
Graphical and Incremental Type Inference:

A Graph Transformation Approach

Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract. We present a graph grammar based type inference system for
a totally graphic development language. NiMo (Nets in Motion) can be
seen as a graphic equivalent to Haskell that acts as an on-line tracer and
debugger. Programs are process networks that evolve giving total visibil-
ity of the execution state, and can be interactively completed, changed
or stored at any step. In such a context, type inference must be in-
cremental. During the net construction or modification only type safe
connections are allowed. The user visualizes the type information evolu-
tion and, in case of conflict, can easily identify the causes. Though based
on the same ideas, the type inference system has significant differences
with its analogues in functional languages. Process types are a non-trivial
generalization of functional types to handle multiple outputs, partial ap-
plication in any order, and curried-uncurried coercion. Here we present
the elements to model graphical inference, the notion of structural and
non-structural equivalence of type graphs, and a graph unification and
composition calculus for typing nets in an incremental way.

Keywords: type inference, graphical language, process networks, type
visualization.

1 Introduction

The data flow view of lazy functional programs as process networks was first
introduced in [1]. The graphical representation of functions as processes and
infinite lists as non-bounded channels helps to understand the program overall
behaviour. The net architecture shows bi-dimensionally the chains of function
compositions, exhibits implicit parallelism, and back arrows give an insight into
the recurrence relations between the new results and those already calculated.
The graphic execution model that the net animation suggests was the outset
of the NiMo language design, whose initial version was presented in [2]. It was
completely defined with graph grammars and implemented in the graph transfor-
mation system AGG [3]. This first prototype NiMoAGG showed the feasibility of
a graphical equivalent for Miranda or Haskell, also fully graphically executable.
A small set of graphic elements allows dealing with higher order, partial applica-
tion, non-strict evaluation, and type inference with parametric polymorphism.

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 66–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Graphical and Incremental Type Inference 67

As the net represents the code and its computation graph at the same time,
users have total visibility of the execution internals in a comprehensible model.
Partially defined nets can be executed, dynamically completed or modified and
stored at any step, enabling incremental development on the fly. Execution steps
can also be undone, acting as an on line tracer and debugger where everything
can be dynamically modified, even the evaluation policy. In the current ver-
sion, five modes of increasing activity can be globally or locally assigned to each
process, thus allowing to increase parallelism, reduce channel size (number of
elements) and synchronize subnets. Symbolic execution is also admitted. The
execution model is defined in [4].

In this context, where incompleteness does not inhibit execution, editing a
program is a discontinuous process with execution intervals where code evolves
up to the next interaction; hence type inference is by necessity incremental. On
the other hand, in NiMo there is no textual code at all. Programs are graphs
whose nodes are interfaces of processes or data. Interfaces are graphic tokens with
typed in/out ports. Net construction equates to building a bi-dimensional term,
where sub-expressions are like puzzle pieces that can be pairwise connected in
any order if their shapes fit (both port types unify), thus ensuring type safeness
by construction. In the first version, static inference was partial in presence of
polymorphism. Now the full type information of each interface port is carried up
by means of a second kind of graphs, and updated with each connection. Users
can visualize the type information evolution and realize why a connection is re-
jected. Though based on the same principles, the inference system has significant
differences with its functional analogues. Besides being graphical and incremen-
tal, the data flow ingredient imposes coping with multiple-output processes and
curried-uncurried interpretation of multiple inputs, partial application in any or-
der and partial disconnection for multiple outputs. In the current version this is
admitted even in HO parameters. Hence, a process type is a non-trivial general-
ization of a functional type. The current inference system was also firstly defined
with graph grammars [5] and implemented in AGG, since the graph transforma-
tion approach is the natural framework to formalize actions in NiMo. They are
all subnet transformations, and so is the type inference process as well.

Here we present the type inference system of NiMoToons; the NiMo envi-
ronment (overviewed in [6]). Graphical typing and incremental inference are de-
scribed using a textual denotation for type graphs. A type graph unifier operator
and a net typing calculus are intended to bridge the gap with the underlying for-
malism in terms of graph transformation rules. The paper is organized as follows:
the next section introduces the syntax and main constructions of NiMo1. Section
3 presents the graphical representation of types, their interpretation in a textual
notation, and the differences between process and function types. Section 4 de-
fines the notion of structural and non-structural equivalence of type descriptors
and unification in both cases. Section 5 covers net typing. A set of port connec-
tion and composition operators is the basis for the incremental component type

1 It does not cover evaluation aspects because they are not relevant to the issue of
types and can be found in the papers mentioned above.

68 S. Clerici, C. Zoltan, and G. Prestigiacomo

calculus. All along the paper the topics are illustrated with screen-shot examples.
The last section discusses some related work and summarizes our contributions.

