Levy for helpful discussions.
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Proving Safety Properties of Rewrite Theories
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Abstract. Rewrite theories are a general and expressive formalism for
specifying concurrent systems in which states are axiomatized by equa-
tions and transitions among states are axiomatized by rewrite rules. We
present a deductive approach for verifying safety properties of rewrite
theories in which all formal temporal reasoning about concurrent tran-
sitions is ultimately reduced to purely equational inductive reasoning.
Narrowing modulo axioms is extensively used in our inference system to
further simplify the equational proof obligations to which all proofs of
safety formulas are ultimately reduced. In this way, existing equational
reasoning techniques and tools can be directly applied to verify safety
properties of concurrent systems. We report on the implementation of
this deductive system in the Maude Invariant Analyzer tool, which pro-
vides a substantial degree of automation and can automatically discharge
many proof obligations without user intervention.

1 Introduction

Safety properties of concurrent systems are among the most important proper-
ties to verify and have received extensive attention in many formal approaches,
both algorithmic and deductive. Algorithmic approaches such as model checking
are quite attractive because they are automatic. However, they often assume a
finite-state system and are not directly applicable to infinite state systems.

This paper is part of a broader effort to develop generic methods to reason
about temporal logic properties of concurrent systems. It advances such an effort
by developing deductive methods and tools for proving two key safety proper-
ties, namely, stability and invariance, plus their combination by strengthening
techniques. By “generic” we mean verification methods not tied to a specific pro-
gramming language. By contrast, the UNITY logic [2] and deductive methods
developed by Manna and Pnueli [11], are tailored to verify safety properties of
concurrent programs in specific imperative languages.

Of course, any such generic approach requires a logical framework general
enough to encompass many different models and languages. In our case we use
the rewriting logic framework [12], which has been shown to express very nat-
urally many different models of concurrent computation and many concurrent
languages. In rewriting logic, a concurrent system such as, for example, a network
protocol or an entire concurrent programming language such as Java, is specified
as a rewrite theory R = (Σ,E,R), with (Σ,E) an equational theory specifying

A. Corradini, B. Klin, and C. Ĉırstea (Eds.): CALCO 2011, LNCS 6859, pp. 314–328, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the system’s states as elements of the initial algebra TΣ/E , and R a collection
of (non-equational) rules specifying the system’s concurrent transitions in the
initial reachability model TR [1]. This precisely means that the states of such an
initial model are the elements of TΣ/E and that its one-step transitions between
such states are provable rewrite steps by the rules R.

Safety properties are a special type of inductive properties. That is, they do
not hold for just any model of the given rewrite theory R but for TR. Therefore,
given any safety property ϕ we are interested in the model-theoretic satisfaction
relation TR |= ϕ, which we approximate deductively by an inductive inference
relation R � ϕ which we prove always implies TR |= ϕ. The inference rules
transform pairs of the form R�ϕ into other pairs R′ � ϕ′ in such a way that:
(i) all temporal logic formulas eventually disappear and are replaced by purely
equational conditional formulas of the form (∀X) t = u if C, and (ii) the rewrite
theory R = (Σ,E,R) is eventually replaced by the equational theory (Σ,E). Our
methods focus on automatically discharging as many such conditional formulas
as possible by procedures which either: (i) narrow the condition C, (ii) show C
to be unfeasible, or (iii) prove t = u assuming condition C. Proofs of all results
presented here are included in [16].

We report on the implementation of the above-mentioned inductive infer-
ence system in the Invariant Analyzer tool (InvA), which provides a substantial
degree of mechanization and can automatically discharge many proof obliga-
tions without user intervention. InvA uses functionality from Maude and its
Church-Rosser Checker tool to discharge as many proof obligations as possi-
ble. It then returns the remaining proof obligations for the user to interac-
tively discharge them by using, for instance, Maude’s Inductive Theorem Prover.
Throughout we use Lamport’s infinite-state “bakery” protocol as a running ex-
ample in the syntax of Maude [4]; other examples and the InvA tool are available
from http://camilorocha.info.

2 Preliminaries

We assume an order sorted signature Σ = (S,≤, F ) with finite poset of sorts
(S,≤) and a finite set of function symbols F . We also assume that: (i) each
connected component of a sort s ∈ S in the poset ordering has a top sort,
denoted by [s], and (ii) for each operator declaration f ∈ Fs1...sn,s there is also
a declaration f ∈ F[s1]...[sn],[s]. We let X = {Xs}s∈S be an S-sorted family of
disjoint sets of variables with each Xs countably infinite. The set of terms of sort
s is denoted by TΣ(X)s and the set of ground terms of sort s is denoted by TΣ,s,
which we assume nonempty for each s. TΣ(X) and TΣ denote the respective
term algebras. The set of variables of a term t is written vars(t) and is extended
to sets of terms in the natural way. A substitution θ is a sorted map from a finite
subset dom(θ)⊆X to TΣ(X) and extends homomorphically in the natural way;
ran(θ) denotes the set of variables introduced by θ and tθ the application of θ
to a term t. Substitution θ1θ2 is the composition of substitutions θ1 and θ2. A
substitution θ is called ground if ran(θ) = ∅.

http://camilorocha.info
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A Σ-equation is a sentence (∀X) t = u if C, where t = u is a Σ-equality with
t, u ∈ TΣ(X)s for some sort s ∈ S and the condition C is a finite conjunction of
Σ-equalities. An equational theory is a pair (Σ,E) with order-sorted signature
Σ and finite set of Σ-equations E. For ϕ a Σ-equation, (Σ,E) 
 ϕ iff ϕ can
be proved from (Σ,E) by the deduction rules in [13] iff ϕ is valid in all models
of (Σ,E). An equational theory (Σ,E) induces the congruence relation =E on
TΣ(X) defined for any t, u ∈ TΣ(X) by t =E u iff (Σ,E) 
 (∀X) t = u. Σ-
algebras TΣ/E(X) and TΣ/E denote the quotient algebras induced by =E over
the algebras TΣ(X) and TΣ ; we call TΣ/E the initial algebra of (Σ,E). An E-
unifier for a Σ-equality t = u is a substitution θ such that tθ =E uθ. A complete
set of E-unifiers for a Σ-equality t = u is written CSUE(t = u), and it is called
finitary if it contains a finite number of E-unifiers. We let GUE(t = u) denote
the set of ground E-unifiers of a Σ-equality t = u.

A Σ-rule is a sentence (∀X) t → u if C, where t → u is a Σ-sequent with
t, u ∈ TΣ(X)s for some sort s ∈ S and the condition C is a finite conjunction of
Σ-equations. A rewrite theory is a tuple R = (Σ,E,R) with equational theory
ER = (Σ,E) and a finite set of Σ-rules R. A topmost rewrite theory is a rewrite
theory R = (Σ,E,R), where for some top sort s = [s], terms l, r ∈ TΣ(X)s in
each (∀X) l → r if C ∈ R, l /∈ X , and no operator in Σ has s as argument sort.
For R = (Σ,E,R) and ϕ a Σ-rule, R 
 ϕ iff ϕ can be obtained from R by the
deduction rules in [1] iff ϕ is valid in all models of R. For ϕ a Σ-equation, R 
 ϕ
iff ER 
 ϕ. A rewrite theory R = (Σ,E,R) induces the rewrite relation →R on
TΣ/E(X) defined for every t, u ∈ TΣ(X) by [t]E →R [u]E iff there is a one-step
rewrite proof R 
 (∀X) t → u. We let R 
 (∀X) t → u and R 
 (∀X) t

∗→ u
respectively denote a one-step rewrite proof and an arbitrary length (but finite)
rewrite proof in R from t to u. TR = (TΣ/E ,

∗→R) is the initial reachability model
of R = (Σ,E,R) [1]. A Σ-sentence (∀Y ) ϕ is an inductive consequence of R iff
R � (∀Y ) ϕ iff (∀θ : Y −→ TΣ)R 
 ϕθ iff TR |= ϕ.

State Predicates. A set of state predicates Π for R = (Σ,E,R) can be
equationally-defined by an equational theory EΠ = (ΣΠ , E . EΠ). Signature
ΣΠ contains Σ, two sorts Bool ≤ [Bool] with constants ( and ⊥ of sort Bool,
predicate symbols p : s −→ [Bool] for each p ∈ Π , and optionally some aux-
iliary function symbols. Equations in EΠ define the predicate symbols in ΣΠ
and auxiliary function symbols, if any; they protect1 (Σ,E) and the equational
theory specifying sort Bool, constants ( and ⊥, and the Boolean operations.
It is easy to define a state predicate p ∈ Π as a Boolean combination of other
already-defined state predicates {p1, . . . , pn} in ΣΠ , so that the choice of focus-
ing on atomic state predicates is mainly to simplify the exposition but does not
limit the general applicability of our results. For the safety properties treated in
this paper, only the positive case is needed to define a predicate’s p semantics.
The reason why p has typing p : s −→ [Bool] instead of p : s −→ Bool, is to
allow partial definitions of p with equations that only define the positive case by

1 A theory inclusion (Σ, E) ⊆ (Σ′, E′) is protecting iff the unique Σ-homomorphism
TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′ is an isomorphism.
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equations (∀Y ) p(t) = ( if C, and either leave the negative case implicit or may
only define some negative cases with equations (∀Y ) p(t′) = ⊥ if C′ without
necessarily covering all the cases.

LTL Semantics. For p ∈ Π and [t]E ∈ TΣ/E,s, the semantics of p in TR is
defined by EΠ as follows: we say that p([t]E) holds in TR iff EΠ 
 p(t) = (. This
defines the Kripke structure KΠR = (TΣ/E,s,→R, LΠ) with labeling function LΠ
such that, for each [t]E ∈ TΣ/E,s, p ∈ LΠ([t]E) iff p([t]E) holds in TR. Then,
all of LTL can be interpreted in KΠR in the standard way [3], including its first-
order version. This remark is used in what follows to view some of our results
as inference rules for reasoning about LTL properties of KΠR .

Executability Conditions. We assume that the set of equations of a rewrite
theory R can be decomposed into a disjoint union E .A, with A a collection of
axioms (such as associativity, and/or commutativity, and/or identity) for which
there exists a matching algorithm modulo A producing a finite number of A-
matching substitutions, or failing otherwise. The second condition is that the
equations E can be oriented into a set of ground sort-decreasing, ground conflu-
ent, and ground terminating rules

−→
E modulo A. We let [canΣ,E/A(t)]A ∈ TΣ/A,s

denote the E-canonical form of [t]A. The rules R in R are assumed to be ground
coherent relative to the equations E modulo A [20].

Free Constructors. For R = (Σ,E.A,R) we say that Ω ⊆ Σ is a signature of
free constructors modulo A if for each sort s in Σ and t ∈ TΣ,s there is u ∈ TΩ,s
satisfying t =E�A u and for any v ∈ TΩ,s canΣ,E/A(v) =A v. Since R is ground
coherent, the requirement l ∈ TΩ(X) for each (∀X) l → r if C ∈ R is natural.

3 Ground Stability

For R = (Σ,E,R) a topmost rewrite theory, let p be a state predicate on the
set of states TΣ/E,s of TR. The property p being (ground) stable for R is the
safety property TR |= p ⇒ �p. That is, if p holds in a state [t]E ∈ TΣ/E,s of TR,
then p holds in any state [t′]E such that [t]E

∗→R [t′]E . The concept of ground
stability for R is intimately related to the notion of TΣ/E being closed under
→R, namely, R being ground p-stable exactly means that the subset of TΣ/E,s
satisfying p is closed under →R.

Definition 1. Let R = (Σ,E,R) be a topmost rewrite theory and let Π be a set
of state predicates for R equationally defined in EΠ = (ΣΠ , E.EΠ). For p ∈ Π,
R is called ground p-stable under R0 ⊆ R iff, for each t, u ∈ TΣ,s, EΠ 
 p(t) = (
and (Σ,E,R0) 
 t

∗→ u imply EΠ 
 p(u) = (. R is ground p-stable, written
R � p ⇒ �p, iff R is ground p-stable under R.

For a topmost rewrite theory R = (Σ,E,R), the reachability condition in the
definition of ground stability can be reduced to a simpler 1-step rewrite condition,
obtaining an equivalent notion that avoids arbitrary depth proof-search.
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R � p ⇒ ©p

R � p ⇒ �p
G-St

EΠ �
∧

((∀X) l→r if C)∈R
(θ,w,D)∈Θ(l)

(∀ran(θ)) p(rθ) = � if Cθ ∧ Dθ ∧ wθ = �

R � p ⇒ ©p
Nr1

Fig. 1. Ground p-stability for R = (Σ, E, R), with Θ as in Theorem 1

Lemma 1. Let R, EΠ , p, and R0 be as in Definition 1. Then R is ground p-
stable under R0 iff, for each t, u ∈ TΣ,s, EΠ 
 p(t) = ( and (Σ,E,R0) 
 t → u
imply EΠ 
 p(u) = (.

In the notation of Linear Time Temporal Logic (LTL), Lemma 1 justifies the
soundness of the inference rule G-St in Figure 1 that shows how to reason about
p-stability in KΠR . Symbol “©” corresponds to the next operator and symbol
“⇒” to strong implication in LTL (see [10] for details). So, for KΠR |= p ⇒ �p
to hold, it is enough to show that KΠR |= p ⇒ ©p holds. Lemma 1 shows that
the converse of inference rule G-St is also sound.

The next question to ask is how to reduce the verification of the simpler
condition p ⇒ ©p to inductive equational reasoning. We use the idea of (one-
step) narrowing with equations modulo axioms [9], a sound and complete method
for ground stability analysis, to reduce the inductive reachability problem of
p-stability for TR to equational inductive properties of TER .

Under the executability assumptions, R has a disjoint union E . A of equa-
tions, with A a collection of structural axioms on some function symbols in Σ
such as associativity, commutativity, identity, etc., and E a set of ground sort-
decreasing, ground confluent, ground terminating, and ground coherent (w.r.t.
R) equations modulo A. For a combination of free and associative and/or com-
mutative and/or identity axioms, except for symbols f that are associative but
not commutative, a finitary A-unification algorithm exists. Instead, in general
there is no finitary E.A-unification algorithm, but for Ω ⊆ Σ a signature of free
equational constructors modulo A and a Ω-equality t = u, the ground instances
of CSUA(t = u) exactly characterize the set GUE�A(t = u).

Lemma 2. Let E = (Σ,E.A) be an order-sorted equational theory with finitary
A-unification algorithm, and with Ω ⊆ Σ a signature of free constructors modulo
A. Then, for any Ω-equality t = u, α ∈ GUE�A(t = u) iff there exists θ ∈
CSUA(t = u) and a ground substitution γ : vars(θ) −→ TΩ such that θγ =E�A α.

In order to show the ground p-stability of R = (Σ,E . A,R) we need to prove
for each rule (∀X) l → r if C ∈ R that if p(l) = ( and C hold, then p(r) = (
holds. The key observation here is that, since by assumption l ∈ TΩ,s(X), if
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all left hand-sides p(v) of equations (∀Y ) p(v) = w if D ∈ EΠ defining the
state predicate p ∈ Π are Ω-patterns (i.e., v ∈ TΩ(X)), then we can compute
CSUA(l = v) and obtain substitutions θ which, by Lemma 2, exactly characterize
any ground E .A-unifier in GUE�A(l = v). Each substitution θ ∈ CSUA(l = v)
is such that p(lθ) = (, or at least p(lθ) could be equal to (, and thus we are left
with the task of inductively proving p(rθ) = ( under the assumptions Cθ, Dθ,
and wθ = (. In this way, the inductive reachability problem of p-stability for
TR is recast as simpler equational inductive properties of TΣ/E�A: TR is ground
p-stable iff TΣ/E�A satisfies these inductive properties. Theorem 1 proves sound
and complete narrowing inference rule Nr1 in Figure 1.

Theorem 1. Let R = (Σ,E .A,R) be a topmost rewrite theory with signature
Ω ⊆ Σ of free constructors modulo A and with a finitary A-unification algorithm,
and let EΠ = (ΣΠ , E . A . EΠ) be an equational definition of Π for R. Let
p ∈ Π and, without loss of generality, assume that the equations EpΠ ⊆ EΠ
defining p ∈ Π are all conditional, have Ω-patterns as left-hand sides, and have
no variable in common with the rewrite rules R. Then, R is ground p-stable
under (∀Y ) l → r if C iff

EΠ �
∧

(θ,w,D)∈Θ(l)

(∀ran(θ)) p(rθ) = ( if Cθ ∧Dθ ∧wθ = (,

where Θ(l) = {(θ, w,D) | ((∀Z) p(v) = w if D) ∈ EpΠ ∧ θ ∈ CSUA(l = v)}.

Observe that obtaining a complete set of unifiers in the definition of Θ(l) in
Theorem 1 only involves Σ-terms and not ΣΠ -terms. This is useful in practice
because the generation of proof obligations from Θ(l) does not depend on the
state predicates defined in EΠ and therefore is not affected by their equational
definitions, no matter how involved these definitions may be. Also observe that
Θ(l) is finite for each (∀Y ) l → r if C ∈ R because the complete set of A-unifiers
is finite. Therefore, the set of proof obligations is finite because of the finiteness
assumptions on E and R. As a final remark, observe that when w is ⊥ in an
equation (∀Z) p(v) = w if D ∈ EpΠ , each proof obligation (∀ran(θ)) p(rθ) =
( if Cθ ∧Dθ ∧ wθ = ( can be soundly ignored, because EΠ protects sort Bool
and therefore wθ=⊥θ=⊥�=(.

Example 1. Consider a version of Lamport’s bakery protocol, slightly adapted
from [6], in which processes achieve mutual exclusion by the usual method com-
mon in bakeries: there is a number dispenser and customers are served in se-
quential order according to the ticket that they hold. The system is specified in
Maude as a topmost rewrite theory BAKERY with top sort State:

fmod BAKERY-SYNTAX is
pr NAT .
sorts ProcIdle ProcWait Proc ProcIdleSet ProcWaitSet ProcSet State .
subsorts ProcIdle < ProcIdleSet . subsorts ProcWait < ProcWaitSet .
subsorts ProcIdle ProcWait < Proc < ProcSet .
subsorts ProcIdleSet < ProcWaitSet < ProcSet .
op idle : -> ProcIdle [ctor] . op wait : Nat -> ProcWait [ctor] .
op crit : Nat -> Proc [ctor] . op none : -> ProcIdleSet [ctor] .
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op __ : ProcIdleSet ProcIdleSet -> ProcIdleSet [ctor assoc comm id: none] .
op __ : ProcWaitSet ProcWaitSet -> ProcWaitSet [ditto] .
op __ : ProcSet ProcSet -> ProcSet [ditto] .
op _:_[_] : Nat Nat ProcSet -> State [ctor] .

endfm

mod BAKERY is
pr BAKERY-SYNTAX .
var Ps : ProcSet . vars N M : Nat .
rl [get] : N : M [idle Ps] => s(N) : M [wait(N) Ps] .
rl [serve] : N : M [wait(M) Ps] => N : M [crit(M) Ps] .
rl [leave] : N : M [crit(M) Ps] => N : s(M) [idle Ps] .

endm

The equations in BAKERY are all structural axioms, namely, associativity,
commutativity, and identity for sets of processes. Since there are no equations
besides the structural axioms, BAKERY ’s signature is trivially a signature of free
constructors modulo BAKERY ’s structural axioms. A ground term “n : m [ps]”
of sort State describes the state in which n is the natural number of the next
available ticket, m is the natural number of the next ticket to be served, and ps
is the set of customers currently in the bakery.

We are interested in the set of state predicates Π = {bounded-tickets}, ex-
pressing that tickets among customers are all bounded from above. State pred-
icate bounded-tickets is equationally defined with auxiliary functions sb, tkts,
and tb (shorthands, respectively, for subbag, tickets, and tickets below). Mod-
ule BAKERY-PROPS defines sort NatBag for bags (or multisets) of natural
numbers; mtbag denotes the empty bag and bag union is juxtaposition modulo
associativity and commutativity, with identity mtbag.
fmod BAKERY-PROPS is
pr BAKERY-SYNTAX . pr BOOL-OPS .
sort NatBag . subsort Nat < NatBag .
op mtbag : -> NatBag .
op __ : NatBag NatBag -> NatBag [assoc comm id: mtbag] .
op bounded-tickets : State -> [Bool] .
op tb : Nat -> NatBag . op tkts : ProcSet -> NatBag .
op sb : NatBag NatBag -> [Bool] .
var Is : ProcIdleSet . var Ps : ProcSet . vars N M : Nat . vars NB NB’ : NatBag .
eq [1] : bounded-tickets(N : M [Ps]) = sb(tkts(Ps),tb(N)) .
eq [a.1] : sb(NB,NB NB’) = � . eq [a.2] : sb(N NB,N NB’) = sb(NB,NB’) .

ceq [a.3] : sb(N NB,NB’) = ⊥ if in?(N,NB’) = �.
eq [b.1] : tkts(Is) = mtbag . eq [b.2] : tkts(idle Ps) = tkts(Ps) .
eq [b.3] : tkts(wait(N) Ps) = N tkts(Ps) . eq [b.4] : tkts(crit(N) Ps) = N tkts(Ps) .
eq [c.1] : tb(0) = mtbag . eq [c.2] : tb(s(N)) = N tb(N) .

endfm

By Lemma 1 and Theorem 1, BAKERY is ground bounded-tickets-stable if
the following sentences are inductive theorems of EBAKERY-PROPS:

(∀x1, x2 :Nat; x3 :ProcSet)

bounded-tickets(s(x1) : x2[wait(x1)]) = � if sb(tkts(idle), tb(x1)) = �, (1)

bounded-tickets(s(x1) : x2[x3 wait(x1)]) = � if sb(tkts(idlex3), tb(x1)) = �, (2)

bounded-tickets(x1 : x2[crit(x2)]) = � if sb(tkts(wait(x2)), tb(x1)) = �, (3)

bounded-tickets(x1 : x2[crit(x2) x3]) = � if sb(tkts(wait(x2) x3), tb(x1)) = �, (4)

bounded-tickets(x1 : s(x2)[idle]) = � if sb(tkts(crit(x2)), tb(x1)) = �, (5)

bounded-tickets(x1 : s(x2)[idlex3]) = � if sb(tkts(crit(x2) x3), tb(x1)) = �. (6)
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Sentences (1) and (2), (3) and (4), and (5) and (6) are obtained from equation
1 and rules get, serve, and leave, respectively. Sentences (1) and (5) have trivial
consequents that can be automatically discharged by equational rewriting. Sen-
tences (2)–(4) follow automatically by assuming the conditions (see Section 6
for a brief explanation of this technique). Sentence (6) can be discharged by
Maude’s ITP [8] with minor user interaction.

4 Ground Invariance

Invariants are the most important safety properties. For R = (Σ,E,R) a top-
most rewrite theory and p, I ∈ Π , the property p being ground invariant for
R from the set of initial states I is the safety property TR |= I ⇒ �p. That
is, in TR whenever I holds for a state [t]E ∈ TΣ/E,s, then p holds in any state
[t′]E ∈ TΣ/E,s such that [t]E

∗→R [t′]E . Since the set of initial states is defined
in EΠ by a state predicate I ∈ Π , an equational definition of I can of course
capture an infinite set of initial states.

Definition 2. Let R = (Σ,E,R) be a topmost rewrite theory and let Π be a set
of state predicates for R defined by EΠ = (ΣΠ , E.EΠ). For p, I ∈ Π, R is called
ground p-invariant from I under R0 ⊆ R iff, for each t, u ∈ TΣ,s, EΠ 
 I(t) = (
and (Σ,E,R0) 
 t

∗→ u imply EΠ 
 p(u) = (. R is ground p-invariant from I,
written R � I ⇒ �p, iff R is ground p-invariant from I under R.

Ground p-invariance is intimately related to ground p-stability: if every initial
state defined by a predicate I satisfies p and the topmost rewrite theory R is
p-stable, then R is p-invariant from I. The converse does not necessarily hold,
because even if R is ground p-invariant from I, the set of states of TR satisfying
p need not be closed under →R. However, if R is ground p-invariant the set
of states satisfying p over-approximates the set of states reachable from some
initial state.

Lemma 3. Let R, Π, EΠ , p, and I be as in Definition 2. Then, R is ground
p-invariant from I under R0 ⊆ R if (i) EΠ � (∀x : s) p(x) = ( if I(x) = ( and
(ii) R is ground p-stable under R0.

For a topmost rewrite theory R = (Σ,E,R) and state predicates p, q ∈ Π ,
we write q ⇒ p as a shorthand for (∀x : s) p(x) = ( if q(x) = (, and let
�p�EΠ = {[t]E ∈ TΣ/E,s | EΠ 
 p(t) = (} (or simply �p�). Condition 1 in
Lemma 3 states that every initial state specified by I must satisfy property p.
That is, for Π and EΠ defined as in Lemma 3, EΠ � I ⇒ p holds iff �I� ⊆ �p�.
Observe that this condition does not depend on the dynamics of TR, but only
on its set of states TΣ/E,s. Conditions (i) and (ii) in Lemma 3 are used in the
literature to define the notion of inductive invariant, i.e., of a predicate holding
in the set of initial states and mantained true by every transition.

In LTL terms, Lemma 3 proves the soundness of inference rule G-Inv in
Figure 2 for proving p invariant from I in KΠR . The only remaining question is
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how to prove I ⇒ p. Theorem 2 answers this question, by giving a necessary
and sufficient condition for proving statements of the form q ⇒ p, with p, q ∈ Π
state predicates. It also proves the soundness of inference rule C⇒ in Figure 2.

R � I ⇒ p R � p ⇒ �p

R � I ⇒ �p
G-Inv

EΠ �
∧

((∀Y ) q(v)=w if C)∈E
q
Π

(∀Y ) p(v) = � if C ∧ w = �

R � q ⇒ p
C⇒

Fig. 2. Ground p-invariance from I for R = (Σ, E, R), with Eq
Π as in Theorem 2

Theorem 2. Let R, Π, EΠ, and p be as in Definition 2, and let q ∈ Π. Without
loss of generality, assume that the equations EqΠ ⊆ EΠ defining q ∈ Π are all
conditional. Then �q� ⊆ �p� iff

EΠ �
∧

((∀Y ) q(v)=w if C)∈Eq
Π

(∀Y ) p(v) = ( if C ∧ w = (.

Example 2. Recall Example 1 from Section 3. Here we are interested in state
predicates Π = {bounded-tickets, init} for BAKERY, with bounded-tickets as
defined in BAKERY-PROPS. State predicate init defines the set of initial states
for TBAKERY in module BAKERY-PROPS-EXT1, which protects BAKERY-
PROPS.
fmod BAKERY-PROPS-EXT1 is
protecting BAKERY-PROPS .
op init : State -> [Bool] .
var Is : ProcIdleSet .
eq [2] : init(0 : 0 [Is]) = � .

endfm

An initial state for TBAKERY is any state in which the next available ticket
and the ticket to be served have value zero, and customers in the “bakery” are all
in state idle. Observe that no constraint is imposed on the initial number of cus-
tomers. We want to prove BAKERY ground bounded-tickets-invariant for init.
By Lemma 3, it is sufficient to prove: (i) inductively in EBAKERY-PROPS-EXT1

sentence (∀x : s) bounded-tickets(x) = ( if init(x) = ( and (ii) BAKERY
is ground bounded-tickets-stable. Condition (i) is proved in Example 1 and,
by Theorem 2, condition (i) holds iff Sentence (7) is an inductive theorem of
EBAKERY-PROPS-EXT1:

(∀x1 :ProcIdleSet) bounded-tickets(0 : 0 [x1]) = (. (7)

Sentence (7) admits a simple proof by equational rewriting because tkts(x1) =
mtbag and tb(0) = mtbag. So, we have BAKERY � init ⇒ �bounded-tickets.
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5 Strengthenings for Ground Invariance

For state predicates p, I ∈ Π , a strengthening for the ground p-invariance from I
of a topmost rewrite theory R is a state predicate q ∈ Π such that R is ground
q-invariant from I and, moreover, q can be used to prove R � I ⇒ �p. State
predicate q is often the result of gradually refining a too-weakly defined p for
which R being ground p-invariant cannot be proven directly by Lemma 3. We
present two strengthening techniques for ground invariance, prove their correct-
ness, and illustrate their application using the running example.

Recall Lemma 3 in Section 4 stating that if �I� ⊆ �p� and R is ground p-
stable, then R is ground p-invariant from I. The first key observation for an
strengthening technique is the one previously made in Section 4: a topmost
rewrite theory R may be ground p-invariant from I and yet not be ground p-
stable. For the ground p-invariance from I of R, the only states from which p
need not be falsified are precisely those [t]E reachable from any state in �I�.
The idea is then to strengthen p as follows: if R is ground q-invariant from I
and every state satisfying q also satisfies p (i.e., �q� ⊆ �p�), then clearly R is
ground p-invariant from I even if not necessarily ground p-stable, because any
state in TR reachable from �I� is also in �p�. Theorem 4 states that for proving
R � I ⇒ �p assuming R � J ⇒ �q, it is sufficient to equationally check
�q� ⊆ �p� and �I� ⊆ �J�. In LTL terms, Theorem 4 proves the soundness of
inference rule Str1 in Figure 3.

Lemma 4. Let R, Π, EΠ , and p be as in Definition 2, and let q, J ∈ Π. If R is
ground q-invariant from J and �q� ⊆ �p�, then R is ground p-invariant for any
I ∈ Π such that �I� ⊆ �J�.

The second strengthening technique follows from observing that if R is ground
q-invariant from I, then for all states [t]E reachable from I the equivalence
[t]E →R [u]E ⇐⇒ [t]E →R [u]E ∧ [t]E ∈ �q� is logically valid. The strengthening
technique introduced in Theorem 3 is particularly useful in situations in which
�q� �⊆ �p� and also when proving �q� ⊆ �p� may be difficult. Theorem 3 also
proves the soundness of narrowing inference rule Str2 in Figure 3.

