

Lecture Notes in Computer Science 6546
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rex Page Zoltán Horváth
Viktória Zsók (Eds.)

Trends
in Functional
Programming

11th International Symposium, TFP 2010
Norman, OK, USA, May 17-19, 2010
Revised Selected Papers

13

Volume Editors

Rex Page
University of Oklahoma, School of Computer Science
110 West Boyd Street, Norman, OK 73019, USA
E-mail: page@ou.edu

Zoltán Horváth
Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages and Compilers
Pázmány Péter sétány 1/C, 1117 Budpest, Hungary
E-mail: hz@inf.elte.hu

Viktória Zsók
Eötvös Loránd University, Faculty of Informatics
Department of Programming Languages and Compilers
Pázmány Péter sétány 1/C, 1117 Budpest, Hungary
E-mail: zsv@inf.elte.hu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22940-4 e-ISBN 978-3-642-22941-1
DOI 10.1007/978-3-642-22941-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011934807

CR Subject Classification (1998): D.1.1, D.1, D.3.2, F.3.3, D.1-2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 11th Symposium on Trends in Functional Programming took place on the
University of Oklahoma campus in Norman, Oklahoma, May 17-19, 2010. The
program included presentations of 26 papers submitted by researchers from six
nations and an invited talk by J. Strother Moore on machine reasoning so well
received that the question/answer session continued for a full hour beyond the
talk, well into the lunch period. Most of the authors submitted revisions of their
papers, based in part on responses to their presentations. The revisions were
reviewed and discussed in detail by the Program Committee, and 13 of them
were accepted for publication in this volume.

A little over half of the revisions accepted for publication were student papers
(that is, papers with a student as first author). Following a long-established
custom, the Program Committee designated one of them as the best student
paper. This year the award went to Stephen Chang for his paper, with co-authors
David van Horn and Matthias Felleisen, describing a way to evaluate a call-by-
need λ-calculus on the control stack. The Program Committee appreciates the
originality and insight in this work and congratulates Stephen Chang on earning
the award.

TFP aspires to be a forum for new directions in functional programming
research. This year was no exception. Presentations covered new ideas for refac-
toring, managing source-code complexity, functional language implementation,
graphical languages, applications of functional programming in pure mathemat-
ics, type theory, multitasking and parallel processing, distributed systems, sci-
entific modeling, domain-specific languages, hardware design, education, and
testing.

The editors want to thank the Program Committee and all of the referees for
their diligence and for their well-considered reviews. We also want to thank the
University of Oklahoma and Erlang Solutions Ltd, for their generous support. Fi-
nally, we thank the participants for their lively attention during the symposium.
We trust that a good time was had by all.

December 2010 Rex Page
Zoltán Horváth

Viktória Zsók

Organization

Program Committee

Peter Achten Radboud University Nijmegen,
The Netherlands

Emil Axelsson Chalmers University of Technology, Sweden
Francesco Cesarini Erlang Training and Consulting, Ltd., UK
John Clements California Polytechnic State University, USA
Daniel Cooke Texas Tech University, USA
Nils Anders Danielsson University of Nottingham, UK
Jared Davis Centaur Technology, USA
Martin Erwig Oregon State University, USA
Ruben Gamboa University of Wyoming, USA
Jurriaan Hage Utrecht University, The Netherlands
Kevin Hammond University of St. Andrews, UK
Michael Hanus Christian Albrechts University zu Kiel,

Germany
Zoltán Horváth (symposium

co-chair) Eötvös Loránd University, HU
Garrin Kimmell University of Kansas, USA
Pieter Koopman Radboud University Nijmegen,

The Netherlands
Hans-Wolfgang Loidl Heriot-Watt University, UK
Rita Loogen Philipps University Marburg, Germany
Jay McCarthy Brigham Young University, USA
Greg Michaelson Heriot-Watt University, UK
Marco T. Morazán Seton Hall University, USA
Rodney Oldehoeft Krell Institute, USA
Rex Page (Chair) University of Oklahoma, USA
Ricardo Peña Complutense University of Madrid, Spain
Walid Taha Rice University, USA
Sam Tobin-Hochstadt Northeastern University, USA
Simon Thompson University of Kent, UK
Phil Trinder Heriot-Watt University, UK
Marko van Eekelen Radboud University Nijmegen and Open

University, The Netherlands
Viktória Zsók (symposium

co-chair) Eötvös Loránd University, HU

VIII Organization

Sponsoring Institutions

Erlang Solutions Ltd. (UK)
The University of Oklahoma (USA)

Table of Contents

Evaluating Call-by-Need on the Control Stack . 1
Stephen Chang, David Van Horn, and Matthias Felleisen

Typing Coroutines . 16
Konrad Anton and Peter Thiemann

An Expression Processor: A Case Study in Refactoring Haskell
Programs . 31

Christopher Brown, Huiqing Li, and Simon Thompson

Static Balance Checking for First-Class Modular Systems of
Equations . 50

John Capper and Henrik Nilsson

Graphical and Incremental Type Inference: A Graph Transformation
Approach . 66

Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Hygienic Macros for ACL2 . 84
Carl Eastlund and Matthias Felleisen

What’s the Matter with Kansas Lava? . 102
Andrew Farmer, Garrin Kimmell, and Andy Gill

Types and Type Families for Hardware Simulation and Synthesis:
The Internals and Externals of Kansas Lava . 118

Andy Gill, Tristan Bull, Andrew Farmer, Garrin Kimmell, and
Ed Komp

Testing with Functional Reference Implementations 134
Pieter Koopman and Rinus Plasmeijer

Every Animation Should Have a Beginning, a Middle, and an End:
A Case Study of Using a Functor-Based Animation Language 150

Kevin Matlage and Andy Gill

Functional Video Games in the CS1 Classroom . 166
Marco T. Morazán

X Table of Contents

ComputErl—Erlang-Based Framework for Many Task Computing 184
Micha�l Ptaszek and Maciej Malawski

Monad Factory: Type-Indexed Monads . 198
Mark Snyder and Perry Alexander

Author Index . 215

Evaluating Call-by-Need on the Control Stack

Stephen Chang�, David Van Horn��, and Matthias Felleisen�

PLT & PRL, Northeastern University, Boston, MA 02115, USA

Abstract. Ariola and Felleisen’s call-by-need λ-calculus replaces a vari-
able occurrence with its value at the last possible moment. To sup-
port this gradual notion of substitution, function applications—once
established—are never discharged. In this paper we show how to trans-
late this notion of reduction into an abstract machine that resolves vari-
able references via the control stack. In particular, the machine uses the
static address of a variable occurrence to extract its current value from
the dynamic control stack .

1 Implementing Call-by-Need

Following Plotkin [1], Ariola and Felleisen characterize the by-need λ-calculus
as a variant of β:

(λx.E[x]) V = (λx.E[V]) V ,

and prove that a machine is an algorithm that searches for a (generalized) value
via the leftmost-outermost application of this new reduction [2].

Philosophically, the by-need λ-calculus has two implications:

1. First, its existence says that imperative assignment isn’t truly needed to
implement a lazy language. The calculus uses only one-at-a-time substitu-
tion and does not require any store-like structure. Instead, the by-need β
suggests that a variable dereference is the resumption of a continuation of
the function call, an idea that Garcia et al. [3] recently explored in detail by
using delimited control operations to derive an abstract machine from the
by-need calculus. Unlike traditional machines for lazy functional languages,
Garcia et al.’s machine eliminates the need for a store by replacing heap
manipulations with control (stack) manipulations.

2. Second, since by-need β does not remove the application, the binding struc-
ture of programs—the association of a function parameter with its value—
remains the same throughout a program’s evaluation. This second connection
is the subject of our paper. This binding structure is the control stack, and
thus we have that in call-by-need, static addresses can be resolved in the
dynamic control stack.

� Partially supported by grants from the National Science Foundation.
�� Supported by NSF Grant 0937060 to the CRA for the CIFellow Project.

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Chang, D. Van Horn, and M. Felleisen

Our key innovation is the CK+ machine, which refines the abstract machine
of Garcia et al. by making the observation that when a variable reference is in
focus, the location of the corresponding binding context in the dynamic control
stack can be determined by the lexical index of the variable. Whereas Garcia
et al.’s machine linearly traverses their control stack to find a specific binding
context, our machine employs a different stack organization where indexing can
be used instead of searching. Our machine organization also simplifies the hygiene
checks used by Garia et al., mostly because it explicitly maintains Garcia et al.’s
“well-formedness” condition on machine states, instead of leaving it as a side
condition.

The paper starts with a summary of the by-need λ-calculus and the abstract
textual machine induced by the standard reduction theorem. We then show how
to organize the machine’s control stack so that when the control string is a
variable reference, the machine is able to use the lexical address to compute the
location of the variable’s binding site in the control stack.

2 The Call-by-Need λ-Calculus, the de Bruijn Version

The terms of the by-need λ-calculus are those of the λ-calculus [4], which we
present using de Bruijn’s notation [5], i.e., lexical addresses replace variables:

M ::= n | λ.M | M M

where n ∈ N. The set of values is just the set of abstractions:

V ::= λ.M

One of the fundamental ideas of call-by-need is to evaluate the argument in
an application only when it is “needed,” and when the argument is needed, to
evaluate that argument only once. Therefore, the by-need calculus cannot use
the β notion of reduction because doing so may evaluate the argument when it is
not needed, or may cause the argument to be evaluated multiple times. Instead,
β is replaced with the deref notion of reduction:

(λ.E[n]) V need (λ.E[V]) V, λ binds n deref

The deref notion of reduction requires the argument in an application to be a
value and requires the body of the function to have a special shape. This special
shape captures the demand-driven substitution of values for variables that is
characteristic of call-by-need. In the deref notion of reduction, when a variable
is replaced with the value V , some renaming may still be necessary to avoid
capture of free variables in V , but for now, we assume a variant of Barendregt’s
hygiene condition for de Bruijn indices and leave all necessary renaming implicit.

Here is the set of evaluation contexts E:

E ::= [] | E M | (λ.E) M | (λ.E′[n]) E

Evaluating Call-by-Need on the Control Stack 3

Like all contexts, an evaluation context is an expression with a hole in the place
of a subexpression. The first evaluation context is an empty context that is just a
hole. The second evaluation context indicates that evaluation of applications pro-
ceeds in a leftmost-outermost order. This is similar to how evaluation proceeds
in the by-name λ-calculus [1]. Unlike call-by-name, however, call-by-need defers
dealing with arguments until absolutely necessary. It therefore demands evalua-
tion within the body of a let-like binding. The third evaluation context captures
this notion. This context allows the deref notion of reduction to search under
applied λs for variables to substitute. The fourth evaluation context explains
how the demand for a parameter’s value triggers and directs the evaluation of
the function’s argument. In the fourth evaluation context, the visible λ binds n
in λ.E′[n]. This means that there are n additional λ abstractions in E′ between
n and its binding λ.

To make this formal, let us define the function Δ : E → N as:

Δ([]) = 0 Δ((λ.E′[n]) E) = Δ(E)
Δ(E M) = Δ(E) Δ((λ.E) M) = Δ(E) + 1

With Δ, the side condition for the fourth evaluation context is n = Δ(E′).
Unlike β, deref does not remove the argument from a term when substitu-

tion is complete. Instead, a term (λ.M) N is interpreted as a term M and an
environment where the variable (index) bound by λ is associated with N . Since
arguments are never removed from a by-need term, reduced terms are not nec-
essarily values. In the by-need λ-calculus, reductions produce “answers” a (this
representation of answers is due to Garcia et al. [3]):

a ::= A[V] answers
A ::= [] | (λ.A) M answer contexts

Answer contexts A are a strict subset of evaluation contexts E.
Since both the operator and the operand in an application reduce to answers,

two additional notions of reduction are needed:

(λ.A[V]) M N need (λ.A[V N]) M assoc-L
(λ.E[n]) ((λ.A[V]) M) need (λ.A[(λ.E[n]) V]) M, if Δ(E) = n assoc-R

As mentioned, some adjustments to de Bruijn indices are necessary when
performing substitution in λ-calculus terms. For example, in a deref reduction,
every free variable in the substituted V must be incremented by Δ(E) + 1. Oth-
erwise, the indices representing free variables in V no longer count the number
of λs between their occurrence and their respective binding λs. Similar adjust-
ments are needed for the assoc-L and assoc-R reductions, where subterms are
also pulled under λs.

Formally, define a function ↑ that takes three inputs: a term M , an integer x,
and a variable (index) m, and increments all free variables in M by x, where a
free variable is defined to be an index n such that n ≥ m. In this paper, we use
the notation M↑x

m. Here is the formal definition of ↑:

4 S. Chang, D. Van Horn, and M. Felleisen

n↑x
m = n + x, if n ≥ m (M N)↑x

m = ((M↑x
m) (N↑x

m))
n↑x

m = n, if n < m λ.M↑x
m = λ.(M↑x

m+1)

Using the ↑ function for index adjustments, the notions of reduction are:

(λ.E[n]) V need (λ.E[V ↑Δ(E)+1
0]) V, if Δ(E) = n deref

(λ.A[V]) M N need (λ.A[V (N↑Δ(A)+1
0)]) M assoc-L

(λ.E[n]) ((λ.A[V]) M) need (λ.A[((λ.E[n])↑Δ(A)+1
0) V]) M, if Δ(E) = n

assoc-R

It is acceptable to apply the Δ function to A because A is a subset of E.

3 Standard Reduction Machine

In order to derive an abstract machine from the by-need λ-calculus, Ariola and
Felleisen prove a Curry-Feys-style Standardization Theorem. Roughly, the the-
orem states that a term M reduces to a term N in a canonical manner if M
reduces to N in the by-need calculus.

The theorem thus determines a state machine for reducing programs to an-
swers. The initial state of the machine is the program, the collection of states is
all possible programs, and the final states are answers. Transitions in the state
machine are equivalent to reductions in the calculus:

E[M] �−→need E[M ′], if M need M ′

where E represents the same evaluation contexts that are used to define the
demand-driven substitution of variables in the deref notion of reduction.

The machine is deterministic because all programs M satisfy the unique de-
composition property. This means that M is either an answer or can be uniquely
decomposed into an evaluation context and a redex. Hence, we can use the state
machine transitions to define an evaluator function:

evalneed(M) =

{
a, if M �−→→need a

⊥, if for all M �−→→need N , N �−→need L

Lemma 1. evalneed is a total function.

Proof. The lemma follows from the standard reduction theorem [2]. �	

4 The CK+ Machine

A standard reduction machine specifies evaluation steps at a high-level of ab-
straction. Specifically, at each evaluation step in the machine, the entire program
is partitioned into an evaluation context and a redex. This repeated partition-
ing is inefficient because the evaluation context at any given evaluation step

Evaluating Call-by-Need on the Control Stack 5

tends to share a large common prefix with the evaluation context in the previ-
ous step. To eliminate this inefficiency, Felleisen and Friedman propose the CK
machine [6, Chapter 6], an implementation for a standard reduction machine of
a call-by-value language. Consider the following call-by-value evaluation:

((λw.w) ((λx.(x ((λy.y) λz.z))) λx.x))

�−→v ((λw.w) ((λx.x) ((λy.y) λz.z)))

�−→v ((λw.w) ((λx.x) λz.z))

�−→v ((λw.w) λz.z)

�−→v λz.z

In each step, the βv redex is underlined. The evaluation contexts for the first and
third term are the same, ((λw.w) []), and it is contained in the evaluation context
for the second term, ((λw.w) ((λx.x) [])). Although the evaluation contexts in
the first three terms have repeated parts, a standard reduction machine for the
call-by-value calculus must re-partition the program at each evaluation step.

The CK machine improves upon the standard reduction machine for the
by-value λ-calculus by eliminating redundant search steps. While the standard
reduction machine uses whole programs as machine states, a state in the CK ma-
chine is divided into separate subterm (C) and evaluation context (K) registers.
More precisely, the C in the CK machine represents a control string, i.e., the
subterm to be evaluated, and the K is a continuation, which is a data structure
that represents an evaluation context in an “inside-out” manner. The original
program can be reconstructed from a CK machine state by “plugging” the ex-
pression in the C subterm register into the context represented by K. When
the control string is a redex, the CK machine can perform a reduction, just like
the standard reduction machine. Unlike the standard reduction machine though,
the CK machine still remembers the previous evaluation context in the context
register and can therefore resume the search for the next redex from the con-
tractum in C and the evaluation context in K.

4.1 CK+ Machine States

We introduce the CK+ machine, a variant of the CK machine, for the by-need
λ-calculus. The CK+ machine is also a modification of the abstract machine
of Garcia et al. [3]. The machine states for the CK+ machine are specified in
figure 1. The core CK+ machine has three main registers, a control string (C),
a “renaming” environment (R), and a continuation stack (K̄).

In figure 1, the . . . notation means “zero or more of the preceeding element”
and in the stack ‖k, K, . . .‖, the partial stack frame k is the top of the stack.
The initial CK+ machine state is 〈M, (), ‖mt‖〉, where M is the given program,
() is an empty renaming environment, and ‖mt‖ is a stack with just one element,
an empty frame.

6 S. Chang, D. Van Horn, and M. Felleisen

S, T ::=
〈
C,R, K̄

〉
machine states

C ::= M control strings

R ::= (i, . . .) renaming environments

i ∈ N offsets

K̄ ::= ‖k, K, . . .‖ continuation stacks

K ::= (bind M R k) complete stack frames

k ::= mt | (arg M R k) | (op K̄ k) partial stack frames

Fig. 1. CK+ machine states

4.2 Renaming Environment

As mentioned in section 2, substitution requires some form of renaming, which
manifests itself as lexical address adjustments when using a de Bruijn repre-
sentation of terms. Instead of adjusting addresses directly, the CK+ machine
delays the adjustment by keeping track of offsets for all free variables in the con-
trol string in a separate renaming environment. The delayed renaming is forced
when a variable occurrence is evaluated, at which point the offset is added to
the variable before it is used to retrieve its value from the control stack.

Here we use lists for renaming environments and the offset corresponding to
variable n, denoted R(n), is the n-th element in R (0-based). The : function is
cons, and the function M⇐R applies a renaming environment R to a term M ,
yielding a term like M except with appropriately adjusted lexical addresses:

M⇐() = M

n⇐R = n + R(n)
(λ.M)⇐R = λ.(M⇐(0 :R))

(M N)⇐R = ((M⇐R) (N⇐R))

Because the CK+ machine uses renaming environments, the ↑ function from
section 2 is replaced with an operation on R. When the machine needs to incre-
ment all free variables in a term, it uses the ⊕ function to increment all offsets in
the renaming environment that accompanies the term. The notation R⊕x means
that all offsets in renaming environment R are incremented by x. Thus, the use
of indices in place of variables enables hygiene maintenance through simple in-
crementing and decrementing of the indices. As a result, we have eliminated the
need to keep track of the “active variables” that are present in Garcia et al.’s
machine [3, Section 4.5].

4.3 Continuations and the Continuation Stack

Like the CK machine, the CK+ machine represents evaluation contexts as con-
tinuations. The [] context is represented by the mt continuation. An evaluation

Evaluating Call-by-Need on the Control Stack 7

context E[([] N)] is represented by a continuation (arg M R k) where k repre-
sents E and (M⇐R) = N . An evaluation context E[(λ.[]) N] is represented by
a continuation (bind M R k) where k represents E and (M⇐R) = N . Finally,
the E[(λ.E′[n]) []] context is represented by an (op K̄ k) continuation. The E′

under the λ in the evaluation context is represented by the nested K̄ stack in
the continuation and the E surrounding the evaluation context corresponds to
the k in the continuation. The op continuation does not need to remember the n
variable in the evaluation context because the variable can be derived from the
length of K̄.

The contents of the K̄ register represent the control stack of the program and
we refer to an element of this stack as a frame. The key difference between the
CK+ machine and Garcia et al.’s machine is in the organization of the frames of
the stack. Instead of a flat list of frames like in Garcia et al.’s machine, our control
stack frames are groups of nested continuations of a special shape. Thus we also
call our control stack a “continuation stack.” We use two kinds of frames, partial
and complete. The first frame in the continuation stack is always a partial one,
while all others are complete. The outermost continuation of a complete frame is
a bind and all other nested pieces of a complete frame are op, arg, or mt. Thus,
not counting the first partial frame, there is exactly one frame in the control
stack for every bind continuation in the program. As a result, the machine can
use a variable (lexical address) n to find the bind corresponding to that variable
in the control stack.

4.4 Maintaining the Continuation Stack

Each frame of the control stack, with the exception of the top frame, has the
shape (bind M R k), where k is a partial frame that contains no additional
bind frames. In order for the continuation stack to maintain this invariant, CK+
machine transitions must adhere to two conditions:

1. When a machine transition is executed, only the top partial frame of the
stack is updated unless the instruction descends under a λ.

2. If a machine transition descends under a λ, the partial frame on top of the
stack is completed and a new mt partial frame is pushed onto the stack.

Essentially, the top frame in the stack “accumulates context” until a λ is
encountered, at which time the top partial frame becomes a complete frame.
Maintaining evaluation contexts for the program in this way implies a major
consequence for the CK+ machine:

when the control string is a variable n, then the binding for n is (n +
R(n) + 1) stack frames away.

4.5 Relating Machine States to Terms

Figure 2 defines the ϕ function, which converts machine states to λ-terms. It uses
the M⇐R function to apply the renaming environment to the control string and

8 S. Chang, D. Van Horn, and M. Felleisen

ϕ(
〈
M,R, K̄

〉
) = K̄[M⇐R]

‖k, K, . . .‖ [M] = . . . [K[k[M]]]

mt[M] = M
(arg N R k)[M] = k[(M (N⇐R))]

(op K̄ k)[M] = k[(λ.K̄[len(K̄)− 1]) M]
(bind N R k)[M] = k[(λ.M) (N⇐R)]

Fig. 2. ϕ converts CK+ machine states to λ-calculus terms

then uses a family of “plug” functions, dubbed ·[·], to plug the renamed control
string into the hole of the context represented by the continuation component of
the state. Figure 2 also defines these plug functions, where K[M] yields the term
obtained by plugging M into the context represented by K, and K̄[M] yields
the term when M is plugged into the context represented by the continuation
stack K̄.

4.6 CK+ Machine State Transitions

Figure 3 shows the first four state transitions for the CK+ machine. The ++
notation indicates an “append” operation for the continuation stack. Since the
purpose of the CK+ machine is to remember intermediate states in the search
for a redex, three of the first four rules are search rules. They shift pieces of the
control string to the K̄ register. For example, the [shift-arg] transition shifts the
argument of an application to the K̄ register.

The [descend-λ] transition shifts a λ binding to the K̄ register. When the
control string in the CK+ machine is a λ abstraction, and that λ is the operator

�−→ck+

[shift-arg]
〈(M N), R, ‖k, K, . . .‖〉 〈M,R, ‖(arg N R k), K, . . .‖〉

[descend-λ]
〈λ.M,R, ‖(arg N R′ k), K, . . .‖〉 〈M, 0:R, ‖mt, (bind N R′ k), K, . . .‖〉

[lookup-arg]〈
n,R, K̄++‖(bind N R′ k), K, . . .‖〉 〈

N,R′,
∥
∥(op K̄ k), K, . . .

∥
∥〉

where len(K̄) = n+R(n) + 1
[resume]〈

V,R,
∥
∥(op K̄ k), K, . . .

∥
∥〉 〈

V,R′, K̄++‖(bind V R k), K, . . .‖〉
where R′ = R⊕ len(K̄)

Fig. 3. State transitions for the CK+ machine

Evaluating Call-by-Need on the Control Stack 9

in an application term—indicated by an arg frame on top of the stack—the body
of the λ becomes the control string; the top frame in the stack is updated to be
a complete bind frame; and a new partial mt frame is pushed onto the stack.

The [descend-λ] instruction also updates the renaming environment which, as
mentioned, is a list of numbers. There is one offset in the renaming environment
for each bind continuation in the control stack and the offsets in the renaming
environment appear in the same order as their corresponding bind continuations.
When the machine descends into a λ expression, a new bind continuation is
added to the top of the control stack so a new corresponding offset is also added
to the front of the renaming environment. Since offsets are only added to the
renaming environment when the machine goes under a λ, whenever a variable n
(a lexical address) becomes the control string, its renaming offset is located at
the n-th position in the renaming environment. A renaming offset keeps track
of the relative position of a bind continuation since it was added to the control
stack so a [descend-λ] instruction adds a 0 offset to the renaming environment.

When the control string is a variable n, the binding for n is accessed from the
continuation stack by accessing the (n + R(n) + 1)-th frame in the stack. The
[lookup-arg] instruction moves the argument that is bound to the variable into
the control string register. The op frame on top of the stack is updated to store
all the frames inside the binding λ, in the same order that they appear in the
stack. Using this strategy, the machine can “jump” back to this context after
it is done evaluating the argument. For a term (λ.E[n]) M , this is equivalent
to evaluating M while saving E and then returning to the location of n after
the argument M has been evaluated. Note that the [lookup-arg] transition does
not perform substitution. The argument has been copied into the control string
register, but it has also been removed from the continuation stack register.

When the frame on top of the stack is an op, it means the current control
string is an argument in an application term. When that argument is a value,
then a redex has been found and the value should be substituted for the variable
that represents it. The [resume] rule is the only rule in figure 3 that performs
a reduction in the sense of the by-need calculus. It is the implementation of
the deref notion of reduction from the calculus. Specifically, the [resume] rule
realizes this substitution by restoring the frames in the op frame back into the
continuation stack as well as copying the value into a new bind frame. The result
is nearly equivalent to the left hand side of the [lookup-arg] rule except that the
argument has been evaluated and has been substituted for the variable.

Since the [resume] rule performs substitution, it must also update the renam-
ing environment. Hence, the distance between V and its binding frame is added
to every offset in the renaming environment R, as indicated by R ⊕ len(K̄). In
other words, each offset in the environment is being incremented by the number
of bind continuations that are added to the control stack.

In summary, the four rules of figure 3 represent intermediate partitions of the
program into a subterm and an evaluation context before a partitioning of the
program into an evaluation context and a deref redex is found. As a result, the
CK+ machine does not need to repartition the entire program on every machine

10 S. Chang, D. Van Horn, and M. Felleisen

step and is therefore more efficient than standard reduction. To complete the
machine now, we must make it deal with answers.

4.7 Dealing with Answers

The CK+ machine described so far has no mechanism to identify whether a
control string represents an answer. The by-need calculus, however, assumes
that it is possible to distinguish answers from terms on several occasions, one of
which is the completion of evaluation. To efficiently identify answers, the CK+
machine uses a fourth “answer” register. The CK+ machine identifies answers
by searching the continuation stack for frames that are answer contexts. To
distinguish answer contexts from evaluation contexts, we characterize answer
contexts in figure 4. A final machine state has the form

〈
V, R, ‖ ‖ , Ā

〉
.

S, T ::=
〈
C,R, K̄

〉 | 〈
V,R, ‖F, . . . , K, . . .‖ , Ā〉

machine states

F ::= (bind M R mt) answer (complete) frame

Ā ::= ‖mt, F, . . .‖ answer stacks

Fig. 4. CK+ machine answer states

When the control string is a value V and mt is the topmost stack frame, then
some subterm in the program is an answer. In this situation, the mt frame in the
stack is followed by an arbitrary number of F frames. The machine searches for
the answer by shifting mt and F frames from the continuation stack register to
the answer register. The machine continues searching until either a K frame is
seen or the end of the continuation stack is reached. If the end of the continuation
stack is reached, the entire term is an answer and evaluation is complete.

The presence of a K frame means an assoc-L or an assoc-R redex has been
found. In order to implement these shifts, the CK+ machine requires four ad-
ditional rules for handling answers, as shown in figure 5. The [ans-search1] rule
shifts the mt frame to the answer register. The [ans-search2] rule shifts F frames
to the answer register. The [assoc-L] rule and the [assoc-R] rule roughly corre-
spond to the assoc-L and assoc-R notions of reduction in the calculus, respec-
tively. The rules are optimized versions of corresponding notions of reduction
in the calculus because the transition after the reduction is always known. The
[assoc-L] machine rule performs the equivalent of an assoc-L reduction in the
calculus, followed by a [descend-λ] machine transition. The [assoc-R] machine
rule performs the equivalent of an assoc-R reduction in the calculus, followed by
a [resume] machine transition.

In figure 5, the function ⊕ has been extended to a family of functions de-
fined over renaming environments, continuation stacks, and stack frames: R⊕ x
increments every offset in the renaming environment R by x and the function
K̄ ⊕ x increments every offset in every renaming environment in every frame in

Evaluating Call-by-Need on the Control Stack 11

�−→ck+

[ans-search1]
〈V,R, ‖mt, K, . . .‖〉 〈V,R, ‖K, . . .‖ , ‖mt‖〉

[ans-search2]
〈V,R, ‖F ′, K, . . .‖ , ‖mt, F, . . .‖〉 〈V,R, ‖K, . . .‖ , ‖mt, F, . . . , F ′‖〉

[assoc-L]
〈λ.M ′, R, ‖(bind M R′ (arg N R′′ k)), K, . . .‖ , ‖mt, F, . . .‖〉

〈M ′, 0:R, ‖mt, (bind N R′′′ mt), F, . . . , (bind M R′ k), K, . . .‖〉
where R′′′ = R′′ ⊕ len(‖F, . . .‖) + 1

[assoc-R]〈
V,R,

∥
∥(bind M R′ (op K̄ k)), K, . . .

∥
∥ , ‖mt, F, . . .‖〉

〈
V,R′′, K̄′++‖(bind V R mt), F, . . . (bind M R′ k), K, . . .‖〉
where K̄′ = K̄ ⊕ len(‖F, . . .‖) + 1, and R′′ = R⊕ len(K̄′)

Fig. 5. Transitions of the CK+ machine that handle answer terms

K̄ by x. The function len(‖F, . . .‖) returns the number of frames in ‖F, . . .‖.
Maintaining the offsets in this manner is equivalent to obeying Garcia et al.’s
“well-formedness” condition on machine states.

4.8 Correctness

Correctness means that the standard reduction machine and the CK+ machine
define the same evaluator functions. Let us start with an appropriate definition
for the CK+ machine:

evalck+(M) =

⎧⎪⎨
⎪⎩

a, if 〈M, (), ‖mt‖〉 �−→→ck+

〈
V, R, ‖ ‖ , Ā

〉
,

where a = ϕ(
〈
V, R, ‖ ‖ , Ā

〉
)

⊥, if for all 〈M, (), ‖mt‖〉 �−→→ck+ S, S �−→ck+ T

Recall that the function ϕ converts CK+ machine states to λ-calculus terms
(figure 2). Here, ϕ has been extended to handle “answer” machine states:

ϕ(
〈
M, R, K̄, Ā

〉
) = K̄[Ā[M⇐R]]

The desired theorem says that the two eval functions are equal.

12 S. Chang, D. Van Horn, and M. Felleisen

Theorem 1. evalneed = evalck+.

To prove the theorem, we first establish some auxiliary lemmas on the totality
of evalck+ and the relation between CK+ transitions and standard reduction
transitions.

Lemma 2. evalck+ is a total function.

Proof. The lemma is proved via a subject reduction argument. �	
The central lemma uses ϕ to relate CK+ machine transitions to reductions.

Lemma 3. For all CK+ machine states S and T , if S �−→ck+ T , then either
ϕ(S) �−→need ϕ(T) or ϕ(S) = ϕ(T).

Proof. We proceed by case analysis on each machine transition, starting with
[resume]. Assume〈

V, R,
∥∥(op K̄ k), K, . . .

∥∥〉 �−→ck+〈
V, R ⊕ len(K̄), K̄++‖(bind V R k), K, . . .‖〉 ,

then let

M1 = ϕ(
〈
V, R,

∥∥(op K̄ k), K, . . .
∥∥〉

)
= ‖K, . . .‖ [k[(λ.K̄ [len(K̄) − 1]) (V⇐R)]]

M2 = ϕ(
〈
V, R ⊕ len(K̄), K̄++‖(bind V R k), K, . . .‖〉)

= ‖K, . . .‖ [k[(λ.K̄ [V⇐(R ⊕ len(K̄))]) (V⇐R)]] .

Since M1 is a standard deref redex, we have:

‖K, . . .‖ [k[(λ.K̄[len(K̄) − 1]) (V⇐R)]] �−→need

‖K, . . .‖ [k[(λ.K̄[(V⇐R)↑len(K̄)
0]) (V⇐R)]]

To conclude that M1 �−→need M2 by the deref notion of reduction, we need to
show:

(V⇐R)↑len(K̄)
0 = V⇐(R ⊕ len(K̄))

Lemma 4 proves the general case for this requirement. Therefore, we can conclude
that M1 �−→need M2. The proofs for [assoc-L] and [assoc-R] are similar.

As for the remaining instructions, they only shift subterms/contexts back and
forth between registers, so the proof is a straightforward calculation. �	
Lemma 4. ∀R, R1, R2, where R = R1++R2 and m = len(R1):

(M⇐R)↑x
m= M⇐(R1++(R2 ⊕ x))

Proof. By structural induction on M . �	
Using lemma 3, the argument to prove our main theorem is straightforward.

Evaluating Call-by-Need on the Control Stack 13

Proof (of Theorem 1). We show evalck+(M) = a ⇐⇒ evalneed(M) = a.
The left-to-right direction follows from the observation that for all CK+ ma-

chine starting states S and final machine states Sfinal , if S �−→→ck+ Sfinal , then
M �−→→need a, where ϕ(Sfinal) = a. This is proved using lemma 3 and induction
on the length of the �−→→ck+ sequence.

The other direction is proved by contradiction. Assume evalneed(M) = a �= ⊥
and evalck+(M) �= a. Since evalck+ is a total function, either:

1. 〈M, (), ‖mt‖〉 �−→→ck+ Sfinal , where ϕ(Sfinal) �= a, or
2. the reduction of 〈M, (), ‖mt‖〉 diverges.

It follows from the left-to-right direction of the theorem that, in the first
case, evalneed(M) = ϕ(Sfinal) �= a, and in the second case, evalneed(M) = ⊥.
However, evalneed(M) = a was assumed and evalneed is a total function, so a
contradiction has been reached in both cases. Since none of the cases are possible,
we conclude that if evalneed(M) = a, then evalck+(M) = a. �	

5 Stack Compacting

Because the by-need λ-calculus does not substitute the argument of a function
call for all occurrences of the parameter at once, applications are never removed.
In the CK+ machine, arguments accumulate on the stack and remain there
forever. For a finite machine, an ever-growing stack is a problem. In this section,
we explain how to compact the stack.

To implement a stack compaction algorithm in the CK+ machine, we in-
troduce a separate SC machine which removes all unused stack bindings from
a CK+ machine state. Based on the SC machine, the CK+ machine can be
equipped with a non-deterministic [sc] transition:〈

M, R, K̄
〉 �−→ck+

〈
M, R′, K̄ ′〉 [sc]

where
〈
(FV M R 0), (M, R), K̄, ‖ ‖〉 �−→→sc

〈F , (M, R′), ‖ ‖ , K̄ ′〉
Figure 6 presents the SC machine. In this figure, FV refers to a family of

functions that extracts the set of free variables from terms, stack frames, and
continuation stacks. The function FV takes a term M , a renaming environment
R and a variable m, and extracts free variables from M , where a free variable
is defined to be all n such that n + R(n) ≥ m. The function FV is similarly
defined for stack frames and continuation stacks. In addition, F−− denotes
the set obtained by decrementing every element in F by one. Finally, K̄@k
represents a frame merged appropriately into a continuation stack. For exam-
ple, ‖k′, K, . . . , (bind M R k′′)‖@k = ‖k′, K, . . . , (bind M R k′′)@k‖, where
(bind M R k′′)@k = (bind M R k′′@k), and so on, until finally mt@k = k.

Also in figure 6, ↑↑ denotes a family of functions that adjusts the offsets in
renaming environments to account for the fact that a λ has been removed from
the term. If a variable n refers to a bind stack frame that is deeper in the
stack than the frame that is removed, then the offset for that variable needs to

14 S. Chang, D. Van Horn, and M. Felleisen

Ssc ::=
〈F , (M,R), K̄, K̄〉

machine states

F ::= {n, . . .} set of free variables

K̄ ::= ‖k, K, . . .‖ | ‖K, . . .‖ partial stacks

�−→sc

[shift-partial-frame]
〈F , (M,R), ‖k, K, . . .‖ , ‖ ‖〉 〈F ∪ (FV k 0), (M,R), ‖K, . . .‖ , ‖k‖〉

[shift-complete-frame]
〈F , (M,R), ‖K′, K, . . .‖ , ‖k, K′′, . . .‖〉 〈F ′, (M,R), ‖K, . . .‖ , ‖k, K′′, . . . , K′‖〉
0 ∈ F where F ′ = (F−−) ∪ (FV K′ 0)

[pop-frame]〈F , (M,R), ‖(bind M R k), K, . . .‖ , K̄〉 〈F−−, (M,R′), ‖K, . . .‖ , K̄′@k
〉

0 /∈ F where R′ = (M,R)↑↑−1
len(K̄)−1

and K̄′ = K̄↑↑−1
len(K̄)−1

Fig. 6. The SC machine

be decremented by one. A variable n refers to a bind that is deeper than the
removed frame if n + R(n) is greater than the depth of the removed frame. The
↑↑ function can be applied to renaming environments directly or to continuation
stacks or stack frames that contain renaming environments. We use the notation
(M, R)↑↑x

� to mean that the offsets in R are incremented by x for all variables n
in M where n+R(n) > �. The result of (M, R)↑↑x

� is a new renaming environment
with the adjusted offsets. The notation K̄↑↑x

� means that the offsets for all M
and R pairs in the continuation stack K̄ are adjusted. K̄↑↑x

� evaluates to a new
continuation stack that contains the adjusted renaming environments.

6 Related Work and Conclusion

The call-by-need calculus is due to Ariola et al. [2,7,8]. Garcia et al. [3] derive an
abstract machine for Ariola and Felleisen’s calculus and, in the process, uncover
a correspondence between the by-need calculus and delimited control operations.
Danvy et al. [9] derive a machine similar to Garcia et al. by applying “off-the-
shelf” transformations to the by-need calculus. Danvy and Zerny’s def-use chains
also share similarities with our control stack structure [10].

Our paper has focused on the binding structure of call-by-need programs im-
plied by Ariola and Felleisen’s calculus. We have presented the CK+ machine,
which restructures the control stack of Garcia et al.’s machine, and we have
shown that lexical addresses can be used to directly access binding sites for
variables in this dynamic control stack, a first in the history of programming
languages. The use of lexical addresses has also simplified hygiene maintenance

Evaluating Call-by-Need on the Control Stack 15

by eliminating the need for the set of “active variables” that is present in Gar-
cia et al.’s machine states. In addition, we show how using indices in place of
variables allows for simple maintenance of Garcia et al.’s “well-formed” machine
states. Finally, we have presented a stack compaction algorithm, which is used
in the CK+ machine to prevent stack overflow. The compaction algorithm used
in this paper is a restriction of the more general garbage collection notion of
reduction of Felleisen and Hieb [11] and is also reminiscent of Kelsey’s work [12].

Acknowledgments. Thanks to the anonymous reviewers for their feedback
and to Daniel Brown for inspiring discussions.

References

1. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science 1, 125–159 (1975)

2. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. Journal of Functional
Programming 7, 265–301 (1997)

3. Garcia, R., Lumsdaine, A., Sabry, A.: Lazy evaluation and delimited control. In:
Proceedings of the 36th Annual Symposium on Principles of Programming Lan-
guages, pp. 153–164. ACM, New York (2009)

4. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland,
Amsterdam (1981)

5. De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 381–392 (1972)

6. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
MIT Press, Cambridge (2009)

7. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-need
lambda calculus. In: Proceedings of the 22nd Annual Symposium on Principles on
Programming Languages, pp. 233–246 (1995)

8. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. Journal of
Functional Programming 8, 275–317 (1998)

9. Danvy, O., Millikin, K., Munk, J., Zerny, I.: Defunctionalized interpreters for call-
by-need evaluation. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010.
LNCS, vol. 6009, pp. 240–256. Springer, Heidelberg (2010)

10. Danvy, O., Zerny, I.: Three syntactic theories for combinatory graph reduction.
In: Alpuente, M. (ed.) 20th International Symposium on Logic-Based Program
Synthesis and Transformation (2010) (invited talk)

11. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theoretical Computer Science 103, 235–271 (1992)

12. Kelsey, R.: Tail-recursive stack disciplines for an interpreter. Technical Report NU-
CCS-93-03, Northeastern University (1993)

Typing Coroutines

Konrad Anton and Peter Thiemann

Institut für Informatik, Universität Freiburg, Germany
{anton,thiemann}@informatik.uni-freiburg.de

Abstract. A coroutine is a programming construct between function
and thread. It behaves like a function that can suspend itself arbitrarily
often to yield intermediate results and to get new inputs before return-
ing a result. This facility makes coroutines suitable for implementing
generator abstractions.

Languages that support coroutines are often untyped or they use
trivial types for coroutines. This work supplies the first type system
with dedicated support for coroutines. The type system is based on the
simply-typed lambda calculus extended with effects that describe control
transfers between coroutines.

1 Introduction

A coroutine is a programming construct between function and thread. It can be
invoked like a function, but before it returns a value (if ever) it may suspend
itself arbitrarily often to return intermediate results and then be resumed with
new inputs. Unlike with preemptive threading, a coroutine does not run concur-
rently with the rest of the program, but rather takes control until it voluntarily
suspends to either return control to its caller or to pass control to another corou-
tine. Coroutines are closely related to cooperative threading, but they add value
because they are capable of passing values into and out of the coroutine and
they permit explicit switching of control.

Coroutines were invented in the 1960s as a means for structuring a compiler
[4]. They have received a lot of attention in the programming community and
have been integrated into a number of programming languages, for instance in
Simula 67 [5], BETA, CLU [11], Modula-2 [19], Python [17], and Lua [15], and
Knuth finds them convenient in the description of algorithms [8]. Coroutines are
also straightforward to implement in languages that offer first-class continuations
(e.g., Scheme [7]) or direct manipulation of the execution stack (e.g., assembly
language, Smalltalk).

The main uses of coroutines are the implementation of compositions of state
machines as in Conway’s seminal paper [4] and the implementation of genera-
tors. A generator enumerates a potentially infinite set of values with successive
invocations. The latter use has led to renewed interest in coroutines and to
their inclusion in mainstream languages like C# [13], albeit in restricted form as
generators.

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Typing Coroutines 17

Despite the renewed interest in the programming construct per se, the typing
aspects of coroutines have not received much attention. Indeed, the support-
ing languages are either untyped (e.g., Lua, Scheme, Python), the typing for
coroutines is trivialized, or coroutines are restricted so that a very simple typing
is sufficient. For instance, in Modula-2, coroutines are created from parameter-
less procedures so that all communication between coroutines must take place
through global variables. Also, for describing generators, a simple function type
seems sufficient.

Contribution. We propose a static type system for first-class, stackful coroutines
that may be used in both, symmetric and asymmetric ways.1 Moreover, we
permit passing arguments to a coroutine at each start and resume operation,
and we permit returning results on each suspend and on termination of the
coroutine (and we distinguish between these two events). Our type system is
based on the simply-typed lambda calculus. It includes an effect system that
describes the way the coroutine operations are used. We present a small-step
operational semantics for the language and prove type soundness.

Outline. Sec. 2 describes the language CorDuroy. It starts with some examples
(Sec. 2.1) before delving into operational semantics (Sec. 2.2) and the type system
(Sec. 2.3). Sec. 3 proves type soundness by establishing preservation and progress
properties following the syntactic approach [20]. Sec. 4 discusses related work,
and Sec. 5 concludes and outlines directions of further research.

2 CorDuroy

The language CorDuroy is a simply typed lambda calculus with recursive func-
tions and operations for handling coroutines. Fig. 1 specifies the syntax; labels �
only occur at run time. We define λ-abstraction as sugar for the fixpoint opera-
tor: λx.e := fixλ .λx.e.

Coroutines in CorDuroy are run-time entities identified by a label �. The
only way to create them is by applying the create operator to a function. Once
a coroutine has been created, it can be executed. Unlike threads in a multi-
threaded language, only one coroutine is active at any given time.

To activate a coroutine, there is a symmetric (transfer) and an asymmetric
(resume) operator. The symmetric operator transfer suspends the currently exe-
cuting coroutine and executes another2. The asymmetric operator resume builds

1 This terminology is due to De Moura and Ierusalemschy [14]. A coroutine is stackful,
if it can suspend inside nested function calls. Coroutines are asymmetric if coroutine
activity is organized in a tree-like manner: each coroutine invocation or resumption
always returns and yields to its caller. In contrast, symmetric coroutines can transfer
control among each others without restrictions.

2 We use the keywords established by De Moura and Ierusalemschy [14]. In Simula [5],
transfer corresponds to the system procedure RESUME, whereas “asymmetric”, yield
and resume correspond to “semi-symmetric”, DETACH and CALL, respectively.

18 K. Anton and P. Thiemann

B ::= Bool | Unit | . . .

k0 ::= true | false | unit | . . .

k1 ::= ¬ | . . .

k2 ::= ∧ | . . .

�, �′, . . . ∈ Labels

x, y, f, . . . ∈ Var

v ::= k0 | fixλf.λx.e | �

e ::= kn e1 . . . en | fix λf.λx.e

| x | e e | if e then e else e

| create x.e | yield e

| resume e e e e | transfer e e

| �

ϕ ::= ⊥ | τ�̈τ/τ | �
τ ::= B | τ

ϕ−→τ | � | ⊥ | τ � τ/τ

Fig. 1. Syntax

a caller-callee relationship: if a coroutine resumes another coroutine, they become
caller and callee. The yield operator inside the callee suspends the coroutine and
returns control to the caller. Each of the three operators passes a value. In the
remaining paper, we understand “activate” to mean either transfer or resume,
but not yield.

The caller-callee relationship is also used when a coroutine finally returns a
value, as the value is then passed to the caller. Activating a coroutine after it
has returned causes a run-time error; hence, the caller needs to know whether
the callee coroutine has terminated. resume requires therefore as its third and
fourth parameter two result functions, one to call with yielded values and one
to call with the returned value3.

The language includes a countable set of primitive functions kn, having each
an arity n ≥ 0. Partial application of primitive functions is not allowed.

2.1 Examples

This section contains short examples of CorDuroy programs. We assume that
integers and strings are among the basic types B and that there are constants
kn for arithmetic operations, comparison, and printing. We also use the common
let · = · in · sugar for readability.

Divisors. Generators can be used to compute sequences one element at a time.
Fig. 2(a) shows a coroutine which generates the divisors of a number, and a
consumer which iterates over the divisors until the generator returns (and the
second result function of resume is called).

Mutable references. Coroutines are the only stateful construct in CorDuroy. In
Fig. 2(b), a mutable reference is simulated by a coroutine which keeps an integer
value in a local variable. Whenever it is resumed with a function Int → Int, it
3 Alternatively, the λ-calculus could be extended with variant types in order to tag

the result of resume with how it was obtained. We chose the two-continuation resume
for simplicity.

Typing Coroutines 19

1 let divisors of = λn.
2 create .λ .
3 ((fix λloop.λk.
4 if (> k n) then unit
5 else let rem = (mod n k) in
6 let = (if (= rem 0)
7 then yield k else unit)
8 in loop (+ k 1)) 1)
9 in let g = divisors of 24 in
10 ((fix λf. λ .
11 resume g unit
12 (λn. let = (print int n)
13 in (f unit))
14 (λ . (print str ”finito”)))
15 unit)
16 // output: 1 2 3 4 6 8 12 24 finito

(a) Compute all divisors.

1 let makeref = λx0.
2 let main = fix λloop.λx.λupd.
3 let x’ = upd x in
4 let upd’ = yield x’ in
5 loop x’ upd’
6 in create . main x0
7 in let undef = fix λf.λx.(f x)
8 in let write = λr.λv.
9 resume r (λ .v)
10 (λ .unit) (λ .unit)
11 in let read = λ r.
12 resume r (λx.x) (λx.x) undef
13 in
14 let r = makeref 1 in
15 let = print int (read r) in
16 let = write r 2 in
17 print int (read r)
18 // output: 1 2

(b) Mutable references.

Fig. 2. Code examples

create

��

waiting (for callee)

callee yields or returns

��
suspended

resume, transfer��
running

resume callee

��

yield, transfer
��

return �� returned

Fig. 3. Life cycle of coroutines

lets the function update the value and returns the new value. The example also
shows how fix can be used to create a diverging function with any desired return
type in the read function4.

2.2 Operational Semantics

This section presents a small-step operational semantics for CorDuroy, starting
with a life-cycle based view on coroutines to motivate the stack-based represen-
tation used in the reduction rules in Fig. 5.

The life cycle of a coroutine consists of the states suspended, running, waiting
and returned, as shown in Fig. 3. At any moment, there is only one running
coroutine.

The running coroutine can apply create to a function, creating a new corou-
tine which starts life in the suspended state (E-Create). It can also resume a
4 The language could alternatively be extended with a special variant of the resume

operator for coroutines which never return.

20 K. Anton and P. Thiemann

C ::= � | kn v1 . . . vi−1 C ei+1 . . . en (1 ≤ i ≤ n)

| eC | C v | if C then e else e

| resume C e e e | resume v C e e | resume v v C e | resume v v v C

| yield C | transfer C e | transfer v C

S ::= �@e; S?

S? ::= ε | S

labels(�@e; S?) = {�} ∪ labels(S?)

labels(ε) = ∅

Fig. 4. Evaluation contexts and stacks

n > 0〈
�@C[kn v1 . . . vn] ; S? | μ

〉
→

〈
�@C[�kn� (v1, . . . , vn)] ; S? | μ

〉 E-Const

〈
�@C[(fix λf.λx.e) v] ; S? | μ

〉
→

〈
�@C[e[f
→ fix λf.λx.e] [x
→ v]] ; S? | μ

〉 E-Fix

〈
�@C[if true then et else ef] ; S? | μ

〉
→

〈
�@C[et] ; S? | μ

〉 E-IfT

〈
�@C[if false then et else ef] ; S? | μ

〉
→

〈
�@C[ef] ; S? | μ

〉 E-IfF

x∗ �∈ free(e) ∪ {x} �∗ �∈ dom (μ) ∪ labels(S?) ∪ {�}
v∗ = λx∗.((λx.e x∗) �∗) μ′ = μ ∪ {(�∗, v∗)}〈
�@C[create x.e] ; S? | μ

〉
→

〈
�@C[�∗] ; S? | μ′

〉 E-Create

�′ ∈ dom (μ) e = resume �′ va vs vn〈
�@C [e] ; S? | μ

〉
→

〈
�′@

(
μ
(
�′
)

va

)
; �@C [e] ; S? | μ \ �′

〉 E-Res

x∗ fresh e2 = resume � va vs vn〈
�1@C1 [yield vy] ; �2@C2 [e2] ; S?|μ

〉
→

〈
�2@C2 [vs vy] ; S?|μ [�1
→ λx∗.C1[x∗]]

〉 E-Yie

〈
�1@vr; �2@C2 [resume � va vs vn] ; S? | μ

〉
→

〈
�2@C2 [vn vr] ; S? | μ

〉 E-CoRet

〈
�@C [transfer � va] ; S? | μ

〉
→

〈
�@C [va] ; S? | μ

〉 E-TraSelf

�′ ∈ dom (μ) x∗ fresh〈
�@C

[
transfer �′ v

]
; S? | μ

〉
→

〈
�′@(μ(�′) v); S? | (μ \ �′) ∪ {(�, λx∗.C[x∗])}

〉 E-Tra

E-TraErr
�′ �∈ dom (μ)〈

�@C
[
transfer �′ va

] | μ
〉 → Error

E-ResErr
�′ �∈ dom (μ)〈

�@C
[
resume �′ va vs vn

] | μ
〉 → Error

Fig. 5. Small-step operational semantics rules

Typing Coroutines 21

suspended coroutine (the callee), becoming its caller (E-Res). In doing so, it
enters the waiting state, and the callee becomes running.

A running coroutine can also yield, after which it is suspended and the caller
running (E-Yie). If a running coroutine reduces to a value, it is said to return
that value. The returning coroutine enters its terminal state, and the value is
then passed to the caller if there is one (E-CoRet) or becomes the final result
of the program.

Alternatively, the running coroutine can transfer control to a suspended corou-
tine, suspending itself. In this case, the successor coroutine not only enters the
running state, but it also becomes the (only) callee of the predecessor’s caller
(E-Tra).

In the rules, the state of a program being evaluated is represented as a pair
〈S | μ〉 of stack and store. The stack S contains, from left to right, the running
coroutine, its caller, its caller’s caller and so on, each in the form of labeled
contexts �@e (see Fig. 4). As the running coroutine is the top of the stack, the
reduction rules must never pop the last labeled context off the stack.

All suspended coroutines5 are kept in the store μ, a function from labels � to
values v. The values in the store are the continuations of the yield and transfer
expressions which caused the coroutine to be suspended, or, in the case of newly
created coroutines, functions which are constructed to be applied likewise.

Coroutines in the returned state are neither in the stack nor in the store
because they play no further role in the execution. The waiting and suspended
states resemble each other in that neither state permits β-reductions.

The coroutine-related rules all maintain the invariant that a coroutine never
rests in the stack and in the store simultaneously. Rule E-Create sets up a
continuation v∗ which makes the new label �∗ known under the name x inside
the body expression e and passes the first input value to e. E-Res removes
the stored continuation of the given coroutine from the store and applies it to
the argument in a new labeled context on top of the stack. In the now-waiting
coroutine, the resume expression remains, awaiting a result from the coroutine
above. The third and fourth resume parameters are the result functions to be
called later with yielded and returned values, respectively.

E-Yie and E-Tra put the continuation of the running coroutine into the
store. While E-Yie passes the argument to the first of the two result functions
of the caller, E-Tra sets up a new stack top in which the continuation from
the store is applied to the argument, just like in E-Res. E-CoRet passes the
return value to the other result function in the caller and discards the callee. Of
the resume expression in E-Yie and E-CoRet, only the two result functions are
used; the old label � need not match the returning or yielding coroutine because
the stack top may have been replaced in a transfer action.

If a coroutine attempts to activate another coroutine which is not in the
store (i.e., not suspended), execution aborts with a run-time error (E-ResErr,

5 An implementation would keep the coroutines within the store all the time and
annotate them with their state instead; however, the notion of putting coroutines
into the store and taking them out again makes the rules easier to read.

22 K. Anton and P. Thiemann

E-TraErr)6. As an exception to this rule, a coroutine may safely transfer to
itself, e.g. in a multitasking system with just one ready task (E-TraSelf).

Rule E-Yie is only enabled if the stack contains a suitable waiting corou-
tine below; fortunately, the type system rejects all programs in which a yield
expression could appear as a redex in the lowest labeled context.

There is no distinguished main program; the initial expression is also treated
as a coroutine, except that it starts in the running state. In order to evaluate a
CorDuroy program e, it is wrapped in an initial state with the fixed label �0:

initState(e) = 〈S0 | ∅〉 S0 = �0@e; ε (1)

The function �·� in E-Const maps primitive function symbols kn, n > 0 to
partial functions of the same arity. The notation e[x �→ f] stands for standard
capture-avoiding substitution which replaces all free occurrences of x in e by f .
The set of free variables in e is free(e).

2.3 Type System

The type system ensures that values passed to and from coroutines do not cause
type errors at run time, and that coroutine operations within the same coroutine
body are compatible with each other. It is based on the simply-typed λ-calculus,
with an effect system describing which coroutine actions may occur during the
evaluation of an expression.

Effects. The effect part of the type and effect system summarizes the yield and
transfer expressions which may be evaluated during the evaluation of an expres-
sion. The propagation of effects through function application permits a called
function to yield and transfer on behalf of the running coroutine in a type-safe
way.

If an expression has the effect τi�̈τo/τr, then its execution may yield a value of
type τo to the calling coroutine and expect a value of type τi when it is activated
again. It may also transfer execution to a coroutine which yields values of type
τo or returns a value of type τr.

Effects ϕ form a lattice with bottom element ⊥ and top element 	 (see Fig. 6).
⊥ means that the expression will under no circumstance ever yield. Effect 	
means that yield expressions with different types are possible and nothing can
be said about the values.

Types. The type system features basic types B, function types, coroutine types
as well as top and bottom types.

6 This class of runtime errors can be eliminated if E-Res and E-Tra leave the corou-
tine in the store. Then, activating a terminated or waiting coroutine would invoke (a
copy of) the last stored continuation, similar to multi-shot continuations. We chose
the error-rules because they are more similar to how Lua and Python handle these
situations, and they do not need a facility to copy continuations.

Typing Coroutines 23

⊥ � ϕ = ϕ � ⊥ = ϕ

� � ϕ = ϕ � � = �

(τi�̈τo/τr) � `
τ ′

i�̈τ ′
o/τ ′

r

´

=
`
τi � τ ′

i

´
�̈

`
τo � τ ′

o

´
/
`
τr � τ ′

r

´

ϕ1 � ϕ2 iff ∃ϕ′
1.ϕ1 � ϕ′

1 = ϕ2

(a) Effects.

� � τ = τ � � = �
⊥ � τ = τ � ⊥ = ⊥

⊥ � τ = τ � ⊥ = � � τ = τ � � = τ

τ+
1 � τ+

2 =

(
τ+
1 τ+

1 = τ+
2

� otherwise

τ+
1 � τ+

2 =

(
τ+
1 τ+

1 = τ+
2

⊥ otherwise

(b) Types.

Fig. 6. Join and meet

Function arrows are annotated with the effect which may occur during the
function’s evaluation. We write τ1→τ2 for τ1

⊥−→τ2.
A value of type τi � τo/τr corresponds to a coroutine which can be resumed

with values of input type τi and yields values of output type τo or returns a value
of return type τr.

Types form a flat lattice with bottom ⊥ and top 	. For simplicity, subtyping
is not allowed, and subeffecting is only allowed in create and fix expressions. Join
and meet on types are defined in figure 6, where τ+ represent types except for
	 and ⊥.

Typing rules. The rules are given in Fig. 7. The type environment Γ maps vari-
ables to their types. The store typing

Σ ⊆ Labels×{τi �τo/τr|τi,o,r �= 	, τi �= ⊥} (DefΣ)

maps labels to the types of the corresponding coroutines at run time. The exclu-
sion of 	 and ⊥ serves to avoid subtyping. Note that type rules do not extend
Σ; expressions are type-checked against a fixed Σ, and preservation (Sec. 3.1)
guarantees that some Σ can be found after each evaluation step.

The type function bastyk (kn) maps constants to their types of the form
B1 → B2 → . . . → Bn+1. We assume that bastyk (kn) agrees with the primi-
tive denotation �kn�. We also assume that true and false are the only k0 of type
Bool, and that only unit inhabits Unit.

Most type rules compute the effect of their expression by joining the effects
of the subexpressions. The only exceptions are T-Fix and T-Create, in which
the effect of the body expression is moved onto the function arrow or into the
coroutine type.