2 NiMo Language Elements

NiMo programs are directed graphs with two kinds of nodes: processes and data
items. Horizontal arrows represent channels of flowing data streams, and vertical
arrows entering a process are non-channel parameters, which can also be pro-
cesses. Processes can have any number of inputs and outputs, making the use of
tuples unnecessary. There are neither patterns nor specific graphical syntax for
conditionals. The tokens are: rounded rectangles for processes, circles (or ovals)
for constant values, black-dots for duplicators, hexagons for data elements, and

green-arrows for non productive outputs () or delayed arguments ().Circles
are labelled with their value for atomic types or with their names for symbolic
constants of any type, even polymorphic. Hexagon labels are I, R, B ,L and F
for integers, reals, booleans, lists, and functional processes. Polymorphic data
are labelled with ?. In the current version neither user defined types nor Haskell
type classes are supported. Ad-hoc polymorphism for functions like > is handled
as in Miranda. There are two different processes for real and integer operators.
The NiMo syntax makes intensive use of colour. In hexagons and circles it in-
dicates their type, in process names it denotes the evaluation mode, and edges
have a state shown as a colored diamond to indicate process activation or data
evaluation degree. Some program examples can be seen in [7].

Fig. 1. NiMo program elements

Graphical and Incremental Type Inference 69

2.1 Interfaces and Connections

All the mentioned nodes are interfaces having typed (in/out) connection ports.
Interfaces are dragged from a ToolBox and dropped into the workspace where
the net is being built (see top of Fig. 2). Clicking on a pair of ports connects
them with an edge if both types are compatible; otherwise a failure message is
generated. Process interfaces have an F-out port on the bottom. It is not one of
their outputs but their value as a functional data.

Fig. 2. Interfaces

This special out-port disappears when any output of the process is connected
(becoming a potentially active process), or when all its inputs are connected (it is
no longer a function). HO parameter processes are connected by their F-out port

(as xxx on the bottom of Fig. 2). All the other open ports get thus blocked ()
to prevent new connections which would change its type. There is a set of built-
in processes (grey rounded-rectangles) for basic types and stream processing.
It includes multiple output versions of many Haskell prelude functions, as the
process SplitAt, analogous to the splitAt function that can behave also as take
or as drop just by leaving one or the other output open. We call this feature
partial production, in analogy with the notion of partial application; i.e. there is
a symmetry in parameters and results regarding partiality.

70 S. Clerici, C. Zoltan, and G. Prestigiacomo

Also, some basic processes have configurable arity, as a Map with n input and
m output channels2 (generalizing map, zipWith and zipWith3), TakeWhile and
Filter with n input and output channels, and an Apply process.

Terminal hexagon interfaces correspond to the net outputs. Subnets connected
to them are considered productive, even being incomplete. In execution all the
non-productive subnets are deleted by the garbage collector. For instance, the net
in Fig. 2 is productive. Moreover, it is able to produce a result because Map3−2

already has enough inputs to act since one of its input channels has a list-end
connected, thus it returns a list-end in both outputs. Then the duplicator also
returns the list-end.

2.2 Net-Process Definitions

Net processes are user-defined components whose interfaces (the white rounded-
rectangles) are defined by means of a parameterisation mechanism. The net
in/out open ports that are to be considered as formal parameters or results,
are bound to the in/out ports of a configurable interface that is given a name.
Afterwards, it can be imported to the Toolbox to be used as a process in a new
net and so on, allowing incremental net complexity up to any arbitrary degree.

Fig. 3. Net Process definition

Fig. 3 shows an example for the process fromUp3 that generates a list with
k consecutive integers from the value n, where n and k correspond respectively
to the parameters labelled 1 and 2. When the net process acts, the interface is
replaced by the net updating the connections according to the bindings. Also,
there is a generic process interface for building the interface of a not yet defined
net process. The user sets the process name and number of channel/non-channel
parameters and outputs, and optionally their types (which are all polymorphic
by default). In a top down development this allows nets with not yet defined
processes to execute. And it is also the means to define recursive processes, i.e.
to build a net definition containing the process interface which is being defined.
2 We will refer to it as Mapn−m.
3 In Haskell code: fromUp n k = x where(x, y) = splitAt k z ; z= n: map (1+) z.

Graphical and Incremental Type Inference 71

2.3 Partial Application and Production in HO

In NiMO partial application can be made in any order. In HO parameters, the
effective arguments can be delayed by connecting a vertical green-arrow before
connecting its F-out port. On the left of Fig. 4, process ifBool has the green-
arrow at its first input, thus allowing its value to be completed later. It is also
the way for binding this port as a second order parameter if the net is defined
as a net process4. Moreover, in NiMo multiple output processes and even partial

Fig. 4. Delayed argument and partial production

production are allowed in HO parameters. The horizontal green-arrow (in the
middle of Fig.4) is connected to the second output of process SplitAt. It makes
SplitAt to behave like take, becoming a suitable parameter for a single output
Map. is the only interface that can be connected to a process out port
without elimination of the F-out port. Once the process is applied the green-
arrow disappears.

3 Graphical Typing

As already said, in NiMo type checking and inference is made step by step and
locally during net editing. Initially the net is empty. The user adds interfaces
and connects pairs of type compatible ports. The full type information of each
interface port is carried in a second kind of (optionally visible) graphs, which
are updated with each new connection and help to identify what is failing when
a connection is rejected. In this section we present the graph representation of
types and the textual notation to describe them in a way close to the usual type
expressions.