Theorem 3. Let R = (Σ,E .A,R) be a topmost rewrite theory with signature
Ω ⊆ Σ of free constructors modulo A and with a finitary A-unification algorithm,
and let EΠ = (ΣΠ , E . A . EΠ) be an equational definition of Π for R. Let
p ∈ Π and, without loss of generality, assume that the equations EpΠ ⊆ EΠ
defining p ∈ Π are all conditional, have Ω-patterns as left-hand sides, and have
no variable in common with the rules R. Then, R is ground p-invariant from
I ∈ Π under (∀Y ) l → r if C if R is ground q-invariant from I, �I� ⊆ �p�, and

EΠ �
∧

(θ,w,D)∈Θ(l)

(∀ran(θ)) p(rθ) = ( if Cθ ∧Dθ ∧ wθ=( ∧ q(lθ)=(,

where Θ(l) = {(θ, w,D) | ((∀Z) p(v) = w if D) ∈ EpΠ ∧ θ ∈ CSUA(v = l)}.
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R � J ⇒ �q R � I ⇒ J R � q ⇒ p

R � I ⇒ �p
Str1

R � I ⇒ �q R � I ⇒ p R � q ∧ p ⇒ ©p

R � I ⇒ �p
Str2

EΠ �
∧

((∀X) l→r if C)∈R
(θ,w,D)∈Θ(l)

(∀ran(θ)) p(rθ) = � if Cθ ∧ Dθ ∧ wθ = � ∧ q(lθ) = �

R � q ∧ p ⇒ ©p
Nr2

Fig. 3. Strengthenings for R = (Σ, E, R), with Θ as in Theorem 3

Example 3. Recall examples 1 and 2 from sections 3 and 4. We are interested
in state predicates Π = {bounded-tickets, init, unique-tickets, good-state, mutex}
for BAKERY, with bounded-tickets and init as defined in examples 1 and 2,
respectively. Predicate mutex defines a mutual exclusion property for BAKERY,
and unique-tickets and good-state are strengthenings for mutex. These predicates
and some auxiliary functions are defined in module BAKERY-PROPS-EXT2.

fmod BAKERY-PROPS-EXT2 is
pr BAKERY-PROPS-EXT1 .
ops unique-tickets good-state mutex : State -> [Bool] .
op set : NatBag -> Bool .
op in : Nat NatBag -> Bool .
op = : Nat Nat -> Bool [comm] .
var Ws : ProcWaitSet . var Ps : ProcSet .
vars N M M’ N’ : Nat .
...
eq [3] : unique-tickets(N : M [Ps]) = set(tkts(Ps)) .
eq [4.1] : good-state(N : M [Ws]) = true .
eq [4.2] : good-state(N : M [crit(M) Ws]) = true .
eq [4.3] : good-state(N : M [crit(M’) crit(N’) Ps]) = false .
eq [5.1] : mutex(N : M [Ws]) = true .
eq [5.2] : mutex(N : M [crit(M’) Ws]) = true .
eq [5.3] : mutex(N : M [crit(M’) crit(N’) Ps]) = false .

endfm

The mutual exclusion property, completely defined by mutex for the sort
Bool, holds in a state iff such state has at most one customer being served. State
predicate good-state is a stronger version of mutex in which, for it to hold, the
customer being served must have the least ticket number among all customers.
State predicate unique-tickets holds whenever the tickets among the customers
are all distinct. Auxiliary predicate set(b) holds if bag b is a set.

We prove BAKERY ground mutex -invariant for init, by reducing its proof
to three simpler goals. Namely, to prove (i) BAKERY � init ⇒ �unique-tickets
by assuming BAKERY � init ⇒ �bounded-tickets, (ii) BAKERY � init ⇒
�good-state by assuming (i), and (iii) BAKERY � init ⇒ �mutex by assuming
(ii). Applying Theorem 3 to (i) and (ii), and Lemma 4 to (iii) yields a total of 31
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equational proof obligations, of which 29 are automatically discharged and only
2 require trivial inductive theorem proving interaction (see Section 6).

6 Maude’s Invariant Analyzer

For a topmost rewrite theory R and of a set of state predicates Π in Maude,
the InvA tool mechanizes inference rules G-St, G-Inv, Str1, Str2, Nr1, and
Nr2. Given a ground stability or ground invariance property ϕ, it generates
equational proof obligations such that if they hold, then TR |= ϕ. It also mech-
anizes inference rule C⇒. Thanks to the availability in Maude 2.6 of unification
modulo commutativity (C), associativity and commutativity (AC), and modulo
these theories plus identities (U), and to the narrowing modulo infrastructure
available in Full Maude 2.6, InvA can handle modules with operators declared
C, CU, AC, and ACU.

Automatic Discharge of Proof Obligations. After applying rules G-St,
G-Inv, Str1, Str2, Nr1, and Nr2 according to the user commands, the InvA
tool uses rewriting and narrowing-based reasoning for automatically discharging
as many of the generated equational proof obligations as possible. For E =
(Σ,E.A) and a conditional proof obligation ϕ = (∀X) t = u if C, the InvA tool
applies a proof-search strategy such that if it succeeds, then TE |= ϕ. Otherwise,
the proof obligation is output to the user. Let t, u, C be obtained by replacing
each variable x ∈ X by a new constant x ∈ X, with Σ∩X = ∅. First, the strategy
checks if ϕ holds trivially, i.e., if canΣ,E/A(t) =A canΣ,E/A(u) or there is ti = ui
in C with canΣ,E/A(ti), canΣ,E/A(ui) ∈ TΣ but canΣ,E/A(ti) �=A canΣ,E/A(ui).
Second, it checks if ϕ is context-joinable [5]: ϕ is context-joinable if t and u are
joinable in the rewrite theory RϕE = (Σ(X), A,

−→
E ∪−→

C ), obtained from orienting
equations E as rewrite rules

−→
E and heuristically orienting each equality ti = ui

in C as a sequent ti → ui in
−→
C . Third, it checks if the proof obligation is

unfeasible [5]: ϕ is unfeasible if there is a conjunct ti → ui in
−→
C and v, w ∈

TΣ(X) such that RϕE 
 ti → v ∧ ti → w, CSUA(v = w) = ∅, and v and w are
strongly irreducible with

−→
E modulo A. Because of the executability assumptions

on (Σ,E . A), the first test of the strategy either succeeds or fails in finitely
many equational rewrite steps. For the second and third tests, the strategy is not
guaranteed to succeed or fail in finitely many rewrite steps because the oriented
sequents

−→
C can falsify the termination assumption, and hence InvA uses a bound

for the depth of the proof-search.

Tool Snapshot. We show an interaction with InvA in which, by assuming
BAKERY � init ⇒ �good-state, we prove BAKERY � init ⇒ �mutex:

Checking BAKERY-PROPS ||- init => good-state ...
Proof obligations generated: 1
Proof obligations discharged: 1
Success!
rewrites: 4241 in 17ms cpu (21ms real) (245045 rewrites/second)

Checking BAKERY U BAKERY-PROPS ||- good-state => O good-state under
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strengthening unique-tickets ...
Proof obligations generated: 19
Proof obligations discharged: 19
Success!
rewrites: 26879 in 67ms cpu (71ms real) (395972 rewrites/second)

Checking BAKERY-PROPS ||- good-state => mutex ...
Proof obligations generated: 3
Proof obligations discharged: 3
Success!
rewrites: 9121 in 17ms cpu (18ms real) (525282 rewrites/second)

The InvA tool generates a total of 37 proof obligations for examples 1, 2, and
3. It automatically discharges 34 of them in approximately 200 milliseconds; the
remaining 3 proof obligations can be discharged in Maude’s ITP by structural
induction on the sort Nat with the help of some simple lemmas (see [16]).

7 Related Work

A comprehensive account of the vast literature on deductive approaches for veri-
fying invariants of concurrent systems is beyond the scope of this work. The aim
here is more modest, namely, we focus on related work using deductive rewriting
techniques for verifying invariants.

Rusu [17] and Rusu and Clavel [18] propose an approach for verifying invariant
properties of (possibly infinite-state) concurrent systems specified by an uncon-
ditional topmost rewrite theory. Their approach consists in casting an invariance
problem of the form TR |= I ⇒ �p as an inductive problem of an equational
theory M(R, I) as follows: TR |= I ⇒ �p iff p(t) = ( holds in the initial algebra
TM(R,I) for every ground term t of sort Reachable; a term t has sort Reachable in
TM(R,I) iff t is reachable in TR from I. The key difference between their approach
and ours is that the proof obligations generated for proving TM(R,I) |= p(t) = (
do not take advantage of p’s equational definition, in contrast to our approach
in which theorems 1 and 3 are very useful for simplifying the user’s interactive
theorem proving burden. Our approach can benefit from using narrowing for
symbolically testing state predicates, a bounded symbolic execution technique
achieved by narrowing with the rules, although more research is required for
handling conditional rewrite theories.

Proof scores in the OTS/CafeOBJ method are used to prove invariant proper-
ties of concurrent systems specified by observational transition systems [15]. This
approach has been applied for verifying safety properties of large specifications,
including communication protocols. The idea is to exploit properties of Boolean
operators for decomposing an invariant property into proof scores (reasonably
smaller formulas), which are discharged interactively by equational rewriting.
The main difference between this approach and ours is that proof scores are
constructed and manipulated manually by the user, which is time-consuming in
a verification process. The interesting idea of exploiting the properties of Boolean
operators needs to be further studied and considered within our approach, as
well as the development of more challenging case studies.
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Combinations of deductive and algorithmic techniques have also been
proposed for proving temporal logic properties ϕ of a (possibly infinite-state)
concurrent system specified by a rewrite theory R = (Σ,E,R), including equa-
tional abstractions [14] and reductions with invisible transitions [7]. Both equa-
tional abstractions and invisible transition techniques reduce the verification
problem of infinite-state systems to finite-state ones so that model checking
methods are decidable. These two approaches, as it is also the case in our
approach, require user-intervention for defining, respectively, the abstraction
predicates and the invisible rules, and for discharging the inductive proof obliga-
tions resulting from the corresponding transformations. In particular, for a state
predicate p, the checking algorithms based on narrowing presented in this paper
can be easily extended to generate necessary and sufficient proof obligations for
checking p-invisible rules S ⊆ R of R. We believe that these approaches comple-
ment each other and can be combined with our approach, resulting in a powerful
and versatile framework for proving temporal properties of rewrite theories. The
mechanization of these three approaches for reducing user intervention is a topic
for further research.

8 Concluding Remarks

We have presented both a deductive methodology and a framework for proving
ground stability and ground invariance of a (possibly infinite-state) concurrent
system specified by conditional topmost rewrite theories under reasonable con-
ditions. The proof obligations generated by our methods are equational Horn
clauses. The original safety properties of the concurrent system are reduced to
such equational proof obligations by the inference rules and the 1-step ground
narrowing procedure. Our generic approach has been implemented in InvA, which
adds new theorem proving support for verifying safety properties of infinite-state
rewrite theories to the Maude environment.

Much work remains ahead. First of all, all the results presented here have a
straightforward generalization to state predicates with parameters ; that is, in-
stead of state predicates of the form p(s) with s a state, it is often very conve-
nient to use state predicates of the form p(s, d1, . . . , dn), with s a state, and the
d1, . . . , dn data parameters. All the ideas presented here can be extended to deal
with predicates with data parameters. Another worthwhile direction is endow-
ing InvA with automatic proof methods for strengthening invariants in the style
of [19]. Finally, a wider range of case studies stressing the tool’s capabilities,
including application to rewrite theories RL that formally specify a program-
ming languange L, should be developed. More ambitiously, the transformational
approach to safety property verification presented here should be extended to a
wider set of of LTL formulas, including formulas stating liveness properties.
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Abstract. This paper proposes a modular method, called generalized product, of
combining two coalgebraic hybrid logics in a parallel but non-compositional way.
This is a coalgebraic generalization of a hybrid extension of product of modal log-
ics. Our method, however, covers not only the combination of the same-type log-
ics but also the combination of two different-type logics, e.g., graded hybrid logic
and non-monotone hybrid logic. Moreover, we provide general strong complete-
ness results for generalized products of coalgebraic hybrid logics with generic
criteria.

1 Introduction and Motivation

Coalgebraic modal logic [1,2] is a logical framework that describes behavior of state-
based systems, i.e., coalgebras, where modal operators are used to describe one-step
behavior of the system. However, ordinary modal languages lack the ability to reason
about individuals, which is a central feature of knowledge representation languages
such as description logics. Coalgebraic hybrid logic [3,4,5] solves the problem by
adding explicit individual names to modal syntax. This also allows to introduce non-
relational (e.g. probabilistic) concepts in knowledge representations.

Schröder and Pattinson [6] proposed a framework allowing several ways of com-
bining different-type transitions like non-deterministic and probabilistic ones. They
also showed that the corresponding heterogeneous (coalgebraic) modal logic has a
modular decision procedure. Their framework and results were recently transferred to
coalgebraic hybrid logic [5].

There were several attempts (e.g. [7,8]) to extend description logics with an ad-
ditional dimension representing, e.g., knowledge, time or action-dependence (cf. [9,
pp.883-4]). As mentioned in [9, p.884], in a simple modal extension of the basic
concept languageALC we can define concepts such as Customer as

Homo_sapiens � 〈sometime in the past〉∃buys.Car

using a modalized concept 〈sometime in the past〉∃buys.Car. In the framework of [6],
however, we cannot directly express such a modalized concept, because its semantics
(cf [8]) is based on the notion of product of Kripke frames [10]. For such reasons,
a generalization of products to coalgebraic setting would be of both theoretical and
practical interest; see also Examples 8 and 10 below.

Any attempt at such a generalization, however, faces difficulties of both semantic
and axiomatic nature. The semantic difficulty consists in the lack of a suitable general

A. Corradini, B. Klin, and C. Cı̂rstea (Eds.): CALCO 2011, LNCS 6859, pp. 329–343, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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notion of product of coalgebras (remark that ‘product’ is not a category-theoretic term
here). While Van Benthem et. al. [11] adapted the notion of product to topological se-
mantics of S4, it is not immediately clear, for example, what the right notion of product
for selection function semantics of conditional logic [12] is. The axiomatic difficulty
consists in finding generally valid interaction axioms which would allow an uniform
completeness result for a large class of product models. While the Church-Rosser ax-
iom and the commutativity axiom [10] are valid on all products of Kripke frames, Van
Benthem et. al. [11] demonstrated that these two axioms are not valid on all products
of topological spaces. In this sense, the Church-Rosser axiom and the commutativity
axiom are not the right candidates. Let us also note here that both of these axioms are
clearly of rank-2, that is, beyond the usual scope of coalgebraic axiomatizations. More-
over, even in case of Kripke semantics it is not obvious how suitable counterparts of
these axioms for n-ary operators would look like.

Our paper proposes solutions to both problems. As for the semantic difficulty above,
we propose the notion of generalized product of two possibly different-type coalgebras,
which also covers the notion of product of Kripke frames. A categorical construction of
tensorial strength [13] suggested to the author by Dirk Pattinson and Fredrik Dahlqvist
allows to treat these products as coalgebras for products of functors. As the construction
does not rely on both functors being of the same type, this opens up the possibility of
modalizing concepts from probabilistic or conditional logic.

Our solution to the axiomatic difficulty relies on a sorted variant of nominals; as
discussed above, such an addition turns modal logic into a weak variant of description
logic. It turns out that this enrichment yields very simple and intuitive interaction ax-
ioms. Our nominals are two-dimensional with separate sorts for horizontal and vertical
dimension. The idea of naming lines rather than states has already been used in author’s
previous studies on products of Kripke, topological and monotonic neighborhood struc-
tures [14,15]. The five interaction axioms proposed therein as a hybrid alternative to the
Church-Rosser axiom and the commutativity axiom are valid both on all products of
Kripke frames and all products of topologies. In the present paper, we demonstrate that
an n-ary generalization of these interaction axioms (see HIT of Table 1) can capture
the interaction between the two dimensions in an arbitrary coalgebraic setting.

Two-dimensional hybridization not only resolves the axiomatic difficulty but also
provides a modular general completeness result with generic criteria. This completeness
result covers any combination of two possibly different-type coalgebraic hybrid logics,
e.g. hybrid modal logic for Kripke semantics, graded hybrid logic, hybrid conditional
logic and other hybrid non-normal modal logic (Theorems 1, 2, and 3). We can regard
our result as both a coalgebraic generalization of [14,15] and an extension of a theory
of named canonical models (in our term, Henkin-style named models) in coalgebraic
hybrid logic proposed by [4].

2 Generalized Product of Coalgebras and Predicate Lifting

Given an endofunctor T : Sets → Sets, a T-coalgebra is a pair (X, γ) where X is a set
of states and γ : X → T X is a transition map.
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Example 1. (i) Kripke frames for normal modal logic: a coalgebra (X,R : X → P(X))
for the covariant powerset functor P is the same thing as a Kripke frame, where
R(x) denotes all the states accessible from x.

(ii) Multigraph semantics for graded modal logic: an infinite multigraph functor B∞
sends X to (N ∪ {∞ })X .

(iii) Selection functions for conditional logic [12]: define S(X) :=
{ f | f : P(X)→ P(X) }. In other words,S(X) =P(X)Q(X), whereQ : Sets→ Setsop

is the contravariant powerset functor. We can regard S(X) as a Q(X)-indexed
Kripke frame. The subfunctor SID(X) is defined by the condition f (A) ⊆ A
(A ⊆ X).

(iv) Neighborhood semantics for classical modal logic: the intended functor is Q ◦ Q,
where Q is the contravariant powerset functor. Similarly, we can also consider the
monotone neighborhood subfunctorM(X) :=

{
σ ∈ PP(X) |σ is upward-closed

}
.

(v) Neighborhood selection functions for classical conditional logic [12]: Define SN

(X) := { f | f : P(X)→ PP(X) }, or in other words, SN(X) = Q ◦ Q(X)Q(X). Simi-
larly to the previous item, we can also define the functor SM giving us monotone
neighborhood selection functions. A requirement A ∈ f (A) (A ⊆ X) gives us the
subfunctors SN

ID and SM
ID.

Definition 1. Let T1 and T2 be endofunctors on Sets. We say that C⊗D := (C×D, γ, δ)
is a coalgebraic g-product frame if C = (C, γ) is a T1-coalgebra and D = (D, δ) is a
T2-coalgebra. If T1 = T2, we call C ⊗ D a coalgebraic product frame.

As noted by Pattinson and Dahlqvist (p.c.), we can regardC⊗D as a (T1×T2)-coalgebra
C × D → T1(C × D) × T2(C × D). The key is to define γh : C × D → T1(C × D) and
δv : C × D → T2(C × D) in such a way that projection mappings π1 and π2 become,
respectively, T1- and T2-coalgebraic homomorphisms. Let us concentrate on the hori-
zontal dimension. Just like in case of Kripke semantics, the idea of horizontal accessi-
bility relation is that we make the transition on the first coordinate but we do not make
a transition in the second dimension [10]. Thus, γh should be obtained as a composition
of γ × idD : C × D→ T1(C) × D with a mapping of type T1(C) × D→ T1(C × D). The
latter can be defined as stC,D(t, y) := T1(ιy)(t), where ιy : C → C × D sends x to (x, y).
We can show that stC,D is natural in C and D, and it is an example of the notion called
tensorial strength [13] 1.

Given any P ⊆ C × D and (x, y) ∈ C × D, define

P(−,y) :=
{

x′ ∈ C | (x′, y) ∈ P
}
, P(x,−) :=

{
y′ ∈ D | (x, y′) ∈ P

}
.

It is easy to see that P(−,y) = ι
−1
y [P] for any P ⊆ C × D.

Example 2. Let C = (C, γ) and D = (D, δ) be T1- and T2-coalgebras, respectively,
(x, y) ∈ C × D and let us calculate γh : C × D→ T1(C × D) for all items in Example 1:

(i) γh(x, y) = { (x′, y) | x′ ∈ γ(x) }.
(ii) γh(x, y)(x′, y′) = γ(x)(x′) (if y = y′); 0 (o.w.).

1 Remark that every functor on Sets has a unique tensorial strength associated with it. This is
pointed out by one of the reviewers.
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(iii) γh(x, y)(P) =
{

(x′, y) | x′ ∈ γ(x)(P(−,y))
}
.

(iv) γh(x, y) =
{

P ⊆ C × D | P(−,y) ∈ γ(x)
}
.

(v) γh(x, y)(P) =
{

P′ ⊆ C × D | P′(−,y) ∈ γ(x)(P(−,y))
}
.

The notion of predicate lifting (cf [1,2]) gives a coalgebraic meaning to modal op-
erators. Given any set Λ of modal operators, a Λ-structure consists of a functor T :
Sets → Sets and a family (�♥�)♥∈Λ of predicate liftings, i.e., �♥� = (�♥�X : P(X)n →
P(T X))X∈Sets satisfying the naturality condition: �♥�X ◦ f −1 = (T f )−1 ◦ �♥�Y for any
f : X → Y. Given a Λ-structure, a T -coalgebra (X, γ), and a valuation for propo-
sitional variables, the coalgebraic semantics �−� to a (one-dimensional) coalgebraic
modal language is defined as: x ∈ �♥(ϕ1, ..., ϕn)� iff γ(x) ∈ �♥�X (�ϕ1�, ..., �ϕn�). Let
(T1, (�♥1�)♥1∈Λ1 ) be a Λ1-structure. Given C⊗D and a pair (x, y), the truth condition for
♥1(ϕ1, ..., ϕn) is γh(x, y) ∈ �♥1�C×D(�ϕ1�, ..., �ϕn�). A calculation of the naturality condi-
tion �♥1�C ◦ ι−1

y = (T ιy)−1 ◦ �♥1�C×D gives us the following simple equivalent condition:

γ(x) ∈ �♥1�C(�ϕ1�(−,y), ..., �ϕn�(−,y)).

Example 3. (i) Predicate liftings P(X) → P(P(X)) for normal modal logic are
defined as ���X(A) := { B ∈ P(X) | B ⊆ A } and ���X (A) := { B ∈ P(X) | B ∩ A � ∅ }.

(ii) A graded modality �≥k (k ∈ ω) counts the number of successors in Kripke se-
mantics [16], but the naturality condition fails in Kripke semantics. A coalgebraic
alternative is multigraph semantics by B∞. Define ��≥k�X(A) :={

f : B∞(X) |
∑
y∈A f (y) ≥ k

}
.

(iii) Let � be the conditional connective and � the defined dual ¬(ϕ � ¬ψ) of
�. Our desired predicate liftings are ���X(A, B) := { f ∈ S(X) | f (A) ⊆ B } and
���X(A, B) := { f ∈ S(X) | f (A) ∩ B � ∅ }.

(iv) The predicate lifting P(X)→ P(Q ◦ Q(X)) for classical modal logic is ���X(A) :=
{σ ∈ PP(X) | A ∈ σ }.

(v) The predicate lifting for classical conditional logic (cf. [12]) is defined as
���X(A, B) =

{
f ∈ SN(X) | B ∈ f (A)

}
.

3 Coalgebraic Semantics for Bi-Hybrid Language

The most fundamental semantic idea of our g-product syntax is the introduction of two
disjoint countable sets N1 = { i, j, , .. } and N2 = { a, b, ... } of horizontal and vertical
nominals, which name lines rather than points. Let Λ1 and Λ2 be two disjoint sets of
modal operators, where we assume that each ♥l ∈ Λl has a fixed arity (l = 1 or 2). Given
a countable set P = { p, q, ... } of propositional variables, we define the set F (Λ1;Λ2) of
all formulas inductively as:

ϕ ::= p | i | a | ¬ϕ |ϕ ∧ ψ | ♥1(ϕ1, . . . , ϕn) | ♥2(ϕ1, . . . , ϕm) |@iϕ |@aϕ,

where i ∈ N1, a ∈ N2, p ∈ P, ♥1 ∈ Λ1 and ♥2 ∈ Λ2. We use the standard definition
of the other propositional connectives: ⊥, �, ∨, →, and↔. We say that ϕ is pure if ϕ
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does not contain any propositional variable p ∈ P. A hybrid substitution is a mapping
σ : P ∪ N1 ∪ N2 → F (Λ1;Λ2) that satisfies σ[N1] ⊆ N1 and σ[N2] ⊆ N2. That is,
we can substitute p ∈ P with any formula ϕ and i ∈ N1 with the same kind of nominal
j ∈ N1, but we cannot substitute i ∈ N1 with a ∈ N2 or p ∈ P. We also define the two
sublanguages:L1 := P ∪ N1 ∪ {¬,∧ } ∪ Λ1 ∪ {@i | i ∈ N1 } andL2 := P ∪ N2 ∪ {¬,∧ }
∪ Λ2 ∪ {@a | a ∈ N2 }. We denote by F (Λl) all the formulas of Ll (l = 1 or 2).

Intuitively, the denotation of i ∈ N1 is a vertical line { x } × D and the denotation
of a ∈ N2 is a horizontal line C × { y } over C × D. More precisely, a mapping V :
P ∪ N1 ∪ N2 → P(C × D) is a hybrid valuation if #π1[V(i)] = 1 and π2[V(i)] = D
(i ∈ N1), and π1[V(a)] = C and #π2[V(a)] = 1 (a ∈ N2), where π1 : C × D → C and
π2 : C × D→ D are the projections. Let us denote the unique element of π1[V(i)] by iV

and the unique element of π2[V(a)] by aV .
A coalgebraic g-product model M is a pair of a coalgebraic g-product frame and a

hybrid valuation on it. Given any coalgebraic g-product modelM = (C×D, γ, δ,V), any
(x, y) ∈ C × D, and any ϕ ∈ F (Λ1;Λ2), we define the satisfaction relation as follows:

M, (x, y) � p iff (x, y) ∈ V(p)
M, (x, y) � i iff x = iV

M, (x, y) � a iff y = aV

M, (x, y) � ¬ϕ iff M, (x, y) � ϕ
M, (x, y) � ϕ ∧ ψ iff M, (x, y) � ϕ andM, (x, y) � ψ
M, (x, y) � ♥1(ϕ1, . . . , ϕn) iff γ(x) ∈ �♥1�C(�ϕ1�(−,y), . . . , �ϕn�(−,y))
M, (x, y) � ♥2(ϕ1, . . . , ϕm) iff δ(y) ∈ �♥2�D(�ϕ1�(x,−), . . . , �ϕm�(x,−))
M, (x, y) � @iϕ iff M, (iV , y) � ϕ
M, (x, y) � @aϕ iff M, (x, aV ) � ϕ,

where �ϕ� := { (x′, y′) ∈ C × D |M, (x′, y′) � ϕ }.
Remark that the behavior of @iϕ is different from one-dimensional hybrid logic. In

one-dimensional semantics, if ϕ holds at the state named by i, then @iϕ holds at all
states. In our two-dimensional semantics, (iV , y) � ϕ does not imply �@iϕ� = C × D in
general. Given any (x, y) ∈ C × D, however, (iV , y) � ϕ does imply �@iϕ�(−,y) = C.

We say that a set Ψ of formulas is valid on a coalgebraic g-product modelM (nota-
tion:M � Ψ) ifM, (x, y) � ϕ for any pair (x, y) inM and any ϕ ∈ Ψ. Ψ is valid on C⊗D
(notation: C ⊗ D � Ψ) if (C ⊗ D,V) � Ψ for any hybrid valuation V . If Ψ is a singleton
{ψ }, we also use the notation such asM � ψ and C⊗D � ψ. We say thatΨ ⊆ F (Λ1;Λ2)
is satisfiable in a coalgebraic g-product frames C ⊗ D if there exists some hybrid val-
uation V such that

⋂
ψ∈Ψ�ψ� � ∅. Ψ is satisfiable in a class F of coalgebraic g-product

frames if there exists some C⊗D ∈ F such thatΨ is satisfiable in C⊗D.Ψ ⊆ F (Λ1;Λ2)
defines a class F of coalgebraic g-product frames if C⊗D ∈ F iff Ψ is valid on C⊗D,
for any coalgebraic g-product frame C ⊗ D.

In general, we do not assume that every coalgebraic g-product model is named, i.e.,
that for every state (x, y) there exists i ∈ N1 and a ∈ N2 such that (x, y) = (iV , aV).
The importance of namedness assumption in strong completeness proofs for axiomatic
extensions by pure formulas stems from the following (cf. [17, Lemma 7.22]).

Proposition 1. Given any namedM = (C ⊗ D,V) and any pure formula ϕ, if M � ϕσ
for all hybrid substitutions σ, then C ⊗ D � ϕ.
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Table 1. Hilbert-style Calculus RAG of Coalgebraic Hybrid g-Product Logic

Axioms
HIT Com@ @a@i p ↔@i@a p

Com♥1@2 @a♥1(p1 , . . . , pn)↔ ♥1(@a p1, . . . ,@a pn)
Com♥2@1 @i♥2(p1 , . . . , pm)↔ ♥2(@i p1 , . . . ,@i pm)
Red@1 @ia↔ a
Red@2 @ai↔ i

CHA1 K@ @i(p → q)→ (@i p →@iq)
Sd ¬@i p ↔@i¬p
Ref @ii
Intro i ∧ p→@i p
Agree @i@ j p →@ j p
Mob @i p→ (♥1(q1, . . . , qn)↔ ♥1(@i p ∧ q1, . . . ,@i p ∧ qn)) (♥1 ∈ Λ1)

CHA2 The corresponding L2-axioms to CHA1

R1 A set of one-step L1-axioms, i.e., a subset of Prop(Λ1(Prop(P)))
R2 A set of one-step L2-axioms, i.e., a subset of Prop(Λ2(Prop(P)))
A A set of extra axioms, i.e., a subset of F (Λ1;Λ2)

Propositional Tautlogies
Rules
CHR1 Cong From ϕ1 ↔ ψ1, . . . , ϕn ↔ ψn,

we may infer ♥1(ϕ1, . . . , ϕn)↔ ♥1(ψ1, . . . , ψn) (♥1 ∈ Λ1)
Nec@ From ϕ, we may infer @iϕ

CHR2 The corresponding L2-rules to CHA1

G1 A set of non-orthodox L1-rules
G2 A set of non-orthodox L2-rules

Modus Ponens
Hybrid Substitutions

Proposition 2. ϕ ∈ F (Λ1) is valid on C ⊗ D iff ϕ is valid C. Similarly, ϕ ∈ F (Λ2) is
valid on C ⊗ D iff ϕ is valid D.

Proof. We can show these by the similar argument as in [14, Proposition 2.2]. ��

4 Generalized Product of Coalgebraic Hybrid Logics

HIT in Table 1 are our five interaction axioms, which are both coalgebraic and hybrid
alternative to the Church-Rosser axiom and the commutativity axiom in Kripke seman-
tics. In this section, we first show thatHIT are valid. Second, we introduce the notion
of one-step axiom, which captures the one-step behavior of modal operators [1]. Finally,
we present a Hilbert-style proof system for generalized g-product of coalgebraic hybrid
logics, by the help of the axioms and the inference rules for coalgebraic hybrid logics
already proposed by [3].

Proposition 3. HIT in Table 1 are valid on all coalgebraic g-product frames.

Proof. We only check Com♥1@2. Let (C×D, γ, δ,V) be a coalgebraic g-product model
and (x, y) ∈ C × D. �p�(−,aV ) = �@a p�(−,y) gives us the desired equivalence. ��

Definition 2 (one-step axiom and one-step soundness). Let Z be a set. Given any set
Λ of modal operators, define Λ(Z) := { ♥(z1, . . . , zn) | ♥ ∈ Λ and z1, ..., zn ∈ Z }. Prop(Z)
denotes the set of all propositional (or Boolean) combinations of Z. Let (T, (�♥�)♥∈Λ)
be a Λ-structure. For any set X, any τ : Z → P(X), and any α ∈ Prop(Λ(Z)), we define
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||α||T X,τ ⊆ T X inductively as usual except that ||♥(z1, ..., zn)||T X,τ = �♥�X(τ(z1), . . . , τ(zn)).
A one-step axiom (or, Rank-1 axiom) overΛ is a formula ψ ∈ Prop(Λ(Prop(P))). A one-
step axiom ψ is one-step sound if ||ψ||T X,τ = T X, for any X and any τ : P→ P(X).