The create expression creates a coroutine from a function. In doing so, it binds
a variable to the freshly created coroutine label.

yield and transfer contribute an effect with its input type τi. Both suspend the
current coroutine and expect a value of type τi the next time it is activated. The
output and return types in the effect of yield describe that yield certainly causes

24 K. Anton and P. Thiemann

the coroutine to yield a value of that type, but never causes a return. transfer,
however, transfers control and the relationship to the caller to a coroutine which,
in turn, may yield and return. Therefore, T-Tra puts the other coroutine’s
output and return types into the effect in order to force the surrounding yield
and return expressions to match.

Rule T-Prog defines when an entire program is well-typed. The input type
Unit is an arbitrary choice, but since the initial label �0 is not lexically accessible
in the program, the input type is of little importance anyway7. The output type
is bounded to ⊥ so that an expression which yields can never be the bottom-most
expression in a stack (and yield with e : ⊥, while allowed, will diverge instead of
yielding).

The initial store typing for a program e with �prog e : τ is defined as follows:

Στ
0 = {(�0, Unit�⊥/τ)} (2)

3 Soundness

This section contains the soundness proof 8. In Sec. 3.1, we prove that reduction
steps preserve typing. Sec. 3.2 contains the progress proof, stating that all well-
typed execution states are reducible or have finished.

3.1 Preservation

This section states and proves the preservation theorem (Theorem 1). We define
the notion of a well-typed execution state before we formulate some lemmas in
preparation for the main proof.

Fig. 8 contains the definition of an execution state 〈S | μ〉 being well-typed,
T-State. Apart from requiring that the types of store and stack members cor-
respond to the store typing Σ, which is defined in T-Store and T-StackN,
it poses a constraint Σ �w S about the waiting coroutines in the stack: the
redex of waiting callers must be a resume expression whose result functions are
compatible with the output and return types of the callee.

Lemma 1. If ∅|Σ � C[e] : τ&ϕ, then ∅|Σ � e : τ ′&ϕ′ for some τ ′, ϕ′
 ϕ, and
free(e) = ∅
Lemma 2. If Γ |Σ � v : τ&ϕ, then ϕ = ⊥ and τ �= ⊥.

Lemma 3. If Γ, x : τ ′|Σ � e : τ&ϕ and ∅|Σ � v : τ ′&⊥, then Γ |Σ � e[x �→ v] :
τ&ϕ.

7 If the program’s design features multiple coroutines transferring to each other, there
is still the possibility of having the initial program create one or more such coroutines,
each of which knows its label, and transferring control to one of them.

8 For space reasons, we have omitted most proofs. They are contained in the extended
version of this paper, available from
http://proglang.informatik.uni-freiburg.de/projects/coroutines/

http://proglang.informatik.uni-freiburg.de/projects/coroutines/

Typing Coroutines 25

T-Const
bastyk (kn) = B1→ . . .→Bn+1 ∀i = 1 . . . n. Γ |Σ
 ei : Bi&ϕi

Γ |Σ
 kn e1 . . . en : Bn+1&
⊔

i=1...n

ϕi

T-Var
Γ (x) = τ

Γ |Σ
 x : τ&⊥

T-App
Γ |Σ
 e1 : τ2

ϕ3−−→τ1&ϕ1 Γ |Σ
 e2 : τ2&ϕ2

Γ |Σ
 e1 e2 : τ1&ϕ1 � ϕ2 � ϕ3

T-If
Γ |Σ
 ec : Bool &ϕc Γ |Σ
 et : τ&ϕt Γ |Σ
 ef : τ&ϕf

Γ |Σ
 if ec then et else ef : τ&ϕc � ϕt � ϕf

T-Fix
Γ, f :τ1

ϕ−→τ2, x :τ1|Σ
 e : τ2&ϕ′ ϕ′ � ϕ

Γ |Σ
 fixλf.λx.e : (τ1
ϕ−→τ2)&⊥

T-Label
Σ(�) = τi � τo/τr

Γ |Σ
 � : τi � τo/τr&⊥
T-Create
Γ, x : τi � τo/τr|Σ
 e : τi

ϕ−→τr&ϕ′ ϕ, ϕ′ � τi�̈τo/τr τi,o,r �= �, τi �= ⊥
Γ |Σ
 create x.e : τi � τo/τr&⊥

T-Res
Γ |Σ
 ec : τi � τo/τr&ϕ1

Γ |Σ
 ea : τi&ϕ2 Γ |Σ
 es : τo
ϕ3−−→τq&ϕ4 Γ |Σ
 en : τr

ϕ5−−→τq&ϕ6

Γ |Σ
 resume ec ea es en : τq&
⊔

i=1...6

ϕi

T-Yie
Γ |Σ
 e : τo&ϕ1 τi �= �

Γ |Σ
 yield e : τi& (τi�̈τo/⊥) � ϕ1

T-Tra
Γ |Σ
 ec : τa � τo/τr&ϕ1 Γ |Σ
 ea : τa&ϕ2

Γ |Σ
 transfer ec ea : τi& (τi�̈τo/τr) � (ϕ1 � ϕ2)

T-Prog
∅|∅
 e : τ&ϕ ϕ � Unit �̈⊥/τ

prog e : τ

Fig. 7. Typing rules

Definition 1. Given Γ, Σ, we write Γ |Σ � e1 ≤ e2, if Γ |Σ � e1 : τ&ϕ1 and
Γ |Σ � e2 : τ&ϕ2 with ϕ1
 ϕ2. Σ � e1 ≤ e2 is an abbreviation for ∅|Σ � e1 ≤ e2.

Lemma 4 (Contexts are effect-monotone). If Γ |Σ � e′ ≤ e and for some
τ, ϕ, Γ |Σ � C[e] : τ&ϕ, then Γ |Σ � C[e′] : τ&ϕ′ for some ϕ′
 ϕ, and Γ |Σ �
C[e′] ≤ C[e].

Lemma 5. Let S = �@C[e] ; S?, S′ = �@C[e′] ; S? such that Σ � e′ ≤ e. Then
Σ �le* S ⇒ Σ �le* S′ and Σ �w S ⇒ Σ �w S′ hold.

Lemma 6. Let S = �1@e1; �2@C[resume �′ vp vs vn] ; S? such that Σ �le* S and
Σ �w S. Let τi � τs/τn = Σ(�1). Let v be a value with ∅|Σ � v : τα&⊥ for an
α ∈ {s, n}. Then, S′ = �2@C[vα v] ; S? satisfies Σ �le* S′ and Σ �w S′.

26 K. Anton and P. Thiemann

T-State
Σ
sto* μ Σ
le* S Σ
w S labels(S) ∩ dom (μ) = ∅

Σ
 〈S | μ〉
T-Stack0

Σ
le* ε

T-StackN
� �∈ labels(S?) Σ
le �@e Σ
le* S?

Σ
le* S where S = �@e; S?

T-StackE
Σ(�) = τi � τo/τr ∅|Σ
 e : τr&ϕ ϕ � τi�̈τo/τr

Σ
le �@e

T-WaitN
S = �1@e1; S′ τi � τo/τr = Σ(�1) S′ = �2@e2; S? e2 = C[resume � va vs vn]

∅|Σ
 vs : τo
ϕs−−→τ&⊥ ∅|Σ
 vn : τr

ϕn−−→τ&⊥ Σ
w S′

Σ
w S

T-Wait1
S = �@e; ε Σ(�) = τi �⊥/τr

Σ
w S

T-Store
μ is function ∀(�, v) ∈ μ : Σ
sto (�, v)

Σ
sto* μ

T-StoreE
Σ(�) = τi � τo/τr ∅|Σ
 v : τi

ϕ−→τr&⊥ ϕ � τi�̈τo/τr

Σ
sto (�, v)

Fig. 8. Well-typed execution states, stacks, stores

Lemma 7. If τi�̈τo/τr
 τ ′
i�̈τ ′

o/τ ′
r, then all of the following hold:

– τi = τ ′
i or τi = 	 or τ ′

i = ⊥
– τo = τ ′

o or τo = ⊥ or τ ′
o = 	

– τr = τ ′
r or τr = ⊥ or τ ′

r = 	
Lemma 8 (Well-typed initial states). Let e be an expression with �prog e : τ ,
and 〈S | μ〉 = initState(e). Then Στ

0 � 〈S | μ〉.
Theorem 1 (Preservation). If Σ � 〈S | μ〉 and 〈S | μ〉 → 〈S′ | μ′〉, then Σ′ �
〈S′ | μ′〉 for some Σ′ ⊇ Σ.

Proof. We focus on the main cases (see the extended version for the remainder).
Case distinction on the evaluation rule.

– Case E-Create: So S = �@C[create x.e] ; S?, S′ = �@C[�∗] ; S?, and μ′ =
μ ∪ {(�∗, v∗)} with v∗ = λx∗.((λx.e x∗) �∗). From the assumed Σ �le* S,
Lemma 1 yields ∅|Σ � create x.e : τc&ϕc for some τc, ϕc. The only rule to
derive this is T-Create, from which we can conclude that ϕc = ⊥ and
τc = τi �τo/τr. Furthermore, the same rule requires that

x :τc|Σ � e : τi
ϕ−→τr&ϕ′ (3)

for some ϕ, ϕ′
 τi�̈τo/τr. Choose Σ′ = Σ∪{(�∗, τc)} , which still is a func-
tion due to freshness condition on �∗. Also, the constraints on occurrences

Typing Coroutines 27

of 	 and ⊥ in τi,o,r, as demanded in (DefΣ), are satisfied by the precon-
dition in T-Create. Then ∅|Σ′ � �∗ : τc&⊥ holds, and Σ′ �le* S′ follows
by Lemma 5. Σ′ �w S′ follows from Σ �w S (using that �w is obviously
montone in Σ).

Σ′ �sto* μ′ requires that μ′ is a function (true due to the freshness of

�∗), and that v∗ has the right type: ∅|Σ′ � v∗ : τi
ϕ∗
−−→ τr&⊥ for some

ϕ∗
 τi�̈τo/τr. This follows from (3) by T-App and T-Fix, observing that
all type derivations using Σ also work with its superset Σ′. �

– Case E-Yie: Then S = �1@e1; �2@e2; S? and S′ = �2@e′2; S? with e1 =
C1[yield vy], e2 = C2[resume � va vs vn], e′2 = C2[vs vy]. Also μ′ = μ ∪
{(�1, e

′
1)} with e′1 = λx∗.C1[x∗].

We choose Σ′ = Σ. Due to Σ �le* S, Σ must contain entries for �1, �2

of the form Σ(�k) = τk
i � τk

o /τk
r for k = 1, 2. Furthermore, by T-StackN,

∅|Σ � e1 : τ1
r &ϕ1

e and ∅|Σ � e2 : τ2
r &ϕ2

e must hold for some ϕ1
e
 ϕ1, ϕ2

e
 ϕ2

(where ϕk = τk
i �̈τk

o /τk
r).

To prove Σ′ �le* S′ and Σ′ �w S′ using Lemma 6, we need to show
∅|Σ � vy : τ1

o &⊥ (the rest follows immediately from the assumptions and
Σ′ = Σ). Let τy, τ∗

i be the types assigned to vy and yield vy , respectively, in
the type derivation for the assumed Σ �le �1@e1. By T-Yie and Lemma 1,
we get

τ∗
i �̈τy/⊥
 τ1

i �̈τ1
o /τ1

r (4)

By Lemma 7, τy = ⊥ (impossible: Lemma 2), or τ1
o = 	 (contradicting

(DefΣ)), or τy = τ1
o . �

To prove Σ �sto* μ′, it remains to prove that μ′ is still a function (by T-
State, �1 �∈ dom (μ), so adding �1 preserves the function property of μ), and
that ∅|Σ � μ′(�1) : τ1

i
ϕ−→ τ1

r &⊥ with some ϕ
 ϕ1. Applying Lemma 7 to
(4), we know that τ1

i = τ∗
i (T-Yie forbids τ∗

i = 	, (DefΣ) forbids τ1
i = ⊥).

Setting Γ := x∗ : τi, we immediately get Γ |Σ � x∗ ≤ yield vy, and by

Lemma 4, Γ |Σ � C1[x∗] ≤ e1. Hence, by T-Fix, ∅|Σ � λx∗.C1[x∗] : τ1
i

ϕ′
−→

τ1
r &⊥ for some ϕ′
 ϕ1. �

– Case E-Res: So S = �2@C[resume �1 va vs vn] ; S?, and S′ = �1@(v1 va); S
with v1 = μ(�1), μ′ = μ \ �1. Furthermore, we know that Σ(�1) = τi �τo/τr

for some τi, τo, τr because Σ �le* S holds.
We choose Σ′ = Σ. For Σ′ � 〈S′ | μ′〉, we need to prove: (a) Σ �sto* μ′,

(b) Σ �le �1@v1 va, (c) �1 �∈ labels(S?) (which yields Σ′ �le* S′ together
with (b)), (d) Σ �w S′, and (e) labels(S′) ∩ dom (μ′) = ∅.

Proposition (a) follows immediately from μ′ being a subset of μ and the as-
sumption Σ �sto* μ. �Proposition (c) is clear from Σ � 〈S | μ〉.�Proposition
(e) is clear because moving �1 between sets preserves disjointness. �

Proposition (b): prove ∅|Σ � v1 va : τr&ϕ1 for some ϕ1
 τi�̈τo/τr. By

assumption Σ �sto* μ, we know about v1 that ∅|Σ � v1 : τi
ϕ′

1−→ τr&⊥ holds
with ϕ′

1
 τi�̈τo/τr. With Lemma 1, Lemma 2 and T-Res, we conclude
that ∅|Σ � va : τi&⊥, which yields the desired result using T-App.

28 K. Anton and P. Thiemann

R ::=kn v1 . . . vn | (fix λf.λx.e) v

| if true then e1 else e2 | if false then e1 else e2

| create x.e | yield v | resume � v v v | transfer � v

Fig. 9. The language of redexes

Proposition (d): By Lemma 1, Lemma 2 and T-Res, we know that ∅|Σ �
vs : τo

ϕs−→τq&⊥ and ∅|Σ � vn : τr
ϕn−−→ τq&⊥, which matches the precondi-

tion of T-WaitN about vs and vn. The other preconditions follow directly
from the assumptions. �

End case distinction on the evaluation rule. �

3.2 Progress

In this section, we state the progress property. First, we define a language of
redexes in Fig. 9, then we show in Lemma 10 that well-typed expressions are
either values or redexes embedded in evaluation contexts, which facilitates the
main progress theorem, Theorem 2.

Lemma 9 (Canonical forms)

1. If Γ |Σ�v : τ
ϕ−→τ ′&ϕ′, then v = fixλf.λx.e for some f, x, e.

2. If Γ |Σ � v : Bool &ϕ′, then v = true or v = false.
3. If Γ |Σ � v : Unit &ϕ′, then v = unit.
4. If Γ |Σ � v : τi �τo/τr&ϕ′, then v = � for some � ∈ dom (Σ).

Lemma 10 (C[R]-decomposition). Let ∅|Σ � e : τ&ϕ for some e, Σ, τ, ϕ.
Then e is a value, or e = C[R] for some C, R.

Theorem 2 (Progress). Let 〈S | μ〉 be an evaluation state and Σ a store typing
so that Σ � 〈S | μ〉. Then S = �@v; ε for some v, �, or 〈S | μ〉 → 〈S′ | μ′〉 for
some S′, μ′, or 〈S | μ〉 → Error.

4 Related Work

Formalizations of coroutines. De Moura and Ierusalemschy [14] formally define
coroutines in an untyped λ-calculus with mutable variables as a model for Lua
coroutines. Their interexpressibility results (e.g. transfer in terms of resume/yield)
make heavy use of untyped mutable variables; it is yet unclear which of the
transformations can be adapted to a statically-typed setting. Their work con-
tains a comprehensive overview of the state of the art in coroutines and related
techniques.

Wang and Dahl [18] formalize the control-flow aspects of idealized Simula
coroutines. The operational semantics of Belsnes and Østvold [1] also focuses on
the control-flow aspects but includes threads and thread-coroutine interaction.
Laird [10] presents a process calculus in which the coroutine is the basic building
block. Berdine and coworkers [2] define coroutines in their process calculus.

Typing Coroutines 29

Language design. Languages with parameterless coroutines include Simula [5],
Modula-2 [19], and BETA [9]. However, the type systems of these languages need
not treat coroutines with much sophistication because the coroutine operations
do not pass values.

Some mainstream dynamically-typed languages like Python [17] and Lua [15]
pass values to and from coroutines, but without a static type system. C# [13] has
static typing and generators (asymmetric coroutines with parameters only for
yield), but as the yield-equivalent may only be used lexically inside the generator’s
body, the type system avoids the complexity involved with stackful coroutines.

Marlin’s ACL [12] is a (statically typed) coroutine extension of Pascal in
which coroutines can accept parameters. In analogy to the separation between
procedures and functions in Pascal, it features separate syntax for symmetric
and asymmetric coroutines. The problem of procedures performing coroutine
operations on behalf of the enclosing coroutine is solved by referring to the static
block structure, which simplifies the type system at the expense of flexibility.

Haynes and coworkers [7] express coroutines using continuations in Scheme;
Harper and colleagues [6] in turn describe a type system for continuations.

Lazy languages like Haskell [16] get asymmetric coroutines for free: a coroutine
can be viewed as a transformer of a stream of input values to a stream of output val-
ues, which is straightforward to implement using lazy lists. Blazevic [3] produced
a more sophisticated monad-based implementation of symmetric coroutines.

5 Conclusion

We presented CorDuroy, a language with type-safe stackful asymmetric and sym-
metric first-class coroutines, and proved its soundness. CorDuroy constitutes the
first provably sound type system for an eager-evaluated language that supports
realistic and expressive facilities for coroutines.

One obvious direction of further research is the addition of polymorphism. For
subtype polymorphism, (a subset of) C# would be a promising candidate since it
already has generators. Parametric polymorphism would likely bring challenges
similar to those caused by mutable references.

As this work was inspired by De Moura and Ierusalemschy’s paper [14] in
which they present translations between various styles of coroutines, continu-
ations and threads in an untyped setting with mutable variables, it would be
interesting to see if the corresponding typed equivalences also hold.

Currently, the operational semantics contains failure rules. Instead, linearity
could be introduced to prevent the activation of returned coroutines by keeping
track of the coroutine state.

References

1. Belsnes, D., Østvold, B.M.: Mixing threads and coroutines (2005), submitted to
FOSSACS 2005, bjarte@nr.no

2. Berdine, J., O’Hearn, P., Reddy, U., Thielecke, H.: Linear continuation-passing.
Higher-Order and Symbolic Computation 15(2-3), 181–208 (2002)

30 K. Anton and P. Thiemann

3. Blazevic, M.: monad-coroutine: Coroutine monad transformer for suspending and
resuming monadic computations (2010),
http://hackage.haskell.org/package/monad-coroutine

4. Conway, M.E.: Design of a separable transition-diagram compiler. Comm.
ACM 6(7), 396–408 (1963)

5. Dahl, O.J., Myrhaug, B., Nygaard, K.: SIMULA 67 Common Base Language. Nor-
wegian Computing Center, Oslo (1970) (revised version 1984)

6. Harper, R., Duba, B.F., MacQueen, D.: Typing first-class continuations in ML. In:
Proc. 1991 ACM Symp. POPL. ACM Press, Orlando (1991)

7. Haynes, C.T., Friedman, D.P., Wand, M.: Obtaining coroutines with continuations.
Computer Languages 11(3), 143–153 (1986)

8. Knuth, D.E.: Fundamental Algorithms, The Art of Computer Programming, 2nd
edn., vol. 1. Addison-Wesley, Reading (1968)

9. Kristensen, B.B., Pedersen, B.M., Madsen, O.L., Nygaard, K.: Coroutine sequenc-
ing in BETA. In: Proc. of 21st Annual Hawaii International Conference on Software
Track, pp. 396–405. IEEE Computer Society Press, Los Alamitos (1988)

10. Laird, J.: A calculus of coroutines. In: Dı́az, J., Karhumäki, J., Lepistö, A., San-
nella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 882–893. Springer, Heidelberg
(2004)

11. Liskov, B.: CLU reference manual. LNCS, vol. 114. Springer, Heidelberg (1981)
12. Marlin, C.D.: Coroutines: a programming methodology, a language design and an

implementation. Springer, Heidelberg (1980)
13. Microsoft Corp.: C# Version 2.0 Specification (2005),

http://msdn.microsoft.com/en-US/library/618ayhy6(v=VS.80).aspx

14. de Moura, A.L., Ierusalimschy, R.: Revisiting coroutines. ACM Trans. Program.
Lang. Syst. 31(2), 1–31 (2009)

15. de Moura, A.L., Rodriguez, N., Ierusalimschy, R.: Coroutines in Lua. Journal of
Universal Computer Science 10, 925 (2004)

16. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries, The Revised Report.
Cambridge University Press, Cambridge (2003)

17. Van Rossum, G., Eby, P.: PEP 342 – coroutines via enhanced generators (2005),
http://www.python.org/dev/peps/pep-0342/

18. Wang, A., Dahl, O.J.: Coroutine sequencing in a block structured environment.
BIT Numerical Mathematics 11(4), 425–449 (1971),
http://www.springerlink.com/content/g870vkxx22861w50

19. Wirth, N.: Programming in Modula-2. Springer, Heidelberg (1982)
20. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Information and

Computation 115(1), 38–94 (1994)

http://hackage.haskell.org/package/monad-coroutine
http://msdn.microsoft.com/en-US/library/618ayhy6(v=VS.80).aspx
http://www.python.org/dev/peps/pep-0342/
http://www.springerlink.com/content/g870vkxx22861w50

An Expression Processor:

A Case Study in Refactoring Haskell Programs

Christopher Brown1, Huiqing Li2, and Simon Thompson2

1 School of Computer Science, University of St. Andrews, UK
chrisb@cs.st-andrews.ac.uk

2 School of Computing, University of Kent, UK
{H.Li,S.J.Thompson}@kent.ac.uk

Abstract. Refactoring is the process of changing the structure of a pro-
gram while preserving its behaviour in order to increase code quality,
programming productivity and code reuse. With the advent of refac-
toring tools, refactoring can be performed semi-automatically, allowing
refactorings to be performed (and undone) easily.

In this paper, we briefly describe a number of new refactorings for
Haskell 98 programs implemented in the Haskell Refactorer, HaRe. In
particular, a number of new structural and data-type refactorings are pre-
sented. We also implement a simple expression processor, clearly demon-
strating how the refactorings and the HaRe tool can aid programmers
in developing Haskell software. We conclude the paper with a discus-
sion of the benefits of refactoring Haskell programs, together with their
implementation and design limitations.

1 Introduction

Often programmers write a first version of a program without paying full atten-
tion to programming style or design principles [1]. Having written a program,
the programmer will realise that a different approach would have been much
better, or that the context of the problem has changed. Refactoring tools pro-
vide software support for modifying the design of a program without changing
its functionality: often this is precisely what is needed in order to begin adapting
or extending it.

The term ‘refactoring’ was first introduced by Opdyke in his PhD thesis in
1992 [2] and the concept goes at least as far back as the fold/unfold system pro-
posed by Burstall and Darlington in 1977 [3], although, arguably, the fold/unfold
system was more about algorithm change than structural changes. A key aspect
of refactoring — illustrated by the ‘rename function’ operation — is that its
effect is across a code base, rather than being focussed on a single definition:
renaming a function will have an effect on all the modules that call that function,
for instance.

The Haskell Refactorer, HaRe, is a product of the Refactoring Functional
Programs project at the University of Kent [4] [5] by Li, Reinke, Thompson and
Brown. HaRe provides refactorings for programs written in the full Haskell 98

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 31–49, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 C. Brown, H. Li, and S. Thompson

standard language [6], and is integrated with the two most popular development
environments for Haskell programs [7], namely Vim [8] and (X)Emacs [9]. HaRe
refactorings can be applied to both single- and multi-module projects.

HaRe is itself implemented in Haskell, and is built upon the Programatica
[10] compiler front-end, and the Strafunski [11] library for generic tree traversal.
The HaRe programmers’ application programming interface (API) provides the
user with an abstract syntax tree (AST) for the program together with utility
functions (for example, tree traversal and tree transforming functions) to assist
in the implementation of refactorings.

In this paper, we describe briefly a number of new refactorings for HaRe and
demonstrate their use by applying them to an expression processing example.
Using Haskell as the implementation language allows us to explore the usability
of Haskell for implementing transformation and analysis tools.

We are also able to reflect on how refactoring functional programs – and in
particular programs in Haskell – is different from refactoring within the OO
paradigm. Pure functional languages such as Haskell make some refactorings
substantially more straightforward: consider the example in which a function
definition is generalised by selecting a sub-expression to pass as an argument, as
in the transformation of the following program on selection of the sub-expression
1 within the definition of addOne,

addOne [] = []
addOne (x:xs) = x+1 : addOne xs

fun xs = sum (addOne xs)

where for good measure we also rename the function appropriately:

addNum n [] = []
addNum n (x:xs) = x+n : addNum n xs

fun xs = sum (addNum 1 xs)

We note three aspects of this transformation.

– In performing a generalisation over an arbitrary sub-expression we can be
sure that the expression has no side-effects, and so it can be passed as an
argument without changing the order in which these effects take place.

– Because Haskell is evaluated lazily, we know that the argument will only be
evaluated if it is used, and so we will not change the strictness of the function
by generalising in this way; this would not be the case in a strict language.

– Finally, if we choose as a sub-expression something of functional type then
because functions are ‘first-class citizens’ in Haskell the generalisation can
take place: the use of arbitrary closures in (e.g.) object-oriented languages
would make this generalisation awkward or indeed impossible.

If we were to introduce side-effects in a measured way – as in Haskell monads
or in Erlang’s communication primitives – it is possible to detect where side-
effects may take place, and indeed to ‘wrap’ the effects in a function closure
when generalising, if that is required.

An Expression Processor: A Case Study in Refactoring Haskell Programs 33

In general refactorings for Haskell can be more far-reaching because of the
purity of the language, but some features – especially overloading by means of
type classes – can lead to some difficulties in implementation; for example in
generalisation two or more sub-expressions may be similar, but have potentially
different types.

To date HaRe has a number of refactorings implemented, each refactoring
falls into one of two categories: structural or data-type based. Structural refac-
torings affect the expression level of a program, including function definitions;
whereas data-type based refactorings affect the type definitions of a program,
or affect the expressions of the program taking into account a type constraint.
The refactorings were jointly implemented by Li [12] and Brown [13] in their
PhD theses. Here we attempt to declare the authorship and category of all the
existing refactorings for HaRe.

– Structural
Renaming, demote/promote a definition, unfold a definition, introduce/
delete a definition, generalise a definition, add/remove an argument and
duplicate a function [12].

Folding, generative folding, folding/unfolding as-patterns, converting
between let and where and case analysis simplification [13].

– Data-Type
From concrete to abstract data type [12].

Add/remove a constructor, add/remove a field and introduce pattern
matching [13].

– Miscellaneous. Duplicate code elimination [14] and program slicing, in-
cluding: dead code elimination, splitting and merging [13].

We note that removing a constructor and removing a field are pseudo refactor-
ings ; that is, they are refactorings if performed directly after their inverse which
adds the construct, but they may change behaviour if used in other situations.
The particular contributions presented here are:

– Structural and Data-Type Refactorings. The design and implementa-
tion of a new set of structural and data-type refactorings, taken from Brown
[13]. These refactorings are introduced in Section 2, and are italicised in the
list of refactorings above.

– Refactoring Case Study. A case study for refactoring Haskell programs. In
particular we apply the refactorings described in this paper to an expression
processing example. The example is used to demonstrate the capacity of the
refactorings from this paper in a simple, but still useful, context. This case
study is presented in Section 3.

We conclude the paper with a discussion of the general benefits for the Haskell
programmer of refactoring, and a discussion of some of the difficulties of imple-
menting the various refactorings; we conclude by reviewing our agenda for future
work.

34 C. Brown, H. Li, and S. Thompson

2 Structural and Data-Type Refactorings

This section describes some new structural and data-type refactorings that have
been defined and implemented in HaRe by Brown [13]. In this paper we chose
to select the refactorings that would appear most useful to the Haskell program-
mer. The refactorings presented here follow on from the refactoring work by Li
[12], and use the refactoring catalogue [15] maintained by Thompson as a ba-
sis. In particular, the following refactorings are described in this section: folding
(Section 2.1); merging (Section 2.2); adding a constructor (Section 2.3); remov-
ing a constructor (Section 2.4); adding and removing a data type field (Section
2.5); and introducing pattern matching (Section 2.6).

We note that the refactorings are only very briefly described here. For a much
more detailed overview of the transformation rules and side conditions for each
refactoring described in this section, we refer the reader to Brown’s PhD thesis
[13].

2.1 Folding

Folding replaces instances of the right hand side of a definition by the corre-
sponding left-hand-side. This refactoring is designed to be the complement of
unfolding which is described in Li’s PhD thesis [12]. Folding can be used to
eliminate some duplicate expressions within a program; it can also be used to
create a name for a common abstraction occurring within the program by ab-
stracting away from a common sub-expression, as long as there is a definition
to fold against. This is achieved by first extracting the common definition using
the introduce new definition refactoring [12], and then folding against this newly
introduced definition.

Example. An example of folding an instance of the right hand side of a def-
inition, table, is shown in Figure 1. In the figure, two definitions are given:

Before:

showAll = (concat . format) . (map show)

table = concat . format

After:

showAll = table . map show

table = concat . format

Fig. 1. Folding (concat . format) against the definition of table is shown from left
to right. The inverse of this (unfolding table within showAll) is shown from right to
left.

showAll and table. The right hand side of table, as can be seen, also ap-
pears as a sub-expression on the right hand side of showAll. Folding allows the
definition table to be selected and all occurrences of its right hand side (occur-
rences within different entities in the same scope as table, except those that
appear on the right hand side of table) are replaced with a call to table. The
top row of the example shows that the sub-expression, (concat . format) has
been replaced with a call to table, passing in (map show) as an argument; this
therefore eliminates some duplicated code within the program.

An Expression Processor: A Case Study in Refactoring Haskell Programs 35

Before:

splitAt_1 :: Int -> [a] -> [a]

splitAt_1 0 _ = []

splitAt_1 _ []= []

splitAt_1 n (x:xs)

= x : splitAt_1 (n-1) xs

splitAt_2 :: Int -> [a] -> [a]

splitAt_2 0 xs = xs

splitAt_2 _ [] = []

splitAt_2 n (x:xs)

= splitAt_2 (n-1) xs

After:

splitAt :: Int -> [a] -> ([a], [a])

splitAt 0 xs = ([],xs)

splitAt _ [] = ([],[])

splitAt n (x:xs) = (x:ys,zs)

where

(ys,zs) = splitAt (n-1) xs

Fig. 2. Merging a pair of definitions is shown from left to right; the merged definition
is recursive and introduces a shared list traversal

2.2 Merging

Merging takes a number of selected definitions and creates a new, generative,
definition that returns a tuple. Each component of the tuple returned by the
merged definition encapsulates the behaviour of the selected entities. The merged
definition is generative in the sense that it is recursive, and removes duplicate
parts of the function by introducing code sharing. Merging is the inverse of
splitting, as defined in [13].

Merging is actually known as tupling in the field of program transformation,
and was originally proposed by Pettorossi [16], as a strategy for composing effi-
cient computations by avoiding repeated evaluations of recursive functions.

Example. An example of merging the functions splitAt 1 and splitAt 2 is
shown, from left to right, in Figure 2. In order to perform the merge, the user
must first select each function splitAt 1 and splitAt 2 in turn and add them
to a merging cache, so that HaRe can perform the refactoring over the selected
entities. The newly introduced definition, splitAt, uses only one list traversal,
rather than a separate traversal for each of splitAt 1 and splitAt 2.

2.3 Adding a Constructor to a Data Type

Adding a constructor to a defined data type. The introduced constructor is added
immediately after a selected constructor definition in a data type. New pattern
matching is introduced for all functions defined over the modified data type.

Example. An example of adding a constructor Var to a data type Expr is
shown in Figure 3. In the example, we select the constructor Minus and choose
to add a new constructor immediately after (the result is shown in the right
column). We add the new constructor Var with an argument Int. This is done
by HaRe prompting the user for the constructor name and the types of its fields

36 C. Brown, H. Li, and S. Thompson

Before:

data Expr = Plus Expr Expr

| Minus Expr Expr

eval :: Expr -> Int

eval (Plus e1 e2)

= (eval e1) + (eval e2)

eval (Minus e1 e2)

= (eval e1) - (eval e2)

After:

data Expr = Plus Expr Expr

| Minus Expr Expr

| Var Int

addedVar = error "added Var Int to Expr"

eval :: Expr -> Int

eval (Plus e1 e2)

= (eval e1) + (eval e2)

eval (Minus e1 e2)

= (eval e1) - (eval e2)

eval (Var a) = addedVar

Fig. 3. Adding a constructor Var with the field Int is shown from left to right. Re-
moving the constructor and its field is shown from right to left.

when the refactoring is selected from the menu. The function eval is updated
automatically to include pattern matching for the newly added constructor.

2.4 Removing a Constructor from a Data Type

Removing a constructor is defined as the inverse of adding a constructor. Re-
moving is not a refactoring in the sense that it eliminates equations from the
program space; this therefore may change the behaviour. However, removing
a constructor is a pseudo refactoring if it is performed directly after adding a
constructor, but this does not apply generally to the transformation. Removing
a constructor allows a constructor to be identified and all clauses that involve
pattern matching over the constructor are commented out. All occurrences of
the constructor in an expression are replaced with calls to error.

Example. An example of removing a constructor Var from a data type Expr is
defined in Figure 3 read from right to left. Var is selected for removal and the
refactoring removes the value from its defining definition, Expr and comments
out all equations referring to the value Var in a pattern. When used on the right
hand side Var is replaced with a call to error. The equation eval (Var a) =
addedVar is also commented out, although this is not shown in the figure.

2.5 Adding or Removing a Field to or from a Constructor

Adding a field to a constructor allows a new field to be added to an identified
data type constructor. The new field is always added to the beginning of the type
to allow for partial applications of the constructor in the program. The reason
for this is to complement the add a new parameter refactoring, which also adds
arguments to the beginning of the argument list of a function.

Removing a field is defined as the inverse of adding a field. All references to
the removed field in pattern matches or sub-expressions are commented out of

An Expression Processor: A Case Study in Refactoring Haskell Programs 37

Before:

data Data1 a = C1 a Int Char

| C2 Int

| C3 Float

f :: Data1 a -> Int

f (C1 a b c) = b

f (C2 a) = a

f (C3 a) = 42

g (C1 (C1 x y z) b c) = y

h :: Data1 a

h = C2 42

After:

data Data1 b a = C1 a Int Char

| C2 Int

| C3 b Float

f :: (Data1 b a) -> Int

f (C1 a b c) = b

f (C2 a) = a

f (C3 c3_1 a) = 42

g (C1 (C1 x y z) b c) = y

h :: Data1 b a

h = C2 42

Fig. 4. Adding and removing a field b to the constructor C3 shown from left to right.
Removing the field is shown from right to left.

the program. Similarly, if the removed field was referred to in the program then
the sub-expression will be commented out after the removal process. Removing
a field is a destructive transformation rather than a refactoring, as it changes
behaviour. Removing a field is also a pseudo refactoring if performed directly
after adding a field.

Example. Figure 4, read from left to right, shows an example of a new field
being added to a data type. The new field, of the polymorphic type b, generalises
the data type further. b is added to the left hand side of the type definition, and
also to all type signatures which involve the type Data1 in the program.

Conversely, Figure 4, read from right to left, shows an example of a field being
destructively removed from a data type. The field in question, of the polymorphic
type b, is removed from the left hand side of the type definition, and also from
all type signatures involving Data1.

2.6 Introduce Pattern Matching over an Argument Position

This refactoring introduces pattern matches for a function with a variable in a
particular argument position. Pattern matching is introduced in all its defining
equations by replacing the variable with an exhaustive set of patterns for the
type of the variable.

Example. An example of introducing pattern matches is given in Figure 5 from
left to right. In the example, the new pattern matches are added to the definition
of f and the introduced patterns for x are placed within an as pattern. The right
hand side is copied into the new equations and any new pattern variables that
are introduced are given new, distinct, names so that no binding conflicts can
occur. In the example, the pattern variables y and ys are introduced.

38 C. Brown, H. Li, and S. Thompson

Before:

f :: [Int] -> Int

f x = head x + head (tail x)

After:

f :: [Int] -> Int

f x@[] = head x + head (tail x)

f x@(y:ys) = head x + head (tail x)

Fig. 5. Introducing pattern matches for the pattern x is shown from left to right

3 Refactoring an Expression Processor

In this section we present a simple example illustrating how the majority of the
refactorings described in this paper could be used in practical program develop-
ment. In the example, we design a very simple language; we then write a parser,
evaluator and pretty printer for that language. As the application is being im-
plemented, there are cases where the use of a refactoring tool greatly increases
the productivity of the programmer, and improves the design of the program,
making the succeeding implementation steps easier to perform. In addition to
the previously mentioned techniques, we also make use of the following refactor-
ings from Li’s thesis [12]: renaming; generalising; introducing a new definition;
and adding an argument to a definition.

The example starts with the very basics of implementing a language, parser
and evaluator. The code for this is shown below; the grammar for the lan-
guage is described in the data type on Line 1 in Figure 6. So far, the lan-
guage only has the capacity to handle Integer literals and applications of Plus.
The function parseExpr is the parser for the language, taking a String and
converting it into a tuple: the first element being the Abstract Syntax Tree
for Expr, and the second the unconsumed input. To show this in practice, the
following shows how the parser and evaluator can be invoked from the GHCi
command line:

Prelude Parser> parseExpr "+ 1 2"

(Plus (Literal 1) (Literal 2),"")

Prelude Parser> eval $ fst $ parseExpr "+ 1 2"

3

For reasons of simplicity, the language does not include parentheses (although
this could easily be integrated into future versions) and + is not applied as an
infix function, also the expressions only take unsigned (positive) integers. For
the purpose of this example the expressions are given in a prefix format. The
complete implementation, for each stage of the case study, can be found at [17];
at each stage we have also attempted to motivate how we have proceeded with
choosing which refactorings to perform.

3.1 Stage 1: Initial Implementation

With the basics of the parser and evaluator set up, the first step is to start
integrating other constructs into the language. Therefore, we add the constructor
Mul to Expr in order to represent the application of * in our programs. We do

An Expression Processor: A Case Study in Refactoring Haskell Programs 39

1 data Expr = Literal Int | Plus Expr Expr

2 deriving Show

3

4 parseExpr :: String -> (Expr, String)

5 parseExpr (’ ’:xs) = parseExpr xs

6 parseExpr (’+’:xs) = (Plus parse1 parse2, rest2)

7 where

8 (parse1, rest1) = parseExpr xs

9 (parse2, rest2) = parseExpr rest1

10 parseExpr (x:xs)

11 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

12 where

13 lit = parseInt xs

14 parseInt :: String -> String

15 parseInt [] = []

16 parseInt (x:xs) | isNumber x = x : parseInt xs

17 | otherwise = []

18 parseExpr xs = error "Parse Error!"

19

20 eval :: Expr -> Int

21 eval (Literal x) = x

22 eval (Plus x y) = (eval x) + (eval y)

Fig. 6. The basic language and parser with prefix Plus expressions and Int literals

this by using the refactoring add a constructor (described in Section 2.3). The
refactoring asks us for the name of the constructor and any arguments. We enter
Mul Expr Expr and select the constructor Plus. The refactoring always adds
the new constructor immediately after the highlighted constructor. In this case
the refactoring adds the new constructor to the end of the definition of Expr
and also generates additional pattern matching clauses to eval (we use italics
to show code introduced by the refactorer):

data Expr = Literal Int | Plus Expr Expr | Mul Expr Expr

addedMul = error "Added Mul Expr Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Plus x y) = (eval x) + (eval y)

eval (Mul p_1 p_2) = addedMul

The refactoring has also inserted a call to the (automatically created) definition
of addedMul which is easily replaced with actual functionality in the succeeding
steps.

3.2 Stage 2: Introduce Binary Operators

It is anticipated that the language should be able to handle any number of math-
ematical binary operators. In order to handle this design decision, we implement
a new data type Bin Op to handle binary operators, and a new constructor to

40 C. Brown, H. Li, and S. Thompson

Expr to handle this abstraction. In order to achieve this, we first remove the
constructors Plus and Mul (using the remove a constructor refactoring, defined
in Section 2.3). The refactoring then automatically removes both constructors
and their pattern matching:

data Expr = Literal Int

...

parseExpr (’+’:xs) = (error "Plus removed from Expr"

{-Plus parse1 parse2, rest2-})
where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

...

eval :: Expr -> Int

eval (Literal x) = x

{- eval (Plus x y) = (eval x) + (eval y) -}
{- eval (Mul p_1 p_2) = (eval x) * (eval y) -}

The Bin Op data type is then created with the constructors, Mul and Plus. This
operation of removing constructors and introducing a new, generalised, type,
may be implemented as refactoring, and is known as introduce layered data type
in the catalogue of refactorings, maintained by Thompson [15].

A new function, called eval op is then introduced, with a skeleton implemen-
tation, as follows:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)

eval_op x = error "Undefined Operation"

We then proceed to define the implementation for eval op: by choosing introduce
pattern matching (described in Section 2.6 on Page 37) from HaRe and selecting
the argument x within eval op, the refactoring produces the following:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)

eval_op p_1@(Mul) = error "Undefined Operation"

eval_op p_1@(Plus) = error "Undefined Operation"

eval_op _ = error "Undefined Operation"

All that is left to do for this stage is to replace the right hand sides of eval op
with (*) and (+) respectively.

The next stage is to do some tidying of our newly introduced type, Bin Op. In
particular, we need to define a constructor within Expr and modify the evaluator
to call eval op for the Bin Op case.

To start, we add a constructor to Expr where HaRe also automatically adds
a new pattern clause to eval:

data Expr = Literal Int | Bin Bin_Op Expr Expr

addedBin = error "Added Bin Bin_Op Expr Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin p_1 p_2 p_3) = addedBin

An Expression Processor: A Case Study in Refactoring Haskell Programs 41

The call to error on the right hand side of parseExpr for the ’+’ case is then
replaced with Bin Plus parse1 parse2. The next step is also to rename (using
the rename refactoring in HaRe) the variables in the introduced pattern match
to something more meaningful:

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin op e1 e2) = eval_op op (eval e1) (eval e2)

Multiplication is then introduced in the parser, by copying the ’+’ case into a
’*’ case, and substituting Plus for Mul on the right hand side.

1 parseExpr :: String -> (Expr, String)

2 parseExpr (’ ’:xs) = parseExpr xs

3 parseExpr (’*’:xs) = (Bin Mul parse1 parse2, rest2)

4 where

5 (parse1, rest1) = parseExpr xs

6 (parse2, rest2) = parseExpr rest1

7 parseExpr (’+’:xs) = (Bin Plus parse1 parse2, rest2)

8 where

9 (parse1, rest1) = parseExpr xs

10 (parse2, rest2) = parseExpr rest1

11 parseExpr (x:xs)

12 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

13 where

14 lit = parseInt xs

15 parseInt :: String -> String

16 parseInt [] = []

17 parseInt (x:xs) | isNumber x = x : parseInt xs

18 | otherwise = []

19 parseExpr xs = error "Parse Error!"

Fig. 7. The parser implementation with plus and multiplication

3.3 Stage 3: Generalisation

In stage 3, we observe that there are occurrences of (near) duplicated expressions
in the program. Typically, refactoring can remove duplicated expressions by
introducing one of the instances of the duplicated expressions at the top level of
the program, and then generalising it so that all other instances can be folded
against the new definition. As can be seen from Figure 7, two equations of
parseExpr contain some duplicated code (this is highlighted in the figure). We
eliminate this duplicate code, by first introducing a new definition (using the
introduce new definition refactoring in HaRe) by highlighting the code on lines
7 - 10 from Figure 7. We enter parseBin as the name for the new expression,
and HaRe introduces the following code:

42 C. Brown, H. Li, and S. Thompson

...

parseExpr (’+’:xs) = parseBin xs

...

parseBin xs = (Bin Plus parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

The code highlighted in italics show how the refactoring has replaced the right
hand side of the equation parseExpr with a call to parseBin. Obviously, the
function parseBin should now be generalised so that the constructors Plus and
Mul can be passed in as formal arguments. This will also allow us to fold (using
folding as described in Section 2.1) the equation parseExpr defined in Figure 7
against the new definition parseBin. The following code illustrates this:

parseExpr :: String -> (Expr, String)

parseExpr (’ ’:xs) = parseExpr xs

parseExpr (’*’:xs) = parseBin Mul xs

parseExpr (’+’:xs) = parseBin Plus xs

parseExpr (x:xs)

| isNumber x = ...

parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

This refactoring has allowed to keep the implementation simple: there is now
a separate evaluator for binary operators (defined in Section 3.2) as well as
a separate parser for binary operators; this allows for the code to be easily
maintained in future versions.

3.4 Stage 4: Introduce Variables

We now add variables to the language by defining the let expression. In order
to do this, the Let and Var constructs need to be added to the language, taking
a variable name to be a String. The parser is then extended to handle the new
constructs, with the input let x=4 in 1+x giving the AST

Let "x" (Literal 4) (Bin Plus (Literal 1) (Var "x"))

Having variables in the language means that bindings of variables to values need
to be stored in an environment, and that environment variable needs to be passed
into the evaluator as an extra argument: when a variable is evaluated lookup is
used to find its value in the environment.

To perform this extension to the language, first we perform two add construc-
tor refactorings to the definition of Expr, adding LetExp String Expr Expr
and then Variable String as arguments to the refactoring. The refactorings
introduce new pattern matches for eval, thus:

An Expression Processor: A Case Study in Refactoring Haskell Programs 43

1 eval :: Environment -> Expr -> (String, Int)

2 eval env (Literal x) = (show x, x)

3 eval env (Bin op e1 e2) = ((fst (eval_op op)) ++ " "

4 ++ (fst $ eval env e1) ++ " "

5 ++ (fst $ eval env e2),

6 (snd $ eval_op op) (snd $ eval env e1)

7 (snd $ eval env e2))

8 where

9 eval_op :: (Num a) => Bin_Op -> (String, (a -> a -> a))

10 eval_op p_1@(Mul) = ("*", (*))

11 eval_op p_1@(Plus) = ("+",(+))

12 eval_op _ = error "Undefined Operation"

13 eval env (LetExp n e e_2) = ("let " ++ n ++ " = " ++ (fst $ eval env e)

14 ++ " in " ++ (fst $ eval env e_2),

15 snd $ eval (addEnv n e env) e_2)

16 eval env (Var n) = (n, snd $ eval env (lookUp n env))

Fig. 8. The evaluator implementation with the generality of binary operators expressed

data Expr = ... | LetExp String Expr | Var String

...

addedLetExp = error "Added LetExp String Expr Expr to Expr"

addedVar = error "Added Var String to Expr"

...

eval :: Expr -> Int

...

eval (LetExp p_1 p_2 p_3) = addedLetExp

eval (Var p_1) = addedVar

The Environment type, addEnv and lookup functions are now defined (not part
of the refactoring sequence). Finally the definition of eval needs to be modified
to take a new argument, namely the Environment. This can be added using an
“add argument” refactoring, but the definition needs then to be edited by hand
to thread the environment through the computation, giving

eval :: Environment -> Expr -> Int

eval env (Literal x) = x

eval env (Bin op e1 e2) = eval_op op (eval env e1) (eval env e2)

eval env (LetExp p_1 p_2 p_3) = eval (addEnv p_1 p_2 env) p_3

eval env (Var p_1) = lookup p_1 env

3.5 Stage 5: Merging

Finally, the last stage requires us to implement a pretty printer for our language.
We do this by defining a function prettyPrint over the type Expr with a type
signature. Initially prettyPrint is defined with the equation prettyPrint x =
error "Unable to pretty print!". We choose the introduce pattern matching
from HaRe, which produces the following:

44 C. Brown, H. Li, and S. Thompson

prettyPrint :: Expr -> String

prettyPrint x@(Literal x) = error "Unable to pretty print!"

prettyPrint x@(Bin op e1 e2) = error "Unable to pretty print!"

prettyPrint x@(LetExp n e e_2) = error "Unable to pretty print!"

prettyPrint x@(Var n) = error "Unable to pretty print!"

prettyPrint x = error "Unable to pretty print!"

The implementation for prettyPrint is completed, and the same procedure is
repeated for a function prettyBinOp (including introduce pattern matching) in
order to represent the pretty printing of binary operators. This gives us the
following definitions:

prettyPrint :: Expr -> String

prettyPrint x@(Literal y) = show y

prettyPrint x@(Bin op e1 e2) = prettyPrintBinOp op

++ " " ++ (prettyPrint e1) ++ " " ++ (prettyPrint e2)

prettyPrint x@(LetExp n e e_2) = "let " ++ n ++ " = "

++ (prettyPrint e) ++ " in " ++ (prettyPrint e_2)

prettyPrint x@(Var n) = n

prettyPrint x = error "Unable to pretty print!"

prettyPrintBinOp :: Bin_Op -> String

prettyPrintBinOp x@(Mul) = "*"

prettyPrintBinOp x@(Plus) = "+"

prettyPrintBinOp x = error "Unable to pretty print binary operator"

To show how the pretty printer and parser work in practice, the following shows
an example from the GHCi prompt:

Prelude Parser> parseExpr "let x + 1 1 x"

(LetExp "x" (Bin Plus (Literal 1) (Literal 1)) (Var "x"),"")

Prelude Parser> prettyPrint (LetExp "x" (Bin Plus (Literal 1)

(Literal 1)) (Var "x"))

"let x = + 1 1 in x"

Prelude Parser> eval [] (LetExp "x" (Bin Plus (Literal 1)

(Literal 1)) (Var "x"))

2

As can be seen, both eval and prettyPrint take an Expr as an argument. It
would be nice to merge the two functions together so that it may be possible to
pretty print and evaluate an abstract syntax tree simultaneously. This may lead
to a function that parses an input, and pretty prints and evaluates the output,
as follows:

Prelude Parser> parse "let x + 1 1 x"

"The value of let x = + 1 1 in x is 2"

In order to implement this feature, we first merge the definitions of prettyPrint
and eval together (the merge refactoring is defined in Section 2.2). We also move
the definitions of eval op and prettyPrintBinOp to a where clause of the newly
merged eval function.

Conclusions for the case study are discussed in Section 5.

An Expression Processor: A Case Study in Refactoring Haskell Programs 45

4 Related Work

Program transformation for functional programs has a long history, with early
work in the field being described by Partsch and Steinbruggen in 1983 [18].
Other work in program transformation for functional languages is described by
Hudak in his survey [19]. For an extensive survey of refactoring tools and tech-
niques, Mens produced a refactoring survey in 2004 detailing the most common
refactoring tools and practices [20].

The University of Kent and Eötvös Loránd University are now in the process of
building refactoring tools for Erlang programs [21]. However, different techniques
have been used to represent and manipulate the program under refactoring. The
Kent approach uses the Annotated Abstract Syntax Tree (AAST) as the internal
representation of an Erlang program, and program analyses and transformations
manipulate the AAST directly. The Eötvös Loránd university approach uses the
Erlang-based database Mnesia [22] to store both syntactic and semantic infor-
mation of the Erlang program under refactoring; therefore, program analyses
and transformations are carried out by manipulating the information stored in
the database.

The fold/unfold system of Burstall and Darlington [3] was intended to trans-
form recursively defined functions. The overall aim of the fold/unfold system was
to help programmers to write correct programs which are easy to modify. There
are six basic transformation rules that the system is based on: unfolding; fold-
ing; instantiation; abstraction; definition and laws. The advantage of using this
methodology is that it is simple and very effective at a wide range of program
transformations which aim to develop more efficient definitions; the disadvan-
tage is that the use of the fold rule may result in non-terminating definitions.
Indeed, the fold refactorings implemented for HaRe also suffer from the same
termination problems.

The Haskell Equational Reasoning Assistant, HERA [23] is a system that
provides both a GUI level and a batch level Haskell rewrite engine inside a
single tool. HERA shares the basic properties of HaRe. It is important to notice
a difference however, HaRe works purely at the source level of a program, and
applies well-understood software engineering patterns. HERA handles large-scale
rewrites in a different way, using only a series of small steps performed in a strict
bottom up manner. It is possible to implement particular refactorings from HaRe
in HERA such as renaming and generalisation. However, the HERA tool doesn’t
provide an advanced API for program transformation and so refactorings would
have to be described in terms of small transformations, which in some respects
would make it more difficult to scale to large-scale transformations.

5 Conclusions and Future Work

This paper presented a number of refactorings implemented for the Haskell refac-
torer, HaRe, together with a case study in transforming programs written in
Haskell. Specifically, the contributions of this paper are as follows:

46 C. Brown, H. Li, and S. Thompson

– In Section 2, we briefly described a number of structural and data-type
refactorings from Brown’s PhD thesis [13]; these include: folding, merging,
adding/removing a constructor, adding/removing a field and introduce pat-
tern matching.

– In Section 3, we demonstrated a case study for refactoring Haskell programs.
The case study serves not only as a basic demonstration of the refactorings
discussed in Section 2, but also as a tutorial on how to refactor Haskell
programs.

The case study presented in Section 3 resulted in some interesting conclusions.
It seems that the simpler, more atomic, refactorings are more useful in refactor-
ing large-scale programs than the larger more complex ones. It seems natural,
therefore, to create larger refactorings by gluing together lots of smaller atomic
refactorings. The most commonly used refactorings were introduce new defini-
tion, generalise definition and folding; these three refactorings exploit the idea
of higher-order polymorphism resulting in code reuse by abstraction [24]. Some
specific conclusions that came from the case study are:

– A refactoring tool aids the process of improving programs, by lowering the
cost of making the changes. For example, in Sections 3.1 and 3.2 we add
and remove constructors. This may be performed using a search and replace
facility in an editor, but with extreme care. A refactoring tool, on the other
hand, lowers the overall cost of making these changes, especially across large
projects. In addition to this, HaRe also has an undo feature, allowing the
user to try a particular refactoring without committing to the changes.

– Refactoring encourages code reuse. For example, in Section 3.3 it is possible
to eliminate some duplicated code by introducing a top level definition from a
selected expression, generalising over the definition and then folding against
the new definition. This process also helps to encourage code understanding:
by introducing a new name for an abstraction, for example.

– Pure, lazy, languages can appear to offer more opportunities for refactoring
than strict, impure ones. Generalisation, as discussed in Section 1, is an
example of a refactoring that could not be performed in a language with
side-effects such as C or Java. Furthermore, the merging process as shown
in Section 3.5 introduces a shared computation: a concept that is implicitly
built into the Haskell language.

5.1 Implementation and Design Difficulties

Haskell is a very complex language, and its model of type signatures, pattern
matching, guards, where clauses, recursive modules and type classes, makes it
a difficult language to refactor due its richness of expression; for many of the
refactorings presented in this paper, there have been occasions where it was not
clear precisely how a particular refactoring should be defined, and indeed in a
number of cases it makes sense to implement more than one version. For exam-
ple, in the case of unfolding, there was a design choice to be made when guards
are converted into an if..then..else clause. This can lead to problems where

An Expression Processor: A Case Study in Refactoring Haskell Programs 47

the guards may not have an otherwise clause defined, or the programmer was
intending for the pattern matching to drop to the next equation in the defini-
tion. In this situation, we made the decision to introduce a default else clause
that introduces an error if the guards cannot be converted directly. Consider
unfolding the definition of f in the body of g:

f x
| x == 1 = 10
| x == 2 = 20

g y = f y

Unfolding f gives us:

f x
| x == 1 = 10
| x == 2 = 20

g y = if y == 1 then 10
else if y == 2 then 20

else error "Unmatched Pattern"

Another choice we made was in the introduction of a field to a constructor.
Because partial application of constructors is possible in Haskell – they are,
after all, constructor functions – we chose to add the field in the first position,
since this allows the field to be added in a straightforward way to any partial
application. Although it is possible to implement the refactoring to allow the user
to add the field to any position of the constructor, in practice it is more difficult,
as it requires the refactorer to check for partial applications, and to perform
the appropriate ‘plumbing’ to pass this extra argument in. We also observe that
this same choice was made (for the same reasons) in the implementation of
function generalisation, where the ‘new’ argument appears in the first position.
We refer the reader to the PhD theses by Li [12] and Brown [13] for much more
descriptive and technical discussions of the limitations of refactoring in general,
and also with implementing a refactoring tool for Haskell programs.

5.2 Future Work

The work presented in this paper can still be carried forward in a number of
directions.

– Adding more refactorings to HaRe. The number of refactorings for HaRe has
increased, but there are still a number of refactorings listed in the catalogue
[15] that are still awaiting implementation.

– Make more use of type information with the current refactorings in HaRe. For
instance, when generalising a function definition that has a type signature
declared, the type of the identified expression needs to be inferred, and added
to the type signature as the type of the function’s first argument.

48 C. Brown, H. Li, and S. Thompson

– We hope to extend HaRe to allow refactorings to be scripted. Scripting refac-
torings allows elementary —or atomic— refactorings to be stitched together,
creating the effect of a complete refactoring process. Indeed, the commonly
occurring sequence of refactorings steps (such as introducing, generalising
and folding) can be seen as generalised refactoring patterns, and could be
abstracted away by the scripting process.

– Finally, we wish to port HaRe to GHC Haskell —the de facto standard of
Haskell— and use the GHC API instead of Programatica for implementing
refactorings.

The authors would like to thank Dave Harrison for his editorial advice, and the
anonymous reviewers for their comments. We would also like to acknowledge
EPSRC for supporting the original development of HaRe.

