Rex Page
Zoltan Horvath
Viktoria Zsok (Eds.)

Trends
in Functional
Programming

11th International Symposium, TFP 2010
Norman, OK, USA, May 2010
Revised Selected Papers

LNCS 6546

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

6546

Rex Page Zoltan Horvath
Viktoéria Zsok (Eds.)

Trends
in Functional
Programming

1 1th International Symposium, TFP 2010
Norman, OK, USA, May 17-19, 2010

Revised Selected Papers

@ Springer

Volume Editors

Rex Page

University of Oklahoma, School of Computer Science
110 West Boyd Street, Norman, OK 73019, USA
E-mail: page@ou.edu

Zoltan Horvith

Eo6tvos Lordnd University, Faculty of Informatics
Department of Programming Languages and Compilers
Pazmany Péter sétany 1/C, 1117 Budpest, Hungary
E-mail: hz@inf.elte.hu

Viktéria Zsok

Eotvos Lorand University, Faculty of Informatics
Department of Programming Languages and Compilers
Pazmany Péter sétany 1/C, 1117 Budpest, Hungary
E-mail: zsv@inf.elte.hu

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-22940-4 e-ISBN 978-3-642-22941-1
DOI 10.1007/978-3-642-22941-1

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934807
CR Subject Classification (1998): D.1.1, D.1, D.3.2, E3.3, D.1-2

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 11th Symposium on Trends in Functional Programming took place on the
University of Oklahoma campus in Norman, Oklahoma, May 17-19, 2010. The
program included presentations of 26 papers submitted by researchers from six
nations and an invited talk by J. Strother Moore on machine reasoning so well
received that the question/answer session continued for a full hour beyond the
talk, well into the lunch period. Most of the authors submitted revisions of their
papers, based in part on responses to their presentations. The revisions were
reviewed and discussed in detail by the Program Committee, and 13 of them
were accepted for publication in this volume.

A little over half of the revisions accepted for publication were student papers
(that is, papers with a student as first author). Following a long-established
custom, the Program Committee designated one of them as the best student
paper. This year the award went to Stephen Chang for his paper, with co-authors
David van Horn and Matthias Felleisen, describing a way to evaluate a call-by-
need A-calculus on the control stack. The Program Committee appreciates the
originality and insight in this work and congratulates Stephen Chang on earning
the award.

TFP aspires to be a forum for new directions in functional programming
research. This year was no exception. Presentations covered new ideas for refac-
toring, managing source-code complexity, functional language implementation,
graphical languages, applications of functional programming in pure mathemat-
ics, type theory, multitasking and parallel processing, distributed systems, sci-
entific modeling, domain-specific languages, hardware design, education, and
testing.

The editors want to thank the Program Committee and all of the referees for
their diligence and for their well-considered reviews. We also want to thank the
University of Oklahoma and Erlang Solutions Ltd, for their generous support. Fi-
nally, we thank the participants for their lively attention during the symposium.
We trust that a good time was had by all.

December 2010 Rex Page
Zoltan Horvath
Viktoria Zsék

Program Committee

Peter Achten

Emil Axelsson
Francesco Cesarini
John Clements
Daniel Cooke

Nils Anders Danielsson
Jared Davis
Martin Erwig
Ruben Gamboa
Jurriaan Hage
Kevin Hammond
Michael Hanus

Zoltéan Horvath (symposium
co-chair)

Garrin Kimmell

Pieter Koopman

Hans-Wolfgang Loidl
Rita Loogen

Jay McCarthy

Greg Michaelson
Marco T. Morazan
Rodney Oldehoeft
Rex Page (Chair)
Ricardo Pena

Walid Taha

Sam Tobin-Hochstadt
Simon Thompson
Phil Trinder

Marko van Eekelen

Viktéria Zsék (symposium
co-chair)

Organization

Radboud University Nijmegen,
The Netherlands

Chalmers University of Technology, Sweden

Erlang Training and Consulting, Ltd., UK

California Polytechnic State University, USA

Texas Tech University, USA

University of Nottingham, UK

Centaur Technology, USA

Oregon State University, USA

University of Wyoming, USA

Utrecht University, The Netherlands

University of St. Andrews, UK

Christian Albrechts University zu Kiel,
Germany

Eo6tvos Lorand University, HU
University of Kansas, USA
Radboud University Nijmegen,
The Netherlands
Heriot-Watt University, UK
Philipps University Marburg, Germany
Brigham Young University, USA
Heriot-Watt University, UK
Seton Hall University, USA
Krell Institute, USA
University of Oklahoma, USA
Complutense University of Madrid, Spain
Rice University, USA
Northeastern University, USA
University of Kent, UK
Heriot-Watt University, UK
Radboud University Nijmegen and Open
University, The Netherlands

E6tvos Lorand University, HU

VIII Organization

Sponsoring Institutions

Erlang Solutions Ltd. (UK)
The University of Oklahoma (USA)

Table of Contents

Evaluating Call-by-Need on the Control Stack 1
Stephen Chang, David Van Horn, and Matthias Felleisen

Typing Coroutinest 16
Konrad Anton and Peter Thiemann

An Expression Processor: A Case Study in Refactoring Haskell
Programs 31
Christopher Brown, Huiging Li, and Simon Thompson

Static Balance Checking for First-Class Modular Systems of
Equations e 50
John Capper and Henrik Nilsson

Graphical and Incremental Type Inference: A Graph Transformation
Approach 66
Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Hygienic Macros for ACL2 i 84
Carl Eastlund and Matthias Felleisen

What’s the Matter with Kansas Lava? 102
Andrew Farmer, Garrin Kimmell, and Andy Gill

Types and Type Families for Hardware Simulation and Synthesis:

The Internals and Externals of Kansas Lava 118
Andy Gill, Tristan Bull, Andrew Farmer, Garrin Kimmell, and
Ed Komp

Testing with Functional Reference Implementations 134
Pieter Koopman and Rinus Plasmeijer

Every Animation Should Have a Beginning, a Middle, and an End:
A Case Study of Using a Functor-Based Animation Language 150
Kevin Matlage and Andy Gill

Functional Video Games in the CS1 Classroom 166
Marco T. Morazdin

X Table of Contents

ComputErl—FErlang-Based Framework for Many Task Computing 184
Michat Ptaszek and Maciej Malawski

Monad Factory: Type-Indexed Monads 198
Mark Snyder and Perry Alexander

Author Index 215

Evaluating Call-by-Need on the Control Stack

Stephen Chang*, David Van Horn**, and Matthias Felleisen*

PLT & PRL, Northeastern University, Boston, MA 02115, USA

Abstract. Ariola and Felleisen’s call-by-need A-calculus replaces a vari-
able occurrence with its value at the last possible moment. To sup-
port this gradual notion of substitution, function applications—once
established—are never discharged. In this paper we show how to trans-
late this notion of reduction into an abstract machine that resolves vari-
able references via the control stack. In particular, the machine uses the
static address of a variable occurrence to extract its current value from
the dynamic control stack.

1 Implementing Call-by-Need

Following Plotkin [I], Ariola and Felleisen characterize the by-need A-calculus
as a variant of [:

(\z.E[z)) V = Oa.E[V]) V|

and prove that a machine is an algorithm that searches for a (generalized) value
via the leftmost-outermost application of this new reduction [2].
Philosophically, the by-need A-calculus has two implications:

1. First, its existence says that imperative assignment isn’t truly needed to
implement a lazy language. The calculus uses only one-at-a-time substitu-
tion and does not require any store-like structure. Instead, the by-need [
suggests that a variable dereference is the resumption of a continuation of
the function call, an idea that Garcia et al. [3] recently explored in detail by
using delimited control operations to derive an abstract machine from the
by-need calculus. Unlike traditional machines for lazy functional languages,
Garcia et al.’s machine eliminates the need for a store by replacing heap
manipulations with control (stack) manipulations.

2. Second, since by-need 3 does not remove the application, the binding struc-
ture of programs—the association of a function parameter with its value—
remains the same throughout a program’s evaluation. This second connection
is the subject of our paper. This binding structure is the control stack, and
thus we have that in call-by-need, static addresses can be resolved in the
dynamzic control stack.

* Partially supported by grants from the National Science Foundation.
** Supported by NSF Grant 0937060 to the CRA for the CIFellow Project.

R. Page, Z. Horvéth, and V. Zsék (Eds.): TFP 2010, LNCS 6546, pp. 1-[[§, 2011.
© Springer-Verlag Berlin Heidelberg 2011

2 S. Chang, D. Van Horn, and M. Felleisen

Our key innovation is the CK+4 machine, which refines the abstract machine
of Garcia et al. by making the observation that when a variable reference is in
focus, the location of the corresponding binding context in the dynamic control
stack can be determined by the lexical index of the variable. Whereas Garcia
et al.’s machine linearly traverses their control stack to find a specific binding
context, our machine employs a different stack organization where indexing can
be used instead of searching. Our machine organization also simplifies the hygiene
checks used by Garia et al., mostly because it explicitly maintains Garcia et al.’s
“well-formedness” condition on machine states, instead of leaving it as a side
condition.

The paper starts with a summary of the by-need A-calculus and the abstract
textual machine induced by the standard reduction theorem. We then show how
to organize the machine’s control stack so that when the control string is a
variable reference, the machine is able to use the lexical address to compute the
location of the variable’s binding site in the control stack.

2 The Call-by-Need A-Calculus, the de Bruijn Version

The terms of the by-need A-calculus are those of the A-calculus [4], which we
present using de Bruijn’s notation [5], i.e., lexical addresses replace variables:

M:i=n|AXM|MM
where n € N. The set of values is just the set of abstractions:
V=AM

One of the fundamental ideas of call-by-need is to evaluate the argument in
an application only when it is “needed,” and when the argument is needed, to
evaluate that argument only once. Therefore, the by-need calculus cannot use
the B notion of reduction because doing so may evaluate the argument when it is
not needed, or may cause the argument to be evaluated multiple times. Instead,
[is replaced with the deref notion of reduction:

(A\.E[n]) V need (A\.E[V])V, A bindsn deref

The deref notion of reduction requires the argument in an application to be a
value and requires the body of the function to have a special shape. This special
shape captures the demand-driven substitution of values for variables that is
characteristic of call-by-need. In the deref notion of reduction, when a variable
is replaced with the value V', some renaming may still be necessary to avoid
capture of free variables in V', but for now, we assume a variant of Barendregt’s
hygiene condition for de Bruijn indices and leave all necessary renaming implicit.
Here is the set of evaluation contexts E:

E:x=[]|EM|(\E)M|(\E']n])E

Evaluating Call-by-Need on the Control Stack 3

Like all contexts, an evaluation context is an expression with a hole in the place
of a subexpression. The first evaluation context is an empty context that is just a
hole. The second evaluation context indicates that evaluation of applications pro-
ceeds in a leftmost-outermost order. This is similar to how evaluation proceeds
in the by-name A-calculus [I]. Unlike call-by-name, however, call-by-need defers
dealing with arguments until absolutely necessary. It therefore demands evalua-
tion within the body of a let-like binding. The third evaluation context captures
this notion. This context allows the deref notion of reduction to search under
applied As for variables to substitute. The fourth evaluation context explains
how the demand for a parameter’s value triggers and directs the evaluation of
the function’s argument. In the fourth evaluation context, the visible A binds n
in A.E'[n]. This means that there are n additional A abstractions in E’ between
n and its binding A.
To make this formal, let us define the function A: EF — N as:

A([])=0 A((A\-E'[n]) E) = A(E)
A(E M) = A(E) A(NE) M) = A(E) + 1

With A, the side condition for the fourth evaluation context is n = A(E").

Unlike 3, deref does not remove the argument from a term when substitu-
tion is complete. Instead, a term (A.M) N is interpreted as a term M and an
environment where the variable (index) bound by A is associated with N. Since
arguments are never removed from a by-need term, reduced terms are not nec-
essarily values. In the by-need A-calculus, reductions produce “answers” a (this
representation of answers is due to Garcia et al. [3]):

a = A[V] answers
Ax=[]|(NA) M answer contexts

Answer contexts A are a strict subset of evaluation contexts E.
Since both the operator and the operand in an application reduce to answers,
two additional notions of reduction are needed:

(MA[V]) M N need (MA[V N|) M assoc-L
(AE[n]) (MA[V]) M) need (M\A[(M\.E[n]) V]) M, if A(E)=n assoc-R

As mentioned, some adjustments to de Bruijn indices are necessary when
performing substitution in A-calculus terms. For example, in a deref reduction,
every free variable in the substituted V' must be incremented by A(E) + 1. Oth-
erwise, the indices representing free variables in V' no longer count the number
of As between their occurrence and their respective binding As. Similar adjust-
ments are needed for the assoc-L and assoc-R reductions, where subterms are
also pulled under As.

Formally, define a function T that takes three inputs: a term M, an integer z,
and a variable (index) m, and increments all free variables in M by x, where a
free variable is defined to be an index n such that n > m. In this paper, we use
the notation MT% . Here is the formal definition of T:

4 S. Chang, D. Van Horn, and M. Felleisen

nly, =n+x, ifn>m (M N1, = (MT5,) (NT3,))
A(MT17,41)

nle =n, ifn<m AMTE
Using the T function for index adjustments, the notions of reduction are:

(A\.E[n)) V need (\E[V1S) v, if A(E)=n deref
(LA[V]) M N need (\A[V (N15™M)) M assoc-L
(A\.E[n]) (AA[V]) M) need (AA[(NE[R)1E™) V) M, if A(E) =n

assoc-R

It is acceptable to apply the A function to A because A is a subset of E.

3 Standard Reduction Machine

In order to derive an abstract machine from the by-need A-calculus, Ariola and
Felleisen prove a Curry-Feys-style Standardization Theorem. Roughly, the the-
orem states that a term M reduces to a term N in a canonical manner if M
reduces to N in the by-need calculus.

The theorem thus determines a state machine for reducing programs to an-
swers. The initial state of the machine is the program, the collection of states is
all possible programs, and the final states are answers. Transitions in the state
machine are equivalent to reductions in the calculus:

E[M] —neea E[M'], if M need M’

where E represents the same evaluation contexts that are used to define the
demand-driven substitution of variables in the deref notion of reduction.

The machine is deterministic because all programs M satisfy the unique de-
composition property. This means that M is either an answer or can be uniquely
decomposed into an evaluation context and a redex. Hence, we can use the state
machine transitions to define an evaluator function:

a, if M —»peed @

evalpeed(M) = {L

, if for all M —peed N, N —neea L

Lemma 1. evalpeeq is a total function.

Proof. The lemma follows from the standard reduction theorem [2]. O

4 The CK+ Machine

A standard reduction machine specifies evaluation steps at a high-level of ab-
straction. Specifically, at each evaluation step in the machine, the entire program
is partitioned into an evaluation context and a redex. This repeated partition-
ing is inefficient because the evaluation context at any given evaluation step

Evaluating Call-by-Need on the Control Stack 5

tends to share a large common prefix with the evaluation context in the previ-
ous step. To eliminate this inefficiency, Felleisen and Friedman propose the CK
machine [6, Chapter 6], an implementation for a standard reduction machine of
a call-by-value language. Consider the following call-by-value evaluation:

In each step, the 3, redex is underlined. The evaluation contexts for the first and
third term are the same, ((Aw.w) []), and it is contained in the evaluation context
for the second term, ((Aw.w) ((Az.z) [])). Although the evaluation contexts in
the first three terms have repeated parts, a standard reduction machine for the
call-by-value calculus must re-partition the program at each evaluation step.

The CK machine improves upon the standard reduction machine for the
by-value A-calculus by eliminating redundant search steps. While the standard
reduction machine uses whole programs as machine states, a state in the CK ma-
chine is divided into separate subterm (C) and evaluation context (K) registers.
More precisely, the C in the CK machine represents a control string, i.e., the
subterm to be evaluated, and the K is a continuation, which is a data structure
that represents an evaluation context in an “inside-out” manner. The original
program can be reconstructed from a CK machine state by “plugging” the ex-
pression in the C subterm register into the context represented by K. When
the control string is a redex, the CK machine can perform a reduction, just like
the standard reduction machine. Unlike the standard reduction machine though,
the CK machine still remembers the previous evaluation context in the context
register and can therefore resume the search for the next redex from the con-
tractum in C and the evaluation context in K.

4.1 CK+ Machine States

We introduce the CK+ machine, a variant of the CK machine, for the by-need
A-calculus. The CK+ machine is also a modification of the abstract machine
of Garcia et al. [3]. The machine states for the CK+ machine are specified in
figure [l The core CK+ machine has three main registers, a control string (C),
a “renaming” environment (R), and a continuation stack (K).

In figure[I] the ... notation means “zero or more of the preceeding element”
and in the stack ||k, K, ...||, the partial stack frame k is the top of the stack.
The initial CK+ machine state is (M, (), |mt||), where M is the given program,
() is an empty renaming environment, and ||mt|| is a stack with just one element,
an empty frame.

S. Chang, D. Van Horn, and M. Felleisen

S, T = <C,R,K>
C:=M
R:= (i, ...)
1eN
K= |k K, ...

K ::= (bind M R k)

machine states

control strings
renaming environments
offsets

continuation stacks

complete stack frames

ku=mt|(arxg M Rk) | (op K k) partial stack frames

Fig. 1. CK+ machine states

4.2 Renaming Environment

As mentioned in section 2] substitution requires some form of renaming, which
manifests itself as lexical address adjustments when using a de Bruijn repre-
sentation of terms. Instead of adjusting addresses directly, the CK+ machine
delays the adjustment by keeping track of offsets for all free variables in the con-
trol string in a separate renaming environment. The delayed renaming is forced
when a variable occurrence is evaluated, at which point the offset is added to
the variable before it is used to retrieve its value from the control stack.

Here we use lists for renaming environments and the offset corresponding to
variable n, denoted R(n), is the n-th element in R (0-based). The : function is
cons, and the function M<R applies a renaming environment R to a term M,
yielding a term like M except with appropriately adjusted lexical addresses:

M<()=M
n<R =n+ R(n)
(\M)<=R = \.(M<(0:R))
(M N)<=R = ((M<R) (N<R))

Because the CK+ machine uses renaming environments, the T function from
section 2lis replaced with an operation on R. When the machine needs to incre-
ment all free variables in a term, it uses the & function to increment all offsets in
the renaming environment that accompanies the term. The notation R®x means
that all offsets in renaming environment R are incremented by x. Thus, the use
of indices in place of variables enables hygiene maintenance through simple in-
crementing and decrementing of the indices. As a result, we have eliminated the
need to keep track of the “active variables” that are present in Garcia et al.’s
machine [3| Section 4.5].

4.3 Continuations and the Continuation Stack

Like the CK machine, the CK+ machine represents evaluation contexts as con-
tinuations. The [] context is represented by the mt continuation. An evaluation

Evaluating Call-by-Need on the Control Stack 7

context E[([] N)] is represented by a continuation (arg M R k) where k repre-
sents F and (M<R) = N. An evaluation context E[(\.[]) N] is represented by
a continuation (bind M R k) where k represents F and (M<«R) = N. Finally,
the E[(X\.E'[n]) []] context is represented by an (op K k) continuation. The E’
under the X in the evaluation context is represented by the nested K stack in
the continuation and the E surrounding the evaluation context corresponds to
the k in the continuation. The op continuation does not need to remember the n
variable in the evaluation context because the variable can be derived from the
length of K.

The contents of the K register represent the control stack of the program and
we refer to an element of this stack as a frame. The key difference between the
CK+ machine and Garcia et al.’s machine is in the organization of the frames of
the stack. Instead of a flat list of frames like in Garcia et al.’s machine, our control
stack frames are groups of nested continuations of a special shape. Thus we also
call our control stack a “continuation stack.” We use two kinds of frames, partial
and complete. The first frame in the continuation stack is always a partial one,
while all others are complete. The outermost continuation of a complete frame is
a bind and all other nested pieces of a complete frame are op, arg, or mt. Thus,
not counting the first partial frame, there is exactly one frame in the control
stack for every bind continuation in the program. As a result, the machine can
use a variable (lexical address) n to find the bind corresponding to that variable
in the control stack.

4.4 Maintaining the Continuation Stack

Each frame of the control stack, with the exception of the top frame, has the
shape (bind M R k), where k is a partial frame that contains no additional
bind frames. In order for the continuation stack to maintain this invariant, CK+
machine transitions must adhere to two conditions:

1. When a machine transition is executed, only the top partial frame of the
stack is updated unless the instruction descends under a A.

2. If a machine transition descends under a A, the partial frame on top of the
stack is completed and a new mt partial frame is pushed onto the stack.

Essentially, the top frame in the stack “accumulates context” until a A is
encountered, at which time the top partial frame becomes a complete frame.
Maintaining evaluation contexts for the program in this way implies a major
consequence for the CK+ machine:

when the control string is a variable n, then the binding for n is (n +

R(n) + 1) stack frames away.

4.5 Relating Machine States to Terms

Figure[2 defines the ¢ function, which converts machine states to A-terms. It uses
the M<«=R function to apply the renaming environment to the control string and

8 S. Chang, D. Van Horn, and M. Felleisen

Wk Ko o) [M] = ... [K k(M)
5 mt[M] =
oM, R K)) = KIM<F] (axg N R BY[M] = M(M (N<R)]
(op K K)[M] = K[(\.K [en(K) — 1)) M]
(bind N R k)[M] = k[(A.M) (N<R)]

Fig. 2. ¢ converts CK+ machine states to A-calculus terms

then uses a family of “plug” functions, dubbed -[-], to plug the renamed control
string into the hole of the context represented by the continuation component of
the state. Figure[2 also defines these plug functions, where K[M] yields the term
obtained by plugging M into the context represented by K, and K[M] yields
the term when M is plugged into the context represented by the continuation
stack K.

4.6 CK+ Machine State Transitions

Figure [shows the first four state transitions for the CK+ machine. The ++
notation indicates an “append” operation for the continuation stack. Since the
purpose of the CK+ machine is to remember intermediate states in the search
for a redex, three of the first four rules are search rules. They shift pieces of the
control string to the K register. For example, the [shift-arg] transition shifts the
argument of an application to the K register.

The [descend-)] transition shifts a A binding to the K register. When the
control string in the CK+4 machine is a A abstraction, and that X is the operator

'_>ck+

[shift-arg]
(M N), R, Ik, K, ..) (M, R, ||(arg N R K), K, ...])
[descend-A]
(A\M,R,|(axg N R' k), K, ...||) (M,0:R, ||jmt, (bind N R" k), K, ...||)
- [lookup arg|
(n, R, K++||(bind N R' k), K, ...|}) (N,R',||(op K k),)

where len(K) =n+ R(n) +1
B [resume}
(V.R,||(op K k), K, ...||) (V,R', K++||(bind V R k), -

where R = R® len(K)

Fig. 3. State transitions for the CK+ machine

Evaluating Call-by-Need on the Control Stack 9

in an application term—indicated by an arg frame on top of the stack—the body
of the A becomes the control string; the top frame in the stack is updated to be
a complete bind frame; and a new partial mt frame is pushed onto the stack.

The [descend-)\] instruction also updates the renaming environment which, as
mentioned, is a list of numbers. There is one offset in the renaming environment
for each bind continuation in the control stack and the offsets in the renaming
environment appear in the same order as their corresponding bind continuations.
When the machine descends into a A\ expression, a new bind continuation is
added to the top of the control stack so a new corresponding offset is also added
to the front of the renaming environment. Since offsets are only added to the
renaming environment when the machine goes under a A, whenever a variable n
(a lexical address) becomes the control string, its renaming offset is located at
the n-th position in the renaming environment. A renaming offset keeps track
of the relative position of a bind continuation since it was added to the control
stack so a [descend-A] instruction adds a 0 offset to the renaming environment.

When the control string is a variable n, the binding for n is accessed from the
continuation stack by accessing the (n + R(n) + 1)-th frame in the stack. The
[lookup-arg] instruction moves the argument that is bound to the variable into
the control string register. The op frame on top of the stack is updated to store
all the frames inside the binding A, in the same order that they appear in the
stack. Using this strategy, the machine can “jump” back to this context after
it is done evaluating the argument. For a term (A.E[n]) M, this is equivalent
to evaluating M while saving F and then returning to the location of n after
the argument M has been evaluated. Note that the [lookup-arg] transition does
not perform substitution. The argument has been copied into the control string
register, but it has also been removed from the continuation stack register.