4 E.g. if the increment in Fig. 3 were the third fromUp parameter instead of being 1.

72 S. Clerici, C. Zoltan, and G. Prestigiacomo

3.1 Type Graph and Type Descriptors

The net has an associated type graph, which is an acyclic and maybe non-
connected graph whose nodes are type hexagons labelled I, R, B, L, F, O and ?.
All ports of every interface are tied to a node in the type graph5, and shared sub
graphs indicate identical types. In connected ports only the out is tied to the
type graph (to avoid arrow duplication). The net type graph is incrementally
built during the net construction starting from the type graph associated to each
interface that we call its type descriptor(TD). TDs fully describe the type of pro-
cesses and data items. Each interface port is tied to one type hexagon by means
of a non-labelled arrow. This hexagon is the root of the port TD and it could
be shared by, or included in, another port TD of the interface. In NiMo there
are no variable names and this also applies to type variables in polymorphic
types. The label ? stands for all the polymorphic types. Sharing a polymorphic
hexagon is the graphical equivalent of multiple occurrences of a type variable in
a polymorphic type expression. In Fig. 5 we can see the interfaces on the top

Fig. 5. Type descriptors

of Fig. 2 with their TDs. The F-out port TD of the process interfaces ifBool,
Map3−2 and xxx describes their type as a functional value. In NiMo a process
type is a generalization of a functional type, whose graphical representation is a
graph rooted with a hexagon F with outgoing edges labelled From and To. Mul-
tiple inputs or outputs in a process type correspond to the subgraphs with an
O-hexagon root and edges labelled by numbers. In case of single input or output
the corresponding O-hexagon is omitted (as happens with the output of ifBool).
Note that an O-hexagon never roots a port descriptor; it is not a NiMo type but
a subgraph of a F type descriptor. It has as its children the descriptors of the
inputs/outputs of the process (thus the F-out port TD contains as sub-graphs
the TDs of all the other ports of the interface).

In the textual notation that we will use from now on, ‖ denotes the type con-
structor O for ordered parallel inputs or results, each ?-hexagon in the TD is de-
noted by a type variable ?i (or ? if there is only one), and multiple occurrences of

5 For an idea of what it looks like, Fig. 10 shows the type graph of the net in Fig. 2.

Graphical and Incremental Type Inference 73

the same variable in the type expression correspond to a shared ?-hexagon. Thus
the most general type for processes is denoted by ?i1‖ . . . ‖?in→?o1‖ . . . ‖?om

where n, m ≥ 0 n + m > 0. The denotation for the ifBool type is B‖?‖?→?,
forMap3−2 is (?1‖?2‖?3→?4‖?5)‖[?1]‖[?2]‖[?3]→[?4]‖[?5], and for the user pro-
cess xxx is ?1‖?2‖?3‖[?3]→?4‖B. Some other examples of process types are
+ : I‖I→I; id : ?→?; fibonacci : →[I] and sink : ?→. The two last ones are
non-functional processes; their interfaces do not have a F-out port. fibonacci is
a process with no inputs and a single output which is an integer list, and sink
is a process with no output that consumes its input value. It does not have a
Haskell equivalent; its definition would be something like sink x = void.

4 Type Graph Unification

In order to connect two ports, the editor must first verify that their TDs t and t’
can be unified ; i.e. that there exists a unifier graph t ≈ t’ for them. In this case
the connection is made and both ports acquire this common TD; otherwise a
failure message is generated. NiMoToons has an option to automatically roll-back
partial unifications by recovering the original types each time a connection fails;
otherwise they persist to be analyzed and can be explicitly undone afterwards6.

The unifier graph exists when the respective TDs are structurally equivalent.
Roughly, this means that both TDs can be overlapped and all their respec-
tive hexagons coincide (same label and number of children), except when one
of them is a polymorphic hexagon, in which case the other one hides it. In
Haskell-like languages the unification is always structural. A functional type has
a single interpretation because all functions have a single result and also a single
parameter (the first one), and to be unified both type expressions must be struc-
turally equivalent. Curried and uncurried functions have no equivalent types.
But in NiMo processes can be interpreted in one or the other way, and thus
non-structural unification is allowed under certain conditions that are described
in section 4.2.

4.1 Structural Unification

Fig. 6 shows an example where the F-out port TDs of interfaces f and g, are struc-
turally equivalent. The screen-shot on the right can be obtained by moving the
hexagons of both TDs to make them coincide. This allows us to visualize the uni-
fier graph t ≈ t′ that would result if both TDs were unified7. The corresponding
port types are t = I‖?1→[?2] and t’=?3‖R→?4. We can see that the second input
of f, the first input of g, and its output, each one having a different polymorphic
type on the left, have been replaced by the respective types in the other interface.
The resulting type t ≈ t′ = I‖R‖→[?2] = t〈?1⇐R; ?6⇐B〉 = t′〈?3⇐I; ?4⇐?2〉
6 The same happens when a connection is destroyed (individually or as a result of

deleting a connected interface).
7 Being both out-ports they cannot be connected but their TDs would be unified e.g.

if they were connected as values of two list-items in a same list.

74 S. Clerici, C. Zoltan, and G. Prestigiacomo

Fig. 6. Structural unification

where the notation ?i⇐δ stands for the replacement of the corresponding ?-
hexagon by a subgraph δ.