Since our syntax has two disjoint sets Λ1 and Λ2 of modal operators, we consider two
kinds of one-step axioms. One-step sound axioms are sound in the following sense.

Proposition 4. Let ψ be a one-step axiom over Λl (l = 1 or 2) and σ a hybrid
substitution. If ψ is one-step sound, then ψσ is valid on all coalgebraic g-product
frames.

We say that an inference rule ϕ/ψ is non-orthodox if it involves a syntactic side-
condition in the premise. A typical example in hybrid logic is Name-rule. Name1 and
Name2 are the following non-orthodox rules of L1 and L2, respectively:

i→ ϕ
ϕ Name1

a→ ψ

ψ
Name2

where i does not appear in ϕ and a does not appear in ψ. It is not difficult to show that
Namel preserves the validity on all coalgebraic g-product frames (l = 1 or 2).

Definition 3 (coalgebraic hybrid g-product logic). Let Rl be a set of one-step axioms
over Λl (l = 1 or 2),A ⊆ F (Λ1;Λ2) a set of formulas, and Gl be a set of non-orthodox
rules in F (Λl) (l = 1 or 2). We define a Hilbert system RAG as follows: we write �RAG
ϕ if ϕ belongs to the smallest set that contains all the axioms in Table 1 and is closed
under all the rules in Table 1. We say that ϕ is RAG-derivable from Ψ (written:Ψ �RAG
ϕ) if there exists ψ1, ..., ψn ∈ Ψ such that �RAG ψ1 ∧ · · · ∧ ψn → ϕ.

Our axioms CHA1 and rules CHA2 in Table 1 are modified from the axioms and rules
for one-dimensional coalgebraic hybrid logic given in [3,4]. Mob (‘make-or-break’) is a
major difference from the ordinary hybrid logic for Kripke semantics. It is a coalgebraic
and n-ary generalization of Back-axiom: @i p → �@i p [18], since Back defines the
non-emptiness of the neighborhood frames τ(x) over neighborhood semantics, though
it is valid over Kripke semantics.

Proposition 5. Let Rl be one-step sound and Gl preserve validity on all coalgebraic
g-product frames (l = 1 or 2). If ϕ is a RAG-theorem, then ϕ is valid on the class of all
coalgebraic g-product frames defined byA.

Proof. Propositions 2, 3, 4 give us the desired validity of ϕ. ��

Example 4. (i) One-step axioms for axiomatizing Kripke frames is �� and �(p ∧
q)↔ (�p∧�q). Or, if we prefer� to �, the one-step axioms: ¬�⊥ and�(p∨q)↔
(�p ∨�q) also give us the same logic.

(ii) The one-step axioms for graded modal logic is the following [16] (see also [19,
p.676]): �(p → q)→ (�p → �q), �≥k p → �≥l p (l < k), �≥k p ↔

∨
0≤i≤k �≥i(p ∧

q) ∧ �≥k−i(p ∧ ¬q), and �(p → q) → (�≥k p → �≥kq), where we define � :=
¬�≥1¬.
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(iii) For the minimal conditional logic, r� � and (r� p∧ q)↔ ((r� p)∧ (r�
q)), which allows us to regard r � as a normal modal operator. A requirement
f (A) ⊆ A (A ⊆ X) of selection functions is captured by the one-step axiom p� p.

(iv) While our set of one-step axioms for neighborhood frames is an empty set, �(p ∧
q)→ (�p ∧ �q) is the one-step axiom for monotone neighborhood frames.

(v) (r � p ∧ q) → ((r � p) ∧ (r � q)) is the one-step axiom for monotone
neighborhood selection functions. p� p corresponds to A ∈ f (A) (A ⊆ X).

5 Pure Completeness for Coalgebraic Hybrid g-Product Logic

Definition 4. A setΨ is RAG-consistent ifΨ �RAG ⊥.Ψ is maximallyRAG-consistent
if Ψ is RAG-consistent and it satisfies: ϕ ∈ Ψ or ¬ϕ ∈ Ψ for any ϕ ∈ F (Λ1;Λ2).

If Ψ is maximally RAG-consistent, it clearly contains all the RAG-theorems.

Definition 5. A Hilbert system RAG is (locally) strongly complete with respect to a
class F of coalgebraic g-product frames if every RAG-consistent set is satisfiable in F.

Definition 6. Let Ψ be a maximal RAG-consistent set. Define CΨ = { [i] | i ∈ N1 } and
DΨ = { |a| | a ∈ N2 }, where [i]= { j ∈ N1 |@i j ∈ Ψ } and |a|= { b ∈ N2 |@ab ∈ Ψ }. Define
also VΨ : P ∪ N1 ∪ N2 → P(CΨ × DΨ) by VΨ(p) = { ([i], |a|) |@i@a p ∈ Ψ } (p ∈ P),
VΨ( j) = { ([i], |a|) |@i@a j ∈ Ψ } ( j ∈ N1) and VΨ(b) = { ([i], |a|) |@i@ab ∈ Ψ } (b ∈ N2).

VΨ is a hybrid valuation as follows: We show that VΨ( j) :=
{

[i] |@ ji ∈Ψ
}
×DΨ and that

{
[i] |@ ji ∈Ψ

}
is a singleton. We can establish the first clause, since we have � @i@b j↔

@i j (by Nec@ and Red@2) and � @ ji ↔ @i j. As for the second clause, it suffices to
note that we have � @ii and � @i j ∧@ jk → @ik.

Definition 7. Given a maximal RAG-consistent Ψ, we say that (CΨ × DΨ, γ, δ,VΨ) is
a coalgebraic Henkin-style g-product model if γ and δ satisfies both the h-coherence
condition: For any ♥1 ∈ Λ1, any i ∈ N1, any ϕ,

γ([i]) ∈ �♥1�CΨ (ϕ̂1
1, ..., ϕ̂n

1) iff @i♥1(ϕ1, ..., ϕn) ∈ Ψ,

and the v-coherence condition: For any ♥2 ∈ Λ2, any a ∈ N2 and any ϕ,

δ(|a|) ∈ �♥2�DΨ (ϕ̂1
2, ..., ϕ̂m

2) iff @a♥2(ϕ1, ..., ϕm) ∈ Ψ,

where ϕ̂1 =
{

[ j] ∈ CΨ |@ jϕ ∈ Ψ
}

and ϕ̂2 = { [b] ∈ DΨ |@bϕ ∈ Ψ }.

Lemma 1 (Truth Lemma). IfMΨ = (CΨ × DΨ, γ, δ,VΨ) is a coalgebraic Henkin-style
g-product model, then we have:

MΨ, ([i], |a|) � ϕ iff @i@aϕ ∈ Ψ,

for any ϕ ∈ F(Λ1;Λ2) and any ([i], |a|) ∈ CΨ × DΨ.
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Proof. Define ϕ̂ := { ([i], |a|) |@i@aϕ ∈ Ψ }. We can show the case where ϕ ≡ @iψ,
@aψ similarly to the proof of [14, Lemma 3.11, p.466]. Here, let us concentrate on the

case where ϕ ≡ ♥1(ϕ1, .., ϕn). It is easy to show that ψ̂ (−,|a|) = @̂aψ
1

for any ψ. Then,
([i], |a|) � ♥1(ϕ1, .., ϕn) iff :

γ([i]) ∈ �♥1�CΨ (�ϕ1�(−,|a|), ..., �ϕn�(−,|a|))

iff γ([i]) ∈ �♥1�CΨ (ϕ̂1(−,|a|), ..., ϕ̂n(−,|a|)) by induction hypothesis

iff γ([i]) ∈ �♥1�CΨ (@̂aϕ1
1
, ..., @̂aϕn

1
) by the above equation

iff @i♥1(@aϕ1, ...,@aϕn) ∈ Ψ by the h-coherence condition.

Equivalently, we obtain @i@a♥1(ϕ1, ..., ϕn) ∈ Ψ by Com♥1@2. ��

Given a Λ-structure, now our interest consists in: how one-step axioms give us the
existence of transition maps γ and δ on CΨ and DΨ, respectively. First, we will give
a criterion for any combination of two hybrid logics from (iv) and (v) in Example 3.
Second, we will provide a criterion for any combination of two hybrid logics from (i),
(ii), and (iii) in Example 3. Finally, we will also give a criterion for any combination of
hybrid logic from (i), (ii), and (iii), and a hybrid logic from (iv) and (v).

5.1 Generalized Product of Strongly One-Step Complete Logics

Lemma 2. If Namel ∈ Gl (l = 1 or 2), the following are valid derivation rules inRAG:

(i) If � @iϕ, then � ϕ, where i is fresh in ϕ.
(ii) If � @i

∧
1≤r≤n(ϕr ↔ ψr), then � @ j(♥1(ϕ1, ..., ϕn) ↔ ♥1(ψ1, ..., ψn)), where i is

fresh in
∧

1≤r≤n(ϕr ↔ ψr).
(iii) If � θ → (@i

∧
1≤r≤n(ϕr ↔ ψr)), then � θ → (@ j(♥1(ϕ1, ..., ϕn) ↔ ♥1(ψ1, ..., ψn))),

where i is fresh in θ and
∧

1≤r≤n(ϕr ↔ ψr).

The correspondingL2-rules are also derivable in RAG.

(ii) is an n-ary generalization of the rule called NameCong in [4].

Proof. (i) holds by Intro and propositional inferences. We can establish (ii) by (i),
Cong, and Nec@. Let us show (iii). Assume that i is fresh in θ and

∧
1≤r≤n(ϕr ↔ ψr) and

suppose that � θ→ (@i
∧

1≤r≤n(ϕr ↔ ψr)). The latter is equivalent to �
∧

1≤r≤n((@iϕr ∧
θ) ↔ (@iψr ∧ θ)). Here, let k � i be a fresh nominal in θ and

∧
1≤r≤n(ϕr ↔ ψr). We de-

duce from Nec@ that � @k
∧

1≤r≤n((@iϕr∧θ)↔ (@iψr∧θ)). By Agree and distributiv-
ity of @ over Boolean connectives2, we obtain �@i

∧
1≤r≤n((ϕr ∧@kθ)↔ (ψr ∧@kθ)).

It follows from (ii) that �@ j(♥1(ϕ1∧@kθ, ..., ϕn∧@kθ)↔ ♥1(ψ1∧@kθ, ..., ψn∧@kθ)).
By Mob, we obtain � @ j(@kθ → (♥1(ϕ1, ..., ϕn) ↔ ♥1(ψ1, ..., ψn))). Again by Agree
and distributivity of @ over Boolean connectives, � @k(θ → @ j(♥1(ϕ1, ..., ϕn) ↔
♥1(ψ1, ..., ψn))). Finally, (i) gives us the desired conclusion. ��

2 Since we can regard @i as a normal modal operator (i.e., @i preserves finite (possibly empty)
conjunctions) and @i preserves the negation as in Sd of Table 1, we can syntactically obtain
the distributivity of @ over Boolean connectives.
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Definition 8. Let Ψ be a set of formulas. We say thatΨ is labelled if i∧ a ∈ Ψ for some
(i, a) ∈ N1 ×N2. Ψ is horizontally 0-pasted if whenever @i

∧
1≤r≤n(ϕr ↔ ψr) ∈ Ψ for all

i ∈ N1, then @ j(♥1(ϕ1, ..., ϕn)↔ ♥1(ψ1, ..., ψn)) ∈ Ψ for all j ∈ N1 (♥1 ∈ Λ1). Similarly,
Ψ is vertically 0-pasted if whenever @a

∧
1≤r≤m(ϕr ↔ ψr) ∈ Ψ for all a ∈ N2, then

@b(♥2(ϕ1, ..., ϕm)↔ ♥2(ψ1, ..., ψm)) ∈ Ψ for all b ∈ N2 (♥2 ∈ Λ2).

Lemma 3. Let Namel ∈ Gl (l = 1 or 2). Every RAG-consistent formulas can be ex-
tended to a labelled, horizontally and vertically 0-pasted maximal RAG-consistent set,
by adding countably many new nominals to the language.

Definition 9. Let R ⊆ Prop(Λ(Prop(P))) be a set of one-step axioms and X a set. We
say that Ξ ⊆ Prop(Λ(P(X))) is one-step consistent with respect to X if the union of Ξ
and {ατ |α ∈ R and τ : P→ P(X) } is propositionally consistent. Ξ ⊆ Prop(Λ(P(X)))
is one-step satisfiable if

⋂
α∈Ξ ||α||T X,id � ∅, where id is the identity function on P(X).

Definition 10. R is strongly one-step complete if, for any set X, every one-step consis-
tent set Ξ ⊆ Prop(Λ(P(X))) is one-step satisfiable.

Lemma 4. Let Ψ be maximally RAG-consistent. If Ψ is horizontally 0-pasted and R1

is strongly one-step complete, then there exists γ : CΨ → T1(CΨ) such that it satisfies
the h-coherence condition. Similarly, we have the corresponding statement about v-
coherence condition.

Theorem 1. Let Gl = {Namel } (l = 1 or 2). Let also R1 and R2 be strongly one-step
complete and A a set of pure formulas. Then, RAG is strongly complete with respect
to the class of coalgebraic g-product frames defined byA.

Proof. Suppose that Ψ0 is RAG-consistent. By Lemma 3, we can extend Ψ0 to some
Ψ such that Ψ is labelled, horizontally and vertically 0-pasted, and maximally RAG-
consistent. Since R1 and R2 are one-step complete, we can find a coalgebraic Henkin-
style g-product model MΨ = (CΨ × DΨ, γ, δ,VΨ) by Lemma 4. Since Ψ is labelled, let
us fix some (i, a) such that i ∧ a ∈ Ψ. By Intro, we can establish that @i@aϕ ∈ Ψ
for any ϕ ∈ Ψ. So, we derive from Truth Lemma (Lemma 1) that Ψ0 is satisfiable
in (CΨ × DΨ, γ, δ). Finally, let us show that (CΨ × DΨ, γ, δ) belongs to the class of
coalgebraic g-product frames defined by A. For any ψ ∈ A, we haveMΨ � ψσ for all
hybrid substitutions σ. Therefore, (CΨ × DΨ, γ, δ) � A by Proposition 1. ��

Example 5. Theorem 1 establishes previously unknown strong completeness results of
product of any pure extensions of non-monotone hybrid logics. It also gives an alter-
native proof of the known pure completeness result of product of monotone hybrid
logics [15, Theorem 5.11], since the axioms for monotone neighborhood frames in Ex-
ample 4 (iv) are strongly one-step complete. Remark that we explicitly defined the hori-
zontal and vertical neighborhood frames in the proof of [15, Theorem 5.11]. Moreover,
Theorem 1 newly establishes unknown pure completeness results of both product of
classical conditional hybrid logics and g-product of non-normal hybrid logic and clas-
sical conditional hybrid logic, because it is easy to show, e.g., that all the axioms in
Example 4 (v) are strongly one-step complete for the functor SM

ID of Example 1 (v).
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5.2 Generalized Product of Bounded Logics

In the ordinary hybrid logic for Kripke semantics, the rule called Paste (or BG) plays
a crucial role in establishing a pure completeness result [18], because it captures the
relational character of Kripke semantics (In fact, it characterizes the notion of Kripke
frame within monotone neighborhood frames [20]). Schröder and Pattinson [4] defined
the notion of boundedness to capture the relational nature of Kripke semantics, multi-
graph semantics, and selection function semantics as in Example 3 (i), (ii) and (iii).
Remark also that we restrict our attention to the diamond-type modal operators like �,
�≥k, and�, whenever we consider the notion of boundedness.

Definition 11. Let (T, (�♥�)♥∈Λ) be a Λ-structure. ♥ ∈ Λ is k-bounded in r-th argument
with respect to T if for every set X and every A1, .., An ⊆ X:

�♥�X (A1, .., Ar, ..., An) =
⋃

B⊆Ar,#B≤k
�♥�X (A1, .., B, ..., An).

We say thatΛ is bounded with respect to an endofunctor T if every ♥ ∈ Λ is k♥-bounded
in r♥-th argument for some k♥ and r♥.

If ♥ ∈ Λ is k-bounded in r-th argument, then �♥�X is monotone in r-th argument.

Definition 12. Given ♥1 ∈ Λ1, Paste♥1(r; k) is the following non-orthodox rule:
(
@ j1ϕr ∧ · · · ∧@ jkϕr ∧@i♥1(ϕ1, ...,

∨
1≤s≤k js, ..., ϕn)

)
→ ψ

@i♥1(ϕ1, ..., ϕr, ..., ϕn)→ ψ
Paste♥1(r; k)

,

where j1, ..., jk are pairwise distinct fresh nominals in ψ and @i♥1(ϕ1, ..., ϕr, ..., ϕn).
Given any ♥2 ∈ Λ2, we also define Paste♥2(r; k) similarly.

Example 6. (i) � is 1-bounded. The corresponding Paste�(1; 1) is the same rule as
Paste� of [18].

(ii) �≥k is k-bounded. Paste�≥k(1; k) has the following shape with the same side-
condition: (

@ j1ϕ ∧ · · · ∧@ jkϕ ∧@i�≥k( j1 ∨ · · · ∨ jk)
)
→ ψ

@i�≥kϕr → ψ .

(iii) � is 1-bounded in second argument. The corresponding Paste� (2; 1) has the
following shape with the side-condition required above:

(
@ jϕ2 ∧@i(ϕ1 � j)

)
→ ψ

@i(ϕ1 � ϕ2)→ ψ .

Proposition 6. Let ♥l ∈ Λl be k-bounded in r-th argument (l = 1 or 2). Paste♥l(r; k)
preserves validity on all coalgebraic g-product frames.

Definition 13. Let Λl be bounded with respect to Tl (l = 1 or 2). Ψ is horizontally 1-
pasted if whenever ♥1 ∈ Λ1 is k-bounded in r-th argument and @i♥1(ϕ1, ..., ϕr, ..., ϕn) ∈
Ψ, then {@ j1ϕr , ...,@ jkϕr,@i♥1(ϕ1, ...,

∨
1≤s≤k js, ..., ϕn) } ⊆ Ψ for some j1,..., jk ∈ N1.

Similarly, we define the notion of vertical 1-pastedness for Λ2.
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Lemma 5. Let Λl be bounded and {Namel } ∪ {Paste♥l | ♥l ∈ Λl } ⊆ Gl (l = 0 or 1). If
Ψ ⊆ F (Λ1;Λ2) is RAG-consistent, then there exists a labelled, horizontally 0- and 1-
pasted and vertically 0- and 1-pasted maximally RAG-consistent set by adding count-
ably many new nominals to the language.

The following notion is a generalization of strongly finitary one-step completeness
for unary modal operators [4, Definition 2.18] and (strong, strongly finitary) one-step
completeness for binary modal operators [4, Definition 2.22].

Definition 14. Let Λ be bounded. Given any set X, we define:

Bnd(Λ(P(X))) :=
{
♥(A1, ...,Ar♥ , ...,An) ∈ Λ(P(X)) | A1, ...,An ⊆ X and #Ar♥ < ω and ♥ ∈ Λ

}
.

We say that R is strongly bounded one-step complete if for every X, every one-step
consistent subset of Prop(Bnd(Λ(P(X)))) is one-step satisfiable.

Definition 15. Mon♥l(r): ♥l(p1, ..., p, ..., pn)→ ♥l(p1, ..., p∨ q, ..., pn) is a monotonic-
ity axiom of ♥l ∈ Λl in r-th argument 3.

Lemma 6. Let Λl be bounded, {Mon♥l(r) | ♥l ∈ Λl } ⊆ Rl, and Rl strongly bounded
one-step complete (l = 1 or 2). If a maximally RAG-consistentΨ is horizontally 0- and
1-pasted, then there exists γ : CΨ → T1(CΨ) such that γ satisfies h-coherence condition.
Similarly, we have the corresponding statement about v-coherence condition.

Theorem 2. Let Λl be bounded, {Mon♥l(r) | ♥l ∈ Λl } ⊆ Rl and Gl = {Namel } ∪
{Paste♥l | ♥l ∈ Λl } (l = 1 or 2). Let also R1 and R2 be strongly bounded one-step com-
plete andA a set of pure formulas. Then, RAG is strongly complete with respect to the
class of coalgebraic g-product frames defined byA.

Proof. An outline of the proof is similar to the proof of Theorem 1. We, however, need
Lemma 5 and Lemma 6 in the places of Lemma 3 and Lemma 4, respectively. ��

Example 7. Theorem 2 establishes previously unknown strong completeness results of
product of any pure extensions of graded hybrid logic and any pure extensions of hybrid
conditional logic. It also reproves the known pure completeness result of product of
hybrid logics for Kripke semantics [14, Theorem 3.12]. Furthermore, Theorem 2 newly
establishes unknown pure completeness results of g-product of any two logics from
hybridization of modal logic K, hybrid conditional logic, and graded hybrid logic.

Example 8. Let us assume that the first dimension describes the domain of individuals
and the second dimension describes the temporal structure. Let T1 be the infinite multi-
set functor with graded modalities �≥k, T2 be the covariant powerset functor and 〈P〉
the past-tense operator ‘it was the case that’. Remark that a pure formula ¬�≥2i (the
transition multiplicity between two states is always at most one) axiomatizes the class

3 As noted in [4], if Λ1 consists of unary modal operators alone and R1 is one-step complete
(i.e., any one-step consistent ϕ ∈ Prop(Λ1(P(X))) is one-step satisfiable), 1-pastedness implies
0-pastedness. This implication does not hold in general, e.g. in the case of�. This is why we
need the monotonicity axiom Mon♥l(r).
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of Kripke frames [4, Example 2.21]. This allows us to handle the description logic
ALCQ with qualified number restrictions in the first dimension. By using the notation
of modalized description logic [8], we may define the concept Multipara by:

Human � Female � 〈P〉 ≥ 2 gives_birth.Human.

The A-Box 〈P〉(Multipara(MARY)) allows to infer

〈P〉(∃gives_birth.Human(MARY)).

In our notation, we can rewrite this inference as follows:

〈P〉@MARY(Human ∧ Female ∧ 〈P〉�≥2Human)→ 〈P〉@MARY�Human.

where we regard Human and Female as propositional variables. The interaction ax-
ioms, 〈P〉〈P〉p → 〈P〉p and one-step axioms for graded modal logic allow us to derive
this formula in our intended system. 〈P〉〈P〉p → 〈P〉p goes beyond rank-1, but a pure
formula 〈P〉〈P〉i→ 〈P〉i and Paste�≥1(1; 1) allow us to derive 〈P〉〈P〉p→ 〈P〉p.

5.3 Generalized Product of Bounded and Non-bounded Logics

Theorem 3. Let Λ1 be bounded and {Mon♥1(r) | ♥1 ∈ Λ1 } ⊆ R1. Suppose G2 =

{Name2 } and G1 = {Name1 } ∪ {Paste♥1 | ♥1 ∈ Λ1 }. Let also R1 be strongly bounded
one-step complete and R2 strongly one-step complete. Given any pure axiomsA, RAG
is strongly complete with respect to the class of coalgebraic g-product frames defined
byA.

Proof. An essential difference from the proof of Theorem 2 is that, given any RAG-
consistent set Ψ0, we need to construct Ψ ⊇ Ψ0 such that Ψ is a labelled, horizontally
0- and 1-pasted but vertically 0-pasted MCS. However, this is easy to establish. ��

Example 9. This theorem newly establishes a pure completeness of g-product of any
hybrid logic for (i), (ii) or (iii) of Example 3 and any hybrid logic for (iv) or (v) of
Example 3. In particular, it gives us a pure completeness of g-product of graded hybrid
logic and non-monotone hybrid logic.

Example 10. Let us use the following interpretation: the first dimension is for the deon-
tic reasoning with the monotone neighborhood functorM and the second dimension is
for the temporal structure as in Example 8. Then, the inference “Gate A must be closed
at 9 pm; Gate B must be opened at 11 pm; 11 pm is later than 9 pm; therefore, at 11
pm, it is obligatory that Gate A is closed and Gate B was opened.” can be formalized
as ([Must]@9pm p ∧ [Must]@11pmq ∧@11pm〈P〉9pm) → @11pm[Must](p ∧ 〈P〉q). The
one-step axiom [Must]p1 ∧ [Must]p2 → [Must](p1 ∧ p2) makes this inference valid.

Remark that our result provides a complete axiomatization of the logic of irreflexive
and transitive temporal orders by means of pure formulas ¬@i〈P〉i and 〈P〉〈P〉i→ 〈P〉i,
respectively. As for the first dimension, we may freely add ¬[Must]⊥, since it is both
pure and one-step.
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5.4 Adding Downarrow Binders

In the same sprit as did in [20,4], we can also include the downarrow binders ↓ i and/or
↓ a in our syntax, which binds a nominal i (or a) to the first (or, second, respectively)
argument of the current state. Given any (C × D, γ, δ,V), we can define

(C × D, γ, δ,V), (x, y) �↓ i. ϕ iff (C × D, γ, δ,V[i �→ x](x, y) � ϕ,

where V[i �→ x] is same as V except that it sends i to { x }×C. We can also give the simi-
lar clause to ↓ a. ϕ. A technique of local definability allows us to capture this semantics
by the axiom DA1: @ j(↓ i. ϕ ↔ ϕ[i/ j]), where ϕ[i/ j] is the result of replacing all free
instances of i by j in ϕ. We can also consider the corresponding axiom DA2 for ↓ a. ϕ.
By the similar argument to [18, Theorem 5], we can immediately transfer Theorems 1,
2, and 3 to the syntax extended with the downarrow binders ↓ i and/or ↓ a.

6 Conclusions and Future Work

The notion of g-product defined in this paper naturally generalizes products of Kripke
frames [10] and products of topologies [11] to coalgebraic setting. As discussed in the
paragraph following Definition 1, the definition is based on a natural categorical con-
cept. Hence, as Example 2 above shows, for any specific functor(s) one can immediately
calculate concrete definition of horizontal and vertical transitions. Moreover, the defini-
tion does not rely on both functors being of the same type. Future work in this direction
can involve a coalgebraic generalization of the notion of dependent product of Kripke
frames proposed by the author in [14].

Our main logical results are modular pure completeness theorems with generic cri-
teria for g-products of coalgebraic hybrid logics. The five interaction axioms proposed
first by the author in [14,15] turned out to capture the relationship between horizontal
and vertical dimensions in the full coalgebraic generality. Moreover, as already men-
tioned in Examples 8 and 10 above, the combination of pure axioms and non-orthodox
rules allows to cover a large class of non-rank-1 axioms, overcoming traditional restric-
tions of coalgebraic axiomatics (at least in the bounded case). In this stage, we do not
know if we can transfer global strong completeness of [4] to our setting. The study of
sequent calculus for generalized products is also the subject of future work.

On the practical side, we believe Examples 8 and 10 show the potential for future
applications. As mentioned in the Introduction, there exists a modular framework [6]
allowing a compositional way of combining transitions of different type which has re-
cently been extended to hybrid setting [5,4]. That compositional framework and our
product framework are entirely independent of each other and, e.g., our Example 8 is
beyond the scope of [6,5,4]. It should be stressed, however, that both methods seem
wholly compatible and it would be most interesting to investigate the potential of con-
crete languages arising from their combination4.

4 This paper was written during the author’s visit to University of Leicester. I would like to thank
Alexander Kurz, Dirk Pattinson, Fredrik Dalhqvist and Tomoyuki Suzuki for the stimulating
discussions and comments. In particular, I wish to thank Tadeusz Litak for his very kind assis-
tance in writing up this paper and also for his warm hospitality at Leicester. Finally, I would
like to thank three reviewers for their helpful comments. However, all errors are mine.
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Abstract. We present an effort to give formal semantics to the popu-
lar but theoretically rather unreflected scientific modelling paradigm of
agent- or individual-based models. To this end, we give a generic formal-
ization of two-dimensional cellular automata with flexible topology as
the abstract basis of such models. The semantic approach of structural
operational semantics a la Turi and Plotkin [7], based on bialgebras and
distributive laws, leads in this case to a natural separation of the con-
cerns of spatial structure, temporal behavior and local interaction. We
give a generic distributive law for local behavior of automata and prove
the equivalence to a more traditional, array-based formalization.

1 Introduction

In empirical sciences, computers have been perceived traditionally as mechan-
ical extensions of the established modelling methods, allowing the numerical
solution of analytically intractable equations. The power of computers to dis-
play complex interactive behavior has been harnessed rather lately, in particular
in the form of so-called individual-based or agent-based models (ABMs). These
models and their mathematical abstraction, cellular automata (CAs), are widely
used in empirical areas of natural and social sciences. The epistemological and
methodological implications of these models remain unexplored, not least be-
cause appropriate semantic theories are not available to modelling practitioners.

Formal theories of interactive behavior have been developed in theoretical
computer science. Categorial notions, especially coalgebra and modal logic, have
proven fruitful [5,6]. Here, we make results of this recent development from [7,1]
accessible for modelling. To this end we show that distributive laws and their
bialgebras can be used as a common semantic theory behind cellular models. In
particular, we will define a large class of CAs by a parametric class of distributive
laws of spatial syntax over temporal behavior.

The principle of CAs is to cover space with identical copies of simple automata.
All of these share a common state space, often but not necessarily finite, and local
transition rule, but may be in individually different states at any time. Global
behavior emerges through the interaction of neighboring automata, with the pre-
state of neighbors, or some observation of it, serving as input to each automaton.
The patterns of global behavior, both stationary and mobile and both periodic
and asymptotic, are the principal properties of interest when studying CAs.

A. Corradini, B. Klin, and C. Ĉırstea (Eds.): CALCO 2011, LNCS 6859, pp. 344–358, 2011.
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The basic CA design has a number of degrees of freedom: the global shape
of the world, the local shape of neighborhoods, the local state space and tran-
sition rule, the initial and boundary conditions, and the amount of observable
information about neighbor states. Here, we demonstrate how structural oper-
ational semantics (SOS) in the bialgebraic style of [7] serve to structure and
separate these concerns. We also demonstrate that the coalgebraic part of bial-
gebras leverages the powers of coinductive reasoning about the behavior of CAs,
in terms of equivalence, bisimulation or corecursive definition, in a natural way.
Our main result Theorem 4 is a first and promising example of such a coin-
ductive argument. The implications of our approach for the implementation of
CAs and ABMs in a functional programming language on one hand, and for
the epistemological and methodological assessment of the relation of ABMs to
empirical phenomena on the other hand, shall be addressed in two forthcoming
companion articles.

An appendix [9] with omitted proofs and advanced examples is available as
an electronic supplement to this article.

2 Theory of Bialgebras

This section introduces the basic concepts of bialgebraic semantics. The notation
follows [3] in many, but not all aspects.