When the frame on top of the stack is an op, it means the current control
string is an argument in an application term. When that argument is a value,
then a redex has been found and the value should be substituted for the variable
that represents it. The [resume] rule is the only rule in figure Bl that performs
a reduction in the sense of the by-need calculus. It is the implementation of
the deref notion of reduction from the calculus. Specifically, the [resume| rule
realizes this substitution by restoring the frames in the op frame back into the
continuation stack as well as copying the value into a new bind frame. The result
is nearly equivalent to the left hand side of the [lookup-arg] rule except that the
argument has been evaluated and has been substituted for the variable.

Since the [resume] rule performs substitution, it must also update the renam-
ing environment. Hence, the distance between V' and its binding frame is added
to every offset in the renaming environment R, as indicated by R &® 1en([_(). In
other words, each offset in the environment is being incremented by the number
of bind continuations that are added to the control stack.

In summary, the four rules of figure [8l represent intermediate partitions of the
program into a subterm and an evaluation context before a partitioning of the
program into an evaluation context and a deref redex is found. As a result, the
CK+ machine does not need to repartition the entire program on every machine

10 S. Chang, D. Van Horn, and M. Felleisen

step and is therefore more efficient than standard reduction. To complete the
machine now, we must make it deal with answers.

4.7 Dealing with Answers

The CK+ machine described so far has no mechanism to identify whether a
control string represents an answer. The by-need calculus, however, assumes
that it is possible to distinguish answers from terms on several occasions, one of
which is the completion of evaluation. To efficiently identify answers, the CK+
machine uses a fourth “answer” register. The CK+ machine identifies answers
by searching the continuation stack for frames that are answer contexts. To
distinguish answer contexts from evaluation contexts, we characterize answer
contexts in figure @l A final machine state has the form (V, R, || ||, 4).

S, T = <C,R,f(> | <V,R,HF, o K H,/D machine states
F ::= (bind M Rmt) answer (complete) frame
A= |mt, F, ...|| answer stacks

Fig. 4. CK+ machine answer states

When the control string is a value V' and mt is the topmost stack frame, then
some subterm in the program is an answer. In this situation, the mt frame in the
stack is followed by an arbitrary number of F' frames. The machine searches for
the answer by shifting mt and F frames from the continuation stack register to
the answer register. The machine continues searching until either a K frame is
seen or the end of the continuation stack is reached. If the end of the continuation
stack is reached, the entire term is an answer and evaluation is complete.

The presence of a K frame means an assoc-L or an assoc-R redex has been
found. In order to implement these shifts, the CK+ machine requires four ad-
ditional rules for handling answers, as shown in figure Bl The [ans-searchl] rule
shifts the mt frame to the answer register. The [ans-search2] rule shifts F' frames
to the answer register. The [assoc-L] rule and the [assoc-R] rule roughly corre-
spond to the assoc-L and assoc-R notions of reduction in the calculus, respec-
tively. The rules are optimized versions of corresponding notions of reduction
in the calculus because the transition after the reduction is always known. The
[assoc-L] machine rule performs the equivalent of an assoc-L reduction in the
calculus, followed by a [descend-A] machine transition. The [assoc-R] machine
rule performs the equivalent of an assoc-R reduction in the calculus, followed by
a [resume] machine transition.

In figure [the function @ has been extended to a family of functions de-
fined over renaming environments, continuation stacks, and stack frames: R® x
increments every offset in the renaming environment R by x and the function
K @ z increments every offset in every renaming environment in every frame in

Evaluating Call-by-Need on the Control Stack 11

'_>ck+

[ans-searchl]
(V. R, |jmt, K, ...|I) (VR K, .|, [mt]])
[ans-search2]
ViR |NF', K,] Ity F) VR K, - e, By FYD
[assoc-L]

(A\.M',R,||(bind M R’ (axrg N R" k)), K, .. |, |mt, F, ...||)
(M',0:R,|lmt, (bind N R"' mt), F, ..., (bind M R’ k), K, ...||)
where R”’ R" @ len(||F, . H) + 1
B [assoc-R]

(V,R,||(bind M R’ (op K k)), K,...||,|Imt, F, ...[)

(V,R",K'++|(bind V Rmt), F,... (bind M R k), >

where K’ = K ® len(||F, ...|) + 1, and R’ = R@len(B

Fig. 5. Transitions of the CK+ machine that handle answer terms

K by x. The function len(||F, ...||) returns the number of frames in ||F, ...|.
Maintaining the offsets in this manner is equivalent to obeying Garcia et al.’s
“well-formedness” condition on machine states.

4.8 Correctness

Correctness means that the standard reduction machine and the CK+ machine
define the same evaluator functions. Let us start with an appropriate definition
for the CK+ machine:

a, if <M7()7||mt||> " ck+ {‘/;R, H ||7A>7
evalck-‘r(M) = where a = QD(<‘/3 R, || ” >A>)
L, ifforall (M,(),|mt|]) —err S, S ekt T

Recall that the function ¢ converts CK+ machine states to A-calculus terms
(figure 2). Here, ¢ has been extended to handle “answer” machine states:

o((M,R, K, A)) = K[AIM<R)|

The desired theorem says that the two eval functions are equal.

12 S. Chang, D. Van Horn, and M. Felleisen

Theorem 1. evalpeeq = evalcks-

To prove the theorem, we first establish some auxiliary lemmas on the totality
of evalck4 and the relation between CK+4 transitions and standard reduction
transitions.

Lemma 2. evalc is a total function.
Proof. The lemma is proved via a subject reduction argument. a
The central lemma uses ¢ to relate CK+ machine transitions to reductions.

Lemma 3. For all CK+ machine states S and T, if S — i+ T, then either
P(S) m—need p(T') or (S) = o(T).

Proof. We proceed by case analysis on each machine transition, starting with
[resume]. Assume

(V.| (op K), K]} et
<V,Rea1en(K),K++||(b1ndVRk), K, ..,
then let
My = o({V.R, ||(op K k), ~)
=|K, ...|I[k [(XK[len(K)* 1]) (V<=R)]]

My = ¢((V,R® len(K), K++|(bind V R k), K, ...|))
=K, ... [F[(A\.K[V<(R & len(K))]) (V«ER)H

Since M; is a standard deref redex, we have:
1K, .|| [K[(\-K[Len(K) — 1]) (V<=R)]] = need
I, - ROK (VRG] (VR))]

To conclude that M7 ——pneea M2 by the deref notion of reduction, we need to
show: -
(VR F) = Ve(R @ 1en(K))

Lemmaldl proves the general case for this requirement. Therefore, we can conclude
that My ——need M2. The proofs for [assoc-L] and [assoc-R] are similar.

As for the remaining instructions, they only shift subterms/contexts back and
forth between registers, so the proof is a straightforward calculation. a

Lemma 4. VR, Ry, Ry, where R = Ri++Rs and m = len(Ry):
(M<=R)1%,= M<(R1+HRy ® x))
Proof. By structural induction on M. a

Using lemma [3 the argument to prove our main theorem is straightforward.

Evaluating Call-by-Need on the Control Stack 13

Proof (of Theorem[d]). We show evalc,y (M) =a <= evalpeed(M) = a.

The left-to-right direction follows from the observation that for all CK+ ma-
chine starting states S and final machine states Sgpai, if S —cr+ Shnai, then
M —>peed @, where ¢(Sfna;) = a. This is proved using lemma [B] and induction
on the length of the — 4 sequence.

The other direction is proved by contradiction. Assume evalyeed (M) = a # L
and evalcgt (M) # a. Since eval. is a total function, either:

LM, (), [[mt]) —>ch+ Sfinat, where o(Sfinar) # a, or
2. the reduction of (M, (), ||mt||) diverges.

It follows from the left-to-right direction of the theorem that, in the first
case, evalneed (M) = ¢(Sfinar) # a, and in the second case, evalpeed(M) = L.
However, evalpeed (M) = a was assumed and evalyeed is a total function, so a
contradiction has been reached in both cases. Since none of the cases are possible,
we conclude that if evalpeea(M) = a, then evalo,i (M) = a. O

5 Stack Compacting

Because the by-need A-calculus does not substitute the argument of a function
call for all occurrences of the parameter at once, applications are never removed.
In the CK+ machine, arguments accumulate on the stack and remain there
forever. For a finite machine, an ever-growing stack is a problem. In this section,
we explain how to compact the stack.

To implement a stack compaction algorithm in the CK+4 machine, we in-
troduce a separate SC machine which removes all unused stack bindings from
a CK+ machine state. Based on the SC machine, the CK+ machine can be
equipped with a non-deterministic [sc] transition:

(M,R,K) —cpt (M,R',K") [sc]
Where<(FV M RO),(M,R),K,|| ||> — e <.7-', (M, R, | | ,[_(’>

Figure [@ presents the SC machine. In this figure, FV refers to a family of
functions that extracts the set of free variables from terms, stack frames, and
continuation stacks. The function FV takes a term M, a renaming environment
R and a variable m, and extracts free variables from M, where a free variable
is defined to be all n such that n + R(n) > m. The function FV is similarly
defined for stack frames and continuation stacks. In addition, /—— denotes
the set obtained by decrementing every element in F by one. Finally, KQk
represents a frame merged appropriately into a continuation stack. For exam-
ple, |k, K, ...,(bind M RE")||@Qk = ||k', K, ..., (bind M R k")QkE||, where
(bind M R k")Qk = (bind M R k" @k), and so on, until finally mt@Qk = k.

Also in figure [77 denotes a family of functions that adjusts the offsets in
renaming environments to account for the fact that a A\ has been removed from
the term. If a variable n refers to a bind stack frame that is deeper in the
stack than the frame that is removed, then the offset for that variable needs to

14 S. Chang, D. Van Horn, and M. Felleisen

Sse = (F,(M,R),K,K) machine states
Fu={n, ...} set of free variables
K=k, K, ...| | |IK,...| partial stacks

}—)SC

[shift-partial-frame]

(F, (M, R), [k, K, 111D (FU(FV K 0), (M, R), [IK, ...|[, [Ik])
[shift-complete-frame]

<]:a (M7R)7HK/7 K, ||7||ka KH: H> <]:/7(M,R)7HK7 ||,Hk7 K”7 L) K/”)
0eF where F' = (F~—) U (FV K’ 0)
B [pop-frame]

(F,(M,R),||(bind M Rk), K, ...||,K) (F—,(M,R),||K, ...||,K'Qk)
0¢F where R = (M, R)t ;{n(&)1
and K' = KT l_en(R')—l

Fig. 6. The SC machine

be decremented by one. A variable n refers to a bind that is deeper than the
removed frame if n + R(n) is greater than the depth of the removed frame. The
11 function can be applied to renaming environments directly or to continuation
stacks or stack frames that contain renaming environments. We use the notation
(M, R)T1% to mean that the offsets in R are incremented by « for all variables n
in M where n+R(n) > £. The result of (M, R)117 is a new renaming environment
with the adjusted offsets. The notation K 17% means that the offsets for all M
and R pairs in the continuation stack K are adjusted. K 117 evaluates to a new
continuation stack that contains the adjusted renaming environments.

6 Related Work and Conclusion

The call-by-need calculus is due to Ariola et al. [2[7)8]. Garcia et al. [3] derive an
abstract machine for Ariola and Felleisen’s calculus and, in the process, uncover
a correspondence between the by-need calculus and delimited control operations.
Danvy et al. [9] derive a machine similar to Garcia et al. by applying “off-the-
shelf” transformations to the by-need calculus. Danvy and Zerny’s def-use chains
also share similarities with our control stack structure [10].

Our paper has focused on the binding structure of call-by-need programs im-
plied by Ariola and Felleisen’s calculus. We have presented the CK+ machine,
which restructures the control stack of Garcia et al.’s machine, and we have
shown that lexical addresses can be used to directly access binding sites for
variables in this dynamic control stack, a first in the history of programming
languages. The use of lexical addresses has also simplified hygiene maintenance

Evaluating Call-by-Need on the Control Stack 15

by eliminating the need for the set of “active variables” that is present in Gar-
cia et al.’s machine states. In addition, we show how using indices in place of
variables allows for simple maintenance of Garcia et al.’s “well-formed” machine
states. Finally, we have presented a stack compaction algorithm, which is used
in the CK+ machine to prevent stack overflow. The compaction algorithm used
in this paper is a restriction of the more general garbage collection notion of
reduction of Felleisen and Hieb [11] and is also reminiscent of Kelsey’s work [12].

Acknowledgments. Thanks to the anonymous reviewers for their feedback
and to Daniel Brown for inspiring discussions.

References

10.

11.

12.

. Plotkin, G.D.: Call-by-name, call-by-value and the A-calculus. Theoretical Com-

puter Science 1, 125-159 (1975)

. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. Journal of Functional

Programming 7, 265-301 (1997)

Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control. In:
Proceedings of the 36th Annual Symposium on Principles of Programming Lan-
guages, pp. 153-164. ACM, New York (2009)

Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland,
Amsterdam (1981)

De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 381-392 (1972)

Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press, Cambridge (2009)

Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: Proceedings of the 22nd Annual Symposium on Principles on
Programming Languages, pp. 233-246 (1995)

Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. Journal of
Functional Programming 8, 275-317 (1998)

Danvy, O., Millikin, K., Munk, J., Zerny, I.: Defunctionalized interpreters for call-
by-need evaluation. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010.
LNCS, vol. 6009, pp. 240-256. Springer, Heidelberg (2010)

Danvy, O., Zerny, I.: Three syntactic theories for combinatory graph reduction.
In: Alpuente, M. (ed.) 20th International Symposium on Logic-Based Program
Synthesis and Transformation (2010) (invited talk)

Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103, 235-271 (1992)

Kelsey, R.: Tail-recursive stack disciplines for an interpreter. Technical Report NU-
CCS-93-03, Northeastern University (1993)

Typing Coroutines

Konrad Anton and Peter Thiemann

Institut fiir Informatik, Universitit Freiburg, Germany
{anton,thiemann}@informatik.uni-freiburg.de

Abstract. A coroutine is a programming construct between function
and thread. It behaves like a function that can suspend itself arbitrarily
often to yield intermediate results and to get new inputs before return-
ing a result. This facility makes coroutines suitable for implementing
generator abstractions.

Languages that support coroutines are often untyped or they use
trivial types for coroutines. This work supplies the first type system
with dedicated support for coroutines. The type system is based on the
simply-typed lambda calculus extended with effects that describe control
transfers between coroutines.

1 Introduction

A coroutine is a programming construct between function and thread. It can be
invoked like a function, but before it returns a value (if ever) it may suspend
itself arbitrarily often to return intermediate results and then be resumed with
new inputs. Unlike with preemptive threading, a coroutine does not run concur-
rently with the rest of the program, but rather takes control until it voluntarily
suspends to either return control to its caller or to pass control to another corou-
tine. Coroutines are closely related to cooperative threading, but they add value
because they are capable of passing values into and out of the coroutine and
they permit explicit switching of control.

Coroutines were invented in the 1960s as a means for structuring a compiler
[4]. They have received a lot of attention in the programming community and
have been integrated into a number of programming languages, for instance in
Simula 67 [5], BETA, CLU [I1], Modula-2 [I9], Python [I7], and Lua [I5], and
Knuth finds them convenient in the description of algorithms [8]. Coroutines are
also straightforward to implement in languages that offer first-class continuations
(e.g., Scheme [7]) or direct manipulation of the execution stack (e.g., assembly
language, Smalltalk).

The main uses of coroutines are the implementation of compositions of state
machines as in Conway’s seminal paper [4] and the implementation of genera-
tors. A generator enumerates a potentially infinite set of values with successive
invocations. The latter use has led to renewed interest in coroutines and to
their inclusion in mainstream languages like C# [13], albeit in restricted form as
generators.

R. Page, Z. Horvéth, and V. Zsék (Eds.): TFP 2010, LNCS 6546, pp. 16-Bd, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Typing Coroutines 17

Despite the renewed interest in the programming construct per se, the typing
aspects of coroutines have not received much attention. Indeed, the support-
ing languages are either untyped (e.g., Lua, Scheme, Python), the typing for
coroutines is trivialized, or coroutines are restricted so that a very simple typing
is sufficient. For instance, in Modula-2, coroutines are created from parameter-
less procedures so that all communication between coroutines must take place
through global variables. Also, for describing generators, a simple function type
seems sufficient.

Contribution. We propose a static type system for first-class, stackful coroutines
that may be used in both, symmetric and asymmetric waysll Moreover, we
permit passing arguments to a coroutine at each start and resume operation,
and we permit returning results on each suspend and on termination of the
coroutine (and we distinguish between these two events). Our type system is
based on the simply-typed lambda calculus. It includes an effect system that
describes the way the coroutine operations are used. We present a small-step
operational semantics for the language and prove type soundness.

Outline. Sec.[2 describes the language CorDuroy. It starts with some examples
(Sec.[ZT]) before delving into operational semantics (Sec.[Z2)) and the type system
(Sec.2Z3). Sec.Blproves type soundness by establishing preservation and progress
properties following the syntactic approach [20]. Sec.Hl discusses related work,
and Sec.[l concludes and outlines directions of further research.

2 CorDuroy

The language CorDuroy is a simply typed lambda calculus with recursive func-
tions and operations for handling coroutines. Fig.[l specifies the syntax; labels ¢
only occur at run time. We define A-abstraction as sugar for the fixpoint opera-
tor: Az.e := fix A .Ax.e.

Coroutines in CorDuroy are run-time entities identified by a label ¢. The
only way to create them is by applying the create operator to a function. Once
a coroutine has been created, it can be executed. Unlike threads in a multi-
threaded language, only one coroutine is active at any given time.

To activate a coroutine, there is a symmetric (transfer) and an asymmetric
(resume) operator. The symmetric operator transfer suspends the currently exe-
cuting coroutine and executes anothe. The asymmetric operator resume builds

! This terminology is due to De Moura and Ierusalemschy [14]. A coroutine is stackful,
if it can suspend inside nested function calls. Coroutines are asymmetric if coroutine
activity is organized in a tree-like manner: each coroutine invocation or resumption
always returns and yields to its caller. In contrast, symmetric coroutines can transfer
control among each others without restrictions.

We use the keywords established by De Moura and Ierusalemschy [I4]. In Simula [5],
transfer corresponds to the system procedure RESUME, whereas “asymmetric”, yield
and resume correspond to “semi-symmetric”, DETACH and CALL, respectively.

18 K. Anton and P. Thiemann

a= K0 | fix A\f Az.e | £

v

B ::= Bool | Unit | ... ex=k"er...en | fix\fAz.e

E° ::= true | false | unit | ... | z|ee|ifetheneelsee

E' o= | createz.e | yield e

K= AL | resumeeeee | transferee

2,0, ... € Labels | €
z,y, f,... € Var pu=L|ToT/T|T

Tu=B|r57r | T|L|r~1/7

Fig. 1. Syntax

a caller-callee relationship: if a coroutine resumes another coroutine, they become
caller and callee. The yield operator inside the callee suspends the coroutine and
returns control to the caller. Each of the three operators passes a value. In the
remaining paper, we understand “activate” to mean either transfer or resume,
but not yield.

The caller-callee relationship is also used when a coroutine finally returns a
value, as the value is then passed to the caller. Activating a coroutine after it
has returned causes a run-time error; hence, the caller needs to know whether
the callee coroutine has terminated. resume requires therefore as its third and
fourth parameter two result functions, one to call with yielded values and one
to call with the returned valudi.

The language includes a countable set of primitive functions k™, having each
an arity n > 0. Partial application of primitive functions is not allowed.

2.1 Examples

This section contains short examples of CorDuroy programs. We assume that
integers and strings are among the basic types B and that there are constants
k™ for arithmetic operations, comparison, and printing. We also use the common
let- = -in- sugar for readability.

Divisors. Generators can be used to compute sequences one element at a time.
Fig. shows a coroutine which generates the divisors of a number, and a
consumer which iterates over the divisors until the generator returns (and the
second result function of resume is called).

Mutable references. Coroutines are the only stateful construct in CorDuroy. In
Fig.[2(b)| a mutable reference is simulated by a coroutine which keeps an integer
value in a local variable. Whenever it is resumed with a function Int — Int, it

3 Alternatively, the A-calculus could be extended with variant types in order to tag
the result of resume with how it was obtained. We chose the two-continuation resume
for simplicity.

Typing Coroutines 19

1 let makeref = Ax0.

1 let divisors of = An. > let main = fix Aloop.Ax.Aupd.
> create .\ . 3 let x' = upd x in
3 ((fix Aloop.Ak. a let upd’ = yield x' in
. if (> k n) then unit 5 loop x" upd’
5 else let rem = (mod n k) in ¢ in create . main x0
6 let = (if (= rem 0) 7 in let undef = fix Af.Ax.(f x)
7 then yield k else unit) s in let write = Ar.Av.
8 in loop (+ k1)) 1) s resumer (A .v)
s in let g = divisors of 24 in 10 (A .unit) (X .unit)
w0 ((fix M. X 1 inlet read = A r.
1 resume g unit 12 resume r (Ax.x) (Ax.x) undef
12 (An. let = (print int n) 13 in
13 in (f unit)) 14 let r = makeref 1 in
1 (A . (print str ”finito”))) 15 let = print int (read r) in
15 unit) 1 let = writer 2in
w6 // output: 1 23 4 6 8 12 2/ finito v print int (read r)
(a) Compute all divisors. s // output: 1 2

(b) Mutable references.

Fig. 2. Code examples

waiting (for callee)

A
create resume callee callee yields or returns
Y resume, transfer Y
> . return
suspended - running > returned

yield, transfer
Fig. 3. Life cycle of coroutines

lets the function update the value and returns the new value. The example also
shows how fix can be used to create a diverging function with any desired return
type in the read functiord.

2.2 Operational Semantics

This section presents a small-step operational semantics for CorDuroy, starting
with a life-cycle based view on coroutines to motivate the stack-based represen-
tation used in the reduction rules in Fig.[El

The life cycle of a coroutine consists of the states suspended, running, waiting
and returned, as shown in Fig.[ll At any moment, there is only one running
coroutine.

The running coroutine can apply create to a function, creating a new corou-
tine which starts life in the suspended state (E-CREATE). It can also resume a

4 The language could alternatively be extended with a special variant of the resume
operator for coroutines which never return.

20 K. Anton and P. Thiemann

C:=0k"v1...0-1 Ceiy1...en (1<i<n)
|eC | Cuv|ifCtheneelsee
| resumeCeece | resumevCee | resumevvCe | resumevvvC

| yield C' | transfer C'e | transfer v C'

S ::=(@e; S” labels(£@e; S7) = {£} Ulabels(S")
S5 u=el| S labels(e) = 0

Fig. 4. Evaluation contexts and stacks

>0
" E-Const

<£@C[k:" vrvm]; ST u> - <£@C[[[k:"]] (v1,...,vm)]; S |M>
E-Fix
<€@C[(fix AfAz.e)v]; 87 | u> - <£@C[e[f s fix A\fAz.€] [z — v]]; 87 | u>
E-IFT
<£@C[iftruethen ecelsees]; S | u> - <£@C[et])
E-IFF
<£@C[iffa|se thene;elseef]; S” | /,L> — <£@C[ef] ;ST ,u>
z* & free(e) U {z} ¢* ¢ dom (1) Ulabels(S”) U {¢}
o' = A" ((Az.ex™) L") wo=pu{(* v}

<€@C[createx‘e] ST ,u> — <£@C[€*] .S | ,u’> E-CREATE

¢ € dom (n) e = resume ¥’ Vg Vs Un
E-REs

<e@c le]; 57 | M> = <e’@ (1 (£) va) ;€6C [e]; 57 |\ /z’>
z* fresh €2 = resume £ v, Vs Up EViE
<£1@01 [yield v,] ; £2QC; [es] : S| M>—> <eg@02 [vs 0,3 8" | [6r = Az Cala])

E-CoRET
<£1@w;£2@02 [resume £ vq vs vn] ;S | ,u> — <£2@Cg [vn 0] ;57 | /L>

R) E-TRASELF
<£@c [transfer £ v, ; S |u> - <£@c [val 8" | 1)

¢ € dom () x* fresh

” . E-TrA
<e@c [transfer ¢ v] ; §° |u>ﬂ <£l@(u(£/)v);5' | (u\ &) Uu{(, /\x*.C[;c*])}>

E-TRAERR E-RESERR
' ¢ dom (u) ' ¢ dom (u)
(t@C [transfer ¢ va] |) — Error (¢@QC [resume £’ vy vsvn] | p) — Error

Fig. 5. Small-step operational semantics rules

Typing Coroutines 21

suspended coroutine (the callee), becoming its caller (E-RES). In doing so, it
enters the waiting state, and the callee becomes running.