References

1. Brooks, F.P.: The Mythical Man-Month: After 20 Years. IEEE Software 12(5),
57–60 (1995)

2. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL,
USA (1992)

3. Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive
Programs. J. ACM 24(1), 44–67 (1977)

4. Li, H., Thompson, S., Reinke, C.: The Haskell Refactorer, HaRe, and its API. Elec-
tronic Notes in Theoretical Computer Science 141(4), 29–34 (2005); Proceedings
of the Fifth Workshop on Language Descriptions, Tools, and Applications (LDTA
2005)

5. Li, H., Reinke, C., Thompson, S.: Tool Support for Refactoring Functional Pro-
grams. In: ACM SIGPLAN 2003 Haskell Workshop, Association for Computing
Machinery, pp. 27–38 (August 2003)

6. Peyton Jones, S., Hammond, K.: Haskell 98 Language and Libraries, the Revised
Report. Cambridge University Press, Cambridge (2003)

7. Refactor-fp Group, T.: The Haskell Editing Survey (2004), http://www.cs.kent.
ac.uk/projects/refactor-fp/surveys/haskell-editors-July-2002.txt

8. Oualine, S.: Vim (Vi Improved). Sams (April 2001)

9. Cameron, D., Elliott, J., Loy, M.: Learning GNU Emacs. O’Reilly, Sebastopol
(2004)

10. Hallgren, T.: Haskell Tools from the Programatica Project. In: Haskell 2003: Pro-
ceedings of the 2003 ACM SIGPLAN Workshop on Haskell, pp. 103–106. ACM
Press, New York (2003)

11. Lämmel, R., Visser, J.: A Strafunski Application Letter. In: Dahl, V. (ed.) PADL
2003. LNCS, vol. 2562, pp. 357–375. Springer, Heidelberg (2002)

12. Li, H.: Refactoring Haskell Programs. PhD thesis, School of Computing, University
of Kent, Canterbury, Kent, UK (September 2006)

13. Brown, C.: Tool Support for Refactoring Haskell Programs. PhD thesis, School of
Computing, University of Kent, Canterbury, Kent, UK (September 2008), http://
www.cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf

http://www.cs.kent.ac.uk/projects/refactor-fp/surveys/haskell-editors-July-2002.txt
http://www.cs.kent.ac.uk/projects/refactor-fp/surveys/haskell-editors-July-2002.txt
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf
http://www.cs.kent.ac.uk/projects/refactor-fp/publications/ChrisThesis.pdf

An Expression Processor: A Case Study in Refactoring Haskell Programs 49

14. Brown, C., Thompson, S.: Clone Detection and Elimination for Haskell. In: Gal-
lagher, J., Voigtlander, J. (eds.) PEPM 2010: Proceedings of the 2010 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation, pp. 111–120.
ACM Press, New York (2010)

15. Refactor-fp Group, T.: Refactoring Functional Programs (2008), http://www.cs.
kent.ac.uk/projects/refactor-fp

16. Pettorossi, A.: A Powerful Strategy for Deriving Efficient Programs by Transfor-
mation. In: LFP 1984: Proceedings of the 1984 ACM Symposium on LISP and
Functional Programming, pp. 273–281. ACM, New York (1984)

17. Brown, C., Thompson, S.: Expression processor example code (2010), http://www.
cs.st-and.ac.uk/~chrisb/tfp2010.html

18. Partsch, H., Steinbruggen, R.: Program Transformation Systems. ACM Comput.
Surv. 15(3), 199–236 (1983)

19. Hudak, P.: Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Survey 21(3), 359–411 (1989)

20. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Trans. Softw.
Eng. 30(2), 126–139 (2004)

21. Kozsik, T., Csörnyei, Z., Horváth, Z., Király, R., Kitlei, R., Lövei, L., Nagy, T.,
Tóth, M., Vı́g, A.: Use cases for refactoring in erlang. In: Horváth, Z., Plasmeijer,
R., Soós, A., Zsók, V. (eds.) Central European Functional Programming School.
LNCS, vol. 5161, pp. 250–285. Springer, Heidelberg (2008)

22. Mattsson, H., Nilsson, H., Wikström, C., Ericsson Telecom Ab: Mnesia – A dis-
tributed robust DBMS for telecommunications applications. In: Gupta, G. (ed.)
PADL 1999. LNCS, vol. 1551, pp. 152–163. Springer, Heidelberg (1999)

23. Gill, A.: Introducing the Haskell Equational Reasoning Assistant. In: Proceedings
of the 2006 ACM SIGPLAN Workshop on Haskell, pp. 108–109. ACM Press, New
York (2006)

24. Thompson, S.: Higher-order + Polymorphic = Reusable (May 1997)

http://www.cs.kent.ac.uk/projects/refactor-fp
http://www.cs.kent.ac.uk/projects/refactor-fp
http://www.cs.st-and.ac.uk/~chrisb/tfp2010.html
http://www.cs.st-and.ac.uk/~chrisb/tfp2010.html

Static Balance Checking for First-Class Modular

Systems of Equations

John Capper and Henrik Nilsson

Functional Programming Laboratory,
School of Computer Science,
University of Nottingham,

United Kingdom
{jjc,nhn}@cs.nott.ac.uk

Abstract. Characterising a problem in terms of a system of equations is
common to many branches of science and engineering. Due to their size,
such systems are often described in a modular fashion by composition of
individual equation system fragments. Checking the balance between the
number of variables (unknowns) and equations is a common approach to
early detection of mistakes that might render such a system unsolvable.
However, current approaches to modular balance checking have a number
of limitations. This paper investigates a more flexible approach that in
particular makes it possible to treat equation system fragments as true
first-class entities. The central idea is to record balance information in
the type of an equation fragment. This information can then be used
to determine if individual fragments are well formed, and if composing
fragments preserves this property. The type system presented in this
paper is developed in the context of Functional Hybrid Modelling (FHM).
However, the key ideas are in no way specific to FHM, but should be
applicable to any language featuring a notion of modular systems of
equations.

Keywords: Systems of equations, equation-based, non-causal modelling,
first-class components, equation-variable balance, structural analysis, lin-
ear constraints, refinement types.

1 Introduction

Systems of equations [3], also known as simultaneous equations, are abundant in
science and engineering. Applications include modelling, simulation, optimisa-
tion, and more. Such systems of equations are often parametrised, describing not
just a specific problem instance, but a set of problems. The size and nature of
the systems frequently necessitates numerical methods and computers for solving
them. The equations thus need to be turned into programs that can be used to
solve for various problem instances. Such programs can be written manually, but
a more expedient route is to transcribe the equations into a high-level language,
e.g. a modelling language, thus making it possible to automatically translate
the equations into a program that attempts to compute a solution given specific

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 50–65, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Static Balance Checking for First-Class Modular Systems of Equations 51

values for any parameters. Due to the size of the equation systems, some form of
abstraction mechanism that supports a modular formulation by composition of
individual equation system fragments, components, is often a practical necessity.

Of course, as with any large and complex task, there is always a risk of mis-
takes being made. In this case, mistakes may render the system of equations
unsolvable. In a modular development, an error in a component might not man-
ifest itself until an attempt is made to use that component. In the worst case,
problems might not become apparent until much later when the final program
is run. In some applications, the system of equations may even evolve dynami-
cally, say during a simulation run, meaning that it may take a long time indeed
to discover certain errors. Static checks that catch mistakes early, preferably
applicable to individual components in isolation, can thus be very helpful.

One might hope to statically impose sufficient constraints to guarantee that
a system of equations has a solution. Unfortunately, the question of whether
such a system has a solution or not can in general only be answered by study-
ing complete systems with full knowledge of all coefficients, ruling out checking
of components in isolation as well as parametrisation. Moreover, without actu-
ally attempting solving, the question can only be answered for relatively simple
systems (e.g. linear systems of equations). In other words, if the setting is rea-
sonably general, we cannot hope to develop e.g. a type system that guarantees
that a well-typed equation system or fragments thereof are solvable.

However, there are simple criteria that if violated are indicative of problems,
or that may even imply that an attempt to solve a system by a specific method
(e.g. as embodied by a tool that translates equations to a program for solving
them) will necessarily fail. One such criterion is that the number of variables, or
unknowns, must equal the number of equations. A more refined criterion is that
there should exist a bijective mapping between variables and equations. Some of
these kinds of criteria can be enforced statically, e.g. through a type system.

Enforcing the balance of systems of equations is considered very useful in prac-
tise. For example, the state-of-the-art, equation-based modelling and simulation
language Modelica insists that complete models are balanced [9, pp.40–46]. In-
deed, translation to simulation code will fail if systems are unbalanced. Broman
et al. propose a similar but more refined approach [1].

These criteria stem from the fact that a linear system of equations has a
unique solution if and only if the equations are linearly independent and the
number of equations and unknowns agree. However, they are useful heuristic
criteria more generally, intuitively because each equation commonly can be used
to solve for one variable occurring in it. For a (very) simple example, consider:

x2 + y = 0 (1)
3x = 10 (2)

Here (2) can be used to solve for x, and the value of x can then be substituted
into (1), enabling it to be used to solve for y. Note that both the variable-equation
balance criterion and the pairing criterion are satisfied.

52 J. Capper and H. Nilsson

On the other hand, it is easy to see that neither criterion is sufficient to
guarantee solvability. Consider:

x2 + y = 0 (3)
cx = 10 (4)

Note that the system is now parametrised on a coefficient c. The two criteria
are still satisfied, but whether the system has a unique solution or not depends
on the value of c: for c = 0 there is no unique solution. Conversely, violation
of the criteria does not necessarily mean a system is unsolvable; for example,
consider adding an extra copy of (2) to the first system. The resulting system
can of course still be solved, despite both criteria now being formally violated.

The existing approaches to balance checking have weaknesses. For example, in
Modelica, a component either has to be balanced, or it is explicitly declared to
be possibly unbalanced, in which case no balance checking is performed for that
component. See Sect. 4 for a more in-depth discussion. In this paper we develop
an approach that is both more flexible and capable of catching more problems:

– The type of a component is refined by adding a balance variable to it, re-
flecting the number of equations the component contributes to the overall
system. This is a refinement type system [4] in that erasure of the extra type
information recovers a term that is well-typed in the original system.

– Parametrised components may also have a parametrised balance.
– Balance information can be inferred for components in isolation, even when

parametrised on other components and without any explicit declaration of
balance information for such parameters.

– Additional structural constraints beside the balance are exploited for a more
refined analysis. For example, in certain cases, it can be established that
a component necessarily would render a system imbalanced whenever it is
used, which thus can be reported as an error.

The upshot of this is that if a complete system is assembled modularly from
components that are well-typed in the refined sense, and if the assembled system
is balanced overall, then the “flat” system that results by unfolding all definitions
will also be balanced.

Our immediate motivation comes from Functional Hybrid Modelling (FHM)
[11,12,5] where it is desired to treat components as true first-class entities, includ-
ing the possibility to modify the overall system of equations during simulation,
at “run-time”, as alluded to earlier. Static checks that help prevent accidentally
changing a system from one that can be simulated (solved) to one that cannot
are thus of particular interest. We do not explicitly consider structurally dy-
namic systems of equations here, but our type system can be easily extended to
that setting thanks to the first-class notion of components.

However, it should be noted that the essence of the ideas presented in this pa-
per are not at all specific to FHM: in principle, it should be relatively straightfor-
ward to adapt them to other equation-based modelling languages, like Modelica,
or to any language featuring a notion of modular system of equations.

Static Balance Checking for First-Class Modular Systems of Equations 53

The structure of the remainder of this paper is as follows. Sect. 2 explains
the idea of modular systems of equations in more depth. Sect. 3 describes the
type system developed. Sect. 4 gives a comparative review of the related work.
Sect. 5 looks at possible avenues for expansion of the type system. Finally, Sect. 6
provides some concluding remarks.

2 Modular Systems of Equations

This section introduces the idea of modular systems of equations in more detail.
As FHM provided the immediate motivation for this work, we will draw on FHM
for examples and we will adopt a concrete syntax derived from Hydra, an FHM
language currently being developed. We will only explain FHM and Hydra to
the extent needed for this paper; for further details, please consult Nilsson et al.
[11,12] or Giorgidze & Nilsson [5].

Hydra, like Modelica, is concerned with modelling of dynamic, physical sys-
tems using Differential Algebraic Equations (DAE). The solution to such a sys-
tem of equations is a set of time-varying reals, i.e. real-valued functions of time.
In practise, it is usually the case that only approximate solution through numer-
ical simulation is feasible. However, for our formal type system development, the
domain of the variables and the exact form of the equations is of no consequence:
all that matters is which variables occur in each equation. This is reflected in
the precise syntax of terms for which our type system is defined (see Fig. 3.2
in Sect. 3.2), where equations are only considered in the abstract as a set of
occurring variables.

2.1 Equation System Basics

A system of equations is a set of equations over a set of variables or unknowns. It
has a solution if every variable in the system can be instantiated with a value such
that all the equations are simultaneously satisfied. Again, for the type system
developed in this paper, the domain of the variables is not important. However,
in our examples, the domain is either the reals, R, or time-varying reals.

A linear system of equations has a unique solution if all equations are inde-
pendent and there are equally many equations and variables. If there are more
independent equations than variables, the system is over-constrained. Such a
system has no solution as there are too many constraints, some of which will be
in conflict. If there are fewer independent equations than variables, the system
is under-constrained. Such a system has infinitely many solutions.

The equation-variable balance of a system of equations is the difference
between the number of equations and variables. Note that this is strictly a struc-
tural property: the details of exactly what the equations look like is of no conse-
quence. This is true in general in our development: we only consider structural
properties, i.e. equations in the abstract, as we cannot assume that all details
are known. By analogy, we refer to a system with positive equation-variable bal-
ance as over-constrained, and one with negative balance as under-constrained,
regardless of whether the equations actually are independent or even linear.

54 J. Capper and H. Nilsson

2.2 Abstraction over Systems of Equations

The equation systems needed to describe real-world problems are usually large
and complicated. On the other hand, there tends to be a lot of repetitive struc-
ture making it beneficial to describe the systems in terms of reusable equation
system fragments. For example, consider an electrical circuit comprising resis-
tors, capacitors, and inductors. Each component can be described by a small
equation system, and the entire circuit can then be described modularly by com-
position of instances of these for specific values of the components.

While the exact syntactic details vary between languages, the idea, in essence,
is to encapsulate a set of equations as a component with a well-defined interface.
Let us illustrate with an example, temporarily borrowing the syntax of the λ-
calculus for the abstraction mechanism:

r ≡ λ(x, y) → x + y + z = 0
x − z = 1

This makes r a relation that constrain the possible values of the two interface
variables x and y according to the encapsulated equations. The variable z is
local, not visible from the outside.

The relation r can now be used as a building block by instantiating it: sub-
stituting expressions for the interface variables and renaming local variables as
necessary to avoid name clashes. We express this as application, denoted by �:

u + v + w = 10
r � (u, v)
r � (v, w + 7)

After unfolding and renaming, a process we refer to as flattening, we get:

u + v + w = 10
u + v + z1 = 0

u − z1 = 1
v + (w + 7) + z2 = 0

v − z2 = 1

Note that each application of r effectively contributes one equation to the overall
system as one of the instances of the encapsulated equations in each case must
be used to solve for the corresponding instance of the local variable, z1 and z2.

2.3 FHM and Hydra

In this section, we introduce the FHM framework as embodied by the language
Hydra [11,12,5]. We use this as the setting for the rest of the paper. The central
idea of FHM is to embed an abstraction mechanism over equations as described

Static Balance Checking for First-Class Modular Systems of Equations 55

in Sect. 2.2 into a pure functional language, allowing equation system abstrac-
tions to be first-class entities at the functional level. The equations are Differ-
ential Algebraic Equations (DAE), meaning that the domain of the variables is
time-varying reals, or signals. An abstraction over an equation is therefore re-
ferred to as a signal relation. In the case of Hydra, the host language is Haskell
[6].

In Hydra, the type of a signal relation is written SR α. A signal relation can
be thought of as a predicate on a signal:

SR α ≈ Signal α → Bool

where Signal α is a time-varying value of type α. As a product of signals is
isomorphic to a signal of products, unary signal relations suffice to represent
n-ary relations. For example, given a binary predicate ≡ on R:

(≡sr) :: SR (R,R)
(≡sr) s = ∀ (t :: Time). fst (s t) ≡ snd (s t)

First-class signal relations are constructed as follows:

sigrel pattern where equations

The pattern introduces interface variables that scope over the equations. The
latter may refer to additional, implicitly declared, local variables. Together, these
two kinds of variables are referred to as signal variables as they stand for time-
varying quantities. There are two forms of equations:

e1 = e2 (5)
sr � e3 (6)

where sr is a time-invariant expression (free signal variables must not occur in
it1) denoting a signal relation, and � denotes signal relation application, simi-
larly to Sect. 2.2. Functional level objects can be used as time-invariant entities
inside signal relations. In particular, functional-level variables can be used as
coefficients in equations, thus allowing the equations to be parametrised: see
the resistor example below for an example. On the other hand, time-varying
signal-level entities are not permitted to escape to the functional level.

Signal variables scope over the time-varying, top-level equations of a signal
relation. Since only time-invariant expressions may appear to the left of an ap-
plication, nested signal relations are not permitted.

To illustrate, consider a component twoPin , encapsulating equations common
to all electrical components with two pins, and a component resistor , defined as
an extension of twoPin by adding an equation that describes the behaviour of a
resistor:
1 However, a manifest signal relation expression is fine as it binds all signal variables

occurring in it. That is, signal relations can be “nested”, but the signal variable
scope is flat.

56 J. Capper and H. Nilsson

type Pin = (R,R)

twoPin :: SR (Pin ,Pin,Voltage)
twoPin = sigrel (p,n, u) where

fst p − fst n = u
snd p + snd n = 0

resistor :: Resistance → SR (Pin ,Pin)
resistor r = sigrel (p,n) where

twoPin � (p,n, u)
r ∗ snd p = u

Note that the resistor is modelled by a function that maps a resistance to a
signal relation. In the definition of resistor , r is thus a time-invariant value, not
an unknown. Note also that u is local. Flattening the signal relation that results
from the function application resistor 220 yields the flat equation system:

fst p − fst n = u
snd p + snd n = 0
220 ∗ snd p = u

3 The Type System

The type system is presented as an embedding of an equation-based language
into the simply-typed λ-calculus. An embedding into the λ-calculus reflects the
two-level approach taken by FHM, from which much of the expressivity of the
language is gained. The type system has been implemented in the dependently
typed programming language Agda [13], giving us assurances that the algorithm
is both total and terminating.

Description Symbol

λ-bound variables x , y
Expressions (λ-terms) e ∈ Λ
Signal-variables z
Balance type-variables n,m,o ∈ Z

Signal level expressions s

Description Symbol

Equations q
Simple types τ
Type schemes σ
Typing environments Γ
Constraint sets C

Fig. 1. Notational Conventions

The notation χ is used to denote a sequence χ1, . . . , χn without repetition
of elements. We will also allow ourselves to treat χ as sets equipped with the
usual set-theoretic operations. One should also note that x (and y) and z are
meta-variables, ranging over the names of concrete function-level and signal-level
variables, respectively.

Static Balance Checking for First-Class Modular Systems of Equations 57

3.1 Overview

As signal relations are first-class entities, it cannot be assumed that components
can be flattened in order to determine the equation-variable balance. The only
reasonable assumption is that all that is known statically is the type of a relation.

To track the equation-variable balance, the type of a signal relation is refined
by annotating it with the number of equations it is able to contribute to a system.
The contribution of a signal relation may also depend on the contribution of
the parameters to the signal relation. Hence, signal relations can behave in a
polymorphic fashion, contributing varying numbers of equations depending on
the context in which the relation is used. See Sect. 4 for a comparative review
of alternative type system designs.

Since the structural information required to determine a precise contribution
may not always be available, the context in which a signal relation is applied is
used to generate balance constraints (from now on, simply constraints). These
constraints restrict the balance of a component to an interval.

Note that a representation of integers and linear inequalities has been intro-
duced at the type level. This extension may appear to be a restricted form of
dependent types [8]. However, these type level representations, whilst determined
by the structure of terms, are not value level terms themselves. As such, we do
not consider our system to be dependently typed.

Constraints may mention the contributions of several components, and hence
are not directly associated with a single signal relation. As a result, the type
of a signal relation is restricted to being annotated by a balance variable which
is then further refined using constraints. The type checking algorithm generates
a fresh balance variable for each signal relation, with type equality defined up
to alpha equivalence of balance variables. As an example, the refined type for
resistor from Sect. 2.3 is:

resistor :: (n = 2) ⇒ Resistance → SR (Pin ,Pin) n

Haskell’s type class constraint syntax has been adopted to express that the
balance type variable n is constrained to the value 2. This can be verified by
first flattening the signal relation applications to obtain a set of 3 equations
over 5 variables (note that each Pin contains two variables), then removing
one equation which must be used to solve for the local variable u, giving a net
contribution of two equations.

3.2 Generating Constraints

In this section we address the issue of what constraints should be generated.
It is conceivable that different application domains could generate constraints
specific to that domain. This is not a problem, as the system developed is inde-
pendent of the constraints generated. For the purposes of this paper, 4 criteria
for generating constraints have been chosen. Before introducing the criteria, a
number of definitions are required.

58 J. Capper and H. Nilsson

Fig. 2 and 3 give the syntax of terms and types from which the type checking
algorithm will be developed. A number of simplifications have been made to the
FHM framework in order to keep the presentation of the type system concise.
Note that all simplifications are superficial and do not fundamentally change the
nature of the problem.

e ::= x
| e1 e2

| λx .e
| let x = e1 in e2

| sigrel z where q

q ::= Atomic z
| e 	 z

σ ::= C ⇒ τ

τ ::= τ1 → τ2

| SR R
m n

| LEqn n
| IEqn n
| MEqn n

C ::= ce1 = ce2

| ce1 � ce2

ce ::= n
| IntLit
| ce + ce
| − ce

Fig. 2. Syntax of terms, types, and constraints

We consider the simply-typed λ-calculus, given by e, augmented with first-
class signal relation constructs. Signal relations abstract over sets of signal vari-
ables, denoted z, and embed a new syntactic category of equations into the
calculus, given by q.

Signal relations range over sets of equations, which may take one of two forms.
An atomic equation of the form s1 = s2 is abstracted to just the set of distinct
signal variables occurring in the signal expressions s1 and s2. Similarly, an equa-
tion of the form e � s is abstracted to the expression denoting the applied signal
relation and the set of signal variables that occur on the right-hand-side of the
application. More detailed comments on theses syntactic categories are given in
Sect. 3.3.

An equation q is said to mention a signal variable z if and only if z ∈ vars (q).
The function total returns the raw number of atomic equations contributed by
an equation. Whereas |q | denotes the cardinality of the set of modular equations.
Both vars and total are also overloaded for sets of equations.

vars (Atomic z) = z
vars (� z) = z
vars (q) =⋃ {vars (q) | q ∈ q }

total (Atomic) = 1
total (e : SR n �) = n
total (q) =∑ {total (q) | q ∈ q }

Given a signal relation sigrel z where q , the set of interface variables is
defined IZ = z , and the set of local variables LZ = vars (q)\z . The set of
equations q can be partitioned into the disjoint subsets of interface equations
IQ, local equations LQ, and mixed equations MQ, where IQ is the set of equations
mentioning only interface variables, LQ is the set of equations mentioning only
local variables, and MQ = (q\IQ)\LQ. Finally, the balance of a signal relation,
written bal (sr), is given as bal (sigrel z where q) = total (q)−|LQ|. Intuitively,
balance is an aggregate of the equations in the body of a signal relation, excluding
sufficiently many equations to solve for the local variables.

Static Balance Checking for First-Class Modular Systems of Equations 59

1. |LQ| + |MQ| � |LZ |. The local variables are not under-constrained.
2. |LQ| � |LZ |. The local variables are not over-constrained.
3. |IQ| � |IZ |. The interface variables are not over-constrained.
4. 0 � bal (sr) � |IZ |. A signal relation must contribute equations only for

its interface variables. It should not be capable of removing equations from
other components (negative balance), or adding equations for variables not
present in its interface.

The above criteria produce constraints that give adequate assurances for de-
tecting structural anomalies. There is potential to further refine these criteria.
However, for the purposes of this paper, these criteria are sufficient to demon-
strate the value of the type system.

To illustrate the application of the above five criteria, consider the Hydra
example par that connects two circuit components in parallel. The operational
details of this example are not important; the only important aspect is that of
equations mentioning variables. The type signature gives the type of par under
the simply typed approach. The reader may wish to refer back to Sect. 2.3 at
this point for clarification on sigrel terms.

par :: SR (Pin ,Pin) → SR (Pin ,Pin) → SR (Pin ,Pin)
par sr1 sr2 =

sigrel ((pi , pv), (ni ,nv)) where
sr1 � ((p1i , p1v), (n1i ,n1v))
sr2 � ((p2i , p2v), (n2i ,n2v))
pi + p1i + p2i = 0
ni + n1i + n2i = 0
pv = p1v = p2v
nv = n1v = n2v

p1 n1

p2 n2

p n
sr1

sr2

Under the new type system, the signal relations in par are annotated by bal-
ance variables, which are then constrained by the criteria producing the following
refined type:

par :: {m = n + o − 2, 6 � n + o � 2, 0 � m � 4, 0 � n � 4, 0 � o � 4} ⇒
SR (Pin ,Pin) n → SR (Pin ,Pin) o → SR (Pin ,Pin) m

While this type may appear daunting at first, all balance variables and con-
straints can be inferred without requiring the programmer to annotate the terms
explicitly. It is also useful to see an example of a program that fails to type check
under the new type system – a program that previously would have been ac-
cepted, despite being faulty.

broken sr = sigrel (a, b) where
sr � (w + x , y + z)
sr � (a, b)
x + z = 0

60 J. Capper and H. Nilsson

The above function broken is flawed in that there is no relation to which it
can be safely applied. The relation sr is required to provide at least 3 equations
for local variables, but must not exceed a contribution of 2 variables as dictated
by the second relation application. As expected, our type system catches this
error by attempting to impose the following inconsistent set of constraints:

broken :: (m = n + n − 3, 0 � m � 2, 0 � n � 2, 4 � n + 1 � 4)
⇒ SR (R,R) n → SR (R,R) m

During type checking, the Fourier-Motzkin elimination method is used to
check the consistency of constraint sets [7]. The method allows one to check not
only if a set of linear inequalities is satisfiable, but also finds a continuous interval
for each bound variable. It is expected that this will be useful when reporting
type errors to the programmer.

The elimination algorithm has worst case exponential time complexity in the
number of balance variables. However, as shown by Pugh [15], the modified vari-
ant that searches for integer solutions is capable of solving most common problem
sets in low-order polynomial time. Furthermore, systems typically involve only
a handful of balance variables, making most exponential cases still feasible to
check.

3.3 Formalising the Type System

Fig. 3 presents a small-step semantics for our calculus by way of a flattening for
a system of equations. Values in our system are closed lambda-terms of the form
λx .e, signal relations encapsulating atomic equations, and atomic equations.

The notation {z1/z2} denotes the substitution that occurs when reducing
signal relation application. Our abstract treatment of equations allows us to
read this notation as substituting every variable in z1 for all variables in z2, a
simplification of the substitution discussed in Sect. 2.2. The symbol fresh denotes
a fresh sequence of signal variables, used in S-SigApp2 to rename local variables
to prevent name clashes during flattening (again, see Sect. 2.2).

The simplification of substitution discussed above has introduced a slight
disparity between our abstract formalisation and the concrete system. In the
FHM system, applying a signal relation contributing n equations to a mixed
set of variables results in n mixed equations. However, during evaluation, it
may be discovered that some of the equations within the signal relation do not
mention both local and interface variables. Hence, the number of mixed, local,
and interface equations may be refined as a result of evaluation.

This problem is avoided in our semantics by the simplification to substitution
mentioned above. However, this should not pose a real problem in the concrete
system either. The preservation problem is reminiscent of the record subtyping
problem addressed in Peirce [14], pages 259–260. It should be possible to adapt
the technique of stupid casts used in Pierce to solve the preservation problems
that would be present in a more concrete semantics. To be more precise, one could
allow a stupid cast of local and interface equations back into mixed equations,
thus retaining the same contribution and maintaining the same constraints. We

Static Balance Checking for First-Class Modular Systems of Equations 61

e1 � e2

e1 e3 � e2 e3

(S-App1)
(λx.e1) e2 � [x �→ e2] e1

(S-App2)

let x = e1 in e2 � [x �→ e1] e2

(S-Let)
e1 � e2

e1 	 z � e2 	 z
(S-SigApp1)

∃q1 ∈ q. q1 � q2

sigrel z where q � sigrel z where [q1 �→ q2] q
(S-SigRel)

q2 = {(vars(q)\z1)/fresh} q1

(sigrel z1 where q1) 	 z2 � {z1/z2} q2

(S-SigApp2)

Fig. 3. Small-step semantics

leave this alteration as future work, as the current semantics are sufficient for
the purposes of this paper.

The syntax of types is similar to that of the simply-typed λ-calculus. Sim-
ple types consist of functions, signal relations, and equation types specified by
→, SR, and I /M /LEqn respectively. The three varieties of equation types give
distinct representations for interface, mixed, and local equations. Signal relation
types and equation types are parametrised with a balance variable that denotes
the number of equations a system is capable of contributing. Simple types are
then parametrised by a constraint set that refines the possible interval of balance
variables.

Fig. 4 gives the typing judgements for terms in our language. The rules for
λ-terms, T-Var, T-Abs, and T-App are similar to those of the simply-typed λ-
calculus, with the addition of constraint sets. Operations that render a constraint
sets inconsistent indicate that a term is ill-typed; e.g, a judgement that involves
taking the union of two consistent sets of constraints is only valid when the
resulting constraint set is also consistent.

The T-Atomic judgement assigns equation types to atomic equations by
examining the variables that occur in the equation. The helper function eqkind
checks how the variables in an equation coincide with the interface variables to
determine whether the equation is local, interface, or mixed.

The T-RelApp judgement assigns an equation type to a relation application.
The preconditions for this judgement state that the type of the expression e
appearing to the left of the application must be a signal relation. Additionally,
the contribution of such a signal relation must not exceed the number of interface
variables to which it is being applied. T-RelApp and T-Atomic depend on the
read-only environment I which stores the set of interface variables the equations
range over.

The final judgement assigns signal relation types to sigrel constructs and
calculates constraints on the fresh balance variable of that signal relation. The
first precondition defines the set of variables local to the relation. The second
precondition is a pointwise judgement over the set of equations. The third

62 J. Capper and H. Nilsson

Γ (x) = C ⇒ τ

Γ
 x : C ⇒ τ
(T–Var)

Γ, x : C1 ⇒ τ1
 e : C2 ⇒ τ2

Γ
 λx.e : C1 ∪ C2 ⇒ τ1 → τ2

(T–Abs)

Γ
 e1 : C1 ⇒ τ2 → τ1 Γ
 e2 : C2 ⇒ τ2

Γ
 e1 e2 : C1 ∪ C2 ⇒ τ1

(T–App)

Γ
 e1 : C1 ⇒ τ2 Γ, x : C2 ⇒ τ2
 e2 : C1 ⇒ τ1

Γ
 let x = e1 in e2 : C1 ∪ C2 ⇒ τ1

(T–Let)

I · Γ
 Atomic z : ∅ ⇒ eqkindI(z, 1)
(T–Atomic)

Γ
 e : C ⇒ SR R
m n |z| � n

I · Γ
 e 	 z : C ⇒ eqkindI(z , n)
(T–RelApp)

L = vars(q)\ z z · Γ
 q : C ⇒ τ nX = Σ{ b | XEqn b ∈ τ }
C = {n = nI + nL + nM − |L|, 0 � n � |z|, nI � |z|, nL � |L|, nL + nM � |L|}

Γ
 sigrel z where q :
⋃

C ∪ C ⇒ SR R
|z| n

eqkindI(Z, n) =

⎧⎪⎨
⎪⎩

IEqn n if ∅ ⊂ Z ⊆ I

LEqn n if Z ∩ I = ∅
MEqn n otherwise

Fig. 4. Typing rules

precondition sums the number of equations of a given form in q specified by
the parameter X , where X ∈ {I, L, M}. Finally, using the previous three condi-
tions, a set of constraints is generated for the balance variables occurring in the
type.

We have identified two key properties of soundness for our type system with
respect to the semantics. Firstly, the preservation of types under evaluation for
sigrel constructs ensures that flattening a modular system of equations does
not alter the contribution of the system. Formally, if sigrel z where q1 �
sigrel z where q2, and sigrel z where q1 : C ⇒SR R

|z| n, where C is a
consistent set of constraints, then sigrel z where q2 : C ⇒SR R

|z| n. Hence,
the contribution of the sets of equations q1 and q2 is equal under the same set
of interface variables z .

Secondly, a system can only be completely reduced to a simple set of equations
if the top-level sigrel construct abstracts over an empty set of signal variables.
In these circumstances, a fully assembled system should contribute no equations
as no more signal variables will be introduced. Formally, if sigrel ∅ where q :
C ⇒SR () n, and C is consistent, then C should resolve the interval of n to
[0,0].

At this point, it is interesting to note the equational embedding effectively
operates as a form of heterogeneous meta-programming; a modular system of

Static Balance Checking for First-Class Modular Systems of Equations 63

equations is first evaluated to flat set of equations which is then transformed
into a program that is used to solve for the unknowns of the original system.
Hence, the balance and structure of a system of equations are really properties
of the flattened system of equations that rule out (a class of) second stage run-
time/simulation-time problems. Hence, a soundness statement regarding balance
and structure falls to the meta-theory of a type system at the second stage. In
summary, attempting to capture these properties during the initial phase make
the soundness properties of our system quite unusual. As such, we leave the
investigation of soundness of other structural properties as future work.

The type checking algorithm has been implemented in the dependently typed
programming language Agda [13]. The source code can be found on the primary
authors website at http://cs.nott.ac.uk/~jjc. The implementation guaran-
tees that the algorithm is both total and termination. It should be noted that
the function for computing the most general unifier of two types is postulated.
We have yet to implement the semantics and prove that these are sound with
respect to the typing judgements, this is left as future work.

4 Related Work

4.1 Modelica

Modelica, as of version 3.0 [9], requires that models be locally balanced. This is
much more restrictive than our approach as components that are individually
unbalanced may still be combined to produce a balanced system. When unbal-
anced components are needed, the current Modelica approach is to declare them
as such, turning of all balance checking for that component. Moreover, models
are not first-class entities in Modelica which simplifies the static checking.

4.2 Bunus and Fritzon

Bunus and Fritzon [2] describe an analysis technique for pinpointing problems
with systems of equations developed in equation-based modelling languages
such as Modelica. They look at structural properties, as we do, but, to allow
fine-grained localisation, in much more detail by considering incidence matrices
(which variables occur in which equations). This is only possible by analysing
fully assembled systems, meaning the technique is primarily suitable for debug-
ging. It could even be used during simulation to catch problems with structurally
dynamic systems. Thus, this work is in many ways complementary to ours.

4.3 Structural Constraint Delta

Broman et al. [1] have developed a type system called structural constraint
delta (CΔ). The type system is developed for a simplified version of Modelica:
Featherweight Modelica. The CΔ represents the difference between the number
of unknowns and the number of equations in an instance of a component. Hence,

64 J. Capper and H. Nilsson

CΔ improves upon the Modelica approach by allowing models to be unbalanced,
provided that a fully assembled system is balanced. As the type (class) of a
constituent component is always manifest, and as the rules for subtyping are
such that a replaceable component can only be replaced by one having the same
CΔ, component balances can always be computed in a bottom-up fashion.

In contrast, the type system presented in this paper does not rely on manifest
type information. Furthermore, it supports a more flexible notion of balance as,
if there are more than one component parameter, what matters is the collective
number of contributed equations, not the numbers contributed individually.

To our knowledge, the idea of incorporating balance checking into the type
system of a non-causal modelling language was suggested independently by Nils-
son et al. [11] and Broman, with the latter giving the first detailed account.

4.4 Structural Types

Nilsson [10] outlines an approach to static checking that safeguards against a
much wider class of errors than what is possible by just considering the balance.
This is done by making an approximation of the incidence matrix part of the type
of an equation system fragment, allowing structural singularities to be detected
in many cases and thus approaching the capabilities of Bunus and Fritzon’s
technique, while retaining the capability of checking fragments in isolation.

While Nilsson presents the work within the context of FHM, he forgoes the
consideration of first-class models, concentrating on the handling of static mod-
els. In contrast, the type system presented here handles first-class models, but
cannot find as many problems.

5 Future Work

The type system presented in this paper captures the essence of the idea of
balance checking in a setting with first-class equation system fragments. The
system is abstract, but as such a suitable starting point for a type system for any
such language. There are two imminent avenues for developing this work further.
One is to elaborate the system so as to bring it closer to a system suitable for
a concrete language like FHM. Handling of compound signal variables such as
matrices should also be considered, as the size of matrices can affect the balance
if equations between matrices is supported. The other avenue is to formalise the
system and the dynamic semantics to prove soundness.

6 Conclusion

In this paper, we presented a type system for modular systems of equations
capable of detecting classes of errors related to the equation-variable balance.
Components can be analysed in isolation, rather than requiring assembly into
a complete system of equations first, thus allowing over- and under-constrained

Static Balance Checking for First-Class Modular Systems of Equations 65

systems to be detected early, aiding error localisation. First-class equation sys-
tem fragments are supported. Our system thus lays down the foundations for
a practical yet strong type system. The context of this work is equation-based,
non-causal modelling, but the ideas should be readily adaptable to other settings.

Acknowledgments. The authors would like to thank David Broman, Neil
Sculthorpe, and the anonymous reviewers for helpful and constructive feedback.

References

1. Broman, D., Nyström, K., Fritzson, P.: Determining Over- and Under-Constrained
Systems of Equations using Structural Constraint Delta. In: GPCE. ACM, New
York (2006)

2. Bunus, P., Fritzson, P.: A debugging scheme for declarative equation based mod-
eling languages. In: Adsul, B., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS,
vol. 2257, p. 280. Springer, Heidelberg (2002)

3. Conkwright, N.B.: Introduction to the Theory of Equations. Ginn, Boston (1957)
4. Freeman, T., Pfenning, F.: Refinement Types for ML. In: PLDI (1991)
5. Giorgidze, G., Nilsson, H.: Higher-Order Non-Causal Modelling and Simulation of

Structurally Dynamic Systems. In: Casella, F. (ed.) Proceedings of the 7th Interna-
tional Modelica Conference. Linköping Electronic Conference Proceedings (2009)

6. Jones, S.: Haskell 98 Language and Libraries: the Revised Report (2003)
7. Kuhn, H.: Solvability and Consistency for Linear Equations and Inequalities. Amer-

ican Mathematical Monthly 63 (1956)
8. McKinna, J., Altenkirch, T., McBride, C.: Why Dependent Types Matter. ACM

SIGPLAN Notices 41(1) (2006)
9. The Modelica Association. Modelica – A Unified Object-Oriented Language for

Physical Systems Modeling: Language Specification Version 3.2 (2010)
10. Nilsson, H.: Type-Based Structural Analysis for Modular Systems of Equations.

In: Proceedings of the 2nd International Workshop on Equation-Based Object-
Oriented Languages and Tools. Linköping Electronic Conference Proceedings
(2008)

11. Nilsson, H., Peterson, J., Hudak, P.: Functional hybrid modeling. In: Dahl, V. (ed.)
PADL 2003. LNCS, vol. 2562, pp. 376–390. Springer, Heidelberg (2002)

12. Nilsson, H., Peterson, J., Hudak, P.: Functional Hybrid Modeling from an Object-
Oriented Perspective. In: Simulation News Europe (2007)

13. Norell, U.: Towards a Practical Programming Language Based on Dependent Type
Theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, Göteborg, Sweden (2007)

14. Pierce, B.: Types and Programming Languages. The MIT Press, Cambridge (2002)
15. Pugh, W.: The Omega Test: a Fast and Practical Integer Programming Algorithm

for Dependence Analysis. In: Supercomputing 1991 (1991)

Graphical and Incremental Type Inference:

A Graph Transformation Approach

Silvia Clerici, Cristina Zoltan, and Guillermo Prestigiacomo

Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract. We present a graph grammar based type inference system for
a totally graphic development language. NiMo (Nets in Motion) can be
seen as a graphic equivalent to Haskell that acts as an on-line tracer and
debugger. Programs are process networks that evolve giving total visibil-
ity of the execution state, and can be interactively completed, changed
or stored at any step. In such a context, type inference must be in-
cremental. During the net construction or modification only type safe
connections are allowed. The user visualizes the type information evolu-
tion and, in case of conflict, can easily identify the causes. Though based
on the same ideas, the type inference system has significant differences
with its analogues in functional languages. Process types are a non-trivial
generalization of functional types to handle multiple outputs, partial ap-
plication in any order, and curried-uncurried coercion. Here we present
the elements to model graphical inference, the notion of structural and
non-structural equivalence of type graphs, and a graph unification and
composition calculus for typing nets in an incremental way.

Keywords: type inference, graphical language, process networks, type
visualization.

1 Introduction

The data flow view of lazy functional programs as process networks was first
introduced in [1]. The graphical representation of functions as processes and
infinite lists as non-bounded channels helps to understand the program overall
behaviour. The net architecture shows bi-dimensionally the chains of function
compositions, exhibits implicit parallelism, and back arrows give an insight into
the recurrence relations between the new results and those already calculated.
The graphic execution model that the net animation suggests was the outset
of the NiMo language design, whose initial version was presented in [2]. It was
completely defined with graph grammars and implemented in the graph transfor-
mation system AGG [3]. This first prototype NiMoAGG showed the feasibility of
a graphical equivalent for Miranda or Haskell, also fully graphically executable.
A small set of graphic elements allows dealing with higher order, partial applica-
tion, non-strict evaluation, and type inference with parametric polymorphism.

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 66–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Graphical and Incremental Type Inference 67

As the net represents the code and its computation graph at the same time,
users have total visibility of the execution internals in a comprehensible model.
Partially defined nets can be executed, dynamically completed or modified and
stored at any step, enabling incremental development on the fly. Execution steps
can also be undone, acting as an on line tracer and debugger where everything
can be dynamically modified, even the evaluation policy. In the current ver-
sion, five modes of increasing activity can be globally or locally assigned to each
process, thus allowing to increase parallelism, reduce channel size (number of
elements) and synchronize subnets. Symbolic execution is also admitted. The
execution model is defined in [4].

In this context, where incompleteness does not inhibit execution, editing a
program is a discontinuous process with execution intervals where code evolves
up to the next interaction; hence type inference is by necessity incremental. On
the other hand, in NiMo there is no textual code at all. Programs are graphs
whose nodes are interfaces of processes or data. Interfaces are graphic tokens with
typed in/out ports. Net construction equates to building a bi-dimensional term,
where sub-expressions are like puzzle pieces that can be pairwise connected in
any order if their shapes fit (both port types unify), thus ensuring type safeness
by construction. In the first version, static inference was partial in presence of
polymorphism. Now the full type information of each interface port is carried up
by means of a second kind of graphs, and updated with each connection. Users
can visualize the type information evolution and realize why a connection is re-
jected. Though based on the same principles, the inference system has significant
differences with its functional analogues. Besides being graphical and incremen-
tal, the data flow ingredient imposes coping with multiple-output processes and
curried-uncurried interpretation of multiple inputs, partial application in any or-
der and partial disconnection for multiple outputs. In the current version this is
admitted even in HO parameters. Hence, a process type is a non-trivial general-
ization of a functional type. The current inference system was also firstly defined
with graph grammars [5] and implemented in AGG, since the graph transforma-
tion approach is the natural framework to formalize actions in NiMo. They are
all subnet transformations, and so is the type inference process as well.

Here we present the type inference system of NiMoToons; the NiMo envi-
ronment (overviewed in [6]). Graphical typing and incremental inference are de-
scribed using a textual denotation for type graphs. A type graph unifier operator
and a net typing calculus are intended to bridge the gap with the underlying for-
malism in terms of graph transformation rules. The paper is organized as follows:
the next section introduces the syntax and main constructions of NiMo1. Section
3 presents the graphical representation of types, their interpretation in a textual
notation, and the differences between process and function types. Section 4 de-
fines the notion of structural and non-structural equivalence of type descriptors
and unification in both cases. Section 5 covers net typing. A set of port connec-
tion and composition operators is the basis for the incremental component type

1 It does not cover evaluation aspects because they are not relevant to the issue of
types and can be found in the papers mentioned above.

68 S. Clerici, C. Zoltan, and G. Prestigiacomo

calculus. All along the paper the topics are illustrated with screen-shot examples.
The last section discusses some related work and summarizes our contributions.

2 NiMo Language Elements

NiMo programs are directed graphs with two kinds of nodes: processes and data
items. Horizontal arrows represent channels of flowing data streams, and vertical
arrows entering a process are non-channel parameters, which can also be pro-
cesses. Processes can have any number of inputs and outputs, making the use of
tuples unnecessary. There are neither patterns nor specific graphical syntax for
conditionals. The tokens are: rounded rectangles for processes, circles (or ovals)
for constant values, black-dots for duplicators, hexagons for data elements, and

green-arrows for non productive outputs () or delayed arguments ().Circles
are labelled with their value for atomic types or with their names for symbolic
constants of any type, even polymorphic. Hexagon labels are I, R, B ,L and F
for integers, reals, booleans, lists, and functional processes. Polymorphic data
are labelled with ?. In the current version neither user defined types nor Haskell
type classes are supported. Ad-hoc polymorphism for functions like > is handled
as in Miranda. There are two different processes for real and integer operators.
The NiMo syntax makes intensive use of colour. In hexagons and circles it in-
dicates their type, in process names it denotes the evaluation mode, and edges
have a state shown as a colored diamond to indicate process activation or data
evaluation degree. Some program examples can be seen in [7].

Fig. 1. NiMo program elements

Graphical and Incremental Type Inference 69

2.1 Interfaces and Connections

All the mentioned nodes are interfaces having typed (in/out) connection ports.
Interfaces are dragged from a ToolBox and dropped into the workspace where
the net is being built (see top of Fig. 2). Clicking on a pair of ports connects
them with an edge if both types are compatible; otherwise a failure message is
generated. Process interfaces have an F-out port on the bottom. It is not one of
their outputs but their value as a functional data.

Fig. 2. Interfaces

This special out-port disappears when any output of the process is connected
(becoming a potentially active process), or when all its inputs are connected (it is
no longer a function). HO parameter processes are connected by their F-out port

(as xxx on the bottom of Fig. 2). All the other open ports get thus blocked ()
to prevent new connections which would change its type. There is a set of built-
in processes (grey rounded-rectangles) for basic types and stream processing.
It includes multiple output versions of many Haskell prelude functions, as the
process SplitAt, analogous to the splitAt function that can behave also as take
or as drop just by leaving one or the other output open. We call this feature
partial production, in analogy with the notion of partial application; i.e. there is
a symmetry in parameters and results regarding partiality.

70 S. Clerici, C. Zoltan, and G. Prestigiacomo

Also, some basic processes have configurable arity, as a Map with n input and
m output channels2 (generalizing map, zipWith and zipWith3), TakeWhile and
Filter with n input and output channels, and an Apply process.

Terminal hexagon interfaces correspond to the net outputs. Subnets connected
to them are considered productive, even being incomplete. In execution all the
non-productive subnets are deleted by the garbage collector. For instance, the net
in Fig. 2 is productive. Moreover, it is able to produce a result because Map3−2

already has enough inputs to act since one of its input channels has a list-end
connected, thus it returns a list-end in both outputs. Then the duplicator also
returns the list-end.

2.2 Net-Process Definitions

Net processes are user-defined components whose interfaces (the white rounded-
rectangles) are defined by means of a parameterisation mechanism. The net
in/out open ports that are to be considered as formal parameters or results,
are bound to the in/out ports of a configurable interface that is given a name.
Afterwards, it can be imported to the Toolbox to be used as a process in a new
net and so on, allowing incremental net complexity up to any arbitrary degree.

Fig. 3. Net Process definition

Fig. 3 shows an example for the process fromUp3 that generates a list with
k consecutive integers from the value n, where n and k correspond respectively
to the parameters labelled 1 and 2. When the net process acts, the interface is
replaced by the net updating the connections according to the bindings. Also,
there is a generic process interface for building the interface of a not yet defined
net process. The user sets the process name and number of channel/non-channel
parameters and outputs, and optionally their types (which are all polymorphic
by default). In a top down development this allows nets with not yet defined
processes to execute. And it is also the means to define recursive processes, i.e.
to build a net definition containing the process interface which is being defined.
2 We will refer to it as Mapn−m.
3 In Haskell code: fromUp n k = x where(x, y) = splitAt k z ; z= n: map (1+) z.

Graphical and Incremental Type Inference 71

2.3 Partial Application and Production in HO

In NiMO partial application can be made in any order. In HO parameters, the
effective arguments can be delayed by connecting a vertical green-arrow before
connecting its F-out port. On the left of Fig. 4, process ifBool has the green-
arrow at its first input, thus allowing its value to be completed later. It is also
the way for binding this port as a second order parameter if the net is defined
as a net process4. Moreover, in NiMo multiple output processes and even partial

Fig. 4. Delayed argument and partial production

production are allowed in HO parameters. The horizontal green-arrow (in the
middle of Fig.4) is connected to the second output of process SplitAt. It makes
SplitAt to behave like take, becoming a suitable parameter for a single output
Map. is the only interface that can be connected to a process out port
without elimination of the F-out port. Once the process is applied the green-
arrow disappears.

3 Graphical Typing

As already said, in NiMo type checking and inference is made step by step and
locally during net editing. Initially the net is empty. The user adds interfaces
and connects pairs of type compatible ports. The full type information of each
interface port is carried in a second kind of (optionally visible) graphs, which
are updated with each new connection and help to identify what is failing when
a connection is rejected. In this section we present the graph representation of
types and the textual notation to describe them in a way close to the usual type
expressions.

4 E.g. if the increment in Fig. 3 were the third fromUp parameter instead of being 1.

72 S. Clerici, C. Zoltan, and G. Prestigiacomo

3.1 Type Graph and Type Descriptors

The net has an associated type graph, which is an acyclic and maybe non-
connected graph whose nodes are type hexagons labelled I, R, B, L, F, O and ?.
All ports of every interface are tied to a node in the type graph5, and shared sub
graphs indicate identical types. In connected ports only the out is tied to the
type graph (to avoid arrow duplication). The net type graph is incrementally
built during the net construction starting from the type graph associated to each
interface that we call its type descriptor(TD). TDs fully describe the type of pro-
cesses and data items. Each interface port is tied to one type hexagon by means
of a non-labelled arrow. This hexagon is the root of the port TD and it could
be shared by, or included in, another port TD of the interface. In NiMo there
are no variable names and this also applies to type variables in polymorphic
types. The label ? stands for all the polymorphic types. Sharing a polymorphic
hexagon is the graphical equivalent of multiple occurrences of a type variable in
a polymorphic type expression. In Fig. 5 we can see the interfaces on the top

Fig. 5. Type descriptors

of Fig. 2 with their TDs. The F-out port TD of the process interfaces ifBool,
Map3−2 and xxx describes their type as a functional value. In NiMo a process
type is a generalization of a functional type, whose graphical representation is a
graph rooted with a hexagon F with outgoing edges labelled From and To. Mul-
tiple inputs or outputs in a process type correspond to the subgraphs with an
O-hexagon root and edges labelled by numbers. In case of single input or output
the corresponding O-hexagon is omitted (as happens with the output of ifBool).
Note that an O-hexagon never roots a port descriptor; it is not a NiMo type but
a subgraph of a F type descriptor. It has as its children the descriptors of the
inputs/outputs of the process (thus the F-out port TD contains as sub-graphs
the TDs of all the other ports of the interface).

In the textual notation that we will use from now on, ‖ denotes the type con-
structor O for ordered parallel inputs or results, each ?-hexagon in the TD is de-
noted by a type variable ?i (or ? if there is only one), and multiple occurrences of

5 For an idea of what it looks like, Fig. 10 shows the type graph of the net in Fig. 2.

Graphical and Incremental Type Inference 73

the same variable in the type expression correspond to a shared ?-hexagon. Thus
the most general type for processes is denoted by ?i1‖ . . . ‖?in→?o1‖ . . . ‖?om

where n, m ≥ 0 n + m > 0. The denotation for the ifBool type is B‖?‖?→?,
forMap3−2 is (?1‖?2‖?3→?4‖?5)‖[?1]‖[?2]‖[?3]→[?4]‖[?5], and for the user pro-
cess xxx is ?1‖?2‖?3‖[?3]→?4‖B. Some other examples of process types are
+ : I‖I→I; id : ?→?; fibonacci : →[I] and sink : ?→. The two last ones are
non-functional processes; their interfaces do not have a F-out port. fibonacci is
a process with no inputs and a single output which is an integer list, and sink
is a process with no output that consumes its input value. It does not have a
Haskell equivalent; its definition would be something like sink x = void.

4 Type Graph Unification

In order to connect two ports, the editor must first verify that their TDs t and t’
can be unified ; i.e. that there exists a unifier graph t ≈ t’ for them. In this case
the connection is made and both ports acquire this common TD; otherwise a
failure message is generated. NiMoToons has an option to automatically roll-back
partial unifications by recovering the original types each time a connection fails;
otherwise they persist to be analyzed and can be explicitly undone afterwards6.

The unifier graph exists when the respective TDs are structurally equivalent.
Roughly, this means that both TDs can be overlapped and all their respec-
tive hexagons coincide (same label and number of children), except when one
of them is a polymorphic hexagon, in which case the other one hides it. In
Haskell-like languages the unification is always structural. A functional type has
a single interpretation because all functions have a single result and also a single
parameter (the first one), and to be unified both type expressions must be struc-
turally equivalent. Curried and uncurried functions have no equivalent types.
But in NiMo processes can be interpreted in one or the other way, and thus
non-structural unification is allowed under certain conditions that are described
in section 4.2.

4.1 Structural Unification

Fig. 6 shows an example where the F-out port TDs of interfaces f and g, are struc-
turally equivalent. The screen-shot on the right can be obtained by moving the
hexagons of both TDs to make them coincide. This allows us to visualize the uni-
fier graph t ≈ t′ that would result if both TDs were unified7. The corresponding
port types are t = I‖?1→[?2] and t’=?3‖R→?4. We can see that the second input
of f, the first input of g, and its output, each one having a different polymorphic
type on the left, have been replaced by the respective types in the other interface.
The resulting type t ≈ t′ = I‖R‖→[?2] = t〈?1⇐R; ?6⇐B〉 = t′〈?3⇐I; ?4⇐?2〉
6 The same happens when a connection is destroyed (individually or as a result of

deleting a connected interface).
7 Being both out-ports they cannot be connected but their TDs would be unified e.g.

if they were connected as values of two list-items in a same list.

74 S. Clerici, C. Zoltan, and G. Prestigiacomo

Fig. 6. Structural unification

where the notation ?i⇐δ stands for the replacement of the corresponding ?-
hexagon by a subgraph δ.

If two TDs t and t’ unify, the unifier graph t ≈ t’ is obtained by the fusion of
t and t’ into a common type graph where, starting from the roots, each pair of
corresponding hexagons collapses in a single node. This node has as its incoming
edges the union of both sets of incoming edges.

The following rules define the (commutative and highest precedence) operator
≈ that obtains the unification result in case of structural equivalence:

1. t ≈ t = t for t rooted in {I, R, B}
2. t ≈ ? = t (t is not rooted O and ? �⊂ t)
3. [t] ≈ [t’] = [t ≈ t’]
4. (t1‖ . . . ‖tn) ≈ (t′1‖ . . . ‖t′n) = t1 ≈ t′1‖ . . . ‖tn ≈ t′n
5. (ti1‖ . . . ‖tin→to1‖ . . . ‖tom) ≈ (ti′1‖ . . . ‖ti′n→to′1‖ . . . ‖to′m) =

(ti1‖ . . . ‖tin) ≈ (ti′1‖ . . . ‖ti′n) → (to1‖ . . . ‖tom) ≈ (to′1‖ . . . ‖to′m)

Rule 1 is for basic types, i.e two single node TDs with the same label collapsing
in a single one. Rule 2 says that a ?-hexagon can be substituted by any other
TD not rooted O, because O does not represent a tuple type; it is always a
subgraph of a process TD. Hence, a single polymorphic input/output cannot
be instantiated to multiple inputs/outputs. Besides, the ?-hexagon cannot be a
proper subgraph of the other TD because a cycle would occur (infinitely recursive
type). When a ?-hexagon collapses with any other node, the resulting hexagon
is the other one (which acquires its incoming edges). This graph replacement of
any node ? in the TD t by the graph δ8 is denoted as t〈?⇐δ〉. Rules 3 and 4
apply when both labels are L or O; the respective subgraphs are pairwise unified
and the collapsed hexagon has (same number of) new outgoing edges, each one
of them having as target the respective collapsed hexagons. Rule 5 applies for
structurally equivalent TDs rooted F. The collapsed hexagon has as children the
unifier graphs of both pairs of children.

4.2 Non Structural Unification

In NiMo two process types with different number of parameters and results
can also be unified. Fig. 7 shows that, as happens in Haskell, process + is a

8 It can be seen as the equivalent to the Damas-Milner instantiation rule.

Graphical and Incremental Type Inference 75

Fig. 7. Curried interpretation of multiple inputs

valid HO parameter for Map, in which case the elements in the input channel
must be integers, and the result is a channel of functional elements of type
I→I. But the type of + is I‖I→I, and thus it should unify with I→(I→I).
I.e. in cases like this, there is an implicit conversion among non-structurally
equivalent process types. Also the number of outputs could have been different,
as happens in Fig. 8. In general, processes with multiple inputs and outputs can
be viewed as returning intermediate functional types, i.e. the type of a process
with n > 1 inputs and m outputs t1‖ . . . ‖tn → t′1‖ . . . ‖t′m can be implicitly
converted to types t1‖ . . . ‖tk→(tk+1‖ . . . ‖tn→t′1‖ . . . ‖t′m) for any k < n. Thus
two non-structurally equivalent process types t and t’ could be unified if any of
the curried interpretations of t is structurally equivalent to some of those of t’.
The idea is that the process with fewer parameters must return a single output,
whose type has in turn to unify with the functional type resulting of applying
the other one to as many parameters as it has. In this case both F nodes collapse,
and the new children are the children of the unifier graph root. i.e. the structure
of the result changes. The following equation defines the unification result in
these cases:

6. (t1‖ . . . ‖tk‖tk+1‖ . . . ‖tn → to) ≈ (t′1‖ . . . ‖t′k→to′)=
(t1‖ . . . ‖tk) ≈ (t′1‖ . . . ‖t′k) → to′ ≈ (tk+1‖ . . . ‖tn→to)

Note that all the curried interpretations of a process can be derived from it.
In Fig. 8 the process types of f : ?1‖?2‖[?3]→?4‖?5 and g : ?6‖?7→?8 unify

because both the first two inputs types unify (?1‖?2 ≈ ?6‖?7) and g has a
single output that unifies with a function from the third input of f to its results,
i.e. ?8≈([?3]→?4‖?5). On the right side9 τf≈τg = ?1‖?2→([?3]→?4‖?5), where
the collapsed hexagons during the unification correspond to the substitutions
〈?6⇐?1; ?7⇐?2; ?8⇐([?3]→?4‖?5)〉 in the type expression τg, whose result is
one of the possible curried interpretations of τf .

9 The right side cannot be obtained by overlapping as in Fig. 6. It was obtained by
first connecting the F-out ports as the values of a pair of connected list-items (then
deleted). The unification persists but can be undone by forcing type recalculation.

76 S. Clerici, C. Zoltan, and G. Prestigiacomo

Fig. 8. Non-structural unification

5 Incremental Type Inference for Nets

In functional programming languages variables are used as formal parameters
(bound variables), or locally defined elements. Free variables are considered miss-
ing definitions and rejected by the compiler. In NiMo there are no variable names.
Function parameters are the process interface in-ports, data hexagons with open
in-ports can be seen as anonymous free variables, and nets containing open ports
are executable. Besides, the multiple outputs of a net can be produced in parallel
by non-connected subnets, unlike functional interpreters that always deal with
a single (and closed) expression. Hence, the incremental typing of nets has to
cover all these cases.

