
Static Balance Checking for First-Class Modular

Systems of Equations

John Capper and Henrik Nilsson

Functional Programming Laboratory,
School of Computer Science,
University of Nottingham,

United Kingdom
{jjc,nhn}@cs.nott.ac.uk

Abstract. Characterising a problem in terms of a system of equations is
common to many branches of science and engineering. Due to their size,
such systems are often described in a modular fashion by composition of
individual equation system fragments. Checking the balance between the
number of variables (unknowns) and equations is a common approach to
early detection of mistakes that might render such a system unsolvable.
However, current approaches to modular balance checking have a number
of limitations. This paper investigates a more flexible approach that in
particular makes it possible to treat equation system fragments as true
first-class entities. The central idea is to record balance information in
the type of an equation fragment. This information can then be used
to determine if individual fragments are well formed, and if composing
fragments preserves this property. The type system presented in this
paper is developed in the context of Functional Hybrid Modelling (FHM).
However, the key ideas are in no way specific to FHM, but should be
applicable to any language featuring a notion of modular systems of
equations.

Keywords: Systems of equations, equation-based, non-causal modelling,
first-class components, equation-variable balance, structural analysis, lin-
ear constraints, refinement types.

1 Introduction

Systems of equations [3], also known as simultaneous equations, are abundant in
science and engineering. Applications include modelling, simulation, optimisa-
tion, and more. Such systems of equations are often parametrised, describing not
just a specific problem instance, but a set of problems. The size and nature of
the systems frequently necessitates numerical methods and computers for solving
them. The equations thus need to be turned into programs that can be used to
solve for various problem instances. Such programs can be written manually, but
a more expedient route is to transcribe the equations into a high-level language,
e.g. a modelling language, thus making it possible to automatically translate
the equations into a program that attempts to compute a solution given specific

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 50–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Static Balance Checking for First-Class Modular Systems of Equations 51

values for any parameters. Due to the size of the equation systems, some form of
abstraction mechanism that supports a modular formulation by composition of
individual equation system fragments, components, is often a practical necessity.

Of course, as with any large and complex task, there is always a risk of mis-
takes being made. In this case, mistakes may render the system of equations
unsolvable. In a modular development, an error in a component might not man-
ifest itself until an attempt is made to use that component. In the worst case,
problems might not become apparent until much later when the final program
is run. In some applications, the system of equations may even evolve dynami-
cally, say during a simulation run, meaning that it may take a long time indeed
to discover certain errors. Static checks that catch mistakes early, preferably
applicable to individual components in isolation, can thus be very helpful.

One might hope to statically impose sufficient constraints to guarantee that
a system of equations has a solution. Unfortunately, the question of whether
such a system has a solution or not can in general only be answered by study-
ing complete systems with full knowledge of all coefficients, ruling out checking
of components in isolation as well as parametrisation. Moreover, without actu-
ally attempting solving, the question can only be answered for relatively simple
systems (e.g. linear systems of equations). In other words, if the setting is rea-
sonably general, we cannot hope to develop e.g. a type system that guarantees
that a well-typed equation system or fragments thereof are solvable.

However, there are simple criteria that if violated are indicative of problems,
or that may even imply that an attempt to solve a system by a specific method
(e.g. as embodied by a tool that translates equations to a program for solving
them) will necessarily fail. One such criterion is that the number of variables, or
unknowns, must equal the number of equations. A more refined criterion is that
there should exist a bijective mapping between variables and equations. Some of
these kinds of criteria can be enforced statically, e.g. through a type system.

Enforcing the balance of systems of equations is considered very useful in prac-
tise. For example, the state-of-the-art, equation-based modelling and simulation
language Modelica insists that complete models are balanced [9, pp.40–46]. In-
deed, translation to simulation code will fail if systems are unbalanced. Broman
et al. propose a similar but more refined approach [1].

These criteria stem from the fact that a linear system of equations has a
unique solution if and only if the equations are linearly independent and the
number of equations and unknowns agree. However, they are useful heuristic
criteria more generally, intuitively because each equation commonly can be used
to solve for one variable occurring in it. For a (very) simple example, consider:

x2 + y = 0 (1)
3x = 10 (2)

Here (2) can be used to solve for x, and the value of x can then be substituted
into (1), enabling it to be used to solve for y. Note that both the variable-equation
balance criterion and the pairing criterion are satisfied.

