


Lecture Notes in Computer Science 6845
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Leslie Ann Goldberg Klaus Jansen
R. Ravi José D.P. Rolim (Eds.)

Approximation,
Randomization,
and Combinatorial
Optimization

Algorithms and Techniques

14th International Workshop, APPROX 2011
and 15th International Workshop, RANDOM 2011
Princeton, NJ, USA, August 17-19, 2011
Proceedings

13



Volume Editors

Leslie Ann Goldberg
University of Liverpool
Department of Computer Science
Ashton Building, Liverpool L69 3BX, UK
E-mail: l.a.goldberg@liverpool.ac.uk

Klaus Jansen
University of Kiel
Department of Computer Science
Olshausenstr. 40, 24098 Kiel, Germany
E-mail: kj@informatik.uni-kiel.de

R. Ravi
Carnegie Mellon University
Tepper School of Business
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: ravi@cmu.edu

José D.P. Rolim
University of Geneva
Centre Universitaire d’Informatique
Battelle A, 7 route de Drize, 1227 Carouge, Switzerland
E-mail: jose.rolim@unige.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22934-3 e-ISBN 978-3-642-22935-0
DOI 10.1007/978-3-642-22935-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011933808

CR Subject Classification (1998): F.2, E.1, G.2, I.3.5, F.1, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at the 14th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2011) and the 15th International Workshop on Randomization and
Computation (RANDOM 2011), which took place concurrently in Princeton
University, USA, during August 17–19, 2011.

APPROX focuses on algorithmic and complexity issues surrounding the de-
velopment of efficient approximate solutions to computationally difficult prob-
lems, and was the 14th in the series after Aalborg (1998), Berkeley (1999),
Saarbrücken (2000), Berkeley (2001), Rome (2002), Princeton (2003), Cambridge
(2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston (2008),
Berkeley (2009), and Barcelona (2010). RANDOM is concerned with applica-
tions of randomness to computational and combinatorial problems, and was the
15th workshop in the series following Bologna (1997), Barcelona (1998), Berke-
ley (1999), Geneva (2000), Berkeley (2001), Harvard (2002), Princeton (2003),
Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton (2007), Boston
(2008), Berkeley (2009), and Barcelona (2010).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space algorithms,
sub-linear time algorithms, streaming algorithms, embeddings and metric space
methods, mathematical programming methods, combinatorial problems in graphs
and networks, game theory, markets and economic applications, geometric prob-
lems, packing, covering, scheduling, approximate learning, design and analysis
of online algorithms, design and analysis of randomized algorithms, randomized
complexity theory, pseudorandomness and derandomization, random combinato-
rial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings,
error-correcting codes, average-case analysis, property testing, computational
learning theory, and other applications of approximation and randomness.

The volume contains 29 contributed papers, selected by the APPROX Pro-
gram Committee out of 66 submissions, and 29 contributed papers, selected by
the RANDOM Program Committee out of 64 submissions.

We would like to thank all of the authors who submitted papers, the two
invited speakers, David P. Williamson and Joel Spencer, the members of the
Program Committees, and the external reviewers.

We gratefully acknowledge the support from the Department of Computer
Science at the University of Liverpool in the UK, the Tepper School of Business
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at Carnegie Mellon, USA, the Institute of Computer Science of the Christian-
Albrechts-Universität zu Kiel, and the Department of Computer Science of the
University of Geneva.

Finally, many thanks to Parvaneh Karimi-Massouleh for editing the proceed-
ings.

August 2011 Leslie Goldberg
R. Ravi

Klaus Jansen
José D.P. Rolim
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New Tools for Graph Coloring�

Sanjeev Arora and Rong Ge

Department of Computer Science, Princeton University
and Center for Computational Intractability

arora/rongge@cs.princeton.edu

Abstract. How to color 3 colorable graphs with few colors is a problem
of longstanding interest. The best polynomial-time algorithm uses n0.2072

colors. There are no indications that coloring using say O(log n) colors is
hard. It has been suggested that SDP hierarchies could be used to design
algorithms that use nε colors for arbitrarily small ε > 0.

We explore this possibility in this paper and find some cause for op-
timism. While the case of general graphs is till open, we can analyse the
Lasserre relaxation for two interesting families of graphs.

For graphs with low threshold rank (a class of graphs identified in the
recent paper of Arora, Barak and Steurer on the unique games problem),
Lasserre relaxations can be used to find an independent set of size Ω(n)
(i.e., progress towards a coloring with O(log n) colors) in nO(D) time,
where D is the threshold rank of the graph. This algorithm is inspired
by recent work of Barak, Raghavendra, and Steurer on using Lasserre
Hierarchy for unique games. The algorithm can also be used to show that
known integrality gap instances for SDP relaxations like strict vector
chromatic number cannot survive a few rounds of Lasserre lifting, which
also seems reason for optimism.

For distance transitive graphs of diameter Δ, we can show how to color

them using O(log n) colors in n2O(Δ)
time. This family is interesting

because the family of graphs of diameter O(1/ε) is easily seen to be
complete for coloring with nε colors. The distance-transitive property
implies that the graph “looks” the same in all neighborhoods.

The full version of this paper can be found at:
http://www.cs.princeton.edu/∼rongge/LasserreColoring.pdf .

1 Introduction

In the graph coloring problem we are given a graph G = (V, E). A coloring with
t colors is a function f : V → [t], such that for any (p, q) ∈ E, f(p) �= f(q).
The smallest t such that a coloring exists is called the chromatic number of the
graph, and the graph is said to be t-colorable.

Despite much research we still have no good coloring algorithms even in very
restricted cases. This is explained to some extent because it is NP-hard to ap-
proximate the chromatic number of a graph up to a factor of n1−ε for any ε > 0
([20], following a long line of work in PCPs). Therefore attention has shifted
to the case where the graph is 3-colorable. In this restricted case known algo-
rithms can color the graph using Õ(nc)1 colors for some constants c. Wigderson’s
� Research supported by NSF Grants CCF-0832797, 0830673, and 0528414.
1 Here and throughout the paper Õ hides logarithmic factors.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 S. Arora and R. Ge

purely combinatorial algorithm [19] works for c = 1/2. Using more combinatorial
tools Blum achieved c = 3/8 [5]. Karger, Motwani, and Sudan [13] used SDP
relaxations to achieve c = 1/4, which was combined with combinatorial tools to
achieve c = 3/14 by Blum and Karger [6]. Arora, Charikar and Chlamtac [2]
then carefully analyzed the SDP relaxation to reduce c to 0.2111. Chlamtac [8]
further reduced c to 0.2072 using O(1) levels of Lasserre lifting of the basic SDP
relaxation (Lasserre lifting is defined in Section 2).

The seeming difficulty in getting even small improvements in c suggests that
substantial improvement to c (achieving c = o(1) for example) is intractable, but
few lowerbounds are known. Dinur, Mossel and Regev[10] showed that it’s hard
to color with any constant number of colors (i.e., O(1) colors) based on a variant
of Unique Games Conjecture. Some integrality gap results[11,13,18] show that
the simple SDP relaxation has an integrality gap at least n0.157.

Arora et al. [2] suggested that using O(1) or O(log n) levels of Lasserre lifting
on the standard SDP relaxation should allow us to find an nε-coloring (running
time would be nO(k) where k is the number of levels). In general researchers have
hoped that a few rounds of lift-and-project strengthening of SDP relaxations
(via Lasserre or other methods) should allow better algorithms for many other
problems, though few successes have resulted in this endeavor.

The current paper is related to recent developments about the unique games
problem. A surprising recent result of Arora et.al. [1] showed that unique games
can be solved in subexponential time using the idea of threshold rank. More
recently, Barak, Raghavendra and Steurer [3] showed that the surprising subex-
ponential algorithm for unique games can be rederived using Lasserre lifting.
Their rounding algorithm involves a new convex programming relaxation for
threshold rank which we also use in a key way. It gives a way to round the SDP
solution by showing that the solution vectors exhibit “global correlation.”

We extend the techniques of Barak et.al. to show that low threshold rank
also helps in coloring 3-colorable graphs with fewer colors. Our algorithm is also
derived using Lasserre liftings. In general we think our approach may lead to
nε-coloring in subexponential or even quasi-polynomial time.

1.1 Our Results

The difficulty in using Lasserre liftings for colorings as well as any other problem
is the lack of an obvious rounding algorithm. The paper [3] gives such a rounding
algorithm for the unique games problem for graphs of low threshold rank. Our
first result is a similar algorithm for graph coloring. We state the theorem here
and will prove it in Section 4. The hypothesis uses a somewhat different notion
of threshold rank than [3].

Theorem 1. There is a constant c > 1 and a randomized rounding algorithm
such that the following is true. If a regular 3-colorable graph G has threshold rank
Rank−1/16(G) (i.e., the number of eigenvalues less than −1/16, where eigen-
values are scaled to lie in [−1, 1]) at most D, then the algorithm can find an
independent set of size at least n/12 in time nO(D) with constant probability.
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Moreover, if the graph is vertex-transitive, there is a randomized algorithm that
finds a coloring with O(log n) colors in nO(D) time.

As a corollary of the above result we can show that existing “counterexamples”
for graph coloring algorithms (eg integrality gap examples [12]) are easyfor high
level Lasserre liftings since they all have low threshold rank.

When we try to apply similar ideas to general graphs, we quickly realize
that the problematic cases (if they exist at all) must be such that different
neighborhoods look “different.” Of course, this flies against the usual intuition
about SDP relaxations: the usual reason for high integrality gaps (at least in
explicit examples) is precisely that all neighborhoods look the same and the
SDP gives no meaningful clues.

To quantify the notion of all neighborhoods “looking the same,” we focus on
a specific kind of symmetric graph, the distance transitive graphs, which have
been well-studied in graph theory (see the book [7]). In fact we restrict attention
to such graphs that in addition have low diameter. The reason is that using
simple combinatorial arguments one can show that in order to color the graph
with nε colors, it suffices to restrict attention to graphs of diameter O(1/ε). If
a 3-colorable distance transitive graph has diameter Δ we show how to find a
O(log n) coloring in O(n2O(Δ)

) time. See Section 5.
How can our ideas be generalized to all graphs? In Section 6 we formulate

a conjecture which if true would yield subexponential time coloring algorithms
that find an nε-coloring.

2 The SDP and Lasserre Hierarchy

The standard SDP relaxation for graph 3-coloring uses vector chromatic number,
but it is not amenable to Lasserre lifting. So we start with an equivalent (see [8])
relaxation based upon 0/1 variables. For each vertex p of the graph G = (V, E),
we have three variables xp,R, xp,Y , xp,B where xp,C = 1 for C ∈ {R, Y, B}
“means” the vertex p is colored with color C. Thus exactly one of the three
variables will be 1. The integer program makes sure xp,R + xp,B +xp,Y = 1, and
xp,Cxq,C = 0 if p and q are adjacent.

Now we relax the integer program by replacing each xp,C with a vector vp,C .
The result is an SDP relaxation. Then we lift this SDP using k levels of Lasserre
lifting. (For Lasserre lifting see the surveys[9,15]).The lifted SDP contains vector
variables vS , where S is a subset of the set V × {R, Y, B} (later denoted by Ω)
and has size at most k. The resulting SDP is

∀p ∈ V vp,R + vp,B + vp,Y = v∅ (1)
∀p ∈ V, C1 �= C2 〈vp,C1 , vp,C2〉 = 0 (2)

∀(p, q) ∈ E, C ∈ {R, Y, B} 〈vp,C , vq,C〉 = 0 (3)

∀P, Q, S, T ⊆ Ω, P
⋃

Q = S
⋃

T, |P
⋃

Q| ≤ k 〈vP , vQ〉 = 〈vS , vT 〉 (4)

In this SDP, Equations (1) to (3) are constraints obtained from the integer
program; Equations (4) are the consistency constraints imposed by Lasserre
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lifting; we also require 〈v∅, v∅〉 = 1 for normalization. Notice that here we are
abusing notation a bit: if the set S contains only one event (p, C), we use both
vp,C and vS for the same vector. We call this SDP Lask and its solution SDP k.

2.1 Understanding the SDP Solution

Here we discuss how we should interpret the solution of coloring SDP. Through-
out the discussion below, an “atomic event” (abbreviated to just “event” when
this causes no confusion) consists of assigning a vertex p some color C. We de-
note by Ω = V ×{R, Y, B} the set of all atomic events. Our rounding algorithm
will iteratively assign colors to vertices. Each step may assign a color C to p, or
declare that color C will never be assigned to p. In the former case the atomic
event (p, C) has happened; in the latter case the complement event happened.
It is common to interpret the SDP solution as giving a distribution over these
events whose probabilities are equal to the innerproducts of the vectors. We
formulate this by the following theorem:

Theorem 2 ([14,8]). A solution to k-level Lasserre lifting SDP (Lask) encodes
a locally consistent coloring for any set of k vertices. Locally consistent means
all colorings with positive probability are valid colorings. If W is a set of atomic
events then the probability that they happen is equal to the inner-product of vS

and vT , where S
⋃

T = W . In particular, each vector can be decomposed as
vW = rW v∅ + uW where rW is the probability that all events in W happen and
uW is perpendicular to v∅.

If w = (p, C) is an atomic event, properties of Lasserre lifting allow us to con-
struct a subsolution in which event w happens (ie vertex p is assigned colored
C), and a subsolution in which event w does not happen (ie color C is forbidden
for p from now on). We randomly choose one of the subsolutions to preserve
the probability of w. That is, if rw is the probability of event w, we pick the
subsolution in which w happens with probability rw, and pick the subsolution
in which w does not happen with probability 1− rw . We call this “conditioning
the solution on event w”. The result of such an operation will be a solution for
k − 1 level of Lasserre lifting, which we call SDP k−1.

The computation needed to compute the new vectors in SDP k−1 is simple
and follows from the above theorem: the probabilities of the new k − 1-level so-
lution must be the appropriate conditional probabilities in the locally consistent
distributions in the k-level solution. For details see the full version or [3,9,8].

Note that we must use Lasserre instead of weaker relaxations: Sherali-Adams
[17] and Lovász-Schrijver[16], because we consider solutions as locally consistent
solutions (which rules out Lovász-Schrijver) and we use critically that probabil-
ities correspond to inner-products of vectors (which rules out Sherali-Adams).
Detailed comparison between the hierarchies are given in the surveys [9,15].
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3 Global Correlation, Local Correlation and Rounding

Given a solution to the k-level lifting Lask of a graph G, we shall define the global
correlation of this solution and show how global correlation of order Ω(1/k) can
help to round the solution. Intuitively global correlation measures the average
correlation between the colors of two vertices chosen uniformly at random. In
general, this correlation may be close to 0: knowing the color of one doesn’t
give much information about the color of the other. If the global correlation is
bounded away from 0 however, then intuitively speaking, fixing the color for a
randomly chosen vertex should bias the average remaining vertex a bit towards a
particular color. Thus after fixing the colors for a sufficiently large set of vertices,
the colors for most of the remaining vertices must get more or less fixed. This
the main idea of Barak et.al.[3] in the context of unique games, and Lemma 1 is
adapted from there. The amount of variability in the color of the average vertex
is quantified using variance.

We first examine how conditioning on one atomic event reduces the variance
of another. Let w1, w2 be two atomic events, r1, r2 be their probabilities respec-
tively, and r12 be the probability that both of them happen. The variance of the
conditional random variable w2|w1 is given by:

Var[w2|w1] = Var[w2] − (r1r2 − r12)2

Var[w1]
. (5)

By the equation we see that the expected variance always drops, and the
drop is proportional to (r1r2 − r12)2. Below we call this quantity the correlation
between the two events.

Correlation has a geometric meaning in Lasserre solutions. Notice that r1 =
〈vw1 , v∅〉, r2 = 〈vw2 , v∅〉, and r12 = 〈vw1vw2〉 (by Theorem 2). As in Theorem 2
we express vwi = riv∅ + uwi , then 〈uw1 , uw2〉 = 〈vw1 , vw2〉 − r1r2 = r12 − r1r2.
Therefore we have (r1r2 − r12)2 = 〈uw1 , uw2〉2.
Definition 1 (Correlation, Global Correlation, Variance). Given a solu-
tion SDP k and two events w1, w2, The correlation between w1 and w2 is defined
as (where probabilites r and vectors u are as in Theorem 2):

Cor[w1 , w2] = (rw1rw2 − r{w1,w2})
2 = 〈uw1 , uw2〉2.

The global correlation of a set of vectors {zp} (p ∈ U) is just the expected
correlation between two randomly picked vectors: GC({zp}) = Ep,q∈U 〈zp, zq〉2.

The global correlation of the SDP solution is the global correlation of all the u
vectors for the set of atomic events (Ω). Intuitively it is the average correlation
between a pair of atomic events.

GCk = E
w1,w2∈Ω

〈uw1 , uw2〉2. (6)

The variance of the solution is V ARk = Ew∈Ω rw(1 − rw).

Now we are ready to state the following Lemma for one step of rounding.
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Lemma 1. Suppose SDP solution SDP k has global correlation GCk and vari-
ance V ARk. Upon picking a random event w ∈ Ω and conditioning on that
event, the new solution SDP k−1 has expected variance at most V ARk − 4GCk.

Proof. Due to space limit please see the full version.

Lemma 1 corresponds to a single step in our iterative rounding. So long as the
global correlation is substantial —say, at least 10/k– we can repeat this step up
to k times and drive the variance of the solution towards zero. Intuitively, once
the variance is small enough, the solution should be almost integral and thus
easy to round. Indeed we show the following:

Lemma 2. Given a vector solution SDP k (k ≥ 2) for k-level Lasserre lifting
Lask , we say a vertex p is determined if there’s a color C such that event
{p, C} that happens with probability more than 1/2. Otherwise the vertex is un-
determined. If SDP k has variance V ARk < 1/8 then at least 1/4 of the vertices
are determined. Moreover, if we color the determined vertices with the color that
makes them determined, then this is a valid partial coloring (i.e., no two adjacent
vertices will have the same color).

Proof. First rewrite the definition of variance as V ARk = Ew∈Ω rw(1 − rw) =
Ep∈V EC∈{R,Y,B} r(p,C)(1 − r(p,C)).

From this formula we know for any vertex p and its 3 events w1, w2, w3,
their contribution to V ARk is proportional to (V ar[w1]+V ar[w2]+V ar[w3])/3
(the second expectation in the right hand side). For undetermined vertices, the
probabilities for w1, w2, w3 can be more than 1/2 and they sum up to 1, thus
the minimum possible value of the contribution of this vertex p is (1/4 + 1/4 +
0)/3 = 1/6. If more than 3/4 of the vertices are undetermined, we would have
V ARk > 3/4 · 1/6 = 1/8, which contradicts our assumption.

For the moreover part, notice that the solution SDP k is valid for the second
level of Lasserre, which means it induces locally consistent distributions for any
two vertices. For any edge (p, q) in the graph, if both p and q have events {p, C1},
{q, C2} that happen with probability more than 1/2, then we show C1 �= C2.
Suppose for contradition that C1 = C2 = C. If we look at the distribution that
the Lasserre solution induces on these two vertices, with positive probabililty
both of them will be colored with color C. This contradicts with the validity of
the Lasserre solution. Therefore we must have C1 �= C2.

Local correlation. For an SDP solution, we would want to argue either Lemma 2
can be applied or the solution has large global correlation. To show this, we
introduce local correlation as an intermediate step. We first show that if we
cannot apply Lemma 2, the solution SDP k always has local correlation, then we
analyze the relationship between local correlation and global correlation in the
next section and show high local correlation implies high global correlation.

For a vertex p, we construct a new vector zp = (up,R, up,B, up,Y ) (which
means zp is the concatenation of the 3 vectors, the vector u comes from Theo-
rem 2). It’s easy to see that 〈zp, zq〉 =

∑
C∈{R,Y,B}〈up,C , uq,C〉. Since 〈zp, zq〉2 ≤
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27 EC1,C2∈{R,Y,B}〈up,C1 , uq,C2〉2, we know GC ≥ 1/27·Ep,q∈V 〈zp, zq〉2. Hence the
global correlation of the {zp} vectors Ep,q∈V 〈zp, zq〉2 can be used to lowerbound
the global correlation of the solution SDP k.

Local correlation is the expected correlation between endpoints of edges.

Definition 2 (Local Correlation). Given a graph G and an SDP solution
SDP k, first construct vectors zp = (up,R, up,B, up,Y ). Then local correlation for
this solution is defined to be LC = E(p,q)∈E〈zp, zq〉.
Local correlation depends on both the solution (SDP k) and the graph G, unlike
global correlation which only depends on the solution. Also, local correlation can
be negative because we are not taking the squares of inner-products.

We shall prove the following Lemma which ensures high local correlation until
we can find a large independent set.

Lemma 3. If G is a regular 3-colorable graph, and in an SDP solution SDP k

at most n/4 vertices are determined in the sense of Lemma 2 then the local
correlation E(p,q)∈E〈zp, zq〉 ≤ −1/8.

Proof. If (p, q) is an edge, both p and q are undetermined (as in Lemma 2),
we shall prove 〈zp, zq〉 ≤ −1/4. Indeed, since (p, q) is an edge by (2) we have
〈vp,R, vq,R〉 = rp,Rrq,R + 〈up,R, uq,R〉 = 0. Which means 〈zp, zq〉 = −rp,Rrq,R −
rp,Y rq,Y − rp,Brq,B ≤ −1/4. The inequality holds because the r values are all in
[0,1/2], the worst case for the r values are (1/2, 1/2, 0) and (0, 1/2, 1/2).

Since only 1/4 of the vertices are determined (in the sense of Lemma 2), we
consider the set S of undetermined vertices. At least 1/2 of edges of G have both
endpoints in S. Therefore E(p,q)∈E〈zp, zq〉 ≤ −1/4 ∗ 1/2 = −1/8.

4 Threshold Rank and Global Correlation

In this section we show how local correlation and global correlation are connected
through threshold rank. Threshold rank of a graph RankC(G) is defined by Arora
et.al. in [1] as the number of eigenvalues larger than C. As they observed in [1],
many problems have subexponential time algorithms when the underlying graph
has low (i.e. sublinear) threshold rank. We show that 3-Coloring also lies in this
category. If the underlying graph has low threshold rank, then an SDP solution
will have high global correlation as long as it has local correlation.

Our definition for threshold rank is different from [1]. We are interested in
eigenvalues that are smaller than a certain negative constant −C. For a graph
G, we use Rank−C(G) to denote the number of eigenvalues of G’s normalized
ajacency matrix whose value is at most −C. In all discussions C should be
viewed as a positive constant, and we use negative sign to indicate that we are
interested in eigenvalues smaller than −C.

Consider a convex relaxation of threshold rank given by Barak et.al.[3]. In
this relaxation each vertex in the graph has a vector zp (later we will see that
they are indeed related to the vectors {zp} in Lemma 3). We try to maximize
D, the reciprocal of global correlation subject to the following constraints
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E
p∈V

‖zp‖2
2 = 1 (7)

E
(p,q)∈E

〈zp, zq〉 ≤ −C (8)

E
p,q∈V

(〈zp, zq〉)2 ≤ 1/D. (9)

Barak et.al.[3] proved the following Lemma explaining why this is a relaxation
to threshold rank. Due to space limit the proofs are omitted here.

Lemma 4. If the Rank−C/2(G) = D, then the optimal value D∗ of the convex
relaxation is at most 4D/C2 = Rank−C/2(G)/(C/2)2.

Lemma 4 is important for our analysis because it implies if the local corre-
lation (left-hand-side of Equation (8)) is smaller than a negative constant, and
threshold rank is low, the global correlation (left-hand-side of Equation (9)) must
be of order Ω(1/D). Now we are ready to prove Theorem 1:

Proof. Write the SDP in Section 2 with c · D levels of Lasserre lifting (Lasc·D),
and solve it in time nO(D). We apply the following rounding algorithm inspired
by Lemma 1.

1. Initialize SOL to be SDP c·D

2. Repeat
3. If at least n/4 of the vertices are “determined” in SOL
4. Then apply Lemma 2 to get a partial coloring .
5. Pick a random event w, condition the solution SOL on this event
6. Until SOL is only valid for the first Level of Lasserre

Clearly, if the condition in Step 3 is satisfied and we proceed to Step 4, by
Lemma 2 we get a partial coloring for n/4 vertices. In particular, one of the
colors will have more than n/12 vertices, and they form an independent set.
Therefore we only need to prove the probability that we reach Step 4 is large.

Let ri be the probability that Step 4 is reached before iteration i. We would
like to prove rc·D ≥ 1/2. Assume we continue to run the algorithm even if Step
4 is reached (and we have already found an independent set). Let SOLi be the
solution at step i, GCi be its global correlation and V ARi be its variance.

We first prove the following Claim:
Claim: If the number of undetermined vertices in SOLi is smaller than n/4,
the global correlation GCi is at least Ω(1/D).

Proof. Given the assumption, we can apply Lemma 3. From the solution SOLi,
Lemma 3 constructs vectors {zp}(p ∈ V ), and E(p,q)∈E〈zp, zq〉 ≤ −1/8.

We shall normalize these vectors so that they satisfy Equations (7) and (8).
The norm of zp is ‖zp‖2

2 = ‖up,R‖2
2 + ‖up,Y ‖2

2 + ‖up,B‖2
2 = 1− r2

p,R − r2
p,Y − r2

p,B .
Here rp,X is the probability that p is colored with color X , and the equation
follows from Theorem 2. If for vertex p no event has probability more than 1/2,
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then ‖zp‖2
2 is a value between 1/4 and 1. As assumed the number of such vertices

is at least 3n/4 (otherwise Step 4 has already been performed), thus Ep∈V ‖zp‖2
2

is between 3/16 and 1. We can normalize these vectors by multiplying with

c′ =
√

1/ Ep∈V ‖zp‖2
2. For the normalized vectors {zp}, we have Ep∈V ‖zp‖2

2 = 1.
And since c′ ≥ 1 we still have E(p,q)∈E〈zp, zq〉 ≤ −1/8.

The vectors {zp} satisfy Equation (7) and (8) for C = −1/8. Since we know
Rank−1/16(G) = D, Lemma 4 shows that the left-hand-side of Equation (9)
must be at least (1/16)2/D = Ω(1/D). That is, the global correlation between
vectors {zp} is at least Ω(1/D).

By analysis in Section 3, we know GCi is within a constant factor of
Ep,q〈zp, zq〉2. Since the normalization factor c′ between zp and zp is also bounded
by a constant, Ep,q〈zp, zq〉2 and Ep,q〈zp, zq〉2 are also within a constant factor.
Thus GCi ≥ Ω(1/D).

The proof proceeds as follows: when ri, the probability that the solution has more
than 3/4 “determined” vertices, is large we can already get a good solution by
applying the moreover part of Lemma 2. Otherwise we can apply the claim and
Lemma 4 to conclude that the expected global correlation must be high at step
i; then Lemma 1 reduces ri significantly.

In step i, with probability 1− ri the number of “determined” vertices (in the
sense of Lemma 2) is smaller than n/4. When this happens (number of deter-
mined vertices small), Lemma 4 shows the global correlation is at least Ω(1/D).
Therefore the expected global correlation at step i is at least E[GCi] ≥ Ω(1/D)∗
1/2 = Ω(1/D) (the expectation is over random choices of the algorithm) just
by considering the situations when number of determined vertices is small. By
Lemma 1 we know every time Step 5 is applied, the variance is expected to re-
duce by GCi. That is, E[V ARi+1] ≤ E[V ARi]−4 E[GCi] ≤ E[V ARi]−Ω(1/D).
If ri remains smaller than 1/2 for all the c ·D rounds (where c is a large enough
constant), we must have E[V ARc·D] < 1/16. By Markov’s Inequality with prob-
ability at least 1/2 the variance is at most 1/8, in which case Lemma 2 can be
applied. That is, rc·D ≥ 1/2. This is a contradiction and we must have ri ≥ 1/2
for some i ≤ c · D.

Therefore with probability at least 1/2 the rounding algorithm will reach Step
4 and find a large independent set.

For the moreover part, we apply a random permutation π over the vertices
before running the whole algorithm. In the permuted graph n/12 of the vertices
are in the independent set S found by the algorithm above. If we apply the
inverse permutation π−1 to the independent set found, we claim that any vertex
q of the original graph is inside the independent set π−1(S) with probability
at least 1/12. This is because the graph is vertex transitive and essentially the
algorithm cannot distinguish between vertices. More rigorous argument can be
found in full version.

Repeat this procedure 100 logn times, each vertex is in one of the 100 logn
independent sets with probability at least 1 − n−2. Union bound shows with
high probability the union of these independent sets is the vertex set. We use
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one color for each independent set (if a vertex belongs to multiple sets then
choose an arbitrary one among them), which gives a valid O(log n) coloring.

5 Threshold Rank Bound for Distance Transitive Graphs

As we explained in the Introduction, symmetric graphs are a natural class of
hard instances for graph coloring problem. Also, by Blum Coloring Tools [5], it
is enough to consider graphs with low diameter for 3-Coloring.

In this section we focus on a class of symmetric graphs: distance transitive
graphs, and we prove for a distance transitive graph with diameter Δ, the thresh-
old rank Rank−C(G) is at most (O(1/C2))Δ. We begin by defining distance
transitive graphs:

Definition 3 (Distance Transitive Graph). A graph G = (V, E) is distance-
transitive if for any pairs of vertices (p, q) and (s, t), where the shortest-path
distance between p, q and s, t are the same, there is always an automorphism
that maps p to s and q to t.

Distance transitive graphs have many nice properties, especially when we look
at the neighborhoods of vertices. Define Γ k(p) to be the k-th neighborhood of p
(which is the set of vertices at distance k of p), by the distance transitive con-
dition, we know if a pair of vertices p, q have distance k, then |Γ k−1(p)

⋂
Γ (q)|,

|Γ k(p)
⋂

Γ (q)|, |Γ k+1(p)
⋂

Γ (q)| are three numbers that depend only on k. As
a convention, we call these numbers ck, ak and bk respectively. The size of k-
th neighborhood (|Γ k(p)|) is represented by nk. The following is known about
spectral properties of distance transitive graphs[4]:

Lemma 5. A distance transitive graph G has Δ + 1 distinct eigenvalues, which
are the eigenvalues of the matrix

B =

⎛
⎜⎜⎜⎜⎝

a0 c1

b0 a1 c2

. . .
bΔ−2 aΔ−1 cΔ

bΔ−1 aΔ

⎞
⎟⎟⎟⎟⎠ .

Moreover, suppose the i-th eigenvalue is λi (λ0 ≥ λ1 ≥ · · · ≥ λΔ), with left
eigenvector ui and right eigenvector vi (uT

i B = λiu
T
i , Bvi = λivi), we have

vi(j) = njui(j). When vi is normalized so that vi(0) = 1, the multiplicity of λi

in the original graph is n/〈ui, vi〉.
Note that the eigenvalues in the above Lemma are for the adjacency matrix

of G. There is a normalization factor d (the degree) between these eigenvalues
and eigenvalues we were using for threshold rank.
Now we are ready to prove the following theorem.

Theorem 3. If a distance transitive graph is 3-colorable, then there is an algo-
rithm that colors it with O(log n) colors in time n2O(Δ)

.
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Proof. Due to space limit please see the full version of this paper for the proof.
The main idea is to prove that for each eigenvalue smaller than −C, its mul-
tiplicity must be smaller than (10/C2)Δ (the multiplicity can be computed by
Lemma 5), then Theorem 1 gives the algorithm.

6 Conclusion

In this paper we explored the relationship between threshold rank and graph col-
oring. Unlike other problems such as Unique Games and MAX-CUT considered
by Arora et.al.[1], we show that 3-Coloring is actually related to the negative
side of the spectrum. We give an algorithm that can find linear size indepen-
dent set when the graph is 3-colorable and has threshold rank D. The efficiency
of our algorithm depends on the threshold rank of a graph. Known integrality
gap examples [11,12] all have threshold rank that is polylog in the number of
vertices. Thus our algorithm can detect in quasipolynomial time that they are
not 3-Colorable.The relationship between global correlation and rounding and
the convex relaxation for threshold rank are inspired by Barak e.al.[3] and we
believe these techniques can be useful in other problems.

If our approach is combined with combinatorial tools, it could possibly lead
to good subexponential (or even quasipolynomial-time) coloring algorithms. In
particular, if the following conjecture is true for any constant C and D = nδ,
we get a exp(nδ) time algorithm for coloring 3-Colorable graph with nε colors
(see full version). We have no counterexamples for the Conjecture when C is a
constant and D is more than nε.

Conjecture 1. There exists an algorithm such that for any graph G, can either

– Find a subset S of vertices. The vertex expansion is at most ΦV (S) ≤
(n/|S|)1/C .

– Certify the existence of doubly stochastic matrix M with same support as
G such that Rank−1/16(M) ≤ D.

We also give efficient algorithm to color 3-colorable distance transitive graphs
with low diameter. These graphs have properties that seem to make it hard for
previously known algorithms.
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Abstract. In recent work of Hazan and Krauthgamer (SICOMP 2011),
it was shown that finding an ε-approximate Nash equilibrium with near-
optimal value in a two-player game is as hard as finding a hidden clique
of size O(log n) in the random graph G(n, 1

2
). This raises the question

of whether a similar intractability holds for approximate Nash equilib-
rium without such constraints. We give evidence that the constraint of
near-optimal value makes the problem distinctly harder: a simple algo-
rithm finds an optimal 1

2
-approximate equilibrium, while finding strictly

better than 1
2
-approximate equilibria is as hard as the Hidden Clique

problem. This is in contrast to the unconstrained problem where more
sophisticated algorithms, achieving better approximations, are known.

Unlike general Nash equilibrium, which is in PPAD, optimal (max-
imum value) Nash equilibrium is NP-hard. We proceed to show that
optimal Nash equilibrium is just one of several known NP-hard prob-
lems related to Nash equilibrium, all of which have approximate variants
which are as hard as finding a planted clique. In particular, we show
this for approximate variants of the following problems: finding a Nash
equilibrium with value greater than η (for any η > 0, even when the best
Nash equilibrium has value 1 − η), finding a second Nash equilibrium,
and finding a Nash equilibrium with small support.

Finally, we consider the complexity of approximate pure Bayes Nash
equilibria in two-player games. Here we show that for general Bayesian
games the problem is NP-hard. For the special case where the distribu-
tion over types is uniform, we give a quasi-polynomial time algorithm
matched by a hardness result based on the Hidden Clique problem.

1 Introduction

The classical notion of Nash equilibrium is the most fundamental concept in the
theory of non-cooperative games. In recent years, there has been much work on
the complexity of finding a Nash equilibrium in a given game. In particular, a
series of hardness results led to the work of Chen et. al [CDT09], who showed
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that even for two-player (bimatrix) games, the problem of computing a Nash
equilibrium is PPAD-complete, thus unlikely to be solvable in polynomial time.

Therefore, it makes sense to consider the complexity of approximate equilibria.
In particular, a notion which has emerged as the focus of several works is that
of an ε-approximate Nash equilibrium, or ε-equilibrium for short, where neither
player can gain more than ε (additively) by defecting to a different strategy
(without loss of generality, all payoffs are scaled to lie in the interval [0, 1]).
A straightforward sampling argument of Lipton et al. [LMM03] shows that in
every game, there exist ε-equilibria with support O(log n/ε2), and so they can
be found in quasi-polynomial time nO(log n/ε2) by exhaustive search.

On the other hand, finding good polynomial time approximations has proved
more challenging. While finding a 1

2 -equilibrium turns out to be quite sim-
ple [DMP09], more complicated algorithms have given a series of improvements
[DMP07, BBM10, TS08], where the current best known is the 0.3393-equilibrium
shown by Tsaknakis and Spirakis [TS08]. A major open question in this area is
whether or not there exists a PTAS for Nash Equilibrium (note that the algo-
rithm of Lipton et al. [LMM03] gives a quasi-polynomial time approximation
scheme for the problem).

Recently, Hazan and Krauthgamer [HK11] have attempted to provide evi-
dence for the optimality of the QPTAS of Lipton et al. [LMM03], by showing
a reduction from a well-studied and seemingly intractable problem (which can
also be solved in quasi-polynomial time) to the related problem of finding an ε-
equilibrium with near maximum value (the value of an equilibrium is the average
of the payoffs of the two players).

The problem they reduce from is the Hidden Clique Problem: Given a graph
sampled from G(n, 1

2 ) with a planted (but hidden) clique of size k, find the
planted clique. Since with high probability the maximum clique in G(n, 1

2 ) is of
size (2− o(1)) log n, it is easy to see that for constant δ > 0, one can distinguish
between G(n, 1

2 ) and G(n, 1
2 ) with a planted clique of size k > (2 + δ) log n

in quasi-polynomial time by exhaustive search over all subsets of (2 + δ) log n
vertices. It is also not hard to extend this to an algorithm which finds the hidden
clique in quasi-polynomial time.

On the other hand, the best known polynomial time algorithm, due to Alon
et al. [AKS98] only finds cliques of size Ω(

√
n). In fact, Feige and Krauthgamer

[FK03] show that even extending this approach by using the Lovász-Schrijver
SDP hierarchy, one still requires Ω(log n) levels of the hierarchy (corresponding
to nΩ(log n) running time to solve the SDP) just to find a hidden clique of size
n1/2−ε. The only possible approach we are aware of for breaking the Ω(

√
n)

barrier would still (assuming certain conjectures) only discover cliques of size
Ω(nc) for some constant c > 0 [FK08, BV09].

Hazan and Krauthgamer show that finding a near-optimal ε-equilibrium is as
hard as finding hidden cliques of size C log n, for some universal constant C. Here,
by near-optimal we mean having value close to maximum possible value obtained
in an actual Nash equilibrium. Subsequently, Minder and Vilenchik [MV09] im-
proved this hardness to planted cliques of size (2 + δ) log n for arbitrarily small
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δ > 01. Here, we will rely on the hardness assumption for hidden cliques of size
C log n for any constant C, and will not attempt to optimize the value of C.

1.1 A Sharp Result for Near-Optimal Approximate Nash

It is important to note that the problem considered in [HK11] is not equivalent to
finding an unconstrained ε-equilibrium. In light of the results of [HK11, MV09]
it is natural to ask to what extent the hardness for near-optimal approximate
equlibrium gives an indication of hardness for unconstrained approximate equi-
librium. Indeed, [HK11], in their concluding remarks, ask whether their methods
can be used to rule out a PTAS for unconstrained Nash equilibrium. One of the
messages of this paper is that these two problems are quite different in terms
of approximability and that one should not yet be overly pessimistic about the
possibility for a PTAS for unconstrained Nash equilibrium. Indeed, while there
is a a polynomial time algorithm to find a 0.3393-equilibrium, we show that
finding a near-optimal (1

2 − η)-equilibrium is hard.

Theorem 1.1 (Informal). For every constant η > 0, finding a near-optimal
(1
2 − η)-approximate equilibrium is as hard as finding a hidden clique of size

C log n in G(n, 1
2 ).

As mentioned above, there is a simple polynomial time algorithm to find a 1
2 -

equilibrium, and we show that this algorithm can be extended to find a 1
2 -

equilibrium with value at least that of the best exact equilibrium:

Theorem 1.2 (Informal). There exists a polynomial time algorithm to find a
1
2 -approximate equilibrium with value at least that of the optimal true equilibrium.

Thus, Theorem 1.1 is tight and unlike unconstrained Nash equilibrium, where
stronger techniques yield approximations better than 1

2 , near-optimal Nash equi-
librium does not admit efficient “non-trivial” approximations (assuming the Hid-
den Clique problem is hard).

1.2 The Bigger Picture: Hardness for NP-Hard Variants of Nash

Just like with unconstrained ε-equilibrium, finding a near-optimal ε-equilibrium
can be done in quasi-polynomial time using the algorithm of [LMM03]. How-
ever, the exact version – finding a maximum value Nash equilibrium – is NP-
hard [GZ89] and therefore harder than its unconstrained counterpart which is
in PPAD [Pap94]. In fact, maximum value Nash is one of several optimization
variants of Nash equilibrium which are NP-complete. Other variants include: de-
termining whether a bimatrix game has more than one Nash equilibrium [GZ89],
finding a Nash Equilibrium with minimum support [GZ89], and determining
whether the maximum value equilibrium has value at least 1− 1

n or at most ε/n

1 There is a small caveat: the reduction of [MV09] only certifies the presence of a
hidden clique, but does not identify the vertices of the clique.
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(even for arbitrarily small ε = ε(n) > 0) [CS03]. We show that approximate-
equilibrium variants of these problems are also as hard as Hidden Clique.

For the problem of obtaining any non-trivial approximation to the optimal
value of a Nash equilibrium, we prove the following theorem.

Theorem 1.3 (Informal). For every constant η > 0, finding an ε-equilibrium
with value at least η is as hard as finding a hidden clique of size C log n in
G(n, 1

2 ), even in a game having an equilibrium of value ≥ 1 − η.

For the case of determining whether a game has more than one equilibrium,
note that by continuity considerations, every two-player game has an infinite
number of ε-equilibria. Thus, the appropriate approximate analog is to consider
the problem of finding two ε-equilibria with (at least) a certain total variation
distance between them. We show that this is also as hard as Hidden Clique.

Theorem 1.4 (Informal). For all sufficiently small constant ε > 0, determin-
ing whether a game has two different ε-approximate equilibria, having statistical
distance at least 3ε, is as hard as finding a hidden clique of size C log n in G(n, 1

2 ).

We then move to the problem of finding an equilibrium with small support.
Recall that by [LMM03], there exist ε-Nash equilibria with support O(log n/ε2).
It is also known that for any η > 0, in certain two-player games all (1

2 − η)-
equilibria must have support at least log n/(1+log(1/η)) [FNS07] (the threshold
of 1

2 is tight, since the simple 1
2 -equilibrium of [DMP09] has support 3). As an

approximate-equilibrium variant of the Minimum Support Equilibrium problem,
we consider the problem of finding an ε-equilibrium with support at most some
threshold t, and prove the following hardness result.

Theorem 1.5 (Informal). For every constant η > 0, finding a (1
2 − η)-

equilibrium with support size C′ log n is as hard as finding a hidden clique of
size C log n in G(n, 1

2 ).

This can be seen as a complexity-theoretic analogue of the lower bound of [FNS07]
mentioned above. Again, this contrasts with the case of unconstrained equilib-
rium, which is guaranteed to exist, and admits stronger approximations.

While these are all negative results, we again would like to stress that there
is a positive message to this story: these problems are hard because they are ap-
proximate versions of NP-complete problems, not because they are approximate
variants of Nash equilibrium. Therefore, these results should not be viewed as
indications that Nash equilibrium does not have a PTAS.

1.3 The Complexity of Approximate Pure Bayes Nash Equilibria

Finally, we consider the problem of approximating pure Bayes Nash Equilibria
(BNE) in two-player games. Bayesian games model the situation where the
players’ knowledge of the world is incomplete. In a Bayesian game, both players
may be in one of a number of different states, known as types, representing
what each player knows about the state of the world, and the payoff of each
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player depends on the type of both players in addition to their strategies. The
types are distributed according to some joint distribution and are not necessarily
independent. A pure strategy for a Bayesian game assigns to each type a strategy
that the player plays when she is in that type. In a pure BNE, conditioning on
any given type for a given player, the player cannot gain by changing his strategy
for that type. See Section 6 for precise definitions.

Conitzer and Sandholm [CS03] have shown that determining whether a given
two-player game has a pure BNE is NP-complete. We show that this holds also
for approximate pure BNE.

Theorem 1.6 (Informal). Let ε = 0.004. Then given a Bayesian game that
admits a pure BNE, it is NP-hard to find a pure ε-BNE for the game.

This hardness result relies heavily on the joint distribution of the players’ types
being non-uniform (not even a product distribution). We show that when the
distribution over type pairs is uniform, there is in fact a quasi-polynomial time
algorithm for ε-approximate pure BNE (when a pure BNE exists).

Theorem 1.7 (Informal). For every constant ε > 0 there is a quasipolyno-
mial time algorithm to find a pure ε-BNE in two-player Bayesian games with
uniformly distributed types and in which a pure BNE exists.

We remark that this algorithm extends easily to arbitrary product distributions
over types but in order to keep the notation simple we restrict our attention to
the uniform case. The quasi-polynomial running time of the algorithm is possibly
optimal: it follows immediately from our hardness for Small Support Equilibrium
that this problem is also as hard as Hidden Clique.

Theorem 1.8 (Informal). For every constant η > 0, finding a (1
4 − η)-

approximate pure BNE in a two-player Bayesian game with uniformly distributed
types and in which a pure BNE exists is as hard as finding a hidden clique of
size C log n.

1.4 Organization

In Section 3 we prove the results relating to approximate equilibria with large
value: Theorem 1.1 (Section 3.2), Theorem 1.2 (Section 3.4), and Theorem 1.3
(Section 3.3). In Section 4 we prove Theorem 1.4 by a black-box application of
Theorem 1.3. In Section 5 we prove Theorem 1.5 using similar techniques as for
the hardness results of Section 3. In Section 6 we prove our results for Bayesian
games, Theorems 1.6, 1.7, and 1.8. Due to space restrictions, most of the actual
proofs are deferred to the full version of the paper [ABC11].

2 Preliminaries

A bimatrix game G = (Mrow, Mcol) is a game defined by two finite matrices,
Mrow and Mcol, and two players: the row player and the column player. We



18 P. Austrin, M. Braverman, and E. Chlamtáč

assume throughout that the game is normalized, i.e. both matrices have values
in the interval [0, 1]. The row and column players choose strategies x and y
respectively, where x, y are nonnegative vectors satisfying

∑
i xi =

∑
j yj = 1. A

pure strategy has support 1 (i.e. a vector with 1 in one entry and 0 in the rest).
The row (resp. column) player’s payoff is given by x�Mrowy (resp. x�Mcoly).

A Nash equilibrium is a pair of strategies (x, y) such that neither player has
any incentive to deviate to a different strategy, assuming the other player does
not deviate. Formally, in an equilibrium, for all i, j we have e�i Mrowy ≤ x�Mrowy
and x�Mcolej ≤ x�Mcoly. An ε-approximate Nash equilibrium, or ε-equilibrium
for short, is a pair of strategies x, y where each player has incentive at most ε to
deviate. That is, for all i, j,

e�i Mrowy ≤ x�Mrowy + ε and x�Mcolej ≤ x�Mcoly + ε.

The value of a pair of strategies, denoted vG(x, y), is the average payoff of the
two players, i.e.,

vG(x, y) = 1
2 (x�Mrowy + x�Mcoly) = 1

2

∑
i,j

xiyj(Mrow(i, j) + Mcol(i, j)).

For a vector x ∈ Rn and S ⊆ [n], we write xS for the projection of x to
the coordinates S. We write ‖x‖ =

∑n
i=1 |xi| for the �1 norm of x. Thus, for a

strategy (in other words, a probability distribution) x ∈ [0, 1]n we write ‖xS‖
for the probability that the player plays an element of S.

Further, for a set S ⊆ [n] of strategies, we use vG|S(x, y) to denote the value
of (x, y) conditioned on both players playing in S. Formally,

vG|S(x, y) = E
i∼x,j∼y

[
1
2
(Mrow(i, j) + Mcol(i, j))

∣∣∣i, j ∈ S
]

= vG(xS, yS)/(‖xS‖‖yS‖).

(If ‖xS‖ = 0 or ‖yS‖ = 0, vG|S(x, y) is undefined.)
Given an undirected graph G = (V, E), and (not necessarily disjoint) vertex

sets S1, S2 ⊆ V , we will denote by E(S1, S2) the set of ordered pairs {(i, j) ∈
S1 × S2 | {i, j} ∈ E or i = j}. We will refer to d(S1, S2) = |E(S1, S2)|/(|S1||S2|)
as the density of the pair (S1, S2).

3 Approximate Equilibria with Good Value

3.1 The Reduction

In this section we describe the general reduction that we use to prove Theo-
rems 1.1 and 1.3 and describe its properties. This reduction also forms the basis
for the reductions we use to prove Theorems 1.4, 1.5 and 1.8. It is based on the
reduction of [HK11].

As in [HK11] our soundness analysis proceeds by using the approximate equi-
librium to find a dense bipartite subgraph of G. The following lemma shows that
this is sufficient to recover the hidden clique.
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Lemma 3.1 ([HK11, Lemma 5.3]). There exist universal constants c1 and c2

such that the following holds. Let G be a sample from G(n, 1
2 ) with a hidden clique

of size C log n for some C ≥ c1. Then, given a pair of vertex sets S1, S2 ⊆ [n] of
size c2 log n and density d(S1, S2) ≥ 5/9 we can in polynomial time reconstruct
the hidden clique (with high probability over G).

The lemma is slightly different from Lemma 5.3 of [HK11]: there we start with
a bipartite subgraph of density 3/5 instead of 5/9 but this minor difference only
changes the value of the constant c2 – the lemma holds for any constant density
strictly larger than 1

2 .
We now describe the reduction. It is controlled by three parameters α, β, γ ∈

(0, 1). Setting these parameters appropriately gives the various hardness results.

Reduction 3.2 Let G = (V, E) be an n vertex graph and A
its adjacency matrix (with 1s on the diagonal). Then, for pa-
rameters α, β, γ ∈ (0, 1), we define a (random) bimatrix game
G := G(G, α, β, γ) as follows.
Let N = nc where c = (c2 + 1) log 1/β for the universal
constant c2 of Lemma 3.1. Pick a random N × n matrix B
whose entries are i.i.d. {0, 1} variables with expectation β. Then
G = (Mrow, Mcol), where the payoff matrices are:

Mrow =
(

αA 0
B γJ

)
Mcol =

(
αA B�

0 γJ

)
, (1)

where J is the all-ones N × N matrix.

We conclude this section with an additional lemma which shows how to obtain
a dense bipartite subgraph given an approximate equilibrium of G with certain
properties. This lemma (and its proof) is analogous to [HK11, Lemma 5.2], but
as we need it in larger generality we also give the proof (deferred to the full
version [ABC11]).

Lemma 3.3. Let G be as in Reduction 3.2. Fix any s ∈ [0, 1], t ∈ [0, 1] and
ε ∈ [0, 1] such that 1 − t − 3

√
s/2 ≥ α + ε, and let (x, y) be an ε-approximate

equilibrium of G with the following two properties:

– Both ‖x[n]‖ ≥ 1 − t and ‖y[n]‖ ≥ 1 − t.
– The conditional value vG|[n](x, y) ≥ (1 − s)α.

Then, given (x, y) as above, we can efficiently find vertex sets S1, S2 ⊆ [n] each
of size c2 log n and density d(S1, S2) ≥ 5/9.

3.2 Hardness for ε Close to 1
2

To obtain Theorem 1.1 the main requirement is to set α = 1
2 +O(η). The values

of β and γ are essentially irrelevant in this case – the only thing needed is that
β is bounded away from both 0 and α and that γ ≤ 1

2 .
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Lemma 3.4. Let α = 1
2 + t, γ ≤ 1

2 and G be the game of Reduction 3.2. Then
for any pair of strategies (x, y) with value at least vG(x, y) ≥ α− t2 it holds that
‖x[n]‖ and ‖y[n]‖ are both at least 1 − t.

Observation 3.5 Let (x, y) be any pair of strategies with value vG(x, y) ≥ 1
2

and ‖x[n]‖ > 0, ‖y[n]‖ > 0. Then vG|[n](x, y) ≥ vG(x, y), provided that γ ≤ 1
2 .

Plugging this into Lemma 3.3, we can now easily complete the proof of hardness
for ε close to 1

2 .

Theorem 3.6 (Detailed Statement of Theorem 1.1). For every η > 0
there exist δ = Ω(η2), α ≥ 1

2 and universal constant C not depending on η
such that the following holds. Given a graph G = (V, E) we can in randomized
polynomial time construct a bimatrix game G with maximum value α (over all
strategy pairs) such that, if G = G(n, 1

2 ) with a hidden clique of size C log n, the
following holds (w.h.p. over G and G):

Completeness. There is a Nash equilibrium (x, y) with value α.
Soundness. Given any (1

2−η)-equilibrium with value ≥ α−δ, we can efficiently
recover the hidden clique.

3.3 Distinguishing between Low and High Value

For Theorem 1.3 the choices of all three parameters α, β, γ of Reduction 3.2 are
important. We are going to set γ close to 0, and α > β both close to 1.

On a high level, the proof has the same structure as that of Theorem 1.1.
However, in the current setting Lemma 3.4 and Observation 3.5 do not apply. To
arrive at similar conclusions we use a different argument, exploiting the fact that
(x, y) is a ε-equilibrium. Essentially, the argument is as follows: the off-diagonal
blocks (B and B�) are not stable, since there is too much incentive for at least
one player to deviate. Therefore, most of the probability mass in an equilibrium
is concentrated either in the αA block, or in the γJ block. However, in the γJ
block, the value is too small. So, if the equilibrium has even slightly larger value,
its mass must be concentrated in the αA block. There it has to actually have
very large value, since otherwise, there is incentive for both players to deviate
to B and B� to get reward β. The rest of the proof follows as before.

Formally, we show that (under certain conditions) any ε-equilibrium with
non-negligible value must satisfy the conditions of Lemma 3.3:

Lemma 3.7. Fix a parameter ε ∈ (0, 1), let α − β ≤ ε, and γ = 4
√

ε and
consider the game G as in Reduction 3.2.

Then, w.h.p. over G, any ε-equilibrium (x, y) with value > 5
√

ε satisfies:

– Both ‖x[n]‖ and ‖y[n]‖ are at least 1 −√
ε.

– vG|[n](x, y) ≥ α − 3ε.

Equipped with Lemma 3.7, it is easy to finish the proof of Theorem 1.3.
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Theorem 3.8 (Detailed statement of Theorem 1.3). For every constant
η > 0 there exist ε = Ω(η2) and C = O(1/η3) such that the following holds.
Given a graph G, we can in randomized polynomial time construct a bimatrix
game G such that, if G = G(n, 1

2 ) with a hidden clique of size C log n, the fol-
lowing holds (w.h.p. over G and G):

Completeness. There is a Nash equilibrium (x, y) with both payoffs ≥ 1 − η.
Soundness. Given any ε-equilibrium with value ≥ η, we can efficiently recover

the hidden clique.

3.4 An Algorithm for Good 1
2
-Approximate Equilibria

In this section we prove Theorem 1.2 by describing a simple algorithm to find a
1
2 -approximate Nash equilibrium with at least as good value as the best exact
Nash equilibrium. This shows that the bound on ε in Theorem 1.1 is tight.

For general 1
2 -approximate equilibria (without any constraint on the value),

the following simple algorithm was suggested by Daskalakis, Mehta and Pa-
padimitiou [DMP09]. Start by choosing an arbitrary pure strategy ei for the
row player, let ej be the column player’s best response to ei, and let ek be the
row player’s best response to ej. Then the following is a 1

2 -equilibrium: let the
column player play ej , and let the row player play ei with probability 1

2 and ek

with probability 1
2 (neither player can gain more than 1

2 by deviating, since each
player is playing a best response strategy with probability 1

2 ). Thus, every bi-
matrix game has a 1

2 -approximate equilibrium in which one of the players plays
a pure strategy. We show that this is also the case for optimal value 1

2 -equilibria
(the difference being that in this case, the other player may play a mixed strat-
egy with arbitrarily large support – not just two strategies). Theorem 1.2 follows
easily from the following lemma:

Lemma 3.9. For every bimatrix game which has a Nash equilibrium of value
v, there exists a 1

2 -approximate equilibrium with value at least v in which one of
the players plays a pure strategy.

4 Finding a Second Equilibrium

In the following Theorem, dTV refers to the total variation distance between two
vectors, i.e., dTV(x, y) = 1

2

∑ |xi − yi|.

Theorem 4.1 (Detailed Statement of Theorem 1.4). There is a C > 0
such that the following holds for all sufficiently small ε > 0. Given a graph G we
can in randomized polynomial time construct a bimatrix game G′ which admits
a pure Nash equilibrium (ei, ej) such that, if G = G(n, 1

2 ) with a hidden clique
of size C log n, the following holds (w.h.p. over G and G′):

Completeness. There is an equilibrium (x, y) with dTV(ei, x) = dTV(ej , y) = 1.



22 P. Austrin, M. Braverman, and E. Chlamtáč

Soundness. Given any ε-equilibrium (x, y) of G′ with dTV(ei, x) ≥ ε + O(ε2)
or dTV(ej, y) ≥ ε + O(ε2), we can efficiently recover the hidden clique.

Remark 4.2. Note that the bound ε+O(ε2) on the statistical distance is almost
tight: given any true equilibrium (x, y) there are ε-approximate equilibria (x′, y′)
with dTV(x, x′) ≥ ε and dTV(y, y′) ≥ ε.

5 Small Support Equilibria

In this section, we show hardness of finding an ε-approximate Nash equilibrium
with small (logarithmic) support when one exists, even for ε close to 1

2 . Note
that an ε-approximate Nash equilibrium for two-player n′-strategy games with
support at most O(log n′/ε) is guaranteed to exist by the algorithm of Lipton
et al. [LMM03]. Here we consider approximate equilibria with smaller (but still
logarithmic) support. Also, note that this is tight, since for ε = 1

2 , we have the
simple algorithm of [DMP09], which gives a 1

2 equilibrium of support 3.

Theorem 5.1. For every η > 0 there exists C > 0 such that finding a (1
2 − η)-

equilibrium with support at most (log n)/2 is as hard as finding a hidden clique
of size C log n in G(n, 1

2 ).

Note that we have a much smaller gap between the completeness and hardness
above than in the other problems we have considered. In particular, we do not
claim that finding a (1

2 − η)-equilibrium with small support is hard even when
an exact equilibrium with small support exists. However, such hardness can be
shown for a smaller additive approximation:

Theorem 5.2. For every η > 0 there exists C > 0 such that finding a (1
4 − η)-

equilibrium with support at most O(log n) in a two-player game which admits
an exact Nash equilibrium with support O(log n) is as hard as finding a hidden
clique of size C log n in G(n, 1

2 ).

6 Computing Approximate Pure Bayes-Nash Equilibrium

We focus on Bayesian games with two players, but the results generalize to an
arbitrary number of players. More details on Bayesian games can be found in
most Game Theory textbooks, for example in [FT91].

In a Bayesian game the payoff of the players depends on the state of the
world in addition to the players’ strategies. In a situation with two players, the
row player and the column player, each player is presented with a signal, called
type, about the state of the world θrow ∈ Θrow and θcol ∈ Θcol, respectively. The
types are distributed according to some joint distribution P and are not nec-
essarily independent. The types determine the payoff matrices Mrow(θrow, θcol)
and Mcol(θrow, θcol). Denote the set of rows and columns in this matrix by Srow

and Scol, respectively. Each player chooses an action srow ∈ Srow and scol ∈ Scol
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from their respective set of actions. The payoff function of the first player is
thus urow(srow, scol, θrow, θcol) = Mrow(θrow, θcol)srow ,scol ∈ [0, 1]. The payoff func-
tion ucol is defined similarly. The payoff matrices, that depend on the players’
types, as well as the distribution on types is known to the players ahead of the
game.

A pure strategy for the row player in a Bayesian game is a function (that by
a slight abuse of notation) we denote by srow : Θrow → Srow that for each type
θrow as observed by row player associates a strategy srow(θrow) that the player
chooses to execute. A pure strategy scol : Θcol → Srow is defined similarly.

Denote by Pθrow the distribution on player column player’s types θcol condi-
tioned on the type θrow being observed. For a pair of pure strategies (srow, scol)
the payoff function of the row player is given by

prow(θrow) = E
θcol∼Pθrow

[urow(srow(θrow), scol(θcol), θrow, θcol)].

A pure strategy Nash equilibrium in a Bayesian game, is a pair of functions
srow, scol s.t. for all types observed, neither player has an incentive to deviate
from his current strategy. In other words, for each θrow, and for each s′row ∈ Srow,

prow(θrow) ≥ E
θcol∼Pθrow

[urow(s′row, scol(θcol), θrow, θcol)],

and a similar condition holds for pcol.
Since a pure Nash equilibrium need not exist in non-Bayesian games, it

need not exist in Bayesian games either. Moreover, while verifying whether a
non-Bayesian two player game has a pure Nash equilibrium is trivial, verifying
whether a pure Bayesian Nash equilibrium exists is NP-hard [CS03]. Further-
more, this problem remains hard even when the distribution on types is uniform
and the payoff does not depend on the players’ types.

A pure ε-Bayesian Nash equilibrium (ε-BNE) is similar to an ε-Nash equilib-
rium. For each observed type θrow, the incentive to deviate is bounded:

prow(θrow) > E
θcol∼Pθrow

[urow(s′row, scol(θcol), θrow, θcol)] − ε.

A similar requirement should hold for the column player.
We show that for some constant ε, determining whether a pure strategy ε-

Bayes Nash equilibrium exists is NP-hard. Specifically, for ε = 0.004. We prove:

Theorem 6.1. Let ε = 0.004. Then given a Bayesian game that admits a pure
BNE, it is NP-hard to find a pure ε-BNE for the game. Moreover, it is NP-hard
to solve the promise problem of distinguishing games that admit a pure BNE
from games that do not admit a pure ε-BNE.

Next, we show that when the distribution on types is uniform, a pure ε-BNE
can be computed in quasi-polynomial time. As noted earlier, computing a pure
BNE is NP-hard even in this special case [CS03].
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Theorem 6.2. In a two-player Bayesian game, suppose that the types are dis-
tributed uniformly on the space Θrow × Θcol, and that |Θrow| = |Θcol| = k, and
|Srow| = |Scol| = n. Assuming that a pure BNE exists, we can find a pure ε-BNE
in time nO((log n+log k)/ε2).

Remark 6.3. The assumption in Theorem 6.2 can be relaxed to a pure (ε/2)-
BNE equilibrium existing (instead of an actual equilibrium).

As for other quasi-polynomial time computable approximate equilibria with
NP-hard exact variants we’ve seen, this problem is also as hard as Hidden
Clique:

Theorem 6.4. For every η > 0, finding a (1
4 − η)-approximate pure BNE in a

two-player Bayesian game with uniformly distributed types and in which a pure
BNE exists is as hard as finding a hidden clique of size C log n.
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Sparse Recovery with Partial Support

Knowledge�

Khanh Do Ba and Piotr Indyk
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Abstract. The goal of sparse recovery is to recover the (approximately)
best k-sparse approximation x̂ of an n-dimensional vector x from linear
measurements Ax of x. We consider a variant of the problem which takes
into account partial knowledge about the signal. In particular, we focus
on the scenario where, after the measurements are taken, we are given a
set S of size s that is supposed to contain most of the “large” coefficients
of x. The goal is then to find x̂ such that

‖x − x̂‖p ≤ C min
k-sparse x′
supp(x′)⊆S

‖x − x′‖q . (1)

We refer to this formulation as the sparse recovery with partial sup-
port knowledge problem (SRPSK). We show that SRPSK can be solved,
up to an approximation factor of C = 1 + ε, using O((k/ε) log(s/k))
measurements, for p = q = 2. Moreover, this bound is tight as long as
s = O(εn/ log(n/ε)). This completely resolves the asymptotic measure-
ment complexity of the problem except for a very small range of the
parameter s.

To the best of our knowledge, this is the first variant of (1 + ε)-
approximate sparse recovery for which the asymptotic measurement com-
plexity has been determined.

1 Introduction

In recent years, a new “linear” approach for obtaining a succinct approximate
representation of n-dimensional vectors (or signals) has been discovered. For
any signal x, the representation is equal to Ax, where A is an m × n matrix, or
possibly a random variable chosen from some distribution over such matrices.
The vector Ax is often referred to as the measurement vector or linear sketch of
x. Although m is typically much smaller than n, the sketch Ax often contains
plenty of useful information about the signal x.

A particularly useful and well-studied problem is that of stable sparse recov-
ery. We say that a vector x′ is k-sparse if it has at most k non-zero coordinates.
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The sparse recovery problem is typically defined as follows: for some norm pa-
rameters p and q and an approximation factor C > 0, given Ax, recover an
“approximation” vector x̂ such that

‖x − x̂‖p ≤ C min
k-sparse x′

‖x − x′‖q (2)

(this inequality is often referred to as �p/�q guarantee). If the matrix A is random,
then (2) should hold for each x with some probability (say, 3/4). Sparse recovery
has a tremendous number of applications in areas such as compressive sensing
of signals [4,11], genetic data acquisition and analysis [23,3] and data stream
algorithms [20,17].

It is known [4] that there exist matrices A and associated recovery algorithms
that produce approximations x̂ satisfying (2) with p = q = 1, constant approxi-
mation factor C, and sketch length

m = O(k log(n/k)) . (3)

A similar bound, albeit using random matrices A, was later obtained for p = q =
2 [15] (building on [6,7,8]). Specifically, for C = 1+ε, they provide a distribution
over matrices A with

m = O((k/ε) log(n/k)) (4)

rows, together with an associated recovery algorithm.
It is also known that the bound in (3) is asymptotically optimal for some

constant C and p = q = 1 (see [10] and [13], building on [14,16,18]). The bound
of [10] also extends to the randomized case and p = q = 2. For C = 1 + ε, a
lower bound of (roughly) m = Ω(k/εp/2) was recently shown [22].

The necessity of the “extra” logarithmic factor multiplying k is quite unfortu-
nate: the sketch length determines the “compression rate”, and for large n any
logarithmic factor can worsen that rate tenfold.

In this paper we show that this extra factor can be reduced if we allow the
recovery process to take into account some partial knowledge about the signal.
In particular, we focus on the scenario where, after the measurements are taken,
we are given a set S of size s (s is known beforehand) that is supposed to contain
most of the “large” coefficients of x. The goal is then to find x̂ such that

‖x − x̂‖p ≤ C min
k-sparse x′

supp(x′)⊆S

‖x − x′‖q . (5)

We refer to this formulation as the sparse recovery with partial support knowl-
edge problem (SRPSK).

Results. We show that SRPSK can be solved, up to an approximation factor of
C = 1 + ε, using O((k/ε) log(s/k)) measurements, for p = q = 2. Moreover, we
show that this bound is tight as long as s = O(εn/ log(n/ε)). This completely
resolves the asymptotic measurement complexity of the problem except for a
very small range of the parameter s.
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To the best of our knowledge, this is the first variant of (1 + ε)-approximate
sparse recovery for which the asymptotic measurement complexity has been
determined.

Motivation. The challenge of incorporating external knowledge into the sparse
recovery process has received a fair amount of attention in recent years [9].
Approaches include model-based compressive sensing [2,12] (where the sets of
large coefficients are known to exhibit some patterns), Bayesian compressive
sensing [5] (where the signals are generated from a known distribution) and
support restriction.

There are several scenarios where our formulation (SRPSK) could be appli-
cable. For example, for tracking tasks, the object position typically does not
change much between frames, so one can limit the search for current position
to a small set. The framework can also be useful for exploratory tasks, where
there is a collection S of sets, one of which is assumed to contain the support.
In that case, setting the probability of failure to 1

|S| enables exploring all sets in
the family and finding the one which yields the best approximation.

From a theoretical perspective, our results provide a smooth tradeoff between
the Θ(k log(n/k)) bound for “standard” sparse recovery and the Θ(k) bound
known for the set query problem [21]. In the latter problem we have the full
knowledge of the signal support, i.e., s = k.

Our techniques. Consider the upper bound first. The general approach of our
algorithm is to reduce SRPSK to the noisy sparse recovery problem (NSR). The
latter is a generalization of sparse recovery where the recovery algorithm is given
Ax+ν, where ν is the measurement noise. The reduction proceeds by represent-
ing Ax as AxS + AxS̄ , and interpreting the second term as noise. Since the
vector xS has dimension s, not n, we can use A with only O(k log(s/k)) rows.
This yields the desired measurement bound.

To make this work, however, we need to ensure that for any fixed S, the
sub-matrix AS of A (containing the columns with indices in S) is a valid sparse
recovery matrix for s-dimensional vectors. This would be immediate if (as often
happens, e.g. [4]) each column of A was an i.i.d. random variable chosen from
some distribution: we could simply sample the n columns of A from the distri-
bution parametrized by k and s. Unfortunately, the algorithm of [15] (which has
the best known dependence on ε) does not have this independence property; in
fact, the columns are highly dependent on each other. However, we show that it
is possible to modify it so that the independence property holds.

Our lower bound argument mimics the approach of [10]. Specifically, consider
fixing s = Θ(εn/ log(n/ε)); we show how to encode α = Θ(log(n/ε)/ε) code
words x1, . . . , xα, from some code C containing 2Θ(k log(s/k)) code words, into a
vector x, such that a (1 + ε)-approximate algorithm for SRPSK can iteratively
decode all xi’s, starting from xα and ending with x1. This shows that one can
“pack” Θ(log(n/ε)/ε · k log(s/k)) bits into Ax. Since one can show that each
coordinate of Ax yields only O(log(n/ε)) bits of information, it follows that Ax
has to have Θ((k/ε) log(s/k)) coordinates.



Sparse Recovery with Partial Support Knowledge 29

Unfortunately, the argument of [10] applied only to the case of when ε is
a constant strictly greater than 0 (i.e., ε = Ω(1)). For ε = o(1), the recovery
algorithm could return a convex combination of several xi’s, which might not be
decodable. Perhaps surprisingly, we show that the formulation of SRPSK avoids
this problem. Intuitively, this is because different xi’s have different supports,
and SRPSK enables us to restrict sparse approximation to a particular subset
of coordinates.

2 Preliminaries

For positive integer n, let [n] = {1, 2, . . . , n}. For positive integer s ≤ n, let
(
[n]
s

)
denote the set of subsets of cardinality s in [n].

Let v ∈ Rn. For any positive integer k ≤ s and set S ∈ ([n]
s

)
, denote by

vk ∈ Rn the vector comprising the k largest components of v, breaking ties
by some canonical ordering (say, leftmost-first), and 0 everywhere else. Denote
by vS ∈ Rn the vector comprising of components of v indexed by S, with 0
everywhere else, and denote by vS,k ∈ Rn the vector comprising the k largest
components of v among those indexed by S, with 0 everywhere else.

Let ΠS ∈ Rs×n denote the projection matrix that keeps only components
indexed by S (the dimension n will be clear from context). In particular, ΠSv ∈
Rs consists of components of v indexed by S, and for any matrix A ∈ Rm×n,
AΠT

S ∈ Rm×s consists of the columns of A indexed by S.
Define the �p/�p sparse recovery with partial support knowledge problem (de-

noted SRPSKp) to be the following:
Given parameters (n, s, k, ε), where 1 ≤ k ≤ s ≤ n and 0 < ε < 1, design an

algorithm and a distribution over matrices A ∈ Rm×n, where m = m(n, s, k, ε),
such that for any x ∈ Rn, the algorithm, given Ax and a specified set S ∈ ([n]

s

)
,

recovers (with knowledge of A) a vector x̂ ∈ Rn such that, with probability 3/4,

‖x − x̂‖p
p ≤ (1 + ε)‖x − xS,k‖p

p . (6)

Define the �p/�p noisy sparse recovery problem (NSRp) to be the following:
Given parameters (n, k, ε), where 1 ≤ k ≤ n and 0 < ε < 1, design an

algorithm and a distribution over matrices A ∈ Rm×n, where m = m(n, k, ε),
such that for any x ∈ Rn and ν ∈ Rm, the algorithm recovers from Ax+ ν (with
knowledge of A) a vector x̂ ∈ Rn such that, with probability 3/4,

‖x − x̂‖p
p ≤ (1 + ε)‖x − xk‖p

p + ε‖ν‖p
p . (7)

The distribution of A must be “normalized” so that for any v ∈ Rn, E[‖Av‖p] ≤
‖v‖p.

For all four problems, we will denote a solution by a pair (A,R), where A
is the measurement matrix and R is the recovery algorithm. For SRPSK1 and
SRPSK2, we will also often denote the recovery algorithm with the parameter
S as a subscript, e.g., RS .
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3 Lower Bounds

We will need a result from communication complexity. Consider the following
two-party communication game involving Alice and Bob: Alice is given a string
y ∈ {0, 1}d. Bob is given an index i ∈ [d], together with yi+1, yi+2, . . . , yd.
They also share an arbitrarily long common random string r. Alice sends a
single message M(y, r) to Bob, who must output yi correctly with probability
at least 3/4, where the probability is taken over r. We refer to this problem as
the augmented indexing problem (AIP). The communication cost of AIP is the
minimum, over all correct protocols, of the length of the message M(y, r) on the
worst-case choice of r and y. The following lemma is well-known (see, e.g., [19]
or [1]):

Lemma 1. The communication cost of AIP is Ω(d).

We will also make use of Lemma 5.1 of [10], which we reproduce below:

Lemma 2. Consider any m×n matrix A with orthonormal rows. Let A′ be the
result of rounding A to b bits per entry. Then for any v ∈ Rn there exists a
σ ∈ Rn with A′v = A(v − σ) and ‖σ‖1 < n22−b‖v‖1.

Now we can prove our lower bounds for SRPSK1 and SRPSK2:

Theorem 3. Any solution to SRPSK1 requires, for s = O(εn/ log(n/ε)), at
least Ω ((k/ε) log(s/k)) measurements.

Proof. For α = n/s, divide [n] into α equal-sized disjoint blocks, Si for i =
1, . . . , α. For each block Si, we will choose a binary error-correcting code Ci ⊆
{0, 1}n with minimum Hamming distance k, where all the code words have Ham-
ming weight exactly k and support contained in Si. Since |Si| = s = n/α, we
know each Ci can be chosen big enough that

log |Ci| = Θ(k log(n/(αk))) . (8)

Now, we will use any solution to SRPSK1 to design a protocol for AIP with
instance size

d = Θ(αk log(n/(αk))) . (9)

The protocol is as follows:
Alice divides her input y into α equal-sized blocks each of size

d/α = Θ(k log(n/(αk))) . (10)

Interpreting each block yi as a binary number, she uses it to index into Ci (notice
that Ci has sufficiently many code words for each yi to index a different one),
specifying a code word xi ∈ Ci. She then computes

x = D1x1 + D2x2 + · · · + Dαxα (11)

for some fixed D dependent on ε. Then, using shared randomness, and following
the hypothetical protocol, Alice and Bob agree on a matrix A (wlog, and for
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technical reasons, with orthonormal rows), which they both round to A′ so that
each entry has b bits. Alice computes A′x and sends it to Bob.

Bob, knowing his input i, can compute the j = j(i) for which block yj of
Alice’s input contains i, and hence knows the set Sj . Moreover, he knows yj′ ,
and thereby xj′ , for every j′ > j, so he can compute

z = Dj+1xj+1 + · · · + Dαxα . (12)

From Alice’s message, using linearity, he can then compute A′(x − z). Now, by
Lem. 2, there must exist some σ ∈ Rn with A′(x − z) = A(x − z − σ) and

‖σ‖1 < n22−b‖x − z‖1 = n22−b

j∑
i′=1

kDi′ < n22−bk Dj+1

D−1 . (13)

Now, let w = x − z − σ, so that Bob has Aw = A′(x − z). He then runs RSj

on Aw to recover ŵ with the properties that supp(ŵ) ⊆ Sj and

‖w − ŵ‖1 ≤ (1 + ε)‖w − wSj ,k‖1 ≤ (1 + ε)‖w − Djxj‖1

≤ (1 + ε)(‖D1x1 + · · · + Dj−1xj−1‖1 + ‖σ‖1)

= (1 + ε)
(
k Dj−D

D−1 + ‖σ‖1

)
. (14)

Bob then finds the code word in Cj that is closest in �1-distance to ŵ/Dj

(which he hopes is xj) and, looking at the index of that code word within Cj

(which he hopes is yj), he returns the bit corresponding to his index i.
Now, suppose that Bob was wrong. This means he obtained a ŵ that, appro-

priately scaled, was closer or equidistant to another code word in Cj than xj ,
implying that ‖xj − ŵ/Dj‖1 ≥ k/2. Since supp(ŵ) ⊆ Sj , we can write

‖w − ŵ‖1 ≥ ‖x − z − ŵ‖1 − ‖σ‖1

= ‖D1x1 + · · · + Dj−1xj−1‖1 + Dj‖xj − ŵ/Dj‖1 − ‖σ‖1

≥ k
(

Dj−D
D−1 + Dj/2

)
− ‖σ‖1 . (15)

We will show that for appropriate choices of D and b, (14) and (15) contradict
each other, implying that Bob must have correctly extracted his bit and solved
AIP. To this end, it suffices to prove the following inequality:

‖σ‖1 < k
3

(
Dj/2 − ε Dj

D−1

)
, (16)

where we used the fact that ε < 1. Now, let us fix D = 1 + 4ε. The above
inequality becomes

‖σ‖1 < k
3

(
(1 + 4ε)j/2 − (1 + 4ε)j/4

)
= k(1 + 4ε)j/12 . (17)

Now, from (13) we know that

‖σ‖1 < n22−bk Dj+1

D−1 = n22−bk(1 + 4ε)j+1/(4ε) , (18)
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so we need only choose b large enough that 2b ≥ 15n2/ε, i.e., b = O(log(n/ε))
suffices. Recall that b is the number of bits per component of A′, and each
component of x−z can require up to α log D = O(εα) bits, so the message A′(x−
z) which Alice sends to Bob contains at most O(m(b+εα)) = O(m(log(n/ε)+εα))
bits, with which they solve AIP with d = Θ(αk log(n/(αk))). It follows from
Lem. 1 that

m = Ω

(
αk log(n/(αk))
log(n/ε) + εα

)
. (19)

Finally, as long as εα = Ω(log(n/ε)), or equivalently, s = n/α = O(εn/ log(n/ε)),
this simplifies to

m = Ω((k/ε) log(s/k)) . (20)

��
Theorem 4. Any solution to SRPSK2 requires, for s = O(εn/ log(n/ε)) and
ε ≤ 1/61, requires at least Ω ((k/ε) log(s/k)) measurements.

We omit the proof, which involves only algebraic modifications from the proof
of Thm. 3, due to space constraints.

4 Upper Bounds

First we prove a general black box reduction from SRPSK1 to NSR1 that works
if the solution to NSR1 has certain additional properties:

Lemma 5. Suppose we have a solution to NSR1 with parameters (n, k, ε), where
the m × n measurement matrix A′ has m = m(n, k, ε) rows. Suppose in addi-
tion that the columns of A′ are generated i.i.d. from some distribution. Then
there exists a solution (A,R) to SRPSK1 with parameters (n, s, k, ε) that uses
O(m(s, k, Θ(ε))) measurements. Moreover, if A′ has, in expectation, h(n, k, ε)
non-zeros per column, and the NSR1 recovery time is t(n, k, ε), then A has, in
expectation, O(h(s, k, Θ(ε))) non-zeros, and R runs in O(t(s, k, Θ(ε))) time2.

Proof. We construct our solution (A,R) to SRPSK1 as follows:

1. Let δ > 0 be a constant to be specified later. Consider an instantiation of the
solution to NSR1 with parameters (s, k, δε), so that its measurement matrix
A′ is m × s, where m = m(s, k, δε). Generate the n columns of our m × n
measurement matrix A i.i.d. from the same distribution used to generated
the i.i.d. columns of A′ (note that the number of rows m is the same for both
A and A′).

1 The assumption that ε ≤ 1/6 is not necessary, but makes the proof simpler, so we
leave it in the theorem statement.

2 Note that this recovery time is based on the assumption that the solution to NSR
generated the columns of its measurement matrix i.i.d. In our application of this
reduction (Lems. 7 and 8), we will need to modify the NSR solution to enforce this
requirement, which will increase its recovery time.



Sparse Recovery with Partial Support Knowledge 33

2. Given S ⊆ [n], |S| = s, let R′
S denote the recovery algorithm for NSR1

corresponding to the parameters (s, k, δε) and given the matrix AΠT
S (recall

that a recovery algorithm for NSR1 is allowed to behave differently given dif-
ferent instances of the measurement matrix). Define our recovery procedure
RS by RS(y) = ΠT

S (R′
S(y)); in words, we run R′

S on our m-dimensional
measurement vector y to obtain an s-dimensional vector, which we embed
into an n-dimensional vector at positions corresponding to S, filling the rest
with zeros.

Note that the number of non-zeros per column of A and the running time of R
follow immediately.

Observe that, thanks to the independence of the columns of A, the submatrix
comprised of any s of them (namely, AΠT

S ) is a valid m×s measurement matrix.
Thus we have the guarantee that for any signal x′ ∈ Rs and noise vector ν ∈ Rm,
R′

S recovers from AΠT
S x′ + ν a vector x̂′ ∈ Rs satisfying, with probability 3/4,

‖x′ − x̂′‖1 ≤ (1 + ε)‖x′ − x′
k‖1 + δε‖ν‖1 . (21)

Now, let x ∈ Rn be our signal for SRPSK1. We interpret ΠSx ∈ Rs to be the
sparse signal and AxS̄ ∈ Rm to be the noise, so that running R′

S on AΠT
S (ΠSx)+

AxS̄ returns x̂′ ∈ Rs satisfying, with probability 3/4,

‖ΠSx − x̂′‖1 ≤ (1 + ε)‖ΠSx − (ΠSx)k‖1 + δε‖AxS̄‖1

= (1 + ε)‖xS − xS,k‖1 + δε‖AxS̄‖1 . (22)

Finally, consider the x̂ ∈ Rn recovered by RS in our procedure for SRPSK1

when run on
Ax = AxS + AxS̄ = AΠT

S (ΠSx) + AxS̄ . (23)

We have x̂ = ΠT
S x̂′, or, equivalently, ΠS x̂ = x̂′, so

‖x − x̂‖1 = ‖xS̄‖1 + ‖xS − x̂‖1 = ‖xS̄‖1 + ‖ΠSx − x̂′‖1

≤ ‖xS̄‖1 + (1 + ε)‖xS − xS,k‖1 + δε‖AxS̄‖1

= ‖xS̄‖1 + (1 + ε)(‖x − xS,k‖1 − ‖xS̄‖1) + δε‖AxS̄‖1

= (1 + ε)‖x − xS,k‖1 − ε‖xS̄‖1 + δε‖AxS̄‖1 .

Thus, if we can ensure that ‖AxS̄‖1 ≤ (1/δ)‖xS̄‖1, we would obtain the desired
guarantee for SRPSK1 of

‖x − x̂‖1 ≤ (1 + ε)‖x − xS,k‖1 . (24)

But we know that E[‖AxS̄‖1] ≤ ‖xS̄‖1, so by the Markov bound

Pr [‖AxS̄‖1 > (1/δ)‖xS̄‖1] ≤ δ . (25)

Choosing, say, δ = 1/12 would give us an overall success probability of at least
2/3, which can be amplified by independent repetitions and taking a componen-
twise median in the standard way. ��
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Straightforward modification of the above proof yields the �2/�2 version:

Lemma 6. Suppose we have a solution to NSR2 with parameters (n, k, ε), where
the m × n measurement matrix A′ has m = m(n, k, ε) rows. Suppose in addi-
tion that the columns of A′ are generated i.i.d. from some distribution. Then
there exists a solution (A,R) to SRPSK2 with parameters (n, s, k, ε) that uses
O(m(s, k, Θ(ε))) measurements. Moreover, if A′ has, in expectation, h(n, k, ε)
non-zeros per column, and the NSR2 recovery time is t(n, k, ε), then A has, in
expectation, O(h(s, k, Θ(ε))) non-zeros, and R runs in O(t(s, k, Θ(ε))) time3.

By a modification of the algorithm of [15], we prove the following result:

Lemma 7. There exist a distribution on m × n matrices A and a collection of
algorithms {RS | S ∈ ([n]

s

)} such that for any x ∈ Rn and set S ⊆ [n], |S| = s,
RS(Ax) recovers x̂ with the guarantee that

‖x − x̂‖2 ≤ (1 + ε)‖x − xS,k‖2 (26)

with probability 3/4. The matrix A has m = O((k/ε) log(s/k)) rows.

Proof. To apply a NSR2 solution to SRPSK2 using Lem. 6, we need the columns
of the measurement matrix to be generated independently. However, this re-
quirement does not hold with the algorithm in [15] as is. Therefore, we show
how to modify it to satisfy this requirement without changing its recovery prop-
erties and asymptotic number of measurements. For simplicity, we will ignore
pseudo-randomness considerations, and replace all k-wise independence by full
independence in the construction of [15].

We begin by describing the measurement matrix A of [15] (denoted by Φ
in that paper). At the highest level, A is formed by vertically stacking matrices
A(j), for j = 1, . . . , log k. Each A(j) is formed by vertically stacking two matrices,
E(j) and D(j). It will suffice for our purposes if the columns of each E(j) and
each D(j) are independent.

Consider, first, E(j), which consists of several i.i.d. submatrices, again stacked
vertically, in each of which every entry is set i.i.d. (to 1, −1 or 0). Thus, every
entry, and therefore every column, of E(j) is already independent without mod-
ification.

Next, consider D(j), which consists of several similarly stacked i.i.d. submatri-
ces. For some constant c < 1, each one of these submatrices consists of kcj i.i.d.
“blocks” B

(j)
1 , B

(j)
2 , . . . , B

(j)
kcj , which will be the smallest unit of vertically stacked

submatrices we need to consider (see Fig. 1). Within each block B
(j)
i , each col-

umn is independently chosen to be non-zero with some probability, and the ith

non-zero column is equal to the ith code word wi from some error-correcting code
C. The code C has a constant rate and constant fractional distance. Therefore,
each block has O(log h) rows (and C needs to have O(h) code words), where h
is the expected number of non-zero columns per block.

3 See footnote to Lem. 5.
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    w1          w2          w3             w4           w5      w6 

 
    w1   w2   w3     w4 

 
             w1   w2            w3             w4          w5 B(j)

1 

B(j)
2 

B(j)
3 …

Fig. 1. Example of an i.i.d. submatrix in D(j) consisting of kcj blocks. Each grey
rectangle represents a code word, and white space represents zeros.

The problem with the construction of D(j) (from our perspective) is that
each column chosen to be non-zero is not independently chosen, but instead is
determined by a code word that depends on how many non-zero columns are
to its left. In order to overcome this obstacle, we observe that the algorithm
of [15] only requires that the codewords of the consecutive non-zero columns
are distinct, not consecutive. Thus, we use as ECC C′ with the same rate and
error-correction, but with O(h3) code words instead of O(h); for each column
chosen to be non-zero, we set it to a code word chosen uniformly at random from
C′. In terms of Fig. 1, each grey rectangle, instead of being the code word from
C specified in the figure, is instead a random code word from a larger code C′.
Note that each block has still O(log h) rows as before.

A block is good if all codewords corresponding to it are distinct. Observe that
for any given block, the probability it is not good is at most O(1/h). If there are
fewer than O(h) blocks in all of D(j), we could take a union bound over all of
them to show that all blocks are good constant probability. Unfortunately, for
j = 1, we have h = O(n/k) while the number of blocks is Ω(k). The latter value
could be much larger than h.

Instead, we will simply double the number of blocks. Even though we cannot
guarantee that all blocks are good, we know that most of them will be, since
each one is with probability 1− O(1/h). Specifically, by the Chernoff bound, at
least half of them will be with high probability (namely, 1−e−Ω(k)). We can use
only those good blocks during recovery and still have sufficiently many of them
to work with.

The result is a solution to NSR2 still with O((k/ε) log(n/k)) rows (roughly 6
times the solution of [15]), but where each column of the measurement matrix
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is independent, as required by Lem. 6. A direct application of the lemma gives
us the theorem. ��
Lemma 8. The matrix A of Lem. 7 has, in expectation, O(log2 k log(s/k)) non-
zeros per column, and each algorithm RS runs in O(s log2 k + (k/ε) logO(1) s)
time.

Proof. It suffices to show that the modifications we made to [15] do not change
the asymptotic expected number of non-zeros in each column and does not in-
crease the recovery time by more than an additive term of O(n log2 k). Lem. 6
then gives us this lemma (by replacing n with s in both quantities).

Consider, first, the number of non-zeros. In both the unmodified and the
modified matrices, this is dominated by the number of non-zeros in the (mostly
dense) code words in the Dj ’s. But in the modified Dj , we do not change the
asymptotic length of each code word, while only doubling, in expectation, the
number of code words (in each column as well as overall). Thus the expected
number of non-zeros per column of A remains O(log2 k log(n/k)) as claimed.

Next, consider the running time. The first of our modifications, namely, in-
creasing the number of code words from O(h) to O(h3), and hence their lengths
by a constant factor, does not change the asymptotic running time since we can
use the same encoding and decoding functions (it suffices that these be poly-
nomial time, while they are in fact poly-logarithmic time). The second of our
modifications, namely, doubling the number of blocks, involves a little additional
work to identify the good blocks at recovery time. Observe that, for each block,
we can detect any collision in time linear in the number of code words. In D(j)

there are O(jkcj) blocks each containing O(n/(kcj)) code words, so the time
to process D(j) is O(jn). Thus, overall, for j = 1, . . . , log k, it takes O(n log2 k)
time to identify all good blocks. After that, we need only work with the same
number of blocks as there had been in the unmodified matrix, so the overall
running time is O(n log2 k + (k/ε) logO(1) n) as required. ��
For completeness, we state the section’s main result:

Theorem 9. There exist a distribution on m×n matrices A and a collection of
algorithms {RS | S ∈ ([n]

s

)} such that for any x ∈ Rn and set S ⊆ [n], |S| = s,
RS(Ax) recovers x̂ with the guarantee that

‖x − x̂‖2 ≤ (1 + ε)‖x − xS,k‖2 (27)

with probability 3/4. The matrix A has m = O((k/ε) log(s/k)) rows and, in
expectation, O(log2 k log(s/k)) non-zeros per column. Each algorithm RS runs
in O(s log2 k + (k/ε) logO(1) s) time.
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Abstract. Recently, Chakrabarty et al. [5] initiated a systematic study of capaci-
tated set cover problems, and considered the question of how their approximabil-
ity relates to that of the uncapacitated problem on the same underlying set system.
Here, we investigate this connection further and give several results, both positive
and negative. In particular, we show that if the underlying set system satisfies a
certain hereditary property, then the approximability of the capacitated problem
is closely related to that of the uncapacitated version. We also give related lower
bounds, and show that the hereditary property is necessary to obtain non-trivial
results. Finally, we give some results for capacitated covering problems on set
systems with low hereditary discrepancy and low VC dimension.

1 Introduction

In this paper, we consider the approximability of capacitated set cover problems (CSC).
In a typical (uncapacitated) set cover instance, we are given a universe X of n elements
and a collection S of m subsets of X , each subset with an associated cost; the goal is
to pick the collection of sets S′ ⊆ S of least total cost, such that each element e ∈ X is
contained in at least one set S ∈ S′. It is well known that the greedy algorithm for set
cover achieves an approximation ratio of ln n, and that in general this approximation
factor cannot be improved up to lower order terms [9]. However, in several cases of
interest, improved approximation guarantees or even exact algorithms can be obtained.
Typical examples are problems arising in network design where the underlying set sys-
tem may be totally unimodular or have other interesting structural properties [12], or in
geometric settings where the set system may have low structural complexity, often mea-
sured in terms of VC dimension [3] or union complexity [13]. In general, the study of
covering problems is an extensive area of research in both combinatorial optimization
and algorithms.

In the capacitated version of the set cover problem, the elements additionally have
demands d : X → R+, sets have supplies s : S → R+, and the goal is to find a
minimum cost collection of sets S′ such that for each element e, the total supply of sets
in S′ that cover e is at least d(e). A general CSC is defined by the following integer
linear program:
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CSC(A, d, s, c) min
∑m

i=1 cixi (1)

s.t.
∑m

i=1 Aijsixi ≥ dj ∀ 1 ≤ j ≤ n (2)

xi ∈ {0, 1} ∀Si ∈ S (3)

Here, si denotes the supply of set Si, dj is the demand of element j ∈ [n], and A is
the {0, 1} incidence matrix of the set system. The variable xi indicates whether Si is
chosen or not, and hence the constraints ensure that for each element j ∈ [n], the total
supply of sets containing it is at least dj .

Capacitated covering problems arise naturally in a variety of scenarios. For example,
consider the minimum Steiner tree problem where the goal is to find the minimum-
cost subgraph connecting terminals to a root. This can be cast as a set cover problem,
viewing each graph cut separating some terminal from the root as an element, and each
edge in the graph as a set (that covers every cut that it crosses). Now, if the terminals
have a bandwidth requirement, and the edges have different bandwidth capacities, this
corresponds to a capacitated covering problem. Similar generalizations naturally arise
for most uncapacitated covering problems. Capacitated covering problems also arise
indirectly as subroutines in other problems. For example, Bansal and Pruhs [1] showed
that the scheduling problem of minimizing arbitrary functions of flow time on a single
machine is equivalent (up to O(1) factors) to the capacitated version of the geometric
set cover problem of covering points in R2 using axis-aligned rectangles all of which
touch the x-axis.

While capacitated covering problems have been studied previously, Chakrabarty et
al. [5] recently initiated a more systematic study of these problems. Motivated by the
extensive existing works on the uncapacitated set cover problem, they considered the
following natural question. Is there a relationship between the approximability of a
capacitated set cover problem and the uncapacitated problem on the same underlying
set system? In particular, is it possible to exploit the combinatorial structure of the
underlying incidence matrix in the set cover problem to design good algorithms for the
capacitated case?

To understand this question better, it is instructive to even consider the case of the
simplest possible set system: that with a single element. In this case, the problem re-
duces to precisely the so-called Knapsack Cover problem, where given a knapsack (el-
ement) of demand B and items (sets) with supplies s1, . . . , sm and costs c1, . . . , cm,
the goal is to find a minimum cost collection of items that covers the knapsack. Already
here, it turns out that the natural LP relaxation1 of the integer program (1)-(3) has arbi-
trarily large integrality gap2. In a celebrated result, Carr et al. [4] showed that this nat-
ural LP can be strengthened by adding exponentially many so-called Knapsack Cover
(KC) inequalities. These inequalities can be separated in polynomial time and hence
the LP can be solved efficiently to within any accuracy using the Ellipsoid method. The
integrality gap of this strengthened LP reduces to 2, and this is also tight. We remark
that there is also a local ratio based interpretation of these KC inequalities [2].

1 Where we replace the x ∈ {0, 1} in the IP by x ∈ [0, 1].
2 Consider an instance with two items of size B −1 each and costs 0 and 1 respectively. Clearly

any integral solution must choose both items, incurring a cost of 1. The LP can however choose
the 0 cost item completely, and cost 1 item to extent 1/(B−1), incurring a cost of 1/(B−1).
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Interestingly, Chakrabarty et al. [5] showed (see Theorem 1 for a formal statement)
that given any CSC problem, the natural LP relaxation strengthened by adding KC
inequalities for each element has an integrality gap that is no worse (up to O(1) fac-
tors) than the integrality gap for two related uncapacitated problems. The first of these
problems is simply the multi-cover problem on the same set system A, and the second
one is the so-called priority set cover version of A, that we next define. Thus, roughly
speaking their result shows that KC inequalities allow us to forget about capacities, at
the expense of somewhat complicating the underlying set system.

Priority Covering Problems: Given a set cover instance specified by the incidence
matrix A (the representation could be implicit as in network design problems), a priority
version of the covering problem (PSC) is defined as follows. The elements and sets
have priorities π : X ∪ S → Z+. The goal is to pick a minimum cost collection of sets
S′ such that for each element j, there is at least one set Si ∈ S′ containing j and with
priority at least that of j, i.e., π(Si) ≥ π(ej).

The natural integer programming formulation for PSC is:

PSC(A, π, c) minimize
∑m

i=1 cixi

subject to (1)
∑m

i=1 Aij1(π(Si)≥π(ej))xi ≥ 1 ∀ 1 ≤ j ≤ n
(2) xi ∈ {0, 1} ∀Si ∈ S

Here, 1(a≥b) is the indicator variable for the condition inside (i.e., 1 if a ≥ b and
0 otherwise). Thus a priority cover problem is an (uncapacitated) set cover problem,
with the incidence matrix Bij = Aij · 1(πi≥πj) instead of A. The structure of B has
an interesting geometric connection to that of A. In particular, permute the columns of
A in non-decreasing order of supply priorities and rows of A in non-decreasing order
of demand priorities. Then, the priority matrix Π defined as Πij = 1(π(Si)≥π(ej)) has
a “stair-case” structure of 1’s (see Figure 1 for an illustration), and B = A ◦ Π is the
element-wise product of A and Π . The number of stairs in Π is equal to number of
distinct priorities k (which plays an important role in our results later).

A Π

0

1∧

Si

ej

Fig. 1. A is an arbitrary {0, 1} matrix, Πij = 1 if π(Si) ≥ π(ej), and B = A ∧ Π
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Formally, Chakrabarty et al. [5] showed the following result.

Theorem 1 ( [5]). Let CSC(A, d, s, c) be a capacitated set cover problem instance. Let
MSC(A, d′,1, c) denote the uncapacitated multi-cover3. problem with incidence matrix
A and covering requirements d′, and let PSC(A, π, c) denote the priority covering
problem with incidence matrix A and priorities π. If

1. The integrality gap of the natural LP relaxation of MSC(A, d′,1, c) is at most α
for all possible covering requirements d′, and

2. The integrality gap of the priority problem PSC(A, π, c) is at most β for all priority
functions π,

Then the integrality gap of the LP relaxation of the capacitated problem CSC(A, d, s, c)
strengthened by KC inequalities is O(α+β). Moreover, the number of distinct priorities
in the instance PSC(A, π, c) is at most log smax where smax = maxi∈[m] si denotes
the maximum supply of a set.

Here, as usual, we say that a problem has integrality gap α if for every feasible fractional
solution x, there is a feasible integer solution x̃ with cost at most α times the fractional
cost. Also note that in the priority cover problem, only the relative values of priorities
matter, hence we can assume that the priorities are always integers 1, . . . , k.

In light of Theorem 1, it suffices to bound the integrality gap of the multi-cover
version and priority cover version of the underlying set cover problem. Typically, the
multi-cover version is not much harder than the set cover problem itself (e.g. if the
matrix is totally unimodular, for various geometric systems, and so on), and the hard
work lies in analyzing the priority problem.

We note here that a converse of Theorem 1 also holds in the sense that a capaci-
tated problem is at least as hard as the priority problem. In particular, given any pri-
ority cover instance PSC(A, π, c) with k priorities, consider the capacitated instance
CSC(A, d, s, c) where each element j with priority p has demand dj = m2p and a set
i with priority p has supply m2p, where m is the number of sets in A. It can be easily
verified that a collection of sets is feasible for CSC if and only if it is feasible for PSC.

1.1 Our Results

Given a set system (X,S) with incidence matrix A, we will relate the integrality gap of
a priority cover problem on A to the integrality gap of the set cover problem on A. We
need the following additional definition.

Definition 1 (Hereditary Integrality Gap). A set system (X,S) with incidence matrix
A has hereditary integrality gap α if the integrality gap for the natural LP relaxation of
the set cover instance (A, c) restricted to any sub-system (X ′,S), where X ′ ⊆ X , is at
most α.

That is, the integrality gap is at most α if we restrict the system to any subset of ele-
ments4. Clearly, solving separately for demands in each of the k priority classes, the

3 By multi-cover we mean the usual generalization of standard set cover where an element j
may wish to be covered by dj distinct sets, instead of just one.

4 We note that this definition also allows the restriction of the system to S ′ ⊆ S , by considering
the integrality gap on fractional solutions with support S ′.
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integrality gap for any PSC instance is at most k times the hereditary integrality gap.
We show that this can be improved substantially.

Theorem 2. The integrality gap of any instance PSC(A, π, c) with k priorities is
O(α log2 k), where α is the hereditary integrality gap of the corresponding set cover
instance (A, c).

According to Theorem 1, given any capacitated instance, the number of priorities in
the associated priority instance is k = O(log smax), and hence Theorem 2 implies that
having capacities increases the hereditary integrality gap by at most O((log log smax)2)
(provided the multi-cover problem is also well-behaved w.r.t to the integrality gap).

Theorem 2 is proved in section 2 and its proof is surprisingly simple. However, this
general result already achieves guarantees close to those known for very special sys-
tems. For example, for the previously mentioned CSC problem of covering points with
rectangles touching the x-axis [1], a O(log k) guarantee for k priorities was obtained
only recently using breakthrough geometric techniques of [13]. Using theorem 2 in-
stead of the results of [13] already yields major improvements over previous results for
the problem studied in [1].

Another corollary of Theorem 2 is that if A is totally unimodular (TU), then there
this is an O((log log smax)2) approximation for any capacitated problem on A. This fol-
lows as a TU matrix has a hereditary integrality gap of 1 for the multi-cover problem.
This motivates our next result for set systems with low hereditary discrepancy (see Sec-
tion 3 for a definition). Recall that TU matrices have a hereditary discrepancy of 1 (see
e.g., [12]). Low hereditary discrepancy set systems arise naturally when the underlying
system is a union of TU or other simpler systems. Recently, [8] also gave a surprising
connection between low discrepancy and bin packing.

Theorem 3. For any set system A where the dual set system AT has hereditary dis-
crepancy α, the integrality gap of the multi-cover instance MSC(A, d,1, c) for any
demands d is α.

As stated earlier, this implies an O(α(log log smax)2) integrality gap for any instance
CSC(A, d, s, c). Note that the integrality gap we show for the multi-cover problem is
exactly α (and not just O(α)), and hence this strictly generalizes the TU property, which
results in an integral polytope.

The priority covering framework is particularly useful in geometric settings5. Ap-
pealing to this connection, our next result relates the VC dimension of the priority
version of a problem to the original system. This is useful as low VC dimension can
be exploited to obtain good set cover guarantees [3]6.

5 Given a geometric set cover problem, its priority version can be encoded as another geometric
problem (this increases the underlying dimension by 1). By adding a new dimension to encode
priority, replace sets Si with priority p by the geometric object Si × [0, p] and points pj with
priority q by point pj × [0, q]. It is easily checked that the set cover problem on this instance
is equivalent to the priority cover problem on the original instance. This observation was used
in [1, 5], and we do not elaborate more on it here.

6 Note that we need to bound the VC dimension of the dual set system AT to obtain guarantees
for the set cover instance A.
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Theorem 4. For any set system with VC dimension d, the VC dimension of its priority
version (for any setting of priorities) is at most d + 1.

Lower Bounds. In light of the above results, two natural questions arise. First, can sim-
ilar guarantees for capacitated version be obtained without any hereditary assumption,
that is w.r.t to the integrality gap alone? Second, is the loss of factor O(log2 k) in the
guarantees necessary?

For the first question, we note that there are natural problems such as priority Steiner
tree [6,7], where the underlying set system is not hereditary, and the LP for the priority
version has an integrality gap of Ω(k).

For the second question, in Section 5, we show that even for hereditary set systems,
there are instances where the priority version has an integrality gap of Ω(α log k) when
the original set cover problem has hereditary integrality gap of at most α.

Theorem 5. There exist hereditary set cover instances with O(1)-integrality gap for
which the priority version has an integrality gap of Ω(log k).

These gap instances rely on the recent breakthrough constructions of Pach and Tardos
[11] for geometric set systems with large ε-nets. In particular, we show that the gap
already holds for the rectangle cover problem considered in [1] which we mentioned
earlier. This shows that Theorem 2 is tight up to a O(log k) factor. Closing this gap
would be an interesting question to study.

1.2 Other Related Work

Besides the work of Chakrabarty et al. [5] mentioned above, a work in spirit similar
of ours is that of Kolliopoulos [10]. They studied the relationship between the approx-
imability of a CSC and its corresponding set cover problem under the no-bottleneck
assumption: this states that “the supply of every set/column is smaller than the demand
of every element/row” (i.e. maximum supply is no more than minimum demand). Under
this assumption, they show if the x ≤ 1 constraint (or x ≤ d in general) can be violated
by a constant multiplicative factor, then the integrality gap of any CSC is within an
O(1) factor of the corresponding {0, 1}-CIP. However, nothing better than the standard
set cover guarantee was known even with the no-bottleneck assumption. We refer the
reader to [5] for further discussions on related work.

2 Bounding the Integrality Gap of PSC’s

In this section, we prove Theorem 2. We show that the integrality gap of PSC instances
that are characterized by hereditary set systems is O(α log2 k), where k is the number
of priorities. Recall the stair-case structure of Π and the definition of B = A ∧ Π .

The idea is rather simple. We decompose the incidence matrix B of the PSC instance
into a collection of submatrices7 {D0, . . . , D�} with the following properties.

7 N is submatrix of M if N is obtained by restricting M to a subset of rows and columns.
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1. Each such submatrix Dq is also a submatrix of A (and not just that of B).
2. Each element j appears as a row in at most O(log k) of the submatrices Dq and,
3. Each set i appears as a column in at most O(log k) of the submatrices Dq .

As A has a hereditary integrality gap of α, by the first property above, any fractional
set cover solution restricted to the sub-system Dq has an integrality gap of α. Now, any
fractional set cover solution x on A induces a fractional solution on Dq (after appro-
priate scaling). We use the second and the third properties stated above to show that
the rounded solution for these Dq’s can be combined to obtain a feasible integral solu-
tion for A while increasing the cost by an O(log2 k) factor. We begin by describing the
decomposition procedure.

Decomposition Procedure: By adding dummy priorities if necessary, let us assume
without loss of generality that k is an integral power of 2. Let the priorities be indexed
by 1, . . . , k (with 1 being the lowest priority and k the highest). For priorities p, p′, q, q′

such that p ≤ p′ and q ≤ q′, let B([p, p′][q, q′]) denote the submatrix of B consisting
of columns (resp. rows) with priorities in the range [p, p′] (resp. [q, q′]).

A crucial observation is that if p ≥ q′, then for any p′ ≥ p and q ≤ q′, the submatrix
B′ = B([p, p′][q, q′]) is also a submatrix of A. This simply follows as p is the lowest
priority of any set in B′, which is at least as large as the priority of any row.

We define the decomposition of B inductively as follows: In the base case when
k = 1, the decomposition consists of the single matrix {B} itself. For general k, we
define the decomposition as consisting of the matrix D0 = B([k/2 + 1, k][1, k/2]),
together with the (inductive) decompositions of

B1 = B([1, k/2][1, k/2]) and B2 = B([k/2 + 1, k][k/2 + 1, k]).

Note that both B1 and B2 involve only k/2 priorities. See Figure 2 for an illustration of
the decomposition scheme.
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Lemma 1. The decomposition procedure satisfies the three properties claimed above.

Proof. It is easily checked that this procedure gives a decomposition of B. Moreover,
as B([k/2 + 1, k][1, k/2]) is a valid submatrix of A, it follows that all the submatrices
obtained in the decomposition are submatrices of A.

Next we show by a simple induction that each element and set can lie in at most
1 + log k submatrices Dq . This is clearly true if k = 1. Now, suppose k > 1 and
consider some fixed element j. It can lie in the submatrix D0 and exactly one of B1

or B2. Since B1 and B2 are k/2 × k/2 matrices, the claim follows by induction. An
identical argument works for sets.

Rounding Algorithm:

1. Let x∗ = {x∗
1, x

∗
2, . . . , x

∗
m} be some optimal fractional solution for the set system

B.
2. For each submatrix D in the decomposition of B, do the following:

(a) Let SD denote the collection of sets that lie in D, and let xD denote the solution
min(x∗(1 + log k), 1) restricted to sets in SD.

(b) Let ED be the set of elements in D that are covered fractionally to an extent of
at least 1 by xD.

(c) Consider the set system (ED,SD). Now, xD is a feasible fraction set cover
solution for this set system. As the hereditary integrality gap of A is α, apply
the rounding algorithm to (ED,SD) with xD as the fractional solution. Let S′

D

denote the collection of sets chosen by this rounding.

3. Our final solution is simply the union of S′
D, over all D in the decomposition of B.

Analysis: We first show that the algorithm produces a valid set cover and then bound
the total cost, which will complete the proof of Theorem 2.

Lemma 2. Each element in B is covered by some set in the solution.

Proof. Consider some fixed element j. As j lies in at most 1 + log k sets in the decom-
position of B, and as x∗ is a feasible fractional solution for B, there is some submatrix
D that contains j and such that

∑
i∈SD

x∗
jAij ≥ 1/(1+ log k). Hence, the solution xD

covers j to an extent of at least 1 (i.e. j ∈ ED), and the rounding algorithm applied to
(ED, SD) will ensure that j is covered by some set in S′

D .

Lemma 3. The total cost of the solution produced is O(log2 k)α times the LP cost.

Proof. As A has hereditary integrality gap α, the cost of the collection S′
D is at most

α times the cost of the fraction solution xD , which itself is at most O(log k) times the
cost of solution x∗ restricted to the variables (sets) in SD . As each set i lies in O(log k)
submatrices D in the decomposition of B, summing up over all D, this implies that the
total cost of the solution is O(α log2 k) times the cost of x∗.
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3 Set Systems with Small Hereditary Discrepancy

In this section, we consider set systems with low hereditary discrepancy and prove
Theorem 3. Recall that, for a set system (X,S) the discrepancy is defined as
disc(X,S) = minf maxS′∈S |∑e∈S′ f(e)| where f : X → {−1, 1} is a two col-
oring of the universe X , and the hereditary discrepancy is defined as herdisc(X,S) =
maxX′⊆X disc(X ′,S|X) where S|X′ is the collection of sets restricted to the elements
X ′.

In the setting of Theorem 3, where the (dual) set system AT has hereditary discrep-
ancy at most α, this means that given any sub-collection S′ of sets, there is a {−1, +1}
coloring χ of S′ that satisfies |∑i∈S′ Aijχ(i)| ≤ α for each row j.

3.1 Rounding Procedure

Let x∗ be an optimal solution to the following natural LP relaxation of MSC(A, d,1, c).

minimize
∑m

i=1 cixi

subject to
∑m

i=1 Aijxi ≥ dj ∀ 1 ≤ j ≤ n
xi ∈ [0, 1] ∀Si ∈ S

Scaling. First we scale x∗ by a factor of α, i.e. x′
i = min(αx∗

i , 1). Let H be the set of
variables for which x′ = 1 and let L = S \ H. Clearly, the solution {x′

i : i ∈ L} is
feasible to the following (residual) set of constraints (for all elements j):

m∑
i∈L

Aijx
′
i ≥ α

(
dj −

∑
i∈H

Aij

)

Iterative Rounding. In this step, we iteratively round the solution x′, without increas-
ing its total cost, while also ensuring that the constraints remain satisfied. Consider the
binary representation of variables in solution x′ and let t denote the least significant
bit in the representation. We index the rounds � from t down to 1. Let us initialize the
solution in the initial round � = t as xt = x′ and repeat the following step.

Round �: Let S� denote the set of columns that have a 1 in their least significant bit
(i.e. at position �) in this round, and let f� : S� → {−1, 1} be a ±1 coloring of the
columns that minimizes discrepancy (w.r.t S�) for all the rows. Clearly, there exists one
with discrepancy at most α.

Now, consider the following two solutions: For all i ∈ S�, set x+
i = x�

i + f�(i)
2� and

x−
i = x�

i− f�(i)
2� . As x+

i +x−
i = 2x�

i , it is easy to see that at least one of the solutions x+

or x− has cost no more than that of x�, and we set x�−1 to that solution. Furthermore,
because we have either added or subtracted 1/2� from all the variables in S�, the least
significant bit of the solution x�−1 is now � − 1.

Having ensured that the cost does not increase, it remains to bound the change in the
coverage of any element, for which we use the bounded discrepancy of the coloring f�.
Indeed, since f� has discrepancy at most α, we have that

∑
i∈S�

Aijf�(i) ∈ [−α, α] for
all j, and hence
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∑
i∈S�

Aij

(
x�−1 − x�

)
=
∑
i∈S�

Aij
1
2�

f�(i) ≥ − α

2�
.

Thus the coverage for any element drops by at most α/2� in round �, and this will be
crucial for the analysis.

Output. By the invariant about the least significant bit after each round, at the con-
clusion of the rounding phase, all variables are either 0 or 1. Our final solution is then
H∪ X , where X := {i ∈ L : x0

i = 1}.

3.2 Analysis

Final Cost. As the cost of the solution can only go down in each round �, the cost of
the final solution is at most that of x′, which is at most α times the LP optimum.

Feasibility. Consider any element j. In round �, the coverage of j can drop by at most
α/2�. Hence, over all the rounds, the total drop in coverage is

∑t
i=1 α/2� which is

strictly smaller than α. Therefore,

∑
i∈L

Aijx
0
i > α

(
dj −

∑
i∈H

Aij

)
− α ≥

(
dj −

∑
i∈H

Aij − 1
)

. (4)

As
∑

i∈L Aijx
0
i is integral, the strict inequality in (4) implies that

∑
i∈L Aijx

0
i ≥ (dj−∑

i∈H Aij), and hence the solution is feasible.

4 Set Systems with Small VC Dimension

We consider set systems with small VC dimension and prove theorem 4. We first recall
the definition of VC dimension. Given a set system (X ,S), for X ′ ⊆ X let S|X′ denote

the set system restricted to X ′. We say that X ′ is shattered by S if there are 2|X
′|

distinct sets in S|X′ . A set system (X,S) is said to have VC dimension d, if d > 0 is
the smallest integer such that no d+1 point subset X ′ ⊆ X can be shattered. Also recall
that the incidence matrix B of a PSC instance is obtained as Bij = Aij1π(Si)≥π(ej).

Theorem 4. The VC dimension of the set system B is at most one more than that of A .

Proof. Consider the matrix B and order the demand and the supply-priorities in non-
decreasing order (as shown in Figure 1). Let d denote the VC dimension of A, and for
the sake of contraction, suppose B has VC dimension at least d + 2. Then there exists
a subset of rows Y in B, |Y | = d + 2, such that there are 2d+2 distinct columns in the
submatrix induced by Y . Consider all the 2d+1 columns in this submatrix that have a 1
in their bottom-most coordinate. As Bij = Aij1π(Si)≥π(ej), every coordinate starting
from the bottom-most coordinate with a 1 in B has the same value in both A and B. But
then the rows of Y except the bottom-most one (there are d + 1 of them) are shattered
by A, contradicting that it has VC dimension d.
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5 Lower Bounds

In this section, we establish a Ω(log k) lower bound on the integrality gap of the PSC
LP for hereditary instances for which the underlying set cover instance has O(1) hered-
itary integrality gap. This shows that Theorem 2 is tight up to an O(log k) factor.

The Hinged Axis-Aligned Rectangle Cover Problem. The underlying problem we
start with is the Hinged Axis-Aligned Rectangle Cover problem (HARC): we are given
a set of points X = {(xj , yj) : 1 ≤ j ≤ n} in the 2-dimensional plane and a collection
of axis-aligned rectangles S = {[ai, bi] × [0, di] : 1 ≤ i ≤ m} all of which have one
side on the X-axis. The goal is to pick a minimum number of rectangles to cover X
where the notion of coverage is simply containment of the point inside the rectangle.

It is known that the natural LP relaxation for this problem has an integrality gap of
2 [1]. Moreover the gap is clearly hereditary as any sub-collection of sets and elements
is also a problem of the same type. We will now show that the natural LP relaxation
for Priority HARC has an integrality gap of Ω(log k) when there are k priorities. We
achieve this by relating the priority version of the HARC problem to the 2D rectangle
covering problem (2DRC).

The 2D Rectangle Cover Problem. In the 2DRC problem, we are given a set of points
X = {(xj , yj) : 1 ≤ j ≤ n} in the 2-dimensional plane and a collection of axis-
aligned rectangles S = {[ai, bi] × [ci, di] : 1 ≤ i ≤ m}. The goal is to pick a
minimum number of rectangles to cover each of the given points where the notion of
coverage is simply containment of the point inside the rectangle.

Step 1: Reducing 2DRC to Priority HARC. Consider an instance of 2DRC I =
(X,S). Without loss of generality, we assume that no two points share any coordinate
(which we can ensure by moving the points by infinitesimal amounts). We now create
the Priority HARC instance I ′ as follows: for each point (xj , yj) ∈ X , create the
point ej = (xj , yj) with priority π(ej) = 1/yj. For each rectangle [ai, bi] × [ci, di],
create an axis-aligned rectangle Si = [ai, bi] × [0, di] with priority π(Si) = 1/ci. By
construction, it is clear to see that (xj , yj) ∈ [ai, bi] × [ci, di] iff ej is covered by Si

and π(Sj) ≥ π(ei).

Note. Since each set could (in the worst case) be associated with its own priority, the
number of priorities k created in the above reduction is O(m), where m is the number
of rectangles.

Step 2: Lower Bound for 2DRC. Therefore it suffices to obtain an integrality gap for
the 2DRC in order to get the same gap for priority HARC. The idea is to use recent
super-linear lower bounds on ε-nets for 2DRC, and the strong connection between ε-
nets and the LP relaxation for set cover. In particular, we use the following theorem on
ε-net lower bounds due to Pach and Tardos [11].

Theorem 6 ( [11]). For any ε > 0 and for any sufficiently large integer m ≥ m0(ε) =
poly(1

ε ), there exists a range space (X, R), where X is a set of points in R2 and R
consists of m axis-aligned rectangles, such that the size of the smallest ε-net (w.r.t the
points) is at least Ω(1

ε log 1
ε ). That is, if S ⊆ R is such that any point p ∈ X that is con-

tained in at least εm rectangles is covered by a rectangle in S, then |S| = Ω(1
ε log 1

ε ).
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To get our integrality gap, consider the following set cover instance: the sets are all the
rectangles, and elements are only those points which are contained in at least εm points.
Then clearly from the above theorem, and the fact that any feasible integer solution is a
valid ε-net, we get Opt ≥ Ω(1

ε log 1
ε ). To complete the proof, we need to upper bound

the cost of an optimal LP solution: if we set each xS to 1/(εm), we see that such a
solution is feasible, i.e., all elements are fractionally covered to extent 1; furthermore,
the total cost of this fractional cover is 1/ε. Now this immediately gives us an integrality
gap of Ω(log(1/ε)). Now notice that the number of rectangles in the instances created
can be set to m = m0(ε) = poly(1

ε ). Therefore, the integrality gap is also Ω(log m) =
Ω(log k), since m is linearly related to the number of priorities k as noted above. This
proves Theorem 5.

Acknowledgments. We would like to thank Anupam Gupta for several useful
discussions.
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Abstract. We design an algorithm to embed graph metrics into 
p with
dimension and distortion both dependent only upon the bandwidth of the
graph. In particular we show that any graph of bandwidth k embeds with
distortion polynomial in k into O(log k) dimensional 
p, 1 ≤ p ≤ ∞. Prior
to our result the only known embedding with distortion independent
of n was into high dimensional 
1 and had distortion exponential in
k. Our low dimensional embedding is based on a general method for
reducing dimension in an 
p embedding, satisfying certain conditions, to
the intrinsic dimension of the point set, without substantially increasing
the distortion. As we observe that the family of graphs with bounded
bandwidth are doubling, our result can be viewed as a positive answer
to a conjecture of Assouad [2], limited to this family. We also study an
extension to graphs of bounded tree-bandwidth.

1 Introduction

The problem of embedding graph metrics into normed spaces with low dimension
and distortion has attracted much research attention (cf. [14]). In this paper
we study the family of graphs with bounded bandwidth. The bandwidth of an
unweighted graph G = (V,E) is the minimal k such that there exists an ordering
of the vertices in which the end points of every edge are at most k apart. Let dG
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be the shortest path metric on the graph G. Let (Y, ρ) be a metric space, we say
that an embedding f : V → Y has distortion D ≥ 1 if there exists a constant
c > 0 such that for all x, y ∈ V ,

dG(x, y) ≤ cρ(f(x), f(y)) ≤ DdG(x, y) .

Our main result is the following.

Theorem 1. For any integer k ≥ 1 there exist d = d(k) and D = D(k) with
the following property. For every p ≥ 1 and graph G = (V,E) with bandwidth
at most k, there exists an embedding of (V, dG) into �p space of dimension d
with distortion D. In particular we have: D(k) = O(k2) and d(k) = O(log2 k).
Alternatively we also get: D(k) = O(k2.001) and d(k) = O(log k).

Our work is related to a conjecture of Assouad [2]. The doubling constant of a
metric space is the minimal α such that any ball of radius r can be covered by
α balls of half the radius, then the doubling dimension of V is defined as log2 α.
Assouad proved that for any metric (V, d), the ”snow-flake” metric (V, d1−ε)
embeds into Euclidean space with distortion and dimension depending only on
the doubling constant of (V, d) and on ε. Assouad conjectured that this is possible
even when ε = 0, but this was disproved by [19] (a quantitative bound was given
by [12]). It is also shown in [12] that Assouad’s conjecture holds for the family
of doubling tree metrics. As the doubling constant of graphs with bandwidth k
can be bounded by O(k), one can view our result as providing a different family
of doubling metrics for which Assouad’s conjecture holds.

Graphs with low bandwidth play an important role in fast manipulation of
matrices, in particular computing Gauss elimination and multiplication [10].
In his seminal paper Feige [11] showed an approximation algorithm for com-
puting the bandwidth with poly-logarithmic guarantee. The bandwidth of a
graph also plays a role in certain biological settings, such as gene clustering
problems [20].

There has been a great deal of previous work on embedding families of graphs
into �p with bounded distortion (for example [9,12,13,18,8]). The problem of
embedding graphs of bounded bandwidth has been first tackled by [7]. They
show that this family of graphs includes interesting instances which do not fall
within any of the cases for which constant distortion embeddings are known.
In their paper they show that bounded bandwidth graphs can be embedded
into �1 [7] with distortion independent of the number of vertices n. However,
the distortion of their embedding was exponential in the bandwidth k. Also,
the dimension of that embedding was dependent on the number of vertices (in
fact polynomial in n). We improve the result of [7] for graphs of bandwidth k
in several ways: First, our embedding works for any �p space (1 ≤ p ≤ ∞) as
a target space, not just �1. Second, the distortion obtained is polynomial in k;
specifically: O(k2+θ). Finally, we show that the dimension can be independent
of n as well, and as low as O((log k)/θ) (for any 0 < θ < 1).

Note that the fact that a graph has bandwidth k can be viewed as providing
an embedding into 1 dimension with expansion bounded by k, but without any
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control on the contraction. Our result means that by increasing the dimension
to O(log k), one can get a bound not only on the expansion but also on the
contraction of the embedding.

The low dimensionality of our embedding follows from a generalization we
give for a result of [1], who study embedding metric spaces in their intrinsic
dimension. In [1] it is shown that for any n point metric space, with doubling
constant α, there exists an embedding into �p space with distortion O(log1+θ n)
and dimension O((logα)/θ) (for any 0 < θ < 1). Here, we extend their method
in a way that may be applicable for reducing the dimension of embeddings in
other settings. We show sufficient conditions on an embedding of any metric
space (V, d) into �p (possibly high dimensional) with distortion γ, allowing to
reduce the dimension to O((logα)/θ) with distortion only O(γ1+θ).

Our embedding for graphs of bandwidth k is obtained as follows: we first
provide an embedding with distortion O(k2) which satisfies the conditions of the
dimension reduction theorem. Our final embedding follows from the fact that
the doubling constant of graphs of bandwidth k is O(k).

It is worth noting that our embedding provides bounds independent of n for all
1 ≤ p ≤ ∞. This is unusual: most previous non-trivial results for embedding infi-
nite graph classes into normed spaces with constant distortion (independent of n)
have �1 as a target metric [9,13] (and require high dimension). This is because of
strong lower bounds indicating that trees have a distortion of Ω(

√
log logn) [15]

and tree-width two graphs have a distortion of Ω(
√

logn) when embedded into
�2 [17]. Since bandwidth k graphs do not include all trees, these lower bounds
will not apply and we are able to embed into �2 with constant (independent of
n) distortion. We observe that �2 is potentially a more natural and useful target
metric.

We extend our study to graphs of bounded tree-bandwidth [7] (see Definition 7
for precise definition). While this family of graphs includes all trees and thus
requires distortion at leastΩ(

√
log logn) when embedded into �2, we are still able

to apply our techniques with an additional overhead related to the embedability
of trees. We provide an embedding of tree-bandwidth k graphs into �2 with
distortion O(poly(k)

√
log logn) and into �1 with distortion polynomial in k.

Moreover, when the graph has bounded doubling dimension we can apply our
dimension reduction technique to achieve distortion and dimension depending
solely on the doubling dimension and on k, utilizing the embedding of [12] for
trees with bounded doubling dimension.

In general there has been a great deal of work on finding low-distortion em-
beddings. These embeddings have a wide range of applications in approximation
algorithms, and in most cases low dimension is also desirable (for example im-
proving the running time). Our work makes further progress towards achieving
low-distortion results with dimension reduced to the intrinsic dimension. In par-
ticular, our embeddings imply better bounds in applications such as nearest
neighbor search, distance labeling and clustering.
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1.1 Summary of Techniques

The result of [1] includes the design of a specific embedding technique (locally
padded probabilistic partitions), combined with the careful application of the
Lovasz Local Lemma to show that it is possible to randomly merge the coordi-
nates of this embedding in such a way that there is a non-zero probability that no
distance is contracted. This can then be combined with constructive versions of
the local lemma [3,16] to deterministically produce a low-dimensional embedding
with no contraction.

We decouple the embedding technique of [1] from the local lemma, showing
that any embedding technique which satisfies certain locality properties as well
as having a single coordinate which lower bounds each particular distance can
be applied in this way. Given any metric space (V, d) with doubling constant α,
we give sufficient conditions to reduce the dimension of an embedding of V into
�p with distortion γ to have dimension O((logα log γ)/ log(1/ε)) and distortion
O(γ/ε) where γ−1 < ε < 1. This approach allows some modularity in defining
an embedding – if we are given a low distortion embedding (potentially much
lower distortion than log n for some source metrics) which satisfies the locality
properties then we can maintain the low distortion while obtaining low dimension
as well.

In order to demonstrate the power of this approach, we apply it to the problem
of embedding bounded bandwidth graphs into �p. We first need to define a low
distortion embedding. The embedding of [7] is not useful for our purpose as
it does not satisfy the necessary properties (in particular the single coordinate
lower bound on distances fails) and because its distortion is undesirably high
(exponential in bandwidth). Instead, we define a new embedding. The basis
for our embedding is the standard scale based approach [18] using probabilistic
partitions of [12,1] as a black box. The problem is that when using this approach
we obtain an expansion factor of 1 at each scale of the embedding. The number
of scales is logarithmic in the graph diameter, giving us a total expansion of
Θ(log n). The key innovation of our bandwidth embedding is showing that the
number of scales can be reduced to O(k).

Of course, for any scale there may be some point pair whose distance is at
that scale (there are n2 point pairs and only logn scales after all). We cannot
simply remove some scales and expect our distortion to be reasonable. Instead,
we compute a set of active scales for each graph vertex; these are the scales that
represent distances to other points which are nearby in the optimum bandwidth
ordering of the graph. We will reduce coordinate values to zero for vertices which
do not consider the coordinate’s scale to be active. Each vertex has only O(k)
active scales; the issue now is that different vertices have different scales and if
two adjacent vertices have different active scales we might potentially introduce
large expansion. In addition, we need to show that the critical coordinates which
maintain the lower bound of d(x, y) (thus preventing contraction) are active at
one of the two points (x or y). Instead of applying active coordinates directly, we
allow coordinates to decline gracefully by upper-bounding them by the distance
to the nearest point where they are inactive, then use the bandwidth ordering to
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prove that the critical coordinates for preventing contraction are not only active
where they need to be, but have not declined by too much to be useful.

A careful analysis of this construction shows that we can obtain distortion of
O(k2). We also show that our modified embedding still posses the locality prop-
erties. Thus we can apply our dimension reduction technique to get dimension
O((log k)/θ) while maintaining the distortion bound up to a factor O(kθ).

2 Embedding in the Doubling Dimension

2.1 Preliminaries and Definitions

Definition 1. The doubling constant of a metric space (V, d) is the minimal
integer α such that for any r > 0 and x ∈ V , the ball B(x, 2r) can be covered by
α balls of radius r. The doubling dimension or intrinsic dimension, denoted
by dim(V ), is defined as logα.

Suppose we are given a metric space (V, d) along with a randomly selected map-
ping φ : V → �D for some dimension D. For 1 ≤ c ≤ D we denote by φc(x) the
c’th coordinate of φ(x) and thus we have φc : V → �. We may assume w.l.o.g
that all coordinates of all points in the range of this mapping are non-negative.

Definition 2. The mapping φ is single-coordinate (ε, β) lower-bounded if
for every pair of points x, y ∈ V there is some coordinate c such that |φc(x) −
φc(y)| ≥ βd(x, y) with probability at least 1− ε.

In the metric embedding literature, we often speak of an embedding having
contraction β. For �1 embedding, this means there is a set of coordinates whose
sum is lower-bounded by βd(x, y). The single-coordinate (ε, β) lower-bounded
condition is stronger than contraction β, although for �p norms with large values
of p (i.e. as p tends towards infinity) it becomes equivalent.

Definition 3. Given a mapping φ, the �1 expansion of φ is δ =
maxx,y

‖φ(x)−φ(y)‖1
d(x,y) .

We observe that the expansion of φ when viewed as an �p embedding for p > 1
will be at most the �1 expansion. On the other hand, the single-coordinate (ε, β)
lower-bound condition will still imply that the embedding has contraction β (for
any pair of points with 1− ε probability).

Definition 4. A mapping φ has the local property if for every coordinate c we
can assign a scale sc which is a power of two such that the following conditions
hold:

1. For every x, y ∈ V with d(x, y) > sc we have either φc(x) = 0 or φc(y) = 0.
2. For every x, y ∈ V , if there is a single-coordinate lower-bound for x, y, it has

scale Ω(d(x, y)) < sc < d(x, y).
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We observe that a mapping φ can be viewed as an embedding of (V, d) into
normed space. Provided that the mapping is single-coordinate (ε, β) lower-
bounded, we can eliminate contraction by repeatedly (and independently) se-
lecting such mappings many times over and weighting the results by the number
of selections, then multiplying all coordinates by 1

β . This provides an embedding
into �1 with distortion upper-bounded by δ

β ; note that this embedding can also
be viewed as into �p for any p > 1 and in fact will have only lower distortion
(the single-coordinate lower-bound condition still guarantees non-contraction).

2.2 Low Dimensional Embedding

An embedding φ maps (V, d) to potentially high dimensional space, and we
are interested in reducing the dimension of such an embedding to resemble the
doubling dimension of (V, d) without increasing the distortion. While for general
φ such a result would imply dimension reduction for �1 (which is impossible in
general [6]), the additional constraints that φ be single-coordinate lower-bounded
and local will enable us to reduce the dimension. In the full version of the paper
we prove the following generalization of [1].

Theorem 2. Suppose we are given a metric space (V, d) with doubling constant
α and a mapping φ : (V, d) → �D where φ is single-coordinate (ε, β) lower-
bounded, local, and has �1 expansion at most δ for some β/δ ≤ ε ≤ 1/8. Then for
any 1 ≤ p ≤ ∞ we can produce in polynomial time an embedding φ̃ : (V, d)→ �mp

with distortion at most O(δ/(εβ)), where m = O
(

logα log(δ/β)
log(1/ε)

)
.

Next we construct an embedding with the local property, which will serve as a
basis embedding in Section 3. Recall that a partition P = {C1, . . . , Cn} of an
n-point metric space (V, d) is a pairwise disjoint collection of clusters (possibly
some clusters are empty) which covers V , and P (x) denotes the cluster containing
x ∈ V . W.l.o.g we may assume that minx �=y∈X{d(x, y)} ≥ 1. The following
lemma is a generalization of a lemma of [12] and was proven in [1].

Lemma 1. For any metric space (V, d) with doubling constant α, any 0 < Λ <
diam(V ) and 0 < ε ≤ 1/2 there exists a distribution P̂ over a set of partitions
P such that the following conditions hold.

– For any 1 ≤ j ≤ n, diam(Cj) ≤ Λ.
– For any x ∈ V , PrP∼P̂ [B(x, εΛ/(64 logα)) � P (x)] ≤ ε.

For every scale s ∈ I = {2i | −1 ≤ i < log(diam(V )), i ∈ Z} let Ps =
{C1(s), . . . , Cn(s)} be a random partition sampled from P̂ with Λ = s, and
let c1(s), . . . cn(s) be n coordinates that are assigned to the scale s. The random
mapping is defined as

φcj(s)(x) =
{
d(x, V \ Cj(s)) x ∈ Cj(s)

0 otherwise
(1)

and
φ =

⊕
s∈I,1≤j≤n

φcj(s) (2)
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Proposition 1. For any 0 < ε ≤ 1/2 the mapping φ is single-coordinate
(ε, ε/(128 logα)) lower-bounded, and its �1 expansion is at most O(log(diam(V ))).

Proof. For any x, y ∈ V let s be a power of two such that s < d(x, y) ≤ 2s, then
in the coordinates assigned to scale s, the first property of Lemma 1 suggests
that it must be that x, y fall into different clusters of the partition associated
with the coordinates. Let j be such that x ∈ Cj , it follows that with probability
1 − ε, φcj(s)(x) ≥ εs/(64 logα) ≥ εd(x, y)/(128 logα) and that with probability
1, φcj(s)(y) = 0.

To see that the �1 expansion is at most 2(log(diam(V )) + 2), note that the
triangle inequality implies that |φcj(s)(x) − φcj(s)(y)| ≤ d(x, y) for any x, y ∈ V
and j ∈ [n], and since φcj(s)(x) is non-zero for a single j ∈ [n] it follows that for
any s ∈ I

Σ1≤j≤n|φcj(s)(x) − φcj(s)(y)| ≤ 2d(x, y), (3)

and hence

Σs∈I,1≤j≤n|φcj(s)(x) − φcj(s)(y)| ≤ Σs∈I2d(x, y) = 2(log(diam(V )) + 2)d(x, y) .

Proposition 2. The mapping φ has the local property.

Proof. The first local property is immediate by the first property of Lemma 1
and by (1). The second local property follows from the proof of Proposition 1.

3 Low Distortion �p-Embeddings of Low Bandwidth
Graphs

3.1 Preliminaries and Definitions

Definition 5. Given graph G=(V,E) and linear ordering f : V → {1, 2, ..., |V |}
the bandwidth of f is max{|f(v)− f(w)| | (v, w) ∈ E}. The bandwidth of G is
the minimum bandwidth over all linear orderings f . Given an optimal bandwidth
ordering f , the index of u is simply f(u).

Definition 6. Define λ(x, y) = |f(x)− f(y)| which is the distance between x, y
in the bandwidth ordering f of G.

In what follows we are given a graph G of bandwidth k, the metric space as-
sociated with G is the usual shortest-path metric, and we assume we are given
the optimal ordering f obtaining this bandwidth. This ordering is computable
in time exponential in k, and since our embedding only improves upon previous
work (for example Bourgain [4]) when k is quite small, it may be reasonable
to assume that the ordering is given. In general computing the best bandwidth
ordering is NP-Hard, and the best approximations are poly-logarithmic in n [11].

Proposition 3. Let G be a graph of bandwidth k. Then there exists an ordering
where for any x, y ∈ G, λ(x, y) ≤ k · d(x, y).
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Proof. Assume d(x, y) = r, and let Pxy = (x = v0, v1, . . . , vr = y) be a short-
est path in G connecting x and y, then by the triangle inequality λ(x, y) ≤
Σr
i=1λ(vi−1, vi). By the definition of bandwidth for all 1 ≤ i ≤ r, λ(vi−1, vi) ≤ k,

hence the proposition follows.

Proposition 4. If G = (V,E) has bandwidth k, then the doubling constant α
of G is at most 4k + 11.

Proof. Consider the ball of radius 2r about some point x ∈ V . We must show
that this ball can be covered by at most 4k + 1 balls of radius r.

Consider any integer 0 < a ≤ r. Let Ya be the set of points y such that
d(x, y) = a; similarly let Ya+r be the set of points y such that d(x, y) = a + r.
We claim that the set of balls of radius r centered at points in {x} ∪ Ya ∪ Ya+r
covers the ball of radius 2r around x. In particular, consider any point z in
this ball. If d(x, z) ≤ r then z ∈ B(x, r). If a ≤ d(x, z) < a + r then there is
some shortest path from x to z of length d(x, z) which must include a point y
with d(x, y) = a and d(y, z) = d(x, z) − a < r. It follows that z ∈ B(y, r) and
that y ∈ Ya. If a + r ≤ d(x, z) < 2r then again there is a shortest path from
x to z of length d(x, z) which must include a point y with d(x, y) = a + r and
d(y, z) = d(x, z)− a− r < r. It follows that z ∈ B(y, r) and y ∈ Ya+r.

Now consider the various sets {x} ∪ Ya ∪ Ya+r as we allow a to range from 1
to r. With the exception of x, these sets are disjoint for distinct values of r. So
every point in B(x, 2r) other than x appears exactly once. It follows that there
must be some choice of a such that the size of this set is only 1 + 1

r |B(x, 2r)|.
Since the graph G has bandwidth k, it follows that any pair of adjacent nodes
are within k of each other in the bandwidth ordering. So all points in B(x, 2r)
are within 2rk of x in the ordering, and thus there are at most 4rk such points.
From this it follows that we need only 4k + 1 balls to cover B(x, 2r).

The remainder of this section will be devoted to proving our main theorem, that
graphs of bounded bandwidth embed into �p with low dimension and distortion.

Theorem 3. Let G be a graph with bandwidth k and let 0 < θ < 1, then for
any p ≥ 1, there exists an embedding of G into �p with distortion O(k2+θ) and
dimension O((log k)/θ).

3.2 Proof of Theorem 3

Consider the mapping φ defined in (2). By Proposition 1 combined with
Theorem 2 (noting that for unweighted graphs we get O(log n) �1 expansion)
we can transform it into an embedding of a graph with bandwidth k into any �p
space of dimension O((log k)/θ) with distortion O(log1+θ n) for any 0 < θ ≤ 1.

1 A somewhat simpler argument could be applied to give an O(k) bound on the doubling
constant, which would suffice for our application. The argument presented here seems
to give a better estimate on the constant.
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Our main innovation is to reduce the number of scales effecting each of the
points, thereby reducing the overall distortion to O(k2).

Let G be a graph with bandwidth k and f be the optimal ordering obtaining
this bandwidth. Let α ≤ 4k+ 1 be the doubling constant of G. For each scale s,
we will say that scale s is active at point x if there exists a y such that λ(x, y) ≤ k
and s/8 ≤ d(x, y) ≤ 4s. We define hs(x) to be the distance from x to the nearest
point z for which s is not active (note that hs(x) = 0 if s is not active at x). We
then define a mapping φ̂ as follows (recall the definition of sc in Definition 4):

φ̂c(x) = min(φc(x), hsc(x))

We will claim that for suitable values of ε, this φ̂ is single-coordinate (ε, 1
k )

lower-bounded for all point pairs x, y with |f(x) − f(y)| ≤ 1
4d(x, y), that it is

local, and that it has �1 expansion bounded by O(k). The final embedding will
be φ̂ concatenated with an extra coordinate f , which is the location of the points
in the bandwidth ordering. This will allow us to apply Theorem 2 without the
f coordinate, then add in the f coordinate to get our final embedding.

Lemma 2. The mapping φ̂ has �1 expansion at most O(k).

Proof. Consider any pair of points x, y. We observe that the total number of
scales which are active for these two points is at most O(k), this is because for
x there are at most 2k − 1 other points z satisfying λ(x, z) ≤ k, and each of
these points may activate at most 6 different scales. We conclude that there are
at most O(k) non-zero coordinates for these two points. So the �1 expansion
expression has only O(k) non-zero terms. Let c be a non-zero coordinate. The
triangle inequality suggests that each coordinate produces expansion of at most
1 in φ, that is

φc(x)− φc(y) ≤ d(x, y)
If φ̂c(y) = φc(y) then since φ̂c(x) ≤ φc(x), we can write:

φ̂c(x) − φ̂c(y) ≤ φc(x) − φc(y) ≤ d(x, y)

On the other hand, suppose that φ̂c(y) = hs(y) where s = sc. Then there is
some z where scale s is inactive, such that hs(y) = d(y, z). Now

φ̂c(x)− φ̂c(y) ≤ hs(x)− hs(y) ≤ d(x, z)− d(y, z) ≤ d(x, y)

From this we conclude that each non-zero coordinate produces expansion at
most 1, and when we total this over O(k) non-zero coordinates we get total �1
expansion at most O(k).

We note that adding the coordinate f does not increase the expansion by
much. In particular, for any point pair x, y we have |f(x) − f(y)| ≤ kd(x, y)
by Proposition 3. So the extra coordinate increases expansion by at most an
additive k.
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The tricky part is proving that the mapping is single-coordinate (ε, 1
k ) lower-

bounded. Given some pair of points x, y, one might imagine that the critical
coordinates were deemed inactive for x and y, and thus the single-coordinate
lower-bound will no longer hold. We will prove that this is not the case.

Lemma 3. For any k−1/2≤ε≤1/2 the mapping φ̂ is single-coordinate (ε, Ω( 1
k ))

lower-bounded for any pair of points x, y with |f(x)− f(y)| ≤ 1
4d(x, y).

Proof. Consider any pair of points x, y with |f(x) − f(y)| ≤ 1
4d(x, y). Let x′ ∈

B(x, d(x,y)8k ) and y′ ∈ B(y, d(x,y)8k ). Let s be the scale such that d(x, y)/2 ≤ s <
d(x, y). We will show that scale s must be active at x′ or at y′. But this holds for
any pair of points x′, y′ from the appropriate balls around x, y. It follows that
for one of these two balls it must be the case that scale s is active at all points in
the ball. Suppose without loss of generality that this is B(x, d(x,y)8k ). Then since
all points in this ball have scale s active, we conclude that hs(x) ≥ d(x,y)

8k . By
Proposition 1 and the local property of φ, there is a coordinate c assigned to
scale s, which with 1− ε probability, has φc(x) ≥ Ω( ε

logα )d(x, y) and by the first

local property of φ also φc(y) = 0. If this event occurs, then since Ω
(

ε
log α

)
≥

Ω
(
k−1/2

2 log k

)
≥ Ω(1/k), we get that φ̂c(x) ≥ d(x, y)min(Ω( ε

logα ), 1
8k ) ≥ Ω(d(x,y)k ),

and of course φ̂c(y) = 0. We conclude that x, y are (ε, Ω(1/k)) lower bounded.
In the remainder of proof we show that indeed scale s must be active at either

x′ or y′. Since d(x, x′) ≤ d(x, y)/(8k) and d(y, y′) ≤ d(x, y)/(8k) it follows that
d(x′, y′) ≥ d(x, y)(1− 1

4k ) ≥ 3
4d(x, y). On the other hand, |f(x)− f(x′)| ≤ d(x,y)

8
and similarly for |f(y)−f(y′)| from which we can conclude that |f(x′)−f(y′)| ≤
1
2d(x, y). Now consider a fixed shortest path from x′ to y′. Assume without loss
of generality that f(x′) < f(y′). We define two special points along this path as
follows:

– x̃ is the first point on the path from x′ to y′ such that for all points z
subsequent to or equal to x̃ on the path, we have f(z) ≥ f(x′).

– ỹ is the first point on the path from x̃ to y′ with f(ỹ) ≥ f(y′)

These points will be auxiliary points showing that scale s is active at either x′

or y′. For instance to show that scale s is active at x′ it is enough to show that
λ(x′, x̃) ≤ k and that s/8 ≤ d(x′, x̃) ≤ 4s. We observe that because any pair of
consecutive vertices on a path are at most k apart in the bandwidth ordering, it
must be that |f(x′)−f(x̃)| ≤ k and |f(y′)−f(ỹ)| ≤ k. Note that for every point
z on the path from x̃ to ỹ, the value of f(z) is a unique point between f(x′) and
f(y′). We conclude that d(x̃, ỹ) ≤ |f(x′) − f(y′)| ≤ 1

2d(x, y). Since these points
are on the shortest path, we know that d(x′, y′) = d(x′, x̃) + d(x̃, ỹ) + d(ỹ, y′). It
follows that either d(x′, x̃) ≥ 1

8d(x, y) or d(ỹ, y′) ≥ 1
8d(x, y).

On the other hand, it is not hard to see that d(x′, x̃) ≤ d(x′, y′) ≤ d(x, y) +
1
4kd(x, y) ≤ 2d(x, y) and similarly for d(y′, ỹ). We conclude that indeed scale s
must be active for one of x′, y′.
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Lemma 4. The mapping φ̂ is local.

Proof. The first condition follow immediately from the fact that φ is local and
φ̂c(x) ≤ φc(x) for all c and x. The second condition follow from Lemma 3.

We now combine the lemmas and apply Theorem 2 to φ̂. This guarantees bounded
contraction for point pairs with |f(x) − f(y)| ≤ 1

4d(x, y). We add the single
additional coordinate f , and this guarantees bounded contraction for points
with |f(x) − f(y)| ≥ 1

4d(x, y). Choosing for any 0 < θ < 1, ε = k−θ will give
distortion O(k2+θ) and dimension O((log k)/θ).

4 Tree Bandwidth

We will give an embedding of a graph of low tree-bandwidth [7] into �p. The
distortion will be polynomial in k, with a multiplicative O(

√
log logn) term for

p > 1 [5]. This improves upon the result of [7] by reducing the distortion and
extending to �p. All the proofs appear in the full version of the paper.

Definition 7. [[7]] Given a graph G = (V,E), we say that it has tree-
bandwidth k if there is a rooted tree T = (I, F ) and a collection of sets
{Xi ⊂ V |i ∈ I} such that: ∀i, |Xi| ≤ k, V =

⋃
Xi, the Xi are disjoint,

∀(u, v) ∈ E, u and v lie in the same set Xi or u ∈ Xi and v ∈ Xj and (i, j) ∈ F ,
and if i has parent p(i) in T , then ∀v ∈ Xi, ∃u ∈ Xp(i) such that d(u, v) ≤ k. T
is called the decomposition tree of G.

Theorem 4. There is a randomized algorithm to embed tree-bandwidth k graphs
into �p with expected distortion O(k3 log k + kρ) where ρ is the distortion for
embedding the decomposition tree into �p.

In the case of �1, there is a simple embedding of a tree with ρ = 1. For �2, the
bound of [5] ensures ρ = O(

√
log logn).

We can also apply Theorem 2 to reduce the dimension the embedding of
Theorem 4. To do this we need to bound the dimension in which the tree can
be embedded. We have the following lemma,

Lemma 5. Let G be a graph with tree bandwidth k, and let α be the doubling
constant of G, then the doubling dimension of the decomposition tree T for G is
logαT = O((logα)(log k)).

It follows that we can use an embedding for the decomposition tree T of G where
the distortion and dimension are functions of the doubling dimension of T , as
shown in [12], and therefore are a function of α and k alone.

Theorem 5. Suppose that we are given a tree-bandwidth k graph along with its
tree decomposition. Let the doubling constant of this graph be α. Let αT be the
doubling constant of T , given by Lemma 5. Further, suppose that there exists an
embedding of the tree decomposition into d(αT ) dimensional �p with distortion
ρ(αT ). Then for any 0 < θ < 1 there is an embedding of the graph into �p with
expected distortion O(k3+θ log k+kρ(αT )) and dimension O((logα)/θ+d(αT )).
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Abstract. We develop constant-factor approximation algorithms for minimizing
the maximum movement made by pebbles on a graph to reach a configuration
in which the pebbles form a connected subgraph (connectivity), or interconnect
a constant number of stationary nodes (Steiner tree). These problems model the
minimization of the total time required to reconfigure a robot swarm to achieve a
proximity (e.g., radio) network with these connectivity properties. Our approxi-
mation factors are tight up to constant factors, as none of these problems admit a
(2 − ε)-approximation assuming P 
= NP.

1 Introduction

A central problem in swarm robotics is to reconfigure the robots into an arrangement
with a desired property. For example, in the connectivity goal, the proximity of the
robots should form a connected graph. Two motivations for this goal are forming a
connected data network with short-range radios, and forming a connected physical net-
work for transporting materials. In the first situation, the robots initially communicate
via another channel, e.g., via slow and/or power-intensive long-distance communication
(such as satellite or the same radios with power turned up high), or via two traversals by
aircraft to locate robots and disseminate locations. Another connectivity goal is Steiner
connectivity, where a subset of the robots should form a connected network that con-
tains k stationary nodes (such as buildings or sensors) which need to be interconnected.
In both of these problems, we suppose that we know the initial locations of robots, and
that we have a map of the environment the robots can traverse and defining proximity
among the robots. Our goal is to move the robots as quickly as possible into a configu-
ration with the desired property.

These problems fit into the broad family of movement problems, introduced in [5],
and further explored in [6,8]. In general, we have a graph G with pebbles on some of
the vertices. The goal is to move some of the pebbles along edges to obtain a desired
property P , while minimizing either the maximum movement or the total movement
of the pebbles, motivated by minimizing either execution time or energy usage. Spe-
cific problems considered in [5] include the connectivity movement problem mentioned
above, where property P is that the vertices with at least one pebble induce a connected
graph, and the s-t path movement problem, where property P is that the vertices with at

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 62–74, 2011.
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least one pebble induce a graph in which two given vertices are in a common connected
component (the special case of the Steiner connectivity movement problem with two
terminals).

Several approximation algorithms and inapproximability results for these movement
problems were presented in [5]. Of primary relevance to this paper, the connectivity and
s-t path movement problems with the maximum movement objective function have an
O(
√
n)-approximation algorithm1. Furthermore, both of these problems are (2 − ε)-

inapproximable assuming P = NP. On the other hand, with the total movement object
function, the connectivity movement problem is Ω(n1−ε)-inapproximable, and there is
an Õ(n)-approximation algorithm. This negative result motivates our focus here on the
maximum movement objective.

In FOCS 2008, Friggstad and Salavatipour [8] considered a facility location move-
ment problem: moving pebbles of two types, facilities and clients, to achieve the prop-
erty that each client is at a vertex that contains some facility. This problem was first
introduced in [5], which presented a simple 2-approximation algorithm for this prob-
lem with the maximum movement objective function. But the problem with the total
movement objective remained an open problem until Friggstad and Salavatipour devel-
oped an LP-based constant-factor approximation algorithm.

Demaine et. al. characterize the tractable and intractable movements problems in a
general setting in [6]. They consider the class of edge-deletion minimal graphs that
have the desired property P , and can be the final destination of the pebbles, e.g. for
connectivity this class is the set of subtrees of graph G with at most m nodes where m
is the number of pebbles. They prove that if for property P the treewidth is bounded by
a constant, the movement problem of this property is Fixed Parameter Tractable. They
consider the number of pebbles as the parameter of their algorithms. So their results are
applicable only for small number of pebbles, e.g. m = O(log(n)).

As some applications of these movement problems in Wireless Networks, we can
refer to the works of Basagni et. al. who consider movements of some mobile sinks in
order to maximize the network lifetime [1,2,3]. There are several fixed (non-mobile)
sensor nodes with limited power. The mobile nodes should move between some fixed
sites to gather data from the sensor nodes. We have to find the best schedule for mobile
sinks’ movements to maximize the network lifetime, i.e. lifetime is equal to the time
duration in which all nodes have enough energy supply to handle all their operations
including sensing, transmitting, and etc.

Our Results. Connectivity is the quintessential movement problem. For the total move-
ment objective function, the best possible approximation ratio is known to be roughly
linear [5] (assuming P = NP). But for the maximum movement objective function,
which models the parallel execution time or makespan required for the motion, there
is a huge gap in the best possible approximation ratio, between 2 − ε and O(

√
n). In

this paper, we close this gap up to constant factors, by obtaining the first constant-factor
approximation algorithm for the connectivity movement problem.

1 In fact the approximation ratio is O(
√

m/OPT) where m is the number of pebbles and OPT
is the maximum movement of the optimum solution. This ratio can be as large as Θ(

√
n),

when m = Θ(n) and OPT = Θ(1).
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An ingredient in this result is a constant-factor approximation algorithm for the s-t
path movement problem. This result is also a breakthrough, as again the best possible
approximation ratio was previously only known to be between 2 − ε and O(

√
n). We

use our approximation algorithm for s-t path problem as a black box in our solution to
the connectivity problem.

Finally we introduce the Steiner connectivity movement problem, which is a natural
generalization of the s-t path movement problem. Here we are given a set T of terminal
vertices, and the goal is to move some of our pebbles to interconnect all terminal vertices.
More precisely, propertyP is that the vertices with at least one pebble induce a graph that
places all terminals in the same connected component. For |T | = O(log n), we present
anO(|T |)-approximation algorithm for the Steiner connectivity movement problem with
the maximum movement objective, again using our approximation algorithm for s-t path.
Note that we cannot hope to approximate the Steiner connectivity movement problem
for arbitrary |T |, because even deciding whether there is a feasible solution with the
available pebbles is the NP-hard node-weighted Steiner tree problem. Unfortunately we
include this result only in the complete version because of space limits.

Techniques. Our algorithms introduce several new techniques for approximating move-
ment problems with the maximum movement objective. In general, these problems
would be easy if we allowed approximating the number of pebbles (via resource aug-
mentation) in addition to the cost. But robots cannot (yet) replicate themselves, so re-
source augmentation is not very useful. We develop powerful tools to resolve multiple
desires for the location of a single pebble/robot.

In the s-t path movement problem (Section 2), we define a concept of a locally con-
sistent paths such that (a) a correct solution is also locally consistent, (b) the minimum
length locally consistent solution can be found in polynomial time, and (c) with only
limited additional pebble movement, it can be converted to a consistent solution. For the
sake of simplicity, we describe an algorithm with an extremely large polynomial time
bound that achieves a 7-approximation; in the full paper, we will describe the available
trade-off between the running time and the approximation of the maximum movement.

In the connectivity movement problem (Section 3), we present a three stage algo-
rithm. In all stages, we maintain a set of pebbles S (initially empty), and try to move
some pebbles and insert them into S. The new locations of pebbles in S form a con-
nected subgraph. In the first stage, we define dense vertices which are basically the
vertices with a large enough number of pebbles around them. Once we find a dense
vertex, we can use the s-t path algorithm, and the pebbles around the dense vertex to
insert a subset of pebbles into set S. We do this process iteratively in the first stage until
there exists no dense vertex.

Then we analyze the structure of the remaining pebbles in the optimal solution. The
final locations of all pebbles in the optimal solution is a connected subgraph and has
a spanning tree T . In Figure 1 (page 68), you can see an instance of our problem, and
its optimal solution on the left. The spanning tree T is shown with bold edges on the
right. After the first stage, some pebbles are inserted into S, we remove these pebbles
from tree T . The remaining subgraph is a forest F with some interesting properties. We
prove that there can not be a vertex in this forest with three long paths attached to it, call
such a vertex “tripod vertex”, e.g. vertex v in Figure 1. We prove that after the first stage
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there exists no tripod vertex in forest F . We then prove that every subtree in F either
has low diameter or is a long path with some low-diameter branchlets attached to it, call
it a thick path tree2. If the subtree has low diameter, we prove that all its pebbles are
close to set S, so we can insert them into S by moving them directly toward this set. If
it is a thick path tree, we enumerate to find the head and tail of its longest path, then we
use s-t path algorithm to connect its head and tail using its own pebbles. We also prove
that every other pebble in this subtree is close to the path we find (we need the second
stage for proving this claim), and we can move all these pebbles to connect them to set
S withO(M) movement whereM is the maximum movement of an optimum solution.
We note that one can enumerate on all possible values of M which are 1, 2, · · · , n, or
use binary search to find it. So we can assume that our algorithm known the value ofM .

The important problem is that these subtrees are not easily distinguishable. Since
pebbles from different subtrees can be close to each other in their starting configuration,
we can not find out which pebbles are in which subtree. We know that two adjacent
pebbles in the optimum solution have distance at most M + 1 + M = 2M + 1 from
each other in their starting configuration. We make graphH with the remaining pebbles
(outside set S) as its vertices. We put an edge between two pebbles if their distance is at
most 2M + 1 from each other. This way we can be sure that all pebbles in a subtree of
F are in the same connected component in H . But there might be pebbles from several
subtrees of F in the same connected component in H .

We define some relaxed versions of dense vertices, and try to insert more pebbles
into set S by finding these vertices in the second stage. In the third stage, we find all
remaining pebbles close to set S, and insert them to set S by moving them toward S.
The second stage helps us prove that there can not be pebbles from more than two thick
path trees in a connected component of H . We can distinguish two thick path trees
in a common connected component of H with some other techniques in polynomial
time. But there might be pebbles from several low diameter subtrees in this connected
component as well. We prove that all pebbles in low diameter subtrees are close to set S,
and in the third stage we take care of all of them. So after the third stage, we might have
some connected components in H containing up to 2 thick path trees. If the connected
component has no thick path tree, we can show that all its pebbles are close to set S,
so we just move them toward set S. If it has one thick path tree, we can enumerate to
find the head and tail of the longest paths of this thick path tree, and run our s-t path
algorithm to take care of its pebbles. If it has two thick path trees, we prove that all
pebbles from the two thick path trees that are close to each other are around the tails of
the longest paths of these two thick path trees. So we enumerate to find the tail of one
of the thick path trees, and remove all pebbles in the vicinity of the tail vertex. This way
we can distinguish between the two thick path trees, and handle each of them by the s-t
path algorithm.

2 s-t Path Movement Problem

In the s-t path movement problem, we are given a graph G with two vertices s and
t, and a set of pebbles with positions on the vertices of our graph. We want to move

2 We call it Caterpillar Shape tree as well.
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some pebbles to construct a path between s and t with at least one pebble on each of its
vertices. Our objective is to minimize the maximum movement. The following theorem
presents a constant-factor approximation algorithm for this problem.

Theorem 1. There is a polynomial-time algorithm that finds solution to the s-t the path
movement problem such that if there exists a solution that forms a path of length � and
moves each pebble along at most M edges, then the algorithm finds a path of length at
most � and which moves each pebble along at most 7M−4 edges.

Note that we do not move pebbles more than a constant factor of the maximum move-
ment in the optimal solution, and at the same time we use no more pebbles than the
optimal solution to construct a path between s and t. So our algorithm can be seen as
a bicriteria approximation algorithm: it is optimal in terms of the number of pebbles
used in the path, and it is a constant factor approximation with respect to the maxi-
mum movement. The fact that we are optimal in terms of the number of pebbles used
in the path helps us later to find approximation algorithms for the Steiner connectivity
movement problem.

Our algorithm for the s-t path movement problem has two main parts which can be
described as follows (with a bit of oversimplification):

1. Find a minimum length locally consistent path P. A pebble can be moved along at
most 3M−2 edges to a node of P, but we allow to move a pebble to multiple nodes
on P, provided that they are sufficiently far apart (about 14M edges).

2. Convert P to a consistent path Q as follows: for each pebble moved to multiple
nodes of P select one of them, which creates gaps in the path; then fill the gaps
by moving some pebbles along additional (7M−4)−(3M−2) = 4M−2 edges. The
length of the path cannot increase.

Because the optimum solution, say of length �, is locally consistent, the length of the
locally consistent path that we will find cannot be larger than �, and as we shall see,
local consistency is easier to assure than actual consistency. In the same time, under our
assumption each inconsistency offers an opportunity of making a shortcut: if a pebble
can be moved by distance at most 3M−2 to two locations that are 14M apart on the
path, a section of the path with length 14M can be replaced with a shorter path with
length 6M−4, provided that we move pebbles from the longer section to the shortcut.
This presents a challenge, of course, how to do it in a consistent manner.

2.1 Straighter Paths

We will use the following notation: d(u, v) is the distance from u to v (the length of a
shortest path), disk D(u,R) is the set {v ∈ V : d(u, v) ≤ R}, and a disk set P (u,R)
is the set of pebbles with the initial location within D(u,R).

A valid solution has a path P = (s = u0, u1, . . . , u
 = t) so that for i = 0, . . . , �
there exists a pebble pi such that pi ∈ P (ui,M), moreover, pi = pj for 0 ≤ i < j ≤ �.

Given such a solution P, we can find another, Q, which we will call the straighter
path.
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We define milestones of P as a subsequence v1, . . . , vf of P, and in turn they define
Q, a straighter version of P, that connects s, t and the milestones using the shortest
paths: from s to v1, from v1 to v2, etc., and finally from vf to t. A milestone vi is
responsible for the section of Q that is contained in D(vi,M−1) and which consists of
ri nodes, where ri = 2M−1 for i < f , while rf ≤ 2M−1 is the distance from t to
D(vf−1,M−1).

The initial milestone v1 is uj such that j = max{k : d(s, uk) ≤ M−1}. Assume
that milestone vi is defined. If d(vi, t) ≤ M−1 then vi is the final milestone. If M ≤
d(vi, t) ≤ 2M−1 then vi+1 = t is the final milestone. If d(vi, t) ≥ 2M−1 then vi+1 =
uj where j = max{k : d(vi, uk ≤ 2M−1}.

We modify the pebble movement as follows: consider a node u′ of Q that is a steps
before milestone v (or after), where a < M . Then we have node u of P that is a steps
before v (or after) on P and the pebble p that was moved to u (along at most M edges).
The modified movement of p traverses a path to u, then to v and finally to u′, hence it
uses at most m+ 2a ≤ 3M−2 edges.

Now suppose that we do not know P or Q but only the milestones v1, . . . , vf . We
can find the Q by connecting s, t and the milestones with shortest paths (between the
milestones).

A solution of that form exists if and only if there exist pairwise disjoint sets of peb-
bles S1, . . . , Sf such that Si ⊂ P (vi, 2M−1) and |Si| = ri. This justifies the following
definition:

A consistent solution is a sequence of nodes v1, . . . , vf and a sequence of sets S1, . . . ,
Sf such that
1. d(v1, s) = M−1 and d(vi, vi+1) = 2M−1 for i = 1, . . . , f − 2;
2. either d(vf−1, vf ) = 2M−1 and d(vf , t) < M or vf = t and d(vf−1, t) < 2M ;
3. ri = 2M−1 for i = 1, . . . , f − 1 and rf = d(vf , vf−1) + d(vf , t)−M + 1;
4. Si ⊂ P (vi, 2M−1) and |Si| = ri;
5. Si ∩ Sj = ∅ for i = j.

A locally consistent solution satisfies a weaker version of condition 5: Si ∩ Sj = ∅ for
i < j < i+ 7. The length (or the number of pebbles that are used) is

∑f
i=1 ri.

Lemma 1. There exists a polynomial time algorithm that find a locally consistent so-
lution with the minimum length.

Lemma 2. In polynomial time we can transform a locally consistent solution Q of
length � to a solution that uses at most � pebbles that are moved along at most 7M−4
edges.

To conclude the proof of Theorem 1, observe that we can perform the algorithm de-
scribed in Lemma 1 for different values of M , to find the smallest value for which it
concludes successfully, and then we finish using the algorithm described in Lemma 2.

3 Connectivity Movement Problem

In the connectivity movement problem, we want to move pebbles so that their final po-
sitions induce a connected subgraph of graph G. The goal is to minimize the maximum
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movement of pebbles. Without loss of generality we can assume that a vertex r is given,
and the induced subgraph of the final positions of pebbles should contain r, i.e., there
should be a path from the root r to all pebbles in their subgraph. The following theorem
is the main result of this section:

Theorem 2. Given a polynomial-timeλ-approximation algorithm for the s-t path move-
ment problem, we can construct a polynomial-time (8λ+80)-approximation algorithm
for the connectivity movement problem.

Definition 1. Suppose there are m pebbles: p1, p2, . . . , pm. Let ui be the starting po-
sition of pebble pi, and vi be its final destination in the optimum solution. Vertices
v1, v2, . . . , vm form a connected subgraph in G. This connected subgraph has a span-
ning tree. Let T be one of its spanning trees. So tree T has at most m vertices because
there is at least one pebble on each vertex in T in the optimal solution. In Figure 1, you
can see a sample graph before the movements on the left, and with maximum movement
one edge, all pebbles form a connected subgraph. Tree T is shown on right by bold
edges.

(a) (b)

r

v

r

v

.

Fig. 1. Each black node contains a pebble, and gray nodes are vertices without pebbles. The
arrows show the movements of pebbles in the optimum solution. The maximum movement is
one.

Because of lack of space, we present main ideas in this paper, and include detailed
description and proofs in the complete version.

3.1 A Constant Factor Approximation for Connectivity Movement Problem

During our algorithm, the set S consists of all pebbles that are connected to root r
(via other pebbles) up to now, i.e., this set might be empty at the beginning. We try to
add pebbles into S by moving them. Our algorithm basically has three main phases.
In Phase 1, we define Operations 1 and 2. We perform these two operations iteratively
as long as we can perform them. During these two operations, whenever we move a
pebble p, and add it to set S, we make sure that there exists a pebble p′ ∈ S such
that its current position has distance at most λM from the starting position of pebble
p. Note that pebble p′ might or might not be the same as pebble p (in Operation 1 they
are the same). When we cannot perform any of these two operations anymore, we can
prove some interesting properties about the structure of the remaining pebbles (pebbles
outside S).

Then in the second phase, we introduce new Operations 3 and 4, and iteratively
perform them. We should note that Operations 3 and 4 are very similar to Operations
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1 and 2, but existence of these two similar phases is essential in our algorithm. In the
second phase when we move a pebble p, and add it to S, we make sure that there exists
a pebble p′ ∈ S that its current position has distance at most xM from the starting
position of pebble p where x is a parameter we define later in the second phase.

In the last phase, we present Operation 5, and perform it once. Then we show how
to decompose the remaining pebbles into some groups, and take care of each group.
In this phase we connect all remaining pebbles to set S, and therefore our connecting
task is complete. The maximum movement is a constant times the optimum maximum
movementM .

In Operation 2 of the first phase, we define dense vertices, and while there exists a
dense vertex, we find a path from it to root r. Using this path we add some pebbles into
set S. We iteratively perform Operations 1 and 2 if one of them is possible to do. If both
of them are possible to do, Operation 1 has priority. Before performing the following
operations, we move all pebbles with distance at most M from root r toward r. We
also add them to set S. This way we make sure that S is not empty, and the following
operations are feasible.

Operation 1. While there is a pebble p /∈ S whose distance to current position of some
pebble p′ ∈ S is at most λM + 1, we move pebble p towards pebble p′ to make them
neighbors. We can do this by moving p at most λM edges. Now we can add p to S.

Operation 2. Here we explain the main ideas. Vertex v is called dense, if there are at
least (2λ + 2)M pebbles outside set S with distance at most λM from v. Let A be the
set of the pebbles outside S with distance at most λM from v. If there exists a dense
vertex v (with |A| ≥ (2λ + 2)M ), we do the following. We gather all pebbles of A
on vertex v. This can be done by moving these pebbles along at most λM edges. If the
distance of v from at least one pebble in S is at most (2λ+2)M , we can use the pebbles
in A to connect vertex v to set S. This way we add pebbles of A to set S by moving
them along at most λM + (2λ+ 2)M = (3λ+ 2)M .

Otherwise (if v has distance greater than (2λ+2)M from all pebbles in S), we know
that a subset of pebbles outside S and A form a path from a pebble in A to a pebble in
S in the optimal solution with maximum movement M . This path should start from a
vertex with distance at most λM+M from v to a vertex with distance at mostM+λM
from set S. So we use our path movement algorithm to build this path. Then we use the
pebbles of A to connect v to the first part of this path, and also connect the last part of
this path to set S. So we can connect and join all these pebbles to S with maximum
movement at most λM + 2(λ+ 1)M = (3λ+ 2)M .

We keep doing the above operations until there is no dense vertex, and no pebble
close to set of pebbles S. Following we show some interesting facts about the structure
of the optimal solution after deleting pebbles of S when the first phase is finished, and
we cannot perform Operations 1 and 2.

We keep vertices in tree T (defined in Definition 1) that have at least one pebble
outside set S and remove the rest of them. The remaining graph is a forest, call it
F . Suppose this forest has k connected components T1, T2, . . . , Tk. Each of these k
connected components is a subtree of T .
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Lemma 3. For each tree Ti, at least one of the following two conditions holds: (1) Ti
has diameter less than 2(λ − 1)M . (2) Every vertex in Ti has distance less than 4M
from the longest path in T .

Now that we cannot perform Operations 1 and 2 anymore, we start the second phase. In
this phase, we define Operations 3 and 4, and we perform them iteratively. Like before,
we stop when we cannot perform Operations 3 and 4 anymore. Define x to be 2λ+ 22
in the rest of the algorithm.

Operation 3. Consider a vertex v with distance dis(v, S) from set S, i.e., dis(v, S) is
the minimum distance of v from pebbles in S. For 0 ≤ i ≤ xM , let N(v, i) be the
number of pebbles outside S that has distance at most i from v. If N(v, i) is at least
dis(v, S) − (xM − i) for some 0 ≤ i ≤ xM , and dis(v, S) is at most (2x + 2)M ,
we can do the following. We can gather all pebbles with distance at most i from v,
on vertex v, and move them along the shortest path from v to set S to form a path
attaching to the current set S. This way we can add some pebbles to S. We cannot
necessarily fill the shortest path from v to S completely, but because N(v, i) is at least
dis(v, S) − (xM − i), we lack at most xM − i pebbles. Because we moved each
pebble at most i in the gathering part, we can say that the starting position of each
moved pebble has distance at most i + (xM − i) = xM from the current position of
a pebble in S (consider the last pebble in the path we just made and attached to set S).
The maximum movement in this operation is at most i + dis(v, S) which is at most
xM + (2x + 2)M = (3x+ 2)M . The interesting property of this operation is that we
can use it for different values of 0 ≤ i ≤ xM .

Operation 4. Vertex v is called dense with diameter xM , if there are at least (2x+2)M
pebbles outside set S with distance at most xM from v. Like Operation 2, let A be the
set of the pebbles outside S with distance at most xM from v. If there exists a dense
vertex v (with |A| ≥ (2x+ 2)M ), we do the following. We gather all pebbles of set A
on vertex v. If the distance of v from at least one pebble in S is at most (2x+ 2)M , we
can use these pebbles in A to connect vertex v to set S. This way we add pebbles of A
to set S by moving them along at most xM + (2x+ 2)M = (3x+ 2)M .

Similarly to Operation 2, if the distance of v from set S is more than (2x + 2)M ,
we can construct a path from a vertex w1 with distance at most (x + 1)M from vertex
v to a vertex w2 with distance at most (x + 1)M from set S using pebbles outside S
and A. Like before we can shift this path toward set S, and use the (2x+ 2)M pebbles
gathered on v to fill in the empty vertices of the path we are building from v to set S.
The maximum movement in this case is at mostMax{(3x+2)M,λM+(2x+2)M} =
(3x+ 2)M .

We now want to investigate the structure of the pebbles outside S in the optimal tree
T . So we again delete all vertices from tree T that contain some pebbles of set S. We
note that tree T is a spanning tree of the subgraph induced on the final positions of
the pebbles in the optimum solution. Like before let T ′

1, T
′
2, . . . , T

′
k′ be the resulting

subtrees of the forest we obtain after removing the above vertices from tree T .
Now we are ready to finish our algorithm in the third phase which is a non-iterative

phase. We explain the main idea at first. If we knew which pebbles belong to each T ′
i

(the pebbles that move to vertices of T ′
i in the optimum solution) for every 1 ≤ i ≤ k′,
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we would do the following. For every tree T ′
i we know that it either has diameter less

than 2(λ−1)M or is a tree such that all its pebbles are close to its longest path. If it has
small diameter, we can say that all its pebbles have distance at most (x + 2λ)M from
some pebble in S. We prove this claim later in Lemma 4. About the second type trees,
we can find a path connecting two vertices of T ′

i with some specific properties. Then we
can claim that every pebble in tree T ′

i is close to some vertices of the path we find. This
is just a raw idea without details. We will show how to distinguish between pebbles of
different subtrees, and how to handle each tree (specially the second type trees).

At first we note that two adjacent pebbles in a subtree have distance at mostM +1+
M = 2M + 1 from each other. So if we construct a graph with pebbles as its vertices,
and connect each pair of pebbles that have distance at most 2M + 1 from each other,
we can say that the pebbles of a subtree T ′

i are in the same connected component in this
graph. But there might be more than one subtree in a connected component. So we still
have the distinguishing problem in a connected component.

The following trick helps us deal with this problem. We do the following operation to
get rid of the small diameter subtrees. Note that the following operation is non-iterative;
we do it once.

Operation 5. We mark all pebbles outside set S that has distance at most (x + 2λ)M
from the current position of at least a pebble in S. After marking pebbles, we move
all marked pebbles toward some pebbles in S with maximum movement at most (x +
2λ)M .

Lemma 4. Every pebble in a tree T ′
i with small diameter (less than 2(λ − 1)M ) is

marked and inserted into set S.

After Operation 5, we know that all small diameter subtrees are taken care of. Now we
might be able to separate different subtrees with large diameter. There are two main
issues here. The first one is that some pebbles of a tree T ′

i with large diameter might be
deleted. The second issue is that two pebbles in two different large diameter subtrees
might have distance at most 2M + 1 (and therefore adjacent in the graph of pebbles we
build).

Following we consider the graph of remaining pebbles, and show that both of these
problems can be handled in a sophisticated way. Construct graphH with the remaining
pebbles (outside S) as its vertices. And we connect two pebbles via an edge if its dis-
tance is at most 2M+1. If this graph has multiple connected components, we treat each
connected component separately. So we assume that this graph has only one connected
component. At first we prove some properties of the remaining subtrees. This helps us
understand the structure of the graph H .

Definition 2. Define Pi to be the longest path of subtree T ′
i . A subtree T ′

i is called long
tree, if Pi has length more than 2xM . Let l′i be the length of path Pi, and qi,j be the jth
pebble of the path Pi for 1 ≤ j ≤ l′i. Also define v′i,j be the jth vertex of the path Pi.
Note that there might be also some medium diameter trees other than small diameter
and long trees.

Following we prove that one of the last vertices of the longest paths of every remaining
tree (with diameter at least 2(λ− 1)M ) is close to set S.
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Lemma 5. For every tree T ′
i with diameter at least 2(λ − 1)M , there exists a vertex

v in tree T such that v has distance at most 10M from vertex v′i,l′i , the last vertex of

the longest path in T ′
i , and vertex v is also the final position of some pebble in S in

the optimum solution. Therefore vertex v′i,l′i has distance at most 10M + M + xM =
(x+ 11)M from set S.

Now we prove that the middle pebbles of long trees (which are the main parts of these
trees) are not removed in Operation 5.

Lemma 6. Consider a long tree T ′
i . Pebble qi,j is unmarked (and therefore is not

deleted) for all values of xM + 1 ≤ j ≤ l′i − xM .

Now that we have more information about the structure of the remaining subtrees, we
can take care of them. We consider two cases. Note that H is the graph we constructed
with the remaining pebbles as its vertices.

Case 1. Every pebble in H has distance at most M + 2xM +M + xM = (3x+ 2)M
from some pebble in S. In this case we can move all pebbles of H and connect them to
S. The problem is solved completely in this case and the maximum movement of these
remaining pebbles would be at most (3x+2)M . Note that if there is no long tree among
our trees, our problem will be solved in this case. Because we know that in a subtree,
there exists a vertex v which is adjacent to the final position of some pebble p in S in
the optimum solution (refer to the beginning of proof of Lemma 5). If the longest path
of this subtree is at most 2xM , it means that the current position of each pebble has
distance at mostM+2xM from vertex v. We also know that it takes M+xM edges to
reach set S from vertex v because this subtree is obtained after the first four operations.
The total distance is not more than M +2xM +M +xM = (3x+2)M . We conclude
that if we have no long tree, the problem is solved in this case.

Case 2. As proved above, in this case we have some long trees. In Lemma 6, we proved
that the middle parts of the longest paths of long trees do not get marked, and still exist
in graph H . We just need to somehow add the pebbles of these middle parts of the long
trees to set S. Because every pebble in a long tree has distance at most 4M from a
pebble in the longest path in the tree. Each pebble in the longest path is either in the
middle part of the path or has distance at most M + xM + M = (x + 2)M from a
pebble in the middle part. So every pebble in a long tree would be close (with distance
at most a constant times M ) to set S, if we add the pebbles in the middle parts of the
longest paths of long trees to S. We also know that a tree that is not long has diameter
at most 2xM . This is enough to see that every pebble in a not long tree (medium tree)
is close to set S already. So the main problem is finding a way to add pebbles of the
middle parts of the longest paths of long trees into S.

Before starting we note that we still might have pebbles from several trees in our
graphH . But we know that all middle pebbles of a long tree exist in the same connected
component. In fact every pair of pebbles in graphH that are adjacent in tree T , are also
adjacent in H . We now show that there cannot be pebbles from three different trees in
our connected graph H . There might be pebbles of two trees in H , but we show how
to separate pebbles of these two trees from each other. The following lemma shows
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the limitations of the edges between pebbles of different trees. In fact, the following
Lemma is the main reason that we are able to separate different subtrees.

Lemma 7. If there is an edge in graph H between two pebbles q ∈ T ′
1 and q′ ∈ T ′

2,
we have that the distance between v′1,1 and q is at most 11M , and the distance between
v′2,1 and q′ is also at most 11M .

Using Lemma 7, we can prove that there cannot be pebbles from three different trees in
H as follows.

Lemma 8. There can be pebbles from at most two trees in graph H .

Now we know that there are pebbles from at most two trees in our graph H . We also
know that all edges between pebbles of these two trees are close to the tail vertices of
the longest paths of two trees. So we can get rid of all these edges by removing vertices
around one of this tail vertices. Formally we do the following.

Let T ′
1 and T ′

2 be the two trees that contribute in H (this approach also works when
there is only one tree). We can assume that we know vertex v′1,1 because we can guess
it (there are at most n possible guesses and one of them is correct).

We remove all pebbles of distance at most 11M from v′1,1. We now have a graphH ′

with probably several connected components. Following we show that the middle parts
of the long paths is safe. In fact we prove that we might remove at most the first 20M
pebbles of the longest path, and we do not remove the pebbles q1,20M+1, q1,20M+2, . . . .
Otherwise we will have a dense vertex which is a contradiction.

Lemma 9. After deleting pebbles with distance at most 11M from v′1,1, we do not
have any edge between pebbles of our two different trees. We also do not delete any of
pebbles v′1,20M+1, v

′
1,20M+2, . . . if tree T ′

1 is a long tree. And we do not delete pebbles
v′2,20M+1, v

′
20M+2, . . . if tree T ′

2 is a long tree.

So we do not delete any pebble from middle parts of the long trees. We also removed a
set of pebbles in Operation 4. But in Lemma 6, we proved that the middle parts of the
longest paths of long trees survive. We conclude the following general lemma.

Lemma 10. In the graph of remaining pebbles, graph H ′, pebbles q1,xM+1, q1,xM+2,
. . . , q1,l′1−xM exist and are in the same connected component for a long tree T ′

1.

So there might be at most two connected components containing the middle pebbles
of longest paths of long trees. Remember these are the only parts we should handle,
the rest of the pebbles are either close to set S or close to these two middle parts. In
this part, we again treat pebbles of each connected component of graph H ′ separately.
If all pebbles of a connected component in H ′ are close to set S, we can treat it like
case 1 (we can move them directly toward set S). Otherwise this connected component
has the middle pebbles of the longest path of either T ′

1 or T ′
2 (and not both of them for

sure). Without loss of generality, assume that it has the middle pebbles of T ′
1. So we

know that all pebbles q1,xM+1, q1,xM+2, . . . , q1,l′1−xM are in the this connected com-
ponent. We can assume that we know vertices v′1,xM+1 and v′1,l′1−xM (we can guess,

and there are at most n2 possibilities). We know that there is a way to move some peb-
bles of this connected component to connect s to t with maximum movement at most
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M . Using our algorithm for path movement problem, we can move some pebbles to
connect these two vertices with maximum movement at most λM . We prove that all
pebbles q1,xM+1, q1,xM+2, . . . , q1,l′1−xM are either used in the path we constructed, or
are close to some pebble that we used in this path. At first we note that there is no edge
between two pebbles from different trees. So all pebbles that we use are in the tree T ′

1.

Lemma 11. For every xM + 1 ≤ i ≤ l′1− xM − 2(λ− 1)M , pebble q1,i has distance
at most (2λ + 20)M from either the starting position of one of the pebbles we used in
the path we constructed from vertex v′1,xM+1 to vertex v′1,l′1−xM , or one of the vertices
of this path.

We can gather all pebbles of our connected component on the path we constructed as
follows.

Lemma 12. Every pebble of our connected component in graph H ′, has distance at
most (x + 2λ+ 3)M from some vertex of the path we constructed.

Using Lemma 12, we can gather all pebbles of the connected component on our path.
Now we have to move this path and connect it to S. Note that we can shift the path we
constructed to make it connected to S. Vertex v′1,l′1−xM has distance at most xM from
v′1,l′1 . Vertex v′1,l′1 has distance at most (x+11)M from set S using Lemma 5. So we can
shift the pebbles of this path along at most xM + (x+ 11)M = (2x+ 11)M edges to
make them connected to set S. So the maximum movement of all these parts (gathering
and shifting) is at most (x+ 2λ+ 3)M + (2x+ 11)M = (3x+ 2λ+ 14)M which is
equal to (8λ+ 80)M . Now everything is connected to S, and no pebble is remained.
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Abstract. Given a metric space on n points, an α-approximate univer-
sal algorithm for the Steiner tree problem outputs a distribution over
rooted spanning trees such that for any subset X of vertices containing
the root, the expected cost of the induced subtree is within an α factor
of the optimal Steiner tree cost for X. An α-approximate differentially
private algorithm for the Steiner tree problem takes as input a subset
X of vertices, and outputs a tree distribution that induces a solution
within an α factor of the optimal as before, and satisfies the additional
property that for any set X ′ that differs in a single vertex from X, the
tree distributions for X and X ′ are “close” to each other. Universal
and differentially private algorithms for TSP are defined similarly. An
α-approximate universal algorithm for the Steiner tree problem or TSP
is also an α-approximate differentially private algorithm. It is known
that both problems admit O(log n)-approximate universal algorithms,
and hence O(log n) approximate differentially private algorithms as well.

We prove an Ω(log n) lower bound on the approximation ratio achiev-
able for the universal Steiner tree problem and the universal TSP, match-
ing the known upper bounds. Our lower bound for the Steiner tree prob-
lem holds even when the algorithm is allowed to output a more general
solution of a distribution on paths to the root. We then show that when-
ever the universal problem has a lower bound that satisfies an additional
property, it implies a similar lower bound for the differentially private
version. Using this converse relation between universal and private algo-
rithms, we establish an Ω(log n) lower bound for the differentially private
Steiner tree and the differentially private TSP. This answers a question
of Talwar [19]. Our results highlight a natural connection between uni-
versal and private approximation algorithms that is likely to have other
applications.

1 Introduction

Traditionally, in algorithm design one assumes that the algorithm has complete
access to the input data which it can use unrestrictedly to output the optimal, or
near optimal, solution. In many applications, however, this assumption does not
hold and the traditional approach towards algorithms needs to be revised. For
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instance, let us take the problem of designing the cheapest multicast network
connecting a hub node to a set of client nodes; this is a standard network design
problem which has been studied extensively. Consider the following two situa-
tions. In the first setting, the actual set of clients is unknown to the algorithm,
and yet the output multicast network must be “good for all” possible client sets.
In the second setting, the algorithm knows the client set, however, the algorithm
needs to ensure that the output preserves the privacy of the clients. Clearly, in
both these settings, the traditional algorithms for network design don’t suffice.

The situations described above are instances of two general classes of prob-
lems recently studied in the literature. The first situation needs the design of
universal algorithms; algorithms which output solutions when parts of the input
are uncertain or unknown. The second situation needs the design of differen-
tially private algorithms; algorithms where parts of the input are controlled by
clients whose privacy concerns constrain the behaviour of the algorithm. A natu-
ral question arises: how do the constraints imposed by these classes of algorithms
affect their performance?

In this paper, we study universal and differentially private algorithms for two
fundamental combinatorial optimization problems: the Steiner tree problem and
the travelling salesman problem (TSP). The network design problem mentioned
above corresponds to the Steiner tree problem. We resolve the performance ques-
tion of universal and private algorithms for these two problems completely by
giving lower bounds which match the known upper bounds. Our techniques and
constructions are quite basic, and we hope these could be applicable to other
universal and private algorithms for sequencing and network design problems.

Problem formulations. In both the Steiner tree problem and the TSP, we are
given a metric space (V, c) on n vertices with a specified root vertex r ∈ V .
Given a subset of terminals, X ⊆ V , we denote the cost of the optimal Steiner
tree connecting X ∪ r by optST (X). Similarly, we denote the cost of the optimal
tour connecting X ∪ r by optTSP (X). If X is known, then both optST (X) and
optTSP (X) can be approximated up to constant factors.

A universal algorithm for the Steiner tree problem, respectively the TSP,
does not know the set of terminals X , but must output a distribution D on
rooted trees T , respectively tours σ, spanning all vertices of V . Given a termi-
nal set X , let T [X ] be the minimum-cost rooted subtree of T which contains
X . Then the cost of the universal Steiner tree algorithm on terminal set X is
ET←D[c(T [X ])]. We say the universal Steiner tree algorithm is α-approximate,
if for all metric spaces and all terminal sets X , this cost is at most α ·optST (X).
Similarly, given a terminal set X , let σX denote the order in which vertices
of X are visited in σ, and let c(σX) denote the cost of this tour. That is,
c(σX) := c(r, σX(1)) +

∑|X|−1
i=1 c(σX(i), σX(i + 1)) + c(σX(|X |), r). The cost of

the universal TSP algorithm on set X is ET←D[c(σX)], and the approximation
factor is defined as it is for the universal Steiner tree algorithm.

A differentially private algorithm for Steiner trees and TSPs, on the other
hand, knows the set of terminalsX ; however, there is a restriction on the solution
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that it can output. Specifically, a differentially private algorithm for the Steiner
tree problem with privacy parameter ε, returns on any input terminal set X a
distribution DX on trees spanning V , with the following property. Let X ′ be
any terminal set such that the symmetric difference of X ′ and X is exactly one
vertex. Then,

Pr
DX′

[T ] · exp(−ε) ≤ Pr
DX

[T ] ≤ Pr
DX′

[T ] · exp(ε),

where PrD[T ] is the probability of getting tree T when drawn from distribution
D. The cost of the algorithm on set X is ET←DX [c(T [X ])] as before, and the
approximation factor is defined as that for universal trees. Differentially private
algorithms for the TSP are defined likewise. To gain some intuition as to why
this definition preserves privacy, suppose each vertex is a user and controls a bit
which reveals its identity as a terminal or not. The above definition ensures that
even if a user changes its identity, the algorithm’s behaviour does not change by
much, and hence the algorithm does not leak any information about the user’s
identity. This notion of privacy is arguably the standard and strongest notion of
privacy in the literature today; we point the reader to [4] for an excellent survey
on the same. We make two simple observations; (a) any universal algorithm is a
differentially private algorithm with ε = 0, (b) if the size of the symmetric differ-
ence in the above definition is k instead of 1, then one can apply the definition
iteratively to get kε in the exponent.

For the Steiner tree problem, one can consider another natural and more
general solution space for universal and private algorithms, where instead of
returning a distribution on trees spanning V , the algorithm returns a distribution
D on collections of paths P := {pv : v ∈ V }, where each pv is a path from v
to the root r. Given a single collection P , and a terminal set X , the cost of
the solution is c(P [X ]) := c(

(⋃
v∈X E(pv)

)
, where E(pv) is the set of edges

in the path pv. The cost of the algorithm on set X is EP←D[c(P [X ])]. Since
any spanning tree induces an equivalent collection of paths, this solution space
is more expressive, and as such, algorithms in this class may achieve stronger
performance guarantees. We show that this more general class of algorithms has
the same asymptotic lower bound as the class of algorithms that are restricted
to output a spanning tree.

1.1 Previous Work and Our Results

A systematic study of universal algorithms was initiated by Jia et al. [12], who
gave O(log4 n/ log logn)-approximate universal algorithms for both the Steiner
tree problem and the TSP. Their algorithms were deterministic and returned
a single tree and tour respectively. The authors also noted that results of [2,5]
on probabilistically embedding general metrics into tree metrics imply random-
ized O(log n)-approximate universal algorithms for these problems. Using prop-
erties of the embeddings of [5], Gupta et al.[7] gave deterministic O(log2 n)-
approximate universal algorithms for both problems.
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Jia et al. [12] observe that a lower bound for online Steiner tree algorithms
implies a lower bound for universal Steiner tree algorithms; thus, following the
result of Imase and Waxman [11], one obtains a lower bound of Ω(logn) for any
universal Steiner tree algorithm. It is not hard to see that the [11] lower bound
also holds for algorithms returning a collection of vertex-to-root paths. Jia et
al. [12] explicitly leave lower bounds for the universal TSP as an open problem.
Hajiaghayi et al. [9] make progress on this by showing an Ω

(
6
√

logn/ log logn
)

lower bound for universal TSP; this holds even in the two dimensional Euclidean
metric space. [9] conjecture that for general metrics the lower bound should be
Ω(log n); in fact, they conjecture this for the shortest path metric of a constant
degree expander. Very recently, this conjecture was proven by Gorodezky et al.
[6]; we discuss and compare this particular result and ours at the end of this
subsection.

When the metric space has certain special properties (for instance if it is the
Euclidean metric in constant dimensional space), Jia et al. [12] give an improved
universal algorithms for both Steiner tree and TSP, which achieves an approx-
imation factor of O(log n) for both problems. Furthermore, if the size of the
terminal set X is k, their approximation factor improves to O(log k) – a signif-
icant improvement when k � n. This leads to the question whether universal
algorithms exist for these problems whose approximation factors are a non-trivial
function of k alone. A k-approximate universal Steiner tree algorithm is trivial;
the shortest path tree achieves this factor. This in turn implies a 2k-approximate
universal TSP algorithm. Do either of these problems admit an o(k)-approximate
algorithm? The constructions of [11] achieving a lower bound of Ω(logn) for uni-
versal Steiner tree require terminal sets that are of size nΩ(1), and do not rule
out the possibility of an O(log k)-approximation in general. In fact, for many
network optimization problems, an initial polylog(n) approximation bound was
subsequently improved to a polylog(k) approximation (e.g., sparsest cut [13,14],
asymmetric k-center [18,1], and more recently, the works of Moitra et al. [16,17]
on vertex sparsifiers imply such a result for other many cut and flow problems).
It is thus conceivable that a polylog(k)-approximation could be possible for the
universal algorithms as well.

We prove Ω(log n) lower bounds for the universal TSP and the Steiner tree
problem, even when the algorithm returns vertex-to-root paths for the latter (The-
orems 2 and 1). Furthermore, the size of the terminal sets in our lower bounds
is Θ(log n), ruling out any o(k)-universal algorithm for either of these problems.
Private vs universal algorithms. The study of differentially private algorithms for
combinatorial optimization problems is much newer, and the paper by Gupta
et al. [8] gives a host of private algorithms for many optimization problems.
Since any universal algorithm is a differentially private algorithm with ε = 0,
the above stated upper bounds for universal algorithms hold for differentially
private algorithms as well. For the Steiner tree problem and TSP, though, no
better differentially private algorithms are known. Talwar, one of the authors
of [8], recently posed an open question whether a private O(1)-approximation
exists for the Steiner tree problem, even if the algorithm is allowed to use a more
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general solution space, namely, return a collection of vertex-to-root paths, rather
than Steiner trees [19].

We observe that a simple but useful converse relation holds between universal
and private algorithms: “strong” lower bounds for universal algorithms implies
lower bounds for differentially private algorithms. More precisely, suppose we can
show that for any universal algorithm for the Steiner tree problem/TSP, there
exists a terminal set X , such that the probability that a tree/tour drawn from
the distribution has cost less than α times the optimal cost is exp(−ε|X |) for a
certain constant ε. Then we get an Ω(α) lower bound on the performance of any
ε-differentially private algorithm for these problems. (Corollary 1). Note that this
is a much stronger statement than merely proving a lower bound on the expected
cost of a universal algorithm. The expected cost of a universal algorithm may
be Ω(α), for instance, even if it achieves optimal cost with probability 1/2, and
α times the optimal cost with probability 1/2. In fact, none of the earlier works
mentioned above [11,12,9,6] imply strong lower bounds. The connection between
strong lower bound on universal algorithms and lower bounds for differentially
private algorithms holds for a general class of problems, and may serve as a
useful tool for establishing lower bounds for differentially private algorithms
(Section 3).

All the lower bounds we prove for universal Steiner trees and TSP are strong
in the sense defined above. As corollaries, we get lower bounds of Ω(log n) on
the performance of differentially private algorithms TSP and the Steiner tree
problem, even when the algorithm returns a collection of paths. This answers the
question of Talwar [19] negatively. (Corollaries 1 and 2).