A running coroutine can also yield, after which it is suspended and the caller
running (E-YIE). If a running coroutine reduces to a value, it is said to return
that value. The returning coroutine enters its terminal state, and the value is
then passed to the caller if there is one (E-CORET) or becomes the final result
of the program.

Alternatively, the running coroutine can transfer control to a suspended corou-
tine, suspending itself. In this case, the successor coroutine not only enters the
running state, but it also becomes the (only) callee of the predecessor’s caller
(E-TRA).

In the rules, the state of a program being evaluated is represented as a pair
(S| uy of stack and store. The stack S contains, from left to right, the running
coroutine, its caller, its caller’s caller and so on, each in the form of labeled
contexts (@e (see Fig.H). As the running coroutine is the top of the stack, the
reduction rules must never pop the last labeled context off the stack.

All suspended Coroutineﬁ are kept in the store p, a function from labels ¢ to
values v. The values in the store are the continuations of the yield and transfer
expressions which caused the coroutine to be suspended, or, in the case of newly
created coroutines, functions which are constructed to be applied likewise.

Coroutines in the returned state are neither in the stack nor in the store
because they play no further role in the execution. The waiting and suspended
states resemble each other in that neither state permits G-reductions.

The coroutine-related rules all maintain the invariant that a coroutine never
rests in the stack and in the store simultaneously. Rule E-CREATE sets up a
continuation v* which makes the new label ¢* known under the name z inside
the body expression e and passes the first input value to e. E-RES removes
the stored continuation of the given coroutine from the store and applies it to
the argument in a new labeled context on top of the stack. In the now-waiting
coroutine, the resume expression remains, awaiting a result from the coroutine
above. The third and fourth resume parameters are the result functions to be
called later with yielded and returned values, respectively.

E-YIE and E-TRA put the continuation of the running coroutine into the
store. While E-YIE passes the argument to the first of the two result functions
of the caller, E-TRA sets up a new stack top in which the continuation from
the store is applied to the argument, just like in E-RES. E-CORET passes the
return value to the other result function in the caller and discards the callee. Of
the resume expression in E-YIE and E-CORET, only the two result functions are
used; the old label £ need not match the returning or yielding coroutine because
the stack top may have been replaced in a transfer action.

If a coroutine attempts to activate another coroutine which is not in the
store (i.e., not suspended), execution aborts with a run-time error (E-RESERR,

® An implementation would keep the coroutines within the store all the time and
annotate them with their state instead; however, the notion of putting coroutines
into the store and taking them out again makes the rules easier to read.

22 K. Anton and P. Thiemann

E—TRAERRE. As an exception to this rule, a coroutine may safely transfer to
itself, e.g. in a multitasking system with just one ready task (E-TRASELF).

Rule E-YIE is only enabled if the stack contains a suitable waiting corou-
tine below; fortunately, the type system rejects all programs in which a yield
expression could appear as a redex in the lowest labeled context.

There is no distinguished main program; the initial expression is also treated
as a coroutine, except that it starts in the running state. In order to evaluate a
CorDuroy program e, it is wrapped in an initial state with the fixed label £y:

initState(e) = (So | 0) So = LoQe; e (1)

The function [-] in E-CONST maps primitive function symbols £, n > 0 to
partial functions of the same arity. The notation e[z — f] stands for standard
capture-avoiding substitution which replaces all free occurrences of z in e by f.
The set of free variables in e is free(e).

2.3 Type System

The type system ensures that values passed to and from coroutines do not cause
type errors at run time, and that coroutine operations within the same coroutine
body are compatible with each other. It is based on the simply-typed A-calculus,
with an effect system describing which coroutine actions may occur during the
evaluation of an expression.

Effects. The effect part of the type and effect system summarizes the yield and
transfer expressions which may be evaluated during the evaluation of an expres-
sion. The propagation of effects through function application permits a called
function to yield and transfer on behalf of the running coroutine in a type-safe
way.

If an expression has the effect 7;~57,/7,, then its execution may yield a value of
type 7, to the calling coroutine and expect a value of type 7; when it is activated
again. It may also transfer execution to a coroutine which yields values of type
To Or returns a value of type 7.

Effects ¢ form a lattice with bottom element L and top element T (see Fig.[]).
1 means that the expression will under no circumstance ever yield. Effect T
means that yield expressions with different types are possible and nothing can
be said about the values.

Types. The type system features basic types B, function types, coroutine types
as well as top and bottom types.

5 This class of runtime errors can be eliminated if E-RES and E-TRA leave the corou-
tine in the store. Then, activating a terminated or waiting coroutine would invoke (a
copy of) the last stored continuation, similar to multi-shot continuations. We chose
the error-rules because they are more similar to how Lua and Python handle these
situations, and they do not need a facility to copy continuations.

Typing Coroutines 23

lUp=pUl=9¢p TUr=7UT=T
TUp=oUT=T lnr=rnl=_1
lUr=7Ul=TMNr=70T=171

(Ti~5To /1) U (15570 /1) U= {Tf— =1
=(mnr)s (o) /(U T otherwise

Ot = oo =T
01 Co iff Fpl.p1 Ul = @2 ! ? L otherwise
(a) Effects. (b) Types.

Fig. 6. Join and meet

Function arrows are annotated with the effect which may occur during the

function’s evaluation. We write 71 — 7 for 71 i>7'2.

A value of type 7; ~» 7, /7, corresponds to a coroutine which can be resumed
with values of input type 7; and yields values of output type 7, or returns a value
of return type 7.

Types form a flat lattice with bottom L and top T. For simplicity, subtyping
is not allowed, and subeffecting is only allowed in create and fix expressions. Join
and meet on types are defined in figure Bl where 71 represent types except for
T and L.

Typing rules. The rules are given in Fig.[l The type environment I" maps vari-
ables to their types. The store typing

X C Labels x{7;~To/T¢|Tior # T,7i # L} (Detx)

maps labels to the types of the corresponding coroutines at run time. The exclu-
sion of T and L serves to avoid subtyping. Note that type rules do not extend
X, expressions are type-checked against a fixed X, and preservation (Sec.B.Tl)
guarantees that some X' can be found after each evaluation step.

The type function bastyy (k™) maps constants to their types of the form
By — By — ... — B, t1. We assume that bastyy (k™) agrees with the primi-
tive denotation [k"]. We also assume that true and false are the only k° of type
Bool, and that only unit inhabits Unit.

Most type rules compute the effect of their expression by joining the effects
of the subexpressions. The only exceptions are T-Fix and T-CREATE, in which
the effect of the body expression is moved onto the function arrow or into the
coroutine type.

The create expression creates a coroutine from a function. In doing so, it binds
a variable to the freshly created coroutine label.

yield and transfer contribute an effect with its input type 7;. Both suspend the
current coroutine and expect a value of type 7; the next time it is activated. The
output and return types in the effect of yield describe that yield certainly causes

24 K. Anton and P. Thiemann

the coroutine to yield a value of that type, but never causes a return. transfer,
however, transfers control and the relationship to the caller to a coroutine which,
in turn, may yield and return. Therefore, T-TRA puts the other coroutine’s
output and return types into the effect in order to force the surrounding yield
and return expressions to match.

Rule T-PROG defines when an entire program is well-typed. The input type
Unit is an arbitrary choice, but since the initial label £j is not lexically accessible
in the program, the input type is of little importance anywayﬁ. The output type
is bounded to L so that an expression which yields can never be the bottom-most
expression in a stack (and yield with e : L, while allowed, will diverge instead of
yielding).

The initial store typing for a program e with Fprog € : 7 is defined as follows:

25 ={(ly,Unit~ L /7)} (2)
3 Soundness

This section contains the soundness proof B. In Sec.Bl we prove that reduction
steps preserve typing. Sec.[3.2 contains the progress proof, stating that all well-
typed execution states are reducible or have finished.

3.1 Preservation

This section states and proves the preservation theorem (Theorem[I). We define
the notion of a well-typed execution state before we formulate some lemmas in
preparation for the main proof.

Fig.Bl contains the definition of an execution state (S |) being well-typed,
T-STATE. Apart from requiring that the types of store and stack members cor-
respond to the store typing Y, which is defined in T-STORE and T-STACKN,
it poses a constraint X Fy S about the waiting coroutines in the stack: the
redex of waiting callers must be a resume expression whose result functions are
compatible with the output and return types of the callee.

Lemma 1. If §|X F Cle] : 7&p, then 0|X Fe: 7'&’ for some 7', ¢’ C ¢, and
free(e) =0

Lemma 2. If 'YX v : 7&yp, then p = L and 7 # L.

Lemma 3. If INz: 7| X Fe:7&yp and 0| X F v : 7'&L, then 'YX F e[z — v] :
T&p.

" If the program’s design features multiple coroutines transferring to each other, there
is still the possibility of having the initial program create one or more such coroutines,
each of which knows its label, and transferring control to one of them.

8 For space reasons, we have omitted most proofs. They are contained in the extended
version of this paper, available from
http://proglang.informatik.uni-freiburg.de/projects/coroutines/

http://proglang.informatik.uni-freiburg.de/projects/coroutines/

Typing Coroutines 25

T-CoNST T-VAR
bastyk(kn):Blﬂ...HBnJrl Vi=1...n. F|E|‘€¢:B¢&g0¢ F(l‘):’r
X FE'er...en: Boiik |_| ©i Nko:7&l
i=1l...n
T-AprpP

INE¥te & 'Y F e : m&ps
Yt ejer: m&pr U Ups

T-Ir
I''Y + ec : Bool &p. 'Y Fe: &t 'YXt ep: &y

'Y & ifectheneselsees : T&pe Uy Uy

T-F1x T-LABEL
F,f:7'1i>72,x:7'1|2|—e:7'2&g0/) X(l) = 15~ 7o) Tr
DY+ fix \fAz.e: (11 2m)& L DY LT To/Tr& L
T-CREATE

INx:mi~10/m| X Fe: Tiﬁn&apl 0,0 T Ti5To/Tr Tijowr 7 1,7 # L
I Y & createx.e : 7~ 7o /Tr& L

T-RES
X Fec:iv1o/Tr&pr

Yt eq: 1i&po TEbFes: 1o m,&¢s MEZFen: 7251806
'Y resumeeceq es er 1 Tq& |_| Vi

i=1...6

T-YIE T-TrRA
'Ytre:ro&kpr 7 #T Y ¢ ec: ma~To/Tr&p1 Y bFeq: oo
'Yt yielde : 1:& (1~570 /L) U1 I'| X+ transferec eq : 1i& (1i~570 /7r) U (1 U 2)
T-ProcG
OO+ e:m&e ¢ CUnit~sL/7
Fprog €: T

Fig. 7. Typing rules

Definition 1. Given I', X, we write I''YX F e1 < eq, if I'|X F ey : 7&p1 and
X ¢ eq: T&ps with o1 C @o. X 1 ey < ey is an abbreviation for |3 F e < es.

Lemma 4 (Contexts are effect-monotone). If I'| X ¢’ < e and for some
7,0, 'Y F Cle] : &, then 'YX F Cle'] : 7&¢ for some ¢’ T ¢, and I'| X
Cle'l < Cle].

Lemma 5. Let S = (QCle];S*, S' = ¢QCe']; S” such that X + ¢ < e. Then
YhixS =Xk« S and X+, S = X+, S hold.

Lemma 6. Let S = {1Qeq; (,QC [resumel’ v, vs vy] ; S? such that X b+ S and
Y bwS. Let 1y~ 75 /Tn = X(€1). Let v be a value with | X F v : 1,& L for an
a € {s,n}. Then, 8" = ,QC v, v];S" satisfies X Fo+ S" and X+, S'.

26 K. Anton and P. Thiemann

T-STATE
2 st 1 X e S Yhw S labels(S) Ndom (u) =0

LS)

T-STACKO T-STACKN R)
£ & labels(S") Y e £Q@e Yk S

Y hex € Yher S where S = (@¢; S”

T-STACKE

X)) =1~ To/Tr D)X Fe:&p © C Ti~57o [Tr
b |_le K@@

T-WaIrTN
S =01Q@e;q; S’ Ti > To /Tr = X (1) S = 62@62;57 ez = C[resume £ vq s Un]
@lZFUSZTOW—S)T&L @|E|—vn:7}ﬂ>7‘&L S S

Yk S
T-Wairl T-STORE
S = (Qe;e Y) =7~ L/7 pis function V(l,v) € p: X ksio (£,0)
Sy S 5 baror
T-STOREE
X)) =1~ To)Tr PEFv:nSn&l ® C 15570/ Tr
Y Fsto (£,v)

Fig. 8. Well-typed execution states, stacks, stores

Lemma 7. If 7,57,/ T 7/~>7) /7], then all of the following hold:

—rm=1orm=Tort =1
—To=ThborTo=LorT,=T
ort,=Lort.=T
Lemma 8 (Well-typed initial states). Let e be an expression with Fprog € 1 T,
and (S| p) = initState(e). Then X7 (S| u).

Theorem 1 (Preservation). If X (S | u) and (S | u) — (S" | '), then X' I
(S"| ') for some X' 2O X.

Proof. We focus on the main cases (see the extended version for the remainder).
Case distinction on the evaluation rule.

— Case E-CREATE: So S = (QC|createz.¢];S’, S’ = (QC[¢*];S?, and ' =
pw U {0, v")} with v* = Az*.((Az.ex™) ¢*). From the assumed X b« S,
Lemma [I] yields @|X F createz.e : 7.&¢. for some 7, p.. The only rule to
derive this is T-CREATE, from which we can conclude that ¢, = 1 and
Te = T; ~>To/Ty. Furthermore, the same rule requires that

1| E e L&y (3)

for some @, ¢’ C 7;~57, /7. Choose X' = X U{(¢*,7.)} , which still is a func-
tion due to freshness condition on £*. Also, the constraints on occurrences

Typing Coroutines 27

of T and L in 7;,,, as demanded in (DefX]), are satisfied by the precon-
dition in T-CREATE. Then Q|X ¢* : 7.&L holds, and X’ b+ S’ follows
by Lemma Bl X' -y S follows from X +y, S (using that F is obviously
montone in X).

Y Fgor p requires that p' is a function (true due to the freshness of

¢*), and that v* has the right type: 0|2 F v* : 7; 2, 7,&L for some
©* C 13~57, /7. This follows from @) by T-APpP and T-F1X, observing that
all type derivations using X' also work with its superset X/. v/

Case E-YIE: Then S = (1Q@ey;,@ey; S* and S’ = l,Qeh; S° with e; =
Cilyieldvy], es = Cylresumelvgvsvy], e5 = Calvsvy]. Also ¢ = pU
{(l1,€})} with e} = Aa*.Cy[z*].

We choose X' = Y. Due to X k.« S, X must contain entries for £, ¢
of the form X (¢) = 7F ~» 7% /7% for k = 1,2. Furthermore, by T-STACKN,
D|X F eq: T &l and 0| X F ez @ 72&¢? must hold for some ¢! C ¢!, o? C ¢?
(where ¥ = tF57k /7F),

To prove X' kxS’ and X' + S’ using Lemma [6] we need to show
0|X + vy, : 72&L (the rest follows immediately from the assumptions and
X' =2%). Let 1y, 7} be the types assigned to v, and yield vy, respectively, in
the type derivation for the assumed X +, £1@Qe;. By T-YIE and Lemma [T]
we get

T “:*Ty/l— C Tz‘l ”"97'5 /Trl (4)

By Lemma [7, 7, = L (impossible: Lemma [), or 7} = T (contradicting
Def2)), or 7y =71 v

To prove X g+ 1/, it remains to prove that p is still a function (by T-
STATE, ¢1 ¢ dom (u), so adding ¢; preserves the function property of 1), and
that 0|2 & u/(¢1) : 7} L 71& L with some ¢ C ;. Applying Lemma [T to
@), we know that 7} = 7 (T-YIE forbids 77 = T, (DefX) forbids 7} = L).
Setting I' := z* : 7;, we immediately get I'|X + z* < yieldv,, and by

Lemmald I'|¥ + Cy[z*] < e;. Hence, by T-FIx, 0| X F Az*.Cy[2*] : 7} 2>
71& L for some ¢’ C ¢1. v/

Case B-RES: So S = £,QC|resume (1 v, vsv,];S”, and S' = £,Q(vy v,); S
with v1 = (1), ' = p\ ¢1. Furthermore, we know that X(¢1) = 7~ 7, /7,
for some 7;, 7, 7 because X o+ S holds.

We choose X/ = X, For X'+ (58" | i'), we need to prove: (a) X g0
(b) ¥ Fie £1Quyv,, (c) ¢1 ¢ labels(S”) (which yields X’ i« S’ together
with ([B)), (d) X Fy S, and (e) labels(S’) N dom (i) = 0.

Proposition (@) follows immediately from ' being a subset of i and the as-
sumption X' g . v Proposition (@) is clear from X'+ (S |). v Proposition
@) is clear because moving ¢; between sets preserves disjointness. v’

Proposition ([): prove 0|3 - v1 v, : 7-& ¢y for some 1 E 73557, /7. By

assumption X' Fgox 1, we know about vy that §|X F vy : 7 w—lwr&J_ holds
with ¢} C 7;~57,/7.. With Lemma [[l Lemma [2] and T-RES, we conclude
that 0| F v, : ;& L, which yields the desired result using T-APP.

28 K. Anton and P. Thiemann

R:=k"v1...0n | (fixAfAz.€)v
| if truethen ey else ez | if false then e else ez

| createx.e | yieldv | resume fv v v | transfer L v

Fig. 9. The language of redexes

Proposition (d)): By Lemma [, Lemma [l and T-RES, we know that 0| X -
Vs @ To ﬁwq&J_ and 0| X F v, : 7 mTq&L, which matches the precondi-
tion of T-WAITN about vs and v,,. The other preconditions follow directly
from the assumptions. v/

FEnd case distinction on the evaluation rule. |

3.2 Progress

In this section, we state the progress property. First, we define a language of
redexes in Fig.[@ then we show in Lemma [I0 that well-typed expressions are
either values or redexes embedded in evaluation contexts, which facilitates the
main progress theorem, Theorem

Lemma 9 (Canonical forms)

1 If T ZFv: 7 57'&y!, then v = fix\f.\x.e for some f,z,e.
2. If 'YX+ v : Bool&y', then v = true or v = false.

3. If 'YX+ v: Unit&y', then v = unit.

4. If DX Fv:m~1/17&¢", then v =L for some £ € dom (X).

Lemma 10 (C[R]-decomposition). Let §|X + e : & for some e, X, T, .
Then e is a value, or e = C[R] for some C, R.

Theorem 2 (Progress). Let (S | u) be an evaluation state and X a store typing
so that X & (S| p). Then S = £LQu;e for some v, ¢, or (S| p) — (S| ')y for
some S', i, or (S| u)y — Error.

4 Related Work

Formalizations of coroutines. De Moura and Ierusalemschy [14] formally define
coroutines in an untyped A-calculus with mutable variables as a model for Lua
coroutines. Their interexpressibility results (e.g. transfer in terms of resume/yield)
make heavy use of untyped mutable variables; it is yet unclear which of the
transformations can be adapted to a statically-typed setting. Their work con-
tains a comprehensive overview of the state of the art in coroutines and related
techniques.

Wang and Dahl [I8] formalize the control-flow aspects of idealized Simula
coroutines. The operational semantics of Belsnes and @stvold [I] also focuses on
the control-flow aspects but includes threads and thread-coroutine interaction.
Laird [10] presents a process calculus in which the coroutine is the basic building
block. Berdine and coworkers [2] define coroutines in their process calculus.

Typing Coroutines 29

Language design. Languages with parameterless coroutines include Simula [5],
Modula-2 [19], and BETA [9]. However, the type systems of these languages need
not treat coroutines with much sophistication because the coroutine operations
do not pass values.

Some mainstream dynamically-typed languages like Python [17] and Lua [15]
pass values to and from coroutines, but without a static type system. C# [13] has
static typing and generators (asymmetric coroutines with parameters only for
yield), but as the yield-equivalent may only be used lexically inside the generator’s
body, the type system avoids the complexity involved with stackful coroutines.

Marlin’s ACL [12] is a (statically typed) coroutine extension of Pascal in
which coroutines can accept parameters. In analogy to the separation between
procedures and functions in Pascal, it features separate syntax for symmetric
and asymmetric coroutines. The problem of procedures performing coroutine
operations on behalf of the enclosing coroutine is solved by referring to the static
block structure, which simplifies the type system at the expense of flexibility.

Haynes and coworkers [7] express coroutines using continuations in Scheme;
Harper and colleagues [6] in turn describe a type system for continuations.

Lazy languages like Haskell [16] get asymmetric coroutines for free: a coroutine
can be viewed as a transformer of a stream of input values to a stream of output val-
ues, which is straightforward to implement using lazy lists. Blazevic [3] produced
a more sophisticated monad-based implementation of symmetric coroutines.

5 Conclusion

We presented CorDuroy, a language with type-safe stackful asymmetric and sym-
metric first-class coroutines, and proved its soundness. CorDuroy constitutes the
first provably sound type system for an eager-evaluated language that supports
realistic and expressive facilities for coroutines.

One obvious direction of further research is the addition of polymorphism. For
subtype polymorphism, (a subset of) C# would be a promising candidate since it
already has generators. Parametric polymorphism would likely bring challenges
similar to those caused by mutable references.

As this work was inspired by De Moura and Ierusalemschy’s paper [14] in
which they present translations between various styles of coroutines, continu-
ations and threads in an untyped setting with mutable variables, it would be
interesting to see if the corresponding typed equivalences also hold.

Currently, the operational semantics contains failure rules. Instead, linearity
could be introduced to prevent the activation of returned coroutines by keeping
track of the coroutine state.

References

1. Belsnes, D., @stvold, B.M.: Mixing threads and coroutines (2005), submitted to
FOSSACS 2005, bjarte@nr.no

2. Berdine, J., O’Hearn, P., Reddy, U., Thielecke, H.: Linear continuation-passing.
Higher-Order and Symbolic Computation 15(2-3), 181-208 (2002)

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

K. Anton and P. Thiemann

Blazevic, M.: monad-coroutine: Coroutine monad transformer for suspending and
resuming monadic computations (2010),
http://hackage.haskell.org/package/monad-coroutine

. Conway, M.E.: Design of a separable transition-diagram compiler. Comm.

ACM 6(7), 396408 (1963)

. Dahl, O.J., Myrhaug, B., Nygaard, K.: SIMULA 67 Common Base Language. Nor-

wegian Computing Center, Oslo (1970) (revised version 1984)

. Harper, R., Duba, B.F., MacQueen, D.: Typing first-class continuations in ML. In:

Proc. 1991 ACM Symp. POPL. ACM Press, Orlando (1991)

. Haynes, C.T., Friedman, D.P., Wand, M.: Obtaining coroutines with continuations.

Computer Languages 11(3), 143-153 (1986)

. Knuth, D.E.: Fundamental Algorithms, The Art of Computer Programming, 2nd

edn., vol. 1. Addison-Wesley, Reading (1968)

. Kristensen, B.B., Pedersen, B.M., Madsen, O.L., Nygaard, K.: Coroutine sequenc-

ing in BETA. In: Proc. of 21st Annual Hawaii International Conference on Software
Track, pp. 396-405. IEEE Computer Society Press, Los Alamitos (1988)

Laird, J.: A calculus of coroutines. In: Diaz, J., Karhumaki, J., Lepisto, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 882-893. Springer, Heidelberg
(2004)

Liskov, B.: CLU reference manual. LNCS, vol. 114. Springer, Heidelberg (1981)
Marlin, C.D.: Coroutines: a programming methodology, a language design and an
implementation. Springer, Heidelberg (1980)

Microsoft Corp.: C# Version 2.0 Specification (2005),
http://msdn.microsoft.com/en-US/library/618ayhy6 (v=VS.80) .aspx

de Moura, A.L., Ierusalimschy, R.: Revisiting coroutines. ACM Trans. Program.
Lang. Syst. 31(2), 1-31 (2009)

de Moura, A.L., Rodriguez, N., Ierusalimschy, R.: Coroutines in Lua. Journal of
Universal Computer Science 10, 925 (2004)

Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, Cambridge (2003)

Van Rossum, G., Eby, P.: PEP 342 — coroutines via enhanced generators (2005),
http://www.python.org/dev/peps/pep-0342/

Wang, A., Dahl, O.J.: Coroutine sequencing in a block structured environment.
BIT Numerical Mathematics 11(4), 425-449 (1971),
http://www.springerlink.com/content/g870vkxx22861w50

Wirth, N.: Programming in Modula-2. Springer, Heidelberg (1982)

Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information and
Computation 115(1), 38-94 (1994)

http://hackage.haskell.org/package/monad-coroutine
http://msdn.microsoft.com/en-US/library/618ayhy6(v=VS.80).aspx
http://www.python.org/dev/peps/pep-0342/
http://www.springerlink.com/content/g870vkxx22861w50

An Expression Processor:
A Case Study in Refactoring Haskell Programs

Christopher Brown®, Huiging Li%, and Simon Thompson?