52 J. Capper and H. Nilsson

On the other hand, it is easy to see that neither criterion is sufficient to
guarantee solvability. Consider:

x2 + y = 0 (3)
cx = 10 (4)

Note that the system is now parametrised on a coefficient c. The two criteria
are still satisfied, but whether the system has a unique solution or not depends
on the value of c: for c = 0 there is no unique solution. Conversely, violation
of the criteria does not necessarily mean a system is unsolvable; for example,
consider adding an extra copy of (2) to the first system. The resulting system
can of course still be solved, despite both criteria now being formally violated.

The existing approaches to balance checking have weaknesses. For example, in
Modelica, a component either has to be balanced, or it is explicitly declared to
be possibly unbalanced, in which case no balance checking is performed for that
component. See Sect. 4 for a more in-depth discussion. In this paper we develop
an approach that is both more flexible and capable of catching more problems:

– The type of a component is refined by adding a balance variable to it, re-
flecting the number of equations the component contributes to the overall
system. This is a refinement type system [4] in that erasure of the extra type
information recovers a term that is well-typed in the original system.

– Parametrised components may also have a parametrised balance.
– Balance information can be inferred for components in isolation, even when

parametrised on other components and without any explicit declaration of
balance information for such parameters.

– Additional structural constraints beside the balance are exploited for a more
refined analysis. For example, in certain cases, it can be established that
a component necessarily would render a system imbalanced whenever it is
used, which thus can be reported as an error.

The upshot of this is that if a complete system is assembled modularly from
components that are well-typed in the refined sense, and if the assembled system
is balanced overall, then the “flat” system that results by unfolding all definitions
will also be balanced.

Our immediate motivation comes from Functional Hybrid Modelling (FHM)
[11,12,5] where it is desired to treat components as true first-class entities, includ-
ing the possibility to modify the overall system of equations during simulation,
at “run-time”, as alluded to earlier. Static checks that help prevent accidentally
changing a system from one that can be simulated (solved) to one that cannot
are thus of particular interest. We do not explicitly consider structurally dy-
namic systems of equations here, but our type system can be easily extended to
that setting thanks to the first-class notion of components.

However, it should be noted that the essence of the ideas presented in this pa-
per are not at all specific to FHM: in principle, it should be relatively straightfor-
ward to adapt them to other equation-based modelling languages, like Modelica,
or to any language featuring a notion of modular system of equations.

Static Balance Checking for First-Class Modular Systems of Equations 53

The structure of the remainder of this paper is as follows. Sect. 2 explains
the idea of modular systems of equations in more depth. Sect. 3 describes the
type system developed. Sect. 4 gives a comparative review of the related work.
Sect. 5 looks at possible avenues for expansion of the type system. Finally, Sect. 6
provides some concluding remarks.

2 Modular Systems of Equations

This section introduces the idea of modular systems of equations in more detail.
As FHM provided the immediate motivation for this work, we will draw on FHM
for examples and we will adopt a concrete syntax derived from Hydra, an FHM
language currently being developed. We will only explain FHM and Hydra to
the extent needed for this paper; for further details, please consult Nilsson et al.
[11,12] or Giorgidze & Nilsson [5].

Hydra, like Modelica, is concerned with modelling of dynamic, physical sys-
tems using Differential Algebraic Equations (DAE). The solution to such a sys-
tem of equations is a set of time-varying reals, i.e. real-valued functions of time.
In practise, it is usually the case that only approximate solution through numer-
ical simulation is feasible. However, for our formal type system development, the
domain of the variables and the exact form of the equations is of no consequence:
all that matters is which variables occur in each equation. This is reflected in
the precise syntax of terms for which our type system is defined (see Fig. 3.2
in Sect. 3.2), where equations are only considered in the abstract as a set of
occurring variables.

2.1 Equation System Basics

A system of equations is a set of equations over a set of variables or unknowns. It
has a solution if every variable in the system can be instantiated with a value such
that all the equations are simultaneously satisfied. Again, for the type system
developed in this paper, the domain of the variables is not important. However,
in our examples, the domain is either the reals, R, or time-varying reals.

A linear system of equations has a unique solution if all equations are inde-
pendent and there are equally many equations and variables. If there are more
independent equations than variables, the system is over-constrained. Such a
system has no solution as there are too many constraints, some of which will be
in conflict. If there are fewer independent equations than variables, the system
is under-constrained. Such a system has infinitely many solutions.

The equation-variable balance of a system of equations is the difference
between the number of equations and variables. Note that this is strictly a struc-
tural property: the details of exactly what the equations look like is of no conse-
quence. This is true in general in our development: we only consider structural
properties, i.e. equations in the abstract, as we cannot assume that all details
are known. By analogy, we refer to a system with positive equation-variable bal-
ance as over-constrained, and one with negative balance as under-constrained,
regardless of whether the equations actually are independent or even linear.