The metric spaces for our lower bounds on universal Steiner tree and TSP are
shortest path metrics on constant degree expanders. To prove the strong lower
bounds on distributions of trees/tours, it suffices, by Yao’s lemma, to construct
a distributions on terminal sets such that any fixed tree/tour pays, with high
probability, an Ω(logn) times the optimum tree/tour’s cost on a terminal set
picked from the distribution. We show that vertices on a sufficiently long random
walk suffices in the Steiner tree case, while for TSP, we choose the client set from
two independent random walks.
Comparison of our results with [6]: As mentioned above, Gorodezky et al. [6]
obtain an Ω(logn) lower bound for universal TSP. Their result also gives anΩ(k)
lower bound on the performance of a universal TSP algorithm where k is the
number of terminals. Although [6] do not address universal Steiner tree problem
directly, the Ω(k) lower bound for universal TSP implies an Ω(k) lower bound
for universal Steiner tree as well, only when the algorithm returns spanning trees.
However, this doesn’t work for algorithms that return collections of vertex-to-
root paths. Our result gives the first Ω(k) lower bound for the universal Steiner
tree problem when the algorithm is allowed to return a collection of vertex-to-
root paths.

Furthermore, even though our approach is somewhat similar, our proofs are
simpler and the results are stronger in that we prove that the probability any
randomized algorithm pays o(logn) times the optimum for a certain subset is ex-
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ponentially small in the size of the client set. As explained earlier, these stronger
lower bounds are crucial to our technique for proving privacy lower bounds. In
particular, to our knowledge, no lower bounds for differentially private Steiner
tree (even for weaker algorithms returning spanning trees instead of vertex-to-
root paths) and TSP can be deduced from results of [6].
Organization. In Section 2, we establish anΩ(log n) lower bound for the univer-
sal Steiner tree problem and the universal TSP. As mentioned above, the lower
bound for the Steiner tree problem is for a more general class of algorithms
which return a collection of paths instead of a single tree. The lower bound es-
tablished are strong in the sense defined earlier, and thus give an Ω(logn) lower
bound for private Steiner tree as well as private TSP. We formalize the connec-
tion between strong lower bounds for universal problems and approximability of
differentially private variants in Section 3. Finally, in interest of space, certain
proofs have been omitted from the abstract and can be found in the full version
of the paper [3].

2 Lower Bound Constructions

The metric spaces on which we obtain our lower bounds are shortest path metrics
of expander graphs. Before exhibiting our constructions, we state a few known
results regarding expanders that we use. An (n, d, β) expander is a d regular, n
vertex graph with the second largest eigenvalue of its adjacency matrix β < 1.
The girth g is the size of the smallest cycle and the diameter Δ is the maximum
distance between two vertices. A t-step random walk on an expander picks a
vertex uniformly at random, and at each step moves to a neighboring vertex
uniformly at random.

Lemma 1. [15] For any constant k, there exist (n, d, β) expanders, called Ra-
manujan graphs, with d ≥ k, β ≤ 2√

d
, girth g = Θ(log n/ log d), and diameter

Δ = Θ(log n/ log d).

Lemma 2. (Theorem 3.6, [10]) Given an (n, d, β) expander, and a subset of
vertices B with |B| = αn, the probability that a t-step random walk remains
completely inside B is at most (α+ β)t.

Lemma 3. (Follows from Theorem 3.10, [10]) Given an (n, d, β) expander, a
subset of vertices B with |B| = αn, and any γ, 0 ≤ γ ≤ 1, the probability that a
t-step random walk visits more than γt vertices in B is at most 2t · (α+ β)γt.

2.1 Steiner Tree Problem

We consider a stronger class of algorithms that are allowed to return a distribu-
tion D on collections of paths P := {pv : v ∈ V }, where each pv is a path from v
to the root r. As stated in the introduction, this class of algorithms captures as
a special case algorithms that simply return a distribution on collection of span-
ning trees, since the latter induces a collection of paths. We prove the following
theorem.
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Theorem 1. For any constant ε > 0 and for large enough n, there exists a
metric space (V, c) on n vertices such that for any distribution D on collections
of paths, there is a terminal set X of size Θ(log n), such that

Pr
P←D

[
c(P [X ]) = o

(
logn
1 + ε

)
optST (X)

]
≤ 1

2
exp(−ε|X |) (1)

At a high-level, the idea underlying our proof is as follows. We choose as our
underlying graph a Ramanujan graph G, and consider the shortest path metric
induced by this graph. We show that for any fixed collection P of vertex-to-
root paths, a terminal set generated by a random walk q of length Θ(log n) in
G has the following property with high probability: the edges on q frequently
“deviate” from the paths in the collection P . These deviations can be mapped
to cycles in G, and the high-girth property is then used to establish that the cost
of the solution induced by P is Ω(log n) times the optimal cost. Before proving
Theorem 1, we establish the following corollaries of it.

Corollary 1. (a) There is no o(log n)-approximate universal Steiner tree algo-
rithm. (b) There is no o(k)-approximate universal Steiner tree algorithm where
k is the size of the terminal set. (c) For any ε > 0, there is no o(logn/(1 + ε))-
approximate private algorithm with privacy parameter ε.

Proof. The proofs of (a) and (b) are immediate by fixing ε to be any constant.
The universal algorithm pays at least Ω(logn) times the optimum with high
probability, thus giving a lower bound of Ω(logn) on the expected cost. To see
(c), consider a differentially private algorithmA with privacy parameter ε. Let D
be the distribution on the collection of paths returned by A when the terminal
set is ∅. Let X be the subset of vertices corresponding to this distribution in
Theorem 1. Let P := {P : c(P [X ]) = o( log n

1+ε ) ·optST (X)}; we know PrP←D[P ∈
P ] ≤ 1

2 exp(−ε|X |). Let D′ be the distribution on the collection of paths returned
by A when the terminal set is X . By the definition of ε-differential privacy, we
know that PrP←D′ [P ∈ P ] ≤ exp(ε · |X |) · ( 1

2 exp(−ε|X |)) ≤ 1/2. Thus with
probability at least 1/2, the differentially private algorithm returns a collection
of path of cost Ω

(
log n
1+ε

)
· optST (X), implying the lower bound.

Note that the statement of Theorem 1 is much stronger than what is needed to
prove the universal lower bounds. The proof of part (c) of the above corollary
illustrates our observation that showing strong lower bounds for universal prob-
lems imply lower bounds for privacy problems. This holds more generally, and
we explore this more in Section 3. We now prove Theorem 1.
Proof of Theorem 1: Consider an (n, d, β) expander as in Lemma 1 with
degree d ≥ 2K(1+ε), where K is a large enough constant. The metric (V, c) is the
shortest path metric induced by this expander. The root vertex r is an arbitrary
vertex in V . We now demonstrate a distribution D′ on terminal sets X such that
ε|X | ≤ C0 logn, for some constant C0, and for any fixed collection of paths P ,

Pr
X←D′

[
c(P [X ]) = o

(
logn
1 + ε

)
optST (X)

]
≤ 1

2
exp(−C0 logn). (2)
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The lemma below is essentially similar to Yao’s lemma [20] used for establish-
ing lower bounds on the performance of randomized algorithms against oblivious
adversaries; its proof is omitted.

Lemma 4. Existence of a distribution D′ satisfying (2) proves Thm 1.

The distribution D′ is defined as follows. Recall that the girth and the diameter
of G are denoted by g and Δ respectively, and both are Θ

(
logn
log d

)
. Consider a

random walk q of t-steps in G, where t = g/3, and let X be the set of distinct
vertices in the random walk. This defines the distribution on terminal sets. Note
that each X in the distribution has size |X | = O(log n/ log d). We define C0

later to be a constant independent of d, and thus since d is large enough, ε|X | ≤
C0 logn.

Fix a collection of paths P . Since we use the shortest path metric of G, we may
assume that P is a collection of paths in G as well. Let (v, v1) be the first edge
on the path pv, and let F := {(v, v1) : v ∈ V } be the collection of all these first
edges. The following is the crucial observation which gives us the lower bound.
Call a walk q = (u1, . . . , ut) on t vertices good if at most t/8 of the edges of the
form (ui, ui+1) are in F , and it contains at least t/2 distinct vertices.

We are now ready to complete the proof using the lemma below.

Lemma 5. Let G be an (n, d, β) expander where d is a large constant (≥ 2100,
say) and β = 2√

d
. Suppose we mark an arbitrarily chosen subset of n edges in G

as bad. Then the probability that a t step random walk contains at most t/8 bad
edges and covers at least t/2 distinct vertices is at least (1− d−Ω(t)).

Lemma 6. Let q be a good walk of length t = g/3 and let X be the set of distinct
vertices in q. Then c(P [X ]) = Ω(|X |g).
Proof. Let X ′ be the vertices in X which do not traverse edges in F in the
random walk q. Thus |X ′| ≥ |X | − 2t/8 ≥ |X |/2. We now claim that c(P [X ′]) ≥
|X ′|g/3 which proves the lemma. For every u ∈ X ′, let p′u be the first g/3 edges
in the path pu (if pu’s length is smaller than g/3, p′u = pu). All the p′u’s are vertex
disjoint: if p′u and p′v intersect then the union of the edges in p′u, p

′
v and the part of

the walk q from v to u contains a cycle of length at most g contradicting that the
girth ofG is g. Thus, c(P [X ′]), which is at least c(

⋃
u∈X′ p′u) ≥ |X ′|g/3 ≥ |X |g/6.

Call the set of edges F bad; note that the number of bad edges is at most n.
Lemma 5 implies that the probability a t-step random walk is good is at least
(1− d−Ω(t)). Observe that this expression is (1− exp(−C0 logn)) for a constant
C0 independent of d. Furthermore, whenever q is a good walk, the set of distinct
vertices X in q are at least t/2 in number; therefore optST (X) ≤ t+Δ = Θ(|X |)
since one can always connect X to r by travelling along q and then connecting
to r. On the other hand, Lemma 6 implies that c(P [X ]) = Ω(|X |g) = Ω( log n

log d ) ·
optST (X) = Ω( log n

1+ε ) · optST (X), by our choice of d. This gives that

Pr
X←D′

[c(P [X ]) ≤ o
(

logn
1 + ε

)
optST (X)] ≤ 1

2
exp(−C0 logn)



Optimal Lower Bounds for Universal and Differentially Private Steiner Trees 83

where C0 is independent of d. Thus, D′ satisfies (2), implying, by Lemma 4,
Theorem 1. �

2.2 Traveling Salesman Problem

We now show an Ω(log n) lower bound for the traveling salesman problem. In
contrast to our result for the Steiner tree problem, the TSP result is slightly
weaker result in that it precludes the existence of o(log n)-approximate private
algorithms for arbitrarily small constant privacy parameters only.

We remark here that a lower bound for universal TSP implies a similar lower
bound for any universal Steiner tree algorithm which returns a distribution on
spanning trees. However, this is not the case when the algorithm returns a col-
lection of paths; in particular, our next theorem below does not imply Theorem
1 even in a weak sense, that is, even if we restrict the parameter ε to be less
than the constant ε0.

Theorem 2. There exists a metric space (V, c) and a constant ε0, such that for
any distribution D on tours σ of V , there exists a set X ⊆ V of size Θ(log n)
such that

Pr
σ←D

[c(σX) = o(log n) · optTSP (X)] ≤ 1
2

exp(−ε0|X |)

At a high level, the idea as before is to choose as our underlying graph a Ra-
manujan graph G, and consider the shortest path metric induced by this graph.
We show that for any fixed permutation σ of vertices, with high probability a
pair of random walks, say q1, q2, has the property that they frequently alternate
with respect to σ. Moreover, with high probability, every vertex on q1 is Ω(log n)
distance from every vertex in q2. The alternation along with large pairwise dis-
tance between vertices of q1 and q2 implies that on input set defined by vertices
of q1 and q2, the cost of the tour induced by σ is Ω(log n) times the optimal
cost.

As stated in the Introduction, Gorodezky et al. [6] also consider the shortest
path metric on Ramanujan expanders to prove their lower bound on universal
TSP. However, instead of taking clients from two independent random walks,
they use a single random walk to obtain their set of ‘bad’ vertices. Seemingly, our
use of two random walks makes the proof easier, and allows us to make a stronger
statement: the RHS in the probability claim in Theorem 2 is exponentially small
in |X |, while [6] implies only a constant. This is not sufficient for part (c) of the
following corollary.

As in the case of Steiner tree problem, we get the following corollaries of the
above theorem.

Corollary 2. (a) There is no o(log n)-approximate universal TSP algorithm.
(b) There is no o(k)-approximate universal TSP algorithm where k is the size
of the terminal set. (c) There exists ε0 > 0 such that there is no o(log n)-
approximate private algorithm with privacy parameter at most ε0.
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3 Strong Universal Lower Bounds Imply Privacy Lower
Bounds

Suppose Π is a minimization problem whose instances are indexed as tuples
(I,X). The first component I represents the part of the input that is accessible
to the algorithm (and is public); for instance, in the Steiner tree and the TSP
example, this is the metric space (V, c) along with the identity of the root.
The second component X is the part of the input which is either unknown
beforehand, or corresponds to the private input. We assume that X is a subset
of some finite universe U = U(I). In the Steiner tree and TSP example, X is
the set of terminals which is a subset of all the vertices. An instance (I,X) has
a set of feasible solutions S(I,X), or simply S(X) when I is clear from context,
and let S :=

⋃
X⊆U S(X). In the case of Steiner trees, S(X) is the collection

of rooted trees containing X ; in the case of TSP it is the set of tours spanning
X ∪ r. Every solution S ∈ S has an associated cost c(S), and opt(X) denotes
the solution of minimum cost in S(X).

We assume that the solutions to instances of Π have the following projection
property. Given any solution S ∈ S(X) and any X ′ ⊆ X , S induces a unique
solution in S(X ′), denoted by πX′(S). For instance, in case of the Steiner tree
problem, a rooted tree spanning vertices ofX maps to the unique minimal rooted
tree spanning X ′. Similarly, in the TSP, an ordering of vertices in X maps to the
induced ordering of X ′. In this framework, we now define approximate universal
and differentially private algorithms.

An α-approximate universal algorithm for Π takes input I and returns a dis-
tribution D over solutions in S(U) with the property that for any X ⊆ U ,
ES←D[c(πX(S))] ≤ α · opt(I,X). An α-approximate differentially private al-
gorithm with privacy parameter ε for Π takes as input (I,X) and returns a
distribution DX over solutions in

⋃
Y⊇X S(Y ) that satisfies the following two

properties. First, for all (I,X), ES←DX [c(πX(S))] ≤ α · opt(I,X). Second, for
any set of solutions F and for any pair of sets X and X ′ with symmetric differ-
ence exactly 1, we have

exp(−ε) · Pr
S←DX′

[S ∈ F ] ≤ Pr
S←DX

[S ∈ F ] ≤ exp(ε) · Pr
S←DX′

[S ∈ F ]

It is easy to see that any α-approximate universal algorithm is also an α-
approximate differentially private algorithm with privacy parameter ε = 0; the
distribution DX := D for every X suffices. We now show a converse relation:
lower bounds for universal algorithms with a certain additional property imply
lower bounds for private algorithms as well. We make this precise.

Fix ρ : [n] → [0, 1] to be a non-increasing function. We say that an (α, ρ)
lower bound holds for universal algorithms if there exists I with the following
property. Given any distribution D on S(U), there exists a subset X ⊆ U such
that

Pr
S←D

[c(πX(S)) ≤ α · opt(I,X)] ≤ ρ(|X |) (3)
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We say that the set X achieves the (α, ρ) lower bound. It is not hard to see that
when ρ is a constant function bounded away from 1, an (α, ρ) lower bound is
equivalent to an Ω(α) lower bound on universal algorithms.

Theorem 3. Suppose there exists a (α, ρ) lower bound for universal algorithms
for a problem Π. Then any ε-private algorithm for Π with
ε ≤ ε0 := infX 1

|X| ln
(

1
2ρ(|X|)

)
has an approximation factor of Ω(α).

Proof. Let I be an instance that induces the (α, ρ) lower bound. Consider the
output of a differentially private algorithm A with privacy parameter ε < ε0,
on the input pair (I, ∅). Let D be the distribution on the solution set S. We
first claim that all S in the support of D lie in S(U). Suppose not and suppose
there is a solution S ∈ S(Z) \ S(U), for some Z ⊂ U , which is returned with
non-zero probability. By the definition of differential privacy, this solution must
be returned with non-zero probability when A is run with (I, U), contradicting
feasibility since S /∈ S(U).

Thus, D can be treated as a universal solution for Π . Let X be the set which
achieves the (α, ρ) lower bound for D, and let F := {S ∈ S(X) : c(S) ≤
α · opt(I,X)}. By the definition of the lower bound, we know that PrS←D[S ∈
F ] ≤ ρ(|X |). Let D′ be the output of the algorithm A when the input is (I,X).
By definition of differential privacy, PrS←D′ [S ∈ F ] ≤ exp(ε·|X |)·ρ(|X |) ≤ 1/2,
from the choice of ε. This shows a lower bound on the approximation factor of
any differential private algorithm for Π with parameter ε < ε0.
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Abstract. We study social welfare in one-sided matching markets where
the goal is to efficiently allocate n items to n agents that each have
a complete, private preference list and a unit demand over the items.
Our focus is on allocation mechanisms that do not involve any monetary
payments. We consider two natural measures of social welfare: the ordinal
welfare factor which measures the number of agents that are at least as
happy as in some unknown, arbitrary benchmark allocation, and the
linear welfare factor which assumes an agent’s utility linearly decreases
down his preference lists, and measures the total utility to that achieved
by an optimal allocation.

We analyze two matching mechanisms which have been extensively
studied by economists. The first mechanism is the random serial dictator-
ship (RSD) where agents are ordered in accordance with a randomly cho-
sen permutation, and are successively allocated their best choice among
the unallocated items. The second mechanism is the probabilistic se-
rial (PS) mechanism of Bogomolnaia and Moulin [8], which computes a
fractional allocation that can be expressed as a convex combination of
integral allocations. The welfare factor of a mechanism is the infimum
over all instances. For RSD, we show that the ordinal welfare factor is
asymptotically 1/2, while the linear welfare factor lies in the interval
[.526, 2/3]. For PS, we show that the ordinal welfare factor is also 1/2
while the linear welfare factor is roughly 2/3. To our knowledge, these
results are the first non-trivial performance guarantees for these natural
mechanisms.

1 Introduction

In the one-sided matching market problem1, the goal is to efficiently allocate
n items, I, to n unit-demand agents, A, with each agent a having a complete
and private preference list ≥a over these items. The problem arises in various
applications such as assigning dormitory rooms to students, time slots to users of
a common machine, organ allocation markets, and so on. Since the preferences
� Supported in part by NSF Awards CCF-0635084 and IIS-0904314.
1 In the literature, the problem has been alternately called the house allocation or

assignment problem.
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c© Springer-Verlag Berlin Heidelberg 2011
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are private, we focus on truthful (strategyproof) mechanisms in which agents
do not have an incentive to misrepresent their preferences. One class of such
mechanisms involve monetary compensations/payments among agents. However,
in many cases (e.g., in the examples cited above), monetary transfer may be
infeasible due to reasons varying from legal restrictions to plain inconvenience.
Hence, we focus on truthful mechanisms without money.

A simple mechanism for the one-sided matching problem is the following:
agents arrive one-by-one according to a fixed order σ picking up their most pre-
ferred unallocated item. This is called as a serial dictatorship mechanism. The
random serial dictatorship (RSD) mechanism picks the order σ uniformly at
random among all permutations. Apart from being simple and easy to imple-
ment, RSD has attractive properties: it is truthful, fair, anonymous/neutral, non-
bossy2, and returns a Pareto optimal allocation. In fact, it is the only truthful
mechanism with the above properties [26], and there is a large body of economic
literature on this mechanism (see Section 1.2).

Despite this, an important question has been left unaddressed: how efficient
is this mechanism? To be precise, what is the guarantee one can give on the
social welfare obtained by this algorithm when compared to the optimal social
welfare? As computer scientists, we find this a natural and important question,
and we address it in this paper.

The usual recourse to measure the social welfare of a mechanism is to assume
the existence of cardinal utilities uij of agent i for item j with the semantic that
agent i prefers item j to � iff uij > ui
. A mechanism has welfare factor α if
for every instance the utility of the matching returned is at least α times that
of the optimum utility matching. There are a couple of issues with this. Firstly,
nothing meaningful can be said about the performance of RSD if the utilities are
allowed to be arbitrary. This is because the optimum utility matching might be
arising due to one particular agent getting one particular item (a single edge),
however with high probability, any random permutation would lead to another
agent getting the item and lowering the total welfare by a lot 3. Secondly, the
assumption of cardinal utilities inherently ties up the performance of the algo-
rithm with the ‘cardinal numbers’ involved; the very quantities whose existence
is only an assumption. Rather, what is needed is an ordinal scale of analyzing the
quality of a mechanism; a measure that depends only on the order/preference
lists of the agents rather than the precise utility values.

In this paper, we propose such a measure which we call the ordinal social
welfare of a mechanism. Given an instance of items and agents with their prefer-
ence lists, we assume that there exists some benchmark matching M∗, unknown
to the mechanism. We stress here this can be any matching. We say that the
ordinal welfare factor of a (randomized) mechanism is α, if for any instance and

2 A mechanism is neutral if the allocation of items doesn’t change with renaming, and
is non-bossy if no agent can change his preference so that his allocation remains
unchanged while someone else’s changes.

3 The reader may notice similarities of RSD with online algorithms for bipartite match-
ing problems. We elaborate on the connection in Section 2.2.
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every matching M∗, at least αn agents (in expectation) get an item which they
prefer at least as much as what they get in M∗.

A discussion of this measure is in order. Firstly, the measure is ordinal and
is well defined whenever the utilities are expresses via preference lists. Secondly,
the notion is independent of any ‘objective function’ that an application might
give rise to since it measures the ordinal social welfare with respect to any
desired matching. One disadvantage of the concept is that it is global: it counts
the fraction of the total population which gets better than their optimal match.
In other words, if everyone is ‘happy’ in the benchmark matching M∗, then a
mechanism with the ordinal welfare factor α will make an α fraction of the agents
happy. However if M∗ itself is inefficient, say only 1% of the agents are ‘happy’ in
M∗, then the ordinal welfare factor does not say much. For instance, it does not
help for measures like “maximize number of agents getting their first choice”,
for in some instances, this number could be tiny in any M∗. Furthermore, it
does not say anything about the “fairness” of the mechanism, e.g. a mechanism
may have the ordinal welfare factor close to 1, but there may exists an agent
who is almost always allocated an item that he prefers less than M∗. Finally,
we observe that the ordinal welfare factor of any mechanism, even ones which
know the true preference lists, cannot be larger than 1/2. The reason for this is
that the allocation must be competitive with respect to all benchmark matchings
simultaneously, and it can be seen (Theorem 8) that in the instance when all
agents have the same preference list, if M∗ is chosen to be a random allocation,
then no mechanism can have an ordinal welfare factor better than 1/2. Our first
result is that the ordinal welfare factor of RSD is in fact asymptotically 1/2.

Theorem 1. The ordinal welfare factor of RSD is at least 1/2− o(1).

Till now we have focussed on the RSD mechanism since it is a simple (and essen-
tially unique) truthful mechanism for the matching market problem. A mech-
anism is called truthful if misrepresenting his preference list doesn’t strictly
increase the total utility of an agent, where the utility is defined as the cardi-
nal utility obtained by the agent on getting his allocated item. However, when
the utilities of agents are represented as preference lists, one needs a different
definition. In light of this, Bogomolnaia and Moulin [8] proposed a notion of
truthfulness based on the stochastic dominance: for an agent a random alloca-
tion rule stochastically dominates another if the probability of getting one of
his top k choices in the first rule is at least that in the second, for any k. A
mechanism is called (weakly) truthful if no agent can obtain a stochastically
dominating allocation by misreporting his preference list. With this definition,
the authors propose a mechanism called the probabilistic serial (PS) algorithm,
and prove that it is weakly truthful; the mechanism is illustrated in Section 1.1.

PS and RSD are incomparable and results on RSD do not a priori imply those
for PS, nevertheless, PS has an ordinal welfare factor of 1/2 as well.

Theorem 2. The ordinal welfare factor of PS algorithm is at least 1/2.

Ordinal Welfare Factor and Popular Matchings Our notion of ordinal welfare
factor is somewhat related to the notion of popular matchings [14,3,21]. Given
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preference lists of agents, a matching M is said to be more popular than M ′ if
the number of agents getting strictly better items in M is at least the number
of agents getting strictly better items in M ′. A matching is popular if no other
matching is more popular than it. Thus while comparing a matching M to M ′,
the notion of popular matchings distinguishes between agents that prefer M and
agents that are neutral, unlike in the case of ordinal welfare factor.

It can be easily seen that any popular matching has an ordinal welfare factor
of at least 1/2, however, (a) not every input instance has a popular matching,
and (b) no truthful algorithms are known to compute them when they exist.
A few modified measures such as unpopularity factor, unpopularity margin and
popular mixed matching have also been studied in the literature [22,17,21].

Linear Utilities. We also analyze the performance of RSD and PS mechanisms
when agents’ utilities are linear - arguably, one of the most commonly studied
special case of cardinal utilities. In this model, we assume that the utility for
an agent for his ith preference is n−i+1

n . Observe that any serial dictatorship
mechanism achieves a welfare of at least (n+ 1)/2 since the agent at step t gets
his tth choice or better, giving him a utility of at least (1− (t−1)/n). How much
better does RSD do? Intuitively, one would expect the worst case instance would
be one where each agent gets one of his top o(n) choices; that would make the
optimum value n− o(n). We call such instances as efficient instances since there
is an optimum matching where every one gets their (almost) best choice. We
show that for efficient instances, RSD’s utility is at least 2n

3 − o(n), and there
exists instances where RSD does no better. These bounds hold for PS as well.

Theorem 3. With linear utilities and efficient instances, RSD has linear wel-
fare at least 2/3− o(1), and there exist efficient instances for which this is tight.

Theorem 4. With linear utilities and efficient instances, PS has linear welfare
at least 2/3− o(1), and there exist efficient instances for which this is tight.

The following theorem summarizes our results on general instances, and we refer
the reader to the full version of this paper [6] for its proof.

Theorem 5. On general instances, the linear welfare factors of RSD and PS
algorithms are at least 0.526 and 0.6602 respectively.

Extensions. We consider two extensions to our model and focus on the perfor-
mance of RSD, leaving that of PS as an open direction. In the first, we let the
preference lists be incomplete. The proof of Theorem 1 implies that the ordinal
welfare factor of RSD remains unchanged. For linear utilities, we generalize the
definition as follows: for an agent with a preference list of length �, the ith choice
gives him a utility of (�− i+1)/�. We show that RSD doesn’t perform very well.

Theorem 6. For linear utilities, RSD gets at least Ω̃(n−1/3) fraction of the
social optimum. Furthermore, there are instances, where the welfare of RSD is
at most Õ(n−1/3) fraction of the social optimum.
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In the second extension, we let the demand of an agent be for sets of size K
or less, for some K ≥ 1. Agents now arrive and pick their best ‘bundle’ among
the unallocated items. The ordinal welfare factor of a mechanism is now α if
at least an α fraction of agents get a bundle that is as good (assuming there
is a complete order on the set of bundles) as what they got in an arbitrary
benchmark allocation. We show that RSD has ordinal welfare factor Θ(1/K).

Theorem 7. In the case when each agent has a maximum demand of K items,
the ordinal welfare factor of RSD is Θ(1/K).

1.1 Preliminaries

Utility Models, Truthful Mechanisms, Welfare Factors. As stated above, we con-
sider two models for utilities of agents. In the cardinal utility model, each agent
a has a utility function ua : I → R≥0, with the property that j >a � iff
ua(j) > ua(�). Given a distribution on the matchings, the utility of agent a
is ua(M) :=

∑
M∈M p(M)ua(M(a)), where p(M) is the probability of matching

M . In this paper, we focus on the special case of linear utility model where the
ith ranked item for any agent a gives him a utility of (1− (i− 1)/n). We call an
instance efficient, if there is a matching which matched every agent to an item
in his top o(n) (for concreteness, let’s say this is n1/5) choices. In the ordinal
utility model, each agent a represents his utility only via his complete preference
list ≥a over the items. A mechanism A is truthful if no agent can misrepresent
his preference and obtain a better item. In the cardinal utility model this im-
plies that for all agents a and utility functions ua, u′a, we have ua(M) ≥ ua(M ′)
where M = A(u1, . . . , un) and M ′ = A(u1, . . . , u

′
a, . . . , un). A mechanism has

linear welfare factor of α if for all instances the (expected) sum of linear utilities
of agents obtained from the allocation of the mechanism is at least α times the
optimal utility allocation for that instance. A mechanism has ordinal welfare
factor of α if for all instances, and for all matchings M∗, at least α fraction of
agents (in expectation) get an item at least as good as that allocated in M∗.
The Probabilistic Serial Mechanism. The probabilistic serial (PS) mechanism was
suggested by Bogomolnaia and Moulin [8]. The mechanism fractionally allocates
items to agents over multiple phases, we denote the fraction of the item i al-
located to an agent a by x(a, i). These fractions are such that

∑
a∈A x(a, i) =∑

i∈I x(a, i) = 1 for all agents a and items i. Thus this fractional allocation de-
fines a distribution on integral matchings.Initially, x(a, i) = 0 for every agent a
and item i. We say that an item i is allocated if

∑
a∈A x(a, i) = 1, otherwise we

call it to be available. The algorithm grows x(a, i)’s in phases, and in each phase
one or more items get completely allocated. During a phase of the algorithm,
each agent a grows x(a, i) at the rate of 1 where i is his best choice in the set of
available items. The current phase completes and the new phase starts when at
least one item that was available in the current phase, gets completely allocated.
The algorithm continues until all items are allocated.

We make a few observations about the above algorithm which will be useful in
our analysis: (a) the algorithm terminates at time t = 1, at which time all agents
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are fractionally allocated one item, that is,
∑

i∈I x(a, i) = 1, (b) any phase lasts
for time at least 1/n and at most 1, and (c) by time < j/n for any 1 ≤ j ≤ n,
at most (j − 1) phases are complete.

1.2 Other Related Work

There is a huge amount of literature on matching markets starting with the
seminal paper of Gale and Shapley [13], see [24,25,2] for detailed surveys. The
one-sided matching market design problem was first studied by Hylland and
Zeckhauser [18] who propose a mechanism to find a distribution on matchings
via a market mechanism. Their mechanism returns Pareto optimal, envy-free
solutions, but is not truthful. Zhou [27], showed that there can be no truthful
mechanism which is anonymous/neutral and satisfies ex ante Pareto optimality.
Svensson [26] showed that serial dictatorship mechanisms are the only truthful
mechanisms which are (ex post) Pareto optimal, non bossy, and anonymous.

The study of mechanisms with ordinal utilities for this problem was started
by Bogomolnaia and Moulin[8]. The PS mechanism was proposed in an earlier
paper by Cres and Moulin [11]. Following the work of [8], there was a list of
work characterizing stochastic dominance [1,9], and generalizing it to the case
of incomplete preference lists [20], and to multiple copies of items [10]. The
study of mechanism design without money has also been of recent interest in the
computer science community, see e.g. [23,5,12,16].

2 Ordinal Welfare Factor of RSD and PS Mechanisms

In this section, we prove Theorems 1 and 2. We first show that the ordinal welfare
factor of any mechanism is at most 1/2 in the instance where every agent has
the same preference list.

Theorem 8. If every agent has the same preference list (1, 2, . . . , n), then the
ordinal welfare factor of any mechanism is at most 1/2 + 1/2n.

Proof. A mechanism returns a probability distribution on matchings which we
will interpret as a distribution of permutations. Let D be that distribution. We
choose the benchmark matching M∗ to be a random perfect matching. It suffices
to show that for any fixed permutation σ ∈ D, the expected number of agents
a such that σ(a) ≤ π(a) is (n + 1)/2. Since π is chosen uniformly at random,
the probability that π(a) < σ(a) is precisely (σ(a) − 1)/n, and so the expected
number of happy people for the permutation σ is (n+ 1)/2.

2.1 Ordinal Welfare Factor of RSD

In this section, we prove Theorem 1. Let M∗ be the unknown benchmark match-
ing. We call an agent a dead at time t if he hasn’t arrived yet and all items as
good as M∗(a) in his preference list has been allocated. Let Dt be the expected
number of dead agents at time t. Let ALGt be the expected number of agents who
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get an item as good as their choice in M∗ by time t. From the above definition,
we get

ALGt+1 − ALGt = 1− Dt

n− t (1)

We will now bound Dt from above which along with (1) will prove the theorem.

Lemma 1. Dt ≤ (t+2)(n−t)
n+1 for 1 ≤ t ≤ n.

Before proving the lemma, note that adding (1) for t = 1 to n− 1 gives ALGn −
ALG1 ≥

∑n−1
t=1

(
1− t+2

n+1

)
, implying ALGn− ALG1 ≥ n/2− 2n/n. This proves that

the ordinal welfare factor of RSD is at least 1/2− o(1) proving Theorem 1.

Proof. Let us start with a few definitions. For an item i and time t, let ALLi,t
be the event that item i is allocated by time t. For an agent a and time t, let
LATEa,t be the event that a arrives after time t. The first observation is this: if
an agent a is dead at time t, then the event ALLM(a),t and LATEa,t must have
occurred. Therefore we get

Dt ≤
∑
a∈A

Pr[ALLM(a),t ∧ LATEa,t] (2)

Note that Pr[LATEa,t] is precisely (1− t/n). Also, note that
∑

i∈I Pr[ALLi,t] = t.
This is because all agents are allocated some item. Now suppose incorrectly that
ALLM(a),t and LATEa,t were independent. Then, (2) would give us

Dt ≤ (1− t

n
)
∑
a∈A

Pr[ALLM(a),t] = (1− t

n
)
∑
i∈I

Pr[ALLi,t] =
t(n− t)

n
(3)

which is at most the RHS in the lemma. However, the events are not independent,
and one can construct examples where the above bound is indeed incorrect. To
get the correct bound, we need the following claim.

Claim.

Pr[ALLM(a),t ∧ LATEa,t]
(n− t) ≤ Pr[ALLM(a),t+1 ∧ LATEa,t+1]

(t+ 1)

Proof. This follows from a simple charging argument. Fix a relative order of all
agents other than a and consider the n orders obtained by placing a in the n
possible positions. Observe that if the event ALLM(a),t ∧ LATEa,t occurs at all,
it occurs exactly (n − t) times when a’s position is t + 1 to n. Furthermore,
crucially observe that if the position of a is 1 to t + 1, the item M(a) will still
be allocated. This is because the addition of a only leads to worse choices for
agents following him and so if M(a) was allocated before, it is allocated even
now. This proves that for every (n − t) occurrences of ALLM(a),t ∧ LATEa,t, we
have (t+ 1) occurrences of the event ALLM(a),t+1 ∧ LATEa,t+1. The claim follows
as it holds for every fixed relative order of other agents.
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Now we can finish the proof of the lemma. From Claim 2.1, we get

t+ 1
n− t ·Pr[ALLM(a),t ∧ LATEa,t] ≤ Pr[ALLM(a),t+1]−Pr[ALLM(a),t+1 ∧ LATEa,t+1]

Taking the second term of the RHS to the LHS, adding over all agents, and
invoking (2), we get

t+ 1
n− t ·Dt +Dt+1 ≤ t+ 1 (4)

Using the fact that Dt+1 ≥ Dt − 1 (the number of dead guys cannot decrease
by more than 1), and rearranging, proves the lemma.

2.2 RSD and Online Bipartite Matching

In this section, we highlight the relation between RSD and algorithms for on-
line bipartite matching. In fact, the analysis of RSD above can be seen as a
generalization of online bipartite matching algorithms.

In the online bipartite matching problem, vertices of one partition (think of
them as agents) are fixed while vertices of the other partition (think of them as
items) arrive in an adversarial order. Karp, Vazirani and Vazirani [19] gave the
following algorithm (KVV) for the problem: fix a random ordering of the agents,
and when an item arrives give it to the first unmatched agent in this order. They
proved4 that the expected size of the matching obtained is at least (1−1/e) times
the optimum matching. The KVV theorem can be ‘flipped around’ to say the
following. Suppose each agent has the preference list which goes down its desired
items in the order of entry of items. Then, if agents arrive in a random order and
pick their best, unallocated, desired item, in expectation an (1 − 1/e) fraction
of agents are matched. That is, if we run RSD on this instance (with incomplete
lists), an (1− 1/e) fraction of agents will get an item.

The above result does not a priori imply an analysis of RSD, the reason being
that in our problem an agent a, when he arrives, is allocated an item even if that
item is worse than what he gets in the benchmark matching M∗. This might
be bad since the allocated item could be ‘good’ item for agents to come. In
particular, if the order chosen is not random but arbitrary, the performance of
the algorithm is quite bad; in contrast, the online matching algorithm still has a
competitive ratio of 1/2. Nevertheless, similar techniques prove both the results
and our analysis can be tailored to give a proof of the online bipartite matching
result (See [6] for details).

2.3 Ordinal Welfare Factor of PS

In this section, we prove Theorem 2. We suggest the reader to refer to the
algorithm and its properties as described in Section 1.1. In particular, we will
use the following observation.
4 In 2008, a bug was found in the original extended abstract of [19], but was soon

resolved. See [15,7,4] for discussions and resolutions.
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Observation 1: By time < j/n, for any 1 ≤ j ≤ n, at most (j − 1) items are
completely allocated.

Let M∗ be the unknown benchmark matching. For an agent a, let ta be the time
at which the item M∗(a) is completely allocated. Observe that the probability
agent a gets an item M∗(a) or better is precisely ta, since till this time x(a, i)
increases for items i ≥a M∗(a). Summing up all agents, we see that the ordinal
welfare factor of the PS mechanism is

∑
a ta. The observation above implies at

most (j− 1) agents have ta < j/n. So,
∑

a ta ≥
∑n

j=1(n− j+1)/n ≥ n/2+1/2.
This completes the proof of Theorem 2.

3 Linear Welfare Factor of RSD and PS

In this section, we establish bounds on the linear welfare factor of RSD and PS
mechanisms. We first prove Theorem 3 in two lemmas. Recall that an instance
is called efficient if there exists a matching in which every agent is matched to
an item in his top o(n) choices.

Lemma 2. When the instance is efficient, the linear welfare factor of RSD is
at least (2/3− o(1)).

Proof. The proof follows from Lemma 1. Let Ut denote the expected utility
obtained by time t. Consider the agent coming at time t + 1. If he is not dead
already, then he will get a utility of at least (1 − o(1)) (since the instance is
efficient). If he is dead, then he will get a utility of at least (1 − t/n). This is
because only t items have been allocated and this agent takes an item (t+ 1)th
ranked or higher. Therefore,

Ut+1 − Ut ≥
(

1− Dt

n− t
)
· (1− o(1)) +

Dt

n− t · (1− t/n) ≥ 1− o(1)− t

n
· Dt

n− t

Using Lemma 1, we get Ut+1−Ut ≥ 1−o(1)− t(t+2)
n(n+1) . Summing over all t, we get

that the total utility of RSD is at least (1−o(1))n−(n/3+o(n)) = (2/3−o(1))n.

The above analysis can be modified via a ‘balancing trick’ to give a strictly better
than 50% guarantee for all instances. We refer the reader to [6] for details.

Lemma 3. When the utilities are linear, there exists an efficient instance for
which RSD gets a utility of at most (2/3 + o(1))n.

Proof. Partition n agents and items into t blocks of size n/t each, where t = n1/5.
We denote the jth block of agents and items by Aj and Ij respectively, and they

number from
(

(j−1)n
t + 1

)
to jn

t .
We now illustrate the preference lists of agents. Fix an agent a in block Aj .

Let he be the kth agent in the block, where 1 ≤ k ≤ n/t, i.e. his agent number is
(j−1)n/t+k. A random set of t3 items is picked from each of blocks I1, . . . , Ij−1,
and these form the first (j − 1)t3 items in his preference list, in increasing order
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of item number. The item (j − 1)n/t + k is his ((j − 1)t3 + 1)th choice. His
remaining choices are the remaining items considered in increasing order. This
completes the description of the preference lists of the agents.

Note that if every agent a is assigned the corresponding item with the same
number, then each agent gets one of his top t4 choices, leading to a utility of at
least (1− t4

n ) = 1− o(1). So, the instance is indeed efficient. We now show that
RSD gets utility at most 2n/3 + o(1).

Let σ be a random permutation of the agents. We divide σ into t chunks of
n/t agents, with the jth chunk, Sj , consisting of agents σ( (j−1)n

t + 1) to σ( jnt ).
Note that with high probability (≥ (1 − 1/t3)), we have that for any block Aj

and chunk Si, |Aj ∩ Si| ∈
[
(1− 1

t2 ) nt2 , (1 + 1
t2 ) nt2

]
. Since agents prefer items in

‘higher’ blocks to ‘lower’ blocks, we claim the following.

Claim. With high probability, at least (1− 1
t3 ) fraction of the items in the first i

blocks have been allocated after arrival of first i chunks. (Proof omitted; see [6].)

Now we are ready to analyze RSD. Consider the (i+ 1)th chunk of agents. With
high probability, there are at least n

t2 (1− 1
t2 ) agents from each block A1, . . . , Ai

in Si+1. Since only in/t3 items remain from the first i block of items, at least
in
t2 (1 − 1

t2 ) − in
t3 of these agents must get an item from blocks (i+ 1) or higher.

However, this gives them utility at most (1− in/t
n ) ≥ 1− i/t. That is, the drop in

their utility to what they get in the optimum is at least i/t. Summing the total
drop over all agents and all chunks, we get that the difference between RSD and
the optimum is at least

t∑
i=1

in

t2
(1− 1

t
)
i

t
= (1− o(1))

n

t3

n∑
i=1

i2 = n/3

Therefore, the social welfare of RSD is at most (2/3 + o(1))n.

Linear Welfare Factor of PS Mechanism We establish the lower bound in this
abstract, and the upper bound instance, which is similar to that for RSD, can
be found in [6]. As in the case of RSD, we focus on efficient instances.

Lemma 4. For efficient instance, the linear welfare factor of PS ≥ 2/3− o(1).

Proof. Let oa denote the utility obtained by agent a in the utility optimal match-
ing. Since the instance is efficient, oa = 1− o(1) for all agents a.

Consider the jth phase of PS, and suppose it lasts for time Δj . Observation 1
implies that

∑
j≤
Δj ≥ �/n. Furthermore, in phase j, at least (n− j+1) agents

obtain utility at a rate higher than their utility in the optimal matching. This is
because at most (j − 1) items have been allocated. Also, the remaining (j − 1)
agents are getting utility at a rate at least (1− (j−1)/n) since they are growing
their x(a, i) on their jth choice or better. So, the total utility obtained by PS is
at least

∑n
j=1Δj ·

(
(n− j + 1) · (1 − o(1)) + (j − 1) · (1− j−1

n )
)

which evaluates

to
∑n

j=1Δj

(
n2−(j−1)2

n

)
− o(n)
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The above summation is smallest if Δ1 is as small as possible, modulo which,
Δ2 is as small as possible and so on. Given the constraint on Δj ’s, we get that
this is at least

∑n
j=1

n2−(j−1)2

n2 = 2n/3− o(n).

4 Concluding Remarks

We first give very brief sketches of the proofs of Theorems 6 and 7. Full proofs
can be found in [6].

Incomplete Preference Lists. The ordinal welfare factor of RSD remains
the same, however, the linear welfare factor of RSD drops to Θ̃(1/n1/3). This
is because some agents can have ‘long’ preference lists and some agents have
‘short’ preference lists, and in a random order the long preference list agents can
take away items of the short preference list ones. However, if the lengths of the
preference lists of the ‘long agents’ are ‘too long’, they get an item with high
enough linear utility. The correct balancing argument gives the Θ̃( 1

n1/3 ) factor.

Non-unit demands. Note that a single agent’s choice can disrupt the choices
of K other agents. Therefore, it is not too difficult to construct an example
which shows that the ordinal welfare factor of RSD is O(1/K). On the other
hand, by the time t agents arrive, at most Kt agents are disrupted, and so in a
random permutation the (t+ 1)th agent is unhappy with probability ≤ (K+1)t

n−t .
Integrating, this gives that n

2K − o( nK ) agents are happy in expectation.

To conclude, in this paper we studied the social welfare of two well studied
mechanisms, RSD and PS, for one-sided matching markets. We focussed on two
measures: one was the ordinal welfare factor, and the other was the linear utilities
measure. We performed a tight analysis of the ordinal welfare factors of both
mechanisms, and the linear welfare factor in the case of efficient instances. An
open problem is to perform a tighter analysis of linear welfare factor in general
instances.We think the notion of ordinal welfare factor will be useful for other
problems as well where the utilities are expressed as preference lists rather than
precise numbers. Examples which come to mind are scheduling, voting, and
ranking.
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25. Sönmez, T., Ünver, U.: Matching, allocation, and exchange of discrete resources. In:
Handbook of Social Economics, forthcoming, available at second author’s website

26. Svensson, L.: Strategyproof allocation of indivisible goods. Social Choice and Wel-
fare 16, 557–567 (1999)

27. Zhou, L.: On a conjecture by gale about one-sided matching problems. Journal of
Economic Theory 52, 123–135 (1990)

http://arxiv.org/abs/1104.2964


Primal-Dual Schema and Lagrangian Relaxation

for the k-Location-Routing Problem�

Tim Carnes1 and David Shmoys2

1 Sloan School of Management, MIT
tcarnes@mit.edu

2 School of Operations Research & Information Eng. & Dept. of Computer Science,
Cornell University

shmoys@cs.cornell.edu

Abstract. The location-routing problem arises in the context of pro-
viding integrated support for logistics in a number of transportation
settings, where given a set of requests and potential depot locations, one
must simultaneously decide where to locate depots as well as how to
route tours so that all requests are connected to an open depot. This
problem can be formulated either with specific costs incurred for choos-
ing to open each depot, or with an upper bound k on the number of open
depots, which we call the k-location-routing problem.

We develop a primal-dual schema and use Lagrangian relaxation to
provide a 2-approximation algorithm for the k-location-routing problem;
no constant performance guarantee was known previously for this prob-
lem. This strengthens previous work of Goemans & Williamson who gave
a 2-approximation algorithm for the variant in which there are opening
costs, but no limit on the number of depots. We give a new primal-dual al-
gorithm and a strengthened analysis that proves a so-called Lagrangian-
preserving performance guarantee. In contrast to the results of Jain &
Vazirani for the uncapacitated facility location and k-median problems,
our results have the surprising property that our performance guarantee
for the k-location-routing problem matches the guarantee for the version
in which there are depot opening costs; furthermore, this relies on a sim-
ple structural property of the algorithm that allows us to identify the
critical Lagrangian value for the opening cost with a single execution of
the primal-dual algorithm, rather than invoking a bisection search.

1 Introduction

The location-routing problem arises in the context of providing integrated sup-
port for logistics in a number of transportation settings. For example, in provid-
ing an air ambulance service, Ontario-based company Ornge must transport a
number of non-emergency requests to transfer patients. These requests are typ-
ically known at least a day in advance, which provides ample time to determine
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a cost-effective solution. To serve the requests, a fleet of planes is based at a
set of airports, each of which may be used to pick-up and drop-off patients. An
important decision is to determine the optimal locations at which to establish
bases when providing such a service. For simplicity, we model each request as a
single point, which must be included in some tour containing an open base, and
the cost of a solution is the cost of opening the specified bases plus the length
of all the tours. The general location-routing problem is to find the minimum-
cost solution. Alternatively, Ornge may wish to constrain that at most k bases
are opened, which we call the k-location-routing problem. This pair of problems
also arise in other applications, such as deciding where to position postal fleet
locations, or in Ornge’s day-to-day planning operations, where they may wish
to restrict that at most k planes are used for the coming day’s transfers.

Our main result is a primal-dual 2-approximation algorithm for the k-location-
routing problem, which is the best known approximation for this problem. Al-
though no previous constant-factor approximation algorithm appears to have
been known for this problem, we note that a simple technique does yield a 4-
approximation. Consider a graph with nodes corresponding to the bases and
requests, with edges between all pairs of nodes that have costs corresponding to
the metric distance. We will add a dummy root node with an edge to each base
node of cost zero. The optimal solution must connect all requests to bases, so
the cost of the minimum spanning tree in this graph is a lower bound on the
optimal value. Also, the optimal solution opens at most k bases, and we can
assume that there is only one tour out of each open base, since otherwise we
could combine tours by shortcutting and only reduce the cost. This means that
when taking the induced subgraph of the optimal solution on just the request
nodes, there are k connected components; thus, taking the cheapest set of edges
between requests to form k components is also a lower bound, and we can find
this set with an abbreviated run of Kruskal’s algorithm. If we take this set of
edges along with the edges in the minimum spanning tree above, we connect
each of the k components to a base, and the cost is within a factor of two of
optimal. By shortcutting, we can form tours from each of the k components, and
hence have a performance guarantee of 4.

The location-routing problem has been extensively studied in the context of
finding exact solutions, including work by Laporte et al. [4,6,7,8,9]. One may also
refer to Laporte [5] and Min et al. [10] for surveys of previous work. There is a
recent paper of Berger, Coullard & Daskin [1] that finds exact solutions through
branch-and-price style techniques. Here there are additional constraints placed
on the type of tours allowed, such as limiting their total distance, which allows
the total number of variables to remain manageable for a natural IP formulation
given small inputs. The general location-routing problem can be approximated
using the primal-dual method of Goemans & Williamson [2] for network design
problems. However, this approach does not extend to the case where there must
be at most k open bases.

The two variants that we have discussed, the general location-routing problem
and the k-location-routing problem, can be seen as analogues of two other classic
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optimization problems: the uncapacitated facility location problem, and the k-
median problem, respectively. For this latter pair of problems, we again must
select depots to open, and connect each demand point to an open depot, but
instead of connecting the requests by a tour, each request is connected directly to
the depot (i.e., by a “star” graph, rather than a cycle). However, for this latter
pair, we again have one problem for which there are specified depot opening
costs (the uncapacitated facility location problem) and one problem in which we
simply have an explicit constraint of k on the number of depots allowed to be
opened.

Jain & Vazirani [3] showed a fundamental connection between the design of
approximation algorithms for the k-median problem and for the uncapacitated
facility location problem. Jain & Vazirani designed an approximation algorithm
for the k-median problem, by first designing an algorithm for the uncapacitated
facility location problem with a stronger form of performance guarantee, which
they called Lagrangian-preserving. This property is that the approximation fac-
tor they find is still valid even if they first scale the cost of the facilities in the
solution found by the approximation factor. The essence of the connection be-
tween the problems is very simple: to find a solution to the k-median problem,
suppose that we can specify a uniform opening cost λ for each depot such that
the algorithm for the uncapacitated facility problem opens exactly k depots; this
gives a feasible solution to the k-median problem, and the Lagrangian-preserving
property would allow the performance guarantee of one problem to apply to the
other. Unfortunately, for the primal-dual algorithm of Jain & Vazirani, such a
value λ need not exist, and this required some additional technicalities that re-
sulted in their 3-approximation algorithm for the uncapacitated facility problem
degrading to a 6-approximation algorithm for the k-median problem.

Goemans & Williamson [2] gave a 2-approximation algorithm for the general
location-routing problem (as part of their more general framework of results
for network design problems), but their guarantee is not Lagrangian-preserving.
We modify the primal-dual algorithm of Goemans & Williamson to obtain a
Lagrangian-preserving 2-approximation algorithm, which allows us to use the
framework of Jain & Vazirani to obtain an approximation algorithm for the k-
location-routing problem. Furthermore, our primal-dual algorithm does have the
property that we can always find a common opening cost λ for which k depots are
opened, so that we obtain an approximation algorithm for the k-location variant
without any loss in the performance guarantee. Finally, whereas Jain & Vazirani
needed a bisection search to hone in on the critical range for λ, we can compute
the precise value of λ with one execution of our primal-dual algorithm. In fact,
we compute a frontier of good solutions for each possible common opening cost
for depots.

2 The k-Location-Routing Problem

When considering finding an optimal routing, it may be the case that we could
do much better if the bases were in different locations. The ideal location for
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the bases will depend on how the routing is formed, which suggests we should
decide the base locations and the routing simultaneously, and leads to the k-
location-routing problem. Here we are given a set of bases and a set of requests,
that are all contained in a metric space. We must choose at most k bases to
open and include each request in a tour that contains an open base. The cost
of a solution is simply the metric distance of all the tours. We will consider two
different modifications to this problem. First, we consider a fixed-charge model,
where instead of restricting there to be k open bases, we will allow any number of
bases to be opened, but each base now has an opening cost. Second, in the routing
with trees version, instead of having all the requests included in some tour, we
simply require that each request be connected to an open base in a tree. We will
begin by considering the location-routing problem with fixed-charge bases and
routing with trees. A previous result of Goemans & Williamson [2] considers this
problem, but we provide a stronger result which yields a Lagrangian-preserving
performance guarantee. This allows us to lift this result to the k-location-routing
problem, but again where we are routing with trees. Finally, we show how to
take our routing with trees results, and produce results for routing with tours.
This can be easily done by simply shortcutting the tree and losing a factor of 2,
but we show that this can be done with the same performance guarantee. For
all the variants we consider, we are able to show a performance guarantees of 2.

Routing with Trees, Fixed-Charge Bases In the input for the location-routing
problem, we have a set of potential bases, B, and set of requests R, that coexist
in a metric space. Each base, i ∈ B has an opening cost of fi. When routing
with trees, we simply require that each request has a path to an open base,
which can be modeled as a Steiner tree problem on the following graph. For
each base i ∈ B and request j ∈ R we will have an edge {i, j} with cost equal
to the metric distance between i and j. Similarly for any two distinct requests,
j, k ∈ R, we will have an edge {j, k} with cost equal to the metric distance
between the two requests. Finally, we will have a root node, r, and for each base
i ∈ B we have an edge {r, i} with cost fi. Thus the vertex set of this graph
is V = {r} ∪ B ∪ R and we define the following three edge sets. Root edges :
Er := {{r, i} : i ∈ B}; base edges : EB := {{i, j} : i ∈ B, j ∈ R}; request edges :
ER := {{j, k} : j, k ∈ R, j = k}. The edge set of our graph is simply the union
of the three edge sets defined above: E = Er ∪ EB ∪ ER. Each of the nodes
corresponding to a base can be thought of as a Steiner node, so the task is to
choose a set of edges such that for each request j ∈ R there exists a path from r
to j. We can formulate this as the following integer program, where δ(S) is the
set of all edges with exactly one endpoint in S.

optLR := min
∑
e∈E

cexe (LR-IP)

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S (1)

xe ∈ {0, 1} ∀e ∈ E,
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where S := {S ⊆ B ∪R : S ∩R = ∅}. Now suppose A is a collection of disjoint
subsets in S. Let us extend our notation so that δ can be applied to a set of
subsets with the meaning δ(A) :=

⋃
S∈A δ(S). We now propose the following

constraint:
∑

e∈δ(A)

xe ≥ |A| ∀A ∈ D, (2)

where D is the set of all collections of pairwise disjoint subsets in S. The proof
of validity for this constraint is straightforward, and omitted due to space re-
strictions.

Lemma 1. The constraints given by (2) are valid; any solution to (LR-IP) sat-
isfies (2).

Note that (2) implies (1) by taking A to be each singleton set of a set in S. Since
(2) is valid then clearly the following constraint is also valid.

2
∑

e∈δ(A)∩ER

xe +
∑

e∈δ(A)\ER

xe ≥ |A| ∀A ∈ D.

We will demonstrate a primal-dual schema based on the LP that makes use of
the above constraints.

optLRP := min
∑
e∈E

cexe (LR-P)

s.t. 2
∑

e∈δ(A)∩ER

xe +
∑

e∈δ(A)\ER

xe ≥ |A| ∀A ∈ D (3)

xe ≥ 0 ∀e ∈ E.

The dual of this LP is as follows:

optLRD := max
∑
A∈D
|A|yA (LR-D)

s.t. 2
∑
A∈D:
δ(A)�e

yA ≤ ce ∀e ∈ ER (4)

∑
A∈D:
δ(A)�e

yA ≤ ce ∀e ∈ E \ ER (5)

yA ≥ 0 ∀A ∈ D.

The primal-dual schema proposed uses the formulation above, and will build up
a set of edges, F , from which the final solution will be chosen. Initially, this set
F is empty. At each point in the algorithm, we will maintain a set of clusters,
C, which simply corresponds to the set of connected components in the graph
when restricting the edge set to F . Since F is initially empty, the set of clusters
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C is initially the set of all singleton nodes. We will say a cluster is active if it
contains a request node and does not contain the root node, and otherwise it
will be inactive. We will maintain A to be the set of all active clusters in C, so
A := C ∩ S, and initially A is the set of all singleton request nodes. All dual
variables are implicitly set to zero to begin. The algorithm will always increase
at unit rate the value of precisely one dual variable at any moment, until there
are no longer any active clusters. In this sense we will keep a notion of time,
which is equivalent to the sum of the current values of the dual variables.

At each point in time, we will increase the dual variable associated with A
until the dual constraint for one of the edges becomes tight, at which point the
edge is added to F , and the two corresponding clusters are merged. If several
edges become tight simultaneously, then we are free to process the edges in an
arbitrary order provided that we process request edges in preference to base
edges. We continue this process until A is empty, so that there will no longer be
any active clusters.

After all clusters have become inactive (by virtue of all request nodes being
connected to the root) we begin the cleanup phase. If the root edge {r, i} ∈ F
for some i ∈ B, then we say that base i is paid for. We now simply remove all
base edges {i, j} for i ∈ B, j ∈ R for which base i is not paid for. After removing
all such base edges, we will call the resulting subset of edges F ′.

Algorithm 1. Primal-Dual for Location-Routing

y, x ← 0
F ← ∅
C ← {{v} : v ∈ V }
A ← {{j} : j ∈ R}
while |A| > 0 do

Increase yA until a dual constraint becomes tight for edge e
F ← F ∪ {e}
Remove clusters for endpoints of e from C and add the union
A ← C ∩ S

F ′ ← F \ {{i, j} ∈ EB : i ∈ B, {r, i} 
∈ F}; /* clean-up */

We now make a few general observations about the behavior of the primal-
dual algorithm. Note that initially all request edges and base edges are present
in δ(A) and none of the root edges are. The rate at which the costs of the request
and base edges are contributed to by the dual variables remain constant as long
as these edges are in δ(A). Thus for any request edge e ∈ ER, either e will be
added to F by time ce/2 or else the endpoints of e will become part of the same
cluster at this time or before. Similarly any base edge e ∈ EB will be added to
F by time ce or else the corresponding base and request will have become part
of the same cluster at or before this time. The root edges are only contributed
to once the corresponding base becomes part of an active cluster. For each base
i ∈ B, let s(i) be the cost of the minimum-cost edge connecting this base to a
request node. Hence s(i) := min{d(i, j) : j ∈ R}.
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Lemma 2. For each base i ∈ B, if there is a request node j ∈ R such that
the base edge {i, j} ∈ F , then d(i, j) = s(i) and no other base edges in F are
adjacent to i.

Proof. Fix a base i ∈ B. Let j ∈ R be a request for which d(i, j) = s(i) and let
k ∈ R be any other request. By the definition of s(i) we know d(i, k) ≥ d(i, j), and
since d is a metric we have d(j, k) ≤ d(i, j) + d(i, k) ≤ 2d(i, k). Since we choose
request edges in preference to base edges, this means that before i connects to
any request, that request will be contained in the same cluster as request j.
Hence i can only connect to at most one request. Furthermore, if {i, k} is still
eligible to be added to F , then {i, j} must be as well, so the only way {i, k}
could be added is if d(i, k) ≤ d(i, j) = s(i). Therefore if any base edge adjacent
to i is added to F , it must have cost s(i), and at most one such edge can be
added. ��
The above lemma implies that either a base i ∈ B will not get paid for, or else
it will get paid for by time s(i) + fi. This means that the primal-dual schema
is equivalent to performing Kruskal’s algorithm on the same graph, but with
modified edge weights c′e, where

c′e =

⎧⎪⎨
⎪⎩
ce/2, if e ∈ ER
ce, if e ∈ EB
s(i) + fi, if e = {r, i} ∈ Er

The only difference is that when running Kruskal’s algorithm all of the nodes
will end up connected, so we may have unpaid for bases that have a root edge
but no base edge. If we adjust our definition of a paid for base to be only those
bases with degree 2, then running Kruskal’s algorithm is equivalent.

Lemma 3. The set of edges F ′ comprises a feasible solution to (LR-IP).

Proof. The only edges that have been removed from F are the base edges cor-
responding to bases that are not paid for. This means there is no root edge
connecting to these bases, and by Lemma 2 we know there is only one base edge
adjacent to these bases. Therefore any unpaid for base with an adjacent edge in
F must be a leaf in the final tree formed by F . Removing these edges simply
disconnects these bases without affecting the connectivity of any of the request
nodes to the root. ��
Lemma 4. For the final solution F ′ returned by the primal-dual algorithm, and
any A corresponding to a positive dual variable, the following condition holds:
|δ(A) ∩ F ′| = |A|.
Proof. Let I be the set of singleton bases that are paid for but that are not
present in any of the clusters in A, and let Cr denote the cluster containing
the root at the time when the dual variable associated with A was increased.
Construct a graph H where the nodes correspond to the clusters in I and A as
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well as Cr , and the edges correspond to those in δ(A ∪ I ∪ {Cr}) ∩ F ′. We will
first argue that the graph H is a tree.

We know that all the edges in H correspond to edges that are also in F .
Furthermore all the edges that make each cluster in H a connected component
are also in F . The final edge set F is acyclic, and since F ′ ⊆ F then we know
that H is acyclic as well. Additionally, F ′ is a feasible solution, so every request
node has a path to the root, and every base that is paid for also connects to
the root. This implies that H is connected. Since H is connected and acyclic, it
must be a tree.

Since there are |I| + |A|+ 1 nodes, there must be |I|+ |A| edges in the tree
H . However, this is including edges that go between two inactive clusters, which
are precisely the edges not counted in δ(A) ∩ F ′. The only inactive clusters are
Cr and those in I, and the only edges between these clusters are the root edges
to each paid for base in I. Therefore

|δ(A) ∩ F ′| = |δ(A ∪ I ∪ {Cr}) ∩ F ′| − |I| = |I|+ |A| − |I| = |A|. ��

Theorem 1. The final solution, F ′, returned by the algorithm satisfies
∑

e∈F ′∩ER

ce + 2
∑

e∈F ′\ER

ce ≤ 2
∑
A∈D
|A|yA,

which implies it is a Lagrangian-preserving 2-approximation algorithm.

Proof. An edge is only added to F if its corresponding dual constraint becomes
tight, so we have that

∑
e∈F ′∩ER

ce + 2
∑

e∈F ′\ER

ce = 2
∑
e∈F ′

∑
A∈D:
δ(A)�e

yA = 2
∑
A∈D

yA|δ(A) ∩ F ′| = 2
∑
A∈D
|A|yA,

where the equalities are derived by reversing the order of summation and then
applying Lemma 4. ��

Routing with Trees, k-Bases The k-location-routing problem has the same con-
straints as the location-routing problem, but now instead of paying an opening
cost for each base in the solution, we are simply limited to opening at most
k bases, for some specified k. In this section we will continue considering the
case where each request is only required to have a path to an open base (and
hence the root). The changes needed in (LR-IP) to model this case correspond
to setting the cost of each root edge to zero, and instead imposing a constraint
that at most k root edges are used. Because the primal-dual algorithm shown
is Lagrangian-preserving, we can use it to approximate the k-location-routing
problem.

For any input to the k-location-routing problem, we can set the cost of each
base to zero and apply the primal-dual algorithm. If we get lucky and end up
with k or fewer bases in the final solution, then by the same analysis as before we
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can see that the solution is a 2-approximation for the k-location-routing problem
as well. For the rest of this section we will assume that this case does not occur.

We now wish to determine a value λ such that if we make all bases have the
same cost λ, then the primal-dual algorithm will open exactly k bases. If such a
value can be found, then this too would imply a 2-approximate solution to the k-
location-routing problem. This can be seen by letting x∗e be the optimal solution
to the k-location-routing problem with trees, then we have by Theorem 1

∑
e∈F ′∩ER

ce + 2
∑

e∈F ′∩EB

ce + 2kλ ≤ 2
∑

e∈ER∪EB

cex
∗
e + 2λ

∑
e∈Er

xe ≤ 2
∑

e∈ER∪EB

cex
∗
e + 2kλ,

and subtracting the 2kλ term from both sides we see that cost of the tours in
the primal-dual solution is within a factor of 2 of the cost of the tours in the
optimal solution.

To determine the appropriate value of λ, we would first like to determine for
each request edge e = {u,w} ∈ ER, which values of λ will result in edge e being
part of the final solution. We know that if edge e gets added to F , it does so at
time ce/2, and otherwise u and w must have already become part of the same
cluster by this time. Nodes u and w will become part of the same cluster only if
there is a path between u and w where each edge has c′e value at most ce/2. For
some edges, satisfying this condition will be dependent on the value of λ chosen,
and for others it will not. We can determine the sensitivity of each edge on the
value of λ by performing the following procedure.

We will run the primal-dual algorithm by setting each base cost to be infinite.
Naturally no root edge will become tight in this setting, so we will stop the
algorithm once there are only two components left in C corresponding to r and
B∪R. For each active cluster S ∈ A we will associate a value v(S) corresponding
to the lowest s(i) value for any base i contained in the cluster. If the cluster
contains no bases then v(S) will simply be equal to the current time, and hence
will continue to grow until a base node is added to the cluster. When a request
edge e = {u,w} ∈ ER is added to the solution, and Su and Sw correspond to
the clusters containing u and w, we set s(e) = max{v(Su), v(Sw)}. Once the
algorithm stops we set λk to be the largest value for which there are at most
|R| − k candidate edges with ce/2 − s(e) < λk. We will show that λk is the
value that the base cost should be set to in order to force our algorithm to open
exactly k bases. More precisely

λk := max{λ : |{e ∈ ER : ce/2− s(e) < λ}| ≤ |R| − k}.
Lemma 5. Request edge e ∈ ER is added to the solution if ce/2− s(e) < λ, and
if ce/2 = s(e) then this edge is added to the solution regardless of the value of λ.
If ce/2 − s(e) = λ > 0 then e can be placed in the solution or not by choice of
tie-breaking.

Proof. If λ > ce/2− s(e), then the only bases that will be paid for by time ce/2
are those for which s(i) < s(e). By the way in which s(e) was set, we know that
there is at least one endpoint of e that no such base can reach by time ce/2.
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Thus there is an active cluster S with e ∈ δ(S) up until time ce/2, and so e will
be added to the solution.

If ce/2 = s(e), then since request edges are processed before base edges, we
know that for at least one of the endpoints of e the associated cluster contained
no bases. This means that no base can reach this endpoint by time ce/2. So
again there is an active cluster S with e ∈ δ(S) up until time ce/2, and so e will
be added to the solution.

If ce/2 − s(e) = λ > 0, then for one of the endpoints of e the associated
cluster contains a base that gets tight at time ce/2. The other endpoint is either
already inactive or else is in the same situation. We did not specify a preference
between processing request edges and root edges. So either we add edge e first
in which case it is part of the solution, or else we add the root edge (possibly
root edges) first, in which case both endpoints become inactive and e is not part
of the solution. ��

Since no request edge is ever deleted from the solution, then each connected
component in the subgraph induced by R must have precisely one paid for base
in the solution connecting it to the root. If λk = 0, then this means we will
add more than |R| − k request edges, and thus open fewer than k bases, even
when there are no base-opening costs. This solution is a 2-approximation the
k-location-routing problem, since we open fewer than k bases and no portion
of the cost is attributed to opening the bases. Otherwise, if we set λ = λk > 0
then by tie-breaking appropriately we can ensure that exactly |R| − k request
edges are added to the solution. Hence the number of bases opened is precisely
|R|−(|R|−k) = k as desired, and as shown above this implies a 2-approximation
as well.

Getting Tours From Trees with No Approximation Loss If we wanted each re-
quest to be connected to a base through a cycle as opposed to tree, we could take
the solution produced by the primal-dual algorithm and duplicate each edge, and
then using shortcutting produce a disjoint set of cycles, each containing a base
while not more than doubling the cost. Note that it is unnecessary to duplicate
the root edges, since these edges simply represent the cost of each base, and are
not required to be part of a cycle.

We can actually do better and not lose a factor of 2 in the approximation
guarantee. Let us start with the same underlying graph, but make the cost of all
root edges equal to half of the cost of the corresponding base. We say a solution
to the location-routing problem with cycles consists of a set of edges such that

– In the induced subgraph on R, the selected edges form a disjoint set of paths.
– The selected edges connect each such path’s endpoints to some base, forming

a cycle. We consider a singleton request node a path of zero-length, and there
must be two copies of an edge leading from such a node to a base.

– There must be two copies selected of each root edge leading to a base that
was used to connect at least one path.
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The cost of this solution is the cost of the edges selected, which corresponds to
the cost of each base used (since the root edge is half the cost, but we took two
copies) and the cost of all edges in the cycles.

Lemma 6. Any solution to the location-routing problem with cycles satisfies the
inequality

2
∑

e∈δ(A)∩ER

xe +
∑

e∈δ(A)\ER

xe ≥ 2|A|, ∀A ∈ D.

Proof. The proof will be quite similar to the proof of Lemma 1, but in this case we
now require the coefficient of 2 for each request edge. Consider a feasible solution
to the location-routing problem with cycles, x, and let F be the corresponding
set of edges. Note that now xe will equal 2 for some edges e. Fix any A ∈ D.
Again we will define two subsets of F , but slightly differently than before. Let
F1 := (δ(A) ∩ F ) \ ER; F2 := (δ(A) ∩ F ) ∩ ER.

Now initialize A′ = A. For each edge e ∈ F2, let us merge the subsets in
A′ corresponding to the endpoints of e in an iterative process. When we have
finished we will have that |A| − |A′| = |F2|. After merging the subsets, we will
have that the only edges left in δ(A′)∩F are those in F1, though this time there
may be edges leading between components of A′. If we consider the subgraph
consisting of the nodes R and the edges F ∩ ER then we know that it consists
of a disjoint set of paths. Each cluster in A′ must contain at least one of these
disjoint paths in its entirety, since there are no longer any edges in ER leading
out of any clusters.

For each cluster in A′, pick one of the disjoint request paths it contains.
This path must have its endpoints connect to some base. If the base is not in
the cluster, then this mean there must be two edges in F1 associated with this
cluster (or two copies of one edge in the case of a singleton request path). If the
base is in the cluster, then we root edge must be in F1, and the solution must
select two copies of it. In either case, there are at least two edges (or two copies
of one edge) in F1 associated with each cluster. Furthermore we associate each
copy of an edge in F1 with the cluster containing the request if it is a base node,
and with the cluster containing the base if it is a root node. This means the
association is a bijection and hence

2
∑

e∈δ(A)∩ER

xe +
∑

e∈δ(A)\ER

xe = 2|F2|+
∑
e∈F1

xe = 2|F2|+ 2|A′| ≥ 2|A|. ��

We now have a LP relaxation to the location-routing problem with cycles that
is identical to (LR-P), except that the right-hand side of each constraint is now
2 instead of 1. This means the corresponding dual is identical to (LR-D), except
that the objective function coefficient of each dual variable is now 2 instead of 1
as well. Thus the final dual solution that the algorithm ends up with is feasible
for this new dual program as well, and the corresponding solution has twice the
objective function cost. In other words, any feasible solution to (LR-D) has value
at most half of the optimal solution with cycles, but only when the costs of the
root edges have been set to half the base-opening costs.
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Set c′e = ce/2 for each e ∈ Er and c′e = ce for each e ∈ EB ∪ ER. Now if
we run the algorithm with the costs c′e, duplicate each edge in the solution F ′

and then shortcut as necessary, we produce a solution to the location-routing
problem with cycles, which we will denote as x. Then we have

∑
e∈E\Er

c′exe + 2
∑
e∈Er

c′exe ≤ 2
∑

e∈F ′\Er

c′e + 4
∑

e∈F ′∩Er

c′e.

From Theorem 1 we know that this cost is at most 4 times the dual cost, which
as argued above is at most 2 times the optimal cost. Thus this procedure is a
Lagrangian-preserving 2-approximation algorithm for the location-routing prob-
lem with cycles, and so can also be used to produce a 2-approximation for the
k-location-routing problem with cycles.
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Abstract. We consider the problem of scheduling a set of resources
over time. Each resource is specified by a set of time intervals (and the
associated amount of resource available), and we can choose to schedule it
in one of these intervals. The goal is to maximize the number of demands
satisfied, where each demand is an interval with a starting and ending
time, and a certain resource requirement. This problem arises naturally
in many scenarios, e.g., the resource could be an energy source, and
we would like to suitably combine different energy sources to satisfy
as many demands as possible. We give a constant factor randomized
approximation algorithm for this problem, under suitable assumptions
(the so called no-bottleneck assumptions). We show that without these
assumptions, the problem is as hard as the independent set problem.
Our proof requires a novel configuration LP relaxation for this problem.
The LP relaxation exploits the pattern of demand sharing that can occur
across different resources.

1 Introduction

We consider the problem of scheduling jobs when the resources required for
executing the jobs have limited availability. We use the terms “resource” and
“machine” interchangeably. In the scheduling literature it is typical to assume
that the machines are always available for scheduling and the goal is to schedule
jobs so as to satisfy all the constraints of correct scheduling and optimize some
objective function like makespan, flowtime, completion time, etc. This is in stark
contrast to our scenario, where the machines are not available at all the times.
Each machine specifies a time window within which it is available, along with
a duration for which the machine can be used for. We generalize such a setting
by allowing each machine to specify a list of intervals when it is available and
the scheduler can pick only one interval for each machine. Therefore, the main
challenge is to judiciously schedule the machines in one of their allowed intervals
so as to maximize the number of jobs that can be executed in the chosen intervals.

The setting of limited machine (or resource) availability arises naturally in
several scenarios. As an example, consider a workforce management scenario,
where the employees specify different intervals of the day when they are avail-
able and the scheduler can only pick one of their intervals (an employee can
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have only a single shift in a day). The goal of the scheduler is to pick a shift
for each employee such that a maximum number of jobs can be processed (jobs
are specified by intervals). The problem framework is quite general and cap-
tures many other situations arising in sensor networks, cloud computing, energy
management, distributed computing and micro-grid scheduling (see, eg. [12]).

Problem Definition: We define the problem of resource scheduling for through-
put maximization (RSTM) as follows. We assume that time is divided into discrete
timeslots {1, 2, . . . , L}. We are given a set of demands (alternatively, jobs) D.
Each demand j ∈ D has a starting timeslot s(j), ending timeslot e(j), bandwidth
requirement ρ(j) and profit p(j). There arem resources (alternatively, machines)
P1, . . . ,Pm. Each resource Pi is described by a set of resource-intervals. Each
resource-interval I ∈ Pi has a starting timeslot s(I), ending timeslot e(I), and
offers a bandwidth h(I). Let P = ∪iPi, (the set of all the resource-intervals –
note that P could be a multiset).

A feasible solution S selects a subset of resource-intervals R ⊆ P and a sub-
set of demands J ⊆ D satisfying the following constraints: (i) at most one
resource-interval is selected for each resource Pi; (ii) at any timeslot t, the sum
of bandwidth requirements of jobs from J active at t is no more than the sum of
the bandwidths offered by the resource-intervals of R active at t. The goal is to
maximize the throughput; namely, sum of profits of jobs in J . We assume that
starting times, ending times, bandwidth requirements of demands, bandwidths
of resource-intervals are integers.

The RSTM problem is a generalization of the well-studied unsplittable flow
problem (UFP) on line. In the UFP on line graphs, we are given a set of jobs; each
job is specified by an interval, a bandwidth requirement and profit. For each
timeslot, the input specifies the bandwidth available at the timeslot. The goal is
to select a maximum profit subset of jobs such that the bandwidth constraints
are not violated. The UFP is captured by the special case of the RSTM problem,
wherein each resource consists of only a single resource-interval.

In addition to addressing the issue of selecting jobs as in the UFP, the RSTM
problem also poses the challenge of scheduling the resources. However, the two
tasks are interdependent, since the choice of resource scheduling critically deter-
mines the set of jobs that can be selected and hence, the profit of the solution.
Thus, a key aspect of any algorithm for the RSTM problem lies in handling the
two tasks simultaneously.

Our Results: We can show that the RSTM problem generalizes the maximum
independent set problem, which is NP-hard to approximate within a factor of
n1−ε, for any ε > 0 [15].

We study a restricted version of the RSTM problem, wherein the input instance
satisfies the following two constraints: (i) the length of the longest job is at most
the length of the shortest resource-interval (i.e., maxj∈D �(j) ≤ minI∈P �(I),
where �(j) = e(j)− s(j) + 1 and �(I) = e(I)− s(I) + 1); (ii) the bandwidth re-
quirement of any job is at most the minimum bandwidth offered by the resource-
intervals (i.e., maxj∈D ρ(j) ≤ minI∈P h(I)). Borrowing terminology from the UFP
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literature, we refer to the pair of constraints as the no-bottleneck assumption
(NBA). Note that the second condition is analogous to the following condition
required by known constant factor-approximation algorithms for UFP on the line
– the maximum bandwidth requirement of any demand is at most the smallest
“edge capacity”.

Our main result is a constant factor randomized approximation algorithm for
the RSTM problem, under the NBA. We can show that dropping either one of the
NBA constraints leads to the RSTM problem becoming as hard as the maximum
independent set problem.

We now briefly discuss the main ideas behind our algorithm. A more detailed
overview appears in Section 2. It can be shown that a natural LP relaxation for
the problem has an unbounded integrality gap. Our constant factor approxima-
tion algorithm has two components: (i) we first show that any optimum solution
can be transformed into a different solution having certain desirable structural
properties (a so called “star solution”), with only a constant factor loss in profit;
(ii) we next show that the optimum star solution can be approximated within
constant factors in polynomial time – this is accomplished by applying random-
ized rounding to a suitable configuration LP.

Related Work: As discussed earlier, the RSTM problem is related to the UFP
on a line. Calinescu et al. [5] and independently, Bar-Noy et al. [3] considered
the uniform case of the UFP, where the bandwidth available is uniform across
all time slots and gave a 3-approximation algorithm. The generalization where
the bandwidth available can vary has received considerable attention. Constant
factor approximation algorithms were known, under the NBA [8,9]. Bansal et
al. [2] presented a quasi-PTAS for the same problem, without assuming NBA;
in a recent breakthrough, Bonsma et al. [4] designed a (7 + ε)-approximation
algorithm for this problem.

Prior work has addressed an extension of the UFP on line with “bag con-
straints” on the demands. The bag constraint for a demand essentially specifies
a set of intervals in which the demand can potentially be scheduled and the
scheduler is allowed to pick at most one of these intervals. Bar-Noy et al. [3]
presented a 5-approximation for this problem, when the bandwidth available
is uniform across all timeslots. For the general case with arbitrary bandwidth
availability, an O(log(hmax

hmin
))-approximation algorithm is known [7]; a constant

factor approximation algorithm is known under the NBA assumption [6]. In our
problem, the bag constraints are applied on the resources.

The model of limited machine availability, although rare, has been studied
in the operations research literature [14,1]. But most of these works do not
consider the restriction of having to pick only one of the many intervals in which
a machine is potentially available. Motivated by applications in energy savings
in data center operations, Khuller et al. [13] consider the following model. We
are given a set of machines, where each machine has an activation cost and a
limited budget is available for activating the machines. The goal is to activate
the machines within the given budget and minimize the makespan of scheduling
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the jobs. They give a bi-criteria approximation algorithm for this problem. But,
note that once a machine is activated, it is available at all the times.

2 Outline of Our Algorithm

We begin with a simplifying assumption that ρ(j) = 1 for all jobs j and h(I) is
an integer for all resource-intervals I. We will relax the assumption in Section 5.

Fix a feasible solution S. We may also assume that for each job j (picked
by S) and each timeslot t where j is active, the job is processed by a single
resource-interval; we assume that the solution also specifies the resource-interval
which processes j at each timeslot. We say that a resource-interval I processes
a job j, if there is some timeslot t where I processes j.

As a warmup to our main result, let us first consider a simpler problem.
The new problem, called single resource-interval RSTM, is the same as the RSTM
problem, except that any job selected by the solution must be processed fully
by a single resource-interval chosen by the solution. In contrast, a solution for
the RSTM problem only needs to satisfy the bandwidth constraints, which means
that a job may be jointly processed by multiple resource-intervals. It is easy to
approximate the single resource-interval RSTM problem within a constant factor.
The proof is omitted.

Theorem 1. The single resource-interval RSTM problem can be approximated in
polynomial time within a factor of 2.

We now turn our attention to the RSTM problem. As discussed earlier, the main
issue is that a job may be processed by multiple resource-intervals. However,
we will show that the optimum solution opt can be transformed into another
solution with only a constant factor loss in profit such that any job in the trans-
formed solution is processed by at most two resource-intervals; call such a so-
lution a 2-solution. Similarly, a solution is said to be a 1-solution if each job is
processed by a single resource-interval. For a 2-solution X , let J (1)(X ) denote
the jobs processed by a single resource-interval and similarly, let J (2)(X ) denote
those processed by two resource-intervals. The set J (2)(X ) can be represented
as a graph wherein the resource-intervals selected by X form the vertices and
an edge is drawn between two resource-intervals, if they jointly process some
job (all such jobs can be labeled on the edge). We call this the sharing graph of
X and denote it G(X ). We will show that with only a constant factor loss in
profit, the solution X can be transformed further into two solutions S∗1 and S∗2 ,
where S∗1 is a 1-solution and S∗2 is a 2-solution whose sharing graph is a union of
disjoint stars (a star consists of a head – or center – and a set of leaves connected
to it). Furthermore, we show that in the solution S∗2 , each resource-interval I
will process at most h(I) jobs from J (2)(S∗2 ). We call such a solution S∗2 as a
height-bounded star solution. Theorem 2 summarizes the above transformations.
Corollary 1 allows us to effectively approximate S∗1 .

Theorem 2. There exist a 1-solution S∗1 and a height-bounded star solution S∗2
such that profit(S∗1 ) + profit(J (2)(S∗2 )) ≥ profit(opt)/c, for a constant c.
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Corollary 1. There exists a polynomial time algorithm that outputs a solution
S′ such that profit(S′) ≥ profit(S)/2, for any 1-solution S.
Later, we shall design an algorithm for approximating the profit of S∗2 within
constant factors and prove the following theorem (see Section 4).

Theorem 3. There exists a polynomial time algorithm that outputs a solution
S′ such that profit(S′) ≥ profit(J (2)(S))/c, for any height-bounded star solu-
tion S, where c is some constant.

The overall algorithm will simply output the best of the two solutions output
by Corollary 1 and Theorem 3. It can be seen that the output solution Sout
has profit at least a constant factor of the profit of both S∗1 and J (2)(S∗2 ). This
implies that profit(Sout) is at least a constant factor of the profit of opt.

We now briefly outline the ideas behind the proof of Theorem 3. We write a
configuration LP for finding the optimal height-bounded star solution. The LP
essentially has exponentially many variables, one for each star. The separation
oracle for this LP relies on finding the best density star solution – such a problem
turns out to be a special case of submodular maximization subject to a matroid
and two knapsack constraints [10]. Finally, we show that a simple randomized
rounding algorithm with greedy updates gives a good integral solution.

3 Height-Bounded Star Solutions: Proof of Theorem 2

We will first show that the optimum solution opt can be transformed into a new
2-solution S with only a constant factor loss in profit. The proof exploits the
first condition of the NBA (regarding the lengths of jobs). Furthermore, S will
satisfy some additional properties.

3.1 Transformation to 2-Solutions

Lemma 1. There exists a 2-solution S having profit at least profit(opt)/4.
Furthermore, the solution S has the following properties:

– For any job j ∈ J (2)(S) processed by two resource-intervals I1, I2, where
s(I1) ≤ s(I2), we have that [s(j), e(j)] is not contained in either [s(I1), e(I1)]
and [s(I2), e(I2)] (i.e., s(I1) < s(j) < s(I2) ≤ e(I1) < e(j) < e(I2)); more-
over, j is processed by I1 till time s(I2) and by I2 after this point of time.

– The total number of jobs from J (2)(S) processed by a resource-interval I is
at most 2 · h(I).

Proof. We start by first proving a claim. Let X be a set of jobs. For a time t,
let At(X) denote the set of all jobs from X active at time t, i.e., the jobs j for
which s(j) ≤ t ≤ e(j).
Claim. Given a set of jobs X , there exists a subset of jobs Y ⊆ X such that for
all time t, |At(Y )| ≤ 2 and |At(Y )| ≥ min{1, |At(X)|}.
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Proof. We initialize a set Y to ∅. First select the job j ∈ X with the smallest
value of s(j). In case there are more than one such jobs, choose one that has the
largest value of e(j). Add the selected job j to Y . We now repeatedly add jobs
as follows. Let j denote the last job that was added to Y . Let J be the set of
jobs j′ for which e(j′) > e(j) and s(j′) ≤ e(j). If J is not empty, add the job
with the largest e(j′) value in J to Y . In case J is empty, consider the smallest
time greater than e(j) which is the start time of some job – let t denote this
time. Let J ′ be the set of jobs which start at time t. Add the job in J ′ with
largest end time to Y . This process is repeated as long as possible.

We now show that the set Y constructed above has the claimed property.
Clearly, at every time t, |At(Y )| ≥ min{1, |At(X)|}. Now suppose that there
are three jobs j1, j2 and j3 (added in this order to Y ) active at some time t.
Consider the stage when j3 was added to Y . As j1 and j2 were already present
in Y , we have that e(j3) > e(j2). Therefore, s(j3) ≤ e(j1) < e(j3). Now consider
the stage when j2 was added. Notice that j3 overlaps with j1 (and hence, also
with the last job added to Y ). Moreover, j3 extends further than j2. Hence, j3
should have been added instead of j2. This proves the claim. ��

We now complete the proof of the lemma. For each resource-interval I selected
by opt, we replace it by h(I) new resource-intervals of unit capacity each –
the start and end times of these new resource-intervals are same as those of I
respectively. We call these resource-intervals slices of I. Let B denote the set of
all slices obtained in this way. For a subset of slices L ⊆ B, let At(L) denote the
set of slices active at time t. Using an argument similar to that of Claim 3.1,
we can find a subset of slices L ⊆ B such that at each time |At(L)| ≤ 2 and
|At(L)| ≥ min{1, |At(B)|}. This is achieved using the same procedure as in the
proof of Claim 3.1.

Let J be the set of all jobs selected by opt. We next apply Claim 3.1 twice:
apply the claim on the set J to get a set of jobs Y1 and then apply the claim
again on the set J−Y1 to get a set of jobs Y2. Let Y = Y1∪Y2. The set Y satisfies
the property that at each time |At(Y )| ≤ 4 and |At(Y )| ≥ min{2, |At(J)|}.

At any time t, at most four jobs from Y are active. This means that the set
Y can be colored with four colors, i.e., Y can be partitioned into four subsets
such that no two jobs from the same subset are active at the same time. Let
Y ′ be the subset having the maximum profit among these four subsets. Then,
profit(Y ′) ≥ profit(Y )/4. We now assign jobs in Y ′ to the slices in L. Consider
a job j ∈ Y ′. Since this job is part of the feasible solution S, At(B) ≥ 1 for all
t ∈ [sj , ej]. Therefore, for all such time t, |At(L)| ≥ 1. Among the slices � ∈ L
active at s(j), pick the slice having the largest e(�). If � fully contains j, then
simply assign j to �. Otherwise (i.e., if e(j) > e(�)), there must be some slice
�′ ∈ L which is active at time e(�) and e(�′) > e(�). Note that s(�′) > s(j)
because of our choice of �. Moreover, e(�′) > e(j) because of the no bottleneck
assumption. Thus, j can be assigned to � and �′. In this case, we say that � is the
left interval used by j and �′ is the right interval used by j. In this way, we are
able to assign every job in Y ′ to at most two slices (and hence, the corresponding
resource-intervals) in L.
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Now, delete all the jobs in Y from J and all the slices in L from B – let J ′

and B′ denote these new sets respectively. We note that the jobs in J ′ “fit” in
the slices of B′, i.e., at any time t, |At(J ′)| ≤ |At(B′)|. This follows from the
fact that at any time t, |At(Y )| ≥ min{|At(L)|, |At(J)|}. We can now apply the
entire procedure iteratively with these new sets J ′ and B′. We collect all the
sets Y ′ generated in each of these iterations and take Z to be the union of these
sets. We see that profit(Z) ≥ profit(J)/4 and each job j ∈ Z is assigned to
at most two resources.

Each resource-interval I is used as a left interval by at most h(I) jobs and as
a right interval by at most h(I) jobs. Note that all the properties stated in the
lemma are satisfied. ��

Let S be the solution guaranteed by Lemma 1. The lemma implies that the
jobs serviced by the solution S can only be of two types – J (1)(S), which are
processed by exactly one resource-interval in S; and J (2)(S), which are serviced
by two resource-intervals selected in S. Let C be the resource-intervals selected by
S. A job j ∈ J (2)(S) uses two resource-intervals I1, I2 ∈ C as stated in Lemma 1
– let I1 be the left interval used by j and I2 be the right interval used by j. We
also use the terminology that I1 (or I2) services j as its left (or right) interval.
We call a solution X to be nice, if the following properties hold: (i) X satisfies
the conditions of Lemma 1; (ii) every resource-interval I selected by X services
all jobs in J (2)(X ) as either their left or their right interval only; (iii) the number
of jobs processed by a resource-interval I from J (2)(X ) is at most h(I).

Lemma 2. Let S be a solution as guaranteed by Lemma 1. Then there exists a
nice solution S′ such that profit(S′) ≥ profit(J (1)(S)) + profit(J (2)(S))/4.

Proof. We independently label each resource-interval I selected by S as either
L or R with probability half. We process a job j ∈ J (2)(S) if and only if its left
interval gets label L and its right interval gets label R. Clearly, such a solution
has the desired properties. The second statement in the lemma follows from the
proof of Lemma 1. Each resource-interval I in S acts as left interval (or right
interval) for at most h(I) jobs. The jobs in J (1)(S) are retained in S′. Now, note
that a job j ∈ J (2)(S) gets selected in S′ with probability 1

4 . Thus, the expected
profit of S′ is at least profit(J (1)(S)) + profit(J (2)(S))/4. This shows the
existence of the claimed solution. ��

3.2 Transformation to Height-Bounded Star Solutions

By Lemma 2, we can assume the existence of a nice solution S having profit at
least a constant factor of the optimum solution. The sharing graph G(S) is a
bipartite graph with the two sides being denoted L(S) and R(S) – the resource-
intervals which serve jobs as their left interval and those which serve jobs as
their right interval respectively. Our next result shows that the sharing graph
G(S) can be assumed to be a star (with only a constant factor loss in profit).
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Lemma 3. Given a nice solution S, there is another solution S′ ⊆ J (2)(S) such
that S′ is a height-bounded star solution and the profit of S′ is at least half of
the profit of J (2)(S).

Proof. Let C be the resource-intervals selected by S. We first reduce the capacity
h(I) of a resource-interval in C to the number of jobs in J (2)(S) that it services
(Lemma 2 shows that this quantity is at most h(I)). Also note that this is just
for the sake of studying the property of the solution S. We now prove that
it is possible to process the jobs in J (2)(S) in C such that the sharing graph
is a forest. To this end, we explicitly give a way of packing these jobs in the
resource-intervals in S.

We arrange the jobs j1, . . . , jn in ascending order of s(j), i.e., s(j1) ≤ s(j2) ≤
· · · ≤ s(jn). We arrange the resource-intervals in L(S) in ascending order of
e(I) values, i.e., e(IL1 ) ≤ e(IL2 ) · · · ≤ e(ILl ), where l = |L(S)| and L(S) =
{IL1 , . . . , ILl }. Similarly, we arrange the resource-intervals inR(S)={IR1 , . . . , IRr },
r = |R(S)| in ascending order of s(I) values. For an integer c, 1 ≤ c ≤ n, let
L(c) be the unique integer i satisfying h(IL1 ) + · · ·+ h(ILi−1) < c ≤ h(IL1 ) + · · ·+
h(ILi−1) + h(ILi ). Define R(c) similarly for the resource-intervals in R(S).

Claim. For 1 ≤ c ≤ n, the job jc can be processed by the pair of resource-
intervals (ILL(c), I

R
R(c)).

Proof. Let a denote L(c) and b denote R(c). We need to prove that jc is contained
in the span of ILa and IRb ; this means we have to prove: (i) s(jc) ≥ s(ILa ); (ii)
e(jc) ≤ e(IRb ); (iii) s(IRb ) ≤ e(ILa ) + 1 (i.e., there should not exist a timeslot –
a gap – between the ending timeslot of ILa and the starting timeslot of IRb ). We
prove these below:

– Suppose, for the sake of contradiction, s(jc) < s(ILa ). Then for any c′ ≤ c,
s(jc′) < s(ILa ). The no bottleneck assumption implies that e(jc′) < e(ILa ) and
so, e(jc′) < e(ILa′) for all a′ ≥ a. But then S must have scheduled jc′ using one
of the resource-intervals in {IL1 , . . . , ILa−1}. But this is not possible because
there are c jobs in {j1, . . . , jc} and the total capacity of {IL1 , . . . , ILa−1} is less
than c. This shows that s(jc) ≥ s(ILa ).

– Again, suppose e(jc) > e(IRb ). Then, the no bottleneck assumption implies
that s(jc) > s(IRb ) and so, s(jc′) > s(IRb′ ), if c ≤ c′ and b′ ≤ b. So the
jobs in {jc, . . . , jn} can only be scheduled among IRb+1, . . . , I

R
r . Now, the fact

h(IR1 )+h(IR2 )+· · ·+h(IRr ) = n and the definition of b lead to a contradiction.
– Since s(jc) < e(jc), the above two statements imply that ILa and IRb can

intersect if and only if s(IRb ) ≤ e(ILa ) + 1. If e(ILa ) < s(IRb ), then e(ILa′) <
s(IRb′ ), a

′ ≤ a, b′ ≥ b. So, the resource-intervals in {IL1 , . . . , ILa } can intersect
with resource-intervals in {IR1 , . . . , IRb−1} only. But the former set of resource-
intervals are processing at least c jobs and the latter set can process less than
c jobs – a contradiction. ��

Consider the schedule implied by the claim above. Note that the sharing graph is
bipartite. Also, it is easy to check that in the sharing graph, one of the vertices
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IL1 and IR1 is a leaf. Removing this leaf and continuing the argument gives a
sequence in which we can remove leaves from the sharing graph (till all vertices
are removed). So it must be a forest. Now consider a tree in the forest. We
can decompose the edges into two sets of disjoint union of stars (just consider
alternate levels). Then, we pick the set with the higher profit. The jobs in J (1)(S)
are retained in S′. ��
Proof of Theorem 2: Let S be the nice solution output by Lemma 2. We take
S∗1 = J (1)(S) and take the solution S′ output by Lemma 3 as S∗2 .

4 Finding Height-Bounded Star Solutions

Here, we prove Theorem 3. For a star T , let hd(T ) be the root vertex in T ,
and Leaves(T ) be the set of leaves in T . We say that a star T can satisfy a
set of jobs L if it is possible to partition L into |Leaves(T )| sets – L1, . . . , Lr,
r = |Leaves(T )|, such that the following conditions holds :

– |L| ≤ h(hd(T )).
– Let Ti be the ith leaf of T . Then for i = 1, . . . , |Leaves(T )|, |Li| ≤ h(Ti) and

each job in Li can be served jointly by hd(T ) and Ti.

We say that a collection {(T (1), L(1)), (T (2), L(2)), . . . , (T (t), L(t))}, is a satisfiable
star solution, if T (i) can satisfy L(i), for all i. We now show that the optimum
satisfiable star solution can be approximated within constant factors.

Theorem 4. There exists a randomized polynomial time algorithm that outputs
a satisfiable star solution whose profit is at least a constant factor of the optimum
satisfiable star solution.

It is clear any satisfiable star solution is a feasible height-bounded star solution.
Furthermore, for any height-bounded star solution S, J (2)(S) is a satisfiable star
solution. Therefore, the above result implies Theorem 3. The rest of the section
is devoted to proving Theorem 4. The algorithm is based on LP rounding.

4.1 LP Relaxation

We now write an LP relaxation for finding the optimal satisfiable star solution.
For each pair (T, L), where T is a star and L is a set of jobs which can be satisfied
by T , we have a variable y(T, L). For a set of jobs L, define p(L) as the total
profit of jobs in L. The LP relaxation is as follows :

max
∑
(T,L)

y(T, L) · p(L)

∑
(T,L):j∈L

y(T, L) ≤ 1 for all j ∈ D (1)

∑
(T,L):T∩Pi �=∅

y(T, L) ≤ 1 for all Pi (2)

y(T, L) ≥ 0 for all (T, L)
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Now, there are two issues – solving the LP (since the number of variables is
exponential) and rounding a fractional solution. We approximately solve the LP
by providing a approximate separation oracle for the dual. The oracle goes by
framing the issue as maximizing a submodular function subject to a matroid
constraint and two knapsack constraints. Recent results [11] provide approxima-
tion algorithms for the latter task. The details are omitted. We now proceed to
show how to round the fractional solution.

4.2 Rounding a Fractional Solution

Let y∗(T, L) be an optimal (or near-optimal) solution to the LP. We show
how it can be rounded to an integral solution. We can assume that y∗(T, L)
will assume non-zero values for a polynomial number of pairs (T, L) only – let
these be (T (r), L(r)), r = 1, . . . , n. Let the leaves of T (r) be labeled I(r)

1 , . . . , I
(r)
k ,

where k = |Leaves(T (r))|. Since T (r) can satisfy L(r), we divide these jobs into
|Leaves(T (r))| sets – L(r)

u , u = 1, . . . , L(r)
k , such that L(r)

u can be processed by
hd(T (r)) and the uth leaf of this star. Consider the algorithm given in Figure 1.
We now argue that the expected profit of this solution is at least a constant times
that of the fractional solution y∗. For a job j, define Δj as

∑
(T,L):j∈L y

∗(T, L).
It is easy to check that

∑
(T,L) y

∗(T, L)·p(L) =
∑

jΔj ·p(j). Thus it is enough to
prove that the probability we service j is Ω(Δj). We fix a job j. Assume without
loss of generality that j appears in L(1), . . . , L(t). Further, assume that j appears
in the subset I(l)

1 of L(l), 1 ≤ l ≤ t. For sake of brevity, let zl denote y∗(T (l),L(l))
12 ,

and z denote
∑

l zl. Let Xl, 1 ≤ l ≤ t, denote the 0-1 random variable which
is 1 precisely when we select both hd(L(l)) and the leaf interval I(l)

1 . Thus, we
service j iff at least one of the random variables Xl is 1.

Claim. For 1 ≤ l ≤ t, we have zl/2 ≤ E[Xl] ≤ zl.

Proof. First note thatXl = 1 only if we choose to consider the pair (T (l), L(l)). So
E[Xl] ≤ zl. Now suppose we consider this pair (which happens with probability
zl). Constraint (2) implies that the probability that we do not select hd(L(l)) is
at most 1

12 , and the same statement holds for I(l)
1 . So, the probability that we

do not select one of these two resource-intervals is at most 1
6 . Therefore, Xl is

equal to 1 with probability at least 5
6 · zl. ��

Now we would like to bound the probability that all Xl are 0. Unfortunately,
the random variables Xl are not independent. Define X =

∑
lXl. The claim

above shows that E[X ] ≥ z
2 .

Claim. For all integers p ≥ 1, Pr[X = p] ≤ zp.

Proof. Fix any p random variables Xi1 , . . . , Xip from the set {X1, X2, . . . , Xt}.
The probability that all of these are 1 is at most Πp

l=1zil (since the coin tosses
for deciding whether we consider a pair (T, l) are independent). Now taking the
sum over all such tuples, we see that Pr[X = p] is at most (z1 + · · ·+ zt)p. ��
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For r = 1, . . . , n do

With probability y∗(T (r),L(r))
12

, consider the pair (T (r), L(r)) in the following steps.

1. If no resource-interval from the resource containing hd(T (r)) has been chosen
far
(i) Select the resource-interval hd(T (r)).
(ii) For i = 1, . . . , |Leaves(T (r))| do

If no resource-interval from the resource containing I
(r)
i has been taken

yet, then
select the resource-interval I

(r)
i and service the jobs in L

(r)
i

using this resource-interval and hd(T (r)).

Fig. 1. Algorithm Round

We are now almost done.

z

2
≤ E[X ] =

∞∑
p=1

p ·Pr[X = p] ≤ Pr[X = 1] +
∑
p≥2

p · zp

≤ Pr[X = 1] + 3z2 ≤ Pr[X = 1] +
z

4

where the last inequality is true since z = Δj

12 ≤ 1
12 (using constraint (1)). Thus

we get Pr[X = 1] ≥ z
4 = Ω(Δj), which is what we wanted to prove. So, the

expected profit of algorithm Round is at least a constant times that of y∗. This
completes the proof of Theorem 4.

5 Overall Algorithm

We finally put everything together to get the following main result.

Theorem 5. There exists a constant factor randomized approximation algo-
rithm for the RSTM problem (with NBA).

Proof. The overall algorithm (called Schedule) outputs the best of the two
solutions output by Corollary 1 and Theorem 3. Let the solution output by the
our algorithm be S and let opt be the optimum solution. By Theorem 2, opt
can be transformed into a height-bounded star solution S∗, with only a constant
factor loss in profit. It can be seen that the output solution S has profit at least
a constant factor of the profit of both J (1)(S∗) and J (2)(S∗). This implies that
profit(S) is at least a constant factor of the profit of S∗. Hence, S is a constant
factor approximation to opt.

Now consider the general case when jobs can have arbitrary (but integral)
ρ(j) values. We will assume that h(I) is an integer for all resource-intervals I.
We divide a job j into ρ(j) new jobs – each such job j′ has ρ(j′) = 1 and profit
equal to p(j)

ρ(j) . We now run the algorithm Scheduleon this instance. Now, the



122 V.T. Chakaravarthy et al.

problem is that a job j may get picked to a partial extent, i.e., the algorithm
may pick r(j) copies of the jobs, where 0 ≤ r(j) ≤ ρ(j), and the corresponding
profit is r(j)

ρ(j) · p(j). Now, consider the resource-intervals picked by this algorithm
– this gives a certain capacity to each timeslot (which is equal to the capacities
of resource-intervals which get picked and contain this timeslot). So the solution
can be thought of as a fractional solution to unsplittable-flow problem (UFP) on
the line where the capacities of timeslots are as described, and a job j is picked
to an extent of s(j)

ρ(j) . But we know that the standard LP relaxation for UFP has
constant integrality gap [9]; so, we can find an integral solution (i.e., either we
pick the entire job or none of it) of profit at least a constant times that of the
solution output by algorithm Schedule. ��
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Coloring and Maximum Independent Set of

Rectangles

Parinya Chalermsook

Department of Computer Science, University of Chicago, Chicago, IL, USA

Abstract. In this paper, we consider two geometric optimization prob-
lems: Rectangle Coloring problem (RCOL) and Maximum Indepen-

dent Set of Rectangles (MISR). In RCOL, we are given a collection of
n rectangles in the plane where overlapping rectangles need to be colored
differently, and the goal is to find a coloring using minimum number of
colors. Let q be the maximum clique size of the instance, i.e. the maxi-
mum number of rectangles containing the same point. We are interested
in bounding the ratio σ(q) between the total number of colors used and
the clique size. This problem was first raised by graph theory community
in 1960 when the ratio of σ(q) ≤ O(q) was proved. Over decades, except
for special cases, only the constant in front of q has been improved. In
this paper, we present a new bound for σ(q) that significantly improves
the known bounds for a broad class of instances.

The bound σ(q) has a strong connection with the integrality gap of
natural LP relaxation for MISR, in which the input is a collection of rect-
angles where each rectangle is additionally associated with non-negative
weight, and our objective is to find a maximum-weight independent set
of rectangles. MISR has been studied extensively and has applications
in various areas of computer science. Our new bounds for RCOL imply
new approximation algorithms for a broad class of MISR, including (i)
O(log log n) approximation algorithm for unweighted MISR, matching the
result by Chalermsook and Chuzhoy, and (ii) O(log log n)-approximation
algorithm for the MISR instances arising in the Unsplittable Flow

Problem on paths. Our technique builds on and generalizes past works.

1 Introduction

In this paper, we devise algorithms for two geometric optimization problems:
Rectangle Coloring problem (RCOL) and Maximum Independent Set

of Rectangles (MISR). In RCOL, we are given a collection R of n rectangles.
Our objective is to find a valid coloring of rectangles such that no two overlapping
rectangles get the same color, while minimizing the number of colors. Clearly, this
problem is a special case of Graph Coloring problem: Define graphG = (V,E)
where the vertex set corresponds to rectangles, and there is an edge connecting
two vertices that correspond to overlapping rectangles. We denote by ω(R) the
size of maximum clique of collectionR and χ(R) its chromatic number. When R
is clear from context, we will often use q to denote ω(R). Note that χ(R) ≥ ω(R),
so an interesting question to ask is how large the ratio χ(R)/ω(R) can be.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 123–134, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We denote such ratio by σ(R) and define σrect,q = supR:ω(R)=q σ(R). We are
interested in bounding σrect,q as a function that depends on q but not on the
input size. Notice that obtaining such bounds in general graphs is impossible
as Erdös observed that there are family of graphs with maximum clique size
2 and arbitrarily large chromatic number [14]. However, for several interesting
family of geometric intersection graphs, such as rectangles, segments and circular
arc graphs, this ratio is well defined and has been studied; please refer to the
survey by Kostochka [21] for more detail. For rectangle intersection graphs, not
much progress has been made. In 1960, Asplund and Grünbaum show that any
collection R of rectangles with clique size q can be colored by at most O(q2)
colors, implying the ratio σrect,q ≤ O(q), where they also prove the lower bound
of 3. This bound remained asymptotically best known. In this paper, we show
a new bound of σ(R) ≤ O(γ log q) where γ is a parameter we will define later.
Since our γ is at most q, in the worst case, we still have the bound of Õ(q), and
we get an improvement when γ = o( q

log q ). For a broad class of instances, γ is
expected to be constant.

It turns out that this bound is enough for us to get an improved approx-
imation factor for a large class of MISR instances. In the MISR problem, the
input is the set R of rectangles in the plane where each rectangle R ∈ R is
associated with weight wR, and the goal is to find a maximum weight subset
of non-overlapping rectangles. Being one of the most fundamental problem in
computational geometry, MISR comes up in various areas of computer science,
e.g. in data mining [20,17,22], map labeling [1,13], channel admission control
[23], and pricing [12]. MISR is NP-hard [16,19], and there has been a long line
of attack on the problem, proposing approximation algorithms for both gen-
eral cases [20,1,24,5,23] and special cases [15,10,8]. Currently the best known
approximation ratio is O(log n/ log logn) by Chan and Har-peled [11]. Through
the connection between RCOL and MISR, our bounds for σ(R) immediately give
O(γ log logn) approximation algorithms for MISR, where γ ≤ O(log n).

Here we discuss some consequences of our results. For unweighted setting of
MISR, the value of γ is one, so our result would give O(log logn) approximation
algorithm, matching the bound of [8]. For general (weighted) MISR, if γ is con-
stant, our algorithm would give O(log logn) approximation factor. An evidence
that our result could be useful is when Bonsma, Schulz, and Wiese [7] recently
showed a constant factor approximation algorithm for Unsplittable Flow

problem, and their main ingredient is an algorithm that solves a very restricted
instance of MISR. Despite being very special cases, no approximation algorithms
for MISR existing in the literature could directly apply to give O(log1−ε n) bound
for it. However, it is easy to show that the instances they solve have γ ≤ 2 (details
are in the full version), so we obtain an O(log logn) approximation algorithm for
solving this instance; note, however, that the algorithm of [7] solves this instance
exactly in polynomial time.

Our contributions: The main technical contribution of this paper is a new bound
for σ(R) improving upon the bound in [18] when γ = o( q

log q ). We now discuss
this quantity precisely. For each rectangle R ∈ R, we define the containment
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depth d(R) as the number of rectangles R′ = R that completely contains R, and
d(R) = maxR∈R d(R). Notice that d(R) ≤ q. The set H(R) is defined asH(R) =
{R′ : R′ ⊆ R}. Then we let h(R) be the size of the maximum independent set
S ⊆ H(R) such that all rectangles in S can be pierced by one horizontal line
(in other words, the projection of rectangles in S onto vertical line share some
common point). Then define h(R) = maxR∈R h(R).

Theorem 1. For any collection R of rectangles with γ = min {d(R), h(R)}+1,
there is a polynomial time algorithm that finds O(γq log q)-coloring of R. In
particular, σ(R) ≤ O(γ log q), which is o(q) when γ = o( q

log q ).

For purpose of solving the unweighted MISR problem, we may assume without
loss of generality that there is no containment of any two rectangles in R (so
d(R) = 0): Assume there are two rectangles R,R′ such that R′ contains R. We
simply remove rectangle R′ from the collection without affecting the optimal
solution. Therefore, it is interesting and natural to study the ratio σrect−nc,q

defined as the maximum σ(R) whereR is a collection of rectangles with d(R)=0.

Corollary 1. For collection R in which for any two rectangles R and R′, R does
not contain R′, there is an O(q log q)-coloring algorithm that runs in polynomial
time. In particular, σrect−nc,q ≤ O(log q).

Through the connection between MISR and RCOL (presented in Section 3), we
get the following approximation bound for MISR.

Theorem 2. For any collection R of rectangles, let γ = min {d(R), h(R)} + 1.
There is an O(γ log logn) approximation algorithm for MISR.

We observe that our work relies a lot on dealing with the “corner information”
of the intersecting rectangles. In fact, many recent works that solve optimization
problems on rectangle intersection graphs have exploited this information in one
way or another [4,11,8,23]. In Section 5, we investigate special cases of RCOL
and MISR by restricting the intersection types and show additional results.

Related work: The study of the ratio σrect,q for rectangle intersection graphs
started in 1948, when Bielecki [6] asked whether the value of σrect,q is independent
of the instance size n. This question was answered positively by Asplund and
Grünbaum in 1960 [3], when they show that χ(R) ≤ 4q2 − 3q, which implies
that σrect,q ≤ 4q − 3. The bound was later improved to σrect,q ≤ 3q − 2 by
Hendler [18], while the best lower bound remains σrect,q ≥ 3 by constructing a
set of rectangles with clique size 2 and chromatic number 6 [3]; in fact, their
result implies the exact bound σrect,2 = 6. Better bounds are known for special
cases. For squares, a better bound of σsquares,q ≤ 4 was shown by Ahlswede
and Karapetyan, and independently by Perepelitsa (see [2]). Lewin-Eytan et al.
show that σrect−non−corner,q = 1 where the collections of interest do not have any
rectangle that contains corners of other rectangles [23]. All these upper bounds
imply polynomial time algorithms for finding the coloring. We refer to the survey
by Kostochka for more related work [21].

For more related works on MISR, we refer the readers to [8,11] and references
therein.
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Organization: In Section 2, we recall the standard terms in graph theory, stated
in the context of rectangles, and define the notations. We discuss the connection
between MISR and RCOL in Section 3. Then we show the coloring algorithms in
section 4.

2 Preliminaries

A rectangle R is given by a quadruple (xl(R), xr(R), yt(R), yb(R)) of real num-
bers, corresponding to the x-coordinates of its left and right boundaries and
the y-coordinates of its top and bottom boundaries respectively. Furthermore,
we assume that each rectangle is closed, i.e. each R ∈ R is defined as follows:
R = {(x, y) : xl(R) ≤ x ≤ xr(R) and yb(R) ≤ y ≤ yt(R)}. We say that rectan-
gles R and R′ intersect iff R ∩R′ = ∅. In both RCOL and MISR, we are given a
collection R of n-axis parallel rectangles. For MISR, each rectangle R is associ-
ated with weight wR. The goal of the RCOL is to find a minimum coloring, while
the goal of MISR is to find maximum-weight independent set.

We will distinguish among the three types of intersections: corner, crossing,
and containment (see Figure 1) whose formal definitions are as follows. For two
overlapping rectangles R,R′, we let j(R,R′) denote the number of corners of R
contained in R′, and let c(R,R′) = max {j(R,R′), j(R′, R)}. We say that the
intersection between R and R′ is a corner intersection iff c(R,R′) ∈ {1, 2}. It is
called a crossing iff c(R,R′) = 0. Otherwise c(R,R′) = 4, and we say that two
rectangles have containment intersection.

2.1 Polynomially Bounded Weights

We argue that we can assume, by losing a constant factor in the approximation
ratio, that all weights wR are positive integers of values at most 2n. We first scale
the weights of rectangles so that the minimum weight is at least 1. Let Wmax

be the weight of the maximum weight rectangle. For each rectangle R ∈ R, we
assign a new weight

w′
R =

⌊
wR · 2n

Wmax

⌋

Corner Crossing Containment

Fig. 1. Three possible intersection types
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In the new instance, the weight of maximum weight rectangle becomes 2n. It
is easy to see that any γ-approximate solution to the new instance gives a 2γ-
approximate solution to the original instance.

2.2 Rectangle Coloring and Degenerate Instances

Here we recall some standard terms in graph theory and state them in our context
of rectangles, which is more convenient for our purpose. First, a set of rectangles
Q ⊆ R forms a clique if the intersection of all the rectangles in Q is non-empty.
Let R′ be a collection of rectangles. We say that R′ admits a c-coloring if there
exists an assignment b : R′ → [c] such that no two overlapping rectangles in
R′ get the same number. A collection R′ of rectangles is k-degenerate if for
every sub-collection R′′ ⊆ R′, there exists a rectangle R ∈ R′′ such that R
intersects with at most k other rectangles in R′′. It is a standard fact that any
k-degenerate collectionR′ is (k+1)-colorable, and such coloring can be computed
efficiently: Choose a rectangle R ∈ R′ such that the size of neighbors of R, i.e.
|{S ∈ R′ : S ∩R = ∅}|, is at most k. Recursively color the collection R′ \ {R}.
Assign any color to R that does not conflict with any of R’s neighbors.

2.3 Sparse Instances

We say that a collection of rectangles R is s-sparse if, for any rectangle R ∈ R,
there exist s points pR1 , p

R
2 , . . . , p

R
s ∈ R2 associated with rectangle R (to be called

representative points of R) such that the following holds. For any overlapping
rectangles R,R′ ∈ R, either pR

′
i ∈ R for some i or pRj ∈ R′ for some j. We

note that Chan [9] uses similar ideas to define β-fat objects. For example, any
collection of rectangles with only corner and containment intersections is 4-
sparse: for each rectangle R, we can define

{
pR1 , p

R
2 , p

R
3 , p

R
4

}
to be the set of the

four corners of R, so whenever two rectangles overlap, one rectangle contains
some representative point of another.

Now we generalize the lemma in [23], again restated in our terms. The proof
follows along the same lines and is omitted from this extended abstract.

Lemma 1. Let R′ be an s-sparse instance with maximum clique size q. Then
R′ is (2sq)-degenerate, and therefore is (2sq + 1)-colorable.

3 Independent Set and Coloring

In this section, we discuss the connections between RCOL and MISR. We remark
that any c-coloring algorithm for R trivially implies an algorithm that finds an
independent set of size |R|/c. However, this bound is too loose for our purpose.
The following theorem, whose analogous unweighted version was used implicitly
in the prior work of the author with Chuzhoy [8], summarizes the connection
between the two problems:
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Theorem 3. The integrality gap of natural LP relaxation of MISR is at most
σrect,O(log n). Moreover, if there is a polynomial time algorithm that finds a valid
coloring of rectangles of R using at most qf(q) colors, then we have a c1f(logn)
randomized approximation algorithm for MISR where c1 is a constant that does
not depend on the input instance.

In particular, if the right answer for σrect,q is constant independent of q, the
integrality gap for MISR would be constant as well. Or, if we can bound σ(R)
for a particular instance R, we would get σ(R) approximate solution for MISR
problem on R. For unweighted MISR, Theorem 3 translates to the following:

Corollary 2. The integrality gap of natural LP relaxation of unweighted MISR
is at most σrect−nc,O(log n). Moreover, if there is a polynomial time algorithm that
finds a valid coloring of rectangles of R using at most qf(q) colors, then we have
a c2f(logn) randomized approximation algorithm for unweighted MISR where c2
is a constant that does not depend on q.

Now we prove the theorem.

Proof. (Of Lemma 3) We first consider a natural LP relaxation of the problem.
We have, for each rectangle R, an indicator variable xR of whether R is included
in the intended independent set. Let X =

{
xl(R), xr(R) : R ∈ R} and Y ={

yt(R), yb(R) : R ∈ R} be the set of all x and y coordinates of the boundaries
of input rectangles respectively. We define P to be the set of all “interesting
points” of the plane: P = {(x, y) : x ∈ X, y ∈ Y }. Notice that |P| ≤ (2n)2. The
LP relaxation is as follows.

(LP) max
∑
R∈R

wRxR

s.t.
∑

R:p∈R
xR ≤ 1 for all p ∈ P

To avoid confusion, we will be using the term LP-value to refer to the value
of specific LP variable xR. We say LP-cost of collection R′ to mean the quantity∑

R∈R′ wRxR.
Let z be an optimal LP solution with associated LP-cost OPT. Observe that

if OPT ≤ O(n), getting a constant approximation is trivial: simply output the
maximum-weight rectangle, whose weight is always 2n. Therefore, we assume
that OPT ≥ 32n. Let M = 64 logn. The next lemma states that we can convert
z into solution z′ that is ( 1

M )-integral having roughly the same LP-value with
high probability. The proof only uses standard randomized rounding techniques
and is deferred to the full version

Lemma 2. There is an efficient randomized algorithm that, given an optimal
LP-solution of value OPT ≥ 32n for R, produces with high probability, a feasible
solution z′ for (LP) that is ( 1

M )-integral whose LP-value is Ω(OPT).
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Given an LP solution z′, we create a multi-subset R′ of R as follows: for each
R ∈ R, add cR = Mz′R copies of R to R′. Notice that we can associate each
copy in R′ with an LP-weight of 1/M , so the maximum clique size is at most
M . Moreover the total LP-cost in R′ is

∑
R∈R′ wRxR = Ω(OPT). Now assume

that we have qf(q)-coloring algorithm for any collection of rectangles with clique
size q. By invoking this algorithm on R′, we divide rectangles in R′ into sets
R′

1, . . . ,R′
Mf(M) according to their colors. Let R′

j be the color class having
maximum total LP-cost among the sets

{R′
j′
}
. We have that

∑
R∈R′

j

wR

M ≥
OPT

Mf(M) .
Therefore, the total weight of rectangles in R′

j is
∑

R∈R′
j
wR ≥

Ω(OPT/f(64 logn)), as desired. If we are satisfied with non-constructive bound,
we can invoke (σrect,MM)-coloring of R′, and we would get the integrality gap
bound of O(σrect,log n).

4 Coloring Algorithms

In this extended abstract, we prove a weaker result which gives O(q3/2)-coloring
for a special case. This case captures most of the key challenges of the problem.

4.1 O(q2)-Coloring

We first show how to color R using O(q2) colors. This coloring algorithm will
be used later as a subroutine of our main result. For each rectangle R ∈ R, we
denote by V (R) the set of all rectangles R′ ∈ R such that R and R′ cross each
other and the width of R′ is smaller than the width of R. Let v(R) be the size
of the maximum clique formed by the rectangles in V (R). Notice that since the
maximum clique size of R is q, we have that 0 ≤ v(R) ≤ q − 1 for all rectangle
R ∈ R. It is easy to see that if v(R) = v(R′) for a pair of rectangles R and R′,
then it is impossible for R to cross R′: Assume for contradiction that R crosses
R′, and the width of R is smaller than the width of R′. Let Q ⊆ V (R) be a
clique such that |Q| = v(R). Then {R} ∪ Q ⊆ V (R′) is a clique, and therefore
v(R′) ≥ v(R) + 1.

Claim. Any collection of rectangles with clique size q is O(q2)-colorable.

Proof. We compute the values v(R) for all rectangles R ∈ R. Partition R into q
subsets S1, . . . , Sq where R ∈ Si iff v(R) = i− 1. Since each set Si does not have
crossing, it is 4-sparse (representative points are just the four corners), and so
by Lemma 1 each such collection is O(q)-colorable. This implies that the set R
is O(q2)-colorable.

4.2 An O(q3/2) Coloring for Restricted Setting

The coloring result in the previous section uses the values v(R) to define a
“grouping” of rectangles such that the intersection patterns of rectangles in the
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same set Si are limited to only crossing and containment, which is 4-sparse. Now
we try to push this idea further. We would like to say such things as “if v(R)
and v(R′) are close, the intersection patterns of R and R′ are limited”, and we
would expect that if we group rectangles with roughly the same values of v(R)
together, such collection should be “almost” sparse.

We start with the following lemma about the combinatorial structures of sets
of intersecting rectangles. This lemma was used implicitly in [8].

Lemma 3 (Structure Lemma). Let C be a clique, and R be any rectangle
such that C ⊆ V (R). Then we have that

v(R) ≥ min
R′∈C

{v(R′)}+ �|C|/2�

In other words, if we have a sub-collection of rectangles R′ such that |v(R)−
v(R′)| ≤ δ for all R,R′ ∈ R′, then any clique C ⊆ R′ of size larger than 2δ is
not a subset of V (R).

Proof. Let p = (x, y) be any point contained in the intersection of rectangles in
C ∪{R}. Consider now vertical line L passing through p. Let Q ⊆ C be the set of
�|C|/2� rectangles whose left boundary is closest to L in C, and let P ∈ Q be the
rectangle whose right boundary is closest to L among the rectangles in Q. Notice
that all rectangles in C \ Q intersect the left boundary of P , and all rectangles
in Q \ {P} intersect the right boundary of P . Let C′ be a clique of size v(P ) in
V (P ). This is the clique whose rectangles contribute to the value v(P ). Observe
that each rectangle in C′ belongs to V (R), and that C is disjoint with C′ since
rectangles in C intersect the left or the right boundary of P while rectangles
in C′ do not. Let p′ = (x′, y) be any point in the intersection of rectangles in
C′ ∪ {P} (the intersection region is shown as a black stripe in Figure 2) that is
horizontally aligned with point p. Assume first that x′ > x. Then every rectangle
in Q contains p′ because each rectangle in Q contains p (so its left boundary
must lie on the left side of p) and intersects the right boundary of P (so its right
boundary must be on the right of p′). Therefore C′ ∪Q ⊆ V (R) form a clique of
size at least v(P ) + �|C|/2�. Similarly, if x′ ≤ x, then every rectangle in C \ Q
contains p′, and we have that the set C′ ∪ (C \Q)∪ {P} forms a clique of size at
least v(P ) + �|C|/2�.

We show how to use the above lemma to get a better coloring result. We
introduce the key definition, similar to the one used in [8].

Definition 1. Let R′ be a sub-collection of rectangles. Consider rectangle R,
and let X1, X2 ⊆ R′ be collections of rectangles such that |X1| = |X2| = α. We
say that they form an α-covering of R with respect to R′ iff:

– Each rectangle in X1 (resp. X2) intersects the top (resp. bottom) boundary
of R.

– X1 ∪X2 ∪ {R} forms a clique.

We denote by αR′(R) the maximum integer α such that there exist X1, X2 ⊆ R′

that form an α-covering of R. When the choice of R′ is clear from context, we
write α(R) instead of αR′(R).
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L

P

p R

Fig. 2. Proof of Lemma 2 when x′ > x. The black stripe shows the intersection region
of V (P )

We will often call the set X1 and X2 the top and bottom α-coverage of
R respectively. It is easy to see that αR′(R) can be computed in polynomial
time: Fix rectangle R. For each interesting point p ∈ R, we compute the set
of rectangles containing p and intersecting the top boundary of R. Denote
this set by Xp

1 . Set Xp
2 is defined and computed similarly. Then we have that

αR′(R) = maxp∈R min {|Xp
1 |, |Xp

2 |}.

Claim. Consider a collection of rectangles R′, and assume that R′ contains a
clique of size q′. Then there is at least one rectangle R ∈ R′ such that αR′(R) ≥
q′/2− 1.

Proof. Let C ⊆ R′ be the clique of size q′, and let X1 ⊆ C denote the set of
q′/2− 1 rectangles with highest top boundaries (breaking ties arbitrarily). Then
define X2 ⊆ C as the set of q′/2−1 rectangles with lowest bottom boundaries in
C \X1 (breaking ties arbitrarily). Consider any rectangle R in C \ (X1 ∪X2). It
is easy to see that every rectangle in X1 (resp. X2) intersects the upper (resp.
lower) boundary of R. Therefore, X1, X2 is a (q′/2− 1)-covering of R.

Corollary 3. For any collection R′ of rectangles, let R′′ ⊆ R′ be a set of rect-
angles with αR′(R) ≥ ν for some ν > 2. Then ω(R′ \ R′′) ≤ 3ν.

Proof. Let R̃ = R′\R′′ be the set of remaining rectangles. Suppose a large clique
of size 3ν remains in R̃. Then by Claim 4.2, we would have a rectangle R ∈ R̃
with αR̃(R) ≥ 3ν/2− 1 > ν. And so we have αR′(R) > ν, a contradiction.

We are ready to describe an O(q3/2)-coloring algorithm. For simplicity of
presentation, let us for now restrict the intersection types and assume that we
do not have an intersection of rectangles R and R′ such that R contains at least
two corners of R′. So now there are only two restricted types of intersection:
(i) crossing and (ii) corner intersection where one rectangle contains exactly one
corner of another. We will show in the next section how this assumption can be
removed.
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1. Compute the values v(R) for rectangles R ∈ R in the beginning. This value
is used throughout the algorithm.

2. Partition the rectangles into
√
q sets {Si}

√
q

i=1 where rectangle R belongs to
Si iff (i − 1)

√
q ≤ v(R) < i

√
q. So |v(R) − v(R′)| ≤ √q for all R,R′ in the

same set.
3. For each i : 1 ≤ i ≤ √q,

(a) Define Ti =
{
R ∈ Si : αi(R) ≥ 10

√
q
}
, where αi(R) denotes the α-

covering of R with respect to set Si.
(b) S′

i ← Si \ Ti.
(c) Color Ti and S′

i using O(q) colors.

Assuming that step 3(c) can be implemented, it is clear that the total number
of colors used is O(q3/2). It is therefore sufficient to show that sets Ti and S′

i are
O(q)-colorable. For each set S′

i, notice that the clique size in S′
i is at most O(

√
q)

after the removal of Ti from Si, due to Corollary 3. Using the O(ω(S′
i)

2)-coloring
algorithm from the previous section, we can get O(q)-coloring for each set S′

i.
The following claim shows that we can also color Ti.

Claim. Each set Ti is 5-sparse. Therefore, it is O(q)-colorable.

Proof. Recall that each R ∈ Ti has (i− 1)
√
q ≤ v(R) < i

√
q. We need to define,

for each R ∈ Ti, five representative points pR1 , . . . , p
R
5 . Now we fix R. Define

pR1 , . . . , p
R
4 to be the four corners of R. Let (X1, X2) be a 10

√
q-coverage of R in

Si (these rectangles may not be in Ti), and C = X1 ∪X2. Define pR5 to be any
common point of rectangles in C.

Now we proceed to prove that the collection Ti is sparse. Consider two in-
tersecting rectangles R and R′ in Ti. If it is a corner intersection, we would be
done. Otherwise, it is a crossing, and assume that the width of R′ is larger than
the width of R, i.e. R ∈ V (R′). We claim that pR5 ∈ R′: If not, assume without
loss of generality that pR5 is below the bottom boundary of R′. Consider the “top
α-coverage” X1 of R. Recall that all rectangles in X1 contain pR5 and intersect
the top boundary of R. Therefore, the only possible layout is that R′ crosses ev-
ery rectangle in X1 (because of our initial assumption), or in other words, X1 ⊆
V (R′). Applying Lemma 3, we have that v(R′) ≥ (i− 1)

√
q + 2

√
q = (i+ 1)

√
q,

which is impossible, thus concluding the proof.

Notice that the proof of this claim would fail if we do not restrict the intersection
types of rectangles. To deal with the general case, we need to deal with another
notion of covering. Our O(γq log q)-coloring result is obtained through an itera-
tive application of the ideas used in this section. Please see the full version for
more detail.

5 Special Cases

In this section, we discuss the special cases of MISR and RCOL categorized by the
types of intersections allowed. Table 1 summarizes known results on the special
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Table 1. Summary of best known upper bounds . New results are marked by (*)

no corner no containment no crossing all
σ(R) 1∗ O(log q)∗ 5 [23] 3q − 2 [18]
MISR 1∗ O(log log n) [8] 4 [23] O(log n/ log log n) [11]

cases. The bound of O(log q) was implied by Theorem 1 due to the fact that,
without containment intersection, we have γ = 1.

We study the case when corner intersection is not allowed and prove the
following theorem. Due to lack of space, the proof appears in the full version.

Theorem 4. Let R be a collection of rectangles with clique size q, in which
the intersection types are only containment and crossing. Then χ(R) = ω(R).
This implies that σ(R) = 1 and maximum independent set of R can be found in
polynomial time.
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Abstract. We consider the following single-machine scheduling prob-
lem, which is often denoted 1||

∑
fj : we are given n jobs to be scheduled

on a single machine, where each job j has an integral processing time
pj , and there is a nondecreasing, nonnegative cost function fj(Cj) that
specifies the cost of finishing j at time Cj ; the objective is to minimize∑n

j=1 fj(Cj). Bansal & Pruhs recently gave the first constant approxi-
mation algorithm and we improve on their 16-approximation algorithm,
by giving a primal-dual pseudo-polynomial-time algorithm that finds a
solution of cost at most twice the optimal cost, and then show how this
can be extended to yield, for any ε > 0, a (2 + ε)-approximation algo-
rithm for this problem. Furthermore, we generalize this result to allow
the machine’s speed to vary over time arbitrarily, for which no previous
constant-factor approximation algorithm was known.

1 Introduction

We consider the following general scheduling problem, which is denoted as
1||∑ fj in the notation of scheduling problems formulated by Graham, Lawler,
Lenstra, & Rinnooy Kan [11]: we are given n jobs to schedule on a single ma-
chine, where each job j = 1, . . . , n has a positive integral processing time pj , and
there is a nonnegative cost function fj(Cj) that specifies the cost of finishing j
at time Cj . The only restriction on the cost function fj(Cj) is that it is a non-
decreasing function of Cj ; the objective is to minimize

∑n
j=1 fj(Cj). In a recent

paper, Bansal & Pruhs [5] gave the first constant approximation algorithm for
this problem; more precisely, they present a 16-approximation algorithm, that
is, a polynomial-time algorithm guaranteed to be within a factor of 16 of the
optimum. We improve on this result: we give a primal-dual pseudopolynomial-
time algorithm that finds a solution to the scheduling problem of cost at most
twice the optimal cost, and then show how this can be extended to yield, for
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any ε > 0, a (2 + ε)-approximation algorithm for this problem. This problem is
strongly NP -hard (simply by considering the case of the weighted total tardi-
ness, where fj(Cj) = wj maxj=1,...,n{0, Cj − dj} and dj is a specified due date
of job j, j = 1, . . . , n). However, no hardness results are known other than this,
and so it is still conceivable (and perhaps likely) that there exists a polynomial
approximation scheme for this problem (though by the classic result of Garey &
Johnson [10], no fully polynomial approximation scheme exists unless P=NP).
No such scheme is known even for the special case of weighted total tardiness.

Our results are based on the linear programming relaxation of a time-indexed
integer programming formulation in which the 0-1 decision variables xjt indicate
whether a given job j = 1, . . . , n, completes at time t = 1, . . . , T , where T =∑n

j=1 pj ; note that, since the cost functions are nondecreasing with time, we can
assume, without loss of generality, that the machine is active only throughout
the interval [0, T ], without any idle periods. For convenience, we will set fj(t) =
fj(pj) for each t = 1, . . . , pj; this is clearly without loss of generality, since in any
feasible schedule each job j cannot finish before time pj, and we will see later
that our algorithm ensures that xjt will be set to 0 when t = 1, . . . , pj − 1. With
these time-indexed variables, it is trivial to ensure that each job is scheduled; the
only difficulty is to ensure that the machine is not required to process more than
one job at a time. To do this, we observe that, for each time t = 1, . . . , n, the jobs
completing at time t or later have total processing time at least T − t+1 (by the
assumption that the processing times pj are positive integers); for conciseness,
we denote this demandD(t) = T−t+1. This gives the following integer program:

minimize
n∑
j=1

T∑
t=1

fj(t)xjt (IP)

subject to
n∑
j=1

T∑
s=t

pjxjs ≥ D(t), for each t = 1, . . . , T ; (1)

T∑
t=1

xjt = 1, for each j = 1, . . . , n; (2)

xjt ∈ {0, 1}, for each j = 1, . . . , n, t = 1, . . . , T.

We first argue that this a valid formulation of the problem. Clearly, each
feasible schedule corresponds to a feasible solution to (IP) of equal objective
function value. Conversely, consider any feasible solution, and for each job j =
1, . . . , n, assign it the due date dj = t corresponding to xjt = 1. If we schedule
the jobs in Earliest Due Date (EDD) order, then we claim that each job j =
1, . . . , n, completes by its due date dj . If we consider the constraint (1) in (IP)
corresponding to t = dj + 1, then since each job is assigned once, we know that∑n

j=1

∑dj

t=1 pjxjt ≤ dj ; in words, the jobs with due date at most dj have total
processing time at most dj . Since each job completes by its due date, and the
cost functions fj(·) are nondecreasing, we have a schedule of cost no more than
that of the original feasible solution to (IP).
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The formulation (IP) has an unbounded integrality gap: the ratio of the opti-
mal value of (IP) to the optimal value of its linear programming relaxation can
be arbitrarily large. We strengthen this formulation by introducing a class of
valid inequalities called knapsack-cover inequalities. To understand the starting
point for our work, consider the special case of this scheduling problem in which
all n jobs have a common due date D, and for each job j = 1, . . . , n, the cost
function is 0 if the job completes by time D, and is wj , otherwise. In this case,
we select a set of jobs of total size at most D, so as to minimize the total weight
of the complementary set (of late jobs). This is equivalent to the minimum-cost
(covering) knapsack problem, in which we wish to select a subset of items of total
size at least a given threshold, of minimum total cost. Carr, Fleischer, Leung, and
Phillips [8] introduced knapsack-cover inequalities for this problem (as a variant
of flow-cover inequalities introduced by Padberg, Van Roy, and Wolsey [14]) and
gave an LP-rounding 2-approximation algorithm based on this formulation. On
the other hand, Carr et al. also showed that the LP relaxation with knapsack-
cover inequalities have an integrality gap of at least 2− 2

n . Our results instead
generalize a primal-dual 2-approximation algorithm based on the same formu-
lation, which was given by Carnes and Shmoys [7]. Knapsack-cover inequalities
have subsequently been used to derive approximation algorithms in a variety of
other settings, including the work of Bansal & Pruhs [5] for 1|ptmn, rj |

∑
fj ,

Bansal, Buchbinder, & Naor [2,3], Gupta, Krishnaswamy, Kumar, & Segev [12],
Bansal, Gupta, & Krishnaswamy [4], and Pritchard [15]. The 16-approximation
algorithm of Bansal & Pruhs [5] for 1||∑ fj relies on a 4-approximation algo-
rithm for so-called generalized caching problem which relies (implicitly) on a
different time-indexed LP relaxation [6].

The idea behind the knapsack-cover inequalities is quite simple. Fix a subset
of jobs A ⊆ {1, .., n} that contribute towards satisfying the demand D(t) for
time t or later; then there is a residual demand from the remaining jobs of
D(t, A) := max{D(t) − ∑

j∈A pj, 0}. Thus, each job j = 1, . . . , n can make
an effective contribution to this residual demand of pj(t, A) := min{pj , D(t, A)};
that is, given the inclusion of the set A, the effective contribution of job j towards
satisfying the residual demand can be at most the residual demand itself. Thus,
we have the constraint:

∑
j /∈A

∑T
s=t pj(t, A)xjs ≥ D(t, A) for each t = 1, ..., T,

and each A ⊆ {1, .., n}. The dual LP is quite natural: there are dual variables
y(t, A), and a constraint that indicates, for each job j and each time s = 1, . . . , T ,
that fj(s) is at least a weighted sum of y(t, A) values, and the objective is to
maximize

∑
t,AD(t, A)y(t, A).

Our primal-dual algorithm has two phases: a growing phase and a pruning
phase. Throughout the algorithm, we maintain a set of jobs At for each time t =
1, . . . , T . In each iteration of the growing phase, we choose one dual variable to
increase, corresponding to the demand D(t, At) that is largest, and increase that
dual variable as much as possible. This causes a dual constraint corresponding
to some job j to become tight for some time t′, and so that we set xjt′ = 1,
and add j to each set As with s ≤ t′. Note that this may result in jobs being
assigned to complete at multiple times t; then in the pruning phase we do a
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“reverse delete” that both ensures that each job is uniquely assigned, and also
that the solution is minimal, in the sense that each job passes the test that if
it were deleted, then some demand constraint (1) in (IP) would be violated.
It will be straightforward to show that the algorithm runs in time polynomial
in n and T , which is a pseudopolynomial bound. To convert this algorithm to
be polynomial, we adopt an interval-indexed formulation, where we bound the
change of cost of any job to be within a factor of (1+ε) within any interval. This
is sufficient to ensure a (weakly) polynomial number of intervals, while degrading
the performance guarantee by a factor of (1+ε), and this yields the desired result.
One surprising consequence of this interval-indexed approach, combined with the
generality of the objective function structure, is that the same algorithm can be
used to obtain the same performance guarantee in the more general setting in
which the machine has a time-dependent speed s(t) (where we assume that we
can compute the processing capacity of the machine for any time interval (t1, t2]
in polynomial time); this greatly generalizes and improves upon the randomized
e-approximation algorithm of Epstein, Levin, Marchetti-Spaccamela, Megow,
Mestre, Skutella, and Stougie [9] for this setting in the special case where the
objective function is to minimize

∑
j wjCj (though the results in [9] have the

advantage of not needing to know the speed function in advance).
The main question left open by this work is whether similar techniques can

yield analogous results for the analogous problem 1|rj , pmtn|
∑
fj . Bansal and

Pruhs gave a O(log log(nT ))-approximation algorithm for this problem, and yet
there is no evidence to suggest that there does not exist an approximation algo-
rithm with a constant performance guarantee (or potentially even a polynomial
approximation scheme). Since there is no advantage to preemption if all release
dates are equal to 0, it follows that, as for 1||∑ fj , the problem is strongly NP-
hard, and hence no fully polynomial approximation scheme exists unless P=NP.
One interesting point of contrast is the “bottleneck” or “min-max” analogue of
these two problems: 1||fmax and 1|rj , pmtn|fmax. Both problems are solvable in
polynomial time, by variants of the least cost last rule, by results of Lawler [13]
and of Baker, Lawler, Lenstra, and Rinnooy Kan [1], respectively.

2 A Pseudopolynomial Algorithm for 1||∑ fj

We give a primal-dual algorithm that runs in pseudopolynomial time and has a
performance guarantee of 2 and is based on the following LP relaxation:

min
n∑
j=1

T∑
t=1

fj(t)xjt (P)

s.t.
∑
j /∈A

T∑
s=t

pj(t, A)xjs ≥ D(t, A), for each t = 1, ..., T, A ⊆ {1, .., n}; (3)

xjt ≥ 0, for each j = 1, . . . , n, , t = 1, . . . , T.
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Notice that the assignment constraints (2) are not included in (P). In fact,
the following lemma shows that they are redundant, given the knapsack-cover
inequalities. This leaves a much more tractable formulation on which to base the
design of our primal-dual algorithm, and is one of the reasons that we are able
to obtain an improved guarantee.

Lemma 1. Let x be a feasible solution to the linear programming relaxation
(P). Then there is a feasible solution x̄ of no greater cost that also satisfies the
assignment constraints (2).

Proof. First, by considering the constraint (3) with the set A = {1, . . . , n}−{k}
and t = 1, it is easy to show that for any feasible solution x of (P), we must
have

∑T
s=1 xks ≥ 1 for each job k.

We next show that each job is assigned at most once. We may assume without
loss of generality that x is a feasible solution for (P) in which

∑n
j=1

∑T
s=1 xjs is

minimum. Suppose, for a contradiction, that
∑T

s=1 xjs > 1 for some job j, and
let t be the largest time index where the partial sum

∑T
s=t xjs ≥ 1. Consider

the solution x̄ where x̄ks := 0 if k = j and s < t, 1 −∑T
s=t+1 xjs if k = j and

s = t, and xks otherwise. It is easy to verify that the modified solution x̄ is
a feasible solution to (P) where

∑n
j=1

∑T
s=1 x̄js <

∑n
j=1

∑T
s=1 xjs. This gives

the desired contradiction. Finally, since x̄ ≤ x componentwise and the objective
fj(t) is nonnegative, it follows that x̄ is a solution of no greater cost than x. ��

Taking the dual of (P) gives:

max
T∑
t=1

∑
A

D(t, A)y(t, A) (D)

s.t.
s∑

t=1

∑
A:j /∈A

pj(t, A)y(t, A) ≤ fj(s); for each j = 1, .., n, s = 1, .., T ; (4)

y(t, A) ≥ 0 for each t = 1, ..., T, A ⊆ {1, .., n}.
We now give the primal-dual algorithm for the scheduling problem 1||∑ fj . The
algorithm consists of two phases: a growing phase and a pruning phase.

The growing phase constructs a feasible solution x to (P) over a series of
iterations. For each t = 1, . . . , T , we let At denote the set of jobs that are set to
finish at time t or later by the algorithm, and thus contribute towards satisfying
the demand D(t). In each iteration, we set a variable xjt to 1 and add j to As

for all s ≤ t. We continue until all demands D(t) are satisfied. Specifically, in
the kth iteration, the algorithm select tk := argmaxtD(t, At), which is the time
index that has the largest residual demand with respect to the current partial
solution. If there are ties, we choose the largest such time index to be tk (this
is not essential to the correctness of the algorithm – only for consistency and
efficiency). If D(tk, Atk) = 0, then we must have

∑
j∈At

pj ≥ D(t) for each
t = 1, . . . , T ; all demands have been satisfied and the growing phase terminates.
Otherwise, we increase the dual variable y(tk, Atk) until some dual constraint
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Algorithm 1. Primal-Dual Algorithm for 1||
∑

fj

// Initialization

x, y, k ← 0; At = ∅, (t = 1, . . . , T ) ;
t0 := argmaxtD(t, At) (break ties by choosing largest time index) ;
// Growing phase

while D(tk, Atk) > 0 do
Increase ytk,A

tk
until a dual constraint (4) with right hand side fj(t)

becomes tight (break ties by choosing the largest time index);
xjt ← 1;
As ← As ∪ {j} for each s ≤ t;
k ← k + 1 ;
tk := argmaxtD(t, At) (break ties by choosing largest time index);

// Pruning phase

Consider {(j, t) : xjt = 1} in reverse order in which they are set to 1 ;
if j ∈ At+1 then

xjt ← 0

else if
∑

j′∈As\{j} pj′ ≥ D(s) for all s ≤ t where j is added to As in the same

iteration of growing phase then
xj,t ← 0 ;
As ← As \ {j} for all such s ;

// Output schedule

for j ← 1 to n do
Set due date dj of job j to time t if xjt = 1 ;

Schedule jobs using EDD rule ;

(4) with right-hand side fj(t) becomes tight. We set xjt = 1 and add j to As for
all s ≤ t (if j is not yet in As). If multiple constraints become tight at the same
time, we pick the one with the largest time index (and if there are still ties, just
pick one of these jobs arbitrarily). However, at the end of the growing phase, we
might have too many variables set to 1, thus we proceed to the pruning phase.

The pruning phase is a “reverse delete” procedure that checks each variable xjt
that is set to 1, in decreasing order of the iteration k in which that variable was
set in the growing phase. We attempt to set xjt back to 0 and correspondingly
delete jobs from At, provided this does not violate the feasibility of the solution.
Specifically, for each variable xjt = 1, if j is also in At+1 then we set xjt = 0. It
is safe to do so, since in this case, there must exist t′ > t where xjt′ = 1, and as
we argued in Lemma 1, it is redundant to have xjt also set to 1. Otherwise, if
j /∈ At+1, we check if

∑
j′∈As\{j} pj′ ≥ D(s) for each time index s where j has

been added to As in the same iteration of the growing phase. If so, then j is not
needed to satisfy the demand at time s. Hence, we remove j from all such As

and set xjt = 0. We will show that at the end of the pruning phase, each job j
has exactly one xjt set to 1. Hence, we set this time t as the due date of job j.

Finally, the algorithm outputs a schedule by sequencing the jobs in Earliest
Due Date (EDD) order. We give pseudo-code for this in the figure Algorithm 1
above.
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Analysis Throughout the algorithm’s execution, we maintain both a solution x
along with the sets At, for each t = 1, . . . , T ; an easy inductive argument shows
that the algorithm maintains the following invariant.

Lemma 2. Throughout the algorithm, j ∈ As if and only if there exists t ≥ s
such that xjt = 1.

Note that this lemma also implies that the sets At are nested; i.e., for any two
time indices s < t, it follows that As ⊇ At. Using the above lemma, we will show
that algorithm produces a feasible solution to (P) and (D).

Lemma 3. The algorithm produces a feasible solution x to (P) that is integral
& satisfies the assignment constraints (2), as well as a feasible solution y to (D).

Proof. First note that, by construction, the solution x is integral. The algorithm
starts with the all-zero solution to both (P) and (D), which is feasible for (D)
but infeasible for (P). Showing that dual feasibility is maintained throughout the
algorithm is straightforward. Next we show that at termination, the algorithm
obtains a feasible solution for (P).

At the end of the growing phase, all residual demands D(t, At) are zero, and
hence,

∑
j∈At

pj ≥ D(t) for each t = 1, . . . , T . By construction of the pruning
phase, the same still holds when the algorithm terminates.

Next, we argue that for each job j there is exactly one t where xjt = 1 when
the algorithm terminates. Notice that D(1) (the demand at time 1) is T , which
is also the sum of processing time of all jobs; hence A1 must include every job
to satisfy D(1). By Lemma 2, this implies each job has at least some time t for
which xjt = 1 when the growing phase terminates. On the other hand, from the
pruning step (in particular, the first if statement in the pseudocode), each job
j has xjt set to 1 for at most one time t. However, since no job can be deleted
from A1, by Lemma 2, we see that, for each job j, there is still at least one xjt
set to 1 at the end of the pruning phase. Combining the two, we see that each
job j has one value t for which xjt = 1.

By invoking Lemma 2 for the final solution x, we have that
∑T

s=t

∑n
j=1 pjxjs ≥

D(t). Furthermore, x also satisfies the constraint
∑T

t=1 xjt = 1, as argued above.
Hence, x is feasible for (IP), which implies the feasibility for (P). ��
Since all cost functions fj(.) are nondecreasing, it is easy to show that given a
feasible integral solution x to (P) that satisfies the assignment constraints (2),
the following schedule costs no more than the objective value for x: set the due
date dj = t for job j, where t is the unique time such that xjt = 1, and sequence
in EDD order (meeting all due dates).

Lemma 4. Given a feasible integral solution to (P) that satisfies the assignment
constraint (2), the EDD schedule is a feasible schedule with cost no more than
the value of the given primal solution.

Next we analyze the cost of the schedule returned by the algorithm. Given the
above lemma, it suffices to show that the cost of the primal solution is no more
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than twice the cost of the dual solution; the weak duality theorem of linear
programming then implies that our algorithm has a performance guarantee of 2.

We first introduce some notation used in the analysis. Given the final solution
x̄ returned by the algorithm, define J̄t := {j : x̄jt = 1}, and Āt := {j : ∃x̄jt′ =
1, t′ ≥ t}. In words, Āt is the set of jobs that contribute towards satisfying the
demand at time t in the final solution; hence, we say that j covers t if j ∈ Āt.
Let xk be the partial solution of (P) at the beginning of the kth iteration of the
growing phase. We define Jkt and Ak

t analogously with respect to xk. Next we
prove the key lemma in our analysis.

Lemma 5.
∑T

s=t

∑
j∈J̄s\A pj(s,A) < 2D(t, A), for each (t, A) with y(t, A) > 0.

Proof. Recall that the algorithm increases only one dual variable in each iteration
of the growing phase. Suppose that y(t, A) is the variable chosen in iteration
k, i.e., t = tk. Using the notation introduced above, we can write y(t, A) as
y(tk, Ak

tk). However, for notational convenience, we shall denote the set Ak
tk as

Ak. Then the lemma can be restated as
∑

j∈Ā
tk \Ak pj(tk, Ak) < 2D(tk, Ak). We

can interpret the set on the left-hand side as the jobs that cover the demand of
tk that are added to the solution after the start of iteration k.

First, suppose time tk is critical with respect to x̄ and Ak, meaning there
exists some job � in Ātk \ Ak such that � cannot be deleted from Ātk for x̄
to remain feasible. This can be expressed as

∑
j∈Ā

tk \(Ak∪
) pj < D(tk, Ak).
Notice that each of these jobs in the above summation must have process-
ing time less than D(tk, Ak), and thus by definition, pj = pj(tk, Ak). Hence,∑

j∈Ā
tk\(Ak∪
) pj(t

k, Ak) < D(tk, Ak). Also, p
(tk, Ak
t ) ≤ D(tk, Ak), by defini-

tion. Adding these two together gives
∑

j∈Ā
tk\Ak pj(tk, Ak) < 2D(tk, Ak).

Hence, if tk is critical we have the desired result. Now we will argue by con-
tradiction that this must be the case. Suppose otherwise; then for every job � in
Ātk \Ak, we have that

∑
j∈Ā

tk \(Ak∪
) pj ≥ D(tk, Ak). We first argue that there
must exist some time t
 that is critical with respect to x̄ and Ak

t�
because of job

�; i.e., ∑
j∈Āt�

\(Ak
t�
∪
)

pj < D(t
, Ak
t�). (5)

Suppose not; from the definition of D(t
, Ak
t�

), we must have that
∑

j∈Āt�
\(Ak

t�
∪
)

pj +
∑

j∈Ak
t�

pj ≥ D(t
) for each time t
 that job � covers. This, combined with

the fact that � is considered in the pruning phase before any of the jobs in Ak
t�

(since � is added after the start of iteration k), implies that � should have been
deleted in the pruning phase, which is a contradiction.

Hence, such a time t
 must exist for each job � in Ātk \Ak. If there are multiple
time indices such that (5) holds for job �, let t
 be the earliest such time. Consider
the following two cases:

Case 1 Suppose there exists some job � with t
 < tk. Notice that each job that
covers tk also covers t
. Hence, the set of jobs in the final solution that covers t
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added after the start of iteration k of the growing phase is a superset of those that
covers tk and added after the start of iteration k, i.e., Āt�\(Ak

t�
∪�) ⊇ Ātk\(Ak∪�)

and we have that∑
j∈Āt�

\(Ak
t�
∪
)

pj ≥
∑

j∈Ā
tk\(Ak∪
)

pj ≥ D(tk, Ak) ≥ D(t
, Ak
t�

),

where the second inequality follows from our assumption that tk is not critical,
and the last inequality follows from the definition of tk having the largest residual
demand. This gives a contradiction to (5); thus Case 1 is impossible.

Case 2 Otherwise, all t
 > tk. Pick � so that t
 is the earliest among all jobs in
Ātk \ Ak. Notice that each job that covers t
 must cover tk as well. However,
by the assumption that tk is not critical and the choice of t
, the set of jobs
that covers t
 added after the start of iteration k of the growing phase is the
same as those that cover tk and are added after the start of iteration k, i.e.,
Āt \ (Ak

t ∪�) = Ātk \ (Ak ∪�). Then we can derive a contradiction similar to Case
1: ∑

j∈Āt�
\(Ak

t�
∪
)

pj =
∑

j∈Ā
tk\(Ak∪
)

pj ≥ D(tk, Ak) > D(t
, Ak
t�

).

This gives a contradiction to (5); thus Case 2 is also impossible. Combining
the two cases, we see that tk must be critical with respect to x̄, giving us the
desired result. ��
Now we can show our main theorem.

Theorem 1. The primal-dual algorithm produces a schedule for 1||∑ fj with
cost at most twice the optimum.

Proof. It suffices to show that the cost of the schedule is no more than twice the
dual objective value. The cost of our solution is denoted by

∑T
t=1

∑
j∈J̄t

fj(t).
We have that

T∑
t=1

∑
j∈J̄t

fj(t) =
T∑
t=1

∑
j∈J̄t

t∑
s=1

∑
A:j /∈A

pj(s,A)y(s,A)

=
T∑
s=1

∑
A

y(s,A)(
T∑
t=s

∑
j∈J̄t\A

pj(s,A))

The first line is true because we set xjt = 1 only if the dual constraint is
tight, and the second line is by interchanging the order of summations and using
the relation s ≤ t. Now, from Lemma 5 we know that

∑T
t=s

∑
j∈J̄t\A pj(s,A) <

2D(s,A). Hence it follows that

T∑
s=1

∑
A

ysA(
T∑
t=s

∑
j∈J̄t\A

pj(s,A)) <
T∑
s=1

∑
A

2D(s,A)y(s,A),
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where the right-hand side is twice the dual objective. The result now follows,
since the dual objective is a lower bound of the cost of the optimal schedule. ��

3 A (2 + ε)-Approximation Algorithm

We now give a polynomial-time (2+ε)-approximation algorithm for 1||∑ fj . This
is achieved by simplifying the input via rounding in a fairly standard fashion, and
then running the primal-dual algorithm on the LP relaxation of the simplified
input, which only has a polynomial number of interval-indexed variables. A
similar approach was employed in the work of Bansal & Pruhs [5].

Fix a constant ε > 0. We start by constructing n partitions of the time indices
{1, . . . , T}, one partition for each job, according to its cost function. Focus on
some job j. First, the set of time indices I0

j = {t : fj(t) = 0} are those of
class 0; class 1 is the set of indices I1

j = {t : 0 < fj(t) ≤ 1}; finally, class
k = 2, 3, . . . is the set of indices Ikj = {t : (1 + ε)k−2 < fj(t) ≤ (1 + ε)k−1}. (We
can bound the number of classes for job j by 1 + log1+ε fj(T ).) Let �kj denote
the minimum element in Ikj (if the set is non-empty), and let Tj be the set of
all left endpoints �kj . Finally, let T = ∪nj=1Tj . Notice that the time t = 1 is in
T . Index the elements such that T := {t1, ..., tτ} where 1 = t1 < t2 < ... < tτ .
We then compute a master partition of the time horizon T into the intervals
I = {[t1, t2−1], [t2, t3−1], ..., [tτ−1, tτ −1], [tτ , T ]}. There are two key properties
of this partition: the cost of any job changes by at most a factor of 1 + ε as
its completion time varies within an interval, and the number of intervals is a
polynomial in n, logP and logW . Here P denotes the length of the longest job
and W = maxj,t(fj(t)− fj(t− 1)), the maximum increase in cost function fj(t)
in one time step over all jobs j and times t.

Next we define a modified cost function f ′j(t) for each time t ∈ T ; in essence,
the modified cost is an upper bound on the cost of job j completing in the
interval for which t is the left endpoint. More precisely, for ti ∈ T , let f ′j(ti) :=
fj(ti+1−1). Notice that, by construction, we have that fj(t) ≤ f ′j(t) ≤ (1+ε)fj(t)
for each t ∈ T . Consider the following integer programming formulation with
variables x′jt for each job j and each time t ∈ T ; we set the variable x′jti to 1 to
indicate that job j completes within the interval [ti, ti+1− 1]. The demand D(t)
is defined the same way as before.

minimize
n∑
j=1

∑
t∈T

f ′j(t)x
′
jt (IP′)

subject to
n∑
j=1

∑
s∈T :s≥t

pjx
′
js ≥ D(t), for each t ∈ T ; (6)

∑
t∈T

x′jt = 1, for each j = 1, . . . , n; (7)

x′jt ∈ {0, 1}, for each j = 1, . . . , n, t ∈ T .
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The next two lemmas relate (IP′) to (IP).

Lemma 6. If there is a feasible solution x to (IP) with objective value v, then
there is a feasible solution x′ to (IP′) with objective value at most (1 + ε)v.

Proof. Suppose xjt = 1 where t lies in the interval [ti, ti+1− 1] as defined by the
time indices in T , then we construct a solution to (IP′) by setting x′jti = 1. It
is straightforward to check x′ is feasible for (IP’), and by construction f ′j(ti) =
fj(ti+1 − 1) ≤ (1 + ε)fj(t).

Lemma 7. If there is a feasible solution x′ to (IP′) with objective value v′, then
there is a feasible solution x to (IP) with objective value v′.

Proof. Suppose x′jt = 1, where t = ti; then we construct a solution to (IP) by
setting xj,ti+1−1 = 1. Notice that the time ti+1 − 1 is the right endpoint to the
interval [ti, ti+1 − 1]. By construction, fj(ti+1 − 1) = f ′j(ti); hence, the cost of
solution x is also v′. To check its feasibility, it suffices to see that the constraint
corresponding to D(ti) is satisfied. This uses the fact that within the interval
[ti, ti+1 − 1], D(t) is largest at ti and that the constraint corresponding to D(t)
contains all variables xjs with a time index s such that s ≥ t.
Using the two lemmas above, we see that running the primal-dual algorithm
using the LP relaxation of (IP′) strengthened by the knapsack-cover inequalities
gives us a 2(1+ ε)-approximation algorithm for the scheduling problem 1||∑ fj .
Hence we have the following result:

Theorem 2. For each ε > 0, there is a (2 + ε)-approximation algorithm for the
scheduling problem 1||∑ fj.

The combination of the interval-indexed formulation along with the generality
of the objective function allows us to capture even more general problems within
the same framework.

Specifically, we consider the setting in which the machine runs at a time-
varying speed s(t), so that within the interval (t, t′] the machine has the capacity
to process

∫ t′
t
s(t)dt units of processing, and extend Theorem 2 to this setting.

No constant approximation algorithm was previously known for this problem,
even just in the case where the speed of the machine was either 0 or 1; that is,
there are specified intervals in which the machine is not available. The details of
this generalization will be given in the full version of this paper.
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Abstract. We consider the Tree Augmentation problem: given a graph
G = (V, E) with edge-costs and a tree T on V disjoint to E, find a
minimum-cost edge-subset F ⊆ E such that T ∪ F is 2-edge-connected.
Tree Augmentation is equivalent to the problem of finding a minimum-
cost edge-cover F ⊆ E of a laminar set-family. The best known appro-
ximation ratio for Tree Augmentation is 2, even for trees of radius 2.
As laminar families play an important role in network design problems,
obtaining a better ratio is a major open problem in network design. We
give a (1 + ln 2)-approximation algorithm for trees of constant radius.
Our algorithm is based on a new decomposition of problem solutions,
which may be of independent interest.

1 Introduction

We consider the following problem:

Tree Augmentation
Instance: A graph G = (V,E) with edge-costs {c(e) : e ∈ E}, and a tree T on

V disjoint to E.
Objective: Find a minimum-cost edge-set F ⊆ E such that T ∪ F is 2-edge-

connected.

The case when T is a path reduces to the Shortest Path problem (c.f. [7]),
and the case when T is a star is equivalent to the Minimum-Cost Edge-Cover
problem. Tree Augmentation is equivalent to the problem of finding a minimum
cost edge-cover of a laminar set-family; namely, given a graph G = (V,E) with
edge-costs and a laminar set-family L on V , we seek a minimum cost edge-set
F ⊆ E such that for every S ∈ L there is uv ∈ F with u ∈ S and v /∈ S. The
problem is also equivalent to the problem of augmenting a k-edge-connected
graph to be (k + 1)-connected by adding a minimum cost edge-set, for odd k;
this is since when k is odd, the minimum cuts of a k-edge-connected graph form
a laminar set-family. In general, laminar set-families play an important role in
network design problems; see [6] and surveys in [5,7,8], for various network design
problems and applications of laminar set-families.

Fredrickson and Jájá [4] gave a 2-approximation algorithm for Tree Augmen-
tation, and showed that it is NP-hard even for trees of radius 2 (the radius

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 147–157, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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R = R(T ) of a tree T is �D/2�, where D is the diameter of T ). Cheriyan, Jordán
and Ravi [1] proved that Tree Augmentation is NP-hard also in the case of unit
costs when E is a cycle on the leaves of T , and gave a 4/3-approximation al-
gorithm for this version. They also conjectured that a standard LP-relaxation
for the problem has integrality gap less than 2, while in [2] it is shown that the
integrality gap is at least 3/2.

Achieving a ratio better than 2 for Tree Augmentation, even for the particular
case of unit costs, was posed as a major open problem in connectivity network
design in the survey by Khuller [7]. This open question was resolved by Naga-
mochi [10] that gave a (1.875 + ε)-approximation scheme for this version. The
currently best known approximation ratio for Tree Augmentation with unit costs
is 3/2, by Even, Kortsarz, and Nutov [3]. Even better ratios are known for unit
costs when every edge in E connects two leaves of T [9]: 17/12 for general trees,
11/8 for trees of radius 3, and 4/3 for trees of radius 2.

However, for arbitrary costs, no ratio better than 2 is known, not even for
trees of radius 2. We prove the following.

Theorem. Tree Augmentation admits an algorithm that computes a (1 + ln 2)-
approximate solution in time n3h(T ) · poly(n), where n = |V | and h(T ) is the
radius of T . In particular, Tree Augmentation on trees with radius bounded by a
constant admits a (1 + ln 2)-approximation algorithm.

Our algorithm is based on a new decomposition of Tree Augmentation feasible
solutions, which may be of independent interest.

2 Proof of the Theorem

2.1 A Local Replacement Algorithm for Set-Cover

We start by describing a generic local-replacement algorithm for the following
well known problem.

Set-Cover
Instance: A collection E of subsets of a groundset T with costs {c(e) : e ∈ E}.
Objective: A minimum-costs subcollection F ⊆ E such that T ⊆ ⋃

e∈F
e.

Definition 1. Given an instance of Set-Cover and S, F ⊆ E let

RF (S) =

{
f ∈ F : f ⊆

⋃
e∈S

e

}
.

We say that a set-family S ⊆ 2E overlaps F ⊆ E if
⋃
S∈S

RF (S) = F , namely,

if for every f ∈ F there is S ∈ S with f ∈ RF (S). We say that F ⊆ E is
q-overlapped by F ∗ ⊆ E if F ∗ admits a partition S into parts of size at most q
that overlaps F .
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The following statement is immediate.

Fact 1. Let F ⊆ E be a feasible solution. Then F \RF (S)∪ S is also a feasible
solution for any S ⊆ E.

The following technique was introduced by Zelikovsky in [12] in the context
of the Steiner Tree problem. We reinterpret Zelikovsky’s result in a more general
Set-Cover setting.

Lemma 1. Suppose that for an instance of Set-Cover we are given an α-appro-
ximate solution F0 that is q-overlapped by some optimal solution F ∗. Then the
problem admits a (1+ lnα)-approximation in mq ·poly(m) time, where m = |E|.
Proof. Let S be a partition of F ∗ into parts of size at most q each that overlaps
F . Clearly,

∑
S∈S

c(S) = opt. For any F ⊆ F0 we have
∑
S∈S

c(RF (S)) ≥ c(F ), hence

by an averaging argument there exist S ∈ S such that

c(RF (S))
c(F )

≥ c(S)
opt

. (1)

The algorithm is as follows.

Initialization: I ← ∅, F ← F0.
While F = ∅ do:

Find S ⊆ E \ I with |S| ≤ q satisfying (1).
- If c(RF (S)) ≤ c(S) then STOP and Return F ∪ I;
- Else do F ← F \RF (S) and I ← I ∪ S.

EndWhile
Return F ∪ I.

The time complexity is straightforward, and feasibility follows from Fact 1.
We prove the approximation ratio. Let Si be the set picked at iteration i and
let Fi be the set stored in F after iteration i. When the algorithm stops, either
F = ∅ or c(RF (S)) ≤ c(S); note that the later case implies that c(F ) ≤ opt, by
(1). In both cases, there exist an iteration j such that c(Fj−1) > opt ≥ c(Fj).
Hence there exists θ ∈ (0, 1] such that c(Fj−1) − θ · c(RFj−1 (Sj)) = opt. Note
that c(F ∪ I) is decreasing after each iteration, hence the cost of the solution
produced by the algorithm is at most

c(F∪I) ≤ c(Fj−1)−θ ·c(Rj−1(Sj))+
j−1∑
i=1

c(Si)+θc(Sj) = opt+
j−1∑
i=1

c(Si)+θc(Sj) .

We can assume w.l.o.g that c(S) ≥ 1 for all S ∈ E. Since at each iteration
Fi, Si satisfy (1), we have

c(Fi+1)=
(

1− c (RFi(Si))
c(Fi)

)
c(Fi) ≤

(
1− c(Si)

opt

)
c(Fi) ≤

(
1− 1

opt

)c(Si)

c(Fi) .
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Applying the same argument for iteration j we get

opt = c(Fj−1)− θc(RFj−1 (S)) ≤
(

1− 1
opt

)θc(Sj)

c(Fj−1)

≤
(

1− 1
opt

)∑ j−1
i=1 c(Si)+θc(Sj)

· c(F0)

≤
(

1− 1
opt

)∑ j−1
i=1 c(Si)+θc(Sj)

· α · opt

This implies

c(F ∪ I) ≤ opt +
j−1∑
i=1

c(Si) + θc(Sj) ≤ opt + lnα · opt = (1 + lnα) · opt .

The lemma follows. ��

2.2 Algorithm for Tree Augmentation

Given an instance of Tree Augmentation, we will call the edges in E links, to
distinguish them from the edges of the tree T . For u, v ∈ V let Tuv denote the
(unique) uv-path in T . We say that a link uv ∈ E covers an edge e ∈ T if
e ∈ Tuv. It is well known and easy to see that F ⊆ E is a feasible solution to
an instance of Tree Augmentation if, and only if, F covers all the edges of T .
Hence Tree Augmentation is equivalent to the problem of finding a minimum-
cost link-set F ⊆ E that covers all the edges of T ; namely, Tree Augmentation
can be casted as a Set-Cover problem with groundset being the edge-set of T ,
and the collection of sets obtained by replacing every link e = uv ∈ E by the
set Te = Tuv of cost c(e). In this setting, the restriction of Definition 1 to Tree
Augmentation can be formulated as follows.

Definition 2. Given an instance of Tree Augmentation and S, F ⊆ E let

RF (S) =

{
f ∈ F : Tf ⊆

⋃
e∈S

Te

}
.

We say that a set-family S ⊆ 2E of links overlaps a set F ⊆ E of links if⋃
S∈S

RF (S) = F , namely, if for every f ∈ F there is S ∈ S with f ∈ RF (S). We

say that F ⊆ E is q-overlapped by F ∗ ⊆ E if F ∗ admits a partition S into parts
of size at most q that overlaps F .

To apply Lemma 1, we would like to show that given an instance of Tree
Augmentation, one can find in polynomial time a 2-approximate solution F0 that
is q-overlapped by some optimal solution F ∗, for q = 3h(T )−1. However, for this
to be true, we need to apply a certain transformation to modify the instance, as
is explained bellow.
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Definition 3. A link u′v′ is a shadow of a link uv if Tu′v′ is a subpath of Tuv.
We say that F is a shadow-minimal cover of T if for every link uv ∈ F , removing
uv or replacing uv by any proper shadow of uv results in an edge-set that is not
a cover of T .

Given an instance of Tree Augmentation, we can obtain an equivalent instance by
applying “shadow completion”: for every existing link e ∈ E, add all its shadows,
of cost c(e) each (if parallel links arise, then for every inclusion-maximal set of
parallel links we keep only the cheapest one). Note that shadow completion does
not affect the optimal solution value, since every shadow can be replaced by
some original link covering all edges of T covered by the shadow. Hence we can
assume the following.

Assumption 1. If uv ∈ E and u′, v′ ∈ Tuv then u′v′ ∈ E and c(u′v′) ≤ c(uv).
In the next section we will prove the following statement.

Lemma 2. Under Assumption 1, Tree Augmentation admits a polynomial time
algorithm that finds a 2-approximate solution F0 that is 3h(T )−1-overlapped by
any feasible solution F ∗.

Lemmas 1 and 2 easily imply the Theorem; note that the running time is bounded
by

m3h(T )−1
poly(n) ≤ (

n2
)3h(T )−1

poly(n) ≤ n3h(T )
poly(n) ,

as claimed.
In the rest of this paper we prove Lemma 2.

2.3 Proof of Lemma 2

Root the tree at a center s of T (so |Tsv| ≤ h(T ) for every v ∈ V ). This defines
an ancestor-descendant relation (partial order) on the nodes of T , where u is an
ancestor of v (and v is a descendant of u) if u ∈ Tvs; if also uv ∈ T then v is a
child of u and u is the parent of v.

Definition 4. We say that a link is an up-link if one of its endnodes is an
ancestor of the other. We say that a cover F of T is an up-cover of T if every
link in F is an up-link.

The following statement is known, and was implicitly proved in [4]. For com-
pleteness of exposition, we provide a proof-sketch.

Lemma 3. Under Assumption 1, for any cover F ∗ of T there exists an up-cover
F of T such that c(F ) ≤ 2c(F ∗). Furthermore, a minimum-cost up-cover can be
computed in polynomial time. Consequently, there exists a shadow-minimal up-
cover F0 of cost at most 2opt, and such cover be computed in polynomial time.

Proof. Let F be obtained from F ∗ by replacing every link e = uv ∈ F by the two
links ua, va, where a is the least common ancestor of u, v in T . By Assumption 1,
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the links ua, va exist, and the cost of each of them is at most c(uv). Hence
c(F ) ≤ 2c(F ∗). It is easy to see that F is a feasible solution, which concludes
the proof of the first statement of the lemma. The problem of computing a
minimum-cost up-cover is reduced to the Minimum-Cost Arborescence problem
(which is solvable in polynomial time, c.f. [11]) as follows. It is known and easy
to see [4] that F is an-up cover of T if, and only if, the directed graph obtained
by directing the edges of T towards the root s and directing the links in F
from ancestors to descendants, has a path from s to every other node. Hence
to compute a minimum-cost up-cover do the following. Direct the edges of T
towards the root, remove all links that are not up-links, and direct all up-links
from ancestors to descendants. Then in the obtained directed graph compute a
minimum-cost arborescence. The set of links (that are not edges of T ) in the
underlying graph of the computed arborescence, is a minimum-cost up-cover
of T .

The last statement of the lemma follows by observing that under Assumption 1
we can replace any up-cover F of T by a shadow-minimal up-cover F0 of no
greater cost. ��
Lemma 4. Let uv, xy be up-links such that Tuv and Txy have an edge in common
but none of them is a subpath of the other. Then one of uv, xy has a proper
shadow that together with the other link they cover all edges in Tuv ∪ Txy.
Proof. As Tuv and Txy intersect, either y is an ancestor of v, or v is an ancestor
of y. Assume w.l.o.g. that y is an ancestor of v. Let z be the lowest (farthest
from root) node that Txy, Tuv have in common. Than uz is a proper shadow of
uv, and {xy, uz} cover all edges in Tuv ∪ Txy. As the link xy covers an edge on
Tuv, one of x, y, say x, must be an internal node of the path Tuv. Since none of
Tuv, Txy is a subpath of the other, y must be either a proper ancestor of v or
a proper descendant of u. In the former case vy is a proper shadow of xy and
{uv, vy} cover all edges in Tuv ∪ Txy. In the latter case yu is a proper shadow of
xy and {uv, yu} cover all edges in Tuv ∪ Txy. ��
From Lemma 4 we deduce the following.

Corollary 1. Let F be a shadow-minimal up-cover of T . Then every edge of T
is covered by a unique link in F .

Definition 5. The height h(v) of a node v ∈ V is the distance from v to the
farthest descendant of v in T (note that by our choice of s, h(s) is the radius
h(T ) of T ). For u, v ∈ V let lca(u, v) denote the least common ancestor of u and
v in T . For a link e = uv let lca(e) = lca(u, v). The height h(e) of a link e = uv
is h(lca(e)).

In the rest of this section we will prove the following statement, that together
with Lemma 3 and Corollary 1 implies Lemma 2.

Lemma 5 (The Decomposition Lemma). Let F ∗ be a cover and F an up-
cover of a tree T rooted at s, such that every edge of T is covered by a unique



A (1 + ln 2)-Approximation Algorithm for Tree Augmentation 153

link in F . Then F is 3h(s)−1-overlapped by F ∗, namely, there exist a partition
S of F ∗ into parts of size at most 3h(s)−1 each, such that for every f ∈ F there
exists S ∈ S with f ∈ RF (S).

The bound 3h(s)−1 in Lemma 5 is tight, as is shown in the next section.
Namely, for any integer h ≥ 1, there exists a tree T rooted at s and F, F ∗ as in
Lemma 5, such any partition of F ∗ that overlaps F has a part of size at least
3h(s)−1.

In the rest of this section we prove Lemma 5. Define an auxiliary directed
graph J = (VJ , EJ) as follows. For every f ∈ F , let uf , vf be the endnodes
of f , where uf is a descendant of vf . Let If ⊆ F ∗ be some inclusion minimal
cover of the unique ufvf -path P f in T . Let k(f) = |If | and let ef1 , e

f
2 , ...e

f
k(f)

be an ordering of If obtained as follows, see Figure 1. For i = 1, . . . , k(f), efi
is the link in If that covers the lowest (farthest from the root) edge of P f not
covered by {ef1 , . . . , efi−1}. The node set of J is VJ = F ∗ and the edge set of J is
EJ = {efi+1e

f
i : f ∈ F, 1 ≤ i ≤ k(f)− 1}. We will prove:

Lemma 6. J is a collection of node-disjoint arborescences with at most 3h(s)−1

nodes each.

Lemma 5 easily follows from Lemma 6. The desired partition S of F ∗ is the
one defined by the arborescences of the auxiliary graph J . Note that by the
construction, for every f ∈ F the ordering ef1 , e

f
2 , ...e

f
k(f) of If forms a directed

path in J . Hence for every f ∈ F , If belongs to the same part (arborescence),
which defines the part S ∈ S such that f ∈ RF (S).

In the rest of this section we prove Lemma 6. The following fact stems from
the definition of If (see Figure 1).

fu

fv

fek(f)−1

fek(f)

1
fe

2
fe 3

fe

s

f

Fig. 1. Illustration to the definition of If and Fact 2
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Fact 2. Let f ∈ F . Then for every i = 1, . . . , k(f), the set of edges from P f

covered by the link-set {ef1 , . . . , efi } is exactly the set of edges on the ufvfi -path
in T , where vfi = lca(efi ).

Thus from the minimality of If we have the following.

Corollary 2. Let f ∈ F with k(f) ≥ 2. Then for every 1 ≤ i ≤ k(f) − 1, vfi
is an inner node of P f , h(efi ) < h(efi+1), and both f and efi+1 cover the parent
edge of efi (the edge between vfi and its parent) in T .

Lemma 7. J is acyclic and deginJ (e) ≤ 1 for every e ∈ F ∗. Thus J is a collec-
tion of node-disjoint arborescences.

Proof. From Corollary 2 it easily follows that J is acyclic. We will prove that
deginJ (e) ≤ 1 for every e ∈ F ∗. Suppose to the contrary that there are two edges
e′e, e′′e ∈ EJ entering e in J . By the definition of J , there are two distinct links
f ′, f ′′ ∈ F such that e = ef

′
i′ ∈ If ′ and e = ef

′′
i′′ ∈ If ′′ . By Corollary 2, e has a

parent edge in T , and both f ′, f ′′ cover the parent edge of e in T . This contradicts
the assumption that every edge of T is covered by a unique link in F . ��
Lemma 8. For every e ∈ F ∗, no three neighbors of e in J have the same height.

Proof. Let e′, e′′ be two distinct neighbors of e in J with h(e′) = h(e′′). By the
definition of J , there exist distinct f ′, f ′′ ∈ F such that e′ = ef

′
i′ , e′′ = ef

′′
i′′ , and

e = ef
′

i′+1 = ef
′′

i′′+1. By Corollary 2, f ′ covers the parent edge of e′ and f ′′ covers
the parent edge of e′′. Since f ′ and f ′′ are distinct and since every edge of T is
covered by a unique link in F , the parent edges of e′ and e′′ are also distinct Since
e′, e′′ have the same height, the parent edges of e′ and e′′ also have the same height.
By Fact 2, e covers the parent edge of each of e′, e′′. Hence, e cannot have a third
neighbor in J , since then e will cover three distinct edges in T of the same height,
but no link can cover three distinct edges in T of the same height. ��
Corollary 3. For e ∈ F ∗ let Ae be the set of nodes in J reachable from e. Then
|Ae| ≤ 3h(e)−1. Thus every arborescence in J has at most 3h(s)−1 nodes.

Proof. We prove the statement by induction on h(e). If h(e) = 1 then e has no
neighbors in J , by Corollary 2. Hence |Ae| = 1 and 3h(e)−1 = 30 = 1, and the
statement is valid in this case. Suppose that h(e) ≥ 2 and that any arborescence
A′ in J with root e′ and h(e′) ≤ h(e)− 1 has at most 3h(e′)−1 nodes.

Let e′ be a neighbor of e in J . By Corollary 2, h(e′) ≤ h(e)− 1. Hence by the
induction hypothesis, |Ae′ | ≤ 3h(e′)−1. By Lemma 8, no three distinct neighbors
of e have the same height. Thus we get:

|Ae| ≤ 1 + 2 ·
h(e)−1∑
i=1

3i−1 = 1 + 2 · 1− 3h(e)−1

1− 3
= 1 + 3h(e)−1 − 1 = 3h(e)−1 .

��
This finishes the proof of Lemma 6, and thus also the proof of the Theorem is
now complete.
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Fig. 2. Construction of a tight example for Lemma 5 with h(s) = 1, 2, 3. T -edges are
shown by bold lines, F ∗-edges are shown by dashed lines, and F -edges are shown by
thin lines.

2.4 A Tight Example for the Decomposition Lemma

Here we show for any integer h ≥ 1, there exists a tree T rooted at s and F, F ∗

as in Lemma 5, such any partition of F ∗ that overlaps F has a part of size at
least 3h(s)−1.

In our example we will show that any partition S of F ∗ that overlaps F must
consist of one part S = {F ∗}. Define a sequence graphs Hi, each with spanning
tree Ti rooted at si, and two edge subsets Fi, F ∗i as follows.
H1 is depicted in Figure 2.
To obtain H2 do the following (see Figure 2). Take a path P2 = s2−s1−s0 of

T -edges, add the F -link f1 = s0s1, and attach a copy of H1 via the root to s1.
This copy has an F -link from a leaf to s1, and we replace the endnode s1 of this
link by s2, to obtain the link f2. Take another copy of the obtained graph and
identify the node s2 of both copies. Finally, add the F ∗-link e2 that connects
the two copies of s0 on copies of P3, as depicted in Figure 2. The edges of T2

are the T1 edges in the H1 copies plus the edges in the P2 copies. The F ∗-links
are the union of the F ∗-links in the copies of H1 and the link e2; alternatively,
these are the links in H2 that connect two leaves of T2. The remaining links are
the F -links, and these are the up-links in H2.
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In general, the construction is recursive as follows. Given H1, . . . , Hi−1, to
obtain Hi do the following (see Figure 2 for the case i = 3). Take a path Pi =
si − si−1 − · · · − s0 of T -edges, add the F -link f1 = s0s1, and for every j =
1, . . . , i− 1 attach a copy of Hj via the root to sj . Each copy Hj has an F -link
from a leaf to sj , and we replace the endnode sj of this link by sj+1, to obtain
the link fj+1. Take another copy of the obtained graph and identify the node
si of both copies. Finally, add the F ∗-link ei that connects the two copies of
s0 on copies of Pi, as depicted in Figure 2. The edges of Ti are the Tj-edges in
the copies Hj plus the edges in the Pi copies. The F ∗-links are the union of the
F ∗-links in the Hj-copies and the link ei; alternatively, these are the links in Hi

that connect two leaves of Ti. The remaining links are the F -links, and these are
the up-links in Hi.

It is not hard to verify that |F ∗i | = 3i−1 and that |Fi| = 2|F ∗i | = 2 · 3i−1.
Now let S be a partition of F ∗i that overlaps F , and let S ∈ S be the part that
contains ei. We claim that S = F ∗. For every j = 2, . . . , i, the tree edge sj−1sj
is covered by the link fj , and ei is the only link in F ∗ that covers this edge.
This implies that we must have fj ∈ RF (S). Using a similar argument, we can
conclude that in any Hj-copy, the link ej must be in S. Thus using induction
we can show that in each Hj-copy, all the F ∗ links belong to S. Consequently,
all the F ∗-links in Hi belong to F ∗, as claimed.
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Abstract. We consider the problem of identifying periodic trends in
data streams. We say a signal a ∈ Rn is p-periodic if ai = ai+p for all
i ∈ [n− p]. Recently, Ergün et al. [4] presented a one-pass, O(polylog n)-
space algorithm for identifying the smallest period of a signal. Their
algorithm required a to be presented in the time-series model, i.e., ai is
the ith element in the stream. We present a more general linear sketch
algorithm that has the advantages of being applicable to a) the turnstile
stream model, where coordinates can be incremented/decremented in an
arbitrary fashion and b) the parallel or distributed setting where the
signal is distributed over multiple locations/machines. We also present
sketches for (1+ε) approximating the �2 distance between a and the near-
est p-periodic signal for a given p. Our algorithm uses O(ε−2 polylog n)
space, comparing favorably to an earlier time-series result that used
O(ε−5.5√ppolylog n) space for estimating the Hamming distance to the
nearest p-periodic signal. Our last periodicity result is an algorithm for
estimating the periodicity of a sequence in the presence of noise. We con-
clude with a small-space algorithm for identifying when two signals are
exact (or nearly) cyclic shifts of one another. Our algorithms are based
on bilinear sketches [10] and combining Fourier transforms with stream
processing techniques such as �p sampling and sketching [13,11].

1 Introduction

We consider the problem of identifying periodic trends in data streams. Mo-
tivated by applications in computational biology and data mining, there has
recently been a series of papers related to finding such trends in large data
sets [4, 5, 9, 3, 16]. We say a signal a ∈ Rn is p-periodic if it can be expressed as
a concatenation a = x ◦ . . . ◦ x ◦ x′ for some x ∈ Rp and some x′ ∈ Rn−p�n/p	

that is a prefix of x. We say a is perfectly p-periodic if a is p-periodic and p | n.
Given a signal a ∈ Rn, we define the distance to p-periodicity as

Dp(a) ≡ min
y∈Pp,n

‖a− y‖2 where Pp,n = {y ∈ Rn : y is p-periodic}

where ‖v‖2 =
√
v2
1 + . . .+ v2

n denotes the �2 norm of the vector v ∈ Rn. (We
will later discuss our choice of distance measure and observe that many of our
results still hold if an alternative measure is chosen.) We denote the minimum
period of a signal a ∈ Rn by

period(a) = min{p : a is p-periodic} .
� Research supported by NSF Award CCF-0953754.
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In this paper, we consider signals defined by a stream of data. Previous pe-
riodicity work assumes that the stream is the signal, e.g., the stream 〈1, 2, 3, 4〉
defines the signal a = [1, 2, 3, 4]. However, we wish to consider a more general
setting. For example, consider a sensor network in which each node is tasked
with recording the times when certain local events occur. These records are
forwarded through the network to some central node for processing. In this situ-
ation, there is no guarantee that the records are received in the order they were
generated. Hence, we would need an algorithm that could identify patterns even
if the records arive out of order. A yet more challenging example would be if each
sensor monitors the local temperature at each time step and we are interested
in identifying periodic trends in the average temperature. In this case, not only
can records arrive out of order but the signal will be determined by the value of
multiple records.

Following the terminology of Muthukrishnan [14, pg. 12–13], we consider three
different stream models in which the signal a of interest can be defined. In
the time-series model the stream S = 〈a0 . . . an−1〉 defines the signal directly.
More general is the permutation model where coordinates of a may arrive out
of order, i.e., S = 〈(π(0), aπ(0)) . . . (π(n − 1), aπ(n−1))〉, for some permutation π
of {0, . . . , n − 1}. Finally, in the turnstile model, a is defined by a sequence of
increments and decrements, i.e., for a stream

S = 〈(u1, Δ1), . . . , (um, Δm)〉 where ui ∈ {0, . . . , n− 1}, Δi ∈ R

we define a by aj =
∑

i:ui=j
Δi. All of our algorithms work in the turnstile model

and are sketch-based. We will discuss sketches in more detail in Sect. 2 but note
here that one of their main advantages is that they work in a distributed setting
where parts of the streams are monitored at different locations: after the stream
concludes, it is sufficient to communicate only the sketches, as these can then be
merged in order to estimate the global property of interest. This would enable
data aggregation in the sensor network example outlined above.

1.1 Our Results and Related Work

Our first result is an O(ε−2 polylogn) space algorithm that (1+ ε)-approximates
Dp(a) for any given p (where p need not divide the length of the sequence). In
contrast, an earlier paper by Ergün et al. [4] presented and an algorithm using
O(ε−5.5√ppolylogn) space for estimating the Hamming distance to the nearest
p-periodic signal. They also present a single-pass, O(polylog n)-space algorithm
for computing period(a) in the time-series model. Our second result generalizes
this result to the turnstile model although our algorithm in this case requires
that a is perfectly periodic.

Next we examine estimating the periodicity of a sequence in the presence of
noise. While a seemingly natural problem, defining the precise problem is subtle.
For example, should we deem the noisy signal

a = [1, 2, 3, 1, 2, 3.5, 1, 2, 3.1, 1, 2, 3.4] (1)
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to be 3-periodic, 6-periodic, or aperiodic? Our algorithm achieves a natural “gap
promise” guarantee: given ϕ, ε with 0 < ϕ < ε < 1, it returns a period p | n with

Dp(a) ≤ ε‖a‖2 and p ≤ min{q | n : Dq(a) ≤ (ε− ϕ)‖a‖2} .
(Note that there is always such a p, since any length-n signal trivially has
Dn(a) = 0.) In other words, we ensure that a is close to being perfectly p-
periodic and that there is no q ≤ p such that a is “significantly closer” to being
perfectly q-periodic. This algorithm operates in the general turnstile model and
uses poly(logn, ϕ−1) space. The algorithm is based on sampling in the Fourier
domain and was actually inspired by Shor’s algorithm for quantum factoriza-
tion [17]. There is no analog in the recent Ergün et al. [4] paper but an earlier
result [5] in the combinatorial property-testing model can be applied in the
streaming setting if we may use O(

√
npolylogn) space.

We conclude with a simple sketch algorithm for the related problem of iden-
tifying when two sequences are cyclic shifts of one another. This algorithm uses
O(ε−2

√
npolylogn) space and has the additional feature that it actually approx-

imates how close the strings are to being cyclic shifts.

Notation. We write [n] = {0, 1, 2, . . . , n − 1}. We denote signals in lower-
case bold and their corresponding Fourier transforms in upper-case bold. For a
complex number z ∈ C we denote the real and imaginary parts by Re(z) and
Im(z) respectively. For functions f(n), g(n), we write f(n) = Õ(g(n)) when there
is a constant k such that f(n) = O(g(n) logk n). I[ϕ] is the 0-1 indicator function
which is 1 whenever ϕ is true.

Precision. Throughout, we will assume that the values of the signals can be
exactly stored with 1/ poly(n) precision. For example, this would be guaranteed
in the turnstile model with a number of updates m = poly(n) and with each
Δj ∈ {−M,−M+1, . . . ,M−1,M} for some M = poly(n). We also assume that
the approximation parameters ε, ϕ, δ satisfy 1/ε, 1/δ, 1/ϕ ∈ O(poly n).

2 Fourier Preliminaries and Choice of Distance Function

In this section, we review the basic definition and properties of the discrete
Fourier transform. We then discuss the utility of the transform in the context of
sketch-based data stream algorithms.

2.1 Discrete Fourier Transform and Sketches

Given a signal a ∈ Rn, the discrete Fourier transform of a, denoted A = F(a),
is defined as

A = (A0, A1, . . . , An−1) where Ak =
1√
n

n−1∑
j=0

aje
2πi
n jk .

The following proposition states some standard properties that will be of use.
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Proposition 1. For any signal a ∈ Rn,

1. a is perfectly p-periodic iff (Ak = 0⇒ n/p | k).
2. ‖a‖2 = ‖A‖2 (Parseval’s identity).

Of particular importance in the context of data streams is the fact that the
transformation from a to A is a linear transformation, i.e.,

AT = V aT where V ∈ Cn×n and Vkj = 1√
n
e

2πi
n kj for k, j ∈ [n] . (2)

This is significant because many data stream algorithms are based on ran-
domized linear projections called sketches. Suppose we are interested in a func-
tion f of x ∈ Rn where each coordinate xj is determined by the turnstile
stream S = 〈(u1, Δ1), . . . , (um, Δm)〉 according to xj =

∑
i:ui=j

Δi. A sketch-
ing algorithm chooses a random linear map W ∈ Rk×n such that WxT can be
post-processed to yield an estimate of f(x) (with certain error and probability
guarantees). The algorithm computes WxT incrementally using space propor-
tional to k rather than n:

WxT = (. . . (((Weu1 ) +Weu2) +Weu3) + . . .) +Weum

where eui = (0, . . . , 0, Δi, 0, . . . , 0)T has the non-zero entry in the ui-th position.
For many functions, such as quantiles and heavy hitters [2], distinct items [12],
and �1 and �2 norms [8], such sketches exist where k is only polylogarithmic in
n. Of course, it would still defeat the object of small-space computation if the
algorithm needed to explicitly store a random k×n matrix. Instead the random
matrices of interest are constructed either using limited independence or via a
pseudo-random generator, e.g., Nisan [15]. Either way, the relevant entries can
be reconstructed from some small seed as required.

We will make use of the simple, but very useful, observation that rather than
estimating functions in the time domain, we may estimate these functions in the
frequency domain by combining the change of basis matrix V with the sketch
matrix W . For example, if the random sketch matrix W ∈ Rk×n can be used to
estimate the number of non-zero entries in a then the sketch matrix WV ∈ Ck×n

can be used to estimate the number of non-zero entries1 in A.

2.2 Choice of Distance Function

In the context of the Fourier transform and many signal processing applications,
the natural measure of dissimilarity between two signals is the �2 norm of their
difference. In contrast, Ergün and coauthors [4,5] considered a measure based on
1 To be precise, it is often necessary to separate real and imaginary parts of V . That

is, we consider W ∈ Rk×2n and let V ∈ R2n×n have entries Vkj = cos(2πjk/n) for
k ∈ {0, . . . , n− 1} and Vkj = sin(2πjk/n) for k ∈ {n, . . . , 2n− 1}. In calculating the
�2 norm this causes no difficulties, but in other cases we may need to be careful. If
we counted the number of nonzero entries of V , for example, we would find the total
number of non-zero real parts and non-zero imaginary parts.
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the Hamming distance, D0
p(a) ≡ miny∈Pp,n Δ(a,y) where Δ(a,y) = |{i ∈ [n] :

ai = yi}|. While different measures are suited to different applications, many of
our algorithms can also be applied to approximate the Hamming distance, at
least in the permutation model.

Suppose Σ = {σ1, . . . , σr} and consider the mapping from Σ → {0, 1}r:

h(σ) = x1 . . . xr where xj =

{
1 if σ = σj

0 otherwise
.

The following lemma demonstrates that D0
p(a) and (Dp(h(a)))2/2 are closely

related. Hence, if each element of the sequence is first transformed using h (as
is possible in the permutation model) then the Hamming distance to periodicity
can be approximated via the �2 distance to periodicity. The approximation is
by a factor close to 1 if the sequence is close to being p-periodic. Note that we
would expect this to be the more relevant case in the sense that we would be
measuring the distance from periodicity of a nearly-periodic sequence.

Lemma 1. For any a ∈ Σn, with Σ = {σ1, . . . , σr}, let T (a) = (Dp(h(a)))2/2.
Then we have,

1
2 D0

p(a) ≤ T (a) ≤ D0
p(a) . (3)

Furthermore, if a is almost periodic in the sense that at least a 1 − ε fraction
of the elements {aj, aj+p, . . . , aj+n−p} are identical for each j ∈ [p], then (1 −
ε)D0

p(a) ≤ T (a) ≤ D0
p(a).