1 School of Computer Science, University of St. Andrews, UK
chrisb@cs.st-andrews.ac.uk
2 School of Computing, University of Kent, UK
{H.Li,S.J.Thompson}@kent.ac.uk

Abstract. Refactoring is the process of changing the structure of a pro-
gram while preserving its behaviour in order to increase code quality,
programming productivity and code reuse. With the advent of refac-
toring tools, refactoring can be performed semi-automatically, allowing
refactorings to be performed (and undone) easily.

In this paper, we briefly describe a number of new refactorings for
Haskell 98 programs implemented in the Haskell Refactorer, HaRe. In
particular, a number of new structural and data-type refactorings are pre-
sented. We also implement a simple expression processor, clearly demon-
strating how the refactorings and the HaRe tool can aid programmers
in developing Haskell software. We conclude the paper with a discus-
sion of the benefits of refactoring Haskell programs, together with their
implementation and design limitations.

1 Introduction

Often programmers write a first version of a program without paying full atten-
tion to programming style or design principles [I]. Having written a program,
the programmer will realise that a different approach would have been much
better, or that the context of the problem has changed. Refactoring tools pro-
vide software support for modifying the design of a program without changing
its functionality: often this is precisely what is needed in order to begin adapting
or extending it.

The term ‘refactoring’ was first introduced by Opdyke in his PhD thesis in
1992 [2] and the concept goes at least as far back as the fold/unfold system pro-
posed by Burstall and Darlington in 1977 [3], although, arguably, the fold /unfold
system was more about algorithm change than structural changes. A key aspect
of refactoring — illustrated by the ‘rename function’ operation — is that its
effect is across a code base, rather than being focussed on a single definition:
renaming a function will have an effect on all the modules that call that function,
for instance.

The Haskell Refactorer, HaRe, is a product of the Refactoring Functional
Programs project at the University of Kent [4] [5] by Li, Reinke, Thompson and
Brown. HaRe provides refactorings for programs written in the full Haskell 98

R. Page, Z. Horvéth, and V. Zsék (Eds.): TFP 2010, LNCS 6546, pp. 31-[, 2011.
© Springer-Verlag Berlin Heidelberg 2011

32 C. Brown, H. Li, and S. Thompson

standard language [0], and is integrated with the two most popular development
environments for Haskell programs [7], namely Vim [8] and (X)Emacs [9]. HaRe
refactorings can be applied to both single- and multi-module projects.

HaRe is itself implemented in Haskell, and is built upon the Programatica
[10] compiler front-end, and the Strafunski [11] library for generic tree traversal.
The HaRe programmers’ application programming interface (API) provides the
user with an abstract syntax tree (AST) for the program together with utility
functions (for example, tree traversal and tree transforming functions) to assist
in the implementation of refactorings.

In this paper, we describe briefly a number of new refactorings for HaRe and
demonstrate their use by applying them to an expression processing example.
Using Haskell as the implementation language allows us to explore the usability
of Haskell for implementing transformation and analysis tools.

We are also able to reflect on how refactoring functional programs — and in
particular programs in Haskell — is different from refactoring within the OO
paradigm. Pure functional languages such as Haskell make some refactorings
substantially more straightforward: consider the example in which a function
definition is generalised by selecting a sub-expression to pass as an argument, as
in the transformation of the following program on selection of the sub-expression
1 within the definition of addOne,

addOne []1 = []
addOne (x:xs) = x+1 : addOne xs

fun xs = sum (addOne xs)
where for good measure we also rename the function appropriately:

addNum n [] = []
addNum n (x:xs) = x+n : addNum n xs

fun xs = sum (addNum 1 xs)
We note three aspects of this transformation.

— In performing a generalisation over an arbitrary sub-expression we can be
sure that the expression has no side-effects, and so it can be passed as an
argument without changing the order in which these effects take place.

— Because Haskell is evaluated lazily, we know that the argument will only be
evaluated if it is used, and so we will not change the strictness of the function
by generalising in this way; this would not be the case in a strict language.

— Finally, if we choose as a sub-expression something of functional type then
because functions are ‘first-class citizens’ in Haskell the generalisation can
take place: the use of arbitrary closures in (e.g.) object-oriented languages
would make this generalisation awkward or indeed impossible.

If we were to introduce side-effects in a measured way — as in Haskell monads
or in Erlang’s communication primitives — it is possible to detect where side-
effects may take place, and indeed to ‘wrap’ the effects in a function closure
when generalising, if that is required.

An Expression Processor: A Case Study in Refactoring Haskell Programs 33

In general refactorings for Haskell can be more far-reaching because of the
purity of the language, but some features — especially overloading by means of
type classes — can lead to some difficulties in implementation; for example in
generalisation two or more sub-expressions may be similar, but have potentially
different types.

To date HaRe has a number of refactorings implemented, each refactoring
falls into one of two categories: structural or data-type based. Structural refac-
torings affect the expression level of a program, including function definitions;
whereas data-type based refactorings affect the type definitions of a program,
or affect the expressions of the program taking into account a type constraint.
The refactorings were jointly implemented by Li [12] and Brown [13] in their
PhD theses. Here we attempt to declare the authorship and category of all the
existing refactorings for HaRe.

— Structural
Renaming, demote/promote a definition, unfold a definition, introduce/
delete a definition, generalise a definition, add/remove an argument and
duplicate a function [12].
Folding, generative folding, folding/unfolding as-patterns, converting
between let and where and case analysis simplification [13].
— Data-Type
From concrete to abstract data type [12].
Add/remove a constructor, add/remove a field and introduce pattern
matching [13).
— Miscellaneous. Duplicate code elimination [I4] and program slicing, in-
cluding: dead code elimination, splitting and merging [13].

We note that removing a constructor and removing a field are pseudo refactor-
ings; that is, they are refactorings if performed directly after their inverse which
adds the construct, but they may change behaviour if used in other situations.
The particular contributions presented here are:

— Structural and Data-Type Refactorings. The design and implementa-
tion of a new set of structural and data-type refactorings, taken from Brown
[13]. These refactorings are introduced in Section 2 and are italicised in the
list of refactorings above.

— Refactoring Case Study. A case study for refactoring Haskell programs. In
particular we apply the refactorings described in this paper to an expression
processing example. The example is used to demonstrate the capacity of the
refactorings from this paper in a simple, but still useful, context. This case
study is presented in Section [Bl

We conclude the paper with a discussion of the general benefits for the Haskell
programmer of refactoring, and a discussion of some of the difficulties of imple-
menting the various refactorings; we conclude by reviewing our agenda for future
work.

34 C. Brown, H. Li, and S. Thompson

2 Structural and Data-Type Refactorings

This section describes some new structural and data-type refactorings that have
been defined and implemented in HaRe by Brown [13]. In this paper we chose
to select the refactorings that would appear most useful to the Haskell program-
mer. The refactorings presented here follow on from the refactoring work by Li
[12], and use the refactoring catalogue [I5] maintained by Thompson as a ba-
sis. In particular, the following refactorings are described in this section: folding
(Section 2]); merging (Section [22)); adding a constructor (Section 23)); remov-
ing a constructor (Section 24]); adding and removing a data type field (Section
[25)); and introducing pattern matching (Section 2.6).

We note that the refactorings are only very briefly described here. For a much
more detailed overview of the transformation rules and side conditions for each
refactoring described in this section, we refer the reader to Brown’s PhD thesis
[13].

2.1 Folding

Folding replaces instances of the right hand side of a definition by the corre-
sponding left-hand-side. This refactoring is designed to be the complement of
unfolding which is described in Li’s PhD thesis [12]. Folding can be used to
eliminate some duplicate expressions within a program; it can also be used to
create a name for a common abstraction occurring within the program by ab-
stracting away from a common sub-expression, as long as there is a definition
to fold against. This is achieved by first extracting the common definition using
the introduce new definition refactoring [12], and then folding against this newly
introduced definition.

Example. An example of folding an instance of the right hand side of a def-
inition, table, is shown in Figure [l In the figure, two definitions are given:

Before: After:

showAll = (concat . format) . (map show) showAll = table . map show
table = concat . format table = concat . format

Fig. 1. Folding (concat . format) against the definition of table is shown from left
to right. The inverse of this (unfolding table within showAll) is shown from right to
left.

showAll and table. The right hand side of table, as can be seen, also ap-
pears as a sub-expression on the right hand side of showAll. Folding allows the
definition table to be selected and all occurrences of its right hand side (occur-
rences within different entities in the same scope as table, except those that
appear on the right hand side of table) are replaced with a call to table. The
top row of the example shows that the sub-expression, (concat . format) has
been replaced with a call to table, passing in (map show) as an argument; this
therefore eliminates some duplicated code within the program.

An Expression Processor: A Case Study in Refactoring Haskell Programs 35

Before: After:
splitAt_1 :: Int -> [a] -> [a] splitAt :: Int -> [a] -> ([al, [al)
splitAt_1 0 _ = [] splitAt 0 xs = ([],xs)
splitAt_1 _ [I= [] splitAt _ [1 = ([1,[D
splitAt_1 n (x:xs) splitAt n (x:xs) = (x:ys,zs)
= x : splitAt_1 (n-1) xs where

(ys,zs) = splitAt (n-1) xs
splitAt_2 :: Int -> [a] -> [al]
splitAt_2 0 xs = xs
splitAt_2 _ [1 = []
splitAt_2 n (x:xs)
= splitAt_2 (n-1) xs

Fig. 2. Merging a pair of definitions is shown from left to right; the merged definition
is recursive and introduces a shared list traversal

2.2 Merging

Merging takes a number of selected definitions and creates a new, generative,
definition that returns a tuple. Each component of the tuple returned by the
merged definition encapsulates the behaviour of the selected entities. The merged
definition is generative in the sense that it is recursive, and removes duplicate
parts of the function by introducing code sharing. Merging is the inverse of
splitting, as defined in [13].

Merging is actually known as tupling in the field of program transformation,
and was originally proposed by Pettorossi [10], as a strategy for composing effi-
cient computations by avoiding repeated evaluations of recursive functions.

Example. An example of merging the functions splitAt 1 and splitAt 2 is
shown, from left to right, in Figure [2l In order to perform the merge, the user
must first select each function splitAt 1 and splitAt 2 in turn and add them
to a merging cache, so that HaRe can perform the refactoring over the selected
entities. The newly introduced definition, splitAt, uses only one list traversal,
rather than a separate traversal for each of splitAt 1 and splitAt 2.

2.3 Adding a Constructor to a Data Type

Adding a constructor to a defined data type. The introduced constructor is added
immediately after a selected constructor definition in a data type. New pattern
matching is introduced for all functions defined over the modified data type.

Example. An example of adding a constructor Var to a data type Expr is
shown in Figure Bl In the example, we select the constructor Minus and choose
to add a new constructor immediately after (the result is shown in the right
column). We add the new constructor Var with an argument Int. This is done
by HaRe prompting the user for the constructor name and the types of its fields

36 C. Brown, H. Li, and S. Thompson

Before: After:
data Expr = Plus Expr Expr data Expr = Plus Expr Expr
| Minus Expr Expr | Minus Expr Expr
| Var Int
eval :: Expr -> Int
eval (Plus el e2) addedVar = error "added Var Int to Expr"
= (eval el) + (eval e2) eval :: Expr -> Int
eval (Minus el e2) eval (Plus el e2)
= (eval el) - (eval e2) = (eval el) + (eval e2)

eval (Minus el e2)
= (eval el) - (eval e2)
eval (Var a) = addedVar

Fig. 3. Adding a constructor Var with the field Int is shown from left to right. Re-
moving the constructor and its field is shown from right to left.

when the refactoring is selected from the menu. The function eval is updated
automatically to include pattern matching for the newly added constructor.

2.4 Removing a Constructor from a Data Type

Removing a constructor is defined as the inverse of adding a constructor. Re-
moving is not a refactoring in the sense that it eliminates equations from the
program space; this therefore may change the behaviour. However, removing
a constructor is a pseudo refactoring if it is performed directly after adding a
constructor, but this does not apply generally to the transformation. Removing
a constructor allows a constructor to be identified and all clauses that involve
pattern matching over the constructor are commented out. All occurrences of
the constructor in an expression are replaced with calls to error.

Example. An example of removing a constructor Var from a data type Expr is
defined in Figure [B] read from right to left. Var is selected for removal and the
refactoring removes the value from its defining definition, Expr and comments
out all equations referring to the value Var in a pattern. When used on the right
hand side Var is replaced with a call to error. The equation eval (Var a) =
addedVar is also commented out, although this is not shown in the figure.

2.5 Adding or Removing a Field to or from a Constructor

Adding a field to a constructor allows a new field to be added to an identified
data type constructor. The new field is always added to the beginning of the type
to allow for partial applications of the constructor in the program. The reason
for this is to complement the add a new parameter refactoring, which also adds
arguments to the beginning of the argument list of a function.

Removing a field is defined as the inverse of adding a field. All references to
the removed field in pattern matches or sub-expressions are commented out of

An Expression Processor: A Case Study in Refactoring Haskell Programs 37

Before: After:

data Datal a = C1 a Int Char data Datal b a = C1 a Int Char
| C2 Int | C2 Int
| C3 Float | C3 b Float

f :: Datal a -> Int f (Datal b a) -> Int
f (Clabc)=b f (Clabc)=b

f (C2 a) = a f (C2 a) = a

f (C3 a) = 42 f (C3 c3_1 a) = 42

g (Cl (Clxyz)bc)=y g(Cl (CLxyz)bc=y
h :: Datal a h :: Datal b a

h = C2 42 h = C2 42

Fig. 4. Adding and removing a field b to the constructor C3 shown from left to right.
Removing the field is shown from right to left.

the program. Similarly, if the removed field was referred to in the program then
the sub-expression will be commented out after the removal process. Removing
a field is a destructive transformation rather than a refactoring, as it changes
behaviour. Removing a field is also a pseudo refactoring if performed directly
after adding a field.

Example. Figure [d read from left to right, shows an example of a new field
being added to a data type. The new field, of the polymorphic type b, generalises
the data type further. b is added to the left hand side of the type definition, and
also to all type signatures which involve the type Datal in the program.

Conversely, Figured] read from right to left, shows an example of a field being
destructively removed from a data type. The field in question, of the polymorphic
type b, is removed from the left hand side of the type definition, and also from
all type signatures involving Datal.

2.6 Introduce Pattern Matching over an Argument Position

This refactoring introduces pattern matches for a function with a variable in a
particular argument position. Pattern matching is introduced in all its defining
equations by replacing the variable with an exhaustive set of patterns for the
type of the variable.

Example. An example of introducing pattern matches is given in Figure[§ from
left to right. In the example, the new pattern matches are added to the definition
of £ and the introduced patterns for x are placed within an as pattern. The right
hand side is copied into the new equations and any new pattern variables that
are introduced are given new, distinct, names so that no binding conflicts can
occur. In the example, the pattern variables y and ys are introduced.

38 C. Brown, H. Li, and S. Thompson

Before: After:
f [Int] -> Int f :: [Int] -> Int
f x = head x + head (tail x) f x@[] = head x + head (tail x)

f x@(y:ys) = head x + head (tail x)
Fig. 5. Introducing pattern matches for the pattern x is shown from left to right

3 Refactoring an Expression Processor

In this section we present a simple example illustrating how the majority of the
refactorings described in this paper could be used in practical program develop-
ment. In the example, we design a very simple language; we then write a parser,
evaluator and pretty printer for that language. As the application is being im-
plemented, there are cases where the use of a refactoring tool greatly increases
the productivity of the programmer, and improves the design of the program,
making the succeeding implementation steps easier to perform. In addition to
the previously mentioned techniques, we also make use of the following refactor-
ings from Li’s thesis [I2]: renaming; generalising; introducing a new definition;
and adding an argument to a definition.

The example starts with the very basics of implementing a language, parser
and evaluator. The code for this is shown below; the grammar for the lan-
guage is described in the data type on Line 1 in Figure So far, the lan-
guage only has the capacity to handle Integer literals and applications of Plus.
The function parseExpr is the parser for the language, taking a String and
converting it into a tuple: the first element being the Abstract Syntax Tree
for Expr, and the second the unconsumed input. To show this in practice, the
following shows how the parser and evaluator can be invoked from the GHCi
command line:

Prelude Parser> parseExpr "+ 1 2"
(Plus (Literal 1) (Literal 2),"")

Prelude Parser> eval $ fst $ parseExpr "+ 1 2"
3

For reasons of simplicity, the language does not include parentheses (although
this could easily be integrated into future versions) and + is not applied as an
infix function, also the expressions only take unsigned (positive) integers. For
the purpose of this example the expressions are given in a prefix format. The
complete implementation, for each stage of the case study, can be found at [17];
at each stage we have also attempted to motivate how we have proceeded with
choosing which refactorings to perform.

3.1 Stage 1: Initial Implementation

With the basics of the parser and evaluator set up, the first step is to start
integrating other constructs into the language. Therefore, we add the constructor
Mul to Expr in order to represent the application of * in our programs. We do

An Expression Processor: A Case Study in Refactoring Haskell Programs 39

o

data Expr = Literal Int | Plus Expr Expr

2 deriving Show

3

4 parseExpr :: String -> (Expr, String)

5 parseExpr (° ’:xs) = parseExpr xs

6 parseExpr (°+’:xs) = (Plus parsel parse2, rest2)

7 where

8 (parsel, restl) = parseExpr xs

9 (parse2, rest2) = parseExpr restl
10 parseExpr (x:xs)

11 | isNumber x = (Literal (read (x:1lit)::Int), drop (length 1lit) xs)
12 where

13 lit = parselnt xs

14 parselnt :: String -> String

15 parselnt [] = []

16 parseInt (x:xs) | isNumber x = x : parselnt xs
17 | otherwise = []

18 parseExpr xs = error "Parse Error!"

19

20 eval :: Expr -> Int

21 eval (Literal x) = x

22 eval (Plus x y) = (eval x) + (eval y)

Fig. 6. The basic language and parser with prefix Plus expressions and Int literals

this by using the refactoring add a constructor (described in Section 2Z3]). The
refactoring asks us for the name of the constructor and any arguments. We enter
Mul Expr Expr and select the constructor Plus. The refactoring always adds
the new constructor immediately after the highlighted constructor. In this case
the refactoring adds the new constructor to the end of the definition of Expr
and also generates additional pattern matching clauses to eval (we use italics
to show code introduced by the refactorer):

data Expr = Literal Int | Plus Expr Expr | Mul Ezpr Ezpr
addedMul = error "Added Mul Expr Exzpr to Ezpr"

eval :: Expr -> Int

eval (Literal x) = x

eval (Plus x y) = (eval x) + (eval y)
eval (Mul p_1 p_2) = addedMul

The refactoring has also inserted a call to the (automatically created) definition
of addedMul which is easily replaced with actual functionality in the succeeding
steps.

3.2 Stage 2: Introduce Binary Operators

It is anticipated that the language should be able to handle any number of math-
ematical binary operators. In order to handle this design decision, we implement
a new data type Bin Op to handle binary operators, and a new constructor to

40 C. Brown, H. Li, and S. Thompson

Expr to handle this abstraction. In order to achieve this, we first remove the
constructors Plus and Mul (using the remove a constructor refactoring, defined
in Section [Z3]). The refactoring then automatically removes both constructors
and their pattern matching:

data Expr = Literal Int

parseExpr (’+’:xs) = (error "Plus removed from Expr"

{-Plus parsel parse2, rest2-})
where

(parsel, restl) = parseExpr xs
(parse2, rest2) = parseExpr restl

eval :: Expr -> Int

eval (Literal x) = x
{- eval (Plus z y) = (eval z) + (eval y) -}
{- eval (Mul p_1 p_2) = (eval z) * (eval y) -}

The Bin Op data type is then created with the constructors, Mul and Plus. This
operation of removing constructors and introducing a new, generalised, type,
may be implemented as refactoring, and is known as introduce layered data type
in the catalogue of refactorings, maintained by Thompson [15].

A new function, called eval op is then introduced, with a skeleton implemen-
tation, as follows:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)
eval_op x = error "Undefined Operation"

We then proceed to define the implementation for eval op: by choosing introduce
pattern matching (described in Section 2.6 on Page[37) from HaRe and selecting
the argument x within eval op, the refactoring produces the following:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)
eval_op p_1@(Mul) = error "Undefined Operation"
eval_op p_1@(Plus) = error "Undefined Operation"
eval_op _ = error "Undefined Operation"

All that is left to do for this stage is to replace the right hand sides of eval op
with (*) and (+) respectively.

The next stage is to do some tidying of our newly introduced type, Bin Op. In
particular, we need to define a constructor within Expr and modify the evaluator
to call eval op for the Bin Op case.

To start, we add a constructor to Expr where HaRe also automatically adds
a new pattern clause to eval:

data Expr = Literal Int | Bin Bin_Op Ezpr Ezpr
addedBin = error "Added Bin Bin_0Op Expr Expr to Expr"

eval :: Expr -> Int
eval (Literal x) = x
eval (Bin p_1 p_2 p_3) = addedBin

An Expression Processor: A Case Study in Refactoring Haskell Programs 41

The call to error on the right hand side of parseExpr for the ’+’ case is then
replaced with Bin Plus parsel parse2. The next step is also to rename (using
the rename refactoring in HaRe) the variables in the introduced pattern match
to something more meaningful:

eval :: Expr -> Int
eval (Literal x) = x
eval (Bin op el e2) = eval_op op (eval el) (eval e2)

Multiplication is then introduced in the parser, by copying the ’+’ case into a
>x? case, and substituting Plus for Mul on the right hand side.

1 parseExpr :: String -> (Expr, String)

2 parseExpr (° ’:xs) = parseExpr xs

3 parseExpr (’*’:xs) = (Bin Mul parsel parse2, rest2)

4 where

5 (parsel, restl) = parseExpr xs

6 (parse2, rest2) = parseExpr restl

7 parseExpr (’+’:xs) = (Bin Plus parsel parse2, rest2)

8 where

9 (parsel, restl) = parseExpr xs

10 (parse2, rest2) = parseExpr restl

11 parseExpr (x:xs)

12 | isNumber x = (Literal (read (x:1lit)::Int), drop (length 1lit) xs)
13 where

14 1lit = parselnt xs

15 parselnt :: String -> String

16 parseInt [] = []

17 parseInt (x:xs) | isNumber x = x : parselnt xs
18 | otherwise = []

19 parseExpr xs = error "Parse Error!"

Fig. 7. The parser implementation with plus and multiplication

3.3 Stage 3: Generalisation

In stage 3, we observe that there are occurrences of (near) duplicated expressions
in the program. Typically, refactoring can remove duplicated expressions by
introducing one of the instances of the duplicated expressions at the top level of
the program, and then generalising it so that all other instances can be folded
against the new definition. As can be seen from Figure [0, two equations of
parseExpr contain some duplicated code (this is highlighted in the figure). We
eliminate this duplicate code, by first introducing a new definition (using the
introduce new definition refactoring in HaRe) by highlighting the code on lines
7 - 10 from Figure [l We enter parseBin as the name for the new expression,
and HaRe introduces the following code:

42 C. Brown, H. Li, and S. Thompson

parseExpr (°+’:xs) = parseBin zs

parseBin xs = (Bin Plus parsel parse2, rest2)
where
(parsel, restl) = parseExpr xs
(parse2, rest2) = parseExpr restl

The code highlighted in italics show how the refactoring has replaced the right
hand side of the equation parseExpr with a call to parseBin. Obviously, the
function parseBin should now be generalised so that the constructors Plus and
Mul can be passed in as formal arguments. This will also allow us to fold (using
folding as described in Section 221]) the equation parseExpr defined in Figure [1
against the new definition parseBin. The following code illustrates this:

parseExpr :: String -> (Expr, String)
parseExpr (’ ’:xs) = parseExpr xs
parseExpr (°*’:xs) = parseBin Mul xs
parseExpr (’+’:xs) = parseBin Plus zs
parseExpr (x:xs)

| isNumber x = ...
parseExpr xs = error "Parse Error!"

parseBin p_1 zs = (Bin p_1 parsel parse2, rest2)
where
(parsel, restl) = parseEzpr zs
(parse2, rest2) = parseEzpr restl

This refactoring has allowed to keep the implementation simple: there is now
a separate evaluator for binary operators (defined in Section B2) as well as
a separate parser for binary operators; this allows for the code to be easily
maintained in future versions.