54 J. Capper and H. Nilsson

2.2 Abstraction over Systems of Equations

The equation systems needed to describe real-world problems are usually large
and complicated. On the other hand, there tends to be a lot of repetitive struc-
ture making it beneficial to describe the systems in terms of reusable equation
system fragments. For example, consider an electrical circuit comprising resis-
tors, capacitors, and inductors. Each component can be described by a small
equation system, and the entire circuit can then be described modularly by com-
position of instances of these for specific values of the components.

While the exact syntactic details vary between languages, the idea, in essence,
is to encapsulate a set of equations as a component with a well-defined interface.
Let us illustrate with an example, temporarily borrowing the syntax of the λ-
calculus for the abstraction mechanism:

r ≡ λ(x, y) → x + y + z = 0
x − z = 1

This makes r a relation that constrain the possible values of the two interface
variables x and y according to the encapsulated equations. The variable z is
local, not visible from the outside.

The relation r can now be used as a building block by instantiating it: sub-
stituting expressions for the interface variables and renaming local variables as
necessary to avoid name clashes. We express this as application, denoted by �:

u + v + w = 10
r � (u, v)
r � (v, w + 7)

After unfolding and renaming, a process we refer to as flattening, we get:

u + v + w = 10
u + v + z1 = 0

u − z1 = 1
v + (w + 7) + z2 = 0

v − z2 = 1

Note that each application of r effectively contributes one equation to the overall
system as one of the instances of the encapsulated equations in each case must
be used to solve for the corresponding instance of the local variable, z1 and z2.

2.3 FHM and Hydra

In this section, we introduce the FHM framework as embodied by the language
Hydra [11,12,5]. We use this as the setting for the rest of the paper. The central
idea of FHM is to embed an abstraction mechanism over equations as described

Static Balance Checking for First-Class Modular Systems of Equations 55

in Sect. 2.2 into a pure functional language, allowing equation system abstrac-
tions to be first-class entities at the functional level. The equations are Differ-
ential Algebraic Equations (DAE), meaning that the domain of the variables is
time-varying reals, or signals. An abstraction over an equation is therefore re-
ferred to as a signal relation. In the case of Hydra, the host language is Haskell
[6].

In Hydra, the type of a signal relation is written SR α. A signal relation can
be thought of as a predicate on a signal:

SR α ≈ Signal α → Bool

where Signal α is a time-varying value of type α. As a product of signals is
isomorphic to a signal of products, unary signal relations suffice to represent
n-ary relations. For example, given a binary predicate ≡ on R:

(≡sr) :: SR (R, R)
(≡sr) s = ∀ (t :: Time). fst (s t) ≡ snd (s t)

First-class signal relations are constructed as follows:

sigrel pattern where equations

The pattern introduces interface variables that scope over the equations. The
latter may refer to additional, implicitly declared, local variables. Together, these
two kinds of variables are referred to as signal variables as they stand for time-
varying quantities. There are two forms of equations:

e1 = e2 (5)
sr � e3 (6)

where sr is a time-invariant expression (free signal variables must not occur in
it1) denoting a signal relation, and � denotes signal relation application, simi-
larly to Sect. 2.2. Functional level objects can be used as time-invariant entities
inside signal relations. In particular, functional-level variables can be used as
coefficients in equations, thus allowing the equations to be parametrised: see
the resistor example below for an example. On the other hand, time-varying
signal-level entities are not permitted to escape to the functional level.

Signal variables scope over the time-varying, top-level equations of a signal
relation. Since only time-invariant expressions may appear to the left of an ap-
plication, nested signal relations are not permitted.

To illustrate, consider a component twoPin , encapsulating equations common
to all electrical components with two pins, and a component resistor , defined as
an extension of twoPin by adding an equation that describes the behaviour of a
resistor:
1 However, a manifest signal relation expression is fine as it binds all signal variables

occurring in it. That is, signal relations can be “nested”, but the signal variable
scope is flat.

56 J. Capper and H. Nilsson

type Pin = (R, R)

twoPin :: SR (Pin ,Pin,Voltage)
twoPin = sigrel (p,n, u) where

fst p − fst n = u
snd p + snd n = 0

resistor :: Resistance → SR (Pin ,Pin)
resistor r = sigrel (p,n) where

twoPin � (p,n, u)
r ∗ snd p = u

Note that the resistor is modelled by a function that maps a resistance to a
signal relation. In the definition of resistor , r is thus a time-invariant value, not
an unknown. Note also that u is local. Flattening the signal relation that results
from the function application resistor 220 yields the flat equation system:

fst p − fst n = u
snd p + snd n = 0
220 ∗ snd p = u

3 The Type System

The type system is presented as an embedding of an equation-based language
into the simply-typed λ-calculus. An embedding into the λ-calculus reflects the
two-level approach taken by FHM, from which much of the expressivity of the
language is gained. The type system has been implemented in the dependently
typed programming language Agda [13], giving us assurances that the algorithm
is both total and terminating.