We can also relate Dp(a) to the �1 distance to the nearest p-periodic signal. For
this, consider the alphabet Σ = {1, . . . , t}, and use the mapping h(σ) = x1 . . . xr
where xj = I[σ ≥ j].

3 Periodicity

3.1 Distance from Fixed Periodicity

We first present a fast algorithm for measuring the distance between the signal
and the closest (under the �2 norm) p-periodic sequence, for fixed p. In this
section, we emphasize that we do not require that the length of sequence is a
perfect multiple of the periods considered. For p < n, we write n = dp+ r where

d = �n/p� and r = n mod p .

Basic properties of the �2 norm imply that the p-periodic pattern that is �2-
closest to a vector a is the arithmetic mean of length-p segments of the vector:

Lemma 2. For any sequence a ∈ Rn, let c = argminy∈Pn,p
‖a − y‖2 be the

p-periodic vector which is �2-closest to a. Then c = b ◦ . . .b ◦ (b0b1 . . . br−1)
where

bi =

{∑d
j=0 ai+jp/(d+ 1) for 0 ≤ i < r∑d−1
j=0 ai+jp/d for r ≤ i ≤ p− 1

.
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With this explicit form for c, there is a natural algorithm using Tug-of-War
sketches [1] to approximate Dp(a) = ‖a− c‖2. Alon et al. showed that if the
entries of a random vector z = z0 . . . zn−1 ∈ {−1, 1}n are chosen with 4-
wise independence then the random variable T =

∑n−1
i=0 zi(ai − ci) satisfies

E
[
T 2

]
= ‖a − c‖22. They show that the estimator has sufficiently low vari-

ance that, by averaging O(ε−2 log δ−1) independent estimators, we can find a
(1+ ε) approximation for ‖a−c‖22. The value of T can easily be constructed in a
streaming fashion: when the ith element of a is incremented by Δ we increment

T +=

⎛⎝zi − ∑
j:i=j mod p

zj
|{j : 0 ≤ j ≤ n− 1, i = j mod p}|

⎞⎠Δ

A naive implementation of this update method takes Ω(n/p) time per update.
To avoid this we adapt the bilinear sketch method of Indyk and McGregor [10].
This technique was originally designed to detect correlations in data streams but
we can exploit the structure of this sketch to reduce the update time. Rather
than view a as a length n vector, we encode it as a (d+ 1)× p matrix A where
Aij = aip+j if ip + j ≤ n − 1 and Aij = bj otherwise. Similarly let C be the
(d + 1) × p matrix where Cij = bj . E.g., for n = 10 and p = 4 we have the
matrices

A =

⎛⎝a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 b2 b3

⎞⎠ and B =

⎛⎝ b0 b1 b2 b3
b0 b1 b2 b3
b0 b1 b2 b3

⎞⎠ .

Let x ∈ {−1, 1}p and y ∈ {−1, 1}d+1 be random vectors whose entries are
4-wise independent. Indyk and McGregor extended the Alon et al. result to
show that the outer product of x and y had sufficient randomness for a result
similar to the Tug-of-War sketch. In our context, the result implies that if T =∑

0≤i≤d,0≤j≤p−1 xjyi(Aij − Cij), then by appealing to Lemma 2, we have that

E
[
T 2

]
=

∑
0≤i≤d,0≤j<p

(Aij − Cij)2 = D2
p(a)

and there is still sufficiently low variance for O(ε−2 log δ−1) parallel repetitions
to be sufficient for constructing a (1 + ε) approximation with probability 1− δ.
We next show that each T can be constructed in only O(1) update time. To do
this, decompose T as

T =
∑

0≤i≤d
0≤j<p

xjyiAij −
∑

0≤i≤d
0≤j<p

xjyiCij =
∑

0≤i≤d
0≤j<p

xjyiAij −
⎛⎝ ∑

0≤i≤d
yi

⎞⎠⎛⎝ ∑
0≤j<p

xjbj

⎞⎠
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and define T1 =
∑

0≤i≤d,0≤j<p xjyiAij and T2 =
∑

0≤j<p xjbj . Since
∑

0≤i≤d yi
can be computed in pre-processing, it suffices to compute T1 and T2. We initialize
T1 = T2 = 0. As the stream is read T1 and T2 are updated in O(1) time using
the following rule: when the (ip+ j)th entry of a is incremented by Δ,

T1 +=
(
xjyi + I[j ≥ r]xjyd

d

)
Δ and T2 +=

(
I[j < r]

xj
d+ 1

+ I[j ≥ r]xj
d

)
Δ

where r = n mod p and I is the indicator function.

Theorem 1. Dp(a) can be approximated up to a factor (1 + ε) with probability
1− δ using Õ(ε−2) space and Õ(ε−2) update time. The algorithm operates in the
turnstile model using one pass.

3.2 Determining Perfect Periodicity: Noiseless Case

In this and the next section we consider finding the period of a sequence that
is perfectly periodic, i.e., we now assume that period divides the length. In this
case, a possible approach to detecting periodicity with unknown period would
be to use the above algorithm to test all factors p | n and return the minimum
p such that Dp(a) = 0 (it suffices to set ε = 1 for this purpose). Unfortunately,
in the worst case n may have d(n) = O (exp(logn/log logn)) factors [7, pp. 260–
264] and therefore this approach would take too much time and space. However,
a simple modification suffices: we check for periodicity at each prime or power-
of-a-prime factor k of n. Define the set

K(n) = {k : k divides n and is the power of a prime} .

We first observe that |K(n)| ≤ O(log n) (since each prime factor of n is at least
2, we have from the prime factorization n = pr11 p

r2
2 . . . prt

t that |K(n)| = ∑
ri ≤

log2 n). The following lemma (see the appendix for the proof) demonstrates that
testing periodicity for p ∈ K(n) is sufficient to determine period(a).

Lemma 3. For any a ∈ Rn which is perfectly periodic,

period(a) = GCD(n/k : k ∈ K(n) and a is n/k-periodic) .

We can thus detect the minimum p for which a is perfectly p-periodic by
running |K| = O(log n) parallel copies of the algorithm from Section 3.1. With
O(log n) points of failure, we must ensure that each algorithm fails with prob-
ability at most δ/ logn; this increases the space by a log logn factor which is
dominated by other factors in the analysis.

Theorem 2. There is a single-pass, turnstile algorithm for computing period(a)
of perfectly periodic strings that uses O(polylogn) space and update time.
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3.3 Determining Perfect Periodicity: Noisy Case

In this section, we present an algorithm for estimating the periodicity of a noisy
signal. As a stepping stone to this result, we discuss an alternative approach for
the noiseless case based on sampling. An advantage of the alternative approach
is that it does not require the factorization of n to be computed thereby avoiding
any (admittedly sublinear time) preprocessing. However, the guarantee achieved
is weaker.

Fourier Sampling. If a is perfectly periodic with period p, then the Fourier
transform A = F(a) has at most p nonzero components. Letting d = n/p,
we know by Prop. 1 that the only non-zero coordinates of A are Akd for k ∈
{0, . . . , p − 1}. For the case of general a, let Xp denote the restriction of A to
the coordinates corresponding to a perfectly p-periodic signal, i.e.,

Xp = (A0, 0, . . . , 0, Ad, 0, . . . , 0, . . . , A(p−1)d, 0, . . . , 0) .

In the frequency domain, Xp is the closest Fourier transform of a period-p
vector to A. By Plancherel’s theorem, F and F−1 preserve inner products and
�2 distances. Therefore, F−1(Xp) is the p-periodic vector that is closest to a in
the �2 distance. This implies that

Dp(a) = ‖a−F−1(Xp)‖2 = ‖A−Xp‖2 = ‖Yp‖2 =
√∑

d � k

|Ak|2 . (4)

Our algorithms in this section are based on combining the above relationship
with a technique for sampling in the Fourier domain.

Recently, Monemizadeh and Woodruff [13] presented a general approach for
�p-sampling in the time-domain: for a signal a ∈ Rn defined in the turnstile
model, the goal here is to output k with probability in the interval[

(1− α)
|ak|p
�pp(a)

, (1 + α)
|ak|p
�pp(a)

]
for some small user-defined parameter α > 0. They show that this can be per-
formed efficiently in space poly(α−1 logn).2

For our purposes, rather than considering the time-series vector a, we consider
the vector

A′ = (Re(A1), . . . ,Re(An), Im(A1), . . . , Im(An)) ∈ R2n .

defined by applying the appropriate Fourier transform matrix to the signal. If
�2-sampling is performed on A′ and we return the value modulo n, then the
probability that k is returned is in the interval:[

(1− α)
|Ak|2
‖A‖22

, (1 + α)
|Ak|2
‖A‖22

]
, (5)

because Re(Ak)2+Im(Ak)2∑
i∈[n] Re(Aj)2+Im(Aj)2

= |Ak|2
‖A‖22

.

2 There is an additive error probability of n−C for arbitrarily large constant C but
this can be ignored in our subsequent analysis.
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To perform this sampling we follow the approach suggested in Sect. 2. Specif-
ically we use the fact that Monemizadeh and Woodruff’s �p-sampling algorithm
can be performed using a sketch matrix W and that there exists a matrix trans-
formation V ∈ R2n×n that transforms any signal a ∈ Rn into the corresponding
A′ vector. Hence, applying the sketch matrix WV allows us to sample from A′

as required. We will show how to use this sampling to the next two sections.3

Application to the Noiseless Case. Suppose there is no noise and that p =
period(a). Let the samples collected be k1, . . . , kw ∈ [n]. We know from Prop. 1
that each sample ki = cd for some c ∈ [p]. Let q = n/GCD(k1, . . . , kw, n). We
have q = p/c′ for some c′ | p. Next we will show that for sufficiently large w, with
high probability, either q = p or the sequence was nearly perfectly q-periodic.
(For example, in the case of the sequence in Eq. (1), perhaps we return q = 6.)

Choose an approximation parameter ϕ > 0. Assume for contradiction that
q = p/c′ for some c′ > 1, but that Dq(a) ≥ ϕ√1 + α‖a‖2. Summing over bins j,
by appealing to Eq. (4), we have that

∑
n/q � j

|Aj |2
‖A‖22

=
1

‖a‖22
∑
n/q � j

|Aj |2 =
(Dq(a))2

‖a‖22
≥ ϕ2(1 + α) .

Therefore, using the (1 + α) approximation to �2-sampling, the probability that
we return a sample that is not a multiple of n/q is at least ϕ2. Taking w =
O(ϕ−2 log(δ−1 log p)) samples ensures that we find some sample that is not a
multiple of n/q for allO(log p) prime factors q of p. Consequently, if the algorithm
does not return the exact value of period(a), it returns a value h | period(a) such
that the sequence was very close to being h-periodic with high probability.

Application to the Noisy Case. For noisy signals, a natural question is to find
the smallest period p such that Dp(a) ≤ ε‖a‖2. Unfortunately, since Dp(a) could
be just under ε‖a‖2 while another value q < p may have Dq(a) just larger
than ε‖a‖2, this is too much to hope for. Instead we consider two parameters
ε, ϕ with ε > ϕ > 0, and use a slight modification of the above approaches to
3 The reader might also observe that the technique of sketching in the Fourier domain

gives an alternative approach to estimating the distance to perfect periodicity using
any sketch-based algorithm that returns a (1+ε) approximation for �2, e.g., [1,8,11].
For example, consider the Tug-of-War sketch matrix W ∈ {−1, 1}t×2n used by Alon
et al. [1] for �2 estimation, and the matrix

U ∈ R2n×2nwhere Ukj =

{
1 for j = k and d | j

0 otherwise
.

By appealing to (4), ‖UV a‖2
2 = (Dp(a))2. Then, following the analysis of [1] for W ,

we find E
[
(WUV a)2

]
= Dp(a)2 if W is chosen according to the appropriate distri-

bution. Furthermore, the variance is sufficiently low such that a (1+ε) approximation
can be constructed with probability 1 − δ, it suffices to set t = O(ε−2 log δ−1). This
leads to a one-pass algorithm using O(ε−2 log δ−1 polylog n) space.
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accept some p | n such that Dp(a) ≤ ε‖a‖2, and for no smaller q do we have
Dq(a) ≤ (ε− ϕ)‖a‖2.

Our algorithm proceeds by taking samples of the Fourier coefficients as before.
It then returns the smallest value p | n such that at least 1− (ε− ϕ/2) fraction
of the samples are of Fourier coefficients k = cn/p. With probability at least
1 − δ, we can guarantee that this condition is satisfied for all p with Dp(a) ≤
(ε − ϕ)‖a‖2, and by no p with Dp(a) > ε‖a‖2; this requires O(ϕ−2 log δ−1)
samples by an application of the Chernoff bounds.

Theorem 3. For any ε, ϕ, δ, there exists a single-pass, O(poly(logn, ϕ−1))-
space turnstile algorithm which returns p | n such that both of the following
conditions are satisfied with high probability:

1. Dp(a) < ε‖a‖2
2. There does not exist q < p such that q | n and Dq(a) < (ε− ϕ)‖a‖2.

4 Cyclic Shifts

In this section, we consider the problem of identifying whether two sequences
a,b ∈ Σn are close to being cyclic shifts of each other. We will assume for
convenience that Σ ⊂ R. Let CSs : Rn → Rn be the function that “rotates” the
input sequence by s positions, i.e.,

CSs(a1a2 . . . an) = as+1as+2 . . . ana1 . . . as .

Then a and b are cyclic shifts iff there exists s such that b = CSs(a).
Our goal is to recognize cyclic shifts using linear sketches. We first note

that the analogous problem in the simultaneous communication model is rather
straightforward. Supose Alice knows a ∈ Σn and Bob knows b ∈ Σn. They can
easily determine whether CSs(a) = b for some s by each transforming a and b
into some canonical form and then using an equality test. Specifically, consider
an arbitrary ordering of the sequences in Σn. Alice generates the cyclic shift â
of a that is minimal under this ordering. Similarly, Bob generates the minimal
cyclic shift b̂ of b. Clearly â = b̂ iff a is a cyclic shift of b. This can be verified
with O(log n) communication using standard fingerprinting techniques.

Obviously such an approach is not possible in the data stream model. In the
time-series model, existing work combined with simple observations leads to an
efficient algorithm for determining if two sequences are cyclic shifts. We first
review this before presenting a new streaming algorithm that is sketch-based
and thus applies in the turnstile steaming model. Furthermore, it can estimate
the distance of two sequences from being cyclic shifts.

Time-Series Model. In the time-series model, a one-passO(polylog n)-space algo-
rithm follows from Ergün et al.’s extensions [4] of the pattern matching algorithm
of Porat and Porat [16]. The algorithm works when one of the strings precedes
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the other, i.e., S = 〈a0, a1, . . . , an−1, b0, b1, . . . , bn−1〉, or when the strings are
interleaved, i.e., S = 〈a0, b0, a1, b1, . . . , an−1, bn−1〉. (It is actually sufficient for
the elements of one sequence to always precede the corresponding elements of
the other; e.g., the stream S = 〈a0, b0, a1, a2, b1, a3, b2, b3〉 is acceptable.)

The pattern-matching algorithm of [4] uses a fingerprinting function Φ to
maintain a series of exponentially-lengthening fingerprints ϕj = Φ(a0 . . . a2j−1);
by cleverly updating appropriate fingerprints of b, they keep track of each match
for ϕj which occurred within the last 2j characters. When we reach the final char-
acter of b, for each m such that Φ(bm . . . bm+2j−1) = Φ(a0 . . . a2j−1), we have ac-
cess to the fingerprints Φ(b0 . . . bm−1), Φ(bm . . . bm+2j−1), and Φ(bm+2j . . . bn−1).
By adjusting the fingerprints appropriately, we can determine whether there
exists m ∈ [n] such that

Φ(a0 . . . an−1) = Φ(bm . . . bm+2j−1bm+2j . . . bn−1b0 . . . bm−1) .

4.1 Cyclic Shift Distance

In this section, we present a simple turnstile algorithm for estimating how close
two sequences are to being cyclic shifts. We define the cyclic shift distance, CSD,
between two strings as

CSD(a,b) = min
s
‖a− CSs(b)‖2 .

Clearly, if b is a cyclic shift of a then CSD(a,b) = 0.
The algorithm proceeds as follows: assume for simplicity that n is a perfect

square. We will use two sets of candidate shifts, S = {0, 1, 2, . . . ,√n− 1} and
T = {√n, 2√n, 3√n, . . . , n}. As we process the turnstile stream, we construct
Tug-of-War sketches [1] of CSs(a) and CSt(b) for each s ∈ S, t ∈ T . Using
O(ε−2 log 1

δ logn)-sized sketches, this allows us to (1+ε)-approximate ‖CSs(a)−
CSt(b)‖2 for each s ∈ S and t ∈ T with probability at least 1 − δ′. Since for
all r, s we have that a − CSs(b) = CSr(a) − CSr+s(b), these shifts suffice to
(1 + ε)-approximate ‖a− CSu(b)‖2 for each u ∈ {1, . . . , n}.

Choosing δ′ = δ
n , we have that each pair r, s is simultaneously a (1 + ε)-

approximation with probability ≥ 1− δ. We then find:

Pr
[∣∣∣ min

s∈S,t∈T
‖CSs(a)− CSt(b)‖2 − CSD(a,b)

∣∣∣ ≥ εCSD(a,b)
]
≤ δ . (6)

Theorem 4. There exists a single pass algorithm using space Õ(ε−2√n) that
returns a (1 + ε) approximation for CSD(a,b) with probability at least 1− δ.

5 Conclusion

We presented one-pass data stream algorithms for detecting periodic sequences
and cyclic shifts, and for measuring the distance to the closest periodic sequence
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or cyclic shift. Our principle goal was to minimize the space used, and all of our
periodicity algorithms used O(polylog n) space. Our algorithms used a range of
techniques including bilinear sketches and combining a Fourier change of basis
transform with a range of sketching techniques. This second technique is par-
ticularly powerful and we would be surprised if it didn’t have applications that
were still to be discovered (either via the Fourier basis or other bases). An im-
portant future direction is analyzing the structure of the sketches formed by
combining the transform and sketch matrices: among other things, this could
lead to more time-efficient algorithms. Another question is to generalize our re-
sults in Sects. 3.2 and 3.3 to estimate the period of signals that conclude with a
partial repetition. This was not an issue with time-series data since there would
always be a point near the end of the stream where there had been an exact
number of repetitions. In the turnstile model the issue is more complicated, but
we are hopeful that a more involved analysis of the Fourier approach may yield
results.

Acknowledgements. We thank an anonymous reviewer for mentioning that ideas
from the pattern matching result in Ergün et al. can be applied to cyclic shifts
in the time-series model without requiring a second pass. We also thank Graham
Cormode for suggesting a simplification to our cyclic shift algorithm.
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Abstract. A spanning tree T of a graph G is called a tree t-spanner of G
if the distance between every pair of vertices in T is at most t times their
distance in G. In this paper, we present an algorithm which constructs for
an n-vertex m-edge unweighted graph G: (1) a tree (2�log2 n�)-spanner in
O(m log n) time, if G is a chordal graph; (2) a tree (2ρ�log2 n�)-spanner in
O(mn log2 n) time or a tree (12ρ�log2 n�)-spanner in O(m log n) time, if
G is a graph admitting a Robertson-Seymour’s tree-decomposition with
bags of radius at most ρ in G; and (3) a tree (2�t/2��log2 n�)-spanner in
O(mn log2 n) time or a tree (6t�log2 n�)-spanner in O(m log n) time, if
G is an arbitrary graph admitting a tree t-spanner. For the latter result
we use a new necessary condition for a graph to have a tree t-spanner: if
a graph G has a tree t-spanner, then G admits a Robertson-Seymour’s
tree-decomposition with bags of radius at most �t/2� in G.

1 Introduction

Given a connected graph G and a spanning tree T of G, we say that T is a tree
t-spanner of G if the distance between every pair of vertices in T is at most t
times their distance in G. The parameter t is called the stretch (or stretch fac-
tor) of T . The tree t-spanner problem asks, given a graph G and a positive
number t, whether G admits a tree t-spanner. Note that the problem of finding
a tree t-spanner of G minimizing t is known in literature also as the Minimum
Max-Stretch spanning Tree problem (see, e.g., [14] and literature cited therein).
This paper concerns the tree t-spanner problem on unweighted graphs. The
problem is known to be NP-complete even for planar graphs and chordal graphs
(see [5,8,15]), and the paper presents an efficient algorithm which produces a
tree t-spanner with t ≤ 2 log2 n for every n-vertex chordal graph and a tree
(2�t/2��log2 n�)-spanner for an arbitrary n-vertex graph admitting a tree t-
spanner. To obtain the latter result, we show that every graph having a tree
t-spanner admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most �t/2� in G. This tree-decomposition is a generalization of the well-known
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notion of a clique-tree of a chordal graph, and allows us to extend our algorithm
developed for chordal graphs to arbitrary graphs admitting tree t-spanners.

There are many applications of tree spanners in various areas. We refer to the
survey paper of Peleg [21] for an overview on spanners and their applications.

Related work. Substantial work has been done on the tree t-spanner prob-
lem on unweighted graphs. Cai and Corneil [8] have shown that, for a given
graph G, the problem to decide whether G has a tree t-spanner is NP-complete
for any fixed t ≥ 4 and is linear time solvable for t = 1, 2 (the status of the
case t = 3 is open for general graphs)1. The NP-completeness result was further
strengthened in [5] and [6], where Branstädt et al. showed that the problem re-
mains NP-complete even for the class of chordal graphs (i.e., for graphs where
each induced cycle has length 3) and every fixed t ≥ 4, and for the class of
chordal bipartite graphs (i.e., for bipartite graphs where each induced cycle has
length 4) and every fixed t ≥ 5.

The tree t-spanner problem on planar graphs was studied in [15,23]. In
[23], Peleg and Tendler presented a polynomial time algorithm for the minimum
value of t for the tree t-spanner problem on outerplanar graphs. In [15], Fekete
and Kremer proved that the tree t-spanner problem on planar graphs is NP-
complete (when t is part of the input) and polynomial time solvable for t = 3.
They also gave a polynomial time algorithm that for every fixed t decides for
planar graphs with bounded face length whether there is a tree t-spanner. For
fixed t ≥ 4, the complexity of the tree t-spanner problem on arbitrary planar
graphs was left as an open problem in [15]. This open problem was recently
resolved in [12], where it was shown that the tree t-spanner problem is linear
time solvable for every fixed constant t on the class of apex-minor-free graphs
which includes all planar graphs and all graphs of bounded genus.

An O(log n)-approximation algorithm for the minimum value of t for the tree

t-spanner problem is due to Emek and Peleg [14], and until recently that was
the only O(log n)-approximation algorithm available for the problem. Let G be
an n-vertex m-edge unweighted graph and t∗ be the minimum value such that a
tree t∗-spanner exists for G. Emek and Peleg gave an algorithm which produces
for every G a tree (6t∗�log2 n�)-spanner in O(mn log2 n) time. Furthermore, they
established that unless P = NP, the problem cannot be approximated additively
by any o(n) term. Hardness of approximation is established also in [19], where it
was shown that approximating the minimum value of t for the tree t-spanner

problem within factor better than 2 is NP-hard (see also [22] for an earlier result).
Recently, another logarithmic approximation algorithm for the tree t-spanner

problem was announced in [3], but authors did not provide any details. A number
of papers have studied the related but easier problem of finding a spanning tree
with good average stretch factor (see [1,2,13] and papers cited therein).

Our contribution. In this paper, we present a new algorithm which constructs
for an n-vertex m-edge unweighted graph G: (1) a tree (2�log2 n�)-spanner in
O(m log n) time, if G is a chordal graph; (2) a tree (2ρ�log2 n�)-spanner in

1 When G is an unweighted graph, t can be assumed to be an integer.
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O(mn log2 n) time or a tree (12ρ�log2 n�)-spanner in O(m log n) time, if G is
a graph admitting a Robertson-Seymour’s tree-decomposition with bags of ra-
dius at most ρ in G; and (3) a tree (2�t/2��log2 n�)-spanner in O(mn log2 n)
time or a tree (6t�log2 n�)-spanner in O(m logn) time, if G is an arbitrary graph
admitting a tree t-spanner. For the latter result we employ a new necessary con-
dition for a graph to have a tree t-spanner: if a graph G has a tree t-spanner,
then G admits a Robertson-Seymour’s tree-decomposition with bags of radius
at most �t/2� and diameter at most t in G. The algorithm needs to know neither
an appropriate Robertson-Seymour’s tree-decomposition of G nor the true value
of t. It works directly on an input graph G.

A high-level description of our method is similar to that of [14], although the
details are very different. We find a ”small radius” balanced disk-separator of a
graph G = (V,E), that is, a disk Dr(v,G) of radius r and centered at vertex v
such that removal of vertices of Dr(v,G) from G leaves no connected component
with more that n/2 vertices. We recursively build a spanning tree for each graph
formed by a connected component Gi of G[V \ Dr(v,G)] with one additional
vertex v added to Gi to represent the disk Dr(v,G) and its adjacency relation
to Gi. The spanning trees generated by recursive invocations of the algorithm
on each such graph are glued together at vertex v and then the vertex v of the
resulting tree is substituted with a single source shortest path spanning tree of
Dr(v,G) to produce a spanning tree T of G. Analysis of the algorithm relies
on an observation that the number of edges added to the unique path between
vertices x and y in T , where xy is an edge of G, on each of �log2 n� recursive
levels is at most 2r.

Comparing with the algorithm of Emek and Peleg ([14]), one variant of our
algorithm has the same approximation ratio but a better run-time, other variant
has the same run-time but a better constant term in the approximation ratio.
Our algorithm and its analysis, in our opinion, are conceptually simpler due to
a new necessary condition for a graph to have a tree t-spanner.

2 Preliminaries

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. We call G = (V,E) an n-vertex m-edge
graph if |V | = n and |E| = m. A clique is a set of pairwise adjacent vertices of G.
By G[S] we denote a subgraph of G induced by vertices of S ⊆ V . Let also G\S
be the graph G[V \S] (which is not necessarily connected). A set S ⊆ V is called
a separator of G if the graph G[V \S] has more than one connected component,
and S is called a balanced separator of G if each connected component of G[V \S]
has at most |V |/2 vertices. A set C ⊆ V is called a balanced clique-separator of
G if C is both a clique and a balanced separator of G. For a vertex v of G, the
sets NG(v) = {w ∈ V : vw ∈ E} and NG[v] = NG(v) ∪ {v} are called the open
neighborhood and the closed neighborhood of v, respectively.

In a graph G the length of a path from a vertex v to a vertex u is the number
of edges in the path. The distance dG(u, v) between vertices u and v is the
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length of a shortest path connecting u and v in G. The diameter in G of a set
S ⊆ V is maxx,y∈S dG(x, y) and its radius in G is minx∈V maxy∈S dG(x, y) (in
some papers they are called the weak diameter and the weak radius to indicate
that the distances are measured in G not in G[S]). The disk of G of radius
k centered at vertex v is the set of all vertices at distance at most k to v:
Dk(v,G) = {w ∈ V : dG(v, w) ≤ k}. A disk Dk(v,G) is called a balanced disk-
separator of G if the set Dk(v,G) is a balanced separator of G.

Let G be a connected graph and t be a positive number. A spanning tree T of
G is called a tree t-spanner of G if the distance between every pair of vertices in
T is at most t times their distance in G, i.e., dT (x, y) ≤ t dG(x, y) for every pair
of vertices x and y of G. It is easy to see that the tree t-spanners can equivalently
be defined as follows.

Proposition 1. Let G be a connected graph and t be a positive number. A span-
ning tree T of G is a tree t-spanner of G if and only if for every edge xy of G,
dT (x, y) ≤ t holds.

This proposition implies that the stretch of a spanning tree of a graph G is
always obtained on a pair of vertices that form an edge in G. Consequently,
throughout this paper t can be considered as an integer which is greater than 1.

3 Tree Spanners of Chordal Graphs

As we have mentioned earlier the tree t-spanner problem is NP-complete for
every t ≥ 4 even for the class of chordal graphs [5]. Recall that a graphG is called
chordal if each induced cycle of G has length 3. In this section, we show that
every chordal graph with n vertices admits a tree t-spanner with t ≤ 2 log2 n. In
the full version of the paper (see [26]), we show also that there are chordal graphs
for which any tree t-spanner has to have t ≥ log2

n
3 + 2. All proofs omitted in

this extended abstract can also be found in the full version.
We start with three lemmas that are crucial to our method. Let G = (V,E)

be an arbitrary connected graph with a clique-separator C, i.e., there is a clique
C in G such that the removal of the vertices of C from G results in a graph
with more than one connected component. Let G1, . . . , Gk be those connected
components of G[V \ C]. Denote by Si := {x ∈ V (Gi) : dG(x,C) = 1} the
neighborhood of C with respect to Gi. Let also G+

i be the graph obtained from
component Gi by adding a vertex ci (representative of C) and making it adjacent
to all vertices of Si, i.e., for a vertex x ∈ V (Gi), cix ∈ E(G+

i ) if and only if there
is a vertex xC ∈ C with xxC ∈ E(G) (see Fig. 1). Clearly, given a connected
m-edge graph G and a clique-separator C of G, the graphs G+

1 , . . . , G
+
k can be

constructed in total time O(m). Note also that the total number of edges in
graphs G+

1 , . . . , G
+
k does not exceed the number of edges in G.

Denote by G/e the graph obtained from G by contracting its edge e. Recall
that edge e contraction is an operation which removes e from G while simultane-
ously merging together the two vertices e previously connected. If a contraction
results in multiple edges, we delete duplicates of an edge to stay within the
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Fig. 1. A graph G with a clique-separator C and the corresponding graphs
G+

1 , . . . , G+
4 obtained from G

class of simple graphs. The operation may be performed on a set of edges by
contracting each edge (in any order).

Lemma 1. If a graph G is chordal then G/e is chordal as well, for any edge
e ∈ E(G). Consequently, if a graph G is chordal then G+

i is chordal as well, for
each i = 1, . . . , k.

Let Ti (i = 1, . . . , k) be a spanning tree ofG+
i such that for any edge xy ∈ E(G+

i ),
dTi(x, y) ≤ α holds, where α is some positive integer independent of i. We can
form a spanning tree T of G from trees T1, . . . , Tk and the vertices of the clique
C in the following way. For each i = 1, . . . , k, rename vertex ci in Ti to c. Glue
trees T1, . . . , Tk together at vertex c obtaining a tree T ′ (see Fig. 2). For the
original clique C of G, pick an arbitrary vertex rC of C and create a spanning
star STC for C centered at rC . Substitute vertex c in T ′ by that star STC . For
each former edge xc of T ′, create an edge xxC in T where xC is a vertex of C
adjacent to x in G. We can show that for any edge xy ∈ E(G), dT (x, y) ≤ α+ 2
holds. Evidently, the tree T of G can be constructed from trees T1, . . . , Tk and
the vertices of the clique C in O(m) time.

Fig. 2. Spanning trees T1, . . . , T4 of G+
1 , . . . , G+

4 , resulting tree T ′, and a correspond-
ing spanning tree T of G
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Lemma 2. Let G be an arbitrary graph with a clique-separator C and G+
1 ,. . ., G

+
k

be the graphs obtained from G as described above. Let also Ti (i ∈ {1, . . . , k})
be a spanning tree of the graph G+

i , and T be a spanning tree of G constructed
from T1, . . . , Tk and the clique C as described above. Assume also that there is a
positive integer α such that, for each i ∈ {1, . . . , k} and every edge xy ∈ E(G+

i ),
dTi(x, y) ≤ α holds. Then, for every edge xy ∈ E(G), dT (x, y) ≤ α+ 2 holds.

Proof. Consider an arbitrary edge xy of G. If both x and y belong to C, then
evidently dT (x, y) ≤ 2 < α + 2. Assume now that xy is an edge of Gi for some
i ∈ {1, . . . , k}. Then, xy is an edge of G+

i and therefore dTi(x, y) ≤ α. If the
path P of Ti connecting x and y does not contain vertex ci, then dT (x, y) =
dTi(x, y) ≤ α must hold. If ci is between x and y in Ti (i.e., ci ∈ P ), then the
distance in T between x and y is at most dTi(x, y) + 2 (the path of T between
x and y is obtained from P by substituting the vertex c = ci by a path of star
STC with at most 2 edges). It remains to consider the case when x ∈ C and
y ∈ V (Gi). By construction of G+

i , there must exist an edge ciy in G+
i . We have

dTi(ci, y) ≤ α. Let z be the neighbor of ci in the path of Ti connecting vertices
y and ci (y = z is possible). Evidently, z ∈ V (Gi). By construction, in T we
must have an edge zzc where zC is a vertex of C adjacent to z in G. Vertices x
and zC both are in C and the distance in T between them is at most 2. Thus,
dT (x, y) ≤ dT (zC , y) + 2 = dTi(ci, y) + 2 ≤ α+ 2. ��
The third important ingredient to our method is the famous chordal balanced
separator result of Gilbert, Rose, and Edenbrandt [18].

Lemma 3. [18] Every connected chordal graph G with n vertices and m edges
contains a balanced clique-separator which can be found in O(m) time.

Now let G = (V,E) be a connected chordal graph with n vertices and m edges.
Using Lemma 1 and Lemma 3, we can build a (rooted) hierarchical-tree H(G)
for G, which can be constructed as follows. If G is a connected graph with at
most 5 vertices or is a clique of size greater than 5, then H(G) is a one node
tree with root node (G, nil). Otherwise, find a balanced clique-separator C of G
(which exists by Lemma 3 and which can be found in O(m) time) and construct
the associated graphs G+

1 , . . . , G
+
k . For each graph G+

i , i ∈ {1, . . . , k}, which is
chordal by Lemma 1, construct a hierarchical-tree H(G+

i ) recursively and build
H(G) by taking the pair (G,C) to be the root and connecting the root of each
tree H(G+

i ) as a child of (G,C). The depth of this tree H(G) is the smallest
integer k such that n

2k + 1
2k−1 + . . . + 1

2 + 1 ≤ 5, that is, the depth is at most
log2 n− 1.

To build a tree t-spanner T of G, we use the hierarchical-tree H(G) and a
bottom-up construction. We know from Proposition 1 that a spanning tree T is
a tree t-spanner of a graph G if and only if for any edge xy of G, dT (x, y) ≤ t
holds. For each leaf (L, nil) of H(G) (we know that graph L is a clique or a
connected chordal graph with at most 5 vertices), we construct a tree 2-spanner
TL of L. It is easy to see that L admits such a tree 2-spanner. Hence, for any
edge xy of L, we have dTL(x, y) ≤ 2. Consider now an inner node (H,K) of
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H(G), and assume that all its childrenH+
1 , . . . , H

+
l inH(G) have tree α-spanners

T1, . . . , Tl for some positive integer α. Then, a tree (α+ 2)-spanner of H can be
constructed from T1, . . . , Tl and clique K of H as described above (see Lemma
2 and paragraph before it). Since the depth of the hierarchical-tree H(G) is at
most log2 n−1 and all leaves of H(G) admit tree 2-spanners, applying Lemma 2
repeatedly, we will move from leaves to the root of H(G) and get a tree t-spanner
T of G with t being no more than 2 log2 n.

It is also easy to see that, given a chordal graphG with n vertices andm edges,
a hierarchical-tree H(G) as well as a tree t-spanner T of G with t ≤ 2 log2 n can
be constructed in O(m logn) total time since there are at most O(log n) levels
in H(G) and one needs to do at most O(m) operations per level. Thus, we have
the following result for the class of chordal graphs.

Theorem 1. Any connected chordal graph G with n vertices and m edges admits
a tree (2�log2 n�)-spanner constructible in O(m log n) time.

4 Tree Spanners of Generalized Chordal Graphs

It is known that the class of chordal graphs can be characterized in terms of
existence of so-called clique-trees. Let C(G) denote the family of maximal (by
inclusion) cliques of a graph G. A clique-tree CT (G) of G has the maximal cliques
of G as its nodes, and for every vertex v of G, the maximal cliques containing v
form a subtree of CT (G).

Theorem 2. [7,17] A graph is chordal if and only if it has a clique-tree.

In their work on graph minors [25], Robertson and Seymour introduced the
notion of tree-decomposition which generalizes the notion of clique-tree. A tree-
decomposition of a graph G is a tree T (G) whose nodes, called bags, are subsets
of V (G) such that: (1)

⋃
X∈V (T (G))X = V (G), (2) for each edge vw ∈ E(G),

there is a bag X ∈ V (T (G)) such that v, w ∈ X , and (3) for each v ∈ V (G) the
set of bags {X : X ∈ V (T (G)), v ∈ X} forms a subtree Tv(G) of T (G).

Tree-decompositions were used in defining at least two graph parameters. The
tree-width of a graph G is defined as minimum of maxX∈V (T (G)) |X | − 1 over all
tree-decompositions T (G) of G and is denoted by tw(G) [25]. The length of a
tree-decomposition T (G) of a graph G is maxX∈V (T (G)) maxu,v∈X dG(u, v), and
the tree-length of G, denoted by tl(G), is the minimum of the length, over all
tree-decompositions of G [11]. These two graph parameters are not related to
each other. Interestingly, the tree-length of a graph can be approximated in
polynomial time within a constant factor [11] whereas such an approximation
factor is unknown for the tree-width.

For the purpose of this paper, we introduce yet another graph parameter
based on the notion of tree-decomposition. It is very similar to the notion of
tree-length but is more appropriate for our discussions, and moreover it will
lead to a better constant in our approximation ratio presented in Section 5 for
the tree t-spanner problem on general graphs.
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Definition 1. The breadth of a tree-decomposition T (G) of a graph G is the
minimum integer k such that for everyX ∈ V (T (G)) there is a vertex vX ∈ V (G)
with X ⊆ Dk(vX , G) (i.e., each bag X has radius at most k in G). Note that
vertex vX does not need to belong to X . The tree-breadth of G, denoted by
tb(G), is the minimum of the breadth, over all tree-decompositions of G. We say
that a family of graphs G is of bounded tree-breadth, if there is a constant c such
that for each graph G from G, tb(G) ≤ c.
Evidently, for any graph G, 1 ≤ tb(G) ≤ tl(G) ≤ 2tb(G) holds. Hence, if one
parameter is bounded by a constant for a graph G then the other parameter is
bounded for G as well.

In what follows, we will show that any graph G with tree-breadth tb(G) ≤ ρ
admits a tree (2ρ�log2 n�)-spanner, thus generalizing the result for chordal graphs
of Section 3 (if G is chordal then tl(G) = tb(G) = 1). It is interesting to note that
the tree t-spanner problem is NP-complete for graphs of bounded tree-breadth
(even for chordal graphs for every fixed t > 3; see [5]), while it is polynomial
time solvable for all graphs of bounded tree-width (see [24]).

First we present a balanced separator result.

Lemma 4. Every graph G with n vertices, m edges and with tree-breadth at
most ρ contains a vertex v such that Dρ(v,G) is a balanced disk-separator of G.

Proof. The proof of this lemma follows from acyclic hypergraph theory. First we
review some necessary definitions and an important result characterizing acyclic
hypergraphs. Recall that a hypergraph H is a pair H = (V, E) where V is a set
of vertices and E is a set of non-empty subsets of V called hyperedges. For these
and other hypergraph notions see [4].

Let H = (V, E) be a hypergraph with the vertex set V and the hyperedge
set E . For every vertex v ∈ V , let E(v) = {e ∈ E : v ∈ e}. The 2–section graph
2SEC(H) of a hypergraphH has V as its vertex set and two distinct vertices are
adjacent in 2SEC(H) if and only if they are contained in a common hyperedge of
H . A hypergraph H is called conformal if every clique of 2SEC(H) is contained
in a hyperedge e ∈ E , and a hypergraph H is called acyclic if there is a tree T
with node set E such that for all vertices v ∈ V , E(v) induces a subtree Tv of T .
It is a well-known fact (see, e.g., [4]) that a hypergraph H is acyclic if and only
if H is conformal and 2SEC(H) of H is a chordal graph.

Let now G be a graph with tb(G) = ρ and T (G) be its tree-decomposition
of breadth ρ. Evidently, property (3) in the definition of tree-decomposition can
be restated as follows: the hypergraph H = (V (G), {X : X ∈ V (T (G))}) is
an acyclic hypergraph. Since each edge of G is contained in at least one bag of
T (G), the 2–section graph G∗ := 2SEC(H) of H is a chordal supergraph of the
graph G (each edge of G is an edge of G∗, but G∗ may have some extra edges
between non-adjacent vertices of G contained in a common bag of T (G)). By
Lemma 3, the chordal graph G∗ contains a balanced clique-separator C ⊆ V (G).
By conformality of H , C must be contained in a bag of T (G). Hence, there must
exist a vertex v ∈ V (G) with C ⊆ Dρ(v,G). As the removal of the vertices of
C from G∗ leaves no connected component in G∗[V \ C] with more that n/2
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vertices and since G∗ is a supergraph of G, clearly, the removal of the vertices of
Dρ(v,G) from G leaves no connected component in G[V \Dρ(v,G)] with more
that n/2 vertices. ��
We do not need to know a tree-decomposition T (G) of breadth ρ to find such
a balanced disk-separator Dρ(v,G) of G. For a given graph G and an integer
ρ, checking whether G has a tree-decomposition of breadth ρ could be a hard
problem. For example, while graphs with tree-length 1 (as they are exactly the
chordal graphs) can be recognized in linear time, the problem of determining
whether a given graph has tree-length at most λ is NP-complete for every fixed
λ > 1 (see [20]). Instead, we can use the following result.

Proposition 2. For an arbitrary graph G with n vertices and m edges a balanced
disk-separator Dr(v,G) with minimum r can be found in O(nm) time.

Now let G = (V,E) be an arbitrary connected n-vertex m-edge graph with a
disk-separator Dr(v,G). As in the case of chordal graphs, let G1, . . . , Gk be
the connected components of G[V \ Dr(v,G)]. Denote by Si := {x ∈ V (Gi) :
dG(x,Dr(v,G)) = 1} the neighborhood of Dr(v,G) with respect to Gi. Let also
G+
i be the graph obtained from component Gi by adding a vertex vi (repre-

sentative of Dr(v,G)) and making it adjacent to all vertices of Si, i.e., for a
vertex x ∈ V (Gi), vix ∈ E(G+

i ) if and only if there is a vertex xD ∈ Dr(v,G)
with xxD ∈ E(G). Given graph G and its disk-separator Dr(v,G), the graphs
G+

1 , . . . , G
+
k can be constructed in total time O(m). Furthermore, the total num-

ber of edges in the graphs G+
1 , . . . , G

+
k does not exceed the number of edges in

G, and the total number of vertices in those graphs does not exceed the number
of vertices in G[V \Dr(v,G)] plus k. Let again G/e be the graph obtained from
G by contracting its edge e.

Lemma 5. For any graph G and its edge e, tb(G) ≤ ρ implies tb(G/e) ≤ ρ.
Consequently, for any graph G with tb(G) ≤ ρ, tb(G+

i ) ≤ ρ holds for each i.

As in Section 3, let Ti (i = 1, . . . , k) be a spanning tree of G+
i such that for

any edge xy ∈ E(G+
i ), dTi(x, y) ≤ α holds, where α is some positive integer

independent of i. For the disk Dr(v,G) of G, construct a shortest path tree
SPTD rooted at vertex v (and spanning all and only the vertices of the disk). We
can form a spanning tree T of G from trees T1, . . . , Tk and SPTD in the following
way. For each i = 1, . . . , k, rename vertex vi in Ti to v. Glue trees T1, . . . , Tk
together at vertex v obtaining a tree T ′ (consult with Fig. 2). Substitute vertex
v in T ′ by the tree SPTD. For each former edge xv of T ′, create an edge xxD
in T where xD is a vertex of Dr(v,G) adjacent to x in G. We can show that for
any edge xy ∈ E(G), dT (x, y) ≤ α+ 2r holds. Evidently, the tree T of G can be
constructed from trees T1, . . . , Tk and SPTD in O(m) time.

Lemma 6. Let G be an arbitrary graph with a disk-separator Dr(v,G) and
G+

1 , . . . , G
+
k be the graphs obtained from G as described above. Let also Ti (i ∈

{1, . . . , k}) be a spanning tree of the graph G+
i , and T be a spanning tree of G
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constructed from T1, . . . , Tk and a shortest path tree SPTD of the disk Dr(v,G)
as described above. Assume also that there is a positive integer α such that, for
each i ∈ {1, . . . , k} and every edge xy ∈ E(G+

i ), dTi(x, y) ≤ α holds. Then, for
every edge xy ∈ E(G), dT (x, y) ≤ α+ 2r must hold.

Now we have all necessary ingredients to apply the technique used in Section
3 and show that each graph G admits a tree (2tb(G)�log2 n�)-spanner.

Let G = (V,E) be a connected n-vertex, m-edge graph and assume that
tb(G) ≤ ρ. Lemma 4 guaranties that G has a balanced disk-separator Dr(v,G)
with r ≤ ρ. Proposition 2 says that such a balanced disk-separator Dr(v,G) of
G can be found in O(nm) time by an algorithm that works directly on graph G
and does not require the construction of a tree-decomposition of G of breadth
≤ ρ. Using this and Lemma 5, we can build as before a (rooted) hierarchical-tree
H(G) for G. Only now, the leaves of H(G) are connected graphs with at most
9 vertices. It is not hard to see that any leaf of H(G) has a tree t-spanner with
t ≤ 4ρ. Furthermore, a simple analysis shows that the depth of this tree H(G)
is at most log2 n− 2.

To build a tree t-spanner T of G, we again use the hierarchical-tree H(G) and
a bottom-up construction. Each leaf (L, nil) of H(G) has a tree (4ρ)-spanner.
A tree t-spanner with minimum t of such a small graph L can be computed
directly. Consider now an inner node (H,Dr(v,G)) of H(G) (where Dr(v,G) is
a balanced disk-separator of H), and assume that all its children H+

1 , . . . , H
+
l in

H(G) have tree α-spanners T1, . . . , Tl for some positive integer α. Then, a tree
(α + 2r)-spanner of H can be constructed from T1, . . . , Tl and a shortest path
tree SPTD of the disk Dr(v,G) as described above (see Lemma 6 and paragraph
before it). Since the depth of the hierarchical-tree H(G) is at most log2 n − 2
and all leaves of H(G) admit tree (4ρ)-spanners, applying Lemma 6 repeatedly,
we move from leaves to the root of H(G) and get a tree t-spanner T of G with t
being no more than 2ρ log2 n. It is also easy to see that, given a graph G with n
vertices and m edges, a hierarchical-tree H(G) as well as a tree t-spanner T of
G with t ≤ 2tb(G) log2 n can be constructed in O(nm log2 n) total time. There
are at most O(log n) levels in H(G), and one needs to do at most O(nm log n)
operations per level since the total number of edges in the graphs of each level
is at most m and the total number of vertices in those graphs can not exceed
O(n log n).

Note that our algorithm does not need to know the value of tb(G), neither it
needs to know any appropriate Robertson-Seymour’s tree-decomposition of G.
It works directly on an input graph. To indicate this, we say that the algorithm
constructs an appropriate tree spanner from scratch.

Thus, we have the following results.

Theorem 3. There is an algorithm that for an arbitrary connected graph G
with n vertices and m edges constructs a tree (2tb(G)�log2 n�)-spanner of G in
O(nm log2 n) total time.

Corollary 1. Any connected n-vertex, m-edge graph G with tb(G) ≤ ρ admits
a tree (2ρ�log2 n�)-spanner constructible in O(nm log2 n) time from scratch.
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Corollary 2. Any connected n-vertex, m-edge graph G with tl(G) ≤ λ admits
a tree (2λ�log2 n�)-spanner constructible in O(nm log2 n) time from scratch.

There is another natural generalization of chordal graphs. A graph G is called
k-chordal if its largest induced cycle has length at most k. Chordal graphs are
exactly 3-chordal graphs. It was shown in [16] that every k-chordal graph has
tree-length at most k/2. Thus, we have one more corollary.

Corollary 3. Any connected n-vertex, m-edge k-chordal graph G admits a tree
(2�k/2��log2 n�)-spanner constructible in O(nm log2 n) time from scratch.

5 Approximating Tree t-Spanners of General Graphs

In this section, we show that the results obtained for tree t-spanners of general-
ized chordal graphs lead to an approximation algorithm for the tree t-spanner

problem on general (unweighted) graphs. We show that every graph G admit-
ting a tree t-spanner has tree-breadth at most �t/2�. From this and Theorem
3 it follows that there is an algorithm which produces for every n-vertex and
m-edge graph G a tree (2�t/2��log2 n�)-spanner in O(nm log2 n) time, whenever
G admits a tree t-spanner. The algorithm does not even need to know the true
value of t.

Fig. 3. From tree T to tree-decomposition T with t = 2

Lemma 7. If a graph G admits a tree t-spanner then tb(G) ≤ �t/2�.

Proof. Let T be a tree t-spanner of G. We can transform this tree T to a tree-
decomposition T of G by expanding each vertex x in T to a bagX and putting all
vertices of disk Dt/2�(x, T ) into that bag (note that the disk here is considered
in T ; see Fig. 3 for an illustration). The edges of T and of T are identical: XY
is an edge in T if and only if xy ∈ E(T ), where X is a bag that replaced vertex
x in T and Y is a bag that replaced vertex y in T . Since dG(u, v) ≤ dT (u, v) for
every pair of vertices u and v of G, we know that every bag X := Dt/2�(x, T ) is
contained in a disk Dt/2�(x,G) of G. It is easy to see that all three properties
of tree-decomposition are fulfilled for T .

Combining Lemma 7 with Theorem 3 we get our main result.
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Theorem 4. There is an algorithm that for an arbitrary connected graph G with
n vertices andm edges constructs a tree (2�t/2��log2 n�)-spanner in O(nm log2 n)
time, whenever G admits a tree t-spanner.

The complexity of our algorithm is dominated by the complexity of finding a
balanced disk-separator Dr(v,G) of a graph G with minimum r. Proposition 2
says that for an n-vertex, m-edge graph such a balanced disk-separator can be
found in O(nm) time. In the full version of the paper, we show that a balanced
disk-separator of a graph G with radius r ≤ 6 · tb(G) can be found in linear
O(m) time. This immediately leads to the following result.

Theorem 5. There is an algorithm that for an arbitrary connected graph G
with n vertices and m edges constructs a tree (6t�log2 n�)-spanner in O(m log n)
time, whenever G admits a tree t-spanner.
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Abstract. We give a polynomial time Turing reduction from the γ2√n-
approximate closest vector problem on a lattice of dimension n to a γ-
approximate oracle for the shortest vector problem. This is an improve-

ment over a reduction by Kannan, which achieved γ2n
3
2 .

1 Introduction

A lattice is the set of all integer combinations of n linearly independent vectors
b1,b2, . . . ,bn in Rm. These vectors are also referred to as a basis of the lattice.
The successive minima λi(L) (where i = 1, . . . , n) for the lattice L are among
the most fundamental parameters associated to a lattice. The value λi(L) is
defined as the smallest r such that a sphere of radius r centered around the
origin contains at least i linearly independent lattice vectors. Lattices have been
investigated by computer scientists for a few decades after the discovery of the
LLL algorithm [14]. More recently, Ajtai [1] showed that lattice problems have a
very desirable property for cryptography: they exhibit a worst-case to average-
case reduction.

We now describe some of the most fundamental and widely studied lattice
problems. Given a lattice L, the γ-approximate shortest vector problem (γ-SVP
for short) is the problem of finding a non-zero lattice vector of length at most
γλ1(L). Let the minimum distance of a point t ∈ Rm from the lattice L be
denoted by d(t,L). Given a lattice L and a point t ∈ Rm, the γ-approximate
closest vector problem or γ-CVP for short is the problem of finding a v ∈ L such
that ‖v− t‖ ≤ γd(t,L).

Besides the search version just described, CVP and SVP also have a gap version.
The problem GapCVPγ(B, t) asks the distance of t from the lattice L(B) within
a factor of γ, and GapSVPγ(B) asks for λ1(B) within a factor of γ. This paper
deals with the search version described above.

The problems CVP and SVP are quite well studied. The Gap versions of the
problems are arguably easier than their search counterparts. We know that CVP
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and SVP can be solved exactly in deterministic 2O(n) time [18,4]. In polynomial
time they can be approximated within a factor of 2n(log logn)/ logn using LLL
[14] and subsequent improvements by Schnorr [21] and Micciancio et. al. [18]
(for details, see the book by Micciancio and Goldwasser [9]). On the other hand,
it is known that there exists c > 0, such that no polynomial time algorithm can
approximate GapCVP and GapSVP within a factor of nc/ log logn, unless P = NP or
another unlikely scenario is true [7,10]. The security of hardness of cryptosystems
following Ajtai’s seminal work [1] is based on the worst-case hardness of Õ(n2)-
GapSVP [20,19,15]. In the hardness area, CVP is much more understood than SVP.
For example, as opposed to CVP, until now all known NP-hardness proofs for
SVP [2,17,13,10] are randomized. A way to prove deterministic hardness of SVP
is to prove better reductions from CVP to SVP. This paper aims to study and
improve the known relations between these two problems.

A very related result is from Kannan [11], who gave a way to solve
√
n-CVP

using an exact SVP oracle. A generalization of his reduction was used to solve
CVP within a factor of (1 + ε) by reducing it to sampling short vectors in the
lattice [3]. The improvement from

√
n to (1 + ε) is achieved mainly because the

reduction uses 2O(n) time instead of polynomial. It is also known that a γ-CVP
oracle can be used to solve γ-SVP [8].

In a survey [12], Kannan gave a different reduction from γ2n
3
2 -CVP to γ-SVP. A

few words of comparison between our methods and the method used by Kannan
[12]. Kannan uses the dual lattice (denoted by B∗ = (BT )−1, where BT is the
transpose of the matrix B) and the transference bound λ1(B)λ1(B∗) ≤ n to find
a candidate close vector. Due to the fact that he applies the SVP oracle on both
L as well as L∗, he loses an additional factor of n. Our method does not use the
dual lattice.

Our contribution: We improve the result by Kannan [12], which shows that
γ2n3/2-CVP can be solved using an oracle to solve γ-SVP, and solve γ2

√
n-CVP

using the same oracle.
For this, we essentially combine the earlier result by Kannan [11] with a

reduction by Lyubashevsky and Micciancio [15], as we explain now in some
detail.

Our starting point is the earlier reduction by Kannan, which solves
√
n-CVP

using an exact SVP-oracle. In order to explain our ideas, we first shortly describe
his reduction. Given a CVP-instance B ∈ Qm×n, t ∈ Rm, Kannan uses the SVP-

oracle to find λ1(B). He then creates the new basis B̃ =

[
B t
0 α

]
, where he picks

α carefully somewhat smaller than λ1(B). Now, if d(t,B) is significantly smaller

than λ1(B) (say, λ1(B)/3), then the shortest vector in B̃ is
[ t† − t
−α

]
, where t† is

the lattice vector closest to t (i.e., the vector we are trying to find). On the other
hand if d(t,B) is larger than λ1(B)/3, then Kannan projects the instance in the
direction orthogonal to the shortest vector of B. This reduces the dimension
by 1, and an approximation in the resulting instance can be used to get an
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approximation in the original instance, because the projected approximation
can be “lifted” to find some original lattice point which is not too far from t.

We show that in case we only have an approximation oracle for SVP, we
can argue as follows. First, if d(t,B) ≤ λ1(B)

2γ , then we have an instance of a
so called “Bounded Distance Decoding” problem. By a result of Lyubashevsky
and Micciancio [15], this can be solved using the the oracle we assume. In case
d(t,B) > λ1(B)

2γ we can recurse in the same way as Kannan does. The approxi-
mation factor γ2

√
n comes from this case: lifting a projection after the recursion

returns, incurs an error of roughly the half the length of the vector v which was
used to project. Since this v can have length almost γλ1(B), the length of v can
be almost a factor γ2 larger than d(t,B). The squares of these errors then add
up as in Kannan’s reduction, which gives a total approximation factor of γ2√n.

We remark that even though we do not know which of the two cases apply,
we can simply run both, and then use the better result.

Finally, we would like to mention that to the best of our knowledge there is
no published proof that in Kannan’s algorithm [11] the projected bases have a
representation which is polynomial in the input size. We show that this is indeed
the case. For this, it is essentially enough to use a lemma from [9] which states
that the vectors in a Gram-Schmidt orthogonalization have this property.

2 Preliminaries

2.1 Notation

A lattice basis is a set of linearly independent vectors b1, . . . ,bn ∈ Rm. It is
sometimes convenient to think of the basis as an n × m matrix B, whose n
columns are the vectors b1, . . . ,bn. The lattice generated by the basis B will be
written as L(B) and is defined as L(B) = {Bx|x ∈ Zn}. The span of a basis B,
denoted as span(B), is defined as {By|y ∈ Rn}. We will assume that the lattice
is over rationals, i.e., b1, . . . ,bn ∈ Qm, and the entries are represented by the
pair of numerator and denominator. An elementary vector v ∈ L(B) is a vector
which cannot be written as a non-trivial multiple of another lattice vector.

A shortest vector of a lattice is a non-zero vector in the lattice whose �2 norm
is minimal. The length of the shortest vector is λ1(B), where λ1 is as defined in
the introduction. For a vector t ∈ Rm, let d(t,L(B)) denote the distance of t to
the closest lattice point in B. We use t† to denote a (fixed) closest vector to t
in L(B).

For two vectors u and v in Rm, v|u denotes the component of v in the direction
of u i.e., v|u = 〈v,u〉

〈u,u〉u. Also, the component of v in the direction orthogonal to
u is denoted by v⊥u i.e., the vector v − v|u.

Consider a lattice L(B) and a vector v ∈ L(B) in the lattice. Then the
projected lattice of L(B) perpendicular to v is L(B⊥v) := {u⊥v|u ∈ L(B)}. A
basis of L(B⊥b1) is given by the vectors {b2⊥b1 , . . . ,bn⊥b1}.

For an integer k ∈ Z+ we use [k] to denote the set {1, . . . , k}.
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2.2 Lattice Problems

In this paper we are concerned with the following approximation problems, which
are parametrized by some γ > 1.

γ-SVP: Given a lattice basis B, find a non-zero vector v ∈ L(B) such that
‖v‖ ≤ γλ1(B).

γ-CVP: Given a lattice basis B, and a vector t ∈ Rm find a vector v ∈ L(B)
such that ‖v − t‖ ≤ γd(t,B).

We also use the following promise problems, which are parameterized by some
γ > 0.

γ-BDD: Given a lattice basis B, and a vector t ∈ Rm with the promise that
d(t,L(B)) ≤ γλ1(B), find a vector v ∈ L(B) such that ‖v− t‖ = d(t,B).

γ-uSVP: Given a lattice basis B with the promise that λ2(B) ≥ γλ1(B), find a
non-zero vector v ∈ L(B) such that ‖v‖ = λ1(B) (this makes sense only for
γ ≥ 1).

We assume that we have given a γ-SVP oracle, denoted by O. When given a
set of linearly independent vectors B = {b1,b2, . . . ,bn} ∈ Qm×n, O(B) returns
an elementary vector v ∈ L(B) which satisfies 0 < ‖v‖ ≤ γλ1(L(B)) (if v is
not elementary then we can find out the multiple and recover the corresponding
elementary vector).

3 Some Basic Tools

Given a basis B and an elementary vector v ∈ L(B), we can in polynomial time
find a new basis of L(B) of the form {v,b′

2, . . . ,b
′
n}. To do this we use the

following lemma from Micciancio [16] (page 7, Lemma 1), which we specialized
somewhat for our needs.

Lemma 1. There is a polynomial time algorithm findbasis(v,B), which, on
input an elementary vector v of L(B) and a lattice basis B ∈ Qm×n outputs B̃ =
(b̃2, . . . , b̃n) such that L(v, b̃2, . . . , b̃n) = L(B).

Lemma 2. Let L(B) be a lattice and v ∈ L(B) be a vector in the lattice. If
L(B⊥v) is the projected lattice of L(B) perpendicular to v then λi(B⊥v) ≤
λi+1(B), i ∈ [n− 1].

Proof. Let vi be the vector of length λi(B) such that {v1, . . . ,vn} are linearly
independent. A set of such vectors exists [9]. If (v1)⊥v = 0 then (vi>1)⊥v ∈
L(B⊥v) and 0 < ‖(vi)⊥v‖ ≤ ‖vi‖, proving the lemma. If (v1)⊥v = 0 then
(v1)⊥v ∈ L(B⊥v) and 0 < ‖(v1)⊥v‖ ≤ ‖v1‖. We argue in a similar way with
(v2)⊥v to prove the lemma for i > 1. ��

We use the following reduction from due to Lyubashevsky and Micciancio [15].

Theorem 1. For any γ ≥ 1, there is a polynomial time oracle reduction from
BDD 1

2γ
to uSVPγ.

For completeness, we sketch a proof of Theorem 1 in Appendix A.
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4 Reducing CVP to SVP

We prove the following theorem:

Theorem 2. Given a basis B ∈ Qm×n and a vector t ∈ Rm, the problem γ2
√
n-

CVP is Turing reducible to the problem γ-SVP in time poly(n, log γ,maxi log ‖bi‖).
In this section we give the algorithm to prove our theorem, and show that once
it terminates, it satisfies the requirements of the theorem. We will show that the
algorithm runs in polynomial time in the next section.

The reduction takes as an input a basis B ∈ Qm×n and a vector t ∈ Rm.
Recall that the oracle O takes as input a basis over Q and outputs an elementary
vector which is a γ-approximation to the shortest vector. The reduction is given
in Algorithm 1.

Algorithm 1. CVP(B, t) (input: B ∈ Qm×n, t ∈ Qm)
1: if n = 1 then
2: Let b1 be the only column of B.
3: return ab1 with a ∈ Z such that ‖ab1 − t‖ is minimal.
4: else
5: z1 ← 1

2γ
-BDD(B, t) (Solve this with calls to O as in Theorem 1)

6: v ← O(B)
7: {b2, . . . ,bn} ← LLL(findbasis(v,B))
8: ∀i ∈ {2, . . . , n} : (b′

i)⊥v ← bi − bi|v
9: B

′
⊥v ← {(b′

2)⊥v, . . . , (b′
n)⊥v}

10: t′⊥ ← t − t|v
11: z′

2 ← CVP(B
′
⊥v, t′⊥v)

12: Find (a2, . . . , an) ∈ Zn−1 such that z′
2 =

∑n
i=2 ai(b

′
i)⊥v

13: Find a1 ∈ Z such that z2 = a1v +
∑n

i=2 aibi is closest to t
14: return the element of {z1, z2} which is closest to t.
15: end if

In line 6, we can simulate an oracle for 1
2γ -BDD due to Theorem 1, given O. In

line 7 we run the LLL algorithm on the basis returned by findbasis; this is an
easy way to ensure that the representation of the basis does not grow too large
(cf. the proof of Lemma 5). The optimization problem in line 13 is of course easy
to solve: for example, we can find a′1 ∈ R which minimizes the expression and
then round a′1 to the nearest integer.

Theorem 3. The approximate CVP-solver (Algorithm 1) outputs a vector z ∈
L(B) such that ‖z− t‖ ≤ γ2

√
nd(t,B).

Proof. We prove the theorem by induction on n. For the base case (i.e., n = 1)
we find the closest vector to t in a single vector basis. This can be done exactly
by finding the correct multiple of the only basis vector that is closest to t.



Approximating the Closest Vector Problem 189

When n > 1, we see that each run of the algorithm finds two candidates z1

and z2. We show that the shorter of the two is an approximation to the closest
vector to t in L(B) for which

‖z− t‖ ≤ √nγ2d(t,B) (1)

We divide the proof in two cases, depending on whether d(t,B) < λ1(B)
2γ . It

is sufficient to show that in each case one of z1 or z2 satisfies Equation (1).

1. If d(t,B) < λ1(B)
2γ , the promise of 1

2γ -BDD is satisfied. Thus, z1 satisfies ‖z1 −
t‖ ≤ d(t,B).

2. If d(t,B) ≥ λ1(B)
2γ we proceed as in Kannan’s proof to show that z2 satisfies

Equation (1).
By the induction hypothesis, z′2 satisfies

‖z′2 − t′⊥v‖2 ≤ (n− 1)γ4d2(t′⊥v,B
′
⊥v)

At this point, note first that t = t′⊥v + φv for some φ ∈ R. Since also∑n
i=2 aibi = z′2 + ηv for some η ∈ R, we can write

‖z2 − t‖2 = ‖(a1v + z′2 + ηv) − (t′⊥v + φv)‖2
= ‖(a1 + η − φ)v‖2 + ‖z′2 − t⊥v‖2

Since a1 is chosen such that this expression is minimal we have |a1+η−φ| ≤ 1
2 ,

and so

‖z2 − t‖2 ≤ ‖z′2 − t⊥v‖2 +
‖v‖2

4
≤ ‖z′2 − t⊥v‖2 +

γ2λ2
1(B)
4

≤ (n− 1)γ4d2(t⊥v,L(B⊥v)) +
γ24γ2d2(t,B)

4
≤ γ4nd2(t,B) .

The second last inequality follows from λ2
1(B) ≤ 4γ2d2(t,B), which holds in

this second case. To see the last inequality, note that L(B⊥v) is a projection
of L(B) and t⊥v is a projection of t in the direction orthogonal to v, and a
projection cannot increase the length of a vector.

Thus, in both cases one of z1 and z2 satisfies the requirements, and so we get
the result. ��

5 Analysis of Runtime

In this section, we show that Algorithm 1 runs in polynomial time. Observe
first that in each recursive call the number of basis vector reduces by 1. Since
all steps are obviously polynomial, it is enough to show that all the vectors
generated during the run of the algorithm can be represented in polynomially
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many bits in the input size of the top level of the algorithm. For this, we can
assume that the original basis vectors B = {b1, . . . ,bn} are integer vectors. This
can be achieved by multiplying them with the product of their denominators.
This operation does not increase the bit representation by more than a factor
of log(mn). Assuming that the basis vectors are over integers, a lower bound on
the input size can be given by M = max{n, log(maxi ‖bi‖)}.

Given a basis B = {b1, . . . ,bn}, the Gram-Schmidt orthogonalization of B
is {b̃1, . . . , b̃n}, where b̃i = bi −

∑i−1
j=1 bi|b̃j

. We need the following Lemma
from [9].

Lemma 3. [9] Let B = {b1, . . . ,bn} be n linearly independent vectors. Define
the vectors b̃i = bi −

∑i−1
j=1 bi|b̃j

. Then, the representation of any vector b̃i as
a vector of quotients of natural numbers takes at most poly(M) bits for M =
max{n, log(maxi ‖bi‖)}.
Lemma 4. Let vi, i ∈ [n], be the vector v generated in the ith level of the
recursion in line 6 of Algorithm 1.

There is a basis x1, . . . ,xn of B such that the vectors vi are given by the
Gram-Schmidt orthogonalization of x1, . . . ,xn. Furthermore, x1, . . . ,xn as well
as v1, . . . ,vn are polynomially representable in M .

Proof. We first find lattice vectors x1, . . . ,xn ∈ L(B) which satisfy

xi = vi +
i−1∑
j=1

δjvj

for some δj ∈ [− 1
2 ,

1
2 ], and then show that these vectors satisfy the claim of the

lemma.
To see that such vectors exist, let Bj be the basis in the jth level of the

recursion of Algorithm 1. Then, we note that given a vector in L(Bj) one can
find a lattice vector in L(Bj−1) at distance at most ‖vj−1‖

2 in the direction of
vj−1 or −vj−1. We let xi be the vector obtained by doing such a lifting step
repeatedly until we have a lattice vector in L(B).

The vectors v1, . . . ,vn are exactly the Gram-Schmidt orthogonalization of
x1, . . . ,xn, because

vi = xi − xi|v1 − xi|v2 − · · · − xi|vi−1 ,

and so the vectors xi must also form a basis of L(B).
Also, we have for all i ∈ [n]:

‖xi‖2 ≤ ‖vi‖2 +
‖vi−1‖2

4
+ · · ·+ ‖v1‖2

4

≤
i∑

j=1

‖vj‖2

≤ nγ2λ2
n(B) (From Lemma 2)
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As x1, . . . ,xn are vectors in the integer lattice B; x1, . . . ,xn are polynomi-
ally representable in M (and log γ, but we can assume γ < 2n). Coupled with
Lemma 3 this completes the proof. ��
Lemma 5. All vectors which are generated in a run of Algorithm 1 have a
representation of size poly(M) for M = max{n, log(maxi ‖bi‖)}, in case the
entries are represented as quotients of natural numbers.

Proof. The vectors vi which are generated in line 6 at different levels of recursion
also have representation of size poly(M) by Lemma 3. The basis Bi is LLL re-
duced and hence it is representable in number of bits which is a fixed polynomial
in the shortest vector [14] and hence also vi.

The remaining vectors are produced by oracles which run in polynomial time
or are small linear combinations of other vectors. ��
We now give a proof of Theorem 2.

Proof. (Theorem 2) Given B ∈ Qm×n and t ∈ Rm we run Algorithm 1. From
Lemma 3, the algorithm returns a vector z which is a γ2√n-approximation to the
closest vector. Also, from Lemma 5, all vectors in the algorithm have polynomial
size representation, and so the algorithm runs in time poly(log γ,M). ��
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A Solving BDD Using a uSVP-oracle

In this appendix we sketch the reduction from BDD1/2γ to uSVPγ from [15] for
completeness. We will assume that d(t,L(B)) is known – it is shown in [15] how
to avoid this assumption.

Proof. (Theorem 1) Let (B, t) be an instance of BDD 1
2γ

and let α = d(t,L(B)) ≤
λ1(B)

2γ . For simplicity we assume that we know α (see [15] for bypassing this).
Our goal is to find a vector t† ∈ L(B) such that d(t†, t) = α. We define the new
basis

B̃ =
(

B t
0 α

)
. (2)

We will show that in B̃ the vector v :=
[ t† − t
−α

]
is a γ-unique shortest vector. It

is clear that we can recover t†, the solution to the BDD problem, when given v.
The length of v is

√
2α, and so it is enough to show that all other vectors in

L(B̃), which are not a multiple of v have length at least
√

2γα. Let us (for
the sake of contradiction) assume that there is a vector v2 of length at most
‖v2‖ <

√
2γα which is not a multiple of the vector v above. We can write v2 as
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v2 =
[u− at
−aα

]
, where u ∈ L(B) and a ∈ Z. Since v2 is not a multiple of v, it

must be that u−at† ∈ L(B) is a non-zero lattice vector. Now, using the triangle
inequality, we get

‖u− at†‖ ≤ ‖u− at‖+ a‖t− t†‖
=
√
‖v2‖2 − a2α2 + aα

<
√

2α2γ2 − a2α2 + aα

≤ 2αγ ≤ λ1(B) , (Maximized when a = γ)

which is a contradiction. ��



Opaque Sets

Adrian Dumitrescu1,�, Minghui Jiang2,��, and János Pach3,���

1 University of Wisconsin–Milwaukee
dumitres@uwm.edu

2 Utah State University
mjiang@cc.usu.edu

3 Ecole Polytechnique Fédérale de Lausanne and City College of New York
pach@cims.nyu.edu

Abstract. The problem of finding “small” sets that meet every straight-
line which intersects a given convex region was initiated by Mazurkiewicz
in 1916. We call such a set an opaque set or a barrier for that region.
We consider the problem of computing the shortest barrier for a given
convex polygon with n vertices. No exact algorithm is currently known
even for the simplest instances such as a square or an equilateral triangle.
For general barriers, we present a O(n) time approximation algorithm

with ratio 1
2

+ 2+
√

2
π

= 1.5867 . . .. For connected barriers, we can achieve
the approximation ratio π+5

π+2
= 1.5834 . . . again in O(n) time. We also

show that if the barrier is restricted to the interior and the boundary
of the input polygon, then the problem admits a fully polynomial-time
approximation scheme for the connected case and a quadratic-time ex-
act algorithm for the single-arc case. These are the first approximation
algorithms obtained for this problem.

1 Introduction

The problem of finding small sets that block every line passing through a unit
square was first considered by Mazurkiewicz in 1916 [27]; see also [3,18]. Let C
be a convex body in the plane. Following Bagemihl [3], we call a set B an opaque
set or a barrier for C, if it meets all lines that intersect C. A rectifiable curve (or
arc) is a curve with finite length. A barrier may consist of one or more rectifiable
arcs. It does not need to be connected and its portions may lie anywhere in the
plane, including the exterior of C; see [3], [5].

What is the length of the shortest barrier for a given convex body C? In spite
of considerable efforts, the answer to this question is not known even for the sim-
plest instances of C, such as a square, a disk, or an equilateral triangle; see [6],
[7, Problem A30], [10], [12], [13], [16, Section 8.11]. The three-dimensional ana-
logue of this problem was raised by Martin Gardner [17]; see also [2,5]. Some
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Fig. 1. Four barriers for the unit square. From left to right: 1: single-arc; 2–3: connected;
4: disconnected. The first three from the left have lengths 3, 2

√
2 = 2.8284 . . ., and

1 +
√

3 = 2.7320 . . .. Right: The diagonal segment [(1/2, 1/2), (1, 1)] together with

three segments connecting the corners (0, 1), (0, 0), (1, 0) to the point ( 1
2
−

√
3

6
, 1

2
−

√
3

6
)

yield a barrier of length
√

2 +
√

6
2

= 2.639 . . ..

entertaining variants of the problem appeared in different forms [20,23,24], for
instance: What should a swimmer at sea do in a thick fog if he knows that
he is within a mile of a straight shoreline? The shortest known solution resem-
bles the shortest known single-arc barrier for a disk of radius one mile; see [7,
Problem A30].

A barrier blocks any line of sight across the region C or detects any ray
that passes through it. Motivated by potential applications in guarding and
surveillance, the problem of short barriers has been studied by several research
communities. Recently, it circulated in internal publications at the Lawrence
Livermore National Laboratory. The shortest barrier known for the square is
illustrated in Figure 1(right). It is conjectured to be optimal. The best lower
bound we know is 2, established by Jones [19].

Related work. The type of curve barriers considered may vary: the most re-
stricted are barriers made from single continuous arcs, then connected barriers,
and lastly, arbitrary (possibly disconnected) barriers. For the unit square, the
shortest known in these three categories have lengths 3, 1+

√
3 = 2.7320 . . . and√

2 +
√

6
2 = 2.6389 . . ., respectively. They are depicted in Figure 1. Interestingly,

it has been shown by Kawohl [21] that the barrier in Figure 1(right) is optimal
in the class of curves with at most two components (there seems to be an ad-
ditional implicit assumption that the barrier is restricted to the interior of the
square). For the unit disk, the shortest known barrier consists of three arcs. See
also [12,16].

If instead of curve barriers, we want to find discrete barriers consisting of as
few points as possible with the property that every line intersecting C gets closer
than ε > 0 to at least one of them in some fixed norm, we arrive at a problem
raised by László Fejes Tóth [14,15]. The problem has been later coined sugges-
tively as the “point goalie problem” [31]. For instance, if C is an axis-parallel
unit square, and we consider the maximum norm, the problem was studied by
Bárány and Füredi [4], Kern and Wanka [22], Valtr [35], and Richardson and
Shepp [31]. Makai and Pach [26] considered another variant of the question, in
which we have a larger class of functions to block.

The problem of short barriers has attracted many other researchers and has
been studied at length; see also [6,11,25]. Obtaining lower bounds for many of
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these problems appears to be notoriously hard. For instance in the point goalie
problem for the unit disk (with the Euclidean norm), while the trivial lower
bound is 1/ε, as given by the opaqueness condition in any one direction, the
best lower bound known is only 1.001/ε as established in [31] via a complicated
proof.

Our Results. Even we have so little control on the shape or length of optimal
barriers, for any convex polygon, barriers whose lengths are somewhat longer
can computed efficiently. Let P be a given convex polygon with n vertices.

1. A (possibly disconnected) segment barrier for P , whose length is at most
1
2 + 2+

√
2

π = 1.5867 . . . times the optimal, can be computed in O(n) time.
2. A connected polygonal barrier whose length is at most π+5

π+2 = 1.5834 . . .
times the optimal can be also computed in O(n) time.

3. For interior single-arc barriers we present an algorithm that finds an optimal
barrier in O(n2) time.

4. For interior connected barriers we present an algorithm that finds a barrier
whose length is at most (1 + ε) times the optimal in polynomial time.

It might be worth mentioning to avoid any confusion: the approximation ratios
are for each barrier class, that is, the length of the barrier computed is compared
to the optimal length in the corresponding class; and of course these optimal
lengths might differ. For instance the connected barrier computed by the the
approximation algorithm with ratio π+5

π+2 = 1.5834 . . . is not necessarily shorter
than the (possibly disconnected) barrier computed by the the approximation
algorithm with the larger ratio 1

2 + 2+
√

2
π = 1.5867 . . ..

2 Preliminaries

Definitions and notations. For a polygonal curve γ, let |γ| denote the length (or
weight) of γ. Similarly, if Γ is a set of polygonal curves, let |Γ | denote the total
length of the curves in Γ . As usual, when there is no danger of confusion, we also
denote by |A| the cardinality of a set A. We call a barrier consisting of segments
(or polygonal lines) a segment barrier. In order to be able to speak of the length
�(B) of a barrier B, we restrict our attention to barriers that can be obtained
as the union of finitely many simple rectifiable curves. We first show (Lemma 1)
that the shortest segment barrier is not much longer than the shortest rectifiable
one. Due to space limitations we omit the proof of Lemma 1.

Lemma 1. Let B be a barrier of length �(B) < ∞ for a convex body C in the
plane. Then, for any ε > 0, there exists a segment barrier Bε for C, consisting
of finitely many straight-line segments, such that �(Bε) ≤ �(B) + ε.

Denote by per(C) the perimeter of a convex body C in the plane. The following
lemma providing a lower bound on the length of an optimal barrier for C in
terms of per(C), is used in the analysis of our approximation algorithms. Its
proof is folklore; see e.g. [13].
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Lemma 2. Let C be a convex body in the plane and let B be a barrier for C.
Then the length of B is at least 1

2 · per(C).

Proof. By Lemma 1, we can assume w.l.o.g. that B is a segment barrier. Let
B = {s1, . . . , sn} consist of n segments of lengths �i = |si|, where L = |B| =∑n

i=1 �i. Let αi ∈ [0, π) be the angle made by si with the x-axis. For each
direction α ∈ [0, π), the blocking (opaqueness) condition for a convex body C
can be written as

n∑
i=1

�i| cos(α − αi)| ≥W (α), (1)

where W (α) is the width of C in direction α. By integrating this inequality over
the interval [0, π], one gets:

n∑
i=1

�i

∫ π

0

| cos(α− αi)| dα ≥
∫ π

0

W (α) dα. (2)

According to Cauchy’s surface area formula [28, pp. 283–284], for any planar
convex body C, we have ∫ π

0

W (α) dα = per(C). (3)

Since ∫ π

0

| cos(α− αi)| dα = 2,

we get

2L =
n∑
i=1

2�i ≥ per(C) ⇒ L ≥ 1
2
· per(C), (4)

as required. ��
For instance, for the square, per(C) = 4, and Lemma 2 immediately gives L ≥ 2,
the lower bound of Jones [19].

A key fact in the analysis of the approximation algorithm is the following
lemma. This inequality is implicit in [36]; another proof can be found in [9].

Lemma 3. Let P be a convex polygon. Then the minimum-perimeter rectangle
R containing P satisfies per(R) ≤ 4

π per(P ).

Let P be a convex polygon with n vertices. Let OPTarb(P ), OPTconn(P ) and
OPTarc(P ) denote optimal barrier lengths of the types arbitrary, connected, and
single-arc. Let us observe the following inequalities:

OPTarb(P ) ≤ OPTconn(P ) ≤ OPTarc(P ). (5)

We first deal with connected barriers, and then with arbitrary (i.e., possibly
disconnected) barriers.
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3 Connected Barriers

Theorem 1. Given a convex polygon P with n vertices, a connected polygonal
barrier whose length is at most π+5

π+2 = 1.5834 . . . times longer than the optimal
can be computed in O(n) time.

Proof. Consider the following algorithm A1 that computes a connected barrier
consisting of a single-arc; refer to Figure 2. First compute a parallel strip of
minimum width enclosing P . Assume w.l.o.g. that the strip is bounded by the
two horizontal lines �1 and �2. Second, compute a minimal orthogonal (i.e.,
vertical) strip enclosing P , bounded by the two vertical lines �3 and �4. Let
a, b, c, d, e, f be the six segments on �3 and �4 as shown in the figure; here b and
e are the two (possibly degenerate) segments on the boundary of P . Let P1 be
the polygonal path (on P ’s boundary) between the lower vertices of b and e. Let
P2 be the polygonal path (on P ’s boundary) between the top vertices of b and e.
Consider the following two barriers for P : B1 consists of the polygonal path P1

extended upward at both ends until they reach �2. B2 consists of the polygonal
path P2 extended downwards at both ends until they reach �1. The algorithm
returns the shorter of the two.

Let p, w, and r, respectively, be the perimeter, the width, and the in-radius
of P . Clearly

|P1|+ |P2|+ |b|+ |e| = p.

We have the following equalities:

|B1| = |a|+ |b|+ |P1|+ |e|+ |f |,
|B2| = |c|+ |b|+ |P2|+ |e|+ |d|.

By adding them up we get

|B1|+ |B2| = |P1|+ |P2|+ |b|+ |e|+ 2w = p+ 2w.

Hence
min{|B1|, |B2|} ≤ p/2 + w.

�3 �4

�2

�1

P2

P1

e

f

c

b

a

d

Fig. 2. The approximation algorithm A1 returns B2 (in bold lines)
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By Blaschke’s Theorem (see e.g. [32]), every planar convex body of width w
contains a disk of radius w/3. Thus r ≥ w/3. According to a result of Eggle-
ston [10], the optimal connected barrier for a disk of radius r has length (π+2)r.
It follows that the optimal connected barrier for P has length at least (π+2)w/3.
By Lemma 2, p/2 is another lower bound on the optimal solution. Thus the ap-
proximation ratio of the algorithm A1 is at most

p/2 + w

max{(π + 2)w/3, p/2} = min
{

p/2 + w

(π + 2)w/3
,
p/2 + w

p/2

}
= min

{
3

2(π + 2)
· p
w

+
3

π + 2
, 1 + 2 · w

p

}
.

The equation
3x

2(π + 2)
+

3
π + 2

= 1 +
2
x

has one positive real root x0 = 2(π+2)
3 . Consequently, the approximation ratio of

the algorithm A1 is at most 1 + 3
π+2 = π+5

π+2 = 1.5834 . . .. The algorithm takes
O(n) time, since computing the width of P takes O(n) time; see [29,34]. ��

4 Single-arc Barriers

Since A1 computes a single-arc barrier, and we have OPTconn(P ) ≤ OPTarc(P ),
we immediately get an approximation algorithm with the same ratio 1.5834 . . .
for computing single-arc barriers. One may ask whether this single arc barrier
computed by A1 is optimal (in the class of single arc barriers). We show that
this is not the case:

Consider a Reuleaux triangle T of (constant) width 1, with three vertices a,
b, c. Now slightly shave the two corners of T at b and c to obtain a convex body
T ′ of (minimum) width 1− ε along bc. The algorithm A1 would return a curve
of length close to π/2 + 1 = 2.57 . . ., while the optimal curve has length at most
2π/3 + 2(1 − √3/2) = 2π/3 + 2 − √3 = 2.36 . . .. This example shows a lower
bound of 1.088 . . . on the approximation ratio of the algorithm A1. Moreover,
we believe that the approximation ratio of A1 is much closer to this lower bound
than to 1.5834 . . ..

We next present an improved version B1 of our algorithm A1 that computes
the shortest single-arc barrier of the form shown in Figure 2; see below for details.

Let P be a convex polygon with n sides, and let � be a line tangent to the
polygon, i.e., P ∩ � consists of a vertex of P or a side of P . For simplicity
assume that � is the x-axis, and P lies in the closed halfplane y ≥ 0 above
�. Let T = (�1, �2) be a minimal vertical strip enclosing P . Let p1 ∈ �1 ∩ P
and p2 ∈ �2 ∩ P , be the two points of P of minimum y-coordinates on the two
vertical lines defining the strip. Let q1 ∈ �1 and q2 ∈ �2 be the projections of
p1 and p2, respectively, on �. Let arc(p1, p2) ⊂ ∂(conv(P )) be the polygonal arc
connecting p1 and p2 on the top boundary of P . The U -curve corresponding to
P and �, denoted U(P, �) is the polygonal curve obtained by concatenating q1p1,
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arc(p1, p2), and p2q2, in this order. Obviously, for any line �, the curve U(P, �) is
a single-arc barrier for P . Let Umin(P ) be the U -curve of minimum length over
all directions α ∈ [0, π) (i.e., lines � of direction α).

We next show that given P , the curve Umin(P ) can be computed in O(n)
time. The algorithm B1 is very simple: instead of rotating a line � around P ,
we fix � to be horizontal, and rotate P over � by one full rotation (of angle 2π).
We only compute the lengths of the U -curves corresponding to lines �, �1, �2,
supporting one edge of the polygon. The U -curve of minimum length among
these is output. There are at most 3n such discrete angles (directions), and the
length of a U -curve for one such angle can be computed in constant time from
the the length of the U -curve for the previous angle. The algorithm is similar to
the classic rotating calipers algorithm of Toussaint [34], and it takes O(n) time
by the previous observation.

To justify its correctness, it suffices to show that if each of the lines �, �1, �2 is
incident to only one vertex of P , then the corresponding U -curve is not minimal.
Due to space limitations we omit the proof of Lemma 4.

Lemma 4. Let P be a convex polygon tangent to a line � at a vertex v ∈ P only,
and tangent to �1 and �2 at vertices p1 and p2 only. Then the corresponding U -
curve U(P, �) is not minimal.

We thus conclude this section with the following result.

Theorem 2. Given a convex polygon P with n vertices, the single-arc barrier
(polygonal curve) Umin(P ) can be computed in O(n) time.

Obviously, the single-arc barrier computed by B1 is not longer than that com-
puted by A1, so the approximation ratio of the algorithm B1 is also bounded by
π+5
π+2 = 1.5834 . . .. One may ask again whether this single arc barrier computed
by B1 is optimal (in the class of single arc barriers). We can show again that
this is not the case (details omitted here).

5 Arbitrary Barriers

Theorem 3. Given a convex polygon P with n vertices, a (possibly discon-
nected) segment barrier for P , whose length is at most 1

2 + 2+
√

2
π = 1.5867 . . .

times longer than the optimal can be computed in O(n) time.

Proof. Consider the following algorithm A2 which computes a (generally discon-
nected) barrier. First compute a minimum-perimeter rectangle R containing P ;
refer to Figure 3. Let a,b,c,d,e,f ,g,h, i,j,k,l be the 12 segments on the boundary
of R as shown in the figure; here b, e, h and k are (possibly degenerate) segments
on the boundary of P contained in the left, bottom, right and top side of R. Let
Pi, i = 1, 2, 3, 4 be the four polygonal paths on P ’s boundary, connecting these
four segments as shown in the figure.

Consider four barriers for P , denoted Bi, for i = 1, 2, 3, 4. Bi consists of the
polygonal path Pi extended at both ends on the corresponding rectangle sides,
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Fig. 3. The approximation algorithm A2

and the height from the opposite rectangle vertex in the complementary right
angled triangle; see Figure 3(right). The algorithm returns the shortest of the
four barriers. Let hA, hB, hC , hD denote the four heights. We have |hA| = |hB| =
|hC | = |hD| and the following other length equalities:

|B1| = |a|+ |b|+ |P1|+ |e|+ |f |+ |hA|,
|B2| = |d|+ |e|+ |P2|+ |h|+ |i|+ |hB |,
|B3| = |g|+ |h|+ |P3|+ |k|+ |l|+ |hC |,
|B4| = |j|+ |k|+ |P4|+ |b|+ |c|+ |hD|.

By adding them up we get
4∑
i=1

|Bi| =
(|b|+ |e|+ |h|+ |k|+ 4∑

i=1

|Pi|
)

+
(|a|+ . . .+ |k|)

+
(|hA|+ |hB|+ |hC |+ |hD|) = per(P ) + per(R) + 4|hA|. (6)

Expressing the rectangle area in two different ways yields |hA| = xy√
x2+y2

,

where x and y are the lengths of the two sides of R. By Lemma 3 we have

per(R) = 2(x+ y) ≤ 4
π

per(P ).

Under this constraint, |hA| is maximized for x = y = per(P )
π , namely

|hA| ≤ per(P )
π
√

2
⇒ 4|hA| ≤ 2

√
2

π
per(P ).

Hence from (6) we deduce that

min
i
|Bi| ≤ 1

4

(
1 +

4
π

+
2
√

2
π

)
per(P ).

Recall that per(P )/2 is a lower bound on the weight of an optimal solution.
The ratio between the length of the solution and the lower bound on the optimal
solution is

π + 4 + 2
√

2
2π

=
1
2

+
2 +
√

2
π

= 1.5867 . . .
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Consequently, the approximation ratio of the algorithm A2 is 1
2 + 2+

√
2

π =
1.5867 . . .. The algorithm takes O(n) time, since computing the minimum-
perimeter rectangle containing P takes O(n) time with the standard technique
of rotating calipers [29,34]. This completes the proof of Theorem 3. ��

6 Interior-Restricted Versus Unrestricted Barriers

In certain instances, it is infeasible to construct barriers guarding a specific
domain outside the domain (which presumably belongs to someone else). We
call such barriers constrained to the interior and the boundary of the domain,
interior-restricted, or just interior, and all others unrestricted. For example, all
four barriers for the unit square illustrated in Figure 1 are interior barriers.

In the late 1980s, Akman [1] soon followed by Dublish [8] had reported al-
gorithms for computing a minimum interior-restricted barrier of a given convex
polygon (they refer to such a barrier as an opaque minimal forest of the poly-
gon). Both algorithms however have been shown to be incorrect by Shermer [33]
in 1991. He also proposed (conjectured) a new exact algorithm instead, but
apparently, so far no one succeeded to prove its correctness. To the best of our
knowledge, the computational complexity of computing a shortest barrier (either
interior-restricted or unrestricted) for a given convex polygon remains open.

Next we show that a minimum connected interior barrier for a convex polygon
can be computed efficiently:

Theorem 4. Given a convex polygon P , a minimum Steiner tree of the vertices
of P forms a minimum connected interior barrier for P . Consequently, there is
a fully polynomial-time approximation scheme for finding a minimum connected
interior barrier for a convex polygon.

Proof. Let B be an optimal barrier. For each vertex v ∈ P , consider a line �v
tangent to P at v, such that P ∩ �v = {v}. Since B lies in P , �v can be only
blocked by v, so v ∈ B. Now since B is connected and includes all vertices of
P , its length is at least that of a minimum Steiner tree of P , as claimed. Recall
that the minimum Steiner tree problem for n points in the plane in convex
position admits a fully polynomial-time approximation scheme that achieves an
approximation ratio of 1 + ε and runs in time O(n6/ε4) for any ε > 0 [30]. ��
A minimum single-arc interior barrier for a convex polygon can be also computed
efficiently. As it turns out, this problem is equivalent to that of finding a shortest
traveling salesman path (i.e., Hamiltonian path) for the n vertices of the polygon.

Theorem 5. Given a convex polygon P , a minimum Hamiltonian path of the
vertices of P forms a minimum single-arc interior barrier for P . Consequently,
there is an O(n2)-time exact algorithm for finding a minimum single-arc interior
barrier for a convex polygon with n vertices.

Proof. The same argument as in the proof of Theorem 4 shows that any interior
barrier for P must include all vertices of P . By the triangle inequality, the optimal
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single-arc barrier visits each vertex exactly once. Thus a minimum Hamiltonian
path of the vertices forms a minimum single-arc interior barrier.

We now present a dynamic programming algorithm for finding a minimum
Hamiltonian path of the vertices of a convex polygon. Let {v0, . . . , vn−1} be the
n vertices of the convex polygon in counter-clockwise order; for convenience, the
indices are modulo n, e.g., vn = v0. Denote by dist(i, j) the Euclidean distance
between the two vertices vi and vj . For the subset of vertices from vi to vj
counter-clockwise along the polygon, denote by S(i, j) the minimum length of a
Hamiltonian path starting at vi, and denote by T (i, j) the minimum length of a
Hamiltonian path starting at vj . Note that a minimum Hamiltonian path must
not intersect itself. Thus the two tables S and T can be computed by dynamic
programming with the base cases

S(i, i+ 1) = T (i, i+ 1) = dist(i, i+ 1)

and with the recurrences

S(i, j) = min{dist(i, i+ 1) + S(i+ 1, j), dist(i, j) + T (i+ 1, j)},
T (i, j) = min{dist(j, j − 1) + T (i, j − 1), dist(j, i) + S(i, j − 1)}.

Then the minimum length of a Hamiltonian path on the n vertices is

min
i

min{dist(i, i+ 1) + S(i+ 1, i− 1), dist(i, i− 1) + T (i+ 1, i− 1)}.

The running time of the algorithm is clearly O(n2). ��

Remark. Observe that the unit square contains a disk of radius 1/2. According
to the result of Eggleston mentioned earlier [10], the optimal (not necessarily
interior-restricted) connected barrier for a disk of radius r has length (π + 2)r.
This optimal barrier is a single curve consisting of half the disk perimeter and
two segments of length equal to the disk radius. It follows that the optimal
(not necessarily interior-restricted) connected barrier for the unit square has
length at least (π + 2)/2 = π/2 + 1 = 2.5707 . . .. Compare this with the current
best construction (illustrated in Figure 1, third from the left) of length 1 +√

3 = 2.7320 . . .. Note that this third construction in Figure 1 gives the optimal
connected interior barrier for the square because of Theorem 4. Further note
that the first construction in Figure 1 gives the optimal single-arc interior barrier
because of Theorem 5.

7 Concluding Remarks

Interesting questions remain open regarding the structure of optimal barriers
and the computational complexity of computing such barriers. For instance:

(1) Does there exist an absolute constant c ≥ 0 (perhaps zero) such that the
following holds? The shortest barrier for any convex polygon with n vertices
is a segment barrier consisting of at most n+ c segments.
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(2) Is there a polynomial-time algorithm for computing a shortest barrier for a
given convex polygon with n vertices?

(3) Can one give a characterization of the class of convex polygons whose optimal
barriers are interior?

In connection with question (2) above, let us notice that the problem of deciding
whether a given segment barrier B is an opaque set for a given convex polygon
is solvable in polynomial time. Due to space limitations the proof of Theorem 6
is omitted.

Theorem 6. Given a convex polygon P with n vertices, and a segment barrier
B with k segments, there is a polynomial-time algorithm for deciding whether B
is an opaque set for P .

We have presented several approximation and exact algorithms for computing
shortest barriers of various kinds, for a given convex polygon. The two approx-
imation algorithms with ratios close to 1.58 probably cannot be improved sub-
stantially without either increasing their computational complexity or finding a
better lower bound on the optimal solution than that given by Lemma 2. The
question of finding a better lower bound is particularly intriguing, since even for
the simplest polygons, such as a square, we don’t possess any better tool. While
much research up to date focused on upper or lower bounds for specific exam-
ple shapes, obtaining a polynomial time approximation scheme (in the class of
arbitrary barriers) for an arbitrary convex polygon is perhaps not out of reach.
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Abstract. We consider online and offline problems related to exploring
and surveying a region by a swarm of robots with limited communication
range. The minimum relay triangulation problem (MRTP) asks for plac-
ing a minimum number of robots, such that their communication graph
is a triangulated cover of the region. The maximum area triangulation
problem (MATP) aims at finding a placement of n robots such that their
communication graph contains a root and forms a triangulated cover of a
maximum possible amount of area. Both problems are geometric versions
of natural graph optimization problems.

The offline version of both problems share a decision problem, which
we prove to be NP-hard. For the online version of the MRTP, we give a
lower bound of 6/5 for the competitive ratio, and a strategy that achieves
a ratio of 3; for different offline versions, we describe polynomial-time ap-
proximation schemes. For the MATP we show that no competitive ratio
exists for the online problem, and give polynomial-time approximation
schemes for offline versions.

1 Introduction

Exploration and Guarding. Many geometric problems of searching, exploring
or guarding are motivated by questions from robot navigation. What strategies
should be used for an autonomous robot when dealing with known or unknown
environments?

A typical scenario considers an unknown polygonal region P that needs to
be fully inspected by one or several robots; in a guarding problem, a (typically
known) region needs to be fully covered from a set of guarding positions.

Triangulation is another canonical geometric problem that plays an impor-
tant role in many contexts. It is an underlying task for many computer graphics
approaches and the basis for a huge variety of problems in polygons, e.g., the
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computation of shortest watchman routes in simple polygons. Other contexts in-
clude mesh generation, divide-and-conquer algorithms, and even guarding prob-
lems: as Fisk [12] showed, a simple argument based on triangulations can be
used to show that �n3 � guards always suffice to guard any simple polygon with n
vertices. Hence, triangulation has been intensively studied. Moreover, classical
surveying relies on triangulation, which makes it possible to compute geographic
coordinates with high precision by simple trigonometry.

In this paper, we present a number of geometric problems and solutions mo-
tivated by exploration and guarding of a region by a large swarm of robots. We
consider a static sensor network that needs to react to different scenarios by
adding further mobile sensors, e.g. sensor nodes attached to mobile robots. We
have experimented with actual robot swarms, consisting of Roombas controlled
by iSense sensor nodes, which in turn communicate using IEEE 802.15.4 radios.
Localization based on signal strength turned out to be completely infeasible
indoors, due to ranging errors well exceeding a factor of 10. However, we are
convinced that we can steer a robot through a triangle, making it leave through
a designated side. This is done by a simple strategy that tries to increase the
signal strength to exactly two vertices. If we have a triangulated environment, we
can use the connectivity information as a rough localization map, and navigate
robots by switching from triangle to triangle.

We consider online problems (in which the region is unknown) and offline
problems (in which the region is known). Another distinction arises from min-
imizing the number of relays necessary to completely cover and triangulate a
region (Minimum Relay Triangulation Problem (MRTP)), or by maximizing the
covered subregion for a given number of robots (Maximum Area Triangulation
Problem (MATP)). We use the terms robots and relays synonymously; see Sec-
tion 2 for more precise details.

For the MRTP we ask for complete coverage of the polygon. Hence, relays
must be located at all vertices and the polygon has to be fully triangulated.
The knowledge of necessary positions makes an actual placement easier. On the
other hand, in combination with the edge lengths restriction, it complicates an
NP-hardness proof.

Related Work. Hoffmann et al. [13] presented a 26.5-competitive strategy for
the online exploration of simple polygons with unlimited vision. Icking et al. [15]
and Fekete et al. [11] considered exploration with limited and time-discrete vi-
sion, respectively. Exploration with both limited and time-discrete vision is pre-
sented by Fekete et al. [10]. Placing stationary guards was first considered by
Chvátal [6], see also O’Rourke [19].

Classical triangulation problems (see, e.g., [19]) ask for a triangulation of all
vertices of a polygon, but allow arbitrary length of the edges in the triangu-
lation. This differs from our problem, in which a edge lengths are bounded by
communication length. Triangulations with shape constraints for the triangles
and the use of Steiner points are considered in mesh generation, see for example
the survey by Bern and Eppstein [3].
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The problem of placing a minimum number of relays with limited commu-
nication range in order to achieve a connected network (a generalization of the
classical Steiner tree problem) has been considered by Efrat et al. [8], who gave
a number of approximation results for the offline problem (a 3.11-approximation
for the one-tier version and a PTAS for the two-tier version, that does al-
low for the use of relays only, of this problem); see the survey [7] for related
problems.

For robot swarms, Hsiang et al. [14] consider the problem of dispersing a
swarm of simple robots in a cellular environment, minimizing the time until every
cell is occupied by a robot. For the case of a single door, Hsiang et al. present
algorithms with optimal makespan. For k doors a Θ(log(k + 1))-competitive
algorithm is given. A similar problem from a more practical view was solved by
McLurkin and Smith [17].

Instead of considering simple robots for certain tasks, another approach is to
consider the minimal necessary capabilities that allow for a certain task, Suri et
al. [20] and Brunner et al. [5] classified different robot models along these lines.

Some work has been done on budget problems, optimization problems with a
hard limit on the total cost. For example, Blum et al. [4] presented the problem of
finding a path in a graph with edge costs and vertex rewards, that maximizes the
collected reward while keeping the cost below a fixed limit and give a constant
factor approximation. See also Averbuch et al. [2].

Our Results are as follows.

– We show that the offline versions of MRTP and MATP are NP-hard.
– For the online MRTP, we give a lower bound of 6/5 for the competitive ratio.
– We give an online strategy for the MRTP with a competitive ratio of 3.
– For an offline version of the MRTP, we give a polynomial-time approximation

scheme (PTAS).
– For the online MATP, we show that no strategy can achieve a constant

competitive ratio.
– For an offline version of the MATP, we give a polynomial-time approximation

scheme (PTAS).

It should be noted that the results for the offline versions provide approxima-
tion schemes for vertex-based and area-based cost functions, whereas classical
approximation schemes for geometric optimization problems (such as the ones
developed in [1,18]) focus on length-based cost functions.

The rest of this paper is organized as follows. Section 2 presents basic defi-
nitions and preliminaries. Section 3 sketches the hardness proof for the offline
problems. Section 4 considers the online MRTP, while Section 5 gives a polyno-
mial time approximation scheme (PTAS) for the offline version. Section 6 shows
that no constant competitive ratio for the online MATP exists. We conclude in
Section 7. For lack of space a description of the PTAS for the OMATP will be
given in the full version of this paper.
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2 Notation and Preliminaries

We are given a polygon (an n-gon) P . Every robot in the swarm has a (circular)
communication range r. Within this range, perception of and communication
with other robots is possible. For the ease of description we assume that r is
equal to 1 (and scale the polygon accordingly).

In the offline Minimum Relay Triangulation Problem (MRTP), we are given
the n-gon P and a point z ∈ P , and the goal is to compute a set, R (with z ∈ R),
of relays within P such that there exists a (Steiner) triangulation of P whose
vertex set is exactly the set R and whose edges are each of length at most 1.
Necessarily, R contains the set V of n vertices of P . The objective is to minimize
the number of relays. We let ROPT denote an optimal (minimum-cardinality) set
of relays and let TOPT denote a corresponding optimal triangulation of P using an
optimal set of relays; with slight abuse of notation, we also use ROPT to denote
the cardinality of the set. For convenience, we refer to a triangulation whose
edges are each of length at most 1 as a unit-triangulation. The triangulation
must not contain edges crossing the boundary of P , reflecting the impossibility
of communicating through walls. Thus, the triangulation contains all vertices of
P , plus intermediate points. The latter are needed as edges in the triangulation
must not have a length exceeding 1.

In the offline Maximum Area Triangulation Problem (MATP), we are given the
n-gon P and a point z ∈ P , and a budget, k, of relays. The goal is to compute
a set, R (with z ∈ R), of k = |R| relays within P such that there exists a
connected (Steiner) unit-triangulation within P covering the maximum possible
area. Let ROPT denote an optimal set of relays, TOPT the optimal triangulation,
and AOPT the total area of TOPT. In some situations, two natural assumptions,
rooted in the robots finite size, come into play: the region may be assumed to
be free of bottlenecks that are too narrow for robots, and we may already have
a discrete set of candidate relay locations.

For the online versions (OMRTP and OMATP), the polygon P is unknown.
Each relay may move through the area, and has to decide on a new location
for a vertex of the triangulation while still within reach of other relays. Once it
has stopped, it becomes part of the static triangulation, allowing other relays to
extend the exploration and the triangulation. This is motivated by our applica-
tion, where it is desirable to partially fix the triangulation as it is constructed,
to begin location services in this area even if the polygon is not fully explored
yet. This is a crucial property if we assume a huge area that is explored over
long times. More precisely, also for the OMRTP we are given the n-gon P and
a point z ∈ P , and the goal is to compute a set, R, of relays within P such that
there exists a (Steiner) triangulation of P whose vertex set is exactly the set R
and whose edges are each of length at most 1. The relays move into the polygon,
starting from z. A relay extending the yet established subset R′ ⊂ R must stay
within a distance of 1 of at leas one relay p ∈ R. Once it fixed its position it will
not move again. No non-triangle edges are allowed in the final construction. For
the OMRTP we let ROPT denote the number of relays used by the optimum, for
the OMATP AOPT denotes the area covered by the optimum.
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3 NP-Hardness

Theorem 1. The Minimum Relay Triangulation Problem (MRTP) is NP-hard,
even without a discrete set of candidate locations.

Proof Sketch. A complete proof is omitted for lack of space. The proof is
based on a reduction of the NP-hard problem Planar 3SAT, a special case of
3SAT in which the variable-clause incidence graph H is planar. In particular,
there is a rectilinear configuration of the set of variables in a straight line, with
the clauses above and below them; see [16]. This layout is represented by a
polygon. The different components (for the clauses, the edges and the variables)
can be triangulated using two different configurations, corresponding to truth
settings for the variables that may or may not satisfy the respective clause. See
Figure 1(a) for an example of a clause gadget, and (b) for a variable gadget: the
edge corridors of three variables end in the triangular gadget. The boundary is
shown in bold black, all other lines are used only to highlight certain distances.
A truth setting satisfying the clause is indicated by black squares, a setting not
satisfying the clause as black framed gray squares. In case at least one variable
satisfies the clause, 3 interior relays are sufficient for the clause component. If all
variables do not satisfy the clause, 4 interior relays are required for the clause
component.

A considerable number of further technical issues need to be resolved to com-
plete the overall proof. Among them are detailed constructions for corridors
connecting the gadgets, which implement the logical structure of the gadgets,
while still allowing careful book-keeping for all the involved angles and distances.
A full account of these details is given in the full paper.

Using the same construction as in Theorem 1, we can further conclude:

Theorem 2. The Maximum Area Triangulation Problem (MATP) is NP-hard,
even without a discrete set of candidate locations.

1

(a)

1

(b)

Fig. 1. Polygonal gadgets for a clause (a) and a variable (b). Circles have radius 1



Exploring and Triangulating a Region by a Swarm of Robots 211

3
4

3
4

(a)

3
4

3
4

> 1

(b)

3
4

3
4

> 1

(c)

> 1> 1

3
4

3
4

(d)

Fig. 2. A lower bound for the OMRTP. Black dots indicate polygon vertices, i.e.,
mandatory relays; grey disks indicate an optimal solution, while grey squares indicate
relays placed by an online strategy.

4 Online Minimum Relay Triangulation

We give a lower bound of 6/5 and present a 3-competitive online strategy for
the OMRTP, improving both values we gave in the informal workshop paper [9].

Lower Bound. For the lower bound we use a polygonal corridor of width 3/4.
For a complete triangulation, relays must be placed at the vertices, i.e., the
position of the first two relays is fixed.

In case the algorithm places the next relay on the right boundary, the polygo-
nal corridor will turn out to look like in Figure 2(a). We need to determine the
number of relays up to the two relays connected by the dotted edge (in the area
indicated by the light gray shape in Figure 2), those build the two fixed relays
of the next polygonal pieces. The optimum needs 5 relays. The distance of the
relay placed by the algorithm on the right boundary to the next vertex is larger
than 1, thus, the algorithm uses 6 relays; see Figure 2(b). In case the algorithm
locates the next relay on the left boundary, the polygonal corridor turns out to
look like in Figure 2(c). If, on the other hand, the algorithm places the next
relay in the center, the polygonal corridor turns out to look like in Figure 2(d).
In both cases with an optimum of 5, and an online solution of 6.

The construction we presented results in the next component connected in 45◦

to the right. Constructions for a connection within a 45◦ angle to the left are
done analogously (mirrored constructions)—resulting in reflected components.
The additional relays ensure that a final corridor of 3/4 is achieved again. Thus,
we can iterate the construction. We alternate between the components shown in
Figure 2 and the reflected components to avoid a self-overlapping polygon. We
conclude

Theorem 3. No deterministic algorithm for the online minimum relay trian-
gulation problem can be better than 6

5 -competitive.

Online Triangulation. In the following, we describe our algorithm for the
online minimum relay triangulation problem. Our construction is based on two
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components that are glued together into one triangulation: (i) following the
boundary of P and (ii) triangulating the interior.

For (i) we place relays within distance 1 along the boundary and on vertices;
interior boundaries are dealt with in a similar manner once they are encountered.
Let bALG be the number of relays used in this step, and bOPT the number of relays
placed on the boundary by an optimal solution. As any triangulation needs to
establish edges along all edges of the polygon P , and the maximum distance of
relays is r = 1, we conclude:

Lemma 1. bALG ≤ bOPT.

For (ii), triangulating the interior of P , we build an overlay with an arbitrarily
oriented triangular unit grid from our starting point. Whenever we cannot con-
tinue this grid but are able to place a relay with distance 1 to all existing interior
relays, we do so (and resume the grid construction when possible). Let iALG be
the number of relays used in this step.

Lemma 2. For an optimal solution for the MRTP with bOPT relays located on
the boundary and iOPT located in the interior, the number !OPT of triangles in
an optimal triangulation satisfies !OPT = 2 · iOPT + bOPT − 2.

The proof relies on accounting for interior angles. Comparing grid relays and
optimal triangles, we conclude (see proof in the full version of this paper)

Lemma 3. iALG ≤ !OPT.

Having positioned bALG + iALG relays, we are left with the task of keeping the
explored region triangulated. Whenever we encounter an untriangulated cell
bounded by a number of connections between positioned relays, we use addi-
tional relays; let their total number be cALG. We claim that:

Lemma 4. In total, cALG ≤ bOPT additional relays suffice to ensure an overall
triangulation.

Proof. A full proof is omitted for lack of space. As interior relays of degree 0
and 1 can be triangulated without causing further cost, we consider an edge
between two relays ({r1, r2}); see Figure 3. We then give a case distinction of
possible relay locations: we distinguish several placements of relays, depending
on the location of edges and on p2 and p3 being included in the triangular gird.
Altogether, every relay on the boundary gets charged at most once, concluding
the proof.

��
This implies the following theorem.

Theorem 4. There is a 3-competitive strategy for the online minimum relay
triangulation problem in polygons (even with holes).

The proof is based on the previous lemmas; details are contained in the full
version of the paper.
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Fig. 3. We consider the black edge {r1, r2} of a triangulation. The circle position p1 of
the grid is not included. Boundary relays are denoted by black squares, relays placed
in phase (ii) as black circles and relays placed to glue the triangulations by black-and-
white squares. The resulting triangulations are indicated by fine black lines.

5 Offline Minimum Relay Triangulation

We assume that the relays are restricted to a discrete set, C, of candidate loca-
tions. In particular, we assume that V ⊂ C and that, for a fixed (small) parameter
β > 0, C includes the set of grid points within P , with spacing β, whose points
lie at positions (iβ, jβ) in the plane, and that C includes the points where lines
of the form x = iβ and y = jβ intersect edges of P .

Further, in order to address the most realistic form of the problem, we assume
that P is δ-accessible, for some fixed 0 < δ < 1: The δ-medial axis is topologically
equivalent to the medial access, and each point of P is within geodesic distance
O(δ) of some disk of radius δ within P . Here, the δ-medial axis is the locus of all
centers of medial disks (i.e., disks within P that are in contact with the boundary
of P at two or more points) that are of radius δ or greater. Domains P that are
δ-accessible can be fully accessed by robots of some fixed size δ: any path within
P for a point has a homotopically equivalent path for a disk of radius δ, for all
of its length except possible length O(δ) at each of its ends.

Let BB(P ) denote the axis-aligned bounding box of P . Without loss of gener-
ality, we can assume that BB(P ) has bottom left corner at (0,0); let (xmax, ymax)
denote the upper right corner ofBB(P ). We letX denote the set of x-coordinates
of V , together with the multiples of β, iβ, for i = 1, 2, . . . , �xmax/β�; we define
the set Y of y-coordinates similarly. An axis-parallel line � is a cut if it is defined
by the candidate coordinates X (for vertical lines) or Y (for horizontal lines).
An axis-aligned rectangle, ρ ⊆ BB(P ), is (X,Y )-respecting if its left/right sides
are defined by x-coordinates of X and its top/bottom sides are defined by y-
coordinates of Y .

Let T denote an arbitrary triangulation of P . The m-span, σm(�, ρ, T ), of
� with respect to rectangle ρ and triangulation T is defined as follows. Assume
that � is vertical; the definition for horizontal cuts is similar. If � ∩ ρ intersects
at most 2m edges of T , then the m-span is empty (σm(�, ρ, T ) = ∅). Otherwise,
let a be the topmost point in the mth intersection between � and edges of T ,
from the top of ρ, along � ∩ ρ. (Each intersection between � and edges of T is
either a single point, where � crosses an edge, or is an edge e of T , in the case
that � contains the (vertical) edge e of T .) Similarly, let b be the bottommost
point in the mth intersection between � and edges of T , from the bottom of ρ,
along �∩ ρ. Then, the m-span is defined to be the segment ab: σm(�, ρ, T ) = ab;
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�

a

b

Fig. 4. The m-span (in bold), σm(�, ρ, T ), (m = 2) of � with respect to rectangle ρ and
triangulation T

see Figure 4. Note that σm(�, ρ, T ) ∩ P is a union of potentially many (O(n))
vertical segments along �, all but two of which are vertical chords of P .

We describe a PTAS for the MRTP problem by developing the m-guillotine
method [18], with several key new ideas needed to address the triangulation prob-
lem. We fix an ε > 0 and let m = �1/ε�. Our method employs a structure theo-
rem, which shows that we can transform an arbitrary (Steiner) unit-triangulation
T of P into a (Steiner) unit-triangulation TG that is “m-guillotine”, with the
number of vertices of TG at most (1 + ε) times the number of vertices of T . The
m-guillotine structure is a special recursive structure that allows a dynamic pro-
gramming algorithm to optimize over all m-guillotine unit-triangulations with
vertices in C. Since our algorithm will find an m-guillotine unit-triangulation
of P having a minimum number of vertices, and our structure theorem shows
that any unit-triangulation (in particular, an optimal unit-triangulation) can
be transformed into an m-guillotine unit-triangulation having approximately
the same number of vertices (within factor (1 + ε)), it follows that the unit-
triangulation found by our algorithm yields a PTAS for determining ROPT. We
say that a (Steiner) triangulation T of P is m-guillotine if the bounding box
BB(P ) can be recursively partitioned into (X,Y )-respecting rectangles by “m-
perfect cuts”. (At the base of the recursion are rectangles of dimensions O(δ), for
which a brute-force enumeration of a constant number of cases in the dynamic
programming algorithm will suffice.) A cut � is m-perfect with respect to a rectan-
gle ρ if its intersection with the triangulation has the following special structure:
(i) � intersects ρ, and (ii) the m-span of � with respect to ρ is either empty or,
if nonempty, is canonically partitioned by the triangulation T , in the following
sense. Assume that the cut � is vertical; the horizontal case is handled similarly.
Let pq be one segment of σm(�, ρ, T ) ∩ P , with p (on an edge of T ) vertically
above q (also on an edge of T ). Then, we say that the m-span is canonically
partitioned by T if each component segment pq of the set σm(�, ρ, T ) ∩ P that
has length |pq| ≥ 2δ is a union of k = �|pq|/δ� vertical edges of T , each of length
exactly |pq|/k (which is at most δ). We refer to the sequence of edges along the
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m-span (each component pq) as a Steiner bridge. Those segments pq of length
|pq| < 2δ define small pockets of P – such a segment bounds a simple polygon
(since p and q must be on the same connected component of the boundary ∂P ,
and there can be no hole in the pocket, in order that the δ-medial axis have
the same topology as the medial axis, as we assume in δ-accessibility), and this
simple polygon has geodesic diameter O(δ) (again by δ-accessibility, since each
point of P is within distance O(δ) of a disk of radius δ within P ). Our main
structure theorem for the PTAS is:

Theorem 5. Let P be a δ-accessible polygonal domain with n vertices. For any
fixed ε > 0, let m = �1/ε�. Let T be a Steiner unit-triangulation of P whose
t = |T | vertices lie in the set C of candidates. Then, there exists an m-guillotine
(Steiner) unit-triangulation, TG, of P with tG ≤ (1 + ε)t vertices in the set C.
The following lemma (whose proof is in the full paper) is utilized in the proof of
the structure theorem.

Lemma 5. Let ab be the m-span, σm(�, ρ, T ), of a cut � through rectangle ρ and
unit-triangulation T of P . Then, we can transform T to a new unit-triangulation
T ′ that is canonically partitioned along ab by adding O(|ab|/δ) new Steiner points
at candidate locations in C.

The Algorithm. The main algorithm is based on dynamic programming to
compute a minimum-vertex m-guillotine (Steiner) unit-triangulation. A sub-
problem is specified by an (X , Y )-respecting rectangle ρ, and various boundary
information specifying how the unit-triangulation of P within ρ must interface
with the unit-triangulation outside of ρ. This boundary information includes up
to 2m edges (each of length at most 1) per side of ρ; since these edges have
endpoints that lie on the grid of candidate Steiner points, C, we know that there
are only a polynomial number of possibilities for these edges. Importantly, the
m-span on each side of ρ is partitioned into a canonical set of edges, which is
determined solely by the location of the cuts bounding ρ, and their interactions
with the (fixed) geometry of P . This means that the interface specification, be-
tween subproblems, is succinct (specifiable with a constant, O(m), of data), as
it must be for a polynomial-time dynamic program.

Theorem 6. Let P be a multiply connected polygonal domain with n vertices.
Assume that P is δ-accessible, for some fixed 0 < δ < 1. Then, for any fixed
ε > 0, there is an algorithm, with running time polynomial in n, that computes
a unit-triangulation, TG, of P having at most (1 + ε)ROPT vertices.

6 Online Maximum Area Triangulation

Theorem 7. There is no competitive algorithm for the Online Maximum Area
Triangulation Problem.



216 S.P. Fekete et al.

a

b

1

2ε 2
√
1− δ2

2 + μ

Fig. 5. An example for the polygon construction

Proof Sketch. A full proof is omitted for lack of space. For � given relays we
construct a polygon with x = � 
−2

4 � narrow corridors, x − 1 of which end in a
small structure and one in a large polygonal piece that allows for the placement
for � unit triangles. Every online algorithm for the OMATP will use all relays
in the corridors, while the offline optimum needs a few relays on the way to the
large polygonal piece and then places unit triangles only. Hence, every online
algorithm for the OMATP covers less than 8√

3
ε of the area that the optimal

offline algorithm OPT covers for any given ε (using k relays); see Figure 5 for
the general idea of the construction.

7 Conclusions

In this paper we have presented a number of online and offline results for natural
problems motivated by exploration and triangulation of a region by a swarm of
robots. A variety of open problems and issues remain.

Can we further improve the upper and lower bounds on the competitive fac-
tor? We believe that the final answer should be a factor of 2. On the other hand,
the lower bound of 6/5 applies to any algorithm; it may be possible to bring this
closer to 2 by using corridor pieces of varying width. For an online strategy that
separately considers boundary and interior, such as our algorithm, we believe
that 2 is best possible.

As discussed above, the OMATP does not allow any strategy with a constant
competitive factor, as some robots need to commit to a location before further
exploration is possible. It may be interesting to consider variants in which robots
may be allowed to continue exploration in a connected fashion before being
required to settle down. However, this changes the basic nature of the problem,
and will be treated elsewhere.
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Abstract. The Classical Secretary Problem was introduced during the
60’s of the 20th century, nobody is sure exactly when. Since its introduc-
tion, many variants of the problem have been proposed and researched.
In the classical secretary problem, and many of its variant, the input
(which is a set of secretaries, or elements) arrives in a random order. In
this paper we apply to the secretary problem a simple observation which
states that the random order of the input can be generated by inde-
pendently choosing a random continuous arrival time for each secretary.
Surprisingly, this simple observation enables us to improve the competi-
tive ratio of several known and studied variants of the secretary problem.
In addition, in some cases the proofs we provide assuming random arrival
times are shorter and simpler in comparison to existing proofs. In this
work we consider three variants of the secretary problem, all of which
have the same objective of maximizing the value of the chosen set of
secretaries given a monotone submodular function f . In the first variant
we are allowed to hire a set of secretaries only if it is an independent set
of a given partition matroid. The second variant allows us to choose any
set of up to k secretaries. In the last and third variant, we can hire any
set of secretaries satisfying a given knapsack constraint.

1 Introduction

In the (classical) secretary problem (CS), a set of n secretaries arrives in a random
order for an interview. Each secretary is associated with a distinct non-negative
value which is revealed upon arrival, and the objective of the interviewer is to
choose the best secretary (the one having maximum value). The interviewer must
decide after the interview whether to choose the candidate or not. This decision
is irrevocable and cannot be altered later. The goal is to maximize the probability
of choosing the best secretary.1 It is known that the optimal algorithm for CS
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is to reject the first n/e secretaries, and then choose the first secretary that is
better than any of the first n/e secretaries. This algorithm succeeds in finding
the best secretary with probability of e−1 [10, 24].

Throughout the years, many variants of CS have been considered. In this
work we focus on variants where a subset of the secretaries can be chosen and
the goal is to maximize some function of this chosen subset. Such variants of
CS have attracted much attention (see, e.g., [3–5, 17, 19]). Some examples of
these variants include: requiring the subset of chosen secretaries to form an
independent set in a given matroid, limiting the size of the subset to at most
k, and requiring the chosen secretaries to satisfy some knapsack constraints. All
these variants have been studied with both linear and submodular objectives.
More details on previous results can be found in Section 1.2.

In this work we use a simple observation which has been employed in prob-
lems other than CS. The observation states that the random order in which the
secretaries arrive can be modeled by assigning each secretary an independent
uniform random variable in the range [0, 1). This continuous random variable
determines the time in which the secretary arrives. Obviously, this modeling is
equivalent to a random arrival order.2 Though this modeling of the arrival times
as continuous random variables is very simple, it has several advantages when
applied to variants of the secretary problem, on which we elaborate now. First, it
enables us to achieve better competitive ratios for several variants of CS. Second,
the proofs of the performance guarantees of the algorithms are much simpler.
The latter can be exemplified by the following simple problem.

Assume one wishes to partition the arriving secretaries into two sets where
each secretary independently and uniformly chooses one of the sets, and all
secretaries of one set arrive before all secretaries of the other set. An obvious
difficulty is that the position of a secretary in the random arrival order depends
on the positions of all other secretaries. For example, if a set S contains many
secretaries that have arrived early, then a secretary outside of S is likely to
arrive late, since many of the early positions are already taken by members of
S. This difficulty complicates both the algorithms and their analysis. To get
around this dependence [3, 19], for example, partition the secretaries into two
sets: one containing the firstm secretaries and the other containing the last n−m
secretaries. The value of m is binomially distributed Bin(n, 1/2). It can be shown
that this partition, together with the randomness of the input, guarantees that
every secretary is uniformly and independently assigned to one of the two sets.
Such an elaborate argument is needed to create the desired partitioning because
of the dependencies between positions of secretaries in the arrival order.

In contrast, using the modeling of the arrival times as continuous random
variables, creating a subset of secretaries where each secretary independently
belongs to it with probability 1/2 is simple. One just has to choose all secretaries
that arrive before time t = 1/2. This simplifies the above argument, designed for
a random arrival order, considerably. This simple example shows how continuous

2 Given a random arrival order, we can sample n independent uniformly random arrival
times, sort them and assign them sequentially to the secretaries upon arrival.
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arrival times can be used to simplify both the algorithm and its analysis. In the
variants of CS considered in this paper, this simplification enables us to obtain
improved competitive ratios.

For some variants, the algorithms presented in this paper can be viewed as
the continuous “counterparts” of known algorithms (see the uniform matroid and
knapsack variants), but this is not always the case. For the partition matroid
variant, the algorithm we define in this work using continuous arrival times uses
different techniques than previous known algorithms for this case.

It is important to note that the continuous time “counterparts” of
algorithms designed using a random arrival order are not equivalent to the orig-
inal algorithms. For example, the optimal algorithm for CS assuming continu-
ous random arrival times is to inspect secretaries up to time e−1, and hire the
first secretary after this time which is better than any previously seen secre-
tary (see Appendix A for an analysis of this algorithm using continuous arrival
times). Observe that this algorithm inspects n/e secretaries in expectation, while
the classical algorithm inspects that number of secretaries exactly. This subtle
difference is what enables us to improve and simplify previous results.

Formally, all problems considered in this paper are online problems in which
the input consists of a set of secretaries (elements) arriving in a random order.
Consider an algorithmA for such a problem, and denote by opt an optimal offline
algorithm for the problem. Let I be an instance of the problem, and let A(I)
and opt(I) be the values of the outputs of A and opt, respectively, given I. We
say that A is α-competitive (or has an α-competitive ratio) if infI

E[A(I)]
opt(I) ≥ α,

where the expectation is over the random arrival order of the secretaries of I
and the randomness of A (unless A is deterministic). The competitive ratio is a
standard measure for the quality of an online algorithm.

1.1 Our Results

In this paper we consider variants of CS where the objective function is normal-
ized, monotone and submodular.3 There are three variants for which we provide
improved competitive ratios. The first is the submodular partition matroid secre-
tary problem (SPMS) in which the secretaries are partitioned into subsets, and
at most one secretary from each subset can be chosen. The second is the sub-
modular cardinality secretary problem (SCS) in which up to k secretaries can be
chosen. The third and last variant is the submodular knapsack secretary problem
(SKS), in which each secretary also has a cost (which is revealed upon arrival),
and any subset of secretaries is feasible as long as the total cost of the subset
does not exceed a given budget.

For SPMS we present a competitive ratio of (1 − ln 2)/2 ≈ 0.153, which im-
proves on the current best result of Ω(1) by Gupta et al. [17]. We note that
the exact competitive ratio given by [17] is not stated explicitly, however, by

3 Given a groundset S , a function f : 2S → R is called submodular if for every
A, B ⊆ S , f(A) + f(B) ≥ f(A ∪B) + f(A∩B). Additionally, f is called normalized
if f(∅) = 0 and monotone if for every A ⊆ B ⊆ S , f(A) ≤ f(B).
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inspecting their result carefully it seems that the competitive ratio they achieve
is at most 71/1280000. We note that for SPMS the algorithm we provide is not
a continuous time “counterpart” of the algorithm of [17]. This demonstrates the
fact that modeling the arrival times as continuous random variables helps in
designing and analyzing algorithms for submodular variants of CS.

For SCS we present a competitive ratio of (e − 1)/(e2 + e) ≈ 0.170, and the
current best result for this problem is due to Bateni et al. [5] who provided a
(1 − e−1)/7 ≈ 0.0903 competitive ratio. There are two points to notice when
comparing our result and that of [5]. First, [5] did not optimize the competitive
ratio analysis of their algorithm. In fact, their algorithm provides better ratios
then stated, however, it does not seem that their competitive ratio reaches 0.17.
Hence, in this paper we still obtain improved competitive ratios, though the
improvement is smaller than stated above. Second, the algorithm presented in
this paper for SCS can be seen as a continuous time “counterpart” of [5]’s algo-
rithm. However, our analysis is simpler than the analysis presented in [5], and
also enables us to provide improved competitive ratios.

For SKS we provide a competitive ratio of (20e)−1 ≈ 0.0184. The current best
result is due to Bateni et al. [5] which provide a ratio of Ω(1). The exact com-
petitive ratio is not stated in [5], but careful inspection of their algorithm shows
that it is at most 96−1 ≈ 0.0104. Notice that the best known competitive ratio
for the linear version of SKS is only 10e−1 ≈ 0.0368 [3]. As before, the algorithm
presented in this paper for SKS can be seen as a continuous time “counterpart”
of [5]’s algorithm. However, our analysis is simpler than the analysis presented
in [5], enabling us to provide improved competitive ratios. Table 1 summarizes
the above results.

1.2 Related Work

Many variants of CS have been considered throughout the years and we shall
mention here only those most relevant to this work. Babaioff et al. [4] considered
the case where the chosen subset of secretaries needs to be an independent
set of a given matroid, and the objective function f is linear. They provided
a competitive ratio of Ω(log−1 r) for this problem, where r is the rank of the
matroid. For several specific matroids, better constant competitive ratios are

Table 1. Comparison of our results with the known results for the monotone
submodular and linear variants of the problems we consider

Problem Our Result Previous Result Best Result for Linear Variant

SPMS 0.153 0.0000555 [17] 0.3681

SCS 0.170 0.0903 [5] 0.368 [3]

SKS 0.0184 0.0104 [5] 0.0368 [3]
1 For linear objective functions one can apply the algorithm for the classical

secretary problem to each subset of secretaries independently.
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known [4, 9, 18, 20]. The special variant of SCS where the objective function is
linear has also been studied. Two incomparable competitive ratios were obtained
by Babaioff et al. [3] and Kleinberg [19], achieving competitive ratios of e−1 and
1−O(1/

√
k), respectively. An interesting variant of SCS with a linear objective

function gives each of the k possible slots of secretaries a different weight. The
value of the objective function in this case is the sum of the products of a slots’
weights with the values of the secretaries assigned to them. Babaioff et al. [2]
provide a competitive ratio of 1/4 for this special variant. Additional variants of
CS can found in [1, 6, 13, 14, 16].

Another rich field of study is that of submodular optimization, namely opti-
mization problems in which the objective function is submodular. In recent years
many new results in this field have been achieved. The most basic problem, in
this field, is that of unconstrained maximization of a nonmonotone submodu-
lar function [12, 15]. Other works consider the maximization of a nonmonotone
submodular function under various combinatorial constraints [17, 22, 25]. The
maximization of a monotone submodular function under various combinatorial
constraints (such as a matroid, the intersection of several matroids and knapsack
constraints) has also been widely studied [7, 8, 21, 23, 25].

Thus, it comes as no surprise that recent works have combined the secre-
tary problem with submodular optimization. Gupta et al. [17] were the first to
consider this combination. For the variant where the goal is to maximize a sub-
modular function of the chosen subset of secretaries under the constraint that
this subset is independent in a given matroid, Gupta et al. [17] provide a com-
petitive ratio of Ω(log−1 r) (where r is the rank of the matroid). If the constraint
is that the chosen subset of secretaries belongs to the intersection of � matroids,
Bateni et al. [5] provide a competitive ratio of Ω(�−1 log−2 r). If the objective
function is submodular and monotone, the special case of a partition matroid is
exactly SPMS, and the special case of a uniform matroid is exactly SCS. As men-
tioned before, for SPMS, Gupta et al. [17] provide a competitive ratio of Ω(1) for
SPMS which is at most 71/1280000 (the exact constant is not explicitly stated
in their work). They also get a similar competitive ratio for a variant of SPMS
with a non-monotone submodular objective function. For SCS, Gupta et al. [17]
provide a competitive ratio of Ω(1) which is at most 1/1417 (again, the exact
constant is not explicitly stated in their work), and a bit more complex Ω(1)
ratio for a variant of SCS with a non-monotone submodular objective function.
Both ratios were improved by Bateni et al. [5] who provided a competitive ratio
of (1 − e−1)/7 ≈ 0.0903 for SCS, and a e−2/8 ≈ 0.0169-competitive algorithm
for its non-monotone variant. For SKS the current best result is due to Bateni et
al. [5] who provide a competitive ratio of at most 96−1 ≈ 0.0104 (as before, the
exact constant is not explicitly stated in their work). Another extension consid-
ered by [5] is a generalization of SKS where every secretary has a � dimensional
cost, and the total cost of the secretaries in each dimension should not exceed
the budget of this dimension (i.e., the hired secretaries should obey � knapsack
constraints). For this problem [5] gives an Ω(�−1) competitive algorithm.
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Organization. Section 2 contains formal definitions and several technical lem-
mata. Sections 3, 4 and 5 provide the improved competitive ratio for SPMS, SCS
and SKS, respectively.

2 Preliminaries

An instance of a constrained secretary problem consists of three components
S, I and f .

– S is a set of n secretaries arriving in a random order.4

– I ⊆ 2S is a collection of independent sets of secretaries. The sets in I
are known in advance in some settings (e.g., SCS), and are revealed over
time in other settings (e.g., SKS). However, at any given time, we know all
independent sets containing only secretaries that already arrived.

– f : 2S → R is a function over the set of secretaries accessed using an oracle
which given a set S of secretaries that have already arrived, returns f(S).

The goal is to maintain an independent set R of secretaries, and maximize the
final value of f(R) (i.e., its value after all secretaries have arrived). Upon arrival
of a secretary s, the algorithm has to either add it to R (assuming R∪{s} ∈ I),
or reject it. Either way, the decision is irrevocable. Given a submodular function
f : S → R+, the discrete derivative of f with respect to s is fs(R) = f(R ∪
{s})− f(R). We use this shorthand throughout the paper.

Most algorithms for secretary problems with linear objective functions re-
quire every secretary to have a distinct value. This requirement does not make
sense for submodular objective functions, and therefore, we work around it by
introducing a total order over the secretaries, which is a standard practice (see,
e.g., [9]). Formally, we assume the existence of an arbitrary fixed order Z over
the secretaries. If such an order does not exist, it can be mimicked by starting
with an empty ordering, and placing every secretary at a random place in this
ordering upon arrival. The resulting order is independent of the arrival order of
the secretaries, and therefore, can be used instead of a fixed order. Let s1, s2
be two secretaries, and let S be a set of secretaries. Using order Z we define
s1 #S s2 to denote “fs1(S) > fs2(S), or fs1(S) = fs2(S) and s1 precedes s2 in
Z”. Notice that #S is defined using f and Z. Whenever we use #S , we assume
f is understood from context and Z is the order defined above.

Remark: The probability that two secretaries arrive at the same time is 0, thus
we ignore this event.

The following theorem is used occasionally in our proofs. Similar theorems
appear in [11, 12].

4 If the input is given as a random permutation, the size n of S is assumed to be
known. Note that in order to generate the random arrival times of the secretaries
and assign them upon arrival, n has to be known in advance. On the other hand, if
the arrival times are part of the input, the algorithms in this work need not know n.
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Theorem 1. Given a normalized monotone submodular function f : 2S → R+,
a set A and a random set A′ containing every element of A with probability at
least p (not necessarily independently). Then, E[f(A′)] ≥ p · f(A).

Proof. Order the elements of A in an arbitrary order {a1, a2, . . . , a|A|}. Let Xi

be an indicator for the event {ai ∈ A′}, and let Ai = {a1, a2, . . . , ai}. Then,

E[f(A′)] = E

⎡⎣ |A|∑
i=1

Xi · fai (A′ ∩Ai−1)

⎤⎦ =

|A|∑
i=1

Pr[Xi = 1] · E [fai (A′ ∩Ai−1) |Xi = 1] ≥
|A|∑
i=1

p · fai (Ai−1) = p · f(A) ,

where the inequality follows from the submodularity of f .

3 (1 − ln 2)/2 ≈ 0.153-Competitive Algorithm for SPMS

The Submodular Partition Matroid Secretary Problem (SPMS) is a secretary
problem with a normalized monotone and submodular objective function f . The
collection I of independent sets is determined by G1 × . . .×Gk (where the Gi’s
are a partition of S). This variant corresponds to the scenario where the goal is
to hire secretaries of different types, one of each type. For every secretary s, the
index of the set Gi containing s is revealed when s arrives.

When designing an algorithm for SPMS, we want to select the best secretary
from every set Gi. If f was linear, we could apply the algorithm for the classical
secretary problem to each Gi separately. The following algorithm is based on a
similar idea.

SPMS Algorithm(f, k):

1. Initialize R← ∅.
2. Observe the secretaries arriving till time t.a

3. After time t, for every secretary s arriving, let Gi be the set of s. Accept
s into R if:
(a) no previous secretary of Gi was accepted,
(b) and for every previously seen s′ ∈ Gi, s′ ≺R s.

4. Return R.
a t is a constant to be determined later.

In this subsection we prove the following theorem.

Theorem 2. The above algorithm is a (1−ln 2)/2 ≈ 0.153-competitive algorithm
for SPMS.

The algorithm clearly maintains R as a feasible set of secretaries, hence, we only
need to show that, in expectation, it finds a good set of secretaries.

Observation 3. We can assume there is at least one secretary in every set Gi.

Proof. The behavior of the algorithm is not effected by empty sets Gi.
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3.1 Analysis of a Single Gi

In this subsection we focus on a single Gi. Let Ei be an event consisting of the
arrival times of all secretaries in S −Gi, we assume throughout this subsection
that some fixed event Ei occurred. Let Rx be the set of secretaries from S −Gi

collected by the algorithm up to time x assuming no secretary of Gi arrives (ob-
serve that Rx is not random because we fixed Ei). We define ŝx as the maximum
secretary in Gi with respect to #Rx . The analysis requires two additional event
types: Ax is the event that ŝx arrives at time x, and Bx is the same event with
the additional requirement that the algorithm collected ŝx.

Lemma 1. For every x > t, Pr[Bx|Ax] ≥ 1− lnx+ ln t.

Proof. Event Ax states that ŝx arrived at time x. If no other secretary of Gi is
collected till time x, ŝx is collected by the definition of the algorithm. Hence, it
is enough to bound the probability that no secretary of Gi is collected till time
x, given Ax.

Observe that Rx takes at most k − 1 values for x ∈ [0, 1). Hence, the range
[0, 1) can be divided into k intervals I1, . . . , Ik such that the set Rx is identical
for all times within one interval. Divide the range [0, x) into small steps of size
Δy such thatΔy divides t and x, and every step is entirely included in an interval
(this is guaranteed to happen if Δy also divides the start time and the length
of every interval Ii). Since each step is entirely included in a single interval, for
every time x in step j, Rx = R(j−1)·Δy .

A secretary cannot be collected in step j if j ·Δy ≤ t. If this is not the case,
a secretary is collected in step j if the maximum secretary of Gi in the range
[0, j · Δy) with respect to #R(j−1)·Δy

arrives at time (j − 1) · Δy or later. The
probability that this happens is Δy/(j ·Δy) = j−1. We can now use the union
bound to upper bound the probability that any secretary is accepted in any of
the steps before time x:

Pr[Bx|Ax] ≥ 1−
x/Δy∑

j=t/Δy+1

j−1 ≥ 1−
∫ x/Δy

t/Δy

dj

j
= 1− [ln j]x/Δyt/Δy = 1− lnx+ ln t .

Let s∗i denote the single secretary of Gi ∩ OPT , and let ai be the secretary
of Gi collected by the algorithm. If no secretary is collected from Gi, assume
ai is a dummy secretary of value 0 (i.e., f is oblivious to the existence of this
dummy secretary in a set). We also define Ri to be the set R immediately before
the algorithm collects ai (if the algorithms collects no secretary of Gi, Ri is an
arbitrary set).

Observation 4. If Bx occurs for some x, fai(Ri) ≥ fs∗i (R), where R is the set
returned by the algorithm.

Proof. a
fai(Ri)

(1)
= fai(Rx)

(2)

≥ fs∗i (Rx)
(3)

≥ fs∗i (R) .

Where (1) and (2) follow from the fact that Bx occurred, and therefore, ai
was collected at time x and ai = ŝx. Also, Bx implies Rx ⊆ R, hence, the
submodularity of f implies (3).
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Let Bi = ∪x∈(t,1)Bx, and let Pi be {s∗i } if Bi occurred, and ∅, otherwise.

Corollary 1. fai(Ri) ≥ f(R ∪ Pi)− f(R).

Proof. If Pi = ∅, the claim follows because fai(Ri) is nonnegative by the mono-
tonicity of f . If Pi = {s∗i }, we know that Bi occurred, and therefore, there must
be an x for which Bx occurred also. The corollary now follows immediately from
Observation 4.

Lemma 2. Pr[Bi] ≥ 2 + ln t− 2t.

Proof. Observe that the events Bx are disjoint, hence, Pr[Bi] is the sum of the
probabilities of the events Bx. Since Bx implies Ax, Pr[Bx] = Pr[Bx|Ax] ·Pr[Ax].
The event Ax requires that the maximum secretary with respect to #Rx arrives
in time x. The probability that this secretary arrives in an interval of size Δx is
Δx. Hence, the probability that it arrives in an infinitesimal interval of size dx
is Pr[Ax] = dx. Therefore,

Pr[Bi] =
∫ 1

t

Pr[Bx|Ax]dx ≥
∫ 1

t

(1− lnx+ ln t)dx = 2 + ln t− 2t .

The last expression is maximized for t = 0.5, thus, we choose t = 0.5.

3.2 Analysis of the Entire Output

Throughout the previous subsection we assumed some fixed event Ei occurred.
Hence, Corollary 1 and Lemma 2 were proven given this assumption, however,
they are also true without it.

Lemma 3. Corollary 1 and Lemma 2 also hold without fixing an event Ei.

Proof. Corollary 1 states that for every fixed Ei, if Bi occurs then fai(Ri) ≥
f(R ∪ Pi) − f(R). Since some event Ei must occur (the secretaries of S − Gi

must arrive at some times), this is also true without fixing some Ei.
Let us rephrase Lemma 2 to explicitly present the assumption that some fixed

Ei occurred: Pr[Bi|Ei] ≥ 1− ln 2 (recall that we chose t = 0.5). Therefore,

Pr[Bi] =
∑
Ei

Pr[Ei] · Pr[Bi|Ei] ≥ (1− ln 2) ·
∑
Ei

Pr[Ei] = 1− ln 2 .

Let P = ∪ki=1Pi, and notice that P ⊆ OPT . The following lemma lower bounds
the expected value of f(P ).

Lemma 4. E[f(P )] ≥ (1 − ln 2)f(OPT ).

Proof. Every element s∗i ∈ OPT appears in P with probability Pr[Bi]. By
Lemma 2 and the value we chose for t, the last probability is at least 1 − ln 2.
Hence, the lemma follows from Theorem 1.

We are now ready to prove Theorem 2.
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Proof (Proof of Theorem 2). Observe the following.

E[f(R)] = E

[
k∑
i=1

fai(Ri)

]
≥ E

[
k∑
i=1

f(R ∪ Pi)− f(R)

]
≥ E[f(R∪P )]−E[f(R)].

Rearranging terms, we get: E[f(R)] ≥ f(R∪P )
2 ≥ f(P )

2 ≥ 1−ln 2
2 · f(OPT ).

4 The Submodular Cardinality Secretary Problem

The Submodular Cardinality Secretary Problem (SCS) is a secretary problem in
which the objective function f is a normalized monotone submodular function,
and we are allowed to hire up to k secretaries (the scollection I of independent
sets contains every set of up to k secretaries).

Theorem 5. There is a (e−1)/(e2 + e) ≈ 0.170-competitive algorithm for SCS.

Due to space limitations, the proof of Theorem 5 is omitted from this extended
abstract.

5 The Submodular Knapsack Secretary Problem

The Submodular Knapsack Secretary Problem (SKS) is a secretary problem in
which the objective function f is a normalized monotone submodular function
and every secretary s has a cost c(s) (revealed upon arrival). A budget B is also
given as part of the input, and the algorithm is allowed to hire secretaries as
long as it does not exceed the budget. In other words, the collection I of allowed
sets contains every set of secretaries whose total cost is at most B.

Theorem 6. There is a 1/(20e)-competitive algorithm for SKS.

Due to space limitations, the proof of Theorem 6 is omitted from this extended
abstract.
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A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 397–408.
Springer, Heidelberg (2008)

10. Dynkin, E.B.: The optimum choice of the instant for stopping a markov process.
Sov. Math. Dokl. 4, 627–629 (1963)

11. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J.
Comput. 39(1), 122–142 (2009)
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A Example - The Classical Secretary Problem

The Classical Secretary Problem (CS) is a secretary problem with the set I of
independent sets consisting of all singletons. We demonstrate the usefulness of
the continuous model by analyzing an algorithm for this problem.

CS Algorithm(f):

1. Observe the secretaries arriving till time t = e−1, and let L be the set
of secretaries arriving until this time.

2. Let ŝ be the maximum secretary in L with respect to #∅.a

3. After time t, accept the first secretary s such that f(s) #∅ f(ŝ).

a If no secretary arrives till time t, we assume s �∅ ŝ for every secretary s.

Theorem 7. The above algorithm for CS is e−1-competitive.

Proof. Let s∗ be the secretary of the optimal solution (breaking ties in favor
of the earlier secretary according to #∅). Given that s∗ arrives at some time
x ∈ (t, 1), s∗ is accepted if one of the following conditions hold:

– No secretary arrives before time x.
– The best secretary arriving in the time range [0, x) arrives before time t.

Since the secretaries are independent, with probability at least t/x, at least one
of these conditions holds. The probability that s∗ arrives in an interval of size
� is �. Hence, the probability it arrives in an infinitesimal interval of size dx is
dx. Therefore, by the law of total probability, the probability that the above
algorithm accept s∗ is at least∫ 1

t

t

x
dx = t[lnx]1t = −t ln t = e−1.
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Abstract. We study a location-routing problem in the context of ca-
pacitated vehicle routing. The input to k-LocVRP is a set of demand
locations in a metric space and a fleet of k vehicles each of capacity Q.
The objective is to locate k depots, one for each vehicle, and compute
routes for the vehicles so that all demands are satisfied and the total
cost is minimized. Our main result is a constant-factor approximation
algorithm for k-LocVRP. To achieve this result, we reduce k-LocVRP to
the following generalization of k median, which might be of independent
interest. Given a metric (V, d), bound k and parameter ρ ∈ R+, the goal
in the k median forest problem is to find S ⊆ V with |S| = k minimizing:∑

u∈V

d(u, S) + ρ · d
(
MST(V/S)

)
,

where d(u, S) = minw∈S d(u, w) and MST(V/S) is a minimum spanning
tree in the graph obtained by contracting S to a single vertex. We give
a (3 + ε)-approximation algorithm for k median forest, which leads to a
(12+ ε)-approximation algorithm for k-LocVRP, for any constant ε > 0.
The algorithm for k median forest is t-swap local search, and we prove
that it has locality gap 3 + 2

t
; this generalizes the corresponding result

for k median [3].
Finally we consider the k median forest problem when there is a dif-

ferent (unrelated) cost function c for the MST part, i.e. the objective is∑
u∈V d(u, S) + c( MST(V/S) ). We show that the locality gap for this

problem is unbounded even under multi-swaps, which contrasts with the
c = d case. Nevertheless, we obtain a constant-factor approximation
algorithm, using an LP based approach along the lines of [12].

1 Introduction

In typical facility location problems, one wishes to locate centers and connect
clients directly to centers at minimum cost. On the other hand, the goal in
vehicle routing problems (VRPs) is to compute routes for vehicles originating
from a given set of depots. Location routing problems represent an integrated
� Supported by the Danish Council for Independent Research | Natural Sciences.
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approach, where we wish to make combined decisions on facility location and
vehicle routing. This is a widely researched area in operations research, see eg.
surveys [4,13,14,5,16,17]. Most of these papers deal with exact methods or heuris-
tics, without any performance guarantees. In this paper we present an approxi-
mation algorithm for a location routing problem in context of capacitated vehicle
routing.

Capacitated vehicle routing (CVRP) is an extensively studied vehicle routing
problem [19] which involves distributing identical items to a set of demand lo-
cations. Formally we are given a metric space (V, d) on vertices V with distance
function d : V × V → R+ that is symmetric and satisfies triangle inequality.
Each vertex u ∈ V demands qu units of the item. We have available a fleet of
k vehicles, each having capacity Q and located at specified depots. The goal is
to distribute items using the k vehicles at minimum total cost. There are two
versions of CVRP depending on whether or not the demand at a vertex may
be satisfied over multiple visits. We focus on the unsplit delivery version in the
paper, while noting that this also implies the result under split-deliveries.

We consider the question “where should one locate the k depots so that the
resulting vehicle routing solution has minimum cost?” This is called k-location
capacitated vehicle routing (k-LocVRP). The k-LocVRP problem bears obvious
similarity to the well-known k median problem, where the goal is to choose k
centers to minimize the sum of distances of each vertex to its closest center. The
difference is that our problem also takes the routing aspect into account. Not
surprisingly, our algorithm for k-LocVRP builds on approximation algorithms
for the k median problem.

In obtaining an algorithm for k-LocVRP we introduce the k median forest
problem, which might be of independent interest. The objective here is a com-
bination of k-median and minimum spanning tree. Given metric (V, d), bound
k and parameter ρ ∈ R+, the goal is to find S ⊆ V with |S| = k minimizing∑

u∈V d(u, S) + ρ · d(MST(V/S)
)
. Here d(u, S) = minw∈S d(u,w) is the min-

imum distance between u and an S-vertex; MST(V/S) is a minimum spanning
tree in the graph obtained by contracting S to a single vertex. Note that when
ρ = 0 we have the k-median objective, and ρ being very large reduces to the k-
tree problem where the goal is to choose k centers S to minimize d(MST (V/S)).
(Observe that the k-tree problem can be solved optimally using the greedy al-
gorithm for MST and stopping when there are k components.) On the other
hand, the k-median, k-tree, and k median forest objectives are incomparable in
general. In the full version of the paper we give an instance where near-optimal
solutions to these three objectives are mutually far apart.

Our Results. The main result is the following.

Theorem 1. There is a (12 + ε)-approximation algorithm for k-LocVRP, for
any constant ε > 0.

Our algorithm first reduces k-LocVRP to k median forest, at the loss of a ap-
proximation factor of four. This step is fairly straightforward and makes use of
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known lower-bounds [9] for the CVRP problem. We present this reduction in
Section 2. In Section 3 we prove the following result which implies Thm 1.

Theorem 2. There is a (3 + ε)-approximation algorithm for k median forest,
for any constant ε > 0.

This is the technically most interesting part of the paper. The algorithm is
straightforward: perform local search using multi-swaps. It is well known that
(single swap) local search is optimal for the minimum spanning tree problem.
Moreover, Arya et al. [3] showed that t-swap local search achieves exactly a
(3 + 2

t )-approximation ratio for the k-median objective (this proof was later
simplified by Gupta and Tangwongsan [8]). Thus one can hope that local search
performs well for k median forest, which is a combination of both MST and k-
median objectives. However, the local moves used in proving the quality of local
optima are different for the MST and k-median objectives. Our proof shows we
can simultaneously bound both MST and k-median objectives using a common
set of local moves. In fact we prove that the locality gap for k median forest
under t-swaps is also (3 + 2

t ). To bound the k-median part of the objective due
to these swaps, we use the result from [8]. The interesting part of the proof is in
bounding the change in the MST cost due to these swaps— this makes use of
non-trivial exchange properties of spanning trees (that are easier to describe in a
matroid context [18]) and additional properties of the potential swaps from [8].

Finally we consider the non-uniform k median forest problem. This is an ex-
tension of k median forest where there is a different cost function c for the MST
part in the objective. Given vertices V with two metrics d and c, and bound k, the
goal is to find S ⊆ V with |S| = k minimizing

∑
u∈V d(u, S) + c

(
MST(V/S)

)
.

Here MST(V/S) is a minimum spanning tree in the graph obtained by contract-
ing S to a single vertex, under metric c. It is natural to consider the local search
algorithm in this setting as well, since local search achieves good approximations
for both k-median and MST. However, the locality gap of non-uniform k median
forest is unbounded even if we allow multiple swaps (see full version [7]). In light
of this, Thm 2 appears a bit surprising. Still, we show that a different LP-based
approach yields:

Theorem 3. There is a 16-approximation algorithm for non-uniform k median
forest.

This algorithm follows closely that for the matroid median problem [12]. We con-
sider the natural LP relaxation and round it in two phases. The first phase spar-
sifies the solution (using ideas from [6]) and allows us to reformulate a new LP-
relaxation using fewer variables. The second phase solves the new LP-relaxation,
which we show to be integral. Due to lack of space the proof of Thm 3 is omitted.
It can be found in the full version of the paper [7].

Related Work. The basic capacitated vehicle routing problem involves a single
fixed depot. There are two versions of CVRP: split delivery where the demand
of a vertex may be satisfied over multiple visits; and unsplit delivery where the
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demand at a vertex must be satisfied in a single visit (in this case we also assume
maxu∈V qu ≤ Q). Observe that the optimal value under split-delivery is at most
that under unsplit-delivery. The best known approximation guarantee for split-
delivery is α + 1 [9,2] and for unsplit-delivery is α + 2 [1], where α denotes the
best approximation ratio for the Traveling Salesman Problem. We make use of
the following known lower bounds for CVRP with single depot r: the minimum
TSP tour on all demand locations, and 2

Q

∑
u∈V d(r, u) · qu. Similar constant

factor approximation algorithms [15] are known for the CVRP with multiple
(fixed) depots.

The k median problem is a widely studied location problem and has many
constant factor approximation algorithms. Starting with the LP-rounding algo-
rithm of [6], the primal-dual approach was used in [11], and also local search [3].
A simpler analysis of the local search algorithm was given in [8]; we make use
of this in our proof for the k median forest problem. Several variants of k me-
dian have also been studied. One that is relevant to us is the matroid median
problem [12], where the set of open centers are constrained to be independent in
some matroid; our approximation algorithm for the non-uniform k median forest
problem is based on this approach.

Recently [10] studied (among other problems) a facility-location variant of
CVRP: there are opening costs for depots and the goal is to open a set of de-
pots and find vehicle routes so as to minimize the sum of opening and routing
costs. The k-LocVRP problem in this paper can be thought of as the k-median
variant of [10]. In [10] the authors give a 4.38-approximation algorithm for
facility-location CVRP. Following a similar approach one can obtain a bicriteria
approximation algorithm for k-LocVRP, where 2k depots are opened. However
more work is needed to obtain a true approximation, and this is precisely where
we need an algorithm for the k median forest problem.

2 Reducing k-LocVRP to k Median Forest

Here we show that the k-LocVRP problem can be reduced to k median forest
at the loss of a constant approximation factor. This makes use of known lower
bounds for CVRP [9,15,10].

For any subset S ⊆ V , let Flow(S) := 2
Q

∑
u∈V qu · d(u, S), and let

Tree(S) = d(MST (V/S)) be the length of the minimum spanning tree in the
metric obtained by contracting S. The following theorem is implicit in previous
work [9,15,10]; this uses a natural MST splitting algorithm.

Theorem 4 ([10]). Given any instance of CVRP on metric (V, d) with
demands {qu}u∈V , vehicle capacity Q and depots S ⊆ V ,

– The optimal value of split-delivery CVRP is at least max{Flow(S), Tree(S)}.
– There is a polynomial time algorithm that computes an unsplit-delivery

solution of length at most 2 · Flow(S) + 2 · Tree(S).

Based on this it is clear that the optimal value of the CVRP instance given
depot positions S is roughly given by Flow(S) + Tree(S), which is similar to the
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k median forest objective. The following lemma formalizes this reduction. We
will assume an algorithm for the k median forest problem with vertex-weights
{qu : u ∈ V }, where the objective becomes

∑
u∈V qu ·d(u, S) + ρ·d(MST(V/S)

)
.

Lemma 1. If there is a β-approximation algorithm for k median forest then
there is a 4β-approximation algorithm for k-LocVRP.

Proof. Let Opt denote the optimal value of the k-LocVRP instance. Using the
lower bound in Thm 4,

Opt ≥ min
S:|S|=k

max {Flow(S), Tree(S)} ≥ min
S:|S|=k

[ε · Flow(S) + (1− ε) · Tree(S)] ,

where ε ∈ [0, 1] is any value; this will be fixed later. Consider the instance of
k median forest on metric (V, d), vertex weights {qu}u∈V and parameter ρ =
1−ε
ε · Q2 . For any S ⊆ V the objective is:

∑
u∈V

qu · d(u, S) + ρ · d(MST (V/S)) =
Q

2
· Flow(S) + ρ · Tree(S)

=
Q

2ε
· [ε · Flow(S) + (1− ε) · Tree(S)] .

Thus the optimal value of the k median forest instance is at most Q
2ε · Opt. Let

Salg denote the solution found by the β-approximation algorithm for k median
forest. It follows that |Salg| = k and:

ε · Flow(Salg) + (1− ε) · Tree(Salg) ≤ β ·Opt (1)

For the k-LocVRP instance, we locate the depots at Salg. Using Thm 4, the cost
of the resulting vehicle routing solution is at most 2 ·Flow(Salg)+2 ·Tree(Salg) =
4 · [ε · Flow(Salg) + (1− ε) · Tree(Salg)] where we set ε = 1/2. From Inequality (1)
it follows that our algorithm is a 4β-approximation algorithm for k-LocVRP. ��

We remark that this reduction already gives us a constant factor bicriteria ap-
proximation algorithm for k-LocVRP as follows. Let Smed denote an approxi-
mate solution to k-median on metric (V, d) with vertex-weights {qu : u ∈ V },
which can be obtained by directly using a k-median algorithm [3]. Let Smst de-
note the optimal solution to minS:|S|≤k d(MST (V/S)), which can be obtained
using the greedy MST algorithm. We output Sbi = Smed

⋃
Smst as a solution to

k-LocVRP, along with the vehicle routes obtained from Thm 4 applied to Sbi.
Note that |Sbi| ≤ 2k, so we open at most 2k depots. Moreover, if S∗ denotes the
location of depots in the optimal solution to k-LocVRP then:

– Flow(Smed) ≤ (3 + δ) · Flow(S∗) since we used a (3 + δ)-approximation algo-
rithm for k-median [3], for any constant δ > 0.

– Tree(Smst) ≤ Tree(S∗) since Smst is an optimal solution to the MST part of
the objective.
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Clearly Flow(Sbi) ≤ Flow(Smed) and Tree(Sbi) ≤ Tree(Smst), so:

1
2
· Flow(Sbi) +

1
2
· Tree(Sbi) ≤ 3 + δ

2
· [Flow(S∗) + Tree(S∗)] ≤ (3 + δ) ·Opt

Using Thm 4 the cost of the CVRP solution with depots Sbi is at most 4(3+ δ) ·
Opt. So this gives a (12+δ, 2) bicriteria approximation algorithm for k-LocVRP,
where δ > 0 is any fixed constant. We note that this approach combined with al-
gorithms for facility-location and Steiner tree immediately gives a constant factor
approximation for the facility location CVRP considered in [10]. The algorithm
in that paper [10] has to do some more work in order to get a sharper constant.
For k-LocVRP this approach clearly does not give any true approximation ratio,
and for this purpose we give an algorithm for k median forest.

3 Multi-swap Local Search for Median Forest

The input to k median forest consists of a metric (V, d), vertex-weights {qu}u∈V
and bound k. The goal is to find S ⊆ V with |S| = k minimizing:

Φ(S) =
∑
u∈V

qu · d(u, S) + d
(
MST(V/S)

)
,

where d(u, S) = minw∈S d(u,w) and MST(V/S) is a minimum spanning tree in
the graph obtained by contracting S to a single vertex. Note that this is slightly
more general than the definition in Section 1 (which is the special case when
qu = 1/ρ for all u ∈ V ).

We analyze the natural t-swap local search for this problem, for any constant t.
Starting at an arbitrary solution L ⊆ V consisting of k centers, do the following
until no improvement is possible: if there exists D ⊆ L and A ⊆ V \ L with
|D| = |A| ≤ t and Φ((L \D)

⋃
A) < Φ(L) then L ← (L \D)

⋃
A. Clearly each

local step can be performed in nO(t) time which is polynomial for fixed t. The
number of iterations to reach a local optimum may be super-polynomial; however
this can be made polynomial by the standard method [3] of performing a local
move only if the cost Φ reduces by some 1 + 1

poly(n) factor. Here we omit this
(minor) detail and bound the local optimum under the swaps as defined above.
We prove that the locality gap of this procedure for k-median forest is at most
3+ 2

t . This is also tight since a matching lower bound of 3+ 2
t is already known,

even in the case of k-median [3]. Somewhat surprisingly, it suffices to consider
exactly the same set of swaps from [8] to establish our result, although [8] did
not take into account any MST contribution.

Let F ⊆ V denote the local optimum solution (under t-swaps) and F ∗ ⊆ V the
global optimum. Note that |F | = |F ∗| = k. Define map η : F ∗ → F as η(w) =
argminv∈F d(w, v) for all w ∈ F ∗, i.e., for each optimum center w ∈ F ∗, η(w) is
w’s closest center in F . For any S ⊆ V , let Med(S) :=

∑
u∈V qu · d(u, S), and

Tree(S) = d(MST (V/S)) be as defined in Section 2; so Φ(S) = Med(S)+Tree(S).
For any D ⊆ F and A ⊆ V \F with |D| = |A| ≤ t we refer to the swap F−D+A
as a “(D,A) swap”. We use the following swap construction from [8] for the k-
median problem.
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Theorem 5 ([8]). For any F, F ∗ ⊆ V with |F | = |F ∗| = k, there are partitions
{Fi}
i=1 of F and {F ∗i }
i=1 of F ∗ such that ∀i ∈ [�], |Fi| = |F ∗i |. Furthermore,
for each i ∈ [�], there is a unique ci ∈ Fi such that η(w) = ci for all w ∈ F ∗i
and η−1(v) = ∅ for all v ∈ Fi \ {ci}. Define set S of t-swaps with multipliers
{α(s) : s ∈ S} as:

– For any i ∈ [�], if |Fi| ≤ t then swap (Fi, F ∗i ) ∈ S with α(Fi, F ∗i ) = 1.
– For any i ∈ [�], if |Fi| > t then for each a ∈ F ∗i and b ∈ Fi \ {ci} swap

(b, a) ∈ S with α(b, a) = 1
|Fi|−1 .

Then we have:

–
∑

(D,A)∈S α(D,A) · (Med(F −D +A)−Med(F )) ≤ (3 + 2/t) · Med(F ∗) −
Med(F ).

– For each w ∈ F ∗, the extent to which w is added
∑

(D,A)∈S:w∈A α(D,A) = 1.
– For each v ∈ F , the extent to which v is dropped

∑
(D,A)∈S:v∈D α(D,A) ≤

1 + 1
t .

We use the same set S of swaps for the k median forest problem and will show
the following:∑
(D,A)∈S

α(D,A)·(Tree(F −D +A)− Tree(F )) ≤ (3+2/t)·Tree(F ∗)−Tree(F ) (2)

Added with the similar inequality in Thm 5 for Med (since both inequalities
use the same set S of swaps and respective multipliers) we obtain:∑

(D,A)∈S
α(D,A) · (Φ(F −D + A)− Φ(F )) ≤ (3 + 2/t) · Φ(F ∗)− Φ(F ).

Finally by local optimality of F , the left-hand-side above is non-negative, and
we have:

Theorem 6. The t-swap local search algorithm for k median forest is a
(
3 + 2

t

)
-

approximation.

It remains to prove (2), which we do in the rest of the section. Consider a graph
H which is the complete graph on vertices V

⋃{r} (for a new vertex r). If
E =

(
V
2

)
denotes the edges in the metric, H has edges E

⋃{(r, v) : v ∈ V }. The
edges {(r, v) : v ∈ V } are called root-edges and edges E are true-edges. Let M
denote the spanning tree of H consisting of edges MST (V/F )

⋃{(r, v) : v ∈ F};
similarly M∗ is the spanning tree MST (V/F ∗)

⋃{(r, v) : v ∈ F ∗}. For ease of
notation, for any subset S ⊆ V , when it is clear from context we will use S to also
denote the set {(r, v) : v ∈ S} of root-edges. We start with the following exchange
property (which holds more generally for any matroid), see Equation (42.15) in
Schrijver [18].

Theorem 7 ([18]). Given two spanning trees T1 and T2 in a graph H and a
partition {T1(i)}pi=1 of the edges of T1, there exists a partition {T2(i)}pi=1 of edges
of T2 such that (T2 \T2(i))

⋃
T1(i) is a spanning tree in H for each i ∈ [p]. (This

also implies |T2(i)| = |T1(i)| for all i ∈ [p]).
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F∗0 F∗ P∗ P

Larger
than t

Split into
singletons

Root
edges(M∗)

True
edges(M∗)

Pairing by
Theorem 8

Root & true
edges of M

⊇M ′′

⊇M ′
The discs are centers F ∗

Fat lines represent root-edges
Thin lines are true-edges
M ′ & M ′′ partition true edges of M

Fig. 1. The partitions used in local search proof (eg. has k = 8 and t = 2)

We will apply Thm 7 on trees M∗ and M . Throughout, M∗ and M represent
the corresponding edge-sets. Recall the partition F∗0 := {F ∗i }
i=1 of F ∗ from
Thm 5; we refine F∗0 by splitting parts of size larger than t into singletons, and
let F∗ denote the resulting partition (see Fig. 1). The reason behind splitting
the large parts of {F ∗i }
i=1 is to ensure the following property (recall swaps S
from Thm 5).

Claim 8. For each swap (D,A) ∈ S, A ⊆ F ∗ appears as a part in F∗. Moreover,
for each part A′ in F∗ there is some swap (D′, A′) ∈ S.
Consider the partition P∗ of M∗ with parts F∗⋃{e}e∈M∗\F∗ , i.e. each true edge
lies in a singleton part and the root edges form the partition F∗ defined above.
Let P denote the partition of M obtained by applying Thm 7 with partition
P∗ of M∗; note also that there is a pairing between parts of P and P∗. Let
M ′ ⊆M ∩E denote the true edges of M that are paired with true edges of M∗;
and M ′′ = (M ∩ E) \M ′ are the remaining true edges of M (see also Fig. 1).
We will bound the cost of M ′ and M ′′ separately.

Claim 9.
∑

e∈M ′ de ≤
∑

h∈E∩M∗ dh.

Proof. Fix any e ∈M ′. By the definition ofM ′ it follows that there is a true-edge
h ∈ E ∩M∗ such that part {h} in P∗ is paired with part {e} in P . In particular,
M − e + h is a spanning tree in H . Note that the root edges in M − e+ h are
exactly F , and so M − e + h is a spanning tree in the original metric graph
(V,E) when we contract vertices F . Since M = MST (V/F ) is the minimum
such tree, we have d(M)− de + dh ≥ d(M), implying de ≤ dh. Summing over all
e ∈ M ′ and observing that each edge h ∈ E ∩M∗ can be paired with at most
one e ∈M ′, we obtain the claim. ��
The true-edges of M induce a forest. Consider the connected components in this
forest: for each f ∈ F , let Cf ⊆ V denote the vertices connected to f . Note that
{Cf : f ∈ F} partitions V .

Now consider the forest induced by true edges of M∗ and direct each edge
towards an F ∗-vertex (note that each tree in this forest contains exactly one
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F ∗-vertex). Observe that each vertex v ∈ V \ F ∗ has exactly one out-edge σv,
and F ∗-vertices have none.

For each f ∈ F , define Tf := {σv : v ∈ Cf} the set of out-edges incident
from vertices of Cf . Since {Cf : f ∈ F} partitions V , it follows that {Tf}f∈F
partitions E ∩M∗, and:

Claim 10.
∑

f∈F d(Tf ) = d(E ∩M∗).

We are now ready to bound the increase in the Tree cost under swaps S. By
Claim 8 it follows that for each swap (D,A) ∈ S, A is a part in F∗ (and so in
P∗). Let EA be the (possibly empty) set of true-edges of M that are paired with
the part A of P∗.
Claim 11. {EA : (D,A) ∈ S} is a partition of M ′′.

Proof. Consider the partition P of M given by Thm 7 applied to P∗. By def-
inition, M ′ ⊆ E ∩ M are the true edges of M paired (by P and P∗) with
true edges of M∗; and M ′′ = (E ∩ M) \ M ′ are paired with parts from F∗
(i.e. root edges of M∗). For each part π ∈ F∗ (and also P∗) let E(π) ⊆ M ′′

denote the M ′′-edges paired with π. It follows that {E(π) : π ∈ F∗} parti-
tions M ′′. Using the second fact in Claim 8 and the definition EAs, we have
{EA : (D,A) ∈ S} = {E(π) : π ∈ F∗}, a partition of M ′′. ��
We will now prove the following key lemma.

Lemma 2. For each swap (D,A) ∈ S,
Tree(F −D +A)− Tree(F ) ≤ 2 ·

∑
f∈D

d(Tf )− d(EA).

Proof. By Claim 8, A ⊆ F ∗ is a part in P∗. Recall that EA denotes the true-
edges of M paired with A; let FA denote the root-edges of M paired with A.
Then using Thm 7 it follows that (M \ (EA ∪ FA))

⋃
A is a spanning tree in

H . Hence, the remaining true-edges SA := (E ∩M) \ EA is a forest with each
component containing some center from F ∪A. In other words, SA connects each
vertex to some vertex of F ∪A. For any f ∈ F ∪A let C′f denote vertices in the
component of SA containing f . Note that {C′f : f ∈ F ∪ A} is a refinement of
the previously defined partition {Cf : f ∈ F}.

Components containing a center from D, but not from F −D+A might not
be connected to a center in F − D + A. Consider the (true) edge set S′A :=
SA

⋃
f∈D Tf . We will add a set N of true edges so that S′A

⋃
N connects each

D-vertex to some vertex of F − D + A. Since SA already connects all vertices
to F ∪A, it would follow that S′A

⋃
N connects all vertices to F −D + A, and

therefore

Tree(F +A−D) ≤ d(S′A) + d(N) ≤ Tree(F )− d(EA) +
∑
f∈D

d(Tf ) + d(N).

To prove the lemma it now suffices to construct a setN with d(N) ≤∑
f∈D d(Tf ),

such that S′A
⋃
N connects each D-vertex to F −D+A. Below, we use δ(V ′) to

denote the edges of S′A between V ′ and V \ V ′ for any V ′ ⊆ V .
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Constructing N Consider any minimal U ⊆ D such that δ
(⋃

f∈U C
′
f

)
= ∅. By

minimality of U , it follows that
⋃
f∈U C

′
f is connected in S′A. By construction of

the swaps S in Thm 5, we have

Claim 12. For any f∗ ∈ F ∗ \A we have η(f∗) ∈ D.

f ∗

η(f ∗)

f ′

Components {Cf : f ∈ F} are the dashed regions.

Components {C ′f : f ∈ F ∪ A} are the solid circles.

Squares denote vertices in D; here |D| = 3. Solid squares are vertices in U ⊆ D; here |U | = 2.

Solid lines are edges in
⋃
f∈U Tf .

Dotted edge (f ∗, η(f ∗)) is added to set N .

⋃
f∈U C ′f

Fig. 2. Addition of edges to set N

We need the following claim (see also example in Fig. 2).

Claim 13. There exists f∗ ∈ F ∗⋂(⋃
f∈U C

′
f

)
and f ′ ∈ U such that

⋃
f∈U Tf

contains a path between f ′ and f∗.

Proof. Let any f ′ ∈ U . Consider the directed path P from f ′ obtained by fol-
lowing out-edges σ until the first occurrence of a vertex v that is either in F ∗

or in V \
(⋃

f∈U C
′
f

)
. Since F ∗-vertices are the only ones with no out-edge σ,

and the set of all true-edges {σw : w ∈ V } = E ∩M∗ is acyclic, there must
exist such a vertex v ∈ F ∗

⋃(
V \

(⋃
f∈U C

′
f

))
. To see that P ⊆ ⋃

f∈U Tf ,
observe that C′f ⊆ Cf for all f ∈ D ⊇ U ; recall that Cs (resp. C′s) are the
connected components in M (resp. SA ⊆ M). So P ⊆ {σw : w ∈ ⋃

f∈U C
′
f} ⊆

{σw : w ∈ ⋃
f∈U Cf} =

⋃
f∈U Tf . Suppose for contradiction that vertex v ∈ F ∗.

Then v ∈ V \
(⋃

f∈U C
′
f

)
, but this implies δ

(⋃
f∈U C

′
f

)
= ∅ since path P ⊆⋃

f∈U Tf ⊆ S′A leaves
⋃
f∈U C

′
f . So v ∈ F ∗⋂(⋃

f∈U C
′
f

)
and P ⊆ ⋃

f∈U Tf is a
path from f ′ to v. ��
Consider f∗ and f ′ as given Claim 13. If f∗ ∈ A then the component

⋃
f∈U C

′
f of

S′A is already connected to F−D+A. Otherwise by Claim 12 we have η(f∗) ∈ D;
in this case we add edge (f∗, η(f∗)) to N which connects component

⋃
f∈U C

′
f

to η(f∗) ∈ F −D ⊆ F −D+A. Now using Claim 13, d (f∗, η(f∗)) ≤ d(f∗, f ′) ≤
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f∈U d(Tf ).

1 In either case, U is connected to F −D+A in S′A
⋃
N , and cost

of N increases by at most
∑

f∈U d(Tf ).

We apply the above argument to every minimal U ⊆ D with δ
(⋃

f∈U C
′
f

)
=

∅. The increase in cost of N due to each such U is at most
∑

f∈U d(Tf ). Since
such minimal sets Us are disjoint, we have d(N) ≤∑

f∈D d(Tf ). Clearly S′A
⋃
N

connects each D-vertex to F −D + A. ��

Using Lemma 2 for each (D,A) ∈ S weighted by α(D,A) (from Thm 5) and
adding them together,∑

(D,A)∈S
α(D,A) · [Tree(F −D +A)− Tree(F )]

≤ 2 ·
∑

(D,A)∈S
α(D,A) ·

∑
f∈D

d(Tf )−
∑

(D,A)∈S
α(D,A) · d(EA) (3)

= 2
∑
f∈F

⎛⎝ ∑
(D,A)∈S:f∈D

α(D,A)

⎞⎠ · d(Tf )− ∑
e∈M ′′

⎛⎝ ∑
(D,A)∈S:e∈EA

α(D,A)

⎞⎠ · de (4)

≤ 2
(

1 +
1
t

) ∑
f∈F

d(Tf )−
∑
e∈M ′′

de (5)

= 2
(

1 +
1
t

)
· d(E ∩M∗)− d(M ′′) (6)

Above (3) is by Lemma 2, (4) is by interchanging summations using the fact
that EA ⊆M ′′ (for all (D,A) ∈ S) from Claim 11. The first term in (5) uses the
property in Thm 5 that each f ∈ F is dropped (i.e. f ∈ D) to extent at most
1 + 1

t ; the second term uses the property in Thm 5 that each f∗ ∈ F ∗ is added
to extent one in S and Claim 11. Finally (6) is by Claim 10.

Adding the inequality 0 ≤ d(E ∩M∗)− d(M ′) from Claim 9 yields:

∑
(D,A)∈S

α(D,A)·[Tree(F −D +A)− Tree(F )] ≤
(

3 +
2
t

)
·d(E∩M∗)−d(E∩M),

since M ′ and M ′′ partition the true edges E∩M . Thus we obtain Inequality (2).
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Satisfying Degree-d Equations over GF [2]n

Johan H̊astad�
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Abstract. We study the problem where we are given a system of poly-
nomial equations defined by multivariate polynomials over GF [2] of fixed
constant degree d > 1 and the aim is to satisfy the maximal number of
equations. A random assignment approximates this problem within a
factor 2−d and we prove that for any ε > 0, it is NP-hard to obtain a
ratio 2−d + ε. When considering instances that are perfectly satisfiable
we give a probabilistic polynomial time algorithm that, with high prob-
ability, satisfies a fraction 21−d − 21−2d and we prove that it is NP-hard
to do better by an arbitrarily small constant. The hardness results are
proved in the form of inapproximability results of Max-CSPs where the
predicate in question has the desired form and we give some immediate
results on approximation resistance of some predicates.

1 Introduction

The study of polynomial equations is a basic question of mathematics. In this
paper we study a problem we call Max-d-Eq where we are given a system of m
equations of degree d in n variables over GF [2]. As we consider the case of d
constant, all polynomials are given in the dense representation. Many problems
can be coded as polynomial equations and in particular it is easy to code 3-Sat
as equations of degree 3 and thus determining whether we can simultaneously
satisfy all equations is NP-complete. It is hence natural to study the question of
satisfying the maximal number of equations and our interests turn to approx-
imation algorithms. We say that an algorithm is a C-approximation algorithm
if it always returns a solution which satisfies at least C · OPT equations where
OPT is the number of equations satisfied by the optimal solution. The PCP-
theorem [2,1] shows that it is NP-hard to approximate the Max-d-Eq within
some constant C < 1 and from the results of [6] it is not difficult to get an ex-
plicit constant of inapproximability. Given the importance of the problem it is,
however, natural to try to determine the exact approximability of the problem
and this is the purpose of this paper.

The result of [6] proves that the optimal approximability constant for linear
equations (d = 1) is 1

2 . This approximability is obtained by simply picking a
random assignment independently of the equations at hand. To prove tightness
it is established that for any ε > 0 it is NP-hard to approximate the answer
better than within a factor 1

2 + ε. This is proved by constructing a suitable
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Probabilistic Checkable Proof (PCP). It turns out that these results extend
almost immediately to the higher degree case giving the optimal constant 2−d

for degree-d equations. We proceed to study the case when all equations can be
simultaneously satisfied.

In the case of linear equations, it follows by Gaussian elimination that once
it is possible to satisfy all equations one can efficiently find such a solution.
The situation for higher degree equations turns out to be more interesting. Any
implied affine condition can be used to eliminate a variable but this turns out to
be the limit of what can be achieved. To be more precise, from a characterization
of low weight code words of Reed-Muller codes by Kasami and Tokura [7] it
follows that any equation satisfied by a fraction lower than 21−d − 21−2d must
imply an affine condition. This number turns out to be the sharp threshold of
approximability for satisfiable instances of systems of degree-d equations.

The upper bounds is obtained by using implied affine conditions to eliminate
variables and then choosing an assignment to the remaining variables at random.
For d ≥ 3 we are not able to derandomize this algorithm and thus in general
this is a probabilistic algorithm.

The lower bound is proved by constructing a PCP very much inspired by [6]
and indeed nothing in the current paper relies on material not known at the time
of that paper. In particular, we prove standard NP-hardness results and do not
use any sophisticated results in harmonic analysis.

As a by-product of our proofs we make some observations in the area of
maximum constraint satisfaction problems (max-CSPs). The problem Max-P
is given by a predicate P of arity k and an instance is given by a sequence of
k-tuples of literals. The task is to find an assignment such that the maximal
number of the resulting k-tuples of bits satisfy P . Let r(P ) be the probability
that a random assignment satisfies P . Note that r(P ) is the approximation ratio
achieved by the algorithm that simply picks a random assignment independent
of the instance under consideration. We have the following definition.

Definition 1. A predicate P is approximation resistant if, for any ε > 0, it is
NP-hard to approximate Max-P within r(P ) + ε.

There is also a stronger notion of hardness.

Definition 2. A predicate P is approximation resistant on satisfiable instances
if, for any ε > 0, it is NP-hard to distinguish instances of Max-P where all con-
straints can be satisfied simultaneously from those where only a fraction r(P )+ ε
of the constraints can be satisfied simultaneously.

Given a predicate P of arity k we construct a predicate, PL, of arity 3k by re-
placing each input by the exclusive-or of three bits. A straightforward extension
of our techniques show that for any P , the resulting predicate PL is approxima-
tion resistant and if P does not imply an affine condition the result also applies
to satisfiable instances. Using these results it is possible to construct a predicate
that is approximation resistant while for satisfiable instances there is a better
approximation ratio that is still strictly smaller than one but larger than the
ratio given by the random assignment.
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An outline of the paper is as follows. In Section 2 we give some preliminaries
and the rather easy result for non-perfect completeness is given in Section 3.
The most technically interesting part of the paper is given in Section 4 where we
study systems of equations where all equations can be satisfied simultaneously.
We give the results on max-CSPs in Section 5 and end with some final remarks
in Section 6. Some proofs are only sketched due to space limitations.

2 Preliminaries

We are interested in polynomials over GF [2]. Most polynomials we use are of
degree d but also polynomials of degree one, that we call “affine forms” play
a special role. We are not interested in the polynomials as formal polynomials,
but rather as functions mapping GF [2]n to GF [2] and hence we freely use that
x2
i = xi and thus any term in our polynomials can be taken to be multilinear.

We start with the following standard result.

Theorem 1. Any multivariate polynomial P of degree d that is nonzero takes
the value 1 for at least a fraction 2−d of the inputs.

It is not difficult to see that this result is tight by considering P (x) =
∏d

i=1 xi, or
more generally, products of d linearly independent affine forms. It is important
for us that these are the only cases of tightness. This follows from a character-
ization by Kasami and Tokura [7] of all polynomials that are non-zero for at
most a fraction 21−d of the inputs. A consequence of their characterization is
the following theorem.

Theorem 2. [7] Let P be a degree d polynomial over GF [2] that does not contain
an affine factor. Then the fraction of points on which P (x) = 1 is at least
21−d − 21−2d.

We make use of the Fourier transform and as we are dealing with polynomials
over GF [2] we let the inputs come from {0, 1}n. For any α ⊆ [n] we have the
character χα defined by

χα(x) = (−1)
∑

i∈α xi

and the Fourier expansion of a function f is given by

f(x) =
∑
α⊆[n]

f̂αχα(x).

Suppose that R ≤ L and we are given a projection π mapping [L] to [R]. We
define a related operator π2 acting on sets such that π2(β) = α for β ⊆ [L] and
α ⊆ [R] iff exactly the elements of α has an odd number of preimages that belong
to β. If we have an x ∈ {0, 1}R and define y ∈ {0, 1}L by setting yi = xπ(i) then
χβ(y) = χπ2(β)(x).

As is standard we use the long code introduced by Bellare et al [5]. If v ∈ [L]
then the corresponding long code is a function A : {0, 1}L → {−1, 1} where
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A(x) = (−1)xv . We want our long codes to be folded, which means that they
only contain values for inputs with x1 = 1. The value when x1 = 0 is defined
to be −A(x̄). This ensures that the function is unbiased and that the Fourier
coefficient corresponding to the empty set is 0.

3 The Case of Non-perfect Completeness

We start with the algorithm.

Theorem 3. Given a system of m polynomial equations of degree d over GF [2],
it is possible to, in polynomial time, to find an assignment that satisfies at least
m2−d equations.

Proof. In fact, by Theorem 1, a random assignment satisfies each equation with
probability 2−d and thus just picking a random assignment gives a randomized
algorithm fulfilling the claim of the theorem in expectation.

To get a deterministic algorithm we use the method of conditional expec-
tations. To be more precise we assign values to the variables in order and we
choose values for the variables such that the expected number of satisfied equa-
tions if the remaining variables are set randomly never drops below m2−d. When
all variables are set any equation is satisfied with probability either 0 or 1 and
hence at least m2−d equations are satisfied. To make this procedure efficient we
use the lower estimate that at least a fraction 2−d

′
of the inputs satisfies any

nontrivial equation that is currently of degree d′.

The lower bound follows rather immediately from known results.

Theorem 4. For any ε > 0 it is NP-hard to approximate Max-d-Eq within
2−d + ε.

Proof. In [6] it is proved that it is NP-hard to distinguish systems of linear
equations where a fraction 1 − ε of the equations can be satisfied from those
where only a fraction 1

2 + ε can be satisfied. Suppose we are given an instance
of this problem with m equations which, possibly by adding one to both sides
of the equation, can be be assumed to be of the form

Ai(x) = 1.

Taking all d-wise products of such equations we end up with md equations, each
of the form

d∏
j=1

Aij (x) = 1,

which clearly is a polynomial equation of degree at most d. This system has the
same optimal solution as the linear system and if it satisfies δm linear equations
then it satisfies δdmd degree-d equations. The theorem now follows, by adjusting
ε from the result of [6].

We remark that, by appealing to the results by Raz and Moshkovitz [8], we can
even obtain results for non-constant values of ε.
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4 Completely Satisfiable Systems

When studying systems where it is possible to simultaneously satisfy all equa-
tions the situation changes. Suppose we have an equation of the form P (x) = 1
and that this equation implies the affine condition A(x) = 1. Then, as the system
is satisfiable, we can use this equation to eliminate one variable from the system,
preserving the degrees of all equations. This is done by taking any variable xi
that appears in A and replacing it by xi+A(x)+1 (note that this function does
not depend on xi as the two occurrences of this variable cancel). This substitu-
tion preserves the satisfiability of the system and the process stops only when
none of the current equations implies an affine condition.

Using Theorem 2 we see that when this process ends each equation is satisfied
by at least a fraction 21−d − 21−2d of the inputs. It seems reasonable to hope
that for each perfectly satisfiable system we can efficiently find an assignment
that satisfies this fraction of the equations. There are two points in the outlined
argument that require closer inspection. The first is the question of how to
actually determine whether a polynomial equation implies an affine condition
and the second is to make sure that once the process of finding implied affine
conditions has ended we can indeed deterministically find a solution that satisfies
the expected number of equations. Let us first address the issue of determining
whether a given equation implies an affine condition.

Suppose P (x) = 1 implies A(x) = 1 for some unknown affine function A. Let
us assume that x1 appears in A with a nonzero coefficient. We may write

P (x) = P0(x) + P1(x)x1

where neither P0 nor P1 depends on x1. Consider

Q(x) = P (x) +A(x)P1(x). (1)

As x1 appears with coefficient one in A it follows that Q does not depend on x1

and let us assume that Q is not identically 0. Choose any values for x2, x3 . . . xn
to make Q(x) = 1 and set x1 to make A(x) = 0. It follows from (1) that P (x) = 1
and thus we have found a counterexample to the assumed implication. We can
hence conclude that Q ≡ 0 and we have

P (x) = A(x)P1(x).

We claim furthermore that this procedure is entirely efficient. Namely given
P and the identity of one variable occurring in A, P1 is uniquely defined. Once
P1 is determined the rest of the coefficients of A can be found by solving a
linear system of equations. As there are only n candidates for a variable in A
and solving a linear system of equations is polynomial time we conclude that
the entire process of finding implied affine conditions can be done in polynomial
time.

Once this process halts we need to implement the method of conditional ex-
pectations to find an assignment that satisfies the expected number of equations.
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As opposed to the case of Theorem 3 where we could use the lower bound of
2−d

′
for the fraction of inputs that satisfy any degree-d′ equation we here need

to find a more accurate bound to calculate the conditional expectation. We do
not know how to do this in deterministic polynomial time and hence we pick a
random assignment of the remaining variables and see if it satisfies the target
number of equations. If it does not, we keep repicking random assignments until
we are successful. We conclude.

Theorem 5. There is a probabilistic polynomial time algorithm that given a
system of m simultaneously satisfiable equations of degree d over GF [2] finds an
assignment that satisfies at least (21−d − 21−2d)m equations.

We note that the above argument only established that we get at least (21−d −
21−2d)m satisfied equations on average and we need to prove that we get this
number with a some non-negligible probability. This follows, however, by a stan-
dard argument and we leave the details to the reader.

Let us remark that for d = 2 it is possible to make the algorithm deterministic.
This follows from the fact that we can transform any degree 2 polynomial into
a normal form from which we can read off the fraction of inputs for which it is
equal to 1. We omit the details and let us turn to the lower bound.

Theorem 6. For any ε > 0 it is NP-hard to distinguish satisfiable instances
of Max-d-Eq from those where the optimal solution satisfies a fraction 21−d −
21−2d + ε of the equations.

Proof. Consider the predicate, P , on 6d variables given by

P (x) =
d∏
i=1

Li(x) +
2d∏

i=d+1

Li(x), (2)

where Li(x) = x3i−2 + x3i−1 + x3i, i.e. each Li is the exclusive or of three
variables and no variable appears in two linear forms. Theorem 6 now follows
from Theorem 7 below as the probability that a random assignment satisfies P
is exactly 21−d − 21−2d.

Theorem 7. The predicate P defined by (2) is approximation resistant on sat-
isfiable instances.

Proof. We reduce the standard projecting label cover instance to Max-P for this
predicate P . This is the same starting point as in [6] but let us formulate it in
more modern terms.

We are given a bipartite graph with vertices U and V . Each vertex u ∈ U
should be given a label �(u) ∈ [L] and each vertex v ∈ V should be given a label
�(v) ∈ [R]. For each edge (u, v) there is a mapping πu,v and a labeling satisfies
this edge iff πu,v(�(u)) = �(v).

In [6] we used the fact that for any constant ε there are constant values for
L and R such that it is NP-hard to determine whether the optimal labeling
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satisfies all constraints or only a fraction ε of the constraints, and this is all that
we need also here. Using [8] one can extend this to non-constant size domains,
but let us ignore this point.

As is standard, we transform the label cover instance into a PCP by long-
coding a good assignment, and for each vertex u we have a table gu(y) for
y ∈ {0, 1}L, and similarly we have a table fv(x) for x ∈ {0, 1}R for each v ∈ V .
As mentioned in the preliminaries we assume that these long codes are folded
and hence each table is unbiased.

Before we describe how the verifier checks this PCP we define an “error”
distribution, Dμ, on 2d bits (μi)2di=1. First pick a random bit b with uniform
probability and if b = 0 set μi = 1 for 1 ≤ i ≤ d and select values for the other
d bits uniformly from the 2d − 1 binary strings that contains at least one 0. If
b = 1 we do the symmetric assignment exchanging the two halves. We need two
simple facts about the distribution Dμ. The first is obvious from construction.

Lemma 1. With probability one it is true that

d∏
i=1

μi +
2d∏

i=d+1

μi = 1.

Secondly we have.

Lemma 2. For any nonempty set S and d ≥ 2, we have

|EDμ [(−1)
∑

i∈S μi ]| ≤ 1
2
.

Proof. If S is contained in one of the two halves we observe that the distribution
on this half is obtained by picking a string from the uniform distribution with
probability 1

2 (1 + (2d− 1)−1) and otherwise picking the all one string. It follows
that in this case

|EDμ [(−1)
∑

i∈S μi ]| = 1
2
(1− (2d − 1)−1) <

1
2
.

If, on the other hand, S contains inputs from both halves then by conditioning
on which half gets the all one assignment it is easy to see that

|EDμ [(−1)
∑

i∈S μi ]| ≤ (2d − 1)−1 <
1
2
.

Let us return to defining our PCP by the actions of the verifier. For readability
we drop the obvious subscripts on f , g and π.

1. Pick an edge (u, v) which comes with a projection constraint π : [L] '→ [R].
2. Pick x(i) ∈ {0, 1}R and y(i) ∈ {0, 1}L uniformly at random, 1 ≤ i ≤ 2d.
3. For each j ∈ [L] pick an element μ(j) with the distribution Dμ and construct
z(i) by setting z(i)

j = x
(i)
π(j) + y

(i)
j + μ

(j)
i mod 2.
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4. Read the 6d bits1 corresponding to f(x(i)), g(y(i)), and g(z(i)). Accept if
these 6d bits satisfy P where the three bits fed into Li are f(x(i)), g(y(i)),
and g(z(i)).

We have first have the easy completeness lemma.

Lemma 3. The verifier accepts a correct proof of a correct statement with prob-
ability 1.

Proof. Suppose the proof gives labels �(u) to �(v) to u and v, respectively. Then

gu(y(i)) = (−1)y
(i)
�(u) , gu(z(i)) = (−1)z

(i)
�(u) , fv(x(i)) = (−1)x

(i)
�(v) . As π(�(u)) = �(v)

the exclusive-or (product in the ±1 notation) of these bits equal (−1)μ
�(u)
i . The

lemma now follows from Lemma 1.

We turn to soundness.

Lemma 4. If the verifier accepts with probability at least 21−d − 21−2d + ε then
there is a labeling in the label cover problem that satisfies at least a fraction cdε

2

of the conditions for some constant cd > 0 depending only on d.

Proof. Expand the predicate P by its multilinear expansion. Since the constant
term, P̂∅, is 21−d − 21−2d we conclude that given the assumption of the lemma
there are non-empty sets S1, S2 and S3 such that

|E[
∏
i∈S1

f(x(i))
∏
i∈S2

g(y(i))
∏
i∈S3

g(z(i))]| ≥ cdε, (3)

for some constant cd depending only on d.
Not all terms of the form (3) appear in the expansion of P but as we can

bound any such term and we make some use of this fact in Section 5 we treat
an arbitrary term.