3.4 Stage 4: Introduce Variables

We now add variables to the language by defining the let expression. In order
to do this, the Let and Var constructs need to be added to the language, taking
a variable name to be a String. The parser is then extended to handle the new
constructs, with the input let x=4 in 1+x giving the AST

Let "x" (Literal 4) (Bin Plus (Literal 1) (Var "x"))

Having variables in the language means that bindings of variables to values need
to be stored in an environment, and that environment variable needs to be passed
into the evaluator as an extra argument: when a variable is evaluated lookup is
used to find its value in the environment.

To perform this extension to the language, first we perform two add construc-
tor refactorings to the definition of Expr, adding LetExp String Expr Expr
and then Variable String as arguments to the refactoring. The refactorings
introduce new pattern matches for eval, thus:

An Expression Processor: A Case Study in Refactoring Haskell Programs 43

1 eval :: Environment -> Expr -> (String, Int)
2 eval env (Literal x) = (show x, Xx)

3 eval env (Bin op el e2) = ((fst (eval_op op)) ++ " "

4 ++ (fst $§ eval env el) ++ " "

5 ++ (fst $ eval env e2),

6 (snd $ eval_op op) (snd $ eval env el)
7 (snd $ eval env e2))

8
9

where

eval_op :: (Num a) => Bin_Op -> (String, (a -> a -> a))
10 eval_op p_1@(Mul) = ("x", (%))
11 eval_op p_1@(Plus) = ("+",(+))
12 eval_op _ = error "Undefined Operation"
13 eval env (LetExp n e e_2) = ("let " ++ n ++ " =" ++ (fst $ eval env e)
14 ++ " in " ++ (fst $ eval env e_2),
15 snd $ eval (addEnv n e env) e_2)
16 eval env (Var n) = (n, snd $ eval env (lookUp n env))

Fig. 8. The evaluator implementation with the generality of binary operators expressed

data Expr = ... | LetEzp String Expr | Var String

addedLetExp = error "Added LetExzp String Exzpr Expr to Expr”
addedVar = error "Added Var String to Ezpr"

eval :: Expr -> Int

eval (LetEzp p_1 p_2 p_3) = addedLetEzp
eval (Var p_1) = addedVar

The Environment type, addEnv and lookup functions are now defined (not part
of the refactoring sequence). Finally the definition of eval needs to be modified
to take a new argument, namely the Environment. This can be added using an
“add argument” refactoring, but the definition needs then to be edited by hand
to thread the environment through the computation, giving

eval :: Environment -> Expr -> Int

eval env (Literal x) = x

eval env (Bin op el e2) = eval_op op (eval env el) (eval env e2)
eval env (LetExp p_1 p_2 p_3) = eval (addEnv p_1 p_2 env) p_3
eval env (Var p_1) = lookup p_1 env

3.5 Stage 5: Merging

Finally, the last stage requires us to implement a pretty printer for our language.
We do this by defining a function prettyPrint over the type Expr with a type
signature. Initially prettyPrint is defined with the equation prettyPrint x =
error "Unable to pretty print!". We choose the introduce pattern matching
from HaRe, which produces the following:

44 C. Brown, H. Li, and S. Thompson

prettyPrint :: Expr -> String

prettyPrint x@(Literal x) = error "Unable to pretty print!"
prettyPrint x@(Bin op el e2) = error "Unable to pretty print!"
prettyPrint x@(LetExp n e e_2) = error "Unable to pretty print!"
prettyPrint x@(Var n) = error "Unable to pretty print!"
prettyPrint x = error "Unable to pretty print!"

The implementation for prettyPrint is completed, and the same procedure is
repeated for a function prettyBinOp (including introduce pattern matching) in
order to represent the pretty printing of binary operators. This gives us the
following definitions:

prettyPrint :: Expr -> String
prettyPrint x@(Literal y) = show y
prettyPrint x@(Bin op el e2) = prettyPrintBinOp op

++ " " ++ (prettyPrint el) ++ " " ++ (prettyPrint e2)
prettyPrint x@(LetExp n e e_2) = "let " ++ n ++ " ="

++ (prettyPrint e) ++ " in " ++ (prettyPrint e_2)
prettyPrint x@(Var n) = n
prettyPrint x = error "Unable to pretty print!"

prettyPrintBinOp :: Bin_Op -> String

prettyPrintBinOp x@(Mul) = "x"

prettyPrintBinOp x@(Plus) = "+"

prettyPrintBinOp x = error "Unable to pretty print binary operator"

To show how the pretty printer and parser work in practice, the following shows
an example from the GHCi prompt:

Prelude Parser> parseExpr "let x + 1 1 x"
(LetExp "x" (Bin Plus (Literal 1) (Literal 1)) (Var "x"),"")

Prelude Parser> prettyPrint (LetExp "x" (Bin Plus (Literal 1)
(Literal 1)) (Var "x"))
"let x =+ 1 1 in x"

Prelude Parser> eval [] (LetExp "x" (Bin Plus (Literal 1)
(Literal 1)) (Var "x"))
2

As can be seen, both eval and prettyPrint take an Expr as an argument. It
would be nice to merge the two functions together so that it may be possible to
pretty print and evaluate an abstract syntax tree simultaneously. This may lead
to a function that parses an input, and pretty prints and evaluates the output,
as follows:

Prelude Parser> parse "let x + 1 1 x"
"The value of let x =+ 1 1 in x is 2"

In order to implement this feature, we first merge the definitions of prettyPrint
and eval together (the merge refactoring is defined in Section [Z2]). We also move
the definitions of eval op and prettyPrintBinOp to a where clause of the newly
merged eval function.

Conclusions for the case study are discussed in Section Bl

An Expression Processor: A Case Study in Refactoring Haskell Programs 45
4 Related Work

Program transformation for functional programs has a long history, with early
work in the field being described by Partsch and Steinbruggen in 1983 [18].
Other work in program transformation for functional languages is described by
Hudak in his survey [19]. For an extensive survey of refactoring tools and tech-
niques, Mens produced a refactoring survey in 2004 detailing the most common
refactoring tools and practices [20].

The University of Kent and E6tvos Lorand University are now in the process of
building refactoring tools for Erlang programs [21]. However, different techniques
have been used to represent and manipulate the program under refactoring. The
Kent approach uses the Annotated Abstract Syntaz Tree (AAST) as the internal
representation of an Erlang program, and program analyses and transformations
manipulate the AAST directly. The E6tvos Lorand university approach uses the
Erlang-based database Mnesia [22] to store both syntactic and semantic infor-
mation of the Erlang program under refactoring; therefore, program analyses
and transformations are carried out by manipulating the information stored in
the database.

The fold/unfold system of Burstall and Darlington [3] was intended to trans-
form recursively defined functions. The overall aim of the fold/unfold system was
to help programmers to write correct programs which are easy to modify. There
are six basic transformation rules that the system is based on: unfolding; fold-
ing; instantiation; abstraction; definition and laws. The advantage of using this
methodology is that it is simple and very effective at a wide range of program
transformations which aim to develop more efficient definitions; the disadvan-
tage is that the use of the fold rule may result in non-terminating definitions.
Indeed, the fold refactorings implemented for HaRe also suffer from the same
termination problems.

The Haskell Equational Reasoning Assistant, HERA [23] is a system that
provides both a GUI level and a batch level Haskell rewrite engine inside a
single tool. HERA shares the basic properties of HaRe. It is important to notice
a difference however, HaRe works purely at the source level of a program, and
applies well-understood software engineering patterns. HERA handles large-scale
rewrites in a different way, using only a series of small steps performed in a strict
bottom up manner. It is possible to implement particular refactorings from HaRe
in HERA such as renaming and generalisation. However, the HERA tool doesn’t
provide an advanced API for program transformation and so refactorings would
have to be described in terms of small transformations, which in some respects
would make it more difficult to scale to large-scale transformations.

5 Conclusions and Future Work

This paper presented a number of refactorings implemented for the Haskell refac-
torer, HaRe, together with a case study in transforming programs written in
Haskell. Specifically, the contributions of this paper are as follows:

46 C. Brown, H. Li, and S. Thompson

— In Section B, we briefly described a number of structural and data-type
refactorings from Brown’s PhD thesis [I3]; these include: folding, merging,
adding/removing a constructor, adding/removing a field and introduce pat-
tern matching.

— In Section 3l we demonstrated a case study for refactoring Haskell programs.
The case study serves not only as a basic demonstration of the refactorings
discussed in Section 2l but also as a tutorial on how to refactor Haskell
programs.

The case study presented in Section [3] resulted in some interesting conclusions.
It seems that the simpler, more atomic, refactorings are more useful in refactor-
ing large-scale programs than the larger more complex ones. It seems natural,
therefore, to create larger refactorings by gluing together lots of smaller atomic
refactorings. The most commonly used refactorings were introduce new defini-
tion, generalise definition and folding; these three refactorings exploit the idea
of higher-order polymorphism resulting in code reuse by abstraction [24]. Some
specific conclusions that came from the case study are:

— A refactoring tool aids the process of improving programs, by lowering the
cost of making the changes. For example, in Sections [31] and we add
and remove constructors. This may be performed using a search and replace
facility in an editor, but with extreme care. A refactoring tool, on the other
hand, lowers the overall cost of making these changes, especially across large
projects. In addition to this, HaRe also has an undo feature, allowing the
user to try a particular refactoring without committing to the changes.

— Refactoring encourages code reuse. For example, in Section [3.3 it is possible
to eliminate some duplicated code by introducing a top level definition from a
selected expression, generalising over the definition and then folding against
the new definition. This process also helps to encourage code understanding:
by introducing a new name for an abstraction, for example.

— Pure, lazy, languages can appear to offer more opportunities for refactoring
than strict, impure ones. Generalisation, as discussed in Section [is an
example of a refactoring that could not be performed in a language with
side-effects such as C or Java. Furthermore, the merging process as shown
in Section introduces a shared computation: a concept that is implicitly
built into the Haskell language.

5.1 Implementation and Design Difficulties

Haskell is a very complex language, and its model of type signatures, pattern
matching, guards, where clauses, recursive modules and type classes, makes it
a difficult language to refactor due its richness of expression; for many of the
refactorings presented in this paper, there have been occasions where it was not
clear precisely how a particular refactoring should be defined, and indeed in a
number of cases it makes sense to implement more than one version. For exam-
ple, in the case of unfolding, there was a design choice to be made when guards
are converted into an if..then. .else clause. This can lead to problems where

An Expression Processor: A Case Study in Refactoring Haskell Programs 47

the guards may not have an otherwise clause defined, or the programmer was
intending for the pattern matching to drop to the next equation in the defini-
tion. In this situation, we made the decision to introduce a default else clause
that introduces an error if the guards cannot be converted directly. Consider
unfolding the definition of £ in the body of g:

f x
I
|

gy

==1=10
2 =20

fy

[

Unfolding £ gives us:

fx
| x ==1 =10
| x ==2=20
gy =1if y == 1 then 10

else if y == 2 then 20
else error "Unmatched Pattern"

Another choice we made was in the introduction of a field to a constructor.
Because partial application of constructors is possible in Haskell — they are,
after all, constructor functions — we chose to add the field in the first position,
since this allows the field to be added in a straightforward way to any partial
application. Although it is possible to implement the refactoring to allow the user
to add the field to any position of the constructor, in practice it is more difficult,
as it requires the refactorer to check for partial applications, and to perform
the appropriate ‘plumbing’ to pass this extra argument in. We also observe that
this same choice was made (for the same reasons) in the implementation of
function generalisation, where the ‘new’ argument appears in the first position.
We refer the reader to the PhD theses by Li [I12] and Brown [I3] for much more
descriptive and technical discussions of the limitations of refactoring in general,
and also with implementing a refactoring tool for Haskell programs.

5.2 Future Work

The work presented in this paper can still be carried forward in a number of
directions.

— Adding more refactorings to HaRe. The number of refactorings for HaRe has
increased, but there are still a number of refactorings listed in the catalogue
[15] that are still awaiting implementation.

— Make more use of type information with the current refactorings in HaRe. For
instance, when generalising a function definition that has a type signature
declared, the type of the identified expression needs to be inferred, and added
to the type signature as the type of the function’s first argument.

48

C. Brown, H. Li, and S. Thompson

— We hope to extend HaRe to allow refactorings to be scripted. Scripting refac-

torings allows elementary —or atomic— refactorings to be stitched together,
creating the effect of a complete refactoring process. Indeed, the commonly
occurring sequence of refactorings steps (such as introducing, generalising
and folding) can be seen as generalised refactoring patterns, and could be
abstracted away by the scripting process.

Finally, we wish to port HaRe to GHC Haskell —the de facto standard of
Haskell— and use the GHC API instead of Programatica for implementing
refactorings.

The authors would like to thank Dave Harrison for his editorial advice, and the
anonymous reviewers for their comments. We would also like to acknowledge
EPSRC for supporting the original development of HaRe.

References

10.

11.

12.

13.

. Brooks, F.P.: The Mythical Man-Month: After 20 Years. IEEE Software 12(5),

57-60 (1995)

. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, Department

of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL,
USA (1992)

Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. J. ACM 24(1), 44-67 (1977)

Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer, HaRe, and its API. Elec-
tronic Notes in Theoretical Computer Science 141(4), 29-34 (2005); Proceedings
of the Fifth Workshop on Language Descriptions, Tools, and Applications (LDTA
2005)

Li, H., Reinke, C., Thompson, S.: Tool Support for Refactoring Functional Pro-
grams. In: ACM SIGPLAN 2003 Haskell Workshop, Association for Computing
Machinery, pp. 27-38 (August 2003)

Peyton Jones, S., Hammond, K.: Haskell 98 Language and Libraries, the Revised
Report. Cambridge University Press, Cambridge (2003)

Refactor-fp Group, T.: The Haskell Editing Survey (2004), http://www.cs.kent.
ac.uk/projects/refactor-fp/surveys/haskell-editors-July-2002. txt
Oualine, S.: Vim (Vi Improved). Sams (April 2001)

Cameron, D.; Elliott, J., Loy, M.: Learning GNU Emacs. O’Reilly, Sebastopol
(2004)

Hallgren, T.: Haskell Tools from the Programatica Project. In: Haskell 2003: Pro-
ceedings of the 2003 ACM SIGPLAN Workshop on Haskell, pp. 103-106. ACM
Press, New York (2003)

Lammel, R., Visser, J.: A Strafunski Application Letter. In: Dahl, V. (ed.) PADL
2003. LNCS, vol. 2562, pp. 357-375. Springer, Heidelberg (2002)

Li, H.: Refactoring Haskell Programs. PhD thesis, School of Computing, University
of Kent, Canterbury, Kent, UK (September 2006)

Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of
Computing, University of Kent, Canterbury, Kent, UK (September 2008), http://
www.cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf

http://www.cs.kent.ac.uk/projects/refactor-fp/surveys/haskell-editors-July-2002.txt
http://www.cs.kent.ac.uk/projects/refactor-fp/surveys/haskell-editors-July-2002.txt
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

An Expression Processor: A Case Study in Refactoring Haskell Programs 49

Brown, C., Thompson, S.: Clone Detection and Elimination for Haskell. In: Gal-
lagher, J., Voigtlander, J. (eds.) PEPM 2010: Proceedings of the 2010 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation, pp. 111-120.
ACM Press, New York (2010)

Refactor-fp Group, T.: Refactoring Functional Programs (2008), http://www.cs.
kent.ac.uk/projects/refactor-£fp

Pettorossi, A.: A Powerful Strategy for Deriving Efficient Programs by Transfor-
mation. In: LFP 1984: Proceedings of the 1984 ACM Symposium on LISP and
Functional Programming, pp. 273-281. ACM, New York (1984)

Brown, C., Thompson, S.: Expression processor example code (2010), http://www.
cs.st-and.ac.uk/~chrisb/tfp2010.html

Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Comput.
Surv. 15(3), 199-236 (1983)

Hudak, P.: Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Survey 21(3), 359-411 (1989)

Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Softw.
Eng. 30(2), 126-139 (2004)

Kozsik, T., Csornyei, Z., Horvéath, Z., Kirédly, R., Kitlei, R., Lovei, L., Nagy, T.,
Toéth, M., Vig, A.: Use cases for refactoring in erlang. In: Horvath, Z., Plasmeijer,
R., Sods, A., Zsok, V. (eds.) Central European Functional Programming School.
LNCS, vol. 5161, pp. 250-285. Springer, Heidelberg (2008)

Mattsson, H., Nilsson, H., Wikstréom, C., Ericsson Telecom Ab: Mnesia — A dis-
tributed robust DBMS for telecommunications applications. In: Gupta, G. (ed.)
PADL 1999. LNCS, vol. 1551, pp. 152-163. Springer, Heidelberg (1999)

Gill, A.: Introducing the Haskell Equational Reasoning Assistant. In: Proceedings
of the 2006 ACM SIGPLAN Workshop on Haskell, pp. 108-109. ACM Press, New
York (2006)

Thompson, S.: Higher-order + Polymorphic = Reusable (May 1997)

http://www.cs.kent.ac.uk/projects/refactor-fp
http://www.cs.kent.ac.uk/projects/refactor-fp
http://www.cs.st-and.ac.uk/~chrisb/tfp2010.html
http://www.cs.st-and.ac.uk/~chrisb/tfp2010.html

Static Balance Checking for First-Class Modular
Systems of Equations

John Capper and Henrik Nilsson

Functional Programming Laboratory,
School of Computer Science,
University of Nottingham,
United Kingdom
{jjc,nhn}@cs.nott.ac.uk

Abstract. Characterising a problem in terms of a system of equations is
common to many branches of science and engineering. Due to their size,
such systems are often described in a modular fashion by composition of
individual equation system fragments. Checking the balance between the
number of variables (unknowns) and equations is a common approach to
early detection of mistakes that might render such a system unsolvable.
However, current approaches to modular balance checking have a number
of limitations. This paper investigates a more flexible approach that in
particular makes it possible to treat equation system fragments as true
first-class entities. The central idea is to record balance information in
the type of an equation fragment. This information can then be used
to determine if individual fragments are well formed, and if composing
fragments preserves this property. The type system presented in this
paper is developed in the context of Functional Hybrid Modelling (FHM).
However, the key ideas are in no way specific to FHM, but should be
applicable to any language featuring a notion of modular systems of
equations.

Keywords: Systems of equations, equation-based, non-causal modelling,
first-class components, equation-variable balance, structural analysis, lin-
ear constraints, refinement types.

1 Introduction

Systems of equations [3], also known as simultaneous equations, are abundant in
science and engineering. Applications include modelling, simulation, optimisa-
tion, and more. Such systems of equations are often parametrised, describing not
just a specific problem instance, but a set of problems. The size and nature of
the systems frequently necessitates numerical methods and computers for solving
them. The equations thus need to be turned into programs that can be used to
solve for various problem instances. Such programs can be written manually, but
a more expedient route is to transcribe the equations into a high-level language,
e.g. a modelling language, thus making it possible to automatically translate
the equations into a program that attempts to compute a solution given specific

R. Page, Z. Horvéth, and V. Zsék (Eds.): TFP 2010, LNCS 6546, pp. 50-B3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Static Balance Checking for First-Class Modular Systems of Equations 51

values for any parameters. Due to the size of the equation systems, some form of
abstraction mechanism that supports a modular formulation by composition of
individual equation system fragments, components, is often a practical necessity.

Of course, as with any large and complex task, there is always a risk of mis-
takes being made. In this case, mistakes may render the system of equations
unsolvable. In a modular development, an error in a component might not man-
ifest itself until an attempt is made to use that component. In the worst case,
problems might not become apparent until much later when the final program
is run. In some applications, the system of equations may even evolve dynami-
cally, say during a simulation run, meaning that it may take a long time indeed
to discover certain errors. Static checks that catch mistakes early, preferably
applicable to individual components in isolation, can thus be very helpful.

One might hope to statically impose sufficient constraints to guarantee that
a system of equations has a solution. Unfortunately, the question of whether
such a system has a solution or not can in general only be answered by study-
ing complete systems with full knowledge of all coefficients, ruling out checking
of components in isolation as well as parametrisation. Moreover, without actu-
ally attempting solving, the question can only be answered for relatively simple
systems (e.g. linear systems of equations). In other words, if the setting is rea-
sonably general, we cannot hope to develop e.g. a type system that guarantees
that a well-typed equation system or fragments thereof are solvable.

However, there are simple criteria that if violated are indicative of problems,
or that may even imply that an attempt to solve a system by a specific method
(e.g. as embodied by a tool that translates equations to a program for solving
them) will necessarily fail. One such criterion is that the number of variables, or
unknowns, must equal the number of equations. A more refined criterion is that
there should exist a bijective mapping between variables and equations. Some of
these kinds of criteria can be enforced statically, e.g. through a type system.

Enforcing the balance of systems of equations is considered very useful in prac-
tise. For example, the state-of-the-art, equation-based modelling and simulation
language Modelica insists that complete models are balanced [9, pp.40—46]. In-
deed, translation to simulation code will fail if systems are unbalanced. Broman
et al. propose a similar but more refined approach [I].

These criteria stem from the fact that a linear system of equations has a
unique solution if and only if the equations are linearly independent and the
number of equations and unknowns agree. However, they are useful heuristic
criteria more generally, intuitively because each equation commonly can be used
to solve for one variable occurring in it. For a (very) simple example, consider:

2 +y=0 1
3z =10 (2)
Here () can be used to solve for z, and the value of x can then be substituted

into (), enabling it to be used to solve for y. Note that both the variable-equation
balance criterion and the pairing criterion are satisfied.

52 J. Capper and H. Nilsson

On the other hand, it is easy to see that neither criterion is sufficient to
guarantee solvability. Consider:

2?2 +y=0 (3)
cx =10 (4)

Note that the system is now parametrised on a coefficient ¢. The two criteria
are still satisfied, but whether the system has a unique solution or not depends
on the value of ¢: for ¢ = 0 there is no unique solution. Conversely, violation
of the criteria does not necessarily mean a system is unsolvable; for example,
consider adding an extra copy of () to the first system. The resulting system
can of course still be solved, despite both criteria now being formally violated.
The existing approaches to balance checking have weaknesses. For example, in
Modelica, a component either has to be balanced, or it is explicitly declared to
be possibly unbalanced, in which case no balance checking is performed for that
component. See Sect. [for a more in-depth discussion. In this paper we develop
an approach that is both more flexible and capable of catching more problems:

— The type of a component is refined by adding a balance variable to it, re-
flecting the number of equations the component contributes to the overall
system. This is a refinement type system [4] in that erasure of the extra type
information recovers a term that is well-typed in the original system.

— Parametrised components may also have a parametrised balance.

— Balance information can be inferred for components in isolation, even when
parametrised on other components and without any explicit declaration of
balance information for such parameters.

— Additional structural constraints beside the balance are exploited for a more
refined analysis. For example, in certain cases, it can be established that
a component necessarily would render a system imbalanced whenever it is
used, which thus can be reported as an error.

The upshot of this is that if a complete system is assembled modularly from
components that are well-typed in the refined sense, and if the assembled system
is balanced overall, then the “flat” system that results by unfolding all definitions
will also be balanced.

Our immediate motivation comes from Functional Hybrid Modelling (FHM)
[ITIT2/5] where it is desired to treat components as true first-class entities, includ-
ing the possibility to modify the overall system of equations during simulation,
at “run-time”, as alluded to earlier. Static checks that help prevent accidentally
changing a system from one that can be simulated (solved) to one that cannot
are thus of particular interest. We do not explicitly consider structurally dy-
namic systems of equations here, but our type system can be easily extended to
that setting thanks to the first-class notion of components.

However, it should be noted that the essence of the ideas presented in this pa-
per are not at all specific to FHM: in principle, it should be relatively straightfor-
ward to adapt them to other equation-based modelling languages, like Modelica,
or to any language featuring a notion of modular system of equations.

Static Balance Checking for First-Class Modular Systems of Equations 53

The structure of the remainder of this paper is as follows. Sect. 2 explains
the idea of modular systems of equations in more depth. Sect. 3] describes the
type system developed. Sect. [gives a comparative review of the related work.
Sect. Bllooks at possible avenues for expansion of the type system. Finally, Sect.
provides some concluding remarks.