During construction, the net is considered to have as many parameters/results
as open in/out ports, which are pairwise closed with each new connection. In
terms of graphs the net is a non-connected directed graph. Each new interface
adds a component and each connection may reduce the number of connected
components (CC). On the other hand, several port TDs in a CC could share
subgraphs with ?-hexagons; then, unifying a pair of port TDs can affect any
other port TD all along both CCs. But even if the port TDs are identical, the
connection changes the types of both interfaces, those of their CCs and thus
the net type, because all of them lose (at least) an in or an out open port. In
general, connection order is irrelevant except when connecting ports of a process
interface having an F-out port. This port makes a difference in the CC type as
is discussed in the next section.

5.1 Functional and Non-functional Components

If N is the net under construction, N = ∪Ni where Ni are its CCs. E.g. the net
in Fig. 5 has nine single-interface CCs. They are connected in Fig 9 becoming
the CCs N1 and N2 that result from connecting xxx with real-const in N2, and
all the other interfaces (in any order) in N1. Both CCs are of a different kind.

N2 is a functional component since it has (a process with) an open F-out
port, while all processes in N1 have lost theirs10. N1 has four in and two out
open ports. We denote its type as {B‖[I]‖(?1‖I‖?2→I‖?3)‖[?1]}→{[?3]‖[?3]},
10 Because all them have at least one output connected.

Graphical and Incremental Type Inference 77

Fig. 9. Both kind of CCs

where curly brackets indicate that the given ordering is arbitrary11. Further
connections of these ports can be made in any order; they are free open ports.
The general form of a non functional CC type τN is {t1‖ . . . ‖tn} → {t′1 . . . ‖t′m}
with n, m≥0.

The type of N2 is different because having a F-out port the connection effect
is not uniform (see 2.1 and 2.3). As a functional data xxx can be connected
by its F-out port, thus disabling all its open ports. Or xxx could be applied
by connecting any of its inputs and the F-out port remains, unless it had only
one. But when connecting any output the F-out port disappears, except when
connecting a horizontal green-arrow (but not in the only open output). This
mutual dependence among the open ports of the interface (bound open ports) is
denoted in the CC type with a down-arrow preceding the F-out TD (which has as
subgraphs all the other open port TDs). In this case τN2 = ↓(?4‖?5‖[R]→?6‖B).

Also, a CC having a F-out port can have non bound in/out open ports as well,
as it happens in the net in section 5.5. In this case its type is a compound type of
the form ↓(t1‖ . . . ‖tn → t′1 . . . ‖t′m) ⊕ {t′′1‖ . . . ‖t′′n2}→{t′′′1 ‖ . . . ‖t′′′m2} where ⊕ is
the composition operator described in the next section. Moreover, in the general
case a CC could have more than one F-out port and also other free open ports.
Therefore the most general type for a CC is:

↓(T1 → T ′
1) ⊕ . . . ↓(Tn → T ′

n) ⊕ {T }→{T ′} where capital T stands for expres-
sions of the form t1‖ . . . ‖tm.

5.2 Net Type Operators

The operators below perform the transformations on the CC type appropriate
for connecting each kind of open port. Operators ¬in,¬out,¬A−out and ¬ are
infix; the 2nd operand is the port index in the given ordering, and ¬F−out is
postfix.

11 Ordering is significant for ports of HO parameters, which are clockwise applied, but
not for a non-parameterised net. If it finally becomes a net-process (see 2.2) the user
selects the open ports to be the parameters and results, and sets both orderings.

78 S. Clerici, C. Zoltan, and G. Prestigiacomo

1. {T }→{T ′}¬ink = {T¬k}→{T ′} — when connecting the k-th in-port

2. {T }→{T ′}¬outk = {T }→{T ′¬k} — when connecting the k-th out-port

3. t1‖ . . . ‖tn¬k =
{

t1‖ . . . ‖tk−1‖tk+1‖ . . . ‖tn if n > 1 — to remove the

∅ k-th parallel input or output

4. ↓(T→T ′)¬F−out = ∅ — when connecting the F-out port

5. ↓(T→T ′)¬ink = ↓(T¬k→T ′) — when connecting the k-th input

6. ↓(T→T ′)¬outk = {T }→{T¬k} — when connecting the k-th output
7. ↓(T→T ′)¬A−outk = ↓(T→T ′¬k) — when connecting a green-arrow

to the k-th output

8. ↓(T→∅) = {T }→∅ — once all the outputs have green-arrows

9. ↓(∅→T) = ∅→{T } — once all the inputs have been connected

If the CC has no F-out port it just loses the port (1, 2, 3). When connecting
an F-out, all the open ports get closed (4). Any open input can be connected12

and the F-out persists (5), unless it were the last one (9). When connecting any
output the F-out also disappears, thus changing the kind of the CC type (6),
except when it is connected with a green-arrow (7 and 8).

On the other hand, if the connected ports belong to different CCs the con-
nection fuses both CCs in a single CC whose free in/out ports are the union of
the respective free in/out ports. It is performed by the operator ⊕ that groups
together the respective sets of types. ⊕ is commutative with neutral element ∅.

{T1}→{T ′
1} ⊕ {T2}→{T ′

2} = {T1‖T2}→{T ′
1‖T ′

2}
↓(T1→T ′

1) ⊕ {T2}→{T ′
2} does not reduce.

5.3 The Type Inference Algorithm

In this section we present the steps to obtain the CC type that results after
connecting a pair of unifiable in/out ports. From now on we will denote the
connection of an in-port p1 with an out-port p2 as p1≺p2 . If component N1 has
an in-port p1 and component N2 has an out-port p2, N = N1p1≺p2N2 is the CC
resulting from the connection p1≺p2.

The type τN is obtained as follows:
1. both TDs are unified: τp1≈τp2 = τp1〈σ1〉 = τp2〈σ2〉
2. τp1 and τp2 are “removed from” τN1 and τN2 (applying the fitting ¬
operator), thus resulting τN ′

1 and τN ′
2

3. the substitutions σ1 σ2 are respectively applied on τN ′
1 and τN ′

2

4. τN = τN ′
1〈σ1〉 ⊕ τN ′

2〈σ2〉
Step 1 obtains the unifier graph for both port TDs by performing the substitu-
tions described in section 4. As a result of the unification, other TDs in both
CCs might change (if they shared ?-hexagons with the connected ports). In
the graph representation such substitutions are made only once on the shared
subgraphs. In the equivalent CC type expressions they are performed in step 3,

12 This rule applies also when connecting a vertical green-arrow; it is not a special case.

Graphical and Incremental Type Inference 79

once the TDs of the ports closed by the connection have been removed from
both CC types, as detailed in the previous section. The last step composes the
obtained CC types, thus resulting the single connected component type.

5.4 An Example

The net in Fig. 10 is the result of connecting the components in Fig. 9 by
connecting the first in-port13 of Map3−2 in N1 and the F-out port of xxx in N2.

Fig. 10. Single component net

τp1=τMapin−1
3−2 =?1‖I‖?2→I‖?3, and τp2=τxxxF−out = ?4‖?5‖[R]→?6‖B.

The τN calculation proceeds as follows:
1. τp1≈τp2 =?1‖I‖[R]→I‖B =τp1〈?2⇐[R]; ?3⇐B〉 = τp2〈?4⇐?1; ?5, ?6⇐I〉
2. p1 is the 3rd in-port in the given ordering for τN1 and p2 is the N2 F-out:

τN1¬in3 = {B‖[I]‖
︷ ︸︸ ︷
(?1‖I‖?2→I‖?3) ‖[?1]¬3}→{[?3]‖[?3]}

= {B‖[I]‖[?1]}→{[?3]‖[?3]}
τN2¬F−out = ↓(?4‖?5‖[R]→?6‖B)¬F−out = ∅

3. ({B‖[I]‖[?1]}→{[?3]‖[?3]})〈?2⇐[R]; ?3⇐B〉 = {B‖[I]‖[?1]}→{[B]‖[B]}
∅〈?4⇐?1; ?5, ?6⇐I〉 = ∅

4. τN = {B‖[I]‖[?1]}→{[B]‖[B]} ⊕ ∅ = {B‖[I]‖[?1]}→{[B]‖[B]}
Note that the connected ports p1 and p2 now have τp1≈τp2 as their type,

and all the port TDs that shared with them a collapsed ?-hexagon have also
changed. Map3−2 has lost this open port, and all the in and out ports of N2

have been closed with the connection of the F-out port.

13 We use the notation Xin−i, Xout−k and XF−out to refer respectively to the i-th
in-port, the k-th output-port and the F-out port of an interface X.

80 S. Clerici, C. Zoltan, and G. Prestigiacomo

5.5 A Second Example

Fig 11 shows the connection of functional CCs and CCs with green-arrows. On
the left side, N1 contains the horizontal green-arrow Hgra, N2 the process xxx,
N3 the vertical green-arrow V gra, and N4 the interfaces Rprod (*) and HdT l.

Fig. 11. Connecting green-arrows

τN1 = {?4}→∅ τN2 = ↓(?1‖?2‖R‖[R]→?3‖B)
τN3 = {?5}→{?5} τN4 = ↓(R→R) ⊕ {[R]}→{[R]}
The CC N on the right results from having connected in any order14 the three

pairs of ports p1≺p′1 p2≺p′2 and p3≺p′3
p1=Hgrain p′1 = xxxout1; p2 = xxxin1 p′2=Vgraout; p3 = xxxin3 p′3=Rprodout

For instance, two of the six possible connection orderings are:
((N1 p1≺p′1N2) p2≺p′2N3)p3≺p′3N4 and (N1 p1≺p′1(N2 p3≺p′3N4))p2≺p′2N3

The final result τN is the same; e.g. in the second case it is obtained as follows:
(connection 1)N2.4 = N2 p3≺p′3N4

τp3≈τp′3=R≈R=τp3〈〉=τp′3〈〉
τ(N2 p3≺p′3N4) = (τN2¬in3)〈〉 ⊕ (τN4¬out1)〈〉
= ↓(?1‖?2‖R‖[R]¬3 → ?3‖B) ⊕ (↓(R→R¬1) ⊕ {[R]}→{[R]})
= ↓(?1‖?2‖[R]→?3‖B) ⊕ {R}→∅ ⊕ {[R]}→{[R]}
= ↓(?1‖?2‖[R]→?3‖B) ⊕ {R‖[R]}→{[R]}

(connection 2)N1.2.4 = N1 p1≺p′1N2.4

τp1≈τp′1=?4≈?3=τp1〈?4⇐?3〉=τp′1〈〉
τ(N1 p1≺p′1 N2.4) = (τN1¬in1)〈?4⇐?3〉 ⊕ (τN2.4¬A−out1)〈〉
= ({?4¬1}→∅)〈?4⇐?3〉 ⊕ ↓(?1‖?2‖[R]→?3‖B¬1) ⊕ {R‖[R]}→{[R]}
= ∅ ⊕ ↓(?1‖?2‖[R]→B) ⊕ {R‖[R]}→{[R]}
= ↓(?1‖?2‖[R]→) ⊕ {R‖[R]}→{[R]}

(connection 3)N = N1.2.4 p2≺p′2N3

τp2≈τp′2=?1≈?5=τp2〈〉=τp′2〈?5⇐?1〉
τ(N1.2.4 p2≺p′2 N3) = (τN1.2.4¬in1)〈〉 ⊕ (τN3¬out1)〈?5⇐?1〉
= ↓(?1‖?2‖[R]¬1→B) ⊕ {R‖[R]}→{[R]} ⊕ ({?5}→{?5¬1})〈?5⇐?1〉
= ↓(?2‖[R]→B) ⊕ {R‖[R]}→{[R]} ⊕ {?1}→∅
= ↓(?2‖[R]→B) ⊕ {R‖[R]‖?1}→{[R]}

14 Since none of the connections closes the other ports.

Graphical and Incremental Type Inference 81

6 Related Work and Final Remarks

We have presented the graphical type inference system for an incremental and
highly interactive development language where editing and execution are in-
terleaved. NiMo programs are graphs that evolve, and so is type information.
Hence, the graph transformation approach is the natural framework to model
type representation and inference. In this paper we have used a textual nota-
tion close to the usual type expressions to describe the type graphs and their
evolution. The transformation rules for unification and typing of nets have been
presented in terms of a set of operators that perform unification and connection
on the equivalent type expressions. However, this textualization shadows some
advantages of the graph representation, as having a single shared ?-node instead
of multiple occurrences of a quantified variable (hence multiple substitutions).

Regarding the graph transformation approach for modelling types, [8] presents
a general framework for typing graph rewriting systems based on the notion of
annotated hypergraphs. NiMo nets might be also described in this way, since
interfaces can be viewed as directed hypergraphs whose nodes are the ports,
internally connected by a hyperedge. Ports are annotated by the corresponding
TDs, hence the whole net can be viewed as an annotated hypergraph.

Concerning the graphical and incremental approach, an outstanding asset is
that the inference system itself becomes an online visualization tool for type
information and failure identification. On this aspect there are several works.
GemCut [9] is a graphical viewer for functions in the Haskell-like language
CAL; the editor uses CAL compiler’s inference system to prevent type errors.
TypeTool [10] and System I [11] are web-based tools for visualizing type infer-
ence of lambda terms; they are intended to teaching the basis of type inference
algorithms for functional languages. Other research focus on tracing the ori-
gin of unification failure. [12] proposes a guideline for evaluating the quality
of type error diagnosis of type inference systems. It compares several systems
and presents the algorithm Unification Assumption Environments. The inference
process records the local inferences so as to identify all possible sources of incon-
sistencies. In NiMo, whenever a pair of type hexagons cannot be collapsed, all
type ports related to them can be visually identified. Other work on this regard,
(not a graphical tool either) is [13] that uses a graph representation with nodes
labelled by lambda terms and types from which information is extracted to help
in error debugging.

In general, inference systems work on complete terms that can be erroneous,
thus producing an error message. In NiMo erroneous nets cannot be edited; mes-
sages just indicate incompatibility. Moreover, port compatibility can be tried
before connecting simply by moving both TDs hexagons to make them coincide
(except in cases of non-structural equivalence).

Another significant point about inference in NiMo is the total absence of type
variables; transformations take place directly on the graph structure of the type
expressions. The assumption environment is distributed and tied to each term
(CC) since every token carries its own type and partially built expressions are
always well typed and also carry their type. Besides, NiMo code is bi-dimensional

82 S. Clerici, C. Zoltan, and G. Prestigiacomo

and can be built in any order; most of the port connections are applications and
in NiMo partial application can be made in any order (not only from left to right),
hence incremental inference can be made in the user-stated port connection or-
der. On polymorphism handling, interface TDs are originally as polymorphic
as they can ever be; hence there is no equivalent for generalization. Instantia-
tion corresponds to the ?-hexagons collapse that occurs when unifying the port
TDs.

The other differences come from the data-flow ingredient plus incompleteness.
Multiple inputs and outputs required a non-trivial generalization to handle the
process type. Non-structural unification is the means to have multiple inputs
(then partial application in any order), while keeping the advantages of curry-
ing in HO constructs without explicit conversions. On the other hand, typing
NiMo nets required treatment of incompleteness and multiple outputs produced
by non-connected subnets, in contrast to inference systems that deal with a
single and closed term. Application corresponds to connecting a process input
in a functional CC. Having multiple inputs and outputs, partial application in
any order and partial production also in HO parameters, we needed different
operators to define the connection effect vs. the single rule used in functional
languages.

Considering the overall development of NiMo, the paradigms fusion was a big
challenge that required figuring out many creative solutions to make both mod-
els compatible and the graphical realization feasible. But we think it was worth
it; the graphic-functional-dataflow nature of NiMo and its incompleteness tol-
erance result in a very powerful computation model where everything is visible
and dynamically modifiable, even the evaluation policy. This allows us to exploit
implicit parallelism in a very intuitive way, and to perform symbolic execution
in the same framework. We are now exploring its possibilities in simulation and
modelling, as well as in generative and multistage programming.

As regards future development, the mixed model opens a range of possible
extensions, some of which are hard to imagine in other languages; think for in-
stance that here functions are showable and polymorphic expressions executable.
Conversely, some relevant functional language features are not yet included; in
particular overloading, type classes, and user defined types (now algebraic types
are emulated with functional types), with the consequent implications for infer-
ence. But again, the first challenge is making their graphical equivalents stylistic-
consistent and manageable, which requires facilities for the compact viewing of
complex values. We are now extending the visualization features for net-processes
and data channels to cope with any subnet. Besides, in the current version net-
process definitions have a single rule with a single interface on the left, whereas
Haskell-like languages allow definitions by cases using patterns, making them
more modular and readable. The inclusion of this mechanism in NiMo would
be a major upgrade far beyond expressiveness, because symbolic execution to-
gether with graph patterns open the door to program transformation in the same
framework; hence even dynamically.

Graphical and Incremental Type Inference 83

Acknowledgments. We thank the reviewers for their detailed and helpful
comments.

References

1. Turner, D.A.: Miranda: a non-strict functional language with polymorphic types.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 1–16. Springer, Hei-
delberg (1985)

2. Clerici, S., Zoltan, C.: A graphic functional-dataflow language. In: Loidl, H.W.
(ed.) Trends in Functional Programming. Intellect, vol. 5, pp. 129–144 (2004)

3. AGG: Agg home page (2009), http://user.cs.tu-berlin.de/~gragra/agg/
4. Clerici, S., Zoltan, C.: A dynamically customizable process-centered evaluation

model. In: PPDP 2009: Proceedings of the 11th ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming, pp. 37–48. ACM, New York
(2009)

5. Clerici, S., Zoltan, C.: Graphical type inference. a graph grammar definition. Tech-
nical Report LSI-07-24-R, Dept. Llenguatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya (July 2007)

6. Clerici, S., Zoltan, C., Prestigiacomo, G.: Nimotoons: a totally graphic workbench
for program tuning and experimentation. Electr. Notes Theor. Comput. Sci. 258(1),
93–107 (2009)

7. NiMo: Nimo home page (2010), http://www.lsi.upc.edu/~nimo/Project
8. König, B.: A general framework for types in graph rewriting. Acta Inf. 42(4), 349–

388 (2005)
9. Resources (2009),

http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf

10. Simões, H., Florido, M.: TypeTool - a type inference visualization tool. In: Pro-
ceedings of the 13th International Workshop on Functional and (Constraint) Logic
Programming (2004), http://www.dcc.fc.up.pt/typetool/cgi-bin/tt.pl

11. Church Project: System I (2010),
http://types.bu.edu/modular/compositional/system-i/

12. Yang, J., Michaelson, G., Trinder, P., Wells, J.B.: Improved Type Error Reporting.
In: Proceedings of 12th International Workshop on Implementation of Functional
Languages, pp. 71–86 (2000)

13. McAdam, B.J.: Generalising techniques for type debugging. In: Trinder, P.W.,
Michaelson, G., Loidl, H.W. (eds.) Scottish Functional Programming Workshop.
Trends in Functional Programming, Intellect, vol. 1, pp. 50–58 (1999)

http://user.cs.tu-berlin.de/~gragra/agg/
http://www.lsi.upc.edu/~nimo/Project
http://resources.businessobjects.com/labs/cal/gemcutter-techpaper.pdf
http://www.dcc.fc.up.pt/typetool/cgi-bin/tt.pl
http://types.bu.edu/modular/compositional/system-i/

Hygienic Macros for ACL2

Carl Eastlund and Matthias Felleisen

Northeastern University
Boston, MA, USA

{cce,matthias}@ccs.neu.edu

Abstract. ACL2 is a theorem prover for a purely functional subset of
Common Lisp. It inherits Common Lisp’s unhygienic macros, which are
used pervasively to eliminate repeated syntactic patterns. The lack of
hygiene means that macros do not automatically protect their producers
or consumers from accidental variable capture. This paper demonstrates
how this lack of hygiene interferes with theorem proving. It then explains
how to design and implement a hygienic macro system for ACL2. An
evaluation of the ACL2 code base shows the potential impact of this
hygienic macro system on existing libraries and practices.

1 Unhygienic Macros Are Not Abstractions

ACL2 [1] is a verification system that combines a first-order functional subset of
Common Lisp with a first-order theorem prover over a logic of total functions.
It has been used to model and verify large commercial hardware and software
artifacts. ACL2 supports functions and logical statements over numbers, strings,
symbols, and s-expressions. Here is a sample program:

(defun double (x) (+ x x))

(defthm double⇒evenp (implies (integerp x) (evenp (double x))))

The defun form defines double, a function that adds its input to itself. The
defthm form defines double⇒evenp, a conjecture stating that an integer input to
double yields an even output. The conjecture is implicitly universally quantified
over its free variable x. ACL2 validates double⇒evenp as a theorem, using the
definition of double and axioms about implies, integerp, and evenp.

From Common Lisp, ACL2 inherits macros, which provide a mechanism for
extending the language via functions that operate on syntax trees. According to
Kaufmann and Moore [2], “one can make specifications more succinct and easy
to grasp . . . by introducing well-designed application-specific notation.” Indeed,
macros are used ubiquitously in ACL2 libraries: there are macros for pattern
matching; for establishing new homogenous list types and heterogenous structure
types, including a comprehensive theory of each; for defining quantified claims
using skolemization in an otherwise (explicit) quantifier-free logic; and so on.

In the first-order language of ACL2, macros are also used to eliminate repeated
syntactic patterns due to the lack of higher-order functions:

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 84–101, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Hygienic Macros for ACL2 85

(defmacro defun-map (map-fun fun)
‘(defun ,map-fun (xs)

(if (endp xs)
nil
(cons (,fun (car xs)) (,map-fun (cdr xs))))))

This macro definition captures the essence of defining one function that applies
another pointwise to a list. It consumes two inputs, map-fun and fun, representing
function names; the body constructs a suitable defun form. ACL2 expands uses
of defun-map, supplying the syntax of its arguments as map-fun and fun, and
continues with the resulting function definition. Consider the following term:

(defun-map map-double double)

Its expansion fills the names map-double and double into defun-map’s template:

(defun map-double (xs)
(if (endp xs)

nil
(cons (double (car xs)) (map-double (cdr xs)))))

Unfortunately, ACL2 macros are unhygienic [3], meaning they do not preserve
the meaning of variable bindings and references during code expansion. The end
result is accidental capture that not only violates a programmer’s intuition of
lexical scope but also interferes with logical reasoning about the program source.
In short, macros do not properly abstract over syntax.

To make this concrete, consider the or macro, which encodes both boolean
disjunction and recovery from exceptional conditions, returning the second value
if the first is nil:

(defthm excluded-middle (or (not x) x))

(defun find (n xs) (or (nth n xs) 0))

The first definition states the law of the excluded middle. Since ACL2 is based
on classical logic, either (not x) or x must be true for any x. The second defines
selection from a list of numbers: produce the element of xs at index n, or return
0 if nth returns nil, indicating that the index is out of range.

A natural definition for or duplicates its first operand:

(defmacro or (a b) ‘(if ,a ,a ,b)) (1)

This works well for excluded-middle, but the expanded version of find now tra-
verses its input twice, doubling its running time:

(defun find (n xs) (if (nth n xs) (nth n xs) 0))

Macro users should not have to give up reasoning about their function’s running
time. Consequently, macros should avoid this kind of code duplication.

The next logical step in the development of or saves the result of its first
operand in a temporary variable:

(defmacro or (a b) ‘(let ((x ,a)) (if x x ,b))) (2)

86 C. Eastlund and M. Felleisen

This macro now produces efficient and correct code for find. Sadly though, the
expanded form of excluded-middle is no longer the expected logical statement:

(defthm excluded-middle (let ((x (not x))) (if x x x)))

The or macro’s variable x has captured excluded-middle’s second reference to x.
As a result, the conjecture is now equivalent to the statement (not x).

ACL2 resolves this issue by dealing with the or macro as a special case. For
symbolic verification, or expands using code duplication. For execution, it ex-
pands by introducing a fresh variable. The regular macro language of ACL2 does
not come with the same expressive power, however. Allowing the creation of fresh
variables would introduce uninterned symbols that violate ACL2’s axioms and
thus corrupt its carefully crafted logical foundation; allowing a separation of
executable behavior from the logical semantics would also invite unsoundness.

The case-match macro, also provided with ACL2, does not have any such
special cases. This macro is used for pattern matching and case dispatch. Its
implementation is designed to work around ACL2’s lack of hygiene: the macro’s
expansion never binds any temporary variables. Here is an example use of case-
match to destructure a 3-element list:

(let ((x (quote (1 2 3))))
(case-match x ((a b c) (list a b c))))

The macro expands into the following code:
(let ((x (quote (1 2 3))))

(if (if (consp x)
(if (consp (cdr x))

(if (consp (cdr (cdr x)))
(eq (cdr (cdr (cdr x))) nil)
nil)

nil)
nil)

(let ((a (car x)) (b (car (cdr x))) (c (car (cdr (cdr x)))))
(list a b c))

nil))

Note that the input to case-match is a variable. The macro requires that the user
bind the input to a variable, because the input is duplicated many times in the
macro’s output and the macro cannot safely bind a variable itself. Applications
of car and cdr to walk down the input list are duplicated for the same reason;
as a result, the size of the output increases quadratically.

In a hygienic system, case-match would be able to safely bind temporary
variables in its expanded form. Thus, the user would not need to explicitly bind
the input to case-match to a variable:

(case-match (quote (1 2 3)) ((a b c) (list a b c)))

This also makes case-match available for use by other macros. In ACL2’s unhy-
gienic macro system, other macros cannot safely bind a variable to store case-
match’s input without risking unintended capture.

Hygienic Macros for ACL2 87

Furthermore, the intermediate results of car and cdr could be bound to tem-
porary variables, yielding fewer function calls in the expanded code. Here is the
expansion of the above use of case-match produced by one possible implemen-
tation in a hygienic macro system:

(let ((x0 (quote (1 2 3))))
(flet ((fail0 () nil))

(if (consp x0)
(let ((x1 (car x0)) (y1 (cdr x0)))

(if (consp y1)
(let ((x2 (car y1)) (y2 (cdr y2)))

(if (consp y2)
(let ((x3 (car y2)) (y3 (cdr y2)))

(if (eq y3 nil)
(let ((a x1) (b x2) (c x3)) (list a b c))
(fail0))))

(fail0)))
(fail0))

(fail0))))

This version of case-match uses temporary variables to perform each car and
cdr only once, producing output with a linear measure.

In general, macro writers tread a fine line. Many macros duplicate code to
avoid introducing a variable that might capture bindings in the source code.
Others introduce esoteric temporary names to avoid accidental capture. None
of these solutions is universal, though. Finding itself in the same place, the
Scheme community introduced the notion of hygienic macros [3,4,5]. This paper
presents an adaptation of hygienic macros to ACL2. It motivates the design and
the ACL2-specific challenges, sketches an implementation, and finally presents
a comprehensive evaluation of the system vis-a-vis the ACL2 code base.

2 The Meaning of Hygiene for ACL2

Hygienic macro systems ensure that variables in macro-generated code respect
the intended lexical scope of the program. Hence, our first step is to analyze the
notion of lexical scope in ACL2 and to formulate appropriate goals and policies
for the adaptation of hygienic expansion. This section presents the design goals
and interprets them in the context of ACL2.

2.1 Design Goals

Our hygienic macro expander is designed to observe four key principles.
Referential transparency means that variables derive their meaning from

where they occur and retain that meaning throughout the macro expansion
process. Specifically, variable references inserted by a macro refer to bindings in-
serted by the macro or to bindings apparent at its definition site. Symmetrically,

88 C. Eastlund and M. Felleisen

variable references in macro arguments refer to bindings apparent at the macro
call site. Following tradition, a hygienic macro system comes with a disciplined
method for violating the hygiene condition on individual variables as needed.

Next, separate compilation demands that libraries can be expanded, verified,
and compiled once and loaded many times. There is no need to re-expand, re-
verify, or re-compile a library each time it is used in a new context.

Thirdly, we preserve logical soundness. We do not change the logical axioms
of ACL2, nor its verification system or compiler. Our few changes to its runtime
system are made carefully to observe ACL2’s existing axioms. Existing reasoning
in the logic of ACL2 remains valid in our system, and execution remains in sync
with symbolic reasoning.

Finally, source compatibility means that most well-behaved macros continue
to function as before. When the revised expansion process affects the behavior
of an existing program, the changes are due to a potentially flawed macro.

Unfortunately, we are not able to provide a formal statement of correctness of
our macro system with respect to these principles. The correctness of hygienic
macros is an open research problem; early proof attempts have since been shown
to be flawed. The only known proof of correctness of a hygienic macro system [6]
does not support such features as recursive macros, case dispatch during macro
expansion, or decomposing lists of arbitrary length during expansion.

2.2 Reinterpreting ACL2

Our hygienic macro system redefines the existing defmacro form in ACL2. We
do not introduce hygienic macros as a separate mechanism alongside unhygienic
macros because hygiene is a property of an entire macro system, rather than a
property of individual macro definitions. The implementation of hygiene requires
the collaboration of all macros to track the scope of variables; expanding a single
macro unhygienically can ruin the benefits of hygiene for all other macros.

Figure 1 specifies the essential core of ACL2. A program is a sequence of
definitions. In source code, any definition or expression may be replaced by
a macro application; individual functions may be defined outside of mutual-
recursion; and string or number literals do not require an explicit quote. The
grammar is written in terms of symbols (sym), strings (str), and numbers (num).
A sequence of elements of the form a is denoted −→a , or −→a n when its length is
significant. We use this core language to explain ACL2-specific challenges to
hygienic macro expansion.

Lexical Bindings: ACL2 inherits Common Lisp’s namespaces: function and
variable bindings are separate and cannot shadow each other. The position of
a variable reference determines its role. In an expression position, a variable
refers to a value, in application position to a function or macro. For example,
the following code uses both kinds of bindings for car:

(let ((car (car x))) (car car))

Hygienic Macros for ACL2 89

def = (mutual-recursion
−−−−−−−−−−−−−−−−−→
(defun sym (−−→sym) exp)) mutually recursive functions

| (defmacro sym (−−→sym) exp) macro definition

| (defthm sym exp
−−−−−−−−−−−−→
(sym

−−−−−−−→
(sym exp))) conjecture with proof hints

| (include-book str) library import

| (encapsulate (
−−−−−−−−→
(sym num))

−→
def) definition block

| (local def) local definition

exp = sym variable reference
| (sym −→exp) function call

| (let (
−−−−−−−→
(sym exp)) exp) lexical value bindings

| (flet (
−−−−−−−−−−−−→
(sym (−−→sym) exp)) exp) lexical function bindings

| (quote sexp) literal value

sexp = num | str | sym | (−−→sexp) s-expression

Fig. 1. Abridged syntax of fully-expanded ACL2 programs

Hygienic expansion must track both function and variable bindings for each
possible reference. After all, during expansion, the role of a symbol is unknown
until its final position in the expanded code is determined.

Hygienic expansion must also be able to distinguish macro-inserted lexical
bindings from those in source code or in other macros. With hygienic expansion,
version (2) of the or macro in section 1 should work. For example, the excluded-
middle conjecture should expand as follows:

(defthm excluded-middle (let ((x2 (not x1))) (if x2 x2 x1)))

The macro expander differentiates between the source program’s x1 and the
macro’s x2, as noted by the subscripts; the conjecture’s meaning is preserved.

Function Bindings: Functions bound by flet are substituted into their ap-
plications prior to verification. To prevent unintended capture of free variables
during unhygienic expansion, flet-bound functions may not refer to enclosing
bindings. Consider the following expression that violates this rule:

(let ((five 5))
(flet ((add5 (x) (+ five x))) ;; illegal reference to five, bound to 5

(let ((five "five"))
(add5 0))))

Under unhygienic expansion, the reference to five in add5 would be captured:

(let ((five 5))
(let ((five "five"))

(let ((x 0)) (+ five x)))) ;; five is now bound to "five"

Hygienic macro expansion allows us to relax this restriction, as lexical bindings
can be resolved before substitution of flet-bound functions. The same expression
expands as follows:

90 C. Eastlund and M. Felleisen

(let ((five1 5))
(let ((five2 "five"))

(let ((x 0)) (+ five1 x))))

Quantification: ACL2 conjectures are implicitly universally quantified:

;; claim: ∀x(x > 0 ⇒ x ≥ 0)
(defthm non-negative (implies (> x 0) (≥ x 0)))

Here the variable x is never explicitly bound, but its scope is the body of the
defthm form. ACL2 discovers free variables during the expansion of conjectures
and treats them as if they were bound.

This raises a question of how to treat free variables inserted by macros into
conjectures. Consider the following definitions:

(defmacro imply (var) ‘(implies x ,var))

(defthm x⇒x (imply x))

The body of x⇒x expands into (implies x2 x1), with x1 from x⇒x and x2 from im-
ply. In x⇒x, x is clearly quantified by defthm. In the template of imply, however,
there is no apparent binding for x. Therefore, the corresponding variable x2 in
the expanded code must be considered unbound. Enforcing this behavior yields
a new design rule: macros must not insert new free variables into conjectures.

We must not overuse this rule, however, as illustrated by the macro below:

(defmacro disprove (name body) ‘(defthm name (not ,body)))

(disprove x=x+1 (= x (+ x 1)))

Here we must decide what the apparent binding of x is in the body of x=x+1.
In the source syntax, there is nothing explicit to suggest that x is a bound or
quantified variable, but during expansion, the macro disprove inserts a defthm
form that captures x and quantifies over it. On one hand, allowing this kind
of capture violates referential transparency. On the other hand, disallowing it
prevents abstraction over defthm, because of the lack of explicit quantification.

To resolve this dilemma, we allow defthm to quantify over variables from just
a single source—surface syntax or a macro. This permits the common macros
that expand into defthm, but rejects many cases of accidental quantification, a
source of bugs in the ACL2 code base. A more disruptive yet sounder alternative
would be to introduce explicit quantification into ACL2.

Definition Scope: ACL2 performs macro expansion, verification, and com-
pilation on one definition at a time. Forward references are disallowed, and no
definition may overwrite an existing binding.

Nevertheless, just as hygiene prevents lexical bindings from different sources
from shadowing each other, it also prevents definitions from different sources
from overwriting each other.

Consider the following macro for defining a semigroup based on a predicate
recognizing a set and a closed, associative operation over the set:

Hygienic Macros for ACL2 91

(defmacro semigroup (pred op)
‘(encapsulate ()

(defthm closed
(implies (and (,pred a) (,pred b)) (,pred (,op a b))))

(defthm associative
(implies (and (,pred a) (,pred b) (,pred c))

(equal (,op a (,op b c)) (,op (,op a b) c))))))

The semigroup macro takes two function names as arguments and proves that
they form a semigroup. The name, number, and form of definition used in the
proof is not part of the macro’s interface. In order to leave these names free for
reuse, such as in subsequent reuses of the semigroup macro, they must not be
visible outside the individual macro application.

(semigroup integerp +)
(semigroup stringp string-append)

Macros must be able to use defined names that originate outside them, how-
ever. For instance, the monoid macro uses the previously defined semigroup
macro to establish a closed, associative operation with an identity element.

(defmacro monoid (pred fun zero)
‘(encapsulate ()

(semigroup ,pred ,fun)
(defthm identity

(implies (,pred a)
(and (equal (,fun ,zero a) a) (equal (,fun a ,zero) a))))))

(monoid rationalp ∗ 1)

Macros frequently rely on prior definitions; therefore these definitions must re-
main visible to the expanded form of macros.

Because prior definitions are visible inside macros, macros must not redefine
any name that is visible at their definition. Such a redefinition would allow a
logical inconsistency, as the macro would be able to refer to both the old and new
meanings for the defined name. The following example shows how redefinition
could be used to prove (f) equal to both t and nil.

(defun f () t)

(defmacro bad ()
‘(encapsulate ()

(defthm f=t (equal (f) t))
(defun f () nil)
(defthm f=nil (equal (f) nil))))

Our policy for the scope of definitions during hygienic expansion is therefore
three-fold. First, defined names from inside macros are not externally visible.
Second, macros may refer to any name that is visible at their definition. Third,
macros may not redefine any name that is visible at their definition.

92 C. Eastlund and M. Felleisen

Encapsulated Abstractions: The encapsulate form in ACL2 delimits a block
of definitions. Definitions are exported by default; these definitions represent the
block’s constraint, describing its logical guarantees to the outside. Definitions
marked local represent a witness that can be used to verify the constraint, but
they are not exported.

For example, the following block exports a constraint stating that 1 ≤ 1:

(encapsulate ()
(local (defthm x≤x (≤ x x)))
(defthm 1≤1

(≤ 1 1) ;; use the following hint:
(x≤x (x 1))))

The local conjecture states that (≤ x x) holds for all values of x. The conjecture
1≤1 states that (≤ 1 1) holds; the subsequent hint tells ACL2 that the previously
verified theorem x≤x is helpful, with 1 substituted for x.

Once the definitions in the body of an encapsulate block have been verified,
ACL2 discards hints and local definitions (the witness) and re-verifies the re-
maining definitions (the constraint) in a second pass. The end result is a set of
exported logical rules with no reference to the witness. Local theorems may not
be used in subsequent hints, local functions and local macros may no longer be
applied, and local names are available for redefinition.

An encapsulate block may have a third component, which is a set of con-
strained functions. The header of the encapsulate form lists names and arities
of functions defined locally within the block. The function names are exported
as part of the block’s constraint; their definitions are not exported and remain
part of the witness.

The following block exports a function of two arguments whose witness per-
forms addition, but whose constraint guarantees only commutativity:

(encapsulate ((f 2))
(local (defun f (x y) (+ x y)))
(defthm commutativity (equal (f x y) (f y x))))

Definitions following this block can refer to f and reason about it as a commu-
tative function. Attempts to prove it equivalent to addition fail, however, and
attempts to call it result in a run-time error.

Our hygienic macro system preserves the scoping rules of encapsulate blocks.
Furthermore, it enforces that names defined in the witness are not visible in the
constraint, ensuring that a syntactically valid encapsulate block has a syntac-
tically valid constraint prior to verification. Our guarantee of referential trans-
parency also means that local names in exported macros cannot be captured.
For instance, the following macro m constructs a reference to w:

(encapsulate ()
(local (defun w (x) x))
(defmacro m (y) ‘(w ,y)))

(defun w (z) (m z)) ;; body expands to: (w z)

Hygienic Macros for ACL2 93

When a new w is defined outside the block and m is applied, the new binding
does not capture the w from m. Instead, the macro expander signals a syntax
error, because the inserted reference is no longer in scope.
Books: A book is the unit of ACL2 libraries: a set of definitions that is verified
and compiled once and then reused. Each book acts as an encapsulate block
without constrained functions; it is verified twice—once with witness, and once
for the constraint—and the constraint is saved to disk in compiled form. When a
program includes a book, ACL2 incorporates its definitions, after ensuring that
they do not clash with any existing bindings.

ACL2 allows an exception to the rule against redefinition that facilitates com-
patibility between books. Specifically, a definition is considered redundant and
skipped, rather than rejected, if it is precisely the same as an existing one. If two
books contain the same definition for a function f, for instance, the books are
still compatible. Similarly, if one book is included twice in the same program,
the second inclusion is considered redundant.

This notion of redundancy is complicated by hygienic macro expansion. Be-
cause hygienic expanders generally rename variables in their output, there is no
guarantee that identical source syntax expands to an identical compiled form.
As a result, redundancy becomes a question of α-equivalence instead of simple
syntactic equality. Coalescing redundant definitions in compiled books would
thus require renaming all references to the second definition. This code rewrit-
ing defeats the principle of separate compilation.

Rather than address redundancy in its full generality, we restrict it to the case
of loading the same book twice. If a book is loaded twice, the new definitions
will be syntactically equal to the old ones because books are only compiled once.
That is, this important case of redundancy does not rely on α-equivalence, and
thus allows us to load compiled books unchanged.
Macros: Macros use a representation of syntax as their input and output. In the
existing ACL2 system, syntax is represented using primitive data types: strings
and numbers for literals, symbols for variables, and lists for sequences of terms.

Hygienic macro systems must annotate syntax with details of scope and macro
expansion. Kohlbecker et al. [3] incorporate these annotations into the existing
symbol datatype; in contrast, Dybvig et al. [5] introduce a separate class of syntax
objects. To preserve existing ACL2 macros, we cannot introduce an entirely new
data type; instead, we adopt the former method.

In adapting the symbol datatype, we must be sure to preserve the axioms of
ACL2. On one hand, it is an axiom that any symbol is uniquely distinguished
by the combination of its name and its package—an additional string used for
manual namespace management. On the other hand, the hygienic macro ex-
pander must distinguish between symbols sharing a name and a package when
one originates in the source program and another is inserted by a macro. We re-
solve this issue by leaving hygienic expansion metadata transparent to the logic:
only macros and unverified, program mode functions can distinguish between
two symbols with the same name and package. Conjectures and verified, logic
mode functions cannot make this distinction, i.e., ACL2’s axioms remain valid.

94 C. Eastlund and M. Felleisen

The symbols inserted by macros must derive their lexical bindings from the
context in which they appear. To understand the complexity of this statement,
consider the following example:

(defun parse-compose (funs arg)
(if (endp funs) arg ‘(,(car funs) (compose ,(cdr funs) ,arg))))

(defmacro compose (funs arg) (parse-compose funs arg))

(compose (string-downcase symbol-name) (quote SYM))
;; ⇒ (string-downcase (compose (symbol-name) (quote SYM)))

The auxiliary function parse-compose creates recursive references to compose,
but compose is not in scope in parse-compose. To support this common macro
idiom, we give the code inserted by macros the context of the macro’s definition
site. In the above example, the symbol compose in parse-compose’s template does
not carry any context until it is returned from the compose macro, at which point
it inherits a binding for the name. This behavior allows recursive macros with
helper functions, at some cost to referential transparency: the reference inserted
by parse-compose might be given a different meaning if used by another macro.

This quirk of our design could be alleviated if these macros were rewritten
in a different style. If the helper function parse-compose accepted the recursive
reference to compose as an argument, then the quoted symbol compose could be
passed in from the definition of compose itself, where it has meaning:

(defun parse-compose (compose funs arg)
(if (endp funs) arg ‘(,(car funs) (,compose ,(cdr funs) ,arg))))

(defmacro compose (funs arg) (parse-compose (quote compose) funs arg))

Symbols in macro templates could then take their context from their original
position, observing referential transparency. However, to satisfy our fourth design
goal of source compatibility and accommodate common ACL2 macro practice,
our design does not mandate it.
Breaking Hygiene: There are some cases where a macro must insert variables
that do not inherit the context of the macro definition, but instead intentionally
capture—or are captured by—variables in the source program. For instance, the
defun-map example can be rewritten to automatically construct the name of the
map function from the name of the pointwise function:

(defmacro defun-map (fun)
(let ((map-fun-string (string-append "map-" (symbol-name fun))))

(let ((map-fun (in-package-of map-fun-string fun)))
‘(defun ,map-fun (xs)

(if (endp xs)
nil
(cons (,fun (car xs)) (,map-fun (cdr xs))))))))

(defun-map double) ;; expands to: (defun map-double (xs) . . .)

Hygienic Macros for ACL2 95

state = 〈str , bool , bool , ren, table , {−−→sym}, {−→key }〉 expansion state
table = [−−−−−−−→sym �→ rec] def. table

rec = 〈sig , fun, thm〉 def. record
sig = fun(bool ,num) | macro(id ,num) | thm({−−→sym}) | special def. signature

funn = · | −−→sexpn → sexp n-ary function
thm = · | · · · theorem formula

sexp = num | str | id | cons(sexp, sexp) s-expression

id = sym | id(sym, {−−−→mark }, ren, ren) identifier

sym = sym(str , str , {−−−→mark }) symbol
bool = t | nil boolean

ren = [
−−−−−−−→
key �→ sym] renaming

key = 〈sym, {−−−→mark }〉 identifier key
mark = 〈str ,num〉 mark

Fig. 2. Representation of expansion state and s-expressions

In this macro, the name double comes from the macro caller’s context, but map-
double is inserted by the macro itself. The macro’s intention is to bind map-double
in the caller’s context, and the caller expects this name to be bound.

This implementation pattern derives from the Common Lisp package system.
Specifically, the in-package-of function builds a new symbol with the given string
as its name, and the package of the given symbol. In our example, map-double
is defined in the same package as double.

We co-opt the same pattern to transfer lexical context. Thus the name map-
double shares double’s context and is visible to the macro’s caller. Macro writers
can use in-package-of to break the default policy of hygiene.

3 Hygienic Macro Expansion

The ACL2 theorem prover certifies saved books and verifies interactive programs
using a process of iteratively expanding, verifying, and compiling each term in
turn. The expansion process takes each term and produces a corresponding, fully-
expanded definition; it also maintains and updates an expansion state recording
the scope and meaning of existing definitions so far. Our hygienic macro system
requires these changes: an augmented representation of unexpanded terms and
expansion state; an adaptation of Dybvig et al.’s expansion algorithm [5]; and
new versions of ACL2’s primitives that manipulate the new forms of data while
satisfying existing axioms.

Figure 2 shows the definition of expansion states. An expansion state contains
seven fields. The first names the source file being expanded. The second and
third determine expansion modes: global versus local definition scope and logic
mode versus program mode. Fields four and five provide mappings on the set of
compiled definitions; the fourth is added for hygienic expansion to map bindings
in source code to unique compiled names, and the fifth is ACL2’s mapping from

96 C. Eastlund and M. Felleisen

compiled names to the meaning of definitions. The sixth field is the subset of
compiled definition names that are exported from the enclosing scope, and the
seventh is the set of constrained function names that have been declared but not
yet defined; we update this final field with hygienic metadata to properly track
macro-inserted bindings.

A definition table maps each definition to a record describing its signature,
executable behavior, and logical meaning. We use ACL2’s existing definition
signatures; we augment macro signatures to carry an identifier representing the
lexical context of the macro’s definition. An executable function implements a
function or macro, and a logical formula describes a function or theorem equa-
tionally; we do not change either representation.

Figure 2 also shows the low-level representation of s-expressions. Symbols and
sequences as shown in figure 1 are represented using the sym and cons construc-
tors, respectively. An s-expression is either a number, a string, an identifier,
or a pair of s-expressions. Numbers and strings are unchanged. The most im-
portant difference to a conventional representation concerns identifiers, which
extend symbols to include information about expansion. An identifier is either a
symbol or an annotated symbol. A symbol has three components: its name, its
package, and a set of inherent marks used to support unique symbol generation.
Annotated symbols contain a symbol, a set of latent marks used to record macro
expansion steps, and two renamings; unlike standard identifier representations,
we must differentiate function and value bindings. We represent booleans with
symbols, abbreviated t and nil.

Identifiers represent variable names in unexpanded programs; unique symbol
names are chosen for variables in fully expanded programs. The mapping between
the two is mediated by keys. Each function or value binding’s key combines
the unique symbol corresponding to the shadowed binding—or the unmodified
symbol if the name has no prior binding—and the (latent) marks of the identifier
used to name the binding. A renaming maps keys to their corresponding symbols.

A mark uniquely identifies an event during macro expansion: a variable bind-
ing or single macro application. Each one comprises its source file as a string—
to distinguish marks generated during the compilation of separate books, in
an adaptation of Flatt’s mechanism for differentiating bindings from separate
modules [7]—as well as a number chosen uniquely during a single session.

This representation of s-expressions is used both for syntax during macro
expansion and for values during ordinary runtime computation. Hence, ACL2
functions that deal with symbols must be updated to work with identifiers in a
way that observes the axioms of regular symbols. The basic symbol observations
name, package, eq, and symbolp are defined to ignore all identifier metadata. The
symbol constructor intern produces a symbol with empty lexical context, while
in-package-of copies the context of its second argument.

We also introduce four new identifier comparisons: =b
f , =r

f , =b
v, and =r

v. They
are separated according to the ACL2 function and value namespaces, as signified
by the subscripts, and to compare either binding occurrences or references, as
signified by the superscripts. These procedures do not respect ACL2’s axioms.

Hygienic Macros for ACL2 97

They can distinguish between symbols with the same name and package, so we
provide them in program mode only. As such, they may be used in macros as
variable comparisons that respect apparent bindings.

4 Evaluating Hygiene

Our design goals for hygienic ACL2 macros mention four guiding principles:
referential transparency, separate compilation, logical soundness, and source
compatibility. As explained, the macro expansion process preserves referential
transparency by tracking the provenance of identifiers, with two key exceptions:
symbols inserted by macros take their context from the macro definition site
rather than their own occurrence, and conjecture quantification can “capture”
free variables in macro inputs. Furthermore, our representation for compiled
books guarantees separate compilation. We preserve logical soundness by obey-
ing ACL2’s axioms for symbols in operations on identifiers, and by reusing the
existing ACL2 compiler and theorem proving engine. Only the principle of source
compatibility remains to be evaluated.

Our prototype does not support many of the non-macro-related features of
ACL2 and we are thus unable to run hygienic expansion on most existing
books. To determine the degree of compatibility between our system and ex-
isting macros, we manually inspected all 2,954 defmacro forms in the books
provided with ACL2 version 3.6, including the separate package of books accu-
mulated from the ACL2 workshop series. Of these, some 488 nontrivial macros
might be affected by hygiene. The rest of the section explains the details.
Code Duplication: The behavior of macro-duplicated code does not change
with hygienic expansion; however, hygiene encourages the introduction of local
variables in macros and thus avoids duplication. With our system, all 130 code-
duplicating macros can be rewritten to benefit from hygiene.
Variable Comparison: Comparing variable names with eq does not take into
account their provenance in the macro expansion process and can mistakenly
identify two symbols with the same name but different lexical contexts. We found
26 macros in ACL2 that compare variable names for assorted purposes, none of
which are served if the comparison does not respect the variable’s binding. The
new functions =b

f , =r
f , =b

v, and =r
v provide comparisons for variables that respect

lexical context. Once again, the result of eq does not change in our system, so
these macros will function as they have; however, macro writers now have the
option of using improved tools. Each of the 26 macros can be rewritten with
these functions to compare variable names in a way that respects lexical bindings
during macro expansion.
Free Variables: Free variables in macros usually represent some protocol by
which macros take their meaning from their context; i.e., they must be used in a
context where the names in question have been bound. Much like mutable state
in imperative languages, free variables in macros represent an invisible channel
of communication. When used judiciously, they create succinct programs, but
they can also be a barrier to understanding. Of the 90 macros that insert free

98 C. Eastlund and M. Felleisen

variables, 83 employ such a protocol. Our hygienic macro expander rejects such
macros; they must be rewritten to communicate in an explicit manner.

Five further cases of free variables are forward references, in which a macro’s
body constructs a reference to a subsequent definition. To a macro writer, this
may not seem like a free reference, but it is, due to the scope of ACL2 defini-
tions. Therefore this use of forward references does not satisfy the principle of
referential transparency. These macros must also be rewritten or reordered to
mesh with hygienic macro expansion.

The final two cases of free variables in a macro are, in fact, symptoms of a
single bug. The macro is used to generate the body of a conjecture. It splices
several expressions into a large implication. One of the inputs is named top,
and its first reference in the macro is accidentally quoted—instead of filling in
the contents of the input named top, the macro inserts a literal reference to a
variable named top. By serendipity, this macro is passed a variable named top,
and nothing goes wrong. Were this macro ever to be used with another name, it
would construct the wrong conjecture and either fail due to a mysterious extra
variable or succeed spuriously by proving the wrong proposition. Our hygienic
macro system would have flagged this bug immediately.
Variable Capture: We found 242 instances of variable (85) or definition (157)
names inserted by macros that introduce bindings to the macro’s input or sur-
rounding program. Of the macros that insert definition names, there were 95 that
used in-package-of to explicitly bind names in the package of their input, 44 that
used intern to bind names in their own package, 16 that used hard-coded names
not based on their input at all, and two that used the make-event facility [8] to
construct unique names.

The package-aware macros will continue to function as before due to our
interpretation of in-package-of. As written, the intern-based macros guarantee
neither that the constructed names bind in the context of the input, nor that
they don’t, due to potential package mismatches. Hygienic expansion provides a
consistent guarantee that they don’t, making their meaning predictable. Hard-
coded names in macros will no longer bind outside of the macro itself. These
are the other side of free variable protocols; they must be made explicit to
interoperate with hygiene. The make-event utility allows inspection of the current
bindings to construct a unique name, but nothing prevents that name from
clashing with any subsequent binding. Hygiene eliminates the need to manually
scan the current bindings and guarantees global uniqueness.

Lexical variables account for the other 85 introduced bindings. We discovered
nine whose call sites exploited these bindings as part of an intentional protocol.
These macros can be made hygienic by taking the variable name in question as an
argument, thus making the macro compatible with hygienic expansion, freeing
up a name the user might want for something else, and avoiding surprises if a
user does not know the macro’s protocol.

Of the other 76 macros that bind local variables in the scope of their arguments,
59 attempt to avoid capture. There are 12 that choose long, obscure names; for in-
stance, gensym::metlist (meaning “metlist” in the “gensym” package), indicating

Hygienic Macros for ACL2 99

Improves
for free

Improves
with work Unchanged

Broken;
improves

Broken;
restores

Code Duplication – 130 – – –
Free variable 2 – – 83 5
Lexical capture 29 47 – 9 –
Definition capture – 2 95 44 16
Variable comparison – 26 – – –

Total 31 205 95 136 21

Fig. 3. Impact of hygienic expansion on nontrivial ACL2 macros

a wish for the Lisp symbol-generating function gensym, which is not available in
ACL2. There is also a convention of adding -do-not-use-elsewhere or some simi-
lar suffix to macro-bound variables; in one case, due to code copying, a variable
named hyp--dont-use-this-name-elsewhere is in fact bound by two macros in dif-
ferent files. Obscure names are a poor form of protection when they are chosen
following a simple formula, and a macro that binds a hard-coded long name will
never compose properly with itself, as it always binds the same name.

A further 40 macros generate non-capturing names based on a known set of
free variables, and seven more fail with a compile error if they capture a name as
detected by check-vars-not-free. These macros are guaranteed not to capture, but
the latter still force the user to learn the name bound by the macro and avoid
choosing it for another purpose. Some of these macros claim common names,
such as val and x, for themselves.

Finally, we have found 17 macros in the ACL2 books that bind variables and
take no steps to avoid capture. All of the accidentally variable-capturing macros
will automatically benefit from hygienic expansion.
Exceptions: The notable exceptions to hygiene we have not addressed are
make-event, a tool for selective code transformation, and state, a special variable
used to represent mutation and i/o. We have not yet inspected most uses of make-
event in the ACL2 code base, but do not anticipate any theoretical problems in
adapting the feature. For state and similar “single-threaded” objects, our design
must change so as to recognize the appropriate variables and not rename them.
Summary: Figure 3 summarizes our analysis. We categorize each macro by row
according to the type of transformation it applies: code duplication, free variable
insertion, capture of lexical or definition bindings, and variable comparison. We
omit the trivial case of simple alias macros from this table.

We split the macros by column according to the anticipated result of hygienic
expansion. In the leftmost column, we sum up the macros whose expansion is
automatically improved by hygienic expansion. Next to that, we include macros
that work as-is with hygiene, but permit a better definition. In the center, we
tally the macros whose expansion is unaffected. To the right, we list macros
that must be fixed to work with hygienic macro expansion, but whose expansion
becomes more predictable when fixed. In the rightmost column, we list those
macros that must be fixed, yet do not benefit from hygienic expansion.

100 C. Eastlund and M. Felleisen

Many libraries and built-in features of ACL2 rely on the unhygienic nature of
expansion and use implicit bindings; as a result, our system cannot cope with
every macro idiom in the code base. These macros must be rewritten in our
system. We anticipate that all of the macros distributed with ACL2 can be fixed
straightforwardly by either reordering definitions or adding extra arguments to
macros. However, this process cannot be automated and is a potential source of
new errors. Fortunately, the bulk of macros will continue to work, and we expect
most of them to benefit from hygiene. The frequent use of code duplication,
obscure variable names, and other capture prevention mechanisms shows that
ACL2 users recognize the need for a disciplined approach to avoiding uninten-
tional capture in ACL2 macros.

5 Related Work and Conclusions

ACL2 is not the only theorem prover equipped with a method of syntactic exten-
sions. PVS has macros [9]; however, they are restricted to definitions of constants
that are inlined during the type-checking phase. As a result, preserving the bind-
ing structure of the source program is simple.

The Agda, Coq, Isabelle, and Nuprl theorem provers all support extensible
notation. These include issues of parsing, precedence, and associativity that do
not arise in ACL2’s macros, which are embedded in the grammar of s-expressions.
The notation mechanisms of Agda and Isabelle are limited to “mixfix” operator
definitions [10,11]. These definitions do not introduce new variable names in
their expansion, so the problem of variable capture does not arise.

Nuprl and Coq have notation systems that permit the introduction of new
binding forms. Nuprl requires each notational definition to carry explicit bind-
ing annotations. These annotations allow Nuprl to resolve variable references
without the inference inherent in hygienic macro systems [12]. The notation sys-
tem of Coq ensures that introduced variables do not capture source program
variables and vice versa [13], although the precise details of this process are
undocumented. Neither Nuprl nor Coq allow case dispatch or self-reference in
notational definitions. Our work combines the predictability of variable scope
present in Nuprl and Coq notation with the expressive power of ACL2 macros.

Hygienic macros have been a standardized part of the Scheme programming
language for over a decade [14]. They have been used to define entire new pro-
gramming languages [15,16], including an implementation of the runtime com-
ponents of ACL2 in Scheme [17]. These results are feasible because of hygiene
and are facilitated by further advances in macro tools [7,18].

With hygienic macros, ACL2 developers gain the power to write more trust-
worthy and maintainable proofs using macros. Furthermore, adding a scope-
respecting macro mechanism is a necessary step for any future attempt to make
ACL2 reason about its source programs directly instead of expanded terms. Our
techniques may also be useful in adapting hygienic macros to languages other
than Scheme and ACL2 that have different binding constructs, different scope
mechanisms, multiple namespaces, implicit bindings, and other such features.

Hygienic Macros for ACL2 101

At the 2009 ACL2 Workshop’s panel on the future of theorem proving, panelist
David Hardin of Rockwell Collins stated a desire for domain-specific languages
in automated theorem proving. This paper is the first of many steps toward
user-written, domain-specific languages in ACL2.