First note that if S2 = S3 the expectation in (3) is zero as for any i in the
symmetric difference we get a factor g(y(i)) or g(z(i)) that is independent of the
other factors and as g is folded the expectation of such a term is 0. To get a
non-zero value we also need S1 = S3 as otherwise negating x(i) in the symmetric
difference we get cancelling terms. Thus we need to study

E

[∏
i∈S

f(x(i))g(y(i))g(z(i))

]
. (4)

Expanding each function by the Fourier transform we get the expectation

E

⎡⎣∏
i∈S

⎛⎝ ∑
αi,βiγi

f̂αi ĝβi ĝγiχαi(x(i))χβi(y(i))χγi(z(i))

⎞⎠⎤⎦ . (5)

1 We interpret −1 as the bit 1 and 1 as the bit 0.
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If we mentally expand this product of sums and look at the expectation of each
term we see, as y(i)

j is independent of all other variables, that terms with γi = βi

give contribution 0. The same is true if π2(βi) = αi. Let μi denote the vector
(μ(j)

i )Lj=1 then

χπ2(βi)(x
(i))χβi(y

(i))χβi(z
(i)) = χπ2(βi)(x

(i))χβi(y
(i))χβi(x

(i)
π + y(i) + μi) = χβi(μi),

and thus (5) reduces to

E

⎡⎣∏
i∈S

⎛⎝∑
βi

f̂π2(βi)ĝ
2
βiχβi(μi)

⎞⎠⎤⎦ . (6)

We have ∏
i∈S

χβi(μi) =
∏

j∈∪iβi

(−1)
∑

μ
(j)
i (7)

where the sum in the exponent is over the set of i such that j ∈ βi. By Lemma 2
it follows that the absolute value of the expectation of (7) is bounded by

2−|∪iβ
i| ≤ 2−

∑
i∈S |βi|/2d,

and hence we can conclude from (4) that

Eu,v

⎡⎣∏
i∈S

⎛⎝∑
βi

|f̂π2(βi)|ĝ2
βi2−|β

i|/2d

⎞⎠⎤⎦ ≥ cdε. (8)

As S is nonempty and any factor is bounded from above by one we conclude
that

Eu,v

⎡⎣∑
β

|f̂π2(β)|ĝ2
β2
−|β|/2d

⎤⎦ ≥ cdε. (9)

Cauchy-Schwarz inequality implies that

∑
β

|f̂π2(β)|ĝ2
β2
−|β|/2d ≤

⎛⎝∑
β

ĝ2
β

⎞⎠1/2 ⎛⎝∑
β

f̂2
π2(β)ĝ

2
β2
−|β|/d

⎞⎠1/2

(10)

≤
⎛⎝∑

β

f̂2
π2(β)ĝ

2
β2−|β|/d

⎞⎠1/2

. (11)

And thus from (9), and E[X2] ≥ E[X ]2 we can conclude that

Eu,v

⎡⎣∑
β

f̂2
π2(β)ĝ

2
β2
−|β|/d

⎤⎦ ≥ c2dε2. (12)
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We can now extract a probabilistic labeling using the standard procedure. For
each u we choose a set β with probability ĝ2

β and return a random element in β.
Similarly for each v we choose a set α with probability f̂2

α and return a random
element in α. The expected fraction of satisfied constraints is at least

Eu,v

⎡⎣∑
β

f̂2
π2(β)ĝ

2
β

1
|β|

⎤⎦ (13)

and as
1
x
≥ 1
d
2−x/d

for any x ≥ 1 we have that (13) is at least c2d
d ε

2 and, adjusting the value of cd
this completes the proof of Lemma 4.

Theorem 7 now follows from Lemma 4 and Lemma 3 by the standard way of
transforming a PCP with an acceptance criteria given by a predicate P to a
hardness result for the corresponding constraint satisfaction problem Max-P .

5 Consequences for Max-CSPs

Let us draw some conclusions from the argument in the proof of Theorem 7. In
this section, let P be an arbitrary predicate of arity k. Define PL be the predicate
of arity 3k obtained by replacing each input bit of P by the exclusive-or of three
independent bits, similarly to constructing the predicate of the previous section.
We have the following theorem.

Theorem 8. For any predicate P that accepts at least one input, the predicate
PL is approximation resistant.

Proof. (Sketch) Let α ∈ {0, 1}k be an input accepted by P . Define a distribution
Dμ by setting μi = αi with probability 1 − δ and otherwise μi = αi, indepen-
dently for each i, but otherwise follow the protocol in the proof of Theorem 7.
The completeness of this protocol is at least 1 − δ, but as δ is a an arbitrarily
small constant and we only need almost-perfect completeness this is not a prob-
lem. The soundness analysis of this verifier is now similar to that of the analysis
in the proof of Theorem 7 using∣∣∣∣∣E

[∏
i∈S

χβi(μi)

]∣∣∣∣∣ = (1 − 2δ)
∑

i∈S |βi|,

resulting in an almost identical argument but with different constants.

It is not difficult to see that for any P , PL supports a measure that is pairwise
independent. This implies that the results of Austrin and Mossel [4] would have
been sufficient to give approximation resistance assuming the unique games con-
jecture. In our case we get NP-hardness which is an advantage and it is also
possible to get a general theorem with perfect completeness.
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Theorem 9. For any predicate P such that P−1(1) is non-contained in a (k−1)-
dimensional affine subspace of {0, 1}k, the predicate PL is approximation resis-
tant for satisfiable instances.

Proof. (Sketch) We choose μ uniformly from the set of strings accepted by P .
As

∑
i∈S μi is not constant for any non-empty S, the equivalent of Lemma 2 is

true with the constant 1
2 replaced by some other constant strictly smaller than

one affecting the values of some constants but not the rest of the argument.

It is tempting to guess that for any P that does imply an affine condition and
hence Theorem 9 does not apply, PL would not be approximation resistant on
satisfiable instances. This does not seem to be obviously true and let us outline
the problems.

It is true that PL is a polynomial of degree at most k and we can use the
implied affine conditions to eliminate some variables as we did in the proof of
Theorem 5. The final stage when we have no more implied affine constraints is,
however, more difficult to control. The resulting constraints are given by affine
constraints in conjunction with the original P . By the assumption on perfect
satisfiability we can conclude that the each equation is still satisfiable but not
much more.

If, however, our predicate is of limited degree when viewed as a polynomial we
have more information on the result. Clearly during the process of eliminating
affine constraints, the degree does not increase, and in fact it decreases when
we remove the known affine factor within each polynomial. We get the following
conclusion.

Theorem 10. Suppose predicate P of arity k is given by a polynomial of degree
d that contains r linearly independent affine factors. Then if P accepts less than
a fraction 21−(d−r) − 21−2(d−r) of the inputs, PL is approximation resistant but
not approximation resistant on satisfiable instances, unless NP ⊆ BPP .

Proof. (Sketch) The predicate is approximation resistant by Theorem 8. On
perfectly satisfiable instances we can run the algorithm of Theorem 5, and as we
remove affine constraints the resulting degree is at most d− r.
The simplest example of a predicate for which this theorem applies is the pred-
icate, P , given by the equation

x1(x2x3 + x4x5) = 1

which has d = 3 and r(P ) = 3
16 . For this instantiation of P , PL is approxima-

tion resistant but not approximation resistant for satisfiable instances. To get a
hardness result for satisfiable constraints we can use Theorem 7 for the predicate

x2x3 + x4x5 = 1

which is approximation resistant with factor 3
8 on satisfiable instances. We get a

matching algorithm as the affine factor can be removed and the equations that
remain are of degree 2.
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Let us finally point out that all our approximation resistance results establish
the stronger property of “uselessness” introduced by Austrin and H̊astad [3].
This follows as we are able to bound arbitrary non-trivial characters and not
only the characters appearing in the considered predicates.

6 Final Words

The current paper gives optimal approximability results for satisfying the maxi-
mal number of low degree equations over GF [2]. The methods used in the proofs
are more or less standard and thus the main contribution of this paper is to ob-
tain tight results for a natural problem. There is a provable difference between
perfectly satisfiable and almost-perfectly satisfiable systems in that we can sat-
isfy strictly more equations in the former case. The difference is not as dramatic
as in the linear case, but still striking.

For the case of Max-CSPs we obtained a few approximation resistance results
for, admittedly, non-standard predicates. We feel, however, that the examples
give, a not major but nonempty, contribution towards understanding the differ-
ence of approximation resistant predicates and those predicates that have this
property also on satisfiable instances. Our example of an approximation resistant
predicate which has another, nontrivial, approximation constant on satisfiable
instances is the first of its kind. Although not surprising this result gives another
piece in the puzzle to understand Max-CSPs.

Acknowledgement. I am grateful to Parikshit Gopalan for alerting me to the
paper [7] and providing me with an electronic version of that paper.
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Abstract. A central question in algorithmic mechanism design is to
understand the additional difficulty introduced by truthfulness require-
ments in the design of approximation algorithms for social welfare max-
imization. In this paper, by studying the problem of single-parameter
combinatorial auctions, we obtain the first black-box reduction that con-
verts any approximation algorithm to a truthful mechanism with essen-
tially the same approximation factor in a prior-free setting. In fact, our
reduction works for the more general class of symmetric single-parameter
problems. Here, a problem is symmetric if its allocation space is closed
under permutations.

As extensions, we also take an initial step towards exploring the power
of black-box reductions for general single-parameter and multi-parameter
problems by showing several positive and negative results. We believe
that the algorithmic and game theoretic insights gained from our ap-
proach will help better understand the tradeoff between approximability
and the incentive compatibility.

1 Introduction

In an algorithmic mechanism design problem, we face an optimization problem
where the necessary inputs are private valuations held by self-interested agents.
The high-level goal of truthful mechanisms is to reveal these valuations via the
bids of the agents and to optimize the objective simultaneously. In this paper,
we will focus on the objective of social welfare maximization.

It is well known that the VCG mechanism ([24,7,13]) which maximizes the
social welfare exactly is truthful. As usual in computer science, computational
tractability is a necessary requirement. However, VCG is not computationally
efficient in general. And unfortunately, the simple combination of approximation
algorithms and VCG usually fails to preserve truthfulness. This raises the im-
portant open question (see [21]) of whether the design of truthful mechanisms
is fundamentally harder than the design of approximation algorithms for social
welfare maximization.
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Recently, several positive results indicated that one can always convert an
approximation algorithm to a truthful mechanism with the same approximation
factor in the Bayesian setting where the distributions of the agents are public
knowledge (see [15,3,14]). However, not much is known in the prior-free setting
where no distribution is known.

In this paper, by studying the problem of single-parameter combinatorial
auctions, we show the first black-box reduction that converts any approxima-
tion algorithm to a universal truthful mechanism with the same approximation
factor in the prior-free setting.

In the single-parameter combinatorial auction problem, we are given a set J
of m items and a public valuation function f : 2J → R. Assume that f is given
via an oracle which takes a set S as input and returns f(S). In addition, we
have n agents each of whom has a private multiplier v∗i such that the item set
S provides v∗i f(S) amount of utility to agent i. The goal is to design a truthful
mechanism which maximizes

∑
i vif(Si), where S1 · · ·Sn is a partition of J .

This problem has its motivation in the TV ad auctions where the items
are time slots and each agent is an advertiser whose private multiplier is her
value-per-viewer. In [12], the authors provided a logarithmic approximate truth-
ful mechanism for this problem under the assumption that f is submodular.
However, the optimal approximation algorithm for the underlying social welfare
maximization has a ratio of 1 − 1/e given by Vondrak ([25]). By our result,
applying Vondrak’s algorithm as a black-box, we immediately obtain a truthful
mechanism with the optimal constant approximation ratio.

Main Result. In fact, our black-box reduction not only works for this particular
problem but for a broad class of symmetric single parameter problems. Formally,
a mechanism design problem (with n agents) is single-parameter if each feasible
allocation is represented as an n-dimensional real vector x, and each agent i has
a private value vi such that her valuation of allocation x is given by vixi. We
further define that a problem is symmetric if the set of feasible allocations is
closed under permutations: if x is feasible, so is π ◦ x for any permutation π.
Here π ◦ x is defined as the vector (xπ(1), ..., xπ(n)).

Theorem 1. For a symmetric single-parameter mechanism design problem Π,
suppose we are given an α-approximate (α > 1) algorithm A as a black-box, then
for any constant ε > 0, we can obtain a polynomial time truthful mechanism with
approximation factor α(1 + ε).

Many interesting mechanism design problems such as position auctions in spon-
sored search are in the class of symmetric single-parameter problems. In partic-
ular, it contains the problem of single-parameter combinatorial auctions that we
are interested in.

Corollary 1. For the single-parameter submodular combinatorial auction
problem, there is an optimal 1-1/e approximate truthful mechanism.

Our construction is based on the technique of maximum-in-range. Here, a
maximum-in-range mechanism outputs the allocation maximizing the social wel-
fare over a fixed range of allocations. Using the algorithm A as a black-box, we
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construct a range R such that social welfare maximization over R is efficient.
And we will prove that the approximation factor obtained is essentially α.

In our reduction, we make no assumption on the black-box algorithm A. In
addition, while the black-box algorithm may be randomized, our reduction does
not introduce any further randomization. If the algorithm is deterministic, then
our mechanism is deterministically truthful.

Extensions: Positive and Negative Results. A natural extension of our result
is to consider the general (possibly asymmetric) single-parameter mechanism
design problems. By a novel relation between mechanism design and constraint
satisfaction problems, we derive a significant lower bound of the approximability
of maximum-in-range mechanisms for general single-parameter problems, which
to some extent suggests the difficulty in designing factor-preserving black-box
reductions.

However, we are able to generalize our algorithmic technique to some spe-
cial multi-parameter settings. We study the constant-dimension and symmetric
mechanism design problem. We generalize our construction in the symmetric
single-parameter case to this problem and obtain a black-box reduction that
converts any algorithm into a truthful and quasi-poly-time mechanism with
essentially the same approximation guarantee. Alternatively, we can obtain a
black-box reduction that converts any algorithm into a truthful and polynomial
time mechanism with logarithmic degradation in the approximation factor.

Related Work. There has been a significant amount of work related to black-box
reductions in mechanism design. In the single-parameter setting, the first black-
box reduction was given by Briest et al. [4]. The authors studied the single-
parameter binary optimization problem and they showed that any algorithm
which is an FPTAS can be converted to a truthful mechanism that is also an FP-
TAS. Secondly, Babaioff et al. [1] studied the single-value combinatorial auction
problem and they constructed a black-box reduction that converts an algorithm
to a truthful mechanism with the approximation factor degraded by a logarith-
mic factor. Finally, the recent work by Goel et al. [12] provided a black-box
reduction with a super constant degrade in approximation factor for partially
public combinatorial auction.

For multi-parameter problems, there is no factor-preserving black-box reduc-
tion in general (e.g. [22]). This motivates the study of truthfulness in expectation,
which is a weaker notion of incentive compatibility. Here, a randomized mech-
anism is truthful in expectation, if truth telling maximizes an agent’s expected
payoff. The initial effort in black-box reduction for multi-parameter problems is
due to Lavi and Swamy [18], they showed a method to convert a certain type of
algorithms called integrality-gap-verifiers to truthful in expectation mechanisms
with the same approximation factors. Recently, Dughmi and Roughgarden [9]
studied the class of packing problems. Via an elegant black-box reduction and
smooth analysis, they showed that if a packing problem admits an FPTAS,
then it admits a truthful in expectation mechanism that is an FPTAS as well.
Balcan et al.[2] considered black-box reductions from the revenue maximization
aspect. By the technique of sample complexity in machine learning, they gave
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revenue-preserving reductions from truthful mechanism design to the algorith-
mic pricing problems. At last, Dughmi et al. [10] introduce a method to convert
convex rounding scheme into truthful in expectation mechanism and achieve an
optimal (1− 1

e )-approximation for the combinatorial auction problem when the
valuations are a special type of submodular functions.

The previous discussion is about prior-free mechanism design. Another impor-
tant area in algorithmic game theory is the Bayesian mechanism design where
each agent’s valuation is drawn from some publicly known prior distribution.
Hartline and Lucier [15] studied this problem in the single-parameter setting.
They constructed a clever black-box reduction that converts any non-monotone
algorithm into a monotone one without compromising its social welfare. Follow-
ing this work, Bei and Huang [3] and Hartline et al. [14] independently showed
such black-box reductions in the multi-parameter setting as well.

2 Preliminaries

In this section, we will outline the basic concepts in mechanism design relevant
to our paper.

Truthfulness. Let X be the set of all feasible allocations, and vi(x) be the private
valuation of agent i if allocation x ∈ X is picked. A typical goal of a mechanism
is to reveal agents’ private valuation functions via their bids and optimize the
obtained social welfare simultaneously. Formally, suppose we are given n agents
and let v = (v1, ..., vn) be the valuation functions reported by the agents. Based
on this, a (deterministic) mechanism M will specify an allocation x(v) ∈ X
and a payment p(v). We say M is deterministically truthful(or truthful), if the
following conditions hold: for any i,v−i and any vi, v′i, we have vi(x(vi,v−i))−
pi(vi,v−i) ≥ vi(x(v′i,v−i))− pi(v′i,v−i).

When a mechanism is randomized, there are two notions of truthfulness: (1)
Universal truthfulness : A universally truthful mechanism is a probability distri-
bution over deterministically truthful mechanisms; (2)Truthfulness in expecta-
tion: A mechanism is truthful in expectation if an agent maximizes her expected
utility by being truthful. Here, an agent’s utility is defined as her valuation mi-
nus payment. It is easy to see that every deterministically truthful mechanism
is universally truthful and every universally truthful mechanism is truthful in
expectation.

Single-parameter Mechanism Design. In a single-parameter mechanism design
problem, each allocation is represented as an n-dimensional real vector x (where
n is the number of agents), and each agent i has a private value vi such that
her valuation of allocation x is given by vixi. It is known [20] that for a single-
parameter problem, a mechanism is truthful if and only if (1) the allocation rule
is monotone: suppose vi ≤ v′i, then xi(vi,v−i) ≤ xi(v′i,v−i); (2) each agent i’s
payment is determined by pi(v) = vixi(vi,v−i)−

∫ vi

0 xi(t,v−i)dt.

Maximum-in-range Mechanisms. The maximum-in-range technique is a general
approach in the field of mechanism design. It works as follows: The mechanism
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fixes a range R of allocations without any knowledge of the agents’ valuations.
Given any v, let x∗ =argmaxx∈R

∑
j vj(x) and x∗−i =argmaxx∈R

∑
j �=i vj(x) re-

spectively. Now define payment pi of agent i to be
∑

j �=i vj(x
∗
−i)−

∑
j �=i vj(x

∗).
It is now not difficult to see that with this payment function, it is in best in-
terest of every agent to report their true valuations, irrespective of what others
report. The major challenge in designing maximum-in-range mechanism is to
balance between the size of the range and the approximation factor obtained. A
larger range can obtain better approximation but yield greater computational
complexity.

3 Symmetric Single-Parameter Mechanism Design

Recall that a single-parameter mechanism design problem is symmetric if the
allocation space X is closed under permutations: if x ∈ X , then π ◦ x =
(xπ(1), ..., xπ(n)) ∈ X for any permutation π. In this section, we will prove The-
orem 1: For a symmetric single-parameter problem Π , given any constant ε > 0
and any α-approximate algorithmA as a black-box, we design a polynomial time
truthful mechanism with approximation factor (1 + ε)α.

Our construction is based on the maximum-in-range technique. Given an al-
gorithm A, we define a range R by applying A as a black-box on a carefully
chosen collection of typical bid vectors. Our mechanism is then maximum-in-
range over R. We will show: (1) To maximize social welfare over R for a given
bid vector, we only need to examine polynomially many allocations in R, hence
our mechanism is efficient; (2) Every bid vector can be mapped to a typical
bid with approximately the same social welfare, hence our mechanism performs
almost as well as the algorithm A. This proves the approximation factor.

Now we describe our range construction in detail for a given symmetric single-
parameter problem Π , black-box algorithm A and constant ε > 0.

3.1 Construction of the Range

Let V = Rn
+ be the collection of all possible bid vectors. Next we will provide a

three-step procedure choosing a subset T ⊆ V as our collection of typical bids.
The first step is normalization: By properly reordering the agents and scaling

their bids, we only consider the set T0 of bids where v ∈ T0 if and only if
1 = v1 ≥ ... ≥ vn; The second step is discretization. In this step, our goal is to
obtain a finite set of bid vectors that approximately represent the whole valuation
space V . To do this, given any vector v ∈ T0, we first apply the operation of
tail cutting: We choose a small value u (e.g. 1/nM for some constant M) and
round all the entries smaller than u to 0; then, we discretize the interval [u, 1]
by considering Q = {ηk : k ≥ 0} ∩ [u, 1] where η < 1 is a fixed constant. We
will round down each of the remaining entries of v after the tail cutting to the
closest value in Q. If we do the above for each v ∈ T0, we obtain a finite set of
vectors T1; The final step is equalization. We fix a constant β > 1 and partition
[n] into logβ n groups. For each vector in T1, we equalize its entries within each
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1: Normalization. Let T0 = {v : 1 = v1 ≥ ... ≥ vn};
2: Discretizing. Let Q = {ηk : 0 ≤ k ≤ �log1/η(nM )�} where M ≥ log2

8
ε

is a constant. For any real value z, define �z�η = η�logη z� ∈ Q. Then we
define a function D : T0 �→ T0 as follows: for each v ∈ T0 and for each i,
define

D(v)i =

{
�vi�η vi ≥ u = 1

nM

0 otherwise

Let T1 = D(T0);
3: Equalization. Let nk = �βk� where β > 1 is a fixed constant and 0 ≤

k ≤ �logβ n�. Define a function E : T1 → T1 as follows: for each v ∈ T1

and 1 ≤ i ≤ n, E(v)i is set to be vnk when nk ≤ i < nk+1. At last, let
T = E(T1).

group by setting them to be the value of the largest entry in the group. We then
obtain the set of vectors T , and each vector in T is called a typical bid.

Now we provide the detailed description. In the following, we fix constants
β > 1 and η < 1 such that β

η = 1 + ε/2. For a bid vector v, let xA(v) be the
allocation obtained by applying algorithm A on v. Since the allocation space is
closed under permutations, we may assume xA(v)1 ≥ xA(v)2 ≥ ... ≥ xA(v)n.
At last, let R0 = {xA(v) : v ∈ T } and we finally define our range as R = {π◦x :
x ∈ R0, π ∈ Πn} where Πn consists of all permutations over n elements.

Now we analyze the performance of our mechanism. Since the mechanism is
maximum-in-range, it is truthful. We will show that it has polynomial running
time and an approximation factor of α(1 + ε).

Running Time. We show that the social welfare maximization over R is solvable
within polynomial time, hence our maximum-in-range mechanism is efficient. We
will first show |R0| is polynomial in n.

Lemma 1. |R0| ≤ |T | ≤ n1/ log2 β+M/ log2(1/η).

Proof. The first inequality follows from the definition of R0. Now we prove the
second one. Observe that for each vector v in T1, E(v) is uniquely determined
by the values {vnk

: 0 ≤ k ≤ �logβ n�} ⊆ Q
⋃{0}. Moreover, we have that

vnk−1 ≥ vnk
for all k. Therefore, let H be the class of non-increasing functions

from {0, 1, ..., �logβ n�} to Q
⋃{0}, thus |T | ≤ |H |. Since |Q| = �log1/η(nM )�,

It is not difficult to see, |H | ≤ (�logβ n	+log1/η(nM )�
log1/η(nM )�

) ≤ 2�logβ n	+log1/η(nM )� ≤
n1/ log2 β+M/ log2(1/η).

Now we are ready to prove the running time guarantee. Let optR(v) be the
allocation maximizes the social welfare over R for the given bid vector v. Let σ
be the permutation such that vσ(1) ≥ ... ≥ vσ(n). Obviously, for each x ∈ R0, we
have v·(σ−1◦x) ≥ v·(π◦x) for all permutation π. Therefore, optR(v) ∈ {σ−1◦x :
x ∈ R0}. By Lemma 1, |{σ−1 ◦ x : x ∈ R0}| = |R0| ≤ n1/ log2 β+M/ log2 η, this
implies that optR(v) can be found in polynomial time.



260 Z. Huang, L. Wang, and Y. Zhou

Approximation Factor. We show that the approximation factor of our mechanism
is α(1 + ε). Given any bid vector v, by reordering and scaling properly, we may
assume v ∈ T0, then we consider the typical bid E(D(v)). We show that for any
sorted allocation x, the social welfare v ·x is (1+ε)-approximated by E(D(v))·x,
hence an α-approximate solution for social welfare maximization with respect
to E(D(v)) is an α(1 + ε)-approximate solution for v. This proves the desired
approximation guarantee.

Now we provide the detail. We first show that by considering D(v) instead of
v ∈ T0, the social welfare is rounded down by at most a factor of η(1 − ε/4).

Lemma 2. For any v ∈ T0 and any allocation x s.t. x1 ≥ ... ≥ xn, we have
D(v) · x ≤ v · x ≤ 1

η(1−ε/4)D(v) · x.

Proof. The first inequality holds by definition. Now we prove the second one.
We first show the following lemma which says that the social welfare affected by
“tail cutting” is bounded by a fraction of ε/4. The proof of the lemma is deferred
to full version due to space reasons.

Lemma 3.
∑

i:vi≥1/nM vixi ≥ (1− ε/4)
∑n

i=1 vixi.

Let v′ = D(v), it is easy to see: v′ · x =
∑

i:vi≥1/nM v′ixi ≥ η
∑

i:vi≥1/nM vixi ≥
η(1− ε

4 )v · x.

Secondly, we show that the social welfare increases by at most a factor of β by
considering E(v) instead of v for any v ∈ T1.

Lemma 4. For any v ∈ T1 and any allocation x s.t. x1 ≥ · · · ≥ xn, we have
v · x ≤ E(v) · x ≤ βv · x.

Proof. The first inequality is implied by the definition of E. We will prove the
second one. Let v′ = E(v) and L = �log1/η n�. Since v,v′ ∈ T1, we have that
vi, v

′
i ∈ Q for each i. Thus, if we let li = logη vi and l′i = logη v

′
i respectively for

each i, then li’s and l′i’s are non-decreasing sequences. By our construction, it
is easy to see: (1) for all 1 ≤ i ≤ n, l′i ≤ li; (2) for all l ∈ [0, L], |{i : l′i ≤ l}| ≤
β |{i : li ≤ l}|. Since x1 ≥ ... ≥ xn, we have the following:

Lemma 5. For any l ∈ [0, L] and 1 ≤ i ≤ n, ∑i:l′i≤l xi ≤ β
∑

i:li≤l xi.

Observe that if we define Wl = ηl for 0 ≤ l ≤ L and WL+1 = 0, then
∑n

i=1 xivi =∑n
i=1 xiWli =

∑n
i=1 xi

∑L
l=li

(Wl −Wl+1) =
∑L

l=0(Wl −Wl+1)
∑

i:li≤l xi.
Similarly, we have

∑n
i=1 xiv

′
i =

∑L
l=0(Wl−Wl+1)

∑
i:l′i≤l xi. By Lemma 5, we

have v′ · x ≤ βv · x.

By Lemma 2 and Lemma 4, we have the following:

Corollary 2. For any v ∈ T0 and any allocation x such that x1 ≥ · · · ≥ xn, we
have: η(1 − ε/4)v · x ≤ E(D(v)) · x ≤ βv · x.
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Now we prove the approximation guarantee of our mechanism. Given any bid
vector v, without loss of generality, we may assume v ∈ T0. Let z∗ be the
optimal solution of social welfare maximization for v and x∗ be the solution
output by our mechanism. In addition, let y∗ be the optimal solution for the
typical bid E(D(v)). Then, by Corollary 2, we have v · x∗ ≥ 1

βE(D(v)) · x∗.
Since our algorithm is maximum-in-range, allocation x∗ is at least as good as
the allocation by algorithmA with respect to typical bid vector E(D(v)). Hence,
we haveE(D(v))·x∗ ≥ 1

αE(D(v))·y∗. Further, by optimality of y∗ and Corollary
2, we have E(D(v)) · y∗ ≥ E(D(v)) · z∗ ≥ η (1− ε

4

)
v · z∗.

In all, we have v · x∗ ≥ η
αβ

(
1− ε

4

)
v · z∗. Since we choose β and η such that

β/η = 1+ ε/2, we have v · z∗ ≤ α(1 + ε/2)v ·x∗/(1− ε/4) ≤ α(1 + ε)v ·x∗. This
completes our analysis.

4 General SPMD: Limitation of MIR Mechanisms

In the previous section, we study the black-box reductions in the symmetric
single-parameter setting. In this section, we give some negative results for factor-
preserving black-box reduction in general single-parameter mechanism design
(SPMD). We derive a significant approximability gap between maximum-in-
range mechanisms and approximation algorithms in the most general single-
parameter setting. To do this, we establish a novel relation between SPMD and
maximum constraint satisfaction problems (MaxCSP), and show that the ap-
proximation ratio of a MIR mechanism for some SPMD problem can be arbitrar-
ily worse than that of the best approximation algorithm for the “corresponding”
MaxCSP problem.

Specifically, for every MaxCSP problem Γ that is NP-Hard, we set up a
corresponding SPMD problem Γ ′, mapping (which can be done in polynomial
time) each instance I ∈ Γ to a profile of agent valuation vI , while optΓ (I) =
optΓ ′(vI). For every (efficient) MIR mechanism, we show that unless NP ⊆
P/poly, the approximation guarantee of the mechanism (on Γ ′) can be no better
than that of a random assignment for the corresponding MaxCSP problem Γ ,
and therefore is arbitrarily worse than the guarantee of the best approximation
algorithms, for some carefully chosen Γ .

For the sake of exposition, we choose Γ to be Max k-AllEqual (which
can be any MaxCSP problem, although the gap between performance of MIR
mechanisms and that of approximation algorithms might be different). The Max
k-AllEqual problem is defined as follows.

Definition 1 (Max k-AllEqual). Given a set C of clauses of the form l1 ≡
l2 ≡ · · · ≡ lk (k constant), where each literal li is either a Boolean variable xj
or its negation x̄j . The goal is to find an assignment to the variables xi so as to
maximize the number of satisfied clauses.

The Max k-AllEqual problem is NP-Hard. In fact, it is NP-Hard to approxi-
mate Max k-AllEqual problem within a factor of 2c

√
k/2k for some constant
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c > 0, according to [23,16,11]. On the algorithmic side, there is an Ω(k/2k)-
approximation algorithm for Max k-AllEqual shown in [6]. The algorithm
based on SDP-relaxation and randomized rounding, but it can be efficiently de-
randomized by embedding the SDP solution to a low dimensional space, via
derandomized Johnson-Lindenstrauss transformation [17,8,19].

CSP-Based Hard Instance for MIR Mechanisms. We describe the corresponding
SPMD problem for Max k-AllEqual as follows. For a Max k-AllEqual
problem with n variables, we set up M = (2n)k agents in MMax k-AllEqual,
each corresponding to a clause c : l1 ≡ l2 ≡ · · · ≡ lk. Recall that in a SPMD
problem, each agent’s valuation is a single real number that specifies its utility
for being served. We conclude the description of our hard instance by defining
the winner set, i.e. the set of feasible subset of agents being served. For any
Boolean assignment x : [n] → {true, false}, let C(x) ⊆ [M ] be the set of clauses
that are satisfied by x. We define the set of feasible allocation functions Y ⊆
{y : [M ]→ {0, 1}} to be Y = {1C(x)|x : [n]→ {true, false}}.

Given a Max k-AllEqual instance I with set C of clauses, define the valua-
tion function for the agents, vI = v : [M ]→ {0, 1}, to be the indicator function

of C, i.e. v(c) = 1C(c) =
{

1 c ∈ C
0 otherwise .

Note that here we assume that every clause appears at most once in C. But
the hard instance can be easily generalized to weighted case, by letting v(c) be
the weight of clause c.

Analysis. It’s easy to check the following fact.

Fact 1. opt(I) = maxx:[n]→{true,false}
{
v · 1C(x)

}
= maxy∈Y {v · y} = opt(vI).

Now, we prove that there is a significant gap between the approximation guar-
antee of any MIR mechanism and that of the approximation algorithms. The
following theorem shows that MIR mechanism performs Ω(k) times worse than
the approximation algorithm for the corresponding algorithmic task, for any
constant k > 0.

Theorem 2. Assuming NP ⊆ P/poly, there is no polynomial time MIR mech-
anism with approximation ratio better than 2(1 + ε)/2k, for any constant ε > 0.

The detailed proof of Theorem 2 is deferred to full version, due to space reasons.
At high level, the proof of Theorem 2 consists of two steps. Assuming there is an
MIR mechanism with rangeR achieving 2(1+ε)/2k approximation guarantee, we
firstly show that R needs to be exponentially large. Then we use Sauer-Shelar
Lemma to argue that when R is sufficiently large, it must cover all possible
assignments for a constant fraction of the n variables in Max k-AllEqual,
and we can use this mechanism exactly solve Max k-AllEqual problem on
this fraction of variables, which is NP-Hard.

The above technique was first introduced in [5] to show the inapproximabil-
ity result in combinatorial auctions. However, their construction relies on the
complicated private structures of agents’ valuations, hence does not apply in our
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problem. Our approach can be viewed as a novel generalization of their tech-
nique in single-parameter mechanism design. To our knowledge, this is the first
example of a lower bound on MIR mechanisms for problems that are linear and
succinct.

5 Symmetric Multi-Parameter Mechanism Design

As a natural generalization of single-parameter mechnism design, we consider
the multi-parameter problems in this section. Due to space reasons, proofs of
the theorems in this section are deferred to full version of this paper.

As before, a problem is symmetric if S = (S1, ..., Sn) is a feasible alloca-
tion implies that π ◦ S = (Sπ(1), ..., Sπ(n)) is also a feasible allocation for any
permutation π. Moreover, a mechanism design problem is Δ-dimension if the
valuation of each agent i can be naturally represented by a Δ-dimension vector
ui = (ui1, . . . , uiΔ) ∈ RΔ

+ . We let v(S,u) denote an agent’s value of an alloca-
tion S when its valuation function is given by a Δ-dimension vector u. We will
assume that the problem satisfies the following properties:

– Monotonicity. For any 1 ≤ i ≤ n, S, ui and u′i such that uij ≥ u′ij for any
1 ≤ j ≤ Δ, we have v(Si,ui) ≥ v(Si,u′i).

– Sub-linear influence. For any 1 ≤ k ≤ Δ, β > 1, u and u′ such that
for any 1 ≤ i ≤ n, uij = u′ij for any j = k, and uik ≤ βu′ik, we have
opt(u) ≤ βopt(u′).

– Negligible tail. For any δ > 0, let uδ
i be the tail-truncated values: uδij = uij

if uij ≥ δmaxs,t ust and uδij = 0 otherwise. For any constant ε > 0, there is
a polynomially small δ > 0, so that for any allocation S and any values ui’s,
we have (1 + ε)

∑n
i=1 v(Si,u

δ
i ) ≥

∑n
i=1 v(Si,ui).

These assumptions are without loss of generality in many mechanism design
problems. For example, consider the following:

– Multi-item auction. In multi-item auctions, we consider n agents and m
different types of items, each of which has a finite supply. Each agent i has
a private m-dimension vector of values ui = (ui1, . . . , uim). Agent i’s value
of a bundle S with xj items of type j, 1 ≤ j ≤ m, is v(S,ui) =

∑m
j=1 xjuij .

This is a m-dimensional problem that satisfies our assumptions.
– Combinatorial auction. In combinatorial auctions, we consider n agents

and m different items. Each agent i has a private 2m-dimension vector ui so
that for each subset of items S ∈ 2[m], agent i’s value of bundle S is v(S,ui) =
uiS . This is a 2m-dimensional problem that satisfies our assumptions.

Via techniques similar to those in Section 3, we can show the following theorem.
The proofs are deferred to the full version of this paper.

Theorem 3. For any Δ-dimension symmetric mechanism design problem Π
where Δ is a constant, suppose A is an α-approximate algorithm, then for any
constant ε > 0, we can get an truthful and (1+ ε)α-approximate mechanism that
runs in quasi-polynomial time given A as a black-box.
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Alternatively, we can alleviate the running time by having greater degrade in
the approximation factor.

Theorem 4. For any Δ-dimension symmetric mechanism design problem Π
where Δ is a constant, suppose A is an α-approximate algorithm, then for any
constant ε > 0, we can get a truthful and α polylog-approximate mechanism that
runs in polynomial time given A as a black-box.
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Abstract. We study the space and time complexity of approximating distribu-
tions of l-step random walks in simple (possibly directed) graphs G. While very
efficient algorithms for obtaining additive ε-approximations have been developed
in the literature, no non-trivial results with multiplicative guarantees are known,
and obtaining such approximations is the main focus of this paper. Specifically,
we ask the following question: given a bound S on the space used, what is the
minimum threshold t > 0 such that l-step transition probabilities for all pairs
u, v ∈ V such that P l

uv ≥ t can be approximated within a 1± ε factor? How fast
can an approximation be obtained?

We show that the following surprising behavior occurs. When the bound on
the space is S = o(n2/d), where d is the minimum out-degree of G, no approx-
imation can be achieved for non-trivial values of the threshold t. However, if an
extra factor of s space is allowed, i.e. S = Ω̃(sn2/d) space, then the threshold
t is exponentially small in the length of the walk l and even very small transition
probabilities can be approximated up to a 1 ± ε factor. One instantiation of these
guarantees is as follows: any almost regular directed graph can be represented
in Õ(ln3/2+ε) space such that all probabilities larger than n−10 can be approxi-
mated within a (1 ± ε) factor as long as l ≥ 40/ε2. Moreover, we show how to
estimate of such probabilities faster than matrix multiplication time.

For undirected graphs, we also give small space oracles for estimating P l
uv

using a notion of bicriteria approximation based on approximate distance oracles
of Thorup and Zwick [STOC’01].

1 Introduction

Large scale graphs are now a widely used tool for representing real world data. Many
modern applications, such as search engines or social networks, require supporting vari-
ous queries on large-scale graphs efficiently. An important operation is calculating some
measure of distance between two nodes in a graph. Random walks recently emerged as
an important tool for measuring distance between nodes in such graphs. PageRank[17]
and its personalized version is one of the popular random walk based measures of re-
latedness of nodes in a graph. Personalized PageRank uses the distribution of a short
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random walk of exponentially distributed length started at a source node to
measure proximity between the source and other nodes in the graph. Methods for
computing personalized PageRank have received significant attention recently. Very
efficient algorithms are known for computing and updating (personalized) Pagerank
vectors in various computation models such as random access and streaming (see, e.g.
[12,13,1,21,22,2]). The techniques that have been used range from methods from linear
algebra to Monte Carlo simulation and dynamic programming. It is hard to do justice to
the large body of work on this topic in limited space, and we refer the reader to the great
surveys [14,4] and recent papers on Pagerank computation (see, e.g. [2]) for a more
complete discussion of prior work on Pagerank. The approximation obtained via these
methods is usually an additive ε-approximation for some ε > 0. With this measure of
approximation, it is in general sufficient to perform O(log n/ε) random walks of small
length to obtain an approximation. While additive approximations are well-studied, no
non-trivial multiplicative (1± ε)-factor approximations are known, and obtaining such
approximations using small space and time is the main focus of this paper.

Given a simple (possibly directed) graph G = (V,E) and a bound S on the space
we can use, we would like to obtain (1 ± ε)-factor approximations of l-step transition
probabilities P l

uv from u to v, for all pairs u, v ∈ V such that P l
uv ≥ t, for the smallest

possible threshold value t. We show that the following surprising behavior occurs. If
the minimum out-degree of the graph G is d, then no (1 ± ε)-factor approximation can
be achieved for any reasonable value of t if the space S available is below o(n2/d).
However, if the available space is a factor s > 1 larger than Ω̃(n2/d), then (1 ± ε)-
factor approximation can be achieved for probabilities larger than t ≥ 1

ds
−(ε/4)(l−1).

Thus, increasing the amount of space available by a factor of s > 1 allows one to
approximate transition probabilities that are exponentially small in the length of the
walk l. One instantiation of such guarantees is that any regular graph can be represented
in Õ(ln3/2+ε/ε2) space so that (1 ± ε)-approximations to transition probabilities P l

uv

can be recovered for all pairs u, v ∈ V such that P l
uv ≥ n−10 as long as l ≥ 40/ε2.

These bounds are nearly-tight: we show that the space complexity of obtaining (1±
ε)-approximations to P l

uv for all pairs such that P l
uv ≥ 1

d (s/2)−(l−1) is Ω(sn2/d).
Additionally, our techniques yield fast algorithms for calculating very precise approxi-
mations to l-step random walk transition probabilities for special classes of graphs. For
example, it follows that an (1 ± ε)-factor approximation to P l

uv for all pairs such that

P l
uv ≥ n−10, say, can be obtained in time Õ(n2+(1+ε) ω−2

ω−1 ), where ω ≥ 2 is the matrix
multiplication constant, for any (almost) regular graph. Thus, we show that very precise
approximations can be obtained strictly faster than matrix multiplication if ω > 2. A
very interesting question raised by our work is whether our techniques can be used to
obtain similar approximations to the problem of multiplying two matrices with non-
negative entries faster than matrix multiplication time. We note that besides being of
intrinsic theoretical interest, multiplicative approximation guarantees for all transition
probabilities above a very small threshold may be useful, for example, in applications to
probabilistic model checking, where one is interested in the probability that a Markov
chain reaches an ‘error state’ in a given number of steps ([19]).

We also consider the problem of obtaining approximate oracles for random walk
transition probabilities for undirected graphs. While almost-optimal tradeoffs for the
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problem of approximating distances have been obtained in the large body of work on
spanners ([6,7,10,23,25,3,24,18]), we are not aware of any known results on small space
oracles for approximating random walk transition probabilities. Our lower bounds on
the space complexity of multiplicative approximation suggest that a weaker notion of
approximation is required if close to linear space is desired. A natural candidate notion
is a relaxation of the length of the random walk similar to the approximations obtained
in the well-known distance oracles of Thorup and Zwick[23]. Surprisingly, it turns out
that such relaxation is too strong for our problem. However, we show that a more relaxed
notion of bicriteria approximation can be used to obtain small space oracles based on
the techniques of [23].

1.1 Related Work

Approximate Matrix Multiplication. It is interesting to compare our results on multi-
plicative approximation to the line of work on approximate matrix computations, which
develops extremely efficient approximate randomized algorithms for several problems
in numerical linear algebra (e.g. [8,11,9,20,16,5,15]). A lot of these algorithms can be
used in the streaming model, requiring close to optimal space an only a small constant
number of passes over the data. These algorithms are also very general and apply to ar-
bitrary matrices. There is a vast literature on this topic, and we refer the reader to some
of the latest papers for a more complete list of references (see, e.g. [15]). All of the de-
veloped algorithms for approximating matrix products yield approximation guarantees
in term of the Frobenius or spectral norm. To highlight the relation to our results, we
now compare our algorithm to the earlier algorithm of [8], which is also based on col-
umn/row sampling. In [8] the authors show that for any s > 1 there exists a randomized
algorithm that given two matrices A,B ∈ Rn×n outputs a matrix P such that

E[||P −A ·B||2F ] ≤ 1
s
||A||2F ||B||2F (1)

in time Õ(n2s) by carefully sampling rows of A and columns of B. On the other hand,
our multiplication approximation algorithm computes the l-th power of a matrix A,
giving entrywise approximation guarantees. LetA be the random walk transition matrix
of an (almost)regular graph. We show how to calculate (1± ε)-factor approximation to

every sufficiently large entry of Al in time Õ(n2+(1+ε) ω−2
ω−1 ) for any sufficiently large

l. It should be noted that the best speedups that our techniques currently yield are for
a special class of graphs. On the other hand, we obtain a significantly more precise
estimate than (1) faster than matrix multiplication time. Since ||A||F can in general be
very large, there is no way of setting the parameter s in the algorithm of (1) that would
allow to obtain such precision faster than matrix multiplication.

It is interesting to note that the approach we take also uses row and column sampling.
However, the process is somewhat different: we show that for each pair u, v ∈ V such
that the (u, v) entry of Al is sufficiently large there exists j, 1 ≤ j ≤ l − 1 such that
sampling rows of Aj and columns of Al−j at an appropriate rate allows one to get a
1 ± ε approximation for Al

uv . It seems plausible that similar techniques could be used
to obtain good approximations to the product of two matrices with non-negative entries
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faster than matrix multiplication time. This currently remains a very interesting open
problem.

Another connected line of work concerns efficiently representing distances between
nodes of a weighted undirected graph.

Distance Oracles. A large body of work on spanners and emulators provides almost
optimal tradeoffs for the case when the distance measure of interest is the shortest
path distance. A spanner is a subgraph H of the target graph G that approximates
the shortest path metric on G in some sense. Several notions of spanners have been
considered in the literature. A multiplicative spanner is a subgraph H of G such that
δG(u, v) ≤ δH(u, v) ≤ tδH(u, v) for some constant t > 1 called the stretch of H .
The landmark paper of [23] provides almost optimal tradeoffs between the size of H
and the stretch, assuming a widely believed girth conjecture of Erdős. In particular, [23]
construct stretch 2k − 1-spanners with O(n1+1/k) edges. Moreover, their construction
has O(k) query time, thus yielding an approximate distance oracle. Very recently, [18]
gave an oracle that returns a path of length at most 2δG(u, v) + 1 and uses O(n5/3)
space for unweighted graphs. Related constructions, such as additive spanners and em-
ulators (e.g. [24]), yield better approximation/space tradeoffs. However, no fast method
for answering distance queries using these constructions is known.

1.2 Our Results and Techniques

Directed Graphs

For a graph G = (V,E) and a pair of nodes u, v ∈ V we denote the probability of
reaching v from u in l steps of a simple random walk on G by P l

uv .
Our main result is

Theorem 1. Let G = (V,E) be a (possibly directed) graph with minimum out-degree
bounded below by d. For any s ≥ 1 there exists a data structure that allows returning
1± ε-factor approximations to P l

uv for all u, v ∈ V such that P l
uv ≥ (1/d)s−(ε/4)(l−1)

using space Õ
(
lsn2

ε2d

)
. Moreover, whp for any u, v the approximation to P l

uv that is

returned does not overestimate P l
uv by more than a 1 + ε factor. The query time is

Õ(lns/(ε2d)) and the preprocessing time is Õ(l ·min{nω, lsn3/(ε2d)}).
Remark 1. Note that the preprocessing time is o(nω) for d = Ω(sn3−ω) and l = Õ(1).

Note that the threshold above which we can provide 1 ± ε-approximations to P l
uv de-

pends exponentially on the length of the walk l. Thus, even for moderate values of
s Theorem 1 potentially allows to approximate transition probabilities for all pairs
u, v ∈ V . One instantiation of Theorem 1 is as follows:

Corollary 1. Let G = (V,E) be a regular graph. Then all l-step transition probabili-
ties P l

uv ≥ n−10 can be approximated up to 1±ε for any ε > 0 in space Õ(ln3/2+ε/ε2)
as long as l ≥ 40/ε2.

Proof. Set s = nε. If d = Ω(n1/2+ε), then Theorem 1 can be used to compress the
representation to Õ(ln2+ε/ε2d) = Õ(ln3/2+ε/ε2) space. Otherwise one can store the
entire graph in Õ(n3/2+ε) space. ��
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Remark 2. Perhaps the most natural interpretation of the guarantees given by our
algorithm is as follows. Given the compressed representation of the graph, if for a query
(u, v) the value P̂ l

uv returned by the algorithm is large (i.e. satisfies P̂ l
uv ≥ n−10), then

it is guaranteed to be within (1 ± ε) factor of the true transition probability. Otherwise,
the true transition probability is very small, i.e. below n−10.

Note that it is entirely possible that all l-step transition probabilities in a regular graph
are larger than n−10, in which case one can approximate each entry of Al up to an 1± ε
factor, where A is the random walk transition matrix of G. Interestingly, our algorithm
yields a method for approximating sufficiently large l-step transition probabilities in a
regular graph faster than matrix multiplication:

Corollary 2. P l
uv ≥ n−10 can be approximated up to 1 ± ε for any ε > 0 in time

Õ(ln2+(1+ε)(ω−2)/(ω−1)) as long as l ≥ 40/ε2

We show that the upper bound given by Algorithm 2 is of the right form:

Theorem 2. Any algorithm that gives a constant factor approximation to P l
uv ≥

1
du

(s/2)−(l−1) in an undirected graph G = (V,E) with minimum degree d must use

Ω
(
sn2

l2d

)
space.

The proof of Theorem 2 is deferred to the full version of the paper.

Undirected Graphs

All proofs from this section are deferred to the full version of the paper due to space con-
siderations. The lower bound given by Theorem 2 suggests that near-linear space cannot
be achieved independently of the minimum degree of the graphs if a constant factor ap-
proximation to P l

uv is desired. In light of the result of [23] on 2k − 1-approximate
distance oracles for undirected graphs in space O(n1+1/k) it is natural to conjecture
that one can output a constant factor approximation to the probability of reaching v
from u in (2j − 1)t steps for some 1 ≤ j ≤ k in O(n1+1/k) space. Perhaps surpris-
ingly, we show that such approximation cannot be achieved for random walk transition
probabilities:

Lemma 1. Any algorithm that given a weighted graph G = (V,E) for any pair of
nodes (u, v) outputs an estimate p̂(u, v) such that

P l
u,v ≤ p̂ ≤ (1 + ε) max

1≤j≤2k−1
P jl
u,v

for any constant ε > 0 must use Ω(n2/2kl) space.

Lemma 1 motivates more relaxed bicriteria approximation. In particular, when queried
about the value of P l

u,v , the algorithm may return an approximation to the logarithm
of P jl

u,v for any 1 ≤ j ≤ 2k − 1. The following theorem shows that a somewhat more
powerful notion of approximation is possible:
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Theorem 3. Let G = (V,E) be a weighted undirected graph such that 1/γ ≤
d(u)/d(v) ≤ γ for all u, v ∈ V for some constant γ ≥ 1. There exists an
O(k3n1+1/k logn) space andO(k3 logn) query time oracle that given a pair u, v ∈ V
outputs a value p̂ such that

γ−1P l
u,v ≤ p̂ ≤ 4 max

1≤j≤k

(
P (2j−1)l
u,v /n(j−1)/k

)1/(2j−1)

.

The preprocessing time is bounded by Õ(klnω), where ω ≥ 2 is the matrix multiplica-
tion constant.

Note that the difference between the statement of Theorem 3 differs from the notion of
bicriteria approximation outlined above in the extra normalization term n(j−1)/k, which
only improves the guarantee. The algorithm is based on approximate distance oracles
of Thorup and Zwick.

This approximation ratio is optimal up to an O(log n) factor in the following sense:

Theorem 4. Any algorithm that outputs an estimate p̂ such that

P l
u,v ≤ p̂ ≤ (1 + ε) max

1≤j≤k

(
P (2j−1)l
u,v /n(j−1)/k

)1/(2j−1)

for a constant ε > 0 must use Ω(n1+1/k/2lk) space.

Theorem 3 applies to γ-regular graphs. For general graphs, we approximate the sym-
metrized quantity St(u, v) =

√
Pt(u, v)Pt(v, u) =

√
d(u)/d(v)Pt(u, v).

2 Directed Graphs

In this section we give an algorithm for approximating random walk transition probabil-
ities in simple graphs G = (V,E), proving Theorem 1. Some proofs from this section
are deferred to the full version of the paper due to space considerations.

Given a bound Õ(lsn2/d) on the available space, where s ≥ 1, the preprocessing
Algorithm 1 samples O(log n/ε) sets of centers Ct ⊆ V , by including each vertex into
Ct uniformly at random with probability r = 4s logn

ε2(1−ε/2)d . For each center c ∈ Ct the

algorithm computes and stores P j
uc and P j

cu for all u ∈ V and all 1 ≤ j ≤ l − 1:

1: for t = 1, . . . , 4 logn/ε do
2: Choose r = 4s logn

ε2(1−ε/2)d centers Ct uniformly at random.
3: For each c ∈ Ct and for each j, 1 ≤ j ≤ l − 1 calculate and store

P j
uc, P

j
cu for all u ∈ V .

4: end for

Algorithm 1. Preprocessing algorithm

At query time, given a pair of vertices u, v ∈ V , for each of the O(log n/ε) sets of
centers Ct and for each 1 ≤ j ≤ l − 1 Algorithm 2 calculates an estimate

p̂t,j :=
1
r

∑
c∈Ct

P j
ucP

l−j
cv . (2)
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Finally, the algorithm sets

p̂min
j := min

1≤t≤4 logn/ε
p̂t,j (3)

and returns the largest of p̂min
j , 1 ≤ j ≤ l − 1 as its estimate.

1: for t = 1, . . . , 4 logn/ε do
2: p̂t,j ← 1

r

∑
c∈Ct

P j
ucP

l−j
cv .

3: end for
4: p̂← maxj=1,...,l−1 mint=1,...,4 logn/ε pt,j
5: return p̂

Algorithm 2. Estimation algorithm

The estimator in (2) is unbiased, i.e. E[p̂t,j ] = P l
uv for all t and j since the set of cen-

ters was chosen uniformly at random. The question that we consider is for which u, v ∈
V and for what sampling rate r is P̂ l

uv is tightly concentrated around its
expectation.

It is easy to construct examples that show that in general there need not be any
useful concentration for nontrivial sampling probabilities if 1± ε factor approximation
of P l

uv is desired for all pairs u, v ∈ V . Moreover, one cannot in general guarantee tight
concentration for any fixed j under reasonable conditions on u and v. However, in this
section we will show that in fact for each u, v ∈ V such that P l

uv is sufficiently large
the estimate p̂t,j from (2) will not underestimate by more than a 1 − ε factor whp for
at least one choice of j between 1 and l − 1 and for all t. The main technical part of
our analysis is analysing conditions under which p̂t,j does not underestimate P l

uv , since
overestimation can be easily dealt with by independent repetition.

We first give the intuition behind the analysis. We assume that the graph is undirected
and strictly regular for simplicity. Then P l

uv for a pair u, v ∈ V is just the number of
l-step walks from u to v divided by dl, where d is the degree. We need to relate the
number of l-step walks from u to v to the probability that the random sampling in (2)
underestimates by more than 1 − ε factor. Fix j between 1 and l − 1 and for a node
c ∈ V let

α(j, c) =
P j
ucP

l−j
cv

P l
uv

be the fraction of l-step walks from u to v that pass through c at step j. By Bernstein’s
inequality the probability of underestimating by more than a factor of 1−ε can be related
to the variance of the sequence α(j, c), c ∈ V . Thus we need to relate the variance of
α(j, ·) to the number of walks from u to v. In order to do that, we consider a uniformly
random l-step walk P = (X1, . . . , Xl−1) from u to v, where Xj is the (random) j-th
vertex in the walk. The number of paths is thus equal to the entropy H(P ). However,
by a well-known property of the entropy function we have that

H(P ) = H(X1, . . . , Xl−1) ≤
l−1∑
j=1

H(Xj |Xj−1, . . . , X1) ≤
l−1∑
j=1

H(Xj|Xj−1). (4)
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We now note that the distribution of Xj is given by α(j, ·) defined above. Thus, it is
sufficient to bound

min
(X,Y ),X∝α(j,·),(X,Y )∈E

H(X |Y ) (5)

in terms of ε and the variance of α(j, ·). Here the minimization is over all random
variables (X,Y ) taking values in (V ×V )∩E (corresponding to the j-th and (j−1)-st
vertex on the random walk from u to v) such that the distribution of X is α(j, ·). Given
such a bound, we conclude that if (2) underestimates by more than a factor 1− ε for all
j between 1 and l − 1, then there must be very few paths between u and v.

We have given the sketch of the proof for regular graphs, where the regularity allows
the use of the entropy function for bounding P l

uv . In the more general case of graphs
of minimum degree d we use the relative entropy, or Kullback-Leibler divergence, with
respect to the inverse degree sequence of the graph. We now give the details of the
proof.

Denote the set of l-step walks in G from u and v by P luv ⊆ V l−1. We write P =
(v1, . . . , vl−1) ∈ P luv to denote the path (u, v1, . . . , vl−1, v). Let μl : P luv → [0, 1] be
the natural distribution on paths P = (v1, . . . , vl−1) ∈ P luv defined as

μ((v1, . . . , vl−1)) =

{
1

P l
uv

1
du

∏l−1
j=1

1
dvj

if (v1, . . . , vl−1) ∈ P luv
0 o.w.

Note that this is indeed a distribution, i.e.
∑

P∈Pl
uv
μ(P ) = 1.

Also, for P = (v1, . . . , vl−1) ∈ V l−1 define

ηl((v1, . . . , vl−1)) =
1
du

l−2∏
j=1

1
dvj

.

For a vertex v ∈ V define η(v) = 1
dv

. We note that ηl is not a distribution in general.
Recall that for two distributions on a set X the relative entropy of p with respect to

q is defined as
D(p||q) =

∑
x∈X

px log(qx/px). (6)

Note that (6) is defined even when q is only guaranteed to be non-negative. Note that
the usual definition uses log(px/qx), but we use this one in order to get an inequality of
the form (4).

We will use the following:

Claim.

P l
uv ≤

1
d
eD(μ||η).

For two random variablesX,Y taking values in V define

D∗(X |Y ||η) =
∑
y∈V

p(y)
∑
x∈V

p(x|y) log(η(y)/p(x|y)). (7)

We will use the following
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Lemma 2. Let (X1, . . . , Xl−1) be a random variable taking values in V l−1. Let X0 =
u. Then one has

D((X1, . . . , Xl−1)||ηl) ≤
l−1∑
j=1

D∗(Xj |Xj−1||η)

Note that this is the equivalent of (4) in the sketch of the proof for the regular case given
above.

Definition 1. For a distribution x on V define

D̄(x) = max
(X,Y ):X∝x,(X,Y )∈E

D∗(X |Y ||η).

This is the equivalent of (5) in the regular case. We will use the following lemma:

Lemma 3. Let x be a distribution on V . Sort elements of x so that x1 ≥ x2 ≥ . . . ≥
xn. Then for any j, 1 ≤ j ≤ n one has

D̄(x) ≤
⎛⎝∑

i<j

xi

⎞⎠ log
1
dxj

.

Lemma 4. (Bernstein’s inequality) LetX =
∑n

i=1Xi, where |Xi| ≤M almost surely.
Then

Pr [X − E[X ] < εE[X ]] < exp
(
− ε2E[X ]2∑n

i=1 EX2
i + εME[X ]/3

)
We now prove the main lemma in the analysis:

Lemma 5. If our sample underestimates by a factor larger than 1− ε with probability
larger than 1− n−4, then for every j between 1 and l − 1 we have

D̄(α(j, ·)) ≤ −η log(ε2(1− η)s/4)

for some η ∈ [ε/4, ε/2].

Proof. Let x1 ≥ . . . ≥ xn,
∑

i xi = 1 be the distribution α(j, ·) (we numbered vertices
of G). Let Xi = Ber(s/d, xi). We consider two cases. First suppose that x1 ≥ ε/4.
Then we have that D̄(x) ≤ −(ε/4) log(εd/4) and we are done. We now assume that
x1 ≤ ε/4.

Denote by xε the subsequence xjε ≥ . . . ≥ xn such that
∑n

i=jε xi ≤ 1− ε/4, where
jε is the maximum possible. Since x1 ≤ ε/4, we have that

∑n
i=jε xi ≥ 1− ε/2.

By Bernstein’s inequality

Pr [Xε − E[Xε] < δE[Xε]] < exp
(
− δ2(s logn/d)2

(s logn/d)||xε||22 + xjε(s logn/3d)

)
= exp

(
− δ2 logn

(d/s)||xε||22 + xjε(d/3s)

)
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Thus, if our sampling underestimates by a factor larger than 1− ε, we must have that

||xε||22 + xjε/3 ≥ δ2s/(4d).
Let η := 1 −∑

i≥jε xi. Since ||xε||2 ≤ (1 − η)xjε , we have ||xε||2 + xjε/3 ≤
(4/3− η)xjε , so ||xε||2 + xjε/3 ≥ δ2s/(4d) implies that xjε ≥ δ2(s/d)/(16/3− 4η).
Thus, by Lemma 3 we have

D̄(x) ≤ −η log(ε2(1− η)s/4),

where we chose δ = ε/4. ��
It now follows by Claim 2, Lemma 5 and Lemma 2 that if a pair u, v is underestimated
by more than a factor of 1− ε with probability at least 1− n−4, then

P l
uv ≤

1
d
(ε2(1− ε/2)s/4)−(ε/4)(l−1). (8)

It remains to note that with probability at least 1− n−2 one has p̂min
j ≤ (1 + ε)P l

uv

for all u, v. Since by the previous estimate with probability at least 1 − 1/n for each
u, v that satisfy (8) one has p̂t,j ≥ (1− ε)P l

uv, we have proved Theorem 1, which is the
main result of this section.

We also show that the ε-factor in the exponent is not an artifact of our analysis (the
proof is deferred to the full version of the paper):

Lemma 6. For any ε < 1/2 there exist graph G = (V,E) with minimum degree d on
which Algorithm 2 underestimates P l

uv by more than 1 − ε factor for pairs (u, v) such
that P l

uv ≥ 1
du

(s/2)−ε(l−1).
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Betweenness Problem in Tournaments and
Related Ranking Problems
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Abstract. We settle the approximability status of the Minimum
Betweenness problem in tournaments by designing a polynomial time
approximation scheme (PTAS). No constant factor approximation was
previously known. We also introduce a more general class of so-called
fragile ranking problems and construct PTASs for them. The results de-
pend on a new technique of dealing with fragile ranking constraints and
could be of independent interest.

1 Introduction

We study the approximability of the Minimum Betweenness problem in tourna-
ments (see [2]) that resisted so far efforts of designing polynomial time approx-
imation algorithms with a constant approximation ratio. For the status of the
general Betweenness problem, see e.g. [18,9,2,8,12].

In this paper we design the first polynomial time approximation scheme
(PTAS) for that problem, and generalize it to much more general class of ranking
CSP problems, called here fragile problems. To our knowledge it is the first non-
trivial approximation algorithm for the Betweenness problem in tournaments.

In the Betweenness problem we are given a ground set of vertices and a set
of betweenness constraints involving 3 vertices and a designated vertex among
them. The cost of a ranking of the elements is the number of betweenness con-
straints with the designated vertex not between the other two vertices. The goal
is to find a ranking minimizing this cost. We refer to the Betweenness problem in
tournaments, that is in instances with a constraint for every triple of vertices, as
the BetweennessTour or fully dense Betweenness problem (see [2]). We con-
sider also the k-ary extension k-FAST of the Feedback Arc Set in tournaments
(FAST) problem (see [16,1,3]).

We extend the above problems by introducing a more general class of fragile
ranking k-CSP problems inspired by the fragile (non-ranking) CSPs in [14]. A
constraint S of a ranking k-CSP problem is called fragile if no two rankings of
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the vertices S that both satisfy the constraint differ by the position of a single
vertex. A ranking k-CSP problem is called fragile if all its constraints are fragile.

We now formulate our main results.

Theorem 1. There exists a PTAS for the BetweennessTour problem.

The above answers an open problem of [2] on the approximation status of the
Betweenness problem in tournaments.

We now formulate our first generalization.

Theorem 2. There exist PTASs for all fragile ranking k-CSP problems in
tournaments.

Theorem 2 entails, among other things, existence of a PTAS for the k-ary
extension of FAST. A PTAS for 2-FAST was given in [16].

Corollary 1. There exists a PTAS for the k-FAST problem.

We generalize BetweennessTour to arities k ≥ 4 by specifying for each con-
straint S a pair of vertices in S that must be placed at the ends of the ranking
induced by the vertices in S. Such constraints do not satisfy our definition of
fragile, but do satisfy a weaker notion that we call weak fragility. The definition
of weakly fragile is identical to the definition for fragile except that only four
particular single vertex moves are considered, namely swapping the first two
vertices, swapping the last two, and moving the first or last vertex to the other
end. We now formulate our most general theorem.

Theorem 3. There exist PTASs for all weak-fragile ranking k-CSP problems
in tournaments.

Corollary 2. There exists a PTAS for the k-BetweennessTour problem.

Additionally our algorithms are guaranteed not only to find a low-cost ranking
but also a ranking that is close to an optimal ranking in the sense of Kendall-Tau
distance. Karpinski and Schudy [15] recently utilized this extra feature to find
an improved parameterized algorithm for BetweennessTour with runtime
2O(
√
OPT/n) + nO(1).

Theorem 4. The PTASs of Theorem 3 additionally return a set of 2Õ(1/ε) rank-
ings, one of which is guaranteed to be both cheap (cost at most (1 +O(ε))OPT )

and close to an optimal ranking (Kendall-Tau distance O
(
poly( 1

ε )OPT
nk−2

)
).

All our PTASs are randomized but one can easily derandomize them by
exhaustively considering every possible random choice.

Section 2 introduces notations and the problems we study. Section 3 introduces
our algorithm and an intuitive sense of why it works. The remaining sections
analyze the cost of the output of our algorithms. The runtime analysis and many
of the proofs are omitted due to space limits. The full version of this paper is
available from the arXiv: http://arxiv.org/abs/0911.2214.

http://arxiv.org/abs/0911.2214
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2 Notation

First we state some core notation. Throughout this paper let V refer to the
set of n objects (vertices) being ranked and ε > 0 the desired approximation
parameter. Our O(·) hides the arity k but not ε or n. Our Õ(·) additionally
hides (log(1/ε))O(1). A ranking is a bijective mapping from a ground set S ⊆ V to
{1, 2, 3, . . . , |S|}. An ordering is an injection from S into R. Clearly every ranking
is also an ordering. We use π and σ (plus superscripts) to denote rankings and
orderings respectively. Let π∗ denote an optimal ranking and OPT its cost. We
let

(
n
k

)
(for example) denote the standard binomial coefficient and

(
V
k

)
denote

the set of subsets of set V of size k.
For any ordering σ let Ranking(σ) denote the ranking naturally associated

with σ. To help prevent ties we relabel the vertices so that V = {1, 2, 3, . . . , |V |}.
We will often choose to place u in one of O(1/ε) positions P(u) = {jεn +
u/(n + 1), 0 ≤ j ≤ 1/ε} (the u/(n + 1) term breaks ties). We say that an
ordering is a bucketed ordering if σ(u) ∈ P(u) for all u. Let Round(π) denote
the bucketed ordering corresponding to π (rounding down), i.e. Round(π)(u)
equals π(u) rounded down to the nearest multiple of εn, plus u/(n+ 1).

Let v'→p denote the ordering over {v} which maps vertex v to position p ∈ R.
For set Q of vertices and ordering σ with domain including Q let σQ denote the
ordering over Q which maps u ∈ Q to σ(u), i.e. the restriction of σ to Q. For
orderings σ1 and σ2 with disjoint domains let σ1 σ2 denote the natural com-
bined ordering over Domain(σ1) ∪Domain(σ2). For example of our notations,
σQ v'→p denotes the ordering over Q∪{v} that maps v to p and u ∈ Q to σ(u).

A ranking k-CSP consists of a ground set V of vertices, an arity k ≥ 2, and a
constraint system c. Informally a constraint system c gives a 0/1 value (satisfied
or not) for every ranking of every set S ⊆ V of |S| = k vertices. Formally a
constraint system c is a function which maps rankings of vertices S ⊆ V with
|S| = k to {0, 1}. For example if k = 2 and V = {u1, u2, u3} a constraint system
c consists of the six values c(u1 '→1 u2 '→2), c(u1 '→2 u2 '→1), c(u1 '→1 u3 '→2),
c(u1 '→2 u3 '→1), c(u2 '→1 u3 '→2), and c(u2 '→2 u3 '→1). A weighted ranking
CSP has a weighted constraint system which maps rankings of vertices S ⊆ V ,
|S| = k to non-negative reals R+. (To simplify terminology we present our results
for unweighted CSPs only. We define weighted CSPs only because our algorithm
uses one.) We refer to a set of vertices S ⊆ V , |S| = k in the context of constraint
system c as a constraint. We say constraint S is satisfied in ordering σ of S if
c(Ranking(σ)) = 0. For brevity we henceforth abuse notation and omit the
“Ranking” and write simply c(σ). The objective of a ranking CSP is to find an
ordering σ (w.l.o.g. a ranking) minimizing the number of unsatisfied constraints,
which we denote by Cc(σ) =

∑
S∈(Domain(σ)

k ) c(σS).
We will frequently leave the CSP in question implicit in our notations, for

exampling saying that a constraint S is satisfied without specifying the constraint
system. In such cases the CSP should be clear from context. We use k, c and V
to denote the arity, constraint system and ground set of the CSP that we are
trying to optimize. We also use the shorthand C(σ) = Cc(σ).
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Definition 1. A constraint S of constraint system c is fragile if no two order-
ings that satisfy it differ by the position of a single vertex unless the two orderings
are associated with the same ranking. In other words constraint S is fragile if
c(πS)+c(π′S) ≥ 1 for all distinct rankings π and π′ over S that differ by a single
vertex move, i.e. π′ = Ranking(v '→p πS\{v}) for some v ∈ S and half-integer
p ∈ {1/2, 3/2, 5/2, . . . , k + 1/2}.
An alternate definition is that a satisfied fragile constraint becomes unsatisfied
whenever a single vertex is moved, which is why it is called “fragile.”

Definition 2. A constraint S of constraint system c is weakly fragile if c(πS)+
c(π′S) ≥ 1 for all rankings π and π′ that differ by a swap of the first two vertices,
a swap of the last two, or a cyclic shift of a single vertex. In other words π′ =
Ranking(v '→p πS\{v}) for some v ∈ S and p ∈ R with (π(v), p) ∈ {(1, 2 +
1
2 ), (1, k + 1

2 ), (k, k − 3
2 ), (k, 1

2 )}.
Observe that weak fragility is equivalent to ordinary fragility for k ≤ 3.

Our techniques handle ranking CSPs that are fully dense with weakly fragile
constraints, i.e. every set S of k vertices corresponds to a weakly fragile con-
straint. Fully dense instances are also known as tournaments (by analogy with
feedback arc set and tournament graphs).

Let bc(σ, v, p) denote the cost of the constraints in constraint system c involv-
ing vertex v in ordering σDomain(σ)\{v} v'→p formed by moving v to position p
in ordering σ. Formally bc(σ, v, p) =

∑
Q:··· c(σQ v '→p), where the sum is over

sets Q ⊆ Domain(σ) \ {v} of size k − 1. Note that this definition is valid re-
gardless of whether or not v is in Domain(σ). The only requirement is that the
range of σ excluding σ(v) must not contain p. This ensures that the argument
to c(·) is an ordering (injective). Analogously with the objective function C the
superscript constraint system c in bc defaults to the problem c that we are trying
to solve when omitted.

We call a weighted ranking CSP instance with arity 2 a feedback arc set
(FAS) instance. A FAS instance with vertex set V and constraint system w is
equivalent to a weighted directed graph with arc weights wuv = w(u'→2 v '→1)
for u, v ∈ V . The objective function Cw(σ) defined previously works out to
finding an ordering of the vertices V minimizing the weight of the backwards arcs

Cw(σ) =
∑

u,v:σ(u)>σ(v) wuv. Similarly bw(σ, v, p) =
∑

u�=v

{
wuv if σ(u) > p
wvu if σ(u) < p

. If

a FAS instance with constraint system w satisfies α ≤ wuv + wvu ≤ β for all
u, v and some α, β > 0 we call it a (weighted) feedback arc set tournament
(FAST) instance. We generalize to k-FAST as follows: a k-FAST constraint S
is satisfied by one particular ranking of the vertices S and no others. Clearly
k-FAST constraints are fragile.

We generalize BetweennessTour to k ≥ 4 as follows. Each constraint S
designates two vertices {u, v}, which must be the first and last positions, i.e. if
π is the ranking of the vertices in S then c(π) = 11 ({π(u), π(v)} = {1, k}). It is
easy to see that BetweennessTour constraints are weakly fragile.

We use the following two results from the literature.



Approximation Schemes for Fully Dense Ranking Problems 281

Theorem 5 ([16]). Let w be a FAS instance satisfying α ≤ wuv +wvu ≤ β for
α, β > 0 and β/α = O(1). There is a PTAS for the problem of finding a ranking
π minimizing Cw(π) with runtime nO(1)2Õ(1/ε6).

Theorem 6 (e.g. [6,17]). For any k-ary MIN-CSP and δ > 0 there is an
algorithm that produces a solution with cost at most δnk more than optimal. Its
runtime is nO(1)2O(1/δ2).

Theorem 6 entails the following corollary.

Corollary 3. For any δ > 0 and constraint system c there is an algorithm
AddApprox for the problem of finding a ranking π with C(π) ≤ C(π∗) + δnk,
where π∗ is an optimal ranking. Its runtime is nO(1)2Õ(1/δ2).

3 Intuition and Algorithm

We are in need for some new techniques different in nature from the techniques
used for weighted FAST [16].

Our first idea is somehow analogous to the approximation of a differentiable
function by a tangent line. Given a ranking π and any ranking CSP, the change
in cost from switching to a similar ranking π′ can be well approximated by
the change in cost of a particular weighted feedback arc set problem (see proof
of Lemma 15). Furthermore if the ranking CSP is fragile and fully dense the
corresponding feedback arc set instance is a (weighted) tournament (Lemma 9).
So if we somehow had access to a ranking similar to the optimum ranking π∗ we
could create this FAST instance and run the existing PTAS for weighted FAST

[16] to get a good ranking.
We do not have access to π∗ but we use techniques inspired by [14] to get close.

We pick a random sample of vertices and guess their location in the optimal
ranking to within (an additive) εn. We then create an ordering σ1 greedily from
the random sample. We show that this ordering is close to π∗, in that |π∗(v) −
σ1(v)| = O(εn) for all but O(εn) of the vertices (Lemma 5).

We then do a second greedy step (relative to σ1), creating σ2. We then
identify a set U of unambiguous vertices (defined in Algorithm 1) for which
we know |π∗(v) − σ2(v)| = O(εn) (Lemma 8). We temporarily set aside the
O(OPT/(εnk−1)) (Lemma 7) remaining vertices. These two greedy steps are
similar in spirit to previous work on ordinary (non-ranking) everywhere-dense
fragile CSPs [14] but substantially more involved.

We then use σ2 to create a (weighted) FAST instance w that locally rep-
resents the CSP. It would not be so difficult to show that w is a close enough
representation for an additive approximation, but we want a multiplicative 1+ ε
approximation. Showing this requires overcoming two obstacles that are our
main technical contribution.

Firstly the error in σ2 causes the weights of w to have significant error (Lemma
11) even in the extreme case of OPT = 0. At first glance even an exact solution
to this FAST problem would seem insufficient, for how can solving a problem
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similar to the desired one lead to a precisely correct solution? Fortunately FAST

is somewhat special. It is easy to see that a zero-cost instance of FAST cannot
be modified to change its optimal ranking without modifying an arc weight by
at least 1/2. We extend this idea to cases where OPT is small but non-zero
(Lemma 15).

The second obstacle is that the incorrect weights in FAST instance w may
increase the optimum cost of w far above OPT , leaving the PTAS for FAST
free to return a poor ranking. To remedy this we create a new FAST instance
w̄ by canceling weight on opposing arcs, i.e. reducing wuv and wvu by the same
amount. The resulting simplified instance w̄ clearly has the same optimum rank-
ing as w but a smaller optimum value. The PTAS for FAST requires that the
ratio of the maximum and the minimum of wuv + wvu must be bounded above
by a constant so we limit the amount of cancellation to ensure this (Lemma 9).
It turns out that this cancellation trick is sufficient to ensure that the PTAS for
FAST does not introduce too much error (Lemma 12).

Finally we greedily insert the relatively few ambiguous vertices into the
ranking output by the PTAS for FAST [16].

For any ordering σ with domain U we will shortly define a weighted feedback
arc set instance wσ which approximates the overall problem c in the neighbor-
hood of ordering σ. In particular changes in the objective C = Cc are approxi-
mately equal to changes in Cwσ

. Before giving the definition of wσ we describe
how it was chosen. For simplicity of illustration let us suppose that |V | = k and
hence we have only one constraint; the general case will follow by making wσuv
a sum over contributions by the various constraints S ⊇ {u, v}. We are looking
for good approximations for the costs of nearby ordering, so let us consider the
nearest possible ordering: let σ′ be idential to σ except that two adjacent ver-
tices, call them u and v, are swapped: σ(u) < σ(v) and σ′(u) > σ′(v). Clearly
Cwσ

(σ′) − Cwσ

(σ) = wσuv − wσvu. It is therefore natural to set wσvu = c(σ) and
wσuv = c(σ′), hence C(σ′)− C(σ) = Cwσ

(σ)− Cwσ

(σ) as desired.
So what about wσuv for u and v that are not adjacent in σ? It turns out that

we can pick practically anything for the other wσuv as long as we keep Cwσ

(σ)
small and wσuv +wσvu relatively uniform. We extend the above definition to non-
adjacent u, v with σ(u) < σ(v) as follows: set wσvu = c(σ) and wσuv = c(σ′),
where σ′ is identical to σ except that v is placed immediately before u. (Another
natural option would be to set wvu = 0 and wuv = 1 for non-adjacent u, v with
σ(u) < σ(v).)

With this motivation in hand we now give the formal definition of wσ . For
any ordering σ with domain U let wσuv equal the number of the constraints
{u, v} ⊆ S ⊆ U with c(σ′) = 1 where (1) σ′ = (σS\{v} v '→p), (2) p = σ(u) − δ
if σ(v) > σ(u) and p = σ(v) otherwise, and (3) δ > 0 is sufficiently small to put
p adjacent to σ(u). In other words if v is after u in σ it is placed immediately
before u in σ′. Observe that 0 ≤ wσuv ≤

(|U|−2
k−2

)
.

The following Lemma follows easily from the definitions.

Lemma 1. For any ordering σ we have (1) Cwσ

(σ) =
(
k
2

)
C(σ) and

(2) bw
σ

(σ, v, σ(v)) = (k − 1) · b(σ, v, σ(v)) for all v.
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Algorithm 1. A (1 + O(ε))-approximation for weak fragile rank k-CSPs in
tournaments.
Input: Vertex set V , |V | = n, arity k, system c of fully dense arity k constraints, and
approximation parameter ε > 0.

1: Run AddApprox(ε5nk) and return the result if its cost is at least ε4nk

2: Pick sets T1, . . . , Tt uniformly at random with replacement from
(

V
k−1

)
, where t =

14 ln(40/ε)

(k
2)ε

. Guess (by exhaustion) bucketed ordering σ0, which is the restriction of

Round(π∗) to the sampled vertices
⋃

i Ti, where π∗ is an optimal ranking.
3: Compute bucketed ordering σ1 greedily with respect to the random samples and

σ0, i.e.:

σ1(u) = argminp∈P(u) b̂(u, p) where b̂(u, p) =
( n

k−1)
t

∑
i:u 	∈Ti

c(σ0
Ti v�→p).

4: For each vertex v: If b(σ1, v, p) ≤ 13k43k−1ε
(

n−1
k−1

)
for some p ∈ P(v) then call v

unambiguous and set σ2(v) to the corresponding p (pick any if multiple p satisfy).
Let U denote the set of unambiguous vertices, which is the domain of bucketed
ordering σ2.

5: Compute feedback arc set instance w̄σ2
over unambiguous vertices U (see text).

Solve it using the FAST PTAS [16]. Do single vertex moves until local optimality
(with respect to the FAST objective function), yielding ranking π3 of U .

6: Create ordering σ4 over V defined by σ4(u) ={
π3(u) if u ∈ U
argminp=v/(n+1)+j,0≤j≤n b(π3, u, p) otherwise

. In other words insert each

vertex v ∈ V \ U into π3(v) greedily.
7: Return π4 = Ranking(σ4).

Proof. Observe that all wσuv that contribute to Cwσ

(σ) or bw
σ

(σ, v, σ(v)) satisfy
σ(u) > σ(v) and hence the σ′ in the definition of wσuv is equal to σ. It follows that
each wσuv that contributes to Cwσ

(σ) or bw
σ

(σ, v, σ(v)) is equal to the number of
constraints containing u and v that are unsatisfied in σ. The

(
k
2

)
and k−1 factors

appear because each constraint S contributes to wσuv for a variety of u, v ∈ S.

The weighted feedback arc set instance wσ is insufficient for our purposes be-
cause its objective value can be large even when the optimal cost of c is small.
To remedy this we cancel the weight on opposing arcs (within limits), yielding
another weighted feedback arc set instance w̄σ . In particular for any ordering σ
we define w̄σuv = wσuv −min( 1

10·3k−1

(|U|−2
k−2

)
, wσuv, w

σ
vu), where U is the domain of

σ. Observe that Cwσ

(π′) − Cw̄σ

(π′) is a non-negative constant independent of
ranking π′. Therefore the feedback arc set problems induced by wσ and w̄σ have
the same optimal rankings but an approximation factor of (1 + ε) is a stronger
guarantee for w̄σ than for wσ.

For any orderings σ and σ′ with domain U , we say that {u, v} ⊆ U is a σ/σ′-
inversion if σ(u)−σ(v) and σ′(u)−σ′(v) have different signs. Let d(σ, σ′) denote
the number of σ/σ′-inversions (a.k.a. Kendall Tau distance). We say that v does
a left to right (σ, p, σ′, p′)-crossing if σ(v) < p and σ′(v) > p′. We say that v
does a right to left (σ, p/σ′, p′)-crossing if σ(v) > p and σ′(v) < p′. We say that
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v does a (σ, p, σ′, p′)-crossing if v does a crossing of either sort. We say that u
σ/σ′-crosses p ∈ R if it does a (σ, p, σ′, p)-crossing.

With these notations in hand we present our Algorithm 1 for approximating
a weak fragile rank k-CSP. The non-deterministic “guess (by exhaustive sam-
pling)” on line 2 of our algorithm should be implemented in the traditional man-
ner: place the remainder of the algorithm in a loop over possible orderings of the
sample, with the overall return value equal to the best of the π4 rankings found.
Our algorithm can be derandomized by choosing T1, . . . , Tt non-deterministically
rather than randomly; details omitted.

If OPT ≥ ε4nk then the first line of the algorithm is sufficient for a PTAS so
for the remainder of the analysis we assume that OPT ≤ ε4nk.

4 Analysis of σ1

Let σ� = Round(π∗). Call vertex v costly if b(σ�, v, σ�(v)) ≥ 2
(
k
2

)
ε
(
n−1
k−1

)
and

non-costly otherwise.

Lemma 2. The number of costly vertices is at most k·OPT
ε(k

2)(n−1
k−1)

.

The proof of Lemma 2 is omitted. The outline of the proof is kC(π∗) =∑
v b(π

∗, v, π∗(v)) ≈∑
v b(σ

�, v, σ�(v)) ≥ (number costly)2
(
k
2

)
ε
(
n−1
k−1

)
.

Lemma 3. Let σ be an ordering of V , |V | = n, v ∈ V be a vertex and p, p′ ∈ R.
Let B be the set of vertices (excluding v) between p and p′ in σ. Then b(σ, v, p)+
b(σ, v, p′) ≥ |B|

(n−1)3k−1

(
n−1
k−1

)
.

Proof. By definition

b(σ, v, p) + b(σ, v, p′) =
∑
Q:···

[c(σQ v'→p) + c(σQ v'→p′)] (1)

where the sum is over sets Q ⊆ U \ {v} of k − 1 vertices.
We consider the illustrative special case of betweenness tournament (or more

generally fragile problems with arity k = 3) here and defer the general case to
the full version. Betweenness constraints have a special property: the quantity
in brackets in (1) is at least 1 for every Q that has at least one vertex between
p and p′ in π. There are at least |B|(n − 2)/2 such sets, which can easily be
lower-bounded by the desired |B|

(n−1)33−1

(
n−1
3−1

)
.

For vertex v we say that a position p ∈ P(v) is v-out of place if there are at least
6
(
k
2

)
3k−1εn vertices between p and σ�(v) in σ�. We say vertex v is out of place

if σ1(v) is v-out of place.

Lemma 4. The number of non-costly out of place vertices is at most εn/2 with
probability at least 9/10.
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The omitted proof uses Lemma 3 and the definitions of out-of-place and costly
to show that b(σ�, v, σ�(v)) is much smaller than b(σ�, v, p) for any v-out of
place p, and then Chernoff and union bounds to show that b̂(v, p) is sufficiently
concentrated about its mean b(σ�, v, p) so that the minimum b̂(v, p) must occur
for a p that is not v-out of place.

Lemma 5. With probability at least 9/10 the following are simultaneously true:

1. The number of out of place vertices is at most εn.
2. The number of vertices v with |σ1(v)− σ�(v)| > 3k23k−1εn is at most εn
3. d(σ1, σ�) ≤ 6k23k−1εn2

Proof. By Lemma 2 and the fact OPT ≤ ε4nk we have at most k·OPT
(k
2)ε(n−1

k−1)
≤ εn/2

costly vertices for n sufficiently large. Therefore Lemma 4 implies the first part
of the Lemma. We finish the proof by showing that whenever the first part holds
the second and third parts hold as well.

Observe that there are exactly εn vertices in σ� between any two consecutive
positions in P(v). It follows that any vertex with |σ1(v)−σ�(v)| > 3k23k−1εn ≥
(6
(
k
2

)
3k−1 +1)εn must necessarily be v-out of place, completing the proof of the

second part of the Lemma.
For the final part observe that if u and v are a σ1/σ�-inversion and not

among the εn out of place vertices then, by definition of out-of-place, there can
be at most 2 · 6(k2)3k−1εn vertices between σ�(v) and σ�(u) in σ�. For each u
there are therefore only 24

(
k
2

)
3k−1εn possibilities for v. Therefore d(σ1, σ�) ≤

εn2 + 24
(
k
2

)
3k−1εn · n/2 ≤ 6εk23k−1n2.

The remainder of our analysis assumes that the event of Lemma 5 holds without
stating so explicitly.

5 Analysis of σ2

The following key Lemma shows the sensitivity of b(σ, v, p) to its first and third
arguments. The proof is omitted.

Lemma 6. For any constraint system c with arity k ≥ 2, orderings σ and σ′
over vertex set T ⊆ V , vertex v ∈ V and p, p′ ∈ R we have

1. |bc(σ, v, p) − bc(σ′, v, p′)| ≤
(

n − 2

k − 2

)
(number of crossings) +

(
n − 3

k − 3

)
d(σ, σ′)

2. |bc(σ, v, p) − bc(σ′, v, p′)| ≤
(

n − 2

k − 2

)(
|net flow| + k

√
d(σ, σ′)

)

where
(
n−3
k−3

)
= 0 if k = 2, (net flow) is |{ v ∈ T : σ′(v) > p′ }| − |{ v ∈ T :

σ(v) > p }|, and (number of crossings) is the number of v ∈ T that do a
(σ, p, σ′, p′)-crossing.
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Observe that the quantity net flow in Lemma 6 is zero whenever p = p′ and σ
and σ′ are both rankings. Therefore we have the following useful corollary.

Corollary 4. Let π and π′ be rankings over vertex set U and w a FAST instance
over U . Then |bw(π, v, p) − bw(π′, v, p)| ≤ 2(maxr,swrs)

√
d(π, π′) for all v and

p ∈ R \ Z.

We let U denote the set of unambiguous vertices as defined in Algorithm 1.

Lemma 7. We have |V \ U | ≤ k·OPT
ε(k

2)(n−1
k−1)

= O(nε · OPTnk ).

Proof. Observe that the number of vertices that σ�/σ1-cross a particular p is at
most 2 · 6k23k−1εn by Lemma 5 (first part). Therefore we apply Lemmas 5 and
6, yielding

|b(σ�, v, p)− b(σ1, v, p)|

≤
(
n− 2
k − 2

)
12k23k−1εn+

(
n− 3
k − 3

)
6k23k−1εn2 ≤ 12εk43k−1

(
n− 1
k − 1

)
(2)

for all v and p.
Fix a non-costly v. By definition of costly b(σ�, v, σ�(v)) ≤ 2

(
k
2

)
ε
(
n−1
k−1

) ≤
k43k−1ε

(
n−1
k−1

)
, hence b(σ1, v, σ�(v)) ≤ 13k43k−1ε

(
n−1
k−1

)
, so v ∈ U .

Finally recall Lemma 2.

We define π� to be the ranking induced by the restriction of π∗ to U , i.e.
π� = Ranking(π∗U ).

Lemma 8. All vertices in the unambiguous set U satisfy |σ2(v) − π�(v)| =
O(εn).

Proof. The triangle inequality |σ2(v)−π�| ≤ |σ2(v)−π∗(v)|+|π∗(v)−π�| allows
us to instead bound the two terms |σ2(v) − π∗(v)| and |π∗(v) − π�| separately
by O(εn). We bound |σ2(v) − π∗(v)| first.

Since π∗ is a ranking the number of vertices |B| between π∗(v) and σ2(v) in
π∗ is at least |π∗(v)− σ2(v)| − 1. Therefore we have

|π∗(v) − σ2(v)| − 1

(n − 1)3k−1

(
n − 1

k − 1

)
≤ b(π∗, v, σ2(v)) + b(π∗, v, π∗(v)) (Lemma 3)

≤ 2b(π∗, v, σ2(v)) (Optimality of π∗).
(3)

We next apply the first part of Lemma 6 to π∗ and σ�, bounding the number
of crossings and d(π∗, σ�) using the definition σ� = Round(π∗), yielding

b(π∗, v, σ2(v)) ≤ b(σ�, v, σ2(v)) +O(εnk−1). (4)

Next recalling (2) from the proof of Lemma 7 we have

b(σ�, v, σ2(v)) ≤ b(σ1, v, σ2(v)) +O(εnk−1). (5)

Combining (3), (4) and (5) we conclude that |π∗(v)− σ2(v)| = O(εn).
Now we prove |π∗(v)− π�| = O(εn). Lemma 7, the definition of π�, and the

assumption that OPT ≤ ε4nk imply that |π�(v)− π∗(v)| ≤ k·OPT
ε(k

2)(n−1
k−1)

= O(εn).
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6 Analysis of π3

Note that all orderings and costs in this section are over the set of unambiguous
vertices U as defined in Algorithm 1, not V . We note that Lemma 7 and the
assumption that OPT ≤ ε4nk is small imply that |U | = n−O(ε3n).

We omit the proofs of the next six lemmas due to lack of space.

Lemma 9. 1
3k−1 (1−2/10)

(|U|−2
k−2

) ≤ w̄σ2

uv+w̄σ
2

vu ≤ 2
(|U|−2
k−2

)
, i.e. w̄σ

2
is a weighted

FAST instance.

Lemma 10. Assume ranking π and ordering σ satisfy |π(u) − σ(u)| = O(εn)
for all u. For any u, v, let Nuv denote the number of S ⊃ {u, v} such that not all
pairs {s, t} = {u, v} are in the same order in σ and π. We have Nuv = O(εnk−2).

Lemma 11. The following inequalities hold:

1. wσ
2

uv ≤ wπ
�

uv +O(εnk−2)
2. w̄σ

2

uv ≤ (1 +O(ε))wπ
�

uv

Lemma 12.

1. Cw̄σ2

(π�) ≤ (1 +O(ε))
(
k
2

)
C(π�)

2. Cw̄σ2

(π3) ≤ (1 +O(ε))
(
k
2

)
C(π�)

3. Cw̄σ2

(π3)− Cw̄σ2

(π�) = O(εC(π�))

Lemma 13. d(π3, π�) = O(C(π�)/nk−2)

Lemma 14. We have |π3(v) − π�(v)| = O(εn) for all v ∈ U .

Lemma 15. C(π3) ≤ (1 +O(ε))C(π�).

Proof. First we claim that

|(C(π3)− C(π�))− (Cwσ2

(π3)− Cwσ2

(π�))| ≤ E1, (6)

where E1 is the number of constraints that contain one pair of vertices u, v
in different order in π3 and π� and another pair {s, t} = {u, v} with relative
order in π3, π� and σ2 not all equal. Indeed constraints ordered identically
in π3 and π� contribute zero to both sides of (6), regardless of σ2. Consider
some constraint S containing a π3/π�-inversion {u, v} ⊂ S. If the restrictions
of the three orderings to S are identical except possibly for swapping u, v then
S contributes equally to both sides of (6), proving the claim.

To bound E1 observe that the number of inversions u, v is d(π3, π�) ≡ D. For
any u, v Lemmas 14, 8 and 10 allow us to show at most O(εnk−2) constraints con-
taining {u, v} contribute to E1, so E1 = O(Dεnk−2) = O(εC(π�)) (Lemma 13).

Finally bound Cwσ2

(π3)−Cwσ2

(π�) = Cw̄σ2

(π3)−Cw̄σ2

(π�) ≤ O(εC(π�)),
where the equality follows from the definition of w and the inequality is the third
part of Lemma 12.

Extending Lemma 15 to a bound on the cost of π4 (and hence a proof of our
main theorems) is relatively straightforward. We omit the proof for lack of space.
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Abstract. We study several network design problems with degree con-
straints. For the degree-constrained 2-connected subgraph problem we
obtain a factor 6 violation for the degrees with 4 approximation for
the cost. This improves upon the logarithmic degree violation and no
cost guarantee obtained by Feder, Motwani, and Zhu (2006). Then we
consider the problem of finding an arborescence with at least k termi-
nals and with minimum maximum outdegree. We show that the nat-

ural LP-relaxation has a gap of Ω
(√

k
)

or Ω
(
n1/4

)
with respect to

the multiplicative degree bound violation. We overcome this hurdle by
a combinatorial O(

√
(k log k)/Δ∗)-approximation algorithm, where Δ∗

denotes the maximum degree in the optimum solution. We also give an
Ω(log n) lower bound on approximating this problem. Then we consider
the undirected version of this problem, however, with an extra diameter
constraint, and give an Ω(log n) lower bound on the approximability of
this version. Finally, we consider a closely related prize-collecting degree-
constrained Steiner Network problem. We obtain several results in this
direction by reducing the prize-collecting variant to the regular one.

1 Introduction

1.1 Problems Considered

A graphH is k-(node-)connected if it contains k internally disjoint paths between
every pair of its nodes. In the k-Connected Subgraph problem we are given a graph
G = (V,E) with edge-costs and an integer k. The goal is to find a minimum cost
k-connected spanning subgraph H of G. In the Degree-Constrained k-Connected
Subgraph problem, we are also given degree bounds {b(v) : v ∈ V }. The goal is
to find a minimum-cost k-connected spanning subgraph H of G such that in H ,
the degree of every node v is at most b(v). We consider the case k = 2.

� Partially supported by NSF Award Grant number 0829959.
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c© Springer-Verlag Berlin Heidelberg 2011
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Degree-Constrained 2-Connected Subgraph
Instance: An undirected graph G = (V,E) with edge-costs ce ≥ 0, and degree
bounds {b(v) : v ∈ V }.
Objective: Find a minimum cost 2-connected spanning subgraph H of G that
satisfies the degree constraints degH(v) ≤ b(v) for all v ∈ V .

Given a directed graph G, a set S of terminals, and an integer k ≤ |S|,
a k-arborescence is an arborescence in G that contains k terminals; in the
case of undirected graphs we have a k-tree. For a directed/undirected graph
or edge-set H let Δ(H) denote the maximum outdegree/degree of a node in
H .

Minimum Degree k-Arborescence
Instance: A directed graph G = (V,E), a root s ∈ V , a subset S ⊆ V \ {s}
of terminals, and an integer k ≤ |S|.
Objective: Find in G a k-arborescence T rooted at s that minimizes Δ(T ).

For the next problem we only show a lower bound. Hence we show it for the
less general case of undirected graphs.

Degree and Diameter Bounded k-Tree
Instance: An undirected graph G = (V,E), a subset S ⊆ V of terminals, an
integer k ≤ |S|, and a diameter bound D.
Objective: Find a k-tree T with diameter bounded byD that minimizes Δ(T ).

Let λH(u, v) denote the the maximum number of edge-disjoint uv-paths in
H . In the Steiner Network problem we are given a graph G = (V,E) with edge-
costs ce ≥ 0, a collection P = {{u1, v1}, . . . , {uk, vk}} of node pairs, and con-
nectivity requirements R = {r1, . . . , rk}. The goal is to find a minimum-cost
subgraph H of G that satisfies the connectivity requirements λH(ui, vi) ≥ ri for
all i.

We consider a combination of the following two versions of the Steiner Net-
work problem. In Degree-Constrained Steiner Network we are given degree bounds
{b(v) : v ∈ V }. The goal is to find a minimum-cost subgraphH of G that satisfies
the connectivity requirements and the degree constraints degH(v) ≤ b(v) for all
v ∈ V . In Prize-Collecting Steiner Network we are given a submodular monotone
non-decreasing penalty function π : 2{1,...,k} → R+ (π is given by an evalua-
tion oracle). The goal is to find a subgraph H of G that minimizes the value
val(H) = c(H) + π(unsat(H)) of H , where unsat(H) = {i | λSH(ui, vi) < ri} is
the set of requirements not (completely) satisfied by H . Formally, the problem
we consider is as follows.
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Prize-Collecting Degree-Constrained Steiner Network
Instance: A graph G = (V,E) with edge-costs ce ≥ 0, a collection
P = {{u1, v1}, . . . , {uk, vk}} of node pairs, connectivity requirements
R = {r1, . . . , rk}, a submodular monotone non-decreasing penalty func-
tion π : 2{1,...,k} → R+ given by an evaluation oracle, and degree bounds
{b(v) : v ∈ V }.
Objective: Find a subgraph H of G that satisfies the degree constraints
degH(v) ≤ b(v) for all v ∈ V , and minimizes the value

val(H) = c(H) + π(unsat(H))

of H , where unsat(H) = {i | λSH(ui, vi) < ri} is the set of requirements not
satisfied by H .

The Steiner Tree problem is a particular case of Steiner Network when we seek
a minimum-cost subtree T of G that contains a specified subset S of terminals.
In the degree constrained version of Steiner Tree, we are also given degree bounds
on nodes in S and need to satisfy the degree constraints. We consider the case
of 0, 1 constraints, namely, we require that certain nodes in S should be leaves
of T , and do not allow to relax this condition, as was done in previous papers
[12,13]. Namely, the degree bounds here are of the “hard capacity” type, and
cannot be violated. Formally, our problem can be casted as follows.

Leaf-Constrained Steiner Tree
Instance: A graph G = (V,E) with edge-costs ce ≥ 0 and subsets L ⊆ S ⊆ V .
Objective: Find a minimum-cost tree T in G that contains S such that every
v ∈ L is a leaf of T .

1.2 Previous and Related Work

Fürer and Raghavachari [5] gave a Δ+1 approximation for the Minimum Degree
Steiner Tree problem. The first result for the min-cost case is due to Ravi et
al. [15]; they obtained an (O(log n) · b(v), O(log n)) approximation for Degree-
Constrained MST, namely, the degree of every node v in the output tree is
O(log n) · b(v) while its cost is O(log n) times the optimal cost. A major break-
through was obtained by Goemans [7]; his algorithm computes a minimum cost
spanning tree with degree at most Δ+ 2, with Δ the minimum possible degree.

In [10] and [17] is given an O(nδ) approximation algorithm for the Minimum
Degree k-Edge-Connected Subgraph problem, for any fixed δ > 0.

It turned out that an extension of the iterative rounding method of Jain [9]
may be the leading technique for degree-constrained problems. Singh and Lau
[18] were the first to extend this method to achieve the best possible result for
Min-Cost Minimum Degree MST; their tree has optimal cost while the maximum
degree is at most Δ+1. Lau et al. [12] obtained a (2b(v)+3, 2) approximation for
the Degree-Constrained Steiner Network problem, which was recently improved to
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(2b(v) + 2, 2) in [14]. Lau and Singh [13] further obtained a (b(v) +O(rmax), 2)
approximation, where rmax denotes the maximum connectivity requirement.

For directed graphs, Bansal et al. [1] gave an (� b(v)1−ε � + 4, 1
ε )-approximation

scheme for the Degree-Constrained k-Outconnected Subgraph problem. Some
extensions and slight improvements can be found in [16].

Now we mention some work which is directly relevant to our problems. The
only known result for node-connectivity degree-constrained problems is by Feder,
Motwani, and Zhu [4] who gave an algorithm that computes in nO(k) time a k-
connected spanning subgraph H of G such that degH(v) = O(log n) · b(v). Their
algorithm cannot handle costs. The special case k = |S| of the Minimum De-
gree k-Arborescence problem was already studied in [3], where a Õ(

√
k) additive

approximation was given. Their technique does not seem to extend to the case
k < |S|. Hajiaghayi and Nasri [8] obtaines a constant ratio for a very special
case of Degree-Constrained Prize-Collecting Steiner Network problem when which
the penalty function π is modular.

1.3 Our Results

Theorem 1. The Degree-Constrained 2-Connected Subgraph problem admits a
bicriteria (6b(v) + 6, 4)-approximation algorithm; namely, a polynomial time al-
gorithm that computes a 2-connected spanning subgraph H of G in which the
degree of every node v is at most 6b(v)+ 6, and the cost of H is at most 4 times
the optimal cost.

To prove Theorem 1 we first compute a degree-constrained spanning tree J with
+1 degree violation using the algorithm of [18]. Then we compute an augmenting
edge-set I such that J∪I is 2-connected, using the iterative rounding method. To
apply this method for degree constrained problems, one proves that any basic
LP-solution x > 0 has an edge e with hight xe value, or there exists a node
v ∈ B such that degE(v) is close to b(v). Otherwise, one shows a contradiction
using the so called “token assignment” method. However, for node-connectivity
problems this method differs from the one used for edge-connectivity problems,
see Definition 2 and the paragraph after Lemma 6 in Section 2.

Theorem 2. The Minimum Degree k-Arborescence problem admits a polynomial
time approximation algorithm with ratio O(

√
(k log k)/Δ∗), where Δ∗ is the op-

timal solution value, namely, the minimal maximum outdegree possible. Further-
more, the problem admits no o(log n)-approximation, unless NP=Quasi(P).

The algorithm in Theorem 2 uses single-commodity flows and solutions for Sub-
modular Cover problem as sub-routines. These techniques may be of independent
interest.

Integrality Gap of the Natural LP Relaxation for Minimum Degree k-MST.
To get some indication that the problem might be hard even on undirected
graphs, consider the following natural LP-relaxation for Minimum Degree k-MST.
The intended integral solution has yv = 1 for nodes picked in the optimum tree
T ∗, xe = 1 for e ∈ T ∗, and d equal to the maximum degree of T ∗.
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Minimize d

Subject to
∑
v �=r

yv ≥ k∑
e∈δ(S)

xe ≥ yv ∀v ∈ V \ {r} ∀S ⊂ V, r ∈ S, v ∈ S∑
e∈δ(v)

xe ≤ d ∀v ∈ V
0 ≤ xe, yv ≤ 1 ∀e ∈ E ∀v ∈ V

(1)

We show that this LP-relaxation has integrality gap Ω(
√
k) or Ω

(
n1/4

)
where

n = |V |. Consider a rooted at r complete Δ-ary tree T of height h and let
k = �(Δ+Δ2 + · · ·+Δh)/(Δ+ 1)�. It is easy to see that giving xe = 1/(Δ+ 1)
to all the edges e ∈ T and yv = 1/(Δ + 1) to all nodes v = r satisfies all the
constraints with fractional objective value d = 1. In order to cover k nodes,
any integral tree however has to have a maximum degree of at least δ where
δ + δ(δ − 1) + δ(δ − 1)2 + · · · + δ(δ − 1)h−1 ≥ k. Such δ satisfies δ = Ω(k1/h).
Thus the optimum integral tree must have maximum degree Ω

(
k1/h

)
giving an

integrality gap of Ω
(
k1/h

)
. If we let h = 2, we get that k = Δ and n = 1+Δ+Δ2

and the integrality gap is Ω(
√
Δ) which is Ω(

√
k) or Ω(n1/4).

Theorem 3. The Degree and Diameter Bounded k-Tree problem admits no
o(logn)-approximation algorithm, unless NP=Quasi(P). This is so even for the
special case in which some optimal solution tree has diameter 4.

Let δF (A) denote the set of edges in F between A and V \ A. For i ∈ K let
A ) i denote that |A ∩ {ui, vi}| = 1. Menger’s Theorem for edge-connectivity
(see [11]) states that for a node pair ui, vi of a graph H = (V,E) we have
λH(ui, vi) = min

A�i
|δE(A)|. Hence if λH(ui, vi) ≥ ri for a graph H = (V,E),

then for any A with A ) i we must have |δE(A)| ≥ ri. A standard “cut-type”
LP-relaxation for Degree-Constrained Steiner Network problem is as follows.

Minimize
∑
e∈E

cexe

Subject to
∑

e∈δE(A)

xe ≥ ri(A) ∀i ∀A) i∑
e∈δE(v)

xe ≤ b(v) ∀v
xe ∈ [0, 1] ∀e

(2)

Theorem 4. Suppose that for an instance of Prize-Collecting Degree-Constrained
Steiner Network for any P ′ ⊆ P the following holds. For an instance of Degree-
Constrained Steiner Network defined by P ′ there exists a polynomial-time algo-
rithm that computes a subgraph H ′ of cost at most ρ times the optimal value of
LP (2) with requirements restricted to P ′ such that degH′(v) ≤ αb(v) + β for
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all v ∈ V . Then we can compute in polynomial time numbers c∗ and π∗ with
c∗ + π∗ ≤ opt, such that for any μ ∈ (0, 1), Prize-Collecting Degree-Constrained
Steiner Network admits a polynomial time algorithm that computes a subgraph H
such that val(H) ≤ ρ

1−μc
∗ + 1

μπ
∗ and degH(v) ≤ α

1−μb(v) + β for all v ∈ V .

The above theorem can be used along with the following known results. Louis and
Vishnoi [14] obtain ρ = 2, α = 2, β = 2 for Degree-Constrained Steiner Network.
Lau and Singh [13] obtain ρ = 2, α = 1, β = 3 for Degree-Constrained Steiner
Forest and ρ = 2, α = 1, β = 6rmax + 3 for Degree-Constrained Steiner Network
where rmax is the maximum requirement.

In the Group Steiner Tree problem we are given a root s and a collection
P = {S1, . . . , Sk} of node-subsets (groups), and seek a minimum-cost subgraph
H of G that contains a path from s to each group Si. The Group Steiner Tree
admits an O(log3 n) approximation [6].

Theorem 5. If Group Steiner Tree admits approximation ratio ρ then so does
Leaf-Constrained Steiner Tree. Consequently, Leaf-Constrained Steiner Tree admits
an O(log3 n)-approximation algorithm.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Theorems 3, 4,
and 5, will be proved in the full version, due to space limitations.

2 Algorithm for Degree-Constrained 2-Connected Subgraph

We start by considering the problem of augmenting a connected graph J =
(V,EJ ) by a minimum-cost edge-set I ⊆ E such that degI(v) ≤ b(v) for all
v ∈ V and such that J ∪ I is 2-connected.

Definition 1. For a node v of J let μJ(v) be the number of connected compo-
nents of J \ {v}; v is a cut-node of J if μJ(v) ≥ 2.

Note that μJ(v) ≤ degJ (v) for every v ∈ V . For S ⊆ V let ΓJ(S) denote the
set of neighbors of S in J . Let s be a non-cut-node of J . A set S ⊆ V \ {s} is
violated if |ΓJ(S)| = 1 and s /∈ ΓJ(S). Let SJ denote the set of violated sets of J .
Recall that δF (S) denotes the set of edges in F between S and V \S. For S ∈ SJ
let ζF (S) denote the set of edges in F with one endnode in S and the other
in V \ (S ∪ ΓJ(S)). By Menger’s Theorem, J ∪ I is 2-connected if, and only if,
|ζI(S)| ≥ 1 for every S ∈ SJ . Thus a natural LP-relaxation for our augmentation
problem is τ = min{c · x : x ∈ P (J, b)}, where P (J, b) is the polytope defined by
the following constraints:

x(ζE(S)) ≥ 1 for all S ∈ SJ
x(δE(v)) ≤ b(v) for all v ∈ B

0 ≤ xe ≤ 1 for all e ∈ E
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Theorem 6. There exists a polynomial time algorithm that given an instance
of Degree-Constrained 2-Connected Subgraph and a connected spanning subgraph
(V, J) of G computes an edge set I ⊆ E \ J such that c(I) ≤ 3τ and such that
degI(v) ≤ 2μJ(v) + 3b(v) + 3 for all v ∈ V .

Theorem 6 will be proved later. Now we show how to deduce the promised
approximation ratio from it. Consider the following two phase algorithm.

Phase 1: With degree bounds b(v), use the (b(v)+1, 1)-approximation algorithm
of Singh and Lau [18] for the Degree Constrained Steiner Tree problem to compute
a spanning tree J in G.

Phase 2: Use the algorithm from Theorem 6 to compute an augmenting edge
set I such that H = J ∪ I is 2-connected.

We prove the ratio. We have c(J) ≤ opt and c(I) ≤ 3τ , hence c(H) = c(J) +
c(I) ≤ 4opt. We now prove the approximability of the degrees. Let v ∈ V . Note
that μJ(v) ≤ degJ (v) ≤ b(v) + 1. Thus we have

degI(v) ≤ 2μJ(v) + 3b(v) + 3 ≤ 2(b(v) + 1) + 3b(v) + 3 = 5b(v) + 5.

This implies

degH(v) ≤ degJ(v) + degI(v) ≤ b(v) + 1 + 5b(v) + 5 = 6b(v) + 6.

In the rest of this section we will prove the following statement, that implies
Theorem 6.

Lemma 1. Let x be an extreme point of the polytope P (J, b) with 0 < xe <
1
3

for every e ∈ E. Then there is v ∈ B such that degE(v) ≤ 2μJ(v) + 3b(v) + 3.

Lemma 1 implies Theorem 6 as follows. Given a partial solution I and a pa-
rameter α ≥ 1, the residual degree bounds are bαI (v) = b(v) − degI(v)/α. The
following algorithm starts with I = ∅ and performs iterations. In every itera-
tion, we work with the residual polytope P (SJ∪I , bαI ), and remove some edges
from E and/or some nodes from B, until E becomes empty. Let α = 3 and
β(v) = 2μJ(v) + 3 for all v ∈ B. It is easy to see that for any edge-set I ⊆ E we
have μJ∪I(v) ≤ μJ(v) for every v ∈ V .

Algorithm as in Theorem 6
Input: A connected graph (V, J), an edge-set E on V with costs {ce : e ∈ E},
degree bounds {b(v) : v ∈ V }, and non-negative integers {β(v) : v ∈ V }.
Initialization: I ← ∅.
If P (J, b) = ∅, then return ”UNFEASIBLE” and STOP.
While E = ∅ do:

1. Find a basic solution x ∈ P (SJ∪I , bαI ).
2. Remove from E all edges with xe = 0.
3. Add to I and remove from E all edges with xe ≥ 1/α.
4. Remove from B every v ∈ B with degE(v) ≤ αbαI (v) + β(v).

EndWhile
Return I.
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It is a routine to prove the following statement.

Lemma 2. The above algorithm computes an edge set I such that J ∪ I is
2-connected, c(I) ≤ ατ , and degJ (v) ≤ αb(v) + β(v) for all v ∈ B.

It remains to prove Lemma 1. The following statement is well known and can
be proved using standard “uncrossing” methods.

Lemma 3. The family SJ of violated sets is uncrossable, namely, for anyX,Y ∈
SJ we have X ∩ Y,X ∪ Y ∈ SJ or X \ Y, Y \X ∈ SJ .
Recall that a set-family L is laminar if for any distinct sets X,Y ∈ L either
X ⊂ Y , or Y ⊂ X , or X ∩ Y = ∅. Any laminar family L defines a partial order
on its members by inclusion; we carry the usual notion of children, descendants,
and leaves of laminar set families. The following statement is proved using a
standard “uncrossing” argument.

Lemma 4. For any basic solution x ∈ P (J, b) with 0 < x(e) < 1 for all e ∈ E,
there exists a laminar family L ⊆ S and T ⊆ B, such that x is the unique
solution to the linear equation system:

x(ζE(S)) = 1 for all S ∈ L
x(δE(v)) = b(v) for all v ∈ T

Thus |L| + |T | = |E| and the characteristic vectors of {ζE(S) : S ∈ L} are
linearly independent.

Let x, L, and T be as in Lemma 4. Let I ′ is the set of edges in E with exactly
one endnode in B, I ′′ is set of edges in E with both endnodes in B, and F =
E \ (I ′ ∪ I ′′).
Lemma 5. Let {β(v) : v ∈ V } be integers. Then there is v ∈ B such that
degE(v) ≤ αb(v) + β(v), if the following property holds:

|L| < 1
2
(β(B) − |B|) + αx(I ′′) +

1
2
|I ′|+ 1

2
αx(I ′) + |F | (3)

Proof. Note that∑
v∈B

(degE(v)− αb(v)) ≤
∑
v∈B

(degE(v)− αx(δE(v)))

=
∑
v∈B

(degI′(v) + degI′′(v))− α
∑
v∈B

(x(δI′ (v)) + x(δI′′ (v)))

= |I ′|+ 2|I ′′| − αx(I ′)− 2αx(I ′′) .

Thus |I ′|+2|I ′′|−αx(I ′)−2αx(I ′′) < β(B)+ |B| implies that degE(v) ≤ αb(v)+
β(v) for some v ∈ B. Adding |I ′|+ 2|F | to both sides gives 2(|I ′|+ |I ′′|+ |F |) <
β(B) + |B|+ αx(I ′) + 2αx(I ′′) + |I ′|+ 2|F |. Note that |I ′|+ |I ′′|+ |F | = |E| =
|L|+ |T |. Consequently, since |T | ≤ |B|, it is sufficient to prove that

2(|L|+ |B|) < β(B) + |B|+ αx(I ′) + 2αx(I ′′) + |I ′|+ 2|F | .
Multiplying both sides by 1

2 and rearranging terms gives (3).
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Let us say that an edge e covers S ∈ L if e has one endnode in S and the other
in V \ (S ∪ ΓJ (S)). Given S ∈ L and an edge set E we will use the following
notation.

– C is the set of children in L of S,
– ES is the set of edges in E covering S but not a child of S,
– EC is the set of edges in E covering some child of S but not S.

To show that there is v ∈ B with degE(v) ≤ αb(v) + β(v) for α = 3 and
β(v) = 2μJ(v)+3, we assign a certain amount of tokens to edges in E and nodes
in B, such that the total amount of tokens does not exceed the right hand side
of (3). A part of tokens assigned to an edge can be placed at some endnode or
at the middle of the edge. A set S ∈ L gets the tokens placed at an endnode v
of an edge e if e ∈ ES and v ∈ S, or if e ∈ EC and v does not belong to a child
of S. S gets the tokens placed at the middle of e if e ∈ EC . It is easy to verify
that no two sets get the same token part of an edge. S gets also a token from
v ∈ B by the following rule.

Definition 2. We say that S ∈ L owns a node v if v ∈ S but v is not in a child
of S. We say that S shares v if v ∈ ΓJ (S).

Clearly, if S ∈ L owns v then no other set in L owns v. Note that if S shares v,
then no ancestor or descendant of S in L shares v. This implies the following.

Lemma 6. For any v ∈ B, the number of sets in L sharing v is at most μJ (v).

Thus if μJ(v) + 1 tokens are assigned to v, then every set S ∈ L that owns
or shares v can get 1 token from v. We will argue by induction that we can
redistribute the tokens of S and its descendants in L such that every proper
descendant of S in L gets at least 1 token and S gets 2 tokens. This differs
from the usual token distribution in edge-connectivity problems, where nodes
are owned but not shared. In node-connectivity, the cut-nodes may be shared
by many members of L, and in our case, by at most μJ(v) members.

For β(v) = 2μJ(v) + 3 and α = 3, (3) becomes:

|L| < μJ(B) + |B|+ 3x(I ′′) +
1
2
|I ′|+ 3

2
x(I ′) + |J | . (4)

Initial token assignment (total amount of tokens ≤ the r.h.s of (4)):

– μJ(v) + 1 tokens to every v ∈ B,
– xe tokens to each endnode in B of an edge e,
– 1

2 token to each endnode in V \B of an edge e.

Lemma 7. We can redistribute the tokens of S and its descendants in L such
that every proper descendant of S in L gets at least 1 token and S gets 2 tokens.
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Proof. Since 0 < xe <
1
3 for every e ∈ E, |ζE(S)| ≥ 4 for every S ∈ L. Suppose

that S is a leaf. If S ∩ B = ∅, then S gets 1
2 token from an endnode of every

edge in ζE(S), and in total at least 2 tokens. If there is v ∈ S ∩ B then S owns
v and gets 1 token from v. S gets x(ζE(S)) = 1 tokens from edges in ζE(S).
Consequently, S gets in total at least 2 tokens, as claimed. Now suppose that S
is not a leaf. S gets |C| tokens from its children, hence if |C| ≥ 2 then we are done.
Thus we are left with the case that S has a unique child C, and needs 1 token
not from C. If S contains or shares some v ∈ B then we are done. Otherwise,
S gets 1

2 token from the corresponding endnode of each edge in ES ∪ EC . By
the linear independence an integrality of cuts |ES ∪ EC | ≥ 2, hence S gets the
desired token from the edges in ES ∪EC .
The proof of Lemma 1, and thus also of Theorem 1, is now complete.

3 Algorithm for Minimum Degree k-Arborescence

We may assume that in the input graph G every node is reachable from the
root s, that every terminal has indegree 1 and outdegree 0, and that the set
of terminal of every arborescence T coincides with the set of leaves of T . Let
U = V \ S. Before describing the algorithm, we need some definitions.

Definition 3. For W ⊆ U and an integer parameter α ≥ 1 the network Fα(W )
with source s′ and sink t′ is obtained from G as follows.

1. Assign infinite capacity to every edge of G and capacity α to every node in U .
2. Add a new node s′ and add new edges of capacity α each from s′ to every

node in W .
3. Add two new nodes t, t′, add an edge of capacity 1 from every terminal to t,

and add an edge of capacity k from t to t′.

Our algorithm runs with an integer parameter α set eventually to

α =
⌈√

k ·Δ∗ · (ln k + 1)
⌉
. (5)

Although Δ∗ is not known, Δ∗ ≤ k, and our algorithm applies exhaustive search
in the range 1, . . . , k.

Recall that a set-function ν defined on subsets of a ground-set U is submodular
if ν(A)+ν(B) ≥ ν(A∪B)+ν(A∩B) for all A,B ⊆ U . Consider the following well
known generic problem (for our purposes we state only the unweighted version).
Submodular Cover
Instance: A finite set U and a non-decreasing submodular function ν : 2U '→ Z.
Objective: A minimum-size subset W ⊆ U such that ν(W ) = ν(U).

The Submodular Cover Greedy Algorithm (for the unweighted version) starts
with W = ∅ and while ν(W ) < ν(U) repeatedly adds to W an element u ∈ U \W
that maximizes ν(W ∪ {u}) − ν(W ). At the end, W is output. It is proved in
[19] that the Greedy Algorithm for Submodular Cover has approximation ratio
ln max

u∈U
ν({u}) + 1.

A generalization of the following statement is proved in [2].
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Lemma 8 ([2]). For W ⊆ U let να(W ) be the maximum st-flow value in the
network Fα(W ). Then να is non-decreasing and submodular, and να(U) ≤ k.
The algorithm is as follows.

1. Execute the Submodular Cover Greedy Algorithm with U = V \ S and with
ν = να; let W ⊆ U be the node-set computed.

2. Let f be a maximum integral flow in Fα(W ) and let JW = {e ∈ E : f(e) > 0}
be the set of those edges in E that carry a positive flow in Fα(W ).
Let TW be an inclusion-minimal arborescence in G rooted at s containingW .

3. Return any k-arborescence contained in the graph (V, JW ) ∪ TW .

In the rest of this section we prove that the graph (V, JW )∪TW indeed contains
a k-arborescence, and that for any integer α ≥ 1 it has maximum outdegree at
most α+ (ln k + 1) · kΔ∗/α.

This implies the approximation ratio α/Δ∗+(lnk+1)·k/α = O(
√

(k log k)/Δ∗)
for α given by (5).

Definition 4. A collection T of sub-arborescences of an arborescence T is an
α-leaf-covering decomposition of T if the arborescences in T are pairwise node-
disjoint, every leaf of T belongs to exactly one of them, and each of them has at
most α leaves.

Lemma 9. Suppose that G contains a k-arborescence that admits an α-leaf-
covering decomposition T . Let R be the set of roots of the arborescences in T .
Then να(R) = k, and for the set W computed by the algorithm the following
holds:

(i) να(W ) = k and thus the graph JW ∪ TW contains a k-arborescence.
(ii) The graph (V, JW )∪TW has maximum outdegree at most α+ |T | · (ln k+1).

Proof. We prove that να(R) = k. For a terminal v in T , let rv ∈ R be the root
of the (unique) arborescence Tv ∈ T that contains v, and let Pv be the path in
Fα(R) that consists of: the edge s′rv, the unique path from rv to v in Tv, and
the edges vt′ and t′t. Let f be the flow obtained by sending for every terminal
v of T one flow unit along Pv. Then f has value k, since T has k terminals.
We verify that f obeys the capacity constraints in Fα(R). For every r ∈ R, the
arborescence Tr ∈ T which root is r, has at most α terminals; hence the edge
s′r carries at most α flow units, which does not exceed its capacity α. This also
implies that the capacity α on all nodes in U is met. For every terminal v of T ,
the edge vt carries one flow unit and has capacity 1. The edge t′t carries k flow
units and has capacity k. Other edges have infinite capacity.

We prove (i). By Lemma 8, να is non-decreasing and να(U) ≤ k. As να(U) ≥
να(R) = k and να(W ) = να(U), we conclude that ν(W ) = k. This implies that
in the graph (V, JW ), k terminals are reachable from W , and (i) follows.

We prove (ii). In the graph (V, JW ), the outdegree of any node is at most α.
This follows from the capacity α on any node in U . We have |W | ≤ |R|·(ln k+1) =
|T | ·(ln k+1), by Lemma 9 and the approximation ratio of the Submodular Cover
Greedy Algorithm. Since TW is an arborescence with leaf-set W , the maximum
outdegree of TW is at most |W | ≤ |T | · (ln k + 1). The statement follows.
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The following lemma implies that the optimal tree T ∗ admits an α-leaf-covering
decomposition T of size |T | ≤ kΔ∗/α for any α ≥ 1. This together with Lemma 9
concludes the proof of Theorem 2.

Lemma 10. Any arborescence T with k leaves and maximum outdegree Δ ad-
mits an α-leaf-covering decomposition T of size |T | ≤ Δ · �k/(α + 1)� + 1, for
any integer α ≥ 1.

Proof. For a node r of an arborescence T with root s let us use the following
notation: Tr is the sub-arborescence of T with root r that contains all descen-
dants of r in T , and Pr is the set of internal nodes in the ar-path in T . where
a is the closest to r ancestor of r that has outdegree at least 2. Let us say that
a node u ∈ U of T is α-critical if Tu has more than α leaves, but no child of u
has this property. It is easy to see that T has an α-critical node if, and only if,
T has more than α leaves.

Consider the following algorithm. Start with T = ∅. While T has an α-critical
node u do the following: add Tr to T for every child r of u, and remove Tu and
Pu from T (note that since we remove Pu no new leaves are created). When
the while loop ends, if T is nonempty, add the remaining arborescence T = Ts
(which now has at most α leaves) to T .

By the definition, the arborescences in T are pairwise node-disjoint, every leaf
of T belongs to exactly one of them, and each of them has at most α leaves. It
remains to prove the bound on T . In the loop, when we consider an α-critical
node u, at least α+ 1 leaves are removed from T and at most Δ arborescences
are added to T . Hence |T | ≤ Δ · �k/(α+1)� at the end of the loop. At most one
additional arborescence is added to T after the loop. The statement follows.
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Abstract. In this paper we provide improved approximation algorithms
for the Min-Max Tree Cover and Bounded Tree Cover problems. Given
a graph G = (V, E) with weights w : E → N+, a set T1, T2, . . . , Tk of
subtrees of G is called a tree cover of G if V =

⋃k
i=1 V (Ti). In the Min-

Max k-tree Cover problem we are given graph G and a positive integer k
and the goal is to find a tree cover with k trees, such that the weight of
the largest tree in the cover is minimized. We present a 3-approximation
algorithm for this improving the two different approximation algorithms
presented in [1,5] with ratio 4. The problem is known to have an APX-
hardness lower bound of 3

2
[12]. In the Bounded Tree Cover problem we

are given graph G and a bound λ and the goal is to find a tree cover
with minimum number of trees such that each tree has weight at most
λ. We present a 2.5-approximation algorithm for this, improving the
3-approximation bound in [1].

1 Introduction

The study of problems in which the vertices of a given graph are needed to be
covered with special subgraphs, such as trees, paths, or cycles, with a bound on
the number of subgraphs used or their weights has attracted a lot of attention
in operations research and computer science community. Such problems arise
naturally in many applications such as vehicle routing. As an example, in a
vehicle routing problem with min-max objective, we are given a weighted graph
G = (V,E) in which each node represents a client. The goal is to dispatch a
number of service vehicles to service the clients and the goal is to minimize the
largest client waiting time, which is equivalent to minimizing the total distance
traveled by the vehicle which has traveled the most. Observe that the subgraph
traveled by each vehicle is a walk that can be approximated with a tree. This
problem, under the name of “Nurse station location”, was the main motivation
in [5] to study these problems. In a different scenario, we may want to guarantee
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an upper bound for the service time; so we are given a bound on the distance
traveled by each vehicle and the objective is to minimize the number of required
vehicles needed to satisfy this guarantee. Min-max and bounded vehicle routing
problems are part of an active body of research in the literature and have several
application (see e.g.[2,5,1,11,12] and the references there).

In this paper we consider Min-Max k-Tree Cover Problem (MMkTC) and
Bounded Tree Cover Problem (BTC) defined formally below. Suppose we are
given an undirected graph G = (V,E) and a weight function w : E → N+. For
every subgraph H of G we use V (H) and E(H) to denote the set of vertices
and edges of H , respectively. A set T1, T2, . . . , Tk of subtrees of G is called a tree
cover of G if every vertex of V appears in at least one Ti (1 ≤ i ≤ k), i.e. V =⋃k
i=1 V (Ti). Note that the trees in a tree-cover are not necessarily edge-disjoint

(thus may share vertices too). The weight of a tree Ti is W (Ti) =
∑

e∈Ti
w(e). In

the Min-Max k-Tree Cover problem (MMkTC) we are given the weighted graph
G and a positive integer k and the goal is to find a tree cover with k trees, which
we call a k-tree cover, such that the weight of the largest tree in the cover is
minimized. In the Bounded Tree Cover problem (BTC), we are given the weight
G and a parameter λ and the goal is to find a tree cover with minimum number
of trees such that the weight of every tree in the cover is at most λ. There are
other variations of these problems in which one wants to cover the vertices of
a graph with paths or cycles (instead of trees), however the known algorithms
for these variations (e.g. see [1]) solve the problem for tree versions first and
then take a walk of the trees to obtain a path. So apart from their real world
applications [5], covering graphs with trees have been the main step for covering
graphs with paths and cycles.

Related Works: Even et al. [5] and Arkin et al. [1] gave two different 4-
approximation algorithms for MMkTC. It is shown that MMkTC is APX-hard
in [12], specifically a lower bound of 3

2 is given. The best approximation factor
for BTC is due to Arkin et al. [1] which give a 3-approximation algorithm. It is
easy to see that BTC is APX-hard even in the case when G is a weighted tree
with height one, by an easy reduction from the bin packing problem.

Even et al. [5] give a 4-approximation algorithm for the rooted version of
MMkTC in which k vertices are given in input and each tree of the trees in a
k-tree cover has to be rooted at one of them. Nagamochi and Okada[10] give a
(3 − 2

k+1 )-approximation algorithm for MMkTC when all the trees have to be
rooted at a given vertex r. They also give a (2− 2

k+1 )-approximation algorithm
for MMkTC when the underlying metric is a tree and (2 + ε)-approximation
algorithm for MMkTC when the underlying metric is a tree and each tree should
be rooted at a certain vertex r.

In addition to trees, covering with other objects, such as tours, paths, and
stars are studied in the literature. Frederickson et al. [6] gave an (e + 1 − 1

k )-
approximation algorithm for covering a metric graph with k tours rooted at a
given vertex (called k-traveling salesperson problem or k-TSP) where e is the best
approximation ratio for the classic TSP problem. Other different variations of
min-max and bounded vehicle routing problems are also studied in the literature
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(see e.g. [1,11,13,9,7]). Another related problem to k-TSP is called k-Traveling
Repairman Problem (KTR) in which instead of minimizing the total lengths of
the tour the objective function is to minimize the total latency of the nodes
where the latency of each node is the distance traveled (time elapsed) before
visiting that node for the first time. The case of k = 1 is known as the minimum
latency problem. The best known approximation algorithm for k = 1 is 3.59 due
to [3] and the best known approximation for KTR is 2(2 +α) [4] where α is the
best approximation ratio for the problem of finding minimum tree spanning k
vertices a.k.a k-MST (see also [8] and the references there).

Our Result: In this paper we improve the approximation ratios for both
MMkTC and BTC problems.

Theorem 1. There is a polynomial time 3-approximation algorithm for
MMkTC.

Theorem 2. There is a polynomial time 2.5-approximation algorithm for BTC.

2 Preliminaries

For a connected subgraph H ⊆ G by tree weight of H we mean the weight of
a minimum spanning tree (MST) of H and denote this value by WT (H). Note
that this is different from the weight of H , i.e. W (H) which is the sum of weights
of all the edges of H . In every solution to either MMkTC or BTC problem, we
can replace every edge uv of a tree in the cover with the shortest path between
u, v in the graph without increasing the cost of the tree and the solution still
remains feasible. Therefore, without loss of generality, if the input graph is G
and G̃ is the shortest-path metric completion of G, we can assume that we are
working with the complete graph G̃. Any solution to G̃ can be transformed into
a feasible solution of G (for MMkTC or BTC) without increasing the cost. The
following lemma will be useful in our algorithms for both the MMkTC and BTC
problems.

Lemma 1. Suppose G = (V,E) is a graph which has a k-tree cover T =
{T1, . . . , Tk}, with maximum tree weight of λ and let λ′ ≤ λ be a given param-
eter. Assume we delete all the edges e with w(e) > λ′ (call them heavy edges)
and the resulting connected components be C1, . . . , Cp. Then Σp

i=1WT (Ci) ≤
kλ+ (k − p)λ′.
Proof. Let G′ =

⋃p
i=1 Ci be the graph after deleting the heavy edges. Each tree

in T might be broken into a number of subtrees (or parts) after deleting heavy
edges; let T ′ denote the set of these broken subtrees, |T ′| = k′, and ni be the
number of trees of T ′ in component Ci. The total weight of the subtrees in T ′
is at most kλ − (k′ − k)λ′, since the weight of each tree in T is at most λ and
we have deleted at least k′ − k edges form the trees in T each having weight at
least λ′. In each component Ci we use the cheapest ni− 1 edges that connect all
the trees of T ′ in Ci into one spanning tree of Ci. The weight of each of these
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added edges is no more than λ′ and we have to add a total of k′ − p such edges
(over all the components) in order to obtain a spanning tree for each component
Ci. Thus, the total weight of spanning trees of the components Ci’s is at most
kλ− (k′ − k)λ′ + (k′ − p)λ′ = kλ+ (k − p)λ′. ��
Through our algorithms we may need to break a large tree into smaller trees
that cover the (vertices of) original tree, are edge-disjoint, and such that the
weight of each of the smaller trees is bounded by a given parameter. We use the
following lemma which is implicitly proved (in a slightly weaker form) in [5].

Lemma 2. Given a tree T with weight W (T ) and a parameter β > 0 such that
all the edges of T have weight at most β, we can edge-decompose T into trees
T1, . . . , Tk with k ≤ max(�W (T )

β �, 1) such that W (Ti) ≤ 2β for each 1 ≤ i ≤ k.
Proof. The idea is to “split away” (defined below) trees of weight in interval
[β, 2β) until we are left with a tree of size smaller than 2β. This process of
“splitting away” is explained in [5]. Consider T being rooted at an arbitrary
node r ∈ T . For every vertex v ∈ T we use Tv to denote the subtree of T
rooted at v; for every edge e = (u, v) we use Te to denote the subtree rooted
at u which consist of Tv plus the edge e. Subtrees are called light, medium,
or heavy depending on whether their weight is smaller than β, in the range
[β, 2β), or ≥ 2β, respectively. For a vertex v whose children are connected to it
using edges e1, e2, . . . , el splitting away subtree T ′ =

⋃b
i=a Tei means removing

all the edges of T ′ and vertices of T ′ (except v) from T and putting T ′ in our
decomposition. Note that we can always split away a medium tree and put it
in our decomposition and all the trees we place in our decomposition are edge-
disjoint. So assume that all the subtrees of T are either heavy or light. Suppose
Tv is a heavy subtree whose children are connected to v by edges e1, e2, . . . such
that all subtrees Te1 , Te2 , . . . are light (if any of them is heavy we take that
subtree). Let i be the smallest index such that T ′ =

⋃i
a=1 Tea has weight at

least β. Note that T ′ will be medium as all Tej ’s are light. We split away T ′ from
T and repeat the process until there is no heavy subtree of T (so at the end the
left-over T is either medium or light).

If W (T ) ≤ 2β then we do not split away any tree (since the entire tree T is
medium) and the theorem holds trivially. Suppose the split trees are T1, T2, . . . , Td
with d ≥ 2 and W (Ti) ∈ [β, 2β) for 1 ≤ i < d. The only tree that may have
weight less than β is Td. Note that in the step when we split away Td−1 the total
weight of the remaining tree was at least 2β, therefore we can assume that the
average weight of Td−1 and Td is not less than β. Thus, the average weight of all
Ti’s is not less than β which proves that d cannot be greater than �W (T )

β �. ��

3 A 3-Approximation Algorithm for MMkTC

In this section we prove Theorem 1. Before describing our algorithm we briefly
explain the 4-approximation algorithm of [5]. Suppose that the value of the
optimum solution to the given instance of MMkTC is opt and let λ ≥ opt be
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a value that we have guessed as an upper bound for opt. The algorithm of [5]
will either produce a k-tree cover whose largest tree has weight at most 4λ or
will declare that opt must be larger than λ, in which case we adjust our guess
λ. For simplicity, let us assume that G is connected and does not have any edge
e with w(e) > λ. Let T be a MST of G and T = {T1, . . . , Tk} be an optimum
k-tree cover of G. We can obtain a spanning tree of G from T by adding at most
k−1 edges between the trees of T . This adds a total of at most (k−1)λ as each
edge has weight at most λ. Thus, W (T ) ≤∑k

i=1W (Ti) + (k − 1)λ ≤ (2k − 1)λ.
Therefore, if we start from a MST of G, say T , and we split away trees of size
in [2λ, 4λ) then we obtain a total of at most (2k − 1)λ/2λk ≤ k trees each of
which has weight at most 4λ. In reality the input graph might have edges of
weight larger than λ. First, we delete all such edges (called heavy edges). This
might make the graph disconnected. Let {Gi}i be the connected components of
the graph after deleting these heavy edges and let Ti be a MST of Gi. For each
component Gi the algorithm of [5] splits away trees of weight in [2λ, 4λ). Using
Lemma 2 one can obtain a ki-tree cover of eachGi with ki ≤ max(WT (Gi)/2λ, 1)
with each tree having weight at most 4λ. A similar argument as the one above
shows (Lemma 3 in [5]) that

∑
i(ki +1) ≤ k. One can do a binary search for the

smallest value of λ with λ ≥ opt which yields a polynomial 4-approximation.
Now we describe our algorithm. As said earlier, we work with the metric graph

G̃. We use OPT to denote an optimal solution and opt to denote the weight
of the largest tree in OPT. Similar to [5] we assume we have a guessed value
λ for opt and present an algorithm which finds a k-tree cover with maximum
tree weight at most 3λ if λ ≥ opt. By doing a binary search for λ we obtain a
3-approximation algorithm. First, we delete all the edges e with w(e) > λ/2 to
obtain graph G′. Let C1, . . . , C
 be the components of G′ whose tree weight (i.e.
the weight of a MST of that component) is at most λ (we refer to them as light
components), and let C
+1, . . . , C
+h be the components of G′ with tree weight
greater than λ (which we refer to as heavy components). The general idea of the
algorithm is as follows: For every light component we do one of the following
three: find a MST of it as one tree in our tree cover, or we decide to connect it to
another light components with an edge of weight at most λ in which case we find
a component with MST weight at most 3λ and put that MST as a tree in our
solution, or we decide to connect a light component to a heavy component. For
heavy components (to which some light components might have been attached)
we split away trees with weight in [ 32λ, 3λ). We can show that if this is done
carefully, the number of trees is not too big. We explain the details below.

For every light component Ci let wmin(Ci) be the minimum edge weight
(in graph G̃) between Ci and a heavy component if such an edge exists with
weight at most λ, otherwise set wmin(Ci) to be infinity. We might decide to
combine Ci with a heavy component (one to which Ci has an edge of weight
wmin(Ci)). In that case the tree weight of that heavy component will be increased
by A(Ci) = WT (Ci) + wmin(Ci). The following lemma shows how we can cover
the set of heavy components and some subset of light components with a small
number of trees whose weight is not greater than 3λ.
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Lemma 3. Let Ls = {Cl1 , . . . , Cls} be a set of s light-components with bounded
A(Ci) values. If

∑
1≤i≤sA(Cli) +

∑

+1≤i≤
+hWT (Ci) ≤ x − hλ2 , then we can

cover all the nodes in the heavy-components and in components of Ls with at
most � 2x3λ� trees with maximum tree weight no more than 3λ.

Proof. First we find a MST in each heavy component and in each component
of Ls, then we attach the MST of each Cli to the nearest spanning tree found
for heavy components. As we have h heavy components, we get a total of h
trees, call them T1, . . . , Th. From the definition of A(Clj ), the total weight of the
constructed trees will be

h∑
i=1

W (Ti) =
∑

1≤j≤s
A(Clj ) +

∑

+1≤i≤
+h

WT (Ci) ≤ x− hλ2 , (1)

where the last inequality is by the assumption of lemma. Now to each of the
h constructed trees we will apply the procedure of Lemma 2 with β = 3

2λ to
obtain trees of weight at most 3λ. This gives at most

∑
1≤i≤h max(� 2W (Ti)

3λ �, 1)
trees. To complete the proof of lemma it is sufficient to prove the following:∑

1≤i≤h
max(�2W (Ti)

3λ
�, 1) ≤ �2x

3λ
�. (2)

Consider Ti for an arbitrary value of i. If Ti has been split into more than
one tree, by Lemma 2 we know that the amortized weight of the split trees is
not less than 3

2λ. If Ti is not split, as Ti contains a spanning tree over a heavy
component, W (Ti) ≥ λ. Thus every split tree has weight at least 3

2λ excepts
possibly h trees which have weight at least λ. Therefore, if the total number of
split trees is r, they have a total weight of at least r 3

2λ − hλ2 . Using Equation
(1), it follows that r cannot be more than � 2x3λ�. ��
Definition 1. For two given parameters a, b, graph H has � + a + b nodes: �
(regular) nodes v1, . . . , v
, where each vi corresponds to a light component Ci,
a dummy nodes called null nodes, and b dummy nodes called heavy nodes. We
add an edge with weight zero between two regular nodes vi and vj in H if and
only if i = j and there is an edge in G̃ with length no more than λ connecting a
vertex of Ci to a vertex of Cj . Every null node is adjacent to each regular node
vi (1 ≤ i ≤ �) with weight zero. Every regular node vi ∈ H whose corresponding
light component Ci has finite value of A(Ci) is connected to every heavy node in
H with an edge of weight A(Ci). There are no other edges in H.

Theorem 3. Algorithm MMkTC (Figure 1) finds a k-tree cover with maximum
tree weight at most 3λ, if λ ≥ opt.

Proof. Through out the whole proof we assume λ ≥ opt. Consider an optimal
k-tree cover OPT; so each T ∈ OPT has weight at most λ. First note that every
tree T ∈ OPT can have at most one edge of value larger than λ/2; therefore
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Inputs: G(V, E), k, λ
Output: A set S which is a k-tree cover with maximum tree size 3λ.

1. Build G̃ which is the shortest-path metric completion of G and then delete all
edges with weight more than λ

2
; let C1, . . . , C
+h be the set of � light and h heavy

components created.
2. For a : 0 → �

(a) For b : 0 → �
i. S ← ∅
ii. Construct H (as described above) with a null nodes and b heavy nodes.
iii. Find a perfect matching with the minimum cost in H ; if there is no such

perfect matching continue from Step 2a ,
iv. Attach each light-component Ci to its nearest heavy component (using

the cheapest edge in G̃ between the two) if vi is matched to a heavy node
in the matching

v. Decompose all the heavy components and the attached light components
using Lemma 3 and add the trees obtained to S

vi. If a vertex vi is matched to a null node, add a MST of Ci to S.
vii. For every matching edge between two regular nodes vi and vj join a MST

of Ci and a MST of Cj using the cheapest edge among them (in G) and
add it to S.

viii. If |S| ≤ k then return S.
3. return failure

Fig. 1. MMkTC Algorithm

each T ∈ OPT is either completely in one component Ci or has vertices in at
most two components, in which case we say it is broken. If T is broken it consists
of two subtrees that are in two components (we refer to the subtrees as broken
subtree or part of T ) plus an edge of weight > λ/2 connecting them; we call that
edge the bridge edge of T . We characterize the optimal trees in the following way:
a tree T ∈ OPT is called light (heavy) if the entire tree or its broken subtrees
(if it is broken) are in light (heavy) components only, otherwise if it is broken
and has one part in a light component and one part in a heavy component then
we call it a bad tree. We denote the number of light trees, heavy trees, and bad
trees of OPT by k
, kh, and kb; therefore k
 + kh + kb = k. We say that a tree
T ∈ OPT is incident to a component if the component contains at least one
vertex of T (see Figure 2).

We define multi-graph H ′ = (V ′, E′) similar to how we defined H except that
edges of H ′ are defined based on the trees in OPT. V ′ consists of � vertices,
one vertex v′i for each light component Ci. For each light tree T ∈ OPT, if T
is entirely in one component Ci we add a loop to v′i and if T is broken and
is incident to two light components Ci and Cj then we add an edge between
v′i and v′j . So the total number of edges (including loops) is k
. There may be
some isolated nodes (nodes without any edges) in H ′, these are nodes whose
corresponding light components are incident to only bad trees. Suppose M is
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Heavy Components

Light Components

Bad Trees

Heavy Trees

Light Trees

Connection Edges

Fig. 2. Structure of G after deleting edges with length greater than λ
2
. Each thin circle

corresponds to a component and each solid circle corresponds to an optimum tree or a
broken subtree (part) of an optimum tree.

a maximum matching in H ′ and let U be the set of vertices of H ′ that are
not isolated and are not saturated by M . Because M is maximal, every edge in
E′ \M is either a loop or is an edge between a vertex in U and one saturated
vertex. Therefore:

|M |+ |U | ≤ k
. (3)

Note that for every node v′i (corresponding to a light component Ci) which
is incident to a bad tree, that bad tree has a bridge edge (of weight at most
λ) between its broken subtree in the light component (i.e. Ci) and its broken
subtree in a heavy component. Therefore:

Lemma 4. For every light component Ci which is incident to a bad tree, and
in particular if v′i is isolated, A(Ci) is finite.

We define the excess weight of each bad tree as the weight of its broken subtree in
the light component plus the bridge edge. Let Wexcess be the total excess weights
of all bad trees of OPT. Note that Wexcess contains

∑
vi is isolated A(Ci), but

it also contains the excess weight of some bad trees that are incident to a light
component Ci for which vi is not isolated. Thus:

Wexcess ≥
∑

vi is isolated

A(Ci). (4)

Only at Steps 2(a)v, 2(a)vi, and 2(a)vii the algorithm adds trees to S. First
we will show that each tree added to S has weight at most 3λ. At step 2(a)v,
according to Lemma 3, all the trees will have weight at most 3λ. At Step 2(a)vi,
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as Ci is a light components its MST will have weight at most λ. At Step 2(a)vii,
the MST of Ci and Cj are both at most λ, and as vi and vj are connected in
H there is an edge with length no more than λ connecting Ci and Cj ; thus the
total weight of the tree obtained is at most 3λ. Hence, every tree in S has weight
no more than 3λ. The only thing remained is to show that the algorithm will
eventually finds a set S that has no more than k trees. We show that in the
iteration at which a = |U | and b is equal to the number of isolated nodes in H ′:
|S| ≤ k.
Lemma 5. The cost of the minimum perfect matching computed in step 2(a)iii
is no more than Wexcess.

Proof. Consider the iteration at which a = |U | and b is the number of isolated
nodes in H ′. Define matching M as follows: for each v′i ∈ U , vi ∈ H is matched
to a null node in H , for each isolated node v′i ∈ H ′, vi ∈ H is matched to a heavy
node in H (note that A(Ci) is finite by Lemma 4), for all other vertices v′i ∈ H ′,
v′i is saturated by M , so the corresponding vi ∈ H can be matched according to
the matching M . The cost of this matching is

∑
vi is isolated A(Ci) ≤Wexcess by

Equation (4) and that we find a minimum perfect matching in step (2(a)iii). ��
Note that the number of trees added to S at steps (2(a)vii) and (2(a)vi) is |M |
and |U |, respectively. Thus the total number of trees added to S at these two
steps is at most |M | + |U | ≤ k
 by Equation (3). The weight of the minimum
perfect matching found in (2(a)iii) represents the total weight we add to the
heavy components in step (2(a)iv). By Lemma 5, we know that the added weight
is at most Wexcess. In Lemma 6 we bound the total weight of heavy components
and the added extra weight of matching by (kh + kt) ∗ 3

2λ−hλ2 . Using Lemma 3
we know that we can cover them by at most kh+kb trees. Thus the total number
of trees added to S is at most k
 + kh + kb = k. ��
Lemma 6.

∑

+1≤i≤
+hWT (Ci) +Wexcess ≤ (kh + kb) ∗ 3

2λ− hλ2 , if λ ≥ opt.

Proof. Again, we assume that λ ≥ opt. We show a possible way to form a
spanning tree for each heavy component plus the light components attached to
it. Then we bound the total weight of these spanning trees.

We can make a spanning tree over a heavy component Ci by connecting all the
trees and broken subtrees of the optimum solution that are in that component
by adding edges of weight at most λ/2 between them since each edge in Ci
has weight at most λ/2 (see Figure 2). Therefore, the tree weight of a heavy
component can be bounded by the weight of optimal trees or broken subtrees
inside it plus some edges to connect them. Suppose p trees of the heavy trees
are broken and q of them are completely inside a heavy component; note that
p + q = kh. The rest of broken subtrees in heavy components are from bad
trees. So overall we have 2p + q + kb trees or broken subtrees in all the heavy
components. Each of the q heavy trees that are not broken contribute at most
qλ to the left hand side. Those p heavy trees that are broken contribute at most
pλ/2 to the left hand side since each of them has an edge of weight more than
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λ/2 that is deleted and is between heavy components. By definition of Wexcess,
we can assume the contribution of all bad trees to the left hand side is at most
kbλ. Thus, the total weight of edges e such that e belongs to an optimal tree and
also belongs to a heavy component or is part of Wexcess (i.e. the broken part of
a bad tree plus its bridge edge) is at most (p+ q + kb)λ− pλ2 .

Overall we have 2p + q + kb trees or broken subtrees in all the heavy com-
ponents. In order to form a spanning tree in each heavy component we need at
most 2p+ q + kb − h edges connecting the optimal trees and broken subtrees in
the heavy components, since we have h heavy components. Since each edge in a
component has weight at most λ

2 , the total weight of these edges will be at most
(2p+ q + kb − h)λ2 . Therefore, the total weight of spanning trees over all heavy
components plus Wexcess will be at most (p+q+kb)λ−pλ2 +(2p+q+kb−h)λ2 =
(kh + kb) ∗ 3

2λ− hλ2 . ��

We know that opt can be at most
∑

e∈E w(e). By Theorem 3 we know that
if λ ≥ opt, Algorithm 1 will find a k-tree cover with maximum tree weight
at most 3λ. If λ < opt the algorithm may fail or may provide a k-tree cover
with maximum weight at most 3λ which is also a true 3-approximation. Now
by a binary search in the interval [0,

∑
e∈E w(e)], we can find a λ for which our

algorithm will give a k-tree cover with bound 3λ and for λ − 1 the algorithm
fails. Thus, for this value of λ we get a 3-approximation factor which completes
the proof of Theorem 1.

4 A 2.5-Approximation Algorithm for BTC

In this Section we prove Theorem 2. Given an instance of BTC consisting of a
graph G and bound λ we use OPT to denote an optimum solution and k = opt

denote the number of trees in OPT. As before, we can assume we are working
with the shortest-path metric completion graph G̃ = (V,E). Our algorithm for
this problem is similar to the algorithm for MMkTC but the analysis is different.
We delete all the edges with weight greater than λ/4 in G̃ to obtain graph G′.
Let C1, . . . , C
 be the components of G′ whose weight is at most λ/4, called light
components, and C
+1, . . . , C
+h be the components with weight greater than
λ/4 which we refer to as heavy components. We define A(Ci), the tree of a light
component Ci plus the weight of attaching it to a heavy component as before:
it is the weight of minimum spanning tree of Ci, denoted by WT (Ci), plus the
minimum edge weight that connects a node of Ci to a heavy node if such an
edge e exists (in G̃) such that WT (Ci) + w(e) ≤ λ; otherwise A(Ci) is set to
infinity. The proof of the following lemma is identical to that of Lemma 3 with
3
2λ replaced with 1

2λ.

Lemma 7. Let Ls = {Cl1 , . . . , Cls} be a set of s light-components with bounded
A(Ci) values. If

∑
1≤i≤sA(Cli) +

∑

+1≤i≤
+hWT (Ci) ≤ x − hλ4 , then we can

cover all the nodes in the heavy components and in components of Ls with at
most � 2xλ � trees with maximum tree weight no more than λ.
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We define a graph H = (L,F ) formed according to the light components similar
to the way we defined it in the MMkTC problem.

Definition 2. For two given parameters a, b, graph H has � + a + b nodes: �
(regular) nodes v1, . . . , v
, where each vi corresponds to a light component Ci, a
dummy nodes called null nodes, and b dummy nodes called heavy nodes. We add
an edge with weight zero between two regular vi and vj in H if and only if i = j

and there is an edge e between Ci and Cj in G̃ such that WT (Ci) +WT (Cj) +
w(e) ≤ λ. Every null node is adjacent to each regular node vi (1 ≤ i ≤ �) with
weight zero. Every regular node vi ∈ H whose corresponding light component Ci
has finite value of A(Ci) is connected to every heavy node in H with an edge of
weight A(Ci). There are no other edges in H.

Inputs G(V, E), λ
Output: A set S containing k′-tree cover with k′ ≤ 2.5opt and maximum tree cost λ.

1. Take G̃ to be the metric completion of G and delete edges with length more than
λ
4

to form graph G′ with components C1, . . . , C
+h

2. For a : 0 → �
(a) For b : 0 → �

i. Sa,b ← ∅
ii. Build H according to Definition 2 with a null and b heavy nodes.
iii. Find a perfect matching with the minimum cost in H , if there is no such

perfect matching continue from Step 2a
iv. Attach each light component Ci to its nearest heavy component if vi is

matched to a heavy node
v. Decompose all the heavy components and the attached light components

as explained in Lemma 7 and add the trees obtained to Sa,b

vi. If a vertex vi is matched to a null node, add MST of Ci to Sa,b.
vii. For every matching edge between vi and vj consider the cheapest edge e

between Ci and Cj (in G̃) and add a minimum spanning trees of Ci ∪Cj ∪
{e} to Sa,b.

3. return set Sa,b with the minimum number of trees.

Fig. 3. BTC Algorithm

Theorem 2 follows from the following theorem.

Theorem 4. Algorithm BTC (Figure 3) finds a k′-tree cover with maximum
tree cost bounded by λ, such that k′ ≤ 2.5opt.

Proof. It is easy to check that in all the three steps 2(a)v, 2(a)vi, and 2(a)vii
the trees found have weight at most λ: since each is either found using Lemma 7
(Step 2(a)v), or is a MST of a light component (Step 2(a)vi), or is the MST of
two light components whose total weight plus the shortest edge connecting them
is at most λ (Step 2(a)vii). So it remains to show that for some values of a, b,
the total number of trees found is at most 2.5opt.
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First note that if matching M found in Step 2(a)iii assigns nodes vl1 , . . . , vlb
to heavy nodes and has weight WM then

∑
1≤i≤b A(Cli) = WM . Let Wh de-

note the total tree weight of heavy components, i.e. Wh =
∑


+1≤i≤
+hWT (Ci).
Then the number of trees generated using Lemma 7 in Step 2(a)v is at most
� 2(WM+Wh+hλ/4)

λ �, and the number of trees generated in Steps 2(a)vi and 2(a)iii
is exactly (�− b+ a)/2; so we obtain a total of at most � 2(WM +Wh+hλ/4)

λ �+(�−
b + a)/2 trees. We can prove the following lemma (whose proof appears in the
full version of this paper):

Lemma 8. There exist 0 ≤ a′ ≤ n and 0 ≤ b′ ≤ n such that if H is built with a′

null nodes and b′ heavy nodes then H has a matching M ′ such that if Algorithm
BTC uses M ′ then each tree generated has weight at most λ and the total number
of trees generated will be at most 2.5opt.

This lemma is enough to complete the proof of theorem. Consider an itera-
tion of the algorithm in which a = a′ and b = b′. Let the minimum perfect
matching that the algorithm finds in this iteration be M with weight WM .
Since WM ≤ WM ′ , the total number of trees generated in Step 2(a)v is at
most � 2(WM +Wh+hλ/4)

λ � ≤ � 2(WM′+Wh+hλ/4)
λ �. Furthermore, the number of trees

generated in Steps 2(a)vi and 2(a)vii is exactly (� − b′ + a′)/2, so we obtain a
total of at most � 2(WM+Wh+hλ/4)

λ �+ (�− b+ a)/2 trees. This together with the
fact that WM ≤ WM ′ and Lemma 8 shows that we get ≤ 2.5opt trees using
M . ��
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Abstract. We consider two generalizations of the problem of finding
a sparsest cut in a graph. The first is to find a partition of the vertex
set into m parts so as to minimize the sparsity of the partition (defined
as the ratio of the weight of edges between parts to the total weight
of edges incident to the smallest m − 1 parts). The second is to find a
subset of minimum sparsity that contains at most a 1/m fraction of the
vertices. Our main results are extensions of Cheeger’s classical inequal-
ity to these problems via higher eigenvalues of the graph. In particu-
lar, for the sparsest m-partition, we prove that the sparsity is at most
8
√

1 − λm log m where λm is the mth largest eigenvalue of the normal-
ized adjacency matrix. For sparsest small-set, we bound the sparsity by
O(

√
(1 − λm2) log m).

1 Introduction

The expansion of a graph is a fundamental and widely studied parameter with
many important algorithmic applications [LR99, ARV04, KRV06, She09]. Given
an undirected graph G = (V,E), with nonnegative weights w : E → R+ on the
edges, the expansion of a subset of vertices S ⊂ V is defined as:

φG(S) def=
w(S, V \ S)

min{w(S), w(V \ S)}

where by w(S) we denote the total weight of edges incident to vertices in S
and for two subsets S, T , we denote the total weight of edges between them by
w(S, T ). The degree of a vertex v, denoted by dv is defined as dv

def=
∑

u∼v w(u, v).

The expansion of the graph is φG
def= minS⊂V φ(S).

Cheeger’s inequality connects this combinatorial parameter to graph eigenval-
ues. Let λi denote the ith largest eigenvalue of the normalized adjacency matrix
of G, defined as B def= D−1A where A is the adjacency matrix of G and D is a
diagonal matrix with D(i, i) equal to the (weighted) degree of vertex i (each row
of B sums to 1).

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 315–326, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Theorem 1 (Cheeger’s Inequality ([Alo86, AM85])). Given a graph G,
and its row-normalized adjacency matrix B (each row of B sums to 1), let the
eigenvalues of B be 1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn. Then

2
√

1− λ2 ≥ φG ≥ 1− λ2

2
.

The proof of Cheeger’s inequality is algorithmic and uses the second eigenvector
of the normalized adjacency matrix. It gives an efficient algorithm for finding an
approximate sparsest cut, i.e., a cut whose sparsity is bounded as in the inequal-
ity. Here we consider two natural generalizations of the sparsest cut problem.

1.1 Generalizations of Sparsest Cut

Our first problem is an extension of sparsest cut to partitions with more than
two parts.

Sparsest m-partition: Given a weighted undirected graph G = (V,E) and an
integer m > 1, the sparsity of an m-partition P = {V1, . . . , Vm} of the vertex set
V into m parts is the ratio of the weight of edges between different parts to the
sum of the weights of smallest m− 1 parts in P , i.e.,

φsumG,m(P) def=

∑
i�=j w(Vi, Vj)

minj∈[m]w(V \Vj)

The sparsest m-partition has value φsumG,m
def= minP φsumG,m(P).

Variants of such a definition have been considered in the literature. The m-cut
problem asks for the minimum weight of edges whose deletion leaves m disjoint
parts. Closer to ours is the (α, ε)-clustering problem from [KVV04] that asks for
a partition where each part has conductance at least α and the total weight of
edges removed is minimized.

The second extension we consider is obtained by restricting the size of the set.

Sparsest Small Set: Given a graph G = (V,E) and an integer m > 0, the
small-set sparsity of G is defined as

φsmall
G,m

def= min
S⊂V,w(S)≤w(V )/m

w(S, V \ S)
w(S)

The problem is to find a sparsest small set.
The sparsest small set problem has been shown to be closely related to the
Unique Games problem (see [RS10, ABS10] ). Recently, Arora et. al. ([ABS10])
showed that φsmall

G,m ≤ C√(1− λm100) logm n where C is some absolute constant.
They also give a polynomial time algorithm to compute a small set with sparsity
satisfying this bound.

1.2 Our Results

For sparsest m-partition, we give the following bound using the mth largest
eigenvalue of the normalized adjacency matrix of G.
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Theorem 2. For any edge-weighted graph G = (V,E) and integer |V | ≥ m > 0,
there exists an m-partition P of V such that

φsumG,m(P) ≤ 8
√

1− λm logm,

where λm is the mth largest eigenvalue of the normalized adjacency matrix of G.
Moreover, an m-partition with this sparsity bound can be computed in polynomial
time.

The above result is a generalization of the upper bound in Cheeger’s inequal-
ity (where m = 2). Our proof is based on a recursive partitioning algorithm
that might be of independent interest. We remark that the dependence on m
is necessary and cannot be improved to something smaller than

√
logm. More-

over, notice that the lower bound of Ω(1 − λ2) in Cheeger’s inequality cannot
be strengthened for m > 2: Consider the graph G constructed by taking m− 1
cliques C1, C2, ..., Cm−1 each on (n − 1)/(m − 1) vertices. Let v be the re-
maining vertex. Let C1, . . . , Cm−1 be connected to v by a single edge. Now,
G will have m − 1 eigenvalues close to 1 because of the m − 1 cuts ({v}, Ci)
for i ∈ [m − 1], but the mth eigenvalue will be close to 0, as any other cut
which is not a linear combination of these m − 1 cuts will have to cut through
one of the cliques. Therefore, λm must be a constant smaller than 1/2. But
φsumG,m = (m − 1)/((m − 2)(n/m)2) ≈ m2/n2. Thus, 1 − λm * φsumG,m for small
enough values of m.

For the sparsest small-set problem, we present the following bound.

Theorem 3. Given a graph G = (V,E) and an integer |V | > m > 1, there
exists a non-empty subset S ⊂ V such that |S| ≤ 2|V |

m and

φ(S) ≤ C
√

(1− λm2) logm

where C is a fixed constant. Moreover, such a set can be computed in polynomial
time.

The result is a consequence of the rounding technique of [RST10a] and a relation
between eigenvalues and the SDP relaxation observed by [Ste10].

A lower bound of (1 − λ2)/2 for φsmall
G,m follows from Cheeger’s inequality.

Furthermore, it is easy to see that this bound cannot be improved in general.
Specifically, consider the graph G constructed by adding an edge between a
copy of K�n/m	 and a copy of Kn(1−1/m)�. In this graph, φsmall

G,m ≈ 1/(n/m)2 =
m2/n2, whereas G has only 1 eigenvalue close to 1 and λm ≈ 0 for m > 3.

We believe that there is room for improvement in both our theorems, and
especially for the sparsest small-set, we believe that the dependence should be
on a lower eigenvalue (m instead of m2). We make the following conjecture:

Conjecture 1. There is a fixed constant C such that for any graph G = (V,E)
and any integer |V | > m > 1,

φsumG,m, φ
small
G,m ≤ C

√
(1− λm) logm,

where λm is the mth largest eigenvalue of the normalized adjacency martix of G.
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The bounds in this conjecture are matched by the Gaussian graphs. For a con-
stant ε ∈ (−1, 1), let Nk,ε denote the infinite graph over Rk where the weight
of an edge (x, y) is the probability that two standard Gaussian random vectors
X,Y with correlation1 ε equal x and y respectively. The first k eigenvalues of
Nk,ε are at least 1−ε (see [RST10b]). The following lemma bounds the expansion
of small sets in Nk,ε.

Lemma 1 ([Bor85, RST10b]). For m < k we have

φsmall
Nk,ε,m ≥ Ω(

√
ε logm)

Therefore, for any value of m < k, Nk,ε has φsmall
Nk,ε,m

≥ Ω(
√

(1− λm) logm).

2 Monotonicity of Eigenvalues

In this section we collect some useful properties about the behavior of eigenvalues
upon deleting edges and merging vertices.

Lemma 2 (Weyl’s Inequality). Given a Hermitian matrix B with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn, and a positive semidefinite matrix E, if λ′1 ≥ λ′2 ≥ . . . ≥ λ′n
denote the eigenvalues of B′ def= B + E, then λ′i ≥ λi.
Proof. The ith eigenvalue of B′ can be written as

λ′i = max
S:rank(S)=i

min
x∈S

xTB′x
xTx

= max
S:rank(S)=i

min
x∈S

xTBx+ xTEx

xTx

≥ max
S:rank(S)=i

min
x∈S

xTBx

xTx
= λi.

Lemma 3. Let B be the row normalized matrix of the graph G. Let F be any
subset of edges of G. For every pair (i, j) ∈ F , remove the edge (i, j) from G and
add self loops at i and j to get the graph G′. Let B′ be the row-normalized matrix
of G′. Let the eigenvalues of B be 1 ≥ λ2 ≥ . . . ≥ λn and let the eigenvalues of
B′ be 1, λ′2, λ′3, λ′4 ≥ . . . ≥ λ′n. Then λ′i ≥ λi ∀i ∈ [n].

Proof. Let D
1
2 be the diagonal matrix whose (i, i)th entry is

√
di. Observe that

DB = BTD. Therefore Q def= D
1
2BD− 1

2 is a symmetric matrix where More-
over, the eigenvalues of Q and B are the same: if ν is an eigenvector of Q with
eigenvalue λ, i.e. D

1
2BD− 1

2 ν = λν, then B(D− 1
2 ν) = λ(D− 1

2 ν).
Hence, the eigenvalues of Q are 1 ≥ λ2 ≥ . . . ≥ λn and the eigenvalues of

Q′ def= D
1
2B′D

−1
2 are 1 ≥ λ′2 ≥ λ′3 ≥ λ′4 ≥ . . . ≥ λ′n.

C
def= D

1
2 (B′ − B)D− 1

2 is the matrix corresponding to the edge subset F . It
has non-negative entries along its diagonal and non-positive entries elsewhere
1 ε correlated Gaussians can be constructed as follows : X ∼ N(0, 1)k and Y ∼

(1 − ε)X +
√

2ε − ε2Z where Z ∼ N(0, 1)k.
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such that ∀i cii = −∑
j �=i cij . C is symmetric and positive semi-definite as

for any vector x of appropriate dimension, we have xTCx =
∑

ij cijxixj =
− 1

2

∑
i�=j cij(xi − xj)2 ≥ 0.

Using Lemma 2, we get that λ′i ≥ λi ∀i ∈ [n].

Lemma 4. Let B be the row normalized matrix of the graph G. Let S be a non-
empty set of vertices of G. Let G′ be the graph obtained from G by shrinking2

S to a single vertex. Let B′ be the row normalized adjacency matrix of G′. Let
the eigenvalues of B be 1 ≥ λ2 ≥ . . . ≥ λn and let the eigenvalues of B′ be
1, λ′2, λ′3, λ′4 ≥ . . . ≥ λ′n−|S|+1. Then λi ≥ λ′i for 1 ≤ i ≤ n− |S|+ 1.

Proof. Let D
1
2 be the diagonal matrix whose (i, i)th entry is

√
di. Observe that

DB = BTD. Therefore Q def= D
1
2BD− 1

2 is a symmetric matrix where Moreover,
the eigenvalues of Q and B are the same: if ν is an eigenvector of Q with eigen-
value λ, i.e. D

1
2BD− 1

2 ν = λν, then B(D− 1
2 ν) = λ(D− 1

2 ν). The ith eigenvalue
of B can be written as λi = maxS:rank(S)=i minx∈S xTBx

xT x and hence

λi = max
S:rank(S)=i

min
x∈S

1− xTD
1
2 (I −B)D− 1

2x

xTx

= max
S:rank(S)=i

min
x∈S

1−
∑

i

∑
j>i dibij(xi − xj)2∑

i dix
2
i

Let s = |S|. Let v1, v2, . . . , vn be the vertices of G, let S = {vn−s+1, . . . vn}
and v1, v2, . . . , vn−s, v′n−s+1 be the vertices of G′ where v′n−s+1 is the vertex
obtained by shrinking S to a single vertex. If d′i denotes the degree of ith vertex
in G′ then d′i = di for 1 ≤ i ≤ n− s and d′n−s+1 =

∑
i∈S di.

Let T k be a variable denoting a subspace of Rk.

λ′i = max
Tn−s+1:rank(Tn−s+1)=i

min
x∈Tn−s+1

1−
∑n−s+1

i=1

∑
j>i d

′
ib
′
ij(xi − xj)2∑

i d
′
ix

2
i

= max
Tn−s+1:rank(Tn−s+1)=i

min
x∈Tn−s+1

1−
∑n−s

i=1

∑
j>i dibij(xi − xj)2∑n−s

i=1 dix
2
i + (

∑n
i=n−s+1 di)x

2
n−s+1

≤ max
Tn:rank(Tn)=i

min
x∈Tn

1−
∑n

i=1

∑
j>i dibij(xi − xj)2∑

i dix
2
i

= λi

3 Sparsest m-Partition

Let A denote the adjacency matrix of the graph. We normalize A by scaling the
rows so that the row sums are equal to one. Let B denote this row-normalized
matrix.
2 A vertex set S is said to be shrunk to a vertex vS, if all the vertices in S are removed

from G and in its place a new vertex vS is added. All the edges in E(S, S̄) are now
incident on vS and all the internal edges in S now become self loops on vS.
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We propose the following recursive algorithm for finding an m-partitioning
of G. Use the second eigenvector of G to find a sparse cut (C, C̄). Let G′ =
(V,E′) be the graph obtained by removing the edges in the cut (C, C̄) from
G, i.e. E′ = E\E(C, C̄). We obtain the matrix B′ as follows: For all edges
(i, j) ∈ E′, b′ij = bij . For all other i, j such that i = j, b′ij = 0. For all i,
b′ii = 1 −∑

j �=i b
′
ij . Note that B′ corresponds to the row-normalized adjacency

matrix of G′, if ∀(i, j) ∈ E(C, C̄) we add self loops at vertex i and vertex j in
G′. The matrix B′ is block-diagonal with two blocks for the two components of
G′. The spectrum of B′ (eigenvalues, eigenvectors) is the union of the spectra of
the two blocks. The first two eigenvalues of B′ are now 1 and we use the third
largest eigenvector of G′ to find a sparse cut in G′. This is the second eigenvector
in one of the two blocks and partitions that block. We repeat the above process
till we have at least m connected components. This can be viewed as a recursive
algorithm, where at each step one of the current components is partitioned into
two; the component partitioned is the one that has the highest second eigenvalue
among all the current components. The precise algorithm appears in Figure 1.

1. Input : Graph G = (V, E), m such that 1 < m < |V |
2. Initialize i := 2, and Gi = G, Bi = row-normalized matrix of G

(a) Find a sparse cut (Ci, C̄i) in Gi using the ith eigenvector of Bi (the first i− 1
are all equal to 1).

(b) Let Gi+1 := Gi\EGi(C, C̄)
(c) If i = m then output the connected components of Gi+1 and End else

i. Construct Bi+1 as follows
A. ∀(j, k) ∈ EGi+1 , Bi+1(j, k) = Bi(j, k)
B. For all other j, k, j 
= k, Bi+1(j, k) = 0
C. ∀j, Bi+1(j, j) = 1 −

∑
k 	=j Bi+1(j, k)

ii. i := i + 1
iii. Repeat from Step (a)

Fig. 1. The Recursive Algorithm

We now analyze the algorithm. Our analysis will also be a proof of Theorem 2.
The matrix Bi for i > 2 is not the row-normalized matrix of Gi, but can be

viewed as a row normalized matrix of Gi with a self loop on vertices i and j for
each edge (i, j) ∈ EGi(Ci, C̄i). The next theorem is a generalization of Cheeger’s
inequality to weighted graphs, which relates the eigenvalues of B to the sparsity
of G.

Theorem 4 ([KVV04]). Suppose B is a N ∗ N matrix with nonnegative en-
tries with each row sum equal to 1 and suppose there are positive real numbers
π1, π2, . . . , πN summing to 1 such that πibij = πjbji ∀i, j. If v is the right eigen-
vector of B corresponding to the 2nd largest eigenvalue λ2 and i1, i2 . . . , iN is an
ordering of 1, 2, . . . , N such that v1 ≥ v2 ≥ . . . ≥ vN , then
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2
√

1− λ2 ≥ min
l:1≤l≤N

∑
1≤u≤l;l+1≤v≤N πiubiuiv

min{∑1≤u≤l πiu ,
∑

l+1≤v≤N πiv}
≥ 1− λ2

2

Lemma 2 shows that the eigenvalues of Bi are monotonically nondecreasing with
i. This will show that φGi(Ci) ≤ 2

√
1− λm.

We can now prove the main theorem.

Proof (of Theorem 2 ). Let P be the set of partitions output by the algorithm
and let S(P) denote the sum of weights of the smallest m − 1 pieces in P .
Note that we need only the smaller side of a cut to bound the size of the cut
: |EG(S, S̄)| ≤ φG|S|. We define the notion of a cut-tree T = (V (T ), E(T )) as
follows: V (T ) = {V } ∪ {Ci|i ∈ [m]} (For any cut (Ci, C̄i) we denote the part
with the smaller weight by Ci and the part with the larger weight by C̄i. We
break ties arbitrarily). We put an edge between S1, S2 ∈ V (T ) if  ∃S ∈ V (T )
such that S1 � S � S2 or S2 � S � S1, (one can view S1 as a ’top level’ cut of
S2 in the former case).
Clearly, T is connected and is a tree. We call V the root of T . We define the
level of a node in T to be its depth from the root. We denote the level of node
S ∈ V (T ) by L(S). The root is defined to be at level 0. Observe that S1 ∈ V (T ) is
a descendant of S2 ∈ V (T ) if and only if S1 � S2. Now E(P) = ∪iEGi(Ci, C̄i) =
∪i ∪j:L(Cj)=i EGj (Cj , C̄j) . We make the following claim.

Claim.
w(∪j:L(Cj )=iE(Cj , C̄j)) ≤ 2

√
1− λmS(P)

Proof. By definition of level, if L(Ci) = L(Cj), i = j, then the node cor-
responding to Ci in the T can not be an ancestor or a descendant of the
node corresponding to Cj . Hence, Ci ∩ Cj = φ. Therefore, all the sets of ver-
tices in level i are pairwise disjoint. Using Cheeger’s inequality we get that
E(Cj , C̄j) ≤ 2

√
1− λmw(Cj). Therefore

w(∪j:L(Cj )=iE(Cj , C̄j)) ≤ 2
√

1− λm
∑

j:L(Cj)=i

w(Cj) ≤ 2
√

1− λmS(P)

This claim implies that φ(P) ≤ 2
√

1− λmheight(T ).
The height of T might be as much as m. But we will show that we can as-
sume height(T ) to be logm. For any path in the tree v1, v2, . . . , vk−1, vk such
that deg(v1) > 2, deg(vi) = 2 (i.e. vi has only 1 child in T ) for 1 < i < k,
we have w(Cvi+1 ) ≤ w(Cvi )/2, as vi+1 being a child of vi in the T implies
that Cvi+1 was obtained by cutting Cvi using it’s second eigenvector. Thus∑k

i=2 w(Cvi ) ≤ w(Cv1 ). Hence we can modify the T as follows : make the nodes
v3, . . . , vk children of v2. The nodes v3, . . . , vk−1 now become leaves whereas the
subtree rooted at vk remains unchanged. We also assign the level of each node
as its new distance from the root. In this process we might have destroyed the
property that a node is obtained from by cutting its parent, but we have the
proprety that w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 4

√
1− λmS(P) ∀i.
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Claim.
w(∪j:L(Cj )=iE(Cj , C̄j)) ≤ 4

√
1− λmS(P)

Proof. If the nodes in level i are unchanged by this process, then the claim clearly
holds. If any node vj in level i moved to a higher level, then the nodes replacing
vj in level i would be descendants of vj in the original T and hence would have
weight at most w(Cvj ). If the descendants of some node vj got added to level i,
then, as seen above, their combined weight would be at most w(Cvj ). Hence,

w(∪j:L(Cj)=iE(Cj , C̄j)) ≤ 2(2
√

1− λm
∑

j:L(Cj)=i

w(Cj)) ≤ 4
√

1− λmS(P)

.

Repeating this process we can ensure that no two adjacent nodes in the T have
degree 2. Hence, there are at most logm vertices along any path starting from
the root which have exactly one child. Thus the height of the new cut-tree is at
most 2 logm. Thus E((P)) ≤ 8

√
1− λm logmS(P) and hence φsumG,m ≤ E((P))

S(P) ≤
8
√

1− λm logm.

4 Finding Sparsest Small Sets

Given an integer m and an undirected graph G = (V,E), we wish to find the set
S ⊂ V of size at most |V |/m and having minimum expansion. This is equivalent

to finding the vector x ∈ {0, 1}|V | which minimizes
∑

i∼j w(i,j)(x(i)−x(j))2∑
i dix(i)2 and has

at most |V |/m non-zero entries. Ignoring the sparsity constraint, the minimiza-

tion is equivalent to minimizing
∑

i∼j w(i,j)‖vi−vj‖2∑
i di‖vi‖2 over all collections of vectors

{vi|i ∈ [n]} . The challenge is to deal with the sparsity constraint. Since any
x ∈ {0, 1}|V | having at most |V |/m non-zero entries satisfies

∑
i,j x(i)x(j) ≤

n2/m2 we can relax the sparsity constraint to
∑

i,j < vi, vj >
2≤ n2/m2 while

maintaining
∑

i‖vi‖2 = n. This convex relaxation of the problem is shown in
Figure 2.

min

∑
ij w(i, j)‖vi − vj‖2∑

i di‖vi‖2∑
i,j

(vT
i vj)

2 ≤ n2

m2∑
i

‖vi‖2 = n

Fig. 2. A convex relaxation for sparsest small set
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It was pointed out to us by [Ste10] that eigenvectors of the graph form a
feasible solution to this convex relaxation. Here we present a proof of the same.

Let w1, w2, . . . , wn denote the eigenvectors of DBD−1 and let 1 ≥ λ2 ≥ λ3 ≥
. . . ≥ λn be the respective eigenvalues. Let F be the m2 ∗ n dimensional matrix
which has w1, w2, . . . , wm2 as its row vectors, i.e. F = [w1 w2 . . . wm2 ]T . Let
f1, f2, . . . , fn be the columns of F . We define vi

def= (
√

n
m2 fi). We will show that

{vi|i ∈ [n]} forms a feasible solution for the convex program, and that the cost
of the solution is bounded by 1− λm2 .

Lemma 5. The vectors vi, i ∈ [n] satisfy
∑

ij〈vi, vj〉2 ≤ n2

m2 .

Proof. ∑
i,j

〈vi, vj〉2 =
n2

m4

∑
i,j

(
∑
t

fitfjt)2 =
n2

m4

∑
i,j

∑
t1,t2

fit1fjt1fit2fit2

=
n2

m4

∑
t1,t2

〈wt1 ⊗ wt1 , wt2 ⊗ wt2〉 =
n2

m4

∑
t1,t2

〈wt1 , wt2〉2 =
n2

m2
.

Lemma 6.
∑

i‖vi‖2 = n

Proof. ∑
i

〈vi, vi〉 = n

m2

∑
i

〈fi, fi〉 =
n

m2

∑
i

(
∑
t

f2
it)

=
n

m2

∑
t

||wt||22 =
n

m2
m2 = n.

Lemma 7.
∑

ij wij‖vi−vj‖2∑
i di‖vi‖2 ≤ 1− λm2

Proof.∑
ij wij‖vi − vj‖2∑

i di‖vi‖2
=

∑
l

∑
ij wij‖vli − vlj‖2∑
l

∑
i di‖vli‖2

≤ max
l

∑
ij wij‖vli − vlj‖2∑

i di‖vli‖2
≤ 1 − λm2 .

Lemmas 5 and 6 show that the {vi|i ∈ [n]} form a feasible solution to the convex
program and Lemma 7 shows that the cost of this solution is at most

√
1− λm2 .

We use the rounding scheme of [RST10a] to round this solution of the convex
program to get a set S of size 2n/m and φ(S) ≤ O(

√
(1 − λm2) logm). We give

the rounding procedure in Figure 3.
For any fi and fj defined as above, their inner product is defined as 〈fi, fj〉 def=∫∞

−∞ fi(x)fj(x)dx. The following lemma is a slightly modified version of a similar
lemma in [RST10a] to suit our requirements. For completeness we give the proof
in Appendix A.

Lemma 8. 1.
∑

i,j wi,j‖fi−fj‖2∑
i di‖fi‖2 ≤

∑
i,j wi,j‖vi−vj‖2∑

i di‖vi‖2
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1. For each i ∈ [n] define functions fi
def
= ||vi||

√
Φ(x − v∗

i ) where Φ(x) is probability
density function of gaussian with mean 0 and variance 1/

√
log m and v∗

i denotes
the unit vector along the direction of vi.

2. Sample t ∈ N (0, 1)m2
.

3. Compute θ = 2m ∗
∑

i fi(t) and define xi
def
= max{fi(t) − θ, 0} for each i ∈ [n].

4. Do a Cheeger rounding on X
def
= [x1x2 . . . xn]T .

Fig. 3. The Rounding Algorithm

2.
∑

i,j〈fi, fj〉 ≤ 2n/m

Lemma 9 ([RST10a]).

1. E(support(X)) ≤ 2n/m

2.
∑

i,j wi,j(xi−xj)
2∑

i dix2
i

≤
∑

i,j wi,j‖fi−fj‖2∑
i di‖fi‖2

Proof (of Theorem 3).
Lemma 8 shows that {fi|i ∈ [n]} satisfy a stronger sparsity condition than the

one in Figure 2 and the value of the objective function of the convex program
on {fi|i ∈ [n]} is at most O(logm) times the value of the objective function on
{vi|i ∈ [n]}.

Lemma 9 shows that X has at most 2n/m non-zero entries and together with
Lemma 8 implies that cost of the objective function of the convex program on
X is at most O(logm) times the cost of the objective function on {vi|i ∈ [n]}.

Performing a Cheeger rounding on X will yield a set of size at most 2n/m

and expansion O(
√

logm
∑

i,j wi,j‖vi−vj‖2∑
i di‖vi‖2 ) ≤ O(

√
(1− λm2) logm), where the

inequality follows from Lemma 7.
Thus we have Theorem 3.
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A Proof of Lemma 8

We first state some known facts about Gaussians.

Fact 5. Let Φσ(u) be the probability function of a multi-dimensional gaussian
centered at u ∈ Rn and having variance σ in each coordinate. Let δn denote the
standard Lebesgue measure on Rn. Then∫ √

Φσ(u)Φσ(v)dδn = e−‖u−v‖
2/8σ2

The following fact shows that in order for a mapping to preserve distances it
is enough to preserve lengths and distances of unit vectors.

Fact 6. For any two vectors u, v ∈ Rn, we have

‖u− v‖2 = (‖u‖ − ‖v‖)2 + ‖u‖‖v‖‖u∗ − v∗‖2

We state Lemma 8 again.

Lemma 10. 1.
∑

i,j wi,j‖fi−fj‖2∑
i di‖fi‖2 ≤

∑
i,j wi,j‖vi−vj‖2∑

i di‖vi‖2
2.

∑
i,j〈fi, fj〉 ≤ 2n/m
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Proof. 1. Since ‖vi‖ = ‖fi‖ ∀i ∈ [n] it suffices to show that we have ‖fi−fj‖2 ≤
O(logm‖vi − vj‖2) ∀i, j ∈ [n]. Using Fact 5,

‖f∗i − f∗j ‖ = 2− 2e− logm‖v∗i −v∗j ‖2/8 ≤ logm‖v∗i − v∗j ‖2/4

Now, using Fact 6

‖fi − fj‖2 = (‖vi‖ − ‖vj‖)2 + ‖vi‖‖vj‖‖f∗i − f∗j ‖2

= (‖vi‖ − ‖vj‖)2 + logm‖vi‖‖vj‖‖v∗i − v∗j ‖2/4 ≤ logm‖vi − vj‖2/4.
The last inequality uses Fact 6 again. This proves the first part.

2. For the second part, we use the fact that ecx ≤ 1− (1− ec)x.

〈f∗i , f∗j 〉 = e− logm(1−〈v∗i ,v∗j 〉) ≤ e− logm(1−|〈v∗i ,v∗j 〉)|

≤ 1− (1− e− logm)(1 − |〈v∗i , v∗j 〉|) ≤ e− logm + |〈v∗i , v∗j 〉|.
Now,

∑
i,j

〈fi, fj〉 ≤
∑
i,j

‖vi‖‖vj‖(1/m+ 〈v∗i , v∗j 〉) = 1/m(
∑
i

‖fi‖)2 +
∑
i,j

|〈vi, vj〉|

By Jensen’s inequality, the first term contributes not more than
∑

i‖fi‖2.
The constraints in the convex program imply that

∑
i,j |〈vj , vj〉| ≤ n/m.

Putting these together we get the second part of the lemma.
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Abstract. We study the problem of computing the minimum vertex cover on k-
uniform k-partite hypergraphs when the k-partition is given. On bipartite graphs
(k = 2), the minimum vertex cover can be computed in polynomial time. For
general k, the problem was studied by Lovász [23], who gave a k

2
-approximation

based on the standard LP relaxation. Subsequent work by Aharoni, Holzman and
Krivelevich [1] showed a tight integrality gap of

(
k
2
− o(1)

)
for the LP relax-

ation. While this problem was known to be NP-hard for k ≥ 3, the first non-
trivial NP-hardness of approximation factor of k

4
− ε was shown in a recent work

by Guruswami and Saket [13]. They also showed that assuming Khot’s Unique
Games Conjecture yields a k

2
− ε inapproximability for this problem, implying

the optimality of Lovász’s result.
In this work, we show that this problem is NP-hard to approximate within

k
2
− 1 + 1

2k
− ε. This hardness factor is off from the optimal by an additive

constant of at most 1 for k ≥ 4. Our reduction relies on the Multi-Layered PCP
of [8] and uses a gadget – based on biased Long Codes – adapted from the LP
integrality gap of [1]. The nature of our reduction requires the analysis of several
Long Codes with different biases, for which we prove structural properties of the
so called cross-intersecting collections of set families – variants of which have
been studied in extremal set theory.

1 Introduction

A k-uniform hypergraphG = (V,E) consists of a set of vertices V and a collection of
hyperedgesE such that each hyperedge contains exactly k vertices. A vertex cover for
G is a subset of vertices V ⊆ V such that every hyperedge e contains at least one vertex
from V , i.e., e ∩ V = ∅. Equivalently, a vertex cover is a hitting set for the collection of
hyperedgesE. The complement of a vertex cover is called an Independent Set, which is
a subset of vertices I such that no hyperedge e ∈ E is contained inside I, i.e., e � I.

The k-HYPVC problem is to compute the minimum vertex cover in a k-uniform
hypergraphG. It is an extremely well studied combinatorial optimization problem, es-
pecially on graphs (k = 2), and is known to be NP-hard. Indeed, the minimum vertex
cover problem on graphs was one of Karp’s original 21 NP-complete problems [19].
On the other hand, the simple greedy algorithm that picks a maximal collection of
disjoint hyperedges and includes all vertices in the edges in the vertex cover gives a
k-approximation, which is also obtained by the standard LP relaxation of the problem.
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The best algorithms known today achieve only a marginally better approximation factor
of (1− o(1))k [18,15].

On the intractability side, there have been several results. For the case k = 2, Dinur
and Safra [9] obtained an NP-hardness of approximation factor of 1.36, improving on
a 7

6 − ε hardness by Håstad [14]. For general k a sequence of successive works yielded
improved NP-hardness factors:Ω(k1/19) by Trevisan [27];Ω(k1−ε) by Holmerin [16];
k − 3 − ε by Dinur, Guruswami and Khot [7]; and the currently best k − 1 − ε due
to Dinur, Guruswami, Khot and Regev [8]. In [8], the authors build upon [7] and the
work of Dinur and Safra [9]. Moreover, assuming Khot’s Unique Games Conjecture
(UGC) [20], Khot and Regev [21] showed an essentially optimal k − ε inapproxima-
bility. This result was further strengthened in different directions by Austrin, Khot and
Safra [5] and by Bansal and Khot [6].

Vertex Cover on k-uniform k-partite Hypergraphs
In this paper, we study the problem of finding the minimum vertex cover on k-partite
k-uniform hypergraphs, when the underlying partition is given. We denote this prob-
lem as k-HYPVC-PARTITE. This is an interesting problem in itself and its variants
have been studied for applications related to databases such as distributed data min-
ing [10], schema mapping discovery [11] and optimization of finite automata [17]. On
bipartite graphs (k = 2), by Köenig’s Theorem computing the minimum vertex cover is
equivalent to computing the maximum matching which can be done efficiently. For gen-
eral k, the problem was studied by Lovász who, in his doctoral thesis [23], proved the
following upper bound.

Theorem 1 (Lovász [23]). For every k-partite k-uniform hypergraphG, we have that,
VC(G)/LP(G) ≤ k

2 , where VC(G) denotes the size of the minimum vertex cover and
LP(G) denotes the value of the standard LP relaxation. This yields an efficient k

2
approximation for k-HYPVC-PARTITE.

Note that the standard LP relaxation does not utilize the knowledge of the k-partition
and therefore, by Lovász’s result, LP(G) is a k

2 approximation to VC(G) even when the
k-partition is not known. The above upper bound was shown to be tight by Aharoni,
Holzman and Krivelevich [1] who proved the following theorem.

Theorem 2 (Aharoni et al.[1]). For every k ≥ 3, there exists a family of k-partite k-
uniform hypergraphsG such that VC(G)/LP(G) ≥ k

2 − o(1). Thus, the integrality gap
of the standard LP relaxation is k

2 − o(1).

The problem was shown to be APX-hard in [17] and [11] for k = 3 which can be
extended easily to k ≥ 3. A recent work of Guruswami and Saket [13] showed the
following non-trivial hardness of approximation factor for general k.

Theorem 3 (Guruswami and Saket [13]). For arbitrary ε > 0 and any integer k ≥ 5,
k-HYPVC-PARTITE is NP-hard to approximate within a factor of k4 − ε. Assuming the
UGC yields an optimal hardness factor of k2 − ε for k ≥ 3.

Our Contribution. We show a nearly optimal NP-hardness result for approximating
k-HYPVC-PARTITE.
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Theorem 4. For any ε > 0 and integer k ≥ 4, it is NP-hard to approximate the mini-
mum vertex cover on k-partite k-uniform hypergraphs within to a factor of k2−1+ 1

2k−ε.
Our result significantly improves on the NP-hardness factor obtained in [13] and is off
by at most an additive constant of 1 from the optimal for any k ≥ 4. The next few
paragraphs give an overview of the techniques used in this work.

Techniques. It is helpful to briefly review the hardness reduction of [8] for k-HYPVC.
The main idea of their construction can be illustrated by the following gadget. Con-

sider a domain R and the set of all its subsets H = 2R. Sample subsets from H by
choosing each element of R independently with probability 1 − 1/k − ε (for some
small ε > 0), and let the weight of each subset in H be its sampling probability, thus
making the sum of all weights to be 1. The set H along with the weights is an exam-
ple of a biased Long Code over R. Construct a k-uniform hypergraph over the vertex
set H by adding an edge between any k subsets whose intersection is empty. In this
hypergraph, every element r ∈ R yields a corresponding independent set of weight
(1− 1/k− ε), by choosing all subsets which contain r. On the other hand, Dinur et al.
[8] show via analysis based on extremal set theory, that any independent set of weight
ε must contain k subsets in H which have a small intersection, thus yielding a special
small subset of R – a property that is utilized in proving their hardness result. Note that
this gap of 1−1/k−ε vs ε for independent set corresponds to a gap of 1/k+ε vs 1−ε
for the minimum vertex cover.

The construction of [8] combines the above Long Code based gadget with a new
Multi-Layered PCP. This is a two variable CSP consisting of several layers of variables,
and constraints between the variables of each pair of layers. The work of [8] shows
that it is NP-hard to find a labeling to the variables which satisfies a small fraction of
the constraints between any two layers, even if there is a labeling that satisfies all the
constraints of the instance. The reduction to a k-uniform hypergraph (as an instance of
k-HYPVC) involves replacing each variable of the PCP with a biased Long Code and
adding the edges of the gadget across different Long Codes.

The starting point for our hardness reduction for k-HYPVC-PARTITE is – as in [8] –
the Multi-Layered PCP. While we do not explicitly construct a standalone Long Code
based gadget, our reduction can be thought of as adapting the integrality gap construc-
tion of Aharoni et al. [1] into a Long Code based gadget in a manner that preserves the
k-uniformity and k-partiteness of the integrality gap.

Such transformations of integrality gaps into Long Code based gadgets have recently
been studied in the works of Raghavendra [25] and Kumar, Manokaran, Tulsiani and
Vishnoi [22] for a wide class of CSPs and their appropriate LP and SDP integrality
gaps. These Long Code based gadgets can be combined with a Unique Games instance
to yield tight UGC based hardness results, where the reduction is analyzed via Mossel’s
Invariance Principle [24]. Indeed, for k-HYPVC-PARTITE the work of Guruswami
and Saket [13] combines the integrality gap of [1] with (a slight modification) of the
approach of Kumar et al. [22] to obtain an optimal UGC based hardness result.

Since our reduction starts with the Multi-Layered PCP instead of Unique Games, we
cannot adopt a Invariance Principle based analysis. Thus, in a flavor similar to that of
[8], our analysis is via extremal combinatorics. However, our gadget involves several
biased Long Codes with different biases and each hyperedge includes vertices from
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differently biased Long Codes, unlike the construction in [8]. The different biases are
derived from the LP solution to the integrality gap of [1], in such a way that in the gap
obtained in the gadget corresponds (roughly) to the value of the integrality gap.

For our analysis, we use structural properties of a cross-intersecting collection of set
families. A collection of set families is cross-intersecting if any intersection of subsets
– each chosen from a different family – is large. Variants of this notion have previously
been studied in extremal set theory, see for example [2]. We prove an upper bound on
the measure of the smallest family in such a collection. This enables a small vertex
cover (in the hypergraph) to be decoded into a good labeling to the Multi-Layered PCP.

The next section defines and analyzes the above mentioned cross-intersecting set
families. Sec. 3 defines the Multi-Layered PCP of Dinur et al. [8] and states their hard-
ness for it. In Sec. 4 we describe our reduction and prove Thm 4.

2 Cross-Intersecting Set Families

We use the notation [n] = {1, . . . , n} and 2[n] = {F | F ⊆ [n]}. We begin by defining
cross-intersecting set families:

Definition 5. A collection of k families F1, . . . ,Fk ⊆ 2[n], is called k-wise t-cross-
intersecting if for every choice of sets Fi ∈ Fi for i ∈ [k], we have |F1 ∩ . . .∩Fk| ≥ t.
We will work with the p-biased measure on 2[n], which is defined as follows:

Definition 6. Given a bias 0 < p < 1, define the measure μp on 2[n] as: μp(F ) := p|F |·
(1− p)n−|F | . The measure of a family F is defined as μp(F) =

∑
F∈F μp(F ).

Now, we describe an important technique for analyzing cross-intersecting families – the
shift operation (see Def 4.1, pg. 1298 [12]). Given a family F , define the (i, j)-shift as:

SFij (F ) =
{

(F ∪ {i}\{j}) if j ∈ F, i /∈ F and (F ∪ {i}\{j}) /∈ F
F otherwise.

Let the (i, j)-shift of a family F be Sij(F) = {SFij (F ) | F ∈ F}. Given a family
F ⊆ 2[n], we repeatedly apply (i, j)-shift for 1 ≤ i < j ≤ n to F until we obtain a
family that is invariant under these shifts. Such a family is called a left-shifted family
and we will denote it by S(F). The following observations follow from the definition.