2 Modular Systems of Equations

This section introduces the idea of modular systems of equations in more detail.
As FHM provided the immediate motivation for this work, we will draw on FHM
for examples and we will adopt a concrete syntax derived from Hydra, an FHM
language currently being developed. We will only explain FHM and Hydra to
the extent needed for this paper; for further details, please consult Nilsson et al.
[I1IT12] or Giorgidze & Nilsson [5].

Hydra, like Modelica, is concerned with modelling of dynamic, physical sys-
tems using Differential Algebraic Equations (DAE). The solution to such a sys-
tem of equations is a set of time-varying reals, i.e. real-valued functions of time.
In practise, it is usually the case that only approximate solution through numer-
ical simulation is feasible. However, for our formal type system development, the
domain of the variables and the exact form of the equations is of no consequence:
all that matters is which variables occur in each equation. This is reflected in
the precise syntax of terms for which our type system is defined (see Fig.
in Sect. [3.2]), where equations are only considered in the abstract as a set of
occurring variables.

2.1 Equation System Basics

A system of equations is a set of equations over a set of variables or unknowns. It
has a solution if every variable in the system can be instantiated with a value such
that all the equations are simultaneously satisfied. Again, for the type system
developed in this paper, the domain of the variables is not important. However,
in our examples, the domain is either the reals, R, or time-varying reals.

A linear system of equations has a unique solution if all equations are inde-
pendent and there are equally many equations and variables. If there are more
independent equations than variables, the system is over-constrained. Such a
system has no solution as there are too many constraints, some of which will be
in conflict. If there are fewer independent equations than variables, the system
is under-constrained. Such a system has infinitely many solutions.

The equation-variable balance of a system of equations is the difference
between the number of equations and variables. Note that this is strictly a struc-
tural property: the details of exactly what the equations look like is of no conse-
quence. This is true in general in our development: we only consider structural
properties, i.e. equations in the abstract, as we cannot assume that all details
are known. By analogy, we refer to a system with positive equation-variable bal-
ance as over-constrained, and one with negative balance as under-constrained,
regardless of whether the equations actually are independent or even linear.

54 J. Capper and H. Nilsson

2.2 Abstraction over Systems of Equations

The equation systems needed to describe real-world problems are usually large
and complicated. On the other hand, there tends to be a lot of repetitive struc-
ture making it beneficial to describe the systems in terms of reusable equation
system fragments. For example, consider an electrical circuit comprising resis-
tors, capacitors, and inductors. Each component can be described by a small
equation system, and the entire circuit can then be described modularly by com-
position of instances of these for specific values of the components.

While the exact syntactic details vary between languages, the idea, in essence,
is to encapsulate a set of equations as a component with a well-defined interface.
Let us illustrate with an example, temporarily borrowing the syntax of the A-
calculus for the abstraction mechanism:

r+y+2=0

r = Mz,y) — a1

This makes r a relation that constrain the possible values of the two interface
variables = and y according to the encapsulated equations. The variable z is
local, not visible from the outside.

The relation r can now be used as a building block by instantiating it: sub-
stituting expressions for the interface variables and renaming local variables as
necessary to avoid name clashes. We express this as application, denoted by ¢:

u+v+w=10
r o (u,v)
r o (v,w+7)

After unfolding and renaming, a process we refer to as flattening, we get:

u+v+w=10

u+v+2z1=0
u—z =1

v+ (w+T7)+2=0
v—2z9=1

Note that each application of r effectively contributes one equation to the overall
system as one of the instances of the encapsulated equations in each case must
be used to solve for the corresponding instance of the local variable, z; and z.

2.3 FHM and Hydra

In this section, we introduce the FHM framework as embodied by the language
Hydra [T1/12l5]. We use this as the setting for the rest of the paper. The central
idea of FHM is to embed an abstraction mechanism over equations as described

Static Balance Checking for First-Class Modular Systems of Equations 55

in Sect. into a pure functional language, allowing equation system abstrac-
tions to be first-class entities at the functional level. The equations are Differ-
ential Algebraic Equations (DAE), meaning that the domain of the variables is
time-varying reals, or signals. An abstraction over an equation is therefore re-
ferred to as a signal relation. In the case of Hydra, the host language is Haskell
[6].

In Hydra, the type of a signal relation is written SR «. A signal relation can
be thought of as a predicate on a signal:

SR a =~ Signal a — Bool

where Signal « is a time-varying value of type a. As a product of signals is
isomorphic to a signal of products, unary signal relations suffice to represent
n-ary relations. For example, given a binary predicate = on R:

(=sr) = SR (R, R)
(=sr) s =V (t:: Time). fst (st)=snd (s t)

First-class signal relations are constructed as follows:
sigrel pattern where equations

The pattern introduces interface variables that scope over the equations. The
latter may refer to additional, implicitly declared, local variables. Together, these
two kinds of variables are referred to as signal variables as they stand for time-
varying quantities. There are two forms of equations:

€1 = €9 (5>
ST o es (6)

where sr is a time-invariant expression (free signal variables must not occur in
i) denoting a signal relation, and ¢ denotes signal relation application, simi-
larly to Sect. Functional level objects can be used as time-invariant entities
inside signal relations. In particular, functional-level variables can be used as
coefficients in equations, thus allowing the equations to be parametrised: see
the resistor example below for an example. On the other hand, time-varying
signal-level entities are not permitted to escape to the functional level.

Signal variables scope over the time-varying, top-level equations of a signal
relation. Since only time-invariant expressions may appear to the left of an ap-
plication, nested signal relations are not permitted.

To illustrate, consider a component twoPin, encapsulating equations common
to all electrical components with two pins, and a component resistor, defined as
an extension of twoPin by adding an equation that describes the behaviour of a
resistor:

! However, a manifest signal relation expression is fine as it binds all signal variables
occurring in it. That is, signal relations can be “nested”, but the signal variable
scope is flat.

56 J. Capper and H. Nilsson
type Pin = (R,R)

twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, u) where
fstp—fstn =u
snd p+sndn=20

resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrel (p, n) where
twoPin o (p,n,u)
rxsndp=u

Note that the resistor is modelled by a function that maps a resistance to a
signal relation. In the definition of resistor, r is thus a time-invariant value, not
an unknown. Note also that u is local. Flattening the signal relation that results
from the function application resistor 220 yields the flat equation system:

fstp—fstn =u
snd p+ snd n =
220k snd p = u

3 The Type System

The type system is presented as an embedding of an equation-based language
into the simply-typed A-calculus. An embedding into the A-calculus reflects the
two-level approach taken by FHM, from which much of the expressivity of the
language is gained. The type system has been implemented in the dependently
typed programming language Agda [I3], giving us assurances that the algorithm
is both total and terminating.

Description Symbol Description Symbol
A-bound variables xz, Y Equations q
Expressions (\-terms) eeA Simple types T
Signal-variables z Type schemes o
Balance type-variables n,m,o € Z Typing environments r
Signal level expressions s Constraint sets C

Fig. 1. Notational Conventions

The notation y is used to denote a sequence xi,..., X, Without repetition
of elements. We will also allow ourselves to treat y as sets equipped with the
usual set-theoretic operations. One should also note that z (and y) and z are
meta-variables, ranging over the names of concrete function-level and signal-level
variables, respectively.

Static Balance Checking for First-Class Modular Systems of Equations 57

3.1 Overview

As signal relations are first-class entities, it cannot be assumed that components
can be flattened in order to determine the equation-variable balance. The only
reasonable assumption is that all that is known statically is the type of a relation.

To track the equation-variable balance, the type of a signal relation is refined
by annotating it with the number of equations it is able to contribute to a system.
The contribution of a signal relation may also depend on the contribution of
the parameters to the signal relation. Hence, signal relations can behave in a
polymorphic fashion, contributing varying numbers of equations depending on
the context in which the relation is used. See Sect. [for a comparative review
of alternative type system designs.

Since the structural information required to determine a precise contribution
may not always be available, the context in which a signal relation is applied is
used to generate balance constraints (from now on, simply constraints). These
constraints restrict the balance of a component to an interval.

Note that a representation of integers and linear inequalities has been intro-
duced at the type level. This extension may appear to be a restricted form of
dependent types [8]. However, these type level representations, whilst determined
by the structure of terms, are not value level terms themselves. As such, we do
not consider our system to be dependently typed.

Constraints may mention the contributions of several components, and hence
are not directly associated with a single signal relation. As a result, the type
of a signal relation is restricted to being annotated by a balance variable which
is then further refined using constraints. The type checking algorithm generates
a fresh balance variable for each signal relation, with type equality defined up
to alpha equivalence of balance variables. As an example, the refined type for
resistor from Sect. is:

resistor :: (n = 2) = Resistance — SR (Pin, Pin) n

Haskell’s type class constraint syntax has been adopted to express that the
balance type variable n is constrained to the value 2. This can be verified by
first flattening the signal relation applications to obtain a set of 3 equations
over 5 variables (note that each Pin contains two variables), then removing
one equation which must be used to solve for the local variable u, giving a net
contribution of two equations.

3.2 Generating Constraints

In this section we address the issue of what constraints should be generated.
It is conceivable that different application domains could generate constraints
specific to that domain. This is not a problem, as the system developed is inde-
pendent of the constraints generated. For the purposes of this paper, 4 criteria
for generating constraints have been chosen. Before introducing the criteria, a
number of definitions are required.

58 J. Capper and H. Nilsson

Fig. 2 and 3 give the syntax of terms and types from which the type checking
algorithm will be developed. A number of simplifications have been made to the
FHM framework in order to keep the presentation of the type system concise.
Note that all simplifications are superficial and do not fundamentally change the
nature of the problem.

e =2z cu=C=r1 C :=ce1 = cea
| e e2 | ce1 > ces
| Az.e TU=T] — T2
| let z = e in ez | SRR™n ce=mn
| sigrel z where ¢ | LEgn n | IntLit

| IEgn n | ce+ce

q ::= Atomic z | MEgn n | —ce

| eoz

Fig. 2. Syntax of terms, types, and constraints

We consider the simply-typed A-calculus, given by e, augmented with first-
class signal relation constructs. Signal relations abstract over sets of signal vari-
ables, denoted z, and embed a new syntactic category of equations into the
calculus, given by gq.

Signal relations range over sets of equations, which may take one of two forms.
An atomic equation of the form s; = sy is abstracted to just the set of distinct
signal variables occurring in the signal expressions s; and sy. Similarly, an equa-
tion of the form e ¢ s is abstracted to the expression denoting the applied signal
relation and the set of signal variables that occur on the right-hand-side of the
application. More detailed comments on theses syntactic categories are given in
Sect.

An equation ¢ is said to mention a signal variable z if and only if z € wars (g).
The function total returns the raw number of atomic equations contributed by
an equation. Whereas | ¢| denotes the cardinality of the set of modular equations.
Both wars and total are also overloaded for sets of equations.

vars (Atomic z) = z total (Atomic) =1

vars (¢ 2) =z total (e: SR no)=n

vars (q) = total (q) =
U{vars (¢) | ¢ € q} > {total (¢) | ¢ € ¢}

Given a signal relation sigrel z where ¢, the set of interface variables is
defined Iz = z, and the set of local variables Ly = wvars (¢q)\z. The set of
equations ¢ can be partitioned into the disjoint subsets of interface equations
Ig, local equations L, and mixed equations Mg, where I is the set of equations
mentioning only interface variables, Lg is the set of equations mentioning only
local variables, and Mg = (¢\Ig)\Lg. Finally, the balance of a signal relation,
written bal (sr), is given as bal (sigrel z where ¢) = total (¢)—|Lg]|. Intuitively,
balance is an aggregate of the equations in the body of a signal relation, excluding
sufficiently many equations to solve for the local variables.

Static Balance Checking for First-Class Modular Systems of Equations 59

. |Lg| + |Mg| = |Lz|. The local variables are not under-constrained.

. |Lg| < |Lz|. The local variables are not over-constrained.

. Ig| < |Iz|- The interface variables are not over-constrained.

. 0 < bal (sr) < |Iz|. A signal relation must contribute equations only for
its interface variables. It should not be capable of removing equations from
other components (negative balance), or adding equations for variables not
present in its interface.

W N =

The above criteria produce constraints that give adequate assurances for de-
tecting structural anomalies. There is potential to further refine these criteria.
However, for the purposes of this paper, these criteria are sufficient to demon-
strate the value of the type system.

To illustrate the application of the above five criteria, consider the Hydra
example par that connects two circuit components in parallel. The operational
details of this example are not important; the only important aspect is that of
equations mentioning variables. The type signature gives the type of par under
the simply typed approach. The reader may wish to refer back to Sect. at
this point for clarification on sigrel terms.

par :: SR (Pin, Pin) — SR (Pin, Pin) — SR (Pin, Pin)
par sri §ro =
sigrel ((pi, pv), (ni, nv)) where
sry o ((pli, plv), (nli, nlv))

sra o ((p2i, p2v), (n2i, n2v))]11 572 n.Z
pi+pli +p2i =0 D e— —en
ni +nli+n2i =0 y ST)
pv = plv = p2v p2 n2

nv = nlv = nv

Under the new type system, the signal relations in par are annotated by bal-
ance variables, which are then constrained by the criteria producing the following
refined type:

par:{m=n+0—-262n+0220<m<4,0<n<4,0<0<4}=>
SR (Pin, Pin) n — SR (Pin, Pin) o — SR (Pin, Pin) m

While this type may appear daunting at first, all balance variables and con-
straints can be inferred without requiring the programmer to annotate the terms
explicitly. It is also useful to see an example of a program that fails to type check
under the new type system — a program that previously would have been ac-
cepted, despite being faulty.

broken sr = sigrel (a, b) where
sro(w+z,y+2)
sro(a,b)
z+2z=0

60 J. Capper and H. Nilsson

The above function broken is flawed in that there is no relation to which it
can be safely applied. The relation sr is required to provide at least 3 equations
for local variables, but must not exceed a contribution of 2 variables as dictated
by the second relation application. As expected, our type system catches this
error by attempting to impose the following inconsistent set of constraints:

broken::(m=n+n—-30<m<2,0<n<2,4<n+1<4)
= SR (R,R) n — SR (R,R) m

During type checking, the Fourier-Motzkin elimination method is used to
check the consistency of constraint sets [7]. The method allows one to check not
only if a set of linear inequalities is satisfiable, but also finds a continuous interval
for each bound variable. It is expected that this will be useful when reporting
type errors to the programmer.

The elimination algorithm has worst case exponential time complexity in the
number of balance variables. However, as shown by Pugh [15], the modified vari-
ant that searches for integer solutions is capable of solving most common problem
sets in low-order polynomial time. Furthermore, systems typically involve only
a handful of balance variables, making most exponential cases still feasible to
check.

3.3 Formalising the Type System

Fig. Bl presents a small-step semantics for our calculus by way of a flattening for
a system of equations. Values in our system are closed lambda-terms of the form
Az.e, signal relations encapsulating atomic equations, and atomic equations.

The notation {z1/2z2} denotes the substitution that occurs when reducing
signal relation application. Our abstract treatment of equations allows us to
read this notation as substituting every variable in z; for all variables in 25, a
simplification of the substitution discussed in Sect. The symbol fresh denotes
a fresh sequence of signal variables, used in S-SIGAPP2 to rename local variables
to prevent name clashes during flattening (again, see Sect. [Z2).

The simplification of substitution discussed above has introduced a slight
disparity between our abstract formalisation and the concrete system. In the
FHM system, applying a signal relation contributing n equations to a mixed
set of variables results in n mixed equations. However, during evaluation, it
may be discovered that some of the equations within the signal relation do not
mention both local and interface variables. Hence, the number of mixed, local,
and interface equations may be refined as a result of evaluation.

This problem is avoided in our semantics by the simplification to substitution
mentioned above. However, this should not pose a real problem in the concrete
system either. The preservation problem is reminiscent of the record subtyping
problem addressed in Peirce [14], pages 259-260. It should be possible to adapt
the technique of stupid casts used in Pierce to solve the preservation problems
that would be present in a more concrete semantics. To be more precise, one could
allow a stupid cast of local and interface equations back into mixed equations,
thus retaining the same contribution and maintaining the same constraints. We

Static Balance Checking for First-Class Modular Systems of Equations 61

o (S-Aprl) (S-APP2)
€1 €3 ~> €2 €3 (Az.e1) e2 ~ [T+ e2] €1
. (S-LET) e (S-S1cAPP1)
let =e1 in ex ~ [z — e1] e2 €102~ €302
Jg1 € q. ~
=g (S-SIGREL)

sigrel z where ¢ ~ sigrel z where [g1 — ¢2] ¢

g2 = {(vars(g)\z1)/ fresh} a1

S-S1IGAPP2
(sigrel 21 where q1) ¢ 22 ~ {21/22} @2 ()

Fig. 3. Small-step semantics

leave this alteration as future work, as the current semantics are sufficient for
the purposes of this paper.

The syntax of types is similar to that of the simply-typed A-calculus. Sim-
ple types consist of functions, signal relations, and equation types specified by
—, SR, and I/M /LEqgn respectively. The three varieties of equation types give
distinct representations for interface, mixed, and local equations. Signal relation
types and equation types are parametrised with a balance variable that denotes
the number of equations a system is capable of contributing. Simple types are
then parametrised by a constraint set that refines the possible interval of balance
variables.

Fig. @ gives the typing judgements for terms in our language. The rules for
A-terms, T-VAR, T-ABs, and T-APP are similar to those of the simply-typed A-
calculus, with the addition of constraint sets. Operations that render a constraint
sets inconsistent indicate that a term is ill-typed; e.g, a judgement that involves
taking the union of two consistent sets of constraints is only valid when the
resulting constraint set is also consistent.

The T-ATOMIC judgement assigns equation types to atomic equations by
examining the variables that occur in the equation. The helper function egkind
checks how the variables in an equation coincide with the interface variables to
determine whether the equation is local, interface, or mixed.

The T-RELAPP judgement assigns an equation type to a relation application.
The preconditions for this judgement state that the type of the expression e
appearing to the left of the application must be a signal relation. Additionally,
the contribution of such a signal relation must not exceed the number of interface
variables to which it is being applied. T-RELAPP and T-ATOMIC depend on the
read-only environment I which stores the set of interface variables the equations
range over.

The final judgement assigns signal relation types to sigrel constructs and
calculates constraints on the fresh balance variable of that signal relation. The
first precondition defines the set of variables local to the relation. The second
precondition is a pointwise judgement over the set of equations. The third

62 J. Capper and H. Nilsson

'z)=C=r Ne:Ci=>mntbte:Co=m
(T-VAR) (T-ABs)
I'Fz:C=r1 I'EXre:CiUCy= 11 — T

F|—61:C1:>T2—>T1 F|—62202:>T2

(T-App)
I'Feiea:Ci1UC, =7

I'kFe :C1 =1 F,x:CQ$T2|_EQZC1$T1

. (T-LET)

I'Fletz=e1ine; : C1UCy =7y

. . (T-ATowmIC)
I-T+ Atomic z : 0 = eqkind;(z,1)

I'-e:C=SRR™n lz| = n
. (T-RELAPP)
I-T'keoz:C = egkindi(z,n)

L =vars(q)\ z z:I'Fq:C=r71 nx =X{b| XEqnber}
C={n=nr+nr+nm—|L,0<n<|z|,nr <|z|,nt <|L|,nr +nnm > |L]}

FI—sigrelzwhereq:UCUCéS’R R n

IEgnn ifQcCcZClI
eqkind;(Z,n) = LEqnn ifZNI=10
MEgn n otherwise

Fig. 4. Typing rules

precondition sums the number of equations of a given form in ¢ specified by
the parameter X, where X € {I, L, M}. Finally, using the previous three condi-
tions, a set of constraints is generated for the balance variables occurring in the
type.

We have identified two key properties of soundness for our type system with
respect to the semantics. Firstly, the preservation of types under evaluation for
sigrel constructs ensures that flattening a modular system of equations does
not alter the contribution of the system. Formally, if sigrel z where ¢ ~~
sigrel z where ¢», and sigrel z where ¢; : C =SR Rl*l n, where C is a
consistent set of constraints, then sigrel z where ¢ : C =SR RI*l n. Hence,
the contribution of the sets of equations ¢; and ¢ is equal under the same set
of interface variables z.

Secondly, a system can only be completely reduced to a simple set of equations
if the top-level sigrel construct abstracts over an empty set of signal variables.
In these circumstances, a fully assembled system should contribute no equations
as no more signal variables will be introduced. Formally, if sigrel) where ¢ :
C =SR () n, and C is consistent, then C should resolve the interval of n to
[0,0].

At this point, it is interesting to note the equational embedding effectively
operates as a form of heterogeneous meta-programming; a modular system of

Static Balance Checking for First-Class Modular Systems of Equations 63

equations is first evaluated to flat set of equations which is then transformed
into a program that is used to solve for the unknowns of the original system.
Hence, the balance and structure of a system of equations are really properties
of the flattened system of equations that rule out (a class of) second stage run-
time/simulation-time problems. Hence, a soundness statement regarding balance
and structure falls to the meta-theory of a type system at the second stage. In
summary, attempting to capture these properties during the initial phase make
the soundness properties of our system quite unusual. As such, we leave the
investigation of soundness of other structural properties as future work.

The type checking algorithm has been implemented in the dependently typed
programming language Agda [13]. The source code can be found on the primary
authors website at http://cs.nott.ac.uk/~jjc. The implementation guaran-
tees that the algorithm is both total and termination. It should be noted that
the function for computing the most general unifier of two types is postulated.
We have yet to implement the semantics and prove that these are sound with
respect to the typing judgements, this is left as future work.

4 Related Work

4.1 Modelica

Modelica, as of version 3.0 [9], requires that models be locally balanced. This is
much more restrictive than our approach as components that are individually
unbalanced may still be combined to produce a balanced system. When unbal-
anced components are needed, the current Modelica approach is to declare them
as such, turning of all balance checking for that component. Moreover, models
are not first-class entities in Modelica which simplifies the static checking.

4.2 Bunus and Fritzon

Bunus and Fritzon [2] describe an analysis technique for pinpointing problems
with systems of equations developed in equation-based modelling languages
such as Modelica. They look at structural properties, as we do, but, to allow
fine-grained localisation, in much more detail by considering incidence matrices
(which variables occur in which equations). This is only possible by analysing
fully assembled systems, meaning the technique is primarily suitable for debug-
ging. It could even be used during simulation to catch problems with structurally
dynamic systems. Thus, this work is in many ways complementary to ours.

4.3 Structural Constraint Delta

Broman et al. [I] have developed a type system called structural constraint
delta (C'a). The type system is developed for a simplified version of Modelica:
Featherweight Modelica. The C 4 represents the difference between the number
of unknowns and the number of equations in an instance of a component. Hence,

64 J. Capper and H. Nilsson

C A improves upon the Modelica approach by allowing models to be unbalanced,
provided that a fully assembled system is balanced. As the type (class) of a
constituent component is always manifest, and as the rules for subtyping are
such that a replaceable component can only be replaced by one having the same
C'a, component balances can always be computed in a bottom-up fashion.

In contrast, the type system presented in this paper does not rely on manifest
type information. Furthermore, it supports a more flexible notion of balance as,
if there are more than one component parameter, what matters is the collective
number of contributed equations, not the numbers contributed individually.

To our knowledge, the idea of incorporating balance checking into the type
system of a non-causal modelling language was suggested independently by Nils-
son et al. [11] and Broman, with the latter giving the first detailed account.

4.4 Structural Types

Nilsson [I0] outlines an approach to static checking that safeguards against a
much wider class of errors than what is possible by just considering the balance.
This is done by making an approximation of the incidence matrix part of the type
of an equation system fragment, allowing structural singularities to be detected
in many cases and thus approaching the capabilities of Bunus and Fritzon’s
technique, while retaining the capability of checking fragments in isolation.

While Nilsson presents the work within the context of FHM, he forgoes the
consideration of first-class models, concentrating on the handling of static mod-
els. In contrast, the type system presented here handles first-class models, but
cannot find as many problems.

5 Future Work

The type system presented in this paper captures the essence of the idea of
balance checking in a setting with first-class equation system fragments. The
system is abstract, but as such a suitable starting point for a type system for any
such language. There are two imminent avenues for developing this work further.
One is to elaborate the system so as to bring it closer to a system suitable for
a concrete language like FHM. Handling of compound signal variables such as
matrices should also be considered, as the size of matrices can affect the balance
if equations between matrices is supported. The other avenue is to formalise the
system and the dynamic semantics to prove soundness.