Description Symbol

λ-bound variables x , y
Expressions (λ-terms) e ∈ Λ
Signal-variables z
Balance type-variables n,m,o ∈ Z

Signal level expressions s

Description Symbol

Equations q
Simple types τ
Type schemes σ
Typing environments Γ
Constraint sets C

Fig. 1. Notational Conventions

The notation χ is used to denote a sequence χ1, . . . , χn without repetition
of elements. We will also allow ourselves to treat χ as sets equipped with the
usual set-theoretic operations. One should also note that x (and y) and z are
meta-variables, ranging over the names of concrete function-level and signal-level
variables, respectively.

Static Balance Checking for First-Class Modular Systems of Equations 57

3.1 Overview

As signal relations are first-class entities, it cannot be assumed that components
can be flattened in order to determine the equation-variable balance. The only
reasonable assumption is that all that is known statically is the type of a relation.

To track the equation-variable balance, the type of a signal relation is refined
by annotating it with the number of equations it is able to contribute to a system.
The contribution of a signal relation may also depend on the contribution of
the parameters to the signal relation. Hence, signal relations can behave in a
polymorphic fashion, contributing varying numbers of equations depending on
the context in which the relation is used. See Sect. 4 for a comparative review
of alternative type system designs.

Since the structural information required to determine a precise contribution
may not always be available, the context in which a signal relation is applied is
used to generate balance constraints (from now on, simply constraints). These
constraints restrict the balance of a component to an interval.

Note that a representation of integers and linear inequalities has been intro-
duced at the type level. This extension may appear to be a restricted form of
dependent types [8]. However, these type level representations, whilst determined
by the structure of terms, are not value level terms themselves. As such, we do
not consider our system to be dependently typed.

Constraints may mention the contributions of several components, and hence
are not directly associated with a single signal relation. As a result, the type
of a signal relation is restricted to being annotated by a balance variable which
is then further refined using constraints. The type checking algorithm generates
a fresh balance variable for each signal relation, with type equality defined up
to alpha equivalence of balance variables. As an example, the refined type for
resistor from Sect. 2.3 is:

resistor :: (n = 2) ⇒ Resistance → SR (Pin ,Pin) n

Haskell’s type class constraint syntax has been adopted to express that the
balance type variable n is constrained to the value 2. This can be verified by
first flattening the signal relation applications to obtain a set of 3 equations
over 5 variables (note that each Pin contains two variables), then removing
one equation which must be used to solve for the local variable u, giving a net
contribution of two equations.

3.2 Generating Constraints

In this section we address the issue of what constraints should be generated.
It is conceivable that different application domains could generate constraints
specific to that domain. This is not a problem, as the system developed is inde-
pendent of the constraints generated. For the purposes of this paper, 4 criteria
for generating constraints have been chosen. Before introducing the criteria, a
number of definitions are required.

58 J. Capper and H. Nilsson

Fig. 2 and 3 give the syntax of terms and types from which the type checking
algorithm will be developed. A number of simplifications have been made to the
FHM framework in order to keep the presentation of the type system concise.
Note that all simplifications are superficial and do not fundamentally change the
nature of the problem.

e ::= x
| e1 e2

| λx .e
| let x = e1 in e2

| sigrel z where q

q ::= Atomic z
| e � z

σ ::= C ⇒ τ

τ ::= τ1 → τ2

| SR R
m n

| LEqn n
| IEqn n
| MEqn n

C ::= ce1 = ce2

| ce1 � ce2

ce ::= n
| IntLit
| ce + ce
| − ce

Fig. 2. Syntax of terms, types, and constraints

We consider the simply-typed λ-calculus, given by e, augmented with first-
class signal relation constructs. Signal relations abstract over sets of signal vari-
ables, denoted z, and embed a new syntactic category of equations into the
calculus, given by q.

Signal relations range over sets of equations, which may take one of two forms.
An atomic equation of the form s1 = s2 is abstracted to just the set of distinct
signal variables occurring in the signal expressions s1 and s2. Similarly, an equa-
tion of the form e � s is abstracted to the expression denoting the applied signal
relation and the set of signal variables that occur on the right-hand-side of the
application. More detailed comments on theses syntactic categories are given in
Sect. 3.3.