Observation 7. Let F ⊆ 2[n] be a left-shifted family. Consider F ∈ F such that i /∈ F
and j ∈ F where i < j. Then, (F ∪ {i}\{j}) must be in F .

Observation 8. Given F ⊆ 2[n], there is a bijection between F and S(F) that
preserves the size of the set. Thus, for any p, μp(F) = μp(S(F)).

The following lemma shows that the cross-intersecting property is preserved under left-
shifting. A similar fact for a single left-shifted family was shown in [12] (pg. 1311,
Lem. 8.3), which was reproved and used in [8]. We omit the proof.

Lemma 9. Consider families F1, . . . ,Fk ⊆ 2[n] that are k-wise t-cross-intersecting.
Then, the families S(F1), . . . , S(Fk) are also k-wise t-cross-intersecting.



Nearly Optimal NP-Hardness of Vertex Cover on k-Uniform k-Partite Hypergraphs 331

Next, we prove a key structural property of left-shifted cross-intersecting families which
states that for at least one of the families, all of its subsets have a dense prefix.

Lemma 10. Let F1, . . . ,Fk ⊆ 2[n] be left-shifted families that are k-wise t-cross-
intersecting for some t ≥ 1 and let q1, . . . , qk ∈ (0, 1) be k numbers such that

∑
i qi ≥

1. Then, there exists a j ∈ [k] such that for all sets F ∈ Fj , there exists a positive
integer rF ≤ n− t such that |F ∩ [t+ rF ]| > (1− qj)(t+ rF ).

Proof. Let us assume to the contrary that for every i ∈ [k], there exists a set Fi ∈ Fi
such that for all r ≥ 0, |Fi ∩ [t + r]| ≤ (1 − qi)(t + r). The following combinatorial
argument shows that the families Fi cannot be k-wise t-cross-intersecting.

Let us construct an arrangement of balls and bins where each ball is colored with
one of k colors. Create n bins labeled 1, . . . , n. For each i and for every x ∈ [n]\Fi,
we place a ball with color i in the bin labeled x. Note that a bin can have several balls,
but they must have distinct colors. Given such an arrangement, we can recover the sets
it represents by defining F c

i to be the set of bins that contain a ball with color i.
For all r, our assumption implies that |F c

i ∩ [t + r]| ≥ qi(t + r). Thus, there are at
least � qi(t+ r) � balls with color i in bins labeled 1, . . . , t + r. The total number of
balls in bins labeled 1, . . . , t+ r is,

k∑
i=1

|F c
i ∩ [t+ r]| ≥

k∑
i=1

� qi(t+ r) � ≥
k∑
i=1

qi(t+ r) ≥ t+ r ≥ r + 1,

where the last two inequalities follow using
∑

i qi ≥ 1 and t ≥ 1.
Next, we describe a procedure to manipulate the above arrangement of balls.

for r := 0 to n− t
if bin t+ r is empty
then if a bin labeled from 1 to t− 1 contains a ball then move it to bin t+ r

else if a bin labeled from t to t+ r − 1 contains two balls
then move one of them to bin t+ r else output “error”

We need the following lemma.

Lemma 11. The above procedure satisfies the following properties:
1. The procedure never outputs error.
2. At every step, any two balls in the same bin have different colors.
3. At step r, define G(r)

i to be the set of labels of the bins that do not contain a ball of

color i. Then, for all i ∈ [k], G(r)
i ∈ Fi.

4. After step r, the bins t to t+ r have at least one ball each.

Proof. 1. If it outputs error at step r, there must be at most r balls in bins 1 to t+ r. At
the start of the procedure, there are at least r + 1 balls in these bins and during the first
r steps, the number of balls in these bins remain unchanged. This is a contradiction.
2. This is true at r = 0 and balls are moved only to empty bins. This proves the claim.
3. Whenever we move a ball from bin i to j, we have i < j. Since Fi are left-shifted,
by repeated application of Observation 7, we get that at step r, G(r)

i ∈ Fi.
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4. Since the procedure never outputs error, at step r, if the bin t + r is empty, the
procedure places a ball in it while not emptying any bin labeled between [t, t+ r − 1].

The above lemma implies that at the end of the procedure (after r = n−t), there is a ball
in each of the bins labeled from [t, n]. Thus, the setsGi = G

(n−t)
i satisfy ∩iGi ⊆ [t−1]

and hence | ∩i Gi| ≤ t− 1. Also, we know that Gi ∈ Fi. Thus, the families Fi cannot
be k-wise t-cross-intersecting. This completes the proof of Lem. 10.

The above lemma, along with a Chernoff bound argument, shows that: Given a col-
lection of k-wise t-cross-intersecting families, one of them must have a small measure
under an appropriately chosen bias. We omit the proof.

Lemma 12. For arbitrary ε, δ > 0, there exists some t = O
(

1
δ2 log

(
1
ε

(
1 + 1

2δ2

)))
such that the following holds: Given k numbers 0 < qi < 1 such that

∑
i qi ≥ 1 and k

families, F1, . . . ,Fk ⊆ 2[n], that are k-wise t-cross-intersecting, there exists a j such
that μ1−qj−δ(F) < ε.

3 Multi-Layered PCP

In this section we describe the Multi-Layered PCP constructed in [8] and its useful
properties. An instance Φ of the Multi-Layered PCP is parametrized by integers L,R >
1. The PCP consists of L sets of variables X1, . . . , XL. The label set (or range) of the
variables in the lth set Xl is a set RXl

where |RXl
| = RO(L). For any two integers

1 ≤ l < l′ ≤ L, the PCP has a set of constraints Φl,l′ in which each constraint depends
on one variable x ∈ Xl and one variable x′ ∈ Xl′ . The constraint (if it exists) between
x ∈ Xl and x′ ∈ Xl′ (l < l′) is denoted and characterized by a projection πx→x′ :
RXl

→ RXl′ . A labeling to x and x′ satisfies the constraint πx→x′ if the projection (via
πx→x′) of the label assigned to x coincides with the label assigned to x′.

The following useful ‘weak-density’ property of the Multi-Layered PCP was defined
in [8].

Definition 13. An instance Φ of the Multi-Layered PCP with L layers is weakly-dense
if for any δ > 0, given m ≥ � 2δ � layers l1 < l2 < · · · < lm and given any sets
Si ⊆ Xli , for i ∈ [m] such that |Si| ≥ δ|Xli |; there always exist two layers li′ and
li′′ such that the constraints between the variables in the sets Si′ and Si′′ is at least δ2

4
fraction of the constraints between the sets Xli′ and Xll′′ .

The following inapproximability of the Multi-Layered PCP was proven by Dinur et al.
[8] based on the PCP Theorem [4,3] and Raz’s Parallel Repetition Theorem [26].

Theorem 14. There exists a universal constant γ > 0 such that for any parameters
L > 1 and R, there is a weakly-dense L-layered PCP Φ = ∪Φl,l′ such that it is NP-
hard to distinguish between the following two cases:

– YES Case: There exists an assignment of labels to the variables of Φ that satisfies
all the constraints.

– NO Case: For every 1 ≤ l < l′ ≤ L, not more that 1/Rγ fraction of the constraints
in Φl,l′ can be satisfied by any assignment.
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4 Hardness Reduction for HYPVC-PARTITE

4.1 Construction of the Hypergraph

Fix a k ≥ 3, an arbitrarily small parameter ε > 0 and let r = �10ε−2�. We shall
construct a (k+1)-uniform (k+1)-partite hypergraph as an instance of (k+1)-HYPVC-
PARTITE. Our construction will be a reduction from an instance Φ of the Multi-Layered
PCP with number of layers L = 32ε−2 and parameter R which shall be chosen later to
be large enough. It involves creating, for each variable of the PCP, several copies of the
Long Code endowed with different biased measures as explained below.

Over any domain T , a Long CodeH is a collection of all subsets of T , i.e.,H = 2T .
A bias p ∈ [0, 1] defines a measure μp on H such that μp(v) = p|v|(1 − p)|T\v| for
any v ∈ H. In our construction we need several different biased measures defined as
follows. For all j = 1, . . . , r, define qj := 2j

rk , and biases pj := 1 − qj − ε. Each pj
defines a biased measure μpj over a Long Code over any domain. Next, we define the
vertices of the hypergraph.

Vertices. We shall denote the set of vertices by V . Consider a variable x in the layer
Xl of the PCP. For i ∈ [k + 1] and j ∈ [r], let Hx

ij be a Long Code on the domain

RXl
endowed with the bias μpj , i.e., μpj (v) = pj

|v|(1 − pj)|RXl
\v| for all v ∈ Hx

ij =
2RXl . The set of vertices corresponding to x is V [x] :=

⋃k+1
i=1

⋃r
j=1Hx

ij . We define the
weights on vertices to be proportional to its biased measure in the corresponding Long
Code. Formally, for any v ∈ Hx

ij ,

wt(v) :=
μpj (v)

L|Xl|r(k + 1)
.

The above conveniently ensures that for any l ∈ [L],
∑

x∈Xl
wt(V [x]) = 1/L, and∑

l∈[L]

∑
x∈Xl

wt(V [x]) = 1. In addition to the vertices for each variable of the PCP,
the instance also contains k + 1 dummy vertices d1, . . . , dk+1 each with a very large
weight given by wt(di) := 2 for i ∈ [k + 1]. Clearly, this ensures that the total weight
of all the vertices in the hypergraph is 2(k + 1) + 1. The edges shall be defined in such
a way so as to ensure that the maximum sized independent set contains all the dummy
vertices. We define the (k + 1) partition (V1, . . . , Vk+1) of V to be:

Vi =

⎛⎝ L⋃
l=1

⋃
x∈Xl

r⋃
j=1

Hx
ij

⎞⎠ ∪ {di},
for all i = 1, . . . , k + 1.

We now define the hyperedges of the instance. In the rest of the section, the vertices
shall be thought of as subsets of their respective domains.

Hyperedges. For every pair of variables x, y in Φ such that there is a constraint πx→y ,
we construct edges as follows:

(1.) Consider all permutations σ : [k+1]→ [k+1] and sequences (j1, . . . , jk, jk+1)
such that, j1, . . . , jk ∈ [r] ∪ {0} and jk+1 ∈ [r] such that:

∑k
i=1 �{ji �=0} qji ≥ 1.

(2.) Add all possible hyperedges e such that for all i ∈ [k]:
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(2.a) If ji = 0 then e ∩ Vσ(i) =: vσ(i) ∈ Hx
σ(i),ji

, and,
(2.b) If ji = 0 then e ∩ Vσ(i) = dσ(i) and,
(2.c) e ∩ Vσ(k+1) =: uσ(k+1) ∈ Hy

σ(k+1),jk+1
, which satisfy,

πx→y

⎛⎝ ⋂
i: i∈[k],ji �=0

vσ(i)

⎞⎠ ∩ uσ(k+1) = ∅. (1)

Let us denote the hypergraph constructed above by G(Φ). From the construction it is
clear that G(Φ) is (k + 1)-partite with partition V = ∪i∈[k+1]Vi.

The role of the dummy vertices {di}i is to ensure that each hyperedge contains
exactly k + 1 vertices – without them we would have hyperedges with fewer than
k + 1 vertices. Also note that the hyperedges are defined in such a way that the set
{d1, . . . , dk+1} is an independent set. Moreover, since the weight of each di is 2, while
the total weight of all vertices except {di}i is 1, this implies that any maximum in-
dependent set I contains all the dummy vertices. Thus, V \ I is a minimum vertex
cover that does not contain any dummy vertices. For convenience, the analysis of our
reduction shall focus on the weight of (I ∩ V ) \ {d1, . . . , dk+1}.

The rest of this section proves the following theorem which implies Thm. 4.

Theorem 15. Let Φ be the instance of Multi-Layered PCP from which the hypergraph
G(Φ) is derived as an instance of (k + 1)-HYPVC-PARTITE. Then,

– Completeness: If Φ is a YES instance, then there is an independent set I∗ in G(Φ)
such that,

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) ≥ 1− 1
k
− 2ε.

– Soundness: IfΦ is a NO instance, then for all maximum independent sets I inG(Φ),

wt (I ∩ (V \ {d1, . . . , dk+1})) ≤ 1− k

2(k + 1)
+ ε.

The completeness is proved in Sec. 4.2, and the soundness in Sec. 4.3.

4.2 Completeness

In the completeness case, the instance Φ is a YES instance, i.e., there is a labeling A
which maps each variable x in layer Xl to an assignment in RXl

for all l = 1, . . . , L,
such that all the constraints of Φ are satisfied.
Consider the set of vertices I∗ which satisfies the following properties:
1. di ∈ I∗ for all i = 1, . . . , k + 1.
2. For all l ∈ [L], x ∈ Xl, i ∈ [k + 1], j ∈ [r],

I∗ ∩Hx
ij = {v ∈ Hx

ij : A(x) ∈ v}. (2)

Suppose x and y are two variables in Φ with a constraint πx→y between them. Consider
any v ∈ I∗ ∩ V [x] and u ∈ I∗ ∩ V [y]. Since the labeling A satisfies the constraint
πx→y , we have that A(x) ∈ v and A(y) ∈ u and A(y) ∈ πx→y(v) ∩ u. Therefore,
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Eq. (1) is not satisfied by the vertices in I∗, and so I∗ is an independent set. By Eq. (2),
the fraction of the weight of the Long CodeHx

ij which lies in I∗ is pj , for any variable
x, i ∈ [k + 1] and j ∈ [r]. Therefore,

wt(I∗ ∩ V [x])
wt(V [x])

=
1
r

r∑
j=1

pj = 1− 1
k

(
1 +

1
r

)
− ε,

by our setting of pj in Sec. 4.1. The above yields that

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) = 1− 1
k

(
1 +

1
r

)
− ε ≥ 1− 1

k
− 2ε, (3)

for a small enough value of ε > 0 and our setting of the parameter r.

4.3 Soundness

For the soundness analysis we have that Φ is a NO instance as given in Thm. 14 and we
wish to prove that the size of the maximum independent set in G(Φ) is appropriately
small. For a contradiction, assume that there is a maximum independent set I in G(Φ)
such that, wt(I ∩ (V \ {d1, . . . , dk+1})) ≥ 1− k

2(k+1) + ε. Define the set of variables
X ′ as:

X ′ :=
{
x a variable in Φ :

wt(I ∩ V [x])
wt(V [x])

≥ 1− k

2(k + 1)
+
ε

2

}
. (4)

An averaging argument shows that wt(∪x∈X′V [x]) ≥ ε/2. A further averaging implies
that there are ε

4L = 8
ε layers of Φ such that ε

4 fraction of the variables in each of these
layers belong to X ′. Applying the Weak Density property of Φ given by Definition
13 and Thm. 14 yields two layers Xl′ and Xl′′ (l′ < l′′) such that ε2

64 fraction of the
constraints between them are between variables in X ′. The rest of the analysis shall
focus on these two layers and for convenience we shall denote X ′ ∩ Xl′ by X and
X ′ ∩Xl′′ by Y , and denote the respective label sets by RX and RY .

Consider any variable x ∈ X . For any i ∈ [k + 1], j ∈ [r], call a Long Code Hx
ij

significant if μpj (I ∩ Hx
ij) ≥ ε

2 . From Eq. (4) and an averaging argument we obtain,

∣∣{(i, j) ∈ [k + 1]× [r] : Hx
ij is significant}∣∣ ≥ (

1− k

2(k + 1)

)
r(k + 1). (5)

An analogous statement holds for every variable y ∈ Y and corresponding Long Codes
Hy
ij . The following structural lemma now follows. We omit the proof.

Lemma 16. Consider any variable x ∈ X . Then there exists a sequence (j1, . . . , jk+1)
with ji ∈ [r] ∪ {0} for i ∈ [k + 1]; such that the Long Codes {Hx

i,ji
| i ∈ [k +

1] where ji = 0}, are all significant. Moreover,
∑k+1

i=1 ji ≥ rk
2 + r.

Next we define the decoding procedure to define a label for any given variable x ∈ X .

Labeling for variable x ∈ X . The label A(x) for each variable x ∈ X is chosen
independently via the following three step (randomized) procedure.
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Step 1. Choose a sequence (j1, . . . , jk+1) yielded by Lem. 16 applied to x.

Step 2. Choose an element i0 uniformly at random from [k + 1].
Before describing the third step of the procedure, we require the following lemma

that is proved using Lem. 16 and Lem. 12. We omit the proof.

Lemma 17. There exist vertices vi ∈ I ∩ Hx
iji

for every i : i ∈ [k + 1] \ {i0}, ji = 0,
and an integer t := t(ε) satisfying:∣∣∣∣∣∣

⋂
i:i�=i0 ;ji �=0

vi

∣∣∣∣∣∣ < t. (6)

The third step of the labeling procedure is as follows:

Step 3. Apply Lem. 17 to obtain the vertices vi ∈ I ∩Hx
iji

for every i : i ∈ [k+ 1] \
{i0}, ji = 0 satisfying Eq. (6). Define B(x) as,

B(x) :=
⋂

i:i�=i0 ;ji �=0

vi,

noting that |B(x)| < t. Assign x a random label from B(x) and call the label A(x).
Labeling for variable y ∈ Y . After labeling the variables x ∈ X via the procedure
above, we construct a labeling A(y) for any variable y ∈ Y by defining,

A(y) := argmaxa∈RY
|{x ∈ X ∩N(y) | a ∈ πx→y(B(x))}| ,

where N(y) is the set of all variables that have a constraint with y. The above process
selects a label for y which lies in maximum number of projections ofB(x) for variables
x ∈ X which have a constraint with y.

The rest of this section lower bounds the number of constraints satisfied by the la-
beling process, and thus obtains a contradiction to the fact that Φ is a NO instance.

Lower bounding the number of satisfied constraints. Fix a variable y ∈ Y . Let
U(y) := X ∩ N(y), i.e., the variables in X which have a constraint with y. Further,
define the set P (y) ⊆ [k + 1] as follows,

P (y) = {i ∈ [k + 1] | ∃j ∈ [r] such that μpj (I ∩ Hy
ij) ≥ ε/2}.

In other words,P (y) is the set of all those indices in [k+1] such that there is a significant
Long Code corresponding to each of them. Applying Eq. (5) to y we obtain that there at
least r(k+2)

2 significant Long Codes corresponding to y, and therefore |P (y)| ≥ k+2
2 ≥

1. Next we define subsets of U(y) depending on the outcome of Step 2 in the labeling
procedure for variables x ∈ U(y). For i ∈ [k + 1] define,

U(i, y) := {x ∈ U(y) | i was chosen in Step 2 of the labeling procedure for x},
Also, define U∗(y) :=

⋃
i∈P (y) U(i, y). Note that {U(i, y)}i∈[k+1] is a partition of

U(y). Also, since |P (y)| ≥ k+1
2 and the labeling procedure for each variable x chooses

the index in Step 2 uniformly and independently at random we have,

E[|U∗(y)|] ≥ |U(y)|
2

, (7)
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where the expectation is over the random choice of the indices in Step 2 of the labeling
procedure for all x ∈ U(y). Before continuing we need the following simple lemma
(proved as Claim 5.4 in [8]).

Lemma 18. Let A1, . . . , AN be a collection of N sets, each of size at most T ≥ 1.
If there are not more than D pairwise disjoint sets in the collection, then there is an
element that is contained in at least N

TD sets.

Now consider any i′ ∈ P (y) such that U(i′, y) = ∅ and a variable x ∈ U(i′, y). Since
i′ ∈ P (y) there is a significant Long Code Hy

i′j′ for some j′ ∈ [r]. Furthermore, since
I is an independent set there cannot be a u ∈ I∩Hy

i′,j′ such that πx→y(B(x))∩u = ∅,
otherwise the following set of k + 1 vertices,

{vi | i ∈ [k + 1] \ {i′}, ji = 0} ∪ {di | i ∈ [k + 1] \ {i′}, ji = 0} ∪ {u}
form an edge in I, where {vi}, {ji} were picked in the labeling procedure for x, and
the vertices {di} ∈ I since it is a maximum independent set.

Consider the collection of sets πx→y(B(x)) for all x ∈ U(i′, y). Clearly each set is
of size less than t. Let D be the maximum number of disjoint sets in this collection.
Each disjoint set independently reduces the measure of I ∩ Hy

i′,j′ by a factor of (1 −
(1− pj′)t). However, since μpj′ (I ∩Hy

i′,j′) is at least ε
2 , this implies that D is at most

log( ε2 )/ log(1 − (2/rk)t), since pj′ ≤ 1 − 2
rk . Moreover, since t and r depends only

on ε, the upper bound on D also depends only on ε.
Therefore by Lem. 18, there is an element a ∈ RY such that a ∈ πx→y(B(x)) for at

least 1
Dt fraction of x ∈ U(i′, y). Noting that this bound is independent of j′ and that

{U(i′, y)}i′∈P (y) is a partition of U∗(y), we obtain that there is an element a ∈ RY

such that a ∈ πx→y(B(x)) for 1
(k+1)Dt fraction of x ∈ U∗(y). Therefore, in Step 3 of

the labeling procedure when a label A(x) is chosen uniformly at random from B(x),
in expectation, a = πx→y((A(x)) for 1

(k+1)Dt2 fraction of x ∈ U∗(y). Combining
this with Eq. (7) gives us that there is a labeling to the variables in X and Y which
satisfies 1

2(k+1)Dt2 fraction of the constraints between variables in X and Y which is

in turn at least ε2

64 fraction of the constraints between the layers Xl′ and Xl′′ . Since D
and t depend only on ε, choosing the parameter R of Φ to be large enough we obtain a
contradiction to our supposition on the lower bound on the size of the independent set.
Therefore in the Soundness case, any for any independent set I,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≤ 1− k

2(k + 1)
+ ε.

Combining the above with Eq. (3) of the analysis in the Completeness case yields a
factor k2

2(k+1)−δ (for any δ > 0) hardness for approximating (k+1)-HYPVC-PARTITE .

Thus, we obtain a factor k2−1+ 1
2k−δ hardness for approximating k-HYPVC-PARTITE.
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Abstract. Phylogenetic tree reconstruction is a fundamental biological
problem. Quartet amalgamation - combining a set of trees over four taxa
into a tree over the full set - stands at the heart of many phylogenetic
reconstruction methods. However, even reconstruction from a consistent
set of quartet trees, i.e. all quartets agree with some tree, is NP-hard, and
the best approximation ratio known is 1/3. For a dense input of Θ(n4)
quartets (not necessarily consistent), the problem has a polynomial time
approximation scheme.

When the number of taxa grows, considering such dense inputs is
impractical and some sampling approach is imperative. In this paper we
show that if the number of quartets sampled is at least Θ(n2 log n), there
is a randomized approximation scheme, that runs in linear time in the
number of quartets. The previously known polynomial approximation
scheme for that problem required a very dense sample of size Θ(n4). We
note that samples of size Θ(n2 log n) are sparse in the full quartet set.

1 Introduction

The study of evolution and the construction of phylogenetic (evolutionary) trees
are classical subjects in biology. Existing accurate phylogenetic techniques are
capable of coping with a relatively small amount of data. DNA sequences from
a variety of organisms are rapidly accumulating, challenging current approaches
of phylogenetics. The supertree approach works by constructing small trees over
overlapping sets of taxa, and subsequently, amalgamating these trees into a big
tree over the full set.

We distinguish between rooted and unrooted phylogenetic trees. In the rooted
setting a rooted triplet tree (Figure 1:a) is the basic informative unit. We denote
a triplet over the taxa a, b, c by ab|cmeaning that, in the underlying tree, the least
common ancestor of a and b (lca(a, b)) is a descendant of lca(a, c) = lca(b, c).
Given a set of rooted triplets, there exists a polynomial time algorithm that
constructs a tree consistent with the given set, or reports that no such tree exists
[1,3]. In the unrooted setting, the notion of lca is meaningless and therefore the
basic informative unit is a quartet tree (Figure 1:b) - ab|cd - meaning that there

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 339–350, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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is a path in the underlying tree separating a and b from c and d. Here however,
the decision problem of whether there exists a tree satisfying all the quartets in
an arbitrary given set, is NP-hard [7]. This raises the problem of finding a tree
maximizing the number of consistent quartets - maximum quartet consistency
(MQC) [7].

(a) (b)

Fig. 1. (a) - a rooted triplet tree 12|3. (b) - an unrooted quartet tree 12|34.

The MQC problem is central in many phylogenetic problems that reduce to
solving MQC at some stage (see [5], Chapter 6, for an introduction). The ap-
proximation complexity of MQC is a longstanding open problem. At present,
the best known polynomial time approximation algorithm has an approximation
ratio of 1/3 (see Section 1.1). There are also a few results that assume some con-
straint either on the correctness or the density of the input. Most notably, Jiang
et al. [4] designed a polynomial time approximation scheme (PTAS) for MQC
when the input consists of all

(
n
4

)
possible quartets. This was later generalized

by the authors in [6] for inputs of size Θ(n4).
The requirement that the input consists of Θ(n4) quartets as in [4,6] becomes

prohibitive when the number of taxa grows even to moderate sizes. A faster
approach is to sample a relatively small number of m � (

n
4

)
four-taxa sets,

providing as input the corresponding m quartets they define, and try to solve
MQC on this input. This version of the problem is sampled-MQC.

In a recent paper [6], the authors have devised a new polynomial time ap-
proximation algorithm for sampled-MQC. Given a set of m quartets sampled
uniformly from the set of all

(
n
4

)
quartets, the algorithm achieves an approxi-

mation ratio of roughly 0.425. The result is obtained by constructing a quartet
graph and approximating a MaxCut in that graph.

The main result of this paper is that sampled-MQC admits a linear time
randomized approximation scheme for sparse inputs. We prove that already for
m = Θ(n2 logn), sampled-MQC admits an EPRAS (efficient polynomial time
randomized approximation scheme [8]) that runs in O(m) time. In other words,
we compute, in O(m) time, an n-taxa phylogenetic tree that satisfies, with high
probability, at least (1 − ε)m of the input quartets. This is an improvement
over the input density of the other PTAS algorithms of [4,6], but at the cost
of assuming a uniformly sampled input. It also improves very significantly over
the 0.425 previous approximation, but at the cost of Ω(n2 logn) quartets. Our
algorithm also allows for the possibility that a small fraction (smaller than ε) of
the supplied sampled quartets are erroneous.
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1.1 Preliminaries

An (unrooted) phylogenetic tree is a tree whose internal vertices each have degree
3, and whose leaves are labeled by some taxa set (representing existing species).
Throughout this paper all trees are phylogenetic trees, unless stated otherwise.
For a tree T , we denote by L(T ) the taxa set corresponding to the leaves of T .

Let T be a tree and A ⊆ L(T ) a subset of the leaves of T . We denote by
TA, the subtree of T induced by A. Namely, TA is the tree obtained from T
by removing all leaves in L(T ) \ A and paths leading exclusively to them, and
subsequently internal vertices with degree two are contracted.

For two trees T and T ′, we say that T ′ is satisfied by T , if L(T ′) ⊆ L(T ) and
TL(T ′) = T ′. Otherwise, T ′ is violated by T . For a set of trees T = {T1, . . . , Tk}
with possibly overlapping leaves, we denote by Ts(T ) the set of trees in T that
are satisfied by T . We say that T is consistent if there exists a tree T ∗ over the
set of leaves ∪iL(Ti) that satisfies every tree Ti ∈ T . Otherwise, T is inconsis-
tent. When T is inconsistent, it is desirable to find a tree T ∗ over ∪iL(Ti) that
maximizes some objective function. T ∗ is called a supertree and the problem of
finding T ∗ is the supertree problem.

A quartet tree (or simply quartet), is an undirected phylogenetic tree over four
leaves {a, b, c, d}. We write a quartet over {a, b, c, d} as ab|cd if the removal of
the unique edge connecting the two internal vertices partitions the quartet into
two components, one containing a, b and the other containing c, d. An important
case of the supertree problem is when the set of input trees is a set of quartet
trees Q and the task is to find a tree T such that |Qs(T )| is maximized. The
problem is denoted as maximum quartet consistency (MQC). We note that MQC
is NP-hard even when Q is consistent [7].

Every tree T with |L(T )| = n defines its full quartet set, Q(T ). Since any
four leaves define a unique quartet satisfied by T , we always have Q(T ) =

(
n
4

)
.

Consider the following trivial approximation algorithm for MQC. Take any tree
T ∗ with n leaves, and randomly label them with the elements of L(T ). As any
four leaves a, b, c, d define one of three possible quartets (either ab|cd or ac|bd or
ad|bc), only one of which is satisfied by T , we have that T ∗ satisfies an expected
number of 1/3 of the input quartet set. Surprisingly, no algorithm is known that
improves upon the naive 1/3 approximation, although the problem has been
raised over two decades ago. In fact, even if we are guaranteed that the input
Q satisfies Q ⊂ Q(T ) (namely, we are guaranteed that the optimal solution to
MQC is |Q|), no algorithm is known to achieve an outcome that is asymptotically
better than |Q|/3. As mentioned in the introduction, the MQC problem has a
PTAS when |Q| = Θ(n4) [4,6].

We now turn to sampled MQC. As described in the introduction, we know the
set of taxa L(T ) of some unknown tree T , and given any four taxa we can (using
biological information) infer the correct quartet. Clearly, if we have unlimited
time and resources, we can generate all

(
n
4

)
elements of Q(T ) and solve the

problem. This, however, is unrealistic for very large n.
Motivated by this problem, sampled-MQC consists of an input Q of m� (

n
4

)
quartets sampled uniformly (say, with replacement), from Q(T ). Recently, the
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authors [6] obtained an approximation algorithm for sampled-MQC that im-
proves upon the naive 1/3 approximation. They describe a randomized approx-
imation algorithm that constructs a tree T ∗ satisfying an expected number of
more than 0.425m elements of Q.

The main result of this paper is a significant strengthening of the result of
[6], in case the sample size is at least Θ(n2 logn). Notice that such a sample is
very sparse in Q(T ), as the size of the latter is

(
n
4

)
. We construct a linear time

randomized approximation scheme for sampled-MQC. The exact statement of
our result follows.

Theorem 1. Let ε > 0 be fixed. Suppose that Q is a set of m ≥ Θ(n2 logn)
quartets sampled uniformly from the full quartet set Q(T ) of some unknown tree
T . Then there is an O(m) time randomized algorithm that constructs a tree T ∗

that satisfies an expected number of (1− ε)m elements of Q.

As mentioned earlier, the proof of Theorem 1 is slightly more general. One does
not need to assume that all m sampled quartets are correct. The proof stays
intact as long as each sampled quartet is erroneously generated with small prob-
ability (smaller than ε). The general (extremely high level) idea of the algorithm
is to consider relatively small models of phylogenetic trees. By scanning con-
stantly many such models, we prove that one of them is guaranteed to be a
model M of our unknown tree T . Given that model M , we prove how to expand
it to a tree T ∗ which is also modeled by M . We prove that with small constant
probability, T ∗ satisfies many quartets ofQ. By repeating this process constantly
many times, we eventually obtain, with high probability, a tree T ∗ which indeed
satisfies many quartets of Q.

The rest of this paper is organized as follows. In the next section we state
and prove several notions and lemmas that are useful for the description of the
algorithm. The algorithm and its proof of correctness are given in Section 3.

2 Tree Models

For the remainder of this paper, we assume that T is some (unknown) phyloge-
netic tree with n leaves. The leaves are labeled by a set L(T ) of known labels,
and Q ⊂ Q(T ) is a set of quartets obtained by sampling uniformly (with re-
placement) m elements of Q(T ). The error parameter ε > 0 is fixed, and we
assume that m ≥ Cn2 logn where C is some suitably large constant depending
on ε. Our goal is to construct a tree T ∗ that satisfies, with high probability, at
least (1− ε)m quartets of Q.

2.1 Tree Models of Constant Size

Since all internal vertices of T have degree 3, it is a well-known easy fact (see,
e.g., [5]) that there is always an edge of T , whose removal partitions T into two
components, each having at least n/3 of the leaves. So assume e = (x, y) is such
an edge of T . It will be convenient to view T as a rooted tree. Subdivide e by
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introducing a new vertex r in its middle and make r the root. Hence, now T is
a full binary tree, the children of r are x and y, and each of them is an ancestor
of at least n/3 leaves. Unless otherwise specified, we refer to this rooted version
of T .

Let I(T ) denote the set of internal vertices of T (including the root r), and
notice that since |L(T )| = n, and T is a full binary tree, then we have |I(T )| =
n− 1.

Recall that lca(x, y) denotes the unique lowest common ancestor of two ver-
tices x, y in a rooted tree. In particular, if x is an ancestor of y then lca(x, y) = x.
We say that a subset K ⊂ I(T ) is LCA-closed if whenever x, y ∈ K then also
lcx(x, y) ∈ K. We further demand that r ∈ K. It is a straightforward exercise
that every set of k vertices of a rooted tree can be made LCA-closed by adding
to it at most k additional vertices.

There is a natural correspondence between an LCA-closed subset K, a topo-
logical minor of T it defines, and a partition it defines on L(T ). We now state
this correspondence formally.

Definition 1. Let K ⊂ I(T ) be LCA-closed. Let MT (K) be the rooted binary
tree whose vertex set is K, and u is the parent of v inMT (K) if and only if u is the
lowest among all proper ancestors of v in K. We call MT (K) a tree model of T .

Notice that r is the root ofMT (K), since it is the only vertex ofK with no proper
ancestor in K. Observe also that MT (K) is a contraction (in fact, a topological
minor) of T .

For v ∈ K, let Av ⊂ L(T ) denote the set of leaves of T having the property
that x ∈ Av if and only if v is the lowest among all proper ancestors of x in
K. Let v0 and v1 be the two children of v in T (and notice that v0, v1 are not
necessarily in K and may or may not be in L(T )). Then Av is further divided
into two parts, Av,0 are those leaves that have v0 as their ancestor while Av,1

have v1 as their ancestor.

Definition 2. The set PT (K) = {Av,0 , Av,1 | v ∈ K} is the leaf partition of
the model.

Notice that PT (K) is a partition of L(T ) into 2|K| parts. It may be the case
that some parts are empty; for example, if v ∈ K and its child v0 ∈ K then
Av,0 = ∅.
Definition 3. We say that MT (K) is a δ-model of T if every element of PT (K)
has size at most δn.

The next lemma proves that there are δ-models with O(1/δ) vertices.

Lemma 1. There is a δ-model of T with at most 4/δ vertices.

Proof. We prove that there exists a (not necessarily LCA-closed) subset K ′ ⊂
I(T ) with r ∈ K ′, so that for each v ∈ K ′, the set of leaves Av has δn/2 ≤
|Av| ≤ δn. (Notice that since r ∈ K ′ then Av is well-defined even if K ′ is
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not LCA-closed.) Since P ′ = PT (K ′) is a partition of L(T ), this implies that
|K ′| ≤ n/(δn/2) = 2/δ. Now, since K ′ can be made into an LCA-closed set K
by adding to K ′ at most |K ′| additional vertices, we have that |K| ≤ 4/δ. Since
P = PT (K) is a refinement of P ′, then every element of P also has size at most
δn, and the lemma follows.

We prove the existence of K ′ as follows. We initially set all the leaves in L(T )
as unmarked. Next, we perform a postorder traversal of T . Whenever we reach
a vertex v ∈ I(T ), let Uv denote the set of yet unmarked leaves in the subtree
rooted at v. If |Uv| ≥ δn/2 then we add v to K ′, mark all elements of Uv, and
notice that Av = Uv. Notice that we must have |Uv| ≤ δn. Otherwise, one of
the two children of v, say w, would have had at least δn/2 unmarked leaves in
Uw. But since w has already been traversed, we should have already added w to
K ′ and marked all elements of Uw, a contradiction. Finally, when we reach r we
add it to K ′ in any case. ��

2.2 Constant Size Nets for Constant Size Models

Let MT (K) be a δ-model, and let PT (K) be its leaf partition, consisting of
subsets Av,j for v ∈ K and j = 0, 1.

Definition 4. The function fT (K) : K×{0, 1} → [0, δ] defined by fT (K)(v, j) =
|Av,j |/n is called the size vector of the model.

We say that a function f ′ : K ×{0, 1} → [0, δ] is a δ4-approximation of fT (K) if
f ′(v, j) ≤ fT (K)(v, j) ≤ f ′(v, j) + δ4 for all v ∈ K and j = 0, 1.

Given |K| and δ, a family of functions F is called a (|K|, δ4)-net if for every
possible function f : K ×{0, 1} → [0, δ] one can find in F a δ4-approximation of
f .

For constants |K| and δ, it is not difficult to construct a (|K|, δ4)-net of
constant size, and in constant time. This is analogous to constructing the set of all
vectors of length 2|K| whose coordinates are of the form iδ4 for i = 0, . . . , �δ−3�.
As there are at most (1 + δ−3)2|K| such vectors, the claim follows.

3 Proof of the Main Result

In our proof we will use δ = ε/5000. For the proof of our algorithm we need to
fix and reference the following objects.

1. A rooting of T from some vertex r as described in Section 2.1. Recall that
this makes T into a full binary tree, and each child of r is an ancestor of at
least n/3 leaves.

2. A δ-model MT (K) of T with at most 4/δ vertices, guaranteed to exist by
Lemma 1. Label the vertices of MT (K) with {1, . . . , |K|}.

3. The leaf partition PT (K) of the model MT (K). Recall that PT (K) is a
partition of L(T ) into 2|K| parts, denoted by Av,j for v ∈ K and j = 0, 1.

4. The size vector fT (K) of the model. Recall that fT (K)(v, j) = |Av,j |/n.
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Generally speaking, our algorithm will “guess” a δ-model, it will “guess” a close
approximation of fT (K), and it will try to generate a partition of L(T ) defined
by that guess. We will show that after guessing constantly many times (constant
depending on δ and hence on ε) we are guaranteed that one of our guesses is
correct. We will then show that, under the assumption of a correct guess, the
generated partition is close to the actual partition PT (K). We will then show
how to construct a phylogenetic tree T ∗ using the generated partition, which
satisfies many quartets of Q.

We describe a general procedure PARTITION(M, f). The first parameter is
a labeled binary tree M with k vertices, and the second parameter is a func-
tion f : {1, . . . , k} × {0, 1} → [0, δ]. We call PARTITION constantly many
times. For all k = 1/δ, . . . , 4/δ we construct a (k, δ4)-net Fk. We also construct
the set Mk of all possible labeled binary tree with k vertices. There are con-
stantly many such trees. For each k, for each f ∈ Fk and for each M ∈ Mk

we call PARTITION(M, f). Hence, at some point we are guaranteed to call it
with parameters (M0, f0) where M0 is label-isomorphic to MT (K) and f0 is a
δ4-approximation of fT (K).

What follows is a description of PARTITION assuming that the parameters
are instantiated by (M0, f0). Its behavior in other calls is of no interest to us (it
may return “fail” or a partition that is not close to PT (K)).

3.1 PARTITION(M0, f0)

PARTITION tries, using f0 and M0, to construct a partition P∗ of L(T ) that
is close (in a well defined sense) to PT (K). We will show that with constant
positive probability, it is guaranteed to succeed.

The main problem, of course, is that although we have M0 and f0 (and thus
we assume from now on that we know MT (K) and have a good approximation
of fT (K)), we do not know the actual leaf partition PT (K). However, we do
know a close approximation of the cardinality of each element of PT (K), since
f0is close to fT (K). We define:

1. yv,j to be the child of v in T that is the ancestor of all elements of Av,j ;
2. Sv,j ⊂ L(T ) to be all the leaves that have yv,j as their ancestor. Notice that
Av,j ⊂ Sv,j .

We say that (u, i) is below (v, j) (or, equivalently, denote that (u, i) ≤ (v, j) ) if v
is an ancestor of u. We will perform a postorder traversal of the (v, j). Namely,
when we process (v, j) we already know that all (u, i) properly below it have
been processed. Since M0 is label isomorphic to MT (K), a postorder traversal
of M0 achieves this. Whenever we reach a vertex v of M0 we process both (v, 0)
and (v, 1).

Definition 5. We say that a partition P∗ of L(T ) is close to PT (K) if the
following conditions hold.

1. P∗ = {Bv,j |v ∈ K , j = 0, 1} ∪ {B∗}. We call B∗ the exceptional part.
Hence, B∗ = L(T ) \⋃(v,j)∈K×{0,1}Bv,j.
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2. |Av,j \Bv,j | ≤ 50δ2n.
3. Bv,j ⊂ Sv,j.
4. |Sv,j \

⋃
(u,i)≤(v,j) Bu,i| ≤ 50δ2n.

In fact, notice that the second requirement (which is the one we are after) is
actually a consequence of the third and fourth requirements. We will show how
to construct, with constant positive probability, a partition P∗ that is close to
PT (K).

We assume that whenever we reach (v, j), we have already defined sets Bu,i for
all (u, i) that are properly below (v, j), and, furthermore, the sets already defined
satisfy the desired properties. We will show how to define Bv,j so that with
constant probability, it also satisfies the properties above. Since the number of
possible (v, j) is only 2|K|, this will yield that with constant positive probability,
the constructed P∗ is close to PT (K).

So assume that we have reached step (v, j) in our postorder traversal and wish
to construct Bv,j . Consider the set of leaves X = Sv,j \

⋃
(u,i)<(v,j) Bu,i. Namely,

X consists of the elements of Av,j together with all other elements of Sv,j that
have not been assigned to sets Bu,i. Although the algorithm does not know the
set X (since it does not know Sv,j), it does know a good approximation for its
cardinality. Since f0 is a δ4-approximation, we know each |Au,i| up to δ4n. As
there are at most 2|K| ≤ 8/δ possible (u, i), the overall error in estimating |Sv,j |
is 8δ3n. Hence, we know |X | up to an error of 8δ3n.

The first case to look at is when our estimate for |X | is less than 49δ2n. In
particular, we are guaranteed that |X | ≤ 49δ2n+8δ3n ≤ 50δ2n. In this case, we
simply define Bv,j = ∅. Notice that since X contains Av,j , this still satisfies the
conditions required of Bv,j .

So, we may now assume that |X | ≥ 49δ2n. Now, consider the tree TX whose
root is yv,j and whose leaf set is X . Again, the algorithm does not know TX ,
but it can guess, with constant positive probability, some important information
regarding its structure.

Each vertex t of TX , when removed from TX , partitions TX−t, and hence also
partitions X , into three parts (some of which may be empty). One part is the
component containing the parent of t (if t = yv,j then this part is empty). The
two other parts contain each a child of t (if t does not have two children then
these parts could possibly be empty). So, denote the corresponding partition of
X by X0(t), X1(t), X2(t) where X0(t) are the leaves of the part of TX − t that
contain yv,j . In particular X0(yv,j) = ∅ and if t ∈ X (namely t a leaf of TX)
then X1(t) = X2(t) = ∅ while X0(t) = X − t.
Lemma 2. There exists t ∈ TX for which |X0(t)| ≤ 16δ2n but |X0(t)∪X1(t)| >
16δ2n and |X0(t) ∪X2(t)| > 16δ2n.

Proof. Let t be the furthest vertex from yv,j in TX for which |X0(t)| ≤ 16δ2n.
Clearly t is not a leaf of TX since for leaves we have |X0(t)| = |X | − 1 ≥
49δ2n − 1 > 48δ2n. Also, t must have two children in TX since otherwise, if t1
is its only child then X0(t1) = X0(t), and t1 is further than t from yv,j . So, let
t1 and t2 be the two children of t, where tj belongs to the subtree of TX − t
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whose leaves are Xj(t) for j = 1, 2. If |X0(t) ∪ X1(t)| ≤ 16δ2n then observe
that since X0(t2) = X0(t) ∪X1(t), then t2 would have been furthest. Therefore,
|X0(t) ∪X1(t)| > 16δ2n, and analogously, |X0(t) ∪X2(t)| > 16δ2n. ��

We call a vertex t satisfying Lemma 2 a center of TX . So fix some center t, and
consider the cardinalities, |Xj(t)| = αjn for j = 0, 1, 2. Our algorithm guesses
values α∗j for j = 0, 1, 2 that approximate the αj . We say that the guess is
valid if |α∗j − αj | ≤ δ3 for j = 0, 1, 2. Clearly, with constant positive probability
(polynomial in the constant 1/δ) we arrive at a valid guess.

So we may now assume that the α∗j are a valid guess for j = 0, 1, 2. Now, if
α∗1 ≥ 16δ2, we also guess a leaf w1 ∈ X1(t). The probability that we have guessed
correctly is at least 16δ2 − δ3, hence a constant positive probability. Similarly,
if α∗2 ≥ 16δ2, we guess a leaf w2 ∈ X2(t). So, assume that we have guessed
correctly.

Now there are three cases to consider. The first case is when α∗1 < 16δ2.
The second case is when α∗2 < 16δ2. The third case is when both are at least
16δ2. Since the first and second case are symmetric, we consider, without loss of
generality, only the first case and third case.

Before describing these cases, we fix some notation. Let B =
⋃

(u,i)<(v,j) Bu,i.
Let D = L(T )−Sv,j . Namely, D is the set of leaves that do not have yv,j as their
ancestor. In particular, D contains at least one third of the leaves of T , so |D| ≥
n/3. Notice that D,B,X are pairwise disjoint and D∪B∪X = L(T ). Consider a
sample of C′n2 logn quartets where C′ is a sufficiently large constant. Eliminate
from this sample all quartets that contain an element of B. As |D| ≥ n/3, we
still remain with a completely random sample Q of q ≥ Cn2

0 logn0 quartets over
D ∪ X where n0 = |D ∪ X | > n/3, and C is a suitably large constant. Notice
that for two leaves a, b ∈ D ∪X , the probability that they appear in a specific
element of Q is precisely p = 12

n0(n0−1) .
For simplicity, denote |D| = ηn0, |Xi(t)| = αin = βin0. Observe that

η + β0 + β1 + β2 = 1 . (1)

Finally, let β∗i = α∗i n/n0, and observe that as n/n0 < 3 we have |βi− β∗i | ≤ 3δ3.

The case α∗
1 < 16δ2. Since |X | ≥ 49δ2n, we have that α0+α1+α2 ≥ 49δ2. As

t is a center we have α0 ≤ 16δ2. Since |α∗j − αj | ≤ δ3 we surely have α∗2 > 16δ2

so we have guessed w2 ∈ X2(t).
We will show that, with high probability, we can construct a set Bv,j that

contains all the elements of X2(t), and that is contained in X . Notice that such
a Bv,j misses at most |X1(t) ∪ X0(t)| < 49δ2n vertices of X , and in particular
satisfies the requirements in the definition of a close partition.

We will show that for a z ∈ D∪X , we can, with high probability, differentiate
between the case z ∈ D and the case z ∈ X2(t). For those z ∈ X0(t) ∪X1(t) we
will not be able to differentiate. Using this differentiation, we can find a subset
Bv,j so that X2(t) ⊂ Bv,j ⊂ X , as required.
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We will use w2 as a pivot for our differentiation rule. Consider first the case
z ∈ D. Given that w2 and z are in the same quartet of Q, what is the probability
that they are on opposite sides? Let a, b denote the other two elements of the
quartet. Clearly, if a ∈ X2(t) and b /∈ X2(t) then the quartet must be aw2|zb.
Similarly, if b ∈ X2(t) and a /∈ X2(t) then the quartet must be bw2|za. Also,
if a ∈ D and b ∈ X0(t) ∪ X1(t) we must have bw2|za. Similarly, if b ∈ D and
a ∈ X0(t)∪X1(t) we must have aw2|zb. It follows that, given that w2 and z are
in the same quartet of Q, they are on opposite sides with probability at least

2β2η + 2β2(β0 + β1) + 2η(β0 + β1)− on(1) = 2β2 − 2β2
2 + 2η(β0 + β1)− on(1)

where the r.h.s. uses (1) (the term on(1) is due to the fact that a and b are
sampled without replacement, as they must be distinct). Hence, the expected
number of elements of Q in which w2, z are on opposite sides is greater than

qp(2β2 − 2β2
2 + 2η(β0 + β1)− δ2/4) .

But q ≥ Cn2
0 logn0 and hence qp > C logn. Since each element of Q is sam-

pled uniformly and independently, we have, using a standard large deviation
inequality (see [2], Corollary A.1.14), that the probability of deviating from the
expectation by more than qpδ2/4 is smaller than 1/(9n), for a suitably large
constant C. Hence, by the union bound, with probability at least 8/9, for all
z ∈ D we have that the number of elements of Q in which w2, z are on opposite
sides is at least

qp(2β2 − 2β2
2 + 2η(β0 + β1)− δ2/2) . (2)

Consider next the case z ∈ X2(t). As in the previous case, once can show that
with probability at least 8/9, for all z ∈ X2(t), the number of elements of Q in
which w2, z are on opposite sides is at most

qp(2β2 − β2
2 + δ2/2) . (3)

Thus, our differentiation rule is the following. Given z ∈ X ∪ D, we count the
number of quartets of Q in which w2, z are in opposite sides. If this number is at
most qp(2β∗2 − (β∗2 )2 +6δ3 + δ2/2) then we place z in Bv,j . Otherwise, we don’t.

Lemma 3. Let Bv,j consist of all z ∈ X ∪D for which the number of quartets
containing w2 and z in opposite sides is at most qp(2β∗2 − (β∗2 )2 + 6δ3 + δ2/2).
Then, with probability at least 7/9 we have X2(t) ⊂ Bv,j ⊂ X.

Proof. Recall that |β∗2 − β2| ≤ 3δ3. Hence,

qp(2β2 − β2
2 + δ2/2) ≤ qp(2β∗2 − (β∗2)2 + 6δ3 + δ2/2) .

Thus, by (3), with probability at least 8/9, we have that X2(t) ⊂ Bv,j .
It remains to prove that with probability at least 8/9 we have that Bv,j ⊂ X ,

or, equivalently, that Bv,j ∩D = ∅. By (2) it suffices to prove that

2β2 − 2β2
2 + 2η(β0 + β1)− δ2/2 > 2β∗2 − (β∗2 )2 + 6δ3 + δ2/2 .
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As |β∗2 − β2| ≤ 3δ3 it suffices to prove that 2β2 − 2β2
2 + 2η(β0 + β1) − δ2/2 >

2β2 − β2
2 + 12δ3 + δ2/2 which is equivalent to showing that

2η(β0 + β1)− β2
2 > δ2 + 12δ3 . (4)

Recall that η = |D|/n0 and |D| ≥ n/3 so η ≥ 1/3. As t is a center we have, by
Lemma 2, that α0 + α1 ≥ 16δ2 so β0 + β1 > 16δ2. Since |Av,j | ≤ δn and since
X consists of Av,j and at most 50δ2n additional vertices from sets below (v, j)
we have, in particular, that α2 ≤ δ+ 50δ2. Thus, β2 ≤ 3δ+ 150δ2 < 3.1δ. Hence
the l.h.s. of (4) is at least 2

3 · 16δ2 − 9.61δ2 > 1.056δ2, proving (4). ��

The case α∗
1 ≥ 16δ2 and α∗

2 ≥ 16δ2. In this case we have selected w1 ∈ X1(t)
and w2 ∈ X2(t). As in Section 3.1 one can show that, with high probability, we
can construct a set Bv,j that contains all the elements of X1(t) ∪ X2(t), and
that is contained in X . Notice that such a Bv,j misses at most |X0(t)| ≤ 16δ2n
vertices of X , and in particular satisfies the requirements in the definition of a
close partition. Due to space limitations, we omit thew details.

3.2 Constructing a Tree from a Close Partition

In the previous section we have proved that PARTITION, when called with the
parameters (M0, f0), constructs, with small constant probability, a partition P∗
of L(T ) that is close to PT (K). Hence, if we run PARTITION(M0, f0) constantly
many times, we are guaranteed that, with high probability, it will construct a P∗
that is close to PT (K). To complete the proof of Theorem 1, it suffices to show
that with high probability, a P∗ that is close to PT (K) can be used to construct
a tree T ∗ that satisfies a fraction of (1− ε) elements of a random sample of size
at least Cn2 logn.

So, for the remainder of this section we assume that P∗ is close to PT (K).
Recall that P∗ = {Bv,j |v ∈ K , j = 0, 1} ∪ B∗. For each Bv,j we construct a
tree Tv,j as follows. Tv,j is an arbitrary rooted full binary tree, except for the
root which has a unique child, and whose set of leaves is precisely Bv,j . In the
event that Bv,j = ∅ then we also define Tv,j to be an empty tree. Notice that
Tv,j has precisely 2|Bv,j| vertices.

We construct a tree T ∗ by attaching to M0 the 2|K| trees Tv,j at appropriate
places as follows. There are three cases. If Bv,j = ∅ we do nothing with Tv,j as
it is an empty tree. So assume that Bv,j = ∅. If v is a leaf of M0 then we attach
Tv,j to M0 by identifying the root of Tv,j with v. (Notice that both trees Tv,0
and Tv,1 are attached at v so v has two children in T ∗). If v is an internal vertex
of M0, then it has two emanating edges, e0 and e1 corresponding to (v, 0) and
(v, 1). We subdivide the edge ej introducing a new vertex and identify this new
vertex with the root of Tv,j.

Notice that, considered as an unrooted tree (we can simply put an edge connect-
ing the two children of the root of T ∗, which is also the root of M0, and eliminate
the root, thereby making T ∗ unrooted), T ∗ is a phylogenetic tree. Internal vertices
have degree 3, and, furthermoreL(T ∗) = L(T )−B∗. We now prove that, with high
probability, T ∗ satisfies a large fraction of the input quartet set.
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Lemma 4. For a random sample of m quartets, the expected number of quartets
satisfied by T ∗ is at least m(1−ε/3). Hence, with probability at least 2/3 we have
that T ∗ satisfies at least (1− ε)m quartets.

Proof. By linearity of expectation, it suffices to prove that a single randomly
sampled quartet is satisfied by T ∗ with probability at least 1− ε/3.

Let Ev,j = Av,j ∩Bv,j . Call the sets Ev,j the essential sets. The construction
of T ∗ guarantees that if a, b, c, d are in pairwise distinct essential sets then the
quartet they induce in T is identical to the quartet they induce in T ∗. On the
other hand, if one of a, b, c, d is not in an essential set, or if two of them are in
the same essential set, this need not be the case.

Now, observe first that since P∗ is close to PT (K) then we have |Ev,j | ≥
|Av,j | − 50δ2n. As there are 2|K| ≤ 8/δ possible sets Av,j we have that

|
⋃

(v,j)∈K×{0,1}
Ev,j | ≥ |

⋃
(v,j)∈K×{0,1}

Av,j | − 400δn = n(1− 400δ).

Thus, a randomly chosen leaf is not in an essential set with probability at most
400δ. What is the probability that two leaves of a randomly sampled quartet
ab|cd are in the same part of PT (K)? As each part contains at most a δ fraction
of the leaves, this probability is at most δ. As there are 6 pairs in a, b, c, d, with
probability at least 1− 6δ each leaf of ab|cd is in a distinct part. Overall, using
δ = ε/5000, we have that with probability at least 1− 6δ − 4 · (400δ) > 1 − ε/3
each element of a randomly sampled quartet is in a distinct essential set. Hence,
a randomly sampled quartet is also a quartet of T ∗ with probability at least
1− ε/3. ��
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Abstract. We study the SIR epidemic model with infections carried
by k particles making independent random walks on a random regular
graph. We give a edge-weighted graph reduction of the dynamics of the
process that allows us to apply standard results of Erdős–Renyi random
graphs on the particle set. In particular, we show how the parameters
of the model produce two phase transitions: In the subcritical regime,
O(ln k) particles are infected. In the supercritical regime, for a constant
C determined by the parameters of the model, Ck get infected with
probability C, and O(ln k) get infected with probability (1−C). Finally,
there is a regime in which all k particles are infected. Furthermore, the
edge weights give information about when a particle becomes infected.
We demonstrate how this can be exploited to determine the completion
time of the process by applying a result of Janson on randomly edge
weighted graphs.

Keywords: Random walks, random graphs, viral processes, SIR model.

1 Introduction

The spread of an infection throughout a population, often referred to loosely as
an epidemic, has come to be modelled in various ways in the literature, spurred
by the richness of the domains in which the abstract notion of a virus has gone
beyond the traditional biological phenomenon. Electronic viruses over computer
networks are not the only extension, others include rumour spreading [20] or
broadcasting [3] and viral marketing [13, ch. 9]. Models may vary over domains,
but the underlying principle is one of spread of some unit of information or
change of state through interaction between individuals.

In much of the literature on the spread of epidemics as well as the dissemi-
nation of information, individuals reside at fixed locations connected by a graph
and the evolution of the state of an individual depends on the state of its neigh-
bours in the graph. In particular if the graph is complete, mean-field (homoge-
neous mixing) models have been exploited to study the outcome of the diffusion
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process [9]. More recently, there has been an increasing interest in understanding
the impact of the network topology on the spread of epidemics in networks with
fixed nodes, see [13] for a review of such results. There has however been little
analytical work to date on models where the possible interactions between the
nodes are dynamic, i.e., evolves in time.

We explore a particular instance of dynamicity in interaction by assuming
that individuals are mobile particles and can only infect each other if they are
in sufficiently close proximity. The model is motivated both by certain kinds of
biological epidemics, whose transmission may be dominated by sites at which
individuals gather in close proximity (e.g., workplaces or public transport for
a disease like SARS, cattle markets for foot–and–mouth disease, etc.) and by
malware. Furthermore, it is relevant to studying the dissemination of information
in opportunistic networks [5] where the information is transmitted between users
who happen to be in each others range. As in the case of static networks [20] one
may be interested in the time it takes for the rumour to be known to all users.

In our model (elaborated upon below) the virus can be carried by k particles
making independent random walks on an n-vertex r-regular random graph G
which represents the environment. Each particle is in one of three states: suscep-
tible (S), infected (I), recovered (R). An infected particle can infect a susceptible
particle, which remains infected for a fixed infectious period ξ before recover-
ing permanently. This is a known as the SIR epidemic model and is extensively
studied in the literature. When ξ =∞ (the SI model) particles never go from I
to R. Two questions can be asked: (1) When ξ < ∞, how many particles ever
get infected? (2) How long does the process take to complete? We address both
of these questions by reducing the dynamics of the process to what we term an
interaction graph. This is an Erdős–Renyi (E–R) random graph Gk,q̂ on the set
of particles, where the edge probability q̂ is a function of the parameters of the
model. Infected particles are connected components in Gk,q̂, and so well known
results from the literature on E–R random graphs can be directly applied using
our reduction to answer question (1). In particular, we show how the parameters
of the model produce two phase transitions: In the subcritical regime, O(ln k)
particles are infected. In the supercritical regime, for a constant C determined
by the parameters of the model, Ck get infected with probability C, and O(ln k)
get infected with probability (1 − C). Finally, there is a regime in which all k
particles are infected. Statements are with high probability (whp), that is, with
probability tending to 1 as n → ∞. Furthermore, the graph reduction assigns
weights on the edges that give information about when a particle becomes in-
fected. This information can be used for addressing question (2). As an example,
in the case of ξ = ∞, we apply a result of Janson [16] on randomly–weighted
graphs to deduce that completion time converges in probability to 2θrn

k ln k,
where θr = r−1

r−2 . This matches the expectation determined in [8] for the same
example.

Whilst the metaphor of an epidemic is a motivating and illustrative one, this
work is part of the more general scope of interacting particle systems (see, e.g.,
[2, ch. 14]).
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Note, due to space restrictions, we refer to [1] for a more detailed exposition
and proofs of lemmas and theorems not presented in this paper.

2 Model

Let r ≥ 3 be fixed. Let Gr denote the set of r-regular graphs with vertex set V =
{1, 2, . . . , n} and the uniform measure. Let G = (VG, EG) be chosen uniformly
at random (uar) from Gr. The results in this paper are always asymptotic in
n = |VG|. The notation An ∼ Bn means that limn→∞An/Bn = 1.

At step t, let S(t), I(t),R(t) be the set of susceptible, infected and recovered
particles respectively. These form a partition of the particle set P . Thus, |P| = k.
Let I0 = |I(0)|.

When two particles x and y meet at some vertex v at time step t, an inter-
action takes place between them at that time step with probability ρ ∈ (0, 1],
which is a fixed constant parameter of the model. We term such an event an
xy interaction and call ρ the interaction probability. If one of the particles is
infected and the other is susceptible, the infection takes place upon interaction.
We define the completion time of the process to be the time step at which the
last infection takes place. Consider that the counter has just changed from time
step t − 1 to t. The sequence of actions is as follows: (i)Every particle makes
an independent move in its random walk. (ii)A particle x ∈ I(t − 1) that had
reached the end of its infectious period by time t changes from state I to state
R, so x /∈ I(t) and x ∈ R(t). Otherwise, it remains in state I, i.e., x ∈ I(t).
(iii)Each pair of particles x, y at the same vertex v interact with probability ρ;
the particle-pair interactions are independent of each other. If one of x or y is
in I(t), and the other was in S(t − 1), the latter becomes infected, and it be-
comes a member of I(t). New infections are considered to have started at time
t; we say a particle is infected at step t, and step t counts as one unit in the
infectious period. (iv) The counter changes from t to t+ 1, and the sequence is
repeated.

A note on notation and terminology: When we refer to a ‘period’ [t1, t2], we
mean the set of time steps {t1, t1 + 1, t1 + 2 . . . , t2}. When we refer to “time t”
we are referring to step t on the counter - this is a discrete time process. The
first time step is t = 1, and t = 0 is not a time step, just a useful convention to
express the state of the system before the first time step.

Observe the pair-wise independence of the interactions: If x, y, z meet at a
vertex v at time step t, there is an interaction between each pair ({xy, yz, xz})
with probability ρ, independently of the other interactions. From the sequence
of actions, it can be seen that it is also the case that an infection is not transitive
in a single time step. For example, say they meet at the same vertex at time
step t, x is infected but y and z are not. If x interacts with y but not z, then
y does not pass on the infection to z at that time step, even if they interact at
that time step. Let Mk be the total number of particles that ever get infected
in the course of the process, and let Tk be the completion time.
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3 Results

Theorem 1. Suppose ρ = 1 and k →∞ as n→∞. Define

φ ≡ k
(

1−
(

1− 1
θrn

)ξ
)

(1)

where θr = r−1
r−2 . Then

(i) If φ < 1 then whp, Mk = O(ln k) + I0
(ii) If φ→ c where c > 1 is some constant, then if I0 = o(k),

(a) with probability α, Mk = C(k + o(k)) + I0,
(b) with probability 1− α, Mk = O(ln k) + I0,
where C is the unique solution in (0, 1) of the equation 1− x = e−φx and
α = (1 + o(1))(1 − (1 − C)I0).

(iii) If φ > (1 + ε) ln k where ε > 1 is some constant, then whp Mk = k (i.e.,
all the particles get infected).

Theorem 1 is for finite ξ, but observe that taking the convention that x∞ = 0 for
|x| < 1 means that part (iii) is consistent with the SI model, for which all particles
get infected almost surely. The theorem effectively gives conditions for transitions
between different possible “regimes” of behaviour. The most interesting is the
regime of part (ii), which is entered as φ transitions from φ < 1 to φ > 1. When
I0 = 1, roughly speaking, in this transition the number of infected particles goes
from very few (O(ln k)) whp, to a constant fraction Ck with probability C, or
O(ln k) with probability 1 − C. Hence, it’s “all or nothing”, with a constant
probability C of being “all”.

Observe further if ξ = O(n/k), then we have φ ≈ kξ
θrn

. So φ = c > 1 if ξ ≈
cθrn
k . This is unsurprising since it can be seen from the tools we use in our

analysis that the hitting time of one particle to any of the k others is distributed
approximately Geom( k

θrn
), and hence has expected value θrn

k .
Concerning the completion times, we will demonstrate in Sect. 7.2 that for

ξ = ∞, (that is, the SI model) and ρ = 1, how the edge weightings can be
exploited by a fairly straightforward application of a theorem of [16] to get

Tk
ln k/k

p−→ 2θrn, (2)

where Tk is the completion time for k particles. This is not a new result since it
is implied by the matching expectation result from [8], however, our weighting
sheme generalises to ρ < 1 and/or ξ <∞ and in principle can be exploited in the
same manner. In fact, for ξ =∞, ρ < 1 we claim that (2) holds as Tk

ln k/k

p−→ 2 θrn
ψ .

For ρ < 1, we claim that Theorem 1 holds when the term 1
θrn

in (1) is replaced
with ψ

θrn
where

ψ =
ρ(r − 1)
r − 2 + ρ

. (3)

See [1].
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4 Related Work

In this section, we briefly describe some of the relevant related work on diffusion
processes like epidemic spreading and the dissemination of information in mobile
environments.

There has been a growing body of work in the interacting particle systems
community analysing epidemic models with mobile particles. In [10] the authors
provide a review of the results, techniques and conjectures when the graph is
an infinite lattice. In [21], the authors explore by means of mean-field approx-
imations the evolution of the number of infected individuals when individuals
perform random motions on the plane. Recent papers by Peres et al [19] and
Pettarin et al [22] both analyse mobile networks modeled as multiple random
walks; the former as Brownian motion on Rd and the latter as walks on the grid.
In each case, there is a parameter r within which distance a pair of walks can
communicate, producing a communication graph (which is disconnected below
a certain threshold rc). [19] studies various aspects of the communication graph,
such as how long it takes a particular point to become part of the giant compo-
nent. [22] studies the broadcast time TB of a piece of information and originating
in one agent in relation to r. Setting r = 0 means information is passed only
when particles are coincident. In this case, TB is equivalent to our completion
time and [22] give TB = Θ̃(n/

√
k).

Of closer relevance to this work are [12] and [11]. Both of these papers study
infections carried by random walks on graphs. In particular [11] analyses an
SI model similar to ours; multiple random walks on a graph G that carry a
virus, and the quantity of interest is the completion time. They give a general
upper bound E[Tk] = O(m∗ ln k) for any graph G, where m∗ is the expected
meeting time of a pair of random walks maximised over all pairs of starting
vertices. Special cases are analysed too, in particular, they give an upperbound
of E[Tk] = O(nrk ln k lnn) for random r-regular graphs. This is a factor lnn larger
than the precise value of the process considered in this paper.

Finally, we mention [3], which studies flooding on dynamic random networks.
A fixed set of n vertices is part of a dynamic random graph process where each
edge is an independent two-state Markov chain, either existing or not existing. A
single initial vertex initially holds a message and any vertex which receives this
message broadcasts it on existing edges for the next k steps. Although flooding
is a different process to multiple random walks, the authors develop a reduction
to a weighted random graph with some similarity to the interaction graphs we
present. It allows them to derive relations between the edge-Markov probabilities
and state asymptotic bounds on the number of vertices that receive the message,
as well as the broadcast (equivalently, completion) time.

5 Assumptions and Approach

If each particle is distance at least ω(k, n) ≡ Ω(ln lnn + ln k) from every other
then we say the particles are in general position (g.p.). We assume the following:
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(i) The number of particles k ≤ nε where ε is some sufficiently small constant.
(ii) G is typical. (iii) Particles start in general position. (iv) I0 = |I(0)| ≥ 1
and |R(0)| = 0.

A typical graph (formally defined in the appendix) is one that has a number
of specific properties. It is connected and non-bipartite, which implies that a
random walk will converge to a stationary distribution π on the vertex set.
Because the graph is regular, π will be the uniform distribution. A typical graph
also has good expansion properties, meaning that a random walk will converge
quickly to the stationary distribution; it will be rapidly mixing. In fact, for all the
graph we consider, O(k lnn) steps is sufficient for our results. A typical graph
also has most of its vertices treelike. A vertex v is treelike if there is no cycle in the
subgraph G[v, L1] induced by the set of vertices within distance L1 = �ε1 logr n�
of v, where ε1 > 0 is a sufficiently small constant. The near-uniformity and
treelike structure throughout the graph allows us to make precise calculations
for the behaviour of a random walk from a treelike vertex within the period
of the mixing time. This helps us separete the analysis of the period within the
mixing time from the period after it. The rapid mixing means that the dynamics
of the process is dominated by the long-term behaviour very quickly, and that
essentially, short-term behaviour is restricted to groups of local interactions that
don’t interfere with each other. This provides a degree of homogeneity to the
process.

Assumptions (ii) and (iii) are not unreasonable: G is typical whp (Lemma 10
in appendix), and it is straightforward to verify that if the positions of each of
the k particles are chosen uar from the vertices of G, then whp they will be in
g.p. with respect to each other if ε is small enough. We will require additional
assumptions beyond those stated in this section and previous ones, and they will
be shown to hold whp too. Assumption (iv) implies |S(0)| = k − I0.

The analysis of multiple random walks can be reduced to a single random
walk, in a way we informally describe here based on techniques developed in [8]
and extended in [1]. We refer to the latter for details and rigorous justification
for this section.

We define a product graph H = (VH , EH) with vertex set VH = V k and edge
set EH = Ek. The vertices v of H consist of k-tuples v = (v1, v2, . . . , vk) of
vertices vi ∈ V (G), i = 1, . . . , k, with repeats allowed. Two vertices v,w are
adjacent if (v1, w1), . . . , (vk, wk) are edges of G. The graph H replaces k random
walksWui(t) on G with current positions vi and starting positions ui by a single
walk WH

u (t).
If S ⊆ VH , then Γ = Γ (S) is obtained from H by contracting S to a single

vertex γ(S). All edges, including loops and parallel edges are retained, producing
a multigraph. Thus dΓ (γ) = dH(S), where dF denotes vertex degree in graph
F . Moreover Γ and H have the same total degree (nr)k, and the degree of any
vertex of Γ , except γ, is rk.

We can calculate the times for a pair of particles (or one particle and a set
of others, or any pair from a set of pairs, or whatever) to meet by calculating
the time for the single random walk WH

u (t) to visit the relevant set of vertices
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S ⊆ VH . This is turn is done by the contraction described above, and calculating
the time for the walkWΓ

u(t) on Γ to visit γ(S). These two times asymptotically
equal.

The dynamics of the system, is as follows. The random walks have a mixing
time T = O(k lnn), and the distribution of a particle at some timet ≥ T is
almost the stationary distribution. In this case, because the graph is regular, the
stationary distribution is uniform across the vertices of G.

Consider a set A of particle pairs. For a particle pair (x, y) ∈ A, let B(x,y)(t) be
the event {no pair in A meet in the period [T, t−1] and x and y meet at time t}.
Note, (x, y) is unordered. Subject to some restrictions (which are satisfied by the
type of interactions relevant to this paper), it is established in [1] that

Pr
(B(x,y)(t)

) ∼ p (1− |A|p)t−1
, (4)

where

p =
1
θrn

(
1 +O

(
k lnn
n

))
, (5)

During the mixing time, we cannot be precise in general. However, if the
particles begin in general position with respect to each other then whp, the
particles don’t meet in the mixing time. This is a consequence of Lemma 5. We
say a visit to vertex v, or a particle-pair meeting is T -distinct if it occurs at
least T steps after a previous T -distinct visit/meeting, or the start of the walk.
As suggested by the above, we can view the dynamics within the mixing time
separately to the dynamics after the mixing time, up until the visit to a vertex
or a particle-pair meeting.

6 Two-Particle System

In this section, we discuss how the system behaves when k = 2. Let s and x be
the two particles, with s being the initial infective. Suppose that the assumptions
stated above hold. We allow ξ <∞ and/or ρ < 1. The former conditions means
that x may never get infected, the latter condition means that it may take more
than one meeting between s and x before an interaction takes place. Note, that
if s and x were at the same vertex at time t, and happen to move to the same
neighbouring vertex in the next step, then this counts as another meeting.

By (4) with A = {(s, x)},

Pr(first meeting between s and x after T is at step t) ∼ p(1− p)t−1, (6)

The RHS of (6) is the probability of a Geom(p) random variable taking value t.
Now, suppose s and x have just stepped to the same vertex v. With probability

ρ there will be an interaction. After this, they will move again, either to the same
neighbour of v with probability 1/r or to different neighbours with probability
(r − 1)/r. Let
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φ = Pr(No sx interaction before they move apart) (7)

=
∑
i≥1

(1− ρ)i
(

1
r

)i−1 (
1− 1

r

)
=

(1− ρ)(r − 1)
r − 1 + ρ

. (8)

The following lemma is from [8]:

Lemma 2. Let G be a typical r-regular graph, and let v be a vertex of G, treelike
to depth L1 = �ε1 logr n�. Suppose that at time zero, two independent random
walks (W1,W2) start from v. Let (a, b) denote the position of the particles at
any step. Let S = {(u, u) : u ∈ V }. Let f be the probability of a first return to S
within T = O(k lnn) steps given that the walks leave v by different edges at time
zero. Then

f =
1

(r − 1)2
+O

(
n−Ω(1)

)
.

Using this lemma, let

φT = Pr(No sx interaction before being apart more than T time steps) (9)

=
∑
i≥1

φif i−1 (1− f) =
φ (1− f)
1− φf (10)

Now, assuming s and x start at the same vertex,

Pr(sx interaction occurs within T time steps) (11)
∼Pr(sx interaction occurs before s and xhave been apart more than T steps)(12)

= 1− φT = 1− φ (1− f)
1− φf ∼ ρ(r − 1)

r − 2 + ρ
= ψ. (13)

Recall ψ was defined in (3), and observe that ρ ≤ ψ ≤ 1 with ψ = 1 iff ρ = 1.
Clearly, the number of T -distinct meetings in [0, t] is at most t/T . Subject to

slightly more stringent restrictions, it can be shown (see [1]) that we have

Pr(there are i T -distinct meetings in [0, t]) ∼
(
t

i

)
pi(1− p)t−i, (14)

i.e., it is approximately distributed Bin(t, p). The probability that there are no
interactions in any of the i intervals [tj , tj + T ] where tj is the time of the j’th
T -distinct meeting is (1− ψ)i. Thus

Pr(there are no interactions in the period [0, t]) ∼
t/T∑
i=0

(
t

i

)
(p(1− ψ))i(1− p)t−i

= ∼ (1− ψp)t

Hence,
Pr(x gets infected within time ξ) ∼ 1− (1 − ψp)ξ. (15)
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When ρ = ψ = 1, (15) looks similar to the bracketed terms in (1). This is,
of course, not a coincidence since the bracketed term in (1) is essentially the
probability that an infection is passed between a pair of particles if one of them
had been infected, and therefore, φ is effectively the expected number of other
particles that are infected by a particular particle.

7 Interaction Graph Framework: SI Model

We remind the reader that proofs of lemmas and theorems not present in what
follows are given in [1].

We can study the SI model (the case ξ = ∞) by analysing the edge weights
of the interaction graph Υ = (VΥ , EΥ ). This is a complete graph on the particle
set P , thus VΥ = P and EΥ = {(x, y) : x, y ∈ P , x = y}. For a particle x, let
t(x) be the time at which x got infected, or ∞ if it never gets infected. For an
interaction edge e = (x, y) ∈ EΥ , let t(e) = min{t(x), t(y)}. Then the weight
wΥ (e) of the edge is a random variable defined as

wΥ (e) = min{t− t(e) : t > t(e) and there was an xy interaction at step t}.
(16)

If the other particle was susceptible at the time of interaction, it becomes
infected at the point of interaction. Υ , therefore, is a space of randomly-weighted
complete graphs, and the distribution on Υ is the joint distribution of the edge
weight random variables wΥ (e). A member Z of this space - an instance of Υ - is
a specific set of values for each random variable wΥ (e). We may write ZΥ ∈ Υ to
denote a particular instance drawn from the space Υ with probability Pr(ZΥ ).

We claim that the joint distribution of edge weights, is well approximated by
the joint distribution of random edge weights of another complete graph on P ,
Λ = (VΛ, EΛ). The weight wΛ(e) of each edge e ∈ EΛ is an independent random
variable with distribution Geom(q), where q = ψ

θrn
.

Labelling the edges in Λ as ei with 1 ≤ i ≤ (
k
2

)
, observe

Pr

⎛⎜⎝(k
2)∧

i=1

wΛ(ei) = zi

⎞⎟⎠ =
(k
2)∏

i=1

q(1− q)zi−1 (17)

Observe that with probability one, neither graph has an edge of infinite weight.

7.1 Interaction Graph Approximation

In what follows we give a proof of the following theorem for the special case in
which ρ = 1 (implying ψ = 1). We claim that it holds when ρ < 1 as well.

Theorem 3. Let

ZF =

⎧⎪⎨⎪⎩
(k
2)∧

i=1

wF (ei) = zi

⎫⎪⎬⎪⎭ . (18)

where F ∈ {Υ,Λ}. Then
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Pr(ZΥ ) = (1 + o(1))Pr(ZΛ). (19)

Edge weightings in the interaction graph are pair-wise independent by virtue
of the independence of the random walks. However there is a correlation when
more than two edges are considered. For example, if particles x and y interacted
at some time t and x and z interacted at some time close to t, then y and z are
more likely to have interacted at some time close to t.

We say an edge e is active in the period [t(e), t(e) + wΥ (e) − 1]. The event
ZΥ can be restated as follows: For each edge ei = (x, y), the first xy interaction
after time t(ei) is at time t(ei) + zi.

For a pair of particles x, y and some weighted graph F on the particle set, let
DF (x, y) represent the weighted distance between x and y in F . Let dF (x) =
min{DF (s, x) : s ∈ I(0)}. Furthermore, for an edge e = (x, y), let dF (e) =
min{dF (x), dF (y)}. T

Lemma 4. For a particle x, t(x) = dΥ (x), and so for an edge e ∈ EΥ , t(e) =
dΥ (e).

Therefore,

ZΥ = {For each edge ei = (x, y), there is no xy interaction in the period

[dΥ (ei) + 1, dΥ (ei) + zi − 1] and there is an xy interaction at time dΥ (ei) + zi}.
(20)

Let A0 be the set of active edges at time τ0 = 0. For example, in the case
I(0) = {s}, A0 = {(s, x) : x ∈ P , x = s} whence |A0| = k − 1. Let τi, 1 ≤ i ≤ R
for some R, denote the times at which the set of active edges changes. Let Ai
be the set of edges active in the period [τi, τi+1 − 1]. We call the τi’s epochs.
A particular edge ei = (x, y) will become active at some epoch τ = dΥ (ei) and
remain so until τ ′ − 1 (inclusive), where τ ′ = dΥ (ei) + zi is some epoch after τ .
Its period of activation may, therefore, cross a number of epochs, in which case
it will be a member of a number of edge sets Aj .

We analyse each period [τj + 1, τj+1] individually through application of (4).
In the product graph H , we identify the set of vertices S(Aj) ⊆ VH such that
v ∈ S(Aj) iff for some (x, y) ∈ Aj v represents x and y being at the same vertex
in G. Thus, if v = (v1, v2, . . . , vk), then vr = vs where r and s are the vector
indices for x and y respectively. Since each pair is not to interact in the period
[τj + 1, τj+1 − 1], and since we assume ρ = 1, the walk W on H must avoid
the set S(Aj) until τj+1 − 1 (inclusive). Then, at τj+1 it must visit Sj ⊆ S(Aj).
v ∈ Sj iff it represents any of the (x, y) ∈ Aj that interact at time τj+1 being
at the same vertex in G. We deal with (non-)visits to S(Aj) and Sj by applying
(4) to their contractions γ(S(Aj)) and γ(Sj).

W do not prove (19) for all possible ZΥ , only those that are termed good. Let
T = O(k lnn) be a mixing time and let L = T 3, and let � = 2(T + L).
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Call ZΥ good if it satisfies these criteria: (a) k3 lnn
∑(k

2)
i=1 zi = o(n2) (b) None

of the
(
k
2

)
interactions that form the edges of Υ take place within � steps of each

other.

Lemma 5. With high probability, ZΥ ∈ Υ is good.

We shall assume the ZΥ that is drawn is good. Note part (b) implies R =
(
k
2

)
and

so we only need to consider cases of ZΥ where, for each j, Sj is a single particle
pair. It also implies that during the period [τj + 1, τj + �], we do not need to
account for interactions. The following lemma applies (4) sequentially for each
period [τj + 1, τj+1]. By the Markov property, we can multiply the probabilities
for each period. Theorem 3 follows from this.

Lemma 6. Let pj = |Aj |p(1−O(k3 lnn/n)) where p is from (5),

Pr (ZΥ ) =
R∏
j=0

(1 +O(Lπj) + O(εj))p(1 − pj)τj+1−τj−1 (21)

= (1 + o(1))Pr(ZΛ). (22)

In (21) we have included correction factors which we left out in (4) for clarity.

7.2 Completion Time

In [8] an expectation of 2θrn
k ln k was determined for the completion time of a

broadcasting model on k particles that is equivalent to the SI model with I0 = 1
and ρ = 1. We apply a theorem from [16] to get a convergence in probability
to the same value. Assign each edge (i, j) of a complete graph on n vertices a
random weight Yij . The weights are assumed to be independent and identically
distributed, non-negative and satisfying Pr(Yij ≤ t) = t + o(t) as t → 0. Let
Xij be the minimal total weight of a path between a given pair of vertices
i, j. The theorem states maxj≤n Xij

lnn/n

p−→ 2. By scaling, we can apply the result
to an exponential analogue of the edge probabilities of Λ, and show that the
distribution is well approximated, thereby giving (2). See [1] for details.

8 Interaction Graph Framework: SIR Model

To analyse the SIR model, we build an interaction graph but we modify the
process by considering two phases. Phase 1 assigns edge weights as before: an
edge e = (x, y) is weighted by the time it takes for an xy interaction after one of
them has become infected. It is possible, of course, that neither ever get infected
when ξ is finite, in which case the edge (x, y) does not become active (and is
not given a weight) in this phase. Phase 1 ends at τend when there are no more
active edges. At this point, there remains a set of susceptible particles S(τend)
that were never infected in phase 1. Phase 2 begins with an arbitrary z ∈ S(τend)
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being given a pseudo–infection with an infinite infectious period, and we proceed
with an SI process on the particle set S(τend), giving them edge weights, as per
the normal SI process. A pseudo–infection is the same process as an infection
but we do not count pseudo–infected particles as infected; only particles infected
in phase 1 are counted as infect. Phase 2 exists to maintain the same probability
space as in the SI model.

Call the resulting (complete) graph Ψ . We remove an edge e in Ψ if wΨ (e) > ξ
and call the resulting graph Ψ ′.

Let C(x) be the component of Ψ ′ containing a particle x. LetDΨ ′(x, y) be the
weighted distance between particles x and y if y ∈ C(x), otherwise letDΨ ′(x, y) =
∞. Let dΨ ′(y) = min{DΨ ′(x, y) : x ∈ I(0)}.
Theorem 7. In Ψ ′, (i) A particle y is infected if and only if y ∈ C(x) for some
initial infective x ∈ I(0), (ii) If a particle y gets infected, the infection time is
t(y) = dΨ ′(y).

We show that Theorem 3 holds for Ψ . Let Λ and ZF for some graph space F be
as before.

Lemma 8.
Pr(ZΨ ) = (1 + o(1))Pr(ZΛ). (23)

As with Ψ , Ψ ′ is a space of weighted graphs. Furthermore, we can de-
fine an equivalence relation ∼ on Ψ ′ such that for Y, Z ∈ Ψ ′, we have
Y ∼ Z iff E(Y ) = E(Z), that is, they have the same edge set. Let Ψ ′/∼
be the graph space induced by Ψ ′ and the equivalence relation ∼. Thus,
the probability a graph G is drawn from Ψ ′/∼, that is, Pr(G ∈ Ψ ′/∼) =
Pr(some Z is drawn from Ψ ′ such that E(Z) = E(G)). We show Ψ ′/∼ is approx-
imated by Gk,q̂ , the space of Erdős–Renyi random graphs with edge probability
q̂ = 1− (1− q)ξ, where q = ψ

θrn
for the special case ρ = ψ = 1.

Lemma 9. Let G be a graph on the particle set P.

Pr(G ∈ Ψ ′/∼) = (1 + o(1))Pr(G ∈ Gk,q̂). (24)

Proof of Theorem 1. For an Erdős–Renyi random graph space Gn,p on n
vertices and edge probability p, the connectivity results are well known (see, e.g.,
[13]). By Lemma 9, the whp statements carry through to Ψ ′/∼. Since Theorem 1
deals with the case of one initial infective s, the infected particles will be those in
C(s). Cases (i) and (iii) of Theorem 1 are straightforward to see from the above.
For case (ii), there is a unique giant component g of size C1 in G ∈ Ψ ′/∼. By the
symmetry of the model, the probability any particular particle x being in g is
|g|/k = (1+ o(1))C. Thus, the giant component is infected with this probability.
Otherwise, s will be placed in a component of size at most O(ln k). �
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Appendix

Typical r-regular Graphs

We say an r-regular graph G is typical if it satisfies the properties P1–P4 listed
below. We first give some definitions.

Let
L1 = �ε1 logr n�, (25)

where ε1 > 0 is a sufficiently small constant.
A vertex v is treelike if there is no cycle in the subgraph G[v, L1] induced by

the set of vertices within distance L1 of v.
A cycle C is small if |C| ≤ L1.

P1. G is connected and not bipartite.
P2. The second eigenvalue of the adjacency matrix of G is at most 2

√
r − 1+ ε,

where ε > 0 is an arbitrarily small constant.
P3. There are at most n2ε1 vertices on small cycles.
P4. No pair of cycles C1, C2 with |C1|, |C2| ≤ 100L1 are within distance 100L1

of each other.

Note that P3 implies that at most nεC vertices of a typical r-regular graph are
not treelike, where

nεC = O
(
rL1n2ε1

)
= O

(
n3ε1

)
. (26)

Lemma 10. Let G′r ⊆ Gr be the set of typical r-regular graphs. Then |G′r|∼|Gr|.
For Lemma 10, that P2 holds whp is a very difficult result of Friedman [15].
The other properties are straightforward to establish; see, e.g., [6].
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Abstract. We study quantum algorithms for testing bipartiteness and
expansion of bounded-degree graphs. We give quantum algorithms that
solve these problems in time Õ(N1/3), beating the Ω(

√
N) classical lower

bound. For testing expansion, we also prove an Ω̃(N1/4) quantum query
lower bound, thus ruling out the possibility of an exponential quantum
speedup. Our quantum algorithms follow from a combination of classical
property testing techniques due to Goldreich and Ron, derandomization,
and the quantum algorithm for element distinctness. The quantum lower
bound is obtained by the polynomial method, using novel algebraic tech-
niques and combinatorial analysis to accommodate the graph structure.

1 Introduction

In property testing, one is asked to distinguish between objects that satisfy a
property P and objects that are far from satisfying P . The goal is to design
algorithms that test properties in sublinear or even constant time, without read-
ing the entire input—a task that is nontrivial even for properties that can be
computed in polynomial time. This is motivated by the practical question of how
to extract meaningful information from massive data sets that are too large to
fit in a single computer’s memory and can only be handled in small pieces.

Testing properties of graphs is an interesting special case.1 Many graph prop-
erties, such as connectivity and planarity, can be tested in constant time, inde-
pendent of the number of verticesN [19, 22]. However, some graph properties are
much harder to test. For bounded-degree graphs in the adjacency-list represen-
tation, the best classical algorithms for testing bipartiteness [20] and expansion
[21, 16, 25, 29] use Õ(

√
N) queries.2 In fact, this is nearly optimal, as there are

Ω(
√
N) query lower bounds for both problems [22]. As a natural extension, we

1 Here, the graph can be specified by an adjacency matrix (suitable for dense graphs)
or by a collection of adjacency lists (for bounded-degree graphs).

2 We use tilde notation to suppress logarithmic factors.
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c© Springer-Verlag Berlin Heidelberg 2011



366 A. Ambainis, A.M. Childs, and Y.-K. Liu

consider whether these problems can be solved more efficiently using quantum
queries.

There has been some previous work on quantum property testing. In particu-
lar, there are examples of exponential separations between quantum and classical
property testing [12], and there are quantum algorithms for testing juntas [9],
solvability of black-box groups [24], uniformity and orthogonality of distributions
[13, 14], and certain properties related to the Fourier transform [2, 14]. However,
aside from concurrent work on testing graph isomorphism [14], we are not aware
of previous work on quantum algorithms for testing properties of graphs.3

Here, we give quantum algorithms for testing bipartiteness and expansion
of bounded-degree graphs in time only Õ(N1/3), beating the Ω(

√
N) classical

lower bounds [22]. Moreover, we prove that any quantum algorithm for testing
expansion must use Ω̃(N1/4) queries, showing that quantum computers cannot
achieve a superpolynomial speedup for this problem.

Why might quantum computers offer an advantage for testing bipartiteness
and expansion? The classical algorithms for these problems use random walks
to explore the graph, so one might hope to do better by using quantum walks,
which are a powerful tool for searching graphs [32]. In fact, our algorithms use
quantum walks indirectly. The classical algorithm for testing bipartiteness is
based on checking whether a pair of short random walks form an odd-length cycle
in the graph, thereby certifying non-bipartiteness [20]. The algorithm for testing
expansion looks for collisions between the endpoints of short random walks, with
a large number of collisions indicating that the walk is not rapidly mixing [21].
In both cases, the property is tested by looking for collisions among a set of
Õ(
√
N) items. By using the quantum walk algorithm for element distinctness

[7, 27] to look for these collisions, we can solve the problem using Õ(N1/3)
quantum queries. In addition, we show that the above classical algorithms can
be derandomized, using O(logN)-wise independent bits. This yields quantum
algorithms that run in time Õ(N1/3).

While we have shown a polynomial quantum speedup, one may ask whether
an exponential speedup is possible. Quantum computers can give at most a
polynomial speedup for total functions [10], but this limitation does not apply
to property testing (and indeed, examples of exponential speedup are known
[12]). On the other hand, superpolynomial speedup is impossible for symmetric
functions [3], even in the case of partial functions such as those arising in property
testing. It is an interesting question whether exponential speedups are possible
for testing graph properties, which may have significantly less symmetry.

Here we prove that testing expansion requires Ω̃(N1/4) quantum queries, thus
ruling out the possibility of an exponential speedup. We use the polynomial
method [10]—specifically, a technique of Aaronson based on reduction to a bi-
variate polynomial [1]. We define a distribution over N -vertex graphs with �

3 Quantum speedups are known for deciding certain graph properties, without the
promise that the graph either has the property or is far from having it [17, 26, 15].
This turns out to be a fairly different setting, and the results there are not directly
comparable to ours.
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connected components (and with another parameter M ≈ N), such that each
component is an expander with high probability. With � = 1 component, such
graphs are almost surely expanders, whereas graphs with � ≥ 2 components
are very far from expanders. Our main technical contribution is to show that
the acceptance probability of any T -query quantum algorithm, when presented
with this distribution, is well-approximated by a bivariate polynomial in M
and � of degree O(T logT ). This requires a somewhat involved calculation of a
closed-form expression for the acceptance probability as a function of M and �,
using algebraic techniques and the combinatorics of partitions. Then it follows
by known results on polynomial approximation that Ω(N1/4/ logN) queries are
necessary to test expansion.

This proof may be of independent interest since there are very few techniques
available to prove quantum lower bounds for property testing. In particular,
the standard quantum adversary method [6] is subject to a “property testing
barrier” [23]. Furthermore, graph structure makes it difficult to apply the poly-
nomial method, so our lower bound for testing expansion requires substantial
new machinery. These techniques may be applicable to other problems with
graph structure. Note also that our approach is an alternative to the classical
lower bounds for testing bipartiteness and expansion [22].

We are only aware of a few previous lower bounds for quantum property
testing: the result that not all languages can be tested efficiently [12] (which
is nonconstructive, using a counting argument), and lower bounds for testing
orthogonality and uniformity of distributions [13, 14] and for testing graph
isomorphism [14] (which follow by reduction from the collision problem).

Despite this progress, there remain many unanswered questions about quan-
tum testing of graph properties. So far, we have been unable to prove a supercon-
stant lower bound for testing bipartiteness. More generally, is there any graph
property testing problem that admits an exponential quantum speedup?

In the remainder of this section, we define the model of quantum property
testing. We use the adjacency-list model for graphs with bounded (i.e., constant)
degree d. A graph G = (V,E) is represented by a function fG : V ×{1, . . . , d} →
V ∪ {∗}, where fG(v, i) returns the ith neighbor of v in G, or ∗ if v has fewer
than i neighbors. A quantum computer is provided with a unitary black box that
reversibly computes fG as |v, i, z〉 '→ |v, i, z⊕ fG(v, i)〉. The query complexity of
an algorithm is the number of calls it makes to the black box for fG.

We say that G is ε-far from satisfying a property P if one must change at
least εnd edges of G in order to satisfy P . We say that an algorithm ε-tests P if
it accepts graphs that satisfy P with probability at least 2/3, and rejects graphs
that are ε-far from satisfying P with probability at least 2/3. (More generally,
we may consider algorithms that determine whether a graph satisfies P or is
ε-far from satisfying a related property P ′.)

We say that a graph G is an α-expander if for every U ⊆ V with |U | ≤ |V |/2,
we have |∂(U)| ≥ α|U |, where ∂(U) is the set of vertices in V − U adjacent to
at least one vertex of U .
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2 Quantum Algorithms for Bipartiteness and Expansion

First, recall the classical algorithm for testing bipartiteness [20]. This algorithm
performs T = Θ(1/ε) repetitions, where during each repetition it chooses a
random starting vertex s, then does K =

√
N poly( logN

ε ) random walks from s,
each of length L = poly( logN

ε ), and looks for “collisions” where two walks from
s reach the same vertex v, one after an even number steps, the other after an
odd number of steps.

We derandomize each of the T repetitions separately. Each repetition uses
n = O(KL log d) bits of randomness. We claim that it suffices to use k-wise
independent random bits for some k = O(L log d). To see this, consider the
analysis given in [20]. Lemma 4.5 of [20] states sufficient conditions for the al-
gorithm to find an odd cycle, and hence reject, with high probability. The proof
considers the random variable X =

∑
i<j ηij , where ηij is a Boolean random

variable that indicates whether walk i collides with walk j while having different
parity. The probability that X = 0 is upper bounded using Chebyshev’s inequal-
ity together with bounds on E[X ] and Var[X ]. Note that E[X ] and Var[X ] are
linear and quadratic in the ηij , respectively, so they only depend on sets of at
most O(L log d) random bits. Thus they are unchanged by substituting k-wise
independent random bits for some k = O(L log d). This reduces the number of
random bits required by the algorithm to O(k logn) = O(poly( logN log d

ε )).
We then combine this derandomized classical algorithm with Ambainis’ quan-

tum algorithm for element distinctness [7, 27, 35]. (For details, see the full version
of this paper [8].) This shows

Theorem 1. There is a quantum algorithm that always returns “true” when
G is bipartite, returns “false” with constant probability when G is ε-far from
bipartite, and runs in time O(N1/3 poly( logN

ε )).

Using similar ideas, we can also give an Õ(N1/3)-time quantum algorithm for
testing expansion. We start with the classical algorithm of [21], derandomize it
using k-wise independent random variables, and apply the quantum algorithm
for element distinctness. There is a slight complication, because we need to count
collisions, not just detect them. However, the number of collisions is small—
roughly O(N2μ) where μ is chosen to be a small constant—so we can count the
collisions using brute force. See [8] for details.

3 Quantum Lower Bound for Testing Expansion

3.1 Overview

We now turn to lower bounds for testing expansion. Specifically, we prove

Theorem 2. Any quantum algorithm for testing expansion of bounded-degree
graphs must use Ω(N1/4/ logN) queries.

Proof. We consider random graphs G on N vertices, sampled from the following
distribution PM,l (where M ≥ N and l divides M):
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1. We start by constructing a random graph G′ on M vertices, as follows: First,
we partition the vertices into l sets V1, . . . , Vl, with each set Vi containingM/l
vertices. Then, on each set Vi, we create a random subgraph by randomly
choosing c perfect matchings on Vi and taking their union. (Here c is some
sufficiently large constant.)

2. We then construct G as follows: First, we pick a subset of vertices v1, . . . , vN
fromG′. To pick v1, we choose one of the sets V1, . . . , Vl uniformly at random,
call it Vj , and we let v1 be a random vertex from Vj . For each subsequent
vertex vi, we again select a set Vj uniformly at random, and choose vi uni-
formly at random among those vertices of Vj that were not chosen in the
previous steps. Then we let G be the induced subgraph of G′ on v1, . . . , vN .

The process above fails if we try to choose more than M/l vertices from the same
Vj . However, the probability of that happening is small—on average,N/l vertices
are chosen in each Vj . We choose M = (1+Θ(N−0.1))N . Then a straightforward
application of Chernoff bounds implies that the process fails with probability at
most e−Ω(N0.55). For more detail, see Section C.1 in [8].

Note that the resulting graph G has degree at most c. The reason for choosing
G as a subgraph of G′ (rather than constructing G directly) is that this leads
to simpler formulas for the probabilities of certain events, e.g., the probability
that vertices v1, v2 and v3 all belong to the same component of G is 1/l2. This
seems essential for our use of the polynomial method.

If l = 1, then this process generates an expander with high probability. It is
well known [31, 28] that the graph on M vertices generated by taking c per-
fect matchings is an expander with high probability. In Section C.2 in [8], we
show that the subgraph that we choose is also an expander. (Informally, the
main reason is that only a Θ(N−1/4) fraction of the vertices of G′ are not in-
cluded in G. This allows us to carry out the proof of [31, 28] without substantial
changes.)

If l = 2, then this process generates a disconnected graph with two connected
components, each of size roughly N/2. Such a graph is very far from any ex-
pander graph—specifically, for any α′, it is at least about (α′/2d)-far from an
α′-expander of maximum degree d.

Therefore, if a quantum algorithm tests expansion, it must accept a random
graph generated according to PM,1 with probability at least 2/3, and a random
graph generated according to PM,2 with probability at most 1/3. (Graphs drawn
from PM,l with l > 2 must also be accepted with probability at most 1/3,
although this fact is not used in the analysis.)

The strategy of the proof is as follows. We show that for any quantum al-
gorithm run on a random graph from the distribution PM,l, the acceptance
probability of the algorithm can be approximated by a bivariate polynomial in
M and l, where the number of queries used by the algorithm corresponds to the
degree of this polynomial. (This is our main technical contribution.) We then
lower bound the degree of this polynomial.

In more detail, we will prove the following lemma (see Section 3.2):
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Lemma 1. Let A be a quantum algorithm using T queries. The acceptance
probability of A (for the probability distribution PM,l) is approximated (up to
an additive error of e−Ω(N0.55)) by a fraction f(M,l)

g(M,l) , where f(M, l) and g(M, l)
are polynomials of degree O(T logT ) and g(M, l) is a product of factors (M −
(2k−1)l) for k ∈ {1, . . . , T}, with (M−(2k−1)l) occurring at most 2T/k times.

Now choose a = 1 + Θ(N−0.1) such that aN is even. We say that a pair (M, l)
is δ-good if M ∈ [aN − δ3/2, aN + δ3/2], l ≤ δ, and l divides M .

We then approximate the fraction f(M,l)
g(M,l) (from Lemma 1) by f(M,l)

(aN)deg g(M,l) .
For each term M − (2k− 1)l, we first replace it by M and then by aN . The first
step introduces multiplicative error of 1 − (2k−1)l

M ≥ 1 − 2kl
N ≈ e−2kl/N . For all

terms together, the error introduced in this step is at most
∏T

k=1(e
−2kl/N )2T/k =

e−4T 2l/N . If T = O(N1/4/ logN) and l = O(N1/2), the multiplicative error is
1− o(1).

The second approximation step introduces multiplicative error of

( MaN )O(T log T ) ≈ (e(M−aN)/aN )O(T log T ) ≤ (eδ
3/2/aN )O(T log T ).

If δ = O(N1/2) and T = O(N1/4/logN), this can be upper bounded by 1 + ε
for arbitrarily small ε > 0, by appropriately choosing the big-O constant in
T = O(N1/4/logN).

Next, we prove a second lemma, which lower bounds the degree of a bivariate
polynomial:

Lemma 2. Let f(M, l) be a polynomial such that |f(aN, 1)− f(aN, 2)| ≥ ε for
some fixed ε > 0 and, for any δ-good (M, l), |f(M, l)| ≤ 1. Then the degree of
f(M, l) is Ω(

√
δ).

The proof of this lemma follows the collision lower bounds of Aaronson and Shi
[1, 33] and is included in Section C.3 in [8] for completeness.

We now set δ = Θ(N1/2) and apply Lemma 2 to f(M,l)
2(aN)deg g(M,l) . This is a

polynomial in M and �, because the denominator is a constant. With M = aN ,
its values at l = 1 and l = 2 are bounded away from each other by at least
1/3 since the algorithm works. Its values at δ-good pairs (M, l) have magnitude
at most 1 because the acceptance probability of the algorithm is in [0, 1], so
| f(M,l)
2(aN)deg g(M,l) | ≤ 1

2 + o(1). Thus we find that the degree of f(M, l) must be

Ω(N1/4). It follows that T = Ω(N1/4/logN) queries are necessary.

3.2 Proof of Lemma 1

Here we assume that the process generating a graph G from the probability
distribution PM,l does not fail. (The effect of this process possibly failing is
considered in Section C.1 in [8].) The acceptance probability of A is a polynomial
PA of degree at most 2T in Boolean variables xu,v,j , where xu,v,j = 1 iff (u, v)
is an edge in the jth matching.
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PA is a weighted sum of monomials. It suffices to show that the expectation
of every such monomial has the rational form described in Lemma 1. If this
is shown, then E[PA] is a sum of such fractions: E[PA] = f1(M,l)

g1(M,l) + f2(M,l)
g2(M,l) +

· · · . We put these fractions over a common denominator, obtaining E[PA] =
f(M,l)
g(M,l) where g(M, l) = lcm(g1(M, l), g2(M, l), . . .). In this common denominator,
(M − (2k − 1)l) occurs at most 2T/k times. Therefore, the degree of g(M, l) is
at most 2T

∑2T
k=1

1
k = O(T logT ). Similarly, the degree of f(M, l) is at most

O(T logT ) + deg g(M, l) = O(T logT ).
Now consider a particular monomial P = xu1,v1,j1xu2,v2,j2 · · ·xud,vd,jd

, where
d = degP . Let GP be the graph with edges (u1, v1), . . . , (ud, vd) (i.e., with the
edges relevant to P ) where the edge (ua, va) comes from the jtha matching. Let
C1, . . . , Ck be the connected components of GP . For each component Ci, let Xi

be the event that every edge (ua, va) in Ci (viewed as a subgraph of GP ) is
present in the random graph G as part of the jtha matching. We have to find an
expression for the expectation

E[P ] = Pr[X1 ∩X2 ∩ . . . ∩Xk].

We first consider Pr[Xi]. Let vi be the number of vertices in Ci, and for each
matching j, let di,j be the number of variables xu,v,j in P that have u, v ∈ Ci
and label j. Note that

di,1 + di,2 + · · ·+ di,c ≥ vi − 1 (1)

because a connected graph with vi vertices must have at least vi − 1 edges. We
have

Pr[Xi] =
1

lvi−1

c∏
j=1

di,j∏
j′=1

1
M/l− (2j′ − 1)

=
1

lvi−1

c∏
j=1

di,j∏
j′=1

l

M − (2j′ − 1)l
. (2)

Here l−(vi−1) is the probability that all vi vertices are put into the same set Vj
(for some 1 ≤ j ≤ l) (which is a necessary condition for having edges among
them), and

∏di,j

j′=1
1

M/l−(2j′−1) is the probability that di,j particular edges from
the jth matching are present. (For the first edge (u, v) in the jth matching, the
probability that it is present is 1

M/l−1 , since u is equally likely to be matched
with any of M/l vertices in Vj except for u itself; for the second edge (u′, v′)
in the jth matching, the probability that it is present is 1

M/l−3 , since u′ can be
matched with any of M/l vertices except u, v, u′; and so on. Note that without
loss of generality, we can assume that the edges in P from the jth matching are
distinct. If P contains the same edge twice from the same matching, then we
can remove one of the duplicates without changing the value of P .)

We can rewrite (2) as Pr[Xi] = 1
lvi−1

∏c
j=1 Rdi,j , where we define

Rd =
d∏

j′=1

l

M − (2j′ − 1)l
. (3)
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We now extend this to deal with multiple components Ci at once, i.e., we want
to evaluate Pr[

⋂
i∈S Xi], where S ⊆ {1, . . . , k}. Let ES be the event that the

vertices in
⋃
i∈S Ci (i.e., in any of the components indicated by S) are all put

into one set Vj . Then Pr[
⋂
i∈S Xi|ES ] =

∏c
j=1 R

∑
i∈S di,j

. The event ES happens
with probability l−(

∑
i∈S vi)+1, since the total number of vertices in

⋃
i∈S Ci is∑

i∈S vi.
Let L = (S1, . . . , St) be a partition of {1, 2, . . . , k}. We call S1, . . . , St classes

of the partition L. We say that S ∈ L if S is one of S1, . . . , St. Let |L| = t.
We say that L is a refinement of L′ (denoted L < L′) if L can be obtained
from L′ by splitting some of the classes of L′ into two or more parts. We write
L ≤ L′ if L < L′ or L = L′. When L < L′, let cL,L′ be the number of sequences
L = L0 < L1 < · · · < Lj = L′, with sequences of even length j counting as +1
and sequences of odd length j counting as −1. We define cL,L′ = 1 when L = L′.
We have the following partition identity, which will be useful later; the proof is
given in Section C.4 in [8].

Proposition 1. Suppose L′′ < L. Then
∑

L′ : L′′≤L′≤L cL′,L = 0.

We define the expressions

fL(M, l) =
∏
S∈L

c∏
j=1

R∑
i∈S di,j

(4)

f ′L(M, l) =
∑

L′ : L′≤L
cL′,LfL′(M, l). (5)

We can now evaluate Pr[X1 ∩ X2 ∩ . . . ∩ Xk] as follows. For any partition
L of {1, 2, . . . , k}, let EL be the event

⋂
S∈L ES . Let E′L be the event that EL

happens but no EL′ with L < L′ happens (i.e., L is the least refined partition
that describes the event). Then

Pr[X1 ∩X2 ∩ . . . ∩Xk] =
∑
L

Pr[E′L]fL(M, l).

By inclusion-exclusion, Pr[E′L] =
∑

L′ : L≤L′ cL,L′ Pr[EL′ ]. Now substitute into
the previous equation, reorder the sums, and use the definition of f ′L(M, l):

Pr[X1 ∩ X2 ∩ . . . ∩ Xk] =
∑
L′

Pr[EL′ ]
∑

L : L≤L′
cL,L′fL(M, l) =

∑
L

Pr[EL]f ′
L(M, l).

Note that Pr[EL] =
∏

S∈L Pr[ES ] =
∏

S∈L l
−(

∑
i∈S vi)+1 = l−(

∑k
i=1 vi)+|L|. Thus

we have
Pr[X1 ∩X2 ∩ . . . ∩Xk] =

∑
L

l−(
∑k

i=1 vi)+|L|f ′L(M, l). (6)

We have now written Pr[X1 ∩X2 ∩ . . .∩Xk] as a sum of rational functions of
M and l. We can combine these into a single fraction f(M,l)

g(M,l) . It remains to show
that this fraction has the properties claimed in Lemma 1.
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First, we claim that the denominator g(M, l) contains at most 2T/k factors
of M − (2k − 1)l. Observe that each fL(M, l) is a fraction whose denominator
consists of factors M − (2k − 1)l. The number of factors in the denominator is
equal to the number of variables in the monomial P , which is at most 2T . By
the form of (3), for each M − (2k− 1)l in the denominator, we also have M − l,
M − 3l, . . ., M − (2k− 3)l in the denominator. Therefore, if we have t factors of
M − (2k − 1)l in the denominator, then the total degree of the denominator is
at least tk. Since tk ≤ 2T , we have t ≤ 2T/k. This statement holds for fL(M, l)
for every L. Thus, when we sum the fL(M, l) to obtain first f ′L(M, l) and then
Pr[X1∩X2∩. . .∩Xk], and put all the terms over a common denominator g(M, l),
this statement also holds for g(M, l).

In Pr[X1∩X2∩. . .∩Xk], when we sum the f ′L(M, l) in (6), we also have factors
of l(

∑k
i=1 vi)−|L| in the denominator. Proposition 2 shows that these factors are

cancelled out by corresponding factors in the numerator.

Proposition 2. f ′L(M, l) is equal to a fraction whose denominator is a product
of factors (M − (2k − 1)l) and whose numerator is divisible by l(

∑k
i=1 vi)−|L|.

When we combine the different f ′L(M, l) in (6) into a single fraction f(M,l)
g(M,l) , we

see that f and g have the desired form. Also note that f and g have degree
O(T logT ), by repeating the same argument used earlier to combine the dif-
ferent monomials P . This completes the proof of Lemma 1; it remains to show
Proposition 2.

Proof (of Proposition 2). Note that Rd contains an obvious factor of ld. We
define

R′d =
Rd

ld
=

d∏
j′=1

1
M − (2j′ − 1)l

and we redefine fL(M, l) and f ′L(M, l) (equations (4) and (5)) using R′d instead
of Rd. This removes a factor of ld from the numerator of Rd and a factor of
l
∑

i,j di,j from the numerator of fL(M, l). By equation (1), this factor is at least
l(
∑

i vi)−k. Therefore, it remains to show that the numerator of the redefined
f ′L(M, l) is divisible by lk−|L|.

Recall that f ′L(M, l) is a sum of terms fL′(M, l) for all L′ ≤ L. Let us write
each term as fL′(M, l) = 1/

∏
k∈K(L′)(M − kl), where K(L′) is a multiset. We

put these terms over a common denominator βL(M, l) =
∏

k∈B(L)(M − kl),
where B(L) ⊇ K(L′) for all L′ ≤ L. Then we have

fL′(M, l) =
αL′(M, l)
βL(M, l)

, αL′(M, l) =
∏

k∈B(L)−K(L′)

(M − kl),

f ′L(M, l) =
α′L(M, l)
βL(M, l)

, α′L(M, l) =
∑

L′ : L′≤L
cL′,LαL′(M, l).
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Let m = |B(L)|. Also, let m̃ = |K(L′)| =
∑

S∈L′
∑c

j=1

∑
i∈S di,j =∑k

i=1

∑c
j=1 di,j , which is independent of L′. Let m′ = |B(L)−K(L′)| = m− m̃,

which depends on L but not on L′.
We want to show that α′L(M, l) is divisible by lk−|L|. First, we multiply out

each term αL′(M, l) to get αL′(M, l) =
∑m′

i=0 ei(B(L) − K(L′))Mm′−i(−l)i,
where ei is the ith elementary symmetric polynomial (i.e., ei(B(L) − K(L′))
is the sum of all products of i variables chosen without replacement from the
multiset B(L)−K(L′)). We can then write α′L(M, l) as

α′L(M, l) =
m′∑
i=0

θL,iM
m′−i(−l)i, θL,i =

∑
L′ : L′≤L

cL′,Lei(B(L)−K(L′)).

It suffices to show that, for all 0 ≤ i ≤ k − |L| − 1, the coefficient θL,i is 0.
Note that if L is the finest possible partition L∗, then |L| = k and the above
claim is vacuous, so we can assume that L∗ < L. Also note that θL,0 = 0 by
Proposition 1 with L′′ = L∗, so it suffices to consider i > 0.

For any set of variables E and any a ≥ 0, define the power-sum polynomial
Ta(E) =

∑
k∈E k

a. We can write ei(B(L)−K(L′)) in terms of power sums:

ei(B(L)−K(L′)) = Λi,L[Ta(B(L)−K(L′)) : a = 0, 1, 2, . . . , i],

where Λi,L is a polynomial function of the power sums Ta(B(L)−K(L′)) of total
degree i in the variables k ∈ B(L)−K(L′). Note that the polynomial Λi,L only
depends on the size of the set B(L) −K(L′), hence it only depends on L, and
not on L′. To simplify things, we can write Ta(B(L) − K(L′)) = Ta(B(L)) −
Ta(K(L′)) and absorb the Ta(B(L)) term into the polynomial Λi,L to get a
new polynomial Λ̃i,L. Then we have ei(B(L) − K(L′)) = Λ̃i,L[Ta(K(L′)) : a =
0, 1, 2, . . . , i], and

θL,i =
∑

L′ : L′≤L
cL′,LΛ̃i,L[Ta(K(L′)) : a = 0, 1, 2, . . . , i].

It suffices to show that, for all 0 ≤ i ≤ k − |L| − 1, the above sum vanishes
term-by-term, i.e., for all sequences {aj} such that aj ≥ 0 and

∑
j aj ≤ i, we

have ∑
L′ : L′≤L

cL′,L

∏
j

Taj (K(L′)) = 0. (7)

We have Ta(K(L′)) =
∑

S∈L′
∑c

j=1 Ta({1, 3, 5, . . . , 2(
∑

i∈S di,j)− 1}), by the
definition of K(L′). Note that, for any integer s, Ta({1, 3, 5, . . . , 2s − 1}) =
Ta({1, 2, 3, . . . , 2s}) − 2aTa({1, 2, 3, . . . , s}), and by Faulhaber’s formula, this
equals a polynomial Qa(s) of degree a + 1, with rational coefficients and no
constant term. We have Ta(K(L′)) =

∑
S∈L′

∑c
j=1Qa(

∑
i∈S di,j). Let qa,α (α =

1, . . . , a+ 1) be the coefficients of Qa. Then we can rewrite this as

Ta(K(L′)) =
a+1∑
α=1

qa,αSα(L′), where Sα(L′) =
∑
S∈L′

c∑
j=1

(∑
i∈S

di,j

)α
.
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It suffices to show that the sum in equation (7) vanishes term-by-term, i.e.,
for all 0 ≤ i ≤ k − |L| − 1 and for all sequences {αj} such that αj ≥ 1 and∑

j(αj − 1) ≤ i, we have ∑
L′ : L′≤L

cL′,L

∏
j

Sαj (L
′) = 0.

This final claim is shown in Section C.5 in [8]. This completes the proof of
Proposition 2.
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Lower Bounds on the Query Complexity of

Non-uniform and Adaptive Reductions Showing
Hardness Amplification

Sergei Artemenko and Ronen Shaltiel�

University of Haifa

Abstract. Hardness amplification results show that for every function
f there exists a function Amp(f) such that the following holds: if every
circuit of size s computes f correctly on at most a 1 − δ fraction of
inputs, then every circuit of size s′ computes Amp(f) correctly on at
most a 1/2 + ε fraction of inputs. All hardness amplification results in
the literature suffer from “size loss” meaning that s′ ≤ ε ·s. In this paper
we show that proofs using “non-uniform reductions” must suffer from
size loss. To the best of our knowledge, all proofs in the literature are by
non-uniform reductions. Our result is the first lower bound that applies
to non-uniform reductions that are adaptive.

A reduction is an oracle circuit R(·) such that when given oracle ac-
cess to any function D that computes Amp(f) correctly on a 1/2 + ε
fraction of inputs, RD computes f correctly on a 1 − δ fraction of in-
puts. A non-uniform reduction is allowed to also receive a short advice
string α that may depend on both f and D in an arbitrary way. The
well known connection between hardness amplification and list-decodable
error-correcting codes implies that reductions showing hardness amplifi-
cation cannot be uniform for ε < 1/4. A reduction is non-adaptive if it
makes non-adaptive queries to its oracle. Shaltiel and Viola (STOC 2008)
showed lower bounds on the number of queries made by non-uniform re-
ductions that are non-adaptive. We show that every non-uniform reduc-
tion must make at least Ω(1/ε) queries to its oracle (even if the reduction
is adaptive). This implies that proofs by non-uniform reductions must
suffer from size loss.

We also prove the same lower bounds on the number of queries of non-
uniform and adaptive reductions that are allowed to rely on arbitrary
specific properties of the function f . Previous limitations on reductions
were proven for “function-generic” hardness amplification, in which the
non-uniform reduction needs to work for every function f and therefore
cannot rely on specific properties of the function.

1 Introduction

1.1 Background on Hardness Amplification

Hardness amplification results transform functions that are hard on the worst
case (or sometimes mildly hard on average) into functions that are very hard on
� This research was supported by BSF grant 2004329 and ISF grant 686/07.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 377–388, 2011.
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average. These results play an important role in computational complexity and
cryptography. There are many results of this kind in the literature depending on
the precise interpretation of “hard”. In this paper we focus on hardness against
Boolean circuits and use the following notation.

Definition 1. Let g : {0, 1}n → {0, 1}
.
– Let C : {0, 1}n → {0, 1}
. We say that C has agreement p with g if

PrX←Un [C(X) = g(X)] ≥ p.
– Let C : {0, 1}n → {0, 1}
 ∪ {⊥}. We say that C has errorless agreement p

with g if C has agreement p with g and for every x ∈ {0, 1}n, if C(x) = ⊥
then C(x) = g(x).

– We say that g is p-hard for size s if no circuit C of size s has agreement p
with g. We say that g is p-hard for errorless size s if no circuit C of size s
has errorless agreement p with g.

Typical hardness amplification results start from a function f : {0, 1}k → {0, 1}
that is p-hard for size s and show that some function g : {0, 1}n → {0, 1}
 is p′-
hard for size s′. (The reader should think of k, n, p, p′, s, s′ and � as parameters).
These results “amplify hardness” in the sense that p′ is typically much smaller
than p (meaning that g is harder on average than f). We now briefly survey
some of the literature on hardness amplification.

Worst-case to average-case. Here p = 1 (meaning that f is hard on the worst
case for circuits of size s), � = 1 (meaning that g is Boolean), and p′ = 1/2+ε
for a small parameter ε (meaning that circuits of size s′ have advantage at
most ε over random guessing when attempting to compute g). Many such
results are known [Lip91, BFNW93, IW97, IW98, STV01, TV07, GGH07]
see [Tre04] for a survey article.

Mildly-average-case to average case. This setup is similar to the one above
except that p = 1 − δ for some small parameter δ (meaning that f is
mildly average-case hard for circuits of size s). In other words, the setup
of worst-case to average-case above can be seen as a special case in which
δ < 1/2k. An extensively studied special case is Yao’s XOR-Lemma in which
g(x1, . . . , xt) = f(x1) ⊕ . . . ⊕ f(xt) [Lev87, Imp95, IW97, KS03, Tre03] see
[GNW95] for a survey article. Other examples are [O’D04, HVV06, Tre05,
GK08]

Non-Boolean target function. The two setups mentioned above can also be
considered when the target function g : {0, 1}n → {0, 1}
 is not Boolean. In
the Boolean case we set p′ = 1/2+ ε as it is trivial to have agreement of 1/2.
We typically consider � > log(1/ε) and set p′ = ε. Namely, it is required that
no circuit of size s′ has agreement ε with g. An extensively studied special
case is direct-product theorems in which g(x1, . . . , xt) = (f(x1), . . . , f(xt))
[Imp95, IW97, GNW95, GG11, IJK09a, IJK09b, IJKW10].
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Errorless amplification. The three notions above are also studied when the
circuits attempting to compute f and g are errorless [BS07, Wat10].

We are interested in proving lower bounds on hardness amplification results. We
want our lower bounds to hold for all the settings mentioned above. For this
purpose we will focus on a specific setting (which we refer to as “basic hardness
amplification”) that is implied by all the settings mentioned above.

Basic hardness amplification. Let ε, δ > 0 and � ≥ 1 be parameters. The
basic hardness amplification task is to show that if f is (1− δ)-hard for size
s then g is ε-hard for errorless size s′. Stated in the contra-positive, the basic
hardness amplification task is to show that if there exists a circuit D of size
s′ that has errorless agreement p′ = ε with g then there exists a circuit C of
size s that has agreement p = 1− δ with f .

It is easy to see that basic hardness amplification is indeed implied by all
the settings considered above.1 Therefore, lower bounds on basic hardness am-
plification immediately apply to all the aforementioned settings. We make this
statement more precise in Section 1.2.

Generic Hardness Amplification and Error-correcting Codes. Most of the hard-
ness amplification results in the literature are function-generic, meaning that
they provide a map Amp mapping functions f : {0, 1}k → {0, 1} into functions
g = Amp(f) where g : {0, 1}n → {0, 1}
 and show that for every f that is
p-hard for size s, the function g = Amp(f) is p′-hard for size s′. In contrast,
a function-specific hardness amplification result uses specific functions f, g and
the proof of the hardness amplification result is allowed to use specific proper-
ties of these functions. Examples of function-specific hardness amplification are
[Lip91, IW98, TV07, Tre03, Tre05].

It is known that function-generic hardness amplification from worst-case to
strongly average-case is closely related to (locally) list-deocodable codes [STV01].
We elaborate on this relationship in the full version.

Size Loss in Hardness Amplification. A common disadvantage of all hardness
amplification results surveyed above is that when starting from a function that
is hard for circuits of size s, one obtains a function that is hard for circuits of
smaller size s′ ≤ ε · s. This is a major disadvantage as it means that if one starts
from a function that is hard for size s, existing results cannot produce a function
that is (1/2 + ε)-hard for ε < 1/s. It is natural to ask whether such a loss is
necessary. In order to make this question precise, we need to consider formal
models for proofs of hardness amplification results.
1 Note that the basic hardness amplification task is trivially implied by all the settings

above in case that g is non-boolean. In case g is Boolean, if there exists a circuit D
of size s′ that has errorless agreement ε with g then we can easily convert this circuit
into a circuit D of size s′ + O(1) that has agreement 1/2 + ε/2 with g. Given input
x, circuit D applies circuit D on x and outputs the same value if it is not ‘⊥’, and
a fixed bit b ∈ {0, 1} otherwise. It is easy to see that there exists a choice of b for
which D has agreement 1/2 + ε/2 with g.
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1.2 Non-uniform Reductions for Hardness Amplification

We are interested in proving impossibility results on proofs for hardness am-
plification and therefore consider the weakest variant of hardness amplification
(which is basic hardness amplification). The notion that we study in this paper
is that of “non-uniform” reductions. As explained in Section 1.3, this notion
(defined below) captures the proofs of almost all hardness amplification results
in the literature.

Definition 2 (non-uniform reduction). Let f : {0, 1}k → {0, 1} and g :
{0, 1}n → {0, 1}
 be functions. Let ε, δ and a be parameters. A non-uniform
reduction showing basic hardness amplification (for f, g, ε, δ and a) is an oracle
circuit R(·) which takes two inputs x ∈ {0, 1}k and α ∈ {0, 1}a. It is required
that for every function D : {0, 1}n → {0, 1}
 ∪ {⊥} that has errorless agreement
ε with g, there exists a string α ∈ {0, 1}a (which we call an “advice string”) such
that the function C(x) = RD(x, α) has agreement 1− δ with f .

We say that R is semi-uniform if a = 0 (in which case R does not receive
an advice string α). The size of the reduction is the size of the oracle circuit
R(·). We say that R makes at most q queries if for every choice of oracle D
and inputs x ∈ {0, 1}k, α ∈ {0, 1}a, reduction RD(x, α) makes at most q queries
to its oracle. We say that R is non-adaptive if for every choice of oracle and
inputs, R makes non-adaptive queries to its oracle.2.

In the discussion below we explain the choices made in Definition 2.

Usefulness of Non-uniform Reductions. We first note that a non-uniform reduc-
tion indeed implies a basic hardness amplification result in the following sense:
If there exists a circuit D of size s′ that has errorless agreement ε with g then
we have that C(x) = RD(x, α) has agreement 1 − δ with f , and furthermore,
C can be implemented by a circuit of size s = r + a + q · s′ where r is the size
of R and q is the number of queries made by R. It follows that the number of
queries q made by the reduction is the dominant factor in the ratio between
s and s′. In other words, if we show that every reduction R must use at least
q = Ω(1/ε) queries, then we get that s = Ω(s′/ε) which gives that the size loss
is s′ = O(s · ε).
What is Non-uniform in This Reduction? Reduction R has two sources of non-
uniformity: First,R is a circuit and therefore may be hardwired with non-uniform
2 We make a comment about terminology. The literature on impossibility results for

reductions often uses the term “black-box” when referring to reductions. We do not
use this term as the definition above allows the reduction R to get an advice string
α that may be an arbitrary function of the “oracle function” D given to it. There
is no requirement that α can be computed by using few black-box queries to D. In
fact, the issue that R receives non-black-box information about its oracle is the main
difficulty that we need to solve in this paper. In contrast, semi-uniform reductions
are black-box (as they only have black-box access to D). They are not uniform as
they are circuits (meaning that they may be hardwired with advice that depends on
f and g).
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advice (that may depend on f). Note that this is the case even for semi-uniform
reductions. The second (and more interesting) source of non-uniformity is the
advice string α. It is important to stress that the order of quantifiers in the
definition above allows α to depend on the choice of D (in addition to the choice
of f). This is in contrast to the non-uniformity of R that is fixed in advance and
does not depend on D.

Lower Bounds for Semi-uniform Reductions. We now illustrate the difference
between semi-uniform reductions and general non-uniform reductions. It is not
hard to show that semi-uniform reductions have to use q = Ω(1/ε) queries.
This follows by a folklore argument (attributed to Steven Rudich in [GNW95]).
Consider a probability distribution over oracles which is uniformly distributed
over all functions D that have errorless agreement ε with g. A semi-uniform
reduction that makes q = o(1/ε) queries has probability 1− o(1) to see only ‘⊥’
on its q queries. Therefore, such a reduction cannot expect to get meaningful
information from its oracle, and can be used to construct a small circuit (with
no oracle) that has agreement 1− δ− o(1) with f . This shows that the existence
of a reduction R unconditionally implies that f is not (1 − δ − o(1))-hard.

We stress that the argument above critically depends on the fact that R is
semi-uniform. A non-uniform reduction is allowed to receive an advice string α
that is a function of D. Such an advice string can encode queries y ∈ {0, 1}n
such that D(y) = ⊥. While this does not seem to help R in having large agree-
ment with f , the argument of Rudich no longer applies. As we point out next,
semi-uniform reductions are rare exceptions in the literature on hardness am-
plification, and the main contribution of this paper is developing techniques to
extend Rudich’s argument for non-uniform and adaptive reductions.

Non-uniform Reductions for other Settings of Hardness Amplification. Definition
2 is tailored for basic hardness amplification. However, the same reasoning can
be used to define all the hardness amplification setups surveyed in Section 1.1.
More precisely, we define the notion of “non-uniform reduction showing mildly-
average-case to average-case hardness amplification” similarly by replacing the
requirement that “D has errorless agreement ε with g” with the requirement
that “D has agreement p with g” where p = 1/2 + ε in case � = 1 and p = ε
in case � > 1. The discussion above about usefulness of non-uniform reduc-
tions trivially applies to this setting as well. Moreover, it trivially follows that
a non-uniform reduction showing mildly-average-case to average-case hardness
amplification implies a non-uniform reduction showing basic hardness amplifica-
tion with essentially same parameters. As a consequence proving a lower bound
of q = Ω(1/ε) on the number of queries used by reductions showing basic hard-
ness amplification entails the same lower bound in all the settings described in
Section 1.1.

Function-generic Hardness Amplification. Definition 2 considers specific func-
tions f, g. Most of the hardness amplification results in the literature are function
genereic in the following sense:



382 S. Artemenko and R. Shaltiel

Definition 3 (function-generic hardness amplification). Let ε, δ, a and �
be parameters. A function-generic reduction showing basic hardness amplification
(for parameters ε, δ, a and �) is a pair (Amp,R) where Amp is a map from
functions f : {0, 1}k → {0, 1} to functions Amp(f) : {0, 1}n → {0, 1}
, and for
every function f : {0, 1}k → {0, 1}, R(·) is a non-uniform reduction showing
basic hardness amplification for f, g = Amp(f), ε, δ and a.

We use Definition 3 to also define the analogous notion for mildly-average-case
to average-case hardness amplification. For the special case of Boolean mildly-
average-case to average-case hardness amplification Definition 3 is equivalent to
the notion of “black-box hardness amplification” defined in [SV10]. It is known
that function-generic hardness amplification is equivalent to certain variants of
list-decodable error-correcting codes. We elaborate on this connection in the full
version.

1.3 Our Results

Function-generic Hardness Amplification. The vast majority of hardness am-
plification in the literature are function-generic reductions showing worst-case
to average-case hardness amplification (or mildly-average-case to average-case
hardness amplification). To the best of our knowledge, all the proofs in the liter-
ature are captured by Definition 3. Moreover, by the aforementioned connection
to error-correcting codes, the reductions in these settings cannot be semi-uniform
in the “list-decoding regime” (that is for ε < 1/4). Consequently, Rudich’s argu-
ment does not apply for showing lower bounds on these reductions. Theorem 1
below proves lower bounds on the number of queries made by function-generic
reductions showing basic hardness amplification.

Theorem 1 (main theorem for function-generic reductions).
There exists a constant c > 1 such that the following holds. Let k, n, �, ε, δ, r

and a be parameters such that a, 1
ε ,

1
δ , n, r ≤ 2k/c and δ ≤ 1/3. Let (Amp,R) be

a function-generic reduction showing basic hardness amplification (for f, g, ε, δ, �
and a) and assume that R is of size r. Then, R makes at least 1

100ε queries.

We have stated Theorem 1 in a general form with many parameters. In typical
hardness amplification results the parameter setting is n = poly(k), � = 1,
ε = 1/kb for some constant b (or sometimes slightly super constant b), δ ≤ 1/3,
and r, a = poly(k). Note that Theorem 1 holds for this choices. (In fact, the
theorem holds even when poly(k) is replaced by 2

k
c for some small constant c.

This is best possible in the sense that any function on k bits has a circuit of size
2k). We furthermore remark that the requirement on r can in fact be removed
from Theorem 1 as explained in the proof. We also stress that the constant 1/3
can be replaced by any constant smaller than 1/2.

The bound in Theorem 1 is tight in the sense that there are function-generic
reductions showing basic hardness amplification which for δ = Ω(1) make O(1/ε)
queries [GNW95, IJKW10, Wat10]. (In fact, some of these reductions are for
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showing non-Boolean mildly-average-case to average-case hardness amplifica-
tion). For general δ, these reductions make O( log(1/δ)

ε ) queries. We can improve
the bound in Theorem 1 to Ω( log(1/δ)

ε ) which is tight for every δ. However, we
only know how to do this in the special case where the reduction is non-adaptive.

By the previous discussion on the relationship between reductions showing
various notions of hardness amplification it follows that Theorem 1 applies also
for Boolean mildly-average-case to average-case amplification and gives the same
lower bound of Ω(1/ε) on the number of queries. In this setup the best known
upper bounds [Imp95, KS03] make O( log(1/δ)

ε2 ) queries. A matching lower bound
of Ω( log(1/δ)

ε2 ) was given in [SV10] for the special case where the reduction R
is non-adaptive. The argument in [SV10] heavily relies on the non-adaptivity of
the reduction. The main contribution of this paper is developing techniques to
handle reductions that are both non-uniform and adaptive, and Theorem 1 is
the first bound on such general reductions (of any kind). Most reductions in the
literature are non-adaptive, however there are some examples in the literature of
adaptive reductions for hardness amplification and related tasks [SU05, GGH07].

Finally, we remark that the technique of [SV10] (which is different than the one
used in this paper) can be adapted to the setting of basic hardness amplification
(as observed in [Wat10]) showing our aforementioned lower bounds for the special
case where the reduction is non-adaptive.
Function-specific Hardness Amplification. In contrast to function-generic reduc-
tions, non-uniform reductions for specific functions f, g (as defined in Definition
2) are allowed to depend on the choice of functions f, g and their particular
properties. It is therefore harder to show lower bounds against such reductions.
Moreover, as we now explain, we cannot expect to prove that for every func-
tion f, g, every non-uniform reduction R showing basic hardness amplification
must use Ω(1/ε) queries. This is because if f is a function such that there exists
a small circuit C that has agreement 1 − δ with f , then there exists a trivial
non-uniform reduction R that makes no queries as reduction R can ignore its
oracle and set R(·)(x) = C(x). Consequently, the best result that we can hope
for in this setting is of the form: for every functions f, g and every non-uniform
reduction R(·) for f, g, if R makes o(1/ε) queries then there exists a circuit C
(with no oracle) of size comparable to that of R that has agreement almost 1− δ
with f . Theorem 2 stated below is of this form.

Theorem 2 (main theorem for function-specific reductions). Let ε, δ and
a be parameters. Let f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}
 be functions.
Let R(·) be a non-uniform reduction for f, g, ε, δ and a. If R is of size r and
makes q queries then for every ρ ≥ 10εq there exists a circuit C of size r +
poly(a, q, n, 1/ρ) that has agreement 1− δ − ρ with f .

Theorem 2 says that if q = o(1/ε) then the mere existence of reduction R implies
the existence of a circuit C that has agreement 1 − δ − o(1) with f . This can
be interpreted as a lower bound on the number of queries in the following sense:
Reductions making o(1/ε) queries are not useful as their existence implies that
the hardness assumption does not hold.
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Function-specific Hardness Amplification in the Literature. Function-specific
hardness amplification results are less common than function-generic results. One
motivation for developing such results is that function-specific reductions can by-
pass the coding theoretic objection and be semi-uniform (or even
completely uniform). Examples are the reductions in [IW98, TV07, Tre03, Tre05].
Another example is in Cryptography where protocols are often constructed as-
suming the hardness of some specific function (e.g., factoring or discrete log) and
properties of this function are used to improve either security or efficiency. The-
orem 2 shows that in these settings, reductions must make Ω(1/ε) queries even
if they are non-uniform.

In the function-specific setting there are few examples in the literature of
reductions for tasks related to hardness amplification that have proofs not cap-
tured by Definition 2. It was pointed out in [GTS07] that the techniques of
[GSTS07, Ats06] (that show some worst-case to average-case reduction for NP)
are not black-box in a sense that we now explain. Semi-uniform reductions are
black-box in the sense that R has only black-box access to D. Non-uniform re-
ductions allow R to also get some short advice string α about D. Note that there
is no requirement that α is generated using black-box access to D (and this is
why we refrain from using the term “black-box” when referring to non-uniform
reductions). However, even non-uniform reductions make no assumption about
the oracle D and are required to perform for every function D (even if D is not
computable by a small circuit). The reductions used in [GSTS07, Ats06] are only
guaranteed to perform in case D is efficient, and are therefore not captured by
Definition 2. See [GTS07, GV08] for a discussion on such reductions.

1.4 Related Work

We have already surveyed many results on hardness amplification. We now sur-
vey some relevant previous work regarding limitations on proof techniques for
hardness amplification. We focus on such previous work that is relevant to this
paper and the reader is referred to [SV10] for a more comprehensive survey.

The complexity of reductions showing hardness amplification was studied in
[SV10, GR08]. Both papers show that function-generic reductions for mildly-
average-case to average-case hardness amplification cannot be computed by small
constant depth circuits if ε is small. Both results fail to rule out general reduc-
tions. The result of [GR08] rules out adaptive reductions but only if they use
very low non-uniformity (meaning that a = O(log(1/ε)) which is much smaller
than k in typical settings). The result of [SV10] rules out non-uniform reductions
with large non-uniformity (allowing a = 2Ω(k)) but only if they are non-adaptive.
As mentioned earlier, our results extend previous lower bounds on the number
of queries that were proven in [SV10] for non-adaptive reductions. This suggests
that our techniques may be useful in extending the result of [SV10] regarding
constant depth circuits to adaptive reductions. We stress however, that we are
studying reductions showing basic hardness amplification and there are such re-
ductions in the literature that can be computed by small constant depth circuits
[IJKW10].
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In this paper we are interested in the complexity of function-generic re-
ductions showing hardness amplification. There is an orthogonal line of work
[Vio05a, LTW08] that aims to show limitations on “fully-black-box construc-
tions” of hardness amplifications. In our terminology, these are function-generic
non-uniform reductions (Amp,R) with the restriction that there exists an or-
acle machine M (·) called construction such that for every function f , Amp(f)
is implemented by Mf . The goal in this direction is to prove lower bounds on
the complexity of M (which corresponds to encoding), whereas we focus on R
(which corresponds to decoding).

There are many other results showing limitations on reductions for hardness
amplification and related tasks in various settings. A partial list includes [FF93,
TV07, BT06, RTV04, Vio05b, AGGM06, LTW07].

2 Technique

Our high level approach is to extend Rudich’s argument that is explained in the
introduction to the case of non-uniform and adaptive reductions. Recall that
Rudich’s argument applies to semi-uniform reductions but fails for non-uniform
reduction (even if they are non-adaptive). We rely on some of the machinery
developed in [SV10], however our overall approach is very different. The approach
of [SV10] (which consider non-adaptive function-generic reductions) is to show
that the existence of a “too good” function-generic reduction implies a “too
good” statistical test that can distinguish between q independent fair coins and q
independent biassed coins. In contrast, our approach is to show that the existence
of a “too good” function-specific reduction yields small circuits for the function
f . We do not attempt to mimic the approach of [SV10], as it seems difficult to
extend it to adaptive and non-uniform reductions.

The argument of Rudich works by showing that a semi-uniform reduction
R(·)(x) that makes o(1/ε) queries, and has access to an oracle D that is chosen
uniformly at random amongst all functions that have errorless agreement ε with
the function f , does not benefit much from querying the oracle. More precisely,
that the expected fraction of inputs x which are “silent” (meaning that all queries
asked on these inputs answer ‘⊥’) is 1 − o(1). Thus, by averaging there exists
a function D on which RD(x) has agreement 1 − δ with f , and on almost all
inputs, R does not need to query its oracle. This means that R induces a small
circuit (with no oracle) that has agreement 1− δ − o(1) with f .

In the general case of non-uniform and adaptive reductions the reduction R
also accepts an advice string α (that may depend on the function D given as
oracle). We show that for every such reduction which makes o(1/ε) queries, there
exist (i) a fixed advice string α′, (ii) a subset E of all functions that have errorless
agreement ε with the function f , and (iii) a small set B of possible queries such
that the following holds: for every function D in E, the advice string used by RD

is α′. Furthermore, when R receives a uniformly chosen D in E, the expected
fraction of inputs x which are “almost silent” (meaning that all queries asked on
these inputs are either in B or they answer ‘⊥’) is 1− o(1). This is sufficient to
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construct a small circuit for f as before (by hardwiring α′, B and the values of
g on B, to the circuit R). The main technical difficulty is that reduction R can
use its advice string to decide what queries to ask, and then use the answers to
these queries (and in particular whether the queries answer ‘⊥’ or not) to decide
on the next queries it makes.

Due to space limitations this extended abstract does not contain proofs. The
reader is referred to the full version for proofs.

3 Conclusion and Open Problem

Our results rule out certain proof techniques for showing hardness amplification
results with small “size loss”. As we explain in Section 1.3, the framework of
reductions that we study captures essentially all hardness amplification results
in the literature. Nevertheless, it may be possible to bypass these limitations
by developing alternative proof techniques. We remark that the techniques of
[GSTS07, Ats06] are not captured in our framework (see Section 1.3).

We now mention a few open problems (continuing the discussion of Section
1.4). Extend the results of [SV10] regarding “necessity of majority” to adap-
tive reductions. More specifically, show that non-uniform and adaptive function-
generic reductions for mildly-average-case to average-case hardness amplification
cannot be computed by small constant depth circuits if ε is small.

Extend the results of [SV10] regarding “number of queries” to adaptive re-
ductions. More specifically, show that non-uniform and adaptive function-generic
reductions for mildly-average-case to average-case hardness amplification must
use q = Ω( log(1/δ)

ε2 ) queries. (Note that a lower bound of q = Ω(1/ε) follows from
our results on basic hardness amplification).

Our results on basic hardness amplification give a lower bound of q = Ω(1/ε)
for δ ≤ 1/3. This meets the known upper bounds for constant δ. However, it
seems that the right lower bound should be q = Ω( log(1/δ)

ε ) and match the
known upper bounds of [KS03]. We do not know how to show such a bound for
non-uniform and adaptive reductions.

Finally, the framework of function-specific reductions suggested in this paper
captures more proof techniques than those captured in earlier work. It is natural
to study the questions above (as well as related questions in the area) using this
more general framework.
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Abstract. Referring to the query complexity of testing graph properties
in the adjacency matrix model, we advance the study of the class of
properties that can be tested non-adaptively within complexity that is
inversely proportional to the proximity parameter. Arguably, this is the
lowest meaningful complexity class in this model, and we show that it
contains a very natural class of graph properties. Specifically, for every
fixed graph H , we consider the set of all graphs that are obtained by a
(possibly unbalanced) blow-up of H . We show a non-adaptive tester of

query complexity Õ(1/ε) that distinguishes graphs that are a blow-up of
H from graphs that are ε-far from any such blow-up.

Keywords: Property Testing, Adaptivity vs Non-adaptivity, One-sided
vs Two-sided Error, Graph Properties, Graph Blow-up.

1 Introduction

The general context of this work is that of testing graph properties in the ad-
jacency matrix representation (as initiated in [GGR]). In this model graphs are
viewed as (symmetric) Boolean functions over a domain consisting of all possible
vertex-pairs (i.e., an N -vertex graph G = ([N ], E) is represented by the function
g : [N ] × [N ] → {0, 1} such that {u, v} ∈ E if and only if g(u, v) = 1). Conse-
quently, an N -vertex graph represented by the function g : [N ] × [N ] → {0, 1}
is said to be ε-far from some predetermined graph property if more than ε ·N2

entries of g must be modified in order to yield a representation of a graph that
has this property. We refer to ε as the proximity parameter, and the complexity
of testing is stated in terms of ε and the number of vertices in the graph (i.e.,
N).

Interestingly, many natural graph properties can be tested within query com-
plexity that depends only on the proximity parameter; see [GGR], which presents
testers with query complexity poly(1/ε), and [AFNS], which characterizes the
class of properties that are testable within query complexity that depends only
on the proximity parameter (where this dependence may be an arbitrary func-
tion of ε). A well-known open problem in this area is to characterize the class of
graph properties that can be tested within query complexity poly(1/ε). We men-
tion that such a characterization has been obtained in the special case of induced
subgraph freeness properties [AS], but the general case seems quite difficult.
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In light of this state of affairs, it was suggested in [GR08] to try to characterize
lower query complexity classes, and in particular the class of graph properties
that can be tested non-adaptively within query complexity Õ(1/ε). As a first
step towards this goal, it was shown in [GR08, Sec. 6] that, for every constant
c, the set of graphs that each consists of at most c isolated cliques is such a
property.

In this work we significantly extend the latter result by showing that the class
of graph properties that can be tested non-adaptively within query complexity
Õ(1/ε) contains all graph blow-up properties. For any fixed graph H = ([h], F ),
we say that a graph G = ([N ], E) is a blow-up of H if the vertices of G can be
clustered in up to h clusters such that the edges between these clusters reflect
the edge relation of H . That is, vertices in the ith and jth cluster are connected
in G if and only if (i, j) ∈ F . Note that, unlike in the case of balanced blow-up
(cf. [GKNR]), the clusters are not required to have equal size.1 Also note that
the “collection of c cliques” property studied in [GR08, Sec. 6] can be cast as the
property of being a blow-up of a c-vertex clique (by considering the complement
graph).

Theorem 1.1 (main result): For every fixed H, the property of being a blow-
up of H is testable by Õ(1/ε) non-adaptive queries. Furthermore, the tester has
one-sided error (i.e., it always accepts graphs that are blow-ups of H) and runs
in poly(1/ε)-time.

We mention that the aforementioned property cannot be tested by o(1/ε) queries,
even when adaptivity and two-sided error are allowed (see [GR08, Prop. 6.1]).
We also mention that, by [GR08, Prop. 6.2], a tester of Õ(1/ε) query complexity
cannot be canonical (i.e., it cannot rule by inspecting an induced subgraph).

Additional Results. We also consider the complexity of testing “balanced blow-
up” properties, showing that the two-sided error query complexity is quadratic
in 1/ε for both adaptive and non-adaptive testers; see Proposition 2.4. Finally,
we present proximity oblivious testers (cf. [GR09]) for any (general) blow-up
property; see Theorem 5.2.

Techniques. Theorem 1.1 is proved by presenting a suitable tester and analyz-
ing it. Recall that this tester cannot be canonical; indeed, this tester selects at
random a sample of Õ(1/ε) vertices, but it inspects (or queries) only Õ(1/ε) of
the vertex pairs in this sample. Consequently, the tester (and the analysis) has
to deal with partial knowledge of the subgraph induced by the sample. A pivotal
notion regarding such partial views is of “inconsistency” between vertices (w.r.t
a given partial view), which means that these vertices have different neighbor
sets and thus cannot be placed in the same cluster (of a blow-up of H (or any
other graph)). Specifically, the tester considers all sets of up to h + 1 pairwise
inconsistent vertices, and accepts if and only if each such set (along with the
1 We note that testing balanced blow-up properties requires Ω(1/ε2) queries. For de-

tails, see Section 2.2.
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known incidence relations) can be embedded in H . As usual, the technically
challenging part is analyzing the behavior of the tester on arbitrary graphs that
are far from being blow-ups of H . Our analysis proceeds in iterations, where
in each iteration some progress is made, but this progress is not necessarily re-
flected by a growing number of incidence constraints but rather in the decreasing
density of the violations reflected in the incidence constraints. This progress is
captured in Lemma 4.4 (which refers to notions introduced in Section 4.1). Here
we merely stress that the number of iterations is polylogarithmic in ε−1 rather
than being O(h2). (The degree of the polylogarithmic function depends on h.)

Organization. The core of this paper is presented in Sections 3 and 4, which
contain a description of the tester and its analysis, respectively. (Indeed, this part
establishes Theorem 1.1.) Section 2 provides preliminaries, which may be skipped
by the experts, as well as a side discussion (and result) regarding “balanced
blow-up” properties. Section 5 provides another secondary discussion; this one
regarding proximity oblivious testers. Due to space limitations, three proofs were
omitted from the current version; they can be found in the full version of this
work [AG].

2 Preliminaries

In this section we review the definition of property testing, when specialized
to graph properties in the adjacency matrix model. We also define the blow-up
properties (and discuss the case of balanced blow-up).

2.1 Basic Notions

For an integer n, we let [n] def= {1, ..., n}. A generic N -vertex graph is denoted
by G = ([N ], E), where E ⊆ {{u, v} :u, v∈ [N ]} is a set of (unordered) pairs of
vertices.2 Any set of (such) graphs that is closed under isomorphism is called a
graph property. By oracle access to such a graph G = ([N ], E) we mean oracle
access to the Boolean function that answers the query {u, v} (or rather (u, v) ∈
[N ]× [N ]) with the bit 1 if and only if {u, v} ∈ E. At times, we look at E as a
subset of [N ]× [N ]; that is, we often identify E with {(u, v) :{u, v}∈E}.
Definition 2.1 (property testing for graphs in the adjacency matrix model):
A tester for a graph property Π is a probabilistic oracle machine that, on input
parameters N and ε and access to an N -vertex graph G = ([N ], E), outputs a
binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability at least 2/3.
2. If G is ε-far from Π, then the tester accepts with probability at most 1/3,

where G is ε-far from Π if for every N -vertex graph G′ = ([N ], E′) ∈ Π it
holds that the symmetric difference between E and E′ has cardinality that is
greater than εN2.

2 Thus, we consider simple graphs, with no self-loops nor parallel edges.
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If the tester accepts every graph in Π with probability 1, then we say that it
has one-sided error. A tester is called non-adaptive if it determines all its queries
based solely on its internal coin tosses (and the parameters N and ε); otherwise
it is called adaptive.

The query complexity of a tester is the number of queries it makes to any N -
vertex graph oracle, as a function of the parameters N and ε. We say that a
tester is efficient if it runs in time that is polynomial in its query complexity,
where basic operations on elements of [N ] are counted at unit cost. We note that
all testers presented in this paper are efficient, whereas the lower-bounds hold
also for non-efficient testers.

We shall focus on properties that can be tested within query complexity that
only depends on the proximity parameter, ε. Thus, the query-complexity upper-
bounds that we state hold for any values of ε and N , but will be meaningful
only for ε > 1/N2 or so. In contrast, the lower-bounds (e.g., of Ω(1/ε)) cannot
possibly hold for ε < 1/N2, but they will indeed hold for any ε > N−Ω(1).
Alternatively, one may consider the query-complexity as a function of ε, where
for each fixed value of ε > 0 the value of N tends to infinity.

2.2 The Blow-Up Properties

Following the discussion in the introduction, we first define the blow-up proper-
ties that are the subject of our study.

Definition 2.2 (graph blow-up): We say that the graph G = ([N ], E) is a blow-
up of the graph H = ([h], F ) if there is an h-way partition (V1, ..., Vh) of the
vertices of G such that for every i, j ∈ [h] and (u, v) ∈ Vi × Vj it holds that
(u, v) ∈ E if and only if (i, j) ∈ F . We stress that the Vi’s are not required to be
of equal size and that some of them may be empty. We denote by BU(H) (resp.,
BUN (H)) the set of all graphs (resp., N -vertex graphs) that are blow-ups of H.

In contrast to Definition 2.2, let us briefly consider the more rigid (and popular)
definition of a balanced blow-up.

Definition 2.3 (balanced blow-up): We say that the graph G = ([N ], E) is
a balanced blow-up of the graph H = ([h], F ) if there is an h-way partition
(V1, ..., Vh) of the vertices of G such that the following two conditions hold:

1. For every i, j ∈ [h] and (u, v) ∈ Vi × Vj it holds that (u, v) ∈ E if and only
if (i, j) ∈ F .

2. For every i ∈ [h] it holds that |Vi| ∈ {�N/h�, �N/h�}.
We denote by BBU(H) (resp., BBUN (H)) the set of all graphs (resp., N -vertex
graphs) that are balanced blow-ups of H.

It is easy to see that, except for trivial cases (i.e., when H consists of isolated
vertices), balanced blow-up cannot be tested with one-sided error and complexity
that does not depend on the size of the graph. The two-sided error testing
complexity of this property is Θ(1/ε2), as shown next.
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Proposition 2.4 (on the complexity of testing balanced blow-up): For every
H = ([h], F ) such that F = ∅, testing the property BBU(H) requires Ω(1/ε2)
queries even if adaptive testers of two sided error are allowed. On the other
hand, for any H = ([h], F ), there exists a non-adaptive tester of query complexity
O(1/ε2) (and two-sided error) for the property BBU(H).

The proof can be found in the full version of this work [AG].

3 The BU(H)-Tester and Its Basic Features

Recall that a tester of the type we seek (i.e., a non-adaptive tester of Õ(1/ε)
query complexity) cannot operate by inspecting an induced subgraph, because
by [GR08, Prop. 6.2] such a subgraph will have to be induced by Ω(1/ε) vertices,
which would yield query complexity Ω(1/ε2). Thus, like in [GR08, Sec. 6.2], our
non-adaptive tester operates by using a less straightforward querying procedure.
Specifically, it does select a sample of Õ(1/ε) vertices, but does not query all
vertex pairs.

Algorithm 3.1 (testing BU(H), for a fixed graph H = ([h], F )): On input
parameters, N and ε, and access to an oracle g : [N ]× [N ]→ {0, 1}, representing
a graph G = ([N ], E), the algorithm sets � = log2(1/ε) + O(log log(1/ε)) and
proceeds as follows.

1. For every i ∈ [�], it selects uniformly a sample of poly(�)·2i vertices, denoted
Ti.
Denote T =

⋃
i∈[
] Ti.

2. For every i, j ∈ [�] such that i + j ≤ �, the algorithm queries all pairs in
Ti × Tj.

3. The algorithm accepts if and only if the answers obtained in Step 2 are
consistent with some blow-up of H. That is, let K : T × T → {0, 1, ∗} be a
partial description of the subgraph of G induced by T such that K(u, v) =
g(u, v) if query (u, v) was made in Step 2, and otherwise K(u, v) = ∗. Then,
the acceptance condition seeks a mapping φ : T → [h] such that if K(u, v) = 1
then (φ(u), φ(v)) ∈ F and if K(u, v) = 0 then (φ(u), φ(v)) ∈ F .

Indeed, at this point we ignore the computational complexity of implementing
Step 3. We shall return to this issue at the end of the current section. But, first,
let us note that the query complexity of Algorithm 3.1 is∑

i,j:i+j≤

poly(�) · 2i+j = poly(�) · 2
 = Õ(1/ε). (1)

It is also clear that Algorithm 3.1 is non-adaptive and that it accepts every
G ∈ BU(H) with probability 1 (i.e., it has one-sided error). The bulk of this
work (see Section 4) is devoted to showing that if G is ε-far from BU(H), then
Algorithm 3.1 rejects it with probability at least 2/3.
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Relaxing the Acceptance Condition of Algorithm 3.1. A straightforward imple-
mentation of Step 3 amounts to considering all h|T | mappings of T to [h], and
checking for each such mapping φ whether the clustering induced by φ fits the
graph H . Relaxing the acceptance condition (used in Step 3 of Algorithm 3.1)
yields a more time-efficient algorithm. Actually, the relaxed acceptance condi-
tion (defined next) seems easier to analyze than the original one. The notion of
pairwise inconsistent rows (of K) is pivotal to this relaxed acceptance condition.
(Indeed, it will be instructive to think of K as a matrix, and to view rectangular
restrictions of K as sub-matrices.)

Definition 3.2 (pairwise inconsistent rows): Let K ′ : R × C → {0, 1, ∗} be a
sub-matrix of K : T ×T → {0, 1, ∗}; that is, R,C ⊆ T and K ′(r, c) = K(r, c) for
every (r, c) ∈ R × C. Then, the rows r1, r2 ∈ R are said to be inconsistent (wrt
K ′) if there exists a column c ∈ C such that K ′(r1, c) and K ′(r2, c) are different
Boolean values (i.e., K ′(r1, c),K ′(r2, c) ∈ {0, 1} and K ′(r1, c) = K ′(r2, c)). A
set of rows of K ′ is called pairwise inconsistent (wrt K ′) if each pairs of rows is
inconsistent (wrt K ′).

Another pivotal notion, which was alluded to before, is the notion of being
consistent with some blow-up of H , which we now term H-mappability.

Definition 3.3 (H-mappable sub-matrices): Let K ′ : R × C → {0, 1, ∗} be a
sub-matrix of K : T × T → {0, 1, ∗}. We say that K ′ is H-mappable if there
exists a mapping φ : R→ [h] such that if K ′(u, v) = 1 then (φ(u), φ(v)) ∈ F and
if K ′(u, v) = 0 then (φ(u), φ(v)) ∈ F . We call such a φ an H-mapping of K ′ (or
R) to [h].

Note that if K is H-mappable, then every two inconsistent rows of K must be
mapped (by φ as in Definition 3.3) to different vertices of H . In particular, if
a sub-matrix K ′ : R × C → {0, 1, ∗} of K has pairwise inconsistent rows, then
any H-mapping of K to [h] must be injective. Hence, if K contains more than
h pairwise inconsistent rows, then K is not H-mappable.

Definition 3.4 (the relaxed acceptance condition (of Algorithm 3.1)): The re-
laxed algorithm accept if and only if each set of pairwise inconsistent rows in K
is H-mappable. That is, for every set R of pairwise inconsistent rows in K, we
check whether the sub-matrix K ′ : R × T → {0, 1, ∗} is H-mappable, where the
pairwise inconsistency condition mandates that this mapping of R to [h] is 1-1.
In particular, if K has more than h pairwise inconsistent rows, then the relaxed
acceptance condition fails.

Note that the relaxed acceptance condition can be checked by considering all
s-subsets of T , for all s ≤ h+ 1. For each such subset that consists of pairwise
inconsitent rows, we consider all possible 1-1 mappings of this subset to [h], and
check consistency with respect to H . This can be performed in time

( |T |
h+1

)·(h!) <
|T |h+1 = poly(1/ε), where the polynomial depends on h.
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Clearly, if G ∈ BU(H), then for every T ⊆ [N ] it holds that the corresponding
matrix K satisfies Definition 3.4. Thus, the relaxed algorithm always accepts
graphs in BU(H). Section 4 is devoted to showing that if G is ε-far from BU(H),
then the relaxed algorithm rejects with high probability.

4 The Acceptance Condition and Graphs That Are Far
from BU(H)

In light of the above, Theorem 1.1 follows from the fact that the relaxed version
of Algorithm 3.1 (which uses the condition in Definition 3.4) rejects with very
high probability any graph G that is ε-far from BU(H). This fact is established
next.

Lemma 4.1 (main lemma): Suppose that G = ([N ], E) is ε-far from BUN (H),
and let T =

⋃
i∈[
] Ti be selected at random as in Step 1 of Algorithm 3.1. Then,

with probability at least 2/3, there exists a set R ⊂ T of pairwise inconsistent
rows in the corresponding matrix K : T × T → {0, 1, ∗} that is not H-mappable.

Before embarking on the actual proof of Lemma 4.1, we provide a very rough
outline.

Outline of the Proof of Lemma 4.1. Our very rough plan of action is to partition
the selection of T (and each of its parts, i.e., T0, T1, ..., T
) into p(�) def= 2�h many
phases such that in the jth phase we select at random samples T j0 , T

j
1 , ..., T

j



such that |T ji | = poly(�) · 2i. Thus, we let each Ti equal
⋃p(
)
j=1 T

j
i , but we shall

consider the queries as if they are made in phases such that in the jth phase
we only consider queries between T j

def=
⋃
i∈[
] T

j
i and T [j] def=

⋃
k≤j T

k. Letting
Kj : T [j] × T [j] → {0, 1, ∗} denote the partial information obtained on G in the
first j phases, we consider a certain set Rj of pairwise inconsistent rows of Kj .
If this set Rj is not H-mappable, then we are done. Otherwise, we show that,
with high probability over the choice of the sample T j+1, we obtain a new set
Rj+1 of pairwise inconsistent rows such that Rj+1 has a higher index than Rj ,
where the indices refer to an order over sequences of length at most h over [�].
Since the number of such sequences is

∑
k∈[h] �

k < p(�), with high probability,
this process must reach a set Rj that is not H-mappable, and so we are done.

Needless to say, the crucial issue is the progress achieved in each phase; that
is, the fact that at each phase j the index of the new set Rj+1 is higher than
the index of the old set Rj. Intuitively, this progress is achieved because the
current (H-mappable) setRj induces a clustering of all vertices ofG that extends
this H-mapping, whereas this clustering must contain many vertex pairs that
violate the edge relation of H . The sample taken in the current phase (i.e., T j+1)
is likely to hit these violations, and this gives rise to a set Rj+1 with higher
index.
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4.1 Basic Notions and Notations

In addition to the foregoing notations, T ji , T
j and T [j], we shall use the following

notations.

– A pair (R,C) is called a j-basic pair if C ⊆ T [j] and R ⊆ C. Indeed, j-basic
pairs correspond to restrictions of the sample available at phase j (i.e., T [j]).

– The j-index of a vertex v ∈ T [j], denoted idxj(v), is the smallest index i such
that v ∈ T [j]

i , where T [j]
i

def=
⋃
k≤j T

k
i . (Note that idx(·) depends on T , but

this dependence is not shown in the notation.)
A key observation is that for every u, v ∈ T , it holds that K(u, v) = g(u, v)
if and only if idxp(
)(u)+ idxp(
)(v) ≤ �. Otherwise, K(u, v) = ∗ (indicating
that (u, v) was not queried by Algorithm 3.1).
We comment that, with extremely high probability, for each j and v ∈ T [j],
there exists a unique i ∈ [�] and k ∈ [j] such that v ∈ T ki . Thus, for any
v ∈ T [j], we may assume that idxj+1(v) = idxj(v).

– The indices of individual vertices in T [j] are the basis for defining the index
of sets in T [j]. Specifically, the j-index of a set S ⊆ T [j], denoted idxj(S), is
the multi-set consisting of all values idxj(v) for v ∈ S. It will be instructive
to consider an ordered version of this multi-set; that is, we redefine idxj(S)
as (i1, ..., i|S|) such that (1) for every k < |S| it holds that ik ≥ ik+1, and
(2) for every i ∈ [�] it holds that |{k∈ [|S|] : ik= i}| = |{v ∈ S : idxj(v)= i}|.

– We consider a natural lexicographic order over sequences, denoted #, such
that for two (monotonicly non-increasing) sequences of integers, a =
(a1, ..., am) and b = (b1, ..., bn), it holds that a # b if
• either there exists i ≤ min(n,m) such that (a1, ..., ai−1) = (b1, ..., bi−1)

and ai > bi.
• or m > n and (a1, ..., an) = (b1, ..., bn).

Note that # is a total order on the set of monotonicly non-increasing (finite)
sequences of integers.

As hinted in the overview, a key notion in our analysis is the notion of a clustering
of the vertices of G that is induced by an H-mapping of some small subset of
vertices. Actually, the clustering is induced by a partial knowledge sub-matrix
K ′ : R× C → {0, 1, ∗} as follows.

Definition 4.2 (the clustering induced by K ′): Let K ′ : R×C → {0, 1, ∗} be a
sub-matrix of K : T ×T → {0, 1, ∗} such that K ′ has pairwise inconsistent rows.
Then, for every r ∈ R, we denote by Vr(K ′) the set of vertices v ∈ [N ] that are
consistent with row r in K ′. That is,

Vr(K ′) def= {v∈ [N ] : (∀c∈C) g(v, c)∼=K ′(r, c)} (2)

where, for σ, τ ∈ {0, 1, ∗}, we write σ∼= τ if either σ = τ or σ = ∗ or τ = ∗.
The vertices that are inconsistent with all rows, are placed in the leftover set
L(K ′) def= [N ] \⋃r∈R Vr(K

′).
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Indeed, rows r1, r2 ∈ R are inconsistent wrt K ′ (as per Definition 3.2) if there
exists a column c ∈ C such thatK ′(r1, c) ∼=K ′(r2, c) (which means thatK ′(r1, c)
and K ′(r2, c) are both in {0, 1} but are different). Thus, the hypothesis that
the rows of K ′ are pairwise inconsistent implies that the sets in Eq. (2) are
disjoint. Hence, the clustering in Definition 4.2 is indeed a partition of the vertex
set of G (since v ∈ L(K ′) if for every r ∈ R there exists c ∈ C such that
g(v, c) ∼=K ′(r, c)). This motivates our focus on sub-matrices having pairwise
inconsistent rows. The following definition adds a requirement (regarding such
sub-matrices) that refers to the relation between the index of row r and the
density of the corresponding set Vr(K ′).

Definition 4.3 (nice pairs): Let (R,C) be a j-basic pair and K ′ : R × C →
{0, 1, ∗} be the corresponding sub-matrix of K. We say that (R,C) is a j-nice
pair if the following two conditions hold.

1. R is pairwise inconsistent with respect to K ′.
2. For every r ∈ R it holds that indj(r) ≤ ρ(Vr(K ′)) + 1, where ρ(S) def=
�log(N/|S|)�.

As a sanity check, suppose that r ∈ R was selected in phase j (i.e., r ∈ T j).
Then, it is very likely that r (or some other member of Vr(K ′)) is selected
in T jρ(Vr(K′))−1, because T jρ(Vr(K′))−1 is a random set of cardinality poly(�) ·
2ρ(Vr(K′))−1 = poly(�) ·N/|Vr(K ′)|.

For each phase j, we shall show the existence of a j-nice pair. Furthermore, we
shall show that the corresponding set of rows has a higher index than all sets of
rows associated with previous phases. The furthermore claim is the crux of the
analysis, and is captured by the Progress Lemma presented in Section 4.2. But
let us first establish the mere existence of j-nice pairs. Indeed, for every j ≥ 1,
we may pick an arbitrary r ∈ T 1

1 , and consider the j-nice pair ({r}, {r}), while
noting that idx1(r) = 1 and ρ(Vr(K ′)) ≥ 0 (where K ′ : {r} × {r} → {0, 1, ∗}).

4.2 The Progress Lemma

Recall that G = ([N ], E) is ε-far from BU(H), where H = ([h], F ). Furthermore,
we consider the partial view K : T × T → {0, 1, ∗} obtained by Algorithm 3.1,
where T =

⋃
i∈[
],j∈[p(
)] T

j
i is the random sample selected.

Lemma 4.4 (Progress Lemma): Let (R,C) be a j-nice pair and K ′ : R× C →
{0, 1, ∗} be the corresponding sub-matrix of K. If K ′ is H-mappable then, with
overwhelmingly high probability3 over the choice of T j+1, there exists a (j + 1)-
nice pair (R′, C′) such that indj+1(R′) # indj(R).

Recalling that a (trivial) 1-nice pair always exists and that the number of pos-
sible indices is smaller than p(�), we conclude that, with overwhelmingly high
probability (over the choice of T ), there exists a j < p(�) and a j-nice pair
that is not H-mappable. Lemma 4.1 follows. Thus, all that remains is proving
Lemma 4.4, which is undertaken in the full version of this work [AG].
3 I.e., with probability that exceeds 1 − q(ε), for any polynomial q.
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5 Proximity Oblivious Testing of Blow-Up

In this section we derive, for every fixed graph H , a constant-query proximity
oblivious tester of BU(H). That is, we refer to the following definition of [GR09],
when specialized to the dense graph model.

Definition 5.1 (proximity oblivious testing for graphs in the adjacency matrix
model): A proximity oblivious tester for a graph property Π is a probabilistic
oracle machine that, on input parameter N and access to an N -vertex graph
G = ([N ], E), outputs a binary verdict that satisfies the following two conditions.

1. If G ∈ Π, then the tester accepts with probability 1.
2. There exists a monotone function ρ : (0, 1]→ (0, 1] such that, for every graph

G = ([N ], E) ∈ Π, it holds that the tester rejects G with probability at least
ρ(δΠ(G)), where δΠ(G) denotes the (relative) distance of G from the set of
N -vertex graphs that are in Π.

The function ρ is called the detection probability of the tester.

Combining Lemma 4.1 and the ideas underlying [GR09, Thm. 6.3], we obtain.

Theorem 5.2 For every fixed graph H = ([h], F ), there exists a O(h2)-query
proximity oblivious tester of BU(H). Furthermore, the tester has detection
probability ρ(ε) = εO(h).

This extends the result of [GR09, Prob. 4.11], which corresponds to the special
case in which H is a h-vertex clique. We also mention that, for constant-query
proximity oblivious testers of BU(H), detection probability of the form ρ(ε) =
εΩ(h) is essential (cf. [GR09, Prob. 4.3]). The proof of Theorem 5.2 can be found
in the full version of this work [AG].

6 Conclusions

We have shown a non-adaptive tester of query complexity Õ(1/ε) for BU(H).
The degree of the polynomial in the polylogarithmic factor that is hidden in the
Õ() notation is h + O(1), where h is the number of vertices in H . We wonder
whether the query complexity can be reduced to p(h log(1/ε))) · ε−1, where p
is a fixed polynomial. We mention that such a dependence on h was obtained
in [GR08, Sec. 6.2] for the special case in whichH is an h-clique. Furthermore, we
wonder whether non-adaptive testing of BU(H) is possible in query complexity
poly(h) · ε−1. We mention that such a result is only known for h = 2 (cf. [GR08,
Sec. 6.1]), whereas an adaptive tester of query complexity O(h2/ε) is known
(cf. [A, Sec. 4]).
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Abstract. Affine-invariant properties are an abstract class of proper-
ties that generalize some central algebraic ones, such as linearity and
low-degree-ness, that have been studied extensively in the context of
property testing. Affine invariant properties consider functions mapping
a big field Fqn to the subfield Fq and include all properties that form
an Fq-vector space and are invariant under affine transformations of the
domain. Almost all the known locally testable affine-invariant proper-
ties have so-called “single-orbit characterizations” — namely they are
specified by a single local constraint on the property, and the “orbit”
of this constraint, i.e., translations of this constraint induced by affine-
invariance. Single-orbit characterizations by a local constraint are also
known to imply local testability. In this work we show that properties
with single-orbit characterizations are closed under “summation”. To
complement this result, we also show that the property of being an n-
variate low-degree polynomial over Fq has a single-orbit characterization
(even when the domain is viewed as Fqn and so has very few affine
transformations). As a consequence we find that the sum of any sparse
affine-invariant property (properties satisfied by qO(n)-functions) with
the set of degree d multivariate polynomials over Fq has a single-orbit
characterization (and is hence locally testable) when q is prime. We con-
clude with some intriguing questions/conjectures attempting to classify
all locally testable affine-invariant properties.
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1 Introduction

Given finite sets D and R, let {D → R} denote the set of functions mapping
D to R. A property F of functions mapping D to R is simply given by a set
F ⊆ {D → R}. The goal of property testing [20,12] is to design “query efficient”
tests for various properties. Specifically, a (k, ε, δ)-tester for F is a probabilistic
oracle algorithm that, given oracle access to a function f : D → R, makes k-
queries to f and accepts f ∈ F with probability one, while rejecting f that is
δ-far from F with probability at least ε. Here, distance is measured by normalized
Hamming distance: δ(f, g) = |{x ∈ D | f(x) = g(x)}|/|D| denotes the distance
between f and g, and δ(f,F) = ming∈F{δ(f, g)}. f is said to be δ-far from F
if δ(f,F) > δ and δ-close otherwise. To minimize notation we say F is k-locally
testable if for every δ > 0 there exists ε = ε(k, δ) > 0 such that F is (k, ε, δ)-
locally testable. Our interest is in families of properties that are k-locally testable
for some constant k.

In this work we consider testing of “affine-invariant (linear) properties”. The
domain and range of such properties are fields. Let Fq denote the field of size
q and let F∗q denote the non-zero elements of Fq. We consider properties F ⊆
{Fqn → Fq} (so q is a prime power and n is a positive integer). F is linear
if for every f, g ∈ F and α ∈ Fq, the function α · f + g belongs to F , where
(α · f + g)(x) = α · f(x) + g(x). A function A : Fqn → Fqn is affine if there exist
α, β ∈ Fqn such that A(x) = αx + β. We say A is an affine permutation if A is
affine and bijective. Note this is equivalent to saying A(x) = αx + β for some
α ∈ F∗qn and β ∈ Fqn . A property F is said to be affine-invariant if for f ∈ F
and every affine permutation A : Fqn → Fqn , the function f ◦ A is also in F ,
where (f ◦A)(x) = f(A(x)).1

The main contribution of this work is to describe a new class of affine-invariant
properties that are locally testable. We show that a broad class of locally testable
affine-invariant properties (one that includes most known ones) is closed un-
der “sums”. But before presenting our results, we motivate the study of affine-
invariant properties briefly.

Motivation: The study of affine-invariance was originally motivated in [19] by
its connections to locally testable codes and to property testing (cf. the recent
survey [21]). Indeed, many “base-constructions” of locally testable codes — cru-
cially used in constructing probabilistically checkable proofs [4,3] — are algebraic
in nature and come from families of low-degree polynomials. This motivates the
search for the minimal algebraic requirements sufficient to obtain families of lo-
cally testable codes, and affine-invariance offers a rich and interesting framework
in which to study abstract properties shared by low-degree functions and other
algebraic locally testable properties. In this respect, the study of affine-invariant

1 In all previous works starting with [19], affine-invariance was defined as invariance
with respect to all afine functions, and not only with respect to affine permutations.
In this paper, we define affine-invariance as invariance with respect to the group
of affine-permutations. Fortunately, the class of properties does not change despite
the mild change in the definition. We prove this equivalence in the full version [7].
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property testing is similar to the study of graph property testing initiated by [12].
Graph-property testing abstracts and unifies properties such as k-colorability
and triangle-free-ness, by focussing only on the invariance induced by being a
“graph property” (i.e., the property should remain invariant under renaming of
the vertices). Affine-invariant testing similarly attempts to abstract and unify
algebraic properties such as being linear or of low-degree or a BCH codeword
by focussing only on the invariance of the property (and the linearity of the
code/property). The study of graph property testing however is much further
advanced and has culminated in a complete combinatorial characterization of
locally-testable properties in the “dense-graph model”[1,10]. Testing of affine-
invariant properties lacks such a characterization and indeed it is not yet clear
what shape such a characterization might take.

An additional reason to study affine-invariant properties is because they cor-
respond to locally correctable codes. An error correcting code of blocklength n
is said to be locally correctable if it has an associated “local corrector”. Given
an adversarially corrupted codeword w ∈ Fnq and index i ∈ {1, . . . , n} the (ran-
domized) local corrector makes a constant number (hence it is called “local”) of
queries to entries of w and outputs, with high probability, the ith entry of the
“correct” codeword w′ — closest in Hamming distance to w. Linear codes that
are locally correctable are easily seen to be locally decodable codes as defined
by [16] and can be used to construct databases that support private information
retrieval [11] (in general though, local correctability is a stronger property than
local decodability, see e.g. [6,5]) . It can be verified that affine-invariant locally
testable codes are in fact locally correctable [19] hence our results imply new
families of locally correctable (and decodable) codes.

Known Testable Properties: Previous works have shown local testability
results for two broad categories of affine-invariant properties: (1) Reed-Muller
properties, and (2) Sparse properties.

In our language, Reed-Muller properties are obtained by equating the sets Fqn

and Fnq with an Fq-linear bijection. This allows us to view Fq-linear subspaces
of {Fqn → Fq} as linear subspaces of {Fnq → Fq} where the latter is the set of
n-variate functions over Fq. The q-ary Reed-Muller property of weight degree w
is given by the set of functions that are n-variate polynomials of degree at most
w in this view. The testing result here shows that the Reed-Muller property
with parameter w over Fq is testable with qO(w/q) queries [17] (see also [2,15]),
independent of n.

Sparse properties are less structured ones. Roughly, a property is t-sparse if
it is of size at most qO(tn). The main theorem here, due to [18] shows that for
every prime q and integer t there exists k, such that for every n every t-sparse
F ⊆ {Fqn → Fq} is k-locally testable.

Aside from the classes above, the known testable properties are less “explicit”
and are derived from the concept of single-orbit characterizations, described next.

Single-orbit characterizations: Local tests of linear properties work by pick-
ing k query locations α1, . . . , αk ∈ Fqn (non-adaptively) and then verifying that
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f(α1), . . . , f(αk) satisfy some given constraint (which will restrict this k-tuple to
satisfy some linear constraints over Fq). If a property is affine-invariant, it should
be equally effective to query A(α1), . . . , A(αk) for some affine permutation A,
and then test to see if the function values at these points also satisfy the given
constraint. The collection of tests so obtained (by trying out all As) is referred
to as the orbit of the constraint at α1, . . . , αk. If the only functions that satisfy
all these constraints are the functions in F , then we say that F has a single orbit
characterization.

Single-orbit characterizations seem to be playing a central role in testing of
affine-invariant properties. On the one hand, it is known that every k-single-
orbit characterized property is k-locally testable [19] and some non-single-orbit
characterized properties are known to be not locally-testable even though they
can be characterized by a collection of k-local constraints [8]. On the other
hand, most known locally testable properties also seem to have some “single-
orbit” property. Sparse codes over prime fields were shown to be single-orbit
characterized in [18] (see also [14]). The Reed-Muller property has the single
orbit property over the (large) group of affine transformations over the vector
space Fnq by natural considerations. (This will be insufficient for our purposes
and so we will strengthen it to get a single-orbit characterization over the field
Fqn in this work.)

Remaining cases of known locally testable codes are obtained in one of two
ways: (1) By lifting: This is an operation introduced in [8]. Here we start with
a single-orbit property over some field Fqn and then “lift” this property to one
over an extension field Fqnm (in a manner we will describe later). (2) By taking
intersections: The intersection of testable properties is always testable. The lifts
turn out to be single-orbit characterized by definition, and the intersection of
a constant number of single-orbit characterized properties also turns out to be
single-orbit characterized essentially by definition.

1.1 Main Result

In this work we extend the class of properties over Fqn that have single orbit
characterizations.

Our first result considers the sum of affine invariant properties. For properties
F1,F2 ⊆ {Fqn → Fq} their sum is F1 + F2 = {f1 + f2 | f1 ∈ F1, f2 ∈ F2}. For
general linear properties F1 +F2 is also linear, but the testability of F1,F2 does
not imply their sum is locally testable. Indeed it may be the case that F1 + F2

satisfies no local constraints. Sums of affine-invariant properties behave more
nicely. It is straightforward to see the the sum of affine-invariant properties is
affine-invariant. More interestingly, it is also possible to show (relatively easily)
that if for every i ∈ {1, 2}, Fi satisfies a ki-local constraint, then F1+F2 satisfies
a k1 · k2-local constraint. However this does not seem to imply local-testability.
Here we focus on single-orbit characterized properties and prove their sum is
single-orbit characterized.
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Theorem 1. For every q, k1, k2, there exists κ = κ(k1, k2, q) such that for every
n, if F1,F2 ⊆ {Fqn → Fq} are affine-invariant properties with Fi having a ki-
single orbit characterization, then F1 +F2 has a κ-single orbit characterization.
Specifically, if n ≥ n0 = 10k2 log k+10, where k = max{k1, k2}, then we can set
κ = k1 · k2, else κ = qn0 works.

To apply the theorem above to get new families of single-orbit characterized
properties, we need good base properties. However, the two families mentioned
earlier, sparse properties and Reed-Muller properties were not known to have the
single-orbit property over the same group. Reed-Muller properties were known
to have the single-orbit property over the group of affine permutations over Fnq ,
while sparse properties are invariant only over Fqn . (And there is no point using
the theorem above to prove that the sum of two sparse families is single-orbit —
this is already known since the sum of sparse families is also sparse!) To remedy
this situation we show that the Reed-Muller property is actually single orbit over
the group of affine permutations over Fqn .

Theorem 2 (Reed-Muller codes have local single-orbit property). Let
q = ps be a prime power. Let w, n be integers such that w + 1 <

√
n

logq(3ns) .

Denote w + 1 = r(p− 1) + �, where 0 ≤ � < p− 1. Then, the q-ary Reed-Muller
family of weight degree w, RMq(w, n), has a k-single orbit characterization for
k = pr ·(�+1). In particular, for every w, q there exists a k = k(w, q) such that the
q-ary Reed-Muller family of weight degree w has a k-single orbit characterization.

Indeed an immediate consequence of the two theorems above is that the sum of
Reed-Muller and sparse properties over prime fields are locally testable.

Corollary 1. For integers t, d and prime p, there exists a k = k(t, d, p) such
that for every n and every pair of properties F1,F2 ∈ {Fpn → Fp}, where F1

is the p-ary Reed-Muller property of weight degree d, and F2 is t-sparse, the
property F1 + F2 has a k-single orbit characterization, and is hence k-locally
testable.

The corollary above describes the broadest known class of testable properties
when n and q are prime. When n is not prime, the earlier-mentioned notion
of lifting leads to other locally testable binary properties, and then intersection
also leads to further richness.

Due to space restrictions, we give just a brief hint of the proof of our main
theorem. We also describe some of the open questions and conjectures arising
from our work. A full version of this work is available as [7].

2 The Structure of Affine-Invariant Properties

In what follows Fq will denote the field of q elements of characteristic p, where
q = ps for some integer s. Let d =

∑
i dip

i be the base p representation of an
integer d. The weight (or p-weight) of d is defined as wt(d) =

∑
i di. I.e. it is
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the sum of coefficients in the p-ary representation of d. A non-negative integer
e =

∑
i eip

i is said to be in the p-shadow of d (or simply in the shadow of d),
denoted e ≤p d, if ei ≤ di for all i. We denote a ≡k b whenever a is equal to
b modulo k. As we will be studying polynomials modulo identities of the form
xq − x ≡p 0 it will be convenient to define the following variant of the modular
operation. Let a and k be integers. We define amod∗ k as

amod∗ k =

{
0 a = 0
b where 1 ≤ b ≤ k is such that b ≡k a

We also say that a ≡ b (mod∗ k) if amod∗ k = bmod∗ k. Note that the only
difference between mod and mod∗ is that mod∗ does not send nonzero multiples
of k to zero but rather to k. It is now clear that xa ≡q xamod∗ q−1.

The class of properties that we consider are characterized by their algebraic
properties. To describe such properties we need to introduce several notions from
the works of [19,13,14,9,8].

We view functions f : Fqn → Fq as functions from Fqn → Fqn whose image
just happens to be contained in Fq ⊆ Fqn . This allows us to view f as (the
evaluation of) a univariate polynomial of degree qn − 1.

Let f(x) =
∑qn−1

d=0 cdx
d. The support of f , denoted supp(f), is the set supp(f)

= {d | cd = 0}.
The following definition captures an important feature of the structure of

affine invariant families.

Definition 1 (Deg(F)). Let F ⊆ {Fqn → Fq} be a family of functions. The
degree set of F , denoted Deg(F), is the set of degrees of monomials that appear
in some polynomial in F . Formally,

Deg(F) = {d | ∃f ∈ F such that d ∈ supp(f)}.

To better understand affine-invariance we need to describe some basic properties
of the degree sets (the ones that are known to lead to local testability). We do
so in the next two definitions.

Definition 2 (Shift(d), Shift(D), shift-closed, shift-representatives,
Fam(D)). Let d be an integer in {0, . . . , qn− 1}. The shift of d is defined as the
set of degrees obtained when taking all q powers of xd. Formally, Shiftq,n(d) =
{qi · dmod∗ qn − 1 | ∀0 ≤ i ≤ n}. Recall that qi · dmod∗ qn − 1 is the integer
d′ such that if d = 0 then d′ ≡ qid mod (qn − 1) and 1 ≤ d′ ≤ qn − 1, and if
d = 0 then d′ = 0. (In what follows, we will always be considering degrees in the
support of functions from Fqn to Fq, so that we drop the subscripts.)

We extend the notion to a set of degrees naturally. For a set D ⊆ {0, . . . , qn−
1}, the shift of D is defined as Shift(D) =

⋃
d∈D Shift(d). A set D is said to

be shift-closed if Shift(D) = D. For a shift-closed D, a set S ⊆ D is said to
be a set of shift-representatives of D if Shift(S) = D and Shift(d) ∩ Shift(d′) =
∅ for d, d′ ∈ S. (In other words S contains one element from each “shift” class
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in D; by convention we assume each element of S is the smallest amongst its
shifts.)2

Finally, for a shift-closed D, we define Fam(D) = {Trace(f) | f : Fqn →
Fqn , supp(f) ⊆ D}.
Another important ingredient that we will use is the shadow of a degree.

Definition 3 (Shadow, Shadow-closed set). For a non-negative integer d,
the shadow of d is the set Shadow(d) = {e | e ≤p d}. The shadow of a set S
of non-negative integers is simply the union of the shadows of its elements, i.e.,
Shadow(S) =

⋃
d∈S Shadow(d). A set S of non-negative integers is shadow-

closed if Shadow(S) = S.

For a general (linear) family F , the degree set of F does not give much useful
information about F . However, for affine invariant families, this set completely
describes the family. Furthermore, sets of degrees that are closed under shifts
and under shadows completely characterize affine-invariant properties.

Our next lemma repeats in different forms in the literature [19,13,14,9]. Specif-
ically, it is Lemma 3.5 in [8].

Lemma 1 (Closed degree sets specify affine-invariant properties). Let
F be a linear and affine-invariant family. Then Deg(F) is shadow-closed and
shift-closed, and F = Fam(Deg(F)). Conversely, if D is shadow-closed and shift-
closed then D is the degree set of some affine invariant family. More specifically,
Fam(D) is affine-invariant and D = Deg(Fam(D)).

3 Sums of Affine-Invariant Properties

In this section we prove Theorem 1. The main idea behind the proof is that
instead of looking at the sets of degrees of a locally characterizable family F , we
look at the border set of degrees. These are the integers that do not themselves
belong to Deg(F) but every integer in their shadow is in Deg(F).

Definition 4 (Border of a family). Let F ⊆ {Fqn → Fq} be a family of
functions. The border of F is the set of degrees given by

Border(F) = {d ∈ Deg(F) | ∀e <p d, e ∈ Deg(F)}.

We start by noticing that a k-single orbit characterization can be specified by a
pair (ᾱ; {λ̄i}ti=1), where ᾱ = (α1, . . . , αk) ∈ Fkqn and λ̄i = (λi,1, . . . , λi,k) ∈ Fkq ,
and f ∈ F if and only if it satisfies

∑k
j=1 λi,jf(π(αj)) = 0 for every i ∈ {1, . . . , t}

and every affine map π : Fqn → Fqn . Note further that we can assume t ≤ k in
the specification above. The following lemma gives several equivalent definitions
to being a k-single orbit characterizable family. The lemma can be seen as an
extension of Lemma 3.6 in [8].

2 As d′ ∈ Shift(d) if and only if d ∈ Shift(d′), such S always exists.
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Lemma 2. [Equivalent definitions of k-single orbit characterizable family]
Let F ⊆ {Fqn → Fq} be a linear affine-invariant family. The following are
equivalent:

1. (ᾱ; {λ̄i}ti=1) is a k-single orbit characterization of F , where ᾱ = (α1, . . . , αk)
∈ Fkqn and λ̄i = (λi,1, . . . , λi,k) ∈ Fkq .

2. For all d, d ∈ Deg(F) ⇔ ∀i ∑k
j=1 λi,j(αjx+ y)d ≡ 0 (as a formal polyno-

mial in x and y).
3. For all d,d ∈ Deg(F) ⇔ ∀e ≤p d, ∀i

∑k
j=1 λi,jα

e
j = 0.

4. For all d ∈ Deg(F) ∪ Border(F), d ∈ Deg(F) ⇔ ∀i ∑k
j=1 λi,jα

d
j = 0.

3.1 Proof of Main Theorem

Due to space limitations we give only an idea of the proof of Theorem 1.
Let F1 and F2 be k-single orbit characterized properties (we assume for sim-

plicity that k1 = k2 = k, and make several other simplifying assumptions here).
Suppose the k-single orbit characterization of F1 is simply (ᾱ, 1̄) (so F1 satisfies∑k

i=1 f(αi) = 0). Similarly, let the k-single orbit characterization of F2 be (β̄, 1̄).
A candidate k2-single orbit characterization of F1+F2 would be the the “outer

product” of the two given constraints, namely the k2 local constraint given by
((αiβj)i,j ; 1̄).

To analyze this potential constraint, we look at the degree set based de-
scriptions of single-orbit characterizations. First we use the (easily verifiable
fact) that Deg(F1 + F2) = Deg(F1) ∪ Deg(F2). Next we see that for every
d ∈ Deg(F1) ∪ Deg(F2),

∑k
i=1

∑k
j=1 α

d
i β

d
j = (

∑k
i=1 α

d
i ) · (

∑k
j=1 β

d
j ) = 0, so

((αiβj)i,j ; 1̄) is a valid constraint on F1 + F2.
Unfortunately, it is not clear that for every d ∈ Border(F1 + F2) the sum∑k
i=1

∑k
j=1 α

d
i β

d
j does not equal 0, which is necessary (by Part 4 of Lemma 2).

To remedy this, we take a random constraint in the orbit of (ᾱ; 1) and a
random constraint in the orbit of (β̄; 1̄) and take their “outer product”. Specif-
ically we pick random non-zero a1, a2 ∈ Fqn and random b1, b2 ∈ Fqn and
consider the potential constraint (γ̄; 1̄) where γ̄ = (γi,j)i,j is given by γi,j =
(a1αi + b1)(a2βj + b2). It is again easy to verify that

∑
i,j γ

d
i,j = 0 for every

d ∈ Deg(F1) ∪Deg(F2).
We then note that for any fixed d ∈ Deg(F1) ∪ Deg(F2) the formal sum∑
i,j((x1αi + y1)(x2βj + y2))d ≡ 0 (as a polynomial in x1, x2, y1, y2 — this uses

Part 2 of Lemma 2). Thus when we pick random assignments x1 = a1, x2 = a2

etc,, we find that
∑

i,j γ
d
i,j = 0 with probability at least 1−O(d/qn), and so this

random choice does eliminate any particular “bad” d.
To conclude the argument we need to make sure that every d ∈ Border(F1 +

F2) is eliminated (i.e.,
∑

i,j γ
d
i,j = 0). To do so, we use the union bound, with

two crucial ingredients: First we use the main theorem from [9] to conclude that
all d ∈ Border(F1 +F2) have p-weight at most k and there are only (q + n)O(k)

such d’s. Next we use the fact that we need to consider only one d from every
“shift” class, to take the smallest one. This allows us to work with d ≤ qn(1−1/k).
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Combining these ingredients, we can take the union bound over all possible
bad events and conclude that a random choice a1, a2, b1, b2 eliminates every
d ∈ Border(F1 + F2) with positive probability.

4 Consequences, Questions and Conjectures

Our work further highlights the role played by single-orbit characterizations in
the testing of affine-invariant properties. This feature is common (e.g. Reed-
Muller property is single-orbit over the smaller group) and also useful (sums of
single-orbit characterized properties also have this feature). In this section we
describe some of the questions surrounding this concept that emerge from this
(and related) research.

At the moment almost all known locally-testable affine-invariant properties
are known to be single-orbit characterized. The only exception is the case of
sparse properties where the range is not a prime field. This leads to the following
question, which we hope can be resolved affirmatively (soon).

Question 1. For every q and t, does there exists a constant k = k(q, t) such that
every t-sparse property F ⊆ {Fqn → Fq} is k-single orbit characterized?

Assuming an affirmative answer to the questions above, we get a “concise”
description of all known testable properties.

4.1 Known Locally Testable Properties

As mentioned earlier, the known “basic” single-orbit characterized affine-
invariant families are the Reed-Muller families and sparse families. Three “op-
erations” are also now known that preserve “single-orbit characterizations” and
hence local testability of these basic families: (1) Sums of two families, (2) In-
tersections of two families, and (3) Lift of a single family. Below we define this
lifting operator.

Definition 5 (Lifted code [8]). Let K � L � Fq be finite fields with q = ps.
For D ⊆ {0, . . . , |L| − 1} we define the lift of D from L to K to be the set of in-
tegers liftL↗K(D) = {d′ ∈ {0, . . . , |K| − 1} | (shadowp(d′) (mod∗ |L| − 1)) ⊆ D}.

For an affine-invariant family F ⊆ {L→ Fq} with degree set D = Deg(F),
let liftL↗K(F) be the affine-invariant family with degree set liftL↗K(D), i.e.,
liftL↗K(F) = {f : K→ Fq | supp(f) ⊆ liftL↗K(D)} = Fam(liftL↗K(D)).

The following proposition follows easily from the definitions

Proposition 1 ([8]). Lifts of single orbit characterized families are also single-
orbit characterized. Specifically, if Fq ⊆ L ⊆ K and (ᾱ, {λ̄i}ti=1) is a k-single
orbit characterization of F ⊆ {L → Fq} then (ᾱ, {λ̄i}ti=1) is also k-single orbit
characterization of liftL↗K(F).
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Given the operations above, it is easy to see that one can compose a finite number
of basic single-orbit characterized families using a “formula” whose operations
are sum, intersection and lifts. We define this concept below.

Definition 6 (Formula, size). A formula Φ of size s, degree d, sparsity t
producing a family F ⊆ {K → Fq}, denoted (s, d, t,K,F)-formula, is given by
the following inductive definition:

1. A formula Φ of size 1, is given by F ⊆ {K → Fq} where F is either a
Reed-Muller family of order d, or a t-sparse family.

2. A formula of size s is obtained by one of the following operations:
(a) Picking L such that Fq ⊆ L ⊆ K and letting Φ = liftL↗K(Φ1) where Φ1

is a (s− 1, t, d,L,F) formula.
(b) Picking s1, s2 such that s1 + s2 + 1 = s and letting Φ = Φ1 ∩ Φ2 where

Φi is an (si, t, d,K,F) formula.
(c) Picking s1, s2 such that s1 + s2 + 1 = s and letting Φ = Φ1 + Φ2 where

Φi is an (si, t, d,K,F) formula.

The following theorem summarizes the state of knowledge of single-orbit char-
acterized families.

Theorem 3. For every s, t, d, q there exists a k = k(s, t, d, q) such that for every
n, every (s, t, d,Fqn ,Fq)-formula produces a k-single orbit characterized family,
for prime q.

Note that the caveat that q is prime can be dropped if we have an affirmative
answer to Question 1.

4.2 Conjectures and Questions

We start with the most obvious question.

Question 2. Is the following statement true? For every k, q there exist s, t, d such
that for every n, if F ⊆ {Fqn → Fq} is a k-locally testable affine-invariant family
then F is given by an (s, t, d,Fqn ,Fq)-formula.

At the moment our understanding of affine-invariance with respect to its local
testability is so far that it is too optimistic to conjecture an affirmative answer
to this question. All we can say is that an affirmative answer is not yet ruled
out.

The nature of the question seems to become much simpler if we disallow lifts,
by insisting that n is prime (then we get no fields L strictly between Fq and
Fqn). In this setting, intersections become uninteresting and lead to a much
tamer question.

Question 3. Is the following statement true? For every k, q there exist t, d such
that for every prime n, if F ⊆ {Fqn → Fq} is a k-locally testable affine-invariant
family then F = F1 + F2 where F1 = RMq(d′, n) and F2 is t′-sparse, for some
d′ ≤ d and t′ ≤ t.
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This question remains quite challenging even when we restrict to the case
where q = 2 (where our state of understanding does seem somewhat better),
and even when we restrict our families to be contained in RM2(2, n).