6 Conclusion

In this paper, we presented a type system for modular systems of equations
capable of detecting classes of errors related to the equation-variable balance.
Components can be analysed in isolation, rather than requiring assembly into
a complete system of equations first, thus allowing over- and under-constrained

Static Balance Checking for First-Class Modular Systems of Equations 65

systems to be detected early, aiding error localisation. First-class equation sys-
tem fragments are supported. Our system thus lays down the foundations for
a practical yet strong type system. The context of this work is equation-based,
non-causal modelling, but the ideas should be readily adaptable to other settings.

Acknowledgments. The authors would like to thank David Broman, Neil
Sculthorpe, and the anonymous reviewers for helpful and constructive feedback.

References

Ll

10.

11.

12.

13.

14.
15.

. Broman, D., Nystrom, K., Fritzson, P.: Determining Over- and Under-Constrained

Systems of Equations using Structural Constraint Delta. In: GPCE. ACM, New
York (2006)

Bunus, P., Fritzson, P.: A debugging scheme for declarative equation based mod-
eling languages. In: Adsul, B., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS,
vol. 2257, p. 280. Springer, Heidelberg (2002)

Conkwright, N.B.: Introduction to the Theory of Equations. Ginn, Boston (1957)
Freeman, T., Pfenning, F.: Refinement Types for ML. In: PLDI (1991)

Giorgidze, G., Nilsson, H.: Higher-Order Non-Causal Modelling and Simulation of
Structurally Dynamic Systems. In: Casella, F. (ed.) Proceedings of the 7th Interna-
tional Modelica Conference. Linkoping Electronic Conference Proceedings (2009)

Jones, S.: Haskell 98 Language and Libraries: the Revised Report (2003)

Kuhn, H.: Solvability and Consistency for Linear Equations and Inequalities. Amer-
ican Mathematical Monthly 63 (1956)

McKinna, J., Altenkirch, T., McBride, C.: Why Dependent Types Matter. ACM
SIGPLAN Notices 41(1) (2006)

The Modelica Association. Modelica — A Unified Object-Oriented Language for
Physical Systems Modeling: Language Specification Version 3.2 (2010)

Nilsson, H.: Type-Based Structural Analysis for Modular Systems of Equations.
In: Proceedings of the 2nd International Workshop on Equation-Based Object-
Oriented Languages and Tools. Linkoping Electronic Conference Proceedings
(2008)

Nilsson, H., Peterson, J., Hudak, P.: Functional hybrid modeling. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 376-390. Springer, Heidelberg (2002)

Nilsson, H., Peterson, J., Hudak, P.: Functional Hybrid Modeling from an Object-
Oriented Perspective. In: Simulation News Europe (2007)

Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Géteborg, Sweden (2007)

Pierce, B.: Types and Programming Languages. The MIT Press, Cambridge (2002)
Pugh, W.: The Omega Test: a Fast and Practical Integer Programming Algorithm
for Dependence Analysis. In: Supercomputing 1991 (1991)

Graphical and Incremental Type Inference:
A Graph Transformation Approach

Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Dept. Llenguatges i Sistemes Informatics
Universitat Politeécnica de Catalunya
Barcelona, Spain

Abstract. We present a graph grammar based type inference system for
a totally graphic development language. NiMo (Nets in Motion) can be
seen as a graphic equivalent to Haskell that acts as an on-line tracer and
debugger. Programs are process networks that evolve giving total visibil-
ity of the execution state, and can be interactively completed, changed
or stored at any step. In such a context, type inference must be in-
cremental. During the net construction or modification only type safe
connections are allowed. The user visualizes the type information evolu-
tion and, in case of conflict, can easily identify the causes. Though based
on the same ideas, the type inference system has significant differences
with its analogues in functional languages. Process types are a non-trivial
generalization of functional types to handle multiple outputs, partial ap-
plication in any order, and curried-uncurried coercion. Here we present
the elements to model graphical inference, the notion of structural and
non-structural equivalence of type graphs, and a graph unification and
composition calculus for typing nets in an incremental way.

Keywords: type inference, graphical language, process networks, type
visualization.

1 Introduction

The data flow view of lazy functional programs as process networks was first
introduced in [I]. The graphical representation of functions as processes and
infinite lists as non-bounded channels helps to understand the program overall
behaviour. The net architecture shows bi-dimensionally the chains of function
compositions, exhibits implicit parallelism, and back arrows give an insight into
the recurrence relations between the new results and those already calculated.
The graphic execution model that the net animation suggests was the outset
of the NiMo language design, whose initial version was presented in [2]. It was
completely defined with graph grammars and implemented in the graph transfor-
mation system AGG [3]. This first prototype NIMoAGG showed the feasibility of
a graphical equivalent for Miranda or Haskell, also fully graphically executable.
A small set of graphic elements allows dealing with higher order, partial applica-
tion, non-strict evaluation, and type inference with parametric polymorphism.

R. Page, Z. Horvéth, and V. Zsék (Eds.): TFP 2010, LNCS 6546, pp. 66-B3, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Graphical and Incremental Type Inference 67

As the net represents the code and its computation graph at the same time,
users have total visibility of the execution internals in a comprehensible model.
Partially defined nets can be executed, dynamically completed or modified and
stored at any step, enabling incremental development on the fly. Execution steps
can also be undone, acting as an on line tracer and debugger where everything
can be dynamically modified, even the evaluation policy. In the current ver-
sion, five modes of increasing activity can be globally or locally assigned to each
process, thus allowing to increase parallelism, reduce channel size (number of
elements) and synchronize subnets. Symbolic execution is also admitted. The
execution model is defined in [4].

In this context, where incompleteness does not inhibit execution, editing a
program is a discontinuous process with execution intervals where code evolves
up to the next interaction; hence type inference is by necessity incremental. On
the other hand, in NiMo there is no textual code at all. Programs are graphs
whose nodes are interfaces of processes or data. Interfaces are graphic tokens with
typed in/out ports. Net construction equates to building a bi-dimensional term,
where sub-expressions are like puzzle pieces that can be pairwise connected in
any order if their shapes fit (both port types unify), thus ensuring type safeness
by construction. In the first version, static inference was partial in presence of
polymorphism. Now the full type information of each interface port is carried up
by means of a second kind of graphs, and updated with each connection. Users
can visualize the type information evolution and realize why a connection is re-
jected. Though based on the same principles, the inference system has significant
differences with its functional analogues. Besides being graphical and incremen-
tal, the data flow ingredient imposes coping with multiple-output processes and
curried-uncurried interpretation of multiple inputs, partial application in any or-
der and partial disconnection for multiple outputs. In the current version this is
admitted even in HO parameters. Hence, a process type is a non-trivial general-
ization of a functional type. The current inference system was also firstly defined
with graph grammars [5] and implemented in AGG, since the graph transforma-
tion approach is the natural framework to formalize actions in NiMo. They are
all subnet transformations, and so is the type inference process as well.

Here we present the type inference system of NiMoToons; the NiMo envi-
ronment (overviewed in [0]). Graphical typing and incremental inference are de-
scribed using a textual denotation for type graphs. A type graph unifier operator
and a net typing calculus are intended to bridge the gap with the underlying for-
malism in terms of graph transformation rules. The paper is organized as follows:
the next section introduces the syntax and main constructions of NiMdY. Section
presents the graphical representation of types, their interpretation in a textual
notation, and the differences between process and function types. Section Ml de-
fines the notion of structural and non-structural equivalence of type descriptors
and unification in both cases. Section [l covers net typing. A set of port connec-
tion and composition operators is the basis for the incremental component type

1 It does not cover evaluation aspects because they are not relevant to the issue of
types and can be found in the papers mentioned above.

68 S. Clerici, C. Zoltan, and G. Prestigiacomo

calculus. All along the paper the topics are illustrated with screen-shot examples.
The last section discusses some related work and summarizes our contributions.

2 NiMo Language Elements

NiMo programs are directed graphs with two kinds of nodes: processes and data
items. Horizontal arrows represent channels of flowing data streams, and vertical
arrows entering a process are non-channel parameters, which can also be pro-
cesses. Processes can have any number of inputs and outputs, making the use of
tuples unnecessary. There are neither patterns nor specific graphical syntax for
conditionals. The tokens are: rounded rectangles for processes, circles (or ovals)
for constant values, black-dots for duplicators, hexagons for data elements, and

green-arrows for non productive outputs (<) or delayed arguments (¢).Circles
are labelled with their value for atomic types or with their names for symbolic
constants of any type, even polymorphic. Hexagon labels are I, R, B \LL and F
for integers, reals, booleans, lists, and functional processes. Polymorphic data
are labelled with 7. In the current version neither user defined types nor Haskell
type classes are supported. Ad-hoc polymorphism for functions like > is handled
as in Miranda. There are two different processes for real and integer operators.
The NiMo syntax makes intensive use of colour. In hexagons and circles it in-
dicates their type, in process names it denotes the evaluation mode, and edges
have a state shown as a colored diamond to indicate process activation or data
evaluation degree. Some program examples can be seen in [7].

formal parameter

higher order
parameter

functional ©® symbolic
- constant 4

rjst of d
unctions

\

terminal
net process_|

hexagons

list end

open — .. :.'* \
argumem %

e
open channel (channef element)

l hi
P -
-0 ~—_open value

BRI ~——polymorphic constant

Fig. 1. NiMo program elements

Graphical and Incremental Type Inference 69

2.1 Interfaces and Connections

All the mentioned nodes are interfaces having typed (in/out) connection ports.
Interfaces are dragged from a ToolBox and dropped into the workspace where
the net is being built (see top of Fig. 2]). Clicking on a pair of ports connects
them with an edge if both types are compatible; otherwise a failure message is
generated. Process interfaces have an F-out port on the bottom. It is not one of
their outputs but their value as a functional data.

nef process
ONONO

Q
)
inal '
Ee&";jgnaan o list elem
; ! list end I

duplicator int constant

basic processes

Fig. 2. Interfaces

This special out-port disappears when any output of the process is connected
(becoming a potentially active process), or when all its inputs are connected (it is
no longer a function). HO parameter processes are connected by their F-out port

(as zzx on the bottom of Fig. 2]). All the other open ports get thus blocked (@)
to prevent new connections which would change its type. There is a set of built-
in processes (grey rounded-rectangles) for basic types and stream processing.
It includes multiple output versions of many Haskell prelude functions, as the
process SplitAt, analogous to the splitAt function that can behave also as take
or as drop just by leaving one or the other output open. We call this feature
partial production, in analogy with the notion of partial application; i.e. there is
a symmetry in parameters and results regarding partiality.

70 S. Clerici, C. Zoltan, and G. Prestigiacomo

Also, some basic processes have configurable arity, as a Map with n input and
m output channeld? (generalizing map, zip With and zip With3), Take While and
Filter with n input and output channels, and an Apply process.

Terminal hexagon interfaces correspond to the net outputs. Subnets connected
to them are considered productive, even being incomplete. In execution all the
non-productive subnets are deleted by the garbage collector. For instance, the net
in Fig. 2lis productive. Moreover, it is able to produce a result because Maps_o
already has enough inputs to act since one of its input channels has a list-end
connected, thus it returns a list-end in both outputs. Then the duplicator also
returns the list-end.

2.2 Net-Process Definitions

Net processes are user-defined components whose interfaces (the white rounded-
rectangles) are defined by means of a parameterisation mechanism. The net
in/out open ports that are to be considered as formal parameters or results,
are bound to the in/out ports of a configurable interface that is given a name.
Afterwards, it can be imported to the Toolbox to be used as a process in a new
net and so on, allowing incremental net complexity up to any arbitrary degree.

I =]]
_ILI Define conespondence I
0
| N0 E|
B =
o) 0o ..
_ 0,
Austhor name: Version: Beharior.
[rensme [Tono [Demand Dr =] e
Component name: Category [use \ for subcategoeyt ‘
il

[iroeeilip [uases

Fig. 3. Net Process definition

Fig. Bl shows an example for the process fromU]E that generates a list with
k consecutive integers from the value n, where n and k correspond respectively
to the parameters labelled 1 and 2. When the net process acts, the interface is
replaced by the net updating the connections according to the bindings. Also,
there is a generic process interface for building the interface of a not yet defined
net process. The user sets the process name and number of channel /non-channel
parameters and outputs, and optionally their types (which are all polymorphic
by default). In a top down development this allows nets with not yet defined
processes to execute. And it is also the means to define recursive processes, i.e.
to build a net definition containing the process interface which is being defined.

2 We will refer to it as M aAPn—m.
3 In Haskell code: fromUp n k =z where(x, y) = splitAt k z ; z= n: map (1+) z

Graphical and Incremental Type Inference 71

2.3 Partial Application and Production in HO

In NiMO partial application can be made in any order. In HO parameters, the
effective arguments can be delayed by connecting a vertical green-arrow before
connecting its F-out port. On the left of Fig. [process ifBool has the green-
arrow at its first input, thus allowing its value to be completed later. It is also
the way for binding this port as a second order parameter if the net is defined
as a net process@. Moreover, in NiMo multiple output processes and even partial

Fig. 4. Delayed argument and partial production

production are allowed in HO parameters. The horizontal green-arrow (in the
middle of FigHl) is connected to the second output of process SplitAt. It makes
SplitAt to behave like take, becoming a suitable parameter for a single output

Map. <= is the only interface that can be connected to a process out port
without elimination of the F-out port. Once the process is applied the green-
arrow disappears.

3 Graphical Typing

As already said, in NiMo type checking and inference is made step by step and
locally during net editing. Initially the net is empty. The user adds interfaces
and connects pairs of type compatible ports. The full type information of each
interface port is carried in a second kind of (optionally visible) graphs, which
are updated with each new connection and help to identify what is failing when
a connection is rejected. In this section we present the graph representation of
types and the textual notation to describe them in a way close to the usual type
expressions.

4 E.g. if the increment in Fig. Bl were the third fromUp parameter instead of being 1.

72 S. Clerici, C. Zoltan, and G. Prestigiacomo

3.1 Type Graph and Type Descriptors

The net has an associated type graph, which is an acyclic and maybe non-
connected graph whose nodes are type hexagons labelled I, R, B, L, F, O and 7.
All ports of every interface are tied to a node in the type grauplﬁ7 and shared sub
graphs indicate identical types. In connected ports only the out is tied to the
type graph (to avoid arrow duplication). The net type graph is incrementally
built during the net construction starting from the type graph associated to each
interface that we call its type descriptor(TD). TDs fully describe the type of pro-
cesses and data items. Each interface port is tied to one type hexagon by means
of a non-labelled arrow. This hexagon is the root of the port TD and it could
be shared by, or included in, another port TD of the interface. In NiMo there
are no variable names and this also applies to type variables in polymorphic
types. The label ? stands for all the polymorphic types. Sharing a polymorphic
hexagon is the graphical equivalent of multiple occurrences of a type variable in
a polymorphic type expression. In Fig. Bl we can see the interfaces on the top

Fig. 5. Type descriptors

of Fig. @l with their TDs. The F-out port TD of the process interfaces ifBool,
Map;_o and zzz describes their type as a functional value. In NiMo a process
type is a generalization of a functional type, whose graphical representation is a
graph rooted with a hexagon F with outgoing edges labelled From and To. Mul-
tiple inputs or outputs in a process type correspond to the subgraphs with an
O-hexagon root and edges labelled by numbers. In case of single input or output
the corresponding O-hexagon is omitted (as happens with the output of ifBool).
Note that an O-hexagon never roots a port descriptor; it is not a NiMo type but
a subgraph of a F type descriptor. It has as its children the descriptors of the
inputs/outputs of the process (thus the F-out port TD contains as sub-graphs
the TDs of all the other ports of the interface).

In the textual notation that we will use from now on, || denotes the type con-
structor O for ordered parallel inputs or results, each ?-hexagon in the TD is de-
noted by a type variable ?; (or ? if there is only one), and multiple occurrences of

5 For an idea of what it looks like, Fig. [[0] shows the type graph of the net in Fig.

Graphical and Incremental Type Inference 73

the same variable in the type expression correspond to a shared ?7-hexagon. Thus
the most general type for processes is denoted by ?i1]l...[|7m—"To1ll - - ||Tom
where n,m >0 n+m > 0. The denotation for the ifBool type is B||?]|?—7,
forMaps_o is (2 |7,1173—=24l|25)[[71]11[Z2]Il[?3]—[?4]]|[?5], and for the user pro-
cess xzx is 71]|?2]|?3]|[?3]—74]|B. Some other examples of process types are
+ : I||[—=1; id : ?—7; fibonacci : —[I] and sink : ?7—. The two last ones are
non-functional processes; their interfaces do not have a F-out port. fibonacci is
a process with no inputs and a single output which is an integer list, and sink
is a process with no output that consumes its input value. It does not have a
Haskell equivalent; its definition would be something like sink x = void.

4 Type Graph Unification

In order to connect two ports, the editor must first verify that their TDs t and t’
can be unified; i.e. that there exists a unifier graph t ~ t’ for them. In this case
the connection is made and both ports acquire this common TD; otherwise a
failure message is generated. NiMoToons has an option to automatically roll-back
partial unifications by recovering the original types each time a connection fails;
otherwise they persist to be analyzed and can be explicitly undone afterwarddd.

The unifier graph exists when the respective TDs are structurally equivalent.
Roughly, this means that both TDs can be overlapped and all their respec-
tive hexagons coincide (same label and number of children), except when one
of them is a polymorphic hexagon, in which case the other one hides it. In
Haskell-like languages the unification is always structural. A functional type has
a single interpretation because all functions have a single result and also a single
parameter (the first one), and to be unified both type expressions must be struc-
turally equivalent. Curried and uncurried functions have no equivalent types.
But in NiMo processes can be interpreted in one or the other way, and thus
non-structural unification is allowed under certain conditions that are described
in section

4.1 Structural Unification

Fig.[6shows an example where the F-out port TDs of interfaces f and g, are struc-
turally equivalent. The screen-shot on the right can be obtained by moving the
hexagons of both TDs to make them coincide. This allows us to visualize the uni-
fier graph t ~ ¢’ that would result if both TDs were unified]. The corresponding
port types are t = I||?1—[?2] and t'="73||R—7?4. We can see that the second input
of f, the first input of g, and its output, each one having a different polymorphic
type on the left, have been replaced by the respective types in the other interface.
The resulting type t = t' = I||R||—[?2] = t(?1<R; 76<=B) = t/(?3<1; 74<7;)

5 The same happens when a connection is destroyed (individually or as a result of
deleting a connected interface).

" Being both out-ports they cannot be connected but their TDs would be unified e.g.
if they were connected as values of two list-items in a same list.

74 S. Clerici, C. Zoltan, and G. Prestigiacomo

Fig. 6. Structural unification

where the notation 7;<=§ stands for the replacement of the corresponding ?-
hexagon by a subgraph §.

If two TDs t and t’ unify, the unifier graph t ~ t’ is obtained by the fusion of
t and t’ into a common type graph where, starting from the roots, each pair of
corresponding hexagons collapses in a single node. This node has as its incoming
edges the union of both sets of incoming edges.

The following rules define the (commutative and highest precedence) operator
~ that obtains the unification result in case of structural equivalence:

1.t ® t =t for t rooted in {I, R, B}

2.t ?7=t% (tis not rooted O and ? ¢ ¢)

3. [t] = [t] = [t ~ t]
Aol - ltn) = (] ([6) = o=] ([t = 8,
5. (tir|. .. [[tin—tor]| ... |tom) = (til] ... |[tily—toh]| ... [[tol,) =
(il [[tin) = (t] . [[t5) — (toull...[[tom) = (toy]... [[tofy,)

Rule 1 is for basic types, i.e two single node TDs with the same label collapsing
in a single one. Rule 2 says that a ?-hexagon can be substituted by any other
TD not rooted O, because O does not represent a tuple type; it is always a
subgraph of a process TD. Hence, a single polymorphic input/output cannot
be instantiated to multiple inputs/outputs. Besides, the ?-hexagon cannot be a
proper subgraph of the other TD because a cycle would occur (infinitely recursive
type). When a ?-hexagon collapses with any other node, the resulting hexagon
is the other one (which acquires its incoming edges). This graph replacement of
any node 7 in the TD t by the graph 8 is denoted as t(?7<4). Rules 3 and 4
apply when both labels are L or O; the respective subgraphs are pairwise unified
and the collapsed hexagon has (same number of) new outgoing edges, each one
of them having as target the respective collapsed hexagons. Rule 5 applies for
structurally equivalent TDs rooted F. The collapsed hexagon has as children the
unifier graphs of both pairs of children.

4.2 Non Structural Unification

In NiMo two process types with different number of parameters and results
can also be unified. Fig. [l shows that, as happens in Haskell, process -+ is a

8 It can be seen as the equivalent to the Damas-Milner instantiation rule.

Graphical and Incremental Type Inference 75

Fig. 7. Curried interpretation of multiple inputs

valid HO parameter for Map, in which case the elements in the input channel
must be integers, and the result is a channel of functional elements of type
I—1I. But the type of + is I||[—I, and thus it should unify with I—(I—1I).
I.e. in cases like this, there is an implicit conversion among non-structurally
equivalent process types. Also the number of outputs could have been different,
as happens in Fig.[8l In general, processes with multiple inputs and outputs can
be viewed as returning intermediate functional types, i.e. the type of a process
with » > 1 inputs and m outputs ¢1||...|[t, — | ...||t,, can be implicitly
converted to types t1]| ... [[tk—trt1ll - - ltn—t4 |l - - - |It),) for any k < n. Thus
two non-structurally equivalent process types t and t’ could be unified if any of
the curried interpretations of t is structurally equivalent to some of those of t’.
The idea is that the process with fewer parameters must return a single output,
whose type has in turn to unify with the functional type resulting of applying
the other one to as many parameters as it has. In this case both F nodes collapse,
and the new children are the children of the unifier graph root. i.e. the structure
of the result changes. The following equation defines the unification result in
these cases:

6. (tull .- Mrllthsrll - |ltn — to) = (t1]] ... [[t,—to")=
(ill- - lt0) = (B] .. [6) = t0' = (trpa| - [tu—to)
Note that all the curried interpretations of a process can be derived from it.

In Fig. B the process types of f: ?1||?2|[[?5]—74]|?5 and g : ?6]|?7—7s unify
because both the first two inputs types unify (?1||?2 ~ ?¢||?7) and ¢ has a
single output that unifies with a function from the third input of f to its results,
ie. 7g=([?3]—74||?5). On the right siddf 7 frrg = ?11?72—([?3]—74]|?5), where
the collapsed hexagons during the unification correspond to the substitutions
(P6<=71;27<"9; 75<=([?3]—74(|?5)) in the type expression T7¢, whose result is
one of the possible curried interpretations of 7 f.

9 The right side cannot be obtained by overlapping as in Fig. Bl It was obtained by
first connecting the F-out ports as the values of a pair of connected list-items (then
deleted). The unification persists but can be undone by forcing type recalculation.

76 S. Clerici, C. Zoltan, and G. Prestigiacomo

Fig. 8. Non-structural unification

5 Incremental Type Inference for Nets

In functional programming languages variables are used as formal parameters
(bound variables), or locally defined elements. Free variables are considered miss-
ing definitions and rejected by the compiler. In NiMo there are no variable names.
Function parameters are the process interface in-ports, data hexagons with open
in-ports can be seen as anonymous free variables, and nets containing open ports
are executable. Besides, the multiple outputs of a net can be produced in parallel
by non-connected subnets, unlike functional interpreters that always deal with
a single (and closed) expression. Hence, the incremental typing of nets has to
cover all these cases.

During construction, the net is considered to have as many parameters,/results
as open in/out ports, which are pairwise closed with each new connection. In
terms of graphs the net is a non-connected directed graph. Each new interface
adds a component and each connection may reduce the number of connected
components (CC). On the other hand, several port TDs in a CC could share
subgraphs with ?-hexagons; then, unifying a pair of port TDs can affect any
other port TD all along both CCs. But even if the port TDs are identical, the
connection changes the types of both interfaces, those of their CCs and thus
the net type, because all of them lose (at least) an in or an out open port. In
general, connection order is irrelevant except when connecting ports of a process
interface having an F-out port. This port makes a difference in the CC type as
is discussed in the next section.

5.1 Functional and Non-functional Components

If N is the net under construction, N = UN; where N; are its CCs. E.g. the net
in Fig. [}l has nine single-interface CCs. They are connected in Fig [9 becoming
the CCs N7 and N> that result from connecting zzz with real-const in No, and
all the other interfaces (in any order) in Ny. Both CCs are of a different kind.
Ny is a functional component since it has (a process with) an open F-out
port, while all processes in N7 have lost theird]. N7 has four in and two out
open ports. We denote its type as {B||[I]||(P1)l1||?2—I||?s)1[?1]F—={[?3]11[?3]},

10 Because all them have at least one output connected.

Graphical and Incremental Type Inference 7

Non-functional CC_{0——) Functional CC @
o ' @ 0
of

B o
O
&)

Fig. 9. Both kind of CCs

where curly brackets indicate that the given ordering is arbitrar. Further
connections of these ports can be made in any order; they are free open ports.
The general form of a non functional CC type 7N is {t1]] ... |[tn} — {¢] ...t}
with n, m>0.