Definition 1 (Algebra). Let Σ be an endofunctor. A pair (X,x) where X is
an object and x : ΣX → X is called a Σ-algebra. Let (W,w) and (X,x) be two
Σ-algebras. A morphism f : W → X is called a Σ-algebra homomorphism
iff f ◦ w = x ◦ Σf . We write f : w → x in this case. A Σ-algebra (A,α) such
that there is a unique homomorphism x? : α → x into every other Σ-algebra is
called initial.

Definition 2 (Coalgebra). Let B be an endofunctor. A pair (Y, y) where Y is
an object and y : Y → BY is called a B-coalgebra. Let (Y, y) and (Z, z) be two
B-coalgebras. A morphism f : Y → Z is called a B-coalgebra homomorphism
iff Bf ◦ y = z ◦ f . We write f : y → z in this case. A B-coalgebra (Ω,ω) such
that there is a unique homomorphism y! : y → ω from every other B-coalgebra
(Y, y) is called final.

Definition 3 (Distributive Law). Let Σ,B be two endofunctors. A natural
transformation λ : ΣB ⇒ BΣ is called a distributive law of Σ over B, or just
Σ/B-distributive law.

Lemma 1. Let λ be a Σ/B-distributive law. Then

1. for each Σ-algebra (X, f) there is a Σ-algebra (BX,Bf ◦ λX),
2. for each B-coalgebra (Y, g) there is a B-coalgebra (ΣY, λY ◦Σg).

Definition 4 (Lifting). Let λ be a Σ/B-distributive law. Let (X, f) be a Σ-
algebra and (Y, g) be a B-coalgebra. We call



346 B. Trancón y Widemann and M. Hauhs

1. Bλf = Bf ◦ λX the behavioral lifting of f ,
2. Σλg = λY ◦Σg the syntactic lifting of g.

Definition 5 (Bialgebra). Let λ be a Σ/B-distributive law. A triple (X, f, g)
is called a λ-bialgebra iff

1. (X, f) is a Σ-algebra,
2. (X, g) is a B-coalgebra, and
3. any of the following three, equivalent properties holds:

(a) f : Σλg → g,

(b) g : f → Bλf , or

(c) the following diagram commutes.

ΣX X BX

ΣBX BΣX

��
f

��

Σg

��
g

��
λX

��

Bf

A morphism that is a homomorphism on both the algebra and the coalgebra part
of two λ-bialgebras is called a λ-bialgebra homomorphism. Initial and final
bialgebras are defined in the obvious way.

The following results are trivial when the free monad of Σ and the cofree
comonad of B are considered instead [7]. But we consider the bare functors
precisely because we are interested in behavior with bounded spatio-temporal
context. Without reference to the additional structure, an explicit proof is in
order; cf. appendix.

Lemma 2. Let λ be a Σ/B-distributive law. Each initial Σ-algebra extends
uniquely to an initial λ-bialgebra.

Lemma 3. Dually, let λ be a Σ/B-distributive law. Each final B-coalgebra
extends uniquely to a final λ-bialgebra.

Theorem 1. Let λ be a Σ/B-distributive law. For each initial Σ-algebra (A,α)
and final B-coalgebra (Ω,ω) there is a unique morphism h : A → Ω that is a
λ-bialgebra homomorphism.

Proof. Combines the previous lemmata. Each initial Σ-algebra (A,α) extends
to a unique initial λ-bialgebra

(
A,α, (Bλα)?

)
. Each final B-coalgebra (Ω,ω)

extends to a unique λ-bialgebra
(
Ω, (Σλω)!, ω

)
. Then there is a λ-bialgebra

homomorphism h : A → Ω that is unique by both initiality and finality; cf.
appendix. %&

Definition 6 (Bialgebraic Semantics). The homomorphism induced by the
preceding theorem is called the bialgebraic semantics of the distributive law
λ. It is unique up to the unique isomorphisms between initial Σ-algebras or final
B-coalgebras.

In this section, we have reviewed the basic notions of bialgebraic semantics,
most notably the unique homomorphisms that arise from initial algebras and
final coalgebras, and the lifting operations that arise from a distributive law.
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3 Syntax

The global state of a CA is composed of local states arranged in a discrete
n-dimensional structure, usually a regular grid, but possibly with a nontrivial
topology. We restrict our considerations to the most common case, n = 2, al-
though the approach should be generalizable in a straightforward way. We allow
for the syntactic description of the regular grid by a lifting operation singleton
for local states, and binary combining operations beside and above for global
states. As a simple, but instructive case of nontrivial topology, we add unary
operations vwrap and hwrap for connecting opposite edges of a grid. The result-
ing syntax functor ΣL, for some local state space L, is shown in Table 1. We
use the graphic notation both for elements of ΣLX and for elements of initial
ΣL-algebras. To avoid unneccessary parentheses, it is implied that ↔ and � bind
stronger than |, which binds stronger than /.

Real-world implementations of CAs and ABMs usually allow wrapping opera-
tions only at the outermost level of spatial syntax: The world can be a rectangle
(unwrapped), cylinder (wrapped in one dimension) or torus (wrapped in both
dimensions). We allow for full compositionality of the syntax; combining and
wrapping operations can be nested in any order. For instance, a trouser-shaped
world can be constructed out of three rectangles A,B,C by writing A↔/B↔|C↔.

In this section, we have defined a syntax for denoting both the current (spa-
tially distributed) state of a CA and its topology. Departing from conventional
modelling frameworks for CAs, we have made the syntax fully compositional,
with every operation applicable at any level. Although our syntax deals only
with certain regular shapes in two-dimensional space, generalization to other
topological shapes and dimensions is possible. For instance, two-dimensional
context-sensitive Lindenmayer systems, where the grid grows locally over time,
for instance used for forest growth models [4], could be formalized analogously.

4 Static Semantics

It is straightforward to give a semantic interpretation for the fragment of syntax
that excludes wrapping operations: The semantic domain consists of ordinary
finite, rectangular matrices over L. One must merely decide how to handle the
combination of incompatible shape (different heights in beside , different widths
in above). In the presence of wrapping, however, things become more compli-
cated. We shall introduce semantic interpretations stepwise in the following two
subsections.

Definition 7 (World Functor). The world functor W takes a local state
space L to initial ΣL-algebras WL = (AL, αL) and acts on singletons:

Wf
(
[a]
)

=
[
f(a)

] Wf(x↔) =
(
Wf(x)

)↔
Wf(x�) =

(
Wf(x)

)� Wf(x | y) = Wf(x) |Wf(y)

Wf(x / y) = Wf(x) / Wf(y)

We write WL for the carrier AL where the initial operation is not relevant. We
call an element x ∈ WL a world state over L.
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4.1 Flat Semantics

Any world can be represented approximately as a rectangular matrix, ignoring
topological details. We take the local state space L to be pointed, that is, L is
nonempty and there is a distinguished element ' ∈ L. We define the rectangular
shape and content of the interpretation of syntactic expressions by operations
wd (width), ht (height) and sl (select).

wd : WL → N ht : WL → N

wd
(
[a]
)

= 1 ht
(
[a]
)

= 1
wd(x↔) = wd(x) ht(x↔) = ht(x)

wd(x�) = wd(x) ht(x�) = ht(x)
wd(x | y) = wd(x) + wd(y) ht(x | y) = ht(x) & ht(y)
wd(x / y) = wd(x) & wd(y) ht(x / y) = ht(x) + ht(y)

where & is the usual maximum operator. The sl operation has dependent type,
for all x ∈ WL:

sl(x) : ht(x) × wd(x) → L sl(x↔)(i, j) = sl(x)(i, j)

sl(a)(0, 0) = a sl(x�)(i, j) = sl(x)(i, j)

sl(x | y)(i, j) =

⎧⎪⎨⎪⎩
sl(x)(i, j) i < ht(x), j < wd(x)
sl(y)

(
i, j − wd(x)

)
i < ht(y), j ≥ wd(x)

' otherwise

sl(x / y)(i, j) =

⎧⎪⎨⎪⎩
sl(x)(i, j) i < ht(x), j < wd(x)
sl(y)

(
i− ht(x), j

)
i ≥ ht(x), j < wd(y)

' otherwise

Note that:

1. Selection coordinates are of the form (row , column) and zero-based.
2. We write n for the set {k ∈ N | 0 ≤ k < n}.
3. Composition of submatrices of incompatible shapes results in padding of the

smaller one with '.
4. All matrices constructed from syntactic expressions are nonempty.
5. All operations are natural in L.

We write sl� for a totalized selection operation with

sl�(x)(i, j) =

{
sl(x) (i, j) ∈ ht(x) × wd(x),
' otherwise .

We call expressions x, y such that sl�(x) = sl�(y) similar, writing x ≈ y.
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(+1, 0)

(0, +1)

(−1, 0)

(0, −1)

i

j

(+1,−1)
(+1, 0)

(+1,+1)

(0, +1)

(−1,−1) (−1, 0) (−1,+1)

(0, −1)

i

j

Fig. 1. Common neighborhood shapes in two-dimensional grids, with axes and chart
coordinates relative to the grey center cell. Left: von Neumann neighborhood (4 neigh-
bors). Right: Moore neighborhood (8 neighbors).

4.2 Context and Template

In a two-dimensional CA, each cell may interact only locally with a particular
neighborhood. See Fig. 1 for the most common shapes; a comprehensive survey
may be found in [8]. We shall use the von Neumann neighborhood shape as
the running example throughout this article. Each shape may be specified by a
simple data structure. The semantics of wrapping operations can then be given
in terms of that structure.

Definition 8 (Context, Template). A context is a pair C = (C, γ) of

1. a set functor C acting as a datatype constructor for collections of neighbor
cells; for a neighborhood of n cells, simply put CX = Xn,

2. a distributive law γ : C#W → WC#, where C# is the C-template functor:

C#X = CX ×X C#f = Cf × f

We write c
x for (c, x) to emphasize that (c, x) ∈ C#X is a template element,
calling x the center.
Such a law γ transforms a template of worlds, namely the actual center
world, surrounded by a global neighborhood of “phantom” worlds representing
boundary conditions, into a world of templates of every cell embedded in its
local neighborhood, thus enabling local transitions; see Fig. 2 for an example.

The following axioms must hold for a context:

(C1) γ preserves the shape of the center: for all c ∈ CW1; x ∈ W1

W †
(
γ1(c 
 x)

)
= x

where 1 is a singleton set and † is the unique map † : C#1 → 1.
(C2) γ does not distinguish similar neighborhoods: for all c1, c2 ∈ CWL; x ∈

WL

Csl�(c1) = Csl�(c2) =⇒ γL(c1 
 x) = γL(c2 
 x) .
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a b

c d

e f

g h

I J

K L

m n

o p

q r

s t

γ�−→

c

f I J

K

d

I J m

L

I

h K L

q

J

K L o

r

Fig. 2. Distribution of von Neumann template over a flat world. The (2 × 2)-shape is
preserved; cf. axiom (C1).

The white part of each diagram in Fig. 1 defines a context, namely the shape C
and the neighborhood distribution law γ. The center of C# corresponds to the
grey middle cell.

Example 1. The distributive law for the von Neumann neighborhood shape is
sketched by an example application in Fig. 2. The context functor is CX = X4.

For a general technique how to derive a distributive law γ from the given coor-
dinate specifications see next subsection.

Definition 9 (Update). Let C = (C, γ) be a context. A C#-algebra (L, u) is
called a C-update on L.

Example 2. The CA for a diffusion system (discrete counterpart of the heat
equation u̇ = αΔu) requires the von Neumann context CX = X4 and is defined
by the update dα(a, b, c, d 
 e) = e+α · (a+b+c+d−4e), where the parenthesis
is the discrete Laplace operator. The CA for Conway’s Game of Life requires the
Moore context CX = X8 and is defined by the update

v(a1, . . . , a8 
 b) =

⎧⎪⎨⎪⎩
1

∑
ai = 3,

b
∑

ai = 2,
0 otherwise .

Lemma 4. Behavioral lifting for any context C = (C, γ) maps C-updates on
local states L canonically to C-updates on world states WL.

u : C#L → L =⇒ W γu : C#WL → WL

Definition 10 (Globalization). Let C = (C, γ) be a context. We call the
C-update (WL,W γu) the C-globalization of the C-update (L, u).

Example 3. Reconsider Fig. 2; for the special case of linear forms u, such as the
diffusion system from Example 2, the globalized operation W γu = Wu ◦ γL is
also a rather high-level specification of a familiar array-programming technique
called convolution with a stencil/kernel.
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4.3 Regular Contexts

Distributive laws for contexts are hard to define directly in practice. The reader
is invited not to be deceived by the simplicity of Fig. 2, but to try and give a
complete distributive law, dealing with (nested) wrapping as well, for the von
Neumann neighborhood shape.

The matter is simplified by reconsidering the relative coordinates in Fig. 1.
Assume that for a context C = (C, γ), relative coordinates are given as a chart
χ ∈ CZ2. By adding the coordinates of the grey center cell componentwise, the
absolute coordinates of neighbor cells are obtained. There are two cases:

1. The absolute coordinates of a neighbor are within the the center world: The
internal neighbor is selected from the center.

2. The resulting coordinates are outside the the center: The external neighbor
is selected from the appropriate context component.

For certain contexts C = (C, γ), we can define an operation sl+ that extends
the selection operation sl to external neighbors, thus unifying the cases. sl+

operates on world templates instead of single world states and has dependent
type, for all (c 
 x) ∈ C#WL, sl+(c 
 x) :

(
ht(x)×wd(x)

)
⊕Dχ → L where Dχ,

the domain of χ, is the set of elements in χ, and ⊕ denotes the elementwise
sum X ⊕ Y =

{
(a + c, b + c)

∣∣ (a, b) ∈ X ; (c, d) ∈ Y
}

. We require that sl+ be
natural in L. Given a chart χ and an extended selection sl+, we can implement
a distributive law.

Definition 11 (Relocation). Let C be a context functor with chart χ ∈ CZ2.
The relocation map is a natural transformation χ̂L : WL → WC#Z2 defined as

χ̂L
(
[a]
)

=
[
χ 
 (0, 0)

]
χ̂L(x↔) =

(
WC#fx

(
χ̂L(x)

))↔
fx(i, j) =

(
i, j % wd(x)

)
χ̂L(x�) =

(
WC#gx

(
χ̂L(x)

))�
gx(i, j) =

(
i % ht(x), j

)
χ̂L(x | y) = χ̂L(x) |WC#hx

(
χ̂L(y)

)
hx(i, j) =

(
i, j + wd(x)

)
χ̂L(x / y) = χ̂L(x) / WC#kx

(
χ̂L(y)

)
kx(i, j) =

(
i + ht(x), j

)
where % is the usual remainder operator. This map assigns to a world w of
arbitrary state a world of templates, each containing just the coordinates of the
cells of w relevant for a single neighborhood.

Lemma 5. The relocation map preserves the shape of its input: W ‡
(
χ̂1(x)

)
= x,

where 1 is a singleton set and ‡ is the unique map ‡ : C#Z2 → 1.

Example 4. A possible specification of von Neumann neighborhoods with CX =
X4, namely the one given in Fig. 1, is given as follows.

1. A chart: χ =
(
(−1, 0), (0, +1), (+1, 0), (0,−1)

)
.

In prose, von Neumann neighbors are represented in the order north, east,
south, west. Of course, every permutation is equally valid. The domain is
Dχ =

{
(−1, 0), (0, +1), (+1, 0), (0,−1)

}
in any case.
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2. An extended selection:

sl+(n, e, s, w 
 x)(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sl�(n)
(
i + ht(n), j

)
i < 0,

sl�(e)
(
i, j − wd(x)

)
j ≥ wd(x),

sl�(s)
(
i− ht(x), j

)
i ≥, ht(x)

sl�(w)
(
i, j + wd(w)

)
j < 0,

sl�(x)(i, j) = sl(x)(i, j) otherwise .

where the first four cases are the subcases of external neighbors, and the last
case covers internal neighbors. Note that the external cases do not overlap
because of the type restriction given above.

Consider the (2 × 2)-torus with the flat matrix interpretation
(
a b
c d

)
defined for

instance by t =
(
[a] | [b] / [c] | [d]

)↔�
. The relocation function χ̂ for the von

Neumann context yields a world r = χ̂(t) of the same shape, but populated
with von Neumann contexts of coordinates in the range wd(t) × ht(t) = 2 × 2.
The elements of t can be substituted for their coordinates by considering s =
WC#

(
sl(t)

)
(r), as depicted in Fig. 3.

In the above example, cells have only internal neighbors because of wrapping.
In the general case, external neighbors and extended selection are required.

Theorem 2. A chart χ and extended selection operation sl+ for a context func-
tor C induce a distributive law and hence a context C = (C, γ).

γL(c 
 x) = WC#
(
sl+(c 
 x)

)(
χ̂L(x)

)
4.4 Compositional Contexts

Definition 12. A context C = (C, γ) is called compositional iff it admits a
lifting of each syntactic operation over context formation, namely a collection of
natural transformations

cosingletonL : CWL → CL

cohwrapL, covwrapL : WL× CWL → CWL

cobesideL, coaboveL : WL×WL× CWL → CWL× CWL

such that, for all local updates (L, u) and their globalized counterparts g = W γu:[
u(cosingletonL(c) 
 a)

]
= g

(
c 
 [a]

)
g(cohwrapL(x, c) 
 x)↔ = g(c 
 x↔)

g(covwrapL(x, c) 
 x)� = g(c 
 x�)
g(c1 
 x1) | g(c2 
 x2) = g(c 
 x1 | x2) (c1, c2) = cobesideL(x1, x2, c)
g(c1 
 x1) / g(c2 
 x2) = g(c 
 x1 / x2) (c1, c2) = coaboveL(x1, x2, c)

(1)
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Table 1. Syntax functor ΣL

(Textual) singleton hwrap vwrap beside above

(Graphic) [ ] ↔ 
 | /

(Objects) ΣLX = L + X + X + (X × X) + (X × X)

(Morphisms) ΣLf = idL + f + f + (f × f) + (f × f)

c

b a b

c

d

a b a

d

a

d c d

a

b

c d c

b

Fig. 3. Von Neumann neighborhoods on a (2 × 2)-torus, constructed by relocation
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Fig. 4. cohwrap acting on von Neumann neighborhood of flat (2 × 2)-world
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Fig. 5. cobeside acting on von Neumann neighborhood of flat (2 × 2)-world
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These operations are not quite uniquely determined: Since the split operations
act only on external neighbors, and only under a map W γu = Wu ◦ γ, see
equations (1), a loose specification up to similarity suffices thanks to context
axiom (C2). See Figures 4, 5 for illustrations.

Space does not permit to give a full set of compositionality laws, say, for the
von Neumann context here; cf. appendix.

In this section, we have formalized the context sensitivity of CAs for a variety
of topologies. To this end we have introduced the notion of context and template
functors to create data structures that accumulate the state of a neighborhood.
We have defined local behavior of CAs (updates) as algebras of the template
functor and their globalization as the behavioral lifting arising from a distribu-
tive law of context over worlds. We have addressed the problem of specifying a
suitable distributive law by giving relative addresses of neighbors and a universal
syntax-directed relocation procedure. Finally, we have investigated composition-
ality of contexts in the sense that syntactic composition can be lifted from the
center of a world template over a globalized update. Together with the behavior
functor to be defined in the next section, this compositionality will yield the
desired spatio-temporal distributive law.

5 Behavior

Definition 13 (Behavior Functor). Let S be a set and C = (C, γ) a context.
We call the following functor the C-behavior functor with observable state S:

BC
SX = S ×XCS BC

Sf = idS × (f ◦ )

The functor BC
S is the composition of the left product functor S × and the

covariant hom-functor Hom
(
CS,

)
, whose function part we abbreviate as (f ◦ )

for Hom
(
CS,

)
(f). The functor BC

S is also the signature of deterministic Moore
automata with input CS (context of state) and output S.

We write s % t for (s, t) to emphasize that (s, t) ∈ BC
SX is a behavior ele-

ment. We also omit parentheses by having % bind less strongly than function
composition ◦. Let (X, g) be a BC

S-coalgebra. The prose reading of an equation
g(x) = s % t is as follows:

The automaton specified by (X, g), when in state x ∈ X , outputs s ∈ S
and, for any input c ∈ CS, transits to state t(c) ∈ X .

Definition 14 (Update Coalgebra). Let C = (C, γ) be a context. Let u be a
C-update on S. The structure (S, u$) where

u$(s) =
(
s, u( 
 s)

)
is a BC

S-coalgebra. Hence, the automaton specified by (S, u$), when in state s,
outputs s and transits to state u(c
s) for any input c. In other words, update coal-
gebras specify automata that transduce boundary conditions to observable global
state of a system. The overall behavior of the automaton is given by the unique
BC
S-coalgebra homomorphism u$! : S → Ω.
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Note that we have adopted the convention that the local state of CAs be
public, formally by returning s as the output component of u$(s). We could
introduce some privacy, and more behavioral equivalence, by outputting o(s) for
some observation function o instead.

In this section, we have defined a behavior functor for CAs, seen as Moore
automata that consume context of state (boundary conditions) and output the
current state. Updates, by construction template algebras, can be massaged into
behavioral coalgebra shape. The corresponding anamorphism gives the semantic
objects of automaton behavior.

6 Distributive Law

Let C = (C, γ) be a compositional context. Let L be a pointed set with default
element '. Let u be a C-update on L. Our task is now to give a ΣL/B

C
WL-

distributive law that encodes the update u “properly”, preferrably in a generic
way. Though we adopt a notation in the style of SOS, the focus is on certain dis-
tributive laws, and rule formats are considered only as a means of visualization.

Definition 15 (Rule Format). We define a rule of the form

x1
s1−→ y1 · · · xn

sn−→ yn

k(x1, . . . , xn) s−→
d

y

where x1, . . . , xn, y1, . . . , yn, s1, . . . , sn are variables, s is an expression possibly
depending on s1, . . . , sn, y is an expression possibly depending on y1, . . . , yn, k is
a n-ary syntactic operation, and d is a (n + 1)-ary function, to denote a clause
of a distributive law λ:

λ
(
k(s1 % t1, . . . , sn % tn)

)
= s % l ◦ (t1 × · · · × tn) ◦ d(s1, . . . , sn, )

where l(y1, . . . , yn) = y .

The prose reading of this formula is rather involved:

Consider n subsystems. If they are composed according to the syntactic
operator k, the composite system, when in joint state (x1, . . . , xn),
1. outputs s, depending on each of the individual outputs si for indi-

vidual state xi of the i-th subsystem, and
2. for input c transits to state y, where for each yi the post-state ti(ci)

of the i-th subsystem for state xi and input ci is substituted. The
subinputs ci are projected from (c1, . . . , cn) = d(s1, . . . , sn, c).

Note that Moore automata allow the computation of output indepen-
dently of input; hence there is no vicious circle here.

Theorem 3. If the following properties hold, then a law specified in this format
is natural.
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[a]
[a]−−−−−−−→

cosingleton

[
u( � a)

]
x

s−→ y

x↔ s↔−−−−−→
cohwrap

y↔

x
g−→ y

x
 s�−−−−−→
covwrap

y


x1
s1−→ y1 x2

s2−→ y2

x1 | x2
s1|s2−−−−−→

cobeside
y1 | y2

x1
s1−→ y1 x2

s2−→ y2

x1 / x2
s1/s2−−−−→
coabove

y1 / y2

Fig. 6. Rules defining the spatio-temporal distributive law λu of cellular automaton
with dynamics u

1. The rules are complete: Every syntactic operation k is covered.
2. Each rule is well-typed:

s1, . . . , sn ∈ WL t1, . . . , tn : CWL → X

lX ◦ (t1 × · · · × tn) ◦ d(s1, . . . , sn, ) : CWL → ΣLX

3. Each rule is syntactically natural: ΣLh ◦ lX = lY ◦ hn for all h : X → Y .

Fig. 6 shows the rules that define λu. The leftmost is actually a rule scheme with
one instance for each a ∈ L. The rules amount to the following equations:

λuX
(
[a]
)

= [a] % singletonX ◦ u( 
 a) ◦ cosingletonL
λuX

(
(s % t)↔

)
= s↔ % hwrapX ◦ t ◦ cohwrapL(s, )

λuX
(
(s % t)�

)
= s� % vwrapX ◦ t ◦ covwrapL(s, )

λuX
(
(s1 % t1) | (s2 % t2)

)
= (s1 | s2) % besideX ◦ (t1 × t2) ◦ cobesideL(s1, s2, )

λuX
(
(s1 % t1) / (s2 % t2)

)
= (s1 / s2) % aboveX ◦ (t1 × t2) ◦ coaboveL(s1, s2, )

(2)
We subscript the syntactic operations to emphasize that they are used as natural
injections. It is easy to verify that these rules satisfy the naturality conditions
of Theorem 3.

In this section, we have introduced a rule format similar to well-known SOS
formats for our particular behavior functor. A distributive law that deals with
globalization of updates in a step-wise fashion, focusing on spatio-temporal
tradeoff, can be specified in that format. The generality of the rule format is
not considered. The law is structured in terms of careful pairing of syntactic
constructions and their context-transforming duals. It is generic in the sense
that the local update affects only the singleton rule. Generalization to other
syntactic functors is straightforward.

7 Equivalence

Whereas the globalization of an update reflects the array programming style of
loops, the distributive-law encoding reflects the recursive programming style of
divide-and-conquer. The following theorem states that both styles are equivalent.
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Fig. 7. Diagrams of Theorem 4. We abbreviate ΣL, BC
WL, λu, hu and ju by dropping

their fixed super- and subscripts.

Theorem 4. Globalized updating of a world template is equivalent to bialgebraic
semantics induced by the spatio-temporal distributive law given above:

Let C = (C, γ) be a compositional context. Let WL = (A,α) be an initial ΣL-
algebra and (Ω,ω) a final BC

WL-coalgebra. Let u be a C-update on L. Let ju =
(W γu)$! be the associated globalized semantics. Let λu : ΣLB

C
WL ⇒ BC

WLΣL be
the distributive law induced by u. Let hu : A → Ω be the associated bialgebraic
semantics. Then ju = hu.

Proof. Show that (W γu)$ forms a λu-bialgebra with α, that is (W γu)$ ◦ α =
Bα◦λuA◦Σ(W γu)$. This can be verified by syntactic case distinction, combining
the equations of compositionality (1) and distributivity (2); cf. appendix. It
follows by initiality that (W γu)$ = (Bλα)?, and hence by finality that ju = hu.

%&
In this section, we have identified the two definition styles for a global update
function, each defined by a distributive law, with two prominent programming
styles for grid-based computations, namely loops and divide-and-conquer. We
have demonstrated their equivalence by a straightforward bialgebraic, inductive-
coinductive argument.

8 Conclusion

The class of ABMs is defined operationally as the class of program behavior that
can be achieved within certain programming environments. There appears to be
some consensus about what constitutes a well-behaved ABM, but only implicitly
in the form of documentation standards [2], not by rigorous semantical criteria.

Environments for agent-based modelling are based on a virtual world that
can be represented abstractly as a cellular automaton. We conjecture that a
reasonable approximation of the notion of a well-behaved ABM can be given
by requiring that its behavior be expressible as a global update with a simple
neighborhood shape.
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Coalgebraic formalisation of behavior has so far been largely restricted to
computer science, with notable exceptions in physics. Here we showed that two-
dimensional CAs and hence many ABMs can concisely be presented in this
language. In a companion article (in prep.) we demonstrate how to implement
the bialgebraic framework and reproduce the results of a particular ABM of
ecological phenomena in the functional programming language Haskell.

In many disciplines CAs and ABMs have been used as tools for studying
complex systems, i.e. systems in which the complex states can be recursively
constructed from simple building blocks with persistent features. The present
analysis demonstrates that this may only be part of a bigger picture: Bialgebras
offer a second possibility of interpretation in which the focus is on corecursive
unfolding of behavior. In another companion article (in prep.) we explore the
epistemological and methodological implications of the dual viewpoints of the
bialgebraic theory.

Acknowledgments. This work has been inspired by Bartek Klin’s talks and
writing on SOS. Jan Rutten and Milad Niqui have provided valuable feedback
on earlier stages of the work, which helped considerably to shape this article.

References

1. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats.
Phd thesis. Vrije Universiteit Amsterdam (2004)

2. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J.,
Goss-Custard, J., Grand, T., Heinz, S., Huse, G., Huth, A., Jepsen, J., Jørgensen,
C., Mooij, W., Müller, B., Pe’er, G., Piou, C., Railsback, S., Robbins, A., Rob-
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Abstract. We give a coalgebraic account of context-free languages using
the functor D(X) = 2 × XA for deterministic automata over an alpha-
bet A, in three different but equivalent ways: (i) by viewing context-free
grammars as D-coalgebras; (ii) by defining a format for behavioural dif-
ferential equations (w.r.t. D) for which the unique solutions are precisely
the context-free languages; and (iii) as the D-coalgebra of generalized reg-
ular expressions in which the Kleene star is replaced by a unique fixed
point operator. In all cases, semantics is defined by the unique homo-
morphism into the final coalgebra of all languages, paving the way for
coinductive proofs of context-free language equivalence. Furthermore, the
three characterizations can serve as the basis for the definition of a gen-
eral coalgebraic notion of context-freeness, which we see as the ultimate
long-term goal of the present study.

1 Introduction

The set P(A∗) of all formal languages over an alphabet A is a final coalgebra of
the functor D(X) = 2×XA. Deterministic automata are D-coalgebras and their
behaviour, in terms of language acceptance is given by the final homomorphism
into P(A∗). A language is regular if it is in the image of the final homomorphism
from a finite D-coalgebra to P(A∗). Or, equivalently by Kleene’s theorem, if it
is in the image of the final homomorphism from the set of regular expressions,
which constitute a D-coalgebra by means of the so-called Brzozowski derivatives.

Thus the coalgebraic picture of regular languages and regular expressions is
well-understood (cf. [12] for details). Moreover the picture is so elementary that
it has recently been possible [15] to generalize it to a large class of other systems,
including Mealy machines, labelled transition systems, and various probabilistic
automata.

In the present paper, we will develop in part a similar coalgebraic picture for
context-free languages, which form another well-known class, extending regular
languages. Our focus will be on context-free grammars, which constitute one of
the common definition schemes for context-free languages. (Another well-known
characterization is through pushdown automata, which will not be treated here.)

Because the set of all languages is a final coalgebra of the functor D(X) =
2×XA, as was mentioned above, it seems natural to try and use the same functor
� Supported by the NWO project CoRE: Coinductive Calculi for Regular Expressions.
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for a coalgebraic treatment of context-free grammars and languages. We will do
so in three different but equivalent ways. (i) We will, in Sect. 3, view context-free
grammars (in a modified Greibach normal form) as D-coalgebras, which we shall
call grammar coalgebras; their elements will correspond to partial derivations.
(ii) Next we will, in Sect. 4, define a format of behavioural differential equations
with respect to the functor D, for which the unique solutions are precisely the
context-free languages. (iii) In Sect. 5, we will define context-free languages by
means of generalized regular expressions, in which the Kleene star is replaced by
a unique fixed point operator, and which are given a D-coalgebra structure using
a variation of Brzozowski derivatives. In all three cases, semantics is defined by
the final homomorphism into P(A∗).