If two TDs t and t’ unify, the unifier graph t ≈ t’ is obtained by the fusion of
t and t’ into a common type graph where, starting from the roots, each pair of
corresponding hexagons collapses in a single node. This node has as its incoming
edges the union of both sets of incoming edges.

The following rules define the (commutative and highest precedence) operator
≈ that obtains the unification result in case of structural equivalence:

1. t ≈ t = t for t rooted in {I, R, B}
2. t ≈ ? = t (t is not rooted O and ? 	⊂ t)
3. [t] ≈ [t’] = [t ≈ t’]
4. (t1‖ . . . ‖tn) ≈ (t′1‖ . . . ‖t′n) = t1 ≈ t′1‖ . . . ‖tn ≈ t′n
5. (ti1‖ . . . ‖tin→to1‖ . . . ‖tom) ≈ (ti′1‖ . . . ‖ti′n→to′1‖ . . . ‖to′m) =

(ti1‖ . . . ‖tin) ≈ (ti′1‖ . . . ‖ti′n) → (to1‖ . . . ‖tom) ≈ (to′1‖ . . . ‖to′m)

Rule 1 is for basic types, i.e two single node TDs with the same label collapsing
in a single one. Rule 2 says that a ?-hexagon can be substituted by any other
TD not rooted O, because O does not represent a tuple type; it is always a
subgraph of a process TD. Hence, a single polymorphic input/output cannot
be instantiated to multiple inputs/outputs. Besides, the ?-hexagon cannot be a
proper subgraph of the other TD because a cycle would occur (infinitely recursive
type). When a ?-hexagon collapses with any other node, the resulting hexagon
is the other one (which acquires its incoming edges). This graph replacement of
any node ? in the TD t by the graph δ8 is denoted as t〈?⇐δ〉. Rules 3 and 4
apply when both labels are L or O; the respective subgraphs are pairwise unified
and the collapsed hexagon has (same number of) new outgoing edges, each one
of them having as target the respective collapsed hexagons. Rule 5 applies for
structurally equivalent TDs rooted F. The collapsed hexagon has as children the
unifier graphs of both pairs of children.

4.2 Non Structural Unification

In NiMo two process types with different number of parameters and results
can also be unified. Fig. 7 shows that, as happens in Haskell, process + is a

8 It can be seen as the equivalent to the Damas-Milner instantiation rule.

Graphical and Incremental Type Inference 75

Fig. 7. Curried interpretation of multiple inputs

valid HO parameter for Map, in which case the elements in the input channel
must be integers, and the result is a channel of functional elements of type
I→I. But the type of + is I‖I→I, and thus it should unify with I→(I→I).
I.e. in cases like this, there is an implicit conversion among non-structurally
equivalent process types. Also the number of outputs could have been different,
as happens in Fig. 8. In general, processes with multiple inputs and outputs can
be viewed as returning intermediate functional types, i.e. the type of a process
with n > 1 inputs and m outputs t1‖ . . . ‖tn → t′1‖ . . . ‖t′m can be implicitly
converted to types t1‖ . . . ‖tk→(tk+1‖ . . . ‖tn→t′1‖ . . . ‖t′m) for any k < n. Thus
two non-structurally equivalent process types t and t’ could be unified if any of
the curried interpretations of t is structurally equivalent to some of those of t’.
The idea is that the process with fewer parameters must return a single output,
whose type has in turn to unify with the functional type resulting of applying
the other one to as many parameters as it has. In this case both F nodes collapse,
and the new children are the children of the unifier graph root. i.e. the structure
of the result changes. The following equation defines the unification result in
these cases:

6. (t1‖ . . . ‖tk‖tk+1‖ . . . ‖tn → to) ≈ (t′1‖ . . . ‖t′k→to′)=
(t1‖ . . . ‖tk) ≈ (t′1‖ . . . ‖t′k) → to′ ≈ (tk+1‖ . . . ‖tn→to)

Note that all the curried interpretations of a process can be derived from it.
In Fig. 8 the process types of f : ?1‖?2‖[?3]→?4‖?5 and g : ?6‖?7→?8 unify

because both the first two inputs types unify (?1‖?2 ≈ ?6‖?7) and g has a
single output that unifies with a function from the third input of f to its results,
i.e. ?8≈([?3]→?4‖?5). On the right side9 τf≈τg = ?1‖?2→([?3]→?4‖?5), where
the collapsed hexagons during the unification correspond to the substitutions
〈?6⇐?1; ?7⇐?2; ?8⇐([?3]→?4‖?5)〉 in the type expression τg, whose result is
one of the possible curried interpretations of τf .

9 The right side cannot be obtained by overlapping as in Fig. 6. It was obtained by
first connecting the F-out ports as the values of a pair of connected list-items (then
deleted). The unification persists but can be undone by forcing type recalculation.