The type of Ny is different because having a F-out port the connection effect
is not uniform (see 2] and [Z3)). As a functional data zzz can be connected
by its F-out port, thus disabling all its open ports. Or zzz could be applied
by connecting any of its inputs and the F-out port remains, unless it had only
one. But when connecting any output the F-out port disappears, except when
connecting a horizontal green-arrow (but not in the only open output). This
mutual dependence among the open ports of the interface (bound open ports) is
denoted in the CC type with a down-arrow preceding the F-out TD (which has as
subgraphs all the other open port TDs). In this case TNy = | (?4]|75]|[R]—76|| B)-

Also, a CC having a F-out port can have non bound in/out open ports as well,
as it happens in the net in section 5.5l In this case its type is a compound type of
the form [(t1]|...||tn — .. |1th,) @ {1 .- ltha = {tY'] - - - |ty } where @ is
the composition operator described in the next section. Moreover, in the general
case a CC could have more than one F-out port and also other free open ports.
Therefore the most general type for a CC is:

(M —=T))®... (T, — T)®{T}—{T"} where capital T stands for expres-
sions of the form ¢1]| ... ||tm.

5.2 Net Type Operators

The operators below perform the transformations on the CC type appropriate
for connecting each kind of open port. Operators =", —°% —A4=°ut and — are
infix; the 2nd operand is the port index in the given ordering, and —F—°% is
postfix.

1 Ordering is significant for ports of HO parameters, which are clockwise applied, but
not for a non-parameterised net. If it finally becomes a net-process (see [22) the user
selects the open ports to be the parameters and results, and sets both orderings.

78 S. Clerici, C. Zoltan, and G. Prestigiacomo

{T}—={T"} ="k = {T-k}—{T"} — when connecting the k-th in-port
{T}—={T"} vtk = {T}—{T"-k} — when connecting the k-th out-port
bl ek = till - Wr=1lltesall - - Jltn ifn>1 — to remove the
LR [Z) k-th parallel input or output

No Ut A W o

WT—T")-F—out = — when connecting the F-out port
l(T—>T/) g = l(T—\k—>T/) — when connecting the k-th input
CW(T—=T)=wk = {T}—{T-k} — when connecting the k-th output
. U(T—T")=A7%k = |(T—T'-k) — when connecting a green-arrow

to the k-th output
8. [(T—0)={T}—0 — once all the outputs have green-arrows
9. |(0—T) =0—-{T} — once all the inputs have been connected

If the CC has no F-out port it just loses the port (1, 2, 3). When connecting
an F-out, all the open ports get closed (4). Any open input can be Connecte
and the F-out persists (5), unless it were the last one (9). When connecting any
output the F-out also disappears, thus changing the kind of the CC type (6),
except when it is connected with a green-arrow (7 and 8).

On the other hand, if the connected ports belong to different CCs the con-
nection fuses both CCs in a single CC whose free in/out ports are the union of
the respective free in/out ports. It is performed by the operator @ that groups
together the respective sets of types. @ is commutative with neutral element (.

[T} —{T]} @ {To}—{13} = {1 | o} —{T} |73}

WTh—TY) ® {T2}—{T4} does not reduce.

5.3 The Type Inference Algorithm

In this section we present the steps to obtain the CC type that results after
connecting a pair of unifiable in/out ports. From now on we will denote the
connection of an in-port p; with an out-port ps as p;<po . If component Ny has
an in-port p; and component N, has an out-port ps, N = Nipy<p2Ns is the CC
resulting from the connection p; <ps.

The type 7N is obtained as follows:

1. both TDs are unified: 7p1~7pe = 7p1{01) = Tp2(02)

2. 7p1 and Tpg are “removed from” 7Ny and 7Ny (applying the fitting —

operator), thus resulting 7N] and 7N}

3. the substitutions o1 o2 are respectively applied on 7N{ and 7N},

4. 7N = 7N{{(o1) @ TN} {02)

Step 1 obtains the unifier graph for both port TDs by performing the substitu-
tions described in section @l As a result of the unification, other TDs in both
CCs might change (if they shared ?-hexagons with the connected ports). In
the graph representation such substitutions are made only once on the shared
subgraphs. In the equivalent CC type expressions they are performed in step 3,

12 This rule applies also when connecting a vertical green-arrow; it is not a special case.

Graphical and Incremental Type Inference 79

once the TDs of the ports closed by the connection have been removed from
both CC types, as detailed in the previous section. The last step composes the
obtained CC types, thus resulting the single connected component type.

5.4 An Example

The net in Fig. is the result of connecting the components in Fig. [by
connecting the first in—por of Maps_o in N1 and the F-out port of zzz in Ns.

Fig. 10. Single component net

To1=TMapy ' =21 ||1||29—1||?3, and Tpa=Txzal "% = 24|75 [R]— 76| B.

The 7N calculation proceeds as follows:
L mpi~Tpy =% | I[|[[R]=1||B =7p1(?2<=[R]; 75<B) = 1pa(74<=T13 75, 76=1)
2. p1 is the 3rd in-port in the glven ordering for 7Ny and ps is the N2 F-out:

TN1="3 = {B||[1]|| (1||I||72—>1||7 NIARISGATEAN
= {BI U]} —=A S]]]}
TN = =0ut = | (24|75 [R] =76 B) ="~ = 0
3. (BN =As]N2s]1)(P2e=[R]; 73<=B) = {B||] [7:]}—A{[B]I[B]}
@(?4@? ?57?6<:I> @

4. 7N = {BI[M) —{BII[B]} @0 = {BI 1)1} —{B][B]}

Note that the connected ports p; and ps now have Tpia7ps as their type,
and all the port TDs that shared with them a collapsed ?-hexagon have also
changed. Maps_> has lost this open port, and all the in and out ports of N,
have been closed with the connection of the F-out port.

13 We use the notation X~% X°u=* and XF=°u to refer respectively to the i-th
in-port, the k-th output-port and the F-out port of an interface X.

80 S. Clerici, C. Zoltan, and G. Prestigiacomo

5.5 A Second Example

Fig [Tl shows the connection of functional CCs and CCs with green-arrows. On
the left side, N7 contains the horizontal green-arrow Hgra, N2 the process zzz,
N3 the vertical green-arrow Vgra, and Ny the interfaces Rprod (*) and HdT!.

Fig. 11. Connecting green-arrows

TN1 ={%}-0 TNz = |[(?1]|?2]|R[|[R]— 75| B)
Ny ={7:}—{7%} 7Ns=|(R—R) & {[R]}—{[R]}

The CC N on the right results from having connected in any ordeI. the three
pairs of ports p1<p} p2=<ph and p3<pj

p1=Hgra™ py = zxx®; py = zxa™™ ph=Vgra®"; p3 = zxz™> py=Rprod”"*
For instance, two of the six possible connection orderings are:

((N1 p1=piN2) pa<p5N3)p3<psNy and (N1 p1<p’(Na p3<p5Ny))p2<ph N3
The final result 7N is the same; e.g. in the second case it is obtained as follows:
(connection 1)Na.q4 = N p3<phNy

Tp3~Tpy=RNR=Tp3()=Tp5()

T(Nz p3=p3Na) = (TN2=""3)() @ (TN1="'1)()

L1 72| RI|[R] =3 — 73]|B) & (L(R—R-1) @ {
= [(%1]|?2[|[R]—=75B) & {R}—0 & {[R]}—{[R]}
= [(?1]|72[|[R]—?3]B) @ {R|[R]}—{[R]}

(connection 2)N1 2.4 = N1 p1<piNa.4
TP1~TP1*7 ~T3=Tp1(?4="3)=Tp}()
T(N1 p1=p) Na.a) = (TN1="1)(?4=73) @ (TNa.4=*70"1)()
= ({7a-1}=0)(?4<=73) @ L(71)|72]|[R]—=73]|B-1) @ {R[|[R]}—{[R]}
=0 & [("1]?2[[[R]—B) & {R|[R]}—{[R]}

= [(T1]|%2[I[R]—) & {R|[R]}—{[R]}

(connection 3)N = Ni 9.4 p2<pHN3

TPeRTPy="1~"15=Tp2()=Tp5(?5<=71)

T(N1.2.4 p2<ph N3) = (TN1.247""1)() @ (TN3—°"*1)(?5<71)

= [(?1]|72[|[R]-1-B) @ {RI[R}—{[R]} & ({?s}—{?s~'})(?5<"1)

= L(%2||[[R]—=B) & {R|[R]}—={[R]} & {?1}—0

= [(%2[[[R]—=B) @ {R[|[R]||?1}—{[R]}

1 Since none of the connections closes the other ports.

(R} —={[R]})

Graphical and Incremental Type Inference 81

6 Related Work and Final Remarks

We have presented the graphical type inference system for an incremental and
highly interactive development language where editing and execution are in-
terleaved. NiMo programs are graphs that evolve, and so is type information.
Hence, the graph transformation approach is the natural framework to model
type representation and inference. In this paper we have used a textual nota-
tion close to the usual type expressions to describe the type graphs and their
evolution. The transformation rules for unification and typing of nets have been
presented in terms of a set of operators that perform unification and connection
on the equivalent type expressions. However, this textualization shadows some
advantages of the graph representation, as having a single shared ?7-node instead
of multiple occurrences of a quantified variable (hence multiple substitutions).

Regarding the graph transformation approach for modelling types, [8] presents
a general framework for typing graph rewriting systems based on the notion of
annotated hypergraphs. NiMo nets might be also described in this way, since
interfaces can be viewed as directed hypergraphs whose nodes are the ports,
internally connected by a hyperedge. Ports are annotated by the corresponding
TDs, hence the whole net can be viewed as an annotated hypergraph.

Concerning the graphical and incremental approach, an outstanding asset is
that the inference system itself becomes an online visualization tool for type
information and failure identification. On this aspect there are several works.
GemCut [J] is a graphical viewer for functions in the Haskell-like language
CAL; the editor uses CAL compiler’s inference system to prevent type errors.
TypeTool [10] and System I [II] are web-based tools for visualizing type infer-
ence of lambda terms; they are intended to teaching the basis of type inference
algorithms for functional languages. Other research focus on tracing the ori-
gin of unification failure. [I2] proposes a guideline for evaluating the quality
of type error diagnosis of type inference systems. It compares several systems
and presents the algorithm Unification Assumption Environments. The inference
process records the local inferences so as to identify all possible sources of incon-
sistencies. In NiMo, whenever a pair of type hexagons cannot be collapsed, all
type ports related to them can be visually identified. Other work on this regard,
(not a graphical tool either) is [I3] that uses a graph representation with nodes
labelled by lambda terms and types from which information is extracted to help
in error debugging.

In general, inference systems work on complete terms that can be erroneous,
thus producing an error message. In NiMo erroneous nets cannot be edited; mes-
sages just indicate incompatibility. Moreover, port compatibility can be tried
before connecting simply by moving both TDs hexagons to make them coincide
(except in cases of non-structural equivalence).

Another significant point about inference in NiMo is the total absence of type
variables; transformations take place directly on the graph structure of the type
expressions. The assumption environment is distributed and tied to each term
(CC) since every token carries its own type and partially built expressions are
always well typed and also carry their type. Besides, NiMo code is bi-dimensional

82 S. Clerici, C. Zoltan, and G. Prestigiacomo

and can be built in any order; most of the port connections are applications and
in NiMo partial application can be made in any order (not only from left to right),
hence incremental inference can be made in the user-stated port connection or-
der. On polymorphism handling, interface TDs are originally as polymorphic
as they can ever be; hence there is no equivalent for generalization. Instantia-
tion corresponds to the 7-hexagons collapse that occurs when unifying the port
TDs.

The other differences come from the data-flow ingredient plus incompleteness.
Multiple inputs and outputs required a non-trivial generalization to handle the
process type. Non-structural unification is the means to have multiple inputs
(then partial application in any order), while keeping the advantages of curry-
ing in HO constructs without explicit conversions. On the other hand, typing
NiMo nets required treatment of incompleteness and multiple outputs produced
by non-connected subnets, in contrast to inference systems that deal with a
single and closed term. Application corresponds to connecting a process input
in a functional CC. Having multiple inputs and outputs, partial application in
any order and partial production also in HO parameters, we needed different
operators to define the connection effect vs. the single rule used in functional
languages.

Considering the overall development of NiMo, the paradigms fusion was a big
challenge that required figuring out many creative solutions to make both mod-
els compatible and the graphical realization feasible. But we think it was worth
it; the graphic-functional-dataflow nature of NiMo and its incompleteness tol-
erance result in a very powerful computation model where everything is visible
and dynamically modifiable, even the evaluation policy. This allows us to exploit
implicit parallelism in a very intuitive way, and to perform symbolic execution
in the same framework. We are now exploring its possibilities in simulation and
modelling, as well as in generative and multistage programming.

As regards future development, the mixed model opens a range of possible
extensions, some of which are hard to imagine in other languages; think for in-
stance that here functions are showable and polymorphic expressions executable.
Conversely, some relevant functional language features are not yet included; in
particular overloading, type classes, and user defined types (now algebraic types
are emulated with functional types), with the consequent implications for infer-
ence. But again, the first challenge is making their graphical equivalents stylistic-
consistent and manageable, which requires facilities for the compact viewing of
complex values. We are now extending the visualization features for net-processes
and data channels to cope with any subnet. Besides, in the current version net-
process definitions have a single rule with a single interface on the left, whereas
Haskell-like languages allow definitions by cases using patterns, making them
more modular and readable. The inclusion of this mechanism in NiMo would
be a major upgrade far beyond expressiveness, because symbolic execution to-
gether with graph patterns open the door to program transformation in the same
framework; hence even dynamically.

Graphical and Incremental Type Inference 83

Acknowledgments. We thank the reviewers for their detailed and helpful
comments.

References

10.

11.

12.

13.

. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.

In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 1-16. Springer, Hei-
delberg (1985)

Clerici, S., Zoltan, C.: A graphic functional-dataflow language. In: Loidl, H-W.
(ed.) Trends in Functional Programming. Intellect, vol. 5, pp. 129-144 (2004)
AGG: Agg home page (2009), http://user.cs.tu-berlin.de/~gragra/agg/
Clerici, S., Zoltan, C.: A dynamically customizable process-centered evaluation
model. In: PPDP 2009: Proceedings of the 11th ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, pp. 37-48. ACM, New York
(2009)

Clerici, S., Zoltan, C.: Graphical type inference. a graph grammar definition. Tech-
nical Report LSI-07-24-R, Dept. Llenguatges i Sistemes Informatics, Universitat
Politecnica de Catalunya (July 2007)

Clerici, S., Zoltan, C., Prestigiacomo, G.: Nimotoons: a totally graphic workbench
for program tuning and experimentation. Electr. Notes Theor. Comput. Sci. 258(1),
93-107 (2009)

NiMo: Nimo home page (2010), http://www.1lsi.upc.edu/~nimo/Project

Konig, B.: A general framework for types in graph rewriting. Acta Inf. 42(4), 349-
388 (2005)

Resources (2009),

http://resources.businessobjects. com/labs/cal/gemcutter-techpaper. pdf
Simoes, H., Florido, M.: TypeTool - a type inference visualization tool. In: Pro-
ceedings of the 13th International Workshop on Functional and (Constraint) Logic
Programming (2004), http://www.dcc.fc.up.pt/typetool/cgi-bin/tt.pl
Church Project: System I (2010),
http://types.bu.edu/modular/compositional/system-i/

Yang, J., Michaelson, G., Trinder, P., Wells, J.B.: Improved Type Error Reporting.
In: Proceedings of 12th International Workshop on Implementation of Functional
Languages, pp. 71-86 (2000)

McAdam, B.J.: Generalising techniques for type debugging. In: Trinder, P.W.,
Michaelson, G., Loidl, H.-W. (eds.) Scottish Functional Programming Workshop.
Trends in Functional Programming, Intellect, vol. 1, pp. 50-58 (1999)

http://user.cs.tu-berlin.de/~gragra/agg/
http://www.lsi.upc.edu/~nimo/Project
http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf
http://www.dcc.fc.up.pt/typetool/cgi-bin/tt.pl
http://types.bu.edu/modular/compositional/system-i/

Hygienic Macros for ACL2

Carl Eastlund and Matthias Felleisen

Northeastern University
Boston, MA, USA
{cce,matthias}@ccs.neu.edu

Abstract. ACL2 is a theorem prover for a purely functional subset of
Common Lisp. It inherits Common Lisp’s unhygienic macros, which are
used pervasively to eliminate repeated syntactic patterns. The lack of
hygiene means that macros do not automatically protect their producers
or consumers from accidental variable capture. This paper demonstrates
how this lack of hygiene interferes with theorem proving. It then explains
how to design and implement a hygienic macro system for ACL2. An
evaluation of the ACL2 code base shows the potential impact of this
hygienic macro system on existing libraries and practices.

1 Unhygienic Macros Are Not Abstractions

ACL2 [I] is a verification system that combines a first-order functional subset of
Common Lisp with a first-order theorem prover over a logic of total functions.
It has been used to model and verify large commercial hardware and software
artifacts. ACL2 supports functions and logical statements over numbers, strings,
symbols, and s-expressions. Here is a sample program:

(defun double (x) (+ x x))

(defthm double=-evenp (implies (integerp x) (evenp (double x))))

The defun form defines double, a function that adds its input to itself. The
defthm form defines double=-evenp, a conjecture stating that an integer input to
double yields an even output. The conjecture is implicitly universally quantified
over its free variable x. ACL2 validates double=>evenp as a theorem, using the
definition of double and axioms about implies, integerp, and evenp.

From Common Lisp, ACL2 inherits macros, which provide a mechanism for
extending the language via functions that operate on syntax trees. According to
Kaufmann and Moore [2], “one can make specifications more succinct and easy
to grasp ... by introducing well-designed application-specific notation.” Indeed,
macros are used ubiquitously in ACL2 libraries: there are macros for pattern
matching; for establishing new homogenous list types and heterogenous structure
types, including a comprehensive theory of each; for defining quantified claims
using skolemization in an otherwise (explicit) quantifier-free logic; and so on.

In the first-order language of ACL2, macros are also used to eliminate repeated
syntactic patterns due to the lack of higher-order functions:

R. Page, Z. Horvéth, and V. Zsék (Eds.): TFP 2010, LNCS 6546, pp. 84-[[01, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Hygienic Macros for ACL2 85

(defmacro defun-map (map-fun fun)
‘(defun ,map-fun (xs)
(if (endp xs)

nil

(cons (,fun (car xs)) (,map-fun (cdr xs))))))
This macro definition captures the essence of defining one function that applies
another pointwise to a list. It consumes two inputs, map-fun and fun, representing
function names; the body constructs a suitable defun form. ACL2 expands uses
of defun-map, supplying the syntax of its arguments as map-fun and fun, and
continues with the resulting function definition. Consider the following term:

(defun-map map-double double)

Its expansion fills the names map-double and double into defun-map’s template:

(defun map-double (xs)
(if (endp xs)
nil
(cons (double (car xs)) (map-double (edr xs)))))

Unfortunately, ACL2 macros are unhygienic [3], meaning they do not preserve
the meaning of variable bindings and references during code expansion. The end
result is accidental capture that not only violates a programmer’s intuition of
lexical scope but also interferes with logical reasoning about the program source.
In short, macros do not properly abstract over syntax.

To make this concrete, consider the or macro, which encodes both boolean
disjunction and recovery from exceptional conditions, returning the second value
if the first is nil:

(defthm excluded-middle (or (not x) x))

(defun find (n xs) (or (nth n xs) 0))

The first definition states the law of the excluded middle. Since ACL2 is based
on classical logic, either (not x) or x must be true for any x. The second defines
selection from a list of numbers: produce the element of xs at index n, or return
0 if nth returns nil, indicating that the index is out of range.

A natural definition for or duplicates its first operand:

(defmacro or (a b) ‘(if ,a ,a ,b)) (1)

This works well for excluded-middle, but the expanded version of find now tra-
verses its input twice, doubling its running time:
(defun find (n xs) (if (nth n xs) (nth n xs) 0))

Macro users should not have to give up reasoning about their function’s running
time. Consequently, macros should avoid this kind of code duplication.

The next logical step in the development of or saves the result of its first
operand in a temporary variable:

(defmacro or (a b) ‘(let ((x ,a)) (if x x ,b))) (2)

86 C. Eastlund and M. Felleisen

This macro now produces efficient and correct code for find. Sadly though, the
expanded form of excluded-middle is no longer the expected logical statement:

(defthm excluded-middle (let ((x (not x))) (if x x x)))

The or macro’s variable x has captured excluded-middle’s second reference to x.
As a result, the conjecture is now equivalent to the statement (not x).

ACL2 resolves this issue by dealing with the or macro as a special case. For
symbolic verification, or expands using code duplication. For execution, it ex-
pands by introducing a fresh variable. The regular macro language of ACL2 does
not come with the same expressive power, however. Allowing the creation of fresh
variables would introduce uninterned symbols that violate ACL2’s axioms and
thus corrupt its carefully crafted logical foundation; allowing a separation of
executable behavior from the logical semantics would also invite unsoundness.

The case-match macro, also provided with ACL2, does not have any such
special cases. This macro is used for pattern matching and case dispatch. Its
implementation is designed to work around ACL2’s lack of hygiene: the macro’s
expansion never binds any temporary variables. Here is an example use of case-
match to destructure a 3-element list:

(let ((x (quote (1 2 3))))
(case-match x ((a b ¢) (list a b c))))

The macro expands into the following code:

(let ((x (quote (1 2 3))))
(if (if (consp x)
(if (consp (cdr x))
(if (consp (cdr (cdr x)))
(eq (cdr (cdr (cdr x))) nil)
nil)
nil)
nil)
(let ((a (car x)) (b (car (cdr x))) (c (car (cdr (cdr x)))))
(list a b ¢))
nil))
Note that the input to case-match is a variable. The macro requires that the user
bind the input to a variable, because the input is duplicated many times in the
macro’s output and the macro cannot safely bind a variable itself. Applications
of car and cdr to walk down the input list are duplicated for the same reason;
as a result, the size of the output increases quadratically.
In a hygienic system, case-match would be able to safely bind temporary
variables in its expanded form. Thus, the user would not need to explicitly bind
the input to case-match to a variable:

(case-match (quote (1 2 3)) ((a b c) (list a b c)))

This also makes case-match available for use by other macros. In ACL2’s unhy-
gienic macro system, other macros cannot safely bind a variable to store case-
match’s input without risking unintended capture.

Hygienic Macros for ACL2 87

Furthermore, the intermediate results of car and cdr could be bound to tem-
porary variables, yielding fewer function calls in the expanded code. Here is the
expansion of the above use of case-match produced by one possible implemen-
tation in a hygienic macro system:

(let ((xo (quote (I 2 3))))
(flet ((faily () nil))
(if (consp xg)
(let ((x, (car xo)) (v (cdr xo))
(if (consp y;)
(let ((x2 (car y1)) (y2 (cdry2)))
(if (consp y2)
(let ((xs (car y2)) (ys (cdr y2))
(if (eq y3 nil)
(let ((a x1) (b x2) (cx3)) (list a b c))
(falo)))
(failo)))
(failp))
(faily))))

This version of case-match uses temporary variables to perform each car and
cdr only once, producing output with a linear measure.

In general, macro writers tread a fine line. Many macros duplicate code to
avoid introducing a variable that might capture bindings in the source code.
Others introduce esoteric temporary names to avoid accidental capture. None
of these solutions is universal, though. Finding itself in the same place, the
Scheme community introduced the notion of hygienic macros [3/4)5]. This paper
presents an adaptation of hygienic macros to ACL2. It motivates the design and
the ACL2-specific challenges, sketches an implementation, and finally presents
a comprehensive evaluation of the system vis-a-vis the ACL2 code base.

2 The Meaning of Hygiene for ACL2

Hygienic macro systems ensure that variables in macro-generated code respect
the intended lexical scope of the program. Hence, our first step is to analyze the
notion of lexical scope in ACL2 and to formulate appropriate goals and policies
for the adaptation of hygienic expansion. This section presents the design goals
and interprets them in the conte