An equation q is said to mention a signal variable z if and only if z ∈ vars (q).
The function total returns the raw number of atomic equations contributed by
an equation. Whereas |q | denotes the cardinality of the set of modular equations.
Both vars and total are also overloaded for sets of equations.

vars (Atomic z) = z
vars (� z) = z
vars (q) =⋃ {vars (q) | q ∈ q }

total (Atomic) = 1
total (e : SR n �) = n
total (q) =∑ {total (q) | q ∈ q }

Given a signal relation sigrel z where q , the set of interface variables is
defined IZ = z , and the set of local variables LZ = vars (q)\z . The set of
equations q can be partitioned into the disjoint subsets of interface equations
IQ, local equations LQ, and mixed equations MQ, where IQ is the set of equations
mentioning only interface variables, LQ is the set of equations mentioning only
local variables, and MQ = (q\IQ)\LQ. Finally, the balance of a signal relation,
written bal (sr), is given as bal (sigrel z where q) = total (q)−|LQ|. Intuitively,
balance is an aggregate of the equations in the body of a signal relation, excluding
sufficiently many equations to solve for the local variables.

Static Balance Checking for First-Class Modular Systems of Equations 59

1. |LQ| + |MQ| � |LZ |. The local variables are not under-constrained.
2. |LQ| � |LZ |. The local variables are not over-constrained.
3. |IQ| � |IZ |. The interface variables are not over-constrained.
4. 0 � bal (sr) � |IZ |. A signal relation must contribute equations only for

its interface variables. It should not be capable of removing equations from
other components (negative balance), or adding equations for variables not
present in its interface.

The above criteria produce constraints that give adequate assurances for de-
tecting structural anomalies. There is potential to further refine these criteria.
However, for the purposes of this paper, these criteria are sufficient to demon-
strate the value of the type system.

To illustrate the application of the above five criteria, consider the Hydra
example par that connects two circuit components in parallel. The operational
details of this example are not important; the only important aspect is that of
equations mentioning variables. The type signature gives the type of par under
the simply typed approach. The reader may wish to refer back to Sect. 2.3 at
this point for clarification on sigrel terms.

par :: SR (Pin ,Pin) → SR (Pin ,Pin) → SR (Pin ,Pin)
par sr1 sr2 =

sigrel ((pi , pv), (ni ,nv)) where
sr1 � ((p1i , p1v), (n1i ,n1v))
sr2 � ((p2i , p2v), (n2i ,n2v))
pi + p1i + p2i = 0
ni + n1i + n2i = 0
pv = p1v = p2v
nv = n1v = n2v

p1 n1

p2 n2

p n
sr1

sr2

Under the new type system, the signal relations in par are annotated by bal-
ance variables, which are then constrained by the criteria producing the following
refined type:

par :: {m = n + o − 2, 6 � n + o � 2, 0 � m � 4, 0 � n � 4, 0 � o � 4} ⇒
SR (Pin ,Pin) n → SR (Pin ,Pin) o → SR (Pin ,Pin) m

While this type may appear daunting at first, all balance variables and con-
straints can be inferred without requiring the programmer to annotate the terms
explicitly. It is also useful to see an example of a program that fails to type check
under the new type system – a program that previously would have been ac-
cepted, despite being faulty.

broken sr = sigrel (a, b) where
sr � (w + x , y + z)
sr � (a, b)
x + z = 0

60 J. Capper and H. Nilsson

The above function broken is flawed in that there is no relation to which it
can be safely applied. The relation sr is required to provide at least 3 equations
for local variables, but must not exceed a contribution of 2 variables as dictated
by the second relation application. As expected, our type system catches this
error by attempting to impose the following inconsistent set of constraints:

broken :: (m = n + n − 3, 0 � m � 2, 0 � n � 2, 4 � n + 1 � 4)
⇒ SR (R, R) n → SR (R, R) m

During type checking, the Fourier-Motzkin elimination method is used to
check the consistency of constraint sets [7]. The method allows one to check not
only if a set of linear inequalities is satisfiable, but also finds a continuous interval
for each bound variable. It is expected that this will be useful when reporting
type errors to the programmer.

The elimination algorithm has worst case exponential time complexity in the
number of balance variables. However, as shown by Pugh [15], the modified vari-
ant that searches for integer solutions is capable of solving most common problem
sets in low-order polynomial time. Furthermore, systems typically involve only
a handful of balance variables, making most exponential cases still feasible to
check.

3.3 Formalising the Type System

Fig. 3 presents a small-step semantics for our calculus by way of a flattening for
a system of equations. Values in our system are closed lambda-terms of the form
λx .e, signal relations encapsulating atomic equations, and atomic equations.