References

1. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: an Ap-
proach. Kluwer Academic Publishers, Dordrecht (2000)

2. Kaufmann, M., Moore, J.S.: Design goals of ACL2. Technical report, Computa-
tional Logic, Inc. (1994)

3. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Proc. 1986 ACM Conference on LISP and Functional Programming, pp. 151–
161. ACM Press, New York (1986)

4. Clinger, W., Rees, J.: Macros that work. In: Proc. 18th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 155–162. ACM
Press, New York (1991)

5. Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in Scheme. Lisp and
Symbolic Computation 5(4), 295–326 (1992)

6. Herman, D., Wand, M.: A theory of hygienic macros. In: Gairing, M. (ed.) ESOP
2008. LNCS, vol. 4960, pp. 48–62. Springer, Heidelberg (2008)

7. Flatt, M.: Composable and compilable macros: you want it when? In: Proc. 7th
ACM SIGPLAN International Conference on Functional Programming, pp. 72–83.
ACM Press, New York (2002)

8. Kaufmann, M., Moore, J.S.: ACL2 Documentation (2009),
http://userweb.cs.utexas.edu/users/moore/acl2/current/acl2-doc.html

9. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language
Reference (2001), http://pvs.csl.sri.com/doc/pvs-language-reference.pdf

10. Danielsson, N.A., Norell, U.: Parsing mixfix operators. In: Proc. 20th Interna-
tional Symposium on the Implementation and Application of Functional Lan-
guages, School of Computer Science of the University of Hertfordshire (2008)

11. Wenzel, M.: The Isabelle/Isar Reference Manual (2010),
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf

12. Griffin, T.G.: Notational definition—a formal account. In: Proc. 3rd Annual Sym-
posium on Logic in Computer Science, pp. 372–383. IEEE Press, Los Alamitos
(1988)

13. The Coq Development Team: The Coq Proof Assistant Reference Manual (2009),
http://coq.inria.fr/coq/distrib/current/refman/

14. Kelsey, R., Clinger, W., Rees, J. (eds.): Revised5 report on the algorithmic language
Scheme. ACM SIGPLAN Notices 33(9), 26–76 (1998)

15. Gray, K., Flatt, M.: Compiling Java to PLT Scheme. In: Proc. 5th Workshop on
Scheme and Functional Programming, pp. 53–61 (2004)

16. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed
Scheme. In: Proc. 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 395–406. ACM Press, New York (2008)

17. Vaillancourt, D., Page, R., Felleisen, M.: ACL2 in DrScheme. In: Proc. 6th Interna-
tional Workshop on the ACL2 Theorem Prover and its Applications, pp. 107–116
(2006)

18. Culpepper, R.: Refining Syntactic Sugar: Tools for Supporting Macro Development.
PhD dissertation, Northeastern University (2010)

http://userweb.cs.utexas.edu/users/moore/acl2/current/acl2-doc.html
http://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf
http://coq.inria.fr/coq/distrib/current/refman/

What’s the Matter with Kansas Lava?

Andrew Farmer, Garrin Kimmell, and Andy Gill

Information Technology and Telecommunication Center,
Department of Electrical Engineering and Computer Science,

The University of Kansas,
2335 Irving Hill Road,

Lawrence, KS 66045, USA
{anfarmer,kimmell,andygill}@ku.edu

Abstract. Kansas Lava is a functional hardware description language
implemented in Haskell. In the course of attempting to generate ever
larger circuits, we have found the need to effectively test and debug the
internals of Kansas Lava. This includes confirming both the simulated
behavior of the circuit and its hardware realization via generated VHDL.
In this paper we share our approach to this problem, and discuss the
results of these efforts.

1 Introduction

Lava is a Domain Specific Language (DSL) embedded in Haskell that allows for
the description of hardware circuits using Haskell functions [1]. It turns out that
such a DSL, known as a functional hardware description language, represents
a natural way to express circuits. For instance, the definition of a half adder,
which takes two bits as inputs, adds them, and returns the result bit and a carry
bit, is:

halfAdder :: Bit -> Bit -> (Bit, Bit)
halfAdder a b = (carry,sum)
where carry = and2 a b

sum = xor2 a b

The half adder can be run like a normal Haskell function. We call this mode
of running the circuit simulation.

ghci> halfAdder true true
(T,F)

We can also, under the correct conditions, capture our half adder function
as an abstract syntax tree, which we can render into a traditional hardware
description language, such as VHDL. We call this process synthesis.

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 102–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What’s the Matter with Kansas Lava? 103

1.1 What is Kansas Lava?

Kansas Lava is an effort to create a modern Lava implementation that allows
direct specification of circuits like traditional Lava. Kansas Lava makes exten-
sive use of recent design patterns, like Applicative Functors, to permit concise
and natural expression of hardware concerns as Haskell functions. Kansas Lava
also heavily leverages advanced extensions to GHC’s type system, like scoped
type variables and type functions, to offer a high degree of control over signal
representations, accurate simulation, and assurances of correctness.

Notice that the halfAdder circuit above, when defined in Kansas Lava, can
be used in two contexts: as a combinatorial circuit and as a circuit operating on
a sequence of clocked values:

ghci> :t halfAdder
halfAdder :: (Signal sig) =>

sig Bool -> sig Bool -> (sig Bool, sig Bool)
ghci> :t true
true :: Comb Bool
ghci> halfAdder true true
(T,F)
ghci> let x = toSeq $ cycle [False,False,True,True]
ghci> let y = toSeq $ cycle [False,True]
ghci> halfAdder x y
(F :~ F :~ F :~ T :~ ..., F :~ T :~ T :~ F :~ ...)

1.2 In This Paper

Programmatically generating hardware presents new challenges when it comes
to testing and debugging. Often, traditional lightweight testing strategies are
adept at discovering errors, via simulation, but offer little help in determining
the cause of the error.

When used in this debugging context, they often scale poorly to large circuits
since they don’t permit inspection of intermediate values, and require a func-
tional decomposition to expose these internal streams that may be unnatural
or time consuming. What is needed in such a situation is a debugging tool that
permits the inspection of intermediate values and the testing of parts of a circuit
in isolation.

Additionally, none of these tools allows a means of testing the synthesized
circuit. This is a prime concern both for the implementors of Kansas Lava and
users in the late stages of circuit design – who need to refine circuits to meet the
constraints imposed by their chosen hardware substrate.

In this paper we present a solution to this problem for Kansas Lava. Specifi-
cally, we:

– show why existing solutions like QuickCheck are often ineffective in this
domain (Section 2).

104 A. Farmer, G. Kimmell, and A. Gill

– introduce the notion of probes, a means of observing intermediate values
without loss of modularity (Section 3), and explain their implemention
(Section 4).

– show that probes offer a natural way to compare the simulated circuit to the
sythesized version (Section 5).

– demonstrate the powerful ability of probes to demarcate subcircuits, per-
mitting a form of automated algorithmic debugging which compares the
behavior of the simulation to that of the synthesized VHDL (Section 6).

Using these tools has allowed us to debug large, real-world Lava circuits in a
more straightforward manner than in the past.

2 Testing Functional Circuits

We specifically want to test two aspects of circuits in Kansas Lava. First, that
they behave correctly in simulation, like any Haskell function. Secondly, that
the generated VHDL behaves exactly the same as the simulated circuit, clock
for clock.

A popular method of testing Haskell functions is to use the QuickCheck
tool [2]. QuickCheck allows the Haskell programmer to define logical assertions
about the bahavior of functions, known as properties, and then attempts to find
counter-examples by generating random inputs to each property and checking
the result. The programmer is given a means to control how the random inputs
are generated via a typeclass called Arbitrary.

Since Lava circuits are Haskell functions, using QuickCheck is straightforward.
For instance, given Kansas Lava’s implementation of boolean conjunction and a
suitable instance of QuickCheck’s Arbitrary type class, one can verify properties
like the following, which shows that the and2 implementation is commutative:

prop_andComm x y = (x ‘and2‘ y) == (y ‘and2‘ x)
where types = (x :: Comb Bool, y :: Comb Bool)

While this approach is quick and easy to implement, it is of limited use.
Foremost, equality over sequential inputs is problematic. Two sequences can

certainly be unequal, and they can have equivalent prefixes, but they are un-
bounded data structures, so it is impossible to assert equivalence. We can use a
hack to say, effectively, that equivalent prefixes are good enough:

prop_andCommSeq x y = prefix (x ‘and2‘ y) == prefix (y ‘and2‘ x)
where types = (x :: Seq Bool, y :: Seq Bool)

prefix = (take 100) . toList

but this is less than ideal. Nevertheless, an instance of QuickCheck’s Arbitrary
type class is defined for Seq, in case it proves useful for other kinds of tests.

Secondly, QuickCheck tests properties by generating random inputs based on
type information. While this may be effective for small circuits, larger circuits

What’s the Matter with Kansas Lava? 105

often require complex non-random input. For instance, we may want to isolate
a case where a specific control sequence elicits bad behavior and repeatedly test
that case. In essence, we need a unit test instead of a randomized test.

Most problematic for us, as the developers of the Kansas Lava DSL, is the
fact that QuickCheck doesn’t test the generated VHDL at all. Equality between
signal types, over which all Kansas Lava circuits are defined, only compares the
simulation values (and in the case of sequences, as mentioned above, doesn’t
even do that).

It is not obvious how to define equality over the generated code, short of com-
paring the resulting circuit graphs for isomorphism. The worst case complexity
of such a solution is often exponential.

2.1 Observing Intermediate Values

Kansas Lava circuits are opaque Haskell functions which only permit observation
of the relationship between inputs and outputs. Intermediate values, defined as
local Haskell bindings, cannot be observed without modifying the underlying
circuit.

As a simple example, consider this archetypal (and buggy) Lava definition of
a full adder, constructed by combining two half adder circuits:

fullAdder a b cin = (sum,cout)
where (s1,c1) = halfAdder a a

(sum,c2) = halfAdder cin s1
cout = xor2 c1 c2

In this example, the intermediate values s1, c1, and c2 are not exposed as
outputs to the function, and are consequently not observable. In fact, the above
definition has a bug in the calculation of (s1,c1) where the input parameter a
is used as the second argument to the half adder instead of the parameter b. Ob-
serving the input/output behavior of the fullAdder function (with QuickCheck
for example) will reveal incorrect behavior, but does not provide any insight into
the location of the error. Rather, we need to be able to observe the input/output
behavior of the first halfAdder in the context of its use in the full adder.

One approach to locating the bug is to simply return the intermediate values
as additional outputs to the circuit:

fullAdder a b cin = ((sum,cout),debug)
where (s1,c1) = halfAdder a a

(sum,c2) = halfAdder cin s1
cout = xor2 c1 c2
debug = (s1,c1,c2)

While this succeeds in exposing the intermediate values, we have changed
the interface to the circuit. This necessitates a modification to all the circuits
depending on fullAdder, and in general leads to a loss of modularity. Moreover,
the clarity of the type signature is lost completely:

106 A. Farmer, G. Kimmell, and A. Gill

Before:

fullAdder :: (Signal sig) => sig Bool -> sig Bool -> sig Bool
-> (sig Bool, sig Bool)

After:

fullAdder :: (Signal sig) => sig Bool -> sig Bool -> sig Bool
-> ((sig Bool, sig Bool), (sig Bool, sig Bool, sig Bool))

If the incorrect behavior were to be observed when defining a circuit which
uses the full adder, then that circuit must in turn be modified to propagate the
debugging output.

This leaves the user with two options, both with significant drawbacks. They
can either export all of the intermediate circuit values and sort through the
global collection, or they can iteratively export a subset of the intermediate
values, checking for correct behavior, until the troublesome circuit is located. The
first solution requires changing large amounts of code and muddying function
interfaces, the second is incredibly time consuming.

3 Circuit Instrumentation Using Probes

Kansas Lava provides a solution that sidesteps this problem using the notion
of a probe, based on the design in the Hawk Architectural Design Language
[3]. When using this construct, intermediate values can be observed without
changing the circuit interface. Only those intermediate values that are probed
will be observable, allowing probes to be inserted and removed as the circuit is
searched to locate the source of an error.

Using this function, we can instrument the fullAdder circuit to expose inter-
mediate values without changing the circuit interface:

fullAdder a b cin = (sum,cout)
where (s1,c1) = halfAdder a a

(sum,c2) = halfAdder cin (probe "s1" s1)
cout = xor2 (probe "c1" c1) (probe "c2" c2)

Two functions are provided for extracting probe values. First, probeCircuit
takes a circuit with probes and generates an association list of probe names
and values. Then getProbe looks up a probe name in this list and returns the
associated value. The test function, shown below, demonstrates the use of these
two functions.

test = do
probes <- probeCircuit $ fullAdder false true false
case (getProbe probes "s1") of

Just (ProbeValue probeName xstrm) ->
return $ showXStream xstrm

What’s the Matter with Kansas Lava? 107

Calling test at the ghci prompt yields the following trace of outputs for the
s1 probe:

ghci> test
"F" :~ "F" :~ "F" :~ "F" :~ ...

The probe mechanism automatically lifts combinational Kansas Lava values
into a stream of values.

While the above example demonstrated a way to observe intermediate Kansas
Lava values, it doesn’t shed a great deal of light on the particular bug in the full
adder circuit. We have only observed the output of the halfAdder, whereas the
bug is due to the incorrect input value. To make it possible to observe both the
input and output of a function, we can apply probe to the function itself :

fullAdder a b cin = (sum,cout)
where (s1,c1) = (probe "ha1" halfAdder) a a

(sum,c2) = halfAdder cin s1
cout = xor2 c1 c2

To print out traces from all of the probes, we modify our test function:

test = do
probes <- probeCircuit $ fullAdder false true false
mapM_ printProbe probes
where printProbe (i, (ProbeValue name xstrm)) = do

putStr $ name ++ ": "
putStrLn $ show xstrm

The probe function generates names by simply enumerating each argument
(along with the result) and adding the enumerated index to the given probe
name, ha1:

ghci> test
ha1_0: "F" :~ "F" :~ "F" :~ "F" :~ ...
ha1_1: "F" :~ "F" :~ "F" :~ "F" :~ ...
ha1_2: "(F,F)" :~ "(F,F)" :~ "(F,F)" :~ "(F,F)" :~...

In this example, ha1_0 is the first argument to halfAdder, ha1_1 is the sec-
ond, and ha1_2 is the result. The fact that the two inputs to halfAdder are the
same is now obvious.

4 Implementation

4.1 Implementing Probes on Values

There are two concrete types in Kansas Lava: Seq and Comb, which represent
sequential and combinatorial values, respectively. Combinatorial values exclude
the notion of a clock, whereas sequential values encode a series of values over
time:

108 A. Farmer, G. Kimmell, and A. Gill

data Comb a = Comb <shallow value> <deep structure>
data Seq a = Seq (Stream <shallow values>) <deep structure>

Both are instances of the Signal type class, over which most primitives are
defined.

The shallow embedding is a regular Haskell value which can be manipulated
by Haskell functions. The deep embedding is a structure of primitive entities
that can be reified to a netlist, from which we generate VHDL for compilation.
Kansas Lava primitives manipulate both embeddings, freeing the user to focus
on circuit composition.

The ability to observe intermediate values is a pleasing consequence of main-
taining both embeddings. In essense, when the probe function is invoked on a cir-
cuit, the deep embedding is annotated with the result of the shallow
embedding.

The probe function itself takes a string representing a user-significant name
for the intermediate value and a Kansas Lava circuit. To allow probe to be
utilized for a variety of types, the function is overloaded via a type class and
instances are provided for the range of types representable as Kansas Lava
circuits.

class Probe a where
probe :: String -> a -> a

To allow any Kansas Lava value to be stored in the deep representation, we
construct an existential type, ProbeValue:

data ProbeValue = forall a. (Show a, RepWire a, Typeable a) =>
ProbeValue String (XStream a)

deriving Typeable

The Typeable constraint on a allows us to use Haskell’s Data.Dynamic library
to store and recover the printed representation of the value. One downside of
this implementation decision is that we can no longer manipulate observed values
directly, only their string representations. The XStream data type can be thought
of as a Seq that has no deep embedding:

data XStream a = XStream (Stream a)
data Seq a = Seq (Stream a) (D a)

For Seq values, the result of the shallow embedding is simply repackaged into
an XStream and added to a special attribute list in the deep data structure:

instance (Show a, RepWire a, Typeable a) => Probe (Seq a) where
probe name (Seq shallow (D deep)) =

Seq shallow (D (addAttr name stream deep))
where stream = XStream shallow :: XStream a

What’s the Matter with Kansas Lava? 109

The addAttr function handles the various possible entities that may make
up the deep embedding at this point. Using the common case of a Port as an
example, we see addAttr create a ProbeValue and add it to the attribute list:

addAttr :: forall a . (...) =>
String -> XStream a -> Driver E -> Driver E

addAttr name value (Port v (E (Entity n outs ins attrs))) =
let p = [("simValue", toDyn (ProbeValue name value))]
in Port v (E (Entity n outs ins $ attrs ++ p))

To retrieve the probe values, we use the probeCircuit function, which reifies
the circuit and returns an association list of probe names and values:

probeCircuit :: (...) => a -> IO [(String,ProbeValue)]
probeCircuit circuit = do

rc <- reifyCircuit circuit
return [(n,p) | (_,Entity _ _ _ attrs) <- theCircuit rc

, ("simValue", val) <- attrs
, Just p@(ProbeValue n v) <- [fromDynamic val]]

The reifyCircuit function uses IO-based reification [4] to return a netlist
representation of the circuit. Each item is a tuple of a unique id and the Entity
from the deep embedding. We search through this list for any attributes that
are probes, and recover the ProbeValue.

4.2 Implementing Probes on Functions

To probe a function, we apply probes to each argument as it arrives, and then
probe the result value. In order to identify which probe matches which argument,
we add a function to our Probe class, which is like probe, but additionally accepts
a name supply:

class Probe a where
probe :: String -> a -> a
probe’ :: String -> [Var] -> a -> a

instance (Show a, Probe a, Probe b) => Probe (a -> b) where
probe name f = probe’ name vars f

where vars = [Var $ show i | i <- [0..]]

probe’ name ((Var v):vs) f x =
probe’ name vs $ f (probe (name ++ "_" ++ v) x)

The initial call to probe on a function f will generate a list of names and call
probe’. As f is applied to each argument x, that argument has an appropriately
named probe wrapped around it. Once the function is fully applied, probe’ will
be called on a Seq or Comb value. The probe’ function for these values calls
probe with the annotated name, discarding the name supply:

110 A. Farmer, G. Kimmell, and A. Gill

instance (Show a, RepWire a, Typeable a) => Probe (Seq a) where
probe name (Seq shallow (D deep)) = ...

probe’ name ((Var v):_) seq = probe (name ++ "_" ++ v) seq

Using the probesFor function, we can filter the output of probeCircuit to
find the specific set of probes related to a probed function:

probesFor :: String -> [(String,ProbeValue)]
-> [(String,ProbeValue)]

probesFor name plist =
sortBy (\(n1, _) (n2, _) -> compare n1 n2) $
filter (\(n, _) -> name ‘isPrefixOf‘ n) plist

5 Testing the Deep Embedding

As we attempt to use Kansas Lava to generate ever larger circuits, confirming
that the shallow and deep embedding are equivalent is increasingly important.
Subtle issues like differences in timing behavior between the simulated shallow
functions and the VHDL entities often only manifest themselves in larger circuits.

To address this, we use recovered probe values to drive the VHDL simulation
and then compare the results. The function that does this is called testCircuit:

testCircuit "mux2"
(mux2 :: Seq Bool -> (Seq U4, Seq U4) -> Seq U4)
(\ f -> let sel = toSeq $ cycle [True,False,True,True,False]

inp = toSeq $ cycle [0..15]
inp2 = toSeq $ cycle $ reverse [0..15]

in f sel (inp, inp2))

The implementation of testCircuit takes a user-significant name, the circuit,
and a function that applies that circuit to inputs:

testCircuit :: (...) => String -> a -> (a -> b) -> IO ()
testCircuit name circuit apply = do

let probed = probe name circuit
plist <- probeCircuit $ apply probed

mkInputs name 50 $ probesFor name plist
mkTestbench name probed

First, testCircuit wraps a probe around the circuit. Since the circuit is a
function, that means both inputs and outputs will be observed. Next, the apply
function applies the sample input provided by the user to this probed circuit.
Using probeCircuit and probesFor, the probe data is recovered.

The mkInputs function transforms the XStream values in each probe into two
ASCII files. One is a human readable info file which gives a clock value followed
by each input and the output, in both Haskell and wire representations. The
other file is meant to be read by the VHDL testbench:

What’s the Matter with Kansas Lava? 111

mux2.info mux2.shallow
(0) T/1 -> (0,15)/11110000 -> 0/0000 1111100000000
(1) F/0 -> (1,14)/11100001 -> 14/1110 0111000011110
(2) T/1 -> (2,13)/11010010 -> 2/0010 1110100100010
(3) T/1 -> (3,12)/11000011 -> 3/0011 1110000110011
(4) F/0 -> (4,11)/10110100 -> 11/1011 0101101001011
(5) T/1 -> (5,10)/10100101 -> 5/0101 1101001010101
... ...

Running the VHDL testbench created by mkTestbench will generate a
mux2.deep file that corresponds to the mux2.shallow file. If these two files are
the same, then the simulated and compiled versions of the circuit behaved in the
same way.

6 Handling Large Circuits

The framework we just described suffers because it only uses the probe data for
the overall circuit. This is fine when the circuit is small, but becomes problematic
for larger circuits because, while it effectively reports that something is wrong,
it offers no help in pinpointing the bug.

The user can place many probes within a single circuit, so our framework
should be able to generate tests for each of them. This allows the user to narrow
down the problem by finding probe tests that fail within the larger circuit.

6.1 Extracting Subcircuits

Whereas probing intermediate values is a useful analogue to actual hardware
probes, effectively allowing the user to watch a stream of values move along a
wire in the circuit, probing functions is much more powerful. Since each input to
the function is itself probed, along with the output, we have effectively tagged
the boundaries of the function within the circuit graph.

To illustrate, reifying our probed fullAdder gives the graph in Fig. 1. Notice
that nodes are annotated with the names of probes applied to them. To find the
nodes that make up the halfAdder function named ha2, we start at its output
node (ha2_2, the highest numbered ha2 probe) and do a breadth first search
(BFS) backward along the input edges. If we encounter a node that also has an
ha2 probe on it, then we have reached one of the arguments to the function. This
marks the boundary of the function within the graph. Nodes encountered during
this search make up the subgraph that implements the halfAdder function.

Using this subgraph, we can create a new sink based on the output type of the
ha2_2 node. The leaves, which all have probes on them, are sorted in argument
order based on the probe name. Each leaf is replaced with a Pad (an externally
driven input), using the output type of the leaf as the new input and output
type of the Pad. This allows us to pass the captured probe data as input. The
newly extracted self-contained circuit can be seen in Fig. 2.

112 A. Farmer, G. Kimmell, and A. Gill

Fig. 1. A circuit graph for the fullAdder. Note that we have attached probes to each
halfAdder as well as the entire circuit. Using a BFS backwards along the inputs of
the ha2 2 node, we find the subcircuit making up the second probed halfAdder. These
nodes are shaded in gray.

What’s the Matter with Kansas Lava? 113

Fig. 2. The circuit for the ha2 probe, extracted from the fullAdder circuit in Fig. 1.
Leaf nodes have been converted to Pads, and new sources and sinks are derived based
on type information.

We provide a function named extract to implement this algorithm. It takes
a probe name and a reified circuit and returns a reified subcircuit which imple-
ments the probed function:

extract :: String -> ReifiedCircuit -> ReifiedCircuit

Using extract, we can write a more versatile version of testCircuit which
allows us to specify which probed function we would like to test in the context
of the overall circuit:

testSubcircuit :: (...) => String -> a -> (a -> b) -> IO ()
testSubcircuit name circuit apply = do

let probed = probe "whole" circuit

reified <- reifyCircuit probed
plist <- probeCircuit $ apply probed

mkInputs name 50 $ probesFor name plist
mkTestbenchFromRC name $ extract name reified

114 A. Farmer, G. Kimmell, and A. Gill

6.2 Locating Errors Automatically

The ability to extract and individually test subcircuits allows us to liberally
probe a circuit and use our intuition to locate the cause of a problem.

However, since we are testing the correspondence of the shallow and deep
embeddings, which comes down to diffing the generated outputs, there is no
reason not to automate this process.

To do so, we implement a form of algorithmic debugging [5]. The general
idea is to build an execution tree, and for each node ask an oracle if the result
at that node is correct, eventually finding the node that is causing the error.
Normally the oracle is the programmer, but in this case we can use the recorded
probe data, effectively making the shallow embedding an oracle for the deep
embedding.

We do this by walking the circuit graph in breadth first order from the sinks,
recording the relationship among the various probes in the circuit into a sim-
ple Rose Tree structure that records the name of the probe, the node’s unique
identifier, and a list of children:

data ProbeTree = Node String Unique [ProbeTree]
deriving (Eq, Show)

probeForest :: ReifiedCircuit -> [ProbeTree]

In the context of a hardware circuit, our execution tree must capture the
contained-in relationship between probed functions (as opposed to the depends-
on relationship). This encodes the failure relationships between probed subcir-
cuits. If subcircuit A is wholly contained by subcircuit B, then A’s failure will
most likely also cause B to fail. As such, A is a child of B. Otherwise, A and B are
siblings. For the fullAdder example, probeForest returns:

[Node "fullAdder" 3 [Node "ha2" 5 [],Node "ha1" 9 []]]

Note that while ha2 depends on the output of ha1 in the circuit, ha1 is not
contained within ha2. A failure within ha1 will not necessarily lead to a failure of
ha2, merely bad input. Both are within the fullAdder subcircuit, whose failure
could be caused by either, meaning ha1 and ha2 are siblings.

Now that we have this tree structure, we use it to implement our debug-
ger. There are various strategies for traversing the execution tree. Most of these
focus on improving the experience for human oracles by reducing the number
nodes tested and avoiding dramatic context switches that can slow the ora-
cle down. Since we are using the shallow embedding as our oracle, we chose a
strategy known as Top-Down Search [6]. While not the most advanced strategy
available, it is both simple to implement and effective at pruning the execution
tree.

Beginning at the root, we call a modified testSubcircuit on each node to
extract and compare the deep and shallow embeddings of the probed subcircuit.
If the test fails, we start testing each child, on the premise that the failure was

What’s the Matter with Kansas Lava? 115

caused by a failing child. If the test succeeds, we assume all child subcircuits
functioned properly (since they are part of the circuit we just tested), and move
on to a sibling in the tree:

algDebug :: ReifiedCircuit -- circuit
-> [(String, ProbeValue)] -- probe data
-> IO ()

algDebug circuit pdata = go "" $ probeForest circuit
where go [] [] = putStrLn "Embeddings act the same."

go parent [] = putStrLn $ parent ++ " failed."
go parent ((Node name _ children):siblings) = do

code <- testSubcircuit circuit pdata name
case code of

ExitSuccess -> go parent siblings
ExitFailure _ -> go name children

testSubcircuit :: ReifiedCircuit
-> [(String, ProbeValue)]
-> String
-> IO ExitCode

testSubcircuit circuit pdata name = do
mkInputs name 50 $ probesFor name pdata
mkTestbenchFromRC name $ extract name circuit

The search terminates in two ways:

– All siblings at the top level test successfully, meaning all probed portions of
the circuit are behaving equally in both embeddings.

– All siblings at another level test successfully, meaning their parent node
(which failed) is the likely culprit.

As you can see, each run of this algorithmic strategy only locates a single
failing subcircuit, so we may be required to run the search multiple times if
there are multiple errors.

We change our testCircuit definition once again to take advantage of this
automated search:

testCircuit :: (...) => String -> a -> (a -> b) -> IO ()
testCircuit name circuit apply = do

let probed = probe name circuit

rc <- reifyCircuit probed
pdata <- probeCircuit $ apply probed

algDebug rc pdata

116 A. Farmer, G. Kimmell, and A. Gill

7 Related Work

There are many ongoing efforts to create effective testing and debugging tools
for lazy functional languages. As we have seen, QuickCheck is one of those tools.
Others include HPC, a code coverage tool [7], and ThreadScope, a means of
visualizing parallel computations [8].

Probes are a means of tracing, a well explored area when it comes to debugging
functional languages. Chitil et al. compare three popular solutions for tracing
Haskell program execution [9], including Freja [10], Hat [11], and Hood [12]. Our
probe implementation is most like that of Hood in spirit. Both are lightweight
tools that allow observation of intermediate values without greatly impacting
performance. Freja and Hat are extensions to Haskell compilers, and each offers
a guided traversal of the trace information to locate bugs, much like our efforts
in Section 6.2. Hat in particular is known to have a large runtime overhead.

Algorithmic debugging is a promising approach to automating debugging
tasks [5]. Functional languages appear to be a good match for this technique
due to their lack of side effects. Laziness, however, presents a problem in that
values presented to the user might not be evaluated yet. Nilsson and Fritzson
make an in-depth examination of algorithmic debugging in the context of lazy
functional languages [13].

8 Conclusion and Future Work

Traditional Haskell testing tools like QuickCheck are of limited use when testing
Lava circuits. Many properties that are easy to express over finite data structures
like Comb are more cumbersome over unbounded ones such as Seq. They also offer
no easy way to test the generated VHDL code.

Probes present a method of observing intermediate values in the shallow em-
bedding without modifying the circuit interface. Their use is intuitive in the to
a hardware designer accustomed to thinking of wires and observing waveforms.
The dual shallow/deep embedding used by Kansas Lava signals is crucial for their
implementation. In order to test VHDL generation, they permit an automated
comparison of the deep and shallow embeddings.

While the current system is primarily useful to the developers of Kansas Lava,
one possible future direction is to adapt the framework to be a true algorithmic
debugger, with the Lava user as the oracle. Alternatively, this framework could
be used to test circuit optimizations, using the unoptimized circuit as an oracle
for the optimized one.

The full implications of the ability of probes to bound and extract subcircuits
also remains to be explored. We can envision a hybrid execution model, running
some parts of the circuit in hardware while simulating others using the shallow
embedding. Efforts to visualize circuits can also be greatly improved. Large cir-
cuits may contain millions of nodes, but probes would allow us to group related
parts of the circuit and view it at a more abstract level.

What’s the Matter with Kansas Lava? 117

References

1. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in haskell.
In: International Conference on Functional Programming, pp. 174–184 (1998)

2. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. ACM SIGPLAN Notices, 268–279 (2000)

3. Matthews, J.R.: Algebraic Specification and Verification of Processor Microarchi-
tectures. PhD thesis, University of Washington (1990)

4. Gill, A., Bull, T., Kimmell, G., Perrins, E., Komp, E., Werling, B.: Introducing
Kansas Lava. In: Morazán, M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041,
pp. 18–35. Springer, Heidelberg (2010)

5. Silva, J.: A comparative study of algorithmic debugging strategies. In: Puebla, G.
(ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 143–159. Springer, Heidelberg (2007)

6. Av-Ron, E.: Top-Down Diagnosis of Prolog Programs. PhD thesis, Weizmanm
Institute (1984)

7. Gill, A., Runciman, C.: Haskell Program Coverage. In: Proceedings of the 2007
ACM SIGPLAN Workshop on Haskell. ACM Press, New York (2007)

8. Jones Jr., D., Marlow, S., Singh, S.: Parallel performance tuning for haskell. In:
Haskell 2009: Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, pp.
81–92. ACM, New York (2009)

9. Chitil, O., Runciman, C., Wallace, M.: Freja, hat and hood - a comparative eval-
uation of three systems for tracing and debugging lazy functional programs. In:
Mohnen, M., Koopman, P. (eds.) IFL 2000. LNCS, vol. 2011, pp. 176–193. Springer,
Heidelberg (2001)

10. Nilsson, H.: Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linköping, Sweden (May 1998)

11. Claessen, K., Runciman, C., Chitil, O., Hughes, J., Wallace, M.: Testing and tracing
lazy functional programs using quickcheck and hat. In: Jeuring, J., Jones, S.L.P.
(eds.) AFP 2002. LNCS, vol. 2638. Springer, Heidelberg (2003)

12. Gill, A.: Debugging haskell by observing intermediate data structures. In: Pro-
ceedings of the 2000 ACM SIGPLAN Workshop on Haskell, Technical report of
the University of Nottingham (2000)

13. Nilsson, H., Fritzson, P.: Algorithmic debugging for lazy functional languages. Jour-
nal of Functional Programming 4, 337–369 (1994)

Types and Type Families for

Hardware Simulation and Synthesis

The Internals and Externals of Kansas Lava

Andy Gill, Tristan Bull, Andrew Farmer, Garrin Kimmell, and Ed Komp

Information Technology and Telecommunication Center,
Department of Electrical Engineering and Computer Science,

The University of Kansas,
2335 Irving Hill Road,
Lawrence, KS 66045

{andygill,tbull,anfarmer,kimmell,komp}@ittc.ku.edu

Abstract. In this paper, we overview the design and implementation
of our latest version of Kansas Lava. Driven by needs and experiences
of implementing telemetry circuits, we have made a number of recent
improvements to both the external API and the internal representations
used. We have retained our dual shallow/deep representation of signals
in general, but now have a number of externally visible abstractions
for combinatorial, sequential, and enabled signals. We introduce these
abstractions, as well as our new abstractions for memory and memory
updates. Internally, we found the need to represent unknown values inside
our circuits, so we made aggressive use of type families to lift our values
in a principled and regular way. We discuss this design decision, how
it unfortunately complicates the internals of Kansas Lava, and how we
mitigate this complexity.

1 Introduction

Kansas Lava is a modern implementation of a Haskell hosted hardware descrip-
tion language that uses Haskell functions to express hardware components, and
leverages the abstractions in Haskell to build complex circuits. Lava, the given
name for a family of Haskell based hardware description libraries, is an idiomatic
way of expressing hardware in Haskell which allows for simulation and synthesis
to hardware. In this paper, we explore the internal and external representation
of a Signal in Kansas Lava, and how different representations of signal-like
concepts work together in concert.

By way of introducing Kansas Lava, consider the problem of counting the
number of instances of True in each prefix of an infinite list. Here is an executable
specification of such a function in Haskell:

counter :: [Bool] -> [Int]

counter xs = [length [() | True <- take n xs] | n <- [0..]]

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 118–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Types and Type Families for Hardware Simulation and Synthesis 119

Of course, this function is not a reasonable implementation. In practice, we could
use a function defined in terms of its previous result.

counter :: [Bool] -> [Int]

counter xs = res

where res = [if b then v + 1 else v | (b,v) <- zip xs old]

old = 0 : res

Haskell programmers get accustomed to using lazy lists as one of the replace-
ments for traditional assignment. The counter function here can be considered
a mutable cell, with streaming input and output, even though referential trans-
parency has not been compromised.

Functional programmers share common thinking with hardware designers
when designing cooperating processes communicating using lazy streams. Lava
descriptions of hardware are simply Haskell programs, similar in flavor to the
second counter function, that tie together primitive components using value re-
cursion for back edge creation. Our counter example could be written as follows
in Lava.

counter :: Signal Bool -> Signal Word32

counter inc = res

where res = mux2 inc (old + 1,old)

old = delay 0 res

Lava programs are constructed out of functions like counter, and blocks of
functionality with stored state communicate using signals of sequential values,
just like logic gates and sequential circuits in hardware. These descriptions of
connected components get translated into hardware gates, other entities, and
signals between them.

2 Kansas Lava

At KU, we developed a new version of Lava, which we call Kansas Lava[6], to
help generate of a specific set of rather complex circuits that implement high-
performance high-rate forward error correction codes. This paper discusses our
experiences of attempting to use our new Lava. By way of background, the three
main features in this original version of Kansas Lava were:

– Dual-use Signal. That is, we can use the same Signal for interpretation
and for generation of VHDL circuits. The above circuit example could be
directly executed inside GHCi, or reified into VHDL without any changes
to our circuit specification.

– Use of lightweight sized-types to represent sized vectors. Our vector type,
called Matrix takes two types, a representation of size, and the type of the
elements in the matrix itself.

– Use of IO-based reification [5] for graph capture. The loop in the counter ex-
ample above becomes a list of primitives and connections internally, making
VHDL generation straightforward.

120 A. Gill et al.

So what went wrong and what worked well with Kansas Lava? In summary, we
found the need to make the following changes:

– We fracture our Signal type (as used above) into two types Seq and Comb,
for representing values generated by sequential and combinatorial circuits,
and connect the two types with a type class (section 3).

– We then introduce functions for commuting types that contain our Seq and
Comb, giving a representation agility we found necessary (section 4).

– We add a phantom type for clock domains, which allows us to represent cir-
cuits with multiple clocks in a way that ensures we have not misappropriated
our clocks (section 5).

– We introduce the possibility of unknown values into our simulation embed-
ding (section 6).

– With these building blocks, we provide various simple protocols for hardware
communications (section 7).

Furthermore, this paper makes the following contributions:

– We document the shortcomings of our original straightforward implementa-
tion of the Lava ideas and our new solutions and design decisions.

– Some options we have chosen were not available to the original Lava develop-
ers. In particular, type families [3] are a recent innovation. This paper gives
evidence of the usefulness of type families, and documents the challenges
presented by using type families in practice.

– Representation agility, that is the ability to be flexible with the represen-
tations used for communication channels, turned out to be more important
than we anticipated. We document why we need this flexibility and our so-
lution, a variant of commutable functors.

3 Sequential and Combinatorial Circuits

Haskell is a great host for Domain Specific Languages (DSL), like Kansas Lava.
Flexible overloading, a powerful type system, and lazy semantics facilitate this.
An embedded DSL in Haskell is simply a library with an API that makes it feel
like a little language, customized to a specific problem domain. There are two
flavors of embedded DSLs:

– First, DSLs that use a shallow embedding, where values are computed
with directly. Most definitions of Monads in Haskell are actually shallow
DSLs, for example. The result of a computation in a shallow DSL is a value.

– Second, DSLs that use a deep embedding build an abstract syntax tree.
The result of a computation inside a deep DSL is a structure, not a value,
and this structure can be used to compute a value.

In our first iteration of the embedded DSL Kansas Lava [6], we decided to pro-
vide a principal type, Signal, and all Kansas Lava functions used this type to
represent values over wires that change over time. Kansas Lava is unusual, in

Types and Type Families for Hardware Simulation and Synthesis 121

that it contains a shallow and deep embedding at the same time. This is so the
same Signal can be both executed and reified into VHDL, as directed by the
Kansas Lava user. The shallow embedding (direct values) was encoded as an
infinite stream of direct values and the deep embedding (abstract syntax tree)
was a phantom typed [9] abstract syntax tree. Slightly simplified for clarity, we
used:

data Signal a = Signal (Stream a) (D a)

data Stream a = a :~ Stream a -- No null constructor

type D a = AST

data AST = Var String -- Simplified AST

| Entity String [AST]

| Lit Integer

We can see that Signal is an abstract tuple of the shallow Stream a, and the
deep abstract syntax tree, D a. Using Signal in this form, we can write opera-
tions that support both the shallow and deep components of Signal. We could
write functions like and2, which acted over Signal Bool in this manner.

and2 :: Signal Bool -> Signal Bool -> Signal Bool

and2 (Signal a ae) (Signal b be) = Signal (zipWith (&&) a b)

(Entity "and2" [ae,be])

Here, we can see that the definition of and2 splits both arguments into the deep
and shallow components, then recombines them. The shallow result is imple-
mented using an appropriately typed zipWith over the boolean stream, and the
deep result a single node with the name "and2".

The first issue we faced was one of semantic conciseness. For repre-
senting a sequential use of and2, values that change over time stream in and the
result, also a value that changes over time, streams out. However, often we were
writing combinatorial circuits, to be later instantiated as components inside a
larger sequential circuit. Combinatorial circuits have no state; like a function
call they take and return values without history. So the types of our functions
were saying streams of values (which can have an arbitrary historical memory),
but we wanted to think of our circuits as being run many times, independently.

The analog in functional programming is base values compared to infinite lists
or streams of these base values. We wanted a way of taking an operation over
a base value, like Bool, and lifting it into an operation over streams, where the
original operation is applied point-wise. Haskell has many such lift functions:
map, zipWith, liftM, liftA2, to name a few. With this in mind, we defined the
retrospectively obvious relationship.

data Comb a = Comb a AST -- working definition; to be refined

data Seq a = Seq (Stream a) AST -- working definition; to be refined

122 A. Gill et al.

liftSeq0 :: Comb a -> Seq a

liftSeq1 :: (Comb a -> Comb b) -> Seq a -> Seq b

liftSeq2 :: (Comb a -> Comb b -> Comb c) -> Seq a -> Seq b -> Seq c

In this way, we can be completely explicit about what a value means, and how
it would be generated. But what type do we give for and2? Both a Seq and a
Comb variant are reasonable, for we certainly do not want to use a lift every time
we define or use an operation over Seq.

It is worth noting at this point the connection with our “Observable” value O
in ChalkBoard [10], which serves the same purpose as Comb here. In ChalkBoard,
there is a clear and expressive distinction between using O (operating over in-
dividually sampled pixels) and Board (operating of regions of sampled pixels).
The idea of separating circuit definitions into Comb and Seq came directly from
our work on ChalkBoard. However, in circuits, we want some way of writing
the same circuit for sequential and combinatorial use. So at this point, we use a
classical Haskell type class, Signal, to join together Comb and Seq.

class Signal sig where

liftSig0 :: Comb a -> sig a

liftSig1 :: (Comb a -> Comb b) -> sig a -> sig b

liftSig2 :: (Comb a -> Comb b -> Comb c) -> sig a -> sig b -> sig c

instance Signal Comb where { ... }

instance Signal Seq where { ... }

We use the name liftSign to reflect we are now lifting into Signal, and both
Comb and Seq support this overloading. With this new class, we can give a more
general type for and2:

and2 :: (Signal sig) => sig Bool -> sig Bool -> sig Bool

and2 = liftSig2 $ \ (Comb a ae) (Comb b be)

-> Comb (a && b) (Entity "and2" [ae,be])

By making all primitives that can be both combinatorial and sequential use the
type class Signal, we can write circuits and give them either a combinatorial
(Comb) type, a sequential (Seq) type, or allow the general overloading. The types
are driving the specification of what we can do with the code we have written.

If a specific primitive is used that is sequential, then the entire circuit will
correctly inherent this. One combinator that makes this happen is register.

register :: Comb a -> Seq a -> Seq a -- working definition; to be refined

This takes a default combinatorial value, and a sequential signal to be delayed
by one (implicit) clock cycle. The types make the shapes of values – how they
might be built – explicit.

To summarize, changing Signal into a class rather than a data-type and
providing overloaded combinatorial and sequential logic gives us three possible
ways of typing many circuits. We can use the Signal class, and say this is a
circuit that can be executed as either combinatorially or sequentially; we can
use Comb to specify the one shot at a time nature of combinatorial logic; or

Types and Type Families for Hardware Simulation and Synthesis 123

we can use Seq to specify that the circuit is to be only used in a sequential
context. Furthermore, we can mix and match these three possible representation
specifications, in the way register takes both a Comb and a Seq. For this extra
flexibility to work in a pragmatic way, we need some way of normalizing the
Comb-based function into a suitable type for lifting, which can be done using the
type commuting functionality discussed in the next section.

4 Commutable Functors and Signals

Which of these two types for halfAdder makes more sense?

halfAdder :: (Comb Bool,Comb Bool) -> (Comb Bool,Comb Bool)

halfAdder :: Comb (Bool,Bool) -> Comb (Bool,Bool)

The first is easier to write, because we can directly address and return the tuple.
The second may be used by using our lift functions above. We found ourselves
going around in circles between the two approaches. Both could have the same
interpretation or meaning, but can we somehow support both inside Kansas Lava
without favoring one or the other? To enable this, we invoke type families [3].

We have a class Pack, which signifies that a Signal can be used inside or
outside a specific structure. The type translation from the packed (structure
inside, Signal on the outside) to unpacked (structure outside, Signal on the
inside) is notated using an type family inside the class Pack:

class (Signal sig) => Pack sig a where

type Unpacked sig a

pack :: Unpacked sig a -> sig a

unpack :: sig a -> Unpacked sig a

This class says we can pack an Unpacked representation, and unpack it back
again. In the same way that overloaded functions operate at different types,
overloaded type families provide type synonyms at different types. For example,
type Unpacked sig a means any overloading of the class Pack at the specifics
types sig and a can be provided with a synonym Unpacked specialized for these
types.

The reason for two operations is that a packed structure does not need to
be isomorphic to its unpacked partner. Though every packed structure with an
instance will have one specific unpacked representation to use, two types can
share unpacked representations.

Reconsidering the example above, which was over the structure two-tuple, we
have the instance:

instance (Wire a, Wire b, Signal sig) => Pack sig (a,b) where

type Unpacked sig (a,b) = (sig a, sig b)

-- types given, not the code

pack :: (sig a, sig b) => sig (a,b)

unpack :: sig (a,b) -> (sig a, sig b)

124 A. Gill et al.

(The types are given rather than the tedious details of the implementation here.)
As can be seen from the types, pack packs the two-tuple structure inside a signal,
and unpack lifts this structure out again.

Consider the alternative implementations of the two halfAdder flavors given
at the start of this section.

-- unpacked version

halfAdder :: (Comb Bool,Comb Bool) -> (Comb Bool,Comb Bool)

halfAdder (a,b) = (a ‘xor2‘ b,a ‘and2‘ b)

-- packed version

halfAdder :: Comb (Bool,Bool) -> Comb (Bool,Bool)

halfAdder inp = pack (a ‘xor2‘ b,a ‘and2‘ b)

where (a,b) = unpack inp

As can be seen, there is not a huge difference in clarity, because of the generic
nature of the pack/unpack pair. In general both styles are useful, and can be
used depending on context and needs.

Sometimes, the Pack class allows access to underlying representation. For
example, consider Comb (Maybe Word8). This is a Comb of optional Word8’s. A
hardware representation might be 8 bits of Word8 data, and 1 bit of validity. Our
Unpack instance for Maybe reflects this representation.

instance (Wire a, Signal sig) => Pack sig (Maybe a) where

type Unpacked sig (Maybe a) = (sig Bool,sig a)

-- types given, not the code

pack :: (sig Bool,sig a) => sig (Maybe a)

unpack :: sig (Maybe a) -> (sig Bool,sig a)

Consider an alternative type for unpacking a Signal of Maybe.

unpack :: (...) => sig (Maybe a) -> Maybe (sig a) -- WRONG

Here, the result is a single result, and can not encode a stream of Nothings
and Just values. So in general, the unpacked structure must be able to notate
the complete space of the signal to be packed. Table 1 lists the types pack and
unpack supports.

This Pack class has turned out to be Really Useful in practice. This ability
cuts to the heart of what we want to do with Kansas Lava, using types in an
agile way to represent the intent of the computation. These transposition like

Table 1. Packed and Unpacked Pairs in Kansas Lava

Packed Unpacked

sig (a,b) (sig a, sig b)

sig (a,b,c) (sig a, sig b,sig c)

sig (Maybe a) (sig Bool,sig a)

sig (Matrix x a) Matrix x (sig a)

sig (StdLogicVector x) Matrix x (sig Bool)

Types and Type Families for Hardware Simulation and Synthesis 125

operations might look familiar to some readers. The pack and unpack operations
over pairs of functors are sometimes called dist [11]. In our case the pack and
unpack are tied to our Signal overloading; we are commuting (or moving) the
Signal.

5 Phantom Types for Clock Domains

What does Seq a mean? Seq is a sequence of values, either separated by :~ in
our shallow embedding, or by sampling values at the rising edge of an implicit
clock. Our telemetry circuits have, by design, multiple clock domains. That is,
different parts of a circuit beat to different drums. The question is: can we use
the Haskell type system to express separation of these clock domains?

We use a phantom type [9] to express the clock domain. Our new Comb and
Seq have the following definitions.

data Comb a = Comb a AST -- working definition; to be refined

data Seq clk a = Seq (Stream a) AST -- working definition; to be refined

Comb remains unaffected by clocks, and the lack of clk in the type reflects this.
Seq now has a phantom clock value, which is notationally a typed connection to
the clock that will be used to interpret the result. How do we use this clocked
Seq? For basic gates, the same interpretation (and therefore phantom type) is
placed on the inputs as the output. Consider and2, at the Seq clk type:

and2 :: Seq clk Bool -> Seq clk Bool -> Seq clk Bool

As would be expected, both inputs to and2, as well as the output, have the same
clock for interpretation of timing.

For latches and registers, we maintain this type annotation of shared inter-
pretation. We can now give our final type for register:

register :: (...) => Env clk -> Comb a -> Seq clk a -> Seq clk a

We can see that register combinator takes a combinatorially generated default
value and an input which is interpreted using the same clock domain as the
output.

The Env is a way of passing an environment to the register combinator.
Specifically, one of the design questions is: do you have an implicit or explicit
clock? From experience, we found adding an enable signal to our registers useful,
because we could test our FPGA circuits at a much slower speed than real clock
speed. Also, we needed to pass in a reset signal. Both clock enable and reset
are something that you could imagine wanting to generate from other Kansas
Lava circuits under some circumstances. We chose to explicitly have a typed
environment, and pass in the clock enable, the reset, and at the same time, an
explicit clock.

data Env clk = Env { clockEnv :: Clock clk

, resetEnv :: Seq clk Bool

, enableEnv :: Seq clk Bool

}

126 A. Gill et al.

Env is not exported abstractly, and is an explicitly passed value. So the pro-
grammer is free to pattern match on Env if needed, adding extra logic to the
reset and/or enable.

Figure 1 illustrates the timing properties of register, and clarifies what
register actually does in the context of an environment. The clk, rst, and
en are the environment. As reflected in the type, there are two inputs, and one
output.

clk

rst

en

default default

input ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE TEN

output ONE default THREE FOUR FIVE SEVEN default NINE

Fig. 1. register timing diagram

One remaining question is the representation of the data type Clock itself.
Clock is not a sequence of values interpreted using a clock; it is the clock. We
considered something like Seq clk (), but this would make it possible to invent
nonsense clocks, and leads to convoluted semantics. So we have a new type for
Clock which, like Seq, has a shallow (simulation) and deep (generation) aspect.

data Clock clk = Clock Rational (D clk)

The Rational is the clock frequency, in Hz, and the D clk is the circuit used to
generate this clock (typically provided as an input to the whole circuit). Accurate
simulation of possible race conditions based on two differently clocked circuits
is a hard problem, but we use the Rational argument to approximate different
clock rates at the interaction boundaries between clock domains.

6 Venturing into the Unknown

Often in hardware, the value of a wire is unknown. Not defaulting to some value
like zero or high, but genuinely unknown. The IEEE definition of bit in VHDL
captures this with an X notation. Such unknowns are introduced externally, or
from reset time, and represent a value outside the standard values in Haskell. For
example, when modeling hardware and transmitting a boolean, we essentially
want a lifted domain.

True False

X

���������

��������

Types and Type Families for Hardware Simulation and Synthesis 127

In this form, we have a Maybe type. But the situation is more complex for
structured types. Consider a Signal (Seq or Comb) that represents (Bool,Bool).
Through experience, we want the two elements of the tuple to have independently
lifted status. If we give the Signal a single unknown that represents both ele-
ments, then circuits in practice will over-approximate to unknown, hampering
our shallow embedding simulation. This makes sense if we consider our hardware
targets, in which a two-tuple of values will be represented by two independent
wires.

We again solve this problem using type families. We introduce a new class,
Wire, which captures the possibility of unknowns and other issues concerning
the representation of the values in wires.

class Wire w where

-- A way of adding unknown inputs to this wire.

type X w

-- check for bad things

unX :: X w -> Maybe w

-- and, put the good or bad things back.

optX :: Maybe w -> X w

pureX :: (Wire w) => w -> X w -- the pure of the X type

pureX = optX . Just

The type family X means lifted value, and there is a way of extracting the value
from the X, using unX, and a way of injecting a value into an X, using optX. In
this way, X of a specific type represents a type that can admit unknown value(s).
For example, our instance for X Bool uses Maybe.

instance Wire Bool where

type X Bool = Maybe Bool

optX (Just b) = return b

optX Nothing = Nothing

unX (Just v) = return v

unX (Nothing) = Nothing

Our instance for tuples uses tuples of X.

instance (Wire a, Wire b) => Wire (a,b) where

type X (a,b) = (X a, X b)

optX (Just (a,b)) = (pureX a, pureX b)

optX Nothing = (optX (Nothing :: Maybe a)

, optX (Nothing :: Maybe b)

)

unX (a,b) = do x <- unX a

y <- unX b

return (x,y)

Diagrammatically, we represent (Bool,Bool) that can admit failure using.

X (Bool,Bool) ⇒ (X Bool,X Bool) ⇒ (True False

X

���
���

, True False

X

���
���

)

128 A. Gill et al.

So there are 9 possible values for the pairing of the two boolean signals.

We can now give our complete types for Comb and Seq:

data Comb a = Comb (X a) (D a)

data Seq clk a = Seq (Stream (X a)) (D a)

One complication is that all function primitives now need to be written over our X
type. However, only the primitives will know how they want to handle unknowns
anyway, and we use the built-in support for the Maybe monad where possible.
So what happens in practice? Some functions are straightforward, because the
X type maps to (say) the Maybe data type. Maybe is a monad, so liftM2 can be
used:

and2 = liftS2 $ \ (Comb a ae) (Comb b be) ->

Comb (liftM2 (&&) a b)

(Entity "and2" [ae,be])

The tricky part comes when we work with any type of polymorphism, including
containers or selectors. Consider the type for mux2:

mux2 :: (Signal sig, Wire a) => sig Bool -> (sig a,sig a) -> sig a

We can see from the type that we have two arguments, a signal of Bool, which
is our conditional control, and a pair of signals. Semantically, mux2 dynamically
chooses one of the tupled signals depending on the Bool signal. We want to
capture this behavior in our shallow embedding.

Our implementation (remember this is internal code, not what the Kansas
Lava user would see or need to write) for mux2 is:

mux2 :: forall sig a . (Signal sig, Wire a)

=> sig Bool -> (sig a,sig a) -> sig a

mux2 i ~(t,e)

= liftSig3 (\ ~(Comb i ei)

~(Comb t et)

~(Comb e ee)

-> Comb (mux2shallow (witness :: a) i t e)

(Entity "mux2" [ei,et,ee])

) i t e

mux2shallow :: forall a . (Wire a) => a -> X Bool -> X a -> X a -> X a

witness = error "witness"

At first glance, this is similar in flavor to and2. The main new trick here is
the creation of a type witness to pass to mux2shallow, using a scoped type
variable [8], and the explicit use of forall to force the scoping. Without the
type witness, mux2 will never type-check the call to mux2shallow. The problem
is that without the witness, there is no way to unify the other arguments of
mux2shallow to their expected types. Type families, like X, are not injective,

Types and Type Families for Hardware Simulation and Synthesis 129

so X a ~ X b (X a unifies with X b) does not imply a ~ b, unlike (most) tra-
ditional type constructors. We use this trick for passing type witnesses all over
our implementation.

The implementation of mux2shallow can now focus on the problem at hand,
choosing a signal.

mux2shallow :: forall a . (Wire a) => a -> X Bool -> X a -> X a -> X a

mux2shallow _ i t e =

case unX i :: Maybe Bool of

Nothing -> optX (Nothing :: Maybe a)

Just True -> t

Just False -> e

We extract the value from the X Bool, which we consider abstract here, and if
it is True or False, we choose a specific signal, or generate an unknown value if
X Bool is the unknown. Again, we need to use scoped type variables, though the
behavior of mux2shallow should be clear from its definition. This way of thinking
about supporting unknowns, where we extract values from X, handle unknowns
algorithmically, and repackage things using X again is a common pattern. We
have the flexibility to include a basic hardware style thinking about unknown
values, and make extensive and pervasive use of use of it to provide hardware
style semantics to Kansas Lava users.

7 Protocols for Signals

On top of the generality of the above types, we have constructed a number of
type idioms that make building circuits easier. We have three idioms, validity
(Enabled), memory (Memory), and updates to memory (Pipe).

Validity of a value on a wire is a general concept. Often, this is done using an
enable boolean signal that accompanies another value signal. When the enable
signal is True, the value signal is present, and should be consumed. When the
enable signal is False, then the value signal is arbitrary, and should be ignored.
In Kansas Lava, we define this enable concept using:

type Enabled a = Maybe a

We could have used a literal pairing of (Bool,a), but we found this to be cum-
bersome in practice. Instead, we let the representation be the pair, and the value
be lifted using a Maybe.

instance (Wire a) => Wire (Maybe a) where

type X (Maybe a) = (X Bool, X a)

...

Using Enabled, we signify a value that may not always be valid. Kansas Lava
provides combinators that allow combinatorial circuits to be lifted into Enabled
circuits, and our implementations have a data-flow feel where the enable is the
token flowing through the circuit. The concept of Enabled, however, is distinct

130 A. Gill et al.

from our concept of unknown. Enabled is a user observable phenomenon, and
user-level decisions can be make based on the validity bit; while unknown values
are a lower-level shallow embedding implementation trick to allow our combina-
torial circuits to behave more like hardware.

Reading memory is a sequential function, from addresses to contents:

type Memory clk a d = Seq clk a -> Seq clk d

Given a Memory we can send in addresses using function application, and expect
back values, perhaps after a short discrete number of clock cycles. We defer the
actual creation of the Memory for a moment, but observe that the read requests
and the values being read share the same clock.

Writing memory is done using a sequence of address-datam write request
pairs. Specifically:

type Pipe a d = Enabled (a,d)

The pipe idiom gives an optional write command, saying write this datam (d) to
this address (a), if enabled. The name Pipe is used as a mnemonic for pushing
something small though a pipe, one piece at a time. Of course, Pipe is a general
concept, and could be used as a simple protocol in its own right.

Returning to the question of how we actually construct a Memory, we make
two observations. Our first observation is that there is an interesting symmetry
between Memory, which has a datum answer for every address, and Pipe, for
which, if we look backwards in time, we can also observe the relevant address
write. Given access to history, both represent the same thing: access to values
larger than those which a single signal can encode, though the expected imple-
mentation for both is completely different. This symmetry gives our design of
memory generation. Specifically, we have a function that takes a Seq of Pipe
and returns a Memory:

-- working definition; to be refined

pipeToMemory :: (...) => Env clk -> Seq clk (Pipe a d) -> Memory clk a d

Our second observation is that the clocking choices from the Pipe input can be
completely independent to the clocking choices for the reading of the memory.
There is no reason in hardware, other than the complexity of implementation,
that a memory must read and write based on the same clock. We can reflect this
possibility in our type. So, given a stream of such Pipe-based write requests, we
can construct a Memory:

pipeToMemory :: (...)

=> Env clk1

-> Env clk2

-> Seq clk1 (Pipe a d)

-> Memory clk2 a d

Here, pipeToMemory has two clock domains, clk1 and clk2. If the clocks are
actually the same clock, then Kansas Lava can generate simpler hardware that
can rely on this, but the full generality is to available to the user.

Types and Type Families for Hardware Simulation and Synthesis 131

Given a sequence of enabled addresses, we can also turn a Memory back into
a Pipe:

memoryToPipe :: (...)