76 S. Clerici, C. Zoltan, and G. Prestigiacomo

Fig. 8. Non-structural unification

5 Incremental Type Inference for Nets

In functional programming languages variables are used as formal parameters
(bound variables), or locally defined elements. Free variables are considered miss-
ing definitions and rejected by the compiler. In NiMo there are no variable names.
Function parameters are the process interface in-ports, data hexagons with open
in-ports can be seen as anonymous free variables, and nets containing open ports
are executable. Besides, the multiple outputs of a net can be produced in parallel
by non-connected subnets, unlike functional interpreters that always deal with
a single (and closed) expression. Hence, the incremental typing of nets has to
cover all these cases.

During construction, the net is considered to have as many parameters/results
as open in/out ports, which are pairwise closed with each new connection. In
terms of graphs the net is a non-connected directed graph. Each new interface
adds a component and each connection may reduce the number of connected
components (CC). On the other hand, several port TDs in a CC could share
subgraphs with ?-hexagons; then, unifying a pair of port TDs can affect any
other port TD all along both CCs. But even if the port TDs are identical, the
connection changes the types of both interfaces, those of their CCs and thus
the net type, because all of them lose (at least) an in or an out open port. In
general, connection order is irrelevant except when connecting ports of a process
interface having an F-out port. This port makes a difference in the CC type as
is discussed in the next section.

5.1 Functional and Non-functional Components

If N is the net under construction, N = ∪Ni where Ni are its CCs. E.g. the net
in Fig. 5 has nine single-interface CCs. They are connected in Fig 9 becoming
the CCs N1 and N2 that result from connecting xxx with real-const in N2, and
all the other interfaces (in any order) in N1. Both CCs are of a different kind.

N2 is a functional component since it has (a process with) an open F-out
port, while all processes in N1 have lost theirs10. N1 has four in and two out
open ports. We denote its type as {B‖[I]‖(?1‖I‖?2→I‖?3)‖[?1]}→{[?3]‖[?3]},
10 Because all them have at least one output connected.

Graphical and Incremental Type Inference 77

Fig. 9. Both kind of CCs

where curly brackets indicate that the given ordering is arbitrary11. Further
connections of these ports can be made in any order; they are free open ports.
The general form of a non functional CC type τN is {t1‖ . . . ‖tn} → {t′1 . . . ‖t′m}
with n, m≥0.

The type of N2 is different because having a F-out port the connection effect
is not uniform (see 2.1 and 2.3). As a functional data xxx can be connected
by its F-out port, thus disabling all its open ports. Or xxx could be applied
by connecting any of its inputs and the F-out port remains, unless it had only
one. But when connecting any output the F-out port disappears, except when
connecting a horizontal green-arrow (but not in the only open output). This
mutual dependence among the open ports of the interface (bound open ports) is
denoted in the CC type with a down-arrow preceding the F-out TD (which has as
subgraphs all the other open port TDs). In this case τN2 = ↓(?4‖?5‖[R]→?6‖B).

Also, a CC having a F-out port can have non bound in/out open ports as well,
as it happens in the net in section 5.5. In this case its type is a compound type of
the form ↓(t1‖ . . . ‖tn → t′1 . . . ‖t′m) ⊕ {t′′1‖ . . . ‖t′′n2}→{t′′′1 ‖ . . . ‖t′′′m2} where ⊕ is
the composition operator described in the next section. Moreover, in the general
case a CC could have more than one F-out port and also other free open ports.
Therefore the most general type for a CC is:

↓(T1 → T ′
1)⊕ . . . ↓(Tn → T ′

n)⊕ {T }→{T ′} where capital T stands for expres-
sions of the form t1‖ . . . ‖tm.

5.2 Net Type Operators

The operators below perform the transformations on the CC type appropriate
for connecting each kind of open port. Operators ¬in,¬out,¬A−out and ¬ are
infix; the 2nd operand is the port index in the given ordering, and ¬F−out is
postfix.

11 Ordering is significant for ports of HO parameters, which are clockwise applied, but
not for a non-parameterised net. If it finally becomes a net-process (see 2.2) the user
selects the open ports to be the parameters and results, and sets both orderings.

78 S. Clerici, C. Zoltan, and G. Prestigiacomo

1. {T }→{T ′}¬ink = {T¬k}→{T ′} — when connecting the k-th in-port

2. {T }→{T ′}¬outk = {T }→{T ′¬k} — when connecting the k-th out-port

3. t1‖ . . . ‖tn¬k =
{

t1‖ . . . ‖tk−1‖tk+1‖ . . . ‖tn if n > 1 — to remove the

∅ k-th parallel input or output

4. ↓(T→T ′)¬F−out = ∅ — when connecting the F-out port

5. ↓(T→T ′)¬ink = ↓(T¬k→T ′) — when connecting the k-th input

6. ↓(T→T ′)¬outk = {T }→{T¬k} — when connecting the k-th output
7. ↓(T→T ′)¬A−outk = ↓(T→T ′¬k) — when connecting a green-arrow

to the k-th output

8. ↓(T→∅) = {T }→∅ — once all the outputs have green-arrows

9. ↓(∅→T) = ∅→{T } — once all the inputs have been connected

If the CC has no F-out port it just loses the port (1, 2, 3). When connecting
an F-out, all the open ports get closed (4). Any open input can be connected12

and the F-out persists (5), unless it were the last one (9). When connecting any
output the F-out also disappears, thus changing the kind of the CC type (6),
except when it is connected with a green-arrow (7 and 8).