Conjecture 1. For every k there exists a t such that the following holds for every
prime n: If F � RM2(2, n) is k-locally testable then F is t-sparse.

Attempting to prove the conjecture above leads to some interesting questions
about the rank of certain Vandermonde like matrices that seem interesting in
their own right. We state the conjecture below. We don’t prove the connection
to the conjecture above, but claim that an affirmative answer to the following
implies an affirmative answer to the above.

Conjecture 2. For every k, there exists a t such that for every prime n and every
sequence α1, . . . , αk ∈ F2n of elements that are F2-linearly independent, and
every sequence of t distinct elements e1, . . . , et ∈ {0, . . . , n− 1}, the k× t matrix
M = [Mij ]ij with Mij = α2ej

i has rank exactly k.

Finally a couple of questions which relate to the structure of locally-testable
codes (an affirmative answer to both is implied by an affirmative answer to
Question 2).

Question 4. For every k, q does there exist a k̃ such that for every n, if F ⊆
{Fqn → Fq} is k-locally testable, then F has a k̃-single orbit characterization?

Question 5. For every k, q does there exist a k̃ such that for every n, if F1,F2 ⊆
{Fqn → Fq} are k-locally testable, then F1 + F2 is k̃-locally testable?
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1 Introduction

In this work we consider an interesting subclass of “locally correctable” and “lo-
cally testable codes”, namely “affine-invariant” codes, and prove upper bounds
(limitations) on their rate. In the process we also introduce techniques of rele-
vance to “algebraic property testing” and present a characterization of the set
of solutions of a certain natural system of multivariate polynomials that lies at
the core of our study.

1.1 Locally Correctable and Locally Testable Codes,
Affine-Invariance, and Main Result

Locally correctable codes (LCCs) are error-correcting codes with the property
that every entry of a corrupted codeword can be corrected, with high probability,
by examining a small (random) subset of other entries of the corrupted codeword.
Locally correctable codes are a special class of locally decodable codes (LDCs)
studied in the work of [5,24,27] and formally defined by [21]. These codes are
tightly connected to the construction of private information retrieval schemes
[13] and we refer the reader to [30] for more information. One of the major open
problems regarding LDCs is that of determining the minimal length n of a binary
LDC by which messages of k bits can be encoded, and the current lower and
upper bounds on n display an exponential gap. Namely, [28] showed n must be
at least (roughly) k1+ 2

r whereas the best upper bounds of [29] show n is at most
(roughly) exp(k1/ log log k) (cf. [15]).

Locally testable codes are error-correcting codes for whom membership can be
tested extremely efficiently, probabilistically. Specifically, a linear code C ⊆ ΣN

is k-locally testable if there exists an algorithm T that accesses a word w ∈ ΣN

as an oracle, queries the value of w on k coordinates, and accepts with probability
one if w ∈ C and rejects with constant probability if w is “far” from all codewords
of C. (“Far” here refers to the relativized Hamming distance between words.)

Locally testable codes have implicitly been a subject of active study ever since
the work of [11] that showed that (effectively) the Hadamard code is 3-locally
testable. They play a major role in the construction of PCPs [4,3] from the
early days of this theorem and continuing through the recent work of [14]. Their
systematic investigation was started in [17] and yet most basic questions about
their limits remain unanswered (e.g., is there an asymptotically good family of
locally testable codes?).

A particularly interesting class of locally testable and locally correctable codes
are the affine-invariant ones. Here the code is a linear code over some finite field
F and the coordinates of the code are themselves vector spaces over some finite
extension field K of F. Thus words in such codes can be viewed as functions
from Km to F and the code is a subfamily of such functions. The code is said to
be affine invariant if it is invariant under affine-transformations of the domain.
Specifically if A : Km → Km is an affine transformation and f : Km → F is a
function in C, then so is f ◦A where f ◦A(x) = f(A(x)).
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Affine-invariant codes form a natural class of algebraic codes and have been
studied by the error-correcting-codes community since the late 1960’s (cf. [20]
and references therein). In the context of locally testable and locally correctable
codes, affine-invariance facilitates natural local correctiong/testing procedures
under minimal conditions. Specifically, it is well known that for a linear code
to be testable it must have a low weight codeword in its dual, or equivalently a
local “constraint” (see, for instance, [7]). In the notation used above for affine
invariant codes, a k-local “constraint” is a collection of points α1, . . . , αk ∈ Km

and values λ1, . . . , λk ∈ F such that for every function f ∈ C, it is the case that∑k
i=1 λif(αi) = 0. For affine-invariant codes the presence of one local constraint

immediately implies many local constraints by affine “rotations”: For every affine
map A, the set of points A(α1), . . . , A(αk) also define a constraint on C. This
abundance of constraints leads easily to a local-correction procedure and also
raises the hope that affine-invariant codes may be locally testable, and indeed
[23] show that if the code is characterized by the set of constraints derived from
the affine rotations of a single constraint, then it is also locally testable. (The
more optimistic hope, that all affine-invariant locally-characterized codes are
also locally testable, has been recently refuted in [8] as a result of this work .)

We point out that it is the abundance of local constraints, not their mere
existence, that seems to be essential for obtaining locally testable codes. In
extreme cases where there is no abundance of local constraints, such as for low-
density-parity-check (LDPC) codes based on random expanders, or for codes that
have the very minimal number of local constraints needed to characterize them,
there cannot be any hope for local testability [7,6]. But, all things considered,
abundance of local constraints should reduce the rate of the code, unless the
constraints are carefully chosen in an algebraically consistent way. The class
of affine invariant codes offered a promising approach to balance the need for
abundance of local constraints with maintaining high rate.

This leads to the question: Which affine invariant codes have local constraints
(and characterizations), and in particular how local can the constraints be, given
other parameters of the code, most notably, its rate? One, somewhat optimistic
hope, was that affine-invariance might lead to simpler constructions of locally
testable codes matching the best known parameters (the current constructions
are immensely complicated [9,14]), or even improve on them, since the scope is
wider than just the class of Reed-Muller codes. This question however, resisted
attacks till now, since the question of determining when a low-weight constraint
can exist in an affine-invariant code leads to questions about the zeroes of cer-
tain systems of multivariate polynomial equations and these are challenging to
analyze.

Here we take some first steps in this direction, though unfortunately to give a
negative answer to the optimistic hope above. Specifically, we give a full analysis
of a certain class of polynomial equations that arise in this setting to get a rate
upper bound on affine invariant codes. For simplicity of exposition we describe
our result for the case of prime fields F = Fp. The statement for the case fields
of size pr, r > 1 is somewhat more technical but the rate bounds we get for
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this case are similar to that of prime fields (cf. Theorem 2 and Corollary 1).
Our main theorem (Theorem 2) shows that if K is an extension field of F and
C is a k-locally testable/correctable code, then C is contained in a pk−1-locally
testable Reed-Muller code. If k and p are constants (which is the desired setting
of parameters) then it says that going to general affine-invariance only buys (at
best) a constant difference in the locality, when compared to the Reed-Muller
codes. Since Reed-Muller codes with constant locality over constant field sizes
are known to have exponentially low-rate, this rules out the hope described in
the previous paragraph, by a long margin.

Notice there is an exponential gap between the query complexity of affine-
invariant codes with a k-local constraint and the query complexity of the Reed-
Muller code which we show contains them, which is pk−1. Getting a full char-
acterization of affine-invariant codes with a k-local constraint, even over specific
fields (like F2n for prime n, a field which contains no subfields other than F2)
seems to us like an interesting question for future research.

1.2 Algebraic Property Testing

Property testing considers the task of testing if a function f from a large domain
D to a small range R satisfies some given property, where the property itself is
given by the set of functions F ⊆ {g : D → R} that satisfy the property. Again
the interest here is in “quick and dirty” tests, i.e., probabilistic tests that query
the given function f on few inputs, and accept if f ∈ F and reject with constant
probability if f is far from F . (Note that a locally testable code is just property
testing where we view the set of functions F as an error-correcting code.)

Property testing also emerged in the work of [11], was formally defined by [25],
and was systematically explored (in particular in non-algebraic contexts) by [16].
Subsequently the study of combinatorial property testing, and in particular,
graph property testing has developed into a rich study and by now we have
almost complete understanding (at least in the dense-graph model) of which
graph properties are locally testable [1,12].

In contrast algebraic properties have not been understood as well, despite
the overwhelming applications in complexity, and indeed till recently even an
understanding of what makes a property algebraic was missing. The concept of
affine-invariance was introduced by [23] to propose such a notion, and when the
domain is a vector space over a small field K (of constant size) they manage
to characterize locally testable properties completely. Such codes are constant-
locally testable if and only if they admit a constant local constraint, and the size
of the constraint can be related loosely to the highest degree of polynomials in
the family.

This naturally leads to the question: What about affine invariant codes over
large fields. (This family of properties includes, for instance, all sets of low-
degree polynomials, i.e., the families of Hadamard, Reed-Solomon and Reed-
Muller codes.) In particular for the extreme, and essentially most general case
when m = 1 and the functions of interest map K to a prime subfield Fp, there
was no interesting relationships known between the degrees of the functions in
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the family and the locality of the test. And such understanding is essential to
get a characterization of affine-invariant locally testable codes that would be
analogous to the characterizations of graph properties of [1,12].

Our work takes a step in this direction by giving non-trivial lower bounds
on the locality of tests for affine-invariant properties in the general case. Below
we describe the main technical question resolved in this paper (which has a
self-contained description).

2 Definitions and Main Results

2.1 Preliminaries — Locally Testable, and Reed-Muller Codes

Notation We use [n] to denote the set {1, . . . , n}. Throughout we let F,K,L
denote fields. The q element finite field is denoted by Fq. An [N,K,D]F-(linear)
code is a K-dimensional subspace C ⊆ FN of Hamming distanceD. Elements of C
are referred to as codewords (of C). Two vectors u,w ∈ FN are said to be δ-close
if they are within Hamming distance ≤ δN of each other, otherwise they are said
to be δ-far. A vector u is said to be δ-close to C if it is δ-close to some codeword
w ∈ C, otherwise we say w is δ-far from C. We define 〈u,w〉 �

∑N
i=1 uiwi. Let

C⊥ =
{
u ∈ FN

∣∣ 〈u,w〉 = 0 for all w ∈ C} denote the space that is dual to C (it
is also known as the dual code of C).

We recall the standard definitions of a tester for a linear code and a linear
locally testable code. All codes considered in this paper are linear so from here
on we drop further reference to this linearity (of testers, codes, etc.).

Definition 1 (Tester). Suppose C is a [N,K,D]F-code. A k-query tester for
C is a probabilistic oracle algorithm T that makes at most k oracle queries to a
word w ∈ FN and outputs an accept/reject verdict. The tester is said to have
completeness c and ε-soundness s if it accepts every codeword of C with probability
at least c and accepts words that are ε-far from C with probability at most s.

Definition 2 (Locally Testable Code (LTC)). An [N,K,D]F-code C is said
to be a (k, ε, ρ)-Locally Testable Code (LTC) if there exists a k-query tester that
has completeness c and ε-soundness c− ρ.
We are typically interested in infinite family of codes. If an infinite family of codes
is a (k, ε, ρ)-LTC for absolute constants k and ε, ρ > 0, then we simply refer to
this (family of) code(s) as an LTC. For linear LTCs the nature of tests can be
simplified significantly, due to a result of [7], to get them to a canonical form,
which has perfect completeness (c = 1), and is non-adaptive (while the soundness
parameter ρ changes by a constant factor). This leads to the following definition.

Definition 3 (Canonical tester). A canonical k-query test for C is given by
an element u ∈ C⊥ that has support size at most k, i.e., |{i | ui = 0}| ≤ k, where
the test accepts w ∈ Fn if and only if 〈u,w〉 = 0. A k-query canonical tester T for
C is defined by a distribution μ over canonical k-query tests. Invoking the tester
T on a word w ∈ Fn is done by sampling a test u according to the distribution
μ and outputting accept if the canonical test given by u accepts.
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The following proposition of [7] — stated as Theorem 3.3 there — shows that
tests may always be assumed to be canonical (up to a constant factor change in
soundness).

Proposition 1. For every ε, ρ > 0 and positive integer k, there exist ρ′ > 0 such
that every (k, ε, ρ)-LTC has a canonical k-query tester with perfect completeness
and ε-soundness 1− ρ′.

Our main theorem compares the performance of affine-invariant locally testable
codes to that of Reed-Muller codes, which we define next.

Definition 4 (Reed-Muller codes). For F a finite field of size q and m, k in-
tegers, the m-variate Reed-Muller code of degree k over F, denoted RM[q,m, k] is
the [N = qm,K =

(
m+k
k

)
, D = qm−k]F-code whose codewords are all evaluations

of m-variate polynomials over F of degree at most k.

These codes have also been studied for the testability properties (see, e.g., [25],
[2], [26], [22], [19], and [10]) and the case most relevant to us is that of constant q
and k and arbitrarily large m. For this choice of parameters the codes are known
to be (qO(k), ε, ρ)-locally testable for some constants ε, ρ > 0 that may depend
on q and k [2,22].

2.2 Affine Invariant Codes

The main concept of interest to us is that of affine-invariance. We borrow some
of the main definitions related to this concept from [23].

From here on we associate a code with a family of functions. Let p be a prime,
F = Fq for q = pr be a finite field and let K = FQ for Q = qn be an extension of
F. For integerm we can consider [N = Qm, k, d]F-codes whose entries are indexed
by elements of Km. In other words, from here on a code will be identified with
an F-linear subspace of {Km → F}, the space of all functions from Km to F.

Definition 5 (Affine invariant codes). Let K be a finite degree extension of
F. A code C ⊆ {Km → F} is said to be affine invariant if it is invariant under
the action of the affine monoid1 over Km. In other words, for every f ∈ C
and every affine transformation A : Km → Km, the function f ◦ A defined by
(f ◦A)(x) = f(A(x)) belongs to C as well.

The work of [7] shows that in order for a linear property to be testable, it must
have some “local constraints” (low-weight words in its dual). For affine invariant
codes, [23] show that when K is small, then the existence of such constraints is
also a sufficient condition. (Our main result will show that the existence of such
constraints imposes a bound on the rate of a code, over any field K, not just
over fields of constant size.) We recall the following definition from [23].

1 The set of all affine maps from Km to itself forms a monoid under composition. If
one restricted this set to full rank maps, then one gets a group.
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Definition 6 (k-local constraint). A k-local constraint is given by k distinct
points in Km α = (α1, . . . , αk) ∈ (Km)k. We say that a code C ⊆ {Km → F}
satisfies (or, has) a k-local constraint α if there exists nonzero Λ = (λ1, . . . , λk) ∈
Fk such that

∑k
i=1 λif(αi) = 0 for every f ∈ C.

The following statement is the main result of [23] regarding the local testability
of affine invariant codes, and is stated as Theorem 2.10 there.

Theorem 1 (Affine invariant codes satisfying a k-local constraint over
a small field are locally testable). For fields F ⊆ K with |F| = q and |K| = Q,
let F ⊆ {Km → F} be an affine-invariant code satisfying a k-local constraint.
Then for any δ > 0, the code F is(

k′ = (Q2k)Q
2
, δ,

δ

2(2k′ + 1)(k′ + 1)

)
-locally testable.

Notice the above theorem implies local testability only when the field K is rel-
atively small, and is of interest only when m → ∞. When m is small (and K
large) no general bounds were known on the locality of the tests. [18] show that
it is possible to have affine invariant families with one 8-local constraint that
cannot be characterized by O(1)-local constraints. And all this previous work
leaves open the possibility that there may exist other affine-invariant families
that are O(1)-locally characterized, perhaps even O(1)-testable (say, over fields
of growing size and m = 1), and do have large rate. Our work rules this out.

We can now state our main theorem which bounds the rate of affine invariant
codes containing a k-local constraint.

Theorem 2 (Affine invariant families with a local constraint are con-
tained in low-degree Reed-Muller codes). Let p be a prime and r, n,m be
positive integers and let q = pr and Q = qn. For F = Fq and K = FQ a degree-n
extension of F, let C ⊆ {Km → F} be an affine-invariant family that satisfies a
k-local constraint for k ≥ 2. Then

1. The dimension of C as a vector space over Fq is at most (mrn)k−2. Since
the blocklength of C is Qm = prmn we get

dim(C) ≤ (m logpQ)k−2.

2. C is isomorphic to a subcode2 of RM[q, nm, (k − 2)q/p]. In particular, for
q = p we get that C is isomorphic to a subcode of RM[p, nm, k − 2].

Note that when q = p, Part (1) of the theorem above follows from Part (2), since
the dimension of RM[p, nm, s] is at most (mn)s. When q = pr for r > 1, this is
not true, and the dimension of the code RM[q, nm, sq/p] is much larger. In this
case Part (2) is a weak description of our understanding of C. A somewhat better
2 In other words, there exists an isomorphism φ : Fnm → Km such that for every

f ∈ C, the function (f ◦ φ) ∈ {Fnm → F} defined by (f ◦ φ)(x) = f(φ(x)) belongs to
RM[q, nm, (k − 2)q/p].
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understanding of affine-invariant codes over Fpr , for r > 1 can be obtained if we
use a broader class of codes. In particular, by viewing a code over Fpr as a code
over the vector space Frp, or as an r-tuple of codes over Fp, one gets a more strict
inclusion for such codes. Specifically, let RM[p, n, k − 2]r denote codes obtained
by evaluations of f = 〈f1, . . . , fr〉 : Fnp → Frp, where each fi : Fnp → Fp is an
n-variate polynomial over Fp of degree at most k−2. We then have the following
Corollary of Theorem 2.

Corollary 1 (Affine invariant families with a local constraint over fields
of prime powers). Let p be a prime and r, n,m be positive integers and let
q = pr and Q = qn. For F = Fq and K = FQ the degree-n extension of F, let
C ⊆ {Km → F} be an affine-invariant family that satisfies a k-local constraint.
Then for every Fp-linear bijection ψ : Fq → Frp, the code C′ = {ψ ◦ f |f ∈ C} ⊆
{Km → Frp} is isomorphic to a subcode of RM[p, nmr, k − 2]r.

Proof. For i ∈ [r], let Ci be the projection of C′ to the ith coordinate. Then Ci
is a Fp-linear, affine-invariant code (over the domain FmQ ). By Theorem 2 we get
that it is isomorphic to a subcode of RM[p, nmr, k − 2]. It follows that C′ is a
subcode of RM[p, nmr, k − 2]r.

3 Proof of Main Theorems

In this section we prove Theorem 2 modulo some technical lemmas. It is not
hard to show that if Theorem 2 holds for the case m = 1 then it holds for all
positive integers m. (Proof omitted due to space limitations.)

From now on we consider only univariate functions, i.e., C ⊆ {K→ F}. Recall
that every function from K → K and hence from K → F is the evaluation of a
polynomial in K[x] of degree at most qn− 1. For a polynomial g ∈ K[x] given by
g(x) =

∑
d cdx

d, let supp(g) denote its support, i.e., supp(g) = {d|cd = 0}. The
set of degrees in the support of the functions in C turns out be a central ingredient
in understanding the structure of C, motivating the following definition.

Definition 7 (Degree set of C). For a class of functions C ⊆ {K → F}, its
degree set is the set D(C) = ∪g∈C supp(g).

It turns out that the representations of elements of D(C) in base p play a central
role in the structure of affine-invariant families over fields of characteristic p. To
this end we introduce some terminology.

For integer d, let [d]p = 〈d0, d1, . . .〉 denotes its representation in base p (i.e.,
0 ≤ di < p and d =

∑∞
i=0 dip

i). The p-weight of d, denoted wtp(d), is the quantity∑∞
i=0 di. We say e is in the p-shadow of d, denoted e ≤p d, if [e]p = 〈e0, e1, . . .〉

and ei ≤ di for all i. The set {e|e ≤p d} is called the p-shadow of d. The following
Lemma appears as Theorem 1 in [20].

Lemma 1. For every affine invariant family C ⊆ {K→ F} where F,K are fields
of characteristic p, D(C) is closed under p-shadow, i.e., if d ∈ D(C) and e ≤p d
the e ∈ D(C).
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3.1 Uniform Homogenous Diagonal Systems of Polynomial
Equations

The task of finding the set of zeroes of a system of multivariate polynomial
equations is a central theme in mathematics. (Linear algebra considers the spe-
cial case where all equations are linear/affine and understanding the “variety”
of a given system of (higher-degree) equations is a central theme in algebraic
geometry.) In general of course, the set of zeroes may be too complex, even for
degree two polynomials. Nevertheless, our quest to understand the locality of
constraints in an affine-invariant property leads to such a question, where the
set of polynomials has a reasonably clean description. Somewhat surprisingly,
we are even able to describe the set of zeroes in a fairly precise way. We describe
the class of polynomial systems that we consider next.

Definition 8 (Uniform Homogenous Diagonal (UHD) System). Fix a
system of polynomials P1, . . . , Pm ∈ F[X1, . . . , Xk].

– We say the system is homogenous if every polynomial in the system is ho-
mogenous.

– We say that the system is diagonal if every monomial in the support of
every polynomial is a power of a single variable. I.e, a homogenous system is
diagonal if for every j ∈ [m], it is the case that Pj(X1, . . . , Xk) =

∑k
i=1 λji ·

X
dj

i .
– We say a homogenous diagonal system is uniform if the coefficients are the

same for every polynomial, i.e., λji is independent of j.

We conclude that a uniform homogenous diagonal system is given by a sequence
of coefficients Λ = 〈λ1, . . . , λk〉 ∈ Fk and degrees D = {d1, . . . , dm} such that
Pj(X1, . . . , Xk) =

∑k
i=1 λiX

dj

i . We refer to such a system as the (D,Λ)-UHD
system. We say that the (D,Λ)-system has a pairwise-distinct solution over some
field K if there exist distinct values α1, . . . , αk ∈ K such that Pj(α1, . . . , αk) = 0
for every j ∈ [m].

The following lemma motivates the study of UHD systems in our setting.

Lemma 2. If an affine-invariant property C ⊆ {K → F} has a k-local con-
straint, then there exists a non-zero vector Λ ∈ Fk such that the (D(C), Λ)-UHD
system has a pairwise-distinct solution over K.

We omit the proof due to space considerations. The following theorem is the
main technical claim of this paper.

Theorem 3 (Shadow-closed UHD systems containing nontrivial solu-
tions have bounded weight). Let F be any field of characteristic p and let D
be a p-shadow-closed set of integers containing an element d with wtp(d) ≥ k.
Then for every Λ = (λ1, . . . , λk) ∈ Fk where not all λi’s are zero, the (D,Λ)-
UHD system has no pairwise-distinct solutions over K for any field K extending
F.
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3.2 Proof of Main Theorem

We are now ready to prove the main theorem assuming the lemmas claimed in
the previous subsections.

Proof (Theorem 2). We know that it suffices to prove the theorem for the uni-
variate case (i.e., m = 1). Let D(C) be the degree set of C. By Lemma 1, we know
that D(C) is p-shadow closed. Furthermore if C has a k-local constraint then, by
Lemma 2 there exists a non-zero vector Λ ∈ Fk

′
such that the (D(C), Λ)-UHD

system has a pairwise-distinct solution. But then, by Theorem 3, we have that
the weight of every element d ∈ D(C) must be at most k − 2.

The dimension of C, which is at most |D(C)|, can now be bounded from above
by the number of integers d ∈ {0, . . . , qn − 1} of p-weight less than k − 1 which
is (crudely) at most (rn)k−2 (where q = pr). It follows that C is isomorphic to a
subcode of RM[q, nm, (k − 2)q/p], thus concluding the proof of the theorem.

3.3 Proof of Theorem 3

We now prove our main technical theorem, Theorem 3. The proof below is a
simplification of our original proof and is due to Shachar Lovett. We start by
introducing notation that will help us in the proof. The p-weight of a set of
integers D, denoted wtp(D), is the maximal p-weight of an element in D. For
the purposes of this proof, the length of the UHD system defined by (D,Λ =
(λ1, . . . , λk) is k. We assume throughout the proof that λ1, . . . , λk are nonzero
(otherwise, one can construct a UHD system over D with smaller length). We
say that α = (α1, . . . , αk) is a solution of the UHD system if αi = αj for all i = j
and α is a root of the UHD system. Using this terminology, Theorem 3 says

If the (D, (λ1, . . . , λk))-UHD system has a solution then k > wtp(D) + 1.

Notice that it suffices to prove the theorem for the case whereD = shadowp(d)
for some integer d. (Else we can simply take the element d of largest weight in
D and work with the set D′ = shadowp(d).)

We prove this by induction on wtp(d). The base case of wtp(d) = 0 says that
if the (shadowp(d), Λ)-UHD system is of p-weight 0 and length 1 then it has no
solution. The proof in this case is immediate because shadowp(d) = {0}, so if
Λ = (λ1) is nonzero then there is no solution to the system λ1X

0 = 0 (recall
00 = 1).

For the inductive case we have wtp(d) > 0. Let [d]p = 〈d0, d1, . . .〉 be the
base-p representation of d and suppose dj > 0. Assume by way of contradiction
that α = (α1, . . . , αk) is a solution to the (shadowp(d), Λ)-UHD system of length
k. The base-case of the induction shows k > 1 because α is also a solution to the
({0}, Λ)-UHD system (as 0 ∈ shadowp(d)), so we may assume without loss of
generality that αk = 0 because all αi are distinct. Our proof goes by showing that
α′ = (α1, . . . , αk−1) is a solution of a UHD-system of p-weight w = wtp(d) − 1.
By the inductive hypothesis we have k − 1 > w which implies k > wtp(d) + 1
and completes the proof.



422 E. Ben-Sasson and M. Sudan

To construct the said UHD system set e = d−pj, noticing wtp(e) = wtp(d)−1
and let E = shadowp(e). Construct Λ′ = (λ′1, . . . , λ

′
k−1) by setting

λ′i = λi(α
pj

i − αp
j

k ).

Notice λ′i = 0 because λi = 0 and αi = αk and the transformation α '→ αp
j

is
a bijection on K. We shall now show that (α1, . . . , αk−1) is a solution of length
k− 1 to the (E,Λ′)-UHD system of p-weight wtp(d)− 1 thereby completing the
proof of the theorem. To show that (α1, . . . , αk−1) is a solution we argue that
for all r ∈ shadowp(e) we have

∑k−1
i=1 λ

′
iα

r
i = 0. Indeed

k−1∑
i=1

λ′iα
r
i =

k−1∑
i=1

λi(α
pj

i − αp
j

k )αri

=
k∑
i=1

λi(α
pj

i − αp
j

k )αri

=
k∑
i=1

λiα
r+pj

i − αpj

k

k∑
i=1

λiα
r
i = 0

The last equality follows because r + pj ∈ shadowp(d) for all r ∈ shadowp(e).
This completes the proof of the theorem.

Acknowledgements. We thank the anonymous referees for helpful comments.
We thank Shachar Lovett for allowing us to include the simplified proof of The-
orem 3 in this paper.
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Abstract. An important problem in the implementation of Markov Chain Monte
Carlo algorithms is to determine the convergence time, or the number of itera-
tions before the chain is close to stationarity. For many Markov chains used in
practice this time is not known. There does not seem to be a general technique
for upper bounding the convergence time that gives sufficiently sharp (useful in
practice) bounds in all cases of interest. Thus, practitioners like to carry out some
form of statistical analysis in order to assess convergence. This has led to the
development of a number of methods known as convergence diagnostics which
attempt to diagnose whether the Markov chain is far from stationarity. We study
the problem of testing convergence in the following settings and prove that the
problem is hard computationally:

– Given a Markov chain that mixes rapidly, it is hard for Statistical Zero Knowl-
edge (SZK-hard) to distinguish whether starting from a given state, the chain
is close to stationarity by time t or far from stationarity at time ct for a
constant c. We show the problem is in AM ∩ coAM.

– Given a Markov chain that mixes rapidly it is coNP-hard to distinguish from
an arbitrary starting state whether it is close to stationarity by time t or far
from stationarity at time ct for a constant c. The problem is in coAM.

– It is PSPACE-complete to distinguish whether the Markov chain is close to
stationarity by time t or still far from stationarity at time ct for c ≥ 1.

1 Introduction

Markov Chain Monte Carlo (MCMC) simulations are an important tool for sampling
from high dimensional distributions in Bayesian inference, computational physics and
biology and in applications such as image processing. An important problem that arises
in the implementation is that if bounds on the convergence time are not known or im-
practical for simulation then one would like a method for determining if the chain is
still far from its stationary distribution.
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A number of techniques are known to theoretically bound the rate of convergence
time as measured by the mixing time of a Markov chain, see e.g. [1,13,16]. These have
been applied with success to problems such as volume estimation [17], Monte Carlo
integration of log-concave functions [18], approximate counting of matchings [15] and
estimation of partition functions from physics [14]. However, in most practical appli-
cations of MCMC there are no effective bounds on the convergence time. For a chain
on 2100 states whose states are encoded by 100 bits, it may not be known if the mixing
time is 1002 = 10, 000 or 2100/2 = 250. Even when rapid mixing is known, the bounds
are often impractical. In the above example, a polynomial mixing bound of 10010 may
be impractical while the actual mixing time may be 1002.

As a result, practitioners have focused on the development of a large variety of sta-
tistical methods, called convergence diagnostics, which try to determine whether the
Markov chain is far from stationarity (see e.g. surveys by [12,5,7,6,8,19]). A majority
of practitioners of the MCMC method run multiple diagnostics to test if the chains have
converged. The two most popularly used public domain diagnostic software packages
are CODA and BOA [20,4]. The idea behind many of the methods is to use the samples
from the empirical distribution obtained when running one or multiple copies of the
chain, possibly from multiple starting states to compute various functionals and iden-
tify non-convergence. While diagnostics are commonly used for MCMC, it has been
repeatedly argued that they cannot guarantee convergence, see e.g. [7,5,2].

We formalize convergence to stationarity detection as an algorithmic problem and
study its complexity in terms of the size n of the implicit description of the Markov
chain. We consider Markov chains whose state spaces have size exponential in n. Our
main contribution is showing that even in cases where the mixing time of the chain is
known to be bounded by nC for some large C, the problem of distinguishing whether a
Markov chain is close to or far from stationarity at time nc for c much smaller than C is
“computationally hard”. In other words, under standard assumptions in computational
complexity, distinguishing whether the chain is close to or far from stationarity cannot
be solved in time nD for any constant D.

The strength of our results is in their generality as they apply to all possible diagnos-
tics and in the weakness of the assumption - in particular in assuming that the mixing
time of the chain is not too long and that the diagnostic is also given the initial state
of the chain. Our results highlight the role of the complexity classes Statistical Zero
Knowledge, AM, coAM and coNP in the computational study of MCMC.

2 Preliminaries and Results

We begin by defining the mixing time which measures the rate of convergence to the
stationary distribution. Recall that the variation distance (or statistical distance) be-
tween two probability distributions μ and ν on a state space Ω is given by dtv(μ, ν) =
1
2

∑
ω∈Ω |μ(ω)− ν(ω)|.

Definition 1 (Mixing time). Let M be a Markov chain with state space Ω, transition
matrix P and a unique stationary distribution π. Let

d(t) := max
x,y∈Ω

dtv(P t(x, ·), P t(y, ·)).
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The ε-mixing time is defined to be τ(ε) := min{t : d(t) ≤ ε}. We refer to τ(1/4) as
the mixing time. The ε-mixing time starting from x is:

τx(ε) := min{t : dtv(P t(x, ·), π) ≤ ε}.
We note that τx(ε) ≤ τ(ε) for all x (see e.g. [1, Chap. 2, Lem. 20]).

To formulate the problem, we think of the Markov chain as a “rule” for determining the
next state of the chain given the current state and some randomness.

Definition 2. We say that a circuit C : {0, 1}n × {0, 1}m → {0, 1}n specifies P if for
every pair of states x, y ∈ Ω, Prr∼{0,1}m [C(x, r) = y] = P (x, y).

Above, x is the “current state”, r is the “randomness”, y is the “next state” and C is the
“rule”. To formalize the notion of “Testing convergence” we imagine the practitioner
has a time t in mind that she would like to run the Markov chain algorithm for. She
would like to use the diagnostic to determine whether at time t:

– The chain is within (say) 1/4 variation distance of stationarity
– or at least at distance 1/4 away from it.

Requiring the diagnostic to determine the total variation at time t exactly, or even to
distinguish mixing at exactly the time t is not needed in many situations. Thus weaker
requirement for the diagnostic is to:

– Declare the chain has mixed if it is within 1/8 variation distance of stationarity at
time t.

– Declare it did not mix if it is at least at distance 1/2 away from it at time ct, where
c ≥ 1. (The diagnostic may behave in an arbitrary manner if the distance is between
1/8 and 1/2).

In this formulation, the practitioner is satisfied with an approximate output of the diag-
nostics both in terms the time and in terms of the total variation distance. This is the
problem we will study. In fact, we will make the requirement from the diagnostic even
easier by providing it with a (correct) bound on the actual mixing time of the chain.
This bound will be denoted by tmax.

In realistic settings it is natural to measure the running time of the diagnostics in
relation to the running time of the chain itself as well as to the size of the chain. In
particular it is natural to consider diagnostics that would run for time that is polynomial
in t and tmax. The standard way to formalize such a requirement is to insist that the
inputs t, tmax to the diagnostic algorithm to be given in unary form (if t, tmax were
specified as binary numbers, an efficient algorithm would be required to run in time
poly-logarithmic in these parameters, a much stronger requirement).

2.1 Given Starting Point

The discussion above motivates the definition of the first problem below. Assume that
we had a diagnostic algorithm. As input, it would take the tuple (C, x, 1t, 1tmax), i.e.,
a description of the circuit which describes the moves of the Markov chain, an initial
state for the chain, and the times t and tmax, which are specified as unary numbers.
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Problem: GAPPOLYTESTCONVERGENCEWITHSTARTc,δ (GPTCSc,δ).
Input: (C, x, 1t, 1tmax), where C is a circuit specifying a Markov chain P on state
space Ω ⊆ {0, 1}n, x ∈ Ω and t, tmax ∈ N.
Promise: The Markov chain P is ergodic and τ(1/4) ≤ tmax.
YES instances: τx(1/4− δ) < t.
NO instances: τx(1/4 + δ) > ct.

Informally the input to this problem is the MC rule C, a starting state x, and times
t and tmax. It is promised that the chain mixes by time tmax. The expectation from the
diagnostic is to:

– Declare the chain has mixed if it is within 1/4− δ variation distance of stationarity
at time t.

– Declare it did not mix if it is at least at distance 1/4 + δ away from it at time ct,
where c > 1.

The choice of the constant 1/4 above is arbitrary and does not affect the nature of the
results except in the exact constants. Note again that the diagnostic is given room for
error both in terms of the total variation distance and in terms of the time. The following
theorem refers to the complexity class SZK, which is the class of all promise problems
that have statistical zero-knowledge proofs with completeness 2/3 and soundness 1/3.
It is believed that these problems cannot be solved in polynomial time.

Theorem 1. Let c ≥ 1.

– For 0 < δ ≤ 1/4, GPTCSc,δ is in AM ∩ coAM.

– For
√

3−3/2
2 = .116025.. < δ ≤ 1/4 and c ≤ nO(1), GPTCSc,δ is in SZK.

– Let 0 ≤ δ < 1/4. For c < (tmax/4t) ln (2/(1 + 4δ)) , GPTCSc,δ is SZK-hard.

The most interesting part of the theorem is the last part which says that the problem
GPTCSc,δ is SZK-hard. In other words, solving it in polynomial time will result in
solving all the problems in SZK in polynomial time. The second part of the theorem
states that for some values of δ this is the “exact” level of hardness. The first part
of the theorem states that without restrictions on δ the problem belongs to the class
AM ∩ coAM (which contains the class SZK). The classes AM and coAM respectively
contain the classes NP and coNP and it is believed that they are equal to them, but this
is as yet unproven.

The restriction on the constant δ in the second part of the result comes from the fact
that the proof is by reduction to the SZK-complete problem STATISTICAL DISTANCE

(SD, see Section 3 for precise definitions). Holenstein and Renner give evidence in
[11] that SD is in SZK only when there is a lower bound on the gap between the
completeness and soundness. We show that without the restriction in Theorem 1, SD is
in SZK for a smaller value of the completeness-soundness gap.

On the other hand, we can show a slightly weaker result and put GPTCSc,δ into
AM ∩ coAM without any restrictions on δ. To show this, we first prove that SD is in
AM∩coAM when no restriction is put on the gap between the completeness and sound-
ness. This result may be interesting in its own right as it involves showing protocols for
STATISTICAL DISTANCE that are new, to our knowledge.
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2.2 Arbitrary Starting Point

So far we have discussed mixing from a given starting point. A desired property of a
Markov chain is fast mixing from an arbitrary starting point. Intuitively, this problem is
harder than the previous one since it involves all starting points. This is consistent with
our result below where we obtain a stronger hardness.

Problem: GAPPOLYTESTCONVERGENCEc,δ (GPTCc,δ).
Input: (C, x, 1t, 1tmax), where C is a circuit specifying a Markov chain P on state
space Ω ⊆ {0, 1}n, x ∈ Ω and t, tmax ∈ N.
Promise: The Markov chain P is ergodic and τ(1/4) ≤ tmax.
YES instances: τ(1/4− δ) < t.
NO instances: τ(1/4 + δ) > ct.

The only difference between this and the previous problem is that the total variation
distance is measured from the worst starting point instead of from a given starting point.

Theorem 2. Let c ≥ 1.

– For 0 < δ ≤ 1/4, GPTCc,δ ∈ coAM.

– Let 0 ≤ δ < 1/4. For c < 3/4−δ
2

√
tmax
t2 n3 it is coNP-hard to decide GPTCc,δ .

The second part of the theorem shows that the diagnostic problem is coNP hard so it
is very unlikely to be solved in polynomial time. This hardness is stronger than SZK-
hardness because SZK is unlikely to contain coNP-hard problems. If it did, this would
imply that NP = coNP since SZK ⊆ AM and it is believed that AM = NP. The first
part of the theorem shows that the problem is always in coAM.

2.3 Arbitrary Mixing Times

We also consider the case without the restriction that the algorithm should be polyno-
mial in the times t, tmax. This corresponds to situations where the mixing time of the
chain may be exponentially large in the size of the rule defining the chain. While this
rules out many situations of practical interest, it is relevant in scenarios where analysis
of the mixing time is of theoretical interest. For example there is extensive research
in theoretical physics on the rate of convergence of Gibbs samplers on spin glasses in
cases where the convergence rate is very slow (see [9] and follow-up work). It is natural
to define the problem as follows:

Problem GAPTESTCONVERGENCEc,δ (GTCc,δ).
Input: (C, t), where C is a circuit specifying a Markov chain P on state space Ω ⊆
{0, 1}n, and t ∈ N.
Promise: The Markov chain P is ergodic.
YES instances: τ(1/4− δ) < t.
NO instances: τ(1/4 + δ) > ct.
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The main difference is that in this problem the time t is given in binary representa-
tion. Thus, informally in this case the efficiency is measured with respect to the log-
arithm of t. The mixing time of the chain itself does not put any restrictions on the
diagnostic. We prove the following result:

Theorem 3. Let 1 ≤ c ≤ exp(nO(1)).

– For exp(−nO(1)) < δ ≤ 1/4 it is in PSPACE to decide GTCc,δ.
– Let 0 ≤ δ < 1/4, then, it is PSPACE-hard to decide GTCc,δ.

It is known that PSPACE-hard problems are at least as hard as all the problems in
polynomial time, coNP, NP and all other problems in the polynomial hierarchy. The
proof of this result can be found in [3, App. C]. Since the case of arbitrary mixing times
is of lesser practical interest, we focus in this extended abstract on the case when the
mixing time is known to be polynomial. We begin with some results on the problem of
estimating the statistical distance between two distributions.

3 Protocols for Statistical Distance

Given a circuit C : {0, 1}n → {0, 1}n, the probability distribution p associated with C
assigns probability p(ω) = |C−1(ω)|/2n to every ω ∈ {0, 1}n. We will be interested
in estimating the statistical distance between the distributions associated with a pair of
circuitsC,C′ : {0, 1}n → {0, 1}n. Denote those distributions by p and p′, respectively.

For a pair of constants 0 ≤ s < c ≤ 1, SDc,s is defined to be the following promise
problem. The inputs are pairs of circuits C,C′ : {0, 1}n → {0, 1}n, the YES instances
satisfy dtv(p, p′) ≥ c, and the NO instances satisfy dtv(p, p′) < s.

Sahai and Vadhan [22] show that for every pair of constants c, s the problem SDc,s

is SZK-hard. They also show that when c2 > s, SDc,s is in SZK. Our theorem yields
a weaker conclusion, but covers a wider spectrum of parameters.

Theorem 4. For any pair of constants 0 ≤ s < c ≤ 1, SDc,s is in AM ∩ coAM.

3.1 An AM protocol

The following interactive protocol P for SDc,s essentially appears in [22] but we
rewrite it here for the precise parameters we need.

V: Flip a fair coin. If heads, generate a random sample from C. If tails, generate a
random sample from C′. Send the sample x to the prover.

P: Say if x came from C or from C′.
V: If prover is correct accept, otherwise reject.

Claim. Protocol P is an interactive proof for SDc,s with completeness 1/2 + c and
soundness 1/2 + s.

See [3, App. A.1] for the proof.
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3.2 A coAM protocol

A coAM protocol for SDc,s should accept when the statistical distance between p and
p′ is small, and reject when the statistical distance is large. To develop some intuition,
let us first attempt to distinguish the cases when p and p′ are the same distribution (i.e.
s = 0) and the case when they are at some distance from one another (say c = 1/2).
Suppose the verifier could get hold of the values

N(t) =
∣∣{ω : |C−1(ω)| ≥ t and |C′−1(ω)| ≥ t}∣∣

for every t (which could potentially range between 0 and 2n). Then it can compute the
desired statistical distance via the following identity (proof in [3, App. A.2]).

2n∑
t=1

t · (N(t)−N(t+ 1)) = (1− dtv(p, p′)) · 2n. (1)

For the verifier to run in polynomial time, there are two issues with this strategy: First,
the verifier does not have time to compute the values N(t). Secondly, the verifier can-
not evaluate the exponentially long summation in (1). If we only want to compute the
statistical distance approximately, the second issue can be resolved by quantization: in-
stead of computing the sum on the left for all the values of t, the verifier chooses a small
number of representative values and estimates the sum approximately. For the first is-
sue, the verifier will rely on the prover to provide (approximate) values for N(t). While
the verifier cannot make sure that the values provided by a (cheating) prover will be
exact, she will be able to ensure that the prover never grossly over-estimates the sum on
the left by running a variant of the Goldwasser-Sipser protocol for lower bounding the
size of a set [10]. Since the sum on the left is proportional to one minus the statistical
distance, it will follow that no matter what the prover’s strategy is, he cannot force the
verifier to significantly underestimate the statistical distance without being detected and
we have the desired result. The protocol for lower boundingN(t) and the details of the
coAM protocol can be found in [3, App. A.2].

4 Diagnosing Convergence for Polynomially Mixing Chains

The results of this section imply that even if the mixing time is restricted to being
polynomial the diagnostic problem remains hard. The two cases we consider are the
worst case start mixing time and the mixing time from a given starting state. Both
hardness results are by reduction from a complete problem in the respective classes. We
first prove Theorem 1.

Lemma 1. The problem GPTCSc,δ is in SZK for 1 ≤ c ≤ nO(1) and
√

3−3/2
2 =

.116025... < δ ≤ 1/4.

Proof. The proof is by reduction to SDc,s where c and s are chosen as follows. Choose
k, a parameter as follows. First, let k be large enough such that(

1
4

+ δ − 1
k

)2

>
1
4
− δ +

1
k
. (2)



The Computational Complexity of Estimating MCMC Convergence Time 431

It can be verified that k > 2/(δ − (
√

3− 3/2)/2) suffices. Secondly, let k be bounded
by exp(nO(1)), but large enough so that ct ≤ tmax ln k/ ln 4. This is possible since
c ≤ nO(1). Let

s =
1
4
− δ +

1
k

and c =
1
4

+ δ − 1
k
.

Suppose we are given an instance of GPTCSc,δ with input (C, x, 1t, 1tmax). Let τ̂ =
τx(1/k) be the time to come within 1/k in variation distance of the stationary dis-
tribution. Let C′ output the distribution P t(x, ·) over Ω. Let C′′ output the distribu-
tion P τ̂ (x, ·) over Ω. The circuits C′ and C′′ for k chosen as above are polynomial-
size . The former because t is a polynomial and the latter by the following argu-
ment (using e.g. [1, Ch 2, Lemma 20]): The distance d(·) is submultiplicative. Hence
d(ln(k)tmax/ ln(4)) ≤ 1/k. Also, for any time t, dtv(P t(x, ·), π) ≤ d(t). Thus for
τ̂ = ln(k)tmax/ln(4), we have dtv(P τ̂ (x, ·), π) ≤ 1/k. Since ln k ≤ nO(1), τ̂ is
polynomial, and the size of C′′ is bounded by a polynomial. In the YES case,

dtv(P t(x, ·), P τ̂ (x, ·)) ≤ 1
4
− δ +

1
k

while in the NO case,

dtv(P ct(x, ·), P τ̂ (x, ·)) > 1
4

+ δ − 1
k
.

Since t ≤ ct ≤ τ̂ and the distance to stationarity decreases (see e.g. [1, Chap. 2, Lem.
20]),

dtv(P t(x, ·), P τ̂ (x, ·)) > 1
4

+ δ − 1
k
.

By (2), the constructed instance of SDc,s is in SZK and the lemma follows. ��
Lemma 2. The problem GPTCSc,δ is in AM ∩ coAM for all c ≥ 1 and 0 < δ ≤ 1/4.

This part of the result follows directly from Theorem 4 by reducing GPTCSc,δ to SDc,s

as above, without the restriction on the gap between c and s.
We provide evidence that the gap for δ in Lemma 1 is required for membership in

SZK (see [3, App. B, Prop. 1]). Sahai and Vadhan [22] show that when c2 > s, SDc,s

is in SZK. Holenstein and Renner [11] give evidence that this condition on the gap
between c and s is in fact essential for membership in SZK, assuming SZK = NP. We
now complete the proof of Theorem 1.

Lemma 3. Let 0 ≤ δ < 1/4. For 1 ≤ c < tmax
4t ln

(
2

1+4δ

)
, GPTCSc,δ is SZK-hard.

Proof. The proof is by reduction from SDc,s for fixed s, c (specified below) to
GPTCSc,δ . Let (C,C′) be an instance of SDc,s where C and C′ are circuits which
output distributions μ1 and μ2 over {0, 1}n. Construct the Markov chain P , whose
state space is [m] × {0, 1}n where m = p(n) is a polynomial in n. The transitions of
the chain are defined as follows. Let the current state be (Xt, Yt) where Xt ∈ [m] and
Yt ∈ {0, 1}n.
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– If Xt = 1, choose Yt+1 according to μ1.
– If Xt = 2, choose Yt+1 according to μ2.
– Otherwise, set Yt+1 = Yt.
– Choose Xt+1 uniformly at random from [m].

The stationary distribution of the chain is given by π(z, y) = 1
m (1

2μ1(y) + 1
2μ2(y)).

Take the starting state to be x = (1, 0n). In one step, the total variation distance from
stationary can be bounded as

dtv(P (x, ·), π) =
1
2
dtv(μ1, μ2)

and after t steps, the distance is given by

dtv(P t(x, ·), π) =
1
2

(
m− 2
m

)t−1

dtv(μ1, μ2) (3)

Choose m ≥ 3. Set s = 1/4 − δ and c = 1. In the YES case, dtv(μ1, μ2) < s and
hence for any t ≥ 1,

dtv(P t(x, ·), π) <
1
2
s <

1
4
− δ (4)

In the NO case, dtv(μ1, μ2) > c and hence

dtv(P ct(x, ·), π) ≥ 1
2

(
m− 2
m

)ct−1

c ≥ 1
2

(
m− 2
m

)ct−1

. (5)

Since m ≥ 3, if ct < m
4 ln

(
2

1+4δ

)
, then dtv(P ct(x, ·), π) > 1

4 + δ. Further, in both

the YES and NO case, τ(1/4) ≤ m. We conclude the reduction by setting tmax = m.
��

We now prove Theorem 2 which classifies the complexity of diagnosing mixing from
an arbitrary starting state of a polynomially mixing chain. The following result relates
mixing time to the conductance.

Definition 3 (Conductance, see e.g. [21]). Let M be a Markov chain corresponding
to the random walk on an edge weighted graph with edge weights {we}. Let dx =∑

y∼xwxy denote the weighted degree of a vertex x. Define the conductance of M to
be Φ(M) := min∅ �=A�Ω ΦA(M) where

ΦA(M) :=

∑
x∈A,y∈Ac

wxy∑
x∈A

dx
(6)

Theorem 5 (see [21]). Let M be a Markov chain corresponding to the random walk
on an edge weighted graph with edge weights {we} as above. Let π be the stationary
distribution of the Markov chain.

τ(ε) ≤ 2
Φ2(M)

log
(

2
πminε

)
where πmin is the minimum stationary probability of any vertex.
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Lemma 4. For every c ≥ 1, 0 < δ ≤ 1/4, GPTCc,δ is in coAM.

Proof. In the first step of the coAM protocol for GPTCc,δ the prover sends a pair
x, y ∈ Ω that maximizes dtv(P t(x, ·), P t(y, ·)). Let Cx be the circuit which outputs
the distribution P t(x, ·) and let Cy output the distribution P t(y, ·).

In the YES case τ(1/4−δ) < t and for every x, y, dtv(P t(x, ·), P t(y, ·)) < 1/4−δ.
In the NO case, τ(1/4 + δ) > ct and c ≥ 1, therefore there must exist x, y such that
dtv(P t(x, ·), P t(y, ·)) > 1/4 + δ.

By Claim 3.1 there is an AM protocolP for SD1/4+δ,1/4−δ with completeness 3/4+
δ and soundness 3/4 − δ. The prover and the verifier now engage in the AM protocol
to distinguish whether the distance between the two distributions is large or small. The
completeness and soundness follow from those of the protocol P . ��

Lemma 5. Let 0 ≤ δ < 1/4. For 1 ≤ c < 1/2
√
tmax/t2n3(3/4− δ), it is coNP-hard

to decide GPTCc,δ.

Proof. The proof is by reduction from UNSAT, which is coNP hard. Let ψ be an in-
stance of UNSAT, that is, a CNF formula on n variables. The vertices of the Markov
chain are the vertices of the hypercube H , V (H) = {0, 1}n and edges E(H) =
{(y1, y2) : |y1 − y2| = 1}. We set edge weights for the Markov chain as follows.
Let d be a parameter to be chosen later which is at most a constant.

– For each edge in E(H) set the weight to be 1.
– If ψ(y) = 0 add a self loop of weight n at y.
– If ψ(y) = 1 add a self loop of weight nd at y.

In the YES case, if ψ is unsatisfiable, the Markov chain is just the random walk on the
hypercube with probability 1/2 of self loop at each vertex and it is well known that

τ(1/4− δ) ≤ Cδn logn

where Cδ is a constant depending on (1/4− δ)−1 polynomially.
In the NO case, where ψ is satisfiable, we will lower bound the time to couple from

a satisfying state y and the state y, obtained by flipping all the bits of y. Consider the
distributions X(t), Y (t) of the chain which are started at y and at y. We can bound the
variation distance after t steps as follows:

d(t) ≥ 1− P [∃s ≤ t s.t. X(s) = y]− P [∃s ≤ t s.t. Y (s) = y]

In each step, the chain started at y has chance at most 1/(nd−1 + 1) of leaving. On the
other hand, the probability that the walk started from y hits y in time t is exponentially
small. Therefore

d(t) ≥ 1− 2t/(nd−1 + 1)

which implies that

τ(1/4 + δ) >
1
2
nd−1(3/4− δ).
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Let d be large enough (possibly depending polynomially on δ−1) so that

1
2
nd−1(3/4− δ) > cCδn logn. (7)

On the other hand we can show a polynomial upper bound on the mixing time by
bounding the conductance as follows. LetM ′ be the Markov chain which is the random
walk on the hypercube with self loop probabilities of 1/2 (where the edge weights are
as in the case where ψ is unsatisfiable). We bound the conductance of M by showing it
is not too much smaller than the conductance of M ′. We use the fact that for any vertex
x, the weighted degree dx ≤ (nd−1 + 1)d′x. Let A ⊆ V (H).

ΦA(M) =

∑
x∈A,y∈Ac

wxy∑
A∈Ω

dx

=

∑
x∈A,y∈Ac

w′
xy∑

A∈Ω

dx

≥

∑
x∈A,y∈Ac

w′
xy

(nd−1 + 1)
∑
A∈Ω

d′
x

≥ ΦA(M ′)
nd−1 + 1

≥ 1

nd + n

where we are assuming the lower bound on the conductance of the hypercube is 1
n . We

can lower bound πmin by 1/(n2n−1 + nd2n) and hence we have for large enough n,

log(πmin)−1 ≤ 2n

and hence by Theorem 5, τ(1/4) ≤ 32n2d+1. The reduction can be completed by
setting x = 0n, the vector of all 0’s, tmax = 32n2d+1 and t = Cδn logn. By (7), we
see that ct < 1/2

√
tmax/n3(3/4− δ) as required. ��

5 Discussion and Future Directions

We have shown that diagnosing convergence for a Markov chain is a hard computational
problem, even when the chain is known to mix reasonably fast. However, we make no
other assumptions about the Markov chain while in practice, one may know more.

After reading a draft of our paper the following question was raised by Dawn
Woodard: Do our hardness results hold if the stationary distribution is known upto a
normalizing constant as is often the case in practice? In the setting of Theorem 1 the
hardness is not clear though we expect it may hold for a weaker complexity class. In the
settings of Theorems 2 and 3 the hardness results do hold. In fact it follows immediately
from the proofs that the hardness is true even in the case that the stationary distribution
is known exactly.

It would be interesting to extend the classification for convergence diagnostics to spe-
cialized sampling algorithms. For example, Markov random fields are used to model
high dimensional distributions in applications such as image processing. Gibbs sam-
pling is a popular Markov Chain Monte Carlo algorithm for sampling from such distri-
butions and standard diagnostics are used for testing convergence. What is the compu-
tational complexity of detecting convergence for Gibbs samplers?

Acknowledgments. The authors would like to thank Salil Vadhan for helpful discus-
sions, and Dawn Woodard for kindly allowing us to include her question in Section 5.
We would further like to acknowledge helpful comments and suggestions by anony-
mous referees.
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Abstract. We study the space complexity of randomized streaming al-
gorithms that provide one-sided approximation guarantees; e.g., the al-
gorithm always returns an overestimate of the function being computed,
and with high probability, the estimate is not too far from the true an-
swer. We also study algorithms which always provide underestimates.

We also give lower bounds for several one-sided estimators that match
the deterministic space complexity, thus showing that to get a space-
efficient solution, two-sided approximations are sometimes necessary. For
some of these problems, including estimating the longest increasing se-
quence in a stream, and estimating the Earth Mover Distance, these are
the first lower bounds for randomized algorithms of any kind.

We show that for several problems, including estimating the radius of
the Minimum Enclosing Ball (MEB), one-sided estimation is possible. We
provide a natural function for which the space for one-sided estimation is
asymptotically less than the space required for deterministic algorithms,
but more than what is required for general randomized algorithms.

What if an algorithm has a one-sided approximation from both sides?
In this case, we show the problem has what we call a Las Vegas stream-
ing algorithm. We show that even for two-pass algorithms, a quadratic
improvement in space is possible and give a natural problem, counting
non-isolated vertices in a graph, which achieves this separation.

1 Introduction

Computing on data streams is of growing interest in many areas of computer
science, such as databases, networks, and algorithm design. Here it is assumed
that the algorithm sees updates to elements of an underlying object one by one in
an arbitrary order, and needs to output certain statistics of the input. Therefore
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it must maintain a short summary or sketch of what it has seen. We refer the
reader to the survey by Muthukrishnan [17] for a list of applications.

In this paper, we consider the space complexity of streaming algorithms which
return estimates with one-sided approximation—either the streaming algorithm
always returns an overestimate, or it always returns an underestimate. As with
the case of standard randomized streaming algorithms, we want the algorithm
to return an accurate estimate with high probability. While one-sided approxi-
mation has been extensively studied in the property testing literature, it has not
been considered as an object of study for streaming algorithms.

Definition 1.1. An ε-overestimator for f is a randomized algorithm that, given
a stream σ returns f̂(σ) such that

– f̂(σ) ≥ f(σ).
– With probability at least 2/3, f̂(σ) ≤ f(σ)(1 + ε).

An ε-underestimator for f is a randomized algorithm that returns an underesti-
mate f̂(σ) such that with probability at least 2/3, we have f̂(σ) ≥ f(σ)(1 − ε).
An important class of one-sided approximations are problems where the infor-
mation lost by using a small amount of space is one-sided. Perhaps the best
known example in this class is the Count-Min sketch [5], which is used to
maintain approximate frequency counts and can produce accurate estimations
of φ-quantiles or φ-heavy hitters. The Count-Min sketch essentially works by
maintaining a random hash table h of counters and updating the counter in
bucket h(i) each time item i is seen on the stream. The counter in bucket h(i)
then provides an overestimate of the true frequency of item i, since collisions
can only increase the count. By maintaining several hash tables h1, h2, . . . , ht
and returning the minimum hj(i) over all j, the Count-Min sketch gets an
overestimate of the frequency of item i that with high probability remains close
to the true frequency. Since its inception, the Count-Min sketch has also been
used as a subroutine in several other applications.

Surprisingly, the Count-Min sketch is also used to generate ε-
underestimators. In the k-median problem, the input is a set of points P on
a discrete grid [Δ]d, and the goal is to output a set of k points Q that minimizes
C(Q,P ) :=

∑
p∈P minq∈Q ||p − q||. Such a set is called a k-median. Indyk [12]

uses a Count-Min sketch to underestimate C(P,Q).
We are interested in the space complexity of one-sided approximations and

how this space complexity relates to the complexity of randomized and deter-
ministic algorithms that give two-sided approximations. We also study what
happens when both underestimates and overestimates are possible. By properly
scaling the one-sided estimates, we can get an algorithm that provides a (1± ε)-
approximation with high probability, and knows when its estimate is a poor
approximation. We call such algorithms Las Vegas algorithms.

Definition 1.2. A Las Vegas algorithm for f is a randomized streaming algo-
rithm that, given a stream σ either returns f̂(σ) such that |f̂(σ)− f(σ)| ≤ εf(σ)
or outputs fail. The algorithm fails with probability at most 1/3.
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Remark 1.1. Las Vegas algorithms can alternatively be thought of as multipass
algorithms that never fail; instead, they repeat until accepting an estimate. That
notion corresponds more with the concept of Las Vegas algorithms used in com-
munication complexity. Our definition has meaning even for one-pass algorithms.

1.1 Our Problems

We consider the space complexity of streaming algorithms under several models:
two-sided (1± ε)-approximations, ε-overestimates, ε-underestimates, Las Vegas
algorithms, and deterministic algorithms. Let S1±ε(f), Sε-under(f), and Sε-over(f)
denote the space complexity of two-sided estimators, ε-underestimators, and ε-
overestimators. SLV (f) and Sdet(f) denote the space complexity of Las Vegas
and deterministic algorithms that compute f exactly; Sε,LV (f) and Sε,det(f) are
the complexity of Las Vegas and deterministic algorithms that return (1 ± ε)-
approximations. The relationship between these measures is captured in the
following lemma, which we prove in Section 3.
Lemma 1.1. For any f , the space complexities are characterized (up to small
changes in ε) by the following:

S1±ε(f) ≤ min{Sε-under(f), Sε-over(f)}
≤ max{Sε-under(f), Sε-over(f)} = Θ(Sε,LV (f)) ≤ Sε,det(f) .

Our next collection of results provides strict separations for these inequalities.

Cascaded Norms. In Section 3, we consider the problem of estimating the cas-
caded norm �0(Q)(A) in a stream of updates to an n×nmatrix A. Here, �0(Q)(A)
is the number of non-zero rows of A. We show that two-sided approximations
are possible in poly(log(n)/ε) space; an ε-overestimate is possible in Õ(n) space,
and Ω(n2) space is required for deterministic algorithms.

Theorem 1.1. For the problem of estimating �0(Q)(A) in the streaming model,
the following bounds hold: (i) S1±ε(�0(Q)) = Õ(1) , (ii) Sε-over(�0(Q)) = Θ̃(n) ,
and Sε,det(�0(Q)) = Ω(n2).1

This problem also corresponds to estimating the number of non-isolated vertices
in a graph[8] and can be useful for counting outliers in social networks.

Earth Mover Distance. In this problem, the elements on the stream define two
point sets A,B ⊆ [Δ2], and the algorithm should estimate the cost of the best
matching between A and B. In Section 3, we show
Theorem 1.2. For all constant ε, Sε-under(EMD) = Sε-over(EMD) = Ω(Δ2).
Moreover, these bounds hold even for underestimators that return a value that is
at least 1/c ·EMD or overestimators that return a value that is at most c ·EMD
with constant probability, for any constant c > 1.
This is the first lower bound for EMD for any class of randomized algorithms. A
result of Andoni et al. [1] gives a c-approximation in ΔO(1/c) space for any c > 1,
and so this separates the complexity of one-sided and two-sided estimations.
1 The Õ(·) notation hides terms polynomial in log n and ε.
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List Equality. To separate the deterministic and Las Vegas space complexi-
ties, we adapt a problem of Mehlhorn and Schmidt [15] to the streaming set-
ting. The problem is called List-Equality. The inputs are two lists of n-
bit numbers X,Y ∈ ({0, 1}n)n, and the goal is to compute ListEQ(X,Y ) :=
∨ni=1EQ(Xi, Yi). Mehlhorn and Schmidt [15] introduced this problem and use it
to show a quadratic separation between the deterministic and Las Vegas ver-
sions of communication complexity. In the streaming version of this problem,
X,Y appear sequentially on a stream of n2 bits. We give a Õ(n) space Las
Vegas algorithm; an Ω(n2) bound follows from [15].

Theorem 1.3. For the List-Equality problem in the streaming model, we
have SLV (ListEQ) = Õ(n), while Sdet(ListEQ) = Ω(n2).

In addition to the space complexity separations, in Section 4 we give new one-
sided estimators for two problems motivated by machine learning: the Minimum
Enclosing Ball and Classification problems. These problems were studied in the
streaming setting by Clarkson et al. [4] who gave efficient two-sided estimates
for both problems. We extend their work to give one-sided estimates.

In Section 5, we give lower bounds for one-sided estimates for a large range of
problems, including estimating the length of the longest increasing subsequence
(LIS), the �p-norms and �p-heavy hitters, and the empirical entropy of a stream.

We also discuss open questions in Section 5.

2 Preliminaries

For many of the problems we consider, the stream is a sequence of m tokens
(i1, v1), . . . , (im, vm) ∈ [n]×{−M, . . . ,M} interpreted as updates to a frequency
vector z ∈ Nn, where a token (i, v) causes zi ← zi + v. In these problems we
implicitly associate the frequency vector z with the corresponding stream σ. In
an insertion-only stream, vi is always positive. In the strict turnstile model, the
current value of zi is always positive, though some of the vi may be negative.
The general turnstile model allows arbitrary zi.

Given z ∈ Rm, the �p-norm of z is defined as ||z||p := (
∑m

i=1 |zi|p)1/p. The
pth frequency moment is Fp(z) := ||z||pp =

∑m
i=1 |zi|p. We use δ(x, y) to denote

the Hamming distance between strings x and y, that is, the number of positions
that differ in x and y.

In rest of this section, we briefly describe the basic terminology and notation
we need for communication complexity, as well as the problems we use to prove
our streaming lower bounds. For a more complete treatment, we refer the reader
to the standard text by Kushilevitz and Nisan [14].

Given a boolean function f : X ×Y → {0, 1}, let Rε(f) denote the minimum
communication cost of a public-coin randomized protocol P such that on all
inputs, P (x, y) = f(x, y) with probability at least 1 − ε. We are particularly
interested in the communication complexity of protocols with one-sided error.
For b ∈ {0, 1}, let Rb

ε(f) be the cost of the best randomized protocol P for f such
that (i) when f(x, y) = b, P correctly computes f(x, y), and (ii) when f(x, y) = b,
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P computes f(x, y) with probability ≥ 1 − ε. We usually take ε := 1/3; in this
case, we drop the subscript.

Next we describe two problems we use extensively to show our bounds. In the
Equality problem, Alice and Bob receive n-bit strings x, y and wish to compute
EQ(x, y) = 1 iff x = y. The standard EQ test gives R0

ε(EQ) = O(log(1/ε)); in
contrast, we have R1(EQ) = Ω(n). In essence, protocols which must be correct
when x = y are as hard as the deterministic case. When making reductions in
this case, we’ll often describe the problem as NEQ to emphasize that the protocol
must be correct on x = y instances.

Our second problem is the promise problem Gap-EQn,t. Here, Alice and
Bob receive n-bit strings under the promise that either x = y or δ(x, y) = t and
output 1 iff x = y. Using a combinatorial result of Frankl and Rödl [9], Buhrman
et al. [3] proved that R1(Gap-EQn,t) = Ω(n) for all t = Θ(n) and used it to
get seperations between classical and quantum communication complexity. We
supress the subscripts when n is clear from context and t = n/2.

3 Space Complexity Separations

In this section, we develop separations between the space complexities for dif-
ferent classes of streaming algorithms.

Lemma 3.1 (Restatement of Lemma 1.1). For any f , the space complexi-
ties are characterized (up to small changes in ε) by the following inequality

S1±ε(f) ≤ min{Sε-under(f), Sε-over(f)}
≤ max{Sε-under(f), Sε-over(f)} = Θ(Sε,LV (f)) ≤ Sε,det(f) .

Proof. The inequalities are trivial inclusions. To prove the equality, fix an ε-
underestimatorAU and an ε-overestimatorAO, and create a Las Vegas algorithm
in the following way: Run AU and AO in parallel, scale the underestimator by
(1 + ε) and the overestimator by (1 − ε), and fail if the scaled underestimate
remains less than the scaled overestimate. If the algorithm accepts, return the
geometric mean of the estimates. This algorithm accepts with high probability,
since it accepts whenever both estimators return good ranges. Furthermore, it’s
easy to show that when it accepts, the algorithm returns a (1±ε)-approximation.

We provide strict separations for each of the inequalities in Lemma 3.1. Our first
separation result is for the problem of estimating Cascaded Norms.

Many streaming papers have focused on single-attribute aggregation, such as
norm estimation. Most applications however deal with multi-dimensional data
where the real insights are obtained by slicing the data several times and applying
several aggregations in a cascaded fashion. A cascaded aggregate P ◦Q of a matrix
is defined by evaluating aggregate Q repeatedly over each row of the matrix, and
then evaluating aggregate P over results obtained from each row. A well-studied
aggregate is the so-called cascaded norm problem on numerical data, for which we
first compute the Q norm of each row, then the P norm of the vector of values
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obtained, for arbitrary norms P and Q. These were introduced by Cormode
and Muthukrishnan [6], and studied in several followup works [16,2,13,1], with
particular attention to the case when P = �p and Q = �q. In the streaming
model, the underlying matrix is initialized to 0, and receives multiple updates
in the form of increments and decrements to its entries in an arbitrary order.

One special case of this problem is �0(Q), which corresponds to the number
of non-zero rows in an n× d matrix A. This problem was studied in [13], where
the authors obtained a poly(log(nd)/ε) space randomized algorithm for (1± ε)-
approximation. This measure is important since it corresponds to estimating
the number of non-isolated vertices in a graph. This follows by taking d = n
and viewing the matrix A as the adjacency matrix of a graph. Its complement,
n − �0(Q), is the number of isolated vertices and may be useful for counting
outliers in social networks. This was studied in a sampling (a special case of
streaming) context in, e.g., [8].

The following theorem characterizes the space complexity of the different es-
timators for �0(Q).

Theorem 3.1 (Restatement of Theorem 1.1). The problem of estimating
the cascaded norm �0(Q) in the general turnstile model has the following space
complexities:

1. There exists a (1± ε)-approximation that uses O(poly(log(nd)/ε)) space.
2. There is an ε-underestimator for �0(Q) that uses O(n poly(log(nd)/ε)) space.
3. Any ε-underestimator for �0(Q) requires Ω(n) space.
4. Any ε-overestimator for �0(Q) requires Ω(nd) space.
5. Any deterministic approximation for �0(Q) requires Ω(nd) space.

Proof. The upper bound for (1 ± ε)-approximation comes from Jayram and
Woodruff [13]. To get an upper bound for ε-underestimators, let u be the maxi-
mal possible element in the matrix. We assume that u is polynomially related to
n, d and the length of the stream. Next, choose a prime q = Θ(und), and let V
be the q × d Vandermonde matrix, where the ith row Vi = (1, i, i2, . . . , id−1) ∈
GF (q)d. It’s well known that any d rows of V are linearly independent. It follows
that for any nonzero Ai, at most d− 1 rows v of V have 〈Ai, v〉 = 0(mod q).

We estimate �0(Q)(A) by picking a random row of V , computing the inner
product 〈Ai, v〉 in GF (q) for each row i of A, and returning the number of rows
that give 〈Ai, v〉 = 0. It’s easy to see that each inner product can be main-
tained in O(log(u)) space. Furthermore, we always underestimate the number
of nonzero rows, and for a random v, 〈Ai, v〉 = 0 with probability at most
O(q/d) = O(1/n). By the union bound, our choice of v identifies all nonzero
rows with probability 9/10. Therefore, we always underestimate the number of
rows with nonzero entries, and with high probabilty we compute �0(Q)(A) ex-
actly. The space required is O(log(nd)) to store a pointer to v, and n log u to
maintain 〈Ai, v〉 for each row i.

On the other hand, a reduction from Gap-EQ gives an Ω(n) lower bound
for ε-underestimators. Specifically, fix d := 1, and given n-bit strings x, y, Alice
converts each bit xi of her input into a token (i, 1, 1 − xi). Bob converts each
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bit of yi of his input into a token (i, 1,−yi). They then simulate the algorithm
for underestimating �0(Q) on the resulting matrix A and output no when the
estimate is at most n/2. Note that �0(Q)(A) = n when x = y and �0(Q)(A) = n/2
when δ(x, y) = n/2, hence an ε-underestimator for �0(Q) always produces a
correct answer for δ(x, y) = n/2, and with high probability produces a correct
answer for the x = y case.

For ε-overestimators, a stronger lower bound is possible, via reduction from
NEQ on strings of length nd. Each coordinate in the string maps to an en-
try in the matrix. Alice maps each xi,j → (i, j, xi,j), and Bob maps each yi,j →
(i, j,−yi,j). Thus, �0(Q)(A) > 0 iff x = y. Alice and Bob then compute NEQ(x, y)
by simulating an ε-overestimator for �0(Q)(A) and outputting x = y whenever
it returns a positive value. This also implies the Ω(nd) deterministic bound.

Next, we prove lower bounds for estimating Earth Mover Distance. The Earth
Mover Distance between multisets A,B ⊆ [Δ]2 is the cost of the best matching
between A and B. Formally, we define

EMD(A,B) = min
π:A→B

∑
a∈A
||a− π(a)|| .

Andoni et al. [1] gave a 1-pass, ΔO(1/c)-space algorithm that returns ÊMD

such that EMD(A,B)/c ≤ ÊMD(A,B) ≤ cEMD(A,B) . In general, this ap-
proximation factor c can be much greater than 1; for this reason, we refer to
results in this section as c-approximations instead of ε-approximations.

Proof (of Theorem 1.2). Partition [Δ]2 into n := Δ2/2 pairs of adjacent points
{(pi,0, pi,1) : 1 ≤ i ≤ n}. The nature of this construction is immaterial; we only
require that the pairs of points are adjacent.

To get the lower bound for c-overestimators, we reduce from NEQ. Given
x, y ∈ {0, 1}n, Alice creates a set of points A := {a1, . . . , an} by mapping each
coordinate xi → pi,xi =: ai. Bob similarly creates B := {b1, . . . , bn} by mapping
yi → pi,yi =: bi. Then, Alice and Bob simulate a c-overstimating algorithm for
EMD and output x = y if ÊMD(A,B) > 0.

Note that if x = y then clearly EMD(A,B) > 0, and since the streaming
algorithm returns an overestimate, Alice and Bob will always correctly com-
pute x = y. Furthermore, when x = y, then EMD(A,B) = 0; hence, the
overestimator will output ÊMD(A,B) ≤ cEMD(A,B) = 0 with high proba-
bility. In this way, a c-overestimator for EMD gives a protocol for NEQ. Since
R1(NEQ) = Ω(n) = Ω(Δ2), the lower bound for c-overstimators follows.

To get a lower bound for c-underestimators, set γ := 1 − 1/2c, and reduce
from Gap-EQn,γn. As in the lower bound for overestimators, Alice and Bob
map their inputs x, y to pointsets A,B. This time, Alice again sets ai := pi,xi ,
but Bob creates bi := pi,1−yi Then they simulate a c-underestimator for EMD
and output δ(x, y) = γn if ÊMD(A,B) ≤ n(1− γ).
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Essentially, Alice and Bob solve Gap-EQ by using the EMD algorithm to
estimate δ(x,−y). Note that

EMD(A,B) =

{
n if x = y ,

n(1 − γ) if δ(x, y) = γn .

Since EMD(A,B) = n(1 − γ) when δ(x, y) = γn, a c-underestimator always
returns a correct value for δ(x, y) = γn. When x = y, the c-understimator
returns ÊMD(A,B) ≥ n/c > n(1− γ) with high probability. Hence, the Ω(Δ2)
lower bound follows from the Ω(n) lower bound on Gap-EQn,γn.

We end this section with a two-pass Las Vegas algorithm for List-Equality.

Proof (of Theorem 1.3). We convert the two player communication protocol of
Mehlhorn and Schmidt [15] to work in a Las Vegas environment. In the first pass,
the algorithm uses an r-bit Equality test to compare Xi and Yi for each i. Let
I be the set of indices i that pass this test. If I is empty, then the algorithm
outputs ListEQ(X,Y ) = 0. Otherwise, if |I| > m, let I ′ be a random m-subset
of I. In the second pass, the algorithm saves Xi for each i ∈ I ′ and compares
Xi, Yi directly. If it finds any i such that Xi = Yi, then the algorithm outputs
ListEQ(X,Y ) = 1. Otherwise, the algorithm outputs fail.

This algorithm uses nr space to maintain the n equality tests, nm space to
store Xi for up to m indices i ∈ I ′, and O(n) other space for bookkeeping.
Therefore, it uses O(n(r+m)) bits total. As for correctness, the algorithm never
outputs incorrectly, since the Equality test is one-sided in the first pass, and
the test in the second pass has zero error. By a union bound, the chance that
the algorithm does not terminate after the first pass when ListEQ(X,Y ) = 0 is
at most n2−r. When ListEQ(X,Y ) = 1, the algorithm fails to terminate only
when Xi = Yi for all i ∈ I ′. This only happens when at least m Equality

tests fail in the first pass, which happens with probability (much less than)
nm2−rm = 2m logn−rm. Taking m = r = 2 logn gives a two-pass, O(n log n)
space Las Vegas algorithm for ListEQ.

4 Upper Bounds

In this section, we present new one-sided estimators for two problems motivated
by machine learning from the recent work of Clarkson et al. [4]

Minimum Enclosing Ball. In the Minimum Enclosing Ball (MEB) problem, the
input is a matrix A ∈ {−M,−M + 1, . . . ,M}nd, for some M = poly(nd),
whose rows are treated as points in d-dimensional space. The goal is to esti-
mate the radius of the minimum enclosing ball of these points; i.e., to estimate
miny∈Rd max1≤i≤n ||Ai − y|| .

In the streaming version of this problem, we assume that we see the rows of
A one at a time (and exactly once), but in an arbitrary order. An algorithm
from [4] runs in Õ(1/ε2) space and uses Õ(1/ε) passes and returns 1/ε indices
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i1, . . . , ii/ε such that with probability at least 1/2, the ball centered around
these indices that encloses all points has radius close to the smallest possible.
In other words, the point y :=

∑1/ε
j=1 εAij is the center of a ball whose radius

r := max1≤i≤n ||Ai−y|| is an ε-overestimate of the radius of the MEB. It is easy
to see that y can be computed with one more pass and O(d logM) more bits of
space. Given y, the radius of the ball centered at y can be computed in an extra
pass using O(logM) additional space by maintaining the maximum distance of
a point from y. This radius is thus an ε-overesetimator for MEB. One can reduce
the failure probability from 1/2 by repeating this process independently and in
parallel several times and taking the minimum radius found.

Theorem 4.1. There is an ε-overestimator for Minimum Enclosing Ball that
uses O(d log(nd) + polylog(nd/ε)/ε2) space and O(polylog(nd/ε)/ε) passes.

Classification. As with the previous problem, the input is a set of n points
A1, . . . , An ∈ {−M,−M+1, . . . ,M}d (Points Ai are assumed to have ||Ai|| ≤ 1.)
Given x ∈ Rd, define σx := mini〈Ai, x〉. In the classification problem, the goal
is to output the margin σ := minx:||x||≤1 σx. Another algorithm from [4] runs
in Õ(1/ε2) space and Õ(1/ε2) passes and returns a set of t = O(1/ε2) indices
i1, . . . , it such that with constant probability, a certain linear combination y of
{Aij}tj=1 gives an additive ε-approximation to the margin. As in the case of
MEB, y can be computed in O(d logM) additional bits of space, from which σy
can be computed exactly, which is an ε-underestimator for the margin.

Theorem 4.2. There is an O(d log(nd) + polylog(nd/ε)/ε2) space,
O(polylog(nd/ε)/ε2)-pass algorithm that computes y such that σ ≥ σy ≥ σ − ε.

5 Lower Bounds

In the Longest-Increasing-Subsequence problem, the input is a stream of n
tokens σ ∈ [m]n, and the goal is to estimate the length of the longest increasing
sequence of σ, which we denote lis(σ). Gopalan et al. [11] gave an O(

√
n/ε)

deterministic algorithm for estimating lis(σ); this space complexity was later
proven tight by Gál and Gopalan [10] and Ergun and Jowhari [7].

The proof of Gál and Gopalan uses a reduction from the Hidden-Increasing-
Subsequence (HIS
,t,k) problem. HIS
,t,k is a t-player communication problem
where plri is given the ith row of a matrix M ∈ [m]t
, with the promise that
either (i) all columns are decreasing, or (ii) there exists a column with an in-
creasing subsequence of length k. The players wish to distinguish these cases.

Gál and Gopalan proved a lower bound on the maximum communication com-
plexity of deterministic, one-way protocols for HIS
,t,k. We need similar lower
bounds for randomized protocols that make no mistakes when there exists a
hidden increasing sequence. Let Rmax,0(HIS
,t,k) denote the maximum commu-
nication complexity (i.e., the size of the largest message) of the best randomized,
one-way protocol for HIS
,t,k that errs only when all columns ofM are decreasing.
We observe that the deterministic lower bound technique of Gál and Gopalan
generalizes to Rmax,0(HIS
,t,k).
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Theorem 5.1. Rmax,0(HIS
,t,k) ≥ �((1− k/t) log(m/(k − 1))−H(k/t))− log t.
In particular, taking n := t�, k := t/2 + 1, and ε := (k − 1)/�, we have

Rmax,0(HIS
,t,k) = Ω(
√
n/ε log(m/εn)) = Ω̃(

√
n/ε) .

Using the reduction from Gopalan et al [11], we get the following corollary.

Corollary 5.1. An ε-overestimator for Longest-Increasing-Subsequence

requires Ω(
√
n/ε) space.

In the rest of this section, we provide a suite of lower bounds for streaming
statistics. Unless otherwise specified, the underlying vector z ∈ [m]n is initialized
to zero, and tokens (i, v) represent updates z ← zi + v. Our lower bounds cover
the following problems.

– �p-norm: estimate ||z||p := (
∑n

i=1 |zi|p)1/p.
– �p heavy hitters: For “heavy hitter thresholds” φ̂ < φ, return all i such

that |zi|p ≥ φFp(z) and no i such that |zi|p ≤ φ̂Fp(z).
– empirical entropy: estimate H(z) =

∑
i(|zi|/F1(z)) log(F1(z)/|zi|). (Re-

call that F1(z) :=
∑

i |zi| is the �1-norm of the stream.)

All of these lower bounds come from reductions from NEQ or Gap-EQ. Alice
and Bob convert strings x, y into streams σA, σB . The communication protocol
works by simulating a streaming algorithm on σ := σA ◦ σB and estimating the
resulting statistic. Because these lower bounds are similar and space is limited,
we include only a few proofs and defer others to the full version of the paper.

Theorem 5.2. For all p, Sε-over(�p-norm) = Ω(n) in the general turnstile model.

Proof. This is a simple reduction from NEQ. We omit the details.

Theorem 5.3. For all p = 1, there exists ε > 0 such that Sε-under(�p-norm) =
Sε-over(�p-norm) = Ω(n) in the insertion-only model.

Proof. We require different reductions for ε-overestimators and ε-underestimators
and for when p < 1 and p > 1; however, in all cases, we reduce from Gap-EQ

by embedding either (x, y) or (x,−y) into the streaming problem. In all cases,
choosing ε appropriately ensures that the relevant one-sided estimator gives a
protocol for Gap-EQ with one-sided error. All four reductions are similar; we
include a proof for the case where p < 1 and we want a lower bound for ε-
overestimators and defer the other proofs to the full version.

Suppose that p < 1, and let AO be an ε-overestimator for the �p-norm,
where ε := min{1/3, (1− 2p−1)/(2p+1p). Given x, Alice creates a stream σA =
(a1, . . . , an), where ai := (2i − xi, 1). Bob converts y into a stream σB :=
(b1, . . . , bn), where bi := (2i− yi, 1). Note that

||z||p =

{
2n1/p if x = y ,

2n1/p
(

1
2 + 2−p

)1/p if δ(x, y) = n/2 .
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When p < 1, the �p-norm given by the x = y case is less than the δ(x, y) =
n/2 case. Therefore, Alice and Bob can solve Gap-EQ by simulating AO and
returning “δ(x, y) = n/2” if AO returns an estimate at least 2n1/p(1/2+2−p)1/p.
Since AO always provides an overestimate, the protocol always computes the
δ(x, y) = n/2 cases. Further, note that

(1 + ε)p < (1 + 2εp) ≤ 1 + 2p
(
(1− 2p−1)/p2p+1

) ≤ (1/2 + 2−p) ,

where the first inequality uses (1 + x)r < 1 + 2xr, which holds for r > 0 and
0 ≤ x ≤ 1/2. Therefore, when x = y, AO (with high probability) returns an
estimate at most 2n1/p(1+ε) < 2n1/p(1/2+2−p)1/p, hence the protocol computes
“x = y” correctly with high probability.

Note that this reduction fails for the case p = 1 because the gap in �p-norm
in the yes and no instances disappears. The �p-norm in this case corresponds
to counting the net number of items in the stream. This can easily be exactly
computed in O(log n) space.

Finally, we consider one-sided estimates for �p-heavy hitters. The notion of one-
sidedness is slightly different here, since the algorithm is to output a set of items
instead of an estimation. Here, we define the over- and under-estimation to refer
to the set of items that are reported.
Definition 5.1. A two-sided estimator for the (φ̂, φ, �p) heavy hitters problem
is a randomized algorithm that with probability 2/3
1. returns all i such that |zi|p ≥ φFp(z).
2. returns no i such that |zi|p ≤ φ̂Fp(z).

An overestimator is an algorithm that achieves condition (1) with probability 1.
An underestimator fufills condition (2) with probability 1.

Theorem 5.4. The following bounds hold for (φ̂, φ, �p)-heavy hitters:

– For all 0 < φ < 1, φ̂ = φ/2, and p ≥ 0, Ω(n)-space is required in the general
turnstile model for both over- and underestimators.

– For all 0 < φ < 1 and p = 1, there exists φ̂ such that Ω(n) space is required
in the insertion-only model for both over- and underestimators.

– Θ(log n/φ) space is required in the insertion-only model for all (φ/2, φ, 1)
heavy-hitters.

Theorem 5.5. For ε = O(1/ logn), Ω(n) space is necessary to ε-overestimate
or ε-underestimate the empirical entropy H(z) in the insertion-only model.

Open Questions: Our work leaves open several natural questions.
1. Can one characterize the functions f for which Sε-under(f) = S1±ε(f) or

Sε-over(f) = S1±ε(f)? A complete characterization may be hard, as it could
be used to obtain bounds on S1±ε(Longest-Increasing-Subsequence)
and S1±ε(EMD), two challenging questions in the data stream literature.
Even a partial characterization would be interesting.

2. What results hold for estimators f̂(σ) for which f̂(σ) ≥ f(σ) always, and
with probability at least 2/3, f̂(σ) ≤ f(σ)(1 + ε) + β?
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Abstract. For a variety of reasons, a number of recent works have studied the
classic communication problem INDEX, and its variant AUGMENTED-INDEX,
from a tradeoff perspective: how much communication can Alice (the player
holding the n data bits) save if Bob (the player holding the index) communi-
cates a nontrivial amount? Recently, Magniez et al. (STOC, 2010), Chakrabarti
et al. (FOCS, 2010) and Jain and Nayak gave information cost tradeoffs for this
problem, where the amount of communication is measured as the amount of in-
formation revealed by one player to the other. The latter two works showed that
reducing Alice’s communication to sublinear requires at least a constant amount
of communication from Bob.

Here, we show that the above result is just one point on a more general trade-
off curve. That is, we extend the earlier result to show that, for all b, either
Bob reveals Ω(b) information to Alice, or else Alice reveals n/2O(b) informa-
tion to Bob. This tradeoff lower bound is easily seen to be everywhere-tight, by
virtue of an easy two-round deterministic protocol. Our lower bound applies to
constant-error randomized protocols, with information measured under an “easy”
distribution on inputs.

1 Introduction

The INDEX problem is perhaps the most basic and often-encountered problem in com-
munication complexity. In this problem, Alice is given a string x ∈ {0, 1}n, and Bob an
index k ∈ [n] (we use [n] as shorthand for {1, 2, . . . , n}); they must determine xk, the
kth bit of x. They may use randomization and err with probability ≤ ε on each input.
The problem is sometimes also referred to as SET-MEMBERSHIP, based on interpreting
Alice’s string as (the characteristic vector of) a subset of [n], and the function to be
computed as “is k ∈ x?”

We note two aspects of the importance of this problem. Firstly, it is the starting
point for studying the effects of rounds and communication order on communication
complexity. The problem is hard for one-way communication, where messages go only
from Alice to Bob (and Bob announces the output); it is easy to show that Alice can
do no better than sending Ω(n) bits to Bob. However, it becomes exponentially easier
when interactive communication is allowed, or even when the communication is one-
way, but it is Bob who does the talking: Bob need only send Alice �logn� bits.1 All of

� Work supported in part by NSF Grant IIS-0916565 and a McLane Family Fellowship.
1 Throughout this paper “log” denotes the logarithm to the base 2.
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this is a fairly easy exercise; it is, in fact, Exercise 4.20 in the textbook of Kushilevitz
and Nisan [15], to which we refer the reader for thorough coverage of the basics of
communication complexity. And these results can be generalized to handle several nat-
ural variants and relaxations of the basic problem. Secondly, the INDEX problem and
its variants are important tools in proving a number of lower bounds in the data stream
model and on data structures. For instance, the works of Jayram et al. [13] and Kane
et al. [14] on the 1-pass space complexity of approximating frequency moments and
Lp norm (for 1 ≤ p ≤ 2), of Feigenbaum et al. [9] on lower bounds for various graph
streaming problems including connectivity and diameter approximation, Woodruff’s
lower bound for approximating frequent items in a data stream [20], and cell probe
lower bounds of Miltersen et al. [17] and Pǎtraşcu [18].

Thanks to its fundamental role and great importance, the INDEX problem and its vari-
ants — in particular, the AUGMENTED-INDEX problem [8,14] , which we study here —
have been subjected to plenty of scrutiny in recent research. Although the basic Ω(n)-
vs-O(logn) result quoted above is an easy exercise, recent work has required much
more sophisticated analysis, and has arguably led to some interesting mathematics. Our
work here should be understood in this context. Our goal is to provide the tightest anal-
ysis yet of the most relaxed version of this problem. We now turn to a review of the
most relevant past work on the problem, following which we can state our new results
precisely.

2 Preliminaries, Context, and Our Result

The starting point of the deeper results on INDEX is to consider tradeoff lower bounds:
if both Alice and Bob are allowed to send out nontrivial numbers of bits — a and b,
respectively — then what pairs of values (a, b) are achievable? The basic result quoted
above only considers the special cases b = O(1) and a = O(1). It is not hard to give
a simple two-round protocol where Bob sends Alice b ≤ logn bits (e.g., the most
significant b bits of his input), Alice then replies with an appropriate subset of a =
�n/2b� bits of her input, from which Bob then reads off xk. This raises the question
of whether this tradeoff is the best possible. Over the years, we have seen successively
stronger ways of answering “Yes” to this question, by lower-bounding various relaxed
versions of the INDEX problem (note that relaxing the problem makes it formally easier
to obtain upper bounds, and hence strengthens any lower bound we can prove). The
relaxations considered are as follows.

Augmentation. We allow Bob some side information. Specifically, at the start of the
protocol, the (k − 1)-bit prefix of x, which we denote x1:k−1, is revealed to Bob.
The resulting problem is called AUGMENTED-INDEX.

Information. We charge each player only for the amount of information their mes-
sages reveal to the other player (see Definition 1), and not for the number of bits
they send. The resulting cost measure is called information cost (as opposed to the
basic measure, which is communication cost). This a relaxation because, by basic
information theory, a message can reveal at most as much information as its length.

Verification. We give Bob a check bit c ∈ {0, 1}, and require the players to compute
the function AIV(x, k, c) = xk ⊕ c; the name AIV is shorthand for “augmented



450 A. Chakrabarti and R. Kondapally

index verification.” We then measure information cost under an input distribution
that ensures that xk always equals c. Such a distribution should be “easy” on the
players, because the problem’s distributional complexity under it is zero. Thus, in
a sense, the task facing the players is reduced to cheaply verifying that xk in fact
equals c. The catch is that their protocol must continue to achieve low error for all
inputs (x, k, c).

These relaxations have not been chosen arbitrarily; rather, each has been motivated by
a specific application. Augmentation has been used in the study of sketching complex-
ity [2] and for proving tight space lower bounds for a wide range of problems in the
data stream model [7,8,14]. Information cost was formally introduced by Chakrabarti
et al. [6] as a technique for proving direct sum theorems in communication and, in the
context of INDEX, was introduced by Jain et al. [12] as a means to quantify privacy loss.
The use of “easy” input distributions to measure information cost (i.e., the relaxation
to “verification” problems) was pioneered by Bar-Yossef et al. [3] as an important step
in proving more sophisticated direct sum theorems.2 Such direct sum arguments are at
the heart of a number of tight lower bounds for data stream problems [5,4,10,16]; they
are also implicit in several data structure lower bounds by way of communication lower
bounds on LOPSIDED-SET-DISJOINTNESS [18].

We now summarize the key previous lower bounds results on INDEX and its variants.
Ablayev [1] analyzed the one-way communication complexity of the basic INDEX prob-
lem using information-theoretic ideas. Miltersen et al. [17] extended the one-way lower
bound to AUGMENTED-INDEX (see also [2]). Further, Miltersen et al. proved the lower
bound a ≥ n/2O(b) for any randomized protocol for INDEX in which Alice and Bob
send a and b bits respectively. Jain et al. [12] extended this tradeoff to information cost
(with a and b now representing the respective information costs), but under a uniform
input distribution, which is a “hard” distribution for INDEX.

Magniez et al. [16] were the first to formally consider “easy” distributions in this
context. They proved a hybrid tradeoff lower bound in a restricted communication
setting; specifically, they proved that in a two-round protocol for AIV with an Alice
→ Bob → Alice communication pattern and O(1/n2) error, either Alice sends Ω(n)
bits or Bob reveals Ω(log n) information. Their main motivation was proving a tight
one-pass space lower bound for recognizing Dyck languages in the data stream model.
Chakrabarti et al. [4] generalized their result, removing the restriction on the commu-
nication pattern, and handlingO(1) error. They showed the following specific tradeoff:
either a = Ω(n) or b = Ω(1), where now a and b are both information costs. Jain and
Nayak [11] gave an alternate proof of this result. It is also worth noting that, in earlier
work, Pǎtraşcu [18] implicitly dealt with the easy-distribution issue, but only for (non-
augmented) INDEX: one can infer from his work the result that, for constant δ, either
b ≥ δ logn or a ≥ n1−O(δ).

Our main result is a culmination of this moderately long line of research. Whereas
the most recent previous result [4,11] provides only one point on the tradeoff curve for

2 This brief discussion does not do justice to the ingenuity of studying information cost under
“easy” distributions and the power of this idea in obtaining direct sum results. We urge the
interested reader to study the relevant discussion in Bar-Yossef et al. [3] for a more complete
picture.
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AIV, namely, when Bob reveals a tiny constant amount of information, we now provide
a complete characterization of the tradeoff.

Theorem 1 (Main Theorem, informal). Let b ≤ (logn)/100 be a positive integer. In
any 1

3 -error protocol for AIV, either Alice reveals n/2O(b) information, or Bob reveals
at least b information. Here, information is measured according to an “easy” input
distribution.

While our focus is on proving this fundamental theorem for its own sake, we note that
as an easy application, we obtain a cell-probe lower bound for the well-studied partial
sums problem [19]. In the partial sums problem, we are given an input array A[1 . . . n]
of bits. We preprocess it into a data structure so that given a query i ∈ [n], we can
determine RANK(i) =

∑i
k=1 A[k]. We want to minimize the space used by the data

structure in memory (organized as an array of cells) while making as few memory
lookups as possible to answer the query. Using our Main Theorem, we can prove a
space/query time tradeoff for this problem in the cell-probe model.

Corollary 1. Consider the cell-probe model with word size w. Let S denote the space
used by an algorithm for the partial sums problem and let t be the number of cell-probes
made by the algorithm. Then tw ≥ n/SO(t).

Proof. The following is a simple reduction from AIV to the partial sums problem.
Let D be a t-cell-probe (randomized) algorithm for the partial sums problem with

space usage S. Alice and Bob use D to solve AIV(x, k, c). Alice uses her input string
x as the input array and preprocesses it into a data structure as specified by D. Bob
on input (x1:k−1, k, c) queries, as specified by D, the preprocessed data structure for
RANK(k). For each cell probe, Bob sends Alice the addresses of the cells to probe.
This requires logS bits of communication. Alice then sends Bob the contents of the
cells specified by Bob. This requires w bits of communication. After t cell probes, Bob
can compute xk = RANK(k) − RANK(k − 1) and output AIV(x, k, c). In total, Bob
communicated t logS bits and Alice communicated tw bits. The corollary now follows
from the Main Theorem. ��

3 Formal Version of Main Theorem and Proof Outline

LetD := {0, 1}n× [n]×{0, 1}. The augmented index verification function, AIV : D →
{0, 1}, is defined by

AIV(x, k, c) := xk ⊕ c , for (x, k, c) ∈ D .
We also use AIV to denote the communication problem wherein Alice receives x and
Bob receives k, c, and x1:k−1, and their goal is to compute AIV(x, k, c) correctly, with
high probability. Letμ, μ0 denote the uniform distributions onD,D0 respectively, where

D0 := {(x, k, c) ∈ D : AIV(x, k, c) = 0} = {(x, k, c) ∈ D : xk = c} .
Let (X,K,C) ∼ μ. Let μ0 denote the conditional distribution μ | (XK = C).
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Definition 1 (Information costs). Let P be a randomized protocol for AIV and η a
distribution on D. Consider the (correlated) random variables X,K,C,R, T , where
(X,K,C) ∼ η, R is the public random string in P , and T is the transcript of messages
sent between Alice and Bob as they execute P . The information cost incurred by Alice
(resp. Bob) in P under η is defined as the amount of information revealed by Alice to
Bob (resp. Bob to Alice) through T , and is denoted by icostAη (P ) (resp. icostBη (P )). To
be precise,

icostAη (P ) := I(T : X | X1:K−1,K,C,R) ; icostBη (P ) := I(T : K,C | X,R) .

Theorem 2 (Main Theorem, formal). Let n and b be positive integers, with n large
enough and b ≤ (logn)/100. There exist positive constants ε and c such that if P is a
randomized protocol for AIVn with error at most ε under μ, then either icostAμ0

(P ) ≥
n/2cb or icostBμ0

(P ) ≥ b. In particular, the same tradeoff holds if P has worst case
two-sided error at most ε.

Proof. The high-level outline of our proof is similar to that in [4]. The proof has two
stages. In the first stage we assume the contrary and then zoom in on a specific set-
ting, R, of the public random string of P (thereby reducing it to a private-coin proto-
col) and a single transcript, t, that has two properties: (1) It is fat (to borrow a term
from [4]), meaning that from each player’s point of view, the entropy remaining in the
other player’s input, conditioned on R and t, is high. (2) It has low corruption, meaning
that on inputs consistent with t, the protocol is mostly correct. This stage is formalized
in Lemma 1 below.

In the second stage, we consider the distribution ρR,t induced on D by the condi-
tioning on R and t. This distribution is special because it arises from a communication
protocol: it satisfies the weak rectangle property given in Lemma 3 below. As a result,
we can show that it cannot simultaneously satisfy these fatness and corruption proper-
ties; see Lemma 2 below. This gives us our contradiction, and completes the proof. ��
We remark that the lion’s share of our technical innovation lies in the second stage. We
shall explain, at the appropriate juncture, why techniques in the earlier proofs [4,11] did
not suffice.

Definition 2 (Fatness, Witness Set, Corruption). A transcript t of a private-coin pro-
tocol for AIV is said to (D, δ, r)-fat if there exists a witness set K ⊆ [n], with |K| ≥
n− n/2Dr, such that

∀ k ∈ K : H(X̃ | X̃1:k−1, C̃, K̃ = k, X̃K̃ = C̃) ≥ n− k − n/2Dr , and (1)

H(K̃, C̃ | X̃, X̃K̃ = C̃) ≥ logn− δr , (2)

where (X̃, K̃, C̃) ∼ ρt and ρt is the distribution obtained by conditioning μ on the
transcript t. It is said to ε-corrupt if

out(t) = 0 , and E[AIV(X̃, K̃, C̃)] ≤ ε . (3)

Lemma 1 (First Stage of Proof of Main Theorem). Suppose P is a private-coin pro-
tocol for AIVn such that errμ(P ) ≤ ε, icostAμ0

(P ) ≤ n/2Dr, and icostBμ0
(P ) ≤ δr.

Then P has a transcript that is (D/100, 100δ, r)-fat and (100ε)-corrupt.
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Proof. This stage of the proof consists of a sequence of averaging arguments and ap-
plications of Markov inequalities. It proceeds along the lines of [4], and is only slightly
more complicated: there are some new twists because our notion of fatness is more nu-
anced than theirs. A complete proof is included in the full version of the paper. ��
Lemma 2 (Fat Transcript Lemma; Second Stage of Proof of Main Theorem). There
exist positive real constantsD, δ, ε such that it is impossible for a transcript of a private-
coin protocol for AIVn to be both (D, δ, r)-fat and ε-corrupt.

As mentioned above, the proof of this lemma requires us to use the special structure of
ρt. The following lemma gives us the crucial structural property we need: it is ultimately
a consequence of the basic rectangle property of deterministic communication proto-
cols [15, Ch. 1]. It can be viewed as a weak version of the rectangle property (or rather,
its randomized analogue due to Bar-Yossef et al. [3, Lemma 6.7]), where the weakness
is because Alice and Bob share some of the input to the communication problem.

Lemma 3 (Weak Rectangle Property; Lemma 6 of [4]). Let X = {0, 1}n and Y =
{(w, k, c) ∈ {0, 1}∗× [n]×{0, 1} : |w| = k− 1}. Let P be a private-coin protocol in
which Alice receives a string x ∈ X while Bob receives (w, k, c) ∈ Y , with the promise
that w = x1: k−1. Then, for every transcript t of P , there exist functions ft : X → R+

and gt : Y → R+ such that

∀ (x, k, c) ∈ {0, 1}n × [n]× {0, 1} : ρt(x, k, c) = ft(x)gt(x1:k−1, k, c) . �

We now turn to the main technical proof in this paper.

Proof (Proof of the Fat Transcript Lemma). Suppose to the contrary that for every
choice of D, δ, and ε, there exists a transcript t — and hence, a distribution ρ̃ = ρt
— such that (1), (2) and (3) do hold, with K as the witness set. Throughout this proof,
we let (X̃, K̃, C̃) ∼ ρ̃ and we let (X,K,C) ∼ ρ be an independent collection of
random variables, where the distribution ρ := ρ̃ | (X̃K̃ = C̃).

Let f = ft and g = gt be the functions given by Lemma 3. Let f̂ denote the proba-
bility distribution on {0, 1}n obtained by normalizing f to the probability simplex, and
let Y ∼ f̂ be a random variable independent of all aforementioned ones.

Define the mystery of a string x ∈ {0, 1}n to be

M(x) := EK [H(YK | Y1:K−1 = x1:K−1) | X = x] .

Intuitively, x has a high degree of mystery if, for a typical index k, the prefix x1:k−1 is
“about as likely” to be followed by a 0 as a 1, when drawing strings from the distribution
f̂ .

Analyzing this quantity is the key to obtaining a contradiction. On the one hand,
there cannot be too much mystery overall if the protocol is correct (indeed, we can say
that the protocol’s goal is to “remove the mystery” in x). To be precise, we can show
that

ε ≥ E[AIV(X̃, K̃, C̃)] ≥ (1− ε)H−1
b (E[M(X)]) , (4)

where the first inequality restates (3). Here Hb(p) = −p log p − (1 − p) log(1 − p) is
the binary entropy function, and H−1

b : [0, 1]→ [0, 1
2 ] is its inverse.
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On the other hand, the fatness properties (1) and (2) suggest that most strings x
should have high mystery. Indeed, let X := {x ∈ {0, 1}n : H(K | X = x) ≥
logn−Dδr} be the set of “typical” strings x, for which Alice does not learn too much
about Bob’s input. For each k ∈ [n], we can define a certain set of excluded strings
Zk ⊆ {0, 1}n. Then, we can show that

∀ k ∈ K ∀ x ∈ X \ Zk : M(x) ≥ 1
2

Pr[K ≥ k | X = x]− 2δ . (5)

Finally, we can show that these conditions on k and x fail only with low probability and
that K is often large. This will then imply that, for the setting δ = 1/D, we have

E[M(X)] ≥ 1
2
− 6
D
, (6)

which contradicts (4), for small enough ε and large enoughD. ��

4 Proofs of Technical Lemmas

We now turn to proving the claims made within the above proof of the Fat Transcript
Lemma.

4.1 Derivation of (4)

Let f = ft and g = gt be the functions given by Lemma 3, and let ρ = ρ̃ | (X̃K̃ = C̃).
In the summations below, c, u, v, w, x, and k range over {0, 1}, {0, 1}k−1, {0, 1}n−k,
{0, 1}n−k+1, {0, 1}n, and [n], respectively. We use notation of the form “u0v” to denote
the concatenation of the string u, the length-1 string “0”, and the string v. We have

E[AIV(X̃, K̃, C̃)] =
∑

k

∑
x

∑
c ρ̃(x, k, c) · AIV(x, k, c)

=
∑

k

∑
u

∑
b∈{0,1}

∑
v

∑
c ρ̃(ubv, k, c) · AIV(ubv, k, c) . (7)

Observe that for every triple (x, k, c), we have

ρ̃(x, k, c) ≥ Pr[X̃K̃ = C̃] · ρ(x, k, c) ≥ (1− ε)ρ(x, k, c) ,
where the last step uses (3). Now, noting that AIV(ubv, k, c) = 1 iff b = c, we can
manipulate (7) as follows, using the above inequality at step (8).

E[AIV(X̃, K̃, C̃)] =
∑

k

∑
u

∑
v

(
ρ̃(u0v, k, 1) + ρ̃(u1v, k, 0)

)
=

∑
k

∑
u

(
g(u, k, 1)

∑
v f(u0v) + g(u, k, 0)

∑
v f(u1v)

)
≥ ∑

k

∑
u

(
g(u, k, 0) + g(u, k, 1)

)
·min

{∑
v f(u0v),

∑
v f(u1v)

}
=

∑
k

∑
u

(
g(u, k, 0) + g(u, k, 1)

)(∑
w f(uw)

)
min

{∑
v f(u0v)∑
w f(uw) ,

∑
v f(u1v)∑
w f(uw)

}
=

∑
k

∑
u

(∑
w

∑
c ρ̃(uw, k, c)

)
×

min{Pr[Yk = 0 | Y1:k−1 = u],Pr[Yk = 1 | Y1:k−1 = u]}
≥ (1− ε)∑k

∑
x

∑
c ρ(x, k, c) ·H−1

b (H(Yk | Y1:k−1 = x1:k−1)) (8)
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= (1− ε)EX,K
[
H−1
b (H(YK | Y1:K−1 = X1:K−1))

]
≥ (1− ε)H−1

b (EX,K [H(YK | Y1:K−1 = X1:K−1)]) (9)

= (1− ε)H−1
b (E [M(X)]) ,

where (8) also uses the observation that for any binary random variableZ , min{Pr[Z =
0],Pr[Z = 1]} = H−1

b (H(Z)), and (9) uses Jensen’s inequality and the convexity of
H−1
b .
In the earlier works of Chakrabarti et al. [4] and Jain and Nayak [11], it was critical,

from here on, that the marginal of ρ on (x, k) was almost a product distribution. (Jain
and Nayak used this fact implicitly.) This in turn depended crucially on Bob’s informa-
tion cost being less than a small constant. For our more general tradeoff, we do not have
this luxury. Instead, we proceed as shown below.

4.2 Derivation of (5)

Recall that our goal is to come up with a set Zk of excluded strings for each k ∈ [n]
and then prove that

∀ k ∈ K ∀ x ∈ X \ Zk : M(x) ≥ 1
2

Pr[K ≥ k | X = x]− 2δ . (5, restated)

Here is how we define Zk. Below, and throughout the rest of this paper, we use J to
denote a random variable distributed uniformly in an interval of the form {k + 1, k +
2, . . . , n}; we write this briefly as J ∈R [k + 1, n].

Zk :=
{
x ∈ {0, 1}n : EJ∈R[k+1,n] [H(YJ | Y1:J−1 = x1:J−1)] ≤ 1− Dn

(n− k)2Dr
}
.

(10)
The following observation will be useful here, and later in the paper.

Lemma 4. Suppose r ≥ 1 and β > 0. Let K be a random variable taking values in
[n], and L ⊆ [n]. If H(K) ≥ logn− r, and |L| ≤ n/2βr, then Pr[K ∈ L] ≤ 2/β.

Proof. Let p = Pr[K ∈ K]. We have

logn− r ≤ H(K)
= p ·H(K | K ∈ L) + (1− p) · H(K | K /∈ L) + Hb(p)
≤ p · (logn− βr) + (1− p) · logn+ 1
= logn− βrp+ 1 .

Solving for p, we get p ≤ (r + 1)/(βr) ≤ 2/β, since r ≥ 1. ��
Now fix an index k ∈ K and a string x ∈ X \ Zk. Consider the non-mysterious bit
positions in the string x, i.e., the set Bx := {j ∈ [k + 1, n] : H(Yj | Yj−1 = x1:j−1) <
1/2}. We have

M(x) = E[H(YK | Y1:K−1 = x1:K−1) | X = x]

≥ 1
2

Pr[K > k ∧K /∈ Bx | X = x]
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≥ 1
2
(Pr[K ≥ k | X = x]− Pr[K ∈ {k} ∪ Bx | X = x]) .

To finish the proof, it suffices to show that the probability being subtracted off is at
most 4δ. We will now show that K , when conditioned on x, is unlikely to be in Bx. By
definition of Zk, for any x /∈ Zk we have

EJ∈R[k+1,n] [1−H(YJ | Y1:J−1 = x1:J−1)] ≤ Dn/(n− k)2Dr .
Thus, by Markov’s inequality, we can conclude that

Pr[J ∈ Bx] = Pr[1−H(YJ | Y1:J−1 = x1:J−1) ≥ 1/2] ≤ 2Dn/(n− k)2Dr
and therefore that |{k} ∪ Bx| ≤ 1 + 2Dn/2Dr ≤ n/2Dδr/2δ. Recall that we have
x ∈ X . By definition of X , this means that H(K | X = x) ≥ logn − Dδr. Now, by
Lemma 4, we have Pr[K ∈ {k} ∪ Bx | X = x] ≤ 2 · (2δ) = 4δ, as required.

4.3 Derivation of (6)

We have just shown that for k ∈ K and x ∈ X \ Zk, we have M(x) ≥ 1
2 Pr[K ≥ k |

X = x]− 2δ. Our goal now is to lower bound E[M(x)].
Define K′ := {k ∈ K : k ≤ n − Dn/2Dr}. The next two lemmas use the fatness

properties of ρ to conclude that K′ and X are, in a sense, typical sets.

Lemma 5. We have Pr[K /∈ K′] ≤ 4δ/D.

Proof. Definition 2 tells us that |K| ≥ n− n/2Dr. Therefore, we have

|[n] \ K′| ≤ Dn/2Dr + |[n] \ K| ≤ Dn/2Dr + n/2Dr ≤ n/2(D/2δ)·δr .

Eq. (2) gives us H(K,C | X) ≥ logn − δr, which implies H(K) ≥ logn− δr. Now
Lemma 4 completes the proof. ��
Lemma 6. We have Pr[X /∈ X ] ≤ 1/D.

Proof. From (2), we have E[logn − H(K | X)] ≤ δr. The lemma now follows from
the definition of X and Markov’s inequality. ��
To aid our estimation we shall choose, for each string x, a suitable index k at which to
apply (5). For each x ∈ {0, 1}n, define its critical index to be

k∗x := min{k ∈ K′ : x /∈ Zk} ,
where the minimum over an empty set defaults to∞. Notice that for all x ∈ X we have
M(x) ≥ 1

2 Pr[K ≥ k∗x | X = x]− 2δ. Thus,

E[M(X)] ≥ Pr [X ∈ X ] · E [M(X) | X ∈ X ]

≥ (
1− 1

D

) (
1
2 Pr[K ≥ k∗X | X ∈ X ]− 2δ

)
, (11)

where we have used Lemma 6. Now, we bound (11) as follows.

Pr[K ≥ k∗X | X ∈ X ] =
∑

x∈X Pr[X = x ∧K ≥ k∗x | X ∈ X ]
≥ ∑

k∈K′
∑

x∈X\Zk
Pr[X = x ∧K = k | X ∈ X ]
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=
∑

k∈K′ Pr[K = k]
∑

x∈X\Zk
Pr[X = x | K = k,X ∈ X ]

=
∑

k∈K′ Pr[K = k] · Pr[X /∈ Zk | K = k,X ∈ X ]
= Pr[X /∈ Zk ∧K ∈ K′ | X ∈ X ]
≥ Pr[X /∈ Zk ∧K ∈ K′]− Pr[X /∈ X ]
= Pr[K ∈ K′] · Pr[X /∈ Zk | K ∈ K′]− Pr[X /∈ X ]

≥ (
1− 4δ

D

) (
1− 1

D

)− 1
D ≥ 1− 6

D , (12)

where (12) follows from Lemmas 5, 6 and the following claim. Plugging this into (11),
we get

E[M(X)] ≥ 1
2
− 6
D
,

with the choice δ = 1/D.

Claim. We have Pr[X ∈ Zk | K ∈ K′] ≤ 1/D.

Proof. Recall that our distribution ρ is conditioned on XK = C. Using the chain rule
for entropy, we have

H(X | X1:K−1,K = k, C)
n− k =

1
n− k

n∑
j=k+1

H(Xj | X1:j−1,K = k, C)

= EJ∈R[k+1,n][H(XJ | X1:J−1,K = k)]
= EJ∈R[k+1,n] [Eu[H(XJ | X1:J−1 = u,K = k) | K = k]] . (13)

We could remove the conditioning on C in the latter two expressions because, for J >
k, the conditionsK = k and XK = C together determine C.

Our next step is conceptually critical. We will switch the random variable inside the
entropy expression in (13) from X to Y using the following claim, which makes use of
the weak rectangle property, Lemma 3.

Claim. For any j, k ∈ [n] with j > k, and any u ∈ {0, 1}k−1, we have the following
equivalence of conditional distributions:

X | (X1:j−1 = u,K = k) ≡ Y | (Y1:j−1 = u) .

In other words, for any z ∈ {0, 1}n, Pr[X = z | X1:j−1 = u,K = k] = Pr[Y = z |
Y1:j−1 = u].

Proof. It is easy to see that if z1:j−1 = u, then both the probabilities are equal to 0. If
not, we have uk = zk. Let f = ft and g = gt be the functions in Lemma 3. By that
lemma, we can write ρ(z, k, uk) = αf(z)g(u1:k−1, k, uk), where α is a normalization
factor. Letting w range over {0, 1}n−j+1 below, we have

Pr[X = z | X1:j−1 = u,K = k] = ρ(z, k, uk)
/∑

w ρ(uw, k, uk)

=
αf(z)g(u1:k−1, k, uk)∑
w αf(uw)g(u1:k−1, k, uk)

=
f(z)∑
w f(uw)

= Pr[Y = z | Y1:j−1 = u] .

��
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Making the switch from X to Y in (13), we have

H(X | X1:K−1,K = k, C)
n− k = EJ∈R[k+1,n] [Eu[H(YJ | Y1:J−1 = u) | K = k]]

= EJ∈R[k+1,n] [EX [H(YJ | Y1:J−1 = X1:J−1) | K = k]]

= EX
[
EJ∈R[k+1,n][H(YJ | Y1:J−1 = X1:J−1)] | K = k

]
(14)

By (1), for any k ∈ K′, we have

H(X | X1:K−1,K = k, C)
n− k ≥ 1− n

(n− k)2Dr .

Using this in (14), we get

EX [1− EJ∈R[k+1,n][H(YJ | Y1:J−1 = X1:J−1)] | K = k] ≤ n

(n− k)2Dr .

Since the expression inside the outer expectation is non-negative, by Markov’s in-
equality, the probability that it exceedsDn/(n−k)2Dr is at most 1/D. That is, Pr[X ∈
Zk | K = k] ≤ 1/D. Hence, Pr[X ∈ ZK | K ∈ K′] ≤ 1/D, which completes the
proof of the claim. ��
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Abstract. In a well-known result Goldreich and Trevisan (2003) showed
that every testable graph property has a “canonical” tester in which
a set of vertices is selected at random and the edges queried are the
complete graph over the selected vertices. We define a similar-in-spirit
canonical form for Boolean function testing algorithms, and show that
under some mild conditions property testers for Boolean functions can
be transformed into this canonical form.

Our first main result shows, roughly speaking, that every “nice” family
of Boolean functions that has low noise sensitivity and is testable by
an “independent tester,” has a canonical testing algorithm. Our second
main result is similar but holds instead for families of Boolean functions
that are closed under ID-negative minors. Taken together, these two
results cover almost all of the constant-query Boolean function testing
algorithms that we know of in the literature, and show that all of these
testing algorithms can be automatically converted into a canonical form.

Keywords: property testing, Boolean functions.

1 Introduction

Property testing has emerged as an intensively studied area of theoretical com-
puter science, with close connections to topics such as sublinear-time algorithms
and PCPs in complexity theory. Several distinct strands of research have emerged
corresponding to different types of objects to be tested: graphs, Boolean func-
tions, error-correcting codes, probability distributions, etc. Each of these sub-
areas has developed its own set of tools and techniques, and results often have
different “flavors” across these different areas. Given this state of affairs, a nat-
ural goal is to obtain a more unified view of property testing by uncovering
deeper underlying similarities between general results on testing different kinds
of objects. This high-level goal provides the impetus behind the current work.

The aim of this paper is to obtain “canonical” testers for testable Boolean
function properties, similar to the canonical testers for graph properties of
Goldreich and Trevisan [GT03]. Specialized to properties that are testable with
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a constant number of queries independent of n, the [GT03] result is essentially
as follows: Let P be any graph property that has a q(ε)-query testing algorithm,
independent of the number of vertices n. Then P is efficiently testable by an algo-
rithm that follows a simple prescribed “canonical form:” it draws q(ε) vertices at
random, queries all

(
q(ε)
2

)
edges between those vertices, does some deterministic

computation on the resulting data and outputs “accept” or “reject.”
We ask the following natural question: is there a similar “canonical form” for

Boolean function property testing algorithms? Such a result would presumably
say that any property of Boolean functions that is constant-query testable is in
fact constant-query testable by an algorithm that works roughly as follows: it
tosses some fair coins, exhaustively queries the function on “all inputs defined by
those coin tosses,” does some deterministic computation on the resulting data,
and outputs its verdict. We elaborate below, where we give a precise definition
of a “canonical Boolean function testing algorithm”. But first, as motivation,
it is useful to explain how we may view any Boolean function property testing
algorithm as a probability distribution over query strings.

Let P be any class of Boolean functions that has a testing algorithm A with
query complexity q(ε) independent of the number of variables n. (We may as-
sume that A is nonadaptive, since otherwise we can make A nonadaptive in
a standard way; this exponentially increases the query complexity but it still
does not depend on n.) We view A = (A1, A2) as having two stages: First, A1

generates all q(ε) query strings and then queries them. Next, A2 does some com-
putation on the results and outputs its verdict. This computation may a priori
be randomized, but a simple argument (see Section 4.2.3 of [GT03]) shows that
without loss of generality it may be assumed to be deterministic.

The sequence of query strings generated in the first stage can be viewed as a
draw from some distribution D over {0, 1}q(ε)×n, and since A is nonadaptive, this
distribution does not depend on the function f . But in general this distribution
may be quite complex and difficult to understand. Is there a simple “canonical
form” for the query generation stage of every Boolean function testing algorithm?

A Canonical Form for Boolean Function Testing Algorithms. In the
[GT03] result, there is only one type of distribution over queries for all testing
algorithms (and this distribution is very simple) – any difference between two
q(ε)-query testing algorithms comes from the deterministic computation they do
on the data. We would like an analogous result for testing Boolean functions,
which similarly involves only one kind of (simple) distribution over queries. Thus
motivated, we consider the following canonical form for Boolean function testers:

– First stage (query generation): Let z1, . . . , zk be independent and uni-
form random strings from {0, 1}n. This defines a natural partition of [n] into
2k blocks (see Section 3 for details). We say that a string x = x1 . . . xn ∈
{0, 1}n “respects the partition” if within each block Bb all variables xi are
set to the same value. The 22k

strings in {0, 1}n that respect the partition
are the queries the canonical tester makes.

– Second stage: With these 22k

query-answer pairs in hand, the algorithm
does some (deterministic) computation and outputs “accept” or “reject.”
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Some examples of known testers that can easily be converted to canonical form
as described above include the tester of [BLR93] for GF (2) linear functions and
the tester of [AKK+03] for degree k polynomials over GF (2). Let us consider the
[AKK+03] tester and see how to convert it to canonical form. The [AKK+03]
tester works by choosing k+1 strings z1, . . . zk+1 ∈ {0, 1}n uniformly at random
and then querying all points in the induced subspace. If a string x is in the in-
duced subspace of z1, . . . , zk+1 then it must also “respect the partition” induced
by z1, . . . , zk+1. So to convert the [AKK+03] tester to our canonical form, all we
have to do is ask some more queries.

A natural first hope is to generalize the above examples and show that every
Boolean function property that is testable using constantly many queries has a
“canonical form” constant-query testing algorithm of the above sort. However,
E. Blais [Bla10] has observed that there is a simple property that is testable
with O(1/ε) queries but does not have a constant-query canonical tester of the
above sort: this is the property of being a symmetric Boolean function. Let SYM
be the set of all symmetric Boolean functions (i.e., all functions where f(x) is
determined by |x|, the Hamming weight of x). SYM can be tested with a constant
number of queries with the following algorithm:

– Pick O(1/ε) pairs of points (xi, yi) ∈ {0, 1}n × {0, 1}n by choosing x uni-
formly at random from {0, 1}n then choosing y uniformly at random from
all inputs with the same weight as x.

– Check that for each pair f(xi) = f(yi). Accept if this holds; otherwise reject.

It is clear that if f ∈ SYM then the above test accepts with probability 1. On
the other hand, for any f that is ε-far from SYM, with probability at least ε the
string xi is one of the “bad” inputs that has the minority output in its level, and
with probability at least 1/2 the string yi is one of the inputs with the majority
output for the same level. So with probability at least ε/2, (xi, yi) is a witness
to the fact that f is not symmetric, and O(1/ε) queries are sufficient to reject f
with probability at least 2/3.

To show that SYM cannot be tested by a constant-query canonical tester,
it suffices to show that for k = o(log log n), with high probability each of the
22k

= no(1) queries generated by the tester has different Hamming weight. This
can be established by a straightforward but somewhat tedious argument which
we omit here (the main ingredients are the observation that each query string x
generated by the canonical tester has Hamming weight distributed according to
a binomial distribution B(n, j

2k ) for some integer j, together with standard anti-
concentration bounds on binomial distributions with sufficiently large variance).

The example above shows that, unlike the graph testing setting, it is not the
case that every constant-query Boolean function tester can be “canonicalized.”
So in order to obtain meaningful results on “canonicalizing” Boolean function
testers, one must restrict the types of properties and/or testers that are consid-
ered; this is precisely what we do in our results, as explained below.

Our Results. Our main results are that certain “nice” testing algorithms,
for certain “nice” types of Boolean function properties, can automatically be
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converted into the above-described canonical form. Roughly speaking, the test-
ing algorithms we can handle are ones for which every distribution Dx1,...,xt in
the query generation phase is a product of n Bernoulli distributions over the n
coordinates (with some slight additional technical restrictions that we describe
later). This is a restricted class of algorithms, but it includes many different
testing algorithms that have been proposed and analyzed in the Boolean func-
tion property testing literature. We call such testing algorithms “Independent
testers” (see Section 2.1 for a precise definition), and we give two results showing
that independent testers for certain types of properties can be “canonicalized.”

Our first result applies to classes C that are closed under negating variables
and contain only functions with low noise sensitivity. We say such a class C is
closed under Noisy-Neg minors (see Definition 1). For such classes C we show:

Theorem 1 (Informal). If C is closed under Noisy-Neg minors and has a
(two-sided) independent tester, then C has a (two-sided) canonical tester.

Our second result applies to classes C that are closed under identification of
variables, negation of variables, and adding or removing irrelevant variables.
Following [HR05], we say that such a class is closed under ID-Neg minors (see
Definition 2). For such classes C we show the following:

Theorem 2 (Informal). If C is closed under ID-Neg minors and has a one-
sided independent tester, then C has a one-sided canonical tester.

These two results allow us to give “canonical” versions of many different Boolean
function property testing algorithms in the literature, including the algorithms
of [PRS02, BLR93, AKK+03, FKR+04, Bla09, DLM+07, MORS10] for the
classes of dictators, GF (2)-linear functions, GF (2)-deg-d functions, J-juntas, de-
cision lists, size-s decision trees, size-s branching programs, s-term DNFs, size-s
Boolean formulas, s-sparseGF (2) polynomials, size-s Boolean circuits, functions
with Fourier degree d and halfspaces. One exception comes from [GOS+09]; that
work gives testing algorithms for the class of Boolean functions with Fourier di-
mension d (i.e. for “d-juntas of parities”) and for the class of Boolean functions
with s-sparse Fourier spectra. It is easy to see that these classes are not closed
under Noisy-Neg minors, since each class contains all parity functions, and the
testers of [GOS+09] do not have 1-sided error. (However, we note that inspection
of the testers provided in [GOS+09] shows that they can be straightforwardly
“canonicalized” just like the [AKK+03] tester discussed in the introduction.)

Our Approach. Developing a canonical tester for Boolean function proper-
ties seems to be significantly more challenging than for graph properties. The
high-level idea behind the [GT03] graph testing canonicalization result is that
if k edges have been queried so far, then all “untouched” vertices (that are not
adjacent to any of the k queried edges) are equally good candidates for the
next vertex to be involved in the query set. For Boolean function testing the
situation is more complicated because of the structure imposed by the Boolean
hypercube; for example, if the two strings 0n and 1n have been queried so far,
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then it is clearly not the case that all possible 3rd query strings are “created
equal” in relation to these first two query strings.

A natural first effort to canonicalize a Boolean function property tester is to
design a canonical tester that makes its queries in the first stage, and then simply
directly uses those queries to “internally” simulate a run of the independent
tester in its second stage. Ideally, in such an “internal” simulation, each time
the original independent tester makes a query the canonical tester would use a
query-response pair obtained in its first stage that corresponds reasonably well
to the string queried by the independent tester. However, this naive approach
does not seem to suffice, since an independent tester can easily make queries
which do not correspond well to any query made by the canonical tester. As a
simple example, the first query of an independent tester could independently set
each variable xi to 1 with probability 1/3. The number of 1s in the first query of
this independent tester is distributed as a draw from the binomial distribution
B(n, 1/3), but the number of 1s in any query made by a q-query canonical tester
is distributed as a draw from the binomial distribution B(n, p), where p is of the
form (integer)/2q. If q is a constant independent of n, these two distributions
have variation distance nearly 1.

The high-level idea of both our constructions is that instead of trying to ap-
proximately simulate an execution of the independent tester on the n-variable
function f (which it cannot do), the canonical tester perfectly simulates an execu-
tion of the independent tester on a different function f ′ over n′ relevant variables.
Since this simulation is perfect, the canonical tester successfully tests whether
f ′ has property C. For the case of Noisy-Neg minors the analysis shows that
w.h.p. the independent tester’s view looks the same whether the target function
is f ′ or f . Therefore, a “good” answer for f ′ must also be a good answer for f .
For the case of ID-Neg minors, the analysis shows that because of the way f ′ is
determined, we have that (1) if f belongs to C then so does f ′; and (2) if f is
far from C, then f ′ is at least slightly far from C. Along with the fact that the
canonical tester tests f ′ successfully, these conditions imply that the canonical
tester tests f successfully.

2 Preliminaries

A Boolean function property is simply a class of Boolean functions. Throughout
the paper we write Fn to denote the class of all 22n

Boolean functions mapping
{0, 1}n to {0, 1}. We write Cn to denote a class of n-variable Boolean functions.

We adopt all the standard definitions of Boolean function property testing (see
e.g. [PRS02, FKR+04, MORS10]) and do not repeat them here because of space
limitations. As mentioned in the Introduction, we may view any nonadaptive
testing algorithm T as consisting of two phases: an initial “query generation
phase” T1 in which the query strings are selected (at the end of this phase the
queries are performed), and a subsequent “computation” phase T2 in which some
computation is performed on the query-answer pairs and the algorithm either
accepts or rejects. Throughout the paper we will describe and analyze testing
algorithms in these terms.
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The Classes We Consider. Our first main result deals with classes of Boolean
functions closed under Noisy-Neg minors; we give the relevant definitions below.

Definition 1. (Noise Sensitivity of f) Let f : {0, 1}n → {0, 1}, let ε ∈
[0, 1/2], and let (x, y) be a pair of (1 − 2ε)-correlated random inputs (i.e. x is
uniform from {0, 1}n and y is formed by independently setting each yi to equal
xi with probability 1 − 2ε, and to be uniform random otherwise). The noise
sensitivity of f at noise rate ε is defined to be NSε(f) := Pr[f(x) = f(y)].

(Noise Sensitivity of a class C) Let C = ∪n≥1Cn be a class of Boolean
functions. We define NSε(C) := maxn maxf∈Cn{NSε(f)}, the noise sensitivity
of C at noise rate ε, to be the maximum noise sensitivity of any f ∈ C.

(C is closed under Noisy-Neg minors) Let C = ∪n≥1Cn be a class of
Boolean functions. We say that C is closed under Noisy-Neg Minors if C is
closed under negating input variables and there is a function g(ε) (not depending
on n) which is such that limε→0+ g(ε) = 0 and NSε(C) ≤ g(ε).

Our second main result deals with classes C closed under ID-Neg Minors.

Definition 2. (ID-Neg Minors) Let f ∈ Fn and let f ′ ∈ Fn′ . We say that
f ′ is an ID-Neg Minor of f if f ′ can be produced from f by a (possibly empty)
sequence of the following operations: (i) Adding/Removing irrelevant variables
(recall that variable xi is irrelevant if there is no input string where flipping
xi changes the value of f); (ii) Identifying input variables (e.g. the function
f(x1, x1, x3) is obtained by identifying variable x2 with x1); and (iii) Negating
input variables.

(C is closed under ID-Neg Minors) Let C = ∪n≥1Cn be a class of Boolean
functions, let f ∈ Fn, and let f ′ ∈ Fn′ . We say that C is closed under ID-Neg
Minors if the following holds: If f ∈ Cn and f ′ is an ID-Neg Minor of f , then
f ′ ∈ C.

As examples, the class of GF (2) degree-d polynomials is closed under ID-Neg
minors, and the class of halfspaces is closed under Noisy-Neg minors.

We close this preliminaries section with two definitions that will be useful:

Definition 3. Let f be a function in Fn and let F+, F− be two disjoint subsets of
[n]. We define Noisy(f, F+, F−) ∈ Fn to be the function Noisy(f, F+, F−)(x1, . . . ,
xn) = f(t1, . . . , tn), where ti := 1 if i ∈ F+, ti := 0 if i ∈ F−; and ti := xi
otherwise.

Intuitively, given a function f to test, our canonical tester for classes C that are
closed under Noisy-Neg minors will choose F+, F− according to some distribution
(defined later) and will instead test f ′ = Noisy(f, F+, F−).

Definition 4. Let f ∈ Fn, F+ and F− be two disjoint subsets of [n], and id be
an element of F+. For n′ = n−|F+|−|F−|+1, we define ID-Neg(f, F+, F−, id) ∈
Fn′ to be the function ID-Neg(f, F+, F−, id)(x1, . . . , xn′) = f(t1, . . . , tn), where
ti := xid if i ∈ F+; ti := xid if i ∈ F−; and ti := xi otherwise.
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Similarly to the case above, given a target function f our canonical tester for
classes C that are closed under ID-Neg minors will choose F+, F−, id according
to some distribution (defined later) and will instead test the target function
f ′ = ID-Neg(f, F+, F−, id).

2.1 The Testing Algorithms We Can Canonicalize: Independent
Testers

Definition 5. A q(ε)-query independent tester for class C is a probabilistic or-
acle machine T = (T1, T2) which takes as input a distance parameter ε and is
given access to a black-box oracle for an arbitrary function f : {0, 1}n → {0, 1}.

(First Stage) The query generation algorithm T1 chooses q(ε) query strings
in the following way: To choose the i-th string, the algorithm partitions the set
[n] into 2i−1 blocks. The block Bb1,...,bi−1 contains those indices that were set to
bj in the jth query string xj for all j = 1, . . . , i − 1. For each block Bb1,...,bi−1 ,
for each m ∈ Bb1,...,bi−1 , the algorithm sets xim to 1 with probability pb1,...,bi and
to 0 with probability 1− pb1,...,bi . The resulting string xi is the i-th query string.
After choosing all the strings, T1 queries all q(ε) strings x1, . . . , xq(ε) and gets
back responses f(x1), . . . , f(xq(ε)).

(Second Stage) The computation stage T2 gets as input the q(ε) query-
answer pairs (x1, f(x1)), . . . , (xq(ε), f(xq(ε))), does some deterministic compu-
tation on this input, and outputs either “accept” or “reject.”

In an independent tester the query generation algorithm T1 must satisfy the
following conditions:

– For each string b = (b1, . . . , bt) the probability pb = pb(ε) is a value 0 ≤ pb ≤ 1
(which may depend on ε but is independent of n).

– For each t, the 2t values pb1,...,bt (as b ranges over {0, 1}t) are all rational
numbers, and (over all t) the denominator of each of these rational numbers
is at most c = c(ε) (c may depend on ε but is independent of n). We say that
c(ε) is the granularity of the independent tester T.

If T is a one-sided tester then for any f : {0, 1}n → {0, 1}, if f belongs to C then
Pr[T f = “accept”] = 1, and if f is ε-far from C then Pr[T f = “reject”] ≥ r(ε),
where r(ε) > 0 is a positive-valued function of ε only. We say that r(ε) is the
rejection parameter of the tester.

If T is a two-sided tester then for any f : {0, 1}n → {0, 1}, if f belongs to
C then Pr[T f = “accept”] = 1 − a(ε), and if f is ε-far from C then Pr[T f =
“reject”] ≥ r(ε) where a and r are functions of ε only and for 0 < ε < 1/2, a(ε) <
r(ε). We say that a(ε) and r(ε) are the acceptance and rejection parameters of
the tester respectively.

Given an independent tester T as described above, we let Prod(ε) denote the
product of the denominators of all probabilities pb1,...,bt(ε) where t ranges over
all possible values 1, 2, . . . , q(ε) and b = (b1, . . . , bt) ranges over all t-bit strings.
If the tester T is c(ε)-granular, it is easy to see that Prod(ε) is at most c(ε)2

q(ε)+1
.

It is clear that each subset Bb1,...,bt of [n] described above has size binomially
distributed according to B(n, �/Prod(ε)) for some integer �.
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3 A Canonical Form for Testers, and Our Main Results

Before stating our main results precisely, we give a precise description of the
canonical form mentioned in the introduction.

Definition 6. Let q′ : [0, 1) → N. A q′-canonical tester for class C is a proba-
bilistic oracle machine T = (T1, T2) which takes as input a distance parameter ε
and is given access to a black-box oracle for an arbitrary function f : {0, 1}n →
{0, 1}, and performs as follows.

Given input parameter ε, the query generation algorithm T1 works as follows.

1. z1, . . . , zq
′(ε) are selected to be independent uniformly random n-bit strings.

These strings define a partition B of [n] into 2q
′(ε) blocks: an element i ∈ [n]

lies in block Bb1,...,bq′(ε) if the i-th bit of string zj equals bj for all j =
1, . . . , q′(ε).

2. Let QB ⊆ {0, 1}n be the set of all strings x such that the following condition
holds: ∀i, j ∈ [n], if i and j are in the same partition subset Bb1,...,bq′(ε) ∈ B
then xi = xj .

3. Using the oracle for f , T1 queries all 22q′(ε)
strings x ∈ QB.

The computation stage T2 is given the 22q′(ε)
query-answer pairs

[(x, f(x))]x∈QB , does some deterministic computation, and outputs either
“accept” or “reject.”

The success criteria for one-sided (two-sided, respectively) canonical testers
are entirely similar to the criteria for independent testers. We note that a q′-
canonical tester makes 22q′(ε)

queries when run with input parameter ε.

3.1 Main Results

As our main results, we show that (i) any class that is closed under Noisy-Neg
minors and is constant-query testable by a (two-sided) independent tester is
also constant-query testable by a (two-sided) canonical tester; and (ii) any class
that is closed under ID-Neg minors and is constant-query testable by a one-
sided independent tester is also constant-query testable by a one-sided canonical
tester. More precisely, we prove the following:

Theorem 3. Let C be any class of functions closed under Noisy-Neg Minors
and let g(ε) be as in Definition 1. Let T be a q(ε)-query independent tester for
property C with acceptance and rejection parameters a(ε), r(ε). Let q′2(ε) be the
smallest integer value that satisfies the following bound:

NSProd(ε)
2 · 1

2q′2(ε)
(C) ≤ r(ε)− a(ε)

16q(ε)
.

Let η′ = 2q′2(ε) mod Prod(ε)

2q′2(ε) where Prod is as defined in Section 2.1and let q′1(ε) =⌈
32

NSη′(C) ln 8
r(ε)−a(ε)

⌉
. Let q′(ε) = q′2(ε) · (q′1(ε)+1). Then there is a q′-canonical
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tester Canon(T ) for C with acceptance and rejection parameters a′(ε), r′(ε),
where a′(ε) = 3

4a(ε) + 1
4r(ε), and r′(ε) = 1

4a(ε) + 3
4r(ε).

Theorem 4. Let C be any class of functions closed under ID-Neg Minors. Let
T be a one-sided independent tester for property C that has query complexity
q(ε), granularity c(ε), and rejection parameter r(ε). Let ε1 = r(ε)

4q(ε) and let q′(ε)
be a defined as q′(ε) = �log(Prod(ε) · Prod(ε1))� where Prod is as described in
Section 2.1. Then there is a one-sided q′-canonical tester Canon(T ) for property
C which, on input parameter ε, has rejection parameter ( 3r(ε)/4

1−r(ε)/4) · r(ε1).

Throughout the rest of the paper whenever we write “T ” or “C” without any
other specification, we are referring to the tester and property from Theorem 3
or Theorem 4 (which one will be clear from context).

4 Overview of the Proofs of Theorems 3 and 4

In this section we give a high-level explanation of our arguments and of the
constructions of our canonical testers. Full details and complete proofs of Theo-
rems 3 and 4, as well as implications of our results for various specific function
classes and testing algorithms, are given in the full version.

We first note that an execution of the Independent Tester T = (T1, T2) (see
Definition 5) with input parameter ε creates a 2q(ε)-way partition of the n vari-
ables by independently assigning each variable to a randomly chosen subset in
the partition with the appropriate probability (of course these probabilities need
not all be equal). All queries made by the independent tester then respect this
partition.

Consider the following first attempt at making a canonical tester Canon(T ) =
(Canon(T )1,Canon(T )2) from an independent tester T . First, Canon(T )1 parti-
tions the n variables into 2q

′
subsets of expected size n/2q

′
, as specified in Defini-

tion 6, and makes all corresponding queries; it then passes both the queries and
the responses to the second stage, Canon(T )2. The value q′ will be such that 2q

′

equals Prod(ε)·k+rem, where 0 ≤ rem < Prod(ε), and k is a positive integer. In
the second stage, Canon(T )2 chooses the first Prod(ε) ·k subsets of Canon(T )1’s
partition (let us say these subsets collectively contain n′ variables) and ignores
the variables in the last rem subsets. For the n′ variables contained in these first
Prod(ε) · k subsets, Canon(T )2 can perfectly simulate a partition created by an
execution of the independent tester T on these n′ variables with parameter ε,
by “coalescing” these Prod(ε) · k subsets into 2q

′(ε) subsets of the appropriate
expected sizes. (To create a subset whose size is binomially distributed accord-
ing to B(n′, �/Prod(ε)), Canon(T )2 “coalesces” a collection of k� of the Prod(ε)
subsets.) To simulate each of the q = q(ε) queries that T makes, Canon(T )2 sets
the n′ variables as T1 would set them given this partition.

Obviously, the problem with the above simulation is how to set the extra
variables in the remaining rem subsets in each of the q queries. The n′ variables
described above are faithfully simulating the distribution over query strings that
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T would make if it were run on an n′-variable function with input parameter
ε, but of course the actual queries that Canon(T ) makes have the additional
rem variables, and the corresponding responses are according to the n-variable
function f. Thus, we have no guarantee that T2 will answer correctly w.h.p. when
executed on the query-response strings generated by the simulator Canon(T )2 as
described above. Nevertheless, the simulation described above is a good starting
point for our actual construction.

The underlying idea of our canonical testers is that instead of (imperfectly)
simulating an execution of the independent tester on the actual n-variable target
function f , the canonical tester perfectly simulates an execution of the indepen-
dent tester on a related function f ′. Our analysis shows that due to the special
properties of the independent tester and of the classes we consider, the response
of the independent tester on function f ′ is also a legitimate response for f .

Below we describe the construction of a canonical tester for two different
types of independent testers and classes. The first construction shows how to
transform T , where T is a two-sided independent tester for a class C that is
closed under Noisy-Neg Minors, into Canon(T ), a two-sided canonical tester
for class C. The second construction shows how to transform T , where T is
a one-sided independent tester for a class C closed under ID-Neg minors, into
Canon(T ), a one-sided canonical tester for C.

4.1 Two-Sided Independent Testers and Classes Closed under
Noisy-Neg Minors

We first note that it is easy to construct an algorithm that approximatesNSη(f)
of a target function f by non-adaptively drawing pairs of points (x, y) where x
is chosen uniformly at random and y is 1− 2η correlated with x. It is also easy
to see that if η is a rational number c1/c2 where c2 is a power of 2, then the
distribution over queries made by such an algorithm can be simulated using a
canonical tester.

For ease of understanding we view our first canonical tester as having two
parts (it will be clear that these two parts can be straightforwardly combined
to obtain a canonical tester that follows the template of Definition 6). The first
part is an algorithm that approximates NSη′(f) and rejects any f for which
NSη′(f) is noticeably higher than NSη′(C) (here η′ is a parameter of the form
(integer)/(power of 2) that will be specified later).

The second part of the tester simulates the partition generated by the in-
dependent tester T as described at the start of Section 4. Let F+ contain the
variables assigned to the first rem/2 subsets from the rem “remaining” subsets,
and let F− contain the variables assigned to the last rem/2 of those subsets.
As a thought experiment, we may imagine that the variables in F+ ∪ F− are
each independently assigned to a randomly selected one of the Prod(ε) partition
subsets with the appropriate probability. In this thought experiment, we have
perfectly simulated a partition generated by running T1 over an n-variable func-
tion. We now define f ′ based on the subsets F+ and F−. The function f ′ is
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simply the restriction of f under which all variables in F+ are fixed to 1 and all
variables in F− are fixed to 0.

Now, we would like Canon(T ) to generate the q query-answer pairs for f
that T1 would make given the partition from the thought experiment described
above. While Canon(T ) cannot do this, a crucial observation is that Canon(T )
can perfectly simulate q query-answer pairs that T1 would make given the above-
described partition where the answers are generated according to f ′. Moreover,
our analysis will show (using the fact that C is closed under negation) that
we may assume w.l.o.g. that each of these q queries is individually uniformly
distributed over {0, 1}n.

Thus for each individual (uniform random) query string x, f ′(x) is equivalent
to f(y) where y is a random string that is (1 − 2η′)-correlated with x, where
η′ = rem/2q

′
. Now since NSη′(C) depends only on η′, by choosing η′ small

enough (and q′ large enough), by a union bound with high probability f(x)
equals f ′(x) for all the queries x that were generated. Since this is the case, then
T2 must with high probability generate the same output on target function f
and f ′. So since T is (by hypothesis) an effective tester for f it must be the case
that T ’s responses on f ′ are also ”good” for f .

4.2 One-Sided Independent Testers and Classes Closed under
ID-Neg Minors

Our second canonical tester construction also begins by simulating a partition
of the independent tester T over n′ variables as described above. However, now
we will think of the parameters as being set somewhat differently: we view the
canonical tester as partitioning the n variables into 2q

′(ε) subsets where now
q′ = q′(ε) is such that 2q

′
equals Prod(ε1) · k + rem, where ε1 � ε (more

precisely ε1 = r(ε)
4q(ε) , though this exact expression is not important for now),

0 ≤ rem < Prod(ε), and k is a positive integer. The canonical tester then
defines a new function f ′ over n′ variables by applying an operator Fε1 to the
setX of 22q′(ε)

query strings that Canon(T )1 generates; we now describe how this
operator acts. Let F+ contain the variables assigned to the first rem/2 subsets
from the rem “remaining” subsets, and let F− contain the variables assigned to
the last rem/2 of the rem subsets. Given f , the function f ′ obtained by applying
F ε1 to X is chosen in the following way: f ′ is the same as f except that

– A variable xid is chosen by taking the lexicographically first element of F+;
– All variables in F+ (F−) are identified with xid (xid).

Canon(T ) places id at random in one of the remaining partition subsets and
then selects the appropriate set of query strings that T1 would make given the
simulated partition over n′ variables described above, and constructs query-
answer pairs for these strings in which the answers are the corresponding values
of f ′ on these strings (similar to the key observation in Section 4.1, it is indeed
possible for Canon(T ) to do this). Finally, Canon(T ) passes these queries and
responses to T2 and responds as T2 does.
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The proof of correctness proceeds in two parts. First, we show that with
high probability Canon(T ) successfully tests target function f ′. (This is an easy
consequence of the fact, mentioned above, that Canon(T ) perfectly simulates
T ’s partition over the n′ variables.) Second, we show that (1) if f ∈ C and C
is closed under ID-Neg minors then f ′ ∈ C; and (2) if f is ε-far from C then
w.h.p. f ′ is ε1-far from C, where the value of ε1 depends only on ε. We note
that (2) does not hold in general for f, f ′ where f ′ is an arbitrary ID-Neg minor
of f . However, our analysis shows that assuming that there exists a one-sided
independent tester for class C, (2) holds for f ′ chosen in the way described above.
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Abstract. We prove new lower bounds on the likely size of the maxi-
mum independent set in a random graph with a given constant average
degree. Our method is a weighted version of the second moment method,
where we give each independent set a weight based on the total degree
of its vertices.

1 Introduction

We are interested in the likely size of the largest independent set S in a random
graph with a given average degree. It is easy to see that |S| = Θ(n) whenever the
average degree is constant, and Shamir and Spencer [8] showed using Azuma’s
inequality that, for any fixed n, |S| is tightly concentrated around its mean.
Moreover, Bayati, Gamarnik, and Tetali [3] recently showed that |S|/n converges
to a limit with high probability. Thus for each constant c there is a constant
αcrit = αcrit(c) such that

lim
n→∞Pr[G(n, p = c/n) has an independent set of size αn] =

{
1 α < αcrit

0 α > αcrit .

By standard arguments this holds in G(n,m = cn/2) as well.
Our goal is to bound αcrit as a function of c, or equivalently to bound

ccrit = sup {c : αcrit(c) ≥ α} ,
as a function of α. For c ≤ e, a greedy algorithm of Karp and Sipser [7] asymp-
totically finds a maximal independent set, and analyzing this algorithm with
differential equations yields the exact value of αcrit. For larger c, Frieze [6] deter-
mined αcrit to within o(1/c), where o refers to the limit where c is large. These
bounds were improved by Coja-Oghlan and Efthymiou [5] who prove detailed
results on the structure of the set of independent sets.

We further improve these bounds. Our method is a weighted version of the
second moment method, inspired by the work of Achlioptas and Peres [2] on
random k-SAT, where each independent set is given a weight depending on the
total degree of its vertices. In addition to improving bounds on this particular
problem, our hope is that this advances the art and science of inventing random
variables that counteract local sources of correlation in random structures.
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We work in a modified version of the G(n,m) model which we call G̃(n,m).
For each of the m edges, we choose two vertices u, v uniformly and independently
and connect them. This may lead to a few multiple edges or self-loops. A vertex
with a self-loop cannot belong to an independent set. In the sparse case where
m = cn/2 for constant c, with constant positive probability G̃(n,m = cn/2) has
no multiple edges or self-loops, in which case it is uniform in the usual model
G(n,m = cn/2) where edges are chosen without replacement from distinct pairs
of vertices. Thus any property which holds with high probability for G̃(n,m)
also holds with high probability for G(n,m), and any bounds we prove on αcrit

in G̃(n,m) also hold in G(n,m).
We review the first moment upper bound on αcrit from Bollobás [4]. Let X

denote the number of independent sets of size αn in G̃(n,m). Then

Pr[X > 0] ≤ E[X ] .

By linearity of expectation, E[X ] is the sum over all
(
n
αn

)
sets of αn vertices of

the probability that a given one is independent. The m edges (u, v) are chosen
independently and for each one u, v ∈ S with probability α2, so

E[X ] =
(
n

αn

)
(1− α2)m .

In the limit n→∞, Stirling’s approximation n! = (1 + o(1))
√

2πnnn e−n gives(
n

αn

)
= Θ

(
1√
n

enh(α)

)
, (1)

where h is the entropy function

h(α) = −α lnα− (1− α) ln(1− α) ,

and where Θ hides constants that depend smoothly on α. Thus

E[X ] = Θ
(

1√
n

en(h(α)+(c/2) ln(1−α2))

)
.

For each c, the α such that

h(α) + (c/2) ln(1− α2) = 0 (2)

is an upper bound on αcrit(c), since for larger α the expectation E[X ] is expo-
nentially small.

We find it more convenient to parametrize our bounds in terms of the function
ccrit(α). Then (2) gives the following upper bound,

ccrit(α) ≤ 2
α lnα+ (1− α) ln(1− α)

ln(1 − α2)
≤ 2

ln(1/α) + 1
α

. (3)

We will prove the following nearly-matching lower bound.



474 V. Dani and C. Moore

Theorem 1.1. For any constant x > 4/e, for sufficiently small α

ccrit(α) ≥ 2
ln(1/α) + 1

α
− x√

α
. (4)

Coja-Oghlan and Efthymiou [5] bounded ccrit within a slightly larger factor
O(

√
ln(1/α)/α).

Inverting (3) and Theorem 1.1 gives the following bounds on αcrit(c). The
lower bound is a significant improvement over previous results:

Corollary 1.2. For z > 0, let W (z) denote the unique positive root x of the
equation xex = z. Then for any constant y > 4

√
2/e,

2
c
W
(ec

2

)
− y
√

ln c
c3/2

≤ αcrit ≤ 2
c
W
(ec

2

)
,

where the lower bound holds for sufficiently large c.

If we like we can expand W (ec/2) asymptotically in c,

W
(ec

2

)
= ln c− ln ln c+ 1− ln 2 +

ln ln c
ln c

− 1− ln 2
ln c

+
1
2

(ln ln c)2

(ln c)2
− (2 − ln 2)

ln ln c
(ln c)2

+
3 + (ln 2)2 − 4 ln 2

2(ln c)2
+O

(
(ln ln c)3

(ln c)3

)
.

The first few of these terms correspond to the bound in [6], and we can extract
as many additional terms as we wish.

2 The Weighted Second Moment Method

Our proof uses the second moment method. For any nonnegative random variable
X , the Cauchy-Schwarz inequality implies that

Pr[X > 0] ≥ E[X ]2

E[X2]
. (5)

If X counts the number of objects of a certain kind, (5) shows that at least one
such object exists as long as the expected number of objects is large and the
variance is not too large.

Unfortunately, applying this directly to the numberX of independent sets fails
utterly. The problem is that for most pairs of sets of size αn, the events that they
are independent are highly correlated, unlike the case where the average degree
grows sufficiently quickly with n [4, 6]. As a result, E[X2] is exponentially larger
than E[X ]2, and the second moment method yields an exponentially small lower
bound on Pr[X > 0].

One way to deal with these correlations, used by Frieze in [6], is to partition
the vertices into sets Vi of �1/α� vertices each and focus on those independent
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sets that intersect each Vi exactly once. In that case, a large-deviations inequality
allows us to override the correlations.

Here we pursue a different approach, inspired by the work of Achlioptas and
Peres [2] on random k-SAT. The idea is to give each independent set S a weight
w(S), depending exponentially on local quantities in the graph. Specifically, we
define

w(S) = μ# of edges (u, v) with u, v /∈ S ,

for some μ < 1. If the number of edges m is fixed, the number of edges where
neither endpoint is in S is simply m minus the total degree of the vertices in S.
Thus we can also write

w(S) = μm−
∑

v∈S deg(v) . (6)

We will apply the second moment method to the total weight of all indepen-
dent sets of size αn,

X =
∑

S⊆V,|S|=αn
S independent

w(S) .

If we tune μ properly, then for particular α�, c� we have E[X2] = Θ
(
E[X ]2

)
,

in which case Pr[X > 0] is bounded above zero. In that case ccrit(α�) ≥ c�, or
equivalently αcrit(c�) ≥ α�.

Why is this the right type of weight? Intuitively, one of the main sources of
correlations between independent sets is the temptation to occupy low-degree
vertices. For instance, any two maximal independent sets contain all the degree-
zero vertices, giving them a large overlap. If X simply counts the independent
sets of size αn, the resulting correlations make X ’s variance exponentially large
compared to the square of its expectation, and the second moment fails.

Weighting each S as in (6) counteracts this temptation, punishing sets that
occupy low-degree vertices by reducing their weight exponentially. As we will see
below, when μ is tuned to a particular value, making this punishment condign,
these correlations disappear in the sense that the dominant contribution to E[X2]
comes from pairs of sets S, T of size αn such that |S ∩ T | = α2n+ O(

√
n), just

as if S and T were chosen independently from among all sets of size αn.
This is analogous to the situation for k-SAT, where satisfying assignments

are correlated because of the temptation to give each variable the truth value
that agrees with the majority of its literals in the formula. By giving each sat-
isfying assignment a weight η# of true literals and tuning η properly, we make the
dominant contribution to E[X2] come from pairs of satisfying assignments which
agree on n/2 + O(

√
n) variables, just as if they were chosen independently [2].

Proceeding, let us compute the first and second moments of our random
variable X . We extend the weight function w(S) to all sets S ⊆ V by setting
w(S) = 0 if S is not independent. That is,

X =
∑
S⊆V
|S|=αn

w(S)



476 V. Dani and C. Moore

where
w(S) =

∏
(u,v)∈E

wu,v(S)

and

wu,v(S) =

⎧⎪⎨⎪⎩
μ if u, v /∈ S
1 if u ∈ S, v /∈ S or vice versa
0 if u, v ∈ S .

(7)

We start by computing E[X ]. Fix a set S of size αn. Since the m edges are
chosen independently,

E[w(S)] = w1(α, μ)m where w1(α, μ) = Eu,v[wu,v(S)] .

For each edge (u, v) in G̃(n,m), u and v are chosen randomly and independently,
so the probabilities of the three cases in (7) are (1 − α)2, 2α(1 − α), and α2

respectively. Thus

w1(α, μ) = (1− α)2μ+ 2α(1 − α) .

By linearity of expectation,

E[X ] =
∑
S⊆V
|S|=αn

E[w(S)] =
(
n

αn

)
w1(α, μ)m .

Using Stirling’s approximation (1) and substituting m = cn/2 gives

E[X ] = Θ
(

1√
n

enf1(α)

)
where f1(α) = h(α) +

c

2
lnw1(α, μ) . (8)

As before, Θ hides constant factors that depend smoothly on α.
Next we compute the second moment. We have

E[X2] = E

[∑
S

w(S)
∑
T

w(T )

]
=
∑
S,T

E[w(S)w(T )]

where S and T are subsets of V of size αn. The expectation of w(S)w(T ) does
not depend on the specific choice of S and T , but it does depend on the size of
their intersection. We say that S and T have overlap ζ if |S ∩ T | = ζn. Again
using the independence of the edges, we have

E[w(S)w(T )] = w2(α, ζ, μ)m where w2(α, ζ, μ) = Eu,v [wu,v(S)wu,v(T )] .

For each edge (u, v) of G̃, the probability that it has no endpoints in S or T is
(1−2α+ζ)2, in which case it contributes μ2 to wu,v(S)wu,v(T ). The probability
that it has one endpoint in S and none in T or vice versa is 2(2α−2ζ)(1−2α+ζ),
in which case it contributes μ. Finally, the probability that it has one endpoint
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in S and one in T is 2(α − ζ)2 + 2ζ(1 − 2α + ζ), in which case it contributes
1. With the remaining probability it has both endpoints in S or T , in causing
them to be non-independent and contributing zero. Thus

w2(α, ζ, μ) = (1−2α+ ζ)2μ2 +4(α− ζ)(1−2α+ ζ)μ+2(α− ζ)2 +2ζ(1−2α+ ζ)

Observe that when ζ = α2, as it typically would be if S and T were chosen
independently and uniformly, we have

w2 = w2
1 . (9)

The number of pairs of sets S, T of size αn and intersection of size z = ζn is
the multinomial(

n

ζn, (α − ζ)n, (α− ζ)n, (1 − 2α+ ζ)n

)
=
(
n

αn

)(
αn

ζn

)(
(1− α)n
(α− ζ)n

)
,

and linearity of expectation gives

E[X2] =
αn∑
z=0

(
n

z, αn− z, αn− z, (1− 2α)n+ z

)
w2(α, ζ, μ)m .

This sum is dominated by the terms where ζ = z/n is bounded inside the interval
(0, α). Stirling’s approximation then gives(

n

ζn, (α− ζ)n, (α − ζ)n, (1 − 2α+ ζ)n

)
= Θ

(
en[h(α)+αh(ζ/α)+(1−α)h(α−ζ

1−α )]

n3/2

)
,

where Θ hides constants that vary slowly with α and ζ. Thus the contribution
to E[X2] of pairs of sets with overlap ζ ∈ (0, α) is

1
n3/2

enf2(α,ζ,μ) (10)

where

f2(α, ζ, μ) = h(α) + αh

(
ζ

α

)
+ (1− α)h

(
α− ζ
1− α

)
+
c

2
lnw2(α, ζ, μ) .

Combining (10) with (8), we can write

E[X2]
E[X ]2

= Θ

(
1√
n

αn∑
z=0

enφ(z/n)

)
, (11)

where

φ(ζ) = f2(α, ζ, μ)− 2f1(α, μ)

= αh

(
ζ

α

)
+ (1− α)h

(
α− ζ
1− α

)
− h(α) +

c

2
ln
w2(α, ζ, μ)
w1(α, μ)2

.
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Using (9) and the fact that the entropy terms cancel, we have

φ(α2) = 0 .

In other words, the contribution to E[X2] from pairs of sets with overlap α2 is
proportional to E[X ]2.

We can now replace the sum in (11) with an integral,

E[X2]
E[X ]2

= Θ

(
1√
n

αn∑
z=0

enφ(z/n)

)
= Θ

(√
n

∫ α

0

enφ(ζ)dζ
)
,

and evaluate this integral using Laplace’s method as in [1, Lemma 3]. Its asymp-
totic behavior depends on the maximum value of φ,

φmax = max
ζ∈[0,α]

φ(ζ) .

If φ′′ < 0 at the corresponding ζmax, then it is dominated by an interval of width
Θ(1/

√
n) around ζmax and

E[X2]
E[X ]2

= Θ
(
enφmax

)
.

If φmax = φ(α2) = 0, then E[X2] = Θ
(
E[X ]2

)
and the second moment method

succeeds. Thus our goal is to show that φ is maximized at α2.
For this to happen, we at least need ζ = α2 to be a local maximum of φ. In

particular, we need

φ′(α2) = 0 . (12)

Differentiating, we find that (12) holds if

μ =
1− 2α
1− α .

Henceforth, we will fix μ to this value. In that case we have

w1 = 1− α and w2 = (1− α)2 +
(ζ − α2)2

(1− α)2
,

so

φ(ζ) = αh

(
ζ

α

)
+ (1− α)h

(
α− ζ
1− α

)
− h(α) +

c

2
ln
(

1 +
(ζ − α2)2

(1− α)4

)
The remainder of this paper is dedicated to showing that for sufficiently small
α as a function of c or vice versa, φ is indeed maximized at α2.
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3 Finding and Bounding the Maxima

Using ln(1 + x) ≤ x, we write φ(ζ) ≤ ψ(ζ) where

ψ(ζ) = αh

(
ζ

α

)
+ (1− α)h

(
α− ζ
1 − α

)
− h(α) +

c

2
(ζ − α2)2

(1− α)4
. (13)

Note that
ψ(α2) = φ(α2) = 0 .

Our goal is to show for an appropriate c that ζ = α2 is in fact the global
maximum of ψ, and therefore of φ. In what follows, asymptotic symbols such as
O and o refer to the limit α→ 0, or equivalently the limit c →∞. Error terms
may be positive or negative unless otherwise stated.

The first two derivatives of ψ(ζ) are

ψ′(ζ) =
c
(
ζ − α2

)
(1− α)4

+ 2 ln(α− ζ)− ln ζ − ln(1− 2α+ ζ) (14)

ψ′′(ζ) =
c

(1 − α)4
− 2
α− ζ −

1
ζ
− 1

1− 2α+ ζ
(15)

The second derivative ψ′′(ζ) tends to −∞ at ζ = 0 and ζ = α. Setting ψ′′(ζ) = 0
yields a cubic equation in ζ which has one negative root and, for sufficiently small
α, two positive roots in the interval [0, α]. Thus for each α and sufficiently small
α, there are 0 < ζ1 < ζ2 < α where

ψ′′(ζ)

⎧⎪⎨⎪⎩
< 0 0 < ζ < ζ1

> 0 ζ1 < ζ < ζ2

< 0 ζ2 < ζ < α .

It follows that ψ can have at most two local maxima. One is in the interval
[0, ζ1], and the following lemma shows that for the relevant α and c this is α2:

Lemma 3.1. If c = o(1/α2) then for sufficiently small α, ζ1 > α2 and ψ(α2) is
a local maximum.

The other local maximum is in the interval [ζ2, α], and we denote it ζ3. To locate
it, first we bound ζ2:

Lemma 3.2. If

c = (2 + o(1))
ln(1/α)

α
,

then
ζ2
α

= 1− δ2 where δ2 =
1 + o(1)
ln(1/α)

.

Thus ζ2/α, and therefore ζ3/α, tends toward 1 as α→ 0.
We can now locate ζ3 when α is close to its critical value.
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Lemma 3.3. If

c =
1
α

(
2 ln(1/α) + 2− o(1)

)
,

then
ζ3
α

= 1− δ3 where δ3 =
1 + o(1)

e
√
α .

Lemma 3.4. For any constant x > 4/e, if

c =
2 ln(1/α) + 2− x√α

α
,

then ψ(ζ3) < 0 for sufficiently small α.

4 Proofs

Proof of Lemma 3.1. Setting ζ = α2 in (15) gives

ψ′′(α2) <
c

(1− α)4
− 1
α2

.

If c = o(1/α2) this is negative for sufficiently small α, in which case ζ1 > α2 and
ψ(α2) is a local maximum. ��
Proof of Lemma 3.2. For any constant b, if

ζ

α
= 1− δ where δ =

b

ln(1/α)
(16)

then (15) gives

ψ′′(ζ) =
(

2− 2
b

+ o(1)
)

ln(1/α)
α

−O(1/α) .

If b = 1, for sufficiently small α this is negative if b < 1 and positive if b > 1.
Therefore ζ2/α = 1− δ3 where δ3 = (1 + o(1))/ ln(1/α). ��
Proof of Lemma 3.3. Lemma 3.2 tells us that ζ3 = α(1 − δ) for some

δ <
1 + o(1)
ln(1/α)

.

Setting ζ = α(1 − δ) in (14) and using

1
(1− α)4

= 1 +O(α) and − ln(1− x) = O(x)

gives, after some algebra,

ψ′(ζ) = αc+ lnα+ 2 ln δ +O(αδc) +O(α2c) .
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For any constant b, setting

δ =
b
√
α

e
gives

ψ′(ζ) = αc+ 2 lnα+ 2 ln b− 2 +O(α3/2c) ,

and setting

c =
2 ln(1/α) + 2− ε

α

then gives
ψ′(ζ) = 2 ln b− ε+ o(1) .

If ε = o(1) and b = 1, for sufficiently small α this is negative if b < 1 and positive
if b > 1. Therefore ζ3/α = 1− δ3 where δ3 = (1 + o(1))

√
a/e. ��

Proof of Lemma 3.4. Setting ζ = α(1 − δ) where δ = b
√
a/e in (13) and using

the Taylor series

1
(1− α)4

= 1 + 4α+O(α2) and − ln(1− x) = x+ x2/2 +O(x3)

gives, after a fair amount of algebra,

ψ(ζ) = α(lnα− 1)−
(

2b lnα− 4b+ 2b ln b
e

)
α3/2 +

(
c+ 1

2
− b2

2e2

)
α2

− b

e
α5/2c+

(
b2

2e2
+ 1

)
α3c+O(α7/2c) +O(α5/2) .

Setting

c =
2 ln(1/α) + 2− x√α

α

for constant x causes the terms proportional to α lnα, α, and α3/2 lnα to cancel,
leaving

ψ(ζ) =
(

2b(1− ln b)
e

− x

2

)
α3/2 +O(α2) .

The coefficient of α3/2 is maximized when b = 1, and is negative whenever
x > 4/e. In that case, ψ(ζ3) < 0 for sufficiently small α, completing the proof.

��
Proof of Corollary 1.2. First note that

α0 =
2
c
W
(ec

2

)
(17)

is the root of the equation

c = 2
ln(1/α0) + 1

α0
,
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since we can also write it as
ecα/2 =

e
α0

,

and multiplying both sides by cα0/2 gives

cα0

2
ecα0/2 =

ec
2
,

in which case (17) follows from the definition of W .
The root α of

c = 2
ln(1/α) + 1

α
− x√

α

is then at least
2
c
W
(ec

2

)
+
(
x+ o(1)

)∂α0

∂c

√
c

2 ln c

since α = (1 + o(1))2 ln c/c and ∂2α0/∂
2c ≥ 0. Since

∂α0

∂c
= −(1 + o(1)

)2 ln c
c2

,

the statement follows from Theorem 1.1. ��

Acknowledgments. We are grateful to Amin Coja-Oghlan, Alan Frieze, David
Gamarnik, Yuval Peres, Alex Russell, and Joel Spencer for helpful conversations,
and to the anonymous reviews for their comments.

References

[1] Achlioptas, D., Moore, C.: Random k-SAT: Two moments suffice to cross a sharp
threshold. SIAM J. Comput. 36, 740–762 (2006)

[2] Achlioptas, D., Peres, Y.: The Threshold for Random k-SAT is 2k log 2 − O(k). J.
AMS 17, 947–973 (2004)

[3] Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation
method and scaling limits in sparse random graphs. In: Proc. STOC, pp. 105–114
(2010)

[4] Bollobás, B.: Random graphs, 2nd edn. Cambridge studies in advanced mathemat-
ics. Cambridge University Press, Cambridge (2001)

[5] Coja-Oghlan, A., Efthymiou, C.: On independent sets in random graphs. In: Proc.
SODA, pp. 136–144 (2011)

[6] Frieze, A.M.: On the independence number of random graphs. Discrete Math. 81,
171–175 (1990)

[7] Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: Proc.
FOCS, pp. 364–375 (1981)

[8] Shamir, E., Spencer, J.: Sharp concentration of the chromatic number on random
graphs G(n, p). Combinatorica 7, 121–129 (1987)



Extractors and Lower Bounds for Locally

Samplable Sources

Anindya De� and Thomas Watson��

Computer Science Division
University of California, Berkeley, CA, USA

{anindya,tom}@cs.berkeley.edu

Abstract. We consider the problem of extracting randomness from sou-
rces that are efficiently samplable, in the sense that each output bit of the
sampler only depends on some small number d of the random input bits.
As our main result, we construct a deterministic extractor that, given
any d-local source with min-entropy k on n bits, extracts Ω(k2/nd) bits

that are 2−nΩ(1)
-close to uniform, provided d ≤ o(log n) and k ≥ n2/3+γ

(for arbitrarily small constants γ > 0). Using our result, we also improve
a result of Viola (FOCS 2010), who proved a 1/2−O(1/ log n) statistical
distance lower bound for o(log n)-local samplers trying to sample input-
output pairs of an explicit boolean function, assuming the samplers use
at most n + n1−δ random bits for some constant δ > 0. Using a different

function, we simultaneously improve the lower bound to 1/2 − 2−nΩ(1)

and eliminate the restriction on the number of random bits.

Keywords: extractors, lower bounds, locally samplable sources.

1 Introduction

Randomness extraction is the following general problem. Given a sample from
an imperfect physical source of randomness, which is modeled as a probability
distribution on bit strings of length n, we wish to apply an efficient determin-
istic algorithm to the sample to produce an output which is almost uniformly
distributed (and thus is suitable for use by a randomized algorithm). Of course,
to extract randomness from a source, the source needs to “contain” a certain
amount of randomness in the first place. It is well established that the most
suitable measure of the amount of randomness in a source is its min-entropy
(defined below). However, even if the source is known to have at least n− 1 bits
of min-entropy, no algorithm can extract even a single bit that is guaranteed to
be close to uniformly distributed. To deal with this problem, researchers have
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constructed seeded extractors, which have access to a short uniformly random
seed that is statistically independent of the source and which acts as a catalyst
for the extraction process.

However, there is a sense in which seeded extractors are overkill: They are
guaranteed to work for completely arbitrary sources that have high enough min-
entropy. It is reasonable to assume the physical source of randomness has some
limited structure, in which case deterministic (that is, seedless) extraction may
become viable. There are several classes of sources for which researchers have
constructed good deterministic extractors. One such class is independent sources,
where the n bits are partitioned into blocks which are assumed to be statistically
independent of each other [7,9,1,4,2,23,21,3,18]. Other such classes include so-
called bit-fixing sources [6,17,13,22], affine sources [12,5,22,8,28,19], polynomial
sources [11], and algebraic varieties [10].

Trevisan and Vadhan [24] considered deterministic extractors for sources that
are samplable by efficient algorithms given uniform random bits. One may ini-
tially be concerned that extracting randomness from such sources is somehow
circular or vacuous: We are assuming uniform random bits are used to sample
the source, and our goal then is to “undo” the sampling and get uniform ran-
dom bits back. The point is that this class of sources is just a model for physical
sources. This is motivated by the following postulate about the universe: A phys-
ical source of randomness is generated by an efficient process in nature, so it is
reasonable to model the source as being sampled by an efficient algorithm.

Trevisan and Vadhan constructed extractors for the class of sources samplable
by general time-bounded algorithms, but their constructions are conditional on
standard complexity-theoretic conjectures. It is common in other areas of re-
search that proving unconditional limits on the power of time-bounded algo-
rithms is beyond the reach of current techniques. Thus we consider more re-
stricted types of algorithms, such as small-space algorithms and bounded-depth
circuits, which are combinatorially simple enough for us to prove unconditional
results. It is natural to try to construct unconditional deterministic extractors
for sources samplable by such restricted algorithms. Kamp et al. [16] succeeded
in doing so for small-space samplers.

However, it is an open problem to construct an unconditional deterministic
extractor for sources samplable by AC0-type circuits.1 A basic obstacle is that
this requires that input-output pairs of the extractor cannot be sampled by such
circuits, and it is not even known how to construct an explicit function with
the latter property. For example, although the parity function is known not to
have subexponential-size constant-depth circuits [15], input-output pairs can be
sampled very efficiently: Just take uniformly random bits x1, . . . , xn and output
x1, x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn, xn.

Our goal in this paper is to expand the frontier of unconditional deterministic
randomness extraction for sources with low-complexity samplers. We succeed
in constructing extractors for sources samplable by small-depth circuits with
bounded fan-in gates, which corresponds to the class NC0. This is equivalent to

1 Viola [27] solved this problem in independent and concurrent work; see below.
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requiring that each output bit of the sampler only depends on a small number
of input bits. We call such sources locally samplable.

1.1 Results

A distribution on a finite set S is said to have min-entropy at least k if each ele-
ment of S occurs with probability at most 2−k. The statistical distance between
two distributions D1 and D2 on a finite set S is defined to be ‖D1 − D2‖ =
maxT⊆S

∣∣PrD1 [T ] − PrD2 [T ]
∣∣. If ‖D1 − D2‖ ≤ ε then we also say D1 and D2

are ε-close. If f : S → S′ and D is a distribution on S, then we let f(D) denote
the distribution on S′ obtained by drawing a sample from D and applying f to
it. When we mention a distribution multiple times in an expression, all instan-
tiations refer to a single sample from the distribution; for example,

(
D, f(D)

)
denotes the distribution obtained by sampling w ∼ D and outputting the pair(
w, f(w)

)
. We use Un to denote the uniform distribution on {0, 1}n. If C is a

class of distributions on {0, 1}n, then a function Ext : {0, 1}n → {0, 1}m is called
a (k, ε)-extractor for C if for every distribution D ∈ C with min-entropy at least
k,
∥∥Ext(D)−Um

∥∥ ≤ ε. Informally, when we say an extractor is explicit we mean
that an efficient algorithm with the desired behavior is exhibited.

We define a d-local sampler to be a function f : {0, 1}r → {0, 1}n such that
each output bit depends on at most d input bits. In other words, for every
j ∈ {1, . . . , n} there exists a subset Ij ⊆ {1, . . . , r} with |Ij | ≤ d and a function
fj : {0, 1}|Ij| → {0, 1} such that the jth output bit of f is obtained by evaluating
fj on the input bits indexed by Ij . The output distribution of the sampler is
f(Ur). We say a distribution D on {0, 1}n is a d-local source if there exists a
d-local sampler (with any input length r) whose output distribution is D.

Theorem 1. For every constant γ > 0 there exists a constant β > 0 such that
there exists an explicit (k, ε)-extractor for the class of d-local sources with output
length m = k2/8nd and error ε = 2−n

β

, provided k ≥ n2/3+γ and d ≤ β logn.

Theorem 2. For every constant γ > 0 there exists a constant β > 0 such that
there exists an explicit (k, ε)-extractor for the class of 1-local sources with output
length m = k − o(k) and error ε = 2−n

β

, provided k ≥ n1/2+γ .

Theorem 3. There exists a universal constant β > 0 and an explicit function
F : {0, 1}n → {0, 1} such that for every d-local source D on {0, 1}n+1 with
d ≤ β logn,

∥∥D − (
Un, F (Un)

)∥∥ ≥ 1/2− 2−n
β

.

1.2 Techniques

The proof of Theorem 1 has three steps.
The first step is to construct a certain extractor for 1-local sources (which in

particular yields Theorem 2). To do this, we observe that extractors for so-called
low-weight affine sources also work for 1-local sources. Then we construct an ex-
tractor for low-weight affine sources, building on and improving Rao’s extractor
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from [22]. While Rao’s extractor handles affine sources of min-entropy at least
k and weight at most kγ for some constant γ > 0, our improvement handles
sources with weight at most k1−γ for any constant γ > 0. The key ingredient
in our improvement is the strong condenser of Guruswami, Umans, and Vadhan
[14]. We present this step in Section 3.

The second step is to show that extractors for 1-local sources also work for
o(logn)-local sources. To do this, we relate the problem to a concept we call
superindependent matchings in bipartite graphs, and we prove a combinatorial
lemma about the existence of such matchings. We present this step in Section 4.

The third step is to increase the output length of the extractor using the
technique of “obtaining an independent seed” introduced by Gabizon et al. [13].
Combining step 1 and step 2 yields an extractor with output lengthΩ(k2/nd32d).
To increase the output length to Ω(k2/nd), we adapt the technique from [13].
A key ingredient in our argument is a lemma due to Vadhan [25], which is a
strengthened version of a classic lemma due to Nisan and Zuckerman [20]. While
the result of [13] achieves output length k − o(k) for bit-fixing sources, we lose
a factor of Ω(k/n) in the output length due to the use of Vadhan’s lemma, and
we lose another factor of Ω(1/d) since conditioning on p bits of the output of
a d-local sampler could cause a loss of pd bits of min-entropy. We present this
step in Section 5.

Viola [26] proved a version of Theorem 3 where the statistical distance lower
bound is only 1/2− O(1/ logn), and the d-local sampler is restricted to use at
most n + n1−δ random bits for any constant δ > 0. His function F is what he
calls “majority mod p”. Using a different function F (namely, any bit of the
extractor underlying Theorem 1), we simultaneously improve the lower bound
to 1/2−2−n

Ω(1)
and eliminate the restriction on the number of random bits. Our

proof of Theorem 3 uses ideas similar to Viola’s, but is actually somewhat simpler
given the extraction property of F . In [26], Viola also showed that for symmetric
functions F , one cannot hope to get such a strong lower bound for samplers that
are polynomial-size constant-depth circuits. Our extractor function F is not
symmetric. We present the proof of Theorem 3 in Section 6.

In independent and concurrent work, Viola [27] obtained extractors for d-
local sources with d ≤ no(1) and for sources sampled by AC0-type circuits. The
high level idea behind the extractor remains the same: Show the given source is
close to a convex combination of 1-local sources, and use the extractor in [22].
However, the proofs in [27] are much more complicated than in this paper.

2 Preliminaries

In this paper we work with bipartite graphs G = (L,R,E), where L,R are
disjoint finite sets (the left and right nodes) and E is a set of unordered pairs
where one element comes from L and the other from R. The distance between
two nodes is the number of edges on a shortest path between them.

To every function f : {0, 1}r → {0, 1}n we associate a bipartite graph G =
(L,R,E) where L = {1, . . . , r}×{in},R = {1, . . . , n}×{out}, and

{
(i, in), (j, out)
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} ∈ E if and only if the jth output bit of f depends on the ith input bit of f (that
is, for some setting of all input bits except the ith, the jth output bit equals the
ith input bit or its complement). Note that we include no unnecessary edges, and
the graph is unique. We use Ij × {in} to denote the set of neighbors of (j, out)
and Ji×{out} to denote the set of neighbors of (i, in). Observe that if f(Ur) has
min-entropy at least k, then there are at least k non-isolated nodes in L, and in
particular r ≥ k.

We say f is a d-local sampler if each node in R has degree at most d, and
we say a distribution on {0, 1}n is a d-local source if it equals f(Ur) for some
d-local sampler f (with any input length r). We say f is a (d, c)-local sampler if
each node in R has degree at most d and each node in L has degree at most c,
and we say a distribution on {0, 1}n is a (d, c)-local source if it equals f(Ur) for
some (d, c)-local sampler f (with any input length r).

Suppose Y is a finite set of indices, (py)y∈Y is a distribution on Y , and for
each y ∈ Y , Dy is a distribution on a finite set S. Then the convex combina-
tion

∑
y∈Y pyDy is defined to be the distribution on S obtained by sampling y

according to (py)y∈Y and then outputting a sample from Dy.

Lemma 1. Suppose Ext : {0, 1}n → {0, 1}m is any function and suppose D =∑
y∈Y pyDy is a distribution on {0, 1}n. Then for every ε ≥ 0,∥∥Ext(D)− Um

∥∥ ≤ ε+ Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um
∥∥ > ε

]
.

Corollary 1. Suppose every distribution in C with min-entropy at least k can
be written as a convex combination

∑
y∈Y pyDy where

Pry∼(py)y∈Y

[
Dy is in C′ and has min-entropy at least k′

] ≥ 1− δ.
Then every (k′, ε′)-extractor for C′ is also a (k, ε)-extractor for C where ε = ε′+δ.

Lemma 2. Every d-local source with min-entropy at least k is a convex combi-
nation of (d, c)-local sources with min-entropy at least k − nd/c.
Proof. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n whose output
distribution has min-entropy at least k, and let G = (L,R,E) be the associated
bipartite graph. Since |E| ≤ nd, there are at most nd/c nodes in L with degree
greater than c; without loss of generality these nodes are {r − � + 1, . . . , r} ×
{in} for some � ≤ nd/c. For each string y ∈ {0, 1}
, define fy : {0, 1}r−
 →
{0, 1}n as fy(x) = f(x, y) (hardwiring the last � bits to y). Then f(Ur) =∑

y∈{0,1}�
1
2� fy(Ur−
). Moreover, each fy(Ur−
) is a (d, c)-local source with min-

entropy at least k − nd/c, since if some z ∈ {0, 1}n and y∗ ∈ {0, 1}
 satisfied
Prx∼Ur−�

[
fy∗(x) = z

]
> 1/2k−nd/c then we would have

Prx∼Ur−�,y∼U�

[
f(x, y) = z

] ≥ Pry∼U�
[y = y∗] · Prx∼Ur−�

[
f(x, y∗) = z

]
> 1

2� · 1
2k−nd/c

≥ 1/2k

contradicting that f(Ur) has min-entropy at least k. ��
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We also use seeded extractors. A function Ext : {0, 1}n × {0, 1}t → {0, 1}m is
called a seeded (k, ε)-extractor if for every distribution D on {0, 1}n with min-
entropy at least k,

∥∥Ext(D,Ut)− Um
∥∥ ≤ ε where Ut is independent of D.

If z ∈ {0, 1}n and J ⊆ {1, . . . , n}, then we let z|J ∈ {0, 1}|J| denote the
substring of z indexed by the coordinates in J . If D is a distribution on {0, 1}n
and J ⊆ {1, . . . , n}, then we let D|J denote the marginal distribution on the
coordinates in J . Finally, all logarithms in this paper are base 2.

3 1-Local Sources

An affine source is a distribution on {0, 1}n which is uniform over an affine
subspace (where {0, 1}n is viewed as a vector space over F2). If the subspace has
dimension k then it has size 2k and hence the source has min-entropy k. The
distribution can be sampled by picking x1, . . . , xk ∈ {0, 1} uniformly at random
and outputting z0 + x1z1 + · · · + xkzk where z0 ∈ {0, 1}n is a shift vector and
z1, . . . , zk ∈ {0, 1}n are a basis of the associated linear subspace. The source is
said to be a weight-c affine source if there exist basis vectors z1, . . . , zk each of
which has Hamming weight at most c.

Observation 1. Every (1, c)-local source is also a weight-c affine source.

Rao [22] constructed extractors for low-weight affine sources.

Theorem 4 ([22]). There exist universal constants C, γ > 0 such that for all
k ≥ logC n there exists an explicit (k, 2−k

Ω(1)
)-extractor with output length m =

k−o(k) for the class of weight-kγ affine (and in particular, (1, kγ)-local) sources.

We improve Rao’s result to obtain the following theorem.

Theorem 5. There exists a universal constant C > 0 such that for every con-
stant γ > 0 and all k ≥ logC/γ n there exists an explicit (k, 2−k

Ω(1)
)-extractor

with output length m = k − o(k) for the class of weight-k1−γ affine (and in
particular, (1, k1−γ)-local) sources.

We present the proof of Theorem 5 in the full version of the paper. Our proof
closely follows Rao’s proof of Theorem 4, but we insert an application of a linear
strong condenser from [14]. Also, where Rao uses a small-bias generator, we
instead use a parity-check function for a BCH code. These changes allow us to
get better parameters.

We now explain how Theorem 2 follows from Theorem 5, Lemma 2, and
Corollary 1. We first note the following immediate corollary of Theorem 5.

Corollary 2. For every constant γ > 0 there exists a constant β > 0 such that
for all k ≥ n1/2+γ there exists an explicit (k, 2−n

β

)-extractor with output length
m = k−o(k) for the class of weight-n1/2 affine (and in particular, (1, n1/2)-local)
sources.
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Lemma 2 implies that every 1-local source with min-entropy at least k ≥ n1/2+γ

is a convex combination of (1, n1/2)-local sources with min-entropy at least k −
n1/2 ≥ k − o(k). Theorem 2 then follows from Corollary 1 (with δ = 0) and
Corollary 2.

Bourgain [5], Yehudayoff [28], and Li [19] constructed extractors for linear
min-entropy affine sources (of arbitrary weight), achieving better error but worse
output length than Theorem 5. This can be used to improve the error in Theo-
rem 1 and Theorem 2 when k ≥ Ω(n) and d ≤ O(1). We omit the details.

4 d-Local Sources

The following theorem shows that to get extractors for d-local sources, it suffices
to construct extractors for 1-local sources.

Theorem 6. Every (k′, ε′)-extractor for (1, 2nd/k)-local sources is also a (k, ε)-
extractor for d-local sources, where k′ = k2/4nd32d and ε = ε′ + e−k

′/4.

Assuming k ≥ n2/3+γ (for constant γ > 0) and d ≤ β logn (for small enough
constant β > 0) in Theorem 6, we find that it suffices to have a (k′, ε′)-extractor
for (1, c)-local sources where k′ ≥ n1/3+γ and c = 2nd/k ≤ n1/3 ≤ (k′)1−γ .
Such an extractor is given by Theorem 5, with error ε′ = 2−n

Ω(1)
(and thus

ε = ε′ + e−k
′/4 ≤ 2−n

Ω(1)
). This already yields a version of Theorem 1 with

output length k′ − o(k′) = Ω(k2/nd32d).

4.1 Superindependent Matchings

We first prove a combinatorial lemma that is needed for the proof of Theorem 6.

Definition 1. Given a bipartite graph G = (L,R,E), we say a set of edges
M ⊆ E is a superindependent matching if there is no path of length at most two
in G from an endpoint of an edge in M to an endpoint of a different edge in M .

Lemma 3. Suppose G = (L,R,E) is a bipartite graph with no isolated nodes
and such that each node in L has degree at most c and each node in R has degree
at most d. Then G has a superindependent matching of size at least |L|/d2c.

Proof. Let M be a largest superindependent matching in G, and suppose for
contradiction that |M | < |L|/d2c. Note that for each node in R, the number of
nodes in L within distance three in G is at most d

(
1+(c−1)(d−1)

) ≤ d2c. Thus
the number of nodes in L within distance three of the right endpoints of edges in
M is at most |M | ·d2c < |L|. Hence there exists a node u ∈ L at distance greater
than three from the right endpoint of every edge in M . Since G has no isolated
nodes, there exists a node v ∈ R such that {u, v} ∈ E. Note that there is no
path of length at most two from either u or v to an endpoint of an edge in M ,
since otherwise a simple case analysis would show that u is within distance three
of the right endpoint of an edge in M . Thus M ∪{{u, v}} is a superindependent
matching, contradicting the maximality of M . ��
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4.2 Proof of Theorem 6

Suppose that Ext : {0, 1}n → {0, 1}m is a (k′, ε′)-extractor for (1, 2nd/k)-local
sources. By Corollary 1 (with δ = 0) and Lemma 2 it suffices to show that Ext
is a (k/2, ε)-extractor for (d, c)-local sources where c = 2nd/k. The plan is to
show that every (d, c)-local source with min-entropy at least k/2 is a convex
combination of (1, c)-local sources most of which have min-entropy at least k′,
and then apply Corollary 1 again.

So consider an arbitrary (d, c)-local sampler f : {0, 1}r → {0, 1}n whose
output distribution has min-entropy at least k/2, and let G = (L,R,E) be the
associated bipartite graph. If we obtain G̃ from G by removing any isolated
nodes, then G̃ still has at least k/2 nodes on its left side. Applying Lemma 3 to
G̃ tells us that G has a superindependent matching M of size at least k/(2d2c).
Let � = |M |, and without loss of generality assume that the left endpoints of M
are L′ = {1, . . . , �} × {in}. We write inputs to f as (x, y) where x ∈ {0, 1}
 and
y ∈ {0, 1}r−
. Since M is superindependent, each node in R is adjacent to at
most one node in L′. Thus if we define fy : {0, 1}
 → {0, 1}n as fy(x) = f(x, y)
(hardwiring the last r − � input bits to y) then for each y, fy is a (1, c)-local
sampler. Observe that f(Ur) =

∑
y∈{0,1}r−�

1
2r−� fy(U
).

Let Gy = (L′, R,Ey) denote the bipartite graph associated with fy. The min-
entropy of fy(U
) is the number of nodes in L′ that are non-isolated in Gy.
Although each node in L′ is non-isolated in G (since M ⊆ E), edges incident to
L′ may disappear when we hardwire y. We claim that with high probability over
y, plenty of nodes in L′ are still non-isolated in Gy and hence fy(U
) has high
min-entropy. For i ∈ {1, . . . , �} let (ji, out) ∈ R be the neighbor of (i, in) in M ,
and let Iji × {in} be the set of neighbors of (ji, out) in G. Since the jthi output
bit of f depends on the ith input bit, there exists a string wi ∈ {0, 1}|Iji

|−1

such that hardwiring the input bits corresponding to Iji\{i} to wi leaves the
edge

{
(i, in), (ji, out)

}
in place, and in particular ensures that (i, in) is non-

isolated. Since M is superindependent, the sets Iji for i ∈ {1, . . . , �} are pairwise
disjoint and in particular, each Iji\{i} ⊆ {�+ 1, . . . , r}. We assume the bits of
y are indexed starting at � + 1, so for example y|{
+1} is the first bit of y. By
the disjointness, we find that the events y|Iji

\{i} = wi (for i ∈ {1, . . . , �}) are
fully independent over y ∼ Ur−
. Moreover, each of these events occurs with
probability at least 1/2d−1 since |wi| ≤ d− 1. Thus we have

Pry∼Ur−�

[
fy(U
) does not have min-entropy at least k′

]
= Pry∼Ur−�

[∣∣{i ∈ {1, . . . , �} : (i, in) is non-isolated in Gy

}∣∣ < k′
]

≤ Pry∼Ur−�

[∣∣{i ∈ {1, . . . , �} : y|Iji
\{i} = wi

}∣∣ < k′
]

≤ e−k/8d
2c2d

by a standard Chernoff bound.
To summarize, we have shown that every (d, c)-local source with min-entropy

at least k/2 is a uniform convex combination of (1, c)-local sources, at most
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Ingredients:
Ext′ : {0, 1}n → {0, 1}m′

Ext′1 : {0, 1}n → {0, 1}s is the first s bits of Ext′

Ext′2 : {0, 1}n → {0, 1}m′−s is the last m′ − s bits of Ext′

Samp : {0, 1}s →
({1,...,n}

p

)
SExt : {0, 1}p × {0, 1}m′−s → {0, 1}m

Result:
Ext : {0, 1}n → {0, 1}m defined as Ext(z) = SExt

(
z|Samp(Ext′1(z)), Ext′2(z)

)
Fig. 1. Increasing the output length of an extractor for d-local sources

e−k/8d
2c2d

fraction of which do not have min-entropy at least k′. It now follows
from Corollary 1 that Ext is a (k/2, ε)-extractor for (d, c)-local sources. This
finishes the proof of Theorem 6.

5 Increasing the Output Length

Combining the results from Section 3 and Section 4 yields an extractor for d-
local sources with output length Ω(k2/nd32d), provided d ≤ o(log n) and the
min-entropy k is at least n2/3+γ . In this section we show how to improve the
output length to Ω(k2/nd). We now present our general theorem on increasing
the output length of extractors for d-local sources (Theorem 7 and Figure 1),
which uses the technique of “obtaining an independent seed”. As in [13], the
strategy is to take the output of a deterministic extractor and use part of it
to sample a set of coordinates of the source, which are then plugged into a
seeded extractor, using the other part of the deterministic extractor’s output
as the seed. A key ingredient (which was not used in [13]) is a fundamental
lemma of Nisan and Zuckerman [20], which roughly says that if we sample the
coordinates appropriately, then the min-entropy rate of the marginal distribution
on those coordinates is almost as high as the min-entropy rate of the whole
source. However, the original Nisan-Zuckerman lemma loses a logarithmic factor
in the min-entropy rate. We use a strengthened version of the lemma, due to
Vadhan [25], which only loses a constant factor.

We use
({1,...,n}

p

)
to denote the set of subsets of {1, . . . , n} of size p.

Definition 2. We say Samp : {0, 1}s → ({1,...,n}
p

)
is a (μ, η)-sampler if for

every g : {1, . . . , n} → [0, 1] with 1
n

∑n
j=1 g(j) ≥ μ it holds that

Prσ∼Us

[
1
p

∑
j∈Samp(σ) g(j) < μ/2

] ≤ η.

Theorem 7. There exists a constant α > 0 such that the following holds. Sup-
pose Ext′ is a (k′, ε′)-extractor for d-local sources, Samp is a

(
k/2n log(4n/k), η

)
-

sampler, and SExt is a seeded (pk/4n, ε′′)-extractor. Then Ext is a (k, ε)-extractor
for d-local sources, where k = k′ + pd and ε = ε′(2s+1 + 1) + 2

√
η + 2−αk + ε′′.
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Due to space constraints, we defer the proof of Theorem 7, as well as the
parameter-setting to derive Theorem 1, to the full version.

6 Improved Lower Bounds for Sampling Input-Output
Pairs

For this section, we define a (d, c, k)-local sampler to be a (d, c)-local sampler
with at least k non-isolated nodes on the left side of its associated bipartite graph
(that is, it makes nontrivial use of at least k random bits). We say a distribution
on {0, 1}n is a (d, c, k)-local source if it equals f(Ur) for some (d, c, k)-local
sampler f (with any input length r). Note that a (d, c, k)-local source might not
have min-entropy at least k.

Theorem 8. Suppose Ext : {0, 1}n → {0, 1} is a (0, ε)-extractor for (d, 8d, n/4)-
local sources, where d < n/8. Then for every d-local source D on {0, 1}n+1 we
have

∥∥D − (
Un,Ext(Un)

)∥∥ ≥ 1/2− ε− 2−n/2.

It might seem suspicious that we are assuming Ext is a (0, ε)-extractor. We are
not, in fact, extracting from sources with 0 min-entropy — it is possible to derive
a lower bound on the min-entropy of any (d, 8d, n/4)-local source. The point is
that for Theorem 8, we do not care about the min-entropy, only the number of
non-isolated input nodes.

In the proof of Theorem 6, we implicitly showed that any particular bit of
the extractor from Theorem 5 (for min-entropy n0.9 and weight logn) is a (0, ε)-
extractor for (d, 8d, n/4)-local sources with error ε = 2−n

Ω(1)
, provided d ≤

β logn for some small enough constant β > 0. Theorem 3 follows immediately
from this and Theorem 8.