The notation {z1/z2} denotes the substitution that occurs when reducing
signal relation application. Our abstract treatment of equations allows us to
read this notation as substituting every variable in z1 for all variables in z2, a
simplification of the substitution discussed in Sect. 2.2. The symbol fresh denotes
a fresh sequence of signal variables, used in S-SigApp2 to rename local variables
to prevent name clashes during flattening (again, see Sect. 2.2).

The simplification of substitution discussed above has introduced a slight
disparity between our abstract formalisation and the concrete system. In the
FHM system, applying a signal relation contributing n equations to a mixed
set of variables results in n mixed equations. However, during evaluation, it
may be discovered that some of the equations within the signal relation do not
mention both local and interface variables. Hence, the number of mixed, local,
and interface equations may be refined as a result of evaluation.

This problem is avoided in our semantics by the simplification to substitution
mentioned above. However, this should not pose a real problem in the concrete
system either. The preservation problem is reminiscent of the record subtyping
problem addressed in Peirce [14], pages 259–260. It should be possible to adapt
the technique of stupid casts used in Pierce to solve the preservation problems
that would be present in a more concrete semantics. To be more precise, one could
allow a stupid cast of local and interface equations back into mixed equations,
thus retaining the same contribution and maintaining the same constraints. We

Static Balance Checking for First-Class Modular Systems of Equations 61

e1 � e2

e1 e3 � e2 e3

(S-App1)
(λx.e1) e2 � [x �→ e2] e1

(S-App2)

let x = e1 in e2 � [x �→ e1] e2

(S-Let)
e1 � e2

e1 � z � e2 � z
(S-SigApp1)

∃q1 ∈ q. q1 � q2

sigrel z where q � sigrel z where [q1 �→ q2] q
(S-SigRel)

q2 = {(vars(q)\z1)/fresh} q1

(sigrel z1 where q1) � z2 � {z1/z2} q2

(S-SigApp2)

Fig. 3. Small-step semantics

leave this alteration as future work, as the current semantics are sufficient for
the purposes of this paper.

The syntax of types is similar to that of the simply-typed λ-calculus. Sim-
ple types consist of functions, signal relations, and equation types specified by
→, SR, and I /M /LEqn respectively. The three varieties of equation types give
distinct representations for interface, mixed, and local equations. Signal relation
types and equation types are parametrised with a balance variable that denotes
the number of equations a system is capable of contributing. Simple types are
then parametrised by a constraint set that refines the possible interval of balance
variables.

Fig. 4 gives the typing judgements for terms in our language. The rules for
λ-terms, T-Var, T-Abs, and T-App are similar to those of the simply-typed λ-
calculus, with the addition of constraint sets. Operations that render a constraint
sets inconsistent indicate that a term is ill-typed; e.g, a judgement that involves
taking the union of two consistent sets of constraints is only valid when the
resulting constraint set is also consistent.

The T-Atomic judgement assigns equation types to atomic equations by
examining the variables that occur in the equation. The helper function eqkind
checks how the variables in an equation coincide with the interface variables to
determine whether the equation is local, interface, or mixed.

The T-RelApp judgement assigns an equation type to a relation application.
The preconditions for this judgement state that the type of the expression e
appearing to the left of the application must be a signal relation. Additionally,
the contribution of such a signal relation must not exceed the number of interface
variables to which it is being applied. T-RelApp and T-Atomic depend on the
read-only environment I which stores the set of interface variables the equations
range over.

The final judgement assigns signal relation types to sigrel constructs and
calculates constraints on the fresh balance variable of that signal relation. The
first precondition defines the set of variables local to the relation. The second
precondition is a pointwise judgement over the set of equations. The third

62 J. Capper and H. Nilsson

Γ (x) = C ⇒ τ

Γ � x : C ⇒ τ
(T–Var)

Γ, x : C1 ⇒ τ1 � e : C2 ⇒ τ2

Γ � λx.e : C1 ∪ C2 ⇒ τ1 → τ2

(T–Abs)

Γ � e1 : C1 ⇒ τ2 → τ1 Γ � e2 : C2 ⇒ τ2

Γ � e1 e2 : C1 ∪ C2 ⇒ τ1

(T–App)

Γ � e1 : C1 ⇒ τ2 Γ, x : C2 ⇒ τ2 � e2 : C1 ⇒ τ1

Γ � let x = e1 in e2 : C1 ∪ C2 ⇒ τ1

(T–Let)

I · Γ � Atomic z : ∅ ⇒ eqkindI(z, 1)
(T–Atomic)