On the other hand, if the connected ports belong to different CCs the con-
nection fuses both CCs in a single CC whose free in/out ports are the union of
the respective free in/out ports. It is performed by the operator ⊕ that groups
together the respective sets of types. ⊕ is commutative with neutral element ∅.

{T1}→{T ′
1} ⊕ {T2}→{T ′

2} = {T1‖T2}→{T ′
1‖T ′

2}
↓(T1→T ′

1) ⊕ {T2}→{T ′
2} does not reduce.

5.3 The Type Inference Algorithm

In this section we present the steps to obtain the CC type that results after
connecting a pair of unifiable in/out ports. From now on we will denote the
connection of an in-port p1 with an out-port p2 as p1≺p2 . If component N1 has
an in-port p1 and component N2 has an out-port p2, N = N1p1≺p2N2 is the CC
resulting from the connection p1≺p2.

The type τN is obtained as follows:
1. both TDs are unified: τp1≈τp2 = τp1〈σ1〉 = τp2〈σ2〉
2. τp1 and τp2 are “removed from” τN1 and τN2 (applying the fitting ¬
operator), thus resulting τN ′

1 and τN ′
2

3. the substitutions σ1 σ2 are respectively applied on τN ′
1 and τN ′

2

4. τN = τN ′
1〈σ1〉 ⊕ τN ′

2〈σ2〉
Step 1 obtains the unifier graph for both port TDs by performing the substitu-
tions described in section 4. As a result of the unification, other TDs in both
CCs might change (if they shared ?-hexagons with the connected ports). In
the graph representation such substitutions are made only once on the shared
subgraphs. In the equivalent CC type expressions they are performed in step 3,

12 This rule applies also when connecting a vertical green-arrow; it is not a special case.

Graphical and Incremental Type Inference 79

once the TDs of the ports closed by the connection have been removed from
both CC types, as detailed in the previous section. The last step composes the
obtained CC types, thus resulting the single connected component type.

5.4 An Example

The net in Fig. 10 is the result of connecting the components in Fig. 9 by
connecting the first in-port13 of Map3−2 in N1 and the F-out port of xxx in N2.

Fig. 10. Single component net

τp1=τMapin−1
3−2 =?1‖I‖?2→I‖?3, and τp2=τxxxF−out = ?4‖?5‖[R]→?6‖B.

The τN calculation proceeds as follows:
1. τp1≈τp2 =?1‖I‖[R]→I‖B =τp1〈?2⇐[R]; ?3⇐B〉 = τp2〈?4⇐?1; ?5, ?6⇐I〉
2. p1 is the 3rd in-port in the given ordering for τN1 and p2 is the N2 F-out:

τN1¬in3 = {B‖[I]‖
︷ ︸︸ ︷
(?1‖I‖?2→I‖?3) ‖[?1]¬3}→{[?3]‖[?3]}

= {B‖[I]‖[?1]}→{[?3]‖[?3]}
τN2¬F−out = ↓(?4‖?5‖[R]→?6‖B)¬F−out = ∅

3. ({B‖[I]‖[?1]}→{[?3]‖[?3]})〈?2⇐[R]; ?3⇐B〉 = {B‖[I]‖[?1]}→{[B]‖[B]}
∅〈?4⇐?1; ?5, ?6⇐I〉 = ∅

4. τN = {B‖[I]‖[?1]}→{[B]‖[B]} ⊕ ∅ = {B‖[I]‖[?1]}→{[B]‖[B]}
Note that the connected ports p1 and p2 now have τp1≈τp2 as their type,

and all the port TDs that shared with them a collapsed ?-hexagon have also
changed. Map3−2 has lost this open port, and all the in and out ports of N2

have been closed with the connection of the F-out port.

13 We use the notation Xin−i, Xout−k and XF−out to refer respectively to the i-th
in-port, the k-th output-port and the F-out port of an interface X.

80 S. Clerici, C. Zoltan, and G. Prestigiacomo

5.5 A Second Example

Fig 11 shows the connection of functional CCs and CCs with green-arrows. On
the left side, N1 contains the horizontal green-arrow Hgra, N2 the process xxx,
N3 the vertical green-arrow V gra, and N4 the interfaces Rprod (*) and HdT l.

Fig. 11. Connecting green-arrows

τN1 = {?4}→∅ τN2 = ↓(?1‖?2‖R‖[R]→?3‖B)
τN3 = {?5}→{?5} τN4 = ↓(R→R) ⊕ {[R]}→{[R]}
The CC N on the right results from having connected in any order14 the three

pairs of ports p1≺p′1 p2≺p′2 and p3≺p′3
p1=Hgrain p′1 = xxxout1; p2 = xxxin1 p′2=Vgraout; p3 = xxxin3 p′3=Rprodout

For instance, two of the six possible connection orderings are:
((N1 p1≺p′1N2) p2≺p′2N3)p3≺p′3N4 and (N1 p1≺p′1(N2 p3≺p′3N4))p2≺p′2N3

The final result τN is the same; e.g. in the second case it is obtained as follows:
(connection 1)N2.4 = N2 p3≺p′3N4