Proof (of Theorem 8). Consider an arbitrary d-local sampler f : {0, 1}r →
{0, 1}n+1, and let G = (L,R,E) be the associated bipartite graph. Since |E| ≤
(n + 1)d, there are at most (n + 1)/8 nodes in L with degree greater than 8d.
Also, at most d ≤ (n − 1)/8 nodes in L are adjacent to (n + 1, out). Without
loss of generality, the nodes in L that either have degree greater than 8d or are
adjacent to (n + 1, out) are {r − � + 1, . . . , r} × {in} for some � ≤ (n + 1)/8 +
(n − 1)/8 = n/4. For each string y ∈ {0, 1}
, define fy : {0, 1}r−
 → {0, 1}n+1

as fy(x) = f(x, y) (hardwiring the last � bits to y) and let Gy = (L′, R,Ey) be
the associated bipartite graph, where L′ = {1, . . . , r − �} × {in}. Observe that
f(Ur) =

∑
y∈{0,1}�

1
2� fy(Ur−
). We define the tests

T1 =
{
z ∈ {0, 1}n+1 : ∃x ∈ {0, 1}r−
, y ∈ {0, 1}
 such that f(x, y) = z and∣∣{i ∈ {1, . . . , r − �} : (i, in) is non-isolated in Gy

}∣∣ < n/4
}

and T2 =
{
z ∈ {0, 1}n+1 : Ext(z|{1,...,n}) = z|{n+1}

}
(in other words, T2 is the

complement of the support of
(
Un,Ext(Un)

)
). We define the test T = T1 ∪ T2.

Proposition 1. Prf(Ur)[T ] ≥ 1/2− ε.
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Proposition 2. Pr(Un,Ext(Un))[T ] ≤ 2−n/2.

Combining the two propositions, we have
∣∣Prf(Ur)[T ]−Pr(Un,Ext(Un))[T ]

∣∣ ≥ 1/2−
ε− 2−n/2, thus witnessing that

∥∥f(Ur)−
(
Un,Ext(Un)

)∥∥ ≥ 1/2− ε− 2−n/2.

Proof (of Proposition 1). It suffices to show that Prfy(Ur−�)[T ] ≥ 1/2− ε holds
for each y ∈ {0, 1}
. If

∣∣{i ∈ {1, . . . , r−�} : (i, in) is non-isolated in Gy

}∣∣ < n/4
then of course Prfy(Ur−�)[T1] = 1. Otherwise, fy(Ur−
) is a (d, 8d, n/4)-source on
{0, 1}n+1. Note that (n+1, out) is isolated in Gy; we define by ∈ {0, 1} to be the
fixed value of the (n+1)st output bit of fy, and we define f ′y : {0, 1}r−
 → {0, 1}n
to be the first n output bits of fy. Since f ′y(Ur−
) is a (d, 8d, n/4)-source on
{0, 1}n, we have

∥∥Ext
(
f ′y(Ur−
)

)−U1

∥∥ ≤ ε and thus Prb∼Ext(f ′
y(Ur−�))[b = by] ≥

1/2− ε. In other words, Prfy(Ur−�)[T2] ≥ 1/2− ε. ��
Proof (of Proposition 2). By definition, Pr(Un,Ext(Un))[T2] = 0. Note that |T1| ≤
2n/2 since each string in T1 can be described by a string of length at most
� + n/4 ≤ n/2, namely an appropriate value of y along with the bits of x such
that the corresponding nodes in L′ are non-isolated in Gy. Since

(
Un,Ext(Un)

)
is uniform over a set of size 2n, we get Pr(Un,Ext(Un))[T1] ≤ 2n/2/2n = 2−n/2. ��

This finishes the proof of Theorem 8. ��
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Daniel Martin3,��, Vojtěch Rödl1,���, and Asaf Shapira4,†

1 Department of Mathematics and Computer Science,
Emory University, Atlanta, GA 30322
{ddellam,rodl}@mathcs.emory.edu

2 School of Computer Science, Georgia Institute of Technology,
Atlanta, GA 30332

subruk@cc.gatech.edu
3 Center for Mathematics, Computer Science and Cognition, Universidade Federal do
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Abstract. The Frieze-Kannan regularity lemma is a powerful tool in
combinatorics. It has also found applications in the design of approxi-
mation algorithms and recently in the design of fast combinatorial algo-
rithms for boolean matrix multiplication. The algorithmic applications
of this lemma require one to efficiently construct a partition satisfying
the conditions of the lemma.

Williams [24] recently asked if one can construct a partition satisfy-
ing the conditions of the Frieze-Kannan regularity lemma in determin-
istic sub-cubic time. We resolve this problem by designing an Õ(nω)
time algorithm for constructing such a partition, where ω < 2.376 is the
exponent of fast matrix multiplication. The algorithm relies on a spec-
tral characterization of vertex partitions satisfying the properties of the
Frieze-Kannan regularity lemma.

1 Introduction

1.1 Background and Motivation

The Regularity Lemma of Szemerédi [21] is one of the most powerful tools in
tackling combinatorial problems in various areas like extremal graph theory,
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these applications, we refer the reader to [15]. The regularity lemma guarantees
that the vertex set of any (dense) graph G = (V,E) can be partitioned into a
bounded number of vertex sets V1, . . . , Vk such that almost all the bipartite graphs
(Vi, Vj) are pseudo-random (see Section 1.2 for precise definitions). Hence, one
can think of Szemerédi’s regularity lemma as saying that any graph can be
approximated by a finite structure. This aspect of the regularity lemma has
turned out to be extremely useful for designing approximation algorithms, since
in some cases one can approximate certain properties of a graph (say, the Max-
Cut of the graph) by investigating its regular partition (which is of constant
size). In order to apply this algorithmic scheme one should be able to efficiently
construct a partition satisfying the condition of the lemma. While Szemerédi’s
proof of his lemma was only existential, it is known how to efficiently construct
a partition satisfying the conditions of the lemma. The first to achieve this
goal were Alon et al. [2] who showed that this task can be carried out in time
O(nω), where here and throughout this paper ω is the exponent of fast matrix
multiplication. The algorithm of Coppersmith and Winograd [7] gives ω < 2.376.
The O(nω) algorithm of Alon et al. [2] was later improved by Kohayakawa, Rödl
and Thoma [14] who gave a deterministic O(n2) algorithm.

The main drawback of Szemerédi’s regularity lemma is that the constants
involved are huge; Gowers [13] proved that in some cases the number of parts in
a Szemerédi regular partition grows as a tower of exponents of height polynomial
in the error parameter ε. It is thus natural to ask if one can find a slightly weaker
regularity lemma which would be applicable, while at the same time not involve
such huge constants. Such a lemma was indeed considered in [20] for bipartite
graphs and in [8] for arbitrary graphs. Subsequently, Frieze and Kannan [9,10]
devised an elegant regularity lemma of this type. They formulated a slightly
weaker notion of regularity (see Definition 1) which we will refer to as FK-
regularity. They proved that any graph has an FK-regular partition involving
drastically fewer parts compared to Szemerédi’s lemma. They also showed that
an FK-regular partition can still be used in some of the cases where Szemerédi’s
lemma was used. The notion of FK-regularity has been studied extensively in the
past decade. For example, it is a key part of the theory of graph limits developed
in recent years, see the survey of Lovász [17]. Finally, FK-regularity was a key
tool in the recent breakthrough of Bansal and Williams [4], where they obtained
new bounds for combinatorial boolean matrix multiplication.

As in the case of Szemerédi’s regularity lemma, in order to algorithmically
apply the FK-regularity lemma, one needs to be able to efficiently construct a
partition satisfying the conditions of the lemma. Frieze and Kannan also showed
that this task can be performed in randomized O(n2) time. Alon and Naor [3]
have shown that one can construct such a partition in deterministic polyno-
mial time. The algorithm of Alon and Naor [3] requires solving a semi-definite
program (SDP) and hence is not very efficient1. The fast boolean matrix multi-
plication of Bansal and Williams [4] applies the randomized algorithm of [9,10]

1 In fact, after solving the SDP, the algorithm of [3] needs time O(n3) to round the
SDP solution.
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for constructing an FK-regular partition. In an attempt to derandomize their
matrix multiplication algorithm, Williams [24] asked if one can construct an
FK-regular partition in deterministic time O(n3−c) for some c > 0. Our main
result in this paper answers this question by exhibiting a deterministic Õ(nω)
time algorithm. Furthermore, as part of the design of this algorithm, we also
show that one can find an approximation2 to the first eigenvalue of a symmetric
matrix in deterministic time Õ(nω).

Besides the above algorithmic motivation for our work, a further combina-
torial motivation comes from the study of pseudo-random structures. Different
notions of pseudo-randomness have been extensively studied in the last decade,
both in theoretical computer science and in discrete mathematics. A key ques-
tion that is raised in such cases is: Does there exist a deterministic condition
which guarantees that a certain structure (say, graph or boolean function) be-
haves like a typical random structure? A well known result of this type is the
discrete Cheeger’s inequality [1], which relates the expansion of a graph to the
spectral gap of its adjacency matrix. Other results of this type relate the pseudo-
randomness of functions over various domains to certain norms (the so-called
Gowers norms). We refer the reader to the surveys of Gowers [12] and Trevisan
[22] for more examples and further discussion on different notions of pseudo-
randomness. An FK-regular partition is useful since it gives a pseudo-random
description of a graph. Hence, it is natural to ask if one can characterize this
notion of pseudo-randomness using a deterministic condition. The work of Alon
and Naor [3] gives a condition which can be checked in polynomial time. How-
ever, as we mentioned before, verifying this condition requires one to solve a
semi-definite program and is thus not efficient. In contrast, our main result in
this paper gives a deterministic condition for FK-regularity which can be stated
very simply and checked very efficiently.

1.2 The Main Result

We start with more precise definitions related to the regularity lemma. For a pair
of subsets A,B ⊆ V (G) in a graph G = (V,E), let e(A,B) denote the number of
edges between A and B, counting each of the edges contained in A∩B twice. The
density d(A,B) is defined to be d(A,B) = e(A,B)

|A||B| . We will frequently deal with
a partition of the vertex set P = {V1, V2, . . . , Vk}. The order of such a partition
is the number of sets Vi (k in the above partition). A partition is equitable if all
sets are of size �n/k� or �n/k�. We will use the shorthand notation for density
across parts, dij = d(Vi, Vj) whenever i = j. Also, we set dii = 0 for all i.

The key notion in Szemerédi’s regularity lemma [21] is the following: Let
A,B be disjoint sets of vertices. We say that (A,B) is ε-regular if |d(A,B) −
d(A′, B′)| ≤ ε for allA′ ⊆ A andB′ ⊆ B satisfying |A′| ≥ ε|A| and |B′| ≥ ε|B|. It
is not hard to show (see [15]) that ε-regular bipartite graphs behave like random
graphs in many ways. Szemerédi’s Regularity Lemma [20] states that given ε > 0

2 The necessity of approximation when dealing with eigenvalues is due to the non-
existence of algebraic roots of high degree polynomials.
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there is a constant T (ε), such that the vertex set of any graph G = (V,E) can
be partitioned into k equitable sets V1, . . . , Vk, where k ≤ T (ε) and all but εk2

of the pairs (i, j) are such that (Vi, Vj) is ε-regular.
One of the useful aspects of an ε-regular partition of a graph is that it allows

one to estimate the number of edges in certain partitions of G. For example,
given an ε-regular partition, one can estimate the value of the Max-Cut in G
within an error of εn2, in time that depends only on the order of the partition
(and independent of the order of G!). Hence, one would like the order of the
partition to be relatively small. However, as we have mentioned above, Gowers
[13] has shown that there are graphs whose ε-regular partitions have size at least
Tower(1/ε1/16), namely a tower of exponents of height 1/ε1/16.

To remedy this, Frieze and Kannan [9,10] introduced the following relaxed
notion of regularity, which we will call ε-FK-regularity.

Definition 1 (ε-FK-regular). Let P = {V1, V2, . . . , Vk} be a partition of V (G).
For subsets S, T ⊆ V and 1 ≤ i ≤ k, let Si = S ∩ Vi and Ti = T ∩ Vi. Define
Δ(S, T ) for subsets S, T ⊆ V as follows:

Δ(S, T ) = e(S, T )−
∑
i�=j

dij |Si||Tj |. (1)

The partition P is said to be ε-FK-regular if it is equitable and

for all subsets S, T ⊆ V, |Δ(S, T )| ≤ εn2. (2)

If |Δ(S, T )| > εn2 then S, T are said to be witnesses to the fact that P is not
ε-FK-regular.

One can think of Szemerédi’s regularity as dividing the graph into parts such that
across most of the parts the graph looks like a random graph. In FK-regularity,
we just want to partition the graph so that any cut of the graph contains roughly
the “expected” number of edges as dictated by the densities dij . Another way to
think about FK-regularity is that we want the bipartite graphs to be ε-regular
(in the sense of Szemerédi) only on average.

The main novelty in this (weaker3) notion of regularity is that it allows one
to compute useful statistics on the graph (such as estimating Max-Cut) while
at the same time having the property that any graph can be partitioned into
an ε-FK-regular partition of order 2100/ε2 , which is drastically smaller than the
tower-type order of a Szemerédi partition. This was proved by Frieze and Kannan
in [9,10] where they also gave several algorithmic applications of their version
of the regularity lemma. As we have mentioned before, Frieze and Kannan also
[9,10] proved that one can construct an ε-FK regular partition of a graph in
randomized time O(n2). Our main result in this paper is the following determin-
istic algorithmic version of the FK-regularity lemma which answers a question
of Williams [24].

3 It is not hard to see that an ε-regular partition (in the sense of Szemerédi’s lemma)
is indeed ε-FK-regular.
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Theorem 1 (Main Result). Given ε > 0 and an n vertex graph G = (V,E),
one can find in deterministic time O

(
1
ε6n

ω log logn
)

an ε-FK-regular partition
of G of order at most 2108/ε7 .

1.3 Paper Overview

The rest of the paper is organized as follows. As we have mentioned earlier, the
relation between pseudo-random properties and spectral properties of graphs
goes back to the Cheeger’s Inequality [1]. Furthermore, it was shown in [11] that
one can characterize the notion of Szemerédi’s regularity using a spectral con-
dition. In Section 2 we introduce a spectral condition for ε-FK-regularity and
show that it characterizes this property. In order to be able to check this spectral
condition efficiently, one has to be able to approximately compute the first eigen-
value of a matrix. Hence, in Section 3 we show that this task can be carried out
in deterministic time Õ(nω). We use a deterministic variant of the randomized
power iteration method. Since we could not find a reference for this, we include
the proof for completeness. Finally, Section 4 contains some concluding remarks
and open problems. As in other algorithmic versions of regularity lemmas, the
non-trivial task is that of checking whether a partition is regular, and if it is
not, then finding sets S, T which violate this property (recall Definition 1). This
key result is stated in Corollary 1. Hence, due to space limitations, we omit the
(somewhat routine) process of deducing Theorem 1 from Corollary 1 and defer
it to the full version of this paper.

2 A Spectral Condition for FK-Regularity

In this section we introduce a spectral condition which “characterizes” parti-
tions which are ε-FK regular. Actually, the condition will allow us to quickly
distinguish between partitions that are ε-FK regular from partitions that are
not ε3/1000-FK regular. As we will show later on, this is all one needs in order
to efficiently construct an ε-FK regular partition. Our spectral condition relies
on the following characterization of eigenvalues of a matrix. We omit the proof
of this standard fact.

Lemma 1 (First eigenvalue). For a diagonalizable matrix M , the absolute
value of the first eigenvalue λ1(M) is given by the following:

|λ1(M)| = max
‖x‖=‖y‖=1

xTMy.

We say that an algorithm computes a δ-approximation to the first eigenvalue of
a matrix M if it finds two unit vectors x,y achieving xTMy ≥ (1 − δ)|λ1(M)|.
Our goal in this section is to prove the following theorem.

Theorem 2. Suppose there is an S(n) time algorithm for computing a 1/2-
approximation of the first eigenvalue of a symmetric n × n matrix. Then there
is an O(n2 + S(n)) time algorithm which given ε > 0, and a partition P of the
vertices of an n-vertex graph G = (V,E), does one of the following:
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1. Correctly states that P is ε-FK-regular.
2. Produces sets S, T which witness the fact that P is not ε3/1000-FK-regular.

Let A be the adjacency matrix of the graph G = (V,E), where V =
{1, 2, . . . , n} = [n]. Let S, T ⊆ V be subsets of the vertices and xS ,xT de-
note the corresponding indicator vectors. We would like to test if a partition
P = V1, . . . , Vk of V is a ε-FK-regular partition. We define a matrix D = D(P)
in the following way. Let 1 ≤ i, j ≤ n and suppose vertex i belongs Vli in P
and vertex j belongs to Vlj , for some 1 ≤ li, lj ≤ k. Then the (i, j)th entry of
D is given by Dij = dlilj . Thus the matrix D is a block matrix (each block
corresponding to the parts in the partition), where each block contains the same
value at all positions, the value being the density of edges corresponding to the
two parts. Now define Δ = A−D. For S, T ⊆ V and an n×n matrix M , define

M(S, T ) =
∑

i∈S,j∈T
M(i, j) = xTSMxT .

Notice that for the matrix Δ, the above definition coincides with (1):

Δ(S, T ) = A(S, T )−D(S, T ) = e(S, T )−
∑
i,j

dij |Si||Tj |,

where Si = S∩Vi and Tj = T ∩Vj . Summarizing, P is an ε-FK-regular partition
of V if and only if for all S, T ⊆ V , we have |Δ(S, T )| ≤ εn2.

Let G = (V,E) be an n-vertex graph, let P be a partition of V (G) and let
Δ be the matrix defined above. Notice that by construction, Δ is a symmetric
matrix and so it can be diagonalized with real eigenvalues. Lemmas 2 and 4 below
will establish a relation between the first eigenvalue of Δ and the FK-regularity
properties of P .

Lemma 2. If |λ1(Δ)| ≤ γn then P is γ-FK-regular.

Proof. We prove this in contrapositive. Suppose P is not γ-FK-regular and let
S, T be two sets witnessing this fact, that is, satisfying |Δ(S, T )| = |xTSΔxT | >
γn2. Normalizing the vectors xS and xT , we have x̃S = xS/‖xS‖ = xS/

√|S|
and x̃T = xT /‖xT ‖ = xT /

√|T |. We get

|x̃TSΔx̃T | > γn2/(
√
|S| |T |) ≥ γn ,

where the last inequality follows since |S|, |T | ≤ n. By the characterization of
the first eigenvalue, we have that |λ1(Δ)| > γn. ��
Lemma 3. Suppose two vectors p,q ∈ [−1, 1]n satisfying pTΔq > 0 are given.
Then, in deterministic time O(n2), we can find sets S, T ⊆ [n] satisfying |Δ(S, T )
| ≥ 1

4p
TΔq.

Proof. Let us consider the positive and negative parts of the vectors p and q. Of
the four combinations, (p+,q+), (p+,q−), (p−,q+) and (p−,q−), at least one
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pair should give rise to a product at least pTΔq/4. Let us call this pair the good
pair. Suppose the good pair is p+,q+. Let Δi, Δ

j denote respectively the ith
row and jth column of Δ. We can write (p+)TΔq+ =

∑
i p

+
i 〈Δi,q+〉. Compute

the n products, 〈Δi,q+〉. We put vertex i in S if and only if 〈Δi,q+〉 ≥ 0.
For this choice of S, we have xTSΔq+ ≥ (p+)TΔq+. Similarly as before, we
have xTSΔq+ =

∑
j q

+
j 〈xS , Δj〉, therefore depending on the signs of 〈xS , Δj〉,

we define whether j belongs to T . Thus we get sets S, T such that Δ(S, T ) =
xTSΔxT ≥ (p+)TΔq+ ≥ pTΔq/4. Notice that this rounding takes O(n2) time,
since we need to perform 2n vector products, each of which takes O(n) time.

If exactly one of p− or q− is part of the good pair, then we could replicate the
above argument in a similar manner. Thus we would get Δ(S, T ) ≤ −pTΔq/4.
If the good pair is (p−,q−), we would again get Δ(S, T ) ≥ pTΔq/4. ��
Lemma 4. If |λ1(Δ)| > γn, then P is not γ3/108-FK-regular. Furthermore,
given unit vectors x,y satisfying xTΔy > γn, one can find sets S, T witnessing
this fact in deterministic time O(n2).

Proof. As per the previous observation, it is enough to find sets S, T such that
|Δ(S, T )| > γ3n2/108. By Lemma 3, it is enough to find vectors p and q in
[−1, 1]n satisfying pTΔq > γ3n2/27.

Suppose that |λ1(Δ)| > γn and let x,y satisfy ‖x‖ = ‖y‖ = 1 and xTΔy >
γn. Let β > 1 (β will be chosen to be 3/γ later on) and define x̂, ŷ in the
following manner:

x̂i =

{
xi : if |xi| ≤ β√

n

0 : otherwise
, ŷi =

{
yi : if |yi| ≤ β√

n

0 : otherwise
.

We claim that
x̂TΔŷ > (γ − 2/β)n . (3)

To prove this, note that

x̂TΔŷ = xTΔy − (x− x̂)TΔy − x̂TΔ(y − ŷ)
> γn− (x− x̂)TΔy − x̂TΔ(y − ŷ)
≥ γn− |(x− x̂)TΔy| − |x̂TΔ(y − ŷ)| .

Hence, to establish (3) it would suffice to bound |(x− x̂)TΔy| and |x̂TΔ(y− ŷ)|
from above by n/β. To this end, let C(x) = {i : |xi| ≥ β/

√
n}, and note that

since ‖x‖ = 1 we have |C(x)| ≤ n/β2. Now define Δ′ as

Δ′ij =
{
Δij if i ∈ C(x)

0 otherwise .

We now claim that the following holds.

|(x − x̂)TΔy| = |(x− x̂)TΔ′y| ≤ ‖(x− x̂)T ‖‖Δ′y‖
≤ ‖Δ′y‖
≤ ‖Δ′‖F‖y‖
= ‖Δ′‖F
≤ n/β .
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Indeed, the first inequality is Cauchy-Schwarz and in the second inequality we
use the fact that ‖x − x̂‖ ≤ ‖x‖ = 1. In the third inequality ‖Δ′‖F denotes√∑

i,j(Δ
′
ij)2 and the inequality follows from Cauchy-Schwarz. The fourth line is

an equality that follows from ‖y‖ = 1. The last inequality follows from observing
that since |C(x)| ≤ n/β2 the matrix Δ′ has only n2/β2 non-zero entries, and
each of these entries is of absolute value at most 1. It follows from an identical
argument that |x̂TΔ(y − ŷ)| ≤ n/β, thus proving (3). After rescaling x̂ and ŷ,
we get

((
√
n/β)x̂)TΔ((

√
n/β)ŷ) > (γ − 2/β)n2/β2 .

Setting β = 3/γ so that (γ − 2/β)/β2 is maximized, the right hand side of the
inequality is γ3n2/27. Now that we have the necessary vectors p = (

√
n/β)x̂

and q = (
√
n/β)x̂, an application of Lemma 3 completes the proof. ��

Proof (Proof of Theorem 2). We start with describing the algorithm. Given G =
(V,E), ε > 0 and a partition P of V (G), the algorithm first computes the matrix
Δ = A − D (in time O(n2)) and then computes unit vectors x,y satisfying
xTΔy ≥ 1

2 |λ1(Δ)| (in time S(n)). If xTΔy ≤ εn/2 the algorithm declares that
P is ε-FK-regular, and if xTΔy > εn/2 it declares that P is not ε3/1000-FK-
regular and then uses the O(n2) time algorithm of Lemma 4 in order to produce
sets S, T which witness this fact. The running time of the algorithm is clearly
O(n2 + S(n)).

As to the algorithm’s correctness, if xTΔy ≤ εn/2 then since we have com-
puted a 1/2-approximation for |λ1(Δ)| this means that |λ1(Δ)| ≤ εn. Hence,
by Lemma 2 we have that P is indeed ε-FK-regular. If xTΔy > εn/2 then by
Lemma 4 we are guaranteed to obtain sets S, T which witness the fact that P is
not ε3/(108 · 8) ≥ ε3/1000-FK-regular. ��

3 Finding the First Eigenvalue Deterministically

In order to efficiently apply Theorem 2 from the previous section, we will need an
efficient algorithm for approximating the first eigenvalue of a symmetric matrix.
Such an algorithm is guaranteed by the following theorem:

Theorem 3. Given an n × n symmetric matrix H, and parameter δ > 0, one
can find in deterministic time O

(
nω log

(
1
δ log

(
n
δ

)))
unit vectors x,y satisfying

xTHy ≥ (1− δ)|λ1(H)|.
Setting H = Δ and δ = 1/2 in Theorem 3, and using Theorem 2 we infer the
following corollary.

Corollary 1. There is an O(nω log logn) time algorithm, which given ε > 0, an
n-vertex graph G = (V,E) and a partition P of V (G), does one of the following:

1. Correctly states that P is ε-FK-regular.
2. Finds sets S, T which witness the fact that P is not ε3/1000-FK-regular.
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As we have mentioned in Section 1, one can derive our main result stated in
Theorem 1 from Corollary 1 using the proof technique of Szemerédi [21]. Hence
we defer this part of the paper to the full version.

We also note that the proof of Theorem 3 can be modified to approximate the
quantity max‖x‖=‖y‖=1 xTHy for any matrix H . This quantity is the so-called
first singular value ofH . But since we do not need this for our specific application
to FK-regularity, we state the theorem “only” for symmetric matrices H .

Getting back to the proof of Theorem 3 we first recall that for any matrix H
we have |λ1(H)| = √

λ1(H2) (notice that H2 is positive semi-definite, so all its
eigenvalues are non-negative). Hence, in order to compute an approximation to
|λ1(H)|, we shall compute an approximation to λ1(H2). Theorem 3 will follow
easily once we prove the following.

Theorem 4. Given an n × n positive semi-definite matrix M , and parameter
δ > 0, there exists an algorithm that runs in O

(
nω log

(
1
δ log

(
n
δ

)))
time and

outputs a vector b such that

bTMb
bTb

≥ (1− δ)λ1(M).

Proof (Proof of Theorem 3). As mentioned above, |λ1(H)| = √
λ1(H2). SinceH2

is positive semi-definite we can use Theorem 4 to compute a vector b satisfying

bTMb
bTb

= λ̂1 ≥ (1− δ)λ1(M).

We shall see that
√
λ̂1 is a (1 − δ) approximation to the first eigenvalue of H .

To recover the corresponding vectors as in Lemma 1, notice that

bTMb = bTH2b = ‖Hb‖2 = λ̂1‖b‖2 =⇒ ‖Hb‖ =
√
λ̂1‖b‖.

Setting x = Hb√
λ̂1‖b‖

and y = b
‖b‖ , we obtain unit vectors x and y satisfying

xTHy =
√
λ̂1 ≥

√
(1− δ)λ1(H2) ≥ (1 − δ)|λ1(H)| .

The main step that contributes to the running time is the computation of b using
Theorem 4 and hence the running time is O

(
nω log

(
1
δ log

(
n
δ

)))
, as needed. ��

We turn to prove Theorem 4. We shall apply the power iteration method to com-
pute an approximation of the first eigenvalue of a positive semi-definite (PSD)
matrix. Power iteration is a technique that can be used to compute the largest
eigenvalues and is a very widely studied method. For instance, the paper [16] by
Kuczyński and Woźniakowski has a very thorough analysis of the method. The
earlier work of [18] shows that power iteration is much more effective with PSD
matrices. A much simpler (albeit slightly weaker) analysis was given in [23].

A PSD matrix M has all nonnegative eigenvalues. The goal of power iteration
is to find the first eigenvalue and the corresponding eigenvector of M . The basic
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idea is that an arbitrary vector r is taken, and is repeatedly multiplied with the
matrix M . The vector r can be seen as a decomposition into components along
the direction of each of the eigenvectors of the matrix. With each iteration of
multiplication by M , the component of r along the direction of the first eigen-
vector gets magnified much more than the component of r along the direction
of the other eigenvectors. This is because the first eigenvalue is larger than the
other eigenvalues. One of the key properties that is required of r is that it has
a nonzero component along the first eigenvector. We ensure that by using n
different orthogonal basis vectors.

We first need the following key lemma.

Lemma 5. Let M be a positive semi-definite matrix. Let a ∈ Rn be a unit vector
such that |〈v1,a〉| ≥ 1/

√
n. Then, for every positive integer s and positive δ > 0,

for b = M sa, we have

bTMb
bTb

≥ λ1 ·
(

1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s ,
where λ1 denotes the first eigenvalue of M .

The proof of the above lemma is omitted due to lack of space. Now we are ready
to analyze the power iteration algorithm and to prove Theorem 4.

Proof (Proof of Theorem 4). Consider the n canonical basis vectors, denoted
by ei, for i = 1, . . . , n. We can decompose the first eigenvector v1 of M along
these n basis vectors. Since v1 has norm 1, there must exist an i such that
|〈v1, ei〉| ≥ 1/

√
n, by pigeonhole principle. We can perform power iteration of

M , starting at these n basis vectors. We would get n output vectors, and for
each output vector x, we compute xTMx/(xTx), and choose the one which gives
us the maximum. By Lemma 5, one of these output vectors x is such that

xTMx
xTx

≥ λ1 ·
(

1− δ

2

)
· 1

1 + n
(
1− δ

2

)2s .
If we use s = O

(
1
δ log

(
n
δ

))
, we can eliminate the factor n in the denominator,

and the denominator would become (1 + δ
2 ), giving us an estimate of at least

λ1 · (1 − δ), which is what we required.
To perform the n power iterations efficiently, consider taking the sth power of

M . Let N = M s = M s · I. We can think of this as performing n power iteration
algorithms in parallel, each one starting with a different canonical basis vector.
For each vector x = M sei, we need to compute (xTMx)/(xTx). For that we
compute the products P = NTMN and Q = NTN . To get the x that maximizes
the answer, we choose max{Pii/Qii : 1 ≤ i ≤ n}. The maximized ratio is the
approximation to the first eigenvalue, and the corresponding ith column of N is
the estimation of the maximizing eigenvector.

For the running time analysis, the most time consuming step is taking the
sth power of the matrix M . Using repeated squaring, this can be done in 2 log s
steps. Since we need s = O

(
1
δ log

(
n
δ

))
, the running time required by the entire

algorithm is bounded by O
(
nω log

(
1
δ log

(
n
δ

)))
. ��
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4 Concluding Remarks and Open Problems

• We have designed an Õ(nω) time deterministic algorithm for constructing an
ε-FK regular partition of a graph. It would be interesting to see if one can
design an O(n2) time deterministic algorithm for this problem. We recall that
it is known [14] that one can construct an ε-regular partition of a graph (in
the sense of Szemerédi) in deterministic time O(n2). This algorithm relies on a
combinatorial characterization of ε-regularity using a co-degree condition. Such
an approach might also work for ε-FK regularity, though the co-degree condition
in this case might be more involved.
•We have used a variant of the power iteration method to obtain an Õ(nω) time
algorithm for computing an approximation to the first eigenvalue of a symmetric
matrix. It would be interesting to see if the running time can be improved to
O(n2). Recall that our approach relies on (implicitly) running n power-iterations
in parallel, each of which on one of the n standard basis vectors. One approach to
design an Õ(n2) algorithm would be to show that given an n×n PSD matrix M ,
one can find in time O(n2) a set of n0.1 unit vectors such that one of the vectors
v in the set has an inner product at least 1/poly(n) with the first eigenvector of
M . If this can indeed be done, then one replace the fast matrix multiplication
algorithm for square matrices that we use in the algorithm, by an algorithm of
Coppersmith [6] that multiplies an n× n matrix by an n × n0.1 matrix in time
Õ(n2). The modified algorithm would then run in Õ(n2).
• Designing an Õ(n2) algorithm for finding the first eigenvalue of a PSD matrix
would of course yield an Õ(n2) algorithm for finding an ε-FK regular partition
of a graph (via Theorem 2). In our case, it is enough to find the first eigenvalue
up to a δn additive error. So another approach to getting an Õ(n2) algorithm
for ε-FK regularity would be to show that in time Õ(n2) we can approximate
the first eigenvalue up to an additive error of δn. It might be easier to design
such a Õ(n2) algorithm than for the multiplicative approximation discussed in
the previous item.

Acknowledgement. We would like to thank Nikhil Srivastava for helpful initial
discussions.
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Abstract. A q-query locally testable code (LTC) is an error correcting
code that can be tested by a randomized algorithm that reads at most
q symbols from the given word. An important question is whether there
exist LTCs that have the c3 property: constant rate, constant relative
distance, and that can be tested with a constant number of queries.
Such LTCs are sometimes referred to as “asymptotically good”.

We show that dense LTCs cannot be c3. The density of a tester is
roughly the average number of distinct local views in which a coordinate
participates. An LTC is dense if it has a tester with density ω(1).

More precisely, we show that a 3-query locally testable code with a
tester of density ω(1) cannot be c3. Furthermore, we show that a q-locally
testable code (q > 3) with a tester of density ω(1)nq−2 cannot be c3. Our
results hold when the tester has the following two properties:

– (no weights:) Every q-tuple of queries occurs with the same
probability.

– (‘last-one-fixed’:) In every q-query ‘test’ of the tester, the value to
any q − 1 of the symbols determines the value of the last symbol.
(Linear codes have constraints of this type).

We also show that several natural ways to quantitatively improve our
results would already resolve the general c3 question, i.e. also for non-
dense LTCs.

1 Introduction

An error correcting code is a set C ⊂ Σn. The rate of the code is log |C| /n and
its (relative) distance is the minimal Hamming distance between two different
codewords x, y ∈ C, divided by n. We only consider codes with distance Ω(1).

A code is called locally testable with q queries if it has a tester, which is
a randomized algorithm with oracle access to the received word x. The tester
reads at most q symbols from x and based on this local view decides if x ∈ C or
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not. It should accept codewords with probability one, and reject words that are
far (in Hamming distance) from the code with noticeable probability. The tester
has parameters (τ, ε) if

∀x ∈ Σn, dist(x, C) ≥ τ =⇒ Pr[Tester rejects x] ≥ ε

Locally Testable Codes (henceforth, LTCs) have been studied extensively in
recent years. A priori, even the existence of LTCs is not trivial. The Hadamard
code is a celebrated example of an LTC, yet it is highly “inefficient” in the
sense of having very low rate (log n/n). Starting with the work of Goldreich
and Sudan [GS06], several other efficient constructions of LTCs have been given.
The best known rate for LTCs is 1/ logO(1) n, and these codes have 3-query
testers [BS05, Din07, Mei09]. The failure to construct constant rate, constant
distance LTCs testable with constant number of queries leads to one of the
main open questions in the area: are there LTCs that are c3, i.e. constant rate
constant distance and testable with a constant number of queries (such LTCs
are sometimes called in the literature “asymptotically good”). The case of two
queries with LOF tests has been studied in [BSGS03]. However, the case of q ≥ 3
is much more interesting and still quite open.

Dense Testers. In this work we make progress on a variant of the c3 question.
We show that LTCs with so-called dense testers, cannot be c3.

The density of a tester is roughly the average number, per-coordinate, of
distinct local views that involve that coordinate. More formally, every tester gives
rise to a constraint-hypergraphH = ([n], E) whose vertices are the n coordinates
of the codeword, and whose hyperedges correspond to all possible local views of
the tester. Each hyperedge h ∈ E is also associated with a constraint, i.e. with
a Boolean function fh : Σq → {0, 1} that determines whether the tester accepts
or rejects on that local view. For a given string x ∈ Σn, we denote by xh the
substring obtained by restricting x to the coordinates in the hyperedge h. The
value of fh(xh) determines if the string x falsifies the constraint or not.

Definition 1 (The test-hypergraph, density). Let C ⊆ Σn be a code, let
q ∈ N and ε > 0.

Let H be a constraint hypergraph with hyperedges of size at most q. H is an
(τ, ε)-test-hypergraph for C if

– For every x ∈ C and every h ∈ E, fh(xh) = 1
– For every x ∈ Σn,

dist(x, C) ≥ τ ⇒ Pr
h∈E

[fh(xh) = 0] ≥ ε

where dist(x, y) denotes relative Hamming distance, i.e., the fraction of co-
ordinates on which x differs from y.

Finally, the density of H is simply the average degree, |E| /n.
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The hypergraph describes a tester that selects one of the hyperedges uniformly
at random. Observe that we disallow weights on the hyperedges. This will be
discussed further below.

Goldreich and Sudan [GS06] proved that every tester with density Ω(1) can
be made into a “sparse” tester with density O(1) by randomly eliminating each
hyper-edge with suitable probability. This means that a code can have both
dense and sparse testers at the same time. Hence, we define a code to have
density ≥ d if it has a tester with density d. We stress, that density in this work
is a property of the code rather than of the tester. In this work we show that
the existence of certain dense testers restricts the rate of the code.

We say that an LTC is sparse if it has no tester whose density is ω(1). We
do not know of any LTC that is sparse. Thus, our work here provides some
explanation for the bounded rate that known LTCs achieve.

In fact, one wonders whether density is an inherent property of LTCs. The
intuition for such a claim is that in order to be locally testable the code seems to
require a certain redundancy among the local tests, a redundancy which might
be translated into density. If one were to prove that every LTC is dense, then it
would rule out, by combination with our work, the existence of c3-LTCs1.

In support of this direction we point to the work of the second author with co-
authors (Ben-Sasson et al [BSGK+10]) where it is shown that every linear LTC
(even with bounded rate) must have some non-trivial density: They show that
no linear LTC can be tested only with tests that form a basis to the dual code.
Moreover, any tester must have a significantly larger number of tests. Namely
some constant density is required in every tester of such an LTC.

1.1 Our Results

We bound the rate of LTCs with dense testers. We only consider testers whose
constraints have the “last-one-fixed” (LOF) property, i.e. the value to any q− 1
symbols determine the value of the last symbol. Note for instance that any linear
constraint has this property.

We present different bounds for the case q = 3 and the case q > 3 where q
denotes the number of queries.

Theorem 1. Let C ⊆ {0, 1}n be a 3-query LTC with distance δ, and let H be
an (δ/3, ε)-test-hypergraph with density d and LOF constraints. Then, the rate
of C is at most O(1/d1/2) (where the O-notation hides dependencies on δ, ε).

For the case of q > 3 queries we have the following result whose proof, which is
similar to the q = 3 case, is omitted due to space limitations.

Theorem 2. Let C ⊆ {0, 1}n be a q-query LTC with distance δ, and let H be an
(δ/2, ε)-test-hypergraph with density Δ, where Δ = dnq−2, and LOF constraints.
Then, the rate of C is at most O(1/d).
1 This is slightly imprecise, since our results only hold for uniform and LOF testers.

So for this approach to work one would need to remove these extra conditions from
our results.
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Extensions. In this preliminary version we assume that the alphabet is Boolean,
but the results easily extend to any finite alphabet Σ. It may also be possible
to get rid of the “last-one-fixed” restriction on the constraints, but this remains
to be worked out.

Improvements. We show that several natural ways of improving our results will
already resolve the ‘bigger’ question of ruling out c3-LTCs.

– In this work we only handle non-weighted testers, i.e., where the hypergraph
has no weights. In general a tester can put different weights on different
hyperedges. This is sometimes natural when combining two or more ”types”
of tests each with certain probability. This limitation cannot be eliminated
altogether, but may possibly be addressed via a more refined definition of
density. See further discussion Section 3.3.

– In Theorem 1 we prove that ρ ≤ O(1/d0.5). We show that any improvement
of the 0.5 exponent (say to 0.5 + ε) would again rule out the existence of
c3-LTCs, see Lemma 4

– In Theorem 2 we bound the rate only when the density is very high, namely,
ω(nq−2). We show, in Lemma 5, that any bound for density O(nq−3) would
once more rule out the existence of c3-LTCs. It seems that our upper bound
of ω(nq−2) can be improved to ω(nq−3), possibly by arguments similar to
those in the proof of Theorem 1.

Related Work. In the course of writing our result we learned that Eli Ben-Sasson
and Michael Viderman have also been studying the connection between density
and rate and have obtained related results, through seemingly different methods.

2 Moderately Dense 3-query LTCs Cannot Be c3

In this section we prove Theorem 1 which we now recall:

Theorem 1. Let C ⊆ {0, 1}n be a 3-query LTC with distance δ, and let H be
an (δ/3, ε)-test-hypergraph with density d and LOF constraints. Then, the rate
of C is at most O(1/d1/2).

In order to prove the main theorem, we consider the hypergraph H = (V,E(H))
whose vertices are the coordinates of the code, and whose hyper-edges correspond
to the different tests of the tester. By assumption,H has dn distinct hyper-edges.
We describe an algorithm in Figure 1 for assigning values to coordinates of a
codeword, and show that a codeword is determined using k = O( n

d1/2 ) bits.
We need the following definition. For a partition (A,B) of the vertices V of

H , we define the graph GB = (A,E) where

E = {{a1, a2} ⊂ A | ∃b ∈ B, {a1, a2, b} ∈ E(H)} .
A single edge {a1, a2} ∈ E(GB) may have more than one “preimage”, i.e., there
may be two (or more) distinct vertices b, b′ ∈ B such that both hyper-edges
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{a1, a2, b} , {a1, a2, b
′} are in H . For simplicity we consider the case where the

constraints are linear2 which implies that for every codeword w ∈ C: wb = wb′ .
This is a source of some complication for our algorithm, which requires the
following definition.

Definition 2. Two vertices v, v′ are equivalent if

∀w ∈ C, wv = wv′ .

Clearly this is an equivalence relation. A vertex has multiplicity m if there are
exactly m vertices in its equivalence class. For the first read, the reader may
assume that all multiplicities are 1.

Denote by V ∗ the set of vertices whose multiplicity is at most βd1/2 for β =
α/16 where α = 3ε/δ.

0. Init: Let α = 3ε/δ and fix β = α/16. Let B contain all vertices with multiplicity
at least βd1/2. Let F contain a representative from each of these multiplicity
classes. Let B also contain all vertices whose value is the same for all codewords.

1. Clean: Repeat the following until B remains fixed:
(a) Add to B any vertex that occurs in a hyper-edge that has two endpoints in

B.
(b) Add to B all vertices in a connected component of GB whose size is at least

βd1/2, and add an arbitrary element in that connected component into F .
(c) Add to B any vertex that has an equivalent vertex in B.

2. S-step: Each vertex outside B tosses a biased coin and goes into S with proba-
bility 1/d1/2. Let B ← B ∪ S and set F ← F ∪ S.

3. If there are at least two distinct x, y ∈ C such that xB = yB goto step 1, otherwise
halt.

Fig. 1. The Algorithm

The following lemma is easy.

Lemma 1. If the algorithm halted, the code has at most 2|F | words.

Proof. This follows since at each step setting the values to vertices in F already
fully determines the value of all vertices in B (in any valid codeword). Once the
algorithm halts, the values of a codeword on B determines the entire codeword.
Thus, there can be at most 2|F | codewords.

Let Bt denote the set B at the end of the t-th Clean step (i.e. we refer to the main
loop over steps 1a,1b,1b). In order to analyze the expected size of F when the
algorithm halts, we analyze the probability that vertices not yet in B will go into
B on the next iteration. For a vertex v, this is determined by its neighborhood
structure. Let

Ev = {{u, u′} | u, u′ ∈ V ∗, and {u, u′, v} ∈ E(H)}
2 More generally, when the constraints are LOF the set of all such b’s can be partitioned

into all those equal to wb and all those equal to 1 − wb.
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be a set of edges. Denote by A the vertices v with large |Ev|,
A = {v | |Ev| ≥ αd} .

The following lemma (whose proof appears in the next section) says that if v
has sufficiently large Ev then it is likely to enter B in the next round:

Lemma 2. For t ≥ 2, if v ∈ A then

Pr
S

[v ∈ Bt] ≥ 1
2
.

Next, consider a vertex v ∈ A that is adjacent, in the graph GBt−1 , to a vertex
v′ ∈ A. This means that there is a hyper-edge h = {v, v′, b} where b ∈ Bt−1. If
it so happens that v′ ∈ Bt (and the above lemma guarantees that this happens
with probability ≥ 1

2 ), then the hyper-edge h would cause v to go into Bt as
well. In fact, one can easily see that if v goes into Bt then all of the vertices in
its connected component in GBt−1 will go into Bt as well (via step 1a). Let At

be the set of vertices outside Bt that are in A or are connected by a path in GBt

to some vertex in A. We have proved

Corollary 1. For t ≥ 2, let v ∈ At−1 then

Pr
S

[v ∈ Bt] ≥ 1
2
.

��
Lemma 3. If the algorithm hasn’t halted before the t-th step and |At−1| < δ

2n
then the algorithm will halt at the end of the t-th step.

Before proving the two lemmas, let us see how they imply the theorem.

Proof. (of theorem 1) For each t ≥ 2, Corollary 1 implies that for each v ∈ At−1

half of the S’s put it in Bt. We can ignore the sets S whose size is above 2·n/d1/2,
as their fraction is negligible. By linearity of expectation, we expect at least half
of At−1 to enter Bt. In particular, fix some St−1 to be an S that attains (or
exceeds) the expectation. As long as |At−1| ≥ δn/2 we get

|Bt| ≥ |Bt−1|+ |At−1| /2 ≥ |Bt−1|+ δn/4.

Since |Bt| ≤ n after � ≤ 4/δ iterations when the algorithm runs with S1, . . . , S

we must have |A
| < δn/2. This means that the conditions of Lemma 3 hold,
and the algorithm halts.

How large is the set F? In each S-step the set F grew by |S| ≤ 2n/d1/2 (recall
we neglected S’s that were larger than that). The total number of vertices that
were added to F in S-steps is thus O(� · n/d1/2).

Other vertices are added into F in the init step and in step 1b. In both of
these steps one vertex is added to F for every βd1/2 vertices outside B that
are added into B. Since vertices never exit B, the total number of this type of
F -vertices is n/(βd1/2).
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Altogether, with non-zero probability, the final set F has size O( 1
d1/2 ) · n.

Together with Lemma 1 this gives the desired bound on the number of codewords
and we are done.

We now prove the two lemmas.

2.1 Proof of Lemma 2

We fix some v ∈ A. If v ∈ Bt−1 then we are done since Bt ⊇ Bt−1. So assume
v ∈ Bt−1 and let us analyze the probability of v entering Bt over the random
choice of the set S at iteration t − 1. This is dictated by the graph structure
induced by the edges of Ev. Let us call this graph G = (U,Ev), where U contains
only the vertices that touch at least one edge of Ev. We do not know how many
vertices participate in U , but we know that |Ev| ≥ αd.

We begin by observing that all of the neighbors of u ∈ U must be in the same
equivalence class3. Indeed each of the edges {v, u, ui} is a hyper-edge in H and
the value of ui is determined by the values of v and u. Therefore, the degree in
G of any vertex u ∈ U is at most βd1/2, since vertices with higher multiplicity
are not in V ∗ and therefore do not participate in edges of Ev.

For each u ∈ U let Iu be an indicator variable that takes the value 1 iff there
is a neighbor of u that goes into S. If this happens then either

– u ∈ S: this means that v has a hyperedge whose two other endpoints are in
Bt and will itself go into Bt (in step 1a).

– u ∈ S: this means that the graph GBt will have an edge {v, u}.
If the first case occurs for any u ∈ U we are done, since v goes into Bt in step 1a.
Otherwise, the random variable

∑
u∈U Iu counts how many distinct edges {v, u}

will occur in GBt . If this number is above βd1/2 then v will go into Bt (in step 1b)
and we will again be done. It is easy to compute the expected value of I. First,
observe that

E[Iu] = 1− (1 − 1/d1/2)deg(u)

where deg(u) denotes the degree of u in G and since the degree of u is at
most βd1/2, this value is between deg(u)/2d1/2 and deg(u)/d1/2. By linearity of
expectation

E[I] =
∑
u

E[Iu] ≥
∑
u

deg(u)/2d1/2 = |Ev| d−1/2 ≥ αd1/2.

We will show that I has good probability of attaining a value near the expec-
tation (and in particular at least αd1/2/2 ≥ βd1/2), and this will put v in Bt

at step 1b. The variables Iu are not mutually independent, but we will be able
to show sufficient concentration by bounding the variance of I, and applying
Chebychev’s inequality.
3 Or, more generally for LOF constraints, in one of a constant number of equivalence

classes.
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The random variables Iu and Iu′ are dependent exactly when u, u′ have a
common neighbor (the value of Iu depends on whether the neighbors of u go
into S). We already know that having a common neighbor implies that u, u′ are
in the same multiplicity class. Since U ⊂ V ∗, this multiplicity class can have
size at most βd1/2. This means that we can partition the vertices in U according
to their multiplicity class, such that Iu and Iu′ are fully independent when u, u′

are from distinct multiplicity classes. Let u1, . . . , ut be representatives of the
multiplicity classes, and let di ≤ βd1/2 denote the size of the ith multiplicity
class. Also, write u ∼ u′ if they are from the same multiplicity class.

V ar[I] = E[I2]− (E[I])2 = E
∑
u,u′

IuIu′ −
∑
u,u′

EIuEIu′

=
∑
u∼u′

E[IuIu′ ] +
∑
u�∼u′

EIuEIu′ −
∑
u,u′

EIuEIu′

≤
∑
i

∑
u∼ui

∑
u′∼ui

EIuIu′

≤
∑
i

∑
u∼ui

∑
u′∼ui

EIu · 1

≤
∑
i

∑
u∼ui

EIu · di ≤
∑
i

∑
u∼ui

deg(u)
d1/2

· βd1/2

= β
∑
u

deg(u) = 2β |Ev|

By Chebychev’s inequality,

Pr[|I − E[I]| ≥ a] ≤ V ar[I]/a2

Plugging in a = E[I]/2 we get

Pr

[
|I − E[I ]| ≥ E[I ]

2

]
≤ V ar[I ]

(E[I ]/2)2
≤ (2β |Ev|)·((

1

2
|Ev| d−1/2)2)−1 ≤ 8βd/ |Ev| ≤ 8β/α.

and so by choosing β = α/16 this probability is at most a half. Thus, the
probability that I ≥ EI/2 ≥ αd1/2/2 is at least a half. As we said before,
whenever I ≥ βd1/2 we are guaranteed that v will enter Bt in the next Clean
step 1b and we are done. ��

2.2 Proof of Lemma 3

We shall prove that if the algorithm hasn’t halted before the t-th step and
|At−1| < δ

2n then |Bt| > (1 − δ)n. This immediately implies that the algorithm
must halt because after fixing values to more than 1−δ fraction of the coordinates
of a codeword, there is a unique way to complete it.

Recall that A is the set of all vertices v for which |Ev| ≥ αd. The set Bt−1 is
the set B in the algorithm after the t− 1-th Clean step. The set At−1 is the set
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of vertices outside Bt−1 that are connected by a path in GBt−1 to some vertex
in A. Finally, denote G = GBt−1 .

Assume for contradiction that |Bt| ≤ (1− δ)n and |At−1| < δn/2. This means
that Z = V \ (At−1 ∪Bt) contains more than δn/2 vertices. Since Z ∩At−1 = φ,
every vertex v ∈ Z has |Ev| < αd. Our contradiction will come by finding a
vertex in Z with large Ev. If the algorithm doesn’t yet halt, there must be two
distinct codewords x, y ∈ C that agree on Bt. Let Ux �=y = {u ∈ V | xu = yu}.
This is a set of size at least δn that is disjoint from Bt. Since |At−1| ≤ δn/2 there
must be at least δn/2 vertices in Z ∩Ux �=y. Suppose u ∈ Z ∩ Ux �=y and suppose
u′ is adjacent to u in G. First, by definition of Z, u ∈ Z implies u′ ∈ Z. Next,
we claim that u ∈ Ux �=y implies u′ ∈ Ux �=y. Otherwise there would be an edge
{u, u′, b} ∈ E(H) such that b ∈ Bt, and such that xu = yu but both xu′ = yu′

and xb = yb. This means that either x or y must violate this edge, contradicting
the fact that all hyper-edges should accept a legal codeword. We conclude that
the set Z ∩Ux �=y is a union of connected components of G. Since each connected
component has size at most βd1/2 (otherwise it would have gone into B in a
previous Clean step) we can find a set D ⊂ Z ∩ Ux �=y of size s, for

δ

3
n ≤ δ

2
n− βd1/2 ≤ s ≤ δ

2
n,

that is a union of connected components, i.e. such that no G-edge crosses the
cut between D and V \D. Now define the hybrid word

w = xDyV \D

that equals x on D and y outside D. We claim that dist(w,C) = dist(w, y) =
|D| /n ≥ δ/3. Otherwise there would be a word z ∈ C whose distance to w is
strictly less than |D| /n ≤ δ/2 which, by the triangle inequality, would mean it
is less than δn away from y thereby contradicting the minimal distance δn of
the code.

Finally, we use the fact that C is an LTC,

dist(w,C) ≥ δ/3 =⇒ Probh∼E(H)[h rejects w] ≥ ε.

Clearly to reject w a hyperedge must touch D. Furthermore, such a hyperedge
cannot intersect B on 2 vertices because then the third non-Bt vertex also be-
longs to Bt. It cannot intersect Bt on 1 vertex because this means that either the
two other endpoints are both in D, which is imopssible since such a hyperedge
would reject the legal codeword x as well; or this hyperedge induces an edge in
G that crosses the cut between D and V \D. Thus, rejecting hyper-edges must
not intersect Bt at all.

Altogether we have εdn rejecting hyperedges spanned on V \ Bt such that
each one intersects D. This means that there must be some vertex v ∈ D that
touches at least εdn/(δn/3) = αd rejecting hyperedges. Recall that D ⊂ Z is
disjoint from A, which means that |Ev| < αd. On the other hand, each rejecting
hyperedge touching v must add a distinct edge to Ev. Indeed recall that Ev
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contains an edge {u, u′} for each hyperedge {u, u′, v} such that u, u′ ∈ V ∗ and
where V ∗ is the set of vertices with multiplicity at most βd1/2. The claim follows
since obviously all of the αd rejecting hyperedges are of this form (they do not
contain a vertex of high multiplicity as these vertices are in B). ��

3 Exploring Possible Improvements

3.1 Tradeoff between Rate and Density

Any improvement over our bound of ρ < 1/d1/2, say to a bound of the form
ρ < 1/d0.501 would already be strong enough to rule out c3-LTCs (with a non-
weighted tester) regardless of their density. The reason for this is the following
reduction by Oded Goldreich.

Lemma 4. Suppose for some q ≥ 3 and some ε, δ > 0 the following were true.

For any family {Cn} of q-query LTCs with rate ≤ ρ distance δ > 0
and such that each Cn has a tester with density at least d, then ρ ≤ 1/d

1
q−1 +ε.

Then, there is no family of q-query LTCs with constant rate, distance δ > 0, and
any density, such that the tester is non-weighted.

Proof. Let β = 1
q−1 + ε, and let t ∈ N. Let {Ci} be an infinite family of q-query

LTCs with density d = O(1), relative rate ρ = Ω(1), and distance δ > 0. Then
there is another infinite family

{
C̃i

}
of q-query LTCs with density d · tq−1, same

distance, and relative rate ρ/t. C̃i is constructed from Ci by duplicating each
coordinate t times and replacing each test hyper-edge by tq hyperedges. Clearly
the density and the rate are as claimed. The testability can also be shown.
Plugging in the values ρ̃ = ρ/t and d̃ = dtq−1 into the assumption we get

ρ/t = ρ̃ ≤ 1/d̃β = 1/(dtq−1)β

In other words ρdβ ≤ t1−(q−1)β . Since t is unbounded this can hold only if the
exponent of t is positive, i.e., β ≤ 1/(q − 1), a contradiction.

3.2 For q > 3 Density Must Be High

Lemma 5. Let C be a q-query LTC with rate ρ, and density d. Then for every
q′ > 0 there is a (q+ q′)-query LTC C′ with density d · (nq′) such that C′ has rate
ρ/2, distance δ/2.

Corollary 2. If there is a 3-query LTC with constant rate and density, then
there are LTCs with q > 3-queries, constant rate, and density Ω(nq−3).

The corollary shows that our upper bounds from Theorem 2 are roughly correct
in their dependence on n, but there is still a gap in the exponent.
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Proof. (of lemma 5) Imagine adding another n coordinates to the code C such
that they are always all zero. Clearly the distance and the rate are as claimed. For
the testability, we replace each q-hyper-edge e of the hypergraph of C with

(
n
q′
)

new hyperedges that consist of the vertices of e plus any q′ of the new vertices.
The test associated with this hyperedge will accept iff the old test would have
accepted, and the new vertices are assigned 0. It is easy to see that the new
hypergraph has average degree d · (nq′). Testability can be shown as well.

3.3 Allowing Weighted Hypergraph-Tests

In this section we claim that when considering hypergraph tests with weights,
the density should not be defined as the ratio between the number of edges and
the number of vertices. Perhaps a definition that takes the min-entropy of the
graph into consideration would be better-suited, but this seems elusive, and we
leave it for future work.

We next show that if one defines the density like before (ignoring the weights)
then every LTC can be modified into one that has a maximally-dense tester.
This implies that bounding the rate as a function of the density is the same as
simply bounding the rate.

Lemma 6. Let C be a q-query LTC with q ≥ 3, rate ρ, distance δ, and any
density. Then there is another q-query LTC C′ with a weighted-tester of maximal
density Ω(nq−1) such that C′ has rate ρ/2, distance δ/2.

Corollary 3. Let f : N→ N be any non-decreasing non-constant function. Any
bound of the form ρ ≤ 1/f(d) for weighted testers implies ρ ≤ 1/f(nq−1), and
in particular ρ→ 0. ��

Proof. (of lemma 6:) One can artificially increase the density of an LTC tester
hypergraphH by adding n new coordinates to the code that are always zero, and
adding all possible q-hyperedges over those coordinates (checking that the values
are all-zero). All of the new hyper-edges will be normalized to have total weight
one half, and the old hyperedges will also be re-normalized to have total weight
one half. Clearly the rate and distance have been halved, and the testability is
maintained (with a different rejection ratio). However, the number of hyperedges
has increased to nq so the density is as claimed.

Acknowledgement. We would like to thank Oded Goldreich for very interest-
ing discussions, and for pointing out the reduction in Section 3.1.
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Abstract. Probabilistically checkable debate systems (PCDSs) are de-
bates between two competing provers, in which a polynomial-time ver-
ifier inspects a constant number of bits of the debate. It was shown by
Condon, Feigenbaum, Lund, and Shor that every language in PSPACE
has a PCDS in which the debate length is polynomially bounded. Using
this result, they showed that the approximation versions of some natural
PSPACE-complete problems are also PSPACE-complete.

We give an improved construction of these debates: for any language L
that has an ordinary debate system definable by uniform circuits of size
s = s(n), we give a PCDS for L whose debate is of total bitlength Õ(s),
with a verifier that uses only log2 s+log2(polylog(s)) bits of randomness.
This yields a much tighter connection between the time complexity of
natural PSPACE-complete problems and the time complexity of their
approximation versions.

Our key ingredient is a novel application of error-resilient commu-
nication protocols, as developed by Schulman; we use the more recent
protocol of Braverman and Rao. We show that by requiring ordinary
debates to be encoded in an error-resilient fashion, we can endow them
with a useful “stability” property. Stable debates can then be trans-
formed into PCDSs, by applying efficient PCPPs (as given by Dinur).
Our main technical challenge in building stable debates is to enforce
error-resilient encoding by the debaters. To achieve this, we show that
there is a constant-round debate system, with a very efficient verifier, to
debate whether a communication transcript follows the Braverman-Rao
protocol.

Keywords: PCPPs, PCPs, Probabilistically Checkable Debates.

1 Introduction

1.1 Debate Systems

For many years, debate systems have played an important role in the study of
complexity classes (e.g., in [7], [18], [21], [2], [9]). A debate system is an interac-
tion between two competing, computationally-unbounded debaters, supervised
� Supported by a DARPA YFA grant.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 519–529, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.springer.com/lncs


520 A. Drucker

by a computationally-bounded verifier. Debate systems are often equivalently
described in terms of alternation or alternating nondeterminism [7].

In a debate system for a language L, an input x ∈ {0, 1}n is given; the first
debater (Player 1) tries to convince the verifier that x ∈ L, while the second
debater (Player 0) tries to convince the verifier that x /∈ L. To this end, the
debaters supply a sequence of strings y = (y1, . . . , yk(n)). Here, each yi is of a
prespecified length depending only on n; yi is supplied by a prespecified debater
type(i) ∈ {0, 1}, and is allowed to depend on y1, . . . , yi−1. (We assume that
k(n), type(i), and the lengths |yi| are all computable in time poly(n).)

Finally, the verifier applies a deterministic predicate V (x, y) to determine an
output b ∈ {0, 1}. We say V defines a debate system for L if Player 1 can force
b = 1 exactly when x ∈ L. If moreover |y| ≤ poly(n) and V is a polynomial-time
algorithm, we say that V defines a polynomial-time debate system for L.

An important parameter is k = k(n), the number of turns in the debate. If k ≥
1 is a constant, L has a k-round polynomial-time debate system if and only if L
lies in the kth level of the Polynomial Hierarchy (i.e., Σp

k∪Πp
k ), as was essentially

shown by Stockmeyer [24] and Wrathall [26]. Chandra and Stockmeyer [8] (see
also [7]) showed that when k is allowed to grow polynomially in the input length,
polynomial-time debate systems characterize PSPACE:

Theorem 1. [8], [7] A language L has a polynomial-time debate system if and
only if L ∈ PSPACE.

Later Shamir [21], building on [18], showed that every language L ∈ PSPACE
has an interactive proof —a polynomial-time debate system in which Player 0
plays completely random strings. If x ∈ L, then some Player 1 strategy causes
the verifier to accept with probability 1, while if x /∈ L, any Player 1 strategy
causes the verifier to accept with probability at most 1/2.

These results, as well as debate characterizations of other complexity classes,
have been instrumental in determining the complexity of many natural compu-
tational problems—particularly 2-player games, which are readily expressed as
debates. See [14] for a fuller discussion of the importance of debate systems in
complexity theory.

1.2 Probabilistically Checkable Debates

One of the most significant and surprising discoveries about debate systems
is that they retain essentially all of their computational power under severe
restrictions on the verifier V .

This discovery has its roots in the study of probabilistically checkable proofs
(PCPs) for NP languages. We say that a randomized polynomial-time algorithm
V (x, y) is an [r(n), q(n)]-restricted probabilistically checkable proof system for the
language L (with input x ∈ {0, 1}n and proof string y of length poly(n)), if:

1. For all x ∈ L there is a y with Pr[V (x, y) accepts] = 1;
2. For all x /∈ L and all y, Pr[V (x, y) accepts] < 1−Ω(1);
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3. V uses r(n) bits of randomness and nonadaptively queries at most q(n) bits
of y.

The famous PCP Theorem of [1] states that we can provide an [O(log n),
O(1)]-restricted probabilistically checkable proof system for any L ∈ NP. That
is, there exists a special proof format that allows one to efficiently verify mem-
bership claims for L, while only looking at a constant number of bits of the
proof!

An NP verifier for a language L ∈ NP can be viewed in the debate frame-
work, as a debate system consisting of a single turn by Player 1. So, single-turn
debates can be made probabilistically checkable with O(1) queries, and it is
natural to wonder whether the same can be done for more general classes of
debates. To formalize this, let V (x, y) be a polynomial-time verifier, where as
before y = (y1, . . . , yk) are supplied by the competing debaters (we assume
|y| ≤ poly(n)). Now, however, V uses randomness. We call V an [r(n), q(n)]-
restricted probabilistically checkable debate system (PCDS) for the language L
if:

1. For all x ∈ L, there is a Player 1 strategy that forces Pr[V (x, y1, . . . , yk)
accepts] = 1 (note, we insist on perfect completeness);

2. For all x /∈ L, there is a Player 0 strategy that forces Pr[V (x, y1, . . . , yk)
accepts] < 1−Ω(1);

3. V uses r(n) bits of randomness and nonadaptively queries at most q(n) bits
of y.

How powerful are PCDSs when we allow k to grow polynomially in n, but re-
quire q(n) = O(1)? Intuitively, this restriction seems quite severe, since only
a constant number of the debate strings y1, . . . , yk will receive any queries at
all. However, this intuition is deceptive: in [9], Condon, Feigenbaum, Lund, and
Shor proved that PCDSs are essentially as strong as arbitrary polynomial-time
debate systems:

Theorem 2. [9] Every L ∈ PSPACE has an [O(log n), O(1)]-restricted PCDS.

Their proof used the PCP Theorem as a building block, along with several
interesting new ideas. This result was complemented by several other works that
studied various classes of debates; in each case it was shown that restricting the
verifier to make O(1) queries to the debate string does not reduce the power
of the debates in question. Ko and Lin [17] showed that for any k ≥ 1, if L
is in the kth level of the Polynomial Hierarchy, then there is a k-round PCDS
either for L or for L. Condon, Feigenbaum, Lund, and Shor [10], in a follow-up
to their original work, showed that the interactive proofs in Shamir’s result can
be made probabilistically checkable; in their PCDSs, the verifier looks at only a
constant number of the random bits written by Player 0 as well as a constant
number of Player 1’s bits. A corresponding result for AM protocols was shown
by Drucker [13].
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1.3 The Inapproximability Connection

In addition to their inherent interest, probabilistically checkable debates also
have a close connection to the complexity of approximation problems. The PCP
Theorem (along with its many subsequent refinements) was the key to prov-
ing most of the known NP-hardness-of-approximation results for optimization
problems whose decision versions lie in NP. Similarly, Theorem 2 implies that a
number of reasonably natural computational problems lying in PSPACE are in
fact PSPACE-hard to approximate, as was shown in [9]. As one simple example,
suppose we are given a 3-CNF formula ψ(x1, . . . , xn), and we consider the game
in which two players take turns in assigning values to the variables, with xi
assigned on the ith round. Player 1 wants to maximize the fraction of satisfied
clauses, while Player 0 wants to minimize this fraction. Let Val(Gψ) ∈ [0, 1] de-
note the value of this game to Player 1. Using Theorem 1, one can show that it
is PSPACE-complete to decide whether Val(Gψ) = 1. However, from Theorem 2,
the authors of [9] showed that for some constant ε > 0, it is PSPACE-hard even
to distinguish formulas with Val(Gψ) = 1 from formulas with Val(Gψ) < 1− ε.1

While this is a remarkable result, it is not completely satisfactory because the
reduction involved, though polynomial-time, causes a large polynomial blowup
of the 3-CNF instance sizes.2 This blowup leads to somewhat weak conditional
hardness results. Assume that any algorithm to correctly decide whether
Val(Gψ) = 1 for a 3-CNF ψ of description length n, requires time ≥ T (n)
infinitely often (“i.o.”), for some time bound T (n) = nω(1). Then, Theorem 2
implies that for small enough ε > 0, any algorithm achieving an ε-approximation
to Val(Gψ) requires runtime T (na) i.o., for some explicit absolute constant a < 1.

We note that the reduction in the original PCP Theorem also incurred a
similar blowup in parameters. However, in recent work Dinur [11, Thm. 8.1]
gave a [log2 n+ log2(polylog(n)), O(1)]-probabilistically checkable proof system
for length-n SAT instances. This yields much tighter conditional hardness state-
ments for SAT: from an i.o.-lower bound T (n) = nω(1) on the runtime of al-
gorithms for SAT, we get an i.o.-lower bound of T (n/ logc(n)) on the runtime
of algorithms to ε-approximate the maximum fraction of satisfiable clauses in a
3-CNF of description length n (for explicit constants c, ε > 0).

1.4 Our Result

Our main result is the following quantitative strengthening of Theorem 2, which
shows that polynomial-time debates can be made probabilistically checkable in
a randomness-efficient way, with a debate string whose size is nearly-linear in
the circuit complexity of the original verifier:
1 The technique is the same as that used to derive inapproximability results for Max-

imum Satisfiability from PCP constructions.
2 [9] does not provide an explicit polynomial bound. The bound arising in their work

can be brought down somewhat by substituting state-of-the-art PCPs from [11] into
their applications of PCPs. However, it appears that following their basic approach
leads to at least a cubic blowup.
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Theorem 3 (Main). Suppose L has a polynomial-time debate system with a
verifier implementable by polynomial-time-constructible Boolean circuits of size
s = s(n) ≤ poly(n). Then L has a [log2 s + log2(polylog(s)), O(1)]-restricted
PCDS, with a debate string of total bitlength Õ(s).

Many natural PSPACE-complete problems, like QBF-SAT (the set of true quan-
tified Boolean formulas, under any standard encoding), have ordinary debate
systems with circuits of size s(n) = Õ(n), and for such problems Theorem 3
yields a PCDS with debate string bitlength Õ(n) and randomness log2(n) +
log2(polylog(n)).3 Then using Theorem 3, an i.o.-lower bound T (n) = nω(1) for
determining whether Val(Gψ) = 1 for 3-CNFs ψ allows us to infer an i.o.-lower
bound of T (n/ logc(n)) on the runtime of algorithms to ε-approximate Val(Gψ),
for explicit constants c, ε > 0.

We also mention that any language solvable in space S(n) ≤ poly(n) has
a polynomial-time debate system definable by uniform circuits of size s(n) =
Õ(S(n)2) [23], [7]. Thus, for such languages we get a PCDS with debate bitlength
Õ(S(n)2).

The PCDS construction in Theorem 3 has close to the best randomness-
efficiency we can hope to achieve (for general L and s), barring a huge algo-
rithmic breakthrough: if the randomness complexity could be brought down
to (1 − Ω(1)) log2(s), we could use the resulting PCDS for QBF-SAT to solve
length-n QBF-SAT instances in time 2n

1−Ω(1)
. Now, it is also natural to wonder

whether the debate string in the PCDS of Theorem 3 could always be made
to have bitlength bounded in terms of � = �(n), the bitlength of the ordi-
nary debate-string for L (which may be much smaller than s). Any bound of
form poly(�) would be very interesting. However, this seems unlikely. In the the-
ory of probabilistically checkable proofs, the corresponding question is whether
satisfiability of q-variable SAT instances can be proved with a PCP of proof-
length poly(q); Fortnow and Santhanam showed that this cannot be done unless
NP ⊆ coNP/poly [15].

The proof of Theorem 3 is fairly long and involved. In this extended abstract
we only describe the main ideas at a high level; details can be found in the full
version online.4

1.5 Our Techniques

To prove Theorem 3, we give a new method for converting standard debate
systems into probabilistically checkable ones. The method has two steps. In the
first (and more novel) step, we transform a standard debate into one that has
a useful “stability” property; in the second step, we transform a stable debate
into a probabilistically checkable debate.

Stable Debates via Error-resilient Communication. We say a debate
system V (x, ·) for a language L is stable if for any x /∈ L, Player 0 can not only
3 Actually, for QBF-SAT it is not hard to achieve s(n) = O(n); see [25, p. 1].
4 http://eccc.hpi-web.de/report/2011/073/

http://eccc.hpi-web.de/report/2011/073/
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force V (x, y) = 0, but can even force the debate string y to be Ω(1)-far in relative
Hamming distance from any y′ for which V (x, y′) = 1. (Thus, our stability
notion is asymmetric with respect to the players.) The notion of stability was
used before, implicitly or explicitly, in several ways in [9], [10], [13]. However, in
the previous works building many-round PCDSs [9], [10], debates are endowed
with a stability-like property5 in a fairly inefficient way: roughly speaking, on
each turn of the debate, the current player is asked to give a description of
all previous moves along with their current move. This contributes a quadratic
blowup in the overall debate-string length (in addition to blowups at other steps
in the transformation).

In our transformation yielding a stable debate, we manage to avoid using
such redundancy. We do so by drawing a new connection to interactive cod-
ing—the theory of error-resilient two-way communication. Interactive coding
was pioneered by Schulman [20], who showed that any two-party communica-
tion protocol can be converted into one that succeeds even in the presence of a
noticeable amount of adversarial noise (an adversary that may adaptively cor-
rupt a 1/240 fraction of the bits sent between the two parties). Moreover, this
conversion increases the total communication by only a constant factor. Schul-
man’s powerful result seems not to be obtainable from standard tools for resilient
one-way communication (i.e., error-correcting codes).

Recently, Braverman and Rao [6] gave a new encoding method to achieve the
same goal. Their encoding corrects from a much larger fraction of adversarially
corrupted symbols—nearly 1/8 if bits are transmitted, or nearly 1/4 if a larger
but constant-sized message alphabet is used. More importantly for us, their
encoding is somewhat simpler and easier to work with. (We do not know whether
the protocol of [20] could also be used to prove our result.)

In our application of interactive coding, we begin with an ordinary debate
system for a language L, defined by a verifier V implemented by uniform circuits
of size s(n). We then transform V into a second verifier V stab, in which the two
debaters are “forced” to encode their debate using the Braverman-Rao encoding.
We show that the error-resilience property of the encoding can be used to ensure
the stability property of V stab.

But how can we force the debaters to follow the desired encoding? To do this,
we construct an auxiliary “encoding-checker” debate system, that allows players
to debate whether a communication transcript corresponds to a faithful, noise-
free execution of the Braverman-Rao protocol.6 The encoding-checker debate we

5 These papers’ first step is to transform an ordinary debate system into one in which
a probabilistic verifier inspects only a constant number of the individual player
moves (yi), which may be of polynomial length. Such debates play a role somewhat
analogous to the role played by stable debates in our work; the analogy is loose,
however, and stable debates turn out to be more easily and efficiently turned into
PCDSs.

6 More precisely, they can debate whether a particular player is following the
Braverman-Rao protocol. Checking one player’s behavior turns out to be sufficient;
the other player can be indirectly “incentivized” to follow the protocol. This is im-
portant for achieving perfect completeness in our PCDSs.
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construct has two important properties. First, it lasts for only O(1) turns. This
is important because an O(1)-turn debate can fairly easily be made stable, by
asking for the moves to be encoded in an error-correcting code—we use efficiently
decodable codes given by Spielman [22]. With this stable encoding-checker de-
bate in hand, we can make the entire debate stable. (Conceptually, this is the
right picture; technically, we make the entire debate stable in one step, rather
than first making the auxiliary debate stable.)

The second important property of our encoding-checker debate is that it
has a very efficient verifier—one that is definable by a Boolean circuit of size
O(�), where � is the bitlength of the communication transcript being checked.
As a result, our stable verifier V stab can be implemented by a circuit of size
Õ(s(n)) for length-n inputs. This near-linear efficiency is important in the sec-
ond step of our transformation, in which we make the debate probabilistically
checkable.

Achieving these two strong properties in our encoding-checker debate is our
main technical challenge. We will return to the issue of how this challenge can
be met.

From Stable to Probabilistically Checkable Debates. In our second trans-
formation step, we extend our stable debate y = (y1, . . . , yk) by a single, fi-
nal turn, in which Player 1 gives a “proof” string z purporting to show that
V stab
x (y) := V stab(x, y) = 1. We then define a verifier V ∗ that, given x, proba-

bilistically checks O(1) bits of y and z. For this proof/verification task, we use a
powerful variant of PCPs known as probabilistically checkable proofs of proximity
(PCPPs) [3], [12], applied to the circuit for the stable verifier V stab

x . We mention
that PCPPs were put to a similar use in [13], and closely related techniques were
used in [9], [10].

If x ∈ L, then Player 1 is able to win the stable debate (y1, . . . , yk), so that
V stab
x (y) = 1, and then some proof z causes V ∗ to accept with certainty. On

the other hand, if x /∈ L, then by stability, Player 0 can guarantee that y is not
even close to the set of debate strings for which V stab

x = 1. This is precisely the
condition in the definition of PCPPs that guarantees that V ∗ will reject with
noticeable probability for any setting to z. Thus the probabilistic verifier V ∗

defines our desired PCDS for L.
How efficient is this verifier? The length of the final proof-string z and the

randomness complexity of V ∗ are determined by two factors: the efficiency of
the PCPP construction we use, and the size of the circuit for V stab

x to which
we apply the PCPP. We are fortunate in both respects. A very efficient con-
struction of PCPPs is available, due to Dinur [11] (building on [4]); also, our
efficient construction of stable debates ensures that the circuit for V stab

x is of size
Õ(s(n)). This yields a verifier and debate-string with the properties claimed in
Theorem 3.

Building Encoding-Checker Debates. Recall that our approach requires
us to build “encoding-checker” debates, to check that a given party’s (Alice’s)
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behavior on a communication transcript corresponds to a correct execution of
the Braverman-Rao protocol [6] for error-resilient communication.

A first complication is that the Braverman-Rao protocol is not even known
to have an implementation in polynomial time, let alone nearly-linear time.
Like Schulman’s earlier protocol [20], the protocol crucially relies on a special
type of codes called tree codes, defined by Schulman. Tree codes have a “dis-
tance” parameter, that is loosely analogous to the minimum-distance parame-
ter for error-correcting codes. No explicit construction is known of tree codes
with distance large enough to run the protocols of [6], [20] (see [5] for a recent
subexponential-time construction). However, in [20] an elegant probabilistic con-
struction of tree codes was given. Importantly for us, this construction is very
randomness-efficient, so that good tree codes exist with succinct representa-
tions. This is enough for our purposes: in our debate system, a computationally
unbounded debater may succinctly propose a tree code, and establish through
debate that it has the needed distance property.

The protocols of [20], [6] require the communicating parties to decode cor-
rupted tree-code-encoded messages. In the model in which communication is
corrupted adversarially (the relevant model for us), it is not known whether this
decoding can be performed in polynomial time. However, we are again able to
use the power of computationally unbounded debaters, this time to debate the
correct values of tree-code encodings and decodings.

We mention in passing that tree codes are not known to be necessary for
interactive coding. Indeed, in very recent papers by Moitra [19] and, indepen-
dently, Gelles and Sahai [16], it was shown that the tree-code definition can be
relaxed to a weaker but still-useful kind of object that is easier to construct, yield-
ing interactive coding schemes that are computationally efficient in the random
channel-noise model. The papers use different relaxations and achieve similar
but incomparable results. Achieving efficiency in the adversarial-noise model
remains an important open question.

Now in the Braverman-Rao protocol, correct behavior for each player is de-
fined relative to some input to the communication task. In our application, the
intended input is a player-strategy in the original debate V for L (Alice is al-
lowed to choose her input/strategy). Such a strategy is an object of exponential
size, and cannot even be written down in the encoding-checker debate. Fortu-
nately, any particular execution of the Braverman-Rao protocol only depends on
a much smaller portion of the strategy. This crucially helps us, although naively
encoding the relevant portion is not succinct enough for our purposes.

The player Alice, while executing the Braverman-Rao protocol, maintains
data, and this data needs to be represented in the encoding-checker debate. We
are fortunate that the data takes the simple form of a sequence (a1, a2, . . .) of
symbols over a constant-size alphabet, with ai being defined on the ith round of
communication and never modified. This allows a debater to succinctly present
a global description of Alice’s execution. However, ai is defined in a complex way
from previous values and from the messages received from Bob. To understand
how to efficiently debate the proper settings to ai, we make a detailed study of
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a method used in the Braverman-Rao protocol to succinctly describe subsets of
edges in a complete binary tree. Our encoding-checker debate system is built up
from a sequence of simpler debates used to reason about this description method
and its use in the protocol.

2 Questions for Future Work

1. Can our probabilistically checkable debate systems be made even more ef-
ficient? Currently, we make use of a family of error-correcting codes due to
Spielman [22], which are decodable from a constant fraction of error by cir-
cuits of size O(n logn). Developing good error-correcting codes decodable by
linear -sized circuits would shave a log factor from the length of our debate-
strings. If we could do this, then our PCDSs could be made to essentially
match the efficiency of the best PCPPs.

2. In our work, we do not attempt to minimize the increase in the number
of turns in our debate transformation. Our approach gives no improvement
over [9] in this respect: both approaches increase the number of turns by
a constant factor, if the starting debate has strictly-alternating turns, each
consisting of a single bit. If not, the number of turns may increase by a much
larger amount.
To our knowledge, there also has been no in-depth study of the number of
rounds required for error-resilient communication, when the communication
protocol to be simulated lasts a bounded number of rounds (with several bits
transmitted per round). Can we make communication error-resilient, while
increasing each of the number of rounds and the total communication by only
a constant (or at least slowly-growing) factor? The challenging case seems to
be when rounds are of variable bitlength. Understanding this question would
clarify the situation for PCDSs, and would be of interest in its own right.

3. Our PCDSs for L are of bitlength nearly-linear in s(n), the circuit size of
the verifier for an ordinary debate system for L. We left open whether the
PCDS bitlength could be polynomial in the bitlength of the original debate.
Can we derive unlikely consequences of this? To explore this, one might try
to work by analogy with Fortnow and Santhanam’s results on infeasibility
of succinct PCPs for SAT [15] (see Section 1.4).

4. As mentioned earlier, the same authors who first built PCDSs in [9] also
showed in [10] that interactive proofs (i.e., debates between a maximizing
Player 1 and a completely random Player 0) can also be made probabilisti-
cally checkable. It would be very interesting to know whether this reduction
can be carried out with efficiency comparable to our reduction for ordinary
debate systems in this paper. This would yield improved conditional hard-
ness statements for the complexity of approximating stochastic sequential
optimization problems on CSPs. The difficulty in applying our methods is
that we appear to have no effective way to make the random player “follow”
the Braverman-Rao protocol.



528 A. Drucker

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

2. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-
prover interactive protocols. In: 31st IEEE FOCS, pp. 16–25 (1990)

3. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs
of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4),
889–974 (2006)

4. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes.
Random Struct. Algorithms 28(4), 387–402 (2006)

5. Braverman, M.: Towards deterministic tree code constructions. Electronic Collo-
quium on Computational Complexity (ECCC) TR11-064 (2011)

6. Braverman, M., Rao, A.: Towards coding for maximum errors in interactive com-
munication. In: 43rd ACM STOC, pp. 159–166 (1990)

7. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

8. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: 17th IEEE FOCS, pp. 98–108
(1976)

9. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Probabilistically checkable
debate systems and nonapproximability of PSPACE-hard functions. Chicago J.
Theor. Comput. Sci. (1995)

10. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Random debaters and the
hardness of approximating stochastic functions. SIAM J. Comput. 26(2), 369–400
(1997)

11. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

12. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the
PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

13. Drucker, A.: A PCP characterization of AM. Electronic Colloquium on Computa-
tional Complexity (ECCC) TR10-019 (2010); To appear in ICALP 2011

14. Fortnow, L.: Beyond NP: The work and legacy of Larry Stockmeyer. In: 37th ACM
STOC, pp. 120–127 (2005)

15. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

16. Gelles, R., Sahai, A.: Potent tree codes and their applications: Coding for interac-
tive communication, revisited. ArXiv e-prints (April 2011)

17. Ko, K.-I., Lin, C.-L.: Non-approximability in the polynomial-time hierarchy. TR
94-2, Dept. of Computer Science. SUNY at Stony Brook (1994)

18. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st IEEE FOCS, pp. 2–10 (1990)

19. Moitra, A.: Efficiently coding for interactive communication. Electronic Collo-
quium on Computational Complexity (ECCC) TR11-042 (2011)

20. Schulman, L.J.: Coding for interactive communication. IEEE Trans. Inf. The-
ory 42(6), 1745–1756 (1996)

21. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

22. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Trans. Inf. Theory 42(6), 1723–1731 (1996)



Efficient Probabilistically Checkable Debates 529

23. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: 5th ACM STOC, pp. 1–9 (1973)

24. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22
(1976)

25. Williams, R.: Non-linear time lower bound for (succinct) quantified Boolean for-
mulas. Electronic Colloquium on Computational Complexity (ECCC) TR08-076
(2008)

26. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput.
Sci. 3(1), 23–33 (1976)



An Efficient Partitioning Oracle

for Bounded-Treewidth Graphs

Alan Edelman1, Avinatan Hassidim2, Huy N. Nguyen1,
and Krzysztof Onak3,�

1 Massachusetts Institute of Technology
{edelman,huy2n}@mit.edu

2 Google
avinatanh@gmail.com

3 Carnegie Mellon University
konak@cs.cmu.edu

Abstract. Partitioning oracles were introduced by Hassidim et al.
(FOCS 2009) as a generic tool for constant-time algorithms. For any
ε > 0, a partitioning oracle provides query access to a fixed partition of
the input bounded-degree minor-free graph, in which every component
has size poly(1/ε), and the number of edges removed is at most εn, where
n is the number of vertices in the graph.

However, the oracle of Hassidim et al. makes an exponential number
of queries to the input graph to answer every query about the partition.
In this paper, we construct an efficient partitioning oracle for graphs with
constant treewidth. The oracle makes only O(poly(1/ε)) queries to the
input graph to answer each query about the partition.

Examples of bounded-treewidth graph classes include k-outerplanar
graphs for fixed k, series-parallel graphs, cactus graphs, and pseudo-
forests. Our oracle yields poly(1/ε)-time property testing algorithms for
membership in these classes of graphs. Another application of the oracle
is a poly(1/ε)-time algorithm that approximates the maximum matching
size, the minimum vertex cover size, and the minimum dominating set
size up to an additive εn in graphs with bounded treewidth. Finally, the
oracle can be used to test in poly(1/ε) time whether the input bounded-
treewidth graph is k-colorable or perfect.

1 Introduction

Many NP-complete graph problems can be easily solved on graphs with bounded
treewidth. For example, approximating vertex cover up to a multiplicative factor
better than 1.36 is known to be NP hard [1]. In contrast, for graphs with bounded
treewidth, one can in fact find an optimal vertex cover in time that is linear in the
size of the graph, but depends exponentially on treewidth [2]. In this paper, we
investigate yet another scenario in which bounded-treewidth graphs turn out to
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be much easier to deal with and allow for more efficient algorithms than general
graphs.

Bounded Treewidth. The tree decomposition and treewidth were introduced by
Robertson and Seymour [3, 4], and later found many applications in the design
of algorithms and in machine learning (a nice, though outdated survey is [5];
see also [6, 7] for more recent applications). A tree decomposition of a graph
G = (V,E) is a pair (X , T ), where X = (X1, X2, . . . , Xm) is a family of subsets
of V , and T is a tree (or forest) whose nodes are the subsets Xi, satisfying the
following properties:

1. Every v ∈ V belongs to at least one Xi, i.e.,
⋃m
i=1Xi = V .

2. For every (u, v) ∈ E, there is an Xi such that both u and v belong to Xi.
3. For every vertex v ∈ V , the set of nodes in T associated with v forms a

connected subset of T .

The width of a tree decomposition equals maxi |Xi| − 1. The treewidth of G is
defined as the minimum such width over all tree decompositions of G.

Graph families with bounded treewidth include k-outerplanar graphs, series-
parallel graphs, cactus graphs, and pseudoforests.

The Bounded-degree Model. Before discussing our results, we describe the
bounded-degree model introduced by Goldreich and Ron [8] and used in this
paper. The degree of every vertex in the input graph is bounded by a con-
stant d. An algorithm can make two kinds of queries to access the input graph
G = (V,E). First, for any vertex v ∈ V , it can obtain its degree deg(v) in con-
stant time. Second, for any vertex v ∈ V and any j such that 1 ≤ j ≤ deg(v),
the algorithm can obtain the label of the j-th neighbor of v in constant time.

The query complexity of an algorithm A is the maximum number of queries
made by A to the input graph. Also, the conventional time complexity of A
refers to maximum running time of A. A is said to run in constant time if its
time complexity is independent of the number n of vertices in the input graph.

Partitioning Oracles. The main tool in (polynomial-time) approximation algo-
rithms for minor-free graphs is the separator theorem [9–11], which partitions a
graph to two components with a small number of edges connecting them. It is
used to partition the original problem into independent subproblems, which are
tractable. Stitching together the optimal solutions for each of the independent
subproblems results in an approximate solution for the original problem.

In [12], this intuition was used to design constant-time algorithms for various
problems. Fix a partition P of the vertices in the input graph G such that the
following properties hold:

1. Each connected component in the partition of the graph is small (say, has
size poly(1/ε)).

2. The number of edges connecting different connected components in the par-
tition is less than ε|V |.
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Suppose now that we are given query access to such a partition P , i.e., we have
a procedure O which given a vertex v returns the connected component P (v)
that contains v. We call such a procedure a partitioning oracle. For a family of
graphs F , O is a partitioning oracle for F with parameter ε > 0 if it meets the
following requirements:

– If G ∈ F , then with probability 9/10, the number of edges cut by the oracle
is εn.

– The oracle provides a partition of G, even if G ∈ F .
– The partition P which O provides access to is a function of only the input

graph and random coin tosses of the oracle. In particular, P cannot be a
function of the queries to the oracle1.

We describe applications of partitioning oracles later, when we discuss the results
that can be obtained using our oracle.

The main challenge here is to design efficient partitioning oracles that make
few queries to the input graph and use little computation to answer every query
about the partition. [12] shows how to design such an oracle for minor-free graphs
(and also for some other hyperfinite graphs). However, their oracles have query
complexity and running time of 2poly(1/ε) (see [13] for a simple oracle with this
property), and the main question left open by their paper is whether one can
design a partitioning oracle that runs in time poly(1/ε). In this paper we make
partial progress by designing a partitioning oracle of complexity poly(1/ε) for
bounded-treewidth graphs. A similar open question is posed in [14], where they
ask for a poly(1/ε)-time tester for minor-closed properties. Constructing an effi-
cient partitioning oracle for minor-free graphs would yield such a tester, but in
general, such a tester need not be based on a partitioning oracle.

Our Main Result. The main result of the paper, an efficient partitioning oracle
for bounded-treewidth graphs, is stated in the following theorem.

Theorem 1. Let G = (V,E) be a graph with maximum degree bounded by d. Let
k be a positive integer. There is an oracle O that given an ε ∈ (0, 1/2), and query
access to G, provides query access to a function f : V → 2V of the following
properties (where k = O

(
d3·hO(h)·log(d/ε)

ε3

)
):

1. For all v ∈ V , v ∈ f(v).
2. For all v ∈ V , and all w ∈ f(v), f(v) = f(w).
3. If the treewidth of G is bounded by h, then with probability 9/10, |{(v, w) ∈

E : f(v) = f(w)}| ≤ ε|V |.
4. For all v ∈ V , |f(v)| ≤ k.
5. For all v, the oracle makes O(dk4h+7) queries to the input graph to answer a

single query to the oracle, and the processing time is bounded by Õ(k4h+O(1) ·
logQ), where Q is the number of previous queries to the oracle.

6. The partition described by f is a function of G and random bits of the oracle,
but does not depend on the queries to the oracle.

1 This property allows algorithms to treat the partition P as fixed, even if it is not ex-
plicitly computed for the entire graph until sufficiently many queries are performed.



An Efficient Partitioning Oracle for Bounded-Treewidth Graphs 533

Applications. Partitioning oracles have numerous applications described in [12].
Let us describe some general applications of partitioning oracles, and the results
yielded by our efficient partitioning oracle.

– Testing minor-closed properties: In property testing of graphs with max-
imum degree bounded by d, the goal is to distinguish graphs that have a spe-
cific property P from those that need to have at least εdn edges added and
removed to obtain the property P , where ε > 0 is a parameter.
Goldreich and Ron [8] show that the property of being a tree can be tested in
Õ(ε−3) time. Benjamini, Schramm, and Shapira [14] prove that any minor-

closed property can be tested in 222poly(1/ε)

time. Hassidim et al. [12] in-
troduce partitioning oracles and show how to use them to obtain a tester
of running time 2poly(1/ε) (see [13] for a simplified full proof). Yoshida and
Ito [15] show that outerplanarity can be tested in poly(1/ε) time.
Via the reduction from [12], our new oracle yields a poly(1/ε)-time tester
for any minor closed family of graphs that has bounded treewidth. Sample
minor-closed families of graphs with this property are k-outerplanar graphs,
series-parallel graphs and pseudoforests. This also generalizes the result of
Yoshida and Ito [15], since outerplanar graphs have treewidth at most 2.

– Constant-time approximation algorithms: Our oracle can also be used
to obtain a poly(1/ε)-time additive εn-approximation algorithm for the size
of the maximum matching, minimum vertex cover, and minimum dominat-
ing set in (even unbounded) graphs with constant treewidth. See [12] for
a general reduction. An important fact here is that for bounded-treewidth
graphs, there are linear-time algorithms for computing the exact solutions
to these problems [16]. This result adds to a long line of research on this
kind of approximation algorithm [17–20, 12, 21, 22].

– Testing properties of graphs with bounded treewidth: Czumaj,
Shapira, and Sohler [23] show that any hereditary property of bounded-
degree bounded-treewidth graphs can be tester in constant time. This result
is generalized by Newman and Sohler [22], who show that in fact any prop-
erty of such graphs can be tested in constant time. Unfortunately, these two
papers do not yield very efficient algorithms in general. Using our oracle
and another reduction from [12], one can show that there are poly(1/ε)-time
algorithms for testing k-colorability and graph perfectness for these graphs.
As before, one has to use efficient polynomial-time algorithms for these prob-
lems [16, 24] to solve the exact decision problems for sampled components
in the reduction from [12].

1.1 Overview of Our Techniques

Let us briefly describe the main ideas behind the proof of our main result. Let
G be a bounded-degree graph with treewidth h. We say that a vertex in G has
a “good neighborhood” if a small set S of vertices including v can be disconnected
from the graph by deleting at most O(h) other vertices. Moreover, O(h)/|S| is
small.
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First we show that most vertices have a good neighborhood. This follows
by taking a tree decomposition of G, and showing a method that constructs
a partition in which most vertices end up in connected components that can
play the role of S for them in the original graph.

Then using the fact that a good neighborhood of small size t has a small
border, i.e., of size O(h), we show a procedure for enumerating all good neigh-
borhoods for a given vertex. The procedure runs in poly(dt)O(h) time, where
t is a bound on the size of the neighborhood. In particular, it can be used
to check whether a given vertex has a good neighborhood and find it, if it
exists.

Finally, we show a global partitioning algorithm that is likely to compute
the desired partition of the graph. In this algorithm, each vertex v computes
an arbitrary good neighborhood Sv containing it. If such a neighborhood does
not exist, we set Sv := {v} instead. Then we consider all veritices in V in a
random order. In its turn, v removes all the remaining vertices in Sv from the
graph. The set of vertices removed by v constitutes one (or a constant num-
ber) of the connected components in the partition of the input graph. This
algorithm can easily be simulated locally and is the basis of our partitioning
oracle.

Note: An anonymous reviewer suggested using known results on tree-partition-
width [25, 26] to simplify our proofs. Those results can be used to give a simpler
proof of a slightly worse decomposition than that in Lemma 1. For constant d,
the worse decomposition still results in query complexity of (1/ε)poly(h). Unfor-
tunately, in one application, namely the approximation of the minimum vertex
cover size in graphs of arbitrary degree, the bound on d is a function of the pa-
rameter ε and eventually results in an algorithm with running time exponential
in poly(1/ε). Our construction results in a poly(1/ε)-time algorithm.

Note 2: Due to space constraints, this version of the paper does not contain
some of the proofs. The full paper is available on arXiv.

2 Definitions

Let G = (V,E) be a graph and S be a subset of V . We write N(S) to denote
the set of vertices that are not in S and are adjacent to at least one vertex in S.
We write η(S) to denote the cut-size of S, which is defined as the size of N(S),
η(S) = |N(S)|. We write φ(S) to denote the vertex conductance of S, which is
defined as φ(S) = η(S)

|S| .

Definition 1. Let G = (V,E) be a graph. We say that S ⊆ V is a neighborhood
of v in G if v ∈ S and the subgraph induced by S is connected. Given k, c ≥ 1
and δ ∈ (0, 1), we say that S is a (k, δ, c)-isolated neighborhood of v ∈ V if S is
neighborhood of v in G, |S| ≤ k, η(S) ≤ c and φ(S) ≤ δ.
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Definition 2. Let G = (V,E) be a graph and let A be a family of sets of
vertices in G. A subfamily B ⊆ A is a cover of A if for every set T ∈ A,
T ⊆ ⋃

S∈B S.

3 Local Isolated Neighborhoods in Constant Treewidth
Graphs

The following lemma is at the heart of our proof. It shows that given a bounded-
treewidth and bounded-degree graph, we can find an isolated neighborhood of v
for almost every vertex v in the graph.

Lemma 1. Let G = (V,E) be a graph with treewidth bounded by h and maximum
degree bounded by d. For all ε, δ ∈ (0, 1/2), there exists a function g : V → 2V

with the following properties:

1. For all v ∈ V , v ∈ g(v).
2. For all v ∈ V , |g(v)| ≤ k, where k = 28860 d3(h+1)5

δε2 .
3. For all v ∈ V , g(v) is connected.
4. Let B be the subset of V consisting of v such that g(v) is a (k, δ, 2(h+ 1))-

isolated neighborhood of v in G. The size of B is at least (1− ε/20)|V |.
Due to space constraints we do not present the proof of the lemma in this version
of the paper. The starting point of our proof is a stronger version of the lemma
for trees, which is also easier to proof. Later, to obtain a proof of Lemma 1, we
apply the stronger lemma for trees to a canonical tree decomposition of a given
bounded-treewidth graph.

4 Isolated Neighborhoods

In this section we show how to discover isolated neighborhoods efficiently. We also
prove an upper bound on the number of incomparable isolated neighborhoods
covering a specific vertex.

4.1 Finding an Isolated Neighborhood of a Vertex

The following lemma states that isolated neighborhoods with small cut-size in
bounded-degree graphs can be found efficiently. To this end, we use the procedure
Find-Neighborhood described as Algorithm 1. We omit the proof in this version
of the paper.

Lemma 2. Let G = (V,E) be a graph with maximum degree bounded by d. Given
a vertex v ∈ V , integers k, c ≥ 1 and δ ∈ (0, 1), procedure Find-Neighborhood
finds a (k, δ, c)-isolated neighborhood of v in G, provided it exists. If no such
isolated neighborhood exists, the algorithm returns {v}. The algorithm runs in
poly(dk) · kc time and makes O(dkc+1) queries to the graph.
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Algorithm 1. Procedure Find-Neighborhood(v,k,δ,c)
Run BFS from v until it stops or exactly k vertices are visited1

Let S be the set of vertices reached by the BFS2

if S is a (k, δ, c)-isolated neighborhood in the original graph then3

return S4

if c > 0 then5

foreach w ∈ S \ {v} do6

Remove w from the graph7

S′ := Find-Neighborhood(v,k,δ,c − 1)8

Insert w back into the graph9

if S′ 
= {v} then return S′
10

else11

return {v}12

4.2 Finding Isolated Neighborhoods Covering a Vertex

Let v and u be vertices in a graph G = (V,E). When the values of k, δ, c are
clear from context, we say that u covers v if the isolated neighborhood found by
Find-Neighborhood(u,k,δ,c) contains v. The following lemma states that one
can efficiently find all vertices that cover a given vertex. In this version of the
paper, we omit the proof that uses a modified version of Find-Neighborhood.

Lemma 3. Let G = (V,E) be a graph with maximum degree bounded by d.
There is an algorithm that given a vertex v ∈ V , integers k, c ≥ 1 and δ ∈ (0, 1),
finds all u that cover v in poly(cdk) · k2c time and with O(dk2(c+1)) queries.

4.3 Small Cover of Isolated Neighborhoods

Recall that a cover for a family A of subsets of vertices is any subset B ⊆ A such
that

⋃
T∈A T =

⋃
T∈B T . We now show that a family of isolated neighborhoods

of a vertex has a relatively small cover.

Lemma 4. Let A be a family of isolated neighborhoods of a vertex v in a graph
G = (V,E). Let the cut-size of all the neighborhoods be bounded by an integer c.
There is a cover B ⊆ A of size at most (c+ 1)!.

Proof. We assume that A is non-empty. Otherwise, the lemma holds trivially.
We prove the lemma by induction on c. For c = 0, any isolated neighborhood
of v is the connected component containing v. Therefore, A consists of one set,
(c+ 1)! = 1, and the lemma holds.

For the inductive step, assume that c > 0 and that the lemma holds for cut-
size bounds lower than c. Without loss of generality, there is a vertex u ∈ V that
belongs to exactly one set S ∈ A. Otherwise, we can keep removing arbitrary
sets from A, one by one, until this becomes the case, because every cover for the
pruned family of neighborhoods is still a cover for the original family.
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For all T ∈ A, let GT be the subgraph of G induced by the vertices in T \ S.
For each w ∈ N(S), we construct a family Aw of neighborhoods of w as follows.
We consider each T ∈ A. If w ∈ T , we add to Aw the set X of vertices in the
connected component of GT that contains w. In this case, we say that T was the
progenitor of X .

LetG′ be the subgraph ofG induced by V \S. We claim that for eachw ∈ N(S)
and each Y ∈ Aw, the cut-size of Y in G′ is bounded by c − 1. Let Z ∈ A be
the progenitor of Y . Every vertex that belongs to the neighbor set of Y in G′

also belongs to the neighbor set of Z in G. Moreover, since w ∈ Z, Z = S, and
does not contain u. Therefore, there is a vertex in S that belongs to N(Z) in G.
This vertex does not appear in G′, which implies it does not belong to N(Y ) in
G′. Due to our earlier observation that N(Y ) in G′ is a subset of N(Z) in G,
|N(Y )| ≤ c− 1.

We construct B as follows. We start with an empty set and insert S into B.
By the inductive hypothesis, for every w ∈ N(S), there is a cover Bw of size at
most c! for Aw. For each neighborhood Z in each of these covers, we add to B,
the progenitor of Z. This finishes the construction of B. The size of B is bounded
by |N(S)| · c! + 1 ≤ c · c! + 1 ≤ (c+ 1)!.

It remains to show that B is a cover of A. Consider any vertex t ∈ ⋃Z∈A Z. If
t belongs to S, we are done. Otherwise, let Z1 ∈ A be such that t ∈ Z1. There is
a path in G that goes from v to some w ∈ N(S) via vertices in S, and then using
only vertices in Z1 \S it goes from w to t. Let G� be the subgraph of G induced
by Z1 \ S. Let Y1 be the set of vertices in the connected component of G� that
contains w. Due to the path from w to t, t ∈ Y1. By definition, Y1 ∈ Aw, so
t ∈ ⋃

Y ∈Aw
Y =

⋃
Y ∈Bw

Y . Let Y2 ∈ Bw be any set containing t. Its progenitor
Z2 ⊇ Y2 belongs to B, and therefore, t ∈ ⋃Z∈B Z, which finishes the proof. ��
Corollary 1. Let v be a vertex in a graph. Let k, c ≥ 1 be integers and let
δ ∈ (0, 1). The number of vertices u, for which u ∈ Find-Neighborhood(u, k, δ, c)
is bounded by k · (c+ 1)!.

5 The Partitioning Oracle (Proof of Theorem 1)

Here we prove the main claim of the paper. We show a global partitioning algo-
rithm that can easily and efficiently be simulated locally. The global algorithm
is likely to find the desired partition of the input graph.

Proof. We want to set our parameter δ and k, so that the following inequalities
hold:

δ ≤ ε

100 · (2h+ 3)! · (1 + log k + log(2h+ 3))
, (1)

k ≥ 28860 d3(h+ 1)5

δε3
. (2)

By combining them, we obtain

k ≥ 2886000 · d3 · (2h+ 3)! · (1 + log k + log(2h+ 3)!)
ε3

.
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Algorithm 2. Global-Partitioning(k,δ,h)
forall v ∈ V do set v as not marked1

foreach v ∈ V do2

Sv := Find-Neighborhood(v,k,δ,2(h + 1))3

rv := uniformly random value in (0, 1)4

foreach v ∈ V in increasing order of rv do5

U := {w ∈ Sv : w is not marked}6

forall w ∈ U do f [w] := U7

Mark all vertices in U8

Output f9

Algorithm 3. Local-Partitioning(q,k,δ,h) for a vertex q
Qq := the set of vertices that cover q (see Lemma 3)1

Let u be the vertex in Qq with the lowest ru2

Su := Find-Neighborhood(u,k,δ,2(h + 1))3

P := ∅4

foreach w ∈ Su do5

Qw := the set of vertices that cover w (see Lemma 3)6

Let uw be the vertex in Qw with the lowest ruw7

if u = uw then P := P ∪ {w}8

return P9

This can be satisfied by values of k that do not grow faster than

O

(
d3 · hO(h) · log(d/ε)

ε3

)
.

The we take the maximum δ that satisfies Equation 1.
Consider the global partitioning algorithm described as Algorithm 2 with

parameters set as described above. The algorithm constructs a partition of the
vertices in the graph. It starts with all vertices in the graph unmarked. For each
vertex v ∈ V , the algorithm tries to find a (k, δ, 2(h+ 1))-isolated neighborhood
of v in G. If one such neighborhood is found, Sv is set to that neighborhood.
Otherwise, if no such neighborhood exists, Sv is set to {v}. Next the algorithm
starts partitioning the graph. It considers the vertices in random order. For each
vertex v in that order, all the unmarked vertices in Sv constitute a component
in the partition and get marked.

Clearly, at the end of the execution of Algorithm 2, all vertices must be
marked. Therefore, f(v) is well defined for all v ∈ V . Also, observe that when
f(v) is defined, we have f(u) = f(v) for every u ∈ f(v). Therefore, Claims 1 and
2 of the theorem hold for the function f computed by Algorithm 2.

Let us bound the probability that the number of edges between different parts
is greater than ε|V |. By Lemma 1 with the lemma’s ε set to ε/d, there exists a
function g : V → P(V ) with the following properties:
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1. For all v ∈ V , v ∈ g(v).
2. For all v ∈ V , |g(v)| ≤ k.
3. For all v ∈ V , g(v) is connected.
4. Let B be the subset of V such that v ∈ B if and only if g(v) is a (k, δ, 2(h+1))-

isolated neighborhood of v in G. The size of B is at least (1− ε/20d)|V |.
Let us group the edges between different components in the partition given
by f . We distinguish two kinds of edges: the edges incident to at least one
vertex in V \ B and the edges with both endpoints in B. Observe that the
total number of the former edges is at most ε

20 |V |. It remains to bound the
number of the latter edges that are cut. Consider a vertex v ∈ B. Let Qv be
the set of vertices that cover v and let mv = |Qv|. Via Corollary 1, mv ≤
k · (2h+ 3)!. Let q1, q2, . . . , qmv ∈ Qv be the sequence of vertices that cover v in
increasing order of r, i.e., rq1 ≤ rq2 ≤ . . . ≤ rqmv

. For each j ∈ {1, 2, . . . ,mv},
let S(j)

v = {Sq1 , Sq2 , . . . , Sqj}, where Sqi is the isolated neighborhood found by
Find-Neighborhood starting from qi. Note that, since r is random, S(j)

v and qj
are random variables for all j ∈ {1, 2, . . . ,mv}.

For vertices u, v ∈ B, we say u marks v if v ∈ Su and v is not marked before u
is considered. Also, we say a vertex u ∈ B is marking if u marks some vertex in
the graph. It is clear from the definition that, for any j ∈ {1, 2, . . . ,mv}, if qj is
marking then Sqj ⊆

⋃j−1
i=1 Sqi . This implies that if qj is marking, Sqj must be a

member of every cover of S(j)
v . By Lemma 4, there exists a cover Bj ⊆ S(j)

v such
that |Bj | ≤ (2h + 3)!. Thus, whatever the first j sets S(j)

v are, the probability
that j-th vertex qj is marking is bounded by (2h + 3)!/j. Let the number of
marking vertices in Qv be av. We have

E[av] =
mv∑
j=1

Pr[qj is marking] ≤
mv∑
j=1

(2h+ 3)!
j

≤ (2h+ 3)! · (1 + logmv)

≤ (2h+ 3)! · (1 + log k + log(2h+ 3)!).

Let M ⊆ B be the set of marking vertices in the graph. It holds∑
u∈M |Su| =

∑
u∈B au.

Thus,

E
[∑

u∈M |Su|
]
≤ (2h+ 3)! · (1 + log k + log(2h+ 3)!) · |B|.

Note that, for each marking vertex u, the number of edges that have exactly one
end in Su is at most d|Su|δ. This is also an upper bound for the number of edges
going out of u’s component in the partition. Therefore, the expected number of
cut edges with both ends in B is at most

δd · (2h+ 3)! · (1 + log k + log(2h+ 3)!) · |B| ≤ ε

100
|V |.
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Thus, by Markov inequality, the probability that the number of edges in the
second set is greater than ε

10 |V | is at most 1/10. Therefore, the probability that
the total number of edges in both sets is less than ε|V | is at least 9/10, as
required by Claim 3.

Finally, observe that the size of each partition is trivially bounded by k, which
is required by Claim 4.

We now show how Algorithm 2 can be simulated locally. Consider the local
Algorithm 3 that given a query q ∈ V , computes f [q]. The local algorithm starts
by computing the set of vertices that cover q. Then among the vertices in this
set, it finds the vertex u with the smallest value ru. It is clear that u is the vertex
that marks q, and thus, f [q] is a subset of Su. Next the local algorithm considers
each vertex in Su and checks whether that vertex is also marked by u. If it is,
the vertex should also be included in f [q]. Clearly local Algorithm 3 computes
exactly the same set f [q] as the global Algorithm 2, provided the selected random
numbers are the same.

Let us bound the number of queries to the input graph that Algorithm 3
makes to answer query q:

– Lemma 3 shows that finding Qq, the set of vertices that cover q, requires
O(dk2h+4) queries to the input graph.

– By Lemma 2, finding Su takes at most O(dk2h+3) queries to the input graph.
– Finally, for each w ∈ Su, checking whether w is marked by u also takes
O(dk4h+6) queries to the input graph. Since |Su| ≤ k, it takes at most
O(dk4h+7) queries to find the subset of vertices in Su that are marked by u.

Summarizing, the oracle has to make at most O(dk4h+7) queries to the input
graph to answer any query about f . Similarly, we assume that a dictionary
operation requires O(log n) time for a collection of size n. We use a dictionary to
keep the previously generated rv in order to maintain consistency. The running
time of the oracle to answer a query about f is then at most Õ(k4h+O(1) · logQ),
as stated in Claim 5 of the theorem.

Finally, the partition is computed such that it is independent of queries to
the oracle. It is only a function of coin tosses that correspond to Step 5 of
Algorithm 22. ��
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Abstract. We consider natural graph property tests, which act entirely
independently of the size of the graph being tested. We introduce the
notion of properties being inflatable — closed under taking (balanced)
blowups — and show that the query complexity of natural tests for a
property is related to the degree to which it is approximately hereditary
and inflatable. Specifically, we show that for properties which are almost
hereditary and almost inflatable, any test can be made natural, with a
polynomial increase in the number of queries. The naturalization can be
considered as an extension of the canonicalization due to [15], so that
natural canonical tests can be described as strongly canonical.

Using the technique for naturalization, we restore in part the claim
in [15] regarding testing hereditary properties by ensuring that a small
random subgraph itself satisfies the property. This allows us to generalize
the triangle-freeness lower bound result of [5]: Any lower bound, not only
the currently established quasi-polynomial one, on one-sided testing for
triangle-freeness holds essentially for two-sided testing as well. We also
explore the relations of the notion of inflatability and other already-
studied features of properties and property tests, such as one-sidedness,
heredity, and proximity-oblivion.

1 Introduction

In Property Testing, one is allowed oracle access to some combinatorial object,
and must distinguish with high probability between the case of this object satis-
fying a certain property, and the case of the object being far from satisfying it.
The study of property testing in the context of graphs began with [12], which
introduced the dense model for graph testing: graphs on n vertices are close if
one needs to add and/or remove ε

(
n
2

)
edges to convert one into the other.

Much of the work in this field involves characterizing which graph properties
admit tests in this model in certain query complexity classes with respect to n
and ε, and with certain features of the tests. While [12] and some later contri-
butions (specifically, [13]; see also below) involve bounds in terms of n — most
study of the dense model has focused on testing with query complexity depend-
ing only on the distance parameter ε (called simply “testable” properties). A
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large class of properties were established in [12] as testable, and the character-
ization of the class of testable properties was posed as an open problem. Over
the following decade, a series of results gradually progressed towards this goal,
with the characterization being finally achieved in [4], and independently in [7]
(in terms of graph limits).

Notable on the way to characterizing the testable properties was [6], which
proved that all hereditary graph properties have tests with one-sided error (i.e.
which never reject graphs with the property). This kind of link between a feature
of a class of properties and a feature of the test is a main focus of this paper.

Beyond the fundamental testability of properties, much study has focused on
the query complexity’s specific dependence on the distance parameter ε. Most
general testability results in the dense model are based on the use of Szemerédi’s
regularity lemma, incurring a prohibitive dependence on ε, while the generalized
partition properties proved testable in [12] have a mere polynomial dependence
on ε in the number of queries.

Links between features of properties and features of tests have also been stud-
ied in this context, with several important results appearing in [15]. This paper
introduced the notion of canonical testing: A canonical test uniformly samples a
small induced subgraph, queries it entirely, and decides deterministically based
on this subgraph. [15] proved that any test can be made canonical with at
most about a squaring of its number of queries, immediately implying that the
gap between adaptive and non-adaptive query complexity (see [14]) is at most
quadratic. [15] also included a proposition regarding hereditary testable proper-
ties: These can be tested by merely ensuring that most small induced subgraphs
themselves satisfy the property. Unfortunately, it later turned out that this re-
sult only holds for tests which are natural: Tests acting independently of the size
of the input graph. This qualification appears in the errata [16].

How essential is this qualification? If we prevent properties from exhibiting
blatant ‘pathologies’ precluding natural tests (e.g. the property of graphs having
an odd number of vertices) — one would hope it may be possible to ‘smooth
out’ any artificial dependence on n. Indeed, in this paper we show that tests
can be made natural, with a polynomial penalty in the number of queries, for
properties with appropriate features; we also justify their being appropriate by
showing that properties admitting natural tests also exhibit these features albeit
more weakly.

The first constraining feature is heredity, mentioned above. With a hereditary
property, as n increases, the set of forbidden subgraphs gains more and more
elements, so one expects the set of acceptable queried graphs to shrink gradually.
The idea for the converse feature, implying a set of acceptable graphs shrinking
as n decreases, is motivated by earlier works on lower bound results. The concept
which springs to mind is graph blowups: The hierarchy theorems in [13] rely on
the use of blowups; and the triangle testing lower bound in [2] involves a blowup
(more on this below). The feature we define is being inflatable — being closed
to blowups. This specifically prevents the pathology of going from satisfying a
property at order n to being very far from it by merely adding a vertex.
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With regards to the idea of ‘smoothing out’ non-naturality, a typical example
would be a test which arbitrarily rejects some specific queried subgraph at even
orders, and accepts it at odd ones. If this subgraph is very unlikely to appear in
graphs in the property, a natural test could be ‘spoiled’ by adding this behavior
to it, while still remaining a valid test. However, such behavior is not possible
with enough potential queried subgraphs to have an overall high probability of
being sampled. This leads one to recall the proof in [9] that testable properties
are also estimable (a key result necessary for the characterization in [4]). The es-
sential argument in [9] is, that with a good estimate of the subgraph distribution,
one knows the probability of a test querying subgraphs of this order accepting.

An immediate noteworthy application of our naturalization technique
regards lower bounds on the query complexity of testing triangle-freeness (or
induced-subgraph-freeness in general). While triangle-freeness is known to be
testable, there is a vast gap between the lower and upper bounds for it: The best
upper bounds are based on Szemerédi’s regularity lemma ([1]; see [8] and [3]),
or similar techniques (as in the recent improvement [11]); these yield a query
complexity being a tower function whose height is a polynomial or a logarithmic
in 1/ε .

Lower bounds for a property’s query complexity can be established with Yao’s
principle (see [17]), using two distributions which are hard to distinguish, one
supported mostly on satisfying graphs and the other mostly on far graphs. But
even the construction of just a single graph which is hard to distinguish as
being far from a property can yield lower bound results. For one-sided testing
of triangle-freeness, one notes that a one-sided test, querying a triangle-free
subgraph, would have to accept. Indeed, such a construction in [2] established
the best such bound known, slightly super-polynomial in 1/ε .

A one-sided query complexity lower bound can be converted into a two-sided
lower bound, provided one can show that any test for the property can be made
one-sided. Indeed, this was to be possible using the proposition appearing in
[15] — but as mentioned above, it relies on the test being natural. This problem
is worked around in [5], which proves a quasi-polynomial lower bound for any
triangle freeness test — directly, using Yao’s method. That proof, however, is
custom-tailored, and may not be able to convert stronger one-sided lower bounds
to general two-sided bounds. Using our naturalization technique, we restore in
part the proposition regarding testing hereditary properties, proving that the
query complexity of testing for triangle-freeness is entirely determined by the
one-sided-error query complexity.

The rest of this paper is organized as follows. Following the necessary formal
definitions and some technical preliminaries in Section 2, our main result regard-
ing naturalization, as well as its significant implications, are stated in Section 3.
Proof of our main Theorem 1 constitutes Section 4. For brevity, an additional
section discussing inflatability and natural testability, as well as most proofs
other than for our main result, have been omitted; they may be found in the full
version of this paper, available online: [10].
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2 Preliminaries

2.1 Graph Properties and the Dense Model for Property Testing

Definition 1. The absolute distance between two graphs G, H of order n is
the number of edges one has to add and/or remove in G to make it into an
isomorphic copy of H; in other words, it is the minimum over all bijections
φ : V (G)→ V (H) of the number of edge discrepancies — the number of elements
in the symmetric difference between E(H) and {{φ(u′), φ(v′)} | {u′, v′} ∈ E(G)}.
The distance dist

(
G,H

)
between G and H is the absolute distance between them

normalized by a factor of
(
n
2

)−1.

Definition 2. A property of graphs is a set Π =
⋃∞
n=1 Πn of graphs, closed

under graph isomorphism, where Πn is supported on graphs of order n.

A graph is set to satisfy a property Π if it is an element of the set Π; a graph G
of order n is said to be ε-far from satisfying a property Π if G’s distance from
every graph H ∈ Πn is at least ε.

Definition 3. A property test for a graph property Π is a probabilistic oracle
machine which, given the values (n, ε), as well oracle access to a graph G of order
n, makes a certain number of edge queries (“is there an edge between the vertices
u and v?”), and distinguishes with probability at least 2/3 between the case of G
being in Π and the case of G being ε-far from Π. The (possibly adaptive) number
and choice of queries, as well as the rest of the algorithm, may in general depend
on the value of n, as can the decision to accept or reject.

This traditional definition of a property test in the dense model includes an
artificial dependence of the query model on the value of n: Without utilizing
this value it is not possible to make any samples; [15, Section 4] emphasizes the
artifice of this particular dependence, and lead us to the following definition,
equivalent in the context of graph properties:

Definition 4 (Alternative to Definition 3). A property test for a graph
property Π is a probabilistic oracle machine which is given the values (n, ε), as
well access to a graph G of order n, through an oracle which takes two types of
requests: A request to uniformly sample an additional vertex out of the remaining
vertices of G, and an edge query within the subgraph induced by the sampled ver-
tices (“is there an edge between the ith and jth sampled vertices?”). The machine
makes a sequence of requests to the oracle, and distinguishes with probability at
least 2/3 between the case of G being in Π and the case of G being ε-far from
Π. If the test has sampled the entire input graph, additional requests to sample
an additional vertex will indicate that there are none left.

2.2 Features of Property Tests

Definition 5. A property test is said to be one-sided (or said to have one-sided
error) if it accepts all graphs in Π with probability 1.
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Definition 6. A test for a property Π is said to be canonical if, for some
s : N× (0, 1)→ N and properties

(
Π(i)

)∞
i=1

, the test operates as follows: on input
n and oracle access to an n-vertex graph G, the test samples uniformly a set of
s(n, ε) distinct vertices of G, queries the entire corresponding induced subgraph
and accepts if and only if this subgraph is in Π(n). If there are fewer than s(n, ε)
vertices, the test queries the entire graph and accepts if it is in Π.

Theorem ([15, Theorem 2]). If a graph property has a test making queries
involving at most s(ε) vertices, independently of the size of the input graph, then
it has a canonical test with queried subgraph order at most 9s(ε). If the original
test is one-sided, this canonical test’s queried subgraph order is s(ε) and it is
also one-sided.

Note. The statement in [15] does not mention the number of sampled vertices;
in the proof, howerver, the original test is repeated 9 times and the majority-vote
is used, to amplify the probability of success to 1/6 ; see also [16, Page 2].

A canonical test, which accepts a graph G when the queried subgraph on its
sampled vertices is G′, is said to accept G by sample G′.

Definition 7 (as appearing in [16]). A graph property test is said to be nat-
ural if its query complexity is independent of the size of the tested graphs, and
on input (n, ε) and oracle access to a graph of order n, the test’s output is based
solely on the sequence of oracle answers it receives (while possibly using more
random bits, provided that their number is also independent of n).

If our graph property tests are as defined traditionally (Definition 3), the above
definition of a natural test is flawed, and no test which makes any queries can
be natural: A test cannot make q(ε) queries to an input graph with less than√
q(ε) vertices (this point is also mentioned in [6]). Instead of amending the

definition of naturality to avoid this semantic issue, it seems more reasonable to
use the alternative definition for the dense graph model, Definition 4, in which
the artificial dependence on n is removed. In this case, Definition 7 is valid: If
the test attempts to sample too many vertices, the oracle indicates its failure to
do so and the test proceeds accordingly.

In this paper we will be dealing mostly with tests which combine both the
above features, or rather, we will focus on making canonical tests natural as
well. In the context of a canonical test, the naturalness means that the ‘internal’
property, the one for which the sampled subgraph is checked for, does not depend
on the order of the input graph. This observation leads us to use naturality to
define several ‘levels’ of canonicality for a property test:

Definition 8. Consider a canonical test for graph property Π, with
(
Π(i)

)∞
i=1

being the sequence of properties the satisfaction of which the test checks for its
sampled order-s subgraph. The test is said to be
perfectly canonical when Π(i) = Π — The test merely ensures that a small
random subgraph satisfies the property the input graph is being tested for.
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strongly canonical when Π(i) = Π′ — The test ensures a small sampled sub-
graph satisfies some fixed property, the same for any order of the input graph.
weakly canonical for any

(
Π(i)

)∞
i=1

, possibly different at different orders i.

Indeed, a test is strongly canonical if and only if it is both canonical and natural.

2.3 Features of Graph Properties

In this subsection we define strict and approximate notions of graph properties
being hereditary and inflatable.

Definition 9. A graph G′ = (V ′, E′) is a (balanced) blowup of a graph G =
(V,E) if V ′ can be partitioned into |V | clusters of vertices, all of the same size
up to a difference of at most 1, each corresponding to a vertex in V , where the
edges in E′ between these clusters correspond to the edges of E. In other words,
if (u, v) ∈ E then the bipartite graph between the clusters corresponding to u and
v is complete, and if (u, v) /∈ E then this bipartite graph is empty. There are no
edges inside each partition set.

Definition 10. If G′ = (V ′, E′) is a blowup of G, and the clusters in V ′ (corre-
sponding to the vertices of G) all have exactly the same size (and, in particular,
|V | divides |V ′|), then G′ is said to be an exactly-balanced blowup.

We will sometimes refer to a “random” or a “uniformly sampled” blowup of a
graph from order n to some order n′; this will mean that the n′ (mod n) vertices
which have the larger clusters in the blowup (clusters of size � n′/n � rather than
�n′/n�) are chosen at random.

Lemma 1. Let G = H be graphs of order n, let n′ > n and let φ : V (G)→ V (H)
be a bijection achieving dist

(
G,H

)
, i.e. exhibiting dist

(
G,H

) · (n2) discrepancies.
If one uniformly samples a blowup G′ of G to order n′, and applies the same
blowup to H — in the sense that for every v ∈ G, the size of v’s cluster in G′ is
the same as the size of φ(v)’s cluster in the blowup H ′ of H — then the expected
distance between the two blowups is strictly lower than dist

(
G,H

)
.

A proof of the above lemma, as well as of all lemmata in this section, appears
in the full version of this paper: [10].

Definition 11. A property Π is said to be inflatable if it is closed under blowups,
i.e. if G satisfies Π, then so does any blowup of G.

Definition 12. A graph property Π is said to be (s, δ)-inflatable if for any graph
G satisfying Π, of order at least s, all blowups of G are δ-close to satisfying Π.
A property Π is said to be (s, δ)-inflatable on the average if for any graph G
satisfying Π, of order at least s, the expected distance from Π of blowups of G
to any fixed order (uniformly sampled out of all possible blowups) is less than δ.

Since blowups do not affect graph distances overmuch, not only graphs satisfying
an inflatable property remain close to it, but rather, the distance of any graph
from the property does not increase much by taking a blowup.
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Definition 13. A graph property is said to be hereditary if it is closed under the
taking of induced subgraphs. A property is said to be hereditary down to order
n0 if it is closed under the taking of induced subgraphs of order no less than n0.

Definition 14. A property Π is said to be (s, δ)-hereditary if, for every graph
in Π, all of its induced subgraphs of order at least s are δ-close to Π. Π is said to
be (s, δ)-hereditary on the average if, for every graph in Π, the expected distance
from Π of a uniformly-sampled subgraph of any fixed order s′ ≥ s is less than δ.

2.4 Fixed-Order Subgraph Distributions of Graphs

Definition 15. Given a graph G, consider the graph induced by a uniformly
sampled subset of s vertices. We denote the distribution of this induced subgraph
by Ds

G, the order-s subgraph distribution of G; Ds
G(G′) is the relative frequency

of a subgraph G′ of order s in G.

Definition 16. Let Gs denote all graphs of order s. The distance between two
distributions D, D′ over graphs of order s, denoted dist

(
D,D′), is the variation

distance between them, i.e. dist
(
D,D′) = 1

2

∑
G∈Gs |D(G)−D′(G)|.

Lemma 2. If two graphs G, H (of order n ≥ s) are δ
(
s
2

)−1-close, then their
order-s subgraph distributions are δ-close, i.e. dist

(
Ds
G,D

s
H

) ≤ δ.
Lemma 3. Let δ > 0, let G be a graph of order n ≥ 2

δ

(
s
2

)
, let G′ be a random

blowup of G to order n′ > n, and let H ⊆ Gs. Then∣∣∣∣Ex
G′

[
Pr

H∼Ds
G′

[H ∈ H]
]
− Pr

H∼Ds
G

[H ∈ H]
∣∣∣∣ < δ

3 Our Results

We first state our our main result in a simplified manner, for motivation and
clarity, followed by the version which we actually prove:

Theorem 1. If a hereditary, inflatable graph property has a test making q(ε)
queries, regardless of the size of the input graph, then it has a strongly canonical
test — specifically, a natural test — making O

(
q(ε)4

)
queries.

Theorem 1 (exact version). Let Π be a graph property has a test with queries
involving at most s(ε) distinct vertices, regardless of the size of the input graph,
and let s1 = 12

(
31s
2

)
. If Π is both

(
s1,

1
6

(
s1
2

)−1)-hereditary on the average and(
s1, s1

−1
)
-inflatable on the average, then it has a strongly canonical test whose

queried subgraph order is s1 = O
(
s(ε)2

)
.

A weak converse of Theorem 1 also holds:
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Theorem 2. If a graph property Π has a natural (not necessarily canonical)
test with queries involving s(ε) distinct vertices, then for every ε′ > ε, Π is(
sh, ε

′)-hereditary on the average and
(
si, ε

′)-inflatable on the average, for sh =
O
(
s · log

(
1

ε′−ε
))

and si = O
(
s2 · (ε′ − ε)−1log2

(
1

ε′−ε
))

respectively.

Let us now recall [15, proposition D.2], discussed in the introduction:

Proposition (corrected as per [16]). Let Π be a hereditary graph property,
with a natural test making q(ε) queries. Then Π has a perfectly canonical test
with queried subgraph order O

(
q(ε)

)
.

Originally, this proposition was stated requiring only that q(·) not depend on
n, without requiring that the test be natural. When we combine the corrected,
qualified version above with Theorem 1, we obtain:

Corollary 1. If a hereditary inflatable property has a test making q(ε) queries,
then it has a perfectly canonical test with queried subgraph order poly(q(ε)).

The converse of this corollary, useful for proving lower bounds, is that if a hered-
itary inflatable property has no perfectly canonical test with queried subgraph
order poly(q(ε)), then it has no test whatsoever whose number of queries is q(ε)
(natural or otherwise, with one-sided or two-sided error). For triangle-freeness
specifically, combining Corollary 1 with [2, Lemma 3.1], and the fact that the
property of triangle-freeness is inflatable, one obtains an alternative, ‘generic’
proof of the following:

Corollary 2 (first proven as [5, Theorem 1]). The query complexity of any
ε-test — natural or otherwise, with one- or two-sided error — for the property
of being triangle-free is at least (c/ε )c·log( c/ε ), for some global constant c.

As mentioned in the introduction, the proof in [5] uses a construction specific to
the details of the (c/ε )c·log( c/ε ) one-sided lower bound. The construction we will
be utilizing in the proof of Theorem 1 applies to any test for triangle-freeness,
so a proposition similar to the above corollary would hold for any possible lower
bound on the query complexity of testing triangle-freeness. It will similarly hold
for the property of being free of any single non-bipartite graph which is not a
blowup of a smaller graph.

Returning to [15, proposition D.2], while for hereditary inflatable properties
we have established it with a power-of-four penalty on the number of queries,
for properties with one-sided tests it can be shown to hold as stated:

Proposition 1. If a hereditary inflatable property Π has a one-sided (not nec-
essarily natural) test making q(ε) queries, then Π has a perfectly canonical test
with queried subgraph order at most 2q.

Finally, putting inflatability in the context of proximity-oblivious testing, the
following partial characterization follows:



550 E. Fischer and E. Rozenberg

Proposition 2. Let Π be an inflatable hereditary property. Π has a constant-
query proximity-oblivious test if and only if there exists a constant s such that,
for n ≥ s, Πn consists exactly of those graphs of order n, which are free of
order-s graphs outside of Πs.

Proofs of Theorem 2, Proposition 1 and Proposition 2 appear in the full version
of this paper: [10].

4 Naturalizing Tests — Proof of Theorem 1

Let Π be a property meeting the conditions of Theorem 1. As Π has a test with
queries involving at most s(ε) vertices (independently of n), by [15, Theorem
2] it has a canonical test, querying a uniformly sampled subgraph of order at
most 9s, in its entirety. As discussed in Subsection 2.2, we may assume that the
canonical test’s probability of error is at most 1

36 rather than 1
3 , at the cost of

increasing the queried subgraph order to s0 = 31s.
One may think of the existence of such a canonical test as meaning that the

membership of a graph in Π is essentially determined by its distribution of (in-
duced) subgraphs of order s0. This being the case, let us consider a (canonical)
‘meta-test’ for Π, which (receiving n) estimates whether the subgraph distribu-
tion leads to acceptance: This meta-test is listed as Algorithm 1.

Algorithm 1. A Meta-Test for Π

1: Uniformly query a subgraph Gsample of order s1 = 12
(
s0
2

)
= 12

(
31s(ε)

2

)
.

2: If at least a 1
6 -fraction of the order-s0 subgraphs G′ of Gsample are such that

the (canonical) s0-test accepts G by sample G′, accept. Otherwise reject.

Lemma 4. Algorithm 1 is a valid test for Π, with failure probability at most 1
6 .

Proof. Suppose the input graph G either satisfies Π or is ε-far from satisfying Π.
Let G′ be one of the

(
s1
s0

)
order-s0 subgraphs of Gsample. Let XG′ be the indicator

for the s0-test erring (that is, rejecting G in case G satisfies Π, or accepting G
in case G is far from Π) by sample G′. Every order-s0 subgraph of Gsample is in
fact uniformly sampled from the input graph, thus Ex[XG′ ] is the probability of
the s0-test erring — at most 1

36 . The expected fraction of order-s subgraphs of
Gsample by which the s0-test errs is therefore also at most 1

36 . Considering the
meta-test’s behavior again, it only errs if at least a 1

6 -fraction of the subgraphs
of Gsample cause the s0-test to err. by Markov’s inequality the probability of this
occurring is at most 1

36

/
1
6 = 1

6 . ��
Let us now modify Algorithm 1 to reject samples which are themselves not in
the property at order s1; the result is listed as Algorithm 2.

Lemma 5. Algorithm 2 is a valid test for Π.
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Algorithm 2. Modified Meta-Test for Π

1: Uniformly query a subgraph Gsample of order s1 = 12
(
s0
2

)
= 12

(
31s(ε)

2

)
.

2: If Gsample is not in Π, reject.
3: If at least a 1

6 -fraction of the order-s0 subgraphs G′ of Gsample are such that
the s0-test accepts G by sample G′, then accept. Otherwise reject.

Proof. The additional check only increases the probability of rejection of any
input graph, so it does not adversely affect the soundness of the modified test
(that is, a graph ε-far from Π is still rejected by Algorithm 2 with probability
at least 5

6 ≥ 2
3 ).

Regarding completeness, we recall that Π is
(
s1,

1
6

(
s1
2

)−1)-hereditary on the
average. This implies that, for an input graph in Π, the average distance of
subgraphs of order s1 from Π is 1

6

(
s1
2

)−1; as each order-s1 subgraph not in Π is
at least

(
s1
2

)−1-far from Π, the fraction of order-s1 subgraphs of G which aren’t
in Π is at most 1

6 . Regardless of these, at most a 1
6 -fraction of the order-s1

subgraphs of a satisfying graph cause Algorithm 1 to reject. Union bounding
over these two sets of subgraphs causing rejection we find that the probability
of the modified meta-test rejecting a graph in Π is less than 2 · 1

6 = 1
3 . ��

Now, if Algorithm 2 were somehow also natural, this would complete the proof
of Theorem 1, as the test otherwise meets the requirements. Since Algorithm 2
is canonical, its naturality means being strongly canonical: Accepting the same
set of sampled subgraphs for any input graph order, despite being given n as
input. Interestingly enough, our modification has indeed made this the case:

Lemma 6. Let H be a graph of order s1 by which sample Algorithm 2 accepts
for at least some input graph order n. Algorithm 2 cannot reject for any input
graph order n′ ≥ s1 by sample H.

Proof. Assume on the contrary that Algorithm 2 rejects by sample H for some
n′ ≥ s1. We first note that Algorithm 2 does not reject by H at order n′ on
account of H not being in Π (as samples which aren’t in Π are rejected at all
input orders). We will show this to imply that the original test is unsound.

Let Π′n′ denote the set of order-s0 subgraphs by which sample the s0-test
accepts an input graph G at order n′. Our assumption is that the probability of
the s0-test accepting a subgraph of H is less than 1

6 , or in terms of the subgraph
distribution, PrHs∼D

s0
H

[Π′n′ ] < 1
6 .

Now, consider a random blowup H ′ of H to order n′. Π is
(
s1,

1
12

(
s0
2

)−1)-
inflatable on the average, and H is in Π, so ExG′

[
dist

(
H ′,Π

)]
< 1

12

(
s0
2

)−1 and

by Markov’s inequality, PrH′
[
dist

(
H ′,Π

) ≥ 1
6

(
s0
2

)−1
]
< 1

2 .

Also, let δ = 1
6 . Since s1 ≥ 2

δ

(
s0
2

)
, we may apply Lemma 3 (substituting H

and H ′ for G and G′, s0 for s, s1 for n) for the event of the s0-test accepting at
order n′:
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Ex
H′

[
Pr

Hs∼D
s0
H′

[
Hs ∈ Π′n′

]] ≤ Pr
Hs∼D

s0
H

[
Hs ∈ Π′n′

]
+
∣∣∣∣Ex
H′

[
Pr

Hs∼D
s0
H′

[
Hs ∈ Π′n′

]]− Pr
Hs∼D

s0
H

[
Hs ∈ Π′n′

]∣∣∣∣
< Pr

Hs∼D
s0
H

[
Hs ∈ Π′n′

]
+ δ <

1
6

+
1
6

=
1
3

and again by Markov’s inequality PrH′
[
PrHs∼D

s0
H′

[
Hs ∈ Π′n′

] ≥ 2
3

]
< 1

2 Com-
bining these two facts, we conclude that with positive probability, H ′ is a graph
which is both very close to Π and is accepted by the s0-test with probability at
most 2

3 .
Now, let H̃ ′ be a graph in Π at distance at most 1

6

(
s0
2

)−1 from H ′. By
Lemma 2, these two graphs’ order-s0 subgraph distributions are 1

6 -close,
implying that

∣∣PrHs∼D
s0
H̃′

[
Hs ∈ Π′n′

]−PrHs∼D
s0
H′

[
Hs ∈ Π′n′

]∣∣ < 1
6 .

We now use the triangle inequality to bound the probability of the s0-test
accepting H̃ ′:

Pr
Hs∼D

s0
H̃′

[
Hs ∈ Π′n′

] ≤ Pr
Hs∼D

s0
H′

[
Hs ∈ Π′n′

]
+
∣∣∣∣ Pr
Hs∼D

s0
H′

[
Hs ∈ Π′n′

]− Pr
Hs∼D

s0
H̃′

[
Hs ∈ Π′n′

]∣∣∣∣ < 2
3

+
1
6

=
5
6

This contradicts the original test’s probability of error — it must accept H̃ ′, a
graph in Π, with probability at least 1− 1

36 >
5
6 . It cannot therefore be the case

that Algorithm 2 rejects H at order n′. ��
Proof (of Theorem 1). Given a property Π satisfying the conditions, we have
devised Algorithm 2: This is a canonical test for Π, with queried subgraph order
s1 = 12

(
31s
2

)
; by Lemma 6, it accepts and rejects the same set of queried sub-

graphs for all graph orders n ≥ s1 — that is, it is a natural test. ��

5 Open Questions

Naturalization without Canonization. Can non-canonical tests be made natural,
without incurring the penalty for making them non-adaptive and canonical?

Testing a Large Graph by Testing Small Subgraphs. [16] poses the question of
whether any test for a hereditary property can be replaced with merely ensuring
that a random small induced subgraph has the property. We’ve shown that being
hereditary and inflatable, or one-sided-testable, is a sufficient condition for this
to hold. Are these conditions, or similar ones, also necessary?
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The Benefit of Non-natural Testing. Some testable properties have a non-
constant-factor gap in query complexity between their adaptive and non-adaptive
tests. Is this also the case for natural testing? Can one find specific properties
exhibiting a gap, or ‘non-contrived’ properties for which there is no gap (as in
[14])?

A More Appropriate Notion of Inflatability. The definition of a blowup and
of (perfect) inflatability is somewhat arbitrary; thus, being the empty graph
is inflatable, but being the complete graph is not — since the clusters in a
blowup are empty. Also, the property of being H-free, when H is a blowup of
a smaller graph, is not inflatable. However, these properties are inflatable on
the average (at least with an is exceedingly high threshold s). Can one devise
a more appropriate notion of inflatability, which covers such properties as well,
while still allowing for a ‘naturalization’ similar to that in Theorem 1?

Acknowledgement. We wish to thank Oded Goldreich for insightful suggestions
regarding the presentation of these results, and specifically for suggesting the
concept of ‘strong canonicality’.
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Abstract. We give an algorithm that computes the final state of certain
growth models without computing all intermediate states. Our technique
is based on a “least action principle” which characterizes the odometer
function of the growth process. Starting from an approximation for the
odometer, we successively correct under- and overestimates and provably
arrive at the correct final state. The degree of speedup depends on the
accuracy of the initial guess.

Determining the size of the boundary fluctuations in growth mod-
els like internal diffusion-limited aggregation (IDLA) is a long-standing
open problem in statistical physics. As an application of our method, we
calculate the size of fluctuations over two orders of magnitude beyond
previous simulations.

1 Introduction

In this paper we study the abelian stack model, a type of growth process on
graphs. Special cases include internal diffusion limited aggregation (IDLA) and
rotor-router aggregation. We describe a method for computing the final state of
the process, given an initial approximation. The more accurate the approxima-
tion, the faster the computation.

IDLA

Starting with N chips at the origin of the two-dimensional square grid Z2, each
chip in turn performs a simple random walk until reaching an unoccupied site.
Introduced by Meakin and Deutch [25] and independently by Diaconis and Ful-
ton [10], IDLA models physical phenomena such as solid melting around a heat
source, electrochemical polishing, and fluid flow in a Hele-Shaw cell. Lawler,
Bramson, and Griffeath [22] showed that as N → ∞, the asymptotic shape of
the resulting cluster of N occupied sites is a disk (and in higher dimensions, a
Euclidean ball).

The boundary of an IDLA cluster is a natural model of a random propagating
front (Figure 1, left). From this perspective, the most basic question one could
ask is, what is the scale of the fluctuations around the limiting circular shape?
Until recently this was a long-standing open problem in statistical physics. It
is now known that the fluctuations in dimension 2 are of order at most logN
[3, 19]; however, it is still open to show that the fluctuations are at least this
large. We give numerical evidence that logN is in fact the correct order, and
estimate the constant in front of the log.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 555–566, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. IDLA cluster (left) and rotor-router cluster with counterclockwise rotor se-
quence (right) of N = 106 chips. Half of each circular cluster is shown. Each site is
colored according to the final direction of the rotor on top of its stack (yellow=W,
red=S, blue=E, green=N). Note that the boundary of the rotor-router cluster is much
smoother than the boundary of the IDLA cluster. Larger rotor-router clusters of size
up to N = 1010 can be found at [1].

Rotor-router Aggregation

James Propp [21] proposed the following way of derandomizing IDLA. At each
lattice site in Z2 is a rotor that can point North, East, South or West. Instead
of stepping in a random direction, a chip rotates the rotor at its current location
counterclockwise, and then steps in the direction of this rotor. Each of N chips
starting at the origin walks in this manner until reaching an unoccupied site.
Given the initial configuration of the rotors (which can be taken, for example,
all North), the resulting growth process is entirely deterministic. Regardless of
the initial rotors, the asymptotic shape is a disk (and in higher dimensions, a
Euclidean ball) and the inner fluctuations are proved to be O(logN) [24]. The
true fluctuations appear to grow even more slowly, and may even be bounded
independent of N .

Rotor-router aggregation is remarkable in that it generates a nearly per-
fect disk in the square lattice without any reference to the Euclidean norm
(x2 + y2)1/2. Perhaps even more remarkable are the patterns formed by the final
directions of the rotors (Figure 1, right).

Computing the Odometer Function

The central tool in our analysis of both models is the odometer function, which
measures the number of chips emitted from each site. The odometer function de-
termines the shape of the final occupied cluster via a nonlinear operator that we
call the stack Laplacian. Our main technical contribution is that even for highly
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non-deterministic models such as IDLA, one can achieve fast exact calculation
via intermediate approximation. Approximating the two growth processes by an
idealized model called the divisible sandpile, we can use the known asymptotic
expansion of the potential kernel of random walk on Z2 to obtain an initial ap-
proximation of the odometer function. We present a method for carrying out
subsequent local corrections to provably transform this approximation into the
exact odometer function, and hence compute the shape of the occupied cluster.
Our runtime strongly depends on the accuracy of the initial approximation.

Applications

Traditional step-by-step simulation of both aforementioned models in Z2 requires
a runtime of orderN2 to compute the occupied cluster. Using our new algorithm,
we are able to generate large clusters faster: Our observed runtimes are about
N logN for the rotor-router model and about N1.5 for IDLA. By generating
many independent IDLA clusters, we estimate the order of fluctuations from
circularity over two orders of magnitude beyond previous simulations. Our data
strongly support the findings of [26] that the order of the maximum fluctuation
for IDLA in Z2 is logarithmic in N . Two proofs of an upper bound C logN
on the maximum fluctuation for IDLA in Z2 have recently been announced:
see [2, 3, 15, 19]. While the implied constant C in these bounds is large, our
simulations suggest that the maximum fluctuation is only about 0.528 lnN .

For rotor-router aggregation we achieve four orders of magnitude beyond pre-
vious simulations, which has enabled us to generate fine-scaled examples of the
intricate patterns that form in the rotors on the tops of the stacks at the end
of the aggregation process (Figure 1, right). These patterns remain poorly un-
derstood even on a heuristic level. We have used our algorithm to generate a
four-color 10-gigapixel image [1] of the final rotors for N = 1010 chips. This file
is so large that we had to use a Google maps overlay to allow the user to zoom
and scroll through the image. Indeed, the degree of speedup in our method was
so dramatic that memory, rather than time, became the limiting factor.

Related Work

Unlike random walk, in a rotor-router walk each vertex serves its neighbors in a
fixed order. The resulting walk, which is completely deterministic, nevertheless
closely resembles a random walk in several respects [6–8, 11, 16, 18]. The rotor-
router mechanism also leads to improvements in algorithmic applications. Exam-
ples include autonomous agents patrolling a territory [28], external mergesort [5],
broadcasting information in networks [12, 13], and iterative load-balancing [17].

Abelian stacks (defined in the next section) are a way of indexing the steps
of a walk by location and time rather than time alone. This fruitful idea goes
back at least to Diaconis and Fulton [10], §4. Wilson [29] (see also [27]) used
this stack-based view of random walk in his algorithm for sampling a random
spanning tree of a directed graph. The final cycle-popping phase of our algorithm
is directly inspired by Wilson’s algorithm. Our serial algorithm for IDLA also
draws on ideas from the parallel algorithm of Moore and Machta [26].
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Abelian stacks are a special case of abelian networks [9], also called “abelian
distributed processors.” In this viewpoint, each vertex is a finite automaton,
or “processor.” The chips are called “messages.” When a processor receives a
message, it can change internal state and also send one or more messages to
neighboring processors according to its current internal state. We believe that it
might be possible to extend our method to other types of abelian networks, such
as the Bak-Tang-Wiesenfeld sandpile model [4]. Indeed, the initial inspiration
for our work was the “least action principle” for sandpiles described in [14].

2 Formal Model

The underlying graph for the abelian stack model can be any finite or infinite
directed graph G = (V,E). Each edge e ∈ E is oriented from its source vertex
s(e) to its target vertex t(e). Self-loops (edges e such that s(e) = t(e)) and
multiple edges (distinct edges e, e′ such that s(e) = s(e′) and t(e) = t(e′)) are
permitted. We assume that G is locally finite – each vertex is incident to finitely
many edges – and strongly connected : for any two vertices x, y ∈ V there are
directed paths from x to y and from y to x. At each vertex x ∈ V is an infinite
stack of rotors (ρn(x))n�0. Each rotor ρn(x) is an edge of G emanating from x,
that is, s(ρn(x)) = x. We say that rotor ρ0(x) is “on top” of the stack.

A finite number of indistinguishable chips are dispersed on the vertices of G
according to some prescribed initial configuration. For each vertex x, the first
chip to visit x is absorbed there and never moves again. Each subsequent chip
arriving at x first shifts the stack at x so that the new stack is (ρn+1(x))n�0.
After shifting the stack, the chip moves from x to the other endpoint y = t(ρ1(x))
of the rotor now on top. We call this two-step procedure (shifting the stack and
moving a chip) firing the site x. The effect of this rule is that the n-th time a
chip is emitted from x, it travels along the edge ρn(x).

We will generally assume that the stacks are infinitive: for each edge e, in-
finitely many rotors ρn(s(e)) are equal to e. If G is infinite, or if the total number
of chips is at most the number of vertices, then this condition ensures that firing
eventually stops, and all chips are absorbed.

We are interested in the set of occupied sites, that is, sites that absorb a chip.
The abelian property [10, Theorem 4.1] asserts that this set does not depend
on the order in which vertices are fired. This property plays a key role in our
method; we discuss it further in §3.

If the rotors ρn(x) are independent and identically distributed random edges
e such that s(e) = x, then we obtain IDLA. For instance, in the case G = Z2, we
can take the rotors ρn(x) to be independent with the uniform distribution on the
set of 4 edges joining x to its nearest neighbors x± e1, x± e2. The special case
of IDLA in which all chips start at a fixed vertex o is more commonly described
as follows. Let A1 = {o}, and for N � 2 define a random set AN of N vertices
of G according to the recursive rule

AN+1 = AN ∪ {xN} (1)



Fast Simulation of Large-Scale Growth Models 559

where xN is the endpoint of a random walk started at o and stopped when it first
visits a site not in AN . These random walks describe one particular sequence in
which the vertices can be fired, for the initial configuration of N chips at o. The
first chip is absorbed at o, and subsequent chips are absorbed in turn at sites
x1, . . . , xN−1. When firing stops, the set of occupied sites is AN .

A second interesting case is deterministic: the sequence ρn(x) is periodic in n,
for every vertex x. For example, on Z2, we could take the top rotor in each
stack to point to the northward neighbor, the next to the eastward neighbor,
and so on. This choice yields the model of rotor-router aggregation defined by
Propp [21] and analyzed in [23, 24]. It is described by the growth rule (1), where
xN is the endpoint of a rotor-router walk started at the origin and stopped on
first exiting AN .

3 Least Action Principle

A rotor configuration on G is a function r : V → E such that s(r(v)) = v for all
v ∈ V . A chip configuration on G is a function σ : V → Z with finite support.
Note we do not require σ � 0. If σ(x) = m > 0, we say there are m chips at
vertex x; if σ(x) = −m < 0, we say there is a hole of depth m at vertex x.

For an edge e and a nonnegative integer n, let

Rρ(e, n) = #{1 � k � n | ρk(s(e)) = e}

be the number of times e occurs among the first n rotors in the stack at the
vertex s(e) (excluding the top rotor ρ0(s(e))). When no ambiguity would result,
we drop the subscript ρ.

Write N for the set of nonnegative integers. Given a function u : V → N, we
would like to describe the net effect on chips resulting from firing each vertex
x ∈ V a total of u(x) times. In the course of these firings, each vertex x emits
u(x) chips, and receives Rρ(e, u(s(e))) chips along each incoming edge e with
t(e) = x. This motivates the following definition.

Definition 1. The stack Laplacian of a function u : V → N is the function
Δρu : V → Z given by Δρu(x) =

∑
t(e)=xRρ(e, u(s(e))) − u(x), where the sum

is over all edges e with target vertex t(e) = x.

Given an initial chip configuration σ0, the configuration σ resulting from
performing u(x) firings at each site x ∈ V is given by

σ = σ0 +Δρu. (2)

The rotor configuration on the tops of the stacks after these firings is also
easy to describe. We denote this configuration by Topρ(u), and it is given
by Topρ(u)(x) = ρu(x)(x). Vertices x1, . . . , xm form a legal firing sequence
for σ0 if σj(xj+1) > 1, j = 0, . . . ,m − 1 where σj = σ0 + Δρuj and
uj(x) = #{i � j : xi = x}.
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In words, the condition σj(xj+1) > 1 says that after firing x1, . . . , xj , the
vertex xj+1 has at least two chips. We require at least two because in our growth
model, the first chip to visit each vertex gets absorbed.

The firing sequence is complete if no further legal firings are possible; that is,
σm(x) � 1 for all x ∈ V . If x1, . . . , xm is a complete legal firing sequence for the
chip configuration σ0, then we call the function u := um the odometer of σ0.
The odometer tells us how many times each site fires.

Abelian Property. [10, Theorem 4.1] Given an initial configuration σ0

and stacks ρ, every complete legal firing sequence for σ0 has the same odometer
function u.

It follows that the final chip configuration σm = σ0 + Δρu and the final
rotor configuration Topρ(u) do not depend on the choice of complete legal firing
sequence.

Given a chip configuration σ0 and rotor stacks (ρk(x))k�0, our goal is to
compute the final chip configuration σm without performing individual firings
one at a time. A fundamental observation is that by equation (2), it suffices to
compute the odometer function u of σ0. Indeed, once we know that each site x
fires u(x) times, we can add up the number of chips x receives from each of its
neighbors and subtract the u(x) chips it emits to figure out the final number of
chips at x. This arithmetic is accomplished by the term Δρu in equation (2). In
practice, it is usually easy to compute Δρu given u, an issue we address in §4.

Our approach will be to start from an approximation of u and correct errors.
In order to know when our algorithm is finished, the key mathematical point is
to find a list of properties of u that characterize it uniquely. Our main result in
this section, Theorem 1, gives such a list. As we now explain, the hypotheses
of this theorem can all be guessed from certain necessary features of the final
chip configuration σm and the final rotor configuration Topρ(u). What is perhaps
surprising is that these few properties suffice to characterize u.

Let x1, . . . , xm be a complete legal firing sequence for the chip configura-
tion σ0. We start with the observation that since no further legal firings are
possible,

• σm(x) � 1 for all x ∈ V .

Next, consider the set A := {x ∈ V : u(x) > 0} of sites that fire. Since each site
that fires must first absorb a chip, we have

• σm(x) = 1 for all x ∈ A.

Finally, observe that for any vertex x ∈ A, the rotor r(x) = Topρ(u)(x) at the
top of the stack at x is the edge traversed by the last chip fired from x. The last
chip fired from a given finite subset A′ of A must be to a vertex outside of A′,
so A′ must have a vertex whose top rotor points outside of A′.

• For any finite set A′ ⊂ A, there exists x ∈ A′ with t(r(x)) /∈ A′.
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We can state this last condition more succinctly by saying that the rotor con-
figuration r = Topρ(u) is acyclic on A; that is, the spanning subgraph (V, r(A))
has no directed cycles. Here r(A) = {r(x) | x ∈ A}.
Theorem 1. Let G be a finite or infinite directed graph, ρ a collection of rotor
stacks on G, and σ0 a chip configuration on G. Fix u∗ : V → N, and let A∗ =
supp(u∗). Let σ∗ = σ0 +Δρu∗, and suppose that

• σ∗ � 1;
• A∗ is finite;
• σ∗(x) = 1 for all x ∈ A∗; and
• Topρ(u∗) is acyclic on A∗.

Then the odometer function u is well-defined, and u∗ = u.

Note that to ensure that u is well-defined (i.e., that there exists a finite complete
legal firing sequence) it is common to place some minimal assumptions on ρ
and σ0. For example, if G is infinite and strongly connected, then it suffices to
assume that the stacks ρ are infinitive. Theorem 1 does not explicitly make any
assumptions of this kind; rather, if a function u∗ exists satisfying the conditions
listed, then u must be finite (and equal to u∗).

4 Algorithm: From Approximation to Exact Calculation

In this section we describe how to compute the odometer function u exactly,
given as input an approximation u1. The running time depends on the accuracy
of the approximation, but the correctness of the output does not. How to find a
good approximation u1 for N chips started at the origin in Z2, can be found in
the full version of the paper [15].

Recall that G may be finite or infinite, and we assume that G is strongly
connected. We assume that the initial configuration σ0 satisfies σ0(x) � 0 for
all x, and

∑
x σ0(x) < ∞. If G is finite, we assume that

∑
x σ0(x) is at most

the number of vertices of G (otherwise, some chips would never get absorbed).
The only assumption on the approximation u1 is that it is nonnegative with
finite support. Finally, we assume that the rotor stacks are infinitive, which
ensures that the growth process terminates after finitely many firings: that is,∑

x∈V u(x) <∞.
For x ∈ V , write dout(x) = #{e ∈ E | s(e) = x} and din(x) = #{e ∈

E | t(e) = x} for the out-degree and in-degree of x, respectively. The odome-
ter function u depends on the initial chip configuration σ0 and on the rotor
stacks (ρk(x))k�0. The latter are completely specified by the function R(e, n)
defined in §3. Note that for rotor-router aggregation, since the stacks are pe-
riodic, R(e, n) has the simple explicit form R(e, n) =

⌊
n+dout(x)−j

dout(x)

⌋
where j is

the least positive integer such that ρj(x) = e. For IDLA, R(e, n) is a random
variable with the Binomial(n, p) distribution, where p is the transition proba-
bility associated to the edge e. In this section we take R(e, n) as known. From
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a computational standpoint, if the stacks are random, then determining R(e, n)
involves calls to a pseudorandom number generator.

Our algorithm consists of an approximation step followed by two error-
correction steps: an annihilation step that corrects the chip locations, and a
reverse cycle-popping step that corrects the rotors.

(1) Approximation. Perform firings according to the approximate odometer,
by computing the chip configuration σ1 = σ0+Δρu1. Using Definition 1, this
takes time O(din(x)+1) for each vertex x, for a total time of O(#E +#V ).
This step is where the speedup occurs, because we are performing many
firings at once:

∑
x u1(x) is typically much larger than #E+#V . Return σ1.

(2) Annihilation. Start with u2 = u1 and σ2 = σ1. If x ∈ V satisfies σ2(x) > 1,
then we call x a hill. If σ2(x) < 0, or if σ2(x) = 0 and u2(x) > 0, then we
call x a hole. For each x ∈ Z2,
(a) If x is a hill, fire it by incrementing u2(x) by 1 and then moving one chip

from x to t(Top(u2)(x)).
(b) If x is a hole, unfire it by moving one chip from t(Top(u2)(x)) to x and

then decrementing u2(x) by one.
A hill can disappear in one of two ways: by reaching an unoccupied site on
the boundary, or by reaching a hole and canceling it out. When there are
no more hills and holes, return u2.

(3) Reverse cycle-popping. Start with u3 = u2 and A3 = {x ∈ V :
u3(x) > 0}. If Top(u3) is not acyclic on A3, then pick a cycle and unfire
each of its vertices once. This may create additional cycles. Update A3 and
repeat until Top(u3) is acyclic on A3. Output u3.

5 Experimental Results

We implemented our algorithm for both growth models in Z2. The source code
is available from [1]. In this section we discuss some of our results. More exper-
imental findings can be found in the full version [15].

Traditional step-by-step simulation requires quadratic time to compute the
occupied cluster [22, 26]. We found experimentally that our algorithm ran in
significantly shorter time: about N logN for the rotor-router model, and about
N1.5 for IDLA.

5.1 Rotor-Router Aggregation

In the classic rotor-router model, the rotor stack is the cyclic sequence of the four
cardinal directions in counterclockwise order. The absolute error in our odometer
approximation

‖u1 − u‖1 =
∑
x

|u1(x)− u(x)|
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appears to scale linearly with N . This quantity is certainly a lower bound for the
running time of our algorithm. The measured runtimes indicate close-to-linear
runtime behavior, which suggests that our multiscale approach to canceling out
hills and holes is relatively efficient.

The asymptotic shape of rotor-router aggregation is a disk [23, 24]. To measure
how close AN is to a disk, we define the inradius and outradius of a set A ⊂ Z2

by rin(A) = min{|x| : x /∈ A} and rout (A) = max{|x| : x ∈ A}, respectively. We
then define

diff(N) = rout (AN )− rin (AN ).

A natural question is whether this difference is bounded independent of N . We
certainly expect it to increase much more slowly than the order logN observed
for IDLA.

Kleber [21] calculated that diff(3 · 106) ≈ 1.6106. We can now extend the
measurement of diff(N) up to N = 236 ≈ 6.8 · 1010 and observe in this case
for example diff(236) ≈ 1.587. Our algorithm runs in less than four hours for
this value of N ; by comparison, a step-by-step simulation of this size would take
about 23000 years on a computer with one billion operations per second. In our
implementation, the limiting factor is memory rather than time.

Up to dihedral symmetry, there are three different balanced period-4 rotor
sequences for Z2: WENS, WNSE and WNES. The notation WENS means that the first
four rotors in each stack point respectively west, east, north and south.

Figure 2a shows the radius difference diff(N) for various N for the three
different rotor sequences. As these values are rather noisy, we have also calculated
and plotted the averages

diff(N) :=
1

|I(N)|
∑

N ′∈I(N)

diff(N ′) (3)

with I(N) =
[
N
2 ,

3N
2

]
for N � 106, and I(N) = [N − 5 · 105, N + 5 · 105] for

N > 106.
Note that in Figure 2a, the radius difference diff(N) grows extremely slowly

in N . In particular, it appears to be sublogarithmic.
We observe a systematic difference in behavior for the three different rotor

sequences. The observed radius differences are lowest for WNSE, intermediate for
WNES, and highest for WENS. For example,

diff(108) ≈

⎧⎪⎨⎪⎩
1.034 for WNSE,
1.623 for WNES,
1.837 for WENS.

5.2 Internal Diffusion Limited Aggregation (IDLA)

In IDLA, the rotor directions ρk(x) for x ∈ Z2 and k ∈ Z are chosen indepen-
dently and uniformly at random from among the four cardinal directions. In the
course of firing and unfiring during steps 2 and 3 of our algorithm, the same
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Fig. 2. Difference between the inradius and outradius for the rotor-router aggregate
(left) and IDLA (right). In the left figure, the single dots are individual values of diff(N)
while the darker curves show the averages diff(N) as defined in equation (3). The right
figure shows the average values and standard deviations.

rotor ρk(x) may be requested several times. Therefore, we need to be able to
generate the same pseudorandom value for ρk(x) each time it is used. Generating
and storing all rotors ρk(x) for all x and all 1 � k � u1(x) is out of the question,
however, since it would cost Ω(N2) time and space.

Moore and Machta [26] encountered the same issue in developing a fast parallel
algorithm for IDLA. Rather than store all of the random choices, they chose to
store only certain seed values for the random number generator and generate
random walk steps online as needed. In the full version of the paper [15] we
describe how to adapt this idea to our setting for fast serial computation of
IDLA.

The results of our large-scale simulations of IDLA are summarized in Fig-
ure 2b, extending the experiments of Moore and Machta [26] (N � 105.25 with
100 trials) to over 106 trials for N � 216 and over 300 trials for N � 225 ≈ 107.5.
The observed runtime of our algorithm for IDLA is about N1.5; in contrast,
building an IDLA cluster of size N by serial simulation of N random walks
takes expected time order N2 (cf. [26, Fig. 3]).

The expected value of the difference diff(N) between outradius and inradius
grows logarithmically in N : The data fits to Ediff(N) = 0.528 ln(N)−0.457 with
a coefficient of determination of R2 = 0.99994. Error bars in figure Figure 2b
show standard deviations of the random variable diff(N). Note that the size
of the standard deviation is approximately constant: it does not grow with N .
This finding is consistent with the connection with Gaussian free field revealed
in [20]: indeed, the maximum of the discrete two-dimensional Gaussian free field
over the boundary of a disk of area N has mean of order logN and variance of
order 1.
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Abstract. We study the computational complexity of approximately
counting the number of independent sets of a graph with maximum de-
gree Δ. More generally, for an input graph G = (V, E) and an activ-
ity λ > 0, we are interested in the quantity ZG(λ) defined as the sum
over independent sets I weighted as w(I) = λ|I|. In statistical physics,
ZG(λ) is the partition function for the hard-core model, which is an
idealized model of a gas where the particles have non-negibile size. Re-
cently, an interesting phase transition was shown to occur for the com-
plexity of approximating the partition function. Weitz showed an FPAS
for the partition function for any graph of maximum degree Δ when Δ
is constant and λ < λc(TΔ) := (Δ − 1)Δ−1/(Δ − 2)Δ. The quantity
λc(TΔ) is the critical point for the so-called uniqueness threshold on the
infinite, regular tree of degree Δ. On the other side, Sly proved that
there does not exist efficient (randomized) approximation algorithms
for λc(TΔ) < λ < λc(TΔ) + ε(Δ), unless NP=RP, for some function
ε(Δ) > 0. We remove the upper bound in the assumptions of Sly’s result
for Δ 
= 4, 5, that is, we show that there does not exist efficient random-
ized approximation algorithms for all λ > λc(TΔ) for Δ = 3 and Δ ≥ 6.
Sly’s inapproximability result uses a clever reduction, combined with a
second-moment analysis of Mossel, Weitz and Wormald which prove tor-
pid mixing of the Glauber dynamics for sampling from the associated
Gibbs distribution on almost every regular graph of degree Δ for the
same range of λ as in Sly’s result. We extend Sly’s result by improving
upon the technical work of Mossel et al., via a more detailed analysis of
independent sets in random regular graphs.

1 Introduction

For a graph G = (V,E) and activity λ > 0, the hard-core model is defined on the
set I(G) of independent sets of G where set I ∈ I(G) has weight w(I) := λ|I|.
The so-called partition function for the model is defined as:
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ZG(λ) :=
∑

I∈I(G)

w(I) =
∑

I∈I(G)

λ|I|.

The Gibbs distribution μ is over the set I(G) where μ(I) = w(I)/ZG(λ). The
case λ = 1 is especially interesting from a combinatorial perspective, since the
partition function is the number of independent sets in G and the Gibbs distri-
bution is uniformly distributed over the set of independent sets.

The hard-core model has received considerable attention in several fields. In
statistical physics, it is studied as an idealized model of a gas where the gas
particles have non-negligibile size so neighboring sites cannot simultaneously be
occupied [4,1]. The activity λ corresponds to the fugacity of the gas. The model
also arose in operations research in the study of communication networks [7].

We study the computational complexity of approximating the partition func-
tion. Valiant [15] proved that exactly computing the number of independent
sets of an input graph G = (V,E) is #P-complete. Greenhill [5] proved that
even when the input is restricted to graphs with maximum degree 3, it is still
#P-complete. Hence, our focus is on approximating the partition function.

Weitz [16] gave an FPAS (fully polynomial-time approximation scheme) for
the partition function of graphs with maximum degree Δ when Δ is constant
and λ < λc(TΔ) := (Δ − 1)Δ−1/(Δ − 2)Δ. The activity λc(TΔ) is the critical
activity for the threshold of uniqueness/non-uniqueness of the infinite-volume
Gibbs measures on the infinite Δ-regular tree [7]. Recently, Sly [11] proved that,
unless NP = RP , for every Δ ≥ 3, there exists a function ε(Δ) > 0 such
that for graphs with maximum degree Δ there does not exist an FPRAS (fully-
polynomial time randomized approximation scheme) for the partition function
at activity λ satisfying:

λc(TΔ) < λ < λc(TΔ) + ε(Δ). (�)

It was conjectured in Sly [11] and Mossel et al. [10] that the inapproximability
result holds for all λ > λc(TΔ). We almost resolve this conjecture, that is we
prove the conjecture for all Δ with the exception of Δ ∈ {4, 5}.
Theorem 1. Unless NP=RP, there does not exist an FPRAS for the partition
function of the hard-core model for graphs of maximum degree at most Δ at
activity λ when:

– Δ = 3 and λ > λc(T3) = 4; or
– Δ ≥ 6 and λ > λc(TΔ); or
– Δ = 4 and λ ∈ (λc(T4) = 1.6875, 2.01538]∪ (4,+∞); or
– Δ = 5 and λ ∈ (λc(T5) = 256/243, 1.45641]∪ (1.6875, 2.01538]∪ (4,+∞).

Sly’s work utilizes earlier work of Mossel et al. [10] which studied the Glauber
dynamics. The Glauber dynamics is a simple Markov chain (Xt) that is used
to sample from the Gibbs distribution (and hence to approximate the partition
function via now standard techniques, see [6,12]). For an input graph G = (V,E)
and activity λ > 0, the state space of the chain is I(G). From a state Xt ∈ I(G),
the transitions Xt → Xt+1 are defined by the following stochastic process:
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– Choose a vertex v uniformly at random from V .
– Let

X ′ =

{
Xt ∪ {v} with probability λ/(1 + λ)

Xt \ {v} with probability 1/(1 + λ).

– If X ′ ∈ I(G), then set Xt+1 = X ′, otherwise set Xt+1 = Xt.

It is straightforward to verify that the Glauber dynamics is ergodic, and the
unique stationary distribution is the Gibbs distribution. The mixing time Tmix

is the minimum number of steps T from the worst initial state X0, so that the
distribution of XT is within (total) variation distance ≤ 1/4 of the stationary
distribution. The chain is said to be rapidly mixing if the mixing time is poly-
nomial in n = |V |, and it is said to be torpidly mixing if the mixing time is
exponential in n (for the purposes of this paper, that means Tmix = exp(Ω(n)).
We refer the reader to Levin et al. [8] for a more thorough introduction to the
Glauber dynamics.

Mossel et al. [10] proved that the Glauber dynamics is torpidly mixing, for all
Δ ≥ 3, for graphs with maximum degree Δ when λ satisfies (�). This improved
upon earlier work of Dyer et al. [2] which held for larger λ, but not down to the
critical activity λc(TΔ). The torpid mixing result of Mossel et al. [10] follows
immediately (via a conductance argument) from their main result that for a
randomΔ-regular bipartite graph, for λ satisifying (�), an independent set drawn
from the Gibbs distribution is “unbalanced” with high probability.

The proof of Mossel et al. [10] is a technically involved second moment calcu-
lation that Sly [11] calls a “technical tour de force”. Our main contribution is to
improve upon Mossel et al.’s result, most notably, extending it to all λ > λc(TΔ)
for Δ = 3. Our improved analysis comes from using a slightly different pa-
rameterization of the second moment of the partition function, which brings in
symmetry, and allows for simpler proofs.

To formally state our results for independent sets of random regular graphs,
we need to partition the set of independent sets as follows. For a bipartite graph
G = (V1 ∪ V2, E) where |V1| = |V2| = n, for δ > 0, for i ∈ {1, 2}, let Iδi = {I ∈
I(G) : |I∩Vi| > |I∩V3−i|+δn} denote the independent sets that are unbalanced
and “biased” towards Vi. Let IδB = {I ∈ I(G) : |I ∩Vi| ≤ |I ∩V3−i|+ δn} denote
the set of nearly balanced independent sets.

Let G(n,Δ) denote the probability distribution over bipartite graphs with
n + n vertices formed by taking the union of Δ random perfect matchings.
Strictly speaking, this distribution is over multi-graphs. However, for indepen-
dent sets the multiplicity of an edge does not matter so we can view G(n,Δ)
as a distribution over simple graphs with maximum degree Δ. Moreover, since
our results hold asymptotically almost surely (a.a.s.) over G(n,Δ), as noted
in [10, Section 2.1], by standard arguments (see the note after the proof of
[9, Theorem 4]), our results also hold a.a.s. for the uniform distribution over
bipartite Δ-regular graphs.
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Theorem 2. For all Δ ≥ 3 there exists ε(Δ) > 0, for any λ where λc(TΔ) <
λ < λc(TΔ)+ ε(Δ), there exist a > 1 and δ > 0 such that, asymptotically almost
surely, for a graph G chosen from G(n,Δ), the Gibbs distribution μ satisfies:

μ(IδB) ≤ a−n min{μ(Iδ1 ), μ(Iδ2 )}. (1)

Therefore, the Glauber dynamics is torpidly mixing. The function ε(Δ) satisfies:
for Δ = 4, ε(4) ≥ .327887; for Δ = 5, ε(5) ≥ .402912; for Δ ≥ 6, ε(Δ) ≥
λc(TΔ)− λc(TΔ+1); and for Δ = 3, ε(3) =∞.

This proves Conjecture 2.4 of [10] for the case Δ = 3 and extends the results of
Mossel et al. for Δ ≥ 4.

In the following section we look at the first and second moments of the par-
tition function. We then state two technical lemmas (Lemma 3 and Lemma 4)
from which Theorems 1, 2 easily follow using work of Sly [11] and Mossel et
al. [10]. In Section 3 we prove the technical lemmas. Some of our proofs use
Mathematica to prove inequalities involving rational functions, this is discussed
in Section 2.4.

2 Technical Overview

2.1 Phase Transition Revisited

Recall, for the infinite Δ-regular tree TΔ, Kelly [7] showed that there is a phase
transition at λc(TΔ) = (Δ − 1)Δ−1/(Δ − 2)Δ. Formally, this phase transition
can be defined in the following manner. Let T
 denote the complete tree of
degree Δ and containing � levels. Let p
 denote the marginal probability that
the root is occupied in the Gibbs distribution on T
. Note, for even � the root
is in the maximum independent set, whereas for odd � the root is not in the
maximum independent set. Our interest is in comparing the marginal probability
for the root in even versus odd sized trees. Hence, let p+ = lim
→∞ p2
 and
p− = lim
→∞ p2
+1. One can prove these limits exist by analyzing appropriate
recurrences. The phase transition on the tree TΔ captures whether p+ equals
(or not) p−. For all λ ≤ λc(TΔ), we have p+ = p−, and let p∗ := p+ = p−. On
the other side, for all λ > λc(TΔ), we have p+ > p−. Mossel et al. [10] exhibited
the critical role these quantities p+ and p− play in the analysis of the Gibbs
distribution on random graphs G(n,Δ).

2.2 First Moment of the Partition Function

Proceeding as in [10], roughly speaking, to prove Theorem 2 we need to prove
that there exist graphs G whose partition function is close to the expected value
(where the expectation is over a random G). To do that we use the second
moment method. We first investigate the first moment of the partition function.

For α, β > 0, let Iα,βG = {I ∈ IG | |I ∩ V1| = αn, |I ∩ V2| = βn}, that is, α is
the fraction of the vertices in V1 that are in the independent set and β is the
fraction of the vertices in V2 that are in the independent set.
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Let Zα,β
G =

∑
I∈Iα,β

G
λ(α+β)n. The first moment of Zα,β

G is

EG [Zα,β
G ] = λ(α+β)n

(
n

αn

)(
n

βn

)((
(1−β)n
αn

)(
n
αn

) )Δ

≈ exp(nΦ1(α, β)),

where Φ1(α, β) = (α+β) ln(λ)+H(α)+H(β)+Δ(1−β)H( α
1−β )−ΔH(α), and

H(x) = −x lnx− (1− x) ln(1− x) is the entropy function.
For every Δ ≥ 2, we define the region TΔ = {(α, β) |α, β > 0 and α + β +

Δ(Δ − 2)αβ ≤ 1}. The following lemma shows that the local maxima of Φ1 lie
in TΔ. Note that for Δ ≥ 2, we have TΔ+1 ⊂ TΔ. Hence, the local maxima for
all Δ ≥ 2 lie in T2. The first moment was analyzed in the work of Dyer et al. [2].
We use the following lemma from Mossel et al. [10] that relates the properties
of the first moment to p∗, p+ and p−.

Lemma 1 (Lemma 3.2 and Proposition 4.1 of Mossel et al. [10]). The
following holds:

1. the stationary point (α, β) of Φ1 over T2 is the solution to β = φ(α) and
α = φ(β), where

φ(x) = (1− x)
(

1−
(

x

λ(1− x)
)1/Δ

)
, (2)

and the solutions are exactly (p+, p−), (p−, p+), and (p∗, p∗) when λ >
λc(TΔ), and the unique solution is (p∗, p∗) when λ ≤ λc(TΔ);

2. when λ ≤ λc(TΔ), (p∗, p∗) is the unique maximum of Φ1 over T2, and when
λ > λc(TΔ), (p+, p−) and (p−, p+) are the maxima of Φ1 over T2, and
(p∗, p∗) is not a local maximum;

3. all local maxima of Φ1 satisfy α+ β +Δ(Δ− 2)αβ ≤ 1;
4. p+, p−, p∗ satisfy p− < p∗ < p+ and when λ→ λc(TΔ) from above, we have

p∗, p−, p+ → 1/Δ.

2.3 Second Moment of the Partition Function

The second moment of Zα,β
G is EG [(Zα,β

G )2] ≈ exp(n · maxγ,δ,ε Φ2(α, β, γ, δ, ε)),
where

Φ2(α, β, γ, δ, ε) = 2(α+ β) ln(λ) +H(α) +H1(γ, α) +H1(α− γ, 1− α)

+H(β) +H1(δ, β) +H1(β − δ, 1− β) +Δ
(
H1(γ, 1− 2β + δ)−H(γ)

+H1(ε, 1− 2β + δ − γ) +H1(α − γ − ε, β − δ)−H1(α− γ, 1− γ)

+H1(α − γ, 1− β − γ − ε)−H1(α− γ, 1− α)
)
,

(3)

where H(x) = −x ln(x) − (1 − x) ln(1 − x) and H1(x, y) = −x(ln(x) − ln(y)) +
(x− y)(ln(y − x)− ln(y)).
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To make Φ2 well defined, the variables have to satisfy (α, β) ∈ T2 and

γ, δ, ε ≥ 0, α− γ − ε ≥ 0, β − δ ≥ 0, 1− 2β + δ − γ − ε ≥ 0,

1− α− β − ε ≥ 0, β − δ + ε+ γ − α ≥ 0.
(4)

Define γ∗ = α2, δ∗ = β2, ε∗ = α(1−α−β). The following technical condition
about the second moment was proposed in [11]. If we prove the condition holds
then due to work of Mossel et al. [10] Theorem 2 will follow, and further, due to
work of Sly [11] then Theorem 1 will follow.

Condition 1 (Condition 1.21 of Sly [11]) Fix λ > 0 and let p+ and p− be
the corresponding probabilities. There exists a constant χ > 0 such that when
|p+ − α| < χ and |p− − β| < χ then gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) achieves its
unique maximum in the region (4) at the point (γ∗, δ∗, ε∗).

Two known regions of λ for which Condition 1 holds are the following: 1) Δ ≥ 3,
and λc(TΔ) < λ < λc(TΔ)+ ε(Δ) for some ε(Δ) > 0, ([10, Lemma 6.10, Lemma
5.1]); 2) Δ = 6 and λ = 1, ([11, Section 5]).

In this paper, we show that Condition 1 holds for a broad range of λ, and this
is how we prove Theorems 1, and 2. Before stating the range when Condition 1
holds we need to define the following quantity. Let λ1/2(TΔ) be the smallest
value of λ such that φ(φ(1/2)) = 1/2. Equivalently λ1/2(TΔ) is the minimum
solution of (

1 + (1/λ)1/Δ
)1−1/Δ (

1− (1/λ)1/Δ
)1/Δ

= 1. (5)

Lemma 2. Condition 1 holds for 1) Δ = 3 and λ > λc(TΔ); and 2) Δ > 3 and
λ ∈ (λc(TΔ), λ1/2(TΔ)].

Proof. When Δ and λ are such that p+ ≤ 1/2 then the following lemma implies
Condition 1 (the precise condition on λ to have p+ ≤ 1/2 is λ ∈ (λc(TΔ), λ1/2

(TΔ)] where λ1/2(TΔ) is defined by (5)).

Lemma 3. Let Δ ≥ 3 and let (α, β) ∈ TΔ, α, β > 0, and α, β ≤ 1/2. Then
gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) achieves its unique maximum in the region (4) at
the point (γ∗, δ∗, ε∗).

For all λ ∈ (λc(TΔ), λ1/2(TΔ)] we have p+ ≤ 1/2, this follows from the fact that
p+ is continuous in λ (it also follows in a more obvious way from the fact that p+

increasing, but that fact requires a short proof), and p+ = 1/Δ for λ = λc(TΔ)).
Thus for λ ∈ (λc(TΔ), λ1/2(TΔ)] we have that Condition 1 is satisfied; this
follows from Lemma 3 and the fact that (α, β) = (p+, p−) is contained in the
interior of TΔ (this follows from Lemma 1).

For Δ = 3 the following lemma establishes Condition 1 in the case comple-
mentary to Lemma 3, more precisely, it establishes the condition for Δ = 3 and
λ such that p+ ≥ 1/2.

3 The numbering in this paper for results from Sly’s work [11] refer to the arXiv

version of his paper.
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Lemma 4. Fix Δ = 3 and λ > λc(TΔ). Let p+ and p− be the corresponding
probabilities. Assume that 1/2 ≤ p+ < 1. There exists a constant χ > 0 such
that when |p+ − α| < χ and |p− − β| < χ then gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε)
achieves its unique maximum in the region (4) at the point (γ∗, δ∗, ε∗).

Assume Δ = 3 and λ > λc(TΔ). Let p+ and p− be the corresponding prob-
abilities. If p+ ≤ 1/2 then Condition 1 follows from Lemma 3 and the fact
that (α, β) = (p+, p−) is contained in the interior of TΔ (this follows from
Lemma 1). If p+ ≥ 1/2 then Condition 1 follows from Lemma 4 and the fact
that (α, β) = (p+, p−) is contained in the interior of TΔ. ��
We defer the proofs of Lemmas 3 and 4 to Section 3.

As a corollary of Lemma 2 we get that Condition 1 holds for the range of λ
specified in Theorem 2.

Corollary 1. Condition 1 holds for:

1. For Δ = 3 and λ > λc(T3).
2. For Δ ≥ 6 and λc(TΔ) < λ ≤ λ1/2(TΔ) and λ1/2(TΔ) > λc(TΔ−1).
3. For Δ = 5 and λc(T5) < λ ≤ λc(T5) + .402912.
4. For Δ = 4, λc(T4) < λ ≤ λc(T4) + .327887.

Theorem 2 follows from Corollary 1 via the second-moment method. That proof
closely follows the work of Mossel et al. [10], and hence we omit the details here
and refer the interested reader to the full version of this paper [3]. For Theorem
1 for the case of Δ = 3, we use Theorem 2 (or closely related results) combined
with the reduction of Sly [11]. That proof closely follows the work of Sly [11],
so once again we refer the interested reader to the full version [3]. To extend
the inapproximability result for Δ = 3 to Δ ≥ 6 we use the following simple
combinatorial result.

Lemma 5. Let G be a graph of maximum degree Δ and let k > 1 be an integer.
Consider the graph H obtained from G be replacing each vertex by k copies of that
vertex and each edge by the complete bipartite graph between the corresponding
copies. Then, ZG((1 + λ)k − 1) = ZH(λ).

2.4 On the Use of Computational Assistance

We are going to use Mathematica to prove inequalities involving rational func-
tions in regions bounded by rational functions. Such inequalities are known to be
decidable by Tarski’s quantifier elimination [14], the particular version of Collins
algebraic decomposition (CAD) used by Mathematica’s Resolve command is de-
scribed in [13].

3 Analysis of the Second Moment Function

In this section, we will prove Lemmas 3 and 4. The proofs of the lemmas
introduced in this section are deferred to the full version of the paper [3].
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The derivatives of Φ2 with respect to γ, δ, ε are

exp

(
∂Φ2

∂γ

)
=

(1− 2β + δ − γ − ε)Δ(α− γ − ε)Δ(1− 2α+ γ)Δ−1

(1− β − γ − ε)Δ(β − α+ γ − δ + ε)Δ(α− γ)Δ−2γ
, (6)

exp

(
∂Φ2

∂δ

)
=

(β − α− δ + γ + ε)Δ(1 − 2β + δ)Δ−1

(1− 2β + δ − γ − ε)Δ(β − δ)Δ−2δ
, (7)

exp

(
∂Φ2

∂ε

)
=

(1− 2β + δ − γ − ε)Δ(α− γ − ε)Δ(1− α− β − ε)Δ
εΔ(β − α− δ + γ + ε)Δ(1− β − γ − ε)Δ . (8)

We first argue that the maximum of gα,β cannot occur on the boundary of
the region defined by (4).

Lemma 6. For every Δ ≥ 3 and (α, β) ∈ TΔ, gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε)
attains its maximum in the interior of (4).

Fix Δ,α, β, γ, δ and view Φ2 as a function of ε. We follow [10] who solved ∂Φ2
∂ε = 0

(which is equivalent to (8) = 1) for ε, and showed that there is a unique solution
in the interior of (4):

ε̂ := ε̂(α, β, γ, δ) =
1

2
(1 + α− β − 2γ −

√
D), (9)

whereD = (1+α−β−2γ)2−4(α−γ)(1−2β−γ+δ) = (α+β−1)2+4(α−γ)(β−δ).
Note that ε̂ is a maximum of Φ2, since

∂Φ2

∂2ε
= − Δ

1− 2β + δ − γ − ε −
Δ

α− γ − ε −
Δ

ε
− Δ

β − δ − α+ γ + ε

− Δ

1− α− β − ε +
Δ

1− β − γ − ε < 0.

Define

η̂ := η̂(α, β, γ, δ) =
1

2
(1− α+ β − 2δ −

√
D), (10)

and note that

α− γ − ε̂ = β − δ − η̂ =
1

2
(−(1− α− β) +

√
D),

(α− γ − ε̂)(1 − α− β − ε̂− η̂) = ε̂η̂.
(11)

The new parameter η̂ (not used in [10]) is symmetric with ε̂ (the constrains and
formulas we have are invariant under a symmetry that swaps α, γ, ε̂ with β, δ, η̂)
and allows for simpler arguments (using the symmetry).

Equation (9) allows us to eliminate variable ε. Let

f(γ, δ) := gα,β(γ, δ, ε̂) = Φ2(α, β, γ, δ, ε̂).

To prove that (γ∗, δ∗, ε∗) is the unique global maximum of gα,β in the interior
of the region defined by (4), it suffices to prove that (γ∗, δ∗) is the unique global
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maximum of f for (γ, δ) in the interior of the following region (which contains
the (γ, δ)-projection of the region defined by (4)):

0 ≤ γ ≤ α, 0 ≤ δ ≤ β,

0 ≤ 1− 2β + δ − γ, 0 ≤ 1− 2α+ γ − δ. (12)

Each inequality in (12) is implied by the inequalities in (4) (the only non-trivial
case is the last inequality which is the sum of 1−α− β− ε ≥ 0 and β− δ+ ε+
γ − α ≥ 0).

The first derivatives of f with respect to γ, δ are

∂f

∂γ
(γ, δ) = Δ lnW11 + lnW12, (13)

∂f

∂δ
(γ, δ) = Δ lnW21 + lnW22, (14)

where

W11=
(α− γ − ε̂)ε̂(1 − 2α+ γ)

η̂(α− γ)2
=

ε̂(1 − 2α+ γ)

(1 − α− β − ε̂)(α − γ)
, W12=

(α− γ)2

(1− 2α+ γ)γ
,

W21=
(β − δ − η̂)η̂(1 − 2β + δ)

ε̂(β − δ)2 =
η̂(1 − 2β + δ)

(1− α− β − η̂)(β − δ) , W22=
(β − δ)2

(1 − 2β + δ)δ
.

(The equalities in the definition of W11 and the definition ofW21 follow from (10)
and (11).)

To determine whether (13) and (14) are zero it will be useful to understand
conditions that make W11,W12,W21,W22 greater or equal to 1. The following
lemma gives such conditions.

Lemma 7. For every (α, β) ∈ T2, and (γ, δ) in the interior of (12),

W11 ≥ 1 ⇐⇒ (1− α)2δ + β2(2α− 1− γ) ≥ 0, W12 ≥ 1 ⇐⇒ γ ≤ α2,

W21 ≥ 1 ⇐⇒ (1− β)2γ + α2(2β − 1− δ) ≥ 0, W22 ≥ 1 ⇐⇒ δ ≤ β2.

For every Δ ≥ 3, and (α, β) ∈ TΔ, we have (γ∗, δ∗) is a stationary point of f
(this follows from the fact that for γ = α2 and δ = β2 the inequalities on the
right-hand sides in Lemma 7 become equalities, and from (13), (14) we have
that the derivatives of f vanish). By considering the sign of (13) and (14) and
Lemma 7, we have the stationary points of f (and hence of gα,β) can only be in

0 < γ ≤ α2, 0 < δ ≤ β2, (15)

(1− α)2δ + β2(2α− 1− γ) ≤ 0, (1− β)2γ + α2(2β − 1− δ) ≤ 0, (16)

or

α2 ≤ γ < α, β2 ≤ δ < β, (17)

(1− α)2δ + β2(2α− 1− γ) ≥ 0, (1− β)2γ + α2(2β − 1− δ) ≥ 0. (18)
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We are going to prove that (γ∗, δ∗) is the unique maximum of f for every
Δ ≥ 3, (α, β) ∈ TΔ, α, β > 0 and α, β ≤ 1/2, by showing that the Hessian
matrix of f is always negative definite in the region defined by the union of (15)
and (17) (and hence the function f is strictly concave).

Let
R1 = 1−α−β

1−α−β−ε̂−η̂ , R2 =
√
D

1−2α+γ , R3 = 2(α−γ−ε̂)
α−γ ,

R4 =
√
D
γ , R5 = 2(1−β−γ−ε̂)

α−γ , R6 =
√
D

1−2β+δ ,

R7 = 2(α−γ−ε̂)
β−δ , R8 =

√
D
δ , R9 = 2(1−β−γ−ε̂)

β−δ .

Inspecting the Ri we obtain the following observation.

Observation 3 R1, . . . , R9 are positive when (α, β) ∈ T2 and (γ, δ) in the inte-
rior of (12).

Let

M =

(
∂f
∂2γ (γ, δ) ∂f

∂γ∂δ (γ, δ)
∂f
∂δ∂γ (γ, δ) ∂f

∂2δ (γ, δ)

)
.

In terms of R1, . . . , R9 we have ∂f
∂γ∂δ (γ, δ) = ∂f

∂δ∂γ (γ, δ) = ΔR1√
D

,

∂f

∂2γ
(γ, δ) =

1√
D

[
(−R1 +R2 +R3)Δ−R2 −R3 −R4 −R5

]
, (19)

∂f

∂2δ
(γ, δ) =

1√
D

[
(−R1 +R6 +R7)Δ−R6 −R7 −R8 −R9

]
. (20)

From the positivity of R1 (when (α, β) ∈ T2 and (γ, δ) in the interior of (12))
we immediately obtain the following observation.

Observation 4 For every (α, β) ∈ T2, and (γ, δ) in the interior of (12) we have
∂f
∂γ∂δ (γ, δ) = ∂f

∂δ∂γ (γ, δ) > 0.

We prove the following technical inequality on the Ri.

Lemma 8. For every (α, β) ∈ T2, and (γ, δ) in the interior of (12) we have
R1 > R2 +R3 and R1 > R6 +R7.

Plugging Lemma 8 into (19) and (20) we obtain:

Corollary 2. For every (α, β) ∈ T2, and (γ, δ) in the interior of (12) we have
∂f
∂2γ (γ, δ) < 0 and ∂f

∂2δ (γ, δ) < 0.

To show that M is negative definite it is enough to show that the determinant
of M is positive (Corollary 2 implies that the sum of the eigenvalues of M is
negative and if the determinant is positive we can conclude that both eigenvalues
are negative). We have
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det(M) =
∂f

∂2γ
(γ, δ) · ∂f

∂2δ
(γ, δ)− ∂f

∂γ∂δ
(γ, δ) · ∂f

∂δ∂γ
(γ, δ)

=
1

D

{
(Δ− 1)2

[
(−R1 +R2 +R3)(−R1 +R6 +R7)−R2

1

]
+(Δ− 1)

[
(−R1 +R2 +R3)(−R1 −R8 −R9) +

+ (−R1 +R6 +R7)(−R1 −R4 −R5)− 2R2
1

]
+
[
(−R1 −R8 −R9)(−R1 −R4 −R5)−R2

1

]}
. (21)

By proving technical inequalities on R1, . . . , R9 we will establish the positivity
of detM in the following two cases.

Lemma 9. det(M) > 0 for every Δ ≥ 3, (α, β) ∈ TΔ, α, β > 0, (γ, δ) in the
interior of (12) and (γ, δ) in (15).

Lemma 10. det(M) > 0 for every Δ ≥ 3, (α, β) ∈ TΔ, α, β ≤ 1/2, α, β > 0,
(γ, δ) in the interior of (12) and (γ, δ) in (17).

Assuming the lemmas, the proof of Lemma 3 is immediate.

Proof of Lemma 3. Lemma 9 and Lemma 10 imply that f has a unique maximum
at (γ∗, δ∗) for everyΔ ≥ 3, (α, β) ∈ TΔ, α, β > 0, α, β ≤ 1/2, (γ, δ) in the interior
of (12). This follows from the fact that det(M) > 0 implies that the Hessian of f
is negative definite in the region of interest, i.e., where gα,β could possibly have
stationary points, which in turn implies that f is strictly concave in the region
and hence has a unique maximum. By the definition of f , it follows that gα,β
has a unique maximum at (γ∗, δ∗, ε∗). ��
When Δ = 3, by (2), we have the solution of β = φ(α) and α = φ(β) satisfies
α2 − 2α+ αβ + 1− 2β + β2 = 0. We define T ′3 to be the set of pairs (α, β) such
that α2 − 2α + αβ + 1 − 2β + β2 = 0, 1/2 ≤ α < 1 and 0 < β ≤ (3 − √5)/4.
Our goal is to show that det(M) > 0 for every (α, β) ∈ T ′3 , (γ, δ) in the interior
of (12) and (γ, δ) in (17).

We can rewrite det(M) using the formula in (21) as

det(M) =
1

D

[
3R1(U1 + U2) + U1U2

]
=
U1

D

[
3R1(1 + U2/U1) + U2

]
, (22)

where U1 = R8 +R9 − 2R6 − 2R7 and U2 = R4 +R5 − 2R2 − 2R3.
By proving technical inequalities on U1, U2, R1, . . . , R9 we will establish the

positivity of detM in the interior of (12).

Lemma 11. det(M) > 0 for every (α, β) ∈ T ′3 , (γ, δ) in the interior of (12)
and (γ, δ) in (17).