=> Env clk

-> Memory clk a d

-> Seq clk (Enabled a)

-> Seq clk (Pipe a d)

This time, because we are reading memory, we are in the same clock domain
for all arguments to memoryToPipe. The types force this, and make this design
choice clear. A dual clock domain version of memoryToPipe is possible, but the
semantics do not generalize into the same single clock domain version, because
an extra latch would be required to handle the clock domain impedance.

Together Enabled, Memory and Pipe form a small and powerful algebraic
framework over Seq, able to express many forms of sequential communications.
We intend to exploit this in the future, using it for guiding Kansas Lava program
derivations.

8 Related Work

The ideas behind Lava, or in general, programs that describes and generate hard-
ware circuits, are well explored. The original ideas for Lava itself can be traced
back to the hardware description language μFP [13]. A pattern in the research
that followed was the common thinking between functional programming and
hardware descriptions. A summary of the principles behind Lava specifically can
be found in [2] and [4].

The ForSyDe system [12], which is also embedded in Haskell, addresses many
of the same concerns as Kansas Lava. Like Kansas Lava, ForSyDe provides both
a shallow and deep embedding, though in ForSyDe this is done via two distinct
types and using the Haskell import mechanism. Additionally ForSyDe provides
a rich design methodology on top of the basic language, and supports many
“models of computation” [7]. The principal differentiator of Kansas Lava is its use
of type familes, which allow a single executable model to be utilized effectively.
Kansas Lava has also pushed further with the family of connected signal types,
and has taken a type-based approach to supporting multiple clock domains. A
more complete formal comparison of the two systems remains to be done.

Kansas Lava is a modeling language. It models communicating processes,
currently via synchronous signals. There are several other modeling languages
that share this basic computational basis, for example Esterel [1]. There are
many other models for communicating processes, and each model family has
many language-based implementations. The overview paper written by Jantsch,
et. al. [7] gives a good summary of this vast area of research.

9 Conclusions

In this paper, we have seen a number of improvements to Kansas Lava, unified
by a simple principle: how can we use types to express the nature and limitation

132 A. Gill et al.

of the computation being generated by this Kansas Lava expression? We have
made many more changes than we anticipated to Kansas Lava to turn it into a
useful VHDL generation tool. For now, however, Kansas Lava as a language has
somewhat stabilized.

Each change was initiated because of a specific shortcoming. We separated
the types of combinatorial and sequential circuits because we were writing com-
binatorial circuits and imprecisely using the universal signal type, which was
sequential. We provided generic mechanisms for commuting signals, so that we
could have our cake (write functions in the style we find clearest) and eat it too
(lift these functions if necessary). We used phantom types for clock domains, be-
cause we do not trust ourselves to properly render circuits with multiple clocks
without type assistance. Finally, we allow the representation of the unknown
in our simulations despite the pervasive consequence of the choice, because our
simulations were not matching our experience with generated VHDL.

We hope that we can build up a stronger transformationally based design
methodology round Kansas Lava. Currently we have a number of large circuits
where we have translated high level models systematically into Lava circuits,
where large is defined as generating millions of non-regular discrete logic units.
Our largest circuit to date is about 1500 lines of Kansas Lava Haskell. The
commuting of signals has turned out to be extremely useful when deriving our
circuits from higher-level specifications. Writing correct, efficient circuits is hard,
and we hope to address at least some of these circuits as candidates for our
methodologies.

Acknowledgments

We would like to thank the TFP referees for their useful feedback.

References

1. Berry, G.: The constructive semantics of pure Esterel (1999),
http://www-sop.inria.fr/esterel.org/files/

2. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in haskell.
In: International Conference on Functional Programming, pp. 174–184 (1998)

3. Chakravarty, M.M.T., Keller, G., Jones, S.P.: Associated type synonyms. In: ICFP
2005: Proceedings of the Tenth ACM SIGPLAN International Conference on Func-
tional Programming, pp. 241–253. ACM, New York (2005)

4. Claessen, K.: Embedded Languages for Describing and Verifying Hardware. PhD
thesis, Dept. of Computer Science and Engineering, Chalmers University of Tech-
nology (April 2001)

5. Gill, A.: Type-safe observable sharing in Haskell. In: Proceedings of the 2009 ACM
SIGPLAN Haskell Symposium (September 2009)

6. Gill, A., Bull, T., Kimmell, G., Perrins, E., Komp, E., Werling, B.: Introducing
Kansas Lava. In: Morazán, M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041,
pp. 18–35. Springer, Heidelberg (2010)

http://www-sop.inria.fr/esterel.org/files/

Types and Type Families for Hardware Simulation and Synthesis 133

7. Jantsch, A., Sander, I.: Models of computation and languages for embedded system
design. IEE Proceedings on Computers and Digital Techniques 152(2), 114–129
(2005); Special issue on Embedded Microelectronic Systems

8. Jones, S.P., Shields, M.: Lexically scoped type variables,
http://research.microsoft.com/en-us/um/people/simonpj/papers

/scoped-tyvars/

9. Leijen, D., Meijer, E.: Domain specific embedded compilers. In: 2nd USENIX Con-
ference on Domain Specific Languages (DSL 1999), Austin, Texas, pp. 109–122
(October 1999)

10. Matlage, K., Gill, A.: ChalkBoard: Mapping functions to polygons. In: Morazán,
M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041, pp. 55–71. Springer, Heidel-
berg (2010)

11. McBride, C., Patterson, R.: Applicative programing with effects. Journal of Func-
tional Programming 16(6) (2006)

12. Sander, I.: System Modeling and Design Refinement in ForSyDe. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden (April 2003)

13. Sheeran, M.: mufp, a language for vlsi design. In: LFP 1984: Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, pp. 104–112. ACM,
New York (1984)

http://research.microsoft.com/en-us/um/people/simonpj/papers/scoped-tyvars/
http://research.microsoft.com/en-us/um/people/simonpj/papers/scoped-tyvars/

Testing with

Functional Reference Implementations

Pieter Koopman and Rinus Plasmeijer

Institute for Computing and Information Sciences (ICIS),
Radboud University Nijmegen, The Netherlands

{pieter,rinus}@cs.ru.nl

Abstract. This paper discusses our approach to test programs that de-
termine which candidates are elected in the Scottish Single Transferable
Vote (STV) elections. Due to the lack of properties suited for model-
based testing, we have implemented a reference implementation in a pure
functional programming language. Our tests revealed issues in the law
regulating these elections as well as the programs implementing the rules
that are offered for certification. Hence, certification by testing with a
reference implementation is able to reveal problems in the software to be
certified. Functional programming languages appeared to be an excellent
tool to implement reference implementations. The reference implemen-
tation was developed quickly and none of the differences found was due
to an error in the reference implementation.

1 Introduction

In traditional testing techniques the test cases are designed by a test engineer.
The test engineer specifies some inputs and the expected output of the imple-
mentation under test (iut). These test cases are executed by hand, or by a special
purpose automatic test tool. The automatic execution of tests has the advan-
tage that it is faster and more reliable. This is especially convenient for repeated
testing (called regression testing) after changes in the iut.

Model-based testing is a powerful technique to increase the confidence in the
quality of software. In model-based testing the test engineer specifies a general
property rather than concrete input-output pairs. Usually the inputs for the
test can be derived automatically. Even if this is not possible, the model-based
approach has the advantage that the specified property makes it clearer what is
tested, it is easy to execute more tests, and it is much easier to adapt the tests
if changed system properties require this.

In order to use model-based testing it is crucial to have a property relating
input and output in a sufficiently powerful way, or a set of these properties.
Usually such properties can be deduced from the specification of the program,
even if the specification is informal. In this paper we show how model-based
testing can be used if it is not possible to formulate sufficiently powerful prop-
erties relating input and output. We construct a reference implementation, ri,
for the iut and require that this ri produces the same results as the iut for all

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 134–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Testing with Functional Reference Implementations 135

inputs. This is expressed by the property: ∀ i ∈ Input . iut i = ri i. This property
is tested by evaluating it for a large number of inputs i. Preferably these inputs
are generated automatically. Even if the inputs are generated manually instead
of automatically, this approach is beneficial when we want to execute a large
number of tests since we have to create and maintain only one ri instead of a
large number of handcrafted input-output pairs. Obviously this approach only
works if we can create a reference implementation for reasonable costs.

The main requirements for ri are clearness and a low cost and fast develop-
ment. Execution speed is less important, a slow ri will only slowdown the test
execution, but not the iut. Also a nice user interface is not required, in the auto-
matic tests we compute iut i = ri i by a program rather than manually. Maintain-
ability is not required for single certification of the iut, but becomes important
if we want to perform regression tests on the iut. Given these requirements for
the ri, functional programming languages are the ideal tool to construct the ri.
Given that the iut is usually not developed in a functional programming language
and that the ri is developed completely independently of the iut, it is very un-
likely that both implementations contain the same mistakes and hence pass these
tests unnoticed. Hence, correctness of the ri is desirable, but not absolutely
required.

In this paper we illustrate this approach of software testing by a real world
example. We were asked to certify two different election programs to be used
in Scottish local elections by testing. This software has to implement a specific
version of a Single Transferable Vote (STV) system [9,10].

The trend we indicate in this paper is the use of functional programs as refer-
ence implementation during the testing phase of programs written in mainstream
languages like Java. This paper presents an example that shows that this can
work very well.

In our tests we focus on input-output of the systems under test, this is called
functional testing in standard test terminology. Since we are not able to monitor
what happens inside the implementation under test our test are usually called
black-box tests: the iut is treated as a black-box. Since our tests cover the entire
system this level of testing is called system testing (in contrast to for example
unit testing that concentrates on testing individual functions or methods). Our
tests are based on a general property or model of the system, hence this way of
testing is called model-based testing. Model-based testing is significantly more
advanced than automated testing. In automated testing a user defined test suite,
set of tests, is executed automatically by some program. In model-based testing
the test tool generates a test suite, usually on-the-fly, executes these tests and
gives a verdict based on the test results.

In Section 2 we explain the STV election rules in some more detail. We explain
how the iut was tested in Section 3. Some details about the implementations
tested are given in Section 4 and details about the reference implementation
in Section 5. The issues found during testing are categorized in Section 6 and
discussed in Section 7. Finally we draw conclusions in Section 8.

136 P. Koopman and R. Plasmeijer

2 STV Election Rules

STV is a preferential voting system designed to minimize wasted votes and to
provide proportional representation while votes are explicitly for candidates and
not for party lists. When STV is used in multi-seat constituencies as in this case,
it is also called proportional representation through the single transferable vote
(PR-STV). STV usually refers to PR-STV as it does here. In Australia STV is
known as the Hare-Clark Proportional method, while in the United States it is
sometimes called choice voting or preference voting.

The key idea is that each voter gives a preference list of candidates as a vote.
This list contains at least one candidate and at most all candidates in order of
preference. When a candidate has more votes than needed to be elected or is
eliminated in the voting process, the additional votes are transferred (partly) to
the next candidate on the ballots. The orders of vote transfer and elimination
are important. The exact rules to be followed are very operationally specified in
the law for these elections. The law states how a human being should determine
the result of the election by sorting ballots and transferring ballots from one pile
to another pile with a specific weight.

For a real election there are a large number of ballots and the STV system
often needs a large number of stages to decide which candidates are elected. We
have seen up to 100 stages during the tests. To compute the election results fast
and accurately it is necessary to use a computer program that implements the
law and determines which candidates are elected based on the ballots. Obviously
such a program should be correct. Since there is no way to check the election
results for voters and candidates, one has to trust such a program. In order to
improve the confidence in this software we were asked to certify it by performing
black box tests for this system. For the certification of one iut we had to verify
the results of a test suite of over 800 elections, for the other iut no test suite was
specified.

As authors of the model-based test tool G∀st [5,6] we initially planned to state
a sufficiently strong set of logical properties and test the election software with
G∀st. G∀st is a model-based test system that automatically tries to find behavior
of the iut that is not allowed by the specification. A specification is either a
logical property, or an extended state machine. It appeared however impossible
to derive sufficiently strong logical properties relating the election results to the
input of the program (the ballots). For instance, one odd aspect of STV is that it
is non-monotonic. This means that getting more votes may prevent a candidate
from being elected in some rare situations [1,4]. Also a candidate that occurs on
the second position of each and every ballot is not necessarily elected [2]. Since
the voting software only receives one input, the set of ballots, a state-based
approach does not work either.

Instead of trying to derive logical properties from the law specifying this
version of the STV elections we decided to construct a ri that implements the
law and check for all test cases if it yields the same result as the iut. We used the
functional programming language Clean [8] to implement this ri. In this example
Input is the set of all possible elections E. This set is infinite. Even if we pose

Testing with Functional Reference Implementations 137

upper bounds on the number of candidates and ballots, the set of elections with
realistic upper bounds is way too large to enable exhaustive testing. In order
to ensure that differences between the iut and ri are found during testing our
first customer supplied a set S of about 800 elections to be used as test suite.
S contains hand crafted normal elections, borderline cases for the STV-rules,
as well as real elections from STV-elections1 used world wide, see e.g. [11]. We
also generated test suites and investigated their capability to find errors. Our
experiments show that generated test suites are able to spot the same issues as
the test suite S.

2.1 Specification of the Scottisch STV

In the first step of the election process the votes are given to the first candidate
in the ballots. The quota Q is computed as:

Q = � number of votes
number of seats + 1

� + 1

The floor brackets �x� indicate rounding down of the number x. The fraction
of x, if any, is simply removed. This definition is called the Droop quota [3], it
ensures that the number of candidates that reach the quota is at most equal to
the number of seats. Each candidate that reaches the quota is elected. When a
candidate is elected and has more votes than required, the surplus of votes is
transferred proportionally to the next candidates on the ballots assigned to that
candidate. Similarly, if a candidate is eliminated, their votes transfer to the next
candidates on the ballots of that candidate.

The election rules [10], give an operational description that guides a human to
determine the result of the election by putting ballots on piles and transferring
ballots to other piles. In more abstract terms this algorithm is:

assign ballots to the first candidate ;
while (not a l l s ea t s a r e f i l l ed)
{

declare any candidate having Q votes or more elected ;
i f (number of candidates == number of seats)

elect all remaining candidates ;
else i f (there are candidates with untransfered surplus of votes)

transfer votes of candidate with the most votes ;
else

eliminate candidate with fewest votes and transfer votes ;
}

In the situation that there is more than one candidate with the highest number
of votes, we look back in the history. If one of the candidates had more votes on
one of the previous iterations of the algorithm, the surplus of that candidate is
transferred first. Otherwise there is a tie. The law prescribes that a candidate is
1 There are many variants of the STV rules used world wide. Although different rules

might yield different results, these elections still provide realistic test cases.

138 P. Koopman and R. Plasmeijer

chosen by lot in these situations. In a real election a human has to decide which
candidate is treated first. During testing various fixed orders of elimination are
used in order to speed up testing and to obtain reproducible results. If there
are several candidates with the least number of votes for elimination the same
algorithm is used: look for a difference in the history, if that is not available it
is a tie.

Initially all votes have value one. In the transfer of votes they get a new value.
The transfer value, tv is computed as

tv =
(votes of candidate − Q) × current value

votes of candidate

The tv is truncated to five decimal places.
The votes are transferred per ballot pile to the next candidate on that ballot

that is neither elected nor eliminated. If there is not such a candidate available,
the votes are marked as nontransferable votes. Also fractions of votes that are
lost by truncation to five decimal places are added to the nontransferable votes.
The nontransferable votes are only recorded to monitor that no votes are lost.

2.2 Format of the Test Cases

Each test case is stored in a separate text file. Some typical examples are listed in
the tables 1 and 3. The first line of the file contains the number of candidates and
the number of seats. Then there is optionally a line indicating which candidates
are withdrawn, indicated by a sequence of negative numbers. Withdrawals are
not possible in the Scottish elections, the data format contains them since they
occur in some other STV elections used as test case. Then there is a series of
lines indicating the values on the ballot papers. This sequence is terminated by
a line beginning with 0. Each line starts with the number of ballot papers with
this vote distribution, followed by the numbers of the candidates and terminated
with 0.

After the votes, there are some lines containing the names of the candidates
between quotes and the name of the election. Optionally this data is followed by
some comments.

2.3 Example Election

A very small example election is the selection of 3 out of 5 candidates with
402 votes is shown in Table 1. On the left we show the actual data, on the
right an explanation. This example is designed such that fractions do no occur,
all candidates will have a natural number of votes during the entire election
process.

Table 2 contains the transfer table of votes produced by election 1. The row
labeled void contains the nontransferable votes.

Since there are 402 votes (all valid) and 3 seats, the quota Q equals 402
3+1 +1 =

101. This implies that Alice and Bob are elected immediately. Since Alice has

Testing with Functional Reference Implementations 139

Table 1. The input data for example election 1 and an explanation of this input

5 3 5 candidates, 3 positions
200 1 2 4 0 200 ballots with preference 1 2 4
125 2 5 0 125 ballots with preference 2 5
1 4 0 1 ballot with only candidate 4
76 5 0 76 ballots with only candidate 5
0 end of ballots
”Alice” name of candidate 1
”Bob” name of candidate 2
”Carol” . . .
”Dave”
”Ed”
”Example election 1” Name of this election

Table 2. The transfer table of example election 1

name initial trans 1 votes trans 2 votes elim 3 votes elim 5 votes final

Alice 200.0 -99.0 101.0 - 101.0 - 101.0 - 101.0 Elected

Bob 125.0 - 125.0 -24.0 101.0 - 101.0 - 101.0 Elected

Carol - - - - - - - - -

Dave 1.0 99.0 100.0 - 100.0 - 100.0 - 100.0 Elected

Ed 76.0 - 76.0 24.0 100.0 - 100.0 -100.0 -

void 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 100.0

total 402.0 402.0 402.0 402.0 402.0

more votes than Bob her votes are transferred first (column trans 1). After each
transfer there is a column indicating the new number of votes for all candidates.
Since Bob is already elected, he does not receive votes from Alice. In the next
iteration the votes of Bob are transferred (trans 2).

Now there are no votes to transfer and we have to eliminate a candidate.
Since Carol has less votes than Dave and Ed, she is eliminated first (elim 3).
This empty column indicating the transfer of zero votes. The absence of votes
for a candidate is indicated with a −.

Next Dave or Ed has to be eliminated since none of the remaining candidates
reaches the quota. In the current round they have an equal amount of votes,
but in a previous round Dave had more votes than Ed. So, Ed is eliminated.
There is no next candidate on the ballots of Ed, this implies that the votes are
non-transferable. Note that we start at the last vote distribution and look back
in history. If we would start at the first round, Dave is eliminated instead of Ed,
since he had less votes there.

The remaining candidate, Dave, is now deemed to be elected since the number
of remaining candidates and the number of seats to be filled are equal. Note that
Dave never reached the quota. This ends the election algorithm.

140 P. Koopman and R. Plasmeijer

2.4 Paradoxes

A number of strange effects are known in STV elections. These effects are often
called paradoxes. Paradoxes are relevant for model-based testing since they make
it harder to state properties that can be used in model-based testing.

Table 3 illustrates that being elected is nonlinear in the number of votes. The
only difference between example election 2 and 3 is that two voters swapped their
ballots from 4 3 (Dave, Carol) to 3 4 (Carol, Dave). As a consequence Carol has
more votes in the initial stage of election 3 than in election 2. Nevertheless Carol
is elected in election 2, but not in election 3. In these examples there are 26 votes
and 2 candidates need to be elected, hence Q = 9. This paradox is not due to
the small number of votes. The same effect occurs if we multiply the number of
votes by any positive constant.

These kind of paradoxes limit the general properties one can use for test-
ing election software. Among the best properties encountered are: 1) the total
amount of votes (including nontransferable votes) is equal in all stage of the
election, and 2) if a candidate reaches the quota in the first round she is always
elected. These properties are way too weak for serious tests of election software.
For this reason we have to test with a reference implementation.

An obvious condition to be satisfied is that no votes are lost in this algorithm.
The sum of the votes of the candidates and the nontransferable votes should be
equal to the initial number of valid votes after each iteration of the algorithm.

Table 3. Examples showing nonlinearity of STV

4 2 4 2
9 1 0 9 1 0
5 2 3 0 5 2 3 0
6 3 0 6 3 0
4 4 2 0 4 4 2 0
2 4 3 0 2 3 4 0
0 0
Alice Alice
Bob Bob
Carol Carol
Dave Dave
example 2 example 3

name initial elim 2 votes final name initial elim 3 votes final
Alice 9.0 - 9.0 Elected Alice 9.0 - 9.0 Elected
Bob 5.0 -5.0 - Bob 5.0 4.0 9.0 Elected
Carol 6.0 5.0 11.0 Elected Carol 8.0 - 8.0
Dave 6.0 - 6.0 Dave 4.0 -4.0 -
void 0.0 0.0 0.0 void 0.0 0.0 0.0
total 26.0 26.0 26.0 total 26.0 26.0 26.0

Testing with Functional Reference Implementations 141

3 Testing Election Software

Testing the election software is approximating the property ∀e ∈ E.iut e = ri e
by executing ∀e ∈ S . iut e = ri e for some finite set of elections S ⊂ E. The test
suite S must be large enough to spot differences between the iut and the ri with
high probability, but as small as possible to obtain results quickly. Since we had
to do certification of tested software, we expected a correct iut. Hence we did not
optimize the order of elements in S and preferred coverage above a small size.

3.1 The Notion of Equivalence of Election Results

In order to determine if iut e = ri e holds for some election e we need to compare
election results. In first approximation one is tempted to compare if the same
candidates are elected. We use a much more precise notion of equivalence. Both
programs yield a vote transfers table as shown above. Our notion of equivalence
checks for textual equivalence of these vote transfer tables.

This notion of equivalence appears to be much more sensitive for slight differ-
ences in the iut and the ri. By looking only at the elected candidates we need a
test case where such a difference influences the results of the election in order to
note the difference. Although there will always exists such test cases that reveal
the differences between the iut and the ri based on the elected candidates for all
relevant problems, it will take much more effort to find those test cases. This
would require special attention in the creation of test cases and most likely re-
quires much larger test suites. Our more precise notion of equivalence is always
right and spots differences quicker.

3.2 Test Suites

For our first certification we had to check a test suite of 808 test cases. This
test suite contained handcrafted elections to test the correct implementation of
specific aspects of the law as well as test cases taken from STV-elections world
wide. Since this test suite was largely undocumented we added our own test
cases to test borderline cases of the rules. It was easier and faster to design these
test cases than to check if these things were covered in the provided test suite.

For the next certification we developed a similar test suite. During certification
we added test cases to check our assumptions on incorrect behaviour of the iut.
By coincidence the final test suite also contains 808 test cases.

The size of the test cases ranges from 2 candidates to over 100 candidates,
and from a few votes to 99999. In the resulting vote transfer tables this takes up
to 98 stages to determine the election result.

3.3 Test Suite Generation

To investigate the power of automatic test case generation we developed a
straightforward data type representing elections (number of candidates, num-
ber of candidates to be elected, and a list of ballots). We created a generator

142 P. Koopman and R. Plasmeijer

that generates valid instances of this data type (number of candidates to be
elected smaller or equal to the number of candidates, and only valid ballots),
see [7]. We can tune the size of the test cases by setting upper bounds for the
number of candidates and the number of ballots. The generated instances were
turned to election files and handled like the other test suites.

It appeared that even with small test cases the issues found by the standard
test suites are also found by the generated test suite. We typically need more
test cases to find an issue, but that is compensated by the ease of test suite
generation. Even the total test time to find the issues was not larger for the
generated test suite since the test cases are smaller and hence testing is faster.

4 Implementations Under Test

We tested two programs to compute election results in this setup. Both programs
were only available as an executable, no source code or additional information
was available. Hence the only option was black box testing. When an issue was
found we had to deduce from the transfer tables what happened. We could not
look into the code of the iut to verify our expectations of possible errors.

iut A This program was written in Delphi. Actually there were two versions of
this program. One interactive version (2.6 MB) suited for experiments and
single election results, and one bulk test driver (525 KB) that executes all
elections in a given directory.

iut B This program was given as two Java archives (3.1 MB and 7.4 MB). We
used an external script to apply it to all test cases in a given directory.

The programs obtained for testing were tested by their manufacturers and
were given to us for certification. Our tests were no beta tests, but final testing
to obtain certification.

5 The Functional Reference Implementation

The reference implementation was written in the functional programming lan-
guage Clean. Since the reference implementation, ri, was written in first approach
to test one iut, maintainability of the program was not considered to be an issue.
We did not expect to test a second implementation ever in the future. Since the
program ri was used as reference implementation correctness was considered to
be very important. Since the program ri would be used for certification and the
speed of certification was not an issue, we always chose simple and obviously
correct solutions instead of smart and more efficient solutions. For instance we
always used lists of values and candidates instead of search trees or some other
advanced data structure.

Whenever possible we used G∀st in the standard way to test components of
this program.

Testing with Functional Reference Implementations 143

5.1 Numbers with Five Digit Precision

Numbers with five digit precision and truncation after operations play an im-
portant role in the election software. All calculations of votes and vote transfers
have to be done in five digit precision. For our reference implementation we need
a stable implementation of those numbers.

In order to avoid rounding errors and possible overflows we represent numbers
with five digit precision used for administration of the number of votes by multi-
plying them by 105 and storing this number as an integer with infinite precision
(BigInt).

: : Fixed = Fixed BigInt

class toFixed a : : a → Fixed
instance toFixed Int where toFixed i = Fixed (FACTOR ∗ toBigInt i)

FACTOR =: toBigInt (10ˆPRECISION)
PRECISION =: 5

The most important numerical operations on this type are implemented as:

instance + Fixed where (+) (Fixed x) (Fixed y) = Fixed (x + y)
instance − Fixed where (−) (Fixed x) (Fixed y) = Fixed (x − y)
instance ∗ Fixed where (∗) (Fixed x) (Fixed y) = Fixed ((x∗y)/FACTOR)
instance / Fixed where (/) (Fixed x) (Fixed y) = Fixed ((FACTOR∗x)/y)

The implementation of these operations is tested by stating some standard prop-
erties of numbers as property in G∀st.

pAssocAddFixed : : Fixed Fixed Fixed → Bool
pAssocAddFixed a b c = (a+b)+c == a+(b+c)

pAddSubFixed : : Fixed Fixed Fixed → Bool
pAddSubFixed a b c = a−b−c == a−(b+c)

Due to truncation many arithmetic properties do not hold for Fixed numbers.
Some examples are:

pDistMulFixed : : Fixed Fixed Fixed → Bool
pDistMulFixed a b c = (a+b)∗c == a∗c+b∗c

pAssocMulFixed : : Fixed Fixed Fixed → Bool
pAssocMulFixed a b c = (a∗b)∗c == a∗(b∗c)

As expected properties pAssocAddFixed and pAddSubFixed test successfully in G∀st.
When testing the properties pDistMulFixed and pAssocMulFixed it quickly finds
relevant counterexamples. The first counterexample found for pDistMulFixed af-
ter 75 tests was −0.33333 1.0 0.5. The first counterexample for pAssocMulFixed

was 0.33333 0.5 2.0 after 259 tests.
Our test results shoes clearly that using some form of floating point numbers,

e.g. doubles, and a special print function that truncates to five digits does not
work correctly. One of the systems under test used such an implementation in
early versions. This was a source of a large number of problems.

144 P. Koopman and R. Plasmeijer

It is obvious that rounding problems can be avoided by performing all com-
putations with rational numbers of infinite precision. However, this is not what
the law on the elections prescribes. Computing with such rational numbers and
truncating them to five digit precision whenever they are needed would introduce
a source of new computational differences.

5.2 Administration of Candidates

A pile of identical ballots is represented by the type Ballot.

: : Ballot
= { count : : Fixed // number of ballots in this pile

, value : : Fixed // the value of these ballots, initially the value is one
, order : : [Int] // the order of candidates on this ballot
}

In a similar way we use a record to store the information about candidates.

: : Candidate
= { ballots : : [Ballot] // the ballots currently assigned to this candidate

, votes : : Fixed // the current number of votes
, status : : Status // the status of this candidate, see below
, cName : : String // the candidate name
, cNumber : : Int // the candidate number
, trace : : [String] // trace info to build transfer table
, history : : [Fixed] // the number of votes in previous stages
}

: : Status = Eliminated | Elected | Running

The implementation of the election algorithm is basically just a parser for a data
file and careful bookkeeping according to the rules in the law.

5.3 Size of Executable

The size of the executable that generates the vote transfer table for ri and com-
pares it with the table generated by iut is only 141 KB. This is more than an
order of magnitude smaller than the iut’s. This is partly caused by the absence
of a GUI in the ri. Our ri consists of 591 lines of Clean code.

There is no information available about the development time of the iut’s.
Hence we cannot compare it with the time needed to develop our ri. Our ri was
developed and tested within a week.

6 Issues Found

The test system signals an issue each time the vote transfer tables generated
by the iut and ri are not identical. All issues are examined manually to find
the reasons causing these differences. These reasons can be categorized in the
following groups.

Testing with Functional Reference Implementations 145

1. Syntactical differences in the generated output. Since the vote transfer tables
are compared textually the system is very sensitive to further irrelevant
layout details. Some examples of differences in this class are:
Trailing zeros. A single vote can be formatted as 1, 1.0 and 1.00000.

Although these representations are clearly equivalent, they are textually
different.

Votes of eliminated candidates. All votes that were assigned to an elim-
inated candidate are transferred to other candidates, or added to the
nontransferable votes. Hence these candidates will always have no votes
left at all. This can be indicated by a blank field, a -, or 0.0.

Different number layout. One of the iut’s used the database Microsoft
SQL Server 2005. The way the numbers are printed and parsed by this
database system depends on the language settings. If Microsoft Vista is
set to Dutch the number 1.0 is displayed as 1,0.

Removing spaces from names. This obviously has no meaning for the
election result, but does cause textual differences in the vote transfer
table.

String quotes. There were different rules used to enclose strings (like the
names of candidates) in string quotes (i.e. "Koopman" or Koopman).

Most issues are solved by adapting the generated vote transfer table of the
reference implementation to the iut since this was the fastest way to progress.

2. Syntactically incorrect number of votes (e.g. 9 digits precision instead of 5).
3. Losing the last vote in a completely full ballot. This was an error in the iut

that was corrected.
4. One of the iuts looses candidates if the number of candidates in a test case was

larger than some fixed number. This results in unpredictable behavior since
results of previous elections might be used instead of the current election.
This was caused by the loader component of the iut that used a upper bound
of the number of candidates that was too small (25 in the first approach,
100 in a later version). The problem is handled by setting this upper bound
of the iut sufficiently large for all test cases.

5. Unexpected characters (like digits and characters like ‘-’) in the name of
candidates caused similar effects.

6. The law [10] states in rule 48 about vote transfer that “the calculation being
made to five decimal places (any remainder being ignored)”. In the calcula-
tion

tranfer =
surplus × value of ballot

total number of votes
this can be interpreted in two ways: 1) truncate to 5 places after each oper-
ation, or 2) truncate to 5 places after the entire computation. In some cases
this produces different results. Hence it might influence which candidates are
elected.

7. The law [10] states in rule 50:
(3) “The returning officer shall, in accordance with this article, transfer each

parcel of ballot papers referred to in paragraph (2)(a) to the continuing
candidate for whom the next available preference is given on those papers

146 P. Koopman and R. Plasmeijer

and shall credit such continuing candidates with an additional number
of votes calculated in accordance with paragraph (4).”

(5) “This rule is subject to rule 52.”
Where rule 52 states: (2) “Where the last vacancies can be filled under
this rule, no further transfer shall be made”.

For the election of candidates it does not matter if we give (3) preference
over (5) or the other way around, for the resulting vote transfer tables it
does matter. All programs give rule 50 (3) preference over rule 50 (5), and
hence rule 52.

8. If the rules specify that some candidate has to be eliminated, the candidate
with the lowest number of votes has to be eliminated. If two or more can-
didates have this amount of votes we have to look into the history to see if
there was a difference in amount of votes. One of the implementations did
this wrong.

9. The rules do not specify how to treat blank ballots. In some election systems
a blank vote is valid. In this system they are invalid. This is done since blank
votes have an influence on the quota Q if they were treated as valid.

10. Also other kind of invalid ballots are not covered by the provided rules. A
ballot containing a nonexisting candidate is invalid. The entire ballot, not
only the invalid candidate, is ignored by the election algorithm. The Scottish
Executive has advised that this occurrence would not be an issue in the May
elections as any non-existing candidates on the ballot paper would simply
be ignored.

11. Also forms containing a candidate twice are considered to be invalid and are
ignored in the election process. However, such a form will be harmless in the
election algorithm. When the second occurrence of the candidate is consid-
ered by the algorithm the candidate has either been elected or eliminated.
In both situations the candidate number will be ignored by the algorithm.

12. In general an STV election contains the possibility for candidates to with-
draw themselves. In the Scottish elections this cannot occur. Some test cases
taken from other STV elections contain withdraw candidates. Programs iut

A and ri handles this correctly, iut B does not handle this. Since candidates
cannot withdraw themselves in the Scottish elections, these test cases are
ignored.

7 Test Results

During the tests we found a large number of issues. These issues can be grouped
as indicated above. In this Section we indicate the issues found by source.

7.1 The Law

The Scottish law on these elections [10] specifies in an imperative way how a
human being can compute the election result. On a number of minor points the
law is not absolutely clear:

Testing with Functional Reference Implementations 147

1. It is specified how to handle invalid ballots, but not how to handle an invalid
ballot. Obvious possibilities are ignoring the ballot altogether, move it to the
nontransferable pile immediately, treating it as an empty ballot, and using
the part of the vote that is valid (if any).

2. Rule 48 states that numbers must have 5 decimal places precision and num-
bers must be truncated rather than rounded. It is unclear whether this must
be done after each step, or after an entire computation. A representative of
the Scottish executive indicated that the last interpretation is preferred.

3. Rule 50 allows two possible interpretations on the necessity of vote transfer if
after the elimination of some candidate the remaining number of vacancies is
equal to the remaining number of candidates. As indicated above, this does
not influence the elected candidates. All programs do the vote transfer.

7.2 The Reference Implementation

After building and testing ri on its own only one real change was necessary.
As ‘obvious’ in a functional programming language like Clean we implemented
the five digit numbers as an abstract data type and implemented the needed
operators (addition, subtraction, multiplication and division) for this type. This
implies truncation after each operation, but that is not the interpretation of the
law preferred by the Scottish executive. Hence we had to turn the abstract type
into an ordinary type and adapt the computation of the vote transfer.

Other modifications are layout details of the vote transfer table to make it
textually identical to the details of the corresponding tables of iut A and iut B.
This implies that there are two versions of this layout.

7.3 The IUTs

All other issues where due to problems with iut A and iut B. There were more
problems as expected for a certification project. The iut B caused significantly
more issues than iut A.

7.4 Execution Speed

Much to our surprise the execution speed of the ri was considerably higher than
the execution speed of iut A. The speed difference was a factor 2 to 5, depending
a little on the size of the input and the number of rounds needed in the election.
This was unexpected since lazy functional languages are not famous for their
speed. Especially since we have always chosen the simple and obviously correct
solution instead of smart and efficient solutions we did not expect ri to be faster
than any iut. We did nothing special to make ri efficient.

The speed difference between ri and iut B was striking: ri is about a factor
250 faster than iut B. This is partly caused by the fact iut B uses a database
intensively. The amount of data to be maintained by the election software is not
that large that a database is required.

148 P. Koopman and R. Plasmeijer

This low performance was a bottleneck in the tests. It takes about 30 minutes
for the ri to compute the results for a large test suite and to compare these with
the results of the iut. The program iut B takes more than five days to process the
entire test suite. Each time we find an error in the iut we have to repeat all tests
in the entire test suite.

7.5 Choices

When the votes of a candidate must be transferred and there are two or more
candidates having exactly the same amount of votes, also in all previous stages,
the law states that a candidates must be chosen by lot. The interactive version
of the iut’s ask the user to indicate a candidate, iut A has to possibility to chose
a candidate pseudo randomly.

In practise this is very rare. However, it is easy to generate test cases where
n candidates have the same amount of votes. In the worst case there are n!
possibilities to eliminate them one by one (it is often not necessary to eliminate
them all).

Our first plan was to generate all possible vote transfer tables and see if one
of them is equal to the table generated by the iut. However it is obvious that
this does not work for test cases with for instance 10 or more candidates with
an equal number of votes. Hence we fixed the elimination order to be used in
the test.

7.6 Vote Transfer Tables

In retrospect it would have been easier to transpose the vote transfer table.
Now each line contains the votes of one candidate during all stages. If we find
a difference it is the first candidate that has in some stage a different number
of votes in the tables from the iut and the ri. In tracking down the source of
such an issue it is much more practical to have an indication of the first stage
that shows a difference. Although these versions of the tables are equivalent, a
transposed version would have been more convenient if we could have anticipated
the number of issues to investigate more accurately.

8 Conclusions

This paper reports on the certification of election software by black-box testing.
Due to the absence of suited properties we tested the iut by comparing its re-
sults with a reference implementation. The test results indicate that testing was
worthwhile for both implementations tested. None of the iuts was correct. The
construction of the reference implementation and the tests also indicate some
points of underspecification in the law regulating these elections. We compared
handcrafted test suites extended by real election results with an automatically
generated test suite. Both test suites were able to spot the same errors in the
iuts. Neither of these test suites was significantly more effective in finding issues.

Testing with Functional Reference Implementations 149

The trend we signal in this paper is the use of functional programs as refer-
ence implementation. Functional languages appeared to be very suited for this
purpose, it is easy and fast to produce a reference implementation. We were
very pleased that this program caused by far the least number of issues during
the tests. Much to our surprise it was also clearly the fastest implementation,
although we did nothing to make the reference implementation efficient.

Acknowledgement. We thank Steven Castelein for helping us to develop
scripts to execute series of test runs automatically and Peter Achten for his
feedback on draft versions of this paper.

References

1. Aslaksen, H., Mcguire, G.: Mathematical aspects of irish elections. Irish Mathe-
matics Teachers Association Newsletter 105, 40–59 (2006)

2. Fishburn, P.C., Brams, S.J.: Paradoxes of preferential voting. Mathematics Maga-
zine 56(4), 207–214 (1983)

3. Droop, H.: On methods of electing representatives. Journal of the Statistical Society
of London 44(2), 141–202 (1881)

4. Farrell, D.M.: Comparing electoral systems. Prentice Hall/Harvester Wheatsheaf,
London, New York (1997)

5. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: generic automated
software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670, pp. 84–
100. Springer, Heidelberg (2003)

6. Koopman, P., Plasmeijer, R.: Fully automatic testing with functions as specifica-
tions. In: Horváth, Z. (ed.) CEFP 2005. LNCS, vol. 4164, pp. 35–61. Springer,
Heidelberg (2006)

7. Koopman, P., Plasmeijer, R.: Generic generation of elements of types. In: Pro-
ceedings of the 6th Symposium on Trends in Functional Programming, TFP 2005,
Tallin, Estonia, September 23-24, pp. 163–178. Intellect Books (2005) ISBN 978-
1-84150-176-5

8. Plasmeijer, R., van Eekelen, M.: Concurrent Clean language report (version 2.0)
(December 2001), http://www.cs.ru.nl/~clean/

9. The Electoral Commission. Vote Scotland, http://www.votescotland.com
10. The Scottish Ministers. Scottish local government elections order 2007. Rule 45–52

(2006)
11. Wikipedia. Single transferable vote,

http://en.wikipedia.org/wiki/Single_transferable_vote

http://www.cs.ru.nl/~clean/
http://www.votescotland.com
http://en.wikipedia.org/wiki/Single_transferable_vote

Every Animation Should Have a Beginning,

a Middle, and an End

A Case Study of Using a Functor-Based
Animation Language

Kevin Matlage and Andy Gill

Information Technology and Telecommunication Center,
Department of Electrical Engineering and Computer Science,

The University of Kansas,
2335 Irving Hill Road,

Lawrence, KS 66045, USA
{kmatlage,andygill}@ku.edu

Abstract. Animations are sequences of still images chained together
to tell a story. Every story should have a beginning, a middle, and an
end. We argue that this advice leads to a simple and useful idiom for
creating an animation Domain Specific Language (DSL). We introduce
our animation DSL, and show how it captures the concept of beginning,
middle, and end inside a Haskell applicative functor we call Active.
We have an implementation of our DSL inside the image generation
accelerator, ChalkBoard, and we use our DSL on an extended example,
animating a visual demonstration of the Pythagorean Theorem.

1 Introduction

Consider the problem of specifying the corners of a rotating square that is also
moving from one location to another. There are two fundamental things hap-
pening over time: rotation and translation. The location of the corners is simply
the combination of both movements, without interaction or interference. When
describing more complex animations, however, we want to model simple interac-
tions, and more generally, causality. Specifically, we want to introduce concepts
like termination and sequentiality, and be able to describe interactions as one
thing happening after another. In this paper, we discuss a composable solution to
this description challenge which uses a Domain Specific Language (DSL) on top
of Haskell [1] to express values that change over time, and also have a beginning
and an end.

The fundamental question when crafting any type-based DSL is figuring out
the key types and the primitives for these types. When we look at our target ap-
plication, educational animations, and also look at animation tools in PowerPoint
and Keynote, we make the following two basic observations. First, animations
take a finite length of time, with a specific start and end point. In a sense, ani-
mations have a presence inside time, in the same way as a square can be present

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 150–165, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Every Animation Should Have a Beginning, a Middle, and an End 151

time
0 1

age

1

0

time
0 1

age

1

0

(a) (b)

Fig. 1. The age combinator

on a 2D plane. We postpone considering infinite dynamic animations with our
DSL, because we are explicitly attempting to build a language for scripting finite
animations. Second, animations also often contain static, infinite elements, per-
haps background images, that do not change for the duration of an animation.
From these simple observations, we propose two primitives in our DSL, one that
changes over time and is finite, and one that is static and infinite.

This paper presents these primitives, and a combinator-based language for
creating dynamic animation using the primitives. We use an applicative func-
tor [2] structure to implement this abstraction and incur other advantages, such
as the clean and easy composition of animations (Section 2). We also provide
a number of helper combinators and predefined functions for quickly creating
functional animations (Section 4). Finally, we show how our language can be
used to easily create practical, non-trivial animations (Section 5).

2 The Active Language

Our solution to this animation problem is the Active language. The conceptual
framework behind the Active language is that all animations have a beginning,
a middle, and an end. For every object in our language, we normalize the time
component of an animation such that the value starts from 0 (the beginning
of animation time), and ending at 1 (the end of animation time). This can be
illustrated using the figure 1(a), where the dots are the beginning and end, and
the line is the progression, or age, of an animation. The user of age does not
need to be concerned about when each animation runs in the global time scale,
but can instead build each animation with the assumption that it will act over
its own 0 to 1 progression, and compose them later.

What happens before something is animated, or after animation? We choose
to have an Active value be a constant before and after animation. Consider
animating a object traveling; it is in one place before the animation, in transition
during the animation, and one another place after the animation. We therefore
choose our basic Active object to be of unit size in time (from 0 to 1), but
also have a value before and after any animation. Figure 1(b) illustrates our
realization of the representation in 1(a).

152 K. Matlage and A. Gill

Our implementation of the Active language accomplishes this timing abstrac-
tion using a data type Active and a few primitive functions. The Active data
type is defined (in Haskell) as:

data Active a -- Dynamic Animation

= Active Rational -- start time

Rational -- stop time

(Rational -> a) -- what to do in this time frame

| Pure a -- Static Animation

The first two Rationals are used to hold timing information, specifically
the start and stop time of the current object. The function takes a Rational
argument, representing time values between the start and stop times, and returns
an animated value in the context of the time. The alternative constructor, Pure,
is the way we represent an Active that is constant over time. The most primitive
value in the Active DSL is age:

age :: Active UI

age = Active 0 1 f

where f n | n < 0 = error $ "age value negative" ++ show n

| n > 1 = error $ "age value above unit (1)" ++ show n

| otherwise = fromRational n

age represents the most basic Active, which has a start time of 0 and a stop
time of 1, as discussed above. This Active object also holds within it a basic
function that returns the input Rational time value as a UI. A UI is simply
a type synonym for Float, but is used to represent only those values on the
interval [0,1]. Because the function stored within age returns a UI, age is of the
type Active UI. Actions can then be mapped over this returned UI, but in order
to do this, we must first define Active as a functor, given below for the curious
reader. We also provide applicative functor capabilities. Specifically, applicative
functors as used here allow for the declaration of a constant (static, infinite)
Active value and the combination two Active values:

instance Functor Active where

-- fmap :: (a -> b) -> Active a -> Active b

fmap f (Active start stop g) = Active start stop (f . g)

fmap f (Pure a) = Pure (f a)

instance Applicative Active where

-- pure :: a -> Active a

pure a = Pure a

-- (<*>) :: Active (a -> b) -> Active a -> Active b

(Pure a) <*> b = fmap a b

(Active start0 stop0 f0) <*> (Pure a) =

Active start0 stop0 (\ i -> (f0 i) a)

a0@(Active start0 stop0 f0) <*> a1@(Active start1 stop1 f1) =

Active (min start0 start1) (max stop0 stop1)

$ \ i -> f0 (boundBy a0 i) (f1 (boundBy a1 i))

Every Animation Should Have a Beginning, a Middle, and an End 153

When applying two animations, using the applicative functor <*> combinator,
the interesting case is when combining two non-static animations. The first ar-
gument is a function which changes over time, the second is a value that changes
over time, and the result is the application of the function to the argument, at
every point in time. We choose to make this combined animation start at the
earliest beginning of the two arguments, and finish at the last ending.

These definitions are particularly helpful in creating and combining anima-
tions. For example, the <*> operator allows for multiple animation functions to
easily be applied to the same initial object. This ability can be really useful if, for
instance, we wish to move an object while simultaneously scaling it. Active be-
ing an applicative functor is also helpful in creating combinators and predefined
functions, as we will see in Section 4.

age is the primary method of creating an Active object. Once we have created
an Active, all we have to do to get values over time is fmap a function over
it. Generally for animation, this function would return an image so that we
could display the returned images over time, creating an animation. The function
can actually return any value, however, as shown by this definition for linear
interpolation over time between two points:

simpleLerp :: (Float,Float) -> (Float,Float) -> Active (Float, Float)

simpleLerp (x1,y1) (x2,y2) = fmap (\ui -> lerp ui (x1,y1) (x2,y2)) age

where lerp ui (x1,y1) (x2,y2) = (x1+ui*(x2-x1) , y1+ui*(y2-y1))

This Active will return values ranging linearly from (x1,y1) to (x2,y2) over
time (though lerp would typically be a predefined library function). We can also
begin to see some of the abstraction the Active DSL provides. Notice how the
creation of this Active is completely independent from any timing information
other than its own personal time progression. This same Active can be used
to create a lerp that takes 1 second to complete or 100 seconds. The timing
can be applied to each Active object separately, using either basic functions or
built-in combinators. The primitive Active functions for handling timing effects
are scale, mvActive, and after:

scale :: Float -> Active a -> Active a

scale _ (Pure a) = Pure a

scale u (Active start stop f) = Active (scale u start) (scale u stop)

$ \ tm -> f (tm / toRational u)

mvActive :: Float -> Active a -> Active a

mvActive _ (Pure a) = Pure a

mvActive d (Active start stop f) = Active (toRational d + start)

(toRational d + stop)

$ \ tm -> f (tm - toRational d)

after :: Active a -> Active b -> Active a

after act@(Active low _ _) (Active _ high _) =

mvActive (fromRational (high - low)) act

154 K. Matlage and A. Gill

When applied to an Active object, scale will stretch or shrink the amount
of time that the object acts over. This can be used to make certain animations
longer or shorter. It should be noted that this definition is actually an instance
of a previously-defined Scale type class. This is not critical to understanding
the details of scale except that it explains the call to scale within the body
of the definition. This is a call to scale’s previously-defined Rational instance
(which simply multiplies the two numbers).

mvActive is used for translating time values. When applied to an Active ob-
ject, mvActive moves an animation forwards or backwards in time with regards
to the rest of the scene. It can be used to put parts of an animation in the right
place or offset animations to start at slightly different times.

The last basic timing function is the after function. It takes two Active’s
as parameters and changes the time values of the first so that it will occur
immediately after the second one finishes. This function is especially important
for building up combinators to manage the ordering of animations in a scene, as
we will see in Section 4.

3 ChalkBoard

The ChalkBoard project is an attempt to bridge the gap between the clear
specification style of a language with first-class images, and a practical and effi-
cient rendering engine. We will use ChalkBoard as an engine to display images
generated using Active. The hook for ChalkBoard is that with the first-class
status offered by pure functional languages comes clean abstraction possibilities,
and therefore facilitated construction of complex images from many simple and
compossible parts. This first-class status traditionally comes at a cost though—
efficiency. Unless the work of computing these images can be offloaded onto
efficient execution engines, then the nice abstractions become tremendously ex-
pensive. ChalkBoard was designed to bridge this gap by creating a functional
image description language that targeted the OpenGL standard.

In order to understand the specifics of the ChalkBoard language, we need
to think about types. In ChalkBoard, the principal type is a Board, a two di-
mensional plane of values. So a color image is a Board of color, or RGB. A color
image with transparency is a Board of RGBA. A region (or a plane where a point
is either in a region or outside a region) can be denoted using Board of Bool.
Table 1 lists the principal types of Boards used in ChalkBoard.

The basic pattern of image creation begins by using regions (Board Bool) to
describe primitive shapes. ChalkBoard supports unit circles and unit squares, as
well as rectangles, triangles, and other polygons. The primitive shapes provided
to the ChalkBoard user have the following types:

circle :: Board Bool

square :: Board Bool

rectangle :: Point -> Point -> Board Bool

triangle :: Point -> Point -> Point -> Board Bool

polygon :: [Point] -> Board Bool

Every Animation Should Have a Beginning, a Middle, and an End 155

Table 1. Boards and Type Synonyms in ChalkBoard

Board RGB Color image
Board RGBA Color image with transparency
Board Bool Region
Board UI Grayscale image of Unit Interval values

type R = Float Represent real numbers
type Point = (R,R) 2D coordinate or point

To “paint” a color image, we map color over a region. Typically, this color im-
age would be an image with the areas outside the original region being completely
transparent, and the area inside the region having some color. This mapping can
be done using the combinator choose, and the <$> operator:

choose (withAlpha 1 blue) transparent <$> circle

We choose the color blue with an alpha value of 1 for inside the region, and
transparent for outside the region. The <$> operator is a map-like function which
lifts a specification of how to act over individual points into a specification of
how to translate an entire board. The types of choose and <$> are

choose :: O a -> O a -> O Bool -> O a

(<$>) :: (O a -> O b) -> Board a -> Board b

where O a is an observable version of a.
As well as translating point-wise, ChalkBoard supports the basic spatial trans-

formation primitives of scaling, moving, and rotating, which work over any
Board.

scale :: R -> Board a -> Board a

move :: (R,R) -> Board a -> Board a

rotate :: R -> Board a -> Board a

Although there are many more functions and possibilities available in Chalk-
Board, we should now know enough to begin talking about its use within the
context of the Active DSL. Any additional required ChalkBoard information
will be explained as needed, but for a better background understanding, see the
original paper on ChalkBoard [3].

4 Active Combinators

Now that we have some of the most important functions in the Active language,
we want to make using them with ChalkBoard easier. One natural way to do this
is to create combinators that integrate common Active and ChalkBoard tasks.
The first, and perhaps most essential, of these is the over function:

156 K. Matlage and A. Gill

over :: Over a => Active a -> Active a -> Active a

over a1 a2 = fmap (\ (a,b) -> a ‘over‘ b) (both a1 a2)

both :: Active a -> Active b -> Active (a,b)

both a b = pure (,) <*> a <*> b

The over function takes two Active parameters and combines them so that
both animations are displayed one on top of the other (but not necessarily at
the same time). over is actually an instance of the ChalkBoard Over type class,
which helps explain the second reference to over in the body of the definition.
This uses the ChalkBoard version of over to overlay two static objects, most
notably boards with transparency, Board RGBA.

While over and our current timing functions let us combine animation pieces
and display them in order, it can be verbose to specify a long sequence of ani-
mations that should all be overlaid and displayed at times relative to each other.
This led us to create one of the main code structures that we have used repeat-
edly to manage our scenes. The main version of this structure uses the flicker
and taking functions, though multiple derivatives of flicker have been created
for managing time in different ways. The type of these functions and the general
code structure can be seen here:

flicker :: Over a => [Active a] -> Active a

taking :: Float -> Active a -> Active a

let anim = flicker [animStep1

, taking 3 animStep2

, taking 0.5 animStep3

]

The flicker function takes a list of Active’s and combines them into one
Active object, with each animation in the list occurring immediately after its
predecessor. Each successive animation is also placed on top of the previous ones,
so parts of a scene can be built independently but displayed together. This is
helpful in increasing the amount of abstraction in building a scene. Constructing
each part separately allows for greater flexibility in changing certain aspects of a
scene without affecting others, and managing the ordering of the scene without
affecting what happens during each part.

taking, on the other hand, helps control the amount of time it takes to
execute each of the individual animations. The taking function stretches or
shrinks an Active so that it occurs in the amount of time specified by the
Float argument. Generally, taking is easiest to use in close conjunction with
the flicker function, as shown above, though it does not have to be. This just
keeps most of the timing information in one place, even if one does not directly
affect the other.

Now that we can manage the ordering and timing of an animation pretty well,
we can start looking at some good combinators for common animation tasks. To
help create many of these combinators, we use the addActive function:

Every Animation Should Have a Beginning, a Middle, and an End 157

addActive :: (UI -> a -> b) -> Active a -> Active b

addActive fn act = (fmap fn age) <*> act

This is a simple function we use to create many animation functions. Typically
for animation, the a and b types are Board’s of some variety. The function
argument is then a representation of how we want to change a Board over time,
and the Active argument contains a Board we want to change (though it may
already be changing in other ways as well). addActive is especially helpful in
adding new animations to existing ones, allowing us to avoid the systematic
coding overhead of placing each new function into an Active and then applying
it to the previous Active.

We use addActive to help create many of our predefined animation functions,
including the standard 2D transformation functions from ChalkBoard (move,
scale, and rotate) applied over time. As an example of this usage, the prede-
fined move-over-time function in Active is:

activeMove :: (R,R) -> Active (Board a) -> Active (Board a)

activeMove (x,y) = addActive $ \ui -> move (ui*x,ui*y)

This function takes the ChalkBoard move command and turns it into a func-
tion over time as well. The move command in ChalkBoard simply moves a Board
from its current position by a specified amount in the x and y directions. These
amounts are given, respectively, in the ordered pair (R,R). The Active version
of this function does the same thing, but applies this move over time. It will
treat the input UI time value as a percentage and move the Board inside the
Active argument step by step as the time value increases from 0 to 1, finally
ending up displaced by a total amount of (x,y).

Other common actions defined using addActive are the remaining transfor-
mation functions (activeScale and activeRotate), as well as functions for
making an Active appear/disappear (activeAppear, activeTempAppear, and
activeDisappear). All of the Active versions of the ChalkBoard transforma-
tions (move, scale, and rotate) are versions of those functions that are applied
over time. The appear/disappear functions tell a given Active whether it should
only be visible once its time value is great than 0 (activeAppear), when its time
value is in between 0 and 1 (activeTempAppear), or from the start of execution
up until its time value is 1 (activeDisappear). Unless one of these functions is
applied, all Active’s will remain visible for the duration of the scene, regardless
of when their animations execute (since they will still be receiving time values
of 0 or 1). Example usage of these functions is the subject of the next section.

5 Case Study

While testing the current features and usability of Active, we decided to recreate
an existing animation. This was done both to see how close we could get to the
original, as well as how difficult it would be to do so. The animation we chose for
this experiment was an animated proof of the Pythagorean Theorem that can

158 K. Matlage and A. Gill

be found on Wikipedia at http://en.wikipedia.org/wiki/Pythagorean theorem.
This example was visually pleasing, served a useful purpose, and was exactly
the type of animation we wanted to create easily in ChalkBoard. It also was
complicated enough that we felt like it would be a good test of ChalkBoard’s
features, without being too complicated as to prevent new users, who haven’t
seen any of these feature before, from following along.

In building this and other examples, a general structure for ChalkBoard ani-
mations using Active has begun to appear. It looks something like the following:

let animStep1 = ...

animObject = ...

animStep2 = ... f animObject ...

animStep3 = ... g animObject ...

let wholeAnim = flicker [animStep1, animStep2, animStep3]

First, the individual pieces of the animation are constructed. This stage con-
sists of building all the separate Active Board’s that will be the parts of the
final scene. These could be such things as an object moving, rotating, changing
colors, or a ton of other possibilities. The second stage of construction is string-
ing all of these smaller pieces together into a coherent whole using functions such
as flicker. After the animation is complete, it can then be played back, saved,
or manipulated however the user wishes. While creating animations using this
structure is by no means the only way to do so, it has proven to be effective
for the examples we have built thus far. Therefore, this case study will follow
the same structure, explaining how each stage was completed and some of the
functions that were used.

5.1 Stage 1: Building Animation Pieces

In beginning the Pythagorean example, we start by creating all of the different
Active animation pieces that will be used in the scene. The first of these is the
animation’s background, which we just build to make about the same color as
the Wikipedia animation. The pure function is then applied to this background
board to lift it into the Active (Board a) space so that it can be combined
with the other Active Board objects we create for the animation.

Next, we build up a basic triangle in the middle of the screen, with code that
looks something like the following:

let (x,y) = (0.2,0.15)

(a,b,c) = ((-x,y),(-x,-y),(x,-y))

triangle345 = triangle a b c

triLines = pointsToLine [a, b, c, a] 0.004

mainTriangle = (choose (alpha black) transparent <$> triLines)

‘over‘

(choose (alpha yellow) transparent <$> triangle345)

Every Animation Should Have a Beginning, a Middle, and an End 159

In doing this, we first create a 3-4-5 triangle by giving three points to the
triangle constructor. This creates a Board Bool of our triangle. We also want
a black outline around it in order to match the original animation. To do this, we
use the pointsToLine function, which takes a list of points and a line width and
draws a line between all adjacently listed points. Both Board Bool’s are then
given their colors by using the choose function as shown. This makes the lines
black over a transparent background (so we can see the triangle behind them)
and the triangle yellow with a transparent background (to see the animation’s
background behind it).

While this code does create a simple triangle, the triangle itself is never actu-
ally displayed in the animation. Instead, this triangle is transformed in different
ways to create the displayed triangles. For instance, the initial triangle shown
in the animation is achieved by scaling mainTriangle by 1.5. The animation
for shrinking and moving this new triangle into its final position is achieved by
adding Active functions, as shown below:

let movingTriangle = activeMove (y,x) $ activeScale (2/3) $

pure $ scale 1.5 $ mainTriangle

First, the triangle is lifted into the Active world using pure. Then we start
to add animation functions to it. In this instance, we apply an activeScale and
an activeMove. This creates an animated triangle that shrinks slightly while
also moving slightly up and to the right. Images of this resulting animation are
in Figure 2.