We show that the above three coalgebraic characterizations are equivalent in
the following sense: a language is context-free if and only if it is in the image
of the final homomorphism starting in either a grammar D-coalgebra; or a D-
coalgebra corresponding to a (finite) system of behavioural differential equations;
or the D-coalgebra of generalized expressions with fixed point operator.

The proofs of these equivalences are not trivial, but contain few surprises, con-
sisting of ingredients that are already present at various places in the literature.
What we do see as the contribution of this paper are the three characterizations
as such, together with the fact that their equivalence could be established in such
an elementary fashion. We expect that this will lead to various further results,
as follows.

Grammar coalgebras establish a direct correspondence between context-free
grammars and context-free languages, by finality, and thus pave the way for coin-
ductive proofs of context-free language equivalence. Furthermore, we will argue
that our way of defining context-free languages through behavioural differential
equations will lead to a generalization of the very notion of context-freeness to
other types of systems, much in the same way as regular expressions and regular
languages were generalized in [15]. A sketch of an elementary but interesting first
instance hereof is given at the end of the present paper, in Sect. 6, where we will
introduce the new notion of context-free streams. Finally, expressions with a fixed
point operator are well-suited for the formulation of algebraic characterizations,
which we see as yet another direction for future research.

Related Work. In contrast to regular languages, equality of context-free lan-
guages is known to be an undecidable property [6]. This may explain why not
so much algebraic or coalgebraic work has been devoted to study the theory of
context-free languages. The first, and only, coalgebraic treatment of context-free
languages we are aware of, is presented in [5]. In this paper context-free languages
are described indirectly, as the result of flattening finite skeletal parsed trees. The
authors study context-free grammars as coalgebras for a functor different form
ours, i.e. the functor P((A + (−))∗).

Algebraically, the starting point is Kozen’s complete characterization of regu-
lar languages in terms of Kleene algebras, idempotent semirings equipped with a
star-operation satisfying some fixed point equations [8]. In [9,2], Kleene algebras
have been extended with a least fixed point operator to axiomatize fragments of
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the theory of context-free languages. We take a similar approach, but coalgebraic
in nature and substituting the Kleene star with a unique fixed point operator.
Whereas [9,2] are interested in providing solutions to systems of equations of
the form x = t using least fixed points, we look at systems of behavioural differ-
ential equations and give a semantic solution in terms of context-free languages
(in Sect. 4) and syntactic solutions in terms of regular expressions with unique
fixed points (in Sect. 5).

Regular expressions with the Kleene star replaced by a unique right-recursive
fixed point operator have been studied in [17,15] for a large variety of coalgebras,
including the one for deterministic automata. The observation that context-free
languages can be seen as solutions to systems of equations dates back to [3].

2 Coalgebras and Deterministic Automata

In this section we give the basic definitions of coalgebras, deterministic automata
and context-free grammars. A more extensive coalgebraic treatment of lan-
guages, automata and regular expressions can be found, for example, in [13,12,7].

A coalgebra for an endofunctor F:Set → Set consists of a carrier set C to-
gether with a map c:C → FC. The functor F is usually called the type of the
coalgebra. In this paper we will be concerned with coalgebras for structured au-
tomata [16], i.e. of type DF, for the functor D = 2 × (−)A and endofunctors
F:Set → Set. Here and in the rest of this paper, A is a finite set (in this context
also called alphabet), 2 is the two-element set {0, 1} and × is the Cartesian prod-
uct. Sometimes we see 2 as a complete lattice with 0 ≤ 1 and join ∨ and meet ∧
as expected. A coalgebra (C, c:C → DFC) can be interpreted as an automaton
that for a given state t ∈ C returns a pair c(t) = 〈o(t), δ(t)〉, determining whether
the state t is final (i.e. o(t) = 1) or not (o(t) = 0), and offering a structured state
δ(t)(a) ∈ FC for each input a ∈ A. Typically we will write ta for δ(t)(a), call o(t)
the output of t and ta the a-derivative of t . When confusion may arise about the
coalgebra we are referring to, we will superscribe o(t) and ta with the coalgebra
map c. In the case of D-coalgebras (but not for DF-coalgebras in general), we
can extend the notion of a-derivative to word derivatives tw, for w ∈ A∗, by
setting tλ = t for the empty word λ and taw = (ta)w for a ∈ A and w ∈ A∗.

A homomorphism from a D-coalgebra (C, c) to a D-coalgebra (D, d) is a
function f : C → D preserving outputs and next states, that is, for all t ∈ C,

o(f(t)) = o(t) and f(ta) = f(t)a

(which is equivalent to the condition that d ◦ f = D(f) ◦ c, where the action of
the functor D on functions is as expected).

For example, the set P(A∗) of all languages on the alphabet A can be equipped
with a D-coalgebra map by setting for every L ⊆ A∗, o(L) = 1 if and only if
λ ∈ L, and La = {w ∈ A∗ | aw ∈ L}. This coalgebra is called final because for
every D-coalgebra (C, c), there is a unique homomorphism � �c:C → P(A∗)
given by

w ∈ �t�c iff o(tw) = 1, for all w ∈ A∗.
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A relation R ⊆ C × D between the carriers of two D-coalgebras (C, c) and
(D, d) is called a bisimulation if, whenever (s, t) ∈ R, we have o(s) = o(t), and
(sa, ta) ∈ R for all a ∈ A. Whenever there exists a bisimulation R such that
(s, t) ∈ R, we say that s and t are bisimilar and write s ∼ t. It holds that s ∼ t
if and only if �s�c = �t�d, or, in other words, s and t are bisimilar exactly when
they are mapped onto the same language.

A relation R ⊆ C ×D is a bisimulation up-to if, whenever (s, t) ∈ R, we have
o(s) = o(t), and for all a ∈ A, there are s′ ∈ C and t′ ∈ D such that sa ∼ s′,
ta ∼ t′, and (s′, t′) ∈ R. Clearly ∼ is a bisimulation up-to. Conversely, for every
bisimulation up-to R, if (s, t) ∈ R, then s ∼ t.

3 Context-Free Languages via Grammars

We assume the reader to be familiar with the standard notions on context-free
grammars and languages, and give only the definitions and results we need in
the rest of this paper. For a more comprehensive study of context-free grammars
and languages, see e.g. [10].

A context-free grammar, or CFG, on a finite alphabet A is a pair (X, p),
where X is a finite set of nonterminals, or variables, and p:X → Pω((A + X)∗)
is a function describing the production rules.1 We use the standard notation to
describe the production rules:

x → t iff t ∈ p(x) ,

where x ∈ X and t ∈ (A+X)∗. Here + denotes the coproduct (or disjoint union),
Pω the finite power set, and (A + X)∗ is the set of all the strings of finite length
over A and X . According to the above definition, CFGs are coalgebras for the
functor Pω((A + (−))∗), and indeed a coalgebraic account of context-free gram-
mars and context-free languages using the above functor (without the finiteness
condition on the power set) is presented in [5]. There, the focus is mainly on
finite skeletal parsed trees (i.e. finite strings with additional tree structure), and
context-free languages are obtained after applying a flattening function. In the
present paper we will depart from the above work in order to describe uniquely
context-free languages in three different (but equivalent) coalgebraic forms.

In order to define the language associated to a context-free grammar, next we
define the notion of derivation. Given a CFG G = (X, p) and s, s′ ∈ (A+X)∗, we
write s ⇒ s′, and say s′ is derivable from s in a single derivation step, whenever
s = s1xs2 and s′ = s1ts2 for a production rule x → t of G, and s1, s2 ∈ (A+X)∗.
We say that s′ is derivable from s in a single leftmost derivation step whenever s1

is a (possibly empty) string of terminals in A∗. As usual, ⇒∗ denotes the reflexive
and transitive closure of ⇒. In general, if s ⇒∗ s′, then s′ is derivable from s

1 A short note on these finiteness conditions: the finiteness conditions on both X and
the powerset are required, because otherwise the set of resulting languages will be
the set of all languages. The finiteness condition on A is essentially not required
(barring some rewriting and reformulation), but it is kept here for convenience, as
loosening it does not seem to lead to any significant new insights.
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using only leftmost derivation steps. Therefore we can restrict our attention to
leftmost derivations only.

For a CFG (X, p) and any variable x ∈ X , called the starting symbol, we
define the language L(x) ⊆ A∗ generated by (X, p) from x by

L(x) = {w ∈ A∗ |x ⇒∗ w}.

A language L ⊆ A∗ is called context-free if there exists a CFG (X, p) and a
variable x ∈ X , such that L = L(x).

For our coalgebraic treatment of context-free languages it will be convenient
to work with CFGs with production rules of a specific form. We say that a CFG
is in weak Greibach normal form if all of its production rules are of the form

x → at or x → λ ,

where a ∈ A is an alphabet symbol, and t ∈ (A + X)∗ is a (possibly empty)
sequence of nonterminal and alphabet symbols. The main difference between
weak Greibach normal form and the usual notion of Greibach normal form [4]
is that here, t is not a string over X but over (A + X), and hence may contain
both nonterminal and alphabet symbols. Clearly, every CFG in Greibach normal
form is also in weak Greibach normal form.

For every terminal symbol x, the language L(x) generated by a CFG (X, p) in
weak Greibach normal form is a context-free language. Conversely, every context
free language L can be generated by a CFG in Greibach normal form from
some nonterminal symbol [4]. Therefore CFGs in weak Greibach normal form
characterize precisely the context-free languages.

3.1 A Coalgebraic Treatment of Context-Free Grammars

In this subsection we look at CFGs in weak Greibach normal form, and, for
each such grammar, we define a corresponding D-coalgebra, in the sense that
the unique coalgebra homomorphism from the grammar (seen as a D-coalgebra)
to the final D-coalgebra of all languages, maps nonterminal symbols precisely to
the context-free language they generate. The key observation is that every CFG
(X, p) with productions in weak Greibach normal form can be seen as a coalgebra
for the functor DPω((A + (−))∗) (rather than as a Pω((A + (−))∗)-coalgebra as
in the previous section). More precisely, we represent the production rules by a
map p:X → DPω((A + X)∗), with p(x) = 〈o(x), δ(x)〉 defined, for all terminal
symbols x ∈ X , by

o(x) = 1 iff x → λ , and t ∈ xa iff x → at

(writing as before xa for δ(x)(a)). Consider for example the grammar (in weak
Greibach normal form) over the alphabet A = {a, b} with nonterminal symbols
X = {x, y} and productions

x → axa , x → ayb , x → aa , y → ayb , y → λ .
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The language generated from x is L(x) = {anbmak |n = m + k, n ≥ 1}, while
the language generated from y is L(y) = {anbn |n ≥ 0}. In coalgebraic form, the
above productions read as follows:

o(x) = 0 xa = {xa, yb, a} xb = ∅
o(y) = 1 ya = {yb} yb = ∅

The coalgebra associated to each CFG in weak Greibach normal form is not a
proper deterministic automaton (i.e. a D-coalgebra) because its type is of the
form DPω((A + (−))∗). However, we can turn it into a deterministic automa-
ton by embedding the nonterminal symbols X into Pω((A + X)∗) using the
assignment ηX :X → Pω((A + X)∗), mapping each x ∈ X into the singleton set
{x} (in which x is seen as a string). In fact, we extend in a canonical manner
each coalgebra p:X → DPω((A + X)∗) for a CFG to what we call a grammar
coalgebra p#:Pω((A + X)∗) → DPω((A + X)∗) as follows: for each finite subset
S ⊆ (A + X)∗ we define its output value and its a-derivative by

S o(S) Sa
∅ 0 ∅
{λ} 1 ∅
{bs} 0 if b = a then {s} else ∅
{xs} o(x) ∧ o(s) {ts | t ∈ xa} ∪ (if o(x) = 1 then {s}a else ∅)
T ∪ U o(T ) ∨ o(U) Ta ∪ Ua

Note that Pω((A + X)∗) forms a monad for the algebra of idempotent semi-
rings with constants in A. Since DPω((A+X)∗) can be given an appropriate (but
not trivial) algebra structure for this monad, the above inductive definition is
essentially an application of the generalized determinization technique presented
in [16]. More concretely, the idea of this definition is to view subsets of (A+X)∗

as languages. In fact, the above definition coincides with the coalgebra structure
map of the final D-coalgebra P(A∗) if we take subsets of strings in A∗ (not
containing nonterminal symbols). This is combined with the coalgebra map of
the grammar which gives the output value and a-derivative for each nonterminal
symbol, as can be seen from the fact that p# ◦ ηX = p.

X
ηX
� Pω((A + X)∗)

� �
� P(A∗)

DPω((A + X)∗)

p

�
�

�
p
#

DP(A∗)
�

We are now ready to state our main result for this section, namely the corre-
spondence between context-free languages and the languages associated by the
final homomorphism �−� above to each nonterminal symbol of a CFG.
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Theorem 1. Let (X, p) be a context-free grammar in weak Greibach normal
form over a finite alphabet A, and S a finite subset of (A+ X)∗. For every word
w ∈ A∗, we have w ∈ �S�p# if and only if there exists some s ∈ S such that
s ⇒∗ w.

Proof. In this proof, we use fact that, for all S ⊆ (A + X)∗, if w ∈ �S�p# , there
is a s ∈ S such that w ∈ �{s}�p# , which is easily established.

We proceed by induction on the length of words w. For the empty word λ, it
is easy to see that s ⇒∗ λ if and only if s only consists of nonterminal symbols x
that have a production rule x → λ. Conversely, we have λ ∈ �S�p# iff o(Sλ) = 1,
that is, if o(S) = 1: but it follows easily from the definition that this is the
case iff there is a s ∈ S consisting only of nonterminal symbols x that have a
production rule x → λ.

Assume that the inductive hypothesis holds for w, and consider the word aw.
Assume s ⇒∗ aw, and consider the first term in the leftmost derivation of aw
that is of the form at. Thus s ⇒∗ at ⇒∗ aw. By inspecting the definitions,
it is easily seen that if s ∈ S, then t ∈ Sa. Furthermore, it also follows that
t ⇒∗ w, and the inductive hypothesis then gives w ∈ �Sa�p# , and hence that
o((Sa)w) = o(Saw) = 1, from which aw ∈ �S�p# follows.

For the other direction, assume that aw ∈ �S�p# . Then there must be some
s ∈ S, such that aw ∈ �{s}�p# , or that o({s}aw) = o(({s}a)w) = 1. We now get
that w ∈ �{s}a�p# , and the inductive hypothesis now gives some t ∈ {s}a such
that t ⇒∗ w. From inspecting the definitions, it is also easy to see that s ⇒∗ at.
Hence, we get s ⇒∗ at ⇒∗ aw, which is what needed to be shown. %&

It follows that a language L is context-free iff L = �ηX(x)�p# , for some grammar
coalgebra generated by a CFG (X, p), and some x ∈ X .

4 Context-Free Languages via Equations

We will now look at a characterization of context-free languages in terms of
systems of behavioural differential equations, analogous to those introduced in
[14]. The idea is to define context-free languages by means of equations that
involve output values and derivatives for each alphabet symbol, using a simple
language with only variables, choice and sequential composition. Each system
of behavioural differential equations in our format has as its unique solution a
language, which we prove to be context-free whenever the number of equations
is finite. Conversely, for each context-free language L we will construct a finite
system of behavioural differential equations with L as unique solution.

To illustrate our approach, consider the example from the previous section.
A formal definition of this context-free language could be given by the following
system of behavioural differential equations:

output value a-derivative b-derivative
o(x) = 0 xa = (x · a) + (y · b) + a ya = y · b
o(y) = 1 xb = 0 yb = 0
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Next we present a syntax describing the format of behavioural differential equa-
tions that will be considered: let A be a finite set of alphabet symbols, X be
a (possibly infinite) set of variables, and {o(x) |x ∈ X} and {xa |x ∈ X} for
each a ∈ A be (syntactic) sets of symbols, representing notational variants of
the variables. The variables x ∈ X will play the role of placeholders for lan-
guages L ⊆ A∗, while their notational variants xa will be placeholders for the
corresponding language La, for each a ∈ A, and the o(x) will correspond to the
information whether L contains the empty string λ or not. We call a behavioural
differential equation for context-free languages well-formed if it consists of an
equation o(x) = v and an equation xa = t for each a ∈ A, where v ∈ {0, 1} and
t is a term defined by

t ::= 0 | 1 |x | a | t + t | t · t

where x ∈ X and a ∈ A. (In the remainder of this paper, we will often simply
write ‘ab’ rather than ‘a · b’.) We let TX denote the set of all terms, as defined
above, over the set X . A well-formed system of equations for X consists of
one well-formed equation for each x ∈ X . Equivalently, a well-formed system
of equations over X (for a fixed A) can be seen as a mapping f :X → DTX
[1] where, writing f(x) = 〈o(x), δ(x)〉, we define o(x) and, for each a ∈ A,
xa = δ(x)(a) by the values specified by the system of equations.

Before defining what a solution of a system of equations is, we need to inter-
pret the above operations on terms as functions on languages. To this end, we
transform a system of equations f :X → DTX into a deterministic automaton
f̄ :TX → DTX inductively as follows:

t o(t) ta
x o(x) xa (as specified by f)
0 0 0
1 1 0
b 0 if b = a then 1 else 0

u + v o(u) ∨ o(v) ua + va
u · v o(u) ∧ o(v) ua · v + o(u) · va

Again, this definition can be obtained as an application of the result in [16] since
DTX can easily be equiped with an algebra structure for the term monad T . We
can thus combine a system of equations f :X → DTX , its extension f̄ , and the
final homomorphism to the coalgebra of all languages in the following diagram:

X ⊂
i

� TX
� �

� P(A∗)

DTX

f

�
�

�

¯f

DP(A∗)
�

A solution for such a system of equations consists of a mapping of variables x
to languages Lx ⊆ A∗ such that Lx = �x� for all x ∈ X . The above diagram
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basically shows that every well-formed system of equations has a unique solution.
Our next goal is to prove that such a solution is a context-free language. Before
we do this, however, we introduce the notion of term equivalence:

Definition 2. We say that two terms t, u ∈ TX are equivalent, denoted by
t ≡ u, when for every well-formed system of equations (X, f), t ∼ u with respect
to the coalgebra (TX, f̄) generated from (X, f).

One can easily show that the relation ≡ is a congruence with respect to the sum
+ and multiplication · of terms in TX , for any set X . Furthermore, TX modulo
≡ forms an idempotent semiring:

Proposition 3. For any set X and terms t, u, v ∈ TX, the following hold:

t + u ≡ u + t u ≡ v ⇒ t[u/x] ≡ t[v/x]
t + t ≡ t 0 · t ≡ 0 ≡ t · 0

0 + t ≡ t ≡ t + 0 1 · t ≡ t ≡ t · 1
t + (u + v) ≡ (t + u) + v t · (u · v) ≡ (t · u) · v
(t + u) · v ≡ t · v + u · v t · (u + v) ≡ t · u + t · v

Equivalence between terms in TX can be extended to bisimilarity between dif-
ferent systems of equations on the same set of variables. This result will be
convenient when proving that every context-free language is the solution of a
well-formed system of equations.

Proposition 4. If (X, f) and (X, g) are two systems of equations such that, for
every x ∈ X, and every symbol a, of (x) = og(x), and xfa ≡ xga, then the identity
relation on TX is a bisimulation up-to between the generated coalgebras (TX, f̄)
and (TX, ḡ).

Proof. Let t be a term.
First, we have to show that of̄ (x) = oḡ(x). When t is a variable, an alphabet

symbol, 0 or 1, this is trivial, and when t is a compound term, this is proven by
induction.

Secondly, we have to show that for all alphabet symbols a, there are terms
t′, t′′, such that tf̄a ∼ t′, tḡa ∼ t′′, and (t′, t′′) ∈ R (or, in other words, t′ = t′′).
This, too, will be proven by induction, and is trivial for the base cases where t
is an alphabet symbol, 0, or 1.

When t is a variable x, we have xf̄a = xfa ∼ xga = xḡa. Taking t′ = t′′ = xf̄a then
suffices.

When t is of the form u+v or of the form u·v, we will make use of the inductive
assumption that the bisimilarity condition holds for u and v. But then it is easy
to see that it holds for t too, making use of the fact that ∼ is a congruence with
respect to + and ·. %&

We can now establish the first main result of this section, relating states of a
grammar coalgebra to terms in TX .
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Theorem 5. Let A and X be finite sets. For every context-free grammar (X, p)
in weak Greibach normal form and finite subset S of (A + X)∗ there exists a
well-formed system of equations f :X → DTX and a term t ∈ TX such that
S ∼ t with respect to the generated coalgebras p# and f̄ , respectively.

Proof. (Sketch) The system of equations f can be constructed from the grammar
p as follows: o(x) = 1 if λ ∈ p(x), and 0 otherwise; and xa =

∑
{s̄ | as ∈ p(x)},

where s̄ is the obvious translation of s ∈ (A+ X)∗ into a term of TX . The proof
now proceeds by showing that {(S, t) |S ⊆ (A + X)∗, t =

∑
{s̄ | s ∈ S}} is a

bisimulation up-to with respect to the generated coalgebras. %&
Because for every context-free language L there exists a CFG (X, p) and x ∈
X such that L = �ηX(x)�p# , it follows that every context-free language is the
solution of a well formed system of equations.

It remains to be shown that every solution of a system of equations is a
context-free language. Our approach will be to construct, for every system of
equations (X, f), a context-free grammar (X, p), such that x ∼ ηX(x) for all
x with respect to the generated coalgebras f̄ and p#. To this end, we first
transform our system of equations so that terms at the right hand side of all
equations are in disjunctive normal form. This is possible because of the laws
proven in Propositions 3 and because ≡ is a congruence.

We say that a term t ∈ TX is conjunctive when either t = 1; or when t = a ·u,
where a ∈ A and u a conjunctive term; or when t = x · u, where x is a variable,
and u is a conjunctive term. We say that a term t ∈ TX is in disjunctive normal
form, when either t = 0; or when t = u + v, where u is conjunctive, and v is in
disjunctive normal form. Using Proposition 3, it is easy to see that for every term
t, there is an equivalent (and thus bisimilar for all (TX, f̄)-coalgebras) term t′

in disjunctive normal form. This implies that for every system of equations we
can construct a new system of equations with the same variables and having the
same solution but such that all terms on the right-hand side of the a-differential
equations are in disjunctive normal form. We call a system of equations with the
latter property a system of equations in disjunctive normal form.

We are finally ready for the other main result of this section, stating that every
solution of a system of equations is a context-free language. Combined with the
first main theorem from this section, we thus obtain the result that context-free
languages are precisely the solutions of well-formed systems of equations.

Theorem 6. For a finite set X, if (X, f) is a system of equations in disjunctive
normal form, there exists a context-free grammar (X, p), such that x ∼ ηX(x)
with respect to the generated coalgebras (TX, f̄) and (Pω((A+X)∗), p#), respec-
tively.

Proof. Given a system of equations (X, f), we construct the grammar (X, p),
such that

p(x) =
⋃
a∈A

{at | t is a disjunct of xa} ∪ (if o(x) = 1 then {λ} else ∅).

It is easy to see that f is a translation of p in the sense of Theorem 5. Hence, it
follows that x ∼ {x} = ηX(x) with respect to f̄ and p#. %&
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5 Context-Free Expressions

In this section, we will introduce context-free expressions as an extension of
regular expressions, where the Kleene star is replaced by a (unique) fixed point
operator μ. We then will define a notion of Brzozowski-like derivatives for these
expressions, and prove that the languages characterizable by such expressions
are precisely the context-free languages. In contrast to the previous coalgebraic
formalisms, this formalism gives us a single coalgebra of which the elements
correspond exactly to the context-free languages.

Our usage of fixed point expressions with a coinductive semantics has a very
similar flavour to that in [15], in which fixed point expressions are used as a
characterization of regular expressions over a variety of functors. The additional
expressive power obtained by the context-free expressions presented here is due
to an explicit inclusion of a concatenation operator.2 This provides an additional
perspective on the treatment given here, in which ‘context-freeness’ is obtained
by the addition of a new operator to a calculus of regular expressions3, and
may pave the way for an investigation of (1) extending this approach to other
coinductively defined operators, and (2) extending this approach to a generalized
notion of context-freeness for other functors.

We define the set of terms t (henceforth to be called context-free expressions)
and guarded terms g over an alphabet A and a set of variables X as follows:

t ::= 0 | 1 |x ∈ X | a ∈ A | t + t | t · t |μx.g

g ::= 0 | 1 | a · t (a ∈ A) | g + g

For all closed terms t, we can describe the behaviour by defining the output value
o(t), and the derivative ta for each alphabet symbol a. We do this as follows:

t o(t) ta
0 0 0
1 1 0
b 0 if b = a then 1 else 0

u + v o(u) ∨ o(v) ua + va
u · v o(u) ∧ o(v) ua · v + o(u) · va
μx.u o(u[μx.u/x]) (u[μx.u/x])a

Here t[u/x], as usual, denotes the term obtained from t by replacing all free
occurrences of x by u. Because of the guardedness conditions of terms occurring
directly inside the μ operator, it is easy to see that the above specification is
well-defined.

Note furthermore that we have just defined a D-coalgebra with the set of all
closed context-free expressions as objects, and the behaviour defined above as
its transition function.
2 In [15], a translation from the familiar format of regular expressions (with concate-

nation) into μ-style expressions is given by means of substitution. However, this
translation does not work for expressions of the type x · t.

3 Although this calculus does not explicitly contain the Kleene star, it can easily be
expressed by means of the equality t∗ = μx.((t · x) + 1).
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Again, the behavioural equivalence relation ∼ is a congruence with respect to
the sum + and multiplication · of context-free expressions. Furthermore, the set
of closed context-free expressions modulo ∼ forms an idempotent semiring:

Proposition 7. For all context-free expressions t, u, v, the following hold:

t + u ∼ u + t u ∼ v ⇒ t[u/x] ∼ t[v/x]
t + t ∼ t 0 · t ∼ 0 ∼ t · 0

0 + t ∼ t ∼ t + 0 1 · t ∼ t ∼ t · 1
t + (u + v) ∼ (t + u) + v t · (u · v) ∼ (t · u) · v
(t + u) · v ∼ t · v + u · v t · (u + v) ∼ t · u + t · v
t[u/x] ∼ u ⇒ μx.t ∼ u μx.t ∼ μy.(t[y/x]) if y is not free in t

μx.t ∼ t[μx.t/x]

These laws can be seen as a partial (sound but not complete) axiomatization
of behavioural equivalence between context-free expressions. Note that, because
language equivalence of context-free languages is not semi-decidable, there can-
not be any complete finitary axiomatization of behavioural equivalence.[2]

As an illustration of context-free expressions, it is easy to see that the expres-
sion μx.(axb+1) will be mapped onto the language {anbn}. As another example,
consider the expression

μx.(axa + aa + aμy.(ayb + 1)b).

In the next subsection, it will become clear that this expression corresponds to
the language {anbmak |n = m + k, n ≥ 1} from the earlier examples.

5.1 From Systems of Equations to Context-Free Expressions

Assume we have a coalgebra generated by a system of equations, and some term
t ∈ TX . From Sect. 4, we know that t is mapped by the final homomorphism to a
context-free language. In this section, we will look for a context-free expression t′

corresponding to t, in the sense that t and t′ are mapped onto the same language,
using a process of repeated substitution.

To start with, given a system of equations (X, f), we will associate with every
variable x the μ-expression

σx := μx.(
∑
a∈A

a · xa + o(x)),

and call it the corresponding or associated μ-expression. (As before, this notation
strictly speaking does not denote a single expression, but rather a set of expres-
sions which, by commutativity of addition, are all bisimilar.) For convenience,
we also use the notation τx for the expression

∑
a∈A a ·xa+ o(x): so σx = μx.τx.

We now go on by defining the notions of single syntactic substitutions and
chains of syntactic substitutions : these definitions can be seen as a formaliza-
tion of the corresponding notions in [11], [17], and [15]. Given an association of
expressions σx to variables x, an expression t′ is a single syntactic substitution
of t, if t′ is obtained by replacing (syntactically) a single occurrence of a single
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variable x with σx. A chain of syntactic substitutions is a list t1, . . . , tn such
that, for each 1 ≤ i < n, ti+1 is a single syntactic substitution of ti.

We are especially interested in chains of syntactic substitutions, where the
resulting expression does not contain any free variables, or only a limited set
of free variables. We call such expressions closures and pseudoclosures of the
original expression:

Definition 8. We say an expression t′ is a Z-pseudoclosure of t for a set Z ⊆ X
of variables, if there exists a a chain of syntactic substitutions t1, . . . , tn such
that t1 = t, tn = t′ and t′ only contains free variables from Z. We call a ∅-
pseudoclosure simply a closure.

As a continuation of our running example, recall the system of equations cor-
responding to the language {anbmak |n = m + k, n ≥ 1}. From this system of
equations, we obtain the following assignment of expressions to variables:

σx = μx.(a(xa + yb + a) + b0 + 0) σy = μy.(ayb + b0 + 1)

From x, we obtain μx.(a(xa + yb + a) + b0 + 0) by means of a single syntactic
substitution, and another single syntactic substitution then gives us μx.(a(xa +
μy.(ayb + b0 + 1)b + a) + b0 + 0). This expression does not contain any free
variables anymore, and therefore is a closure of x.

Some general laws about closures and pseudoclosures are easily established:

Proposition 9. 1. If u′ is a W -pseudoclosure of u and v′ a W -pseudoclosure
of v, then u′ + v′ is a W -pseudoclosure of u + v, u′ · v′ is a W -pseudoclosure
of u · v, and μx.u′ is a W − {x}-pseudoclosure of μx.u.

2. If t = u + v, and t′ is a W -pseudoclosure of t, then t′ is of the form u′ + v′,
where u′ is a W -pseudoclosure of u, and v′ is a W -pseudoclosure of v′. The
same fact holds if we replace + by ·.

Using the previous proposition, we can establish that, for every term t, a closure
t′ exists. It should be noted, though, that this t′ generally is not unique: for a
term t, in general, many closures exist.

Proposition 10. Given a term t ∈ TX (that is, a μ-free term), a set of vari-
ables Z ⊆ X, and an assignment of expressions σx to variables x ∈ X as above,
there exists a Z-pseudoclosure t′ of t with respect to this assignment.

Proof. By (reverse) induction on the size of Z. If Z = X , the result is trivial,
because every term is its own X-pseudoclosure.

Now we assume the theorem holds for W ⊆ X , and need to prove that, for
any x ∈ X , the theorem also holds for W − {x}. We do this by induction on
(μ-free) terms.