Γ � e : C ⇒ SR R
m n |z| � n

I · Γ � e � z : C ⇒ eqkindI(z , n)
(T–RelApp)

L = vars(q)\ z z · Γ � q : C ⇒ τ nX = Σ{ b | XEqn b ∈ τ }
C = {n = nI + nL + nM − |L|, 0 � n � |z|, nI � |z|, nL � |L|, nL + nM � |L|}

Γ � sigrel z where q :
⋃

C ∪ C ⇒ SR R
|z| n

eqkindI(Z, n) =

⎧
⎪⎨

⎪⎩

IEqn n if ∅ ⊂ Z ⊆ I

LEqn n if Z ∩ I = ∅
MEqn n otherwise

Fig. 4. Typing rules

precondition sums the number of equations of a given form in q specified by
the parameter X , where X ∈ {I, L, M}. Finally, using the previous three condi-
tions, a set of constraints is generated for the balance variables occurring in the
type.

We have identified two key properties of soundness for our type system with
respect to the semantics. Firstly, the preservation of types under evaluation for
sigrel constructs ensures that flattening a modular system of equations does
not alter the contribution of the system. Formally, if sigrel z where q1 �
sigrel z where q2, and sigrel z where q1 : C ⇒SR R

|z| n, where C is a
consistent set of constraints, then sigrel z where q2 : C ⇒SR R

|z| n. Hence,
the contribution of the sets of equations q1 and q2 is equal under the same set
of interface variables z .

Secondly, a system can only be completely reduced to a simple set of equations
if the top-level sigrel construct abstracts over an empty set of signal variables.
In these circumstances, a fully assembled system should contribute no equations
as no more signal variables will be introduced. Formally, if sigrel ∅ where q :
C ⇒SR () n, and C is consistent, then C should resolve the interval of n to
[0,0].

At this point, it is interesting to note the equational embedding effectively
operates as a form of heterogeneous meta-programming; a modular system of

Static Balance Checking for First-Class Modular Systems of Equations 63

equations is first evaluated to flat set of equations which is then transformed
into a program that is used to solve for the unknowns of the original system.
Hence, the balance and structure of a system of equations are really properties
of the flattened system of equations that rule out (a class of) second stage run-
time/simulation-time problems. Hence, a soundness statement regarding balance
and structure falls to the meta-theory of a type system at the second stage. In
summary, attempting to capture these properties during the initial phase make
the soundness properties of our system quite unusual. As such, we leave the
investigation of soundness of other structural properties as future work.

The type checking algorithm has been implemented in the dependently typed
programming language Agda [13]. The source code can be found on the primary
authors website at http://cs.nott.ac.uk/~jjc. The implementation guaran-
tees that the algorithm is both total and termination. It should be noted that
the function for computing the most general unifier of two types is postulated.
We have yet to implement the semantics and prove that these are sound with
respect to the typing judgements, this is left as future work.

4 Related Work

4.1 Modelica

Modelica, as of version 3.0 [9], requires that models be locally balanced. This is
much more restrictive than our approach as components that are individually
unbalanced may still be combined to produce a balanced system. When unbal-
anced components are needed, the current Modelica approach is to declare them
as such, turning of all balance checking for that component. Moreover, models
are not first-class entities in Modelica which simplifies the static checking.

4.2 Bunus and Fritzon

Bunus and Fritzon [2] describe an analysis technique for pinpointing problems
with systems of equations developed in equation-based modelling languages
such as Modelica. They look at structural properties, as we do, but, to allow
fine-grained localisation, in much more detail by considering incidence matrices
(which variables occur in which equations). This is only possible by analysing
fully assembled systems, meaning the technique is primarily suitable for debug-
ging. It could even be used during simulation to catch problems with structurally
dynamic systems. Thus, this work is in many ways complementary to ours.

4.3 Structural Constraint Delta

Broman et al. [1] have developed a type system called structural constraint
delta (CΔ). The type system is developed for a simplified version of Modelica:
Featherweight Modelica. The CΔ represents the difference between the number
of unknowns and the number of equations in an instance of a component. Hence,

64 J. Capper and H. Nilsson

CΔ improves upon the Modelica approach by allowing models to be unbalanced,
provided that a fully assembled system is balanced. As the type (class) of a
constituent component is always manifest, and as the rules for subtyping are
such that a replaceable component can only be replaced by one having the same
CΔ, component balances can always be computed in a bottom-up fashion.

In contrast, the type system presented in this paper does not rely on manifest
type information. Furthermore, it supports a more flexible notion of balance as,
if there are more than one component parameter, what matters is the collective
number of contributed equations, not the numbers contributed individually.