Fig. 2. movingTriangle animation

As a note, all of the text for this animation was actually added in last, sepa-
rate from the geometry. In this case study, we will only be covering the creation
of the geometric animation, and not the insertion of font. This is due to space
constraints and because the only interesting font problem that involves the Ac-
tive DSL is when to make the pieces appear and/or disappear (which we will
already cover).

Moving on with the example, the next step is to create three identical but
rotated triangles as displayed in the Wikipedia graphic. These are created using

160 K. Matlage and A. Gill

the list comprehension in otherTriangles (defined below), which simply rotates
a moved version of the original mainTriangle:

let movedTriangle = move (y,x) $ mainTriangle

otherTriangles = [rotate (-i*pi/2) $ movedTriangle | i <- [1..3]]

addOtherTriangles = foldl1 over [mvActive i $ activeAppear $ pure $ t

| (t,i) <- zip otherTriangles [1..]]

These triangles are then made to appear when their animations start using
the activeAppear function as described in Section 4. The next step, however,
is getting them to appear individually. While they could each be treated as an
independent animation piece and listed separately in the flicker portion of the
program, we instead choose to apply the mvActive function to each of these
new triangles in order to save time and make our code cleaner. As described
in Section 2, this function (not to be confused with activeMove) simply moves
the actions of a given Active backwards or forwards in time by the given value.
Using the list comprehension in addOtherTriangles above, each new triangle
is made to appear a little later in time than the previous. Finally, the list of
Active Board objects, each element representing one new triangle appearing,
is compressed into a single Active Board using foldl1 with the over func-
tion. Figure 3 shows each of the new triangles being added individually to the
animation.

Fig. 3. addOtherTriangles animation

The next part of the animation is just adding in a couple missing pieces to the
image so that the full area can be clearly seen. A small yellow square is added
to the middle so that the larger square can be seen to have a size of c × c. This
larger square therefore has an area of c2, as indicated by the accompanying text.
The result of this small portion of the animation can be seen in Figure 4.

Next, we need to slide the top triangles down to match up with the lower tri-
angles, as seen in Figure 5. We also want an outline of the old triangles to remain
behind so we can see where they started (like in the original on Wikipedia). This
is done in two parts, both of which are defined below:

Every Animation Should Have a Beginning, a Middle, and an End 161

Fig. 4. fillSquare animation

let fadedTris = [rotate (-i*pi/2) $ move (y,x) $

choose (withAlpha 0.6 white) transparent <$> triangle345

| i <- [0,1]]

slideLeft = activeAppear $

(activeMove (-2*y,-2*x) $ pure $ movedTriangle)

‘over‘ (pure $ head fadedTris)

slideRight = activeAppear $

(activeMove (2*x,-2*y) $ pure $ head otherTriangles)

‘over‘ (pure $ last fadedTris)

The first part is to fade the existing triangles to leave behind as outlines,
and the second is to create the new triangles that will actually move. The first
part is done by placing white triangles with alpha values of 0.6 over the two
existing triangles so that they will appear faded. For the second part, we create
the first slide by reusing movedTriangle (top right triangle) and applying an
activeMove down to its final position on the bottom left. We do pretty much
the same thing with the second slide, but grab the initial triangle from the head
of otherTriangles (first rotated triangle on the top left) and slide it right.

The final part of the animation is simply changing the organization of the
resulting shapes. Now that the triangles are in their final positions, two new
squares can be drawn that cover the entire area. These squares have side lengths
of a and b, and thus areas of a2 and b2. This in effect concludes the proof that
a2 + b2 equals the original area of c2. In order to animate this part, we use the
same general strategy as fading out the two triangles in the last step:

let newSquares = (move (y, -y) $ scale 0.4 $ square)

‘over‘ (move (-x, -x) $ scale 0.3 $ square)

(s1, s2) = (x-y, x+y)

newLines = pointsToLine [(-s1,-s2), (s2,-s2), ..., (-s1,-s1)] 0.004

fadeInSquares = (fadeIn black 1 newLines)

‘over‘ (fadeIn yellow 1 newSquares)

fadeIn :: O RGB -> UI -> Board Bool -> Active (Board (RGBA -> RGBA))

fadeIn rgb a brd = fmap fn age

where fn ui = choose (withAlpha (o (ui*a)) rgb) transparent <$> brd

162 K. Matlage and A. Gill

Fig. 5. slideLeft and slideRight animations

The main differences are that this time we use yellow squares with alpha
values of 0.9 so that the new squares will be a darker yellow instead of a lighter
one, and that we also draw lines around the new squares to make them clearer.
The squares to be faded in are created as Board Bool shapes in ChalkBoard, like
normal, and moved to the right locations. They are then faded in over time using
the fadeIn function (predefined in Active, but included here for reference). This
function simply creates an Active that fades a Board RGBA in from transparent
to the given RGB and alpha value. The lines around the squares are also faded
in over the squares at the same time, using the same function. This final piece
of the animation is shown in Figure 6.

Fig. 6. fadeInSquares animation

Every Animation Should Have a Beginning, a Middle, and an End 163

5.2 Stage 2: Combining Animation Pieces

In this example, each part of the animation is created separately. The smaller
animation pieces often use some of the same basic structures repeatedly, and
this piecemeal construction strategy lends itself well to reuse. For instance, the
originally defined maintriangle, which is never directly displayed, is rotated
and moved around to create most of the triangles in the scene. While longer
animations can be created directly using the mvActive function, we have found
that it is generally much cleaner and easier to organize simple animations into
a series using one of our combinators, such as flicker.

Using the flicker function in this way is the second major stage we discussed
for creating an animation. With the flicker function, animations can be strung
together, one after the other, stacking newer parts onto older ones. The time each
individual animation component takes to be performed can be specified using
the taking function, as described earlier. Our general structure looks like:

let anim = flicker [taking 0.5 $ background

, taking 1 $ firstABC

, taking 1 $ movingTriangle

...

, taking 1 $ fadeInSquares ‘over‘ thirdABC

, taking 3 $ finalABC ‘over‘ formula

]

This use of flicker and taking is what we use to manage the majority of
our ordering and timing for animations. It returns a single Active Board that
can then be used to display the whole animation, or reused in turn to create an
even bigger animation, hierarchically. In terms of displaying the animation, this
will largely be done the same way for most animations:

sid <- startDefaultWriteStream cb "pythagorean.mp4"

playObj <- byFrame 29.97 anim

let loop = do mbScene <- play playObj

case mbScene of

Just scene -> do

drawChalkBoard cb $ unAlphaBoard (boardOf white) scene

frameChalkBoard cb sid

loop

Nothing -> return ()

loop

First, the Active Board must be turned into a Player using the byFrame
function (which also takes a desired frame rate). The Player is then passed to
the play function to retrieve the next image of the animation (or Nothing, if
the animation is finished). Finally, this retrieved image can be used in any way
that ChalkBoard can use a Board. Traditionally, the image is displayed on the
screen using drawChalkBoard or saved into a video file with frameChalkBoard
(or both). After this, the process of calling play on the Player must be repeated

164 K. Matlage and A. Gill

to extract the next image. This is usually placed into a simple loop that extracts
and then displays the returned frame, as shown above. We used this method to
produce a video of the full animation created in this case study. The video can
be seen online at http://www.youtube.com/watch?v=UDRGhTFu17w.

6 Related Work

There have been numerous image description DSLs using functional languages,
many of them capable of animation. A lot of the image description languages
similar to ChalkBoard are described in our earlier ChalkBoard paper [3].

In particular, the work of Conal Elliott had one of the largest influences on
ChalkBoard. Elliott has been working on functional graphics and image gen-
eration for many years and has produced a number of related systems. These
include Fran [4], Pan [5], and Vertigo [6]. ChalkBoard was heavily influenced by
Pan and started from the same basic set of combinators provided in Pan.

In terms of animation and the Active DSL, some similar systems that have
been created are Slideshow [7] and the function system presented by Kavi Arya
[8]. One of the major differences between the Active animation system and these,
however, is the treatment of time. Slideshow is predominately frame-based be-
cause of its goal of generating slides for presentations. Arya’s system, meanwhile,
can cue animations relative to one another or to object interactions. The Active
DSL, on the other hand, is time-based. It allows the user to create functions
mapped over a known time progression and then affect the time management of
animations separately. While this management often includes cueing animations
relative to others, similar to the two languages mentioned, it can also include
stretching or shrinking animations and moving them forwards or backwards in
time. A few of the Active combinators can also help provide a simple framework
for reordering animations.

The closest related work to our Active DSL is Hudak’s temporal media
DSL [9], which was also used to specify change over time in a pre-determined
manner, but was used to generate music, not images, and also did not codify the
ability to use applicative functors. The Active DSL is also conceptually close
to Functional Reactive Programming (FRP) [10], even though Active does not
attempt to be reactive in the same sense as FRP. Both Active and (one im-
plementation form of) FRP are mappings from time to value, however Active
does not implement FRP Events, but rather an Active object has a start and
an end. With Active being designed for presentations and similar educational
animations, all of the actions in the Active DSL are explicitly specified ahead
of time by the user, although they can be in relation to other animations.

Of course, there are many other animation languages and systems. Active
is an attempt to combine the concept of first class functions over time (from
FRP), width in time (like the temporal media DSL), and the idiom of packing
such functions over time (as an analog to stacking boxes in space) to provide a
clean starting idiom for animation specification.

Every Animation Should Have a Beginning, a Middle, and an End 165

7 Conclusions and Future Work

The Active language is a mathematically-based system where actions are the
results of mapping functions over time values progressing from 0 to 1. It provides
substantial abstraction for the different pieces that go into creating an animation,
such as the drawing, timing, and ordering, and is useful in practice.

The biggest improvement we hope to make to the Active DSL in the future
is the inclusion of some more precise combinators for the cueing and timing of
animations. While the current structures have proven useful, there are some in-
stances in which the current Active API could have been improved. Specifically,
we hope to work on structures that will allow users to specify when animations
should be visible. In this type of structure, the default may be for animations to
only appear when they are currently active (progressing from 0 to 1), and have
means of specifying which objects should be visible at other times.

Another improvement we hope to make is to increase the amount of internal
sharing that is done by the ChalkBoard compiler in order to more efficiently
create the animations it generates. In our animations, a lot of the same boards
are often reused, just at slightly different positions on the screen. Because Chalk-
Board treats each of these boards as a texture, the potential for reuse of these
textures in animation is very high, they often just need to be remapped onto the
scene at a slightly different location or size.

References

1. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries – The Revised Report.
Cambridge University Press, Cambridge (2003)

2. McBride, C., Patterson, R.: Applicative programing with effects. Journal of Func-
tional Programming 16(6) (2006)

3. Matlage, K., Gill, A.: ChalkBoard: Mapping functions to polygons. In: Morazán,
M.T., Scholz, S.-B. (eds.) IFL 2009. LNCS, vol. 6041, pp. 55–71. Springer, Heidel-
berg (2010)

4. Elliott, C.: From functional animation to sprite-based display. In: Gupta, G. (ed.)
PADL 1999. LNCS, vol. 1551, p. 61. Springer, Heidelberg (1999)

5. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. Journal of
Functional Programming 13(2) (2003)

6. Elliott, C.: Programming graphics processors functionally. In: Proceedings of the
2004 Haskell Workshop. ACM Press, New York (2004)

7. Findler, R.B., Flatt, M.: Slideshow: functional presentations. J. Funct. Pro-
gram. 16(4-5), 583–619 (2006)

8. Arya, K.: Processes in a functional animation system. In: FPCA 1989: Proceedings
of the Fourth International Conference on Functional Programming Languages and
Computer Architecture, pp. 382–395. ACM, New York (1989)

9. Hudak, P.: An algebraic theory of polymorphic temporal media. In: Jayaraman, B.
(ed.) PADL 2004. LNCS, vol. 3057, pp. 1–15. Springer, Heidelberg (2004)

10. Elliott, C., Hudak, P.: Functional reactive animation. In: International Conference
on Functional Programming (1997)

Functional Video Games in the CS1 Classroom

Marco T. Morazán

Seton Hall University, South Orange, NJ, USA
morazanm@shu.edu

Abstract. Over the past decade enrollments in Computer Science un-
dergraduate programs have drastically dropped while simultaneously see-
ing demand for computer scientists in the job market increase. The reason
for this disconnect is, in part, due to the perception new potential stu-
dents have of programming as a dull activity requiring no creativity, very
little social interaction, and endless hours of coding in front of a mon-
itor. The question then is how can we capture the imagination of new
students and perk their interest in a way that gets them excited while at
the same time giving them a solid foundation in computer programming
and Computer Science. This article puts forth the thesis that develop-
ing video games using functional programming should be a new trend
in the CS1 classroom. The article describes the approach implemented
at Seton Hall University using video game programming and Felleisen
et al.’s textbook How to Design Programs. The first-year programming
curriculum is briefly described and how to get students interested in
programming through the development of a Space-Invaders-like game is
illustrated. The presented development gives the reader a clear sense of
how to use functional video games in the first semester classroom.

1 Introduction

Over the past decade enrollments in Computer Science programs have drastically
dropped up to 70% in some countries [13]. According to CRA’s most recent
Taulbee Survey in the United States and Canada, the number of Computer
Science and Computer Engineering newly declared majors has dropped from a
high around 24,000 in the year 2000 to under 14,000 in the year 2008 [14]. In
addition, the production of Bachelor’s dropped from a high of over 20,000 in
2002 to under 12,000 in 2009. The Taulbee Survey also suggests that retention
rates need to be improved. For example, in 2004 there were about 16,000 newly
declared majors and, four years later, in 2008 there were under 12,000 Bachelor’s
produced.

The drop in enrollment is occurring while seeing demand for computer scien-
tists in the job market increase. According to recent occupational employment
projections for 2008-2018, computer and mathematical occupations are expected
to grow by 22.2% [8]. This rate of growth is over twice as high as the average for
all occupations. Among the fastest growing occupations are computer software
engineers with demand for application developers expected to increase by 34%
and demand for systems software developers to increase by 30.4%. The data

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 166–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Functional Video Games in the CS1 Classroom 167

clearly suggests that there is and there will continue to be a high demand for
Bachelor’s in Computer Science. In addition to the expected demand, trends
indicate that Computer Science majors are expected to be amongst the best
paid professionals (e.g., software architects rank 8th with a median salary of
US$117,000), and amongst the professionals with the best quality of life (e.g.,
software developers rank 4th with 59% stating that there job has low stress) [10].

Being a field projected to remain in high demand and promising the potential
for obtaining a high-paying low-stress job is not enough to attract students to
and retain students in Computer Science. This seems counter-intuitive at first
glance and can not solely be explained by the negative outlook caused by the dot
com bust and the recent down turn in the economy. It is necessary to assess the
perspective of students that enroll in the beginning courses. To this end, students
enrolling in the introductory Computer Science course at Seton Hall University
(the home institution of the author) have been interviewed over the past 8 years.
From 2002 to 2007 this course was taught using Java as the language of instruc-
tion following the typical syntax-based approach of most textbooks with little
emphasis on design and problem solving techniques. Uniformly across students,
regardless of whether or not they continued as Computer Science majors, the sen-
timent was that Computer Science and programming were boring and required
little or no creativity and social interaction. Programming was characterized as
spending endless hours in front of a monitor debugging code. These sentiments
were stronger in women which also exhibited lower retention rates. In 2008, the
introductory course was taken over by the author and taught based on Felleisen’s
et. al’s textbook How To Design Programs (HtDP) [4]. The outlook of students
improved as well as retention rates, but students still characterized most of what
they did as boring. Despite focusing on design and problem solving (instead of
syntax), students felt that there was nothing really interesting or special about,
for example, searching a list, computing the value of an integral, or sorting. The
bottom line was that students felt it required no creativity and everyone was
doing exactly the same thing and producing the same code. This sentiment to
some degree is not unlike what students in other disciplines like, for example,
Mathematics and Engineering face: the solution to a problem is the same for
all students. There is, however, a difference with Computer Science that may
signal why retention is harder. The typical assignment in Computer Science has
a component that assignments seen by students in other disciplines do not have.
Computer Science students must design, write, debug, and produce a working
piece of software. That is, they must build an artifact of their discipline. It is a
time-consuming process that beginning students in other disciplines do not have
to face. This is not to say that other disciplines do not offer challenging and en-
lightening exercises to their students, but rarely, if ever, are beginning students
in other disciplines asked to build an artifact of their discipline like beginning
Computer Science students are asked to do on a regular basis. Given that begin-
ning students can easily shop around and switch majors (at least in the USA),
this represents a challenge that must be faced creatively by Computer Science
departments to attract students to the major and to increase their retention.

168 M.T. Morazán

The interviews with students at Seton Hall University identified one element
that can help attract and retain students. Students across the board, regardless of
whether or not they continued as Computer Science majors, qualified the design
and implementation of video games (using the DrScheme’s1 universe teachpack
[3]) as very interesting, as requiring creativity, and as fun to work in groups. In
addition, students felt that requiring the design and implementation of a large
video game by the end of the semester truly brought everything that they had
to learn into focus which provided a sense of accomplishment and a sense of
satisfaction with majoring in Computer Science. In 2009, the delivery of the
introductory course was redesigned to incorporate more development of video
games as motivation.

This article advocates that the design of functional video games should be
a new trend in introductory Computer Science courses. Having beginning stu-
dents develop functional video games means that they are liberated from reason-
ing about state and the sequencing of statements, because the code that they
develop is assignment-free. Thus, students focus on how to design and imple-
ment a solution without having to focus on the overhead and dangers of using
assignment. Our experience suggests that this approach facilitates the introduc-
tion and the understanding of recursion which usually is a fundamental topic
in Computer Science that students struggle with in introductory courses. The
use of video games has the added benefit that it has a built-in creative outlet.
Students are able to customize their solutions to their personal preferences. The
choice of graphics used, the level of difficulty preferred for the game, and the
speed at which the game advances, for example, can vary from student to stu-
dent. This provides students with the sense that not all solutions to a problem
are the same and that they can creatively inject their own personality in the de-
velopment and implementation of a solution. The reader can contrast this with
the typical word problem found in a Mathematics or Engineering textbook. This
ability to offer students problems with a creative outlet ought to be leveraged to
engage, attract, and retain beginning students in Computer Science. The built-
in creative outlet that video game development and implementation offers, for
example, has proven an especially effective tool to make Computer Science and
programming interesting to female students. Among young female students, the
opportunity to be creative was the highest ranked characteristic. In contrast,
male students ranked the ability to create competitive games the highest with
creativity closely ranked behind it. Finally, the development of functional video
games provides the opportunity to make core lessons in Computer Science and
programming (e.g., design, recursion, sorting, and searching) relevant to the pop
culture students are an integral part of. Much of what they learn ceases to be
purely theoretical and can directly be applied to create something that not only
are they interested in, but are also excited about.

The article first outlines the topics taught in the introductory courses at
Seton Hall University and why the use of a functional language is ideal. The
article then demonstrates how the design and implementation of a functional

1 DrScheme has recently been renamed DrRacket.

Functional Video Games in the CS1 Classroom 169

video game, specifically a Space-Invaders-like game, can be used to motivate and
teach students in CS1. The presentation aims to illustrate how functional video
games can be used in the first-semester classroom and to serve as a road map
that others can follow and adapt to their particular environment and students.
The presentation also aims to demonstrate how relatively easy it is to develop a
functional video game and to integrate functional video game development into
the CS1 classroom. Finally, the article concludes with a discussion of related
approaches and some conclusions.

2 Introduction to Computer Science and Programming

Introduction to Computer Science courses tend to focus on providing students
with a solid foundation in programming [13]. This characteristic is justified,
because teaching students about programming prepares them for the job market,
programming tends to attract more students (both those majoring and those not
majoring in Computer Science), and programming is a prerequisite for many
upper-level Computer Science courses [12]. The debate of what should and what
should not be included in an introduction to Computer Science and programming
rages on. Instead of engaging in the futile exercise of systematically analyzing
the list of potential topics to gain converts, the solution adopted at Seton Hall
University is outlined below. The reader can decide decide if the choices made
make sense for her institution and her environment.

It is noteworthy that this article is not advocating the presented methodology
as absolute or rigid. As Computer Science evolves, so will the technologies, like
video games, used to motivate students in introductory courses. The topics (e.g.,
structures, lists, and sorting) covered in such courses are also subject to change as
Computer Science evolves, but at a much slower pace than vogue technologies.
The primary lesson that should be drawn is that an interesting domain can
be used to make the delivery of a solid foundation in programming fun and
interesting for beginning students. Video game programming is such a domain
for the foreseeable future.

2.1 Topics Covered in CS1 and CS2 at Seton Hall University

At Seton Hall University, all students must complete four years of study to earn a
Bachelor’s degree. During this time, students must fulfill general requirements as
well as the requirements for their major. The Computer Science major requires
53-54 credits with the typical course being worth 3 credits and some courses being
worth 4 credits. During their freshman year (i.e., the first year), students are
expected to pass CS1 and CS2 which allows them to move on in their sophomore
year (i.e., their second year) to courses focusing on designing classes. During their
junior and senior year (i.e., their third and fourth years), students take upper-
level Computer Science requirements as well as Computer Science electives most
of which require programming.

It is our perspective that introductory Computer Science courses ought to fo-
cus on problem solving. Students should be empowered by helping them develop

170 M.T. Morazán

skills that take them from a problem statement to a well-designed solution. The
emphasis is much more on designing the solution to a problem than the actual
implementation of the solution. Although being able to follow through with the
implementation of a solution is an important skill, it is the design of the solution
that makes the implementation possible. Furthermore, it is the ability to de-
sign a solution to a problem that makes a Computer Science education relevant
to other aspects of a student’s life. Stated simply, solution design skills can be
applied to problems beyond those solved using a computer and a programming
language, because they make the thinking process explicit.

In addition to developing problem solving skills, students must also learn
the rudimentary nomenclature of programming. At Seton Hall, there are two
courses, CS1 and CS22, that serve as the introduction to Computer Science and
Programming. Broadly speaking, CS1 covers the following topics (listed to make
the connection with HtDP’s Parts I-IV easy):

– Programming with primitive data (e.g., symbols, numbers, and pictures) and
primitive functions (e.g., symbol equality, addition, and geometric drawing
functions).

– Programmer defined functions and variables.
– Processing finite compound data (e.g., structures).
– Processing arbitrarily large compound data (e.g., structural recursion on

lists, trees, and natural numbers).
– Abstraction (e.g., elimination of code repetition and functions as values)

Broadly speaking, CS2 covers the following topics (listed to make the connection
with HtDP’s Parts V-VIII easy):

– Generative recursion (e.g., quicksort).
– Iteration (i.e., accumulative recursion and loops).
– State-based computations (i.e., design using assignment).
– Distributed Computing (not a topic in HtDP).

Readers interested in a rationale for including the above topics in the curricu-
lum for CS1 and CS2 are referred to the appropriate sections in HtDP. The
abstraction techniques studied are specific to functional languages, but the fo-
cus is the reduction of errors by reducing code duplication. Students learn that
common programming patterns can be captured as functions to make code more
readable and less bug-prone. The distributed computing component introduces
students to networks, a pervasive technology today, and provides the opportu-
nity to design and implement a distributed application using the same language
and software students have used throughout their first year.

These introductory courses aim to provide the foundation needed for stu-
dents to go on and learn how to design solutions and write programs using
any programming language. In fact, the skills acquired are directly transferable
to designing programs using object-oriented languages such as Java. Although
teaching languages with Scheme-like syntax are used in these courses, the goal is
2 These courses are actually called Design of Programs I and Design of Programs II.

Functional Video Games in the CS1 Classroom 171

not teach students Scheme nor is the goal to make them functional programmers.
In the interest of absolute clarity, we are not teaching our students Scheme nor
do we advocate teaching beginning students Scheme. Scheme is a mature and
powerful programming language with native support for many advanced features
(e.g., continuations and hygienic macros) that are not addressed nor used in CS1
and CS2. Equally noteworthy is the fact that the emphasis is not on the syntax of
any particular programming language although, of course, students must learn
some Scheme-like syntax in order to implement solutions. Scheme-like syntax
may not seem natural to students on the first day of class (e.g., prefix instead of
infix notation), but it is useful in distinguishing Scheme from mathematics. Stu-
dents may analyze a problem off-screen using mathematics written using infix
notation, but must translate it into a programming language’s syntax to imple-
ment a program. This is a process that is common to program development in
general. One of the advantages of using Scheme-like syntax is that this trans-
lation is simple enough that it quickly becomes natural to beginning students
using HtDP. Other reasons for using Scheme as the core behind the employed
teaching languages are given in the preface of HtDP [4]. It is our estimation
that the foundation we provide enables students to go on to learn about pow-
erful abstractions provided by other languages (regardless of the syntax used)
such as, for example, monads in Haskell, objects and inheritance in Java, and
continuations and hygienic macros in Scheme.

In addition to the topics above, emphasis is placed on iterative refinement.
It is important for students to understand that designs, solutions, and imple-
mentations evolve through a continuous cycle of enhancements. This lesson is
a difficult one to convey especially when the programs students are asked to
develop are small. Large projects, like the design and implementation of a video
game, provide an excellent vehicle with which to emphasize iterative refinement.

3 The Functional and HtDP Advantages

The choice of a functional language for introductory courses can be controversial
for some faculty members and for some students. This article will not digress
too much into the objections raised by faculty members. These objections mostly
boil down to not teaching a language used in industry and not focusing on teach-
ing state-based problem solving. Teaching a particular language, even one used
in industry, should not be the goal of an introductory course. Mostly focus-
ing on teaching state-based problem solving fails to expose students enough to
easy-to-use skills in the design of solutions and programs. In fact, assignment
is harmful at the beginning. In our experience, students that start with state-
based problem solving find it very hard to design solutions or to understand
solutions that fail to mutate variables at every step. The sharp reader will have
detected the concept of step (and sequencing) introduced into this text all of the
sudden. This is precisely how students think of computation if they start with
state-based problem solving: programs are a collection of sequenced assignments.

172 M.T. Morazán

As any functional programmer knows, nothing can be farther from the truth and
statements to this effect by students should not go unchallenged3.

3.1 The Functional Advantage

Liberating students from reasoning about state and the machine, as mentioned
before, is a formidable advantage offered by functional languages. Students are
allowed to think about how to solve problems and do not have to reason about
how to sequence mutations to solve a problem. They can build on their knowledge
of high school algebra to design functions which brings problem solving into a
domain that seems familiar to them. This approach has the added benefit that
it makes mathematics relevant for students [6], improves the grades of students
in mathematics courses [5], and builds on a natural synergy that more and more
looks like an endangered species in the CS curriculum.

Functional languages can also–but not always–present students with a min-
imal amount of syntax that needs to be learned in order to solve interesting
problems. Dynamically typed functional languages, for example, remove all syn-
tax requirements associated with types which are required by statically typed
languages. The observation is simple: the less time we spend discussing syntax
the more problem solving and design principles we can actually teach.

Finally, as pointed out by Felleisen et. al [4], if an interpreted functional
language is used, then Byzantine discussions about input and output are not
necessary. Students do not have to be bogged down with how to input and
output data–which has little or nothing to do with the solution to the problem
they are implementing. Once again, students are liberated from side issues and
allowed to focus on problem solving. Learning how to do I/O should not be a
prerequisite to learn the basics of programming nor to take your first steps into
the world of Computer Science.

3.2 The HtDP Advantage

An HtDP-based curriculum presents two major advantages for teaching intro-
ductory Computer Science and programming courses. The first is that it gives
students a road map to follow from a blank screen to a working solution. This
road map is based on what Felleisen et al. have coined the design recipe. A de-
sign recipe is a series of steps a student can follow in the design of a solution.
In fact, there are several different design recipes all of which are variations on a
theme depending on the type of problem being solved or the type of data being
processed. The basic skeleton for developing a function for all the variations of
design recipes is:

1. Problem analysis and data definitions.
2. Stating the contract, the purpose, and writing the function header.
3. Defining tests showing how a function should work.
3 The author does not recommend challenging or trying to convince faculty members

that express such a view in open debate. Let your results speak for themselves.

Functional Video Games in the CS1 Classroom 173

4. Development of a function template (derived from the data being processed)
and an inventory of expressions that can be used to implement the function.

5. Defining the function.
6. Running the tests and making corrections if necessary.

At the beginning, students find the use of the design recipe cumbersome es-
pecially when the programs/functions being designed are small. In fact, many
students feel it is overkill. It is important, however, to encourage them to de-
velop good habits by following the steps in the design recipe even if they can see
the solution before going through all the steps. The assignment of a non-trivial
problem as homework and grading how well students follow the design recipe go
a long way to bringing the point home.

The second major advantage an HtDP-based curriculum presents is that it
is tightly-coupled with the DrScheme programming environment. This environ-
ment comes with a series a successively richer subsets of Scheme-like languages
called the teaching languages. Each part of HtDP is associated with a teaching
language. The teaching languages make available just enough syntax for students
to learn to design solutions to the types of problems that they are being asked
to solve. This hierarchy of teaching languages allows for meaningful error mes-
sages to be generated for mistakes that would otherwise be hard to decipher by
a beginning student [4]. Our experience is that students suffer through much less
frustration when compared to Seton Hall’s old Java-based approach. In addition,
DrScheme also comes with a rich set of libraries/teachpacks that simplify the im-
plementation of solutions for different kinds of problems. One such teachpack is
universe which defines an interface for writing animations (both interactive and
non-interactive). Universe envisions an animation as a series of snapshots of an
evolving world. There is a clock that at every tick displays the next snapshot
of the world. Students must define the elements of the world and define func-
tions for computing the next snapshot of the world when the clock ticks or when
an external event, such as a keystroke or a mouse movement, occurs. Students
must also define functions for drawing the world and for detecting the end of the
animation. The code students develop can be functional (i.e., assignment-free)
and free of any concerns about coordinating the display of snapshots. Readers
interested in more details about the universe teachpack are referred to How to
Design Worlds [3].

4 Video Games in CS1

Armed with the design recipe and with DrScheme’s universe teachpack, instruc-
tors and (first-year) students can be ambitious and start developing a video
game starting on the first day of class. At the beginning, of course, the video
game is, shall we say, less than interesting. It lacks any real features video games
have, because students still do not know how to do very much. The promise
of developing a video game, however, is used to keep students motivated and
students are encouraged as the process of iterative refinement adds dimensions
to the game.

174 M.T. Morazán

Fig. 1. A snapshot illustrating an implementation of Aliens Attack

Our attention will now focus on illustrating how to motivate topics in the
CS1 curriculum by tying them in with the development of a Space-Invaders-like
video game that we shall refer to as Aliens Attack. The presentation will display
a series of different incarnations implemented during the iterative refinement
process. In the game there is a defender at the bottom of the screen that the
player may move left and right to shoot aliens. There are also one or more
aliens in a grid-like formation that are trying to reach the bottom of the screen–
presumably to conquer earth. All aliens move in the same direction–either left
or right–and when an alien reaches the edge of the screen all aliens move down
and start moving in the opposite direction. The game ends when either all aliens
have been destroyed by the defender or an alien reaches the bottom of the screen.
Figure 1 displays a visual representation of Aliens Attack.

4.1 Aliens Attack v0.0

On the first day of class, the assumption is made that students have no back-
ground in programming. Therefore, they are stumped by the task of creating
a video game despite their enthusiasm to do so. They are told that the game
will be developed using iterative refinement–not all at once, but little by little as
they learn how to design programs. Nonetheless, the first version of aliens attack
is developed. It is simply an empty scene of HEIGHTxWIDTH computer graphics
coordinates where the game is to be drawn and played. A sample is generated
by the code in Figure 2.

Students may be a little disappointed with this first version, but they are
motivated to learn about defining constants, about primitive data, and about
how to place images in a scene. In addition, students are encouraged to read
the documentation to learn more about how place-image works. By the sec-
ond class, most students are proud to show how they have modified the color

Functional Video Games in the CS1 Classroom 175

(define HEIGHT 650)

(define WIDTH 900)

(define E-SCENE

(place-image (rectangle (* 2 WIDTH) (* 2 HEIGHT) ’solid ’yellow)

0

0

(empty-scene WIDTH HEIGHT)))

Fig. 2. The code for Aliens Attack v0.0

and the size of the canvas to their liking. The stage is now set to learn about
primitive data and primitive functions.

4.2 Aliens Attack v0.1

After gaining some programming experience with primitive data, students are
brought back to the video game. The first enhancements tackled are drawing the
defender in a scene and creating a defender in a new position. During problem
analysis, students quickly realize that the defender can be represented by a nat-
ural number, n, such that 0 ≤ n ≤ WIDTH−1. This natural number represents the
x coordinate of the defender. There is no need to represent the y coordinate nor
the image of the defender as variable, because they can be defined as constants.

To draw a defender, students realize they need as input a defender and a scene
and they need to return a scene in which the defender has been drawn in the
given scene. This analysis leads to their contract and drawing function which
may look as follows:

;;; DATA DEFINITION: A defender is a natural number, n,
;;; such that 0 <= n <= WIDTH - 1
; EXAMPLE
(define OUR-HERO (/ WIDTH 2))

;;; draw-defender: defender scene --> scene
(define (draw-defender a-defender scn)
(place-image DEF-IMG a-defender DEF-HEIGHT scn))

DEF-IMG and DEF-HEIGHT are the constants for the image and the y coordinate
of the defender.

Naturally, the next task that students wish to tackle is getting the defender
to move using keystrokes. This provides an opportunity to introduce students
to conditional statements and booleans as the direction the defender moves in,
if at all, depends on keystrokes. Data analysis reveals that computing a moved
defender requires a defender and a direction4 leading to a function to move the
defender:
4 Represented as a string corresponding to a keystroke in DrScheme.

176 M.T. Morazán

;;; move-defender: defender string --> defender
(define (move-defender a-defender direction)
(cond [(string=? direction "right") (+ a-defender DEF-DELTA-X)]

[(string=? direction "left") (- a-defender DEF-DELTA-X)]
[else a-defender]))

DEF-DELTA-X is a constant representing by how much to move the defender with
each keystroke.

Testing the above function, however, reveals a bug. The defender can move off
the scene driving home early the importance of testing in software development.
Iterative refinement yields an improved function to move the defender:

;;; move-defender: defender string --> defender
(define (move-defender a-defender direction)
(cond [(and (symbol=? direction ’right)

(<= (+ a-defender DEF-DELTA-X) (sub1 WIDTH)))
(+ a-defender DEF-DELTA-X)]
[(and (symbol=? direction ’left)

(>= (- a-defender DEF-DELTA-X) 0))
(- a-defender DEF-DELTA-X)]
[else a-defender])).

4.3 Aliens Attack v0.2

The next task is to introduce aliens each requiring an x and a y coordinate to
represent their position which motivates the need to represent finite compound
data. Such data is represented using structures. In this part of the course, some
students may stumble given that it is unlikely that they have studied functions
on compound data in any other course. Students start by studying a built-in
structure in DrScheme called a posn to represent a position in a scene. After
posn, students study how to define their own structures and how to design
functions for such structures.

A student’s first attempt to represent an alien will typically define a structure
that only contains posn. The experienced programmer will notice that a struc-
ture definition is unnecessary, but its elimination is an optimization that can
pursued as a future refinement. There is nothing inherently wrong with defining
an alien as a structure that contains a posn.

Using compound data requires the development of a function template and
an inventory of expressions that can be used to access and manipulate the com-
ponents of the compound data. For an alien in our video game, for example, the
results may be:

(define-struct alien (position)) ; where position is a posn
; EXAMPLE
(define ALIEN1 (make-alien (make-posn (/ WIDTH 2) (/ HEIGHT 2))))
; f-on-alien: alien --> ???

Functional Video Games in the CS1 Classroom 177

(define (f-on-alien an-alien)
; inventory
; (alien-position an-alien) = the posn stored in an-alien
; (posn-x (alien-position an-alien)) = the x-coordinate of
; an-alien
; (posn-y (alien-position an-alien)) = the y-coordinate of
; an-alien
<the body of f-on-alien>)

This template can then be specialized by students to write functions to ma-
nipulate aliens akin to moving and drawing the defender. It is noteworthy to
point out that students are not hacking code nor are they developing code using
a blind trial and error strategy. Instead, they must think explicitly about the
structures they are manipulating and understand that their structures influence
the shape of the code they must develop.

Once students have some experience with structures and have written func-
tions to draw and move the defender as well as the alien, they are ready to
define a structure for the world and write the handlers for the first animation.
The world is a structure that captures the elements that can change. In our
video game there are three changing elements (so far): the defender, the alien,
and the direction (left, right, or down) the alien is traveling. This leads to the
following definition for world and its function template:

(define-struct world (def al dir))
; where def is a defender, al is an alien, and dir is a string
; EXAMPLE
(define INIT-WORLD (make-world OUR-HERO ALIEN1 "right"))

;f-on-world: world --> ???
(define (f-on-world w)
; inventory
; (world-def w) = the defender in w
; (world-al w) = the alien in w
; (world-dir w) = the string for the direction in w
; (alien-position (world-al w)) = the posn of the alien in w
; (posn-x (alien-position (world-al w)))
; = the x coordinate of the alien in w
; (posn-y (alien-position (world-al w)))
; = the y coordinate of the alien in w
<BODY OF f-on-world>)

The game requires four event handlers for the animation: one to draw the world,
one to process key strokes, one to compute the next world every time the clock
ticks, and one to detect the end of the game. The above template is specialized
by students to create the functions displayed in Figure 3 that serve as the event
handlers. The code displayed is fairly easy to understand and uses auxiliary
functions at-edge? to detect if the alien is at either the left or the right edge of

178 M.T. Morazán

; draw-world: world --> scene

; Purpose: To draw the world

(define (draw-world w)

(draw-alien (world-al w)

(draw-defender (world-def w) E-SCENE)))

; process-key: world string --> world

; Purpose: To create a new world based on a keystroke

(define (process-key w k)

(make-world (move-defender (world-def w) k)

(world-al w)

(world-dir w)))

; next-world: world --> world

; Purpose: To compute the next world (after a clock tick)

(define (next-world w)

(make-world (world-def w)

(move-alien (world-al w) (world-dir w))

(cond [(and (at-edge? (world-al w))

(not (string=? (world-dir w) "down"))) "down"]

[(and (over-r-edge? (world-al w))

(string=? (world-dir w) "down")) "left"]

[(and (over-l-edge? (world-al w))

(string=? (world-dir w) "down")) "right"]

[else (world-dir w)])))

; game-over?: world --> boolean

; Purpose: To determine if the game is over (i.e., the alien has landed)

(define (game-over? w)

(> (+ (posn-y (alien-position (world-al w))) ALIEN-DELTA-Y)

HEIGHT))

Fig. 3. Functions to manipulate the world in Aliens Attack v0.2

the scene, over-r-edge? to detect if the alien is at the right edge of the scene,
and over-l-edge? to detect if the alien is at the left edge of the scene.

Finally, students must provide the handlers to the universe interface to run
the game. The syntax to do so is not cumbersome and easy to follow for students:

(big-bang INIT-WORLD
(on-draw draw-world)
(on-key process-key)
(on-tick next-world)
(stop-when game-over?))

4.4 Aliens Attack v0.3

Once students have a running video game with a moving alien and a defender
that responds to keystrokes, the desire to add multiple aliens and shooting

Functional Video Games in the CS1 Classroom 179

; DATA DEFINITION

; A list of aliens, loa, is either

; 1. empty

; 2. (cons a l), where a is an alien and l is a loa.

; f-on-loa: (listof alien) --> ???

(define (f-on-loa a-loa)

; inventory

; (first a-loa) = the first alien in a-loa

; (rest a-loa) = a-loa minus its first alien

; (f-on-alien (first a-loa)) = the ??? from applying f-on-alien

; to the first alien in a-loa

; (f-on-loa (rest a-loa)) = the ??? from applying f-on-loa to

; (rest a-loa)

(cond [(empty? a-loa) ...]

[else (...(f-on-alien (first a-loa))

...(f-on-loa (rest a-loa)))]))

; move-loa: (listof alien) string --> (listof alien)

(define (move-loa a-loa direction)

; inventory

; (first a-loa) = the first alien in a-loa

; (rest a-loa) = a-loa minus its first alien

; (move-alien (first a-loa)) = the first alien moved

; (move-loa (rest a-loa)) = the moved (rest loa)

(cond [(empty? a-loa) empty]

[else (cons (move-alien (first a-loa) direction)

(move-loa (rest a-loa)))]))

Fig. 4. Recursive data definition for a list of aliens, recursive template for a list of
aliens, and a specialization of the template to move a list of aliens in Aliens Attack
v0.3

capabilities quickly arises. Student analysis reveals that there can be zero aliens,
if all have been destroyed by the defender, or there can be one or more aliens that
still need to be destroyed. Thus, the introduction of multiple aliens motivates
the need for data of arbitrary size and leads to the study of lists (and other re-
cursively defined data definitions like trees). During this study, students design
and implement, for example, searching, sorting, accumulating (e.g., summing
the elements of a list), and filtering algorithms. Throughout, it is emphasized
that students exploit the structure of their data to determine the structure of
their code. For example, a self-reference in the data definition translates to a
recursive call in their function. In this manner, students learn quite naturally
how to exploit structural recursion.

Armed with some experience processing data of arbitrary size, students return
to the design of the video game and create the recursive data definition and
function template for a list of aliens displayed in Figure 4. It is noteworthy that
students realize that a function that consumes an alien must be applied to the

180 M.T. Morazán

first alien in the list and that a function that consumes a list of aliens must be
applied to the rest of the list. Furthermore, the reason for a recursive call is not a
mystery–the self-reference in the data definition for loa translates to a recursive
call–and students know in advance of writing any code that such will be the
case. Figure 4 also displays a specialization of the function template to move a
list of aliens. Students can now be charged with changing their definition of the
world structure to incorporate the list of aliens and to incorporate shots. Such
an exercise reinforces the lessons on designing structures as well as filtering and
list processing in general given that shots and aliens that are hit and shots that
go off the screen must be eliminated from the game.

4.5 Aliens Attack v0.4

The final component of CS1 introduces students to abstraction. At this point
in the course, students have added shots to their video games and will have
functions to move a list of aliens and to move a list of shots. Typically, a function
to move a list of shots will look as follows:

; move-los: (listof shot) --> (listof shot)
(define (move-los a-los)

(cond [(empty? a-los) empty]
[else (cons (move-shot (first a-loa))

(move-los (rest a-los)))]))

Structurally, this function is similar to move-loa in Figure 4 and most students
grow tired of having to write similar code as this over and over. This presents
the opportunity to introduce students to abstraction using elimination of code
duplication and code reuse as motivation to create shorter programs. After an
introduction to abstraction, students return to the design of the video game and
re-implement as follows:

; move-loa: (listof alien) string --> (listof alien)
(define (move-loa a-loa direction)

(map (lambda (a) (move-alien a direction)) a-loa))

; move-los: (listof shot) --> (listof shot)
(define (move-los a-los) (map move-shot a-los)).

When seen side-by-side, students realize that these new functions are structurally
similar and apply the design recipe for abstraction to them. This process yields
the code in Figure 5. Students realize that the first function in Figure 5 is an
abstract function to move a list of anything which can be used in the development
of other video games and appreciate that it is short (i.e., one line of code), that
it is not recursive, and that it is easy to use. In fact, most students can not
believe how easy moving a list of anything is made through abstraction.

Functional Video Games in the CS1 Classroom 181

; move-list: (X --> X) (listof X) --> (listof X)

(define (move-list f a-list) (map f a-list))

; move-loa: (listof alien) string --> (listof alien)

(define (move-loa a-loa direction)

(move-list (lambda (a) (move-alien a direction)) a-loa))

; move-los: (listof shot) --> (listof shot)

(define (move-los a-los) (move-list move-shot a-los))

Fig. 5. Abstract function to move a list of X and concrete functions to move a list of
aliens and a list of shots

5 Related Approaches

There have been a several approaches to the use of video game programming
in conjunction with functional languages to motivate beginning students. The
developers of DrScheme and HtDP have described the technical implementation
of I/O in the universe teachpack and have outlined how to implement, both
non-distributed and distributed, small simulations based on that description [5].
Naturally, the work described in this article builds on the work done by the
developers of HtDP and the universe teachpack. In contrast, the work presented
in this article sets aside the technical discussion of I/O and presents a more
detailed road map for the actual use of video games in the CS1 classroom. In
essence, the work described in this article is for educators “in the trenches”
focusing on the actual deployment of a functional video game strategy in the
classroom. In addition to describing a larger more realistic application in a CS1
setting, the work described here closely knits together the use of video games in
conjunction with CS1 topics.

Soccer-Fun, developed using Clean, aims to motivate students by having them
write programs to play soccer games [1]. It has successfully been used in a
sophomore-level course aimed to teach functional programming to students with
imperative and object-oriented programming experience and in a high school
setting to attract students to Computer Science. The developers of Soccer-Fun
report no experience with it in CS1. Although soccer is the most popular sport
on the planet, it is unclear if such a platform is effective with students that are
not fans of the sport.

Yampa is a language embedded in Haskell used to program reactive systems
such as video games [2]. Yampa, in fact, has been used to implement a Space-
Invaders-like game. As Soccer-Fun, Yampa is mostly intended to help those
already familiar with imperative/OO programming to learn functional program-
ming techniques. Both Soccer-Fun and Yampa, nonetheless, have been effectively
used to motivate students.

The use of Haskell itself to program a video game, inspired in the classical
game Asteroids, has also been reported successful at motivating students [9].
The authors report that the popularity of their approach was due, in part, to

182 M.T. Morazán

the use of animated graphics. Furthermore, the authors report that students
made great efforts to embellish their solutions with fancy graphics. This may
be the earliest indicator that providing students a creative outlet to personalize
solutions to problems is an important pedagogic technique in Computer Science
education. As with Soccer-Fun and Yampa, the scope of the efforts was to teach
functional programming.

Outside the realm of functional programming, Python is poised amongst the
most popular languages used to motivate students using games. Python presents
students with an interpreter for easy interaction, but is an object-oriented lan-
guage that naturally carries all the difficulties of designing and implementing
programs using assignment. Furthermore, textbooks using Python require al-
most immediately the use of assignment and looping constructs (e.g., see [7,11]).
Thus, programming quickly moves away from the familiar domain of high school
algebra.

6 Concluding Remarks

This article puts forth the thesis that programming functional video games
should become a trend in the CS1 classroom. The strongest proof that can be
presented for why this should be a new trend is two-fold. On one side, the reader
hopefully agrees that the development of functional video games is an imagina-
tive approach that is not beyond the scope of beginning students as evidenced
by the development presented in this article. On the other side, although not
quantified, we have the enthusiasm and interest in programming that develop-
ing video games sparks in students. It is the belief of the author that functional
video games can be an effective tool to once again make Computer Science an
attractive and popular major for beginning college students.

Unlike previous efforts in the classroom to use functional languages to pro-
gram video games, the goal is not restricted to teaching functional programming
to students with programming experience. Instead, the goals of using functional
video games are to motivate a student’s interest in programming and to pro-
vide a sound vehicle for the dissemination of a solid foundation in programming.
Essential to such an effort in the CS1 classroom is providing an interface with
minimal syntax and an easy to understand semantics. It is the expectation of the
author that the described development of a functional video game, using HtDP
and DrScheme’s universe teachpack, has demonstrated how easily a solid pro-
gramming foundation can be imparted to students using a domain they consider
fun and interesting.

Future work includes demonstrating how functional video games can be an
effective pedagogical tool for motivating and teaching generative recursion, ac-
cumulative recursion (i.e., iteration), state-based computations, and distributed
programming. The approach will assume that students have a foundation using
structural recursion as well as abstraction as outlined in this article.

Functional Video Games in the CS1 Classroom 183

Acknowledgements

The author thanks the plt-scheme and the plt-edu mailing list community for
the many frank and eye-opening discussions about teaching programming, about
HtDP, and about interesting programming projects for students. Special thanks
are extended to Matthias Felleisen and Shriram Krishnamurthi for frequently
and kindly engaging me in frank discussions about teaching programming to
beginning students. I trust that our public discussions on the mentioned mailing
lists have been mutually beneficial.

References

1. Achten, P.: Teaching Functional Programming with Soccer-Fun. In: FDPE 2008:
Proceedings of the 2008 International Workshop on Functional and Declarative
Programming in Education, pp. 61–72. ACM, New York (2008)

2. Courtney, A., Nilsson, H., Peterson, J.: The Yampa Arcade. In: Haskell 2003: Pro-
ceedings of the 2003 ACM SIGPLAN Workshop on Haskell, pp. 7–18. ACM, New
York (2003)

3. Felleisen, M., Findler, R.B., Fisler, K., Flatt, M., Krishnamurthi, S.: How to Design
Worlds (2008), http://world.cs.brown.edu/1/

4. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: How to Design Programs:
An Introduction to Programming and Computing. MIT Press, Cambridge (2001)

5. Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S.: A functional i/o system
or, fun for freshman kids. In: Hutton, G., Tolmach, A.P. (eds.) ICFP, pp. 47–58.
ACM, New York (2009)

6. Felleisen, M., Krishnamurthi, S.: Viewpoint: Why Computer Science Doesn’t Mat-
ter. Communications of the ACM 52(7), 37–40 (2009)

7. Harris, A.: The L Line, The Express Line to Learning. In: Game Programming,
Wiley Publishing, Inc., Hoboken (2007)

8. Lacey, T.A., Wright, B.: Occupational Employment Projections to 2018. Monthly
Labor Review, 82–123 (November 2009)

9. Lüth, C.: Haskell in Space: An Interactive Game as a Functional Programming
Exercise. J. Funct. Program 13(6), 1077–1085 (2003)

10. Money Magazine and Salary.com. Best Jobs in America. Money Magazine (2009)
11. McGugan, W.: Beginning Game Development with Python and Pygame: From

Novice to Professional. Apress, Berkeley (2007)
12. The Joint Task Force on Computing Curricula. Computing Curricula 2001

Computer Science (December 2001),
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf

13. CS2008 Review Taskforce. Computer Science Curriculum 2008: An Interim Revi-
sion of CS 2001 (December 2008),
http://www.acm.org//education/curricula/ComputerScience2008.pdf

14. Zweben, S.: 2007-2008 Taulbee Survey. Computing Research News (May 2009)

http://world.cs.brown.edu/1/
http://www.acm.org/education/education/education/curric_vols/cc2001.pdf
http://www.acm.org//education/curricula/ComputerScience2008.pdf

ComputErl – Erlang-Based Framework for Many

Task Computing

Micha�l Ptaszek1,2 and Maciej Malawski1

1 Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 Erlang Solutions Ltd., London, United Kingdom

michal.ptaszek@erlang-solutions.com, malawski@agh.edu.pl

Abstract. This paper shows how Erlang programming language can be
used for creating a framework for distributing and coordinating the ex-
ecution of many task computing problems. The goals of the proposed
solution are (1) to disperse the computation into many tasks, (2) to sup-
port multiple well-known computation models (such as master-worker,
map-reduce, pipeline), (3) to exploit the advantages of Erlang for devel-
oping an efficient and scalable framework and (4) to build a system that
can scale from small to large number of tasks with minimum effort. We
present the results of work on designing, implementing and testing Com-
putErl framework. The preliminary experiments with benchmarks as well
as real scientific applications show promising scalability on a computing
cluster.

Keywords: many task computing, Erlang, grid, distributed computing,
parallelism.

1 Introduction

In modern times, when the magnitude of data that needs to be processed on the
daily basis is often far too large to consider it to be suitable for a single work-
station, the importance of taking advantage of machines that form a cluster or
computing grid is increasing. In most cases grid systems are aimed at performing
the coarse grained computations that last for a relatively long time. The typical
usage is to employ a big number of loosely coupled workstations to perform a
highly specified, number-crunching and computationally intensive job.

Erlang as a functional programming language, focusing on concurrency, distri-
bution and robustness [1], has taken a measure of a tool that allows programmers
to build a highly scalable systems. However, although Erlang has never had a
strong position in the computational science, it has been used several times
as a highly-scalable middleware layer responsible for coordination and message
transport1,2 as well as a tool acting as a key-value storage [2].

One of main goals for this work was to prove that Erlang is capable of handling
a massive-scale computation coordination. We specifically focus on fine-grained
1 http://www.heroku.com
2 http://www.facebook.com/notes.php?id=9445547199

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 184–197, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.heroku.com
http://www.facebook.com/notes.php?id=9445547199

ComputErl – Erlang-Based Framework for Many Task Computing 185

computational tasks in so-called many task computing model [3] which is gaining
importance in many petascale applications [4]. A task is a small part of com-
puting job, operating independently on its own data chunk, executed in parallel
with its siblings. In the system we focus on, the number of tasks within a single
job is very high (thousands/millions), however the processing time of each one
is short (up to few minutes).

In this paper, we present the ComputErl framework written in Erlang which al-
lows researchers to perform distributed jobs computing in heterogeneous
environment involving utilization of the common computation paradigms. In
section 2 we describe the main goals and requirements of the ComputErl frame-
work. The analysis of existing solutions for many-task computing problems is
given in section 3. The main concepts of our solution are presented in section 4,
with details on supported multiple computational models in section 5. Section 6
gives the example applications and tests, while section 7 concludes our discus-
sions and outlines the future work.

2 Goals and Requirements of ComputErl

The main goals of our work are to investigate whether Erlang can be used to
build a scalable, flexible and extensible system supporting many task computing
model. These goals can be summarized as follows:

Enlarging the scale
The system should be scalable to run on wide range of machine sizes: on
a standalone desktop machine, on a local cluster, on top of computing grid
systems (like Grid50003 or PL-Grid4 infrastructure) as well in cloud envi-
ronment (like Amazon EC25).

Support for different computation models
Most of the tools that are already available provide only a very limited
support for commonly used computation models, such as master-slave or
map-reduce. Jobs submitted to the grid systems have generally the same
workflow/dataflow structure, thus the tool should support formalization of
typical processing paradigms and combining them hierarchically in a cus-
tomizable and configurable way to fit the application structure.

Transparency of execution
Another requirement for the tool is to facilitate the adaptation to the new
environment. Switching from several workstations to the large scale system
is often painful and requires learning new interfaces of the grid middleware
tools, rewriting job descriptors and sometimes even altering the whole archi-
tecture.

In order to reduce this effort, the created framework should hide all the
difficulties related to the system-specific part, allowing to simply acquire the

3 https://www.grid5000.fr
4 http://www.plgrid.pl
5 http://aws.amazon.com/ec2

https://www.grid5000.fr
http://www.plgrid.pl
http://aws.amazon.com/ec2

186 M. Ptaszek and M. Malawski

access to the grid resources and start the tool on them without changing the
application descriptors.

Extensibility
Nevertheless, the aforementioned computational models might not be suf-
ficient for some family of problems, so the architecture of the framework
ought to be flexible and extensible to support new models. The possible ex-
tension may be to support yet another model for parallel computations (for
instance sorting networks) as well as the meta extension used for expressing
the workflow in the system (like loops or if-else blocks).

Preparing a new extension responsible for handling the desired paradigm
should be limited only to providing new code units: the core of the system
should not be modified.

Support for heterogeneous environment
As the system is intended to hide the underlying environment from the user,
it should also be able to run on top of different hardware configurations.
Since Erlang executes its applications inside of its own virtual machine,
the language itself provides an abstraction layer for the framework. More-
over, taking advantage of possibility of selecting and implementing new load
balancing strategies leads to better hardware utilization and general perfor-
mance improvement.

Fault tolerance
Since the probability of a single node failure increases together with the size
of the cluster, the framework must be resistant to the breakdowns. Crash
of one of the machines must not interrupt the processing that is in progress
on other workstations. Additionally, the lost fragments of jobs should be
rescheduled to the different, healthy nodes.

Apart from hardware failures, system ought to also be able to handle the
internal crashes. Since the number of Erlang processes is going to reach huge
number, the unpredicted behavior of one of them should not disturb the
others. In order to achieve the proper internal isolation, framework is built
obeying standard OTP design principles [5].

3 State of the Art

Since grid research area is very active nowadays, there are several solutions that
might be used for many task computing family of problems.

Swift6 is a system created at University of Chicago that supports specification,
execution and management of science and engineering workflows. The tool pro-
vides its own specification language used to express and describe operations that
should be performed on the data [4]. Unfortunately, Swift uses Globus Toolkit
[6] as a middleware, thus it is a tedious job to configure and run it on the local,
non-grid environment.

DIANE7 is a tool for controlling and scheduling of computations on a set of
distributed worker nodes [7]. The system is not limited to the grid infrastructure
6 http://www.ci.uchicago.edu/swift/index.php
7 http://it-proj-diane.web.cern.ch

http://www.ci.uchicago.edu/swift/index.php
http://it-proj-diane.web.cern.ch

ComputErl – Erlang-Based Framework for Many Task Computing 187

and may be used with local resources. Moreover, DIANE makes use of Ganga –
a front-end for job definition and management, thus its adaptation to the new
job submission system should not cause any major problems [8].

The last presented solution - DiscoProject8, is an implementation of the Map-
Reduce framework for distributed computing. Although the core of the system
is written in Erlang, the map and reduce functions provided by user are imple-
mented in Python. The project has a large and active community and is still
under heavy development.

From all approaches, DiscoProject is the most similar solution to the Com-
putErl system, however it is focused only on the Map-Reduce computing model.

4 Main Concepts of ComputErl

The system follows the algorithmic skeleton approach as the parallel design pat-
tern [9]. Skeleton itself describes “(...) the structure of a particular style of al-
gorithm, in the way in which higher order functions represent general computa-
tional frameworks in the context of functional programming languages. The user
must describe a solution to a problem as an instance of appropriate skeleton”.
According to the design, each skeleton is implemented and considered indepen-
dently from the other.

The concept of the system is shown in Fig. 1. The general idea is to provide
a possibility to transparently execute multiple jobs/tasks at the same time, dis-
tributing them on the available resources. System, as the coordinator, will be
responsible for handling the load balancing and communication, assigning tasks
to nodes and monitoring the processing. The implication of that fact is that
several different jobs might occupy the same node and tasks belonging to the
same job might be spread over the cluster and executed in parallel on different
machines. As one of the major requirements for the framework is to hide the
infrastructure complexity, from the user point of view there is no difference, be-
sides the performance, if the system is running on single machine or is using a
network of loosely coupled nodes.

Since ComputErl has been designed and implemented as a tool for users who
do not necessarily have to be Erlang programmers, the system can be perceived
as a black-box that should be fed with the job description files. Each compu-
tation request submitted to the system must be described by two parameters:
configuration file and the input data location.

The first parameter - configuration - is an Erlang parsable file, i.e. file:consult/19

function should be able to read and interpret its contents. The configuration file
should consist of a single root element specifying an entry point for the job:
{computation type, Type, Conf}. Type parameter is an atom defining the compu-
tational model used in the given execution phase. The third element of the tuple,
Conf, is a list of arguments that will be provided as a configuration to the main

8 http://discoproject.org
9 http://www.erlang.org/doc/man/file.html#consult-1

http://discoproject.org
http://www.erlang.org/doc/man/file.html#consult-1

188 M. Ptaszek and M. Malawski

Fig. 1. Concept of the ComputErl: tasks belonging to multiple computation models
are distributed over the computing nodes

process for the current step. The configuration parameters depend on the chosen
computation model.