τp3≈τp′3=R≈R=τp3〈〉=τp′3〈〉
τ(N2 p3≺p′3N4) = (τN2¬in3)〈〉 ⊕ (τN4¬out1)〈〉
= ↓(?1‖?2‖R‖[R]¬3 → ?3‖B) ⊕ (↓(R→R¬1) ⊕ {[R]}→{[R]})
= ↓(?1‖?2‖[R]→?3‖B) ⊕ {R}→∅ ⊕ {[R]}→{[R]}
= ↓(?1‖?2‖[R]→?3‖B) ⊕ {R‖[R]}→{[R]}

(connection 2)N1.2.4 = N1 p1≺p′1N2.4

τp1≈τp′1=?4≈?3=τp1〈?4⇐?3〉=τp′1〈〉
τ(N1 p1≺p′1 N2.4) = (τN1¬in1)〈?4⇐?3〉 ⊕ (τN2.4¬A−out1)〈〉
= ({?4¬1}→∅)〈?4⇐?3〉 ⊕ ↓(?1‖?2‖[R]→?3‖B¬1) ⊕ {R‖[R]}→{[R]}
= ∅ ⊕ ↓(?1‖?2‖[R]→B) ⊕ {R‖[R]}→{[R]}
= ↓(?1‖?2‖[R]→) ⊕ {R‖[R]}→{[R]}

(connection 3)N = N1.2.4 p2≺p′2N3

τp2≈τp′2=?1≈?5=τp2〈〉=τp′2〈?5⇐?1〉
τ(N1.2.4 p2≺p′2 N3) = (τN1.2.4¬in1)〈〉 ⊕ (τN3¬out1)〈?5⇐?1〉
= ↓(?1‖?2‖[R]¬1→B) ⊕ {R‖[R]}→{[R]} ⊕ ({?5}→{?5¬1})〈?5⇐?1〉
= ↓(?2‖[R]→B) ⊕ {R‖[R]}→{[R]} ⊕ {?1}→∅
= ↓(?2‖[R]→B) ⊕ {R‖[R]‖?1}→{[R]}

14 Since none of the connections closes the other ports.

Graphical and Incremental Type Inference 81

6 Related Work and Final Remarks

We have presented the graphical type inference system for an incremental and
highly interactive development language where editing and execution are in-
terleaved. NiMo programs are graphs that evolve, and so is type information.
Hence, the graph transformation approach is the natural framework to model
type representation and inference. In this paper we have used a textual nota-
tion close to the usual type expressions to describe the type graphs and their
evolution. The transformation rules for unification and typing of nets have been
presented in terms of a set of operators that perform unification and connection
on the equivalent type expressions. However, this textualization shadows some
advantages of the graph representation, as having a single shared ?-node instead
of multiple occurrences of a quantified variable (hence multiple substitutions).

Regarding the graph transformation approach for modelling types, [8] presents
a general framework for typing graph rewriting systems based on the notion of
annotated hypergraphs. NiMo nets might be also described in this way, since
interfaces can be viewed as directed hypergraphs whose nodes are the ports,
internally connected by a hyperedge. Ports are annotated by the corresponding
TDs, hence the whole net can be viewed as an annotated hypergraph.

Concerning the graphical and incremental approach, an outstanding asset is
that the inference system itself becomes an online visualization tool for type
information and failure identification. On this aspect there are several works.
GemCut [9] is a graphical viewer for functions in the Haskell-like language
CAL; the editor uses CAL compiler’s inference system to prevent type errors.
TypeTool [10] and System I [11] are web-based tools for visualizing type infer-
ence of lambda terms; they are intended to teaching the basis of type inference
algorithms for functional languages. Other research focus on tracing the ori-
gin of unification failure. [12] proposes a guideline for evaluating the quality
of type error diagnosis of type inference systems. It compares several systems
and presents the algorithm Unification Assumption Environments. The inference
process records the local inferences so as to identify all possible sources of incon-
sistencies. In NiMo, whenever a pair of type hexagons cannot be collapsed, all
type ports related to them can be visually identified. Other work on this regard,
(not a graphical tool either) is [13] that uses a graph representation with nodes
labelled by lambda terms and types from which information is extracted to help
in error debugging.

In general, inference systems work on complete terms that can be erroneous,
thus producing an error message. In NiMo erroneous nets cannot be edited; mes-
sages just indicate incompatibility. Moreover, port compatibility can be tried
before connecting simply by moving both TDs hexagons to make them coincide
(except in cases of non-structural equivalence).

Another significant point about inference in NiMo is the total absence of type
variables; transformations take place directly on the graph structure of the type
expressions. The assumption environment is distributed and tied to each term
(CC) since every token carries its own type and partially built expressions are
always well typed and also carry their type. Besides, NiMo code is bi-dimensional

82 S. Clerici, C. Zoltan, and G. Prestigiacomo

and can be built in any order; most of the port connections are applications and
in NiMo partial application can be made in any order (not only from left to right),
hence incremental inference can be made in the user-stated port connection or-
der. On polymorphism handling, interface TDs are originally as polymorphic
as they can ever be; hence there is no equivalent for generalization. Instantia-
tion corresponds to the ?-hexagons collapse that occurs when unifying the port
TDs.