1. For terms 0, 1, and a, the result is trivial.
2. For terms t = u + v or t = u · v, the result follows from Proposition 9 and

the inductive hypothesis.
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3. For the variable x, we know that there must be a W -pseudoclosure u of τx.
Then μx.u is a (W −{x})-pseudoclosure of σx = μx.τx, and hence also of x.

4. For variables y �= x, assume u and v are W -pseudoclosures of τy and τx,
respectively. Then μx.v is, again, a W − {x}-pseudoclosure of x, and thus
u[μx.v/x] is a W − {x}-pseudoclosure of τy. Hence, μy.u[μx.v/x] is a W −
{x, y}-pseudoclosure (and also a W − {x}-pseudoclosure) of σy and y. %&

With the next proposition we construct a bisimulation up-to between a coalgebra
generated by a system of equations and the coalgebra of closed context-free
expressions, relating every term t to all closures of it.

Proposition 11. Given a system of equations (X, f) (yielding a corresponding
expression σx for each variable x ∈ X), the relation

R = {(t, t′) | t ∈ TX and t′ is a closure of t}

is a bisimulation up-to between the generated coalgebra (TX, f̄) and the coalgebra
of closed context-free expressions.

Proof. Say (t, t′) ∈ R. It suffices to show that o(t) = o(t′), and that for each
alphabet symbol a, there is a ua, such that t′a ∼ ua, and (ta, ua) ∈ R. We will
do both by induction.

Showing that o(t) = o(t′) is immediate when t = 0, t = 1, or t = a, because
in these cases we have t = t′. When t = x, it must be the case that t′ is
obtainable by a chain of single syntactic substitutions from σx. But, as every
term obtainable by a chain of single syntactic substitutions from σx must be of
the form μx.(

∑
a∈A a · sa + o(x)) for some mapping of alphabet symbols a to

terms sa, and o(a ·s) = 0 for any term s, it follows easily that o(t′) = o(x). When
t = u + v, it follows that t′ must be of the form u′ + v′, where u′ is a closure of
u, and v′ is a closure of v. We then get o(t) = o(u)∨ o(v) = o(u′)∨ o(v′) = o(t′),
using the inductive assumption that o(u) = o(u′) and o(v) = o(v′). The case
where t = u · v goes analogously.

Showing that (ta, t′a) ∈ R, again, is immediate when t = 0, t = 1, or t = a.
When t = x, the first single syntactic substitution to obtain t′ must, again, be
replacing x by σx. As a result, t′ must be of the shape μx.(

∑
a∈A a · sa + o(x)),

where each sa is a {x}-pseudoclosure of xa. It follows that ua := sa[t′/x] is a
closure of xa. But we have

t′a = (μx.(
∑
a∈A

a · sa + o(x)))a = ((
∑
a∈A

a · sa + o(x))[t′/x])a

∼ (sa[t′/x])a = ua

so t′a ∼ ua: as ua is a closure of xa = ta, the required condition holds. The cases
where t = u + v and t = u · v are immediate from the inductive hypothesis and
Proposition 9. %&

Returning to our example, this proposition directly establishes that the expres-
sion μx.(a(xa + μy.(ayb + b0 + 1)b + a) + b0 + 0), which is clearly bisimilar
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to μx.(axa + aμy.(ayb + 1)b + aa), corresponds to the language {anbmak |n =
m + k, n ≥ 1}.

The two previous propositions directly imply that, for any term in a coalgebra
generated by a system of equations (and, hence, for every context-free language),
we can use any closure of it as a bisimilar context-free expression. Hence, and
because every term has a closure, for every context-free language we can find a
context-free expression that is mapped to it by the final homomorphism:

Theorem 12. Let L be a context-free language. There exists a context-free ex-
pression t such that �t� = L.

5.2 From Context-Free Expressions to Systems of Equations

Going in the other direction, the recipe is as follows: given a context-free ex-
pression t′ in which every variable is bound by a μ-operator just once, we ‘de-
construct’ this expression into a system of equations (X, f), and a term t, of
which t′ is a closure. Then Proposition 11 implies that t′ ∼ t with respect to the
coalgebra of closed context-free expressions and the coalgebra (TX, f̄) generated
by (X, f). Hence, the final homomorphism maps t to a context-free language.

By applying a process of α-renaming, we can obtain an expression t′ from any
expression t such that, in t′, no variable is bound twice, or, in other words, such
that there are no two distinct subexpressions of t′ that bind the same variable.
It is easy to see that the resulting term t′ will always be bisimilar to t.

Now we are able to move on to the main proposition of this section, in which
for every context-free expression t′ a system of equations is constructed, such
that in the coalgebra generated by it, there is a term t with t ∼ t′.

Proposition 13. Given a closed context-free expression t, such that no two dis-
tinct sub-expressions of t are μ-expressions binding the same variable, there is
a term t′, such that 1) t ∼ t′; 2) no two-subexpressions of t′ are μ-expressions
binding the same variable; and 3) every subexpression of t′ that is a μ-expression,
is of the form μx.(

∑
a∈A a · sa + o), where o ∈ {0, 1}.

Proof. It is easy to see that every guarded term is bisimilar to a guarded term
of the form

∑
a∈A a · sa + o. When replacing the subexpressions of t that are

μ-expressions by these bisimilar expressions, we obtain a new term that, by the
fact that bisimilarity is a congruence, is bisimilar to the original term.

Proposition 14. Given a closed context-free expression t′, in the normal form
of Proposition 13, there exists a system of equations (X, f), and a term t, such
that t′ is a closure of t.

Proof. (Sketch) For any expression u′, let its μ-pruning be the expression u
obtained from it by replacing the outermost μ-expressions occurring in it by the
corresponding variables. Because every variable is bound once, for every variable
x we obtain a μ-pruning sx of s′x where μx.s′x is the μ-subexpression binding x.
We then use these pruned expressions as a basis for a system of equations, and
show that the original expression t′ occurs as a closure of its μ-pruning t. %&
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As every context-free expression is bisimilar to a term in a coalgebra generated
by some system of equations, it follows directly that the final homomorphism
maps every context-free expression to a context-free language:

Theorem 15. For every context-free expression t, �t� is a context-free language.

6 Discussion

Our coalgebraic account of context-free languages in terms of grammars, systems
of behavioural equations, and context-free expressions can be taken as a starting
point for a generalization in at least two different and orthogonal directions. On
the one hand, we can consider other languages of expressions for the functor D

to obtain different classes of languages, and on the other hand we can generalize
the notion of context-freeness to coalgebras for other functors.

As an interesting example of the first type, one could consider systems of
behavioural differential equations for which the right hand side of each equation
is an expression as defined by

t ::= 0 | 1 |x ∈ X | t + t | a · t .

The semantic solution of such a system is given by regular languages, while the
syntactic one is given by a language of expressions as studied in [17]. The corre-
sponding notion of grammars for regular languages is then given by considering
productions of the form p:X → DPω(A∗ ×X), i.e. right-linear grammars [6].

Examples of the second type of generalization will depend on the structure
of the functor. Here we briefly sketch only an elementary but interesting first
example. The functor S(X) = IN × X has the set of all streams INω as its
final coalgebra. We note that, similar to the set of all languages, also INω is a
semiring, with elementwise addition of streams as sum, and convolution product
as product. Streams can be defined by behavioural differential equations, which
specify the head σ(0) ∈ IN and tail σ′ of a stream σ ∈ INω. Now let us call a
stream context-free whenever it can be specified by a stream differential equation
σ(0) = n and σ′ = t, where n ∈ IN and t is a term of the following form:

t ::= n |X | t + t | t× t,

and where n is any natural number, X denotes the constant stream (0, 1, 0, 0, . . .),
+ denotes elementwise addition of streams, and × denotes convolution product.
We note that this is a straightforward variation on the approach used for be-
havioural differential equations for context-free languages, in Sect. 4.

As an example of a context-free stream, let γ be defined by the well-formed
differential equation given by γ′ = γ × γ and γ(0) = 1 It has as its unique
solution the stream of the Catalan numbers (1, 1, 2, 5, 14, . . .), which occurs in
numerous counting problems (such as the number of well-bracketed words of a
specific length). The stream γ is known not to be rational, so this example nicely
illustrates how the class of context-free streams extends the class of rational
streams, in the same way as with languages.
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Further research directions include a coalgebraic characterization of context-
free languages in terms of pushdown automata [6,10], and the study of coinduc-
tive decision procedures for bisimilarity of deterministic pushdown automata, a
problem that is known to be decidable [18].
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Abstract. PREG Axiomatizer is a tool used for proving strong bisimilar-
ity between ground terms consisting of operations in the GSOS format
extended with predicates. It automatically derives sound and ground-
complete axiomatizations using a technique proposed by the authors of
this paper. These axiomatizations are provided as input to the Maude
system, which, in turn, is used as a reduction engine for provided ground
terms. These terms are bisimilar if and only if their normal forms ob-
tained in this fashion are equal. The motivation of this tool is the opti-
mized handling of equivalence checking between complex ground terms
within automated provers and checkers.

Keywords: Structural operational semantics, GSOS rule format, bisim-
ilarity, equational axiomatizations, Maude.

1 Introduction

Proving that two process terms are related by some notion of behavioural equiv-
alence is at the heart of the equivalence-checking approach to verification. In this
paper we introduce a tool named PREG Axiomatizer1 that tackles this problem
focusing on ground (i.e., fully specified) terms built using operations defined
using the preg format, a predicates extension of the GSOS format presented
in [3]. GSOS [8] is a restricted, yet powerful, way of defining Structural Op-
erational Semantics (SOS) for programming and specification languages in the
style introduced by Plotkin in [14]. We refer the reader to [3] for the detailed de-
scription and intuition behind the preg rule format and the considered notion of
behavioural equivalence, which is a natural extension to predicates of the classic
strong bisimulation equivalence.

Building on the techniques in [2,7], we proposed in [3] a procedure to construct
a finite collection of sound equations that can be used to bring any ground term
to a normal form. We showed that the normal forms of two terms are equal if and
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only if the terms are bisimilar. Given a set of actions A and a set of predicates
P, the normal forms we refer to are terms built according to the grammar for
finite trees with predicates, namely

s ::= δ | κP (∀P ∈ P) | a.s (∀a ∈ A) | s + s,

that are of the shape t =
∑
i∈I ai.ti +

∑
j∈J κPj . Here the Pj ’s are all the pred-

icates satisfied by t, and the ti’s are terms in normal form. The empty sum
(I = ∅, J = ∅) is denoted by the constant δ.

Intuitively, δ represents the process exhibiting no behaviour, s + t is the non-
deterministic choice between the behaviours of s and t, while a.t is a process
that first performs action a and behaves like t afterwards. For each predicate P
we consider a constant κP , which denotes a process with no transitions. This
process only satisfies P . A finite tree satisfies predicate P if and only if it has
κP as a summand. We refer to predicates in P as explicit predicates. The op-
erational semantics that captures this intuition is given by the rules of BCCSP
extended with predicates. The SOS specification for this language consists of
rules parameterized over all actions a and explicit predicates P :

a.x
a−→ x

,
x
a−→ x′

x + y
a−→ x′ ,

y
a−→ y′

x + y
a−→ y′ ,

PκP
,

Px

P (x + y)
,

Py

P (x + y)
.

In [3] we showed that, for the above language, the following set of axioms [12]
is sound and ground-complete for bisimilarity on the set of ground finite trees
with predicates:

x + y = y + x (x + y) + z = x + (y + z)
x + x = x x + δ = x

Recall that our purpose is to find ground-complete axiomatizations like the
one above for all the languages given in the preg format. In order to achieve
this goal for operators whose rules involve negative premises, we use the initial
restriction operator ∂1

B,Q (where B ⊆ A and Q ⊆ P are the sets of initially
forbidden actions and predicates, respectively). The semantics of ∂1

B,Q is given
by the following two types of transition rules:

x
a−→ x′

∂1
B,Q(x) a−→ ∂1

∅,Q(x′)
if a �∈ B,

Px

P (∂1
B,Q(x))

if P �∈ Q.

The axiomatization of the operators ∂1
B,Q is provided in [3].

Internally, PREG Axiomatizer brings the provided rule system to a “manage-
able” format, introducing auxiliary operators as described in [3], and afterwards
performs the axiomatization itself. The tool is implemented in the Maude lan-
guage [11], which has been already proven to be very useful for analyzing SOS
rule formats in [13,10]. Not only did we use Maude as a programming language,
but also as an equational reduction system for the generated sets of axioms.

PREG Axiomatizer is, to our knowledge, the first public tool that automat-
ically derives sound and ground-complete axiomatizations modulo bisimilarity
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for GSOS-like languages. Prior to using the techniques presented in [2,3,7], one
had to use ingenuity and dedicate a considerable amount of time in order to
obtain axiomatizations for a language with even a limited number of operators.

The tool is generic, in the sense that the SOS specification defining the la-
belled transition system semantics of the process calculus is provided by the
user. He or she does this in terms of well-founded GSOS systems, which means
that these systems can be used to derive only finite labelled transition systems
for the given terms (see [2] for more details). As presented in [9], the generated
axiomatizations are guaranteed to be confluent, but, as a downside of our ap-
proach, only weakly normalizing. This downside is diminished by the fact that
there exists a substantial decidable subclass of systems, namely the linear and
syntactically well-founded ones [9], for which the generated axiomatizations are
strongly normalizing. This subclass includes important languages such as CCS,
CSP, and ACP.

2 Case Studies

In this section we present two scenarios involving several classic operations with
their semantics extended with certain explicit predicates. Conventionally, the
tool language accepts process term variables such as X, X1, Y’, actions like a, b,
c, a[0], b[2], c["name"], and predicates like P, Q, P[1], Q["prop"].

Example 1. Let us describe how PREG Axiomatizer is used in order to prove
that “a.(a.κ↓; b.(a.κ↓))” and “while a.b.κ↓ do a.κ↓” are bisimilar. Here ; and
while do are, respectively, the sequential composition and the process loop
operators (presented in [8]) extended to the preg format with the immediate
successful termination predicate ↓ (which we choose to denote by P in the speci-
fication for tool consumption). In Figure 1 we present the operational semantics
for these operations with the rules given both in standard notation, as well as
using the syntax supported by the tool.

x
a−→ x′

x; y
a−→ x′; y

:
X -(a)-> X’

===
X ; Y -(a)-> (X’ ; Y)

x ↓ y
a−→ y′

x; y
a−→ y′ :

P(X) , Y -(a)-> Y’
===

X ; Y -(a)-> Y’

x ↓ y ↓
(x; y) ↓ :

P(X) , P(Y)
===

P(X ; Y)

x ↓
(while x do y) ↓ :

P(X)
===

P(while X do Y)

x
a−→ x′

while x do y
a−→ y; while x′ do y

:
X -(a)-> X’

===
while X do Y -(a)-> Y ; while X’ do Y

Fig. 1. preg rule system for ; and while do



PREG Axiomatizer – A Ground Bisimilarity Checker for GSOS 381

The rules involving action a are also instantiated for b. After providing this
specification, the user can press the button labelled “Axiomatize” and the tool
generates a Maude specification including the axioms obtained by following
the procedure described in [3]. We exemplify a small part of the output which
consists of the axiomatization for the while do operator:

eq while X0 + X1 do X3 = while X0 do X3 + while X1 do X3 .
ceq while X do Y = a . (Y ; while X’ do Y) if a . X’ := X .
ceq while X do Y = b . (Y ; while X’ do Y) if b . X’ := X .
ceq while X do Y = k[P] if X := k[P] .
eq while X1 do X2 = delta [owise] .

In order to check for the bisimilarity of the two process terms introduced at
the beginning of the current example, one loads the generated specification and
uses the Maude command reduce:

> reduce a . (a . k[P] ; b . (a . k[P])) ==
while a . b . k[P] do a . k[P] .

result Bool: true

> reduce while a . b . k[P] do a . k[P] .
result PTerm: a . a . a . b . a . a . k[P]

We successfully used PREG Axiomatizer to further extend the operational se-
mantics of ; with the predictable non-failure predicate �= δ (which plays the

role of the predicate “ �=0” presented in [4]) with the rules: x
a−→x′ y �=δ
x;y

a−→x′;y
x �=δ y �=δ
(x;y) �=δ .

We managed to test the property that x; δ and δ are bisimilar on various closed
instantiations. It is worth noting that this property does not always hold for the
initial version of ; .

Example 2. In this example we show how we use our tool to obtain the execu-
tion tree of a network of communicating processes. This procedure is useful, for
instance, when one needs to use an external model checker to verify if the com-
munication protocol satisfies certain logical properties. Our example is based on
a case study from [5].

ia A ab

ac

B C co

Fig. 2. Communication protocol

Consider the process network given in Figure 2 where A,B,C are the com-
municating processes and ia, ab, ac, co are the ports. The actions of sending,
receiving, and synchronizing on the datum d over the port p are denoted by,
respectively, p!d, p?d, and p#d. By using these actions, the parallel composition
operator ‖ , and the immediate successful termination predicate ↓, we specify
the whole protocol as the term:

T = ia?d . (ab!d . κ↓ ‖ ac!d . κ↓) ‖ ab?d . κ↓ ‖ ac?d . co!d . κ↓ .

We present preg rules for ‖ , in which act ∈ {p!d, p?d, p#d}:
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x
act−−→ x′

x ‖ y
act−−→ x′ ‖ y

y
act−−→ y′

x ‖ y
act−−→ x ‖ y′

x ↓ y ↓
(x ‖ y) ↓

x
p!d−−→ x′ y

p?d−−→ y′

x ‖ y
p#d−−−→ x′ ‖ y′

x
p?d−−→ x′ y

p!d−−→ y′

x ‖ y
p#d−−−→ x′ ‖ y′

Fig. 3. preg rule system for ‖

The input for PREG Axiomatizer consists of:

– the predicate rule
P(X) , P(Y)

===
P(X || Y)

,

– all the instantiations of the first two transition rules in Figure 1 for which act
is an action from the set A = {ia?d, ab!d, ac!d, ab?d, ac?d, ab#d, ac#d, co!d}

⎛⎝e.g.,
X -(a["ia?d"])-> X’

===

X || Y -(a["ia?d"])-> X’ || Y

⎞⎠, and

– all the instantiations of the last two transition rules in Figure 1 in which p
is a port from

{ab, ac}

⎛⎝e.g.,
X -(a["ab?d"])-> X’ , Y -(a["ab!d"])-> Y’

===

X || Y -(a["ab#d"])-> X’ || Y’

⎞⎠.

We generate the process network execution tree (consisting of 582 states) by
calling the command reduce on the specification term T :

> reduce ((a["ia?d"] . (a["ab!d"] . k[P] || a["ac!d"] . k[P])) ||
a["ab?d"] . k[P]) || a["ac?d"] . a["co!d"] . k[P] .

result PTerm: a["ab?d"] . (...) + a["ac?d"] . (...) + a["ia?d"] . (...)

The parallel composition allows for arbitrary interleavings of the actions in A,
but it does not enforce the communication over the ports ab and ac. Hiding these
ports so that other processes cannot interfere with the internal communications
is desirable. This can be done with the help of the restriction operator ∂B,Q, a
generalization of the initial restriction operator ∂1

B,Q presented in Section 1, that
preserves the imposed restrictions throughout the whole computation, not only
for the first step. Forbidding independent send and receive actions over the ports
ab and ac is denoted by the term ∂{p!d,p?d | p∈{ab,ac}},∅(T ). In PREG Axiomatizer
we use %%[B;Q] as a syntactic notation for ∂B,Q:

> reduce %%[ a["ab?d"] a["ab!d"] a["ac?d"] a["ac!d"] ; empty ](
(( a["ia?d"] . (a["ab!d"] . k[P] || a["ac!d"] . k[P])) ||
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a["ab?d"] . k[P]) || a["ac?d"] . a["co!d"] . k[P]) .
result PTerm: a["ia?d"] . (a["ab#d"] . a["ac#d"] . a["co!d"] . k[P] +

a["ac#d"] . (a["ab#d"] . a["co!d"] . k[P] +
a["co!d"] . a["ab#d"] . k[P]))

We also tested our tool by generating the normal form of a3.κ↓ ‖ b3.κ↓ ‖ c3.κ↓
and obtained the same “2 page long” execution tree showed in [6], consisting of
6927 states. Maude derives this execution tree in less than 500 milliseconds on
a machine with a 2.53GHz processor and 4GB of RAM.

Example 3. We now show how PREG Axiomatizer is used in order to perform
equational proofs when working with predicates that have implicit behaviour.
Consider, for instance, the case of the eventual successful termination predicate�. It represents the extension of ↓, introduced in the previous examples, with the
requirement that if t � holds for a term t, then a.t � holds for any action a.

Recall from Section 1 that our approach is based on denoting the property � by
using the explicit process constant κ� as a summand of the analyzed term. The
above characterization of � is given by the axiom a.(t+κ�) = a.(t+κ�)+κ�. With
this in mind, one could check, for instance, if a process t “eventually terminates”
by checking if it is bisimilar to t + κ�.

In order to prove that a.κ� ‖ b.κ� is bisimilar to (a.κ� ‖ b.κ�) + κ� we need to
let the tool “know” that it should treat � (denoted by Q in the specification) as
an implicit predicate by using the operation expandImplicit. This operation
receives a term and the set of implicit predicate names:

> reduce expandImplicit(a . k[Q] || b . k[Q], Q) ==
expandImplicit(a . k[Q] || b . k[Q] + k[Q], Q) .

result Bool: True

> reduce expandImplicit(a . k[Q] || b . k[Q], Q) .
result PTerm: k[Q] + a . (k[Q] + b . k[Q]) + b . (k[Q] + a . k[Q])

Predicates with implicit behaviour, like �, can only be used during the nor-
malization process if the operators whose definition involves these predicates
are given by rules that satisfy certain sanity constraints mentioned in [3]. The
tool does not currently support the automated checking for those constraints, so
the user needs to do it manually before using the feature presented above. The
parallel composition operator does meet those constraints.

3 Discussion and Future Work

Aside from the features mentioned in Section 2, an important part of the PREG
Axiomatizer engine is dedicated to checking for the conformance of specified
operations and rules to the various formats presented in [3].

There are many areas in which the tool and the theory behind it can be im-
proved. First and foremost, an important feature would be to allow the user
to specify guarded recursively defined terms in order to greatly increase the
complexity of the case studies our tool can handle. The most natural way to
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extend our approach in order to reason about the bisimilarity of such terms is
to integrate the technique presented in [1], which is also based on generating
complete axiomatizations for a class of GSOS languages generating regular be-
haviours. The main difficulty of this task will be the search for good strategies
for applying the axioms and the unique fixed-point induction rule.

Another tool development direction is concerned with the ability to automati-
cally check if the specification meets certain complex requirements. One of these
requirements is, as presented in Section 1, the syntactic well-foundedness of the
given system. Without this feature the user needs to be careful not to specify

operators such as the reentrant server ! , defined by the rule
x
a−→ x′

!x a−→ x′ ‖ !x
, for

which non-normalizing axioms are derived: !x =!′(x, x) , !′(a.x′, x) = a.(x′ || !x).
Another requirement the tool could check for consists of the sanity constraints
we mentioned in Example 3.
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Abstract. Statistical model checking is an attractive formal analysis
method for probabilistic systems such as, for example, cyber-physical
systems which are often probabilistic in nature. This paper is about
drastically increasing the scalability of statistical model checking, and
making such scalability of analysis available to tools like Maude, where
probabilistic systems can be specified at a high level as probabilistic
rewrite theories. It presents PVeStA, an extension and parallelization
of the VeStA statistical model checking tool [10]. PVeStA supports
statistical model checking of probabilistic real-time systems specified as
either: (i) discrete or continuous Markov Chains; or (ii) probabilistic
rewrite theories in Maude. Furthermore, the properties that it can model
check can be expressed in either: (i) PCTL/CSL, or (ii) the QuaTEx

quantitative temporal logic. As our experiments show, the performance
gains obtained from parallelization can be very high.

1 Introduction

Statistical model checking (see, e.g., [9,11]) is an attractive formal analysis
method for probabilisitic systems. Although the properties model checked can
only be ensured up to a user-specified level of statistical confidence (as opposed
to the absolute guarantees provided by standard probabilistic model checkers),
the approximate nature of the formal analysis is compensated for by its better
scalability, the fact that the models to be analyzed can often be known only
approximately, and the interest in analyzing quantitative properties for which
an approximate result within known bounds is quite acceptable.

There are many systems for which this kind of statistical model checking anal-
ysis can be very useful. For example, distributed real-time systems, including
so-called cyber-physical systems, are often probabilistic in nature, both because
they often use probabilistic algorithms, and due to the uncertain, stochastic
nature of the environments with which they interact. Furthermore, quality of
service properties may be as important as traditional boolean-valued properties
such as safety properties. For example, in a secure communications system, avail-
ability of vital information may be as important as its secrecy, but availability
may be utterly lost due to a denial of service (DoS) attack with no loss of se-
crecy. Suppose that such a system is hardened against DoS attacks. How should
one formally analyze the effectiveness of such a hardening? What is needed is
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not a Boolean-valued yes/no answer, but a quantitative one in terms of the
expected latency of messages under certain assumptions about the attacker and
the network. Quantitative information may include probabilities p ∈ [0, 1], but
need not be reducible to probabilities. For this reason, it is important to support
statistical model checking not only of standard probabilistic temporal logics such
as PCTL/CSL, but also of quantitative temporal logics like QuaTEx [1], where
the result of evaluating a temporal formula on a path is a real number. This of
course includes the case of probabilities, as values p ∈ [0, 1], and even of standard
truth values, as values in {0, 1}, as special cases.

This paper is about drastically increasing the scalability of statistical model
checking, and also about making such scalability of analysis available to tools like
Maude, where probabilistic systems can be specified at a high level as probabilis-
tic rewrite theories [1], which are theories in rewriting logic [7] that may contain,
in addition to regular rewrite rules, probabilistic rewrite rules modeling proba-
bilistic transitions of such systems. The paper presents PVeStA, an extension
and parallelization of the VeStA statistical model checking tool [10]. PVeStA

supports statistical model checking of probabilistic real-time systems specified
as either: (i) discrete or continuous Markov Chains; or (ii) probabilistic rewrite
theories in Maude. Furthermore, the properties that it can model check can be
expressed in either: (i) PCTL/CSL, or (ii) QuaTEx. As our experiments show,
since statistical model checking is based on Monte-Carlo simulations, which are
naturally parallelizable, the performance gains can be very high. In summary,
the main contribution of this work is to parallelize the model checking algorithms
and the VeStA tool itself, so that a wide range of statistical model checking
analyses can be performed with high efficiency on probabilistic models such as
Markov chains and probabilistic rewrite theories.

2 Efficient Parallel Statistical Analysis Algorithms

Sen et. al. [9] described an algorithm A based on simple hypothesis testing for
statistical model checking of formulas in both: (1) Probabilistic CTL (PCTL) [5],
which extends standard CTL by associating probability measures to computa-
tion paths of a probabilistic system and qualifying the temporal logic formulas
with probability bounds, and (2) Continuous Stochastic Logic (CSL) [3,4], which
further extends PCTL by continuous timing and qualifying temporal logic op-
erators by time bounds. Given a probabilistic model M, a PCTL/CSL formula
P$%p(ϕ), with ϕ a state or path formula1, and error bounds α and β, the algo-
rithm A checks satisfiability of the formula by setting up a statistical hypothesis
testing experiment such that its Type I and Type II errors are bounded, respec-
tively, by α and β. The test is based on the sample mean of n random samples
of ϕ computed over n Monte-Carlo simulations of the model. The algorithm
uses standard statistical methods to precompute the total number n of samples
needed to achieve the desired test strength (see [9] for more details).
1 We restrict our attention to non-nested probabilistic formulas here, although the

algorithm of [9] can handle nested formulas as well.
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To be able to express not just probabilities of satisfaction of temporal logic
formulas but also quantitative properties such as, for example, the expected
latency of a probabilistic communication protocol, PCTL and CSL have been
generalized to a logic of Quantitative Temporal Expressions (QuaTEx) in [1], in
which state formulas and path formulas are generalized to user-definable, real-
valued state expressions and path expressions. In [1], Agha et. al. proposed a
statistical quantitative analysis algorithm Q for estimating the expectation of a
temporal expression in QuaTEx. Given a probabilistic model M, an expectation
QuaTEx formula of the form E[Exp], with Exp a QuaTEx state or path ex-
pression, and bounds α and δ, the algorithm Q approximates the value of E[Exp]
within a (1 − α)100% confidence interval, with size at most δ, by generating a
large enough number n of random sample values x1, x2, . . . , xn of Exp computed
from n independent Monte Carlo simulations of M. The value returned by the
algorithm as the estimator for E[Exp] is the sample mean x̄ = Σi∈[1,n]xi

n . To
guarantee the quality and size requirements of the confidence interval (given
respectively by α and δ) for x̄, the number n of sample values must be large
enough. In general, the more accurate the estimator, the larger the number of
samples required. To generate enough samples, the algorithm Q uses student’s
t-distribution to compute a (1 − α)100% confidence interval by iteratively gen-
erating them in batches of N samples each (with N > 5). Once the size of the
computed interval falls below the threshold δ, Q halts and the sample mean x̄
is returned (more details can be found in [1]).

In this work, we develop parallel versions Ap and Qp of both algorithms in
which the task of computing a set of n sample values for a state or path formula
in CSL or QuaTEx is done in parallel by performing n Monte Carlo simulations
in parallel. Both parallel algorithms make no assumptions about the underlying
parallel architecture. For CSL, Ap assumes non-nested probabilistic formulas.

The algorithms take as input a list of available computing resources R on
which the task of generating random samples is mapped. This task is first dis-
tributed as evenly as possible by determining the number of simulations mi to be
performed by each available computing resource Ri in R. In Ap, since the total
number of samples n is precomputed, mi is simply either 1n/|R|2 or 1n/|R|2+1.
In Qp, mi is computed as a positive integer multiple of |R| and the load factor k,
which is a parameter to Qp that can be used to increase the number of simula-
tions performed by each resource in a round. Given a verification task, the load
factor k can be tuned to optimize performance, especially for lightweight simu-
lations when the desired statistical confidence is high, as we will see in Section 4.
Once mi is determined, each resource Ri performs mi discrete-event simulations
of the model M and returns a list of mi random samples. Once the samples from
all resources are collected, Ap and Qp proceed as their sequential counterparts.

3 Implementation of PVeStA

We have implemented a client-server prototype, PVeStA, of both parallel al-
gorithms Ap and Qp, in Java, based on the Java implementation of the origi-
nal algorithms in VeStA [10]. The tool, which is available for download online
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at http://www.cs.illinois.edu/~alturki/pvesta, consists of two command-
line-based executable programs: (1) a client program pvesta-client, which im-
plements the sequential parts of the algorithms performing simple hypothesis
testing for PCTL/CSL formulas and confidence interval computations for Qua-

TEx expressions, and (2) a server program pvesta-server, which implements
the role of a resource Ri that computes random samples by performing discrete-
event simulations of a given model expressed as a Markov chain or as a prob-
abilistic rewrite theory. Figure 1 presents a schematic diagram of the structure
and interactions of the client and server parts of the tool.