To our knowledge, the idea of incorporating balance checking into the type
system of a non-causal modelling language was suggested independently by Nils-
son et al. [11] and Broman, with the latter giving the first detailed account.

4.4 Structural Types

Nilsson [10] outlines an approach to static checking that safeguards against a
much wider class of errors than what is possible by just considering the balance.
This is done by making an approximation of the incidence matrix part of the type
of an equation system fragment, allowing structural singularities to be detected
in many cases and thus approaching the capabilities of Bunus and Fritzon’s
technique, while retaining the capability of checking fragments in isolation.

While Nilsson presents the work within the context of FHM, he forgoes the
consideration of first-class models, concentrating on the handling of static mod-
els. In contrast, the type system presented here handles first-class models, but
cannot find as many problems.

5 Future Work

The type system presented in this paper captures the essence of the idea of
balance checking in a setting with first-class equation system fragments. The
system is abstract, but as such a suitable starting point for a type system for any
such language. There are two imminent avenues for developing this work further.
One is to elaborate the system so as to bring it closer to a system suitable for
a concrete language like FHM. Handling of compound signal variables such as
matrices should also be considered, as the size of matrices can affect the balance
if equations between matrices is supported. The other avenue is to formalise the
system and the dynamic semantics to prove soundness.

6 Conclusion

In this paper, we presented a type system for modular systems of equations
capable of detecting classes of errors related to the equation-variable balance.
Components can be analysed in isolation, rather than requiring assembly into
a complete system of equations first, thus allowing over- and under-constrained

Static Balance Checking for First-Class Modular Systems of Equations 65

systems to be detected early, aiding error localisation. First-class equation sys-
tem fragments are supported. Our system thus lays down the foundations for
a practical yet strong type system. The context of this work is equation-based,
non-causal modelling, but the ideas should be readily adaptable to other settings.

Acknowledgments. The authors would like to thank David Broman, Neil
Sculthorpe, and the anonymous reviewers for helpful and constructive feedback.

References

1. Broman, D., Nyström, K., Fritzson, P.: Determining Over- and Under-Constrained
Systems of Equations using Structural Constraint Delta. In: GPCE. ACM, New
York (2006)

2. Bunus, P., Fritzson, P.: A debugging scheme for declarative equation based mod-
eling languages. In: Adsul, B., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS,
vol. 2257, p. 280. Springer, Heidelberg (2002)

3. Conkwright, N.B.: Introduction to the Theory of Equations. Ginn, Boston (1957)
4. Freeman, T., Pfenning, F.: Refinement Types for ML. In: PLDI (1991)
5. Giorgidze, G., Nilsson, H.: Higher-Order Non-Causal Modelling and Simulation of

Structurally Dynamic Systems. In: Casella, F. (ed.) Proceedings of the 7th Interna-
tional Modelica Conference. Linköping Electronic Conference Proceedings (2009)

6. Jones, S.: Haskell 98 Language and Libraries: the Revised Report (2003)
7. Kuhn, H.: Solvability and Consistency for Linear Equations and Inequalities. Amer-

ican Mathematical Monthly 63 (1956)
8. McKinna, J., Altenkirch, T., McBride, C.: Why Dependent Types Matter. ACM

SIGPLAN Notices 41(1) (2006)
9. The Modelica Association. Modelica – A Unified Object-Oriented Language for

Physical Systems Modeling: Language Specification Version 3.2 (2010)
10. Nilsson, H.: Type-Based Structural Analysis for Modular Systems of Equations.

In: Proceedings of the 2nd International Workshop on Equation-Based Object-
Oriented Languages and Tools. Linköping Electronic Conference Proceedings
(2008)

11. Nilsson, H., Peterson, J., Hudak, P.: Functional hybrid modeling. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 376–390. Springer, Heidelberg (2002)

12. Nilsson, H., Peterson, J., Hudak, P.: Functional Hybrid Modeling from an Object-
Oriented Perspective. In: Simulation News Europe (2007)

13. Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Göteborg, Sweden (2007)

14. Pierce, B.: Types and Programming Languages. The MIT Press, Cambridge (2002)
15. Pugh, W.: The Omega Test: a Fast and Practical Integer Programming Algorithm

for Dependence Analysis. In: Supercomputing 1991 (1991)

	Static Balance Checking for First-Class Modular Systems of Equations
	Introduction
	Modular Systems of Equations
	Equation System Basics
	Abstraction over Systems of Equations
	FHM and Hydra

	The Type System
	Overview
	Generating Constraints
	Formalising the Type System

	Related Work
	Modelica
	Bunus and Fritzon
	Structural Constraint Delta
	Structural Types

	Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