The programming language in which ComputErl has been written - Erlang -
has been chosen because of the many reasons. The main advantages are:

lightweight processes – since the system is intended to be massively parallel,
delegating well defined roles to the separate process instances simplifies the
design and implementation. Developer does not need to bother about the
operating system resources (each process consumes 331 words of memory at
its startup), nor about creation time (circa 5-10 μs).

process isolation – together with the size of the system the probability of
the failure grows. In order to avoid data loss or corruption, Erlang follows
the share-nothing strategy. This means that no data (unless intentionally
exposed) is shared between the processes. Crash in one of the processes does
not cause the collapse of the whole system and is limited only to the small
subset of processes which were linked to the erroneous one.

dynamic nature – in Erlang it is possible to inject new code without recompil-
ing or stopping the whole system. Providing new computation models does

ComputErl – Erlang-Based Framework for Many Task Computing 189

not require changing the core of the system. To enable new functionality,
developer ought to implement a set of callback modules for the given Type
which will take care of processing the incoming data.

transparency of execution – since process identifiers encapsulate all the in-
formation needed for communication, hence from the code point of view there
is no difference if the target process resides on the same node or is evaluating
its code on the remote VM. In consequence a developer might implement the
logic of the application without knowledge of process location.

well-defined system structure – as the scale of the system is far beyond the
size of regular desktop application, the process relationship should be well-
defined and structuralized. Following OTP principles regarding the architec-
ture it is possible to design and implement a system that is clear and easy to
maintain. All processes running within ComputErl system are grouped under
special supervisor instances which, in turn, form a hierarchical arrangement
called supervision tree.

5 Supported Computation Models

The ComputErl framework provides a possibility to express the application struc-
ture using a dedicated job description language based on the standard Erlang
syntax. Although the system is able to follow whichever model user chooses,
though - as a proof of a concept - three major approaches have been imple-
mented. These are:

– master-slave,
– map-reduce,
– pipeline.

5.1 Master-Slave

The Master-slave computing model defines two types of execution units [10]:

– master processes, usually one for the whole computation, take care of coor-
dinating the slaves work: distributing the data among them and collecting
the results.

– slave processes that belong to one master, execute the requested command
on the given data chunk and produces the results that are sent back to the
caller. The number of slaves is configurable for each job.

When the computation begins, each worker process gets the data chunk as-
signed from its master. As soon as the processing of that data part ends, the
slave returns the result and indicate that it is ready to handle the next task. Each
master has also the dedicated result saver process attached, which is responsible
for collecting the results and saving them to disk. When master’s pending chunk
queue is empty and all the slave processes finished their work, the whole process
terminates and stops all the workers as well.

190 M. Ptaszek and M. Malawski

Because the amount of data chunks assigned to the single master might be
very large, in order to avoid the potential bottlenecks several improvements to
this model have been made.

To eliminate a situation when one process is flooded by the results from
hundreds of workers, it is possible to define the maximum number of data chunks
per master. When the boundary is exceeded, the coordinator process, instead of
spawning the workers, creates an additional layer of master processes, dividing
the data equally among them. New masters location is chosen by the scheduler
process running on a master node. The algorithm is repeated until the number
of tasks assigned to the single master is less than a given limit. A number of
masters created on the new level is also parametrized.

The second improvement is related to the location of workers against the mas-
ter. Since the system has been designed to handle a great number of small tasks
at the same time, the overhead caused by the data marshaling and unmarshaling
might level the profit of parallel execution. To avoid such a situation the workers
are spawned on the same machine as masters.

This architectural decision implies a fact that the hardware parallelism is
determined by the number of sub-masters. The workers themselves are used to
take advantage of the CPU cores available within the assigned node.

5.2 Map-Reduce

Map-reduce - computational paradigm originally designed by Google to sup-
port the parallel large data sets processing [11]. Users provide two functions that
are operating on the inputs:

– map - takes an input chunk and emits a set of intermediate key/value pairs.
– reduce - accepts the intermediate key and a set of values connected to it.

Reduce function should merge its input data usually into zero or one output
values.

The outputs of the reduce functions are treated as the outputs of the whole
computation process. In ComputErl there are three types of processes involved
in the map-reduce phase:

– coordinator - a finite state machine that distributes the data among the
children processes and is responsible for grouping the map outputs by the
key,

– mappers - group of processes that execute the configured mapping function,
– reducers - group of processes that execute the configured reducing function.

Both number of mappers and reducers can be configured separately.
Since the communication between the job coordinator and mapper/reducer

processes is not very intensive (both input data and computation results are
passed as a single message), both mappers and reducers are spawned on the
remote nodes in the cluster.

ComputErl – Erlang-Based Framework for Many Task Computing 191

5.3 Pipeline

Pipeline - a meta-pattern for connecting and scheduling the subsequent phases
of more complex computations. When using that model a user describes a flow
of the data within the system.

The flow is basically a list of subtasks that should be executed in the given
order. The processing starts from the first subtask, which is fed with the original
input data. Then, the result of each phase becomes an input for the next one.
Outcomes of the last step become a result of the whole pipeline flow.

In this model, each subtask might be computed using any of the available
models: master-slave, map-reduce, pipeline or the one provided by the user.
When using that model, only one coordinator process is created.

6 Sample Applications

In order to prove the correctness of the framework, it has been tested using four
benchmarks, representing typical applications.

6.1 Sleep Benchmark

This benchmark has been used only to prove the tool is able to distribute the job
parts over the workers without dropping on the performance. Sleep task accepts
as an input an integer which is a number of seconds that worker process should
sleep for. As a result the script yields a string containing hostname where it has
been executed, time on that host and the assigned sleep interval. The compu-
tation model chosen to accomplish the goal was master-slave. The configuration
describing such a job is presented in Fig. 2

In order to verify the correctness, benchmark has been run on up to 100
physical machines. The parallel efficiency and speedup plots are presented in
Fig. 3.

1 {computation_type , master_slave ,

2 [{output_file , "/tmp/sleep_output .out"},

3 {script , "scripts/sleep.sh"},

4 {max_tasks_per_master , 1},

5 {slaves_no , 1}]}.

Fig. 2. Sleep benchmark configuration

6.2 Mandelbrot Set Generation

The second benchmark ComputErl framework has been tested on is a job that
renders the Mandelbrot set.

The job for in this benchmark is for a given image size to produce a file
consisting of pairs: X, Y, R, G, B; where X , Y are the coordinates of each point

192 M. Ptaszek and M. Malawski

(a) speedup (b) parallel efficiecy

Fig. 3. sleep benchmark speedup and parallel efficiency plots

on the picture, while R, G and B are the color coefficients in the RGB color
representation model. All values are non-negative integers. Each task is defined
as a computation of RGB value for a given pixel. The executable file uses Python
programming language to implement the algorithm.

The job consists of two phases: input data generation – that is producing a
list of all possible (X, Y) pairs and, in second step, computing the actual pixel
color.

The chosen computation model for this job was pipeline that links two master-
slave subprocesses. First master takes an image size as a parameter and creates
a file with pixel coordinates (X , Y pairs) - one for each row. A reference to this
file is passed to the second phase master which distributes the data inside to
the linked workers. Each worker computes the color of the assigned point and
returns it back to the coordinator.

Since the number of tasks grows very fast (for MxN pixel image its number
reaches M · N) the single master would be overloaded with the slaves result
submissions and next chunk requests. Because of that there is a need to spawn
at least one more masters layer in the master-slave tree.

The configuration used for those tests is presented in Fig. 4.

6.3 Distributed Grep

Next benchmark has been introduced in order to check how good the map-reduce
paradigm implementation is. The purpose of the application is to extract and
point out the lines in the huge sets of text files that match a given pattern.
However, if the pattern we are looking for does not occur more than a specified
number of times in the same file, that particular file should not be listed in the
results.

The job consists of two Python scripts implementing map and reduce functions.
The first script, grep.py iterates over a given file and for each line that matches
the pattern given in the regular expression format, emits a pair: (filename, line

ComputErl – Erlang-Based Framework for Many Task Computing 193

1 {computation_type , pipeline ,

2 [[{computation_type , master_slave ,

3 {slaves_no , 1}]},

4 {output_file , "/tmp/coords.out"},

5 {script , "scripts/coords.py"}],

6

7 [{computation_type , master_slave ,

8 {result_delimiter , "\n\n"},

9

10 {max_tasks_per_master , 20},

11 {masters_per_level , 3},

12

13 {slaves_no , 8}]},

14

15 {output_file , "/tmp/mandelbrot .out"},

16 {script , "scripts/mandelbrot .py -2 -1 1 1"}

17]

18]}.

Fig. 4. Mandelbrot benchmark configuration

number). The second one - reduce.py - accepts two parameters: the filename and
a list of line numbers in which the pattern has been found. If the length of the list
is greater than a given threshold, an output line in format filename:line number is
produced.

As an input 3800 text files from Project Gutenberg10 have been used. Total
size of the input reached 1.6 GB. In the sequential approach processing time for
the whole set came to 542 seconds.

The best results has been achieved when using the configuration in Fig. 5.

1 {computation_type , map_reduce ,

2 [{mappers_no , 40},

3 {mapper_params ,

4 [{script , "scripts/grep/grep.py"}]},

5

6 {reducers_no , 20},

7 {reducer_params ,

8 [{script , "scripts/grep/reduce.py"}]},

9

10 {output_file , "/tmp/dist_grep "}]

11 }.

Fig. 5. Distributed grep benchmark configuration

10 http://www.gutenberg.org/

http://www.gutenberg.org/

194 M. Ptaszek and M. Malawski

(a) speedup (b) parallel efficiency

Fig. 6. distributed grep benchmark speedup and parallel efficiency plots

The preliminary results of the testing are presented in Fig. 6. The tests were
run on a cluster of machines (Zeus at ACC Cyfronet AGH), each node having 2
Xeon Quadcore 2.5 GHz processors with 16 GB of RAM and 10 Gb/s inter-node
connection. The nodes use a shared Lustre filesystem11.

We expect that further performance improvements may be possible by intro-
ducing a distributed filesystem which allows to exploit data locality [11]. In the
current configuration all data access requires network transmission, which limits
the performance of data-intensive computing.

6.4 Bioinformatics Application

The last benchmark approach was to test ComputErl framework on a real ap-
plication from bioinformatics domain. The application predicts the active sites
of proteins based on FOD model [12]. The scripts that are used during the tests
has been provided by the scientists who are using them on the daily basis. Apart
from the implementation the job also requires the data files containing protein
structure.

The tests were executed using all possible scale-input data configuration,
which gave 162792 single script runs (7752 inputs, 21 different scales). Job has
been divided into 7752 tasks: a single task has been defined as a multiple profile
generator for all the available scales (21 subproblems) for the given input data
(protein description). Every script execution produced 21 generated profiles. To-
tal size of output files exceeds 3.5 GB of disk space. Since the total size of the all
output data produced was too big for a single process to handle, the additional
data savers were attached to each master process.

In order to accomplish the goal, the simple configuration for master-slave has
been used. Its listing shows that preparing ComputErl to execute new job is fast
and easy.

The configuration used for this application can be found in Fig. 7.
11 http://wiki.lustre.org/

http://wiki.lustre.org/

ComputErl – Erlang-Based Framework for Many Task Computing 195

1 {computation_type , master_slave ,

2 [{script , "scripts/profiles.sh"},

3 {output_file , "/tmp/profiles .out"}

4]

5 }.

Fig. 7. Bioinformatics application configuration

Tests have been performed using the default settings for master-slave model:
having 10 slaves under each master, maximum 100 tasks for each of the coordi-
nator and spawning 10 new master processes per new level.

The graphical representation of results obtained on the same machine as the
grep benchmark (Zeus cluster) is available in Figure 8.

(a) speedup (b) parallel efficiecy

Fig. 8. profiles benchmark speedup and parallel efficiency plots

7 Conclusions and Future Work

All the tests have been successfully executed and they have demonstrated that
the framework does scale well on the large clusters of machines, and is capable
of handling massive number of tasks at the same time.

Thanks to the OTP principles, controlling a highly concurrent, dynamic and
parallel system turned out to be manageable: the supervision tree structure al-
lowed building a clear and simple process’ relationship graph, Erlang’s built-in
lightweight process support helped forget about the complexity of native operat-
ing system threads handling and synchronizing and finally the dynamic nature
of language created an easy way to extend the existing solution via the user-
provided callback modules. ComputErl turned out to be a very flexible utility,
which can be run on top of potentially any of the modern computing grid systems
or local clusters.

196 M. Ptaszek and M. Malawski

Nevertheless, ComputErl is still in its early days and a lot of work must be
done before the tool would be regarded as a mature and competitive solution to
the existing ones. Planned future work includes:

– Implementing and testing more meta-patterns, such as if-else branches, for
or while loops. Having those structures may allow users to build more flexible
and sophisticated data flow graphs for their computations.

– Load balancing strategy optimizations. One of the most interesting directions
to go is to employ the existing tools to do the measurements (like Ganglia
[13]) and basing on them, choose the least loaded target machine to deploy
a given task on.

– Fault tolerance improvements. Using some kind of the persistent storage it
should be possible to save (checkpoint) the intermediate data in between
the phases of the computations. The persistence layer ought to protect the
computed data from getting lost because of some unpredicted events, such
as hardware failure. The framework, right after a failure detection, would be
responsible for restarting the lost parts of the job on the other node, starting
from the last snapshot that has been saved.

The ComputErl framework is available to the public as an open-source project
at: http://bitbucket.org/michalptaszek/gridagh

Acknowledgments. The authors express their thanks to Katarzyna Prymula
for providing the bioinformatics application for testing. The experiments were
conducted on the Zeus cluster at ACC Cyfronet AGH. The research presented
in this paper has been partially supported by the European Union within the
European Regional Development Fund program no. POIG.02.03.00-00-007/08-
00 as part of the PL-Grid project (http://www.plgrid.pl) and AGH grants
11.11.120.865 and UDA-POKL.04.01.01-00-367/08-00. We would also like to
thank Jan Henry Nyström for his help on reviewing the paper.

References

1. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly Media, Sebastopol
(2009)

2. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: SOSP 2007: Proceedings of twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, vol. 41, pp. 205–220. ACM, New
York (2007)

3. Foster, I.: Many Tasks Computing: What’s in a Name? (July 2008)
4. Wilde, M., Foster, I., Iskra, K., Beckman, P., Zhang, Z., Espinosa, A., Hategan,

M., Clifford, B., Raicu, I.: Parallel scripting for applications at the petascale and
beyond. Computer 42(11), 50–60 (2009)

5. AB Ericsson: OTP Design Principles User’s Guide (February 2010)
6. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: Jin,

H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer,
Heidelberg (2005), http://dx.doi.org/10.1007/11577188_2

http://bitbucket.org/michalptaszek/gridagh
http://www.plgrid.pl
http://dx.doi.org/10.1007/11577188_2

ComputErl – Erlang-Based Framework for Many Task Computing 197

7. Mościcki, J.T.: Diane - distributed analysis environment for grid-enabled simulation
and analysis of physics data. In: Nuclear Science Symposium Conference Record,
vol. 3, pp. 1617–1620. IEEE, Los Alamitos (2003)

8. Mościcki, J.T., Brochu, F., Ebke, J., Egede, U., Elmsheuser, J., Harrison, K., Jones,
R.W.L., Lee, H.C., Liko, D., Maier, A.: Ganga: a tool for computational-task man-
agement and easy access to grid resources. Computer Physics Communications
(June 2009)

9. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Pitman (1989)

10. Shao, G., Berman, F., Wolski, R.: Master/slave computing on the grid. In: Hetero-
geneous Computing Workshop, pp. 3–16 (2000)

11. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

12. Bryliński, M., Prymula, K., Jurkowski, W., Kochańczyk, M., Stawowczyk, E.,
Konieczny, L., Roterman, I.: Prediction of functional sites based on the fuzzy oil
drop model. PLoS Comput. Biol. 3(5), e94 (2007)

13. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring Sys-
tem: Design, Implementation, and Experience. Parallel Computing 30(7) (July
2004)

Monad Factory: Type-Indexed Monads

Mark Snyder and Perry Alexander

The University of Kansas,
Information and Telecommunication Technology Center,

2335 Irving Hill Rd, Lawrence, KS 66045
{marks,alex}@ittc.ku.edu

Abstract. Monads provide a greatly useful capability to pure languages
in simulating side-effects, but implementations such as the Monad Trans-
former Library [1] in Haskell prohibit reuse of those side-effects such
as threading through two different states without some explicit work-
around. Monad Factory provides a straightforward solution for opening
the non-proper morphisms by indexing monads at both the type-level
and term-level, allowing ‘copies’ of the monads to be created and simul-
taneously used within even the same monadic transformer stack. This
expands monads’ applicability and mitigates the amount of boilerplate
code we need for monads to work together, and yet we use them nearly
identically to non-indexed monads.

Keywords: monads, Haskell, type-level programming.

1 Introduction

Programming with monads in Haskell provides a rich set of tools to the pure
functional programmer, but their homogeneous nature sometimes proves unsat-
isfactory. Due to functional dependencies in the Monad Transformer Library
(mtl), an individual monad can only be used in one way in a fragment of code,
such as using the State monad to store a particular state type. When a program-
mer wants to use a monad in multiple ways at once, some hack or work-around is
necessary, such as using a record structure or carefully lift-ing through a spe-
cific monad transformer stack. While monad transformers allow us to combine
the effects of different monads, we cannot directly use transformers to combine
the effects of a particular monad multiple times. The problem grows as code
from various sources begins to interact–when using existing code, a monad’s us-
age might be “reserved” for some orthogonal use; should you edit that code, even
if you can? Even when we give in and re-implement a common monad to differ-
entiate between the uses, we must provide instances for a host of other common
monads in defining the transformer, including providing an instance relating to
the the copied monad–these details require more knowledge about monads than
simply using them. We seek a more adaptable process for capturing monadic
behavior, and expect some streamlining, re-usability, and a less error-prone pro-
cess than some ad-hoc options that are commonly used. In particular, we expect
to write fewer instances for transformer inter-operability.

R. Page, Z. Horváth, and V. Zsók (Eds.): TFP 2010, LNCS 6546, pp. 198–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Monad Factory: Type-Indexed Monads 199

This paper introduces type-indexed monads, which allow for multiple distinct
instances of a monad to coexist, via explicit annotations. A simple type class
links the term-level index and the type-level index together, allowing both type
inference and evaluation to differentiate between instances of monads.

An arbitrary number of these indexed monads can coexist, making monadic
programming more modular and more flexible. This ‘factory’ approach solves
some of the problems associated with non-indexed monads, and avoids the need
for early design decisions on monad usage.

This approach tries to work with the existing implementation and existing
code based on mtl, rather than propose massive re-writing. Perhaps most inter-
estingly, the core technique may prove useful for other cases where a functional
dependency causes instance selection to be problematic.

This work provides the following contributions:

– Particular monadic side-effects (such as state maintenance) may be used
multiple times simultaneously, without affecting each other’s usage.

– Type-indexed monads are compatible with existing monadic code, so we do
not have to prepare our existing code to accomodate type-indexed monads.
They can be stacked together in a monad transformer stack, also with the
monads found in the Monad Transformer Library provided with GHC [2].

– Libraries that use common monadic effects don’t need a local copy of any
monad along with all the requisite instances. We discuss why that libraries
might resort to re-implementing monads, providing a mechanism for remov-
ing the code duplication in favor of a re-usable solution. This saves effort
and mitigates the error-prone process of monad implementation.

– When we combine monad transformers, we need an instance describing how
every pair of transformers can be lifted through each other; this quadratic
number of required instances is mitigated, as we provide instances that
address the entire indexed family of monads. As long as type-indexed monads
can define the needed semantics, there are no more instances to create.

– The State, Reader, Writer, RWS, and Error monads are implemented as
type-indexed monads (available on Hackage [3]).

We identify the concept of a type-indexed monad, then build upon the ini-
tial definitions of monads to guide the type-indexed versions of monads. Type-
indexed monads do not attempt to provide a simplified interface to monads.
Rather, the point is to make heterogeneous monad usage simpler and more con-
venient for a programmer who has already overcome the hurdle of understanding
monads.

2 Problem

Monads are a mechanism often used for simulating effectful computation in
a pure language like Haskell. They are pervasive in Haskell programs, yet the
mechanism used to define them in the Monad Transformer Library—type classes
and the related instances—has drawbacks.

200 M. Snyder and P. Alexander

Type classes indicate that any given instance type has the overloaded func-
tions defined for it. Consider the monad State s, and the associated type class
MonadState s m.

class (Monad m) ⇒ MonadState s m | m → s where

get :: m s

put :: s → m ()

newtype State s a = State {runState :: (s → (a,s))}

instance MonadState s (State s) where

get = State $ λs → (s, s)

put s = State $ λ → ((), s)

MonadState defines a set of ‘non-proper morphisms’, get and put (as op-
posed to ‘proper’ morphisms like return and >>=). We have an instance of
MonadState defined for the State monad, meaning that we can use get and put
to construct monadic values. The problem arises that s must be determinable
by m. For a given monadic computation for some m, get always gets a value of
a particular type. We can’t use get and put to store multiple s’s, and we can’t
use them to store values of different types. The functional dependency m→s at
once allows us to use State at various types for s in separate places in our code,
and restricts us from using State at various types in the same code.

Example—Design Decisions, Implications. Suppose we are writing a li-
brary of monadic code. We want to provide some abstractions of operations that
happen to maintain an environment of name-value pairs and pass around an
integer as state; the actual purpose of the library is irrelevant. If we were free to
be direct, we might actually use the State and Reader monads to manage our
[(String,v)] and Int values for us. As we develop our library, we realize that
we need some extra values to be kept in State; since we’ve already used State,
we end up instead moving to a record as our state–indeed, many programmers
would have started with this approach to avoid the tedious translation through
the code. Now we can add to this record all the state we want, as long as we
are designing the library and not just using it. An issue arises, in that State
computations now have access to all fields of the record. Just as we would like
to have separation in our processes’ memory, we would like a guarantee of the
separation of access to our different pieces of state. Some [4] use separate copies
of the State monad to guarantee that separation. We will see that type-indexed
monads are, at the type level, incapable of accessing or modifying each other’s
contents, and may be ideally suited to such work.

Our library will surely be exciting and popular, and we want to be savvy to
our users’ needs–they might want to use our library in their own monadic code
that already uses State and Reader–so we create our own MyLibM monad (and
transformer version) that provides the exact features of State and Reader, as
well as the many instances needed for it to be a monad and be ‘stackable’
(combined via the monad transformers) with the original State and Reader.

Monad Factory: Type-Indexed Monads 201

As our library gains in popularity, some users want to expand on the state
stored in our record–but it is closed–just as we can’t add constructors to a data
definition except at the source, we can’t add fields to a record except in its initial
definition. Another user decides they want to use our library in a way we hadn’t
anticipated–they want to use it for a few different things at once, and they have
to play a rousing game of ‘count the lifts’ in order to use the MyLibM monad
twice or more in the same transformer stack. Another user wants to use their
own hand-written monad with ours, and has to write a few more instances to
make the two interact appropriately, even though they already have instances
for State and Reader.

Through this entire process, we find problems whenever we want to expand a
monad’s usage or re-use it. We have some closed definitions, code copies of some
monads, and some unhappy library users that had to create their own work-
arounds for our code. What if we could use a monad for its effects in multiple
ways without having to resort to records (and other similar approaches, such as
HLists)? What if we didn’t have to create our own State and Reader monads
just to make sure the library users still had free use of it?

Type-indexed monads aleviate these problems by allowing us to use different
type-level indexes to differentiate between intended uses of a monad. In our
library example, this means that we can have several State constraints over our
code to thread different states through our code at once (whether or not the
states’ types happen to match). Instead of using a record type, we could just
use another index of the monad if we chose. Instead of copying the functionality
of monads into our own MyLibM monad, we can create an index to use; whether
we export that index or not also gives us control over how the library may be
used. The indexed versions are distinct from the original definitions, and they
may be used together. The library users can now use State to their own liking
(and multiple times as well) without interfering with library code. They can
even use the library code at different indexes in the same code, and it only
requires different type-indexes, and no tedious lifting, which can easily be
abused. We also gain a guarantee of separation–we don’t worry about one get
affecting the wrong monad, as the types wouldn’t line up–we gain this separation
by the parametricity of the type-indexed monads’ definitions. We can have one
set of instances that work for any number of indexes, meaning if we can define
our monad in terms of those offered in indexed style, we won’t have any new
instances to write, nor will users downstream. The number of instances is usually
quadratic in the number of monads in the transformer stack, so this becomes
more valuable as more monads are stacked.

3 Type-Indexed Monads

In order to provide a mechanism for type-indexed monads, we must account for
differentiation between type-indexed monads at both the term-level for evalua-
tion, and also at the type-level during typing. We consider some possible example
uses to visualize type-indexed monad usage, and then provide details of a realiz-
able implementation. The concept itself arose as a realization that McBride [5]

202 M. Snyder and P. Alexander

uses type-level representations of numbers to create indexes that simulate terms
at the type level; the dependent feel of explicitly indexing monads seems like a
plausible avenue for type-level programming.

We use the State monad as our running example, though of course others
are also implemented. Instead of using a non-proper morphism and expecting
Haskell to infer the index we are using, we explicitly label each usage. If we relied
on an inference mechanism (with no index argument), that would preclude the
opportunity of using multiple copies of a monad that happened to operate on
the same type, e.g. using two different State monads to store different sets of
available registers in a compiler. If we are creating type-indexed monads, they
should closely resemble usage of the original non-indexed version. We add the
explicit indexing parameter as a first parameter to all non-proper morphisms.
By convention, we add an ‘x’ (or ‘X’) to all labels to differentiate them from the
original monad definition rather than rely on name qualifications. This explicit
indexing will allow us to use different type-indexes with StateX to store the
same type of state.

As an introduction to the syntax and feel of type-indexed monads, consider
a basic monadic successor function, and a similar function that increases two
separate states, using StateX monads:

succM :: (MonadState Int m) ⇒ m ()

succM = do n ← get

put $ n+1

succ2M :: (MonadStateX Index1 Int m, MonadStateX Index2 Int m) ⇒ m ()

succ2M = do x ← getx Index1

y ← getx Index2

putx Index1 $ x+1

putx Index2 $ y+1

Instead of providing separate get1 and get2 functions, we parameterize the get
function to operate over the index as well. This feels similar to the record-as-state
approach mentioned in the introduction, except that we can leave previous uses
of State untouched. Also, this approach is open to further indexed uses. If we
were to try to use lifts in order to use State twice, we might specify that
(put 1 >> lift (put 5)) :: StateT Int (State Int) (). To express this via con-
straints, the type may be written as (MonadState Int (t m), MonadState Int m,

MonadTrans t) ⇒ t m (). It’s possible, but this gets messier as we add more con-
straints: we are specifying the transformer stack in our type. We would like to
separate this concern, especially if we want to combine the code with code that
has a more constrained type. We could perhaps use abstractions to hide the lift-
ing, but this is still one more step that we have to do, and that we can get wrong.
Phantom typing [6] won’t help us here: an expression such as (put 5) doesn’t
give enough information to know into which Int-state to put the 5–either one
would be plausible embedded in a do-expression, so there’s no ‘best’ answer for
the phantom to find or check for us.

Monad Factory: Type-Indexed Monads 203

Type-indexed monads clearly need to have distinct types. Haskell does not
have dependent types, so our indexing must appear at the type level as well.
Seeking openness, we express the type of a monadic computation by constrain-
ing it rather than constructing it. We define what characteristics a monadic
computation must include, rather than directly defining it. The type of succ2M
states that m is a monad exibiting the behavior of the (MonadStateX Index1
Int) instance, as well as the MonadStateX Index2 Int) instance. It is impor-
tant to realize that succ2M can be used in any monadic computation that in-
cludes at least these non-proper morphisms. Other type-indexed uses may be
later incorporated with use of succ2M.

3.1 Creating Type-Indexes

We want to create an index that exists at both the type and value level uniquely.
The type-level representation is used in differentiating the type of one type-
indexed monad from another, and the value-level representation is used in dif-
ferentiating a value of one type-indexed monad from another. We also need a
link between the two—type inference needs to know that a particular index
value always refers to a particular type-level index, and constructing values of
a particularly-indexed monad requires knowing how to represent the type-level
index in order to generate a value of that type-indexed monad, for instance when
returning a value. The Index type class exactly represents that correspondence
between the term-level and type-level.

class Index ix where

getVal :: ix

Creating a new type index comes in two predictable steps: we generate a simple
atomic datatype, and provide an instance for Index.

data MyIndex = MyIndex deriving (Show, Eq)

instance Index MyIndex where getVal = MyIndex

A singleton datatype and a trivial instance for each index are all we need
for a new index to index into the monads. Template Haskell could be used to
further-simplify the process, but it is already short. This simple addition of an
index at both levels is all we need to completely introduce type-indexed monads.
The idea is simple, direct, and gives us more options in how we use and think of
monads.

We can now proceed to use these values at the type and term level inter-
changeably (via getVal and ::) in order to differentiate between instances of a
monad.

3.2 Implementation

Just as in the implementation of the mtl monads, indexed monads will each re-
quire (i) a data constructor or newtype; (ii) an instance for the Monad type class;

204 M. Snyder and P. Alexander

(iii) a type class for the non-proper morphisms; (iv) an instance for the datatype
at that type class; and (v) a transformer version that satisfies the MonadTrans
type class in order to be combined with other monads in a transformer stack. We
develop the StateX monad, showing how automatic a translation it is from the
original definition of State. We will underline all indexing code—the remaining
code would define the original, non-indexed monad. The type-indexed version
should directly arise from this prescriptive process of adding indexes. The same
process works on other monads such as Reader and Writer, but is not shown
for brevity’s sake.

The StateX Monad. We create the necessary data structure to represent a
computation of the StateX monad, as well as a run function. We use newtype
just as mtl does. We additionally define mkStateX to allow tagging the index
type without directly ascribing a type, though this is only needed in the monad’s
definition and not in usage. We split the run function in two for the same reason.

The recurrent theme in indexing a monad is to have a value of the index type
(its index value) be the first parameter to every non-proper morphism, and to
include the index as a type parameter to the data structure and type class. The
index is simply a label at the type level, and we use those labels to help identify
which ‘instance’ of the monad is affected. The run function states that, given an
index ix, a monadic computation of the same index of the monad and a starting
state, we should execute the computation with that starting state. It is precisely
the same as the original definition, except that we now index the monad at each
usage.

newtype StateX ix s a = StateX {runStateX’ :: s -> (a, s)}
mkStateX :: (Index ix) => ix -> (s->(a,s)) -> StateX ix s a

mkStateX v = StateX v

runStateX :: (Index ix) => ix -> StateX ix s a -> (s->(a,s))

runStateX m s = runStateX’ m s

For StateX to be a monad, it must provide definitions for >>= and return.
Again, notice we must always ensure the index matches. We also see the way
in which the only function of the Index type class is used, to generate a value
corresponding to a particular type, effectively converting the type down to the
only value that inhabits the type (ignoring bottom). Otherwise, the code is quite
similar to the State monad’s Monad instance.

instance (Index ix) ⇒ Monad (StateX ix s) where

return a = mkStateX (getVal::ix) $ λ s → (a,s)

((StateX x)::StateX ix s a) >>= f = mkStateX (getVal::ix) $ λ s →
case (x s) of (v,s’) → runStateX’ (f v) s’

We also require a type class for the non-proper morphisms of our type-indexed
monad, and we replicate the MonadState type class to handle our type-indexed
versions.

Monad Factory: Type-Indexed Monads 205

class (Monad m, Index ix) => MonadStateX ix s m | ix m → s where

getx :: ix → m s

putx :: ix → s → m ()

The getx and putx functions are identical to those found in MonadState, except
for the extra parameter for the type index. We now provide the implementation
of the special effects of StateX to show how any StateX monad can perform
the special behavior of the MonadStateX class. As before, we repeat the original
definition’s code, with our type-level indexing labels.

instance (Index ix) ⇒ MonadStateX ix s (StateX ix s) where

getx (ixv::ix) = StateX ixv $ λx → (x,x)

putx (ixv::ix) s = StateX ixv $ λ → ((),s)

We now have the basic definition of a monad that we want. However, we have not
yet created a transformer version of the monad, nor have we handled the special
circumstances that arise when we use multiple monads of different indexes. Nor
have we enabled StateX to work alongside the original State monad. We turn
our attention next to handling these concerns.

The StateTX Transformer. We now create a transformer version of the
StateX monad, filling the same purpose as the StateT transformer does for
the State monad. We create a new data structure and run function. Again,
we must have the same type index to run the transformer. To complete the
definition of the StateTX monad, we must provide the relevant instances for
Monad, MonadTrans, and MonadStateX. Furthermore, to connect the StateTX
transformer to the StateX monad, we need an instance for the MonadStateX
type class in order to support the non-proper morphisms, and we need a means
of lifting monadic computations of the transformer.

newtype StateTX ix s m a = StateTX runStateTX’ :: s -> m (a,s)

mkStateTX :: (Index ix) => ix -> (s->m(a,s)) -> StateTX ix s m a

mkStateTX v = StateTX v

runStateTX :: (Index ix) => ix -> StateTX ix s m a -> s -> m (a,s)

runStateTX m s = runStateTX’ m s

instance (Index ix, Monad m) ⇒ Monad (StateTX ix s m) where

return a = mkStateTX (getVal::ix) $ λs → return (a,s)

((StateTX x)::StateTX ix s m a) >>= f = mkStateTX (getVal::ix)

$ λs → do (v,s’) ← x s

runStateTX’ (f v) s’

--lifting a state transformer’s operations

instance (Index ix) ⇒ MonadTrans (StateTX ix s) where

lift x = mkStateTX (getVal::ix) $ λs’→x >>= λx’→return(x’,s’)

instance(Index ix,Monad m) ⇒ MonadStateX ix s (StateTX ix s m) where

getx (ixv::ix) = mkStateTX ixv $ λ(s1::s) → return (s1,s1)

putx (ixv::ix) s = mkStateTX ixv $ λ → return ((),s)

206 M. Snyder and P. Alexander

By now this should look familiar. We have a transformer version of the StateX
monad, and this transformer itself can be indexed. Up to this point, we haven’t
dealt with multiple indexes of a single kind of monad. This is the part that makes
all the previous preparation worthwhile.

The following instance provides a way for index ix2 to provide the function-
ality of the index ix1 by explaining what to do when a getx x1 or putx ix1
computation is encountered. Note that the instance manually pipes its own state
through behind the scenes by labeling the ix2 index’s state (s::s2) in an ab-
straction, performing the computation from index ix1, and then returning the
pair that further threads the ix2 index’s state into the next computation. This
is the key to separation of the two indexes’ state.

instance (Monad m, Index ix1, Index ix2, MonadStateX ix1 s1 m)

⇒ MonadStateX ix1 s1 (StateTX ix2 s2 m) where

getx (ixv::ix1) = mkStateTX (getVal::ix2) $ λ(s::s2) → do

v1 ← getx (ixv::ix1)

return (v1,s))

putx (ixv::ix1) v1 = mkStateTX (getVal::ix2) $ λ(s::s2) → do

putx (ixv::ix1) v1

return ((),s)

In short, this defines how two indexes can coexist without affecting each other.
It relies on the type information of the index, and not on the type information
of what state is held by each monad. Each type-indexed monad could hold the
same type of state and never be confused for another.

This does require GHC’s OverlappingInstances pragma (among others) to
be enabled. However, the overlap should only be required in the above instance
to differentiate between two indexes that are easily tested for equality, and the
pragma is not required at the site of usage.

Interoperability. One of our stated goals is to reuse particular monadic fea-
tures with existing code that most likely uses the original definitions of monads.
We should therefore be able to mix the indexed versions of a monad with the
original. We show in this section how to mix the State and StateX monads.
The indexed monads provided in the Hackage package all can be used with the
mtl monads.

Even in the definitions of Haskell’s library-provided monads, they must pro-
vide instances for each monad to interact with every other. These ‘cooperation’
instances occupy a large part of the mtl’s codebase. We want the StateTX trans-
former monad to be able to provide the MonadState functionality, and we want
the StateT transformer monad to provide the MonadStateX functionality. Each
of these needs results in a new instance, simply defining the state management
and adding the index labeling at the type level.

instance (MonadState s1 m, Index ix) ⇒ MonadState s1 (StateTX ix s2 m)

where

get = mkStateTX (getVal::ix) $ λs → do n ← get

return (n,s)

Monad Factory: Type-Indexed Monads 207

put v = mkStateTX (getVal::ix) $ λs → put v >>= return ((),s)

instance (Monad m, MonadStateX ix s1 m, Index ix)

⇒ MonadStateX ix s1 (StateT s2 m) where

getx (ixv::ix) = StateT $ λs → do n ← getx (getVal::ix)

return (n,s)

putx (ixv::ix) (v::s1) = StateT $ λs → do putx (getVal::ix) v

return ((),s)

Although the code is not included in this paper, there is of course a need for
instances often provided by monad definitions: instances for Functor, MonadFix,
and instances that let the transformer version provide the non-proper morphisms
of all the other ‘standard’ monads such as IO, Error, Writer, and Reader. This is
no different than the original definitions of monads in that there is an initial price
to pay for interoperability when defining the stack of monads that combine to
create the monad with the desired capabilities. Similarly, we only have to define
these once in a library and then simply use them. If we only need to interact
with one copy of a monad, we could still just write the instances for mtl; if we
need two copies, we write instances for the indexed monads; if we need any more
copies, there are no more instances to write–and the indexed monad instances
are essentially identical to the mtl instances. This time we gain an unlimited
number of monads from it, not just one. The indexed library could even provide
a set of bindings mimicking the original definitions, but implemented via the
type-indexed definitions — then the library could become a drop-in replacement
for even easier use. By creating another index, we hook into that entire set of
instances, and any type-indexed monad can fully participate with all other type-
indexed monads and the original mtl monads without writing more instances.

This does not entirely mitigate the need for instances. In particular, any home-
grown monad still needs its own set of instances. If it does not interact with
multiple copies of any one monad then we are not required to write those in-
stances, and so no extra work is required; we simply may write one more set of
instances that corresponds to an unlimited number of monads. This only serves
to highlight the need to support reuse of the monad definitions.

3.3 Separation of Type-Indexed Monads

We should briefly reason about why two type-indexed StateX monads cannot
access each others’ state. We are interested in ensuring that one type-indexed
monad cannot access a differently-indexed monad’s state. We can devise a simple
argument based on the types involved. The only way to access or modify the state
of a StateX monad is to use the non-proper morphisms with the given index,
or to directly create a StateX X1 s1 v1 value. By having a single value in the
index-type, we exclude the possibility of two different indexes existing at the
same type. Therefore, an expression like getx X1 :: StateX X1 s1 v1 has no
means of accessing the state s2, which is tied to values of type StateX X2 s2 v2.
Just as Haskell disallows indexing into a list with a Boolean (xs!!True), at the
type level we are excluding the possibility of using the wrong type of index to
access the state. This guarantee cannot be argued as succinctly when using a

208 M. Snyder and P. Alexander

record that provides unfettered access to all of its fields. By looking at the type
signature of a monadic function, we can tell definitively whether it is capable of
seeing or modifying a particular indexed state.

We have checked a couple of properties over the indexed state monads using
QuickCheck [7]. A problem arises in that the types change when we use different
indexes. This property is great for understanding separation, but horrible for
generating test cases. The approach was to design a small domain-specific lan-
guage (DSL) for representing a computation, create our Arbitrary instances of
that, and then translate it into a computation constrained with all of the indexes
that we allowed in the DSL. This process is complex enough that it starts to
obfuscate the properties being checked. In short, we looked at properties such
as showing that using a StateX monad with the same operations will yield the
same result as using just the State monad; we also tested that a put and get
with a particular state monad (indexed or not), interrupted by any number of
puts and gets from other distinct state monads, will still result in the originally
placed value. We observed that the properties held, assuming we trust the DSL
and its conversions. When a test approaches the complexity of the system on
which we are checking properties, the value is not as clear.

3.4 Usage

Using indexed monads is virtually the same as using the original monads. We
construct our computations using >>= and return (or more familiarly, do-
notation) and the non-proper morphisms, and then run the computation in a
combination of the run functions of the monads involved. Type ascriptions are
similar in necessity as when using the basic monads. We assume that StateX,
StateTX, ReaderX, and ReaderTX, are all defined.

Using a type-indexed monad by itself is only distinguished by the addition of
the index in using the non-proper morphisms and in ascribing the type. In this
example, type ascriptions are voluntary.

comp::(MonadReaderX MyIndex Int m) ⇒ Int → m Int

comp x = do a ← askx MyIndex

return (x+a)

runcomp :: Int → Int

runcomp x = runReaderX MyIndex (comp x) 4

Indexed monads also work with their ancestors (the non-indexed versions),
and do not interfere with each other as they are independently defined. They
can also work with other indexes of themselves, as this example also shows. Note
that we use the original State monad with an integer for its state, and that
two differently-indexed StateX monads also use integers as their state without
disturbing each other. We also see another indexed StateX monad containing
boolean state, showing that it does not prohibit heterogeneous usage between
the type-indexed monads. Also, note that the run function stacks the original
monad between the indexed monads. Type-indexed monads impose no additional

Monad Factory: Type-Indexed Monads 209

restriction on the order in which you run them. The type ascriptions for quad
and runquad are not necessary.

data Ix1 = Ix1 deriving (Show, Eq)

instance Index Ix1 where getVal = Ix1

-- and similarly for Ix2, Ix3.

quad :: (MonadStateX Ix1 Bool m, MonadStateX Ix2 Int m,

MonadStateX Ix3 Int m, MonadState Int m)

⇒ m Int

quad = do a ← getx Ix1

b ← getx Ix2

c ← getx Ix3

d ← get

return (if a then b+c else d)

runquad :: Bool → ((((Int,Int),Int),Int),Bool)

runquad b = flip (runStateX Ix1) b

. flip (runStateTX Ix2) 2

. flip runStateT 10

. flip (runStateTX Ix3) 3

$ quad

%> runquad True

((((5,3),10),2),True)

%> runquad False

((((10,3),10),2),False)

Next, we use two unrelated type-indexed monads to showcase their usage in
conjunction with each other. Note e.g. that ReaderX and StateX can use the
same index safely, as there is no confusion between which monad is referenced.

compM::(MonadReaderX Ix Int m, MonadStateX Ix String m) ⇒ Int → m Int

compM x = do a ← askx MyIndex

putx MyIndex $ "var"++(show a)

return (a + x)

comp::Int → (Int,String)

comp x = flip (runReaderX Ix) 4 . flip (runStateTX Ix) "" $ compM x

%> comp 5

(9,"var4")

We can use the ErrorX monad to throw and catch multiple errors in the same
code. We use the ascribe function to streamline the examples — otherwise
it would be unclear what instance to use to satisfy ErrorX ix e. We also use
runIdentity — Just as there is no runError but only runErrorT, there is no
runErrorX, only runErrorTX.

210 M. Snyder and P. Alexander

data Err = E1 | E2 Int | E3 String deriving (Show, Eq)

instance (Index ix) => ErrorX ix Err where

noMsgx ix = E1; strMsgx ix = E3

ascribe::(MonadErrorX X1 Err m, MonadErrorX X2 String m) => m a->m a

ascribe = id

run = runIdentity . runErrorTX X1 . runErrorTX X2

%> run . ascribe $ return 5

Right (Right 5)

%> run . ascribe $ throwErrorx X1 E1

Left E1

%> run . ascribe $ throwErrorx X2 "no"

Right (Left "no")

We can run our indexed ErrorX monads in whatever order we choose. Throw-
ing the same X2 error but running the monads in different orders naturally affects
the nesting of the resulting Either type.

throw2no = throwErrorx X2 "no"

%> runIdentity . runErrorTX X1 . runErrorTX X2 . ascribe$ throw2no

Right (Left "no")

%> runIdentity . runErrorTX X2 . runErrorTX X1 . ascribe$ throw2no

Left "no"

%> run.ascribe$ catchErrorx X1 (throwErrorx X1 (E3 "err3"))

(λ(E3 s) -> throwErrorx X2 s)

Right (Left "err3")

The original mtl couldn’t handle multiple errors at once — that could only be
simulated with a closed datatype, as we did with Err. Indexed monads allow us
to throw and catch various types of errors within the same monadic code.

We have seen that type-indexed monads are used nearly identically to non-
indexed monads. We have gained the ability to extend our usage of particular
non-proper morphisms without re-defining them; instead, we only must generate
a new type index, a trivial task.

4 Related Work

Monad Transformers. Moggi [8] introduces monads as a model of compu-
tation, and others [9,10,11] continue this invaluable work to introduce and de-
velop the idea of monad transformers. GHC [2] distributes with the Monad
Transformer Library [1]. The current work with type-indexed monads and type-
indexed monad transformers extends this work in a new direction, parameter-
izing the monads themselves (as opposed to parameterizing over monads), and

Monad Factory: Type-Indexed Monads 211

allowing for more versatile use via indexing while leaving intact current patterns
of non-indexed use. The new contribution is to open the monads in order to
allow concurrent distinct instances of the monads to operate separately.

MonadLab. MonadLab [12] creates a domain-specific language utilizing Tem-
plate Haskell [13] in order to encapsulate monad construction and abstract away
implementation details. Being both a pedagogical tool for learning monads and
a positive contribution to the expressivity and convenience of monads, Monad-
Lab uses the meta-programming of Template Haskell to create an entirely new
monad with the DSL-specified side-effects, replete with the required instances
and regularly-specified non-proper morphisms. Type-indexed monads go in a
different direction–rather than encapsulate and hide the details of monads, they
expand on possible usage of the existing monads. Type-indexed monads provide
a means to combine monadic code (avoiding index clashes rather than intersect-
ing usage) and add more side-effects ad-hoc (via another indexed copy).

Parameterized Monads. Atkey [14] takes a categorical approach to monads
that also introduces the notion of type-varying state. Rather than require that
e.g. the State monad always inputs and outputs a particular state s, a State
computation accepts state of type s1 and outputs state of type s2. This of course
requires a multiplicative property that chained State computations’ outputs and
inputs align to compatible types. This does not afford the ability to store multiple
pieces of state, but does relax our state requirements by allowing us to change
throughout our computation exactly what type of state is stored. Similar ideas
are spread throughout the Haskell-Cafe mailing list, notably by David Roundy
and Oleg Kiselyov in late 2006.

Monatron. Jaskelioff [15] takes a ground-up approach to monad transform-
ers, approaching the issue of the quadratic lifting instances by standardizing the
lifting procedure between transformers. Monatron accomplishes this by separat-
ing the usage from the implementation of non-proper morphisms, meaning that
we can lift through any transformer, as opposed to defining lifting instances
through particular transformers. However, in order to re-use monadic effects as
we’ve discussed, the user still must define the lifting-depth for each interacting
use of the monadic effects; this does not enable using library definitions (written
in Monatron) in multiple ways once the lifting depths are set.

Type-indexed monads do not solve the issue of quadratic lifting instances per
se, but mitigate the issue by providing the instances as necessary, so long as
the monad with the desired non-proper morphisms can be indexed. Jaskelioff
discuses an example of two Error monads stacked with a State monad and
the confusion between which errors to throw; this is a direct translation into
type-indexed monads that implement Error and State.

HLists. One approach to opening the contents of e.g. State is to use an
HList [16] as the state. HLists provide a way to use type-level programming
to guarantee that an index into the structure will result in a value, and of a
particular type. One could use this to gain some flexibility into the ‘re-use’ of a
monad by adding constraints on the state or environment to ensure a desired field
is included. This decision still must be made initially, or else downstream uses

212 M. Snyder and P. Alexander

cannot take the opportunity. Also, there is no guarantee of separation between
the states, as all are available for modification. Type-indexed monads can still
use a record at the values level instead of at the types level as for HLists, and
yet we can still add more uses as well. By defining abstractions around usage of a
type-indexed monad in a separate module and only exporting those abstractions
and a few type synonyms, we can tell by the type of an expression whether
it can access a particular state. HLists are concerned with heterogeneous lists
themselves, and not in opening up usage of monads.

5 Conclusions and Future Work

We have introduced the notion of type-level indexes into monads to provide
‘copies’ of monads. We’ve shown how such an implementation compares to non-
indexed monads to motivate their usefulness and approachability. We provided
a reference of implementation details, and discussed how type-indexed monads
allow us to reduce the amount of code necessary as well as reduce a source of
possible errors by generalizing the process of duplicating particular side-effects.

Type-indexed monads provide a flexible framework for reusing monadic fea-
tures. They open up the monad definitions with explicit indexing, allowing us
to extend the use of non-proper morphisms without program-wide modification
of existing uses. Indexed usage is added, rather than modifying current usage.
Type-indexed monads solve the issue of using monads in library code by provid-
ing copies of monads, rather than manually generating a copy of needed monads
along with all the instances. This both enhances code re-use while minimizing
the chances for error introduction. Type-indexed monads also mitigate the num-
ber of instances that we need for monad transformers when multiple distinct
monads can be replaced by indexed variants rather than hand-coded semantic
copies of monadic functionality. If a stack of monads can be defined in terms
of type-indexable monads, then all instances are already provided. Even if this
is not so, one set of instances now applies to an unlimited number of monads.
We write interfaces between kinds of monads, instead of between each imple-
mentation of a particular set of side-effects. Type-indexed monads are used in
nearly identical fashion to non-indexed monads, providing a familiar interface
that should aid in adoption. The reference implementation is available from the
Hackage repository [3], an indexed approach to the mtl package. We would like
to see type-indexed monads for even more monadic definitions in the future.

Acknowledgements

We’d like to thank the reviewers for quite helpful insights and suggestions, and
we’d also like to thank Tom Schrijvers for some very helpful correspondence.

References

1. Gill, A.: mtl: The Monad Transformer Library (September 2010),
http://hackage.haskell.org/package/mtl-1.1.1.0

http://hackage.haskell.org/package/mtl-1.1.1.0

Monad Factory: Type-Indexed Monads 213

2. GHC: The Glasgow Haskell Compiler, http://haskell.org/ghc/
3. Snyder, M.: mtlx: Monad transformer library with type indexes, providing ’free’

copies (October 2010), http://hackage.haskell.org/package/mtlx-0.1.5
4. Harrison, W.L., Hook, J.: Achieving information flow security through precise con-

trol of effects. In: CSFW 2005: Proceedings of the 18th IEEE Workshop on Com-
puter Security Foundations, pp. 16–30. IEEE Computer Society, Washington, DC
(2005)

5. McBride, C.: Faking It - Simulating Dependent Types in Haskell. J. Funct. Pro-
gram 12(5), 375–392 (2002)

6. Cheney, J., Hinze, R.: First-class phantom types. Technical report, Cornell Uni-
versity (2003)

7. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP 2000: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming, pp. 268–279. ACM, New York
(2000)

8. Moggi, E.: An Abstract View of Programming Languages. Technical Report ECS-
LFCS-90-113, Dept. of Comp. Sci., Edinburgh Univ. (1990)

9. Wadler, P.L.: Comprehending Monads. In: Proceedings of the 1990 ACM Confer-
ence on LISP and Functional Programming, pp. 61–78. ACM, New York (1990)

10. Wadler, P.: The Essence of Functional Programming. In: Conference Record of the
Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Albequerque, New Mexico, pp. 1–14 (1992)

11. Jones, M.P.: Functional Programming with Overloading and Higher-Order Poly-
morphism. In: Jeuring, J., Meijer, E. (eds.) AFP 1995. LNCS, vol. 925, pp. 97–136.
Springer, Heidelberg (1995)

12. Kariotis, P.S., Procter, A.M., Harrison, W.L.: Making Monads First-Class with
Template Haskell. In: Haskell 2008: Proceedings of the First ACM SIGPLAN Sym-
posium on Haskell, pp. 99–110. ACM, New York (2008)

13. Sheard, T., Jones, S.P.: Template Meta-Programming for Haskell. SIGPLAN
Not 37(12), 60–75 (2002)

14. Atkey, R.: Parameterized Notions of Computation. In: Proceedings of Workshop
on Mathematically Structured Functional Programming (July 2006)

15. Jaskelioff, M.: Monatron: An Extensible Monad Transformer Library. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 64–79. Springer, Heidelberg (2009)

16. Kiselyov, O., Lämmel, R., Schupke, K.: Strongly Typed Heterogeneous Collections.
In: Haskell 2004: Proceedings of the ACM SIGPLAN Workshop on Haskell, pp. 96–
107. ACM Press, New York (2004)

http://haskell.org/ghc/
http://hackage.haskell.org/package/mtlx-0.1.5

Author Index

Alexander, Perry 198
Anton, Konrad 16

Brown, Christopher 31
Bull, Tristan 118

Capper, John 50
Chang, Stephen 1
Clerici, Silvia 66

Eastlund, Carl 84

Farmer, Andrew 102, 118
Felleisen, Matthias 1, 84

Gill, Andy 102, 118, 150

Kimmell, Garrin 102, 118
Komp, Ed 118
Koopman, Pieter 134

Li, Huiqing 31

Malawski, Maciej 184
Matlage, Kevin 150
Morazán, Marco T. 166

Nilsson, Henrik 50

Plasmeijer, Rinus 134
Prestigiacomo, Guillermo 66
Ptaszek, Micha�l 184

Snyder, Mark 198

Thiemann, Peter 16
Thompson, Simon 31

Van Horn, David 1

Zoltan, Cristina 66

	Title
	Preface
	Organization
	Table of Contents
	Evaluating Call-by-Need on the Control Stack
	Implementing Call-by-Need
	The Call-by-Need -Calculus, the de Bruijn Version
	Standard Reduction Machine
	The CK+ Machine
	CK+ Machine States
	Renaming Environment
	Continuations and the Continuation Stack
	Maintaining the Continuation Stack
	Relating Machine States to Terms
	CK+ Machine State Transitions
	Dealing with Answers
	Correctness

	Stack Compacting
	Related Work and Conclusion
	References

	Typing Coroutines
	Introduction
	CorDuroy
	Examples
	Operational Semantics
	Type System

	Soundness
	Preservation
	Progress

	Related Work
	Conclusion
	References

	An Expression Processor: A Case Study in Refactoring Haskell Programs
	Introduction
	Structural and Data-Type Refactorings
	Folding
	Merging
	Adding a Constructor to a Data Type
	Removing a Constructor from a Data Type
	Adding or Removing a Field to or from a Constructor
	Introduce Pattern Matching over an Argument Position

	Refactoring an Expression Processor
	Stage 1: Initial Implementation
	Stage 2: Introduce Binary Operators
	Stage 3: Generalisation
	Stage 4: Introduce Variables
	Stage 5: Merging

	Related Work
	Conclusions and Future Work
	Implementation and Design Difficulties
	Future Work

	References

	Static Balance Checking for First-Class Modular Systems of Equations
	Introduction
	Modular Systems of Equations
	Equation System Basics
	Abstraction over Systems of Equations
	FHM and Hydra

	The Type System
	Overview
	Generating Constraints
	Formalising the Type System

	Related Work
	Modelica
	Bunus and Fritzon
	Structural Constraint Delta
	Structural Types

	Future Work
	Conclusion
	References

	Graphical and Incremental Type Inference: A Graph Transformation Approach
	Introduction
	NiMo Language Elements
	Interfaces and Connections
	Net-Process Definitions
	Partial Application and Production in HO

	Graphical Typing
	Type Graph and Type Descriptors

	Type Graph Unification
	Structural Unification
	Non Structural Unification

	Incremental Type Inference for Nets
	Functional and Non-functional Components
	Net Type Operators
	The Type Inference Algorithm
	An Example
	A Second Example

	Related Work and Final Remarks
	References

	Hygienic Macros for ACL2
	Unhygienic Macros Are Not Abstractions
	The Meaning of Hygiene for ACL2
	Design Goals
	Reinterpreting ACL2

	Hygienic Macro Expansion
	Evaluating Hygiene
	Related Work and Conclusions
	References

	What’s the Matter with Kansas Lava?
	Introduction
	What is Kansas Lava?
	In This Paper

	Testing Functional Circuits
	Observing Intermediate Values

	Circuit Instrumentation Using Probes
	Implementation
	Implementing Probes on Values
	Implementing Probes on Functions

	Testing the Deep Embedding
	Handling Large Circuits
	Extracting Subcircuits
	Locating Errors Automatically

	Related Work
	Conclusion and Future Work
	References

	Types and Type Families for Hardware Simulation and Synthesis The Internals and Externals of Kansas Lava
	Introduction
	Kansas Lava
	Sequential and Combinatorial Circuits
	Commutable Functors and Signals
	Phantom Types for Clock Domains
	Venturing into the Unknown
	Protocols for Signals
	Related Work
	Conclusions
	References

	Testing with Functional Reference Implementations
	Introduction
	STV Election Rules
	Specification of the Scottisch STV
	Format of the Test Cases
	Example Election
	Paradoxes

	Testing Election Software
	The Notion of Equivalence of Election Results
	Test Suites
	Test Suite Generation

	Implementations Under Test
	The Functional Reference Implementation
	Numbers with Five Digit Precision
	Administration of Candidates
	Size of Executable

	Issues Found
	Test Results
	The Law
	The Reference Implementation
	The IUTs
	Execution Speed
	Choices
	Vote Transfer Tables

	Conclusions
	References

	Every Animation Should Have a Beginning, a Middle, and an End
	Introduction
	The Active Language
	ChalkBoard
	Active Combinators
	Case Study
	Stage 1: Building Animation Pieces
	Stage 2: Combining Animation Pieces

	Related Work
	Conclusions and Future Work
	References

	Functional Video Games in the CS1 Classroom
	Introduction
	Introduction to Computer Science and Programming
	Topics Covered in CS1 and CS2 at Seton Hall University

	The Functional and HtDP Advantages
	The Functional Advantage
	The HtDP Advantage

	Video Games in CS1
	Aliens Attack v0.0
	Aliens Attack v0.1
	Aliens Attack v0.2
	Aliens Attack v0.3
	Aliens Attack v0.4

	Related Approaches
	Concluding Remarks
	References

	ComputErl – Erlang-Based Framework for Many Task Computing
	Introduction
	Goals and Requirements of ComputErl
	State of the Art
	Main Concepts of ComputErl
	Supported Computation Models
	Master-Slave
	Map-Reduce
	Pipeline

	Sample Applications
	Sleep Benchmark
	Mandelbrot Set Generation
	Distributed Grep
	Bioinformatics Application

	Conclusions and Future Work
	References

	Monad Factory: Type-Indexed Monads
	Introduction
	Problem
	Type-Indexed Monads
	Creating Type-Indexes
	Implementation
	Separation of Type-Indexed Monads
	Usage

	Related Work
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