PVeStA Client

PVeStA Server1

PVeStA ServerR

model
formula

parameters
server list

m1 simulations request

results list

mR simulations request
results list

......

Maude

CTMC Engine

Maude

CTMC Engine

Fig. 1. Components and interactions of PVeStA

The client program first reads a list of servers R that are available for per-
forming simulations. It then creates, using Java’s managed concurrency library,
a thread pool of |R| callable computation threads, which are Java threads that
implement the Callable interface by specifying a run method to be called when
the thread is invoked. Each thread, which will manage simulation requests and
responses with a particular server in R, is supplied with a pseudo-random seed
to be used by its corresponding server to guarantee statistical independence of
the simulations. The thread pool is then submitted to an executor object, which
invokes all the threads in the pool, commencing communication with the servers
in R. Upon receiving the simulations request, each PVeStA server performs
the requested number of simulations using either Maude (for models expressed
as probabilistic rewrite theories) or the built-in Continuous-Time Markov Chain
(CTMC) engine (for CTMC models) and produces a list of sample results. The
client collects all samples in an array of |R| Future Java class objects, from
which the results are extracted and then used in performing the appropriate
sequential computations. For confidence interval computations, the client may
need to repeat this process until enough samples are collected.

4 Experimental Evaluation

We have conducted two sets of experiments with PVeStA to evaluate the per-
formance gains of parallelization using two different parallel architectures: (1) a
high-performance computing (HPC) architecture, in which simulation tasks are
distributed over different nodes in a PC cluster, and (2) a multi-core architec-
ture, in which simulations are distributed over different processing cores within

http://www.cs.illinois.edu/~alturki/pvesta
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a single node. The HPC benchmarks were executed on a PC cluster consisting of
256 nodes, each of which has two (single-core) AMD Opteron 2.2GHz CPUs with
2GB of RAM. The second set of experiments was performed on a server machine
having two quad-core 2.66GHz Intel Xeon processors with 16GB of RAM.

We use two examples from [10]: (1) a simplified server polling system, Polling,
and (2) a simple tandem queuing system, Tandem, both expressed as continuous-
time Markov chains. In addition, we use two variants of a larger case study
from [2], which provides a probabilistic model in rewriting logic of the Adaptive
Selective Verification (ASV) protocol [6] for thwarting DoS attacks. The first
variant, denoted ASV 0, assumes a reliable communication channel, a fixed attack
rate, and no message transmission delays, while the second variant, ASV 1, is
slightly more realistic as it assumes a lossy channel, a variable attack rate, and
random delays. Benchmarking is performed by measuring the total time required
(including any additional time required for file and network I/O, thread and
object management, and so on) to verify a probabilistic CSL formula in Polling,
Tandem, and ASV 0, or a QuaTEx expectation expression in Tandem (load
factor, k = 100), ASV 0 (k = 1), and ASV 1 (k = 1). The results are summarized
in Table 1.

Table 1. The (average) times in seconds taken by PVeStA to complete six verification
tasks using a PC cluster and a multi-core computer

Polling (CSL) Tandem (CSL) Tandem (Q) ASV 0 (CSL) ASV 0 (Q) ASV 1 (Q)
Simulations 16,906 16,906 46,380 1051 706 1,308

Servers HPC Cluster
1 6.78 9.54 17.36 494.9 770.8 1,584.3
2 2.61 4.06 8.56 248.4 385.4 798.5
4 1.24 2.01 4.26 124.2 197.1 410.5
8 0.70 1.02 2.19 62.1 103.4 221.9
12 0.59 0.77 1.53 41.4 65.3 144.3
16 0.44 0.63 1.27 31.1 52.3 116.6
20 0.42 0.56 1.14 25.1 39.4 89.9
30 0.37 0.46 0.93 16.9 26.7 63.1
60 0.38 0.43 0.82 8.7 13.7 34.2

Servers Multi-core Computer
1 3.83 5.53 11.26 367.7 559.7 1,167.9
2 1.70 2.60 5.43 184.5 281.1 589.5
3 1.15 1.62 3.36 122.9 189.4 396.5
4 0.86 1.24 2.53 92.3 138.7 298.3
5 0.74 1.03 2.09 74.2 113.1 243.0
6 0.66 0.86 1.84 61.8 94.5 204.5
7 0.62 0.78 1.66 53.1 85.1 181.2

As the table clearly shows, performance gains as a result of parallelization can
be substantial. For example, for ASV 1, a verification task that would normally
require about 27 minutes, can be completed in about 34 seconds on an HPC clus-
ter using 60 nodes, and a 20-minute task can be done in just above 3 minutes
on a multi-core machine using seven cores in parallel. In practice, several factors
influence the speedups achieved by PVeStA, including the complexity of the
model and the formula, and the statistical strength of the result. Figure 2(a)
plots the speedups achieved against the number of servers used for HPC exper-
iments in Table 1. We note that while performance scales almost linearly with
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the number of servers used for ASV 0 and ASV 1, the speedups for both Polling
and Tandem begin to decelerate beyond 20 servers. This is primarily because
the models Polling and Tandem are so simple that, as the number of servers
increases, the time needed to generate random samples begins to be dominated
by other computations in the tool. For the Tandem-Q experiment, which re-
quires a fairly high statistical confidence, and thus a higher number of random
samples, achievable speedups are greatly influenced by the chosen load factor k.
In general, for such simple models, a higher value of k (and thus a higher num-
ber of simulations performed by a server in each round) translates into reduced
processing and communication overhead and increased efficiency. For example,
speedup tripled when using k = 100 compared with k = 1 for Tandem-Q with
60 servers. Of course, excessively high values of k result in an unnecessarily ex-
cessive number of simulations and degrade performance. Appropriate values of
k can be determined by experimentation using the above ideas as guidelines.
Figure 2(b), which plots speedups on a multi-core architecture, shows a similar
pattern to Figure 2(a).

(a) HPC cluster (b) Multi-core computer

Fig. 2. The speedup using multiple PVeStA servers

5 Conclusion and Future Work

We have briefly presented parallelized algorithms for statistical model checking
and quantitative analysis and described their implementations in a client-server
extension of VeStA, called PVeStA. Experimental evaluation on two different
parallel architectures demonstrated the expected performance gains, especially
for complex probabilistic models, for which the process of computing random
samples can be computationally expensive. Future work include further refining
the tool to improve performance for simpler models when high parallelization
factors are assumed, and extending the parallel algorithms to support parallel
statistical model checking of nested PCTL/CSL formulas using ideas from [9,8].



392 M. AlTurki and J. Meseguer

Acknowledgments. We thank Koushik Sen, Mahesh Viswanathan, and Gul
Agha for the original work on VeStA, and Gul Agha and Koushik Sen for their
work on PMaude and QuaTEx, which provide the basis on which PVeStA

has been built. This work has been partially supported by NSF grants CNS 08-
34709, CNS 07-16638, and CCF 09-05584, King Fahd University of Petroleum
and Minerals, and King Abdullah University of Science and Technology.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 213–239 (2006)

2. AlTurki, M., Meseguer, J., Gunter, C.A.: Probabilistic modeling and analysis of
DoS protection for the ASV protocol. Electron. Notes Theor. Comput. Sci. 234,
3–18 (2009)

3. Aziz, A., Singhal, V., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: It usually
works: The temporal logic of stochastic systems. In: Wolper, P. (ed.) 7th Interna-
tional Conference On Computer Aided Verification, vol. 939, pp. 155–165. Springer,
Liege (1995)

4. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of
continuous-time markov chains. In: Baeten, J., Mauw, S. (eds.) CONCUR 1999.
LNCS, vol. 1664, pp. 146–781. Springer, Heidelberg (1999)

5. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

6. Khanna, S., Venkatesh, S.S., Fatemieh, O., Khan, F., Gunter, C.A.: Adaptive selec-
tive verification. In: IEEE Conference on Computer Communications (INFOCOM
2008). IEEE, Phoenix (2008)

7. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

8. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 202–215. Springer, Heidelberg (2004)

9. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 266–280. Springer, Heidelberg (2005)

10. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: Second International Conference on the
Quantitative Evaluation of Systems (QEST), pp. 251–252 (2005)

11. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)



Minlog - A Tool for Program Extraction

Supporting Algebras and Coalgebras

Ulrich Berger1, Kenji Miyamoto2,�, Helmut Schwichtenberg2,
and Monika Seisenberger1

1 Swansea University, Wales
2 LMU University, Munich

Abstract. Minlog is an interactive system which implements proof-
theoretic methods and applies them to verification and program extrac-
tion. We give an overview of Minlog and demonstrate how it can be
used to exploit the computational content in (co)algebraic proofs and to
develop correct and efficient programs. We illustrate this by means of
two examples: one about parsing, the other about exact real numbers in
signed digit representation.

1 Introduction

In this paper we give an overview of the interactive proof system Minlog and
describe a proof-theoretic method based on realizability for developing correct
programs. We particularly address inductive and coinductive proofs and the
associated computation principles: iteration for initial algebras and coiteration
for terminal coalgebras. Minlog is not a type-theoretic system, such as Coq or
Isabelle, but based on first-order logic and has a simple mathematical (i.e. de-
notational) semantics. This makes it accessible to a wide range of researchers
including those outside the type-theoretically minded community. Minlog is im-
plemented in Scheme. It is an “open” system giving users full access to the code,
thus inviting them to contribute to its development. Although designed as a gen-
eral purpose system, most of the recent developments in Minlog are concerned
with program extraction from proofs. It seems fair to say that, regarding pro-
gram extraction, Minlog is the most advanced proof system. Minlog implements
various methods of program extraction (realizability, Dialectica Interpretation)
and extends them to classical proofs via the Friedman/Dragalin A-translation.
All these techniques are refined and optimized in order improve usability and
to obtain simpler programs. In addition to extracting a program from a proof,
Minlog also automatically extracts a proof that the program meets its specifi-
cation. In Sect. 2 we give a more detailed and technical description of Minlog
and its program extraction facilities. A number of substantial case studies on
program extraction have been carried out in Minlog reaching from the extrac-
tion of a normalisation-by-evaluation algorithm to the extraction of programs in
� Supported by the Marie Curie Initial Training Network in Mathematical Logic –
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constructive analysis. In this paper we present two case studies demonstrating
the use of inductive and coinductive definitions in program extraction (Sect. 3)
and show that they work well with Minlog’s optimized extraction mechanism.

2 Program Extraction in Minlog

2.1 The Interactive Proof System Minlog

Minlog [Min, BBS+98] is an interactive proof system based on first order nat-
ural deduction calculus. It is intended to reason about higher type computable
functionals, using minimal rather than classical or intuitionistic logic. Minlog
implements a theory of computable functionals, as described in [SW11]. The un-
derlying semantics is the Scott-Ershov model of partial continuous functionals,
with free algebras as base types. These algebras are viewed as domains repre-
sented by Scott’s information systems, whose tokens are constructor trees pos-
sibly involving the symbol ∗ (“no information”). The ideals (points, objects) of
base type are consistent and deductively closed sets of tokens, possibly infinite.
Initial algebras and final coalgebras are modelled by notions of totality and coto-
tality: An ideal x is “cototal” if every constructor tree P (∗) ∈ x has a “one-step
extension” P (Ca∗) ∈ x, and “total” if it is cototal and this extension relation is
well-founded. Totality and cototality are instances of strictly positive inductive
and coinductive definitions which are supported in general in Minlog. With ev-
ery initial algebra and final coalgebra are associated operators for (co)iteration
and (co)recursion. Computation is implemented efficiently via normalization by
evaluation [BS91, BES03]. Computation is extended to proofs via the Curry-
Howard correspondence. Intuitionistic and classical logic are represented by the
axiom schemes ⊥ → A and ¬¬A → A. Interactive proofs are organized in a
goal-directed backwards-reasoning fashion. Forward reasoning is modelled by a
form of cut rule. Minlog also contains an automated prover for a certain fragment
of (simply typed) minimal logic. Its theory (based on [Mil91]) is developed in
[Sch04].

2.2 Program Extraction

One of the main motivations behind Minlog is to use it as a tool for program
verification, and to exploit the proofs-as-programs paradigm for program devel-
opment. Minlog’s program extraction is based on Kreisel’s modified realizabil-
ity [Kre59]: to each formula A a type τ(A) (the type of realizers of A) and a
formula xτ(A) r A are assigned. The formula x r A is to be read as “x realizes
A” and intuitively means “x solves the computational problem expressed by A”.
Program extraction computes from a derivation d of A a term et(d) (the ex-
tracted program) and a proof that et(d) realizes A. Of particular interest are the
realization of induction and coinduction by algebras and coalgebras, as well as
the computational and non-computational versions of logical operators. The lat-
ter are crucial for obtaining practically useful results as they lead to drastically
simplified proofs and extracted programs. The case studies on parsing (3.1) and
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exact real numbers (3.2) below will highlight these points. From a type-theoretic
point of view, realizability collapses a dependently typed lambda-calculus (which
Minlog’s proof calculus is an instance of) to a simply typed lambda-calculus. The
collapse happens on the level of atomic formulas, since τ(P t) = τ(P ) where τ(P )
is a simple type assigned to the predicate P , discarding the first-order terms t.
Minlog extends program extraction to classical proofs via a refined A-translation
[BBS02] or Dialectica Interpretation (see eg. [SW11]). The theoretical founda-
tions of program extraction from formal proofs, as implemented in Minlog, are
presented in detail in [SW11]. Realizability for induction and coinduction, in-
cluding applications to exact real numbers, are developed in [Ber09, BS10].

2.3 Related Work

Program extraction from proofs is also implemented in Isabelle [Isa] (for alge-
bras) and in Coq [Coq] (cf [BBLS06] for a joint case study). The implementation
in Isabelle has been modelled after Minlog’s extraction. The correctness of pro-
gram extraction in Coq is not based on realizability and a Soundness Theorem
(as in Minlog), but on the fact that reduction of proofs is correctly simulated
by reduction of extracted programs [Let03]. There exists also an experimental
implementation of program extraction in Agda [Agd] (cf [Chu11]). We are not
aware of substantial case studies on program extraction in these systems. Also,
Minlog seems to be the only system implementing the Dialectica Interpretation
and program extraction from classical proofs. We also mention RZ [BS07], a tool
that computes the realizability interpretation of a mathematical statement (but
does not extract programs from proofs).

3 Case Studies

3.1 Algebras for Parsing

Consider strings x, y of left and right parentheses L, R. We define inductively
the predicate (grammar) S of balanced strings of parentheses by the clauses

InitS : S(nil), ApS: Sx → Sy → S(xy), ParS: Sx → S(LxR).

The type τ(S) of realizers of S is the algebra algS of generation trees for S.
It has one nullary constructor, cInitS, one binary, cApS, and one unary, cParS.
Our goal is to prove decidability of S, i.e. ∀x(Sx ∨ ¬Sx), and extract from
the proof a program computing for each string x a boolean value p and a tree
t : algS such that p decides whether Sx holds and, in the positive case, t is a
generation tree for x. Note that negation, ¬A, is expressed in Minlog as A → ⊥
and disjunction, A ∨ B, as ∃p((p → A) ∧ (¬p → B)). Hence the goal reads
∀x∃p((p → Sx) ∧ ((p → ⊥) → Sx → ⊥)). We also consider an alternative
grammar U for the same set of strings (which, in contrast to S, is deterministic)

InitU: U(nil), ApU: Ux → Uy → U(xLyR),
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with an algebra of realizers algU with constructors cInitU (nullary) and cApU
(binary). Equality of U and S is expressed by ∀nc

x (Ux → Sx) and ∀nc
x (Sx → Ux).

These formulas can be easily proven by induction on Ux and Sx. The non-
computational universal quantifier ∀nc

x has the same logical meaning as the usual
∀x, but it indicates that the extracted programs only operate on the generation
trees for x and not on the string x itself. The variables x, y in the defining clauses
for S and U are implicitly quantified by ∀nc as well. The extracted program for
the proof of ∀nc

x (Sx → Ux) is ([b0] and [b1, . . .] denote lambda-abstractions)

[b0](Rec algS=>algU)b0 cInitU
([b1,b2,a3,a4](Rec algU=>algU)a4 a3([a5,a6,a7,a8]cApU a7 a6))
([b1]cApU cInitU)

The fact that the proof is by induction on Sx is witnessed by the occurrence of the
recursion operator (Rec algS=>algU) implementing (an instance of) structural
recursion on algS. There is also a side induction witnessed by (Rec algU=>algU).
The term above is equivalent to a program SU defined by the recursive equations

SU cInitS = cInitU
SU (cApS b1 b2) = UU (SU b2) where

UU cInitU = SU b1
UU (cApU a5 a6) = cApU (UU a5) a6

SU (CParS b) = cApU cInitU (SU b)

The boolean value deciding whether or not Sx holds is computed as Test 0 x,
the function Test being defined as a constant Test (py means parse-type):

(add-program-constant "Test" (py "nat=>list par=>boole"))
(add-computation-rules
"Test 0(Nil par)" "True"
"Test 0(R::x)" "False"
"Test(Succ n)(Nil par)" "False"
"Test n(L::x)" "Test(Succ n)x"
"Test(Succ n)(R::x)" "Test n x")

Note that (Nil par) denotes the empty list of parentheses and :: is the cons
operation for lists. Soundness, ∀nc

x (Ux → Test(0, x)), is easy and the proof has no
computational content. Completeness, ∀x(Test(0, x) → Sx), needs an inductively
defined predicate State with clauses

InitState : State(0, nil), ApState : Ss → State(n, x) → State(Sn, xsL)

and a lemma ∀y∀nc
n,x(State(n, x) → ∀nc

s (Ss → Test(n, y) → S(xsy))), proved by
induction on y. Now ∀x∃p((p → Sx) ∧ ((p → ⊥) → Sx → ⊥)) is proved easily1.
The parser-term extracted from this proof is (@ is a pairing operator in infix
notation, [if . . . ] is a generalization of the usual if-then-else allowing pattern
matching on the constructors of an algebra)
1 The third author is grateful to Makoto Takeyama for explaining his Agda code
http://code.haskell.org/Agda/examples/ParenDepTac.agda to him.
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[x0]Test 0 x0 @
(Rec list par=>algState=>algS=>algS)x0
([st1,b2][if st1 b2 ([b3,st4]cInitS)])
([par1,x2,f3,st4,b5]

[if par1
(f3(cApState b5 st4)cInitS)
[if st4 cInitS ([b6,st7]f3 st7(cApS b6(cParS b5)))]])

cInitState cInitS

which corresponds to the following recursive program:

P x0 = Test 0 x0 @ P0 x0 cInitState cInitS where
P0 Nil cInitState b2 = b2
P0 Nil(cApState b3 st4)b2 = cInitS
P0 (L::x2)st4 b5 = P0 x2(cApState b5 st4)cInitS
P0 (R::x2)cInitState b5 = cInitS
P0 (R::x2)(cApState b6 st7)b5 = P0 x2 st7(cApS b6(cParS b5))

Experiments (pp, nt, pt mean pretty-print, normalize-term, parse-term - Four
inputs to Minlog, followed by Minlog’s response):

(pp (nt (mk-term-in-app-form parser-term (pt "L::R:"))))
"True@cApS cInitS(cParS cInitS)"
(pp (nt (mk-term-in-app-form parser-term (pt "R::L:"))))
"False@cInitS"
(pp (nt (mk-term-in-app-form parser-term (pt "L::R::L::R:"))))
"True@cApS(cApS cInitS(cParS cInitS))(cParS cInitS)"
(pp (nt (mk-term-in-app-form parser-term (pt "L::L::R::R:"))))
"True@cApS cInitS(cParS(cApS cInitS(cParS cInitS)))"

3.2 Coalgebras for Exact Real Numbers

Our second case study concerns algorithms in exact real arithmetic. Whilst
such algorithms have been verified before (see eg. [CDG06, MRE07, GNSW07,
BH08]), in the present paper we show by means of an example how to extract
them. We extract a program which for every rational number a ∈ [−1, 1] com-
putes a signed binary digit representation, that is, a (finite or infinite) stream of
digits d0, d1, . . . ∈ {−1, 0, 1} such that

a =
∑
i

di
2i+1

(1)

We let a range over abstract real numbers (we only use the properties of an
ordered field) and let Qa mean that a is a rational number with absolute value
≤ 1. Our program will be extracted from a proof of the formula

∀nc
a (Qa → Ja) (2)

where the predicate J is defined coinductively by the clause
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∀nc
a (Ja → a = 0∨∃r

b(a =
b− 1

2
∧Jb)∨∃r

b(a =
b

2
∧Jb)∨∃r

b(a =
b + 1

2
∧Jb)) (3)

that is, J is the largest predicate satisfying (3). The proof of (2) proceeds by
coinduction, that is, by showing that (3) holds when J is replaced by Q. The
superscript r attached to the quantifier ∃r stands for “right” and means that
from a proof of a formula ∃r

bA only the realizer of A is kept while the witness b
contained in the proof is discarded. The type of realizers for J is the coalgebra of
finite and infinite streams of signed digits. In our setting it is modelled as the set
of cototal ideals (see Sect. 2.1) of the algebra I of “standard rational intervals”,
whose constructors are I (for the initial interval [−1, 1]) and C−1, C0, C1 (for the
left, middle, right part of the argument interval, of half its length). For example,
C−1I, C0I and C1I should be viewed as the intervals [−1, 0], [− 1

2 ,
1
2 ] and [0, 1].

The cototal ideals include, for example, {Cn−1∗}n≥0, a “stream” representation
of the real −1, and also {C−1Cn1∗}n≥0 and {C1Cn−1∗}n≥0, which both represent
the real 0. Generally, the cototal ideals give us all reals in [−1, 1], in the repre-
sentation (1). We have formalized in Minlog a proof of (2) and extracted from it
a term neterm of type ι → I involving the corecursion operator coRιI associated
with (3). The value of the term obtained by applying neterm to, say, 1/2 (in
Minlog: cGenQ(1#2)) is an infinite ideal starting with C1, C0, C0, C0 . . . (CIntP,
CintZ, . . . ). To compute it (again via normalization-by-evaluation, i.e., nt) we
delay unfolding coRιI at a fixed depth, say 5:

(pp (nt (undelay-delayed-corec
(mk-term-in-app-form neterm (pt "cGenQ(1#2)")) 5)))

"CIntP (CIntZ (CIntZ (CIntZ (CIntZ (CoRec algQ=>intv)..."

Sources. The Minlog system is available at www.minlog-system.de. To run
the examples download the latest version minlog-latest.tar.gz (SVN snap-
shot) and follow the installation instructions. Note that, as prerequisites, Scheme
and Emacs are required. The reader new to Minlog is referred to the tutorial
[CSS11] for introductory examples. The two case studies of this paper can be
found in examples/parsing/parens.scmand examples/analysis/ratsds.scm
together with readme files readme-parens.txt and readme-ratsds.txt ex-
plaining the background and how to run the case studies.

Acknowledgements. The authors would like to thank the referees for their
constructive comments and criticism.

References

[Agd] Agda: http://wiki.portal.chalmers.se/agda/

[BBLS06] Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program ex-
traction from normalization proofs. Studia Logica 82, 27–51 (2006)

http://wiki.portal.chalmers.se/agda/


Minlog - A Tool for Program Extraction 399

[BBS+98] Benl, H., Berger, U., Schwichtenberg, H., Seisenberger, M., Zuber, W.:
Proof theory at work: Program development in the Minlog system. In:
Bibel, W., Schmitt, P.H. (eds.) Automated Deduction. Applied Logic Se-
ries, vol. II, pp. 41–71. Kluwer, Dordrecht (1998)

[BBS02] Berger, U., Buchholz, W., Schwichtenberg, H.: Refined program extraction
from classical proofs. APAL 114, 3–25 (2002)

[Ber09] Berger, U.: From coinductive proofs to exact real arithmetic. In: Grädel,
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Abstract. We present the Maude Formal Environment (MFE), an executable for-
mal specification in Maude within which a user can seamlessly interact with
the Maude Termination Tool, the Maude Sufficient Completeness Checker, the
Church-Rosser Checker, the Coherence Checker, and the Maude Inductive The-
orem Prover. We explain the high-level design decisions behind MFE, give a
summarized account of its main features, and illustrate with an example the
interoperation of the tools available in its current release.

1 Introduction

Maude [1] is a reflective declarative language and system based on rewriting logic in
which computation corresponds to efficient deduction by rewriting. Several tools for
the formal analysis of Maude modules have been available for a number of years. They
include an inductive theorem prover [4] for equational specifications, and an LTL model
checker [10], a reachability analysis tool [1], and an invariant analyzer [13] for rewrite
specifications. However, many verification techniques such as the ones implemented
by the tools just mentioned assume that the input module satisfies certain properties.
For example, any verification task with the LTL model checker on a rewrite specifica-
tion R = (Σ,E∪A,R) assumes that R satisfies the so-called executability requirements,
namely, that the equations E specifying the functional part of R are both ground ter-
minating and ground Church-Rosser modulo the structural axioms A, and that the rules
R specifying the concurrent transitions of R are ground coherent w.r.t. E modulo A. If
they do not hold, then any analysis performed by the LTL model checker on R can in
general lead to unsound and incomplete results.

Maude has been successfully used as a metatool in the creation of tools for verifying
properties of its modules [2]. In this sense, previous work presented in [3] describes
the main features of several tools concerned with the analysis of either Maude modules
or of extensions of Maude. However, these tools work in isolation, making it incon-
venient to switch between their execution environments and difficult to exchange data
between them. In response to these limitations, we present the Maude Formal Environ-
ment (MFE), an executable and highly extensible software infrastructure within which a
user can interact with several tools to mechanically verify properties of Maude modules.
In MFE, tools can interoperate to discharge proof obligations of different nature without
switching between different execution environments. The integration of different tools
inside MFE’s common environment presents the user with a consistent user interface,
a mechanism to keep track of pending proof obligations, and allows the execution of
several instances of each tool, among other features.

A. Corradini, B. Klin, and C. Cı̂rstea (Eds.): CALCO 2011, LNCS 6859, pp. 400–406.
c© Springer-Verlag Berlin Heidelberg 2011
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The following tools are currently available as part of MFE: the Maude Termina-
tion Tool (MTT) can be used to prove termination of equational and rewrite specifica-
tions [5]; the Sufficient Completeness Checker (SCC) can be used to check
completeness and freeness of equational specifications, and deadlock freedom of rewrite
specifications [11,12]; the Church-Rosser Checker (CRC) can be used to check ground
confluence and sort-decreasingness of equational specifications [7]; the Coherence
Checker (ChC) can be used to check the ground coherence of rewrite specifications [8];
and the Inductive Theorem Prover (ITP) can be used to verify inductive properties of
equational specifications [4,11].

Outline. In Section 2 we give a high-level overview of MFE’s design features and
we explain some of the commands available. In Section 3 we illustrate MFE’s main
functionality with a case study in which a user interacts with several of the tools in
the environment. The executables, a white paper explaining MFE’s design, examples,
and preliminary documentation, are available at http://maude.lcc.uma.es/MFE. For
further details on the tools available in MFE please check the given references.

2 MFE’s Design and Main Features

MFE has been implemented as an extension of Full Maude [6], thus benefiting from
its functionality and flexibility. Full Maude is an extension of Maude written in Maude
itself that has become a common infrastructure on top of which tools can be built.
In MFE, for instance, tools provided by Maude such as its LTL model checker and
search command are available, as well as modules defined in Full Maude (including
object-oriented ones) are directly amenable to formal verification.

MFE is highly extensible and amenable to tool interoperability given its modular
design and the fact that it imposes no constraint on how each tool should model its
particular domain or maintains its internal state. MFE is modeled in Maude as an inter-
active object-based system where tools are objects, the communication mechanism is
message passing, and user interaction is available through Full Maude. Integration and
interoperation of tools within MFE is module-centric, given that its main purpose is to
support formal analysis of Maude modules.

The object-oriented model of MFE consists of three classes: the class Proof of proof
objects which keep the state of specific proof requests, the class Tool of tool objects
which manage proof objects, and a class Controller which inherits from the Full
Maude’s DatabaseClass and provides a centralized entry point for handling requests
to the formal environment.

The Controller object defines the behavior of the environment and its tools with
the user. The user interacts with the environment via commands which are encapsulated
as messages in the object configuration. Each tool object and the controller object have
a module defining the signature of the commands it can handle. The controller handles
any command it can parse; since this object extends Full Maude, it handles its own
commands and Full Maude ones. If the controller receives a command it cannot parse,
then it delegates the message to the active tool (previously selected by the user). If the
active tool can parse the delegated command, then it notifies the controller and handles

http://maude.lcc.uma.es/MFE
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the command. Otherwise, it will notify the failure to the controller, which in turn will
output an error message of the failed command to the user.

Classes Proof and Tool define some basic functionality that can be inherited by any
new tool. Class Tool, for example, defines a set of attributes that are convenient for sup-
porting multiple instances of a tool and predefines some rewrite rules for managing the
life cycle of proof objects. However, new tools can be added to MFE without inheriting
from any of these two classes.

MFE provides the following user commands, in addition to the ones inherited from
Full Maude:

(select tool <tool-name> .) sets <tool-name> as the active tool.
(MFE help .) shows MFE’s help information.
(show global state .) shows the state of the environment.

Any command that cannot be parsed against MFE’s grammar is delegated to the
active tool. In this way, user interaction with any tools remains almost the same as
before its integration in MFE. We refer the reader to MFE’s documentation and to each
tool’s documentation for a detailed account of commands, restrictions, and additional
examples.

In order to be flexible, MFE does not define any policy for naming tool commands.
However, as a general guideline for using the environment, it is recomended that the
tools provide at least the following commands, as it is the case with the tools available
in MFE’s current release:

(<tool-name> help .) shows the help information of tool <tool-name>.
(show state .) shows the state of the tool.

MFE’s design supports non-trivial dependencies among tools and potential inter-
action complexity. For instance, a ground coherence check on a rewrite specification
assumes the ground termination and ground Church-Rosser properties on its equational
subspecification, and may produce a number of inductive proof obligations that could
be discharged with help of ITP. Figure 1 depicts the tool-dependency graph for the
current tools in MFE.

MTT

ITP

CRC

SCCChC

Fig. 1. Tool-dependency graph in MFE

A tool in MFE keeps track of both its pending and discharged proof obligations. It
can submit proof obligations to other tools by means of a submit command and then be
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notified when these are discharged. When all proof obligations in the verification pro-
cess of a module’s property are discharged, the corresponding tool notifies the success
result to the user or to the tool originating the verification task.

Of course, tools in general can impose constraints on its inputs. For instance, SCC
does not support parametric modules but, nevertheless, proofs for such modules could
be obtained by hand or by using a different tool. MFE offers a trust command for
keeping track of proofs obtained outside MFE.