The other differences come from the data-flow ingredient plus incompleteness.
Multiple inputs and outputs required a non-trivial generalization to handle the
process type. Non-structural unification is the means to have multiple inputs
(then partial application in any order), while keeping the advantages of curry-
ing in HO constructs without explicit conversions. On the other hand, typing
NiMo nets required treatment of incompleteness and multiple outputs produced
by non-connected subnets, in contrast to inference systems that deal with a
single and closed term. Application corresponds to connecting a process input
in a functional CC. Having multiple inputs and outputs, partial application in
any order and partial production also in HO parameters, we needed different
operators to define the connection effect vs. the single rule used in functional
languages.

Considering the overall development of NiMo, the paradigms fusion was a big
challenge that required figuring out many creative solutions to make both mod-
els compatible and the graphical realization feasible. But we think it was worth
it; the graphic-functional-dataflow nature of NiMo and its incompleteness tol-
erance result in a very powerful computation model where everything is visible
and dynamically modifiable, even the evaluation policy. This allows us to exploit
implicit parallelism in a very intuitive way, and to perform symbolic execution
in the same framework. We are now exploring its possibilities in simulation and
modelling, as well as in generative and multistage programming.

As regards future development, the mixed model opens a range of possible
extensions, some of which are hard to imagine in other languages; think for in-
stance that here functions are showable and polymorphic expressions executable.
Conversely, some relevant functional language features are not yet included; in
particular overloading, type classes, and user defined types (now algebraic types
are emulated with functional types), with the consequent implications for infer-
ence. But again, the first challenge is making their graphical equivalents stylistic-
consistent and manageable, which requires facilities for the compact viewing of
complex values. We are now extending the visualization features for net-processes
and data channels to cope with any subnet. Besides, in the current version net-
process definitions have a single rule with a single interface on the left, whereas
Haskell-like languages allow definitions by cases using patterns, making them
more modular and readable. The inclusion of this mechanism in NiMo would
be a major upgrade far beyond expressiveness, because symbolic execution to-
gether with graph patterns open the door to program transformation in the same
framework; hence even dynamically.

Graphical and Incremental Type Inference 83

Acknowledgments. We thank the reviewers for their detailed and helpful
comments.

References

1. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 1–16. Springer, Hei-
delberg (1985)

2. Clerici, S., Zoltan, C.: A graphic functional-dataflow language. In: Loidl, H.W.
(ed.) Trends in Functional Programming. Intellect, vol. 5, pp. 129–144 (2004)

3. AGG: Agg home page (2009), http://user.cs.tu-berlin.de/~gragra/agg/
4. Clerici, S., Zoltan, C.: A dynamically customizable process-centered evaluation

model. In: PPDP 2009: Proceedings of the 11th ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, pp. 37–48. ACM, New York
(2009)

5. Clerici, S., Zoltan, C.: Graphical type inference. a graph grammar definition. Tech-
nical Report LSI-07-24-R, Dept. Llenguatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya (July 2007)

6. Clerici, S., Zoltan, C., Prestigiacomo, G.: Nimotoons: a totally graphic workbench
for program tuning and experimentation. Electr. Notes Theor. Comput. Sci. 258(1),
93–107 (2009)

7. NiMo: Nimo home page (2010), http://www.lsi.upc.edu/~nimo/Project
8. König, B.: A general framework for types in graph rewriting. Acta Inf. 42(4), 349–

388 (2005)
9. Resources (2009),

http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf

10. Simões, H., Florido, M.: TypeTool - a type inference visualization tool. In: Pro-
ceedings of the 13th International Workshop on Functional and (Constraint) Logic
Programming (2004), http://www.dcc.fc.up.pt/typetool/cgi-bin/tt.pl

11. Church Project: System I (2010),
http://types.bu.edu/modular/compositional/system-i/

12. Yang, J., Michaelson, G., Trinder, P., Wells, J.B.: Improved Type Error Reporting.
In: Proceedings of 12th International Workshop on Implementation of Functional
Languages, pp. 71–86 (2000)

13. McAdam, B.J.: Generalising techniques for type debugging. In: Trinder, P.W.,
Michaelson, G., Loidl, H.W. (eds.) Scottish Functional Programming Workshop.
Trends in Functional Programming, Intellect, vol. 1, pp. 50–58 (1999)

http://user.cs.tu-berlin.de/~gragra/agg/
http://www.lsi.upc.edu/~nimo/Project
http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf
http://www.dcc.fc.up.pt/typetool/cgi-bin/tt.pl
http://types.bu.edu/modular/compositional/system-i/

	Graphical and Incremental Type Inference: A Graph Transformation Approach
	Introduction
	NiMo Language Elements
	Interfaces and Connections
	Net-Process Definitions
	Partial Application and Production in HO

	Graphical Typing
	Type Graph and Type Descriptors

	Type Graph Unification
	Structural Unification
	Non Structural Unification

	Incremental Type Inference for Nets
	Functional and Non-functional Components
	Net Type Operators
	The Type Inference Algorithm
	An Example
	A Second Example

	Related Work and Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