Finally, for tools which depend on external utilities not directly available from Maude
such as MTT and SCC, we have extended the latest release of the Maude system with
built-in operators associated with appropriate C++ code that interacts with the external
tools. A similar extension was previously performed for the SCC [11].

3 Case Study: Ground Coherence of the Bakery Protocol

We explain how MFE can be used to prove the ground coherence of module BAKERY, yet
another Maude specification of the Bakery Protocol. The Bakery Protocol is a classical
solution by Lamport to the problem of achieving mutual exclusion between processes.
The protocol is based on the procedure commonly used in bakeries where a customer
is assigned a ticket number upon arrival. Here, a process is a term with sort BProcess
built from operator <_,_,_> that takes a natural number with sort Nat as identifier,
a constant term sleep, wait, or crit with sort Mode as current state, and a natural
number as ticket number. A term with sort BState is a multiset of processes, where
each process is a singleton multiset and union is denoted by juxtaposition. A term with
sort GBState represents the system’s state and it is built from operator [[_]] that takes
a multiset of processes as argument.

The concurrent behavior of the Bakery Protocol is modeled in the BAKERY system
module as follows.

( mod BAKERY i s
p r o t e c t i n g MNAT .

s o r t s Id Mode BProcess BState GBState .
ops sleep wait crit : −> Mode [ ctor ] .
op <_ ‘ , _ ‘ , _> : MNat Mode MNat −> BProcess [ ctor ] .
s u b s o r t BProcess < BState .
op __ : BState BState −> BState [ ctor assoc comm id : none ] .
op none : −> BState [ ctor ] .
op ‘ [ ‘ [ _ ‘ ] ‘ ] : BState −> GBState [ ctor ] .

var P : Mode . vars I N M : MNat . var BSt : BState .

---- max of the numbers assigned to processes (0 if none)
op maxNumber : BState −> MNat .
op maxNumber : BState MNat −> MNat .
eq maxNumber(< I , P , N > BSt ) = max ( N , maxNumber ( BSt ) ) .
eq maxNumber ( none ) = 0 .

---- min. of the nonzero numbers assigned to processes (0 if none)
op minNzNumber : BState −> MNat .
op minNzNumber : BState MNat −> MNat .
eq minNzNumber(< I , P , 0 > BSt ) = minNzNumber ( BSt ) .
eq minNzNumber(< I , P , s N > BSt ) = minNzNumber ( BSt , s N ) .
eq minNzNumber ( none ) = 0 .
eq minNzNumber(< I , P , 0 > BSt , M ) = minNzNumber ( BSt , M ) .
eq minNzNumber(< I , P , s N > BSt , M ) = minNzNumber ( BSt , min (M , s N ) ) .
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eq minNzNumber ( none , M ) = M .

r l [ s2w ] : [ [ < I , sleep , 0 > BSt ] ]
=> [ [ < I , wait , s maxNumber ( BSt ) > BSt ] ] .

c r l [ w2c ] : [ [ < I , wait , N > BSt ] ]
=> [ [ < I , crit , N > BSt ] ]
i f N = minNzNumber(< I , wait , N > BSt ) .

r l [ c2s ] : [ [ < I , crit , N > BSt ] ]
=> [ [ < I , sleep , 0 > BSt ] ] .

endm )

Operators maxNumber and minNzNumber operate on terms with sort BState and
compute, respectively, the maximum and minimum ticket numbers in a multiset of
processes, or 0 if none.

In MFE, BAKERY’s executability properties can be proved in different order. For
instance, we first activate CRC and use its check Church-Rosser command to first
verify BAKERY’s equational subspecification Church-Rosser.

Maude> ( select tool CRC . )
The CRC has been set as current tool .

Maude> ( check Church−Rosser BAKERY . )
Church−Rosser check for BAKERY

All critical pairs have been joined .
The specification is locally−confluent .
The module is sort−decreasing .

All critical pairs are joined and consequently the specification is locally confluent. No-
tice also that CRC proves the equations sort-decreasing. Hence, a proof of termination
would imply the ground Church-Rosser property of BAKERY’s equational part.

In this case, termination of BAKERY’s equational part is the only pending proof
obligation. We ask the CRC to submit this proof obligation and then activate MTT.

Maude> ( submit . )
The termination goal for the functional part of BAKERY has been submitted to MTT .
Warning : A proof of the termination of functional part of module BAKERY has not

↪→been found .

MTT is not able to find a proof automatically, and we need to interact with it to go on.

Maude> ( select tool MTT . )
The MTT has been set as current tool .

A proof of the termination of this specification can be found in [9]. Instead of com-
pleting the proof here, let us rely on this reference and use the trust command to tell
the tool that it can assume the existence of a proof of the termination of the current
module and proceed.1

Maude> ( trust . )
The functional part of module BAKERY is assumed terminating .
Success : The module is therefore Church−Rosser .

Upon notification from MTT that a termination proof has been found, CRC notifies
the user that BAKERY’s functional part is Church-Rosser. Then, it only remains to prove

1 If you are running a version of Maude that does not include the hooks to the external termi-
nation tools, you would get a message indicating that the tool cannot be used to prove the
termination of the current module. You will still be able to use the trust command.
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BAKERY ground coherent. We set ChC as the active tool in MFE and issue the
corresponding checking command.2

Maude> ( select tool ChC . )
The ChC has been set as current tool .

Maude> ( check ground coherence BAKERY . )
Ground coherence checking of BAKERY

All critical pairs have been rewritten and no rewrite with rules can happen at
↪→ non−overlapping positions of equations left−hand sides .

The sufficient−completeness , termination and Church−Rosser properties must
↪→still be checked .

The decision procedure implemented by ChC discharges all critical pairs between equa-
tions and rules. However, this procedure requires BAKERY’s functional part to be suffi-
ciently complete, ground terminating, and ground Church-Rosser. Since the termination
and Church-Rosser properties have previously been proved, ChC is notified that such
proofs have been found when submitting the proof obligations.

Maude> ( submit . )
The Church−Rosser goal for BAKERY has been submitted to CRC .
The Sufficient−Completeness goal for BAKERY has been submitted to SCC .
The termination goal for the functional part of BAKERY has been submitted to MTT .
Success : The equational theory of BAKERY does not have counterexamples for

↪→sufficient completeness .
However , this is under the assumption that it is ground weakly−normalizing and

↪→ground sort−decreasing .
The functional part of module BAKERY has been checked terminating .
The module BAKERY has been checked Church−Rosser .

Although we already have all the pieces, we still need to select the SCC tool to complete
its proof.

Maude> ( select tool SCC . )
The SCC has been set as current tool .

Maude> ( submit . )
The sort−decreasingness goal for BAKERY has been submitted to CRC .
The termination goal for the functional part of BAKERY has been submitted to MTT .
Church−Rosser check for BAKERY

The module is sort−decreasing .
The module BAKERY has been checked sufficiently−complete .
Success : The module BAKERY is ground−coherent .

Thus, as desired, we conclude that system module BAKERY is (ground) coherent.

4 Future Work

More tools such as Maude’s LTL and LTLR Model Checkers, Maude’s Invariant An-
alyzer, and Real-Time Maude could be integrated in MFE. This will result in a more
comprehensive environment with more features and broader applications. One could
also think of MFE automatically generating the proof obligations associated to the
semantics of protected and extended modules, and to that of parameterized modules.

2 Notice that for the proof of ground coherence, assuming sufficient completeness, defined op-
erators can be regarded as frozen (see [8]).
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More ambitiously, a graphical user interface and support for distributed interoperation
will enhance the user experience within MFE.
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theories. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 86–103. Springer, Hei-
delberg (2010)

9. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-
sorted rewrite theories. Journal of Logic and Algebraic Programming Journal of Logic and
Algebraic Programming (2011) (accepted for publication)

10. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: Gaducci,
F., Montanari, U. (eds.) Proceedings of 4th International Workshop on Rewriting Logic and
its Applications (WRLA 2002). Electronic Notes in Theoretical Computer Science, vol. 71
(2002)

11. Hendrix, J.: Decision Procedures for Equationally Based Reasoning. Ph.D. thesis. University
of Illinois at Urbana-Champaign (2008)

12. Rocha, C., Meseguer, J.: Constructors, sufficient completeness and deadlock freedom of
rewrite theories. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397,
pp. 594–609. Springer, Heidelberg (2010)

13. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. Tech. rep. University
of Illinois at Urbana-Champaign (2010), http://hdl.handle.net/2142/17407

http://hdl.handle.net/2142/17407


WiCcA : LTS Generation Tool for Wire Calculus

Jennifer Lantair and Pawe�l Sobociński
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Abstract. We introduce the WIre CalCulus Application (WiCcA ), a
tool for generating and operating on labelled transition systems (LTS)
that result from wire-calculus specifications. The theory behind WiCcA

is explained and its uses demonstrated.
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1 Introduction

WiCcA is designed to simplify the study of specifications in finite wire-calculus
[5] like languages, for instance the Petri calculus [6]. Such languages consist of
a number of constants, each with operational semantics expressed in terms of
a two-labelled transition system. Specifications are then constructed using the
constants and two binary operations: tensor product ‘⊗’ and boundary synchro-
nisation ‘;’, the operational semantics of each of the two operations is captured
using one simple SOS rule.

Often when experimenting with specifications in such languages it is a tedious
and time consuming activity to generate the operational semantics (the resulting
LTS) by hand. WiCcA has been designed to automate LTS generation from such
a specification, outputting a .dot file readable by applications associated with
the GraphViz project [4].

2 Running Example

As a running example, we introduce a small process calculus that contains the
constants needed to model the behaviour of a simple NAND flip-flop. These
are defined in the file flipFlop.alp found in the Alphabets directory in the
distribution1, listed here in Figure 1. There are eight constant declarations: I,
X, E, F, D, C, rb and 2N; each has an associated type which is a pair of natural
numbers (k, l), the intuition is that it represents a component with k wires on
the left and l wires on the right. Each constant is associated with a two-labelled
transition system: here the labels are words over the set of signals {0, 1}. The
type of each constant determines the length of the labels: for example a constant
of type (2, 1) has its operational semantics given as an LTS with transitions of
the form x1x2−−−→

y
where x1, x2, y ∈ {0, 1}.

1 http://users.ecs.soton.ac.uk/ps/wicca.php
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node I:(1,1);

tran I-0/0->I;

tran I-1/1->I;

node rb:(0,1);

tran rb-./0->rb;

tran rb-./1->rb;

node E:(1,1);

tran E-0/0->E;

tran E-1/0->F;

node F:(1,1);

tran F-0/1->E;

tran F-1/1->F;

node D:(1,2);

tran D-0/00->D;

tran D-1/11->D;

node C:(2,1);

tran C-00/0->C;

tran C-11/1->C;

node X:(2,2);

tran X-00/00->X;

tran X-01/10->X;

tran X-10/01->X;

tran X-11/11->X;

node 2N:(2,1);

tran 2N-00/1->2N;

tran 2N-01/1->2N;

tran 2N-10/1->2N;

tran 2N-11/0->2N;

Fig. 1. Example alphabet of constants (flipFlop.alp)

The constants represent simple digital circuit components. The intuition is
that I corresponds to an identity wire, rb to ground, E, F to the two states of
a one-place buffer, used to model delay, D and C to forks, X to a crossing of
wires and 2N to an instantaneous NAND gate. These components can be wired
together using the operations of synchronisation on a common boundary ‘;’ and
tensor product ‘⊗’2 , which intuitively correspond, respectively, to connecting
the components side-by-side and putting them on top of each other. For details
see [5,6]. Those SOS rules used within WiCcA are illustrated below:

P
α−→
β

P ′ Q
β−→
γ

Q′

P ; Q α−→
γ

P ′; Q′ ,

P
α−→
β

P ′ Q
γ−→
δ

Q′

P ⊗Q
αγ−−→
βδ

P ′ ⊗Q′
(1)

It is worth emphasising that any language that can treated by WiCcA consists
of a set of user-defined constants, of which Figure 1 is a particular example. The
operations ; and ⊗ are fixed and their semantics is defined equally by (1) for all
such languages.

Remark 1. Constant declarations (Figure 1 contains several examples) are con-
strained so that both the left hand side and the right hand side of any transition
declaration references a single constant. It is immediate that this restriction
means that any specification handled by WiCcA leads to a finite LTS. In future
work (see Section 5) we plan to relax this and consider more expressive decla-
rations of constants, for instance by allowing arbitrary terms in the right hand
sides of transition declarations.

Returning to our running example, a flip-flop can be expressed with the following
term:

I o rb o rb o I ; I o D o D o I ;

I o E o I o I o E o I ; 2N o X o 2N ; C o C (2)
2 In WiCcA synchronisation on common boundary and tensor product are repre-

sented, respectively, with ASCII characters ’;’ and ‘o’.
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It is included as the file flipflop.des in the Designs directory. By draw-
ing the appropriate symbols from left to right, it is clear that the above term
corresponds to the following circuit diagram:

Fig. 2. Circuit diagram of (2)

Extracting the operational semantics by hand is tedious, so WiCcA generates
a .dot file which can be used to display the LTS of (2). Figure 3, generated by
WiCcA and typeset by GraphViz, illustrates the behaviour of (2):

S

n0

**/11 11/00

*1/10; 1*/01; 00/11

n1

10/01

n2

01/100*/11

1*/01

*0/11

*1/10

Fig. 3. LTS of the Figure 2

Some labels in Figure 3 contain the symbol ‘∗’ that represents all possible
labels from within the alphabet {0, 1}. Where more than one ‘∗’ is present all
possible combinations are implied. The states correspond to the following terms:

S: C[tE,E ] n0: C[tF,F ] n1: C[tF,E ] n2: C[tE,F ]

Where tX,Y = I o X o I o I o Y o I and X,Y ∈ {E, F}, the context C
represents the remainder of (2).

Figure 3 captures the expected correct behaviour of a model NAND flip-flop,
as well as behaviour on the normally omitted “restricted” or “don’t care” input
combinations. States n1 and n2 are the two stable states, corresponding to the
two logical states of a flip-flop. When in state n1, as long as the first input
remains high, the output is 01. The state may be changed to n2 with the input
01, note that this requires two “clock ticks”. The input 11 is normally described
as “no change”, and indeed, when in either of the stable states this combination
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does not result in a state change. However, our LTS exposes a problem with the
asynchronous nature of the circuit in that if 11 is applied during a state-change
(either from n1 to n2, or from n2 to n1) before the circuit reaches a stable
state, oscillating behaviour (between n0 and S) results; indeed such behaviour
can be observed in physical circuit implementations laid out according to to
Figure 2. The “restricted combination”, or “don’t care”, input to a NAND flip-
flop is 00. Our labelled transition system demonstrates that this results simply
in an output of 11 at state n0.

3 Features of WiCcA

WiCcA is written in Java [3], whilst the interpreter is written in JavaCC [2],
a compiler compiler. Using Java and JavaCC ensures that WiCcA is platform
independent. WiCcA processes scripts that contain all the required information
to generate, reduce and compare a user’s LTS. The basic information within a
script is the alphabet of constants, the specification, operations to be performed
on the LTS and file names for saving the generated LTS. Currently supported
operations are reduction w.r.t. bisimilarity and weak bisimilarity and bisimilarity
checking of two specifications. A simple example script, which may be found in
the distribution of WiCcA in the WICCA.jar directory, is shown below:

input flipFlop.alp
v1 eval E
save v1 -> testFlipFlopDesign

Here E is the (very simple) specification and v1 is a script variable that is assigned
to the LTS generated from the specification. The save command generates a
.dot file (the GraphViz file format) and writes it to the file name provided
as the second argument. In the .dot file, WiCcA assigns randomly generated
colours to each node and writes the graph of the generated LTS to a new file;
bisimilar nodes are always assigned the same colour.

Reduction w.r.t. bisimilarity is implemented within WiCcA using the basic
partition refinement algorithm of Kanellakis and Smolka [7,1]. Reduction w.r.t.
weak bisimilarity depends on the user first declaring a empty symbol: labels con-
structed entirely using this symbol are considered to be silent. Weak reduction
is then obtained by first performing transitive closure on the transitions in the
obvious way, followed by standard partition refinement.

We now give an example of reduction w.r.t. bisimilarity. Continuing with the
running example alphabet (see Table 1) two new components are added:

node LD:(1,2);

tran LD-0/00->LD;

tran LD-1/10->LD;

tran LD-1/01->LD;

node LC:(2,1);

tran LC-00/0->LC;

tran LC-10/1->LC;

tran LC-01/1->LC;

Fig. 4. Additional components for the Alphabet (flipFlopExpanded.alp)
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The file flipFlopExpanded.alp may be found in the directory Alphabets.
Components LD and LC represent simple switches. Using these switches we con-
struct the specification for a pair of switches with one-place buffers in the center:

LD ; E o E ; LC (3)

The term (3) is included as switchs.des in the Designs directory and
corresponds to the following circuit diagram:

o o

Fig. 5. Circuit diagram of (3)

The following LTS were generated by WiCcA from (3), showing the
statespace before and after reduction:

The states of Figure 6 correspond to the following terms:

S i/i

n0

1/i

n1

1/i

i/1

1/1; i/i

1/1 n2

1/i i/1

1/1

1/1; i/i

1/i

i/1

i/1

1/1; i/i

S i/i

n0

1/i i/1

1/1; i/i

n1

1/i i/1

1/1; i/i

Fig. 6. Behaviour of (3) before and after reduction

S: C[tE,E ] n0: C[tF,E ] n1: C[tE,F ] n2: C[tF,F ]

where tX,Y = X o Y with X,Y ∈ {E, F} and context C is the rest of (3). The
two bisimilar nodes correspond to situations where the signal has been stored in
one of the two buffer components—the precise identity of the component (upper
or lower) is invisible to the environment.
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4 Running WiCcA

WiCcA is equipped with a simple GUI that allows user-friendly access to some
features. An initial development version of WiCcA is available for download3.
Installation instructions and FAQ are available at the site.

5 Future Work

WiCcA is currently in active development and, at the time of writing, supports
the basic functionality outlined in this paper. In particular, the tool does not
currently support circuit diagrammatic notation, an important feature of wire
calculus. Moreover only finite wire calculus expressions are modelled; this is a
consequence of how constants are defined (see Remark 1). In particular, recursion
is not supported at this stage. We plan to address both these points in future
work, in particular:

(i) take advantage of the graphical potential of the wire calculus, both by
displaying syntactical specifications as circuit diagrams (for example, as
done by us manually in Figures 2 and 5), as well as eventually allowing
users to directly edit circuit diagrams; from the users’ point of view this
would mean bypassing syntactic specifications entirely;

(ii) consider a more expressive subset of the wire calculus that includes re-
stricted forms of recursion. In those cases we plan to use symbolic tech-
niques to study the resulting LTS.
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Abstract. Over the last decade component-based software development arose as
a promising paradigm to deal with the ever increasing complexity in software
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systems in which components are modelled coinductively as generalized Mealy
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1 Introduction

SHACC is a HASKELL -based prototype for a calculus of state-based components framed
as generalised Mealy machines detailed in [1,2]. A typical example of such a state-based
component is the ubiquitous stack. Denoting by U its internal state, a stack of values of
type P is handled through the usual

top : U −→ P, pop : U −→ P × U and push : U × P −→ U

operations. A ‘black box’ view, however, hides U from the stack environment and re-
gards each operation as a pair of input/output ports. For example, the top operation
becomes declared as top : 1 −→ P , where 1 stands for the nil (or unit) datatype.
The intuition is that top is activated with the simple pushing of a ‘button’ (its argument
being the stack private state space) whose effect is the production of a P value in the
corresponding output port. Similarly typing push as push : P −→ 1 means that an
external argument is required on activation but no visible output is produced, but for a
trivial indication of successful termination. Such ‘port’ signatures are grouped together
in the diagram below. Combined input type 1 + 1 + P models the choice among three
functionalities (top, pop and push, in this order), of which only one takes input of type
P .

⎧⎪⎨⎪⎩
pop : 1 −→ P

top : 1 −→ P

push : P −→ 1 •


��
����

Stack

P + P + 1

1 + 1 + P

A. Corradini, B. Klin, and C. Cı̂rstea (Eds.): CALCO 2011, LNCS 6859, pp. 413–419, 2011.
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Component Stack encapsulates a number of services through a public interface
providing limited access to its internal state space. Furthermore, it persists and evolves
in time, in a way which can only be traced through observations at the interface level.
One might capture these intuitions by providing an explicit semantic definition in terms
of a function [[Stack]] : U × I −→ (U × O + 1), where I,O abbreviate 1 + 1 + P
and P + P + 1, respectively. The presence of 1 in its result type indicates that the
overall behaviour of this component is partial: in a number of state configurations the
execution of some operations may fail. Function [[Stack]] describes how Stack reacts to
input stimuli, produces output data (if any) and changes state. It can also be written in
a curried form as

[[Stack]] : U −→ (U ×O + 1)I

that is, as a coalgebra U −→ T U for functor T X = ((X ×O) + 1)I .
The Stack example illustrates the basic elements of a semantic model for state-based

components: a) the presence of an internal state space which evolves and persists in
time, and b) the possibility of interaction with other components through well-defined
interfaces and during the overall computation. This favours adoption of a coalgebraic
modelling framework: components are inherently dynamic, possess an observable be-
haviour, but their internal configurations remain hidden and should be identified if not
distinguishable by observation. The qualificative ‘state-based’ is used in the sense the
word ‘state’ has in automata theory — the internal memory of the automaton which
both constrains and is constrained by the execution of component operations. Such
operations are encoded in a functor which constitutes the (syntax of the) component
interface. Building on such a representation, reference [1] developed a calculus of com-
ponent composition. The experimental tool SHACC presented here provides a HASKELL

based prototyper for this calculus.

Outline. The following section provides a brief overview of the calculus and an
example. The prototyping tool is described in section 3.

2 A Components’ Calculus

Given a collection of sets I , O, ..., acting as component interfaces, a component taking
input in I and producing output in O is specified by a pointed coalgebra

〈up ∈ Up, ap : Up −→ B(Up ×O)I〉

where up is the initial state, B a strong monad capturing the component behaviour
model (e.g., partiality, as above, or non determinism or ...), and the coalgebra dynamics
is given by ap : Up × I −→ B (Up × O). This definition means that the computation
of an action in a component will not simply produce an output and a continuation state,
but a B-structure of such pairs. The monadic structure provides tools to handle such
computations. Unit (η) and multiplication (μ), act, respectively, as a value embedding
and a ‘flatten’ operation to reduce nested behavioural effects. Strength, either in its right
(τr) or left (τl) version, caters for context information.
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References [1,2] introduce a small set of component combinators and study their
properties. Their implementation in SHACC is parametric on the component behaviour
discipline encoded in a monad B.

Components with compatible interfaces (for example, p : I −→ K and q : K −→
O) can be composed sequentially as

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉

where ap;q : Up × Uq × I −→ B(Up × Uq ×O) is detailed as follows 1

ap;q = Up × Uq × I
×r−−−−→ Up × I × Uq

ap×id−−−−→

B(Up ×K) × Uq
τr−−−−→ B(Up ×K × Uq)

B(a·×r)−−−−−→

B(Up × (Uq ×K))
B(id×aq)−−−−−−→ B(Up × B(Uq ×O))

Bτl−−−−→ BB(Up × (Uq ×O)) BBa◦−−−−→
BB(Up × Uq ×O)

μ−−−−→ B(Up × Uq ×O)

HASKELL monadic technology provides all the ingredients for a direct implementation
of this definition, suitably parametric on a strong monad b. Each component is rep-
resented by a monadic function from pairs of state-input values to b-computations of
state-output pairs. The HASKELL definition of each combinator in the calculus follows
closely the corresponding mathematical construction, as illustrated below for sequen-
tial composition. Computation proceeds through Kleisli composition. Note, finally, that
in order to guarantee state persistence (and propagation of state values) the implemen-
tation of SHACC resorts to HASKELL state monad which is suitably combined with
monad b capturing the underlying behavioral model.

seqCompostion :: Strong b =>
((u,i)-> b (u,k)) -> ((v,k)-> b (v,o))
-> ((u,v), i) -> b ((u,v),o)

seqCompostion p q = mult . (fmap (fmap assocl)). (fmap lstr).
(fmap (id >< q)) . (fmap xl).
rstr . (p >< id) . xr

The identity of sequential composition is component copyK = 〈∗ ∈ 1, acopyK
〉,

where acopyK
= η1×K . The monoidal structure is expressed as bisimulation equations:

copyI ; p ∼ p ∼ p ; copyO
(p ; q) ; r ∼ p ; (q ; r)

1 The definition resorts to standard isomorphisms, such as associativity (a) and exchange (×r :
A × B × C → A × C × B, ×l : A × (B × C) → B × (A × C)), as well as to natural
transformations τr : T × − =⇒ T (id × −) and τl : − × T =⇒ T (− × id) denoting right
and left monad strength.
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Parallel composition, denoted by p 
 q, corresponds to a synchronous product:
both components are executed simultaneously when triggered by a pair of legal input
values. Note, however, that the behavioral effect, captured by monad B, propagates. For
example, if B can express component failure and one of the arguments fails, product
fails as well. Two other tensors capture other forms of component aggregation: external
choice � and concurrent � composition. When interacting with p�q : I +J → O+R,
the environment chooses either to input a value of type I or one of type J , which triggers
the corresponding component (p or q, respectively), producing the relevant output. In
its turn, concurrent composition combines choice and parallel, in the sense that p and q
can be executed independently or jointly, depending on the input supplied.

A wrapping mechanism p[f, g] which encodes the pre- and post-composition of a
component with a function is defined as a combinator which generalises the renaming
connective found in process algebras. Moreover, any function f : A −→ B can be
lifted to a component whose interfaces are given by their domain and codomain types.
Formally, a function f : A −→ B gives rise to component �f� = 〈∗ ∈ 1, a�f�〉 i.e., a
coalgebra over 1 whose action is given by currying a�f� = B(1×B) · (id × f).

Finally, generalized interaction is catered through a sort of “feedback” mechanism
on a subset of the inputs. This is defined by a combinator, called hook, which con-
nects some input to some output wires and, consequently, forces part of the output of
a component to be fed back as input. Formally, the hook combinator − �Z maps each
component p : I + Z −→ O + Z to p�Z : I + Z −→ O + Z .

3 The SHACC Tool

The SHACC was developed as a proof-of-concept prototype for the component calcu-
lus proposed in [2,1]. It allows the (interactive) definition of state-based components
through the set of combinators available in the calculus: Figure 1 illustrates the appli-
cation of the hook combinator to link a user-specified number of ports with opposite
polarity.

The definition of a new, base component is directly made in HASKELL . A specific
strong monad B is chosen to model the envisaged behavioral effect. The code below
corresponds to a Stack component, where B is instantiated to HASKELL Maybemonad
to capture partiality.

stack (xs, ("Push", Just a)) = Just ( a:xs, ("Push", a))
stack (xs, ("Pop", Nothing))

|(xs == []) = Nothing
| otherwise = Just ( tail xs, ("Pop", head xs))

stack (xs, ("Top", Nothing))
|(xs == []) = Nothing
| otherwise = Just ( xs, ("Top", head xs))

In a subsequent step the component’s interface is created from a suitable annotation in
the source code. For this example:

@Input: (( 1:Pop + 1:Top) + P:Push)
@Output:(( P:Pop + P:Top) + 1:Push)
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Fig. 1. Linking ports through the hook combinator

where Pop, Top and Push are introduced as labels for the component’s available
services.

Figure 1 refers to an example from the SHACC library, in which a virtual version of a
paper folder is built through the combination of two stacks modelling, respectively, the
folder left and right piles.

The Folder component provides ports corresponding to the operations read, insert
a new page, turn a page right and turn a page left. Its construction requires first an
adaptation to be performed on each instance of the Stack component. This is needed,
for example, to hide the top operation on the left stack whereas renaming the top on
the right as the Folder read operation. In a second stage, both stacks are put together
through the � combinator and, finally, suitable feedback loops are established, through
the hook operator, to connect ports. This ensures, for example, that the left turn of a
page is achieved through a pop performed on the right stack connected to a push on the
left one. Formally, this amounts to the following expression in the component calculus
(see [4] for a detailed discussion)

Folder = ((LeftS � RightS)[wi,wp]) �P+P

where RightS = Stack[id + �, id] and LeftS = Stack[i2 + Id, (id+!p+1) · a+].
A crucial ingredient in defining Folder is to suitably wrapp the two underlying Stack

components so that the intended output-input ports are effectively connected. Formally
this is achieved through the wrapping combinator, as in the specification of LeftS and
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Fig. 2. Linking output to input ports

RightS. The effect is depicted in Figure 2. In SHACC, however, the user has the option
of manually selecting the ports to be linked, as illustrated in Figure 1.

SHACC allows both the (interactive) definition of this sort of component expressions
and their execution in a simulation mode. Actually, once components are defined either
from scratch (i.e., by providing the corresponding HASKELL code directly) or by com-
position of other components, SHACC offers an environment for testing by simulation.
The Run window in the tool offers two simulation modes: a free mode in which, if the
component’s behaviour model allows, execution may lead to ‘disaster’ (e.g., by viola-
tion of port pre-conditions on a partial component), and a safe mode in which the effect
of a port operation is foreseen and eventually precluded. Component testing, on the
other hand, can be made in a purely interactive way, running event by event, or by exe-
cuting a whole sequence of events specified through a regular expression and supplied
to the tool. Figure 3 illustrates the tool execution mode.

The box labelled State in Figure 3 shows the initial value of the component’s state.
Box Operation, on the other hand, accepts the component service to be called. On

Fig. 3. Component prototyping in SHACC
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executing a service from the component’s interface SHACC displays three boxes
representing the component state before, during and after service completion.

The SHACC tool is composed of a HASKELL combinator library and a graphical user
interface developed in Swing. The choice of HASKELL was motivated by its expressive-
ness and extensibility, which provides an ideal means to support domain specific lan-
guages. Most important was the direct encoding in HASKELL ’s ‘monadic technology’
of the entire component representation and manipulation. In particular, one resorted
to HASKELL ’s readily available state monad implementation, for storing the internal
state of components being executed. This, together with HASKELL ’s specific do nota-
tion for monadic type values manipulation, greatly reduced the effort of implementing
the prototyper and its different execution modes.

Another important implementation detail, again resorting to monadic technology, is
error detection and handling in a way which conforms to the underlying behavioral
model. according to the execution mode). As already explained, in the Folder exam-
ple above this resorts to the native Maybe data type, which forms an instance of the
monad class, thus allowing for error propagation and detection at each specific point of
component execution.

Finally, integration with Swing, to provide a user-friendly interface, proved effective.

Availability. SHACC is available from shacc.wetpaint.com. For the underlying
calculus see references [2,1,4]. A refinement theory for this sort of component models
is documented in [5,3].
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Adámek, Jǐŕı 55
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