Proof of Lemma 4. By Lemma 11, gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) achieves its
unique maximum in the region (4) at (γ∗, δ∗, ε∗), for every (α, β) ∈ T ′3 . We next
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show that gα,β(γ, δ, ε) := Φ2(α, β, γ, δ, ε) also achieves its unique maximum in
the region (4) at (γ∗, δ∗, ε∗) in a small neighborhood of T ′3 . First note that Φ2

is continuous. By Lemma 6, we have for sufficiently small χ > 0, the maximum
of gα,β cannot be obtained on the boundary of the region (4). Note that the
derivatives of Φ2 are continuous. It follows that for sufficiently small χ > 0, all
stationary points of gα,β have to be close to the point (γ∗, δ∗, ε∗). We can choose
χ such that det(M) > 0 in the neighborhood of the point (γ∗, δ∗, ε∗), which
implies that gα,β has a unique stationary point and it is a maximum. ��
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Abstract. We present a general notion of properties that are character-
ized by local conditions that are invariant under a sufficiently rich class
of symmetries. Our framework generalizes two popular models of testing
graph properties as well as the algebraic invariances studied by Kauf-
man and Sudan (STOC’08). Our focus is on the case that the property
is characterized by a constant number of local conditions and a rich set
of invariances.

We show that, in the aforementioned models of testing graph prop-
erties, characterization by such invariant local conditions is closely re-
lated to proximity oblivious testing (as defined by Goldreich and Ron,
STOC’09). In contrast to this relation, we show that, in general, charac-
terization by invariant local conditions is neither necessary nor sufficient
for proximity oblivious testing. Furthermore, we show that easy testabil-
ity is not guaranteed even when the property is characterized by local
conditions that are invariant under a 1-transitive group of permutations.

Keywords: Property Testing, Graph Properties, Locally Testable Codes,
Sparse Linear Codes, The Long-Code.

1 Introduction

In the last couple of decades, the area of property testing has attracted much
attention (see, e.g., a couple of recent surveys [16,17]). Loosely speaking, property
testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object
having this property. Such algorithms, called testers, obtain local views of the
object by making adequate queries; that is, the object is seen as a function and
the testers get oracle access to this function (and thus may be expected to work
in time that is sub-linear in the size of the object).

While a host of fascinating results and techniques has emerged, the desire for a
comprehensive understanding of what makes some properties easy to test (while
others are hard to test) is far from being satisfied.1 Two general approaches

1 This assertion is not meant to undermine significant successes of several characteri-
zation projects, most notably the result of [1].
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that seem to have a potential of addressing the question (of “what makes testing
possible”) were suggested recently.

1. Restricting attention to the class of proximity oblivious testers, which are
constant-query testers that reject any object with probability proportional
(but not necessarily linearly proportional) to its distance from the predeter-
mined property. Indeed, the characterization of proximity oblivious testers,
in two central models of graph properties, obtained in [10], addresses the
foregoing question: graph properties have proximity oblivious testers if and
only if they can be characterized in terms of adequate local conditions.2

2. But even before [10], an approach based on adequately invariant local con-
ditions was put forward in [14]. It was shown that in the context of test-
ing algebraic properties, a sufficient condition for testability (which in fact
yields proximity oblivious testers) is that the property can be characterized
in terms of local conditions that are invariant in an adequate sense. (Here
and throughout this paper, a local condition means a condition that refers to
the value of the function at a constant number of points.)

Thus, these two approaches have a very similar flavor, but they are very different
at the actual details. On the one hand, the definition of proximity oblivious testers
does not refer to any structure of the underlying domain of functions, and the
local conditions in the two graph models do not refer explicitly to any invariance.
However, invariance under relabeling of the graph’s vertices is implicit in the
entire study of graph properties (since the latter are defined in terms of such
invariance). On the other hand, the linear invariances considered in [14] presume
that the functions’ domain can be associated with some vector space and that
the properties are invariant under linear transformations of this vector space.

Thus, the first task that we undertake is providing a definition of a general
notion of “characterization by invariant local conditions”, where at the very
minimum this general definition should unify the notions underlying [10,14].
Such a definition is presented in Section 2. Loosely speaking, a property P is
characterized by invariant local conditions if P is charaterized by a set C of local
conditions (i.e., f ∈ P iff f satisfies all conditions in C) and C is generated by a
constant number of local conditions coupled with a set of actions that preserves
P (i.e., the invariances).

Given such a definition, a natural conjecture that arises, hereafter referred to
as the invariance conjecture, is that a property has a constant-query proximity-
oblivious tester if and only if it can be characterized by invariant local conditions.
This conjecture is rigorously formulated within our definitional framework (see
Section 2.2) and the current work is devoted to its study. The main results of
our study may be stated informally as follows:

1. The invariance conjecture holds in the context of testing graph properties in
the dense graph model (see Theorem 3.1).

2 We warn that the picture is actually not that clean, because in the case of the
bounded-degree model the notion of adequacy includes some technical condition,
termed non-propagation.
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2. The invariance conjecture holds in the context of testing graph properties
in the bounded-degree graph model if and only if all local properties are
non-propagating (see Theorem 4.1 and [10, Open Problem 5.8]).

3. In general, the invariance conjecture fails in both directions.
(a) Characterization by invariant local conditions is not necessary for prox-

imity oblivious testing. This is demonstrated both by linear properties
(see Theorem 5.1) and by the dictatorship property (see Theorem 5.2).

(b) Characterization by invariant local conditions is not sufficient for prox-
imity oblivious testing (see Theorem 5.3). This is demonstrated by the
property called Eulerian orientation (which refers to the orientation of
the edges of a cyclic grid, cf. [6]).

Thus, there are natural settings in which the invariance conjecture holds, but
there are also natural settings in which it fails (in each of the possible directions).

The Technical Angle. Items 1 and 2 are established by relying on corresponding
results of [10], while our contribution is in observing that the local conditions
stated in [10] (in terms of subgraph freeness) coincide with local conditions that
are invariant under graph isomorphisms. Actually, to rule out characterizations
by other possible invariances (i.e., invariances other than graph isomorphism),
we also use the canonization technique of [11, Thm. 2]. In the two examples of
Item 3a we rely on the fact that these properties were shown to have (proximity
oblivious) testers in [13] and [3], respectively. Thus, in both these cases, our con-
tribution is showing that these properties cannot be characterized by invariant
local conditions. In Item 3b we rely on a lower bound established in [6] (re-
garding testing Eulerian orientations of cyclic grids), and our contribution is in
observing that this property can be characterized by invariant local conditions.

We mention that the property used towards establishing Item 3b is invariant
under a 1-transitive3 permutation group. Thus, even such an invariance feature
does not guarantee easy testability (i.e., a standard tester of query complexity
that only depends on the proximity parameter). Furthermore, this holds even
when all local conditions are generated by a single local condition (closed under
the said invariance).

Terminology. Throughout the text, when we say proximity oblivious testing we
actually mean proximity oblivious testing in a constant number of queries. The
definition of proximity oblivious testing appears in the appendix.

Organization. In Section 2 we provide a definitional framework that captures the
foregoing discussion. In particular, this framework includes a general definition
of the notion of characterizations by invariant local conditions and a formal
statement of the invariance conjecture. In Section 3 we show that the invariance
conjecture holds in the context of testing graph properties in the dense graph
model, and in Section 4 we present an analogous conditional (or partial) result

3 A permutation group G over D is called 1-transitive if for every e, e′ ∈ D there exists
a π ∈ G such that π(e) = e′.
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for the bounded-degree graph model. The failure of the invariance conjecture is
demonstrated in Section 5, and possible conclusions are discussed in Section 6.

2 General Framework

For simplicity, we consider properties of finite functions defined over a finite do-
main D and having a finite range R, whereas an asymptotic treatment requires
considering properties that are infinite sequences of such properties (i.e., a se-
quence of the type (Pn)n∈N where Pn is a set of functions from Dn to Rn).4

Still, we shall just write P, D,R, and (in order for our asymptotic statements
to make sense) one should think of Pn, Dn, Rn. In particular, when we say that
some quantity is a “constant”, we actually think of D as growing (along with P
and possibly R), while the said quantity remains fixed. Thus, in the rest of our
presentation, D and R should be considered as generic sets having a variable
size, although they will be often omitted from definitions and notations.

2.1 Characterization by Generated Constraints

First we need to define what we mean by a constraint. A constraint will be
a pair consisting of domain elements and a Boolean predicate applied to the
corresponding values, and it is satisfied by a function f if applying the predicate
to the f -values at the specified locations yields the Boolean value 1 (representing
true).

Definition 2.1 (constraints): A constraint is a pair ((e1, ..., ec), φ) such that
e1, ..., ec are distinct elements in D, and φ : Rc → {0, 1} is an arbitrary predicate.
We say that the foregoing is a constraint of arity c (or a c-constraint). A function
f : D → R is said to satisfy the foregoing constraint if φ(f(e1), ..., f(ec)) = 1.

Note that at this point the predicate φ may depend on the sequence of ele-
ments (e1, ..., ec). Such a dependence will not exist in the case that a large set
of constraints is generated based on few constraints (as in Definition 2.3).

The next notion is of characterization by a set of constraints. A property P
of functions is characterized by a set of constraints if f is in P if and only f
satisfies all the constraints in the set.

Definition 2.2 (characterization by constraints): Let C be a set of constraints
and P be a property. We say that P is characterized by C if for every f : D → R
it holds that f ∈ P if and only if f satisfies each constraint in C.

Next, we consider the set of constraints generated by the combination of (1) a
fixed set of constraints, (2) a group of permutations over D, and (3) a group of

4 The reader may think of n = |Dn|, but it is helpful not to insist that Dn = [n]. On
the other hand, the set Rn may be independent of n (cf., e.g., the case of Boolean
functions).
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permutations over R. For starters, the reader is advised to think of the second
group as of the trivial group containing only the identity permutation. In general,
we shall consider a subset of the set of all pairs consisting of a permutation as
in (2) and a permutation as in (3).

Definition 2.3 (generated constraints): Let C be a finite set of c-constraints,
and M be a set of pairs consisting of a permutation over D and a permutation
over R (i.e., for any (π, μ) ∈ M it holds that π is a permutation of D and μ
is a permutation of R). The set of constraints generated by C and M , denoted
CONS(C,M), is defined by

CONS(C,M)
def
= {((π(e1), ..., π(ec)), φ ◦ μ−1) : ((e1, ..., ec), φ)∈C , (π, μ)∈M}

(1)
where φ ◦ μ−1(v1, ..., vc) denotes φ(μ−1(v1), ..., μ

−1(vc)).

Note that saying that f satisfies ((π(e1), ..., π(ec)), φ ◦ μ−1) means that

(φ ◦ μ−1)(f(π(e1)), ..., f(π(ec))) = φ(μ−1(f(π(e1))), ..., μ
−1(f(π(ec)))) = 1,

which means that μ−1◦f ◦π satisfies the constraint ((e1, ..., ec), φ). Regarding the
use of μ−1 ◦f ◦π rather than μ◦f ◦π, see the discussion following Definition 2.5.

Notation: As in Definition 2.3, it will be convenient to generalize functions to
sequences over their domain. That is, for any function F defined over some
set S, and for any e1, ..., et ∈ S, we denote the sequence (F (e1), ..., F (et)) by
F (e1, ..., et). Throughout the text, id will be used to denote the identity permu-
tation, where the domain is understood from the context.

2.2 The Invariance Condition

We are now ready to formulate the invariance condition. We consider a group
of pairs (π, μ) such that π is a permutation over D and μ is a permutation over
R with a group operation that corresponds to component-wise composition of
permutations (i.e., (π1, μ1) ) (π2, μ2) = (π1 ◦ π2, μ1 ◦ μ2), where ) denotes the
group operation). We call such a group a group of permutation pairs, and note
that it need not be a direct product of a group of permutation over D and a
group of permutations over R.

Definition 2.4 (the invariance condition): A property P satisfies the invariance
condition if there exists a constant, denoted c, a finite set of c-constraints, de-
noted C, and a group, denoted M , of permutation pairs over D × R such that
P is characterized by CONS(C,M). In this case, we also say that P satisfies the
invariance condition w.r.t M .

The Invariance Condition and Covering the Domain. We confine our
discussion to the case that the domain contains only elements that are influential
w.r.t the property P; that is, for every e ∈ D, there exists f1 ∈ P and f0 ∈ P such
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that f1(x) = f0(x) for every x ∈ D \{e}. Observe that if property P satisfies the
invariance condition w.r.t M , then M induces a transitive permutation group on
a constant fraction of D. This follows because the permutation group (over D)
induced by M must map a constant number of elements (i.e., those appearing
in the constraint set C) to all elements of D.

The Main Question. We are interested in the relation between satisfying the
invariance condition and having a proximity oblivious tester (of constant-query
complexity). One natural conjecture, hereafter referred to as the invariance con-
jecture, is that a property satisfies the invariance condition if and only if it has
a proximity oblivious tester. Weaker forms of this conjecture refer to its validity
within various models of property testing. This leads us to ask what “models of
property testing” are.

2.3 Models of Property Testing

Natural models of property testing can be defined by specifying the domain and
range of functions (i.e., D and R) as well as the closure features of the properties
in the model.5 We elaborate below (and mention that this view was elaborated
independently by Sudan [19]).

For example, the model of testing graph properties in the adjacency matrix
representation, introduced in [7], refers to D =

(
[N ]
2

)
and R = {0, 1} as well as to

the permutation group overD that is defined by all relabeling of [N ]. Specifically,

an N -vertex graph is represented by the Boolean function g :
(
[N ]
2

) → {0, 1}
such that g({u, v}) = 1 if and only if u and v are adjacent in the graph. Here
an adequate closure feature gives rise to graph properties, where P is a graph
property if, for every such function g and every permutation ψ over [N ], it holds

that g ∈ P iff gψ ∈ P, where gψ({u, v}) def
= g({ψ(u), ψ(v)}).

In general, closure features are defined by groups of pairs of permutations,
just as those in Definition 2.4.

Definition 2.5 (closure features): Let M be as in Definition 2.4. We say that
a property P is closed under M if, for every (π, μ) ∈ M , it holds that f ∈ P if
and only if μ ◦ f ◦ π−1 ∈ P.

Note that μ ◦ f ◦ π−1 (rather than μ ◦ f ◦ π) is indeed the natural choice, since f
maps D to R whereas the new function f ′ = μ ◦ f ◦ π−1 is meant to map π(D)
to μ(R); thus, when f ′ is applied to e′ = π(e) this results in first recovering e,
next applying f , and finally applying μ.

Definition 2.6 (closure-based models of property testing): The model of M
consists of the class of all properties that are closed under M .

5 In addition, one may consider sub-models that are obtained by requiring the func-
tions in such a model to satisfy some auxiliary properties.
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For example, the model of testing graph properties in the adjacency matrix
equals the model of M , where M is the set of all pairs (π, id) such that π :(
[N ]
2

)→ (
[N ]
2

)
is induced by a permutation of [N ] (i.e., there exists a permutation

ψ over [N ] such that π({u, v}) = {ψ(u), ψ(v)}, for all {u, v} ∈ D =
(
[N ]
2

)
). We

comment that not all “popular models of property testing” can be reduced to
Definition 2.6, but nevertheless Definition 2.6 is a good starting point; that is,
various models can be naturally defined as subclasses of the class of all properties
that are closed under some group M (where typically in such cases the subclass
are characterized by a set of constraints that are generated as in Definition 2.3).6

We observe that closure under M is a necessary condition for satisfying the
invariance condition with respect to M .

Proposition 2.7 If P satisfies the invariance condition w.r.t M , then P is
closed under M .

The quite straightforward proof can be found in the full version of this work [8].

3 The Invariance Conjecture Holds in the Dense Graph
Model

We prove that the invariance conjecture holds in the special case of graph proper-
ties in the adjacency matrix representation model (a.k.a the dense graph model).
Recall that in this model, an N -vertex graph is represented by the (symmetric)
Boolean function g : [N ] × [N ] → {0, 1} such that g(u, v) = 1 if and only if u
and v are adjacent in the graph.

We rely on a recent result of [10], which states that (in this model) P has a
proximity oblivious tester if and only if it is a subgraph-freeness property. We
observe that being a subgraph-freeness property is equivalent to satisfying the
invariance condition with respect to the canonical set, where the canonical set
has the form M = M ′ × {id} such that M ′ is the group of permutations over
vertex-pairs that is induced by vertex-relabeling.7 (Indeed, the canonical set is
the very set that defines the current model; see Section 2.3). So it is left to show
that P satisfies the invariance condition if and only if P satisfies the invariance
condition with respect to the canonical set. We thus get

Theorem 3.1 Suppose that P is a set of Boolean functions over the set of un-
ordered pairs over [N ] such that P is closed under relabeling of the base set

6 Indeed, an alternative formulation of the model of testing graph properties in the
adjacency matrix representation is obtained by starting from D = [N ]× [N ] and M
that equals all pairs (π, id) such that π(u, v) = (ψ(u), ψ(v)), for some permutation
ψ over [N ] and all (u, v) ∈ D = [N ]× [N ]. In such a case, we consider the subclass of
symmetric functions (i.e., functions g such that g(u, v) = g(v, u) for all (u, v)∈D).

7 Note that M ′ is a permutation group over
(
[N]
2

)
; it contains only permutations of the

form πψ such that πψ({u, v}) = {ψ(v), ψ(u)}, where ψ is an arbitrary permutation
over [N ].
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(i.e., P is a graph property that refers to the adjacency representation of graphs).
Then, P has a proximity oblivious tester if and only if P satisfies the invariance
condition. Furthermore, if P satisfies the invariance condition, then it satisfies
this condition with respect to the canonical set.

The theorem follows by using the aforementioned ideas and proving the furthe-
more claim. The latter is proved by using the canonization technique of [11,
Thm. 2]. The details appear in the full version of this work [8].

4 The Invariance Conjecture in the Bounded-Degree
Graph Model

The next natural challenge is proving a result analogous to Theorem 3.1 for
the bounded-degree graph model (introduced in [9]). Unfortunately, only a par-
tial result is established here, because of a difficulty that arises in [10, Sec. 5]
(regarding “non-propagation”), to be discussed below.

But first, we have to address a more basic difficulty that refers to fitting the
bounded-degree graph model within our framework (i.e., Section 2.3). Recall
that the standard presentation of the bounded-degree model represents an N -
vertex graph of maximum degree d by a function g : [N ] × [d] → {0, 1, ..., N}
such that g(v, i) = u ∈ [N ] if u is the ith neighbor of v and g(v, i) = 0 if v has
less than i neighbors. This creates technical difficulties, which can be resolved
in various ways.8 The solution adopted here is to modify the representation of
the bounded-degree graph model such that N -vertex graphs are represented by
functions from [N ] to subsets of [N ]. Specifically, such a graph is represented
by a function g : [N ] → 2[N ] such that g(v) is the set of neighbors of vertex
v. Furthermore, we are only interested in functions g that describe undirected
graphs, which means that g : [N ]→ 2[N ] should satisfy u ∈ g(v) iff v ∈ g(u) (for
every u, v ∈ [N ]).

Theorem 4.1 Suppose that P is a set of functions from [N ] to {S ⊂ [N ] : |S|≤
d} that corresponds to an undirected graph property; in particular, P is closed
under the following canonical set M0 defined by (π, μ) ∈ M0 if and only if π is
a permutation over [N ] and μ acts analogously on sets (i.e., μ(S) = {π(v) : v ∈
S}).9 Then:

1. If P has a proximity oblivious tester, then it satisfies the invariance condition.

8 The problem is that here it is important to follow the standard convention of allowing
the neighbors of each vertex to appear in arbitrary order (as this will happen under
relabeling of vertex names), but this must allow us to permute over [d] without
distinguishing vertices from the 0-symbol. One possibility is to give up the standard
convention by which the vertices appear first and 0-symbols appear at the end of
the list. We choose a different alternative.

9 Recall that we also assume that for every g ∈ P it holds that u ∈ g(v) iff v ∈ g(u)
(for every u, v ∈ [N ]). We note that this extra property is easy to test.
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2. If P satisfies the invariance condition, then it satisfies it with respect to the
canonical set, and it follows that P is a generalized subgraph freeness property
(as defined in [10, Def. 5.1]).

Recall that by [10, Sec. 5], if P is a generalized subgraph freeness property that
is non-propagating, then P has a proximity oblivious tester. But it is unknown
whether each generalized subgraph freeness property is non-propagating. (We
note that this difficulty holds even for properties that satisfy the invariance
condition with respect to the canonical set.)10

As in the dense graph model (i.e., Theorem 3.1), the key observation is that
a property in this model satisfies the invariance condition with respect to the
canonical set if and only if it is a generalized subgraph-freeness property (as
defined in [10, Def. 5.1]). Thus, Part (1) of Theorem 4.1 follows immediately
from [10, Thm. 5.5], and the point is proving Part (2). For details, see the full
version of this work [8].

5 The Invariance Conjecture Fails in Some Cases

We show that, in general, the invariance condition is neither necessary nor suf-
ficient for the existence of proximity oblivious testers (POTs).

5.1 The Invariance Condition Is Not Necessary for POT

We present two examples (i.e., properties) that demonstrate that satisfying the
invariance condition is not necessary for having a proximity oblivious tester.
Both examples are based on sparse linear codes that have (proximity oblivious)
codeword tests (i.e., these codes are locally testable). In both cases, the key
observation is that satisfying the invariance condition with respect to M (as in
Definition 2.4) requires that M is “rich enough” since the domain permutations
should map a fixed number of elements to all the domain elements. On the other
hand, Proposition 2.7 requires that the property is closed under M , whereas this
is shown to be impossible in both examples. In the first example, presented next,
the property will be shown to be closed only under the trivial pair (id, id).

Theorem 5.1 There exists a property, denoted P, of Boolean functions such
that P has a proximity oblivious tester but does not satisfy the invariance condi-
tion. Furthermore, P is a linear property; that is, if f1, f2 ∈ P then f1 + f2 ∈ P,
where (f1 + f2)(x) = f1(x)⊕ f2(x) for every x.

10 In fact, the negative example in [10, Prop. 5.4] can arise in our context. Specifi-
cally, consider the set of constraints generated by the constraint ((1, 2), φ) such that
φ(S1, S2) = 1 iff both (1) |{i ∈ {1, 2} : Si = ∅}| 
= 1 and (2) |S1| ∈ {0} ∪ {2i − 1 :
i ∈ N}. (Indeed, condition (1) mandates that if the graph contains an isolated ver-
tex then it contains no edges, whereas condition (2) mandates that all non-isolated
vertices have odd degree.)
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Theorem 5.1 is proved by considering a random linear property of dimension
� = O(log n). That is, for uniformly selected functions g1, ..., g
 : [n] → {0, 1},
we consider the property Pn = {∑i∈I gi : I ⊆ [�]}. It was shown in [13] that,
with high probability over these random choices, the property P has a proximity
oblivious tester. In the full version of this work [8] we show that, with high prob-
ability over these random choices, the property P does not satisfy the invariance
condition.

Testing the Long-Code (a.k.a dictatorship tests). We refer to the property
P = (Pn), where for n = 2
, it holds that f : {0, 1}
 → {0, 1} is in Pn if and
only if there exists i ∈ [�] such that f(σ1 · · ·σ
) = σi. Such a function f is a
dictatorship (determined by bit i) and can be viewed as the ith codeword in the
long-code (i.e., the long-code encoding of i). Note that this property is closed
under the pair (π, id), where π is a permutation π over {0, 1}
, if and only if
there exists a permutation φ over [�] such that π(σ1 · · ·σ
) = σφ(1) · · ·σφ(
). (An
analogous consideration applies to pairs (π, flip), where flip(σ) = 1 − σ for
every σ ∈ {0, 1}.) We shall show that these are the only pairs under which the
dictatorship property is closed, and it will follow that the dictatorship property
violates the invariance condition.

Theorem 5.2 The dictatorship property violates the invariance condition, al-
though it has a proximity oblivious tester.

The fact that the dictatorship property has a proximity oblivious tester is estab-
lished in [3,15].11 In the full version of this work [8] we show that this property
violates the invariance condition, since it is not closed under pairs (π, μ) unless
π either preserves the (Hamming) weight of the strings or preserves this weight
under flipping.

5.2 The Invariance Condition Is Not Sufficient for POT

We next demonstrate that the invariance condition does not suffice for obtaining
a proximity oblivious tester. Actually, the following example also shows that the
invariance condition does not suffice for the standard definition of testing (with
query complexity that only depends on the proximity parameter).

Theorem 5.3 There exists a property, denoted P, of Boolean functions such
that P satisfies the invariance condition but has no proximity oblivious tester.
Furthermore, the invariant condition holds with respect to a single constraint
that refers to four domain elements, and a group of domain permutations that is
1-transitive. Moreover, P cannot be tested (in the standard sense) within query
complexity that only depends on the proximity parameter.

Theorem 5.3 is proved by considering the set of Eulerian orientations of fixed
(and highly regular) bounded-degree graphs, and relying on [6, Thm. 9.14], which

11 The longcode test of [3] only refers to the case that � is a power of 2.
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proves an Ω(log �) query lower bound on the complexity of testing whether the
orientation of an �-by-� cyclic grid is Eulerian. It follows that this property has
no proximity oblivious tester, while we show (in the full version of this work [8])
that this property satisfies the invariance condition.

6 Conclusions

While the invariance conjecture holds in two natural models of testing graph
properties, it was shown to fail in other settings. These failures, described in
Section 5, are of three different types.

1. As shown in Theorem 5.1, proximity oblivious testers exist also for properties
that are only closed under the identity mapping. That is, a strong notion of
testability is achievable also in the absence of any invariants.

2. As shown in Theorem 5.2, the existence of proximity oblivious testers for
properties that do not satisfy the invariance condition is not confined to
unnatural properties and/or to properties that lack any invariance.

3. As shown in Theorem 5.3, the invariance condition does not imply the ex-
istence of a standard tester of query complexity that only depends on the
proximity parameter. (Note that the non-existence of such testers implies the
non-existence of proximity oblivious testers.) Furthermore, this holds even
if the invariance condition holds with respect to a group of domain permu-
tations that is 1-transitive and the set of local conditions is generated by a
single condition (closed under this permutation group).

Our feeling is that the fact that the invariance condition is not necessary for
proximity oblivious testing is less surprising than the fact that the former is
insufficient for the latter. Giving up on the necessity part, we wonder whether
a reasonable strengthening of the invariance condition may suffice for proximity
oblivious testing.

A natural direction to consider is imposing additional restrictions on the group
of domain permutations. As indicated by Theorem 5.3, requiring this group to
be 1-transitive does not suffice, and so one is tempted to require this group to
be 2-transitive12 (as indeed suggested in [12] w.r.t standard testing).13 Recalling
that if P is closed under a 2-transitive group (over the domain) then P is self-
correctable (and thus consists of functions that are pairwise far apart), one
may also wonder about only requiring 1-transitivity but restricting attention to
properties that consist of functions that are pairwise far apart. We mention that

12 A permutation group G over D is called 2-transitive if for every (e1, e2), (e
′
1, e

′
2) ∈

(
D
2

)
there exists a π ∈ G such that π(e1) = e′1 and π(e2) = e′2.

13 Recall that here we refer to a set of local conditions that is generated by a constant
number of local condition (closed under a 2-transitive permutation group). In con-
trast, Ben-Sasson et al. [4] have recently shown that a set of local conditions that is
generated by a non-constant number of local condition (closed under a 2-transitive
permutation group) can yield a non-testable property.



590 O. Goldreich and T. Kaufman

the property used in the proof of Theorem 5.3 contains functions that are close
to one another.

Actually, restricting attention to properties that are closed under a 1-transitive
group of domain permutations, we may return to the question of necessity and
ask whether the existence of proximity oblivious testers in this case implies the
invariance condition. Note that our proofs of Theorems 5.1 and 5.2 rely on the
fact that the corresponding group is not 1-transitive (e.g., in the first case the
group action is trivial and in the second case it has a non-constant number of
orbits).

An Alternative Perspective. We mention that Sudan’s perspective on the role of
invariance (cf. [19,20]) is different from the one studied in the current work. In
particular, Sudan suggests to view the role invariance as a theme (or a technique,
akin to others surveyed in [17,20]), which is indeed surveyed in [20, Sec. 5]. From
this perspective, Sudan [20, Sec. 6] views our work as pointing out inherent
limitations on the applicability of the “theme of invariances”, and concludes
that “despite the limitations, invariances have signifficant unifying power (even
if they do not explain everything).”
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Appendix: Property Testing and Proximity Oblivious
Testers

We first recall the standard definition of property testing.

Definition A.1 (property tester): Let P =
⋃
n∈N Pn, where Pn is a set of func-

tions defined over the domain Dn. A tester for property P is a probabilistic oracle
machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ P with probability at least 2/3; that is, for every
n ∈ N and f ∈ Pn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from P, the tester
rejects with probability at least 2/3; that is, for every ε > 0, every n ∈ N

and f over Dn, if δP(f) > ε, then Pr[T f(n, ε) = 0] ≥ 2/3, where δP(f)
def
=

ming∈Pn{δ(f, g)} and δ(f, g)
def
= |{e ∈ Dn : f(e) = g(e)}|/|Dn|.

If the tester accepts every function in P with probability 1, then we say that it has
one-sided error; that is, T has one-sided error if for every f ∈ P and every ε > 0,
it holds that Pr[T f(n, ε)=1] = 1. A tester is called non-adaptive if it determines
all its queries based solely on its internal coin tosses (and the parameters n and
ε); otherwise it is called adaptive.
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The query complexity of a tester is measured in terms of the size parameter,
n, and the proximity parameter, ε. In this paper we focus on the case that the
complexity only depends on ε (and is independent of n).

Turning to the definition of proximity-oblivious testers, we stress that they
differ from standard testers in that they do not get a proximity parameter as
input. Consequently, assuming these testers have sublinear complexity, they can
only be expected to reject functions not in P with probability that is related
to the distance of these functions from P. This is captured by the following
definition.

Definition A.2 (proximity-oblivious tester): Let P =
⋃
n∈N Pn be as in Defi-

nition A.1. A proximity-oblivious tester for P is a probabilistic oracle machine T
that satisfies the following two conditions:

1. The machine T accepts each function in P with probability 1; that is, for
every n ∈ N and f ∈ Pn, it holds that Pr[T f(n)=1] = 1.

2. For some (monotone) function ρ : (0, 1] → (0, 1], each function f ∈ P is
rejected by T with probability at least ρ(δP(f)), where δP(f) is as in Defini-
tion A.1.

The function ρ is called the detection probability of the tester T .

In general, the query complexity of a proximity-oblivious tester may depend on
the size parameter, n, but in this paper we focus on the case that this complexity
is constant.

Note that a proximity-oblivious tester with detection probability ρ yields a
standard (one-sided error) property tester of query complexity O(1/ρ).
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Abstract. The classical family of [n, k]q Reed-Solomon codes over a
field Fq consist of the evaluations of polynomials f ∈ Fq[X] of degree < k
at n distinct field elements. In this work, we consider a closely related
family of codes, called (order m) derivative codes and defined over fields
of large characteristic, which consist of the evaluations of f as well as
its first m − 1 formal derivatives at n distinct field elements. For large
enough m, we show that these codes can be list-decoded in polynomial
time from an error fraction approaching 1 − R, where R = k/(nm) is
the rate of the code. This gives an alternate construction to folded Reed-
Solomon codes for achieving the optimal trade-off between rate and list
error-correction radius.

Our decoding algorithm is linear-algebraic, and involves solving a lin-
ear system to interpolate a multivariate polynomial, and then solving
another structured linear system to retrieve the list of candidate poly-
nomials f . The algorithm for derivative codes offers some advantages
compared to a similar one for folded Reed-Solomon codes in terms of
efficient unique decoding in the presence of side information.

Keywords: Reed-Solomon codes, list error-correction, noisy polynomial
interpolation, multiplicity codes, subspace-evasive sets, pseudorandom-
ness.

1 Introduction

Consider the task of communicating information via transmission of n symbols
from a large alphabet Σ over an adversarial channel that can arbitrarily corrupt
any subset of up to pn symbols (for some error parameter p ∈ (0, 1)). Error-
correcting codes can be used to communicate reliably over such a channel. A
code C is a judiciously chosen subset of Σn that enables recovery of any c ∈ C
from its distorted version c + r so long as r has at most pn nonzero entries.

The rate R of the code C equals log |C|
n logΣ , which is the ratio of number of bits

of information in the message to the total number of bits transmitted. A basic
trade-off in this setting is the one between rate R and error fraction p. Clearly,
R ≤ 1− p, since the channel can always zero-out the last pn symbols.
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1.1 Background

Perhaps surprisingly, the above simple limit can in fact be met, in the model of
list decoding. Under list decoding, the error-correction algorithm is allowed to
output a list of all codewords within the target error bound pn from the noisy
received word. If this output list-size is small, say a constant or some polynomi-
ally growing function of the block length, then this is still useful information to
have in the worst-case instead of just settling for decoding failure. For a survey
of algorithmic results in list decoding, see [4].

List decoding allows one to decode from an error fraction approaching the
optimal limit of 1−R. In fact, there exist codes of rate R that enable decoding up
to a fraction 1−R−ε of errors with a list-size bound of O(1/ε) (this follows from
standard random coding arguments). However, this is a nonconstructive result,
with no deterministic way to construct a good code or an efficient algorithm
to list decode it. Recently, it was shown that list decoding from an error rate
approaching 1 − R is possible constructively, with an explicit code (the folded
Reed-Solomon code) and a polynomial time decoding algorithm [8]. However, the
list-size guarantee is much larger than the O(1/ε) bound achieved by random
codes, and is a large polynomial in the block length.

Before we state the result, let us first recall the definition of the well-known
Reed-Solomon codes. For integer parameters 1 < k < n, a field F of size ≥ n,
and a sequence S = (a1, . . . , an) of n distinct elements of F, the associated
Reed-Solomon (RS) code is

RSF,S [n, k] = {(p(a1), . . . , p(an)
) | p ∈ F[X ] of degree < k}.

The code RSF,S[n, k] has rate R = k/n, and can be list-decoded from up to a

1−√R fraction of errors [12,9]. It is not known if list decoding some instantiation
of Reed-Solomon codes from a larger radius is possible. At the same time, it is
also not known if there are some RS codes for which the list-size could grow
super-polynomially beyond this radius. For a more general problem called “list
recovery,” it is known that the error fraction cannot be improved for certain RS
codes [7].

It turns out one can decode beyond the 1−√R bound by augmenting the RS
encoding with some extra information. Parvaresh and Vardy used the evaluations
of polynomials carefully correlated with the message polynomial p also in the
encoding [11]. However, the encodings of the extra polynomial(s) cost a lot in
terms of rate, so their improvement is confined to low rates (at most 1/16)
and does not achieve the optimal 1 − R radius. Later, Guruswami and Rudra
considered a “folded” version of RS codes [8], which is really just the RS code
viewed as a code over a larger alphabet. More precisely, the order-m folded
Reed-Solomon code is defined as follows.

Definition 1. Let F be a field of size q with nonzero elements {1, γ, . . . , γn−1}
for n = q − 1. Let m ≥ 1 be an integer which divides n. Let 1 ≤ k < n be the
degree parameter.
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The folded Reed-Solomon code FRS(m)
F [k] is a code over alphabet Fm that

encodes a polynomial f ∈ F[X ] of degree k as

f(X) '→

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

f(1)
f(γ)

...
f(γm−1)

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

f(γm)
f(γm+1)

...
f(γ2m−1)

⎤⎥⎥⎥⎦ , . . . ,
⎡⎢⎢⎢⎣

f(γn−m)
f(γn−m+1)

...
f(γn−1)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (1)

It is shown in [8] that the above code can be decoded up to an error fraction

≈ 1−
(

mR
m−s+1

) s
s+1

for any parameter s, 1 ≤ s ≤ m, where R = k/n is the rate of

the code. (For s = 1, the performance ratio is the 1−√R bound, but the radius
improves for large s and m * s. For example, picking s ≈ 1/ε and m ≈ 1/ε2,
the list decoding radius exceeds 1 −R− ε.) The bound on list-size is qs−1, and
the decoding complexity is of the same order. Getting around this exponential
dependence on s remains an important theoretical question.

The above algorithm involved finding roots of a univariate polynomial over an
extension field of large degree over the base field F. Recently, an entirely linear-
algebraic algorithm was discovered in [6] which avoids the use of extension fields.
Although the error fraction decoded by the linear-algebraic algorithm is smaller

— it is s
s+1

(
1− mR

m−s+1

)
for the above folded RS codes — it can still be made

to exceed 1 − R − ε for any ε > 0 by the choices s ≈ 1/ε and m ≈ 1/ε2. The
advantage of the algorithm in [6] is that except for the step of pruning an (s−1)-
dimensional subspace to filter the close-by codewords, it has quadratic running
time.

1.2 This Work

In this work, we consider another natural variant of Reed-Solomon codes (over
fields of large characteristic), called derivative codes, defined formally in Sec-
tion 2. Informally, rather than bundling together evaluations of the message
polynomial at consecutive powers of γ, in an order-m derivative code, we bundle
together the evaluations of f as well as its first (m−1) derivatives at each point.
This might appear to cause a loss in rate (similar to the Parvaresh-Vardy con-
struction [11]), but it does not, as one can pick higher degree polynomials while
still maintaining the distance. (For two distinct degree � polynomials, there can
be at most �/m points where they and their first (m− 1) derivatives agree.)

In Theorem 1 and Corollary 1, we show our main result that derivative codes
also achieve list-decoding capacity; that is, for any ε > 0, for the choicem ≈ 1/ε2,
we can list decode order-m derivative codes of rate R from a 1−R−ε fraction of
errors. The list-size and running time behavior is similar to the linear-algebraic
algorithm for folded RS codes [6], and once again one can find, by just solving two
linear systems, a low-dimensional space that contains all the close-by codewords.

Recently, multivariate versions of derivative codes were used in [10] to give
locally decodable codes. In that work, these codes were referred to as multiplicity
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codes, but we refer to our codes as derivative codes to emphasize our use of
formal derivatives rather than Hasse derivatives in the encoding. A side benefit
of the changed terminology is to single out the important univariate case with
a different name.

Motivation. Prior to this work, the only known explicit codes list decodable up
to the optimal 1−R bound were based on folded Reed-Solomon codes (or with
smaller alphabets, certain folded algebraic-geometric codes [5], though these are
not fully explicit). It seems like a natural question to seek alternate algebraic
constructions of such codes. In addition, there is the possibility that a different
construction would have better complexity or list-size guarantees, or offer other
advantages.

The derivative code construction is arguably just as natural as the folded
Reed-Solomon one. Interestingly, it falls in the framework of Parvaresh-Vardy
codes, where the correlated polynomials are formal derivatives. The special prop-
erties of derivatives ensures that one need not suffer any loss in rate, and at the
same time enable list decoding up to a much larger radius than the bound for
RS codes. Further, our algorithm for list decoding derivative codes has some
nice properties with respect to decoding with side information, and might have
some benefits in practice as well. However, as with the case of folded RS codes,
the proven bound on the worst-case list size has an exponential dependence on
ε (when the decoding radius is 1−R− ε), and it remains a challenge to improve
this. We should note that we cannot rule out the possibility that a better analy-
sis can improve the bound; in general it is a very hard problem to show list-size
lower bounds for these algebraic codes.

We end the introduction with a brief overview of the algorithm, and specu-
late on a possible benefit it offers compared to the folded RS case. At a high
level, our decoding algorithm is similar to those used for Reed-Solomon and
folded Reed-Solomon codes — it consists of an interpolation step, and then a
second step to retrieve the list of all polynomials satisfying a certain algebraic
condition. The interpolation step consists of fitting a polynomial of the form
A0(X) + A1(X)Y1 + A2(X)Y2 + · · · + As(X)Ys. (Note that the total degree in
the Yi’s is 1, and we do not use “multiplicities” in the interpolation.) The sec-
ond step consists of solving the “differential equation” A0(X) + A1(X)f(X) +
A2(X)f ′(X) + . . . + As(X)f (s−1)(X) = 0 for low-degree polynomials f . (Inde-
pendently, a list decoding guarantee similar to the Guruswami-Rudra bound for
folded RS codes has been obtained by Bombieri and Kopparty [1] based on using
higher powers of Yi as well as multiplicities in the interpolation.)

The differential equation imposes a system of linear equations on the coeffi-
cients of f . The specific structure of this linear system is different from the one
for folded RS codes in [6]. In particular, once the values of f and its first s− 2
derivatives at some point α (at which the interpolated polynomial As doesn’t
vanish) are known, the rest are determined by the system. This has two advan-
tages. First, having these values (at a random α) as side information immediately
leads to an efficient unique decoding algorithm. Second, in practice, As may not
have many zeroes amongst the evaluation points, in which case we can obtain the
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values of f(ai), . . . , f
(s−2)(ai) from the received word (instead of trying all qs−1

possibilities). While we have not been able to leverage this structure to improve
the worst-case list-size bound, it is conceivable that additional ideas could lead
to some improvements.

2 Derivative Codes

We denote by Fq the field of q elements. For a polynomial f ∈ Fq[X ], we denote
by f ′ its formal derivative, i.e. if f(X) = f0 + f1X + . . .+ f
X


, then f ′(X) =∑

i=1 ifiX

i−1. We denote by f (i) the formal i’th derivative of f .

Definition 2 (m’th order derivative code). Let 0 ≤ m ∈ Z. Let a1, . . . , an ∈
Fq be distinct, and let the parameters satisfy m ≤ k < nm ≤ q. Further assume
that char(Fq) > k.

The derivative code Der(m)
q [n, k] over the alphabet Fmq encodes a polynomial

f ∈ Fq[X ] of degree k − 1 by

f '→

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

f(a1)
f ′(a1)

...
f (m−1)(a1)

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

f(a2)
f ′(a2)

...
f (m−1)(a2)

⎤⎥⎥⎥⎦ , . . . ,
⎡⎢⎢⎢⎣

f(an)
f ′(an)

...
f (m−1)(an)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (2)

Remark 1. Note that the case m = 1 is a Reed-Solomon code.
This code has block length n and rate R = k

nm . The minimum distance is

n− �k−1
m � ≈ (1 −R)n.

3 List Decoding Derivative Codes

Suppose we have received the corrupted version of a codeword from the derivative
code Der(m)

q [n, k] as a string y ∈ (Fmq )n, which we will naturally consider as an
m× n matrix over Fq: ⎛⎜⎜⎜⎝

y11 y12 . . . y1n

y21 y22 . . . y2n

...
...

. . .
...

ym1 ym2 . . . ymn

⎞⎟⎟⎟⎠ . (3)

The goal is to recover all polynomials f of degree k − 1 whose encoding (2)
agrees with y in at least t columns. This corresponds to decoding from n − t
symbol errors for the derivative code Der(m)

q [n, k]. When t > (n + k/m)/2, the
polynomial f , if it exists, is unique, and in this regime an efficient decoding
algorithm was given in [10] by adapting the Welch-Berlekamp algorithm for
Reed-Solomon codes [14,2].

We adapt the algebraic list-decoding method used for Reed-Solomon and
folded Reed-Solomon codes to the derivative code setting. The decoding algo-
rithm consists of two steps — (i) interpolation of an algebraic condition (that
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must be obeyed by all candidate polynomials f), and (ii) retrieving the list of
candidate solutions f (from the algebraic condition found by the interpolation
step).

Our algorithm can be viewed as a higher dimensional analog of the Welch-
Berlekamp algorithm, where we use multivariate polynomials instead of bivariate
polynomials in the interpolation. This has been used in the context of folded
Reed-Solomon codes in [13, Chap. 5] and [6], and here we show that derivative
codes can also be list decoded in this framework.

3.1 Interpolation

Let W denote the Fq-linear subspace of Fq[X,Y1, . . . , Ym] consisting of polyno-
mials that have total degree at most 1 in the Yi’s, i.e,W contains polynomials of
the form B0(X) +B1(X)Y1 +B2(X)Y2 + · · ·+Bm(X)Ym for some polynomials
Bi ∈ Fq[X ].

Let D be the Fq-linear map on W defined as follows: For p ∈ Fq[X ], and
1 ≤ i ≤ m,

D(p)(X,Y1, . . . , Ym) = p′(X) (4)

and

D(pYi)(X,Y1, . . . , Ym) = p′(X)Yi + p(X)Yi+1. (5)

where we take Ym+1 = Y1.
Let s, 1 ≤ s ≤ m, be an integer parameter in the decoding algorithm. The

goal in the interpolation step is to interpolate a nonzero polynomial Q ∈
Fq[X,Y1, Y2, . . . , Ys] of the form

A0(X) +A1(X)Y1 +A2(X)Y2 + · · ·+As(X)Ys (6)

satisfying the following conditions for each i, 1 ≤ i ≤ n:

Q(ai, y1i, . . . , ysi) = 0 and (DkQ)(ai, y1i, . . . , ymi) = 0 (k = 1, . . . ,m− s),
(7)

where Dk denotes the k-fold composition of the map D.

Observation 1. For each i, the conditions (7) are a collection of (m − s + 1)
homogeneous linear constraints on the coefficients of the polynomial Q.

The following shows why the interpolation conditions are useful in the decoding
context.

Lemma 1. Suppose Q of the form (6) satisfies the conditions (7). If the received
word (3) agrees with the encoding of f at location i, that is, f (j)(ai) = yj+1,i for
0 ≤ j < m, then the univariate polynomial Q̂(X) := Q(X, f(X), . . . , f (s−1)(X))
satisfies Q̂(ai) = 0 as well as Q̂(k)(ai) = 0 for k = 1, . . . ,m− s, where Q̂(k)(X)
is that the k’th derivative of Q̂.
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Proof. Notice the form that our definition of the map D takes when Yi =
f (i−1)(X) for 1 ≤ i ≤ m. We have D(p) = p′ for p ∈ Fq[X ], and D(pf (i−1)) =
p′f (i−1) + pf (i), which is simply the product rule for derivatives. Thus when
(y1i, y2i, . . . , ymi) = (f(ai), f

′(ai), . . . , f (m−1)(ai)), the conditions (7) enforce
that Q̂ and its first m− s derivatives vanish at ai.

We next argue that a nonzero interpolation polynomial Q exists and can be
found efficiently.

Lemma 2. Let

d =

⌊
n(m− s+ 1)− k + 1

s+ 1

⌋
. (8)

Then, a nonzero Q of the form (6) satisfying the conditions (7) with deg(A0) ≤
d + k − 1 and deg(Aj) ≤ d for 1 ≤ j ≤ s exists and can be found in O((nm)3)
field operations over Fq.

Proof. Under the stated degree restrictions, the number of monomials in Q is

(d+ 1)s+ d+ k = (d+ 1)(s+ 1) + k − 1 > n(m− s+ 1).

where the last inequality follows from the choice (8) of d. The number of homo-
geneous linear equations imposed on the coefficients of Q in order to meet the
interpolation conditions (7) is n(m− s+ 1). As this is less than the number of
monomials in Q, the existence of a nonzero Q follows, and it can be found by
solving a linear system over Fq with at most nm constraints.

3.2 Retrieving Candidate Polynomials

Suppose we have a polynomial Q(X,Y1, . . . , Ys) satisfying the interpolation con-
ditions (7). The following lemma gives an identity satisfied by any f which has
good agreement with the received word.

Lemma 3. If f ∈ F[X ] has degree at most k − 1 and an encoding (2) agreeing
with the received word y in at least t columns for t > d+k−1

m−s+1 , then

Q
(
X, f(X), f ′(X), . . . , f (s−1)(X)

)
= 0.

Proof. Let Q̂(X) = Q(X, f(X), . . . , f (s−1)(X)). By Lemma 1, an agreement in
column i means that Q̂(X) satisfies Q̂(ai) = 0 and that the kth derivative
Q̂(k)(ai) is also zero for k = 1, . . . ,m − s. In particular, t column agreements
yield at least t(m− s+ 1) roots (counting multiplicities) for Q̂.

The degree of Q̂ is at most d + k − 1, as f and each of its derivatives has
degree at most k− 1. Then as Q̂ is univariate of degree at most d+ k− 1, Q̂ has
at most d + k − 1 roots if it is nonzero. Thus if t > (d + k − 1)/(m − s+ 1), it
must be that Q̂(X) = 0.
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With our chosen value of d from (8), this means that any f which agrees with
y on more than

n

s+ 1
+

s

s+ 1

k − 1

m− s+ 1
(9)

columns satisfies Q
(
X, f(X), f ′(X), . . . , f (s−1)(X)

)
= 0. So in the second step,

our goal is to find all polynomials f of degree at most k − 1 such that

A0(X) + A1(X)f(X) +A2(X)f ′(X) + . . .+As(X)f (s−1)(X) = 0 (10)

Let Ai(X) =
∑deg(Ai)

j=0 aijX
j for each i. Note that the above constraint (10)

gives a linear system over F in the coefficients of f = f0 +f1X+ · · ·+fk−1X
k−1.

In particular, the set of solutions (f0, f1, . . . , fk−1) is an affine space, and we can
find it by solving the linear system. Our goal now is to bound the dimension
of the space of solutions by exposing its special structure and also use this to
efficiently find an explicit basis for the space.

Lemma 4. It suffices to give an algorithm in the case that the constant term
as0 of As is nonzero.

Proof. If As(X) ≡ 0, since deg(As) ≤ d < nm ≤ q, then there is some α ∈ Fq
such that As(α) = 0, so we can consider a “translate” of this problem by α; that
is, As(X + α) has nonzero constant term, so we can solve the system with the
translated polynomial Q(X + α, Y1, . . . , Ym) and recover candidate messages by
translating each solution g(X) to f(X) = g(X − α).

If As(X) = 0, we simply reduce the problem to a smaller one with s rather
than s + 1 interpolation variables. Note that this must terminate since Q is
nonzero and so at least one Ai for i ≥ 1 is nonzero.

We can now show:

Lemma 5. If as0 = 0, the solution space to (10) has dimension at most s− 1.

Proof. For each power X i, the coefficient of X i in A0(X) +A1(X)f(X) + · · ·+
As(X)f (s−1)(X) is

a0i +
(
a10fi + a11fi−1 + · · ·+ a1if0

)
+
(
a20(i+ 1)fi+1 + a21ifi + · · ·+ a2if1

)
+ · · ·+ (

as0(i+ s− 1)(i+ s− 2) · · · (i+ 1)fi+s−1 + · · ·+ asi(s− 1)!fs−1

)
=a0i +

s∑
j=1

i∑
k=0

(k + j − 1)!

k!
aj(i−k)fk+j−1.

If (f0, . . . , fk−1) is a solution to (10), then this coefficient is zero for every i.
The coefficient of X i for each i depends only on fj for j < i + s, and the

coefficient of fi+s−1 is as0(i+ s− 1)(i+ s− 2) · · · (i+ 1), which is nonzero when
i + s ≤ k since char(Fq) > k. Thus, if we fix f0, f1, . . . , fs−2, the rest of the
coefficients fs−1, . . . , fk−1 are uniquely determined. In particular, the dimension
of the solution space is at most s− 1.
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Remark 2. The bound of Lemma 5 is tight for arbitrary linear systems. Indeed,
if

Q(X,Y1, . . . , Ys) =

s−1∑
i=0

(−1)i

i!
X iYi+1,

then any polynomial of degree less than s with zero constant term satisfies
Q(X, f(X), . . . , f (s−1)(X)) = 0. This is because any monomial f(X) = Xj for
0 < j ≤ s − 1 is a solution, and our solution space is linear. Of course, we do
not know if such a bad polynomial can occur as the output of the interpolation
step when decoding a noisy codeword of the derivative code.

Combining these lemmas and recalling the bound (9) on the number of agree-
ments for successful decoding, we have our main result.

Theorem 1 (Main). For every 1 ≤ s ≤ m, the derivative code Der(m)
q [n, k]

(where char(Fq) > k) satisfies the property that for every received word y ∈
Fnmq , an affine subspace S ⊆ Fq[X ] of dimension at most s− 1 can be found in
polynomial time such that every f ∈ Fq[X ] of degree less than k whose derivative
encoding differs from y in at most

s

s+ 1

(
n− k

(m− s+ 1)

)
positions belongs to S.

Now by setting s ≈ 1/ε and m ≈ 1/ε2, and recalling that the rate of

Der(m)
q [n, k] equals k/(nm), we can conclude the following.

Corollary 1. For all R ∈ (0, 1) and all ε > 0, for a suitable choice of parame-
ters, there are derivative codes Der(m)

q [n, k] of rate at least R which can be list
decoded from a fraction 1−R− ε of errors with a list-size of qO(1/ε).

4 Some Remarks

We now make a couple of remarks on coping with the large list-size bound in
our decoding algorithms.

4.1 Reducing the List Size

One approach to avoid the large list size bound of ≈ qs for the number of
codewords near f is to draw codewords from so-called subspace-evasive subsets
of Fkq rather than all of Fkq . This approach was used in [6] to reduce the list-size
for folded Reed-Solomon codes, and we can gain a similar benefit in the context
of list decoding derivative codes. A subset of Fkq is (s, L)-subspace-evasive if it

intersects with every linear subspace S ⊆ Fkq of dimension at most s in at most
L points.
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For any ε > 0, a probabilistic argument shows that there exist (s,O(s/ε))-
subspace-evasive subsets of Fkq of size q(1−ε)k. In fact, we have the following

stronger statement, proved in [6]. Fix a basis 1, β, . . . , βk−1 of Fkq over Fq and
denote K = Fqk . For P ∈ K[X ] and an integer r, 1 ≤ r ≤ k, define

S(P, r) = {(a0, . . . , ak−1) ∈ Fkq |
P (a0 + a1β + · · ·+ ak−1β

k−1) ∈ Fq- span(1, β, . . . , βr−1)}.
Lemma 6 ([6]). Let q be a prime power, k ≥ 1 an integer. Let ζ ∈ (0, 1) and
s ∈ Z satisfying 1 ≤ s ≤ ζk/2. Let P ∈ K[X ] be a random polynomial of degree
t and define V = S(P, (1 − ζ)k). Then for t ≥ Ω(s/ζ), with probability at least
1 − q−Ω(k) over the choice of P , V is an (s, t)-subspace-evasive subset of Fkq of
size at least q(1−ζ)k/2.

By taking messages from V rather than all of Fkq , we suffer a small loss in rate, but
give a substantial improvement to the list size bound; since our solution space
is linear, the number of candidate messages is reduced from ≈ qs to O(s/ε). In
particular, setting our parameters as in Theorem 1, we can list-decode from a
1 − R − ε fraction of errors with a list size of at most O(1/ε2). However, the
code construction is not explicit but only a randomized (Monte Carlo) one that
satisfies the claimed guarantees on list-decoding with high probability.

4.2 Decoding with Side Information

The decoding described in the previous section consists of trying all choices for
the coefficients f0, . . . , fs−2 and using each to uniquely determine a candidate
for f . Note however that for each i, the fi is essentially the ith derivative of f
evaluated at 0, and can be recovered as f (i)(0)/i!. Thus if the decoder somehow
knew the correct values of f and its first s − 1 derivatives at 0, f could be
recovered uniquely (as long as As(0) = 0).

Now, suppose the encoder could send a small amount of information along
a noiseless side channel in addition to sending the (much longer) codeword on
the original channel. In such a case, the encoder could choose α ∈ Fq uniformly
at random and transmit f(α), f ′(α), . . . , f (s−1)(α) on the noiseless channel. The
decoding then fails only if Ai(α) = 0 for i which is the largest index such that
Ai(X) = 0. As the Ai(X) have bounded degree, by increasing the field size q, f
can be uniquely recovered with probability arbitrarily close to 1. More precisely,
we have the following claim.

Theorem 2. Given a uniformly random α ∈ Fq and the values f(α)f ′(α), . . . ,

f (s−1)(α) of the message polynomial f , the derivative code Der(m)
q [n, k] can be

uniquely decoded from up to

s

s+ 1

(
n− k

m− s+ 1

)
errors with probability at least 1− nm

sq over the choice of α.
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Proof. As in the proof of Lemma 4, as long as As(α) = 0, we may translate the
problem by α and use the values f(α), f ′(α), . . . , f (s−1)(α) to uniquely determine
the shifted coefficients g0, . . . , gs−1.

As As = 0, and As is univariate of degree at most d, As has at most d roots,
and so the probability that As(α) = 0 is at least 1 − d/q ≥ 1 − nm

sq , where the

last inequality follows from our choice of d ≤ nm/s in (8).

Remark 3. In the context of communicating with side information, there is a
generic, black-box solution combining list-decodable codes with hashing to guar-
antee unique recovery of the correct message with high probability [3]. In such
a scheme, the side information consists of a random hash function h and its
value h(f) on the message f . The advantage of the solution in Theorem 2 is that
there is no need to compute the full list (which is the computationally expensive
step, since the list size bound depends exponentially on s) and then prune it
to the unique solution. Rather, we can uniquely identify the first (s− 1) coeffi-
cients of the polynomial f(X + α) in the linear system (10), after applying the
shift X '→ X + α, as f(α), f ′(α), . . . , f (s−2)(α). Then, as argued in the proof of
Lemma 5, the remaining coefficients are determined as linear combinations of
these s−1 coefficients. So the whole algorithm can be implemented in quadratic
time.

Remark 4. The decoder could use the columns of the received word y as a guess
for the side information f(ai), f

′(ai), . . . , f (s−2)(ai) for i = 1, 2, . . . , n. Since f
agrees with y on more than t > Rn positions, as long as As(ai) = 0 for less
than t of the evaluation points ai, we will recover every solution f this way. This
would lead to a list size bound of at most n − t < n. Unfortunately, however,
there seems to be no way to ensure that As does not vanish at most (or even
all) of the points ai used for encoding. But perhaps some additional ideas can
be used to make the list size polynomial in both q, s, or at least exp(O(s))qc for
some absolute constant c.
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Abstract. This work considers locally decodable codes in the computa-
tionally bounded channel model. The computationally bounded channel
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1 Introduction

Error-correcting codes were designed to facilitate message transmission through
noisy channels. An error-correcting code consists of two algorithms, an encod-
ing algorithm which takes a message and adds redundancy transforming it into
a (longer) codeword. A decoding algorithm takes a (corrupted) codeword and
recovers the original message. Although error-correcting codes were designed
for data transmission, they have seen widespread use in storage applications.
In storage environments, random access to the data is often of importance. A
code that can recover a single bit of the underlying message by reading a small
number of bits of a corrupted codeword is called locally decodable. Locally decod-
able codes were introduced in the context of Probabilistically-Checkable Proofs
(PCPs) [BFLS91, Sud92, PS94], and were formalized explicitly in the work of
Katz and Trevisan [KT00]. Despite significant research (see [Tre04, Yek10] for
surveys) locally decodable codes have much larger codeword expansion than
their classical counterparts. The most efficient 3-query LDCs are given by Efre-
menko [Efr09], and have codeword expansion of exp(exp(O(

√
logn log logn))) for

messages of length n. While these codes have found many applications towards
Probabilistically-Checkable Proofs and Private Information Retrieval, their ex-
pansion rate is far too large for data storage applications. Recent work by Kop-
party, Saraf and Yekhanin [KSY11] gives constant rate locally decodable codes
with locality O(nε). These codes provide a drastic reduction in codeword expan-
sion at the price of fairly high locality.

There are a number of models for the introduction of errors. Shannon’s original
work [Sha48], considered errors that were introduced by a binary symmetric
channel, where every by of a codeword was independently “flipped” with some
constant probability. This model is relatively weak; a significantly stronger model
is Hamming’s adversarial model. In the adversarial model, the channel is viewed
as an adversary who is attempting to corrupt a codeword. The channel’s only
limitation is on the number of symbols it is allowed to corrupt. Shannon’s random
errors and Hamming’s worst-case errors provide two extreme models, and much
work has gone into designing codes that are robust against some intermediate
forms of error.

We will focus on the computationally-bounded channel model proposed by
Lipton [Lip94, GLD04]. In this model, like in Hamming’s model, we view the
channel as an adversary who is attempting to cause a decoding error. As in
Hamming’s model the channel is restricted in the number of symbols (or bits)
it can corrupt, but we further restrict the channel to feasible (polynomial-time)
computations. This computationally-bounded channel model has been studied
in the context of classical error-correction [Lip94, GLD04, MPSW05], and locally
decodable codes [OPS07, HO08].

In this work, we present a construction of locally decodable codes in the
computationally-bounded channel model with constant codeword expansion and
locality O(λ) where λ is the security parameter. In addition to improved local-
ity, our results offer significant improvements over previous constructions con-
structions of locally decodable codes in the computationally-bounded channel



Public Key Locally Decodable Codes with Short Keys 607

model. Our codeword expansion matches that of [HO08], but we address the
two main drawbacks of that construction. Our keys are much shorter (O(λ) in-
stead of O(n)), and our construction requires only the existence of an IND-CPA
secure cryptosystem, while their result relies on the relatively strong Φ-hiding
assumption [CMS99].

1.1 Previous Work

The computationally bounded channel model was introduced by Lipton [Lip94,
GLD04], where he showed how a shared key can reduce worst-case (adversarial)
noise to random noise. Lipton’s construction worked as follows. The sender and
receiver share a permutation σ ∈ Sn, and a blinding factor r ∈ {0, 1}n. If ECC
is an error-correcting code with codewords of length n, robust against random
noise, then m '→ σ(ECC(m))⊕r is an encoding robust against adversarial noise.
If the channel is not polynomially-bounded the sender and receiver must share
n logn + n bits to communicate an n-bit codeword. If, however, the channel is
polynomially-bounded, and one-way functions exist, then the sender and receiver
can share a (short) seed for a pseudo-random generator rather than the large
random objects σ and r.

One drawback of Lipton’s construction is that it requires the sender and re-
ceiver to share a secret key. In [MPSW05], Micali, Peikert, Sudan and Wilson
considered public-key error correcting codes against a bounded channel. They
observed that if Sign(sk, ·) is an existentially unforgeable signature scheme, and
ECC is a list-decodable error correcting code, then ECC(m, Sign(sk,m)) can
tolerate errors up to the list-decoding bound of ECC against a computationally
bounded channel. The receiver needs only to list decode the corrupted codeword
and choose the item in the list with a valid signature. Since the channel is compu-
tationally bounded it cannot produce valid signatures, so with all but negligible
probability there will be only one message in the list with a valid signature. This
technique allowed them to create codes that could decode beyond the Shannon
bound.

A new twist on the code-scrambling technique was employed by Guruswami
and Smith [GS10] to construct optimal rate error correcting codes against a
bounded channel in the setting where the sender and receiver do not share a key
(and there is no public-key infrastructure). In the Guruswami and Smith con-
struction, the sender chooses a random permutation and blinding factor, but then
embeds this “control information” into the codeword itself and sends it along
with the message. The difficulty lies in designing the code so that the receiver
can parse the codeword and extract the control information which then allows
the receiver to recover the intended message (called the “payload information”).
Their codes are not locally decodable. However, unlike those of Guruswami and
Smith, our codes require setup assumptions (a public-key infrastructure) and
only achieve constant (not optimal) rate.

Locally decodable codes were first studied in the computationally bounded
channel model by Ostrovsky, Pandey and Sahai [OPS07]. In their work, they
showed how to adapt Lipton’s code-scrambling to achieve locally decodable codes
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when the sender and receiver share a secret key. Their constructions achieved
constant ciphertext expansion and locality ω(log2 λ).

In [HO08], Hemenway and Ostrovsky considered locally decodable codes in
the public-key setting. They used Private Information Retrieval (PIR) to imple-
ment a hidden permutation in the public-key model. Their construction achieves
constant ciphertext expansion, and locality O(λ2). Their construction suffered
from two major drawbacks, first the key-size was O(n) since it consisted of
PIR queries implementing a hidden permutation, and second the only one of
their constructions to achieve constant ciphertext expansion was based on the
Φ-hiding assumption [CMS99]. Prior to this work, however, these were the only
locally decodable codes in the public-key model.

The work of Bhattacharyya and Chakraborty [BC11] considers locally de-
codable codes in the bounded channel model, but their work concerns negative
results. They show that public-key locally decodable codes with constant locality
and linear decoding algorithm must be smooth, and hence the restriction on the
channel does not make the constructions easier. The codes constructed in this
paper have a non-linear decoding algorithm as well as super-constant locality,
so the negative results of [BC11] do not apply.

1.2 Our Contributions

We address the problem of constructing locally decodable codes in the public
key computationally bounded channel model. Prior to this work, the best known
constructions of locally decodable codes in the computationally bounded chan-
nel model were due to Hemenway and Ostrovsky [HO08]. While both their con-
struction and ours yield locally decodable codes in the computationally bounded
channel model with constant codeword expansion, our construction has a number
of significant advantages over the previous constructions.

For security parameter λ, and messages of length n, our construction has
keys that are size O(λ), while [HO08] has keys that are of size O(n), indeed,
this is a primary drawback of their scheme. Our construction has locality O(λ),
improving the locality O(λ2) in [HO08]. The scheme of [HO08] only achieves
constant codeword expansion under the Φ-hiding assumption, while our schemes
require only the existence of IND-CPA secure encryption. Like [OPS07, HO08],
our codes have constant ciphertext expansion and fail to decode with negligable
probability.

In previous schemes, relying on a hidden permutation [Lip94, GLD04, OPS07,
HO08], the permutation is fixed by the key, and thus an adversary who monitors
the bits read by the decoder can efficiently corrupt future codewords.1 In the
private key setting [Lip94, GLD04, OPS07] this can be remedied by forcing the
sender and receiver to keep state. Public-key schemes which rely on a hidden
permutation cannot be modified in the same way to permit re-usability. Indeed,
even in the case of codes without local decodability creating optimal rate codes

1 This notion of re-usability is different than [OPS07], where they call a code re-
usable if it remains secure against an adversary who sees multiple codewords, but
who cannot see the read pattern of the decoder.
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in the bounded channel model that do not require sender and receiver to keep
state was indicated as a difficult problem in [MPSW05].2

These claims require that the message length n be greater than λ2, (where λ
is the security parameter). This is a minor restriction, however, since the Locally
Decodable Codes are aimed at settings where the messages are large databases.

As in [Lip94, GLD04, OPS07, HO08] our construction can be viewed as a
permutation followed by a blinding. In these types of constructions, the difficulty
is how the sender and receiver can agree on the permutation and the blinding
factor. The blinding can easily be achieved by standard PKE, so the primary
hurdle is how the sender and receiver can agree on the permutation. In [OPS07]
the sender and receiver were assumed to have agreed on the permutation (or a
seed for a pseudo-random permutation) prior to message transmission (this is
the secret-key model). In [HO08], the receiver was able to hide the permutation
in his public-key by publishing PIR queries for the permutation. This has the
drawback that the public-key size must be linear in the length of the message.
In both [OPS07, HO08], the permutation is fixed and remains the same for all
messages. In this work we take a different approach, similar to that of [GS10].
The sender generates a fresh (pseudo) random permutation for each message
and encodes the permutation into the message itself. Codewords consist of two
portions, the control portion (which specifies the permutation) and the payload
portion (which encodes the actual message).

1.3 Notation

If f : X → Y is a function, for any Z ⊂ X , we let f(Z) = {f(x) : x ∈ Z}.
If A is a PPT machine, then we use a

$← A to denote running the machine
A and obtaining an output, where a is distributed according to the internal

randomness of A. If R is a set, and no distribution is specified, we use r
$← R

to denote sampling from the uniform distribution on R. We say that a function
ν is negligible if ν = o(n−c) for every constant c. For a string x, we use |x| to
denote the length (in bits) of x. For two strings x, y ∈ {0, 1}n we use x ⊕ y to
denote coordinate-wise exclusive-or.

2 Locally Decodable Codes

In this section we define the codes and channel model we consider.

Definition 1 (Adversarial Channels). An adversarial channel of error rate
δ is a randomized map A : {0, 1}n → {0, 1}n such that for all w, dist(w,A(w)) <
δn. We say that the channel is computationally bounded if A can be computed
in time polynomial in n.

2 Our solution does not solve the problem posed in [MPSW05], however, because
while our codes transmit data at a constant rate, they do not achieve the Shannon
capacity of the channel.
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Definition 2 (Locally Decodable Codes). A code ECC = (ECCEnc,
ECCDec) is a called a [q, δ, ε] locally decodable code with rate r if for all
adversarial channels A of error rate δ we have

– For all x, and all i ∈ [k] it holds that Pr[ECCDec(A(x), i) = xi] ≥ 1− ε.
– ECCDec makes at most q queries to A(x).
– The ratio |x|/|ECCEnc(x)| = r.

Where xi denotes the ith bit of x.

Simply letting A be computationally bounded in Definition 2 is not sufficient
since it does not address A’s ability to see the public-key or adapt to previous
read patterns.

Definition 3 (Public-Key Locally Decodable Codes).
A code PKLDC = (PKLDCGen,PKLDCEnc,PKLDCDec) is a called a
[q, δ, ε] public-key locally decodable code with rate r if all polynomial time ad-
versarial channels A of error rate δ have probability at most ε of winning the
following game. The game consists of three consecutive phases.

1. Key Generation Phase:

The challenger generates (pk, sk)
$← PKLDCGen(1λ), and gives pk to the

adversary.
2. Query Phase:

The adversary can adaptively ask for encodings of messages x, and receives
c = PKLDCEnc(pk, x). For any i ∈ [n], the adversary can then ask for
the decoding of the ith bit of x from c, and learn the q indices in c that were
queried by PKLDCDec(sk, c, i).

3. Challenge Phase:
The adversary chooses a challenge message x, and receives c =
PKLDCEnc(pk, x), the adversary outputs c̃. The adversary wins if |c̃| = |c|,
dist(c̃, c) ≤ δ|c|, and there exists an i ∈ [n] such that PKLDCDec(sk, c̃, i) =
xi.

We also require that

– PKLDCDec(sk, c) makes at most q queries to the codeword c.
– The ratio |x|/|PKLDCEnc(pk, x)| = r.

We will focus on the case where the error rate δ is constant, the transmission
rate r is constant. If we specify that the probability ε of decoding error is a
negligible function of the security parameter, then with these constraints our
goal is to minimize the locality q.

Remark: In the query phase, we allowed the adversary to see indices read by
the challenger when decoding a codeword created by the challenger itself. We
could allow the adversary to see the indices read by decoding algorithm on
any string c. Proving security in this more general setting could be achieved
using the framework below by switching the IND-CPA encryption scheme in our
construction for an IND-CCA one.
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3 Construction

Let PKE = (Gen,Enc,Dec) be a semantically secure public-key encryption, with
plaintexts of length 2λ, and ciphertexts of length 2dλ. Let ECC1 =
(ECCEnc1,ECCDec1) be an error correcting code with 2dλ bit messages
and 2dd1λ bit codewords. Let ECC2 = (ECCEnc2,ECCDec2) be an error
correcting code with t bit messages and d2t bit codewords, and let PRG be a
pseudo-random generator taking values in the symmetric group on d2n symbols.

Thus PRG(·) : {0, 1}λ → Sd2n. Let P̃RG be a pseudo-random generator from
{0, 1}λ→ {0, 1}d2n.

– Key Generation:
The algorithm PKLDCGen(1λ) samples (pk, sk)

$← Gen. The public key

will be pk along with the two function descriptions PRG, P̃RG, while the
secret key will be sk.

– Encoding:
To encode a message m = m1 · · ·mn, the algorithm PKLDCEnc breaks
m into blocks of size t and set ci = ECCEnc2(mi) for i = 1, . . . , n/t. Set

C = c1 · · · cn/t, so |C| = d2n. Sample x1
$← {0, 1}λ. x2

$← {0, 1}λ, and let

σ = PRG(x1), and R = P̃RG(x2). Generate r
$← coins(Enc). The codeword

will be

(ECCEnc1(Enc((x1, x2), r)), . . . ,ECCEnc1(Enc((x1, x2), r))︸ ︷︷ ︸

 copies

, R⊕ σ(C)).

So a codeword consists of � copies of the “control information” ECCEnc1

(Enc((x1, x2), r)), followed by the “payload information” R⊕ σ(C).
– Decoding:

The algorithm PKLDCDec takes as input a codeword (c1, . . . , c
, P ), and
a desired block i∗ ∈ {1, . . . , n/t}. First, the decoder must recover the control
information. For j from 1 to 2dd1λ, PKLDCDec chooses a block ij ∈ [�],
and reads the jth bit from the ijth control block. Concatenating these bits,
the decoder has (a corrupted version) of c = ECCEnc1(Enc((x1, x2), r)).
The decoder decodes with ECCDec1, and then decrypts using Dec to re-
cover (x1, x2). The control information (x1, x2) will be recovered correctly
if no more than a δ1 fraction of the bits 2dd1λ bits read by the decoder
were corrupted. Second, once the decoder has the control information. The

decoder then recovers σ = PRG(x1), and R = ˜PRG(x2). The block i∗ con-
sists of the bits i∗t, . . . , (i∗ + 1)t− 1 of the message m, so the decoder reads
the bits Pσ(i∗d2t), . . . , Pσ(i∗+1)d2t−1 from the received codeword. The decoder
then removes the blinding factor

C = Pσ(i∗d2t) ⊕Rσ(i∗d2t) · · ·Pσ((i∗+1)d2t−1) ⊕Rσ((i∗+1)d2t−1)

At this point C is a codeword from ECC2, so the decoder simply outputs
ECCDec2(C). The locality is 2dd1λ+ d2t.
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Remarks: The above scheme admits many modifications. In particular, there
are a number of simple tradeoffs that can be made to increase the correctness of
the scheme, while decreasing the locality. Tradeoffs of this sort between locality
(or codeword expansion) and correctness are commonplace in coding theory, and
we make no attempt to list them all here.

– Codeword Length: A codeword is of the form

(ECCEnc1(Enc((x1, x2), r)), . . . ,ECCEnc1(Enc((x1, x2), r))︸ ︷︷ ︸
2
dd1λ bits

, R⊕ σ(C)︸ ︷︷ ︸
d2n bits

).

Thus the total codeword length is 2�dd1λ + d2n, making the codeword ex-
pansion 2
dd1λ+d2n

n .
– Locality: The locality is 2dd1λ + d2t. If we take t = O(λ), then we will

successfully recover with all but negligible probability (negligible ε), and the
locality will be O(λ).

Theorem 1. The scheme PKLDC = (PKLDCGen,PKLDCEnc,
PKLDCDec) is a public-key locally decodable code with locality q = 2dd1λ+d2t,
and error rate δ, with failure probability

ε =

⎛⎝e
δ1
α1
−1

/(
δ1
α1

) δ1
α1

⎞⎠2α1dd1λ

+ ne−2
(δ2−α2)2d2

2t2−1
d2t+1 + ν(λ)

for some negligible function ν(·). Where α1, α2 are any numbers with 0 ≤ α1, α2

≤ 1, satisfying

2α1dd1λ� + α2d2n ≤ δ|C| = 2δ�dd1λ+ δd2n,

and δi is the error rate tolerated by ECCi for i ∈ {1, 2}. In particular, this
means that for all PPT algorithms A and for all i

Pr

⎡⎢⎣PKLDCDec(sk, C̃, i) = xi :

(pk, sk)
$← PKLDCGen(1λ)

C
$← PKLDCEnc(pk, x), C̃

$← A(C, pk)

⎤⎥⎦ < ε

whenever C and C̃ have the same length, and differ in at most δ|C| bits.
Proof. Since the codewords are naturally divided into two types of information,
control information, and payload information, we distinguish between errors in
each type. Let ec be the event that the adversary succeeds in corrupting the
control information read by the decoder, and let epi be the event that the ad-
versary succeeds in corrupting payload block i. Given a corrupted codeword
C̃ = (c̃1, . . . , c̃
, P̃ ), ec is the event that more than a δ1 fraction of the 2dd1λ
control bits are corrupted, so the event ec corresponds to the event that the
adversary succeeds in making the decoder recover erroneous control informa-
tion. Similarly, epi is the event that more than a δ2 fraction of the bits of the
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payload block Pσ(id2t) · · ·Pσ((i+1)d2t−1) are corrupted. Recall that δi is the error
tolerance of ECCi, in particular, ECCi successfully decodes from a δi fraction
of corrupted bits. It is easy to see that the probability of incorrect decoding is
bounded above by Pr[ec] +

∑
i Pr[epi ]).

In order to bound Pr[ec] and Pr[epi ] it suffices (see the full version for details)
to consider a game where:

– We imagine the challenger to be both the sender and receiver.
– When decoding, the challenger selects indices i1, . . . , i2dd1λ ∈ [�], and if

more than δ1 fraction of the bits specified by them are incorrect, the chal-
lenger outputs ⊥, otherwise the challenger continues to read the appropriate
payload blocks.

– When encoding, the challenger encodes (0, 0) rather than (x1, x2).
– σ and R are chosen uniformly from Sd2n and {0, 1}d2n respectively.

To bound Pr[ec] and Pr epi ] in this game, suppose A introduces α1 fraction of
errors into the control information and α2 error into the payload information.
Since the adversary introduces at most a δ fraction of errors into the entire
codeword, we have

2α1dd1λ�+ α2d2n ≤ δ|C| = 2δ�dd1λ+ δd2n

Recall that the control information ECCEnc1(Enc((x1, x2), r)) is 2dd1λ bits
long, and there are � copies of it in the codeword. Let Zj denote the event that
the jth control bit read by the decoder is corrupted, where the probability ranges
over the decoder’s choice over which of the � copies the bit is read from. Then each
Zj is an independent Bernoulli random variable, and

∑2dd1λ
i=1 E(Zi) = 2α1dd1λ.

A Chernoff bound yields

Pr[ec] = Pr

⎡⎣2dd1λ∑
j=1

Zj > 2δ1dd1λ

⎤⎦ <

⎛⎝e
δ1
α1
−1

/(
δ1
α1

) δ1
α1

⎞⎠2α1dd1λ

We observe that this will clearly be negligible in λ, whenever δ1 > α1, i.e. the
error tolerance of ECC1 is greater than the proportion of the control information
that is corrupted. By choosing � to be large enough and δ to be small enough,
we can always ensure that this is the case.

To analyze the probability that the adversary successfully corrupts a payload
block, we observe that since σ and R are uniform, the adversary’s corruptions
are distributed uniformly among the d2n payload bits. The number of errors in
a given payload block is distributed according the hypergeometric distribution
with parameters (α2d2n, d2n, d2t).

Theorem 1 from [HS05] gives

Pr[epi ] = Pr[#errors in block i > δ2d2t] < e−2
(δ2−α2)2d2

2t2−1
d2t+1 .

It is easy to see that if δ2 > α2, then this drops exponentially quickly in t.
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Corollary 1. If there exists IND-CPA secure encryption with constant cipher-
text expansion then for messages of length n ≥ λ2/2 there exists Public-Key
Locally Decodable Codes of constant rate tolerating a constant fraction of errors
with locality q = O(λ2), and ε = ν(λ) for some negligible function ν.

The proof can be found in the full version.
A similar construction works to convert any Secret Key Locally Decodable

Code [OPS07] to a PKLDC using only a standard IND-CPA secure cryptosys-
tem. The details are in the full version.

4 Conclusion

In this work we showed how to design locally decodable codes in the computa-
tionally bounded channel model, achieving constant expansion and tolerating a
constant fraction of errors, based on the existence of IND-CPA secure public-key
encryption.

This is the first work giving public-key locally decodable codes in the bounded
channel model with keys that are independent of the size of the message, and
the only public-key locally decodable codes achieving constant rate based on
standard assumptions.

Our constructions are also fairly efficient. The decoder must do a single de-
cryption with an IND-CPA secure cryptosystem, two evaluations of PRGs, and
then decode two standard error-correcting codes.

Our construction is easily modified to provide a transformation from any
secret-key locally decodable code to a public-key one.
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Abstract. Let X1, X2, . . . , Xn be a set of random variables. Suppose
that in addition to the prior distributions of these random variables
we are also given linear constraints relating them. We ask for necessary
and sufficient conditions under which we can efficiently sample the con-
strained distributions, find constrained marginal distributions for each
of the random variables, etc. We give a tight characterization of the
conditions under which this is possible. The problem is motivated by a
number of scenarios where we have separate probabilistic inferences in
some domain, but domain knowledge allows us to relate these inferences.
When the joint prior distribution is a product distribution, the linear
constraints have to be carefully chosen and are crucial in creating the
lower bound instances. No such constraints are necessary if arbitrary
priors are allowed.

Keywords: sampling, algorithm, complexity.

1 Introduction

Suppose we are solving a crossword puzzle, sudoku or other grid puzzle. Looking
at the column in which a grid cell lies, we could come up with a random variable
X (with known prior distribution) that is the value in the cell. Similarly, looking
at the row in which the cell lies, we could come up with another random variable
Y for the value in the cell. Of course, these are two random variables for the
value in one cell, and hence we have the constraint X = Y . If we could come
up with a set of such random variables and constraints on them and compute
the constrained distributions on these random variables, we would go a long way
towards solving these puzzles.

More usefully, consider the following scenarios where we make related
inferences:

In bioinformatics we have programs that attempt to locate the starting posi-
tion of a gene along a genome. These programs typically produce a distribution
on positions. We also have programs that infer the location of other genomic
elements, such as transcription factor binding sites, and again produce distribu-
tions on the possible positions of these elements. Biological domain knowledge
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tells us something about how far apart the gene and the binding site can be, and
this can be modeled as a constraint between these random variables.

In image segmentation and processing, say of human images, the positions of
limbs, torsos, heads, etc., are identified probabilistically. Anatomical constraints
are then the linear constraints between these random variables, and determining
their constrained distributions helps localize the image more precisely.

We model these problems as follows: X1, X2, . . . , Xn are a given set of ran-
dom variables. We assume we know their prior joint probability distribution F .
(Later in this paper we consider the special case where the random variables
are originally independent and this joint distribution is a product distribution.)
Without loss of generality, we assume that each random variable has a support
that is a subset of [0, 1]. The linear constraints on the random variables define a
feasible region, which is a convex body K.

Thus we will study the problem of sampling vectors in the unit hypercube
[0, 1]n according to some multivariate distribution F subject to the condition
that we want to sample only inside a convex body K. Here, F is a multivariate
distribution of an n-dimensional random vector X = (X1, . . . , Xn) ∈ [0, 1]n (We
will always assume that F is defined on the entire unit hypercube.) We seek to
answer the following question: What is the necessary and sufficient condition for
F such that the sampling can be done in polynomial time?

Model and Definition. We will follow the notation in [1] in general. For every
vector x = (x1, . . . , xn) ∈ [0, 1]n, we let F (x) denote the probability density of
x in distribution F . For every i ∈ [n], we let Fi(·) denote the marginal density
function of the ith coordinate. We will let f(·) and fi(·) denote the functions
logF (·) and logFi(·).

We let K(x) denote the membership indicator function of the convex body
K, that is, K(x) = 1 if x ∈ K; and K(x) = 0 otherwise.

While the algorithms for sampling (e.g. [1]) only require oracle access to F
and K, our lower bound results in this paper hold even if F (x) and K(x) are
explicitly given in closed form and can be computed in polynomial time.

Lipschitz Condition. We will assume that f(x) satisfies the Lipschitz condi-
tion for a polynomially large Lipschitz constant α, that is, |f(x)− f(x′)| ≤
α ‖x− x′‖∞. This parameter specifies how smooth function f(·) is.

Log-concavity. Previous research showed that the log-concavity of the distri-
bution plays an important role in efficient sampling algorithms. The distri-
bution F is β-close to log-concave if for any x,y ∈ [0, 1]n, and λ ∈ [0, 1],
f(λx + (1 − λ)y) ≥ λ f(x) + (1− λ) f(y) − β.

Problem Statement. Concretely, we consider the following problem
Sample (ε, α, β): Sample X ∈ Rn from the constrained distribution F |K
with error at most ε, where K is a convex body and F satisfies the Lipschitz con-
dition for Lipschitz constant α and is β-close to log-concave. That is, sample X

from some distribution F̃ , such that ∀x :
∣∣∣F̃ (X = x)− F (X = x |X ∈ K)

∣∣∣ ≤ ε.
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Related Work. Inspired by the work by Dyer, Frieze, and Kannan [4] that gave a
polynomial time algorithm for estimating the volume of a convex body, Apple-
gate and Kannan [1] proposed an efficient sampling algorithm based on fast con-
vergence rate of a carefully chosen random walk. More concretely, they showed
that there is an algorithm for Sample (ε, α, β) that runs in Õ(n3α2e2β log(1

ε ))
time if K = [0, 1]n. This is a polynomial-time algorithm on the unit cube if the
distribution F is O(log n)-close to log-concave and the sampling error ε is at
most inverse exponentially small. Their result implicitly implies that there is a
polynomial time algorithm for general convex bodies K via a simple reduction
as follows [6]: Let dK(x) denote the distance between x and the closest point in
the convex body K. Consider the smoothed membership function Kγ for some
large enough γ (i.e. γ * α): Kγ(x) = e−γ dK(x) The function Kγ is log-concave.
So the product of functions F and Kγ has the same distance from log-concavity
as F does. Moreover, sampling with density proportional to F (x)Kγ(x) ap-
proximates the constrained distribution F |K very well. Hence, we can use the
sampling algorithm by Applegate and Kannan to handle the case of general
convex bodies K via the above reduction.

There have been a series of improvements in the running time [5, 8–10]. Very
recently, Chandrasekaran, Deshpande, and Vempala [3] showed that there exists
a polynomial time algorithm for sampling according to harmonic concave density
functions, a slightly broader family of functions than log-concave functions.

On the other hand, Koutis [7] proved that there is no polynomial time sam-
pling algorithm if the density function is allowed to be Ω̃(log3 n)-far from log-
concave, unless there is a 2o(n) algorithm for the Hamiltonian Path problem.

Our Results. We close the gap between the upper and lower bounds above by
showing that there is no polynomial time algorithm for sampling from density
functions that are ω(logn)-far from log-concave, unless there exists a 2o(n) algo-
rithm for 3Sat. (Section 3.1)

Next, we turn to the more restricted case where the distribution F is a product
distribution. The study of this special case is triggered by the fact that in many
applications each random variable is the result of an independent experiment or
algorithm. Domain knowledge relating these random variables is applied later.
Note that if K = [0, 1]n, then we can tolerate the product distribution F to be
O(log n)-far from log-concave on each coordinate since we can sample each coor-
dinate independently. The independence of random variables seems to provide
more power to sampling algorithms. Surprisingly, we show that in fact indepen-
dence does not help too much in the sense that for general convex bodies K,
there is no polynomial time algorithm for sampling from product distributions
that are ω(logn log logn)-far from log-concave, unless there is a 2o(n) algorithm
for 3Sat. (Section 3.2)

2 Warm-Up: Discrete Case

It is fairly easy to show hardness if the random variables are discrete. The in-
tuitive idea is to consider a uniform distribution on the vertices of a hypercube.
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These vertices represent assignments to a 3Sat instance and we will use con-
straints that enforce that each clause is satisfied (i.e. consider the linear con-
straints in the standard LP-relaxation). We also add a special variable Z that
serves as a “switch” on the constraints. More precisely, for each of the linear
constraints Xi + Xj + Xk ≥ 1, we will convert it into Xi + Xj + Xk + Z ≥ 1.
Hence, when Z = 1 the constraints are “off” and any vertex of the hypercube
is feasible; but when Z = 0, the only feasible vertices correspond to satisfying
assignments. Then, computing the marginal distribution of Z is equivalent to
solving 3Sat. The details of the construction and the proof of its correctness are
deferred to the full version.

3 Continuous Case

Now we turn to the continuous case. Instead of attacking the original sampling
problem itself, we will consider the following easier problem of

Integration (δ, α, β): Compute the integral
∫
x∈K F (x) dx up to mul-

tiplicative error δ, where F satisfies the Lipschitz condition for Lips-
chitz constant α and is β-close to log-concave. That is, compute an ap-
proximate integral Ĩ, such that (1 + δ)−1

∫
x∈K F (x) dx ≤ Ĩ ≤ (1 +

δ)
∫
x∈K F (x) dx.

Proposition 1. If there is a poly-time algorithm for Sample
((

ε
24αn

)n
, α, β

)
,

then there is a polynomial time algorithm for Integration (ε, α, β).

Proposition 1 indicates that it suffices to show our lower bound for the problem
of computing the approximate integral with an 1 + ε error for some constant ε.
The readers are referred to [1] or the full version of this paper for the proof of
this proposition.

3.1 Correlated Distributions

In this section, we will consider the general case where the distribution F could
be correlated. We develop the following Theorem 1 that closes the gap in the
previous results.

Theorem 1. For any β = ω(logn), there is no polynomial time algorithm for
the problem Integration

(
1
30 , 2βn, β

)
even when K = [0, 1]n, unless there exists

a 2o(n) algorithm for 3Sat.

The following problem is not directly related to our problems. But we will use
it as an intermediate problem in our proofs.

Gap-#3Sat (g(n)): Decide whether a given 3Sat instance with n vari-
ables has no feasible assignment or has at least 2n/ng(n) feasible
assignments.
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High-level Sketch of Our Approach. Let us first consider the following overly
simplified approach. Divide the hypercube [0, 1]n into 2n smaller hypercubes via
n hyperplanes xi = 1

2 , i = 1, 2, . . . , n. Each small hypercube contains exactly
one integral point. We will hardwire a 3Sat instance with the function F as
follows: For every x ∈ [0, 1]n, let [x] denote the integral point that is in the same
small hypercube with x (if x is on the boundary of two or more small hyper-
cubes, define [x] to be an arbitrary one of the corresponding integral points); let
F (x) = 1 if [x] is a satisfying assignment for the 3Sat instance and let F (x) = 0
otherwise. It is easy to see that the integral value equals the number of satis-
fying assignments times 1

2n . However, the function F in this approach is highly
discontinuous and infinitely far from log-concave. Therefore, we will proceed by
considering a smoothed version of this function.

Proof (Proof of Theorem 1). In the following discussion, we assume that g(n) =
ω(1) is a monotone and slowly-growing function of n. We will prove Theorem 1
via the following two lemmas.

Lemma 1. If there is a poly-time algorithm for Integration
(

1
30 , 2βn, β

)
where β = g(n) logn, then there is a poly-time algorithm for Gap-#3Sat (g(n)).

Proof. Suppose there is a polynomial time algorithm for
Integration

(
1
30 , 2βn, β

)
where β = g(n) logn. Let I be a Gap-#3Sat (g(n))

instance with n variables X1, . . . , Xn. We will demonstrate how to encode I
with an instance of Integration

(
1
30 , 2βn, β

)
.

We consider an n-dimensional distribution of variables X1, . . . , Xn. For any
x = (x1, . . . , xn) ∈ [0, 1]n, we let [x] = ([x]1, . . . , [x]n) ∈ {0, 1}n denote the
rounded version of x, such that for each 1 ≤ i ≤ n, we let [x]i = 1 if xi ≥ 1

2 ; let
[x]i = 0 if xi < 1

2 .
We will let f̂(x) denote the following function:

f̂(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 , if ‖x− [x]‖∞ >

1

2
− 1

2n
,

g(n) logn , if ‖x− [x]‖∞ <
1

2
− 1

n
,

(n− 1− 2n ‖x− [x]‖∞)g(n) logn , otherwise.

f̂(x) is a piecewise-linear function that satisfies the Lipschitz condition with
Lipschitz constant 2n g(n) logn. Further, we have that maxx f̂(x)−minx f̂(x) =

g(n) logn. Therefore, for every x,y and λ, we have f̂(λx + (1−λ)y) ≥ λf̂(x)+

(1− λ)f̂(y) − g(n) logn.
So if we let F̂ (x) = 2f̂(x), then F̂ (x) is g(n) logn-close to log-concave. Fur-

thermore, the value of F̂ (x) is large if x is “close” to being integral, that is,
‖x− [x]‖∞ < 1

2 − 1
n ; and it is small if x is far from being integral.

Next, we will hardwire the Gap-#3Sat (g(n)) instance I by constructing the
following distribution F based on F̂ . Essentially, we will “iron” the function value
to 1 for the areas that do not correspond to a satisfying assignment of I.
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F (x) =

{
F̂ (x) , if [x] is a satisfying assignment for I ;

1 , otherwise.

It is easy to verify that F (x) is also g(n) logn-close to log-concave and logF (x)
satisfies Lipschitz condition with Lipschitz constant 2n g(n) logn = 2βn. On the
one hand, if I is not satisfiable, then clearly

∫
x∈[0,1]n

F (x) dx = 1. On the other
hand, if I has at least 2nn−g(n) satisfying assignments, then∫

x∈[0,1]n
F (x) dx = 1 +

∫
x:I([x])=1

(
F̂ (x) − 1

)
dx ≥ 1 + (ng(n) − 1) 2n

ng(n)

(
1
2
− 1

n

)n
=

1 +
(
1 − n−g(n)

) (
1 − 2

n

)n
> 1 + 1

2e2 .

The last inequality holds for sufficiently large n because 1 − n−g(n) → 1 and
(1− 2

n )n → e−2 as n approaches ∞. By our assumption, there is an polynomial
time algorithm for the problem Integration

(
1
30 , 2βn, β

)
for β = g(n) logn. We

can use this algorithm to distinguish these two cases because (1+ 1
30 )2 < 1+ 1

2e2 .
So we can solve Gap-#3Sat (g(n)) in polynomial time.

Lemma 2. If there is a polynomial time algorithm for Gap-#3Sat (g(n)), then
there exists a 2O(n/g(n)) algorithm for 3Sat.

Proof. The proof of this lemma relies on padding redundant variables to a 3Sat
instance. Suppose there is a polynomial time algorithmA for Gap-#3Sat (g(n)).
Let I be a 3Sat instance with n variables X1, . . . , Xn and m clauses C1, . . . , Cm.
We shall let I∗ denote the 3Sat instance with the same set of clauses and
N − n redundant variables Xn+1, . . . , XN , where N = 2n/g(n). We have that
#3Sat(I∗) = 2N−n ·#3Sat(I).

Hence, if I is not satisfiable, then #3Sat(I∗) = 0, otherwise, the number
of feasible assignments for I∗ is at least #3Sat(I∗) ≥ 2N−n = 2N/Ng(n) ≥
2N/Ng(N). By our assumption, we can use algorithm A to distinguish these two
cases. The running time is poly(N) = 2O(n/g(n)).

Theorem 1 follows easily from these two lemmas.

3.2 Product Distributions

The previous reduction does not apply to product distributions, unless we al-
low each of the component distributions to deviate from log-concave by ω(logn).
There are two places where the previous approach heavily relies on the corre-
lation of the distributions: First, hardwiring a 3Sat instance with the function
F requires the function F to be correlated. Second, the construction of F̂ , the
function that simulates a discrete hypercube by taking on a large value at points
that are “close” to integral in all coordinates and a small value otherwise, is also
highly correlated. If we construct a product distribution whose total deviation
from log-concave is at most O(log n), then on average each dimension is only
O( log n

n ) apart from being log-concave. So the areas with only a few fractional
entries will have density that is close to that of the almost integral points, and
hence contribute too large a fraction in the integration.
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On the other hand, the algorithm for efficient sampling only works if the total
deviation from log-concave is O(log n). In this section we close the gap, showing
a lower bound that matches the upper bound. More precisely, we will show the
following theorem.

Theorem 2. For any β = ω(logN log logN), there is no polynomial time al-
gorithm that solves the problem Integration

(
1, βn2, β

)
for N -variate product

distributions subject to a convex body K, unless there exists a 2o(n) randomized
algorithm for 3Sat.

Main Idea. To get around the first obstacle mentioned above, we will simply
encode the 3Sat instance with linear inequalities as we did in the discrete case.
The challenge is to overcome the second obstacle. The main idea is to embed an
n-dimensional hypercube into an N -dimensional hypergrid where N > n such
that any fractional point in the n-dimensional hypercube has a lot of fractional
entries in the N -dimensional hypergrid. The purpose of such an embedding is to
create a larger gap between the density of the near-integral parts and the parts
where at least one of the coordinates is far from integral for a product distri-
bution. The embedding will be in the flavor of a linear error-correcting code: In
error-correcting codes the goal is to ensure that changing one bit in the original
string will change many bits in the encoded string; in our embedding scheme,
the goal is to ensure that one fractional coordinate in the n-dimensional hyper-
cube will lead to many fractional coordinates of the embedded N dimensional
hypergrid. Indeed, the embedding scheme used in our construction is inspired
by random linear error-correcting codes. For instance, Figure 1 shows how to
embed a 2-dimensional cube into a 3-dimensional grid.

(0, 0, 0) (1, 0, 0)

(0, 1, 0) (1, 1, 0)

(2, 0, 0)

(2, 1, 0)

(0, 0, 1) (1, 0, 1)

(0, 1, 1) (1, 1, 1)

(2, 0, 1)

(2, 1, 1)

(0, 0)

(0, 1)

(1, 0)

(1, 1)⇓
(0, 0)

(0, 1)

(1, 0)

(1, 1)

+

Fig. 1. Embedding 2-dimensional cube into a 3-dimensional grid

In the following discussion, we will again assume that g(·) = ω(1) is a slowly
growing monotone function. Suppose there is a polynomial time algorithm that
tolerates O(g(N) logN log logN) deviation from log-concavity. Then, we will
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prove Theorem 2 by showing that there is a 2n/g(n) algorithm for 3Sat. The key
technical step in our construction will be embedding an n-dimensional hypercube
into a 2n/g(n)-dimensional hypergrid. For the sake of exposition, we will omit the
Lipschitz condition in the hard instance in this paper. The Lipschitz condition
can be easily fixed by considering a smoothed version of our instance (e.g. a
piecewise linear density function).

Some Notation. We let N = 2n/g(n). Hence, we have that logN = n/g(n) and
logn = Θ(log logN). We let τ = 2

6n log n
N . So τN = n6n. For any real number

z ∈ R, we let [z] denote the nearest integer value to z, that is, [z] = �z� if
z−�z� ≤ 1

2 ; and [z] = �z� otherwise. We let {z} def= |z − [z]| denote the distance
between z and [z].

The Basic Instance. We define the basic instance Π as follows. Let Zi ∈ [0, n],
i ∈ {0, 1}n, be 2n i.i.d. random variables. Here we relax the support of the
distributions from [0, 1] to [0, n] in order to simplify notation. It is clear that
such a relaxation is without loss of generality for constructing hard instances.
For each i ∈ {0, 1}n, Zi follows the distribution with density: FZ(Zi = zi) = cτ
if 0 ≤ {zi} ≤ 1

10 and FZ(Zi = zi) = c otherwise. Here c = 5
(τ+4)n is the

normalization factor. Hence, points that are close to integer have larger density.
By the above definition, the distribution of each Zi is log τ = 6n logn

N -close to
log-concave. So the joint distribution of any N of these Zi’s is 6n logn-close to
log-concave. By definition of N , we get 6n logn = O(g(N) logN log logN).

Fact 1. The joint distribution of any N of the Zi’s is O(g(N) logN log logN)-
close to log-concave.

We will consider another n i.i.d. random variables X1, . . . , Xn ∈ [0, 1]. Each Xi

follows a uniform distribution on interval [0, 1], i.e. FX (Xi = xi) = 1 for any
xi ∈ [0, 1]. Let us consider the joint distribution of (Z,X) subject to:

∀i = (i1, . . . , in) ∈ {0, 1}n : Zi =

n∑
j=1

ijXj
1 . (1)

Note that under these constraints, the value of z is uniquely determined by the
value of x. The joint density function subject to these constraints is proportional
to F (x, z)

def
= FX(x)FZ(z) =

∏
i∈{0,1}n FZ(zi).

Properties of the Basic Instance. We will prove two properties of the basic in-
stance. Lemma 3 and Corollary 1 state that in the n-dimensional hypercube
defined by variables X, the density of any almost integral point is relatively
large. Here, almost integral points are points x’s that satisfy {xj} ≤ 1

n2 for all

1 For the sake of exposition, we use equality constraints in our construction of the hard
instance. Strictly speaking, this integral is always 0 in N-dimensional space since it is
over a body of lower dimension. But we can easily fix this by replacing each equality
constraint such as Zi =

∑n
j=1 ijXj by two inequality constraints Zi−

∑n
j=1 ijXj ≥ δ

and Zi −
∑n

j=1 ijXj ≤ δ for some sufficiently small δ.
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1 ≤ j ≤ n. In contrast, Lemma 4 and Corollary 2 states that the density of the
any fractional point is small. Fractional points are points x’s such that there
exists 1 ≤ j ≤ n such that {xj} ≥ 1

4 .

Lemma 3. Suppose x ∈ [0, 1]n satisfies that for any 1 ≤ j ≤ n, {xj} ≤ 1
n2 .

Then, for each i ∈ {0, 1}n, the corresponding {zi} ≤ 1
10 .

Proof. Since {xj} ≤ 1
n2 for all j ∈ [n], for any i = (i1, . . . , in) ∈ {0, 1}n, we have

that {zi} =
{∑n

j=1 ijxj

}
≤∑n

j=1{ijxj} ≤
∑n

j=1
1
n2 = 1

n < 1
10 .

By Lemma 3 and the definition of FZ , we have the the following corollary.

Corollary 1. Suppose x ∈ [0, 1]n satisfies that for any 1 ≤ j ≤ n, {xj} ≤ 1
n2 .

Then ∀i ∈ {0, 1}n : FZ(Zi = zi) = cτ . So F (x, z) = (cτ)2
n

.

Now we move to the second property.

Lemma 4. Suppose x ∈ [0, 1]n satisfies that there exists 1 ≤ j ≤ n, {xj} ≥ 1
4 .

Then, for at least half of i ∈ {0, 1}n, the corresponding zi satisfies {zi} ≥ 1
8 .

Proof. For any i−j ∈ {0, 1}n−1, let i = (i−j , ij = 0) and i′ = (i−j , ij = 1). By
constraint (1), we have zi′ − zi = xj . So we get that {zi′} + {zi} ≥ {xj} ≥ 1

4 .
Hence, either {zi} ≥ 1

8 or {zi′} ≥ 1
8 . Therefore, we can pair up the variables

zi’s such that in each pair at least one variable lies in the interval [18 ,
7
8 ]. This

finishes our proof.

By Lemma 4 and definition of the FZ , we get the following.

Corollary 2. Suppose x ∈ [0, 1]n satisfies that there exists 1 ≤ j ≤ n, {xj} ≥ 1
4 .

Then, for at least half of i ∈ {0, 1}n, we have FZ(Zi = zi) = c and hence
F (x, z) ≤ c2

n−1
(cτ)2

n−1
.

The Random Basic Sub-instance. We want to embed the n-dimensional hyper-
cube into an N = 2n/g(n)-dimensional hypergrid. So we cannot afford to use all
of the Zi’s in our hard instance construction. Instead, we will use N randomly
and independently chosen Zi’s and show that properties similar to Corollary 1
and Corollary 2 hold with high probability.

A random basic sub-instance is constructed as follows. We will consider N
i.i.d. random variables Ẑ1, . . . , ẐN each of which follows the density function
FZ . Moreover, for each 1 ≤ k ≤ N , we randomly choose i ∈ {0, 1}n and impose
a constraint between Ẑk and X that is the same as the constraint between Zi
and X (See (1)), i.e.

∑n
j=1 ijXj = Ẑk. The joint density function is proportional

to F̂ (x, ẑ)
def
= FX(x)FZ(ẑ) = ΠN

k=1FZ(ẑk).

Properties of the Random Basic Sub-instance. We now show that with high
probability a random basic sub-instance has some good properties: The al-
most integral points have large density; the fractional points have small den-
sity. The former can be formalized as the Lemma 5, which follows directly from
Lemma 3.
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Lemma 5. Suppose x ∈ [0, 1]n satisfies that for any 1 ≤ j ≤ n, {xj} ≤ 1
n2 .

Then, for any 1 ≤ i ≤ N , the corresponding ẑi satisfies that {ẑi} ≤ 1/10. Hence,
for every 1 ≤ i ≤ N , FZ(Ẑi = ẑi) = cτ , and F̂ (x, ẑ) = (cτ)N .

The other property is less trivial. We first state it formally as follows.

Lemma 6. With high probability, the following holds: If x ∈ [0, 1]n satisfies
that there exists 1 ≤ j ≤ n such that {xj} ≥ 1

4 , then at least a third of the ẑk,
1 ≤ k ≤ N , satisfy {ẑk} ≥ 1

10 . Hence, FZ(Ẑk = ẑk) = c, F̂ (x, ẑ) ≤ c
N
3 (cτ)

2N
3 .

Proof. We divide the n-dimensional unit hypercube defined by x into M =
(4n2)n small hypercubes with edge length 1

4n2 . Let x1, . . . ,xM denote the centers
of these small hypercubes. Further, we let ẑ1, . . . , ẑM be the corresponding Ẑ
variables. We say a cube is fractional if its center is fractional.

We will first show the following claim.

Claim. With high probability, for every 1 ≤ � ≤ M such that x
 is fractional,
at least a 1

3 fraction of the ẑ
k’s satisfies that
{
ẑ
k

} ≥ 1
8 .

Proof (Proof of Claim 3.2). Let Y 

k be the indicator of whether

{
ẑ
k

} ≥ 1
8 . Then,

by Lemma 4, each ẑ
k, 1 ≤ k ≤ N , satisfies that
{
ẑ
k

} ≥ 1
8 with probability at least

half. So we have E
[
Y 

k

] ≥ 1
2 and hence E

[∑N
k=1 Y



k

]
= N

2 . Furthermore, since

Y 

k ’s are binary variables, we get that σ

[
Y 

k

] ≤ 1 and σ
[∑N

k=1 Y


k

]
≤ √N . By

Chernoff-Höeffding bound, for all � such that x
 is fractional, the probability of∑N
k=1 Y



K < N

3 ≤ E
[∑N

k=1 Y


K

]
−

√
N
6 σ

[∑N
k=1 Y



K

]
is at mostS 2−(

√
N/6)2

/2 �
1
M . So by union bound, we get that with high probability,

∑N
k=1 Y



K ≥ N

3 for
1 ≤ � ≤M .

Now we are ready to prove Lemma 6. We will show that if the property in Claim
3.2 holds, then the property in Lemma 6 holds.

Suppose we break ties on the boundary of small hypercubes in a manner that
the boundary points are allocated to the most fractional hypercube adjacent to
it. Then, we can easily verify the following fact holds.

Fact 2. If a point is fractional, then it lies in a fractional small hypercube.

For any fractional point x, let ẑ be the corresponding Ẑ variables. Suppose
it lies in a small cube centered at x
. Then, by Fact 2 we know x
 is frac-
tional. By our assumption that the property in Claim 3.2 holds, we get that
at least a 1

3 fraction of the corresponding ẑ
k’s satisfies
{
ẑ
k

} ≥ 1
8 . Note that{

ẑ
k − ẑk
} ≤ ∑n

j=1

{
x
j − xj

} ≤ ∑n
j=1

1
n2 = 1

n < 1
40 . So, we get that {ẑk} ≥{

ẑ
k
}− {

ẑ
k − ẑk
} ≥ 1

8 − 1
40 = 1

10 .
Therefore, with high probability, for every fractional point x, at least a third

of the corresponding ẑk’s satisfies {ẑk} ≥ 1
10 . Hence, FZ(Ẑk = ẑk) = c, and

F̂ (x, ẑ) ≤ c
N
3 (cτ)

2N
3 .
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Construction of the Hard Instance. We will consider a random basic sub-instance
such that Lemma 5 and Lemma 6 holds. By the relation between sampling and
integration, we only need to show that estimating the integral of f subject to
arbitrary convex constraintK is computationally hard, subject to our complexity
assumption. We will prove this by encoding an arbitrary 3Sat instance by adding
carefully chosen linear inequality constraints in the random basic sub-instance.

Consider any 3Sat instance with n variables. We will abuse notation by let-
ting X1, . . . , Xn denote not only the random variables in the random basic sub-
instance but the n variables in the 3Sat instance as well. We will see that they
are indeed closely related to each other in our construction. For each constraint
L1 ∨ L2 ∨ L3, where Lk’s are literals of the form Xj or ¬Xj , we add a linear
inequality constraint L1 +L2 +L3 ≥ 3

4 . Here, for any literal Lk of the form Xj ,
we will replace Lk by Xj in this inequality constraint; and for any literal Lk of
the form ¬Xj , we replace Lk by (1−Xj).

Proof Outline. For this instance, we can prove that if we can estimate the integral,
then we solve the 3Sat instance. It suffices to show that the values of the integral
in these two cases are well separated. We will proceed in three steps: First, we
show that the contribution of the fractional part in the integral is relatively
small; next, we will show that any of the 2n integral parts has contribution
comparable to that of the fractional part; finally, we will prove that an integer
part is not excluded by the above constraints if and only if it corresponds to a
feasible assignment. Therefore, the 3Sat instance is satisfiable if and only if the
integral is much larger than the contribution solely by the fractional part. This
will finish the proof of Theorem 2.

Proof (Proof of Theorem 2). Now we are ready to proof Theorem 2. Let us
proceed to the first step. We will let F and Ii, 1 ≤ i ≤ 2n, denote the set
of fractional and integer parts, that is, F =

{
x ∈ [0, 1]n : ∃j , {xj} ≥ 1

4

}
, and

Ii =
{
x ∈ [0, 1]n : ∀j , {xj} < 1

4 , [xj ] = ij
}

for every i(i1, . . . , in) ∈ {0, 1}n.
Lemma 7.

∫
x∈F F (x)dx ≤ c

N
3 (cτ)

2N
3 .

Proof. By Lemma 6, we get that for any x ∈ F , F (x) ≤ c
N
3 (cτ)

2N
3 . Hence,

we have that
∫

x∈F F (x)dx ≤ ∫
x∈F c

N
3 (cτ)

2N
3 dx ≤ ∫

x∈[0,1]n
c

N
3 (cτ)

2N
3 dx =

c
N
3 (cτ)

2N
3 .

Now we turn to the contribution of any integer part Ii.
Lemma 8. For any i ∈ {0, 1}n, we have

∫
x∈Ii

F (x)dx ≥ c
N
3 (cτ)

2N
3 .

Proof. We will let I∗i ⊆ Ii denote the almost integral part in Ii, that is,
I∗i =

{
x ∈ [0, 1]n : ∀j , {xj} ≤ 1

n2 , [xj ] = ij
}
. By Lemma 5, we have that for

any x ∈ I∗i , F (x) ≥ (cτ)N = τ
N
3 c

N
3 (cτ)

2N
3 = n2nc

N
3 (cτ)

2N
3 . Thus, we have∫

x∈Ii
F (x)dx ≥ ∫

x∈I∗
i
F (x)dx ≥ ∫

x∈I∗
i
n2nc

N
3 (cτ)

2N
3 dx = c

N
3 (cτ)

2N
3 .

Finally we will prove Lemma 9 which states that any integer point subject to the
above constraints corresponds to a feasible assignment for the 3Sat instance.
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Lemma 9. For any x ∈ K such that {xj} < 1/4 for all 1 ≤ j ≤ n, we have
that [x1], . . . , [xn] is a feasible assignment for the 3Sat instance.

Proof. For any constraint L1 ∨ L2 ∨ L3, we have that L1 + L2 + L3 ≥ 3/4. So
at least one of the Lk satisfies Lk ≥ 1/4. But {xj} < 1/4, so the value of [xj ]
will satisfies this constraint. Since this is true for any constraint, we get that
[x1], . . . , [xn] is a feasible assignment.

As we discuss earlier, Lemma 7, Lemma 8, and Lemma 9 prove Theorem 2.

4 Conclusions and Open Problems

While we have shown that discrete distributions are hard in general, for the
discrete distributions that arise in the motivating applications in computational
biology and image processing, it looks possible to fit a log-concave continuous
distribution and use this to find the constrained distributions efficiently. On the
other hand, the discrete distributions that arise in the puzzle-solving applications
seem difficult to fit to nice continuous distributions.

We leave open the question of a deterministic construction showing the hard-
ness of sampling from product distributions whose total deviation from log-
concave is ω(logn).
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Abstract. The Johnson-Lindenstrauss lemma is a fundamental result
in probability with several applications in the design and analysis of
algorithms. Constructions of linear embeddings satisfying the Johnson-
Lindenstrauss property necessarily involve randomness and much atten-
tion has been given to obtain explicit constructions minimizing the num-
ber of random bits used. In this work we give explicit constructions with
an almost optimal use of randomness: For 0 < ε, δ < 1/2, we obtain
explicit generators G : {0, 1}r → Rs×d for s = O(log(1/δ)/ε2) such that
for all d-dimensional vectors w of norm one,

Pr
y∈u{0,1}r

[ |‖G(y)w‖2 − 1| > ε ] ≤ δ,

with seed-length r = O
(
log d + log(1/δ) · log

(
log(1/δ)

ε

))
. In particular,

for δ = 1/ poly(d) and fixed ε > 0, we obtain seed-length O((log d)(log log d)).
Previous constructions required Ω(log2 d) random bits to obtain polyno-
mially small error.

We also give a new elementary proof of the optimality of the JL lemma
showing a lower bound of Ω(log(1/δ)/ε2) on the embedding dimension.
Previously, Jayram and Woodruff [10] used communication complexity
techniques to show a similar bound.

1 Introduction

The celebrated Johnson-Lindenstrauss lemma (JLL) [9] is by now a standard
technique for handling high dimensional data. Among its many known variants
(see [4], [6], [8], [13]), we use the following version originally proven in [2], [4]1.

Theorem 1. For all w ∈ Rd, ‖w‖ = 1, 0 < ε < 1/2, s ≥ 1,

Pr
S∈u{1,−1}s×d

[ | ‖(1/√s)Sw‖2 − 1 | ≥ ε ] ≤ C · e−C′ε2s.

1 Throughout, C, C′ denote universal constants. For a multiset S, x ∈u S denotes a
uniformly random element of S. For w ∈ Rd, ‖w‖ denotes the Euclidean norm of w.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 628–639, 2011.
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We say a family of random matrices has the JL property (or is a JL family) if the
above condition holds. In typical applications of JLL, the error δ is taken to be
1/ poly(d) and the goal is to embed a given set of poly(d) points in d dimensions
to O(log d) dimensions with distortion at most 1 + ε for a fixed constant ε. This
is the setting we concern ourselves with.

Linear embeddings of Euclidean space as above necessarily require randomness
as else one can take the vector w to be in the kernel of the fixed transformation.
To formalize this we use the following definition.

Definition 1. For ε, δ > 0, a generator G : {0, 1}r → Rs×d is a (d, s, δ, ε)-JL
generator of seed-length r if for every w ∈ Rd, ‖w‖ = 1,

Pr
y∈u{0,1}r

[ | ‖G(y)w‖2 − 1 | ≥ ε ] ≤ δ.

1.1 Derandomizing JLL

A simple probabilistic argument shows that there exists a (d,O(log(1/δ)/ε2), δ, ε)-
JL generator with seed-length r = O(log d + log(1/δ)). On the other hand, de-
spite much attention the best known explicit generators have seed-length at least
min(Ω(log(1/δ) log d), Ω(log d + log2(1/δ)) ) [5], [11]. Besides being a natural
problem in geometry as well as derandomization, an explicit JL generator with
minimal randomness would likely help derandomize other geometric algorithms
and metric embedding constructions. Further, having an explicit construction is
of fundamental importance for streaming algorithms as storing the entire ma-
trix (as opposed to the randomness required to generate the matrix) is often too
expensive in the streaming context.

Our main result is an explicit generator that takes roughly O(log d(log log d))
random bits and outputs a matrix A ∈ Rs×d satisfying the JL property for
constant ε and δ = 1/ poly(d).

Theorem 2 (Main). For every 0 < ε, δ < 1/2, there exists an explicit (d,
C log(1/δ)/ε2, δ, ε)-JL generator G : {0, 1}r → Rs×d with seed-length

r = O

(
log d+ log(1/δ) · log

(
log(1/δ)

ε

))
.

We give two different constructions. Our constructions are elementary in nature
using only standard tools in derandomization such as k-wise independence and
oblivious samplers [15]. Our first construction is simpler and gives a generic tem-
plate for derandomizing most known JL families. The second construction has
the advantage of allowing fast matrix-vector multiplications: the matrix-vector
product G(y)w can be computed efficiently in time O(d log d+poly(log(1/δ)/ε))2

Further, as one of the motivations for derandomizing JLL is its potential appli-
cations in streaming, it is important that the entries of the generated matrices be

2 The computational efficiency does not follow directly from the dimensions of G(y),
as our construction involves composing matrices of much higher dimension.
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computable in small space. We observe that for any i ∈ [s], j ∈ [d], y ∈ {0, 1}r,
the entry G(y)ij can be computed in space O(log d · poly(log log d)) and time
O(d1+o(1)) (for fixed ε, δ > 1/ poly(d)). (See proof of Theorem 8 for the exact
bound)

1.2 Optimality of JLL

We also give a new proof of the optimality of the JL lemma showing a lower-
bound of sopt = Ω(log(1/δ)/ε2) for the target dimension. Previously, Jayram
and Woodruff [10] used communication complexity techniques to show a similar
bound in the case sopt < d1−γ for some fixed constant γ > 0. In contrast, our
argument is more direct in nature and is based on linear algebra and elemen-
tary properties of the uniform distribution on the sphere, and only requires the
assumption sopt < d/2. Note the JLL is only interesting for sopt < d.

Theorem 3. There exists a universal constant c > 0, such that for any distri-
bution A over linear transformations from Rd to Rs with s < d/2, there exists a
vector w ∈ Rd, ‖w‖ = 1, such that PrS∼A[ |‖Sw‖2− 1| > ε ] ≥ exp(−c(sε2 +1)).

1.3 Related Work

The �2 streaming sketch of Alon et al. [3] implies an explicit distribution over
�2-embeddings with seed-length O(log d) for embedding Rd into Rs with distor-
tion 1 + ε and error δ, where s = O(1/(ε2δ)). Karnin et al. [11] construct an
explicit JL family with optimal target dimension and seed-length (1+o(1)) log d+
O(log2(1/(εδ))). Clarkson and Woodruff [5] showed that a random scaled
Bernoulli matrix withO(log(1/δ))-wise independent entries satisfies the JL lemma,
giving seed-length O(log(1/δ) log d). We make use of their result in our construc-
tion.

We also note that there are efficient non-black box derandomizations of JLL,
[7], [14]. These works take as input n points in Rd, and deterministically compute

an embedding (that depends on the input set) into RO(log n)/ε2 which preserves
all pairwise distances between the given set of n points.

1.4 Outline of Constructions

For intuition, suppose that δ > 1/dc is polynomially small and ε is a constant.
Our constructions are based on a simple iterative scheme: We reduce the dimen-
sion from d to Õ(

√
d) (we say f = Õ(g) if f = O(g · polylog(g)).) and iterate for

O(log log d) steps.

Generic Construction. Our first construction gives a generic template for re-
ducing the randomness required in standard JL families and is based on the
following simple observation. Starting with any JL family, such as the random
Bernoulli construction of Theorem 1, there is a trade-off that we can make be-
tween the amount of independence required to generate the matrix and the final
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embedding dimension. For instance, if we only desire to embed to a dimension of
Õ(
√
d) (as opposed to O(log d)), it suffices for the entries of the random Bernoulli

matrix to be O(1)-wise independent. We exploit this idea by iteratively decreas-
ing the dimension from d to Õ(

√
d) and so on by using a random Bernoulli

matrix with an increasing amount of independence at each iteration.

Fast JL Construction. Fix a vector w ∈ Rd with ‖w‖ = 1 and suppose
δ = 1/ poly(d). We first use an idea of Ailon and Chazelle [1] who give a family
of unitary transformationsR from Rd to Rd such that for everyw ∈ Rd and V ∈u
R, the vector V w is regular, in the sense that ‖V w‖∞ = O(

√
(log d)/d), with

high probability. We derandomize their construction using limited independence
to get a family of rotations R such that for V ∈u R, ‖V w‖∞ = O(d−(1/2−α))
with high probability, for a sufficiently small constant α > 0.

We next observe that for a vector w ∈ Rd, with ‖w‖∞ = O(d−(1/2−α)‖w‖2)
projecting onto a random set of O(d2α log(1/δ)/ε2) coordinates preserves the �2
norm with distortion at most ε with high probability. We then note that the
random set of coordinates can be chosen using oblivious samplers as in [15]. The
idea of using samplers is due to Karnin et al. [11] who use samplers for a similar
purpose.

Finally, iterating the above scheme O(log log d) times we obtain an embed-
ding of Rd to Rpoly(log d) using O(log d log log d) random bits. We then apply
the result of Clarkson and Woodruff [5] and perform the final embedding into
O(log(1/δ)/ε2) dimensions by using a random scaled Bernoulli matrix with
O(log(1/δ))-wise independent entries.

As all of the matrices involved in the construction are either Hadamard ma-
trices or projection operators, the final embedding can actually be computed in
O(d log d+ poly(log(1/δ)/ε)) time.

Outline of Lowerbound. To show a lowerbound on the embedding dimen-
sion s, we use Yao’s min-max principle to first transform the problem to that of
finding a hard distribution on Rd, such that no single linear transformation can
embed a random vector drawn from the distribution well with very high proba-
bility. We then show that the uniform distribution over the d-dimensional sphere
is one such hard distribution. The proof of the last fact involves elementary linear
algebra and some direct calculations.

2 Preliminaries

We first state the classical Khintchine-Kahane inequalities (cf. [12]) which give
tight moment bounds for linear forms.

Lemma 1 (Khintchine-Kahane). For every w ∈ Rn, x ∈u {1,−1}n, k > 0,

E[ |〈w, x〉|k ] ≤ kk/2 E[ |〈w, x〉|2 ]k/2 = kk/2‖w‖k.

We use randomness efficient oblivious samplers due to Zuckerman [15] (See The-
orem 3.17 and the remark following the theorem in [15] ).
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Theorem 4 (Zuckerman [15]). There exists a constant C such that for every
ε, δ > 0 there exists an explicit collection of subsets of [d], S(d, ε, δ), with each
S ∈ S of cardinality |S| = s(ε, δ, d) = ((log d+log(1/δ))/ε)C, such that for every
function f : [d]→ [0, 1],

Pr
S∈uS

[ ∣∣∣∣∣1s ∑
i∈S

f(i)− E
i∈u[d]

f(i)

∣∣∣∣∣ > ε

]
≤ δ,

and there exists an NC algorithm that generates random elements of S using
O(log d+ log(1/δ)) random bits.

Corollary 1. There exists a constant C such that the for every ε, δ, B > 0 there
exists an explicit collection of subsets of [d], S(d,B, ε, δ), with each S ∈ S of
cardinality |S| = s(d,B, ε, δ) = ((log d + log(1/δ))B/ε)C, such that for every
function f : [d]→ [0, B],

Pr
S∈uS

[ ∣∣∣∣∣1s ∑
i∈S

f(i)− E
i∈u[d]

f(i)

∣∣∣∣∣ > ε

]
≤ δ,

and there exists an NC algorithm that generates random elements of S using
O(log d+ log(1/δ)) random bits.

Proof. Apply the above theorem to f̄ : [d]→ [0, 1] defined by f̄(i) = f(i)/B.
�

Let Hd ∈ {−1/
√
d, 1/
√
d}d×d be the normalized Hadamard matrix such that

HT
d Hd = Id (we drop the suffix d when dimension is clear from context). While

the Hadamard matrix is known to exist for powers of 2, for clarity, we ignore
this technicality and assume that it exists for all d. Finally, let Sd−1 denote the
Euclidean sphere {w : w ∈ Rd, ‖w‖ = 1}.

The following definitions will be useful in giving an abstract description of
our constructions.

Definition 2. A distribution D over Rs×d is said to be a (d, s, δ, ε)-JL distribu-
tion if for any w ∈ Sd−1, PrS∼D

[∣∣‖Sw‖2 − 1
∣∣ > ε

]
< δ.

Definition 3. A distribution D over Rs×d is said to have the (d, s, t, δ, ε)-JL
moment property if for any w ∈ Sd−1, ES∼D

[∣∣‖Sw‖2 − 1
∣∣t] < εt · δ.

Definition 4. A distribution D is called a strong (d, s)-JL distribution if it is
a (d, s, exp(−Ω(min{ε, ε2} · s)), ε)-JL distribution for all ε > 0. If D has the
(d, s, �, O(max{√�/(ε2s), �/(εs)})
, ε)-JL moment property for all ε > 0 and
integer � ≥ 2, then we say D has the strong (d, s)-JL moment property.

Theorem 1 shows the conditions for being a strong (d, s)-JL distribution are met
by random Bernoulli matrices when 0 < ε ≤ 1, though in fact the conditions are
also met for all ε > 0 (see the proof in [5] for example). Sometimes we omit the
d, s terms in the notation above if these quantities are clear from context, or if
it is not important to specify them.

Throughout, we let logarithms be base-2 and often assume various quantities,
like 1/ε or 1/δ, are powers of 2; this is without loss of generality.
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3 Strong JL Distributions

It is not hard to show that having the strong JL moment property and being a
strong JL distribution are equivalent. We use the following standard fact.

Fact 5. Let Y, Z be nonnegative random variables such that Pr[Z ≥ t] =
O(Pr[Y ≥ t]) for any t ≥ 0. Then for � ≥ 1 if E[Y 
] < ∞, we have E[Z
] =
O(E[Y 
]).

Theorem 6. A distribution D is a strong (d, s)-JL distribution if and only if it
has the strong (d, s)-JL moment property.

Proof. First assume D has the strong JL moment property. Then, for arbitrary
w ∈ Sd−1, ε > 0,

PrS∼D[|‖Sw‖2 − 1| > ε] < ε−
 ·E[|‖Sw‖2 − 1|
] < O(max{
√
�/(ε2s), �/(εs)})
.

The claim follows by setting � = O(min{ε, ε2} · s).
Now assume D is a strong JL distribution. Set Z = |‖Sw‖2 − 1|. Since D is a

strong JL distribution, the right tail of Z is big-Oh of that of the absolute value
of the nonnegative random variable Y which is the sum of a Gaussian with mean
0 and variance O(1/s), and an exponential random variable with parameter s.
Now, apply Fact 5. �

Remark 1. Theorem 6 implies that any strong JL distribution can be deran-
domized using 2 log(1/δ)-wise independence giving an alternate proof of the de-
randomized JL result of Clarkson and Woodruff (Theorem 2.2 in [5]). This is
because, by Markov’s inequality with � even, and for ε < 1,

PrS∼D
[∣∣‖Sw‖2 − 1

∣∣ > ε
]
< ε−
 ·ES∼D

[(‖Sw‖2 − 1
)
] ≤ 2O(
) · (ε−1 ·

√
�/s)
.

(3.1)
Setting � = log(1/δ) and s = C�/ε2 for C > 0 sufficiently large makes the
above probability at most δ. Now, note the �th moment is determined by 2�-
wise independence of the entries of S.

4 A Generic JL Derandomization Template

Theorem 6 and Remark 1 provide the key insight for our construction. If we
use � = 2 log(1/δ)-wise independent Bernoulli entries as suggested in Remark 1,
the seed length would be O(� log d) = O(log(1/δ) log d) for s = Θ(ε−2 log(1/δ)).
However, note that in Eq. (3.1), a trade-off can be made between the amount of
independence needed and the final embedding dimension without changing the
error probability. In particular, it suffices to use 4-wise independence if we embed
into s = Ω(ε−2δ−1) dimensions. In general, if s = Cε−2q for log2(1/δ) ≤ q ≤ 1/δ,
it suffices to set � = O(logq(1/δ)) to make the right hand side of Eq. (3.1) at
most δ. By gradually reducing the dimension over the course of several iterations,
using higher independence in each iteration, we obtain shorter seed length.
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Iterative dimensionality reduction:

// Output S distributed according to a (d, s, δ, ε)-JL
distribution.

1. Define m = log((log 1/δ)/(2 log log 1/δ)), ε′ = ε/(e(m + 2)), δ′ = δ/(m + 2).

2. Define si = C(ε′)−2δ′−1/2i

, �i = Θ(2i) an even integer for i ≥ 0. Define s−1 = d.

3. Let Si be a random matrix drawn from a distribution with the (si−1, si, �i, δ
′, ε′)-

JL moment property for i = 0, . . . , m.

4. Let Sfinal be drawn from a (sm, O(ε−2 log(1/δ)), δ′, ε′)-JL distribution.

5. S ← Sfinal · Sm · · ·S0.

Fig. 1. A general derandomization scheme for distributions with JL moment properties

Our main construction is described in Figure 1. We first embed into O(ε−2δ−1)
dimension using 4-wise independence. We then iteratively project from
O(ε−2δ−1/2i

) dimensions intoO(ε−2δ−1/2i+1
) dimensions until we have finally em-

bedded into O(ε−2 log2(1/δ)) dimensions. In our final step, we embed into the op-
timal target dimension using 2 log(1/δ)-wise independence. Note the Bernoulli dis-
tribution is not special here; we could use any family of strong JL distributions.

Theorem 7. The output matrix S in Figure 1 is distributed according to a
(d, s, δ, ε)-JL distribution for s = O(log(1/δ)/ε2).

Proof. For a fixed vector w, let wi = Si · · ·S0w, and let w−1 denote w. Then
by our choice of si and a Markov bound on the �ith moment,

Pr
[‖wi‖2 − ‖wi−1‖2 || > ε′‖wi−1‖2] < ε′−
i ·E[(‖wi‖2/‖wi−1‖2 − 1)
i ] < δ′

for 0 ≤ i ≤ m. We also have Pr
[‖Sfinalw

m‖2 − ‖wm‖2 || > ε′‖wm‖2] < δ′. By

a union bound, ‖Sfinalw
m‖2 ≤ (1 + ε′)m+2 ≤ e(m+2)ε′ ≤ 1 + ε with probability

1− (m+ 2)δ′ = 1− δ. �
As a corollary, we obtain our main theorem, Theorem 2.
Proof. [of Theorem 2] We let the distributions in Steps 3 and 4 of Figure 1 be
strong JL distributions. Then Steps 3 and 4 are satisfied by Remark 1.[

The seed length required to generate S0 is O(log d). For Si for i > 0 the seed

length is O(�i log(ε′−2δ′1/2
i

)) = O(2i log(1/ε′)+ log(1/δ′)), which is never larger
than O((log(1/δ′)/ log log(1/δ′)) log(1/ε′) + log(1/δ′)), which is O((log(1/δ)/
log log(1/δ)) log(1/ε)+log(1/δ)). The seed length required for Sfinal isO(log(1/δ′)
log(log(1/δ′)/ε′)) = O(log(1/δ) log(log(1/δ)/ε)). Thus, the total seed length is
dominated by generating S0 and Sfinal, giving the claim. The distorion and error
probabilities can be bounded by a union bound. �

5 Explicit JL Families via Samplers

We now give an alternate construction of an explicit JL family. The construc-
tion is similar in spirit to that of the previous section and has the additional
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property that matrix-vector products for matrices output by the generator can
be computed in time roughly O(d log d+ s3), as it is based on the Fast Johnson-
Lindenstrauss Transform (FJLT) of [1]. For clarity, we concentrate on the case
of δ = Θ(1/dc) polynomially small. The case of general δ can be handled simi-
larly with some minor technical issues3 that we skip in this extended abstract.
Further, we assume that log(1/δ)/ε2 < d as else JLL is not interesting.

As outlined in the introduction, we first give a family of rotations to regularize
vectors in Rd. For a vector x ∈ Rd, let D(x) ∈ Rd×d be the diagonal matrix with
D(x)ii = xi.

Lemma 2. Let x ∈ {1,−1}d be drawn from a k-wise independent distribution.
Then, for every w ∈ Rd with ‖w‖ = 1, 0 < α < 1/2,

Pr[ ‖HD(x)w‖∞ > n−(1/2−α) ] ≤ kk/2

nαk−1
.

Proof. Let v = HD(x)w. Then, for i ∈ [d], vi =
∑

j Hijxjwj and E[v2
i ] =∑

jH
2
ijw

2
j = 1/d. By Markov’s inequality and the Khintchine-Kahane inequality

(Lemma 1),

Pr[ |vi| > d−(1/2−α) ] ≤ E[vki ] · d(1/2−α)k ≤ kk/2d(1/2−α)k/dk/2 = kk/2d−αk.

The claim now follows from a union bound over i ∈ [d]. �
We now give a family of transformations for reducing d dimensions to Õ(d1/2) ·
poly(sopt) dimensions using oblivious samplers. For S ⊆ [d], let PS : Rd → R|S|

be the projection onto the coordinates in S. In the following let C be the universal
constant from Corollary 1.

Lemma 3. Let S ≡ S(d, d1/2C , ε, δ), s = O(d1/2 logC(1/δ)/εC) be as in
Corollary 1 and let D be a k-wise independent distribution over {1,−1}d. For
S ∈u S, x ← D, define the random linear transformation AS,x : Rd → Rs by
AS,x =

√
d/s · PS ·HD(x). Then, for every w ∈ Rd with ‖w‖ = 1,

Pr[ |‖AS,x(w)‖2 − 1| ≥ ε ] ≤ δ + kk/2/dk/4C−1.

Proof. Let v = HD(x)w. Then, ‖v‖ = 1 and by Lemma 2 applied for α = 1/4C,

Pr[ ‖v‖∞ > d−(1/2−1/4C) ] ≤ kk/2/dk/4C−1.

Now condition on the event ‖v‖∞ ≤ d−(1/2−1/4C). Define f : [d] → R by f(i) =
d · v2

i ≤ d1/2C = B. Then,

‖AS,x(w)‖2 = (d/s)‖PS(v)‖2 =
1

s

∑
i∈S

dv2
i =

1

s

∑
i∈S

f(i),

3 In case of very small δ, we need to ensure that we never increase the dimension -
which can be done trivially by using the identity transformation. In case of large δ,
we first embed the input vector into O(1/δε2) dimensions using 4-wise independence
as in Section 4.
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and Ei∈u[d] f(i) = (1/d)
∑

i d · v2
i = 1. Therefore, by Corollary 1,

Pr[ | ‖AS,x(w)‖2 − 1 | ≥ ε ] = Pr
S∈uS

[ ∣∣∣∣∣1s ∑
i∈S

f(i)− E
i∈u[d]

f(i)

∣∣∣∣∣ ≥ ε

]
≤ δ.

The claim now follows. �
We now recursively apply the above lemma. Fix ε, δ > 0. Let A(d, k) : Rd →
Rs(d) be the collection of transformations {AS,x : S ∈u S, x← D} as in the above
lemma for s(d) = s(d, d1/2C , ε, δ) = c1d

1/2(log d/ε)C , for a constant c1. Note
that we can sample from A(d, k) using r(d, k) = k log d+ O(log d+ log(1/δ)) =
O(k log d) random bits.

Let d0 = d, and let di+1 = s(di). Let k0 = 8C(c + 1) (recall that δ =
1/dc) and ki+1 = 2ik0. The parameters di, ki are chosen so that 1/dki

i is always

polynomially small. Fix t > 0 to be chosen later so that ki < d
1/4C
i for i < t.

Lemma 4. For A0 ∈u A(d0, k0), A1 ∈u A(d1, k1), · · · , At−1 ∈u A(dt−1, kt−1)
chosen independently, and w ∈ Rd, ‖w‖ = 1,

Pr[ (1− ε)t ≤ ‖At−1 · · ·A1A0(w)‖2 ≤ (1 + ε)t ] ≥ 1− tδ −
t−1∑
i=0

k
ki/2
i

d
ki/4C−1
i

.

Proof. The proof is by induction on i = 1, . . . , t. For i = 1, the claim is same
as Lemma 3. Suppose the statement is true for i− 1 and let v = Ai−1 · · ·A0(w).
Then, v ∈ Rdi and the lemma follows by Lemma 3 applied to A(di, ki), and v.
�
What follows is a series of elementary calculations to bound the seed-length and
error from the above lemma. Observe that

d(1/2)i ≤ di = d(1/2)i ·
(
c1 logC(d)

εC

)1+(1/2)+···+(1/2)i−1

≤ d(1/2)i

(
c1 logC d

εC

)2

.

(5.1)

Let t = O(log log d) be such that 2t = log d/4C log log d. Then, dt ≤ log4C d ·
(c1 logC d/εC)2 = O(log6C d/ε2C), and for i < t,

ki < kt = 8C(c + 1)2t = 2(c + 1) log d/ log log d < log d = d(1/2)t/4C < d
1/4C
t < d

1/4C
i ,
(5.2)

where we assumed that log log d > 2c+ 2. Therefore, the error in Lemma 4 can
be bounded by

tδ +
t−1∑
i=0

k
ki/2
i

d
ki/4C−1
i

≤ tδ + d
t−1∑
i=0

d
−ki/8C
i (Equation 5.2)

≤ tδ + d
t−1∑
i=0

(d1/2i

)−8C(c+1)·2i/8C (Equation 5.1)

≤ tδ + t/dc ≤ 2tδ (as δ > 1/dc).



Almost Optimal Explicit Johnson-Lindenstrauss Families 637

Note that,

ki log di ≤ 8C(c+ 1) · 2i(log d/2i + 2C log log d+ 2C log(1/ε)) =

O(log d+ log d log(1/ε)/ log log d).

Therefore, the randomness needed after t = O(log log d) iterations is

t−1∑
i=0

O(ki log di) = O(log d log log d+ (log d) log(1/ε)).

Combining the above arguments (applied to δ′ = δ/ log log d and ε′ = ε/ log log d
and simplifying the resulting expression for seed-length) we obtain our fast de-
randomized JL family.

Theorem 8 (Fast Explicit JL Family). There exists a (d,O(log(1/δ)/ε2), δ,
ε)-JL generator with seed-length r = O(log d + log(1/δ)(log(log(1/δ)/ε))) such
that for every vector w ∈ Rd, y ∈ {0, 1}r, G(y)w can be evaluated in time
O(d log d+ poly(log(1/δ)/ε)).

Proof.We suppose that δ = Θ(1/dc) - the analysis for the general case is similar.
From the above arguments there is an explicit generator that takes O(log(d/δ) ·
log( log(d/δ)/ε )) random bits and outputs a linear transformation A : Rd → Rm

for m = poly(log(d/δ), 1/ε), satisfying the JL property with error at most δ
and distortion at most ε. The theorem now follows by composing the trans-
formations of the above theorem with a Bernoulli matrix having 2 log(1/δ)-
wise independence. The additional randomness required is O(log(1/δ) logm) =
O(log(1/δ)(log log(d/δ) + log(1/ε)).

We next bound the time for computing matrix-vector products for the matri-
ces we output. Note that for i < t, the matrices Ai of Lemma 4 are of the form
PS ·HdiD(x) for a k-wise independent string x ∈ {1,−1}di. Thus, for any vector
wi ∈ Rdi , Aiwi can be computed in time O(di log di) using the discrete Fourier
transform. Therefore, for any w = w0 ∈ Rn0 , the product At−1 · · ·A1A0w0 can
be computed in time

t−1∑
i=0

O(di log di) ≤ O(d log d) + log d ·
t−1∑
i=1

O
(
d1/2i

(log(1/δ)/ε2)2
)

(Equation 5.1)

= O(d log d +
√

d log d log2(1/δ)/ε4).

The above bound dominates the time required to perform the final embedding.
A similar calculation shows that for indices i ∈ s, j ∈ [d], the entry G(y)ij

of the generated matrix can be computed in space O (
∑

i log di) = O(log d +
log(1/ε) · log log d) by expanding the product of matrices and enumerating over
all intermediary indices4. The time required to perform the calculation is O(s ·
dt · dt−1 · · ·d1) = d · (log d/ε)O(log log d). �
4 We also need to account for the time and space needed by the samplers and for

generating k-wise independent strings. However, these are dominated by the task of
enumerating over all indices; for instance, the samplers of [15] are in NC.
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Remark 2. We can use the FJLT of [1] in the framework of Figure 1 to get seed
length and update time as above. Details are deferred to the full version.

6 Optimality of JL Lemma

We next prove Theorem 3, the optimality of the number of rows in the JL
Lemma. Let A be a distribution over linear transformations from Rd to Rk such
that PrS∼A[|‖Sw‖2 − 1|] < δ] for any w ∈ Sd−1. Then, it must be the case that
PrS∼A[Prw∈uSd−1 [|‖Sw‖2−1|]] < δ. By an averaging argument, there must exist
a linear transformation S in the support of A such that Prw∈Sd−1[|‖Sw‖2−1|] <
δ. We show this cannot happen unless k is sufficiently large.

Theorem 9. If S : Rd → Rk is a linear transformation with d > 2k and ε > 0
sufficiently small, then for w a randomly chosen vector in Sd−1, Pr[|‖Sw‖2−1| >
ε] ≥ exp(−O(kε2 + 1)).

Proof. First note that we can assume S is surjective as else, we may replace Rk

by the image of S. Let V = ker(S) and let U be the orthogonal complement of
V in Rd. Then dim(U) = k, dim(V ) = d − k. Now, any w ∈ Rd can be written
uniquely as wV + wu where wV and wu are the components of w in V and U
respectively. We may then write wV = rVΩV , wu = ruΩu, where rV , ru are
positive real numbers and ΩV and Ωu are unit vectors in V and U respectively.

Let sV = r2V and su = r2u. We may now parameterize the unit sphere by
(sV , ΩV , su, Ωu) ∈ [0, 1] × Sd−k−1 × [0, 1] × Sk−1, so that sV + su = 1. It is
clear that the uniform measure on the sphere is given in these coordinates by
f(su)dsudΩV dΩu for some function f : [0, 1]→ [0, 1]. We next show that

f(su) = Cf · (1− su)(d−k−2)/2s(k−2)/2
u , (6.1)

where Cf is a normalization constant. Observe that f(su) should be propor-
tional to the limit as δ1, δ2 → 0+ of (δ1δ2)

−1 times the volume of points w
satisfying ‖wu‖2 ∈ [su, su + δ2] and ‖wV ‖2 ∈ [1 − ‖wu‖2, 1 − ‖wu‖2 + δ1].
For fixed wu, the latter volume is within O(δ1δ2) of the volume of wV so
that ‖wV ‖2 ∈ [sV , sV + δ1]. Now the measure on V is rd−k−1

V drV dΩV . There-

fore it also is 1
2s

(d−k−2)/2
V dsV dΩV . Therefore this volume over V is propor-

tional to s
(d−k−2)/2
V (δ1 + O(δ1δ2 + δ21)). Similarly the volume of wu so that

‖wu‖2 ∈ [su, su + δ2] is proportional to s
(k−2)/2
u (δ2 + O(δ22)). Hence f is pro-

portional to s
(d−k−2)/2
V s

(k−2)/2
u .

We are now prepared to prove the theorem. The basic idea is to first condition
on ΩV , Ωu. We let C = ‖SΩu‖2. Then if w is parameterized by (sV , ΩV , su, Ωu),
‖Sw‖2 = Csu. Choosing w randomly, we know that s = su satisfies the distribu-

tion s(k−2)/2(1−s)(d−k−2)/2

β((k−2)/2,(d−k−2)/2) ds = f(s)ds on [0, 1]. We need to show that for any c =
1
C , the probability that s is not in [(1− ε)c, (1+ ε)c] is exp(−O(ε2k)). Note that

f(s) attains its maximum value at s0 = k−2
d−4 <

1
2 . Notice that log(f(s0(1 + x)))

is some constant plus k−2
2 log(s0(1 + x)) + d−k−2

2 log(1 − s0 − xs0). If |x| <
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1/2, then this is some constant plus −O(kx2). So for such w, f(s0(1 + x)) =
f(s0) exp(−O(kx2)). Furthermore, for all x, f(s0(1+x)) = f(s0) exp(−Ω(kx2)).
This says that f is bounded above by a normal distribution and checking the
normalization we find that f(s0) = Ω(s−1

0 k1/2).
We now show that both Pr(s < (1−ε)s0) and Pr(s > (1+ε)s0) are reasonably

large. We can lower bound either as

s0

∫ 1/2

ε

f(s0) exp(−O(kx2))dx ≥ Ω(k1/2)

∫ ε+k−1/2

ε

exp(−O(kx2))dx

≥ Ω(exp(−O(k(ε+ k−1/2)2)))

≥ exp(−O(kε2 + 1)).

Hence since one of these intervals is disjoint from [(1−ε)c, (1+ε)c], the probability
that s is not in [(1− ε)c, (1 + ε)c] is at least exp(−O(kε2 + 1)). �
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Correlation Bounds for Poly-size AC0 Circuits
with n1−o(1) Symmetric Gates
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Abstract. Average-case circuit lower bounds are one of the hardest
problems tackled by computational complexity, and are essentially only
known for bounded-depth circits with AND,OR,NOT gates (i.e. AC0).
Faced with this adversity, one line of research has been to gradually
augment AC0 circuits with a small number of more general gates. Most
results to date give lower bounds for quasi-polynomial size AC0 circuits
augmented by a poly-logarithmic number of gates, and the correlation
bounds obtained are inverse quasi-polynomial.

We continue this line of research, but restrict our attention to poly-
nomial size AC0 circuits. Surprisingly, we show that this restriction al-
lows us to prove much stronger results: we can augment the AC0 circuit
with n1−o(1) many gates, and still obtain inverse exponential correlation
bounds. Explicitly,

1. Poly-size AC0 circuits with n1−o(1) arbitrary symmetric gates have
exponentially small correlation with an explicitly given function.

2. Poly-size AC0 circuits with n1/2−o(1) threshold gates have exponen-
tially small correlation with the same explicit function.

3. Poly-size AC0 circuits with n1−o(1) counting gates modulo s have
exponentially small correlation with the sum of the bits modulo q,
where s, q are co-prime.

Our proof techniques combine the meet-in-the-middle approach for cir-
cuit lower bounds with restrictions (due to Ajtai) that are tailored to
polynomial-size circuits.

1 Introduction

The quest for circuit lower bounds has proven to be one of the harder chal-
lenges in computational complexity. By circuit lower bounds one can consider
two alternatives: worst-case hardness, where one shows that small circuits can-
not compute a given function; and average-case hardness, where one shows that
small circuits cannot even predict the given function well (these are often called
correlation bounds). Average case hardness results usually1 imply also pseudo-
random generators for these classes of circuits [17,19].

� Supported by NSF grants CCF-0832797 and DMS-0835373.
1 Unless, informally, the class is too weak.

L.A. Goldberg et al. (Eds.): APPROX/RANDOM 2011, LNCS 6845, pp. 640–651, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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There is essentially just one general class of circuits where strong average-
case lower bounds are known: AC0, the class of bounded-depth circuits with
unbounded fan-in AND,OR and NOT gates. This class represents parallel com-
putation with a bounded number of rounds, where basic computations cor-
respond to gates, and only trivial basic computations (AND,OR, and NOT)
are allowed. A sequence of works, culminating with the celebrated result of
H̊astad [14], showed that exponential size AC0 circuits cannot predict the parity
of n bits with better than exponentially small advantage. Nisan [17] used this
to construct pseudorandom generators against AC0 with poly-logarithmic seed
length.

Obviously, one would like to prove strong lower bounds on more realistic
models of parallel computation, where the main challenge is to allow general
symmetric local computations. This amounts to constant depth circuit with ar-
bitrary symmetric gates; which is known to also be equivalent to TC0, where
arbitrary threshold gates are allowed [22,10]. Despite much research on these
problems, no super-polynomial lower bounds are known for this class.

Therefore, research has turned towards studying more restricted models, with
the goal of improving proof techniques. One line of research has been to al-
low arbitrary constant depth, but limit the symmetric basic gates allowed.
This approach was essentially successful only for ACC0[p], where in addition
to AND,OR,NOT gates, counting gates modulo p are also allowed. Razborov
and Smolensky [20,23] showed a worst-case lower bound when p is a prime power.
They showed that such circuits require exponential size to compute the sum of
the bits modulo q, where q is co-prime to p. When p is not a prime power,
proving worst-case lower bounds is still open, and the best result to date is of
Williams [26], which showed that subexponential ACC0[p] circuits cannot com-
pute all of NEXP. Average-case lower bounds are not known for any p.

Another line of research is that of considering intermediate models between
AC0 circuits and general bounded depth circuits with symmetric (or thresh-
old) gates, where the AC0 circuit is augmented with a few more general gates
(such as arbitrary symmetric gates, threshold gates, modular counting gates,
etc.). Here, researchers have considered various types of general gates. Initial
work considered AC0 circuits augmented by a few majority gates. A sequence
of works [2,6,5,4] showed that even if one allows no(1) gates, one still requires
exponential size in order to compute the parity of n bits (or more generally,
their sum modulo any constant q). Later research allowed more general types
of augmented gates, however success has been more limited: the size of the cir-
cuits for which lower bounds were shown decreased to quasi-polynomial, and the
number of augmented gates reduced to poly-logarithmic. Explicitly, researchers
have considered augmenting AC0 circuits by a few modular gates [8], threshold
gates [11] and arbitrary symmetric gates [21,13,24].

In this work we limit ourselves to proving lower bounds for polynomial size
AC0 circuits, augmented with a few general gates. The motivation is that lower
bounds for such models are sufficient for proving (albeit, weak) super-polynomial
lower-bounds. Our main results show that by restricting the size of the circuits
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to be polynomial (instead of quasi-polynomial), the number of augmented gates
can be dramatically increased. Explicitly, we show that

1. Polynomial size AC0 circuits with n1−o(1) arbitrary symmetric gates can-
not approximate an explicitly given function (the same function considered
in [21,13,24]) with better than exponentially small advantage. Previous re-
sults [24] allowed for at most a poly-logarithmic number of arbitrary symmet-
ric gates, and were able to achieve only inverse quasi-polynomial advantage.

2. Polynomial size AC0 circuits with n1/2−o(1) threshold gates cannot approx-
imate the same explicit function with better than exponentially small ad-
vantage. Previous results allowed for at most poly-logarithmic number of
arbitrary threshold gates [11] or nO(1/d) many majority gates [5], where d is
the depth of the circuit.2

3. Polynomial size AC0 circuits with n1−o(1) counting gates modulo m (for arbi-
trary constant m) cannot approximate the sum of the bits modulo q, where
m, q are co-prime, with better than exponentially small advantage. Previ-
ous results [12] allowed for at most a poly-logarithmic number of modular
counting gates.

The above results imply (using the Nisan-Wigderson generator [19]) a pseu-
dorandom generator with polynomial stretch and exponentially small error
against the above models; that is, for any constant c > 1 an explicit map
G : {0, 1}n → {0, 1}nc

fooling the above models with error exp(−nΩ(1)).
Another model which was widely studied is that of multivariate polynomials

over F2. Correlation bounds are known when the degree of the polynomials is
bounded. Bourgain [7] and Viola and Wigderson [25] showed that polynomials
over F2 of degree O(log n) have exponentially small correlation with certain ex-
plicit functions, e.g., the sum of the bits modulo 3. Proving correlation bounds
for polynomials of super-logarithmic degree is an important open problem. We
show that when one considers sparse polynomials, the restriction on the degree
can be lifted. The following result follows immediately as a simple case of our
third result given above; but because of its easiness we provide a direct proof for
it: Polynomials over F2 with a polynomial number of monomials have exponen-
tially small correlation with the sum of the bits modulo 3. Previous results [24]
gave only an inverse quasi-polynomial correlation bounds.

Our proofs are based on three main ingredients: tree restrictions, communica-
tion complexity lower bounds (similar to [24]) and a random restriction method
of Ajtai [1] for a polynomial collection of DNFs. Due to lack of space, some proofs
are omitted from this extended abstract, and are deferred to the full version.

2 Preliminaries

Given a distribution D over {0, 1}n and two boolean functions f, g : {0, 1}n →
{0, 1}, we define CorrD(f, g), the correlation between f and g under D, as

2 The same proof also works for the more general model where we allow the circuit to
contain n1/2−o(1) threshold and symmetric gates.
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follows: CorrD(f, g) =
∣∣Ex[(−1)f(x) · (−1)g(x)]

∣∣. We also use Corr(f, g) to de-
note CorrU (f, g), where U is the uniform distribution over {0, 1}n.

A tree-restriction on n boolean variables x1, . . . , xn is a decision tree T on
these variables. Each leaf � of the tree T corresponds to a subcube Q
 of {0, 1}n
and these subcubes partition the space {0, 1}n. There is a natural probability
distribution μT over the leaves of the tree-restriction T , which is obtained by
starting from the root and choosing a child uniformly until a leaf is reached.
Given a leaf � of a tree restriction T on {0, 1}n and a function f : {0, 1}n → {0, 1},
we denote by f |
 the restriction of f to the subcube Q
.

We are concerned with proving lower bounds against AC0 circuits augmented
with some other gates of unbounded fan-in that compute functions possibly not
in AC0. We will use the phrase “AC0 circuits of size s(n)” for even superpoly-
nomial s(n), by which we will mean the class of functions computed by boolean
circuits with unbounded fan-in of size at most s(n). We use some standard no-
tation ([9]) for different gate types: SYM gates compute symmetric functions
(of their input variables); THR gates compute linear threshold functions; and
MODs gates for an integer s ≥ 2, compute the boolean function that outputs 1
iff the number of 1s in its input is not divisible by s. Note that a MODs gate
is also a SYM gate. We will also use the ANY gate, which could compute any
boolean function of its input variables. For a gate type G and t ∈ N, Gt denotes
a gate of type G that has fanin at most t. E.g., ANDt denotes the class of AND
gates of fanin at most t.

We will also be interested in the communication complexity of boolean func-
tions in the k-party Number-on-the-Forehead (NOF) model. The reader is
referred to Kushilevitz and Nisan [16] for relevant definitions and results.

3 An Illustrative Example: Correlation Bounds for
Sparse Polynomials

It is an important open problem to give explicit functions which have small
correlation with any multivariate polynomial over F2 of degree exceeding logn.
The best results to date give explicit functions which have correlation 1/

√
n

with polynomials of larger degree. We demonstrate a restriction technique which
allows us to get exponential correlation bounds for polynomials of large degree,
as long as they are sparse: i.e., they contain only polynomially many monomials.
This technique is the core of our results for AC0 circuits with n1−o(1) symmetric
gates (or n1/2−o(1) threshold gates), and we wish to first demonstrate it in the
simpler case of sparse polynomials. We note that previous results [24] were able to
achieve only inverse quasi-polynomial correlation bounds for sparse polynomials.

Our main result of this section is that sparse polynomials over F2 have expo-
nentially small correlation with the sum of the bits modulo 3. This easily extends
to any Fp and q for co-prime p, q. We say p(x1, . . . , xn), a polynomial over F2, is
s-sparse if it can be expressed as the sum of ≤ s monomials, where a monomial
is a product of the form m(x) =

∏
i∈S(xi−ai) where S ⊆ [n] is a set of variables

and ai ∈ F2 are some coefficients. The main theorem we show is the following.
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Theorem 1. Let p(x) be an n-variate no(logn)-sparse poly-
nomial over F2. Then for any α = β ∈ {0, 1, 2},
|Prx[p(x) = 0|∑n

i=1 xi ≡ α (mod 3)]− Prx[p(x) = 0|∑n
i=1 xi ≡ β (mod 3)]| ≤

exp(−n1−o(1)), where x is uniformly chosen from {0, 1}n.
An equivalent form of Theorem 1, which is more amenable for analysis, is the

following. Ex∈{0,1}n

[
(−1)p(x)ω

∑n
i=1 xi

3

]
≤ exp(−n1−o(1)), where ω3 is a cubic

root of unity. The proof of equivalence is standard and is omitted. For a proof,
see e.g. [25]. We will prove the above in the remainder of this section.

The main idea of the proof is to use restrictions to reduce sparse polynomials
to low-degree polynomials, and apply correlation bounds for low-degree polyno-
mials. For this, we will use the following result of Viola and Wigderson [25] (who
strengthened a result of Bourgain [7]), which shows that polynomials of degree
� logn have exponential small correlation with the sum of the bits mod 3.

Theorem 2 ([25]). Let p(x) be an n-variate polynomial over F2 of degree d.
Then Ex∈{0,1}n

[
(−1)p(x)ω

∑n
i=1 xi

3

]
≤ exp(−Ω(n/4d)).

Let p(x) be an n-variate s-sparse polynomial over F2. The first step is to use
tree restrictions to restrict p(x) to a polynomial of small degree (with very high
probability). Let T be a tree-restriction of p(x). For a leaf � of the tree T , let p

denote the polynomial p restricted by the partial assignment given by the leaf �.

Claim 3. Let p(x) be an n-variate s-sparse polynomial. There exists a tree-
restriction T of depth n/2 such that Pr
∼μT [deg(p
) > 10 log s] ≤ exp(−Ω(n)).

Proof. We will construct a sequence of trees T0, . . . , Tn/2, where Ti has depth i
and Tn/2 is the tree given by the claim. The tree T0 is just a root and the tree Ti+1

is an extension of the tree Ti, defined in the following manner. Set t := 10 log s,
and let B be the set of “bad” monomials of p(x) of degree> t, where |B| ≤ s. For
a leaf � of Ti, let B
 be the set of monomials in B which remain non-zero under
the partial assignment induced by �. If |B
| = 0 then � will remain a leaf in Ti+1;
else, we extend it further. All monomials in B
 have at least t variables; hence
there exists some variable xj which appears in at least (t/n) · |B
| monomials.
We extend � by the two possible assignments to xj . Let �′, �′′ be these new leaves
of Ti+1. Clearly, |B
′ |, |B
′′ | ≤ |B
|, and each monomial containing xj belongs to
exactly one of B
′ , B
′′ . Thus, min(|B
′ |, |B
′′ |) ≤

(
1− t

2n

) · |B
|.
Let T := Tn/2. We conclude the proof by showing that a random leaf � of

T has |B
| > 0 only with exponentially small probability, Pr
∼μT [|B
| ≥ 1] ≤
exp(−Ω(n)). Note that if � has depth less than n/2 then we must have |B
| = 0
by definition. Thus, it suffices to bound the probability that a leaf has depth n/2.
Let v0, v1, . . . , vr = � denote a random walk in the tree T from the root v0 to a
leaf v
 of depth r ≤ n/2. We define indicator variables X0, . . . , Xr−1 as follows:
let ui be the other child of vi (i.e. not vi+1). Then Xi = 1 if |Bvi+1 | ≤ |Bui |.
Clearly, X0, . . . , Xr−1 are independent (given r), and Pr[Xi = 1] ≥ 1/2. By our
bound on min(|B
′ |, |B
′′ |) above, if at least q of the variables X0, . . . , Xr−1 are
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one, then |B
| ≤
(
1− t

2n

)q |B| ≤ exp(−tq/2n)·s. Thus, if q > (2n/t)·log s = n/5
then |B
| < 1. The probability that a leaf � at depth n/2 has |B
| > 0 can thus be
bounded by the probability that a random sequence of n/2 Bernoulli variables
(with success probability ≥ 1/2) contains ≤ n/5 ones, which is exp(−Ω(n)).

We extend the tree T from Claim 3 to a complete tree of depth n/2, by extending
leaves of depth < n

2 arbitrarily. For notational ease, consider a restricted poly-

nomial p
(x) at a leaf � of T as a polynomial in variables x ∈ {0, 1}n/2. Claim 3
allows us to essentially consider polynomials of degree ≤ 10 log s, as by the tri-

angle inequality Ex∈{0,1}n [(−1)p(x)ω
∑

xi

3 ] ≤ E
∼μT |Ex∈{0,1}n/2[(−1)p�(x)ω
∑

xi

3 ]|,
and the probability that deg(p
) > 10 log s is exp(−Ω(n)).

We thus assume from now on that p(x) is an n-variate s-sparse polynomial
with deg(p) ≤ 10 log s, and derive correlation bounds between p(x) and the sum
of the bits modulo 3. The degree of p is still too large to apply Theorem 2. So
we reduce its degree further by restricting it to a smaller subset of the variables.

Let S1, . . . , Ss denote the variables in the monomials of p(x), that is p(x) =∑s
i=1

∏
j∈Si

(xj − ai,j), where ai,j ∈ F2 are some coefficients. Let R ⊂ [n] be a
subset of the variables. We first claim that if R is large, but has small intersection
will all monomials S1, . . . , Ss, then we can use correlation bounds for low-degree
polynomials to bound the correlation of p(x) with the sum of the bits modulo 3.

Claim 4. Let R ⊂ [n] be a subset of the variables, such that |R∩Si| ≤ d for all
i = 1, . . . , s. Then Ex∈{0,1}n

[
(−1)p(x)ω

∑
xi

3

]
≤ exp(−Ω(|R|/4d)).

Proof. We partition an assignment x ∈ {0, 1}n to the variables inside and outside
R, denoted xR ∈ {0, 1}R and xR ∈ {0, 1}[n]\R. Note that for any assignment to
xR, the remaining polynomial on the variables in R is of degree at most d.
We denote for any assignment a ∈ {0, 1}[n]\R this polynomial by pa(xR) =
p(xR, a). By Theorem 2, pa(xR) has small correlation with the sum of the bits

modulo 3. By the triangle inequality, this gives |Ex∈{0,1}n [(−1)p(x)ω
∑n

i=1 xi

3 ]| ≤
Ea|ExR [(−1)pa(xR)ω

∑
i∈R xi

3 ]| ≤ exp(−|R|/4d).
Thus, we need to find a relatively large set R with a small intersection with
all the monomials. Let s = nc, and let d > 2c be chosen later. The next claim
shows that a randomly chosen R of size roughly n1−2c/d has w.h.p intersection
of size ≤ d with all monomials. We stress that since we just need to establish the
existence of such an R, the probability that a randomR satisfies the requirements
can be (and indeed is) much weaker than the exponentially small correlation we
seek. We omit the standard proof of the below claim.

Claim 5. ∃R ⊂ [n] of size |R| = n1−2c/d−o(1) s.t. |R ∩ Si| ≤ d ∀i = 1, . . . , s.

The proof of Theorem 1 now follows from Claim 3, Claim 4 and Claim 5 by
an optimization of the parameters. For d > 2c we have |R| = n1−2c/d−o(1) and∣∣∣Ex∈{0,1}n

[
(−1)p(x)ω

∑
xi

3

]∣∣∣ ≤ exp(−Ω(n1−2c/d−o(1)/4d)). To conclude the proof,

note that if c = o(logn) then we can choose d = o(logn) such that c/d = o(1)
and 4d = no(1).
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4 Correlation Bounds for AC0 with a Few Symmetric and
Threshold Gates

In this section, we prove our main correlation bounds. We describe the candidate
hard functions and distributions w.r.t. which these functions are hard to predict.

For any n,m, k, r ∈ N such that n = mkr, let fm,k,r : {0, 1}n → {0, 1}
be defined as follows: fm,k,r(x) =

⊕m
u=1

∧k
v=1

⊕r
w=1 xu,v,w. This function was

first defined by Razborov and Wigderson [21] to show nΩ(logn) lower bounds
against the class MAJ ◦ SYM ◦ AND. Hansen and Miltersen [13] showed that
this function in fact cannot be computed by MAJ ◦ SYM ◦ AC0 circuits of size
no(logn). Viola further used this function (along with ideas from the work of
Nisan and Wigderson [19]) to come up with pseudorandom generators against
the class of AC0 circuits with at most ε log2 n many symmetric gates for a small
constant ε > 0. We show that for some m, k, r, the function fm,k,r is hard to
compute on the average under the uniform distribution, by polynomial size AC0

circuits with n1−o(1) symmetric gates, or n1/2−o(1) threshold gates.
We call a function g : {0, 1}mkr → {0, 1} fm,k,r-like if there exist bits b, bu,v ∈

{0, 1} for each (u, v) ∈ [m]× [k] s.t. g(x) = b⊕⊕m
u=1

∧k
v=1 (

⊕r
w=1 xu,v,w ⊕ bu,v) .

Given integer q ∈ N, the function MODq : {0, 1}n → {0, 1} is defined as:
MODq(x1, . . . , xn) is 0 if

∑n
i=1 xi ≡ 0 (mod q) and 1 otherwise. Let Dq denote

the distribution induced on {0, 1}n by the following sampling procedure: pick a
random b ∈ {0, 1} and choose uniformly an input x such that MODq(x) = b.

4.1 Useful Lemmas

We need the following lemma due to Chattopadhyay and Hansen [8] (which is a
refinement of a lemma due to Hastad and Goldmann [15]):

Lemma 1 (Chattopadhyay and Hansen [8]). Let g : {0, 1}n → {0, 1} be
any boolean function that is computed by an ANYt ◦SYM ◦ANDk circuit of size
M . Then, for any partition of the n input variables of g into k+1 sets, the NOF
(k + 1)-multiparty communication complexity of g is bounded by O(kt logM).

We need a corollary of a result of Babai, Nisan, and Szegedy [3], that says that
any fm,k,r-like function has low correlation with functions that have efficient
k-party NOF protocols w.r.t. a suitable variable partition. We omit the proof.

Corollary 1 (follows from [3]). Consider the variable partition X =
{xu,v,w | u ∈ [m], v ∈ [k], w ∈ [r]} into sets X1, . . . , Xk such that for each j ∈ [k],
we have Xj = {xu,j,w | u ∈ [m], w ∈ [r]}. Let P be a k-party ε-error communica-
tion complexity protocol of complexity at most 1

10 (m/4k− log(1/γ)) bits comput-
ing a boolean function h, where the jth party gets as input bits the values of the
variables in Xj. Then Corr(h, g) ≤ ε+ γ, for any function g that is fm,k,r-like.

Finally, we need a lemma due to Ajtai that allows us to simplify a small collection
of DNFs using a tree restriction of small height. Given a collection of DNFs F
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and a tree restriction T over a set of n boolean variables x1, . . . , xn, a leaf � of
T , and a J ∈ N, we say that � is J-restricting for F if for each DNF F ∈ F , the
function F |
 is a J-junta (i.e., depends only on J variables).

Lemma 2 (Ajtai [1]). Fix any collection of k-DNFs F of size M . For any
t ∈ N, there is a tree restriction T of height at most nk logM/(logn)t such that
Pr
∼μT [� is not (logn)10kt2

k

-restricting for F ] ≤ 1

2n/(210k(log n)t) .

4.2 Correlation Bounds for Polynomial-size Circuits

We now prove our main lemma, which shows that the functions defined above
have low correlation with ANYt ◦G ◦ AC0 circuits, where t is reasonably small
and G ∈ {SYM,THR,MODs}. We sketch the case of G = SYM, and defer the
others to the full version.

Lemma 3. Fix constants d ∈ N and 0 ≤ ε ≤ 1
10d . Also fix q, s ∈ N that are

relatively prime. Let c ≤ ε log log n/100 and let k = 10c/ε. Let g : {0, 1}n →
{0, 1} denote the function fn1−dε/k,k,nεd . Let C be any ANYt ◦G◦AC0 circuit of
size M ≤ nc and depth d ≥ 2 where G ∈ {SYM,THR,MODs}. Then we have:
(a) If G = SYM and t ≤ n1−2εd, then Corr(g, C) ≤ exp

{−Ωd

(
n1−2εd

)}
, (b) If

G = THR and t ≤ n0.5−2εd, then Corr(g, C) ≤ exp
{−Ωd

(
n0.5−2εd

)}
, and (c)

If G = MODs and t ≤ n1−2εd, then CorrDq (MODq, C) ≤ exp
{−Ωd

(
n1−2εd

)}
.

Proof (Sketch). The proof proceeds as follows: we iteratively simplify the circuit
C using Lemma 2 and random restrictions until we obtain a depth-3 ANYt ◦
G ◦ANDk−1 circuit (w.h.p.). Also, we argue that the function g remains “hard”
in that it contains a copy of fm′,k,r′ for a reasonably large m′ and r′ ≥ 1. We
then apply either Lemma 1 to show that the function computed by the circuit
C has an efficient k-party protocol. Then, Corollary 1 allows us to bound the
correlation between the circuit C and the restricted version of the function g.

We now describe the simplification of the circuit as a tree restriction that we
construct in d − 2 steps. At the beginning of the ith step, we will have a tree
restriction Ti (initally empty). At “most” leaves of Ti, we will have simplified
the circuit considerably — these leaves are labelled good. The remaining leaves
we will label bad. The restriction Ti will satisfy the following properties:

(P1) Pr
∼μTi
[� is bad] ≤ (i− 1) exp(Ωd(−n1−εd)).

(P2) Fix any good leaf � of Ti. There is a circuit C
 that computes the same
function as C|
 but has depth at most d + 2 − i with bottom fanin < k.
(At i = 1, we assume the circuit C has depth d+ 1 with bottom fanin 1.)
After Step d−2, C
 is a ANYt ◦G◦ANDk−1 circuit of size at most M ·2k.

(P3) For a good leaf �, let F
 denote the k-DNFs F such that either F or ¬F
(which is a k-CNF) appears as a depth-2 subcircuit of C
. We will ensure
that |F
| ≤ M at each step by never adding to the number of gates at
height 2 or more in the process of simplifying the circuit C.
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(P4) For any good leaf �, g|
 is fm�,k,r�
-like, where m
 ≥ n1−εd/k2i−1, r
 ≥

nε(d+1−i)/4i−1. Let n
 = m
kr
, the number of variables that g|
 depends
on. Note that n
 = Ωd(n

1−ε(i−1)) >
√
n for each i ∈ [d− 2].

Clearly, the inital (empty) restriction T1 satisfies all the above properties. We
now describe Step i for i ∈ [d − 2], which extends the tree restriction Ti at a
given good leaf. Fix some good leaf � of Ti. Step i has two stages:

Stage i.1: We apply Lemma 2 to circuit C
 with t = 3 and obtain a tree
restriction T of height at most n
k logM/(logn
)

3 = O(n
/ logn). We label a

leaf �′ of T bad if it is not (logn)30k2
k

-restricting for F
 (these are the only
leaves we will label bad in Step i). The tree T is such that Pr
′∼μT [�′ is bad] ≤
exp(−n
/(210k(logn
)

3)) ≤ exp(Ωd(−n1−εd)). Fix a leaf �′ of T . If �′ happens
to be bad, then we do not expand the restriction any further at �′. Other-
wise, we label �′ good and continue as follows. By renaming variables if neces-
sary, let us assume that g|
(x) = b⊕⊕m�

u=1

∧k
v=1 (

⊕r�

w=1 xu,v,w ⊕ bu,v) for some
b, bu,v ∈ {0, 1}. Since at most O(n
/ logn) variables have been set among the
input variables to g|
 at leaf �′, the fraction of u such that there are at least r
/2
many variables xu,v,w that have been set by the restriction corresponding to �
is at most O(k/ logn) ≤ 1/2: call these u over-restricted at �′. We extend the
tree restriction at �′ by setting all (so far unset) variables xu,v,w such that u is
over-restricted. Note that if u is not over-restricted, then for each v ∈ [t], there
are at least r
/2 many w such that xu,v,w has not yet been set. In particular, we
still have at least m
kr
/4 = n
/4 variables not yet set. Call the new restriction
(after having extended the restriction at each good leaf �′ as described above)
T ′. All leaves of T ′ that are descendants of good leaves of T are labelled good.

Stage i.2: We now apply a random restriction to the good leaves of T ′ to
obtain our final tree restriction T ′′ at leaf � of Ti. Fix some good leaf �′′ of T ′.
Let �′ denote the ancestor of �′′ among the leaves of T . Fix a subset S of the
surviving variables of size n
/n

ε. We say that S is good for �′′ if (a) For each
u that is not over-restricted at �′ and each v ∈ [t], the number of w such that
xu,v,w ∈ S is at least r
/4n

ε, and (b) Each F ∈ F
 is a k-junta restricted to the
variables in the set S. It is easy to see that a random S of the required size is
good for �′′ with good probability (say at least 1

2 ). We omit the standard proof.
Fix a good S. For each u that was not over-restricted at �′ and v ∈ [t], let

Xu,v denote a set of exactly r
/4n
ε variables xu,v,w ∈ S. Let S′ =

⋃
u,vXu,v.

We now apply the tree restriction T ′′ that fixes all the variables outside S′ to
all possible values. All leaves of T ′′ are labelled good. This ends Step i.

It is easy to see that properties (P1)-(P4) also hold for restriction Ti+1 ob-
tained in the manner outlined above. We just sketch the proof for Property (P2).
At steps i < d− 2, we construct the circuit C
′′ at any good leaf �′′ by writing
each F ∈ F
 (which is a k− 1 junta) as a k− 1 CNF or DNF and collapsing the
circuit C
. For i = d − 2, we can write each F as a sum of at most 2k disjoint
ANDk−1 gates and obtain a ANYt ◦G ◦ANDk−1 circuit of size at most M2k.

After Step d−2, we bound the correlation of g and C as follows. At any good
leaf � of Td−2, the function g|
 is fm′,t,r′-like on some subset of the variables,
where m′ ≥ m/2d and r′ ≥ 1. Also, at any good �, the function C|
 can be
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computed by a circuit of the form ANYt◦G◦ANDk−1 of size at most M ·2k. Since
G = SYM, Lemma 1 says that for any variable partition, the function C|
 can be
computed by a deterministic k-party protocol using at most t(k+1) log(M ·2k) =
o(m′/4k) bits of communication. Using Corollary 1, we see that Corr(C|
, g|
) ≤
exp{−Ω(m′/4k)} + exp{−Ω(m′/k4k logn)} ≤ exp{−Ωd(m/(logn)2}.

Finally, we have Corr(g, C) ≤ E
∼μTd
[Corr(g|
, C|
)] ≤ Pr
[� bad] +

E
[Corr(g|
, C|
)|� good] ≤ exp(−Ωd(n
1−εd)) + E
[Corr(g|
, C|
)|� good]. Along

with the correlation bound at good leaves, this implies that Corr(g, C) ≤
exp(−Ωd(n

1−εd))+exp{−Ωd(m/(logn)2) ≤ exp(−Ωd(n
1−ε(d+1))), which proves

the lemma when G = SYM. The cases G ∈ {THR,MODs} are identical (except
that we use either a communication protocol of Nisan [18] or a correlation bound
of Bourgain [7] in place of Lemma 1) and are omitted.

We now prove similar correlation bounds for AC0 circuits augmented with the
same number of SYM,THR, or MODs gates, but now with no restriction on
where these gates appear in the circuit. Given a gate type G (such as SYM,THR,
etc.), we denote by AC0[G, t(n)] the class of constant-depth circuits augmented
with at most t(n) gates of type G.

Theorem 6. Fix constants d ∈ N and ε > 0 such that ε ≤ 1/20d. Let g
be as defined in the statement of Theorem 3. Let C be any AC0[G, t] cir-
cuit of size at most M = nc and depth d, where c ≤ ε log logn/200 and
G ∈ {SYM,THR,MODs} for a fixed constant s ∈ N. The following hold: (a)
If G = SYM and t = o(n1−2ε(d+2)), then Corr(g, C) ≤ 2−Ωd(n1−2ε(d+2)), (b) If
G = THR and t = o(n0.5−2ε(d+2)), then Corr(g, C) ≤ 2−Ωd(n0.5−2ε(d+2)), and (c)
If G = MODs, t = o(n1−2ε(d+2)), and q a (constant) number relatively prime to
s, then CorrDq(MODq, C) ≤ 2−Ωd(n1−2ε(d+2)).

Proof. Let t denote the number of gates of type G in the circuit C. We proceed
as in [8] and [24]. We first show that the circuit C can be written as a decision
tree T of height t, where each node of the decision tree queries the value of a
G◦AC0 circuit of size at most M . The statement will then follow from Lemma 3.

Consider the following procedure that computes the output of C on a given
input x by querying the output of various G ◦ AC0 circuits on input x. Let
V1, . . . , Vt denote the G gates in the circuit C in topologically sorted order.
Without loss of generality, we assume that Vt is the output gate: otherwise, we
can always add a “dummy” G gate at the output and satisfy this property at
the expense of increasing the depth to d + 1. Query the output of gate V1 on
input x and substitute the value in the circuit. Then query the output of gate
V2 in the modified circuit, and so on. Clearly, after t queries, we can obtain the
output of the circuit on input x. This shows that we have a decision tree T of
depth t that queries functions computed by G ◦AC0 circuits of size at most M
and computes the same function as C.

Consider any accepting path p in the decision tree T . The boolean function
Cp that accepts exactly the inputs accepted by path p is computed by a ANDt ◦
G ◦ AC0 circuit of size at most Mt < nc+1 and depth at most d + 2. Since
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different paths accept disjoint sets of inputs, it is easy to see that (−1)C(x) =(∑
accepting paths p(−1)Cp(x)

)
− (N − 1), where N ≤ 2t is the total number of

accepting paths of T . Thus, for any distribution D and function f , we have

CorrD(C, f) =

∣∣∣∣ E
x∼D

[(−1)f(x) · (−1)C(x)]

∣∣∣∣
≤

∑
accepting paths p

CorrD(f, Cp) + 2t · CorrD(f, 0) (1)

where 0 represents the all-zeroes function. Since each Cp and of course also
the all-zeroes function can be computed by small ANYt ◦ G ◦ AC0 circuits of
depth at most d + 2, we can use Lemma 3 to bound the correlation of C with
our chosen hard function f . We illustrate this in the case that G = SYM; the
cases G = THR and G = MODs are almost identical and hence omitted. If G =
SYM, by Lemma 3, we have for each p, Corr(g, Cp) ≤ exp

{−Ωd

(
n1−2ε(d+2)

)}
(and similarly for the all-zeroes function). Hence, by (1), Corr(g, C) ≤ 2t+1 ·
exp

{−Ωd

(
n1−2ε(d+2)

)}
= exp

{−Ωd

(
n1−2ε(d+2)

)}
. Hence, we are done.

We note that the above theorem has some application to pseudorandom genera-
tor (PRG) constructions for AC0 circuits augmented with a few SYM and THR
gates. Though the seedlength of our generator is poorer than that obtained from
Viola’s construction [24], our construction works for a larger number of SYM
and THR gates, and also gives exponentially small error. The proof is based on
the generic construction of Nisan and Wigderson [19], and is omitted.

Corollary 2. Fix any constants d ∈ N and δ, η > 0. Assume c = c(n) =
o(log log n). Then there exist polynomial-time computable functions GSYM :

{0, 1}nδ → {0, 1}n and GTHR : {0, 1}nδ → {0, 1}n such that GSYM is a PRG
for the class of AC0[SYM, n1−η] circuits of size nc and depth d with error at
most exp{−nδ(1−η)/2} and GTHR is a PRG for the class of AC0[THR, n0.5−η]
circuits of size nc and depth d with error at most exp{−nδ(1−η)/4}.
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Clustering in Interfering Binary Mixtures
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Abstract. Colloids are binary mixtures of molecules with one type of
molecule suspended in another. It is believed that at low density typical
configurations will be well-mixed throughout, while at high density they
will separate into clusters. We characterize the high and low density
phases for a general family of discrete interfering binary mixtures by
showing that they exhibit a “clustering property” at high density and
not at low density. The clustering property states that there will be a
region that has very high area to perimeter ratio and very high density of
one type of molecule. A special case is mixtures of squares and diamonds
on Z2 which corresond to the Ising model at fixed magnetization.

Keywords: discrete colloids, Ising model, phase separation, Peierls ar-
gument, equilibrium distribution.

1 Introduction

Colloids are mixtures of two types of molecules in suspension where all non-
overlapping arrangements are equally likely. When the density of each type of
molecule is low, the mixtures are homogeneous and consequently exhibit prop-
erties that make them suitable for many industrial applications, including fogs,
gels, foods, paints, and photographic emulsions (see, e.g., [1], [11]). In contrast,
when the density is high, the two types of molecules separate whereby one type
appears to cluster together. Although this behavior is similar to phase transitions
that occur in other discrete models, such as the Ising and Potts models, here the
two types of molecules do not possess any enthalpic forces causing like particles
to attract or disparate particles to repel. In contrast, the behavior of colloids
is purely entropic — the only restriction is a “hard-core” constraint requiring
objects to remain in non-overlapping positions, and clustering occurs at high
density because the overwhelming majority of configurations in the stationary
distribution are believed to exhibit such a separation. While the experimental
study of colloids is pervasive in surface chemistry, material science, physics, and
nanotechnology, there has been little rigorous work explaining their behavior.
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Even running simulations has been challenging because local algorithms will be
slow to converge at high density. Dress and Krauth [7] introduced an algorithm
to try to overcome this obstacle, but this too was shown to require time exponen-
tial in the number of molecules in some cases [14]. Nonetheless, their algorithm
seems to be well-behaved in practice, and Buhot and Krauth [3] provided simu-
lations showing strong heuristic evidence of the presence of two distinct phases
in colloid models consisting of different sized squares.

Frenkel and Louis [9] studied an interesting discrete model of colloids whose
behavior can be related to the Ising model, a standard model of ferromagnetism.
Their model consists of mixtures of unit squares in a region of Z2 and diamonds
of area 1/2 that sit on lattice edges (see Fig. 1). They show that this colloid
model, which we call Model 1, corresponds to an Ising model, where the density
of squares fixes the magnetization and the density of diamonds determines the
temperature (see Section 2.1). The Ising model at low temperature is known
to exhibit clustering of positive spins. In fact the precise limiting shape of the
cluster known as the Wulff shape has been extensively studied using sophisticated
techniques (see, e.g. [5], or the references therein). Model 1 then inherits the
phase transition arising in the Ising model which shows there will be clustering at
high densities [13]. In this paper we study clustering using elementary methods
that apply to a large class of natural colloid models. We characterize clustering
directly in terms of the parameters arising from the model to distinguish between
the high and low phases and understand the role the density of each type of
molecule plays.

Fig. 1. Model 1, squares and diamonds on the n × n grid Ln

We consider a class of interfering binary mixtures. Let (ΛA, ΛB) be a pair
of planar lattices such that a face of ΛA and a face of ΛB are either disjoint,
intersect at a single vertex, or intersect at a simply-connected region that is
isomorphic to a fixed shape s with nonzero area. For example, in Model 1, ΛA
is the Cartesian lattice Z2 and ΛB is the set of diamonds bisected by edges in Z2;
then s is an isosceles triangle with unit base and height 1/2 (Fig. 1). We consider
the intersection of these lattices with some finite region L, where LA = ΛA ∩ L
and LB = ΛB ∩ L. We are given a set of tiles; A-tiles lie on the faces of LA and
B-tiles lie on the faces of LB with the additional requirement that tiles must not
overlap. In Section 5, we will give examples of other interfering binary mixtures,
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including independent sets, that arise naturally in combinatorics and statistical
physics and contrast these with a non-interfering binary mixture that provably
does not exhibit clustering.

It is often useful to switch from a model where the number of tiles of each
type are fixed to a so-called grand canonical ensemble where these are allowed to
vary. Here, however, typical configurations would have a preponderance of only
one type of tile at most high densities and the balanced configurations we are
interested in would be exponentially unlikely. Instead, we fix the number of A-
tiles and allow the B-tiles to vary stochastically. Each configuration σ has weight
proportional to λd(σ), where d(σ) is the number of B-tiles in σ. The choice of λ
controls the expected density of B-tiles.

Our goal now is to understand when clustering occurs in terms of the (ex-
pected) density of each type of tile. First we define a clustering property for con-
figurations of tiles. Informally we have clustering if there exists a dense region R
in ΛA with Ω(n2) area and O(n) perimeter. Our main theorems demonstrate
that at high density interfering binary mixtures exhibit the clustering property
while at low densities they do not. We give precise definitions of the clustering
property and state the main theorems in Section 2. In Sections 3 and 4 we prove
the two main theorems in the context of Model 1 and in Section 5 we explain
the generalization to other interfering binary mixtures.

The key tools in our proofs are careful Peierls arguments, used in statistical
physics to study uniqueness of the Gibbs state and phase transitions (see, e.g.,
[4], [6]), and in computer science to study slow mixing of Markov chains (see,
e.g., [2], [10], [15]). Peierls arguments allow you to add and remove contours
by complementing the interiors of those contours. The main challenge here is
maintaining the number of A-tiles, making the arguments considerably more
difficult. We introduce the concept of bridge systems, to handle multiple con-
tours by connecting components and make it possible to efficiently encode the
boundaries of all contours removed. The encoding is necessary to account for the
entropy/energy tradeoffs in these maps.

2 Binary Mixtures and the Clustering Property

We begin by formalizing the model, defining clustering and stating our main
theorems.

2.1 Interfering Binary Mixtures

Recall A-tiles lie on faces of LA = ΛA ∩ L and |LA| is the total number of
faces of LA. Given constants λ > 1, and 0 < b < 1/2, where b|LA| ∈ Z, define
Ω = Ω(b, λ) as the set of non-overlapping packings of L with b|LA| A-tiles and
any number of B-tiles (where a tile can only be placed on a face of its type).
We wish to study the distribution π(ρ) = λd(ρ)/Z, where d(ρ) is the number of
B-tiles in ρ and Z =

∑
ρ∈Ω λ

d(ρ) is a normalizing constant. Our goal is to deter-
mine whether a configuration chosen according to π is likely to have clusters of
A-tiles.
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In Sections 2 - 4, we study Model 1, and in Section 5, we generalize the tech-
niques to other models of interfering binary mixtures. We start by defining the
Ising model on the n×n grid Ln and explaining the equivalence with Model 1.

Let G = (V ,E) be the dual lattice region to Ln and let ρ ∈ {+,−}V be an
assignment of spins to each of the vertices in V (i.e., the faces in V ). The weight

of a configuration is π(ρ) = eβ|Ed(ρ)|/Z, where Ed(ρ) ⊆ E is the set of edges in
G whose endpoints have different spins in ρ, β is inverse temperature and Z is
the normalizing constant.

For Model 1, given a configuration ρ in Ω, let the square structure Γ (ρ) be
the configuration σ obtained from ρ by removing all of its B-tiles (diamonds). We

consider the set Ω̂ of all such square structures with bn2 A-tiles (squares). Let π̂

be the induced distribution on Ω̂; that is, for σ ∈ Ω̂, let π̂(σ) =
∑

ρ∈Γ−1(σ) π(ρ).

For σ in Ω or Ω̂, define the perimeter of σ to be the edges that belong to exactly
one A-tile in σ, and define κ(σ) as the length of the perimeter of σ. Let e(σ) be
the number of edges that are not incident to any A-tile in σ. We find that

π̂(σ) =

e(σ)∑
k=0

λk

Z

(
e(σ)

k

)
=

1

Z
(1 + λ)e(σ) = (1 + λ)2n

2−2bn2 μκ(σ)

Z
, (1)

where μ = (1+λ)−
1
2 . Thus, the total perimeter of the square structure completely

determines the probability that it will show up in Ω. This directly implies the
equivalence with the Ising Model: give a face f of Ln a positive spin if there is an
A-tile on f and a negative spin otherwise. Since the weight of a configuration is
determined exactly by the number of edges with opposite spins in Ln, this is the
Ising model with a fixed number of positive spins for some λ that is a function
of β, known as fixed magnetization.

2.2 The Clustering Property

The goal of this paper is to show that when the density of B-tiles is high, in-
terfering binary mixtures cluster, while at low density they do not. First, we
characterize clustering in this context. Intuitively, a configuration has the clus-
tering property if there is a large region densely filled with A-tiles. More precisely,
let a region R be any set of faces in Ln. Its perimeter, κ(R) is the number of
edges adjacent to a face in R and a face in R = Ln \R. Let c = min

{
b
2 ,

1
100

}
.

Definition 1. We say that a configuration σ ∈ Ω (or Γ (σ) ∈ Ω̂) has the clus-
tering property if it contains a region R which satisfies the following properties:

1. R contains at least (b− c)n2 A-tiles,
2. the perimeter of R is at most 8

√
b n, and

3. the density of A-tiles in R is at least 1− c and in R is at most c.

If a configuration has the clustering property, we show that it contains an n1/3×
n1/3 window with high density and one with low density, demonstrating the
heterogeneity of the configuration. In Section 5.2 we contrast this with Model 4,
related to bond percolation, which remains homogeneous at all densities.
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2.3 Main Results

We show that at high density interfering binary mixtures have the clustering
property while at low densities they do not. Specifically, we prove the following
theorems in the context of Model 1 on the n × n region Ln with bn2 A-tiles
and the density of B-tiles determined by λ. In Section 5, we show they also hold
for other interfering binary mixtures.

Theorem 1. For 0 < b ≤ 1/2, there exist constants λ∗ = λ∗(b) > 1, γ1 < 1 and
n1 = n1(b) such that for all n > n1, λ ≥ λ∗ a random sample from Ω will have
the clustering property with probability at least (1− γ1

n).

Theorem 2. For 0 < b < 1/2, there exist constants λ∗ = λ∗(b) > 0, γ2 < 1 and
n2 = n2(b) such that for all n > n2, λ ≤ λ∗ a random sample from Ω will not
have the clustering property with probability at least (1− γ2

n).

Furthermore, it follows from the proofs that at low density if a dense region R′

has area Ω(n2) then it must have perimeter Ω(n2). Notice that in the case
b > 1/2 we can obtain comparable results by the symmetry of the A-tiles to
the empty space. Indeed, in this case if λ is sufficiently high we will see empty
cells clustering within a sea of A-tiles and for low density the empty cells will be
well-distributed.

Note that since clustering is just a property of the A-tiles, it suffices to prove
Theorems 1 and 2 for weighted square structures Ω̂, involving just the A-tiles.
From this point we focus on Ω̂, and we refer to A-tiles just as tiles.

3 High Density of B-tiles

We concentrate first on interfering binary mixtures at high density to prove
Theorem 1. Define Ψ ⊂ Ω̂ to be the set of configurations that have the clustering
property; then we show that π̂(Ω̂ \ Ψ) ≤ γn1 π̂(Ψ) for some constant γ1 < 1. To

achieve this, we apply a Peierls argument, in which we define a map f : Ω̂\Ψ → Ψ
and show that for all τ ∈ Ψ , ∑

σ∈f−1(τ)

π̂(σ) ≤ γn1 π̂(τ). (2)

Given a configuration σ ∈ Ω̂\Ψ , the map f removes a large set T of tiles in σ and
reassembles them in a single large component in f(σ). This decreases the total
perimeter of the configuration significantly, and therefore π̂(f(σ)) is exponen-
tially larger than π̂(σ). The challenge is to bound the number of configurations
that map to a given τ ∈ Ψ by carefully encoding the preimages of τ .

Some definitions will be helpful. We say two tiles are adjacent if their borders
share an edge. A component is a maximal connected set of tiles, and maximal
connected segments of the perimeter of σ are contours. The set T of tiles we
remove will be a union of components, which we identify using a system of
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“bridges” connecting these components (Fig. 2). The key is that the number
of edges in the bridges is at most a constant times the total perimeter of the
components bridged. Then if E is the set of all edges in bridges or along contours
bridged, we can bound |f−1(τ)| by the number of ways that those E edges could
be distributed in σ. Finally, we show that there is a sparse, roughly square region
in the resulting configuration where we can add the T tiles. We complement that
region to obtain f(σ).

→

Fig. 2. A configuration σ ∈ Ω̂ \ Ψ and the image f(σ) of σ in Ψ

Building Bridges. Given a region R, let C(R) be the set of contours fully
contained within the interior of R and define the outer contours to be those
in C(R) that are not contained in the interior of other contours in C(R). The
interior of the outer contours of components are called holes and the interior of
the outer contours of holes are called islands.

Consider first the case in which there are no components with holes. Sup-
pose B is a set of edges of Ln connecting some subset S of the contours to the
boundary of Ln. We call B a set of bridges and S a set of bridged contours. A
cell in Ln or a tile is called unbridged if it is not bounded by a bridged contour.
Then (B,S) is a c-bridge system for σ ∈ Ω̂ if the number of unbridged tiles
is at most c times the number of unbridged cells, and |B| ≤ (1 − c)/(2c)κ(S).
If σ has components with holes, then first construct a c-bridge system (B,S)
for σ′, obtained from σ by filling all the holes. Next for each bridged contour X
in σ, construct a c-bridge system for the region bounded by X (treating tiles as
empty cells and empty cells as tiles). Recurse until you obtain c-bridge systems
for each bridged contour at every level of the recursion. We call this a c-bridge
system of σ. We defer the details to the full version of the paper.

Lemma 1. There exists a c-bridge system for any configuration σ ∈ Ω̂.

Proof. We may assume that σ has no holes, since otherwise we recurse as de-
scribed above. Now we use induction on the number of contours in R. If there are
no contours, then clearly (∅, ∅) is a c-bridge system for R. Otherwise, define t(R)
to be the tiles in R, and x(R) is the number of empty cells in R. Let H be the
set of horizontal lines through R. For every H ∈ H, if |t(R)∩H | < c|R∩H | then
we are done, since then (∅, ∅) is a c−bridge system for R. Otherwise there exists
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a horizontal line H such that |t(R) ∩H | ≥ c|R ∩H |. Then let B be the set of
bottom edges of every outer cell in H ∩R. See Fig. 3, where the dark black edges
along the line H are the new bridges. Let S be the set of contours connected in
this step. We know that κ(S) ≥ 2|t(R)∩H | ≥ 2c |R∩H | ≥ 2c/(1−c)|x(R)∩H |,
so |B| ≤ (1− c)/(2c)κ(S). We obtain R′ from R by removing the cells bounded
by a contour in S, as in Fig. 3. Then by induction, there exists a c−bridge system
(B′, S′) of R′. Then B̂ := B ∪B′ is a set of bridges connecting the contours in

Ŝ = S ∪ S′ to each other and to the boundary of R. Moreover, |B̂| ≤ 1−c
2c κ(Ŝ)

and the number of unbridged tiles is at most c times the number of unbridged
cells. Hence (B̂, Ŝ) is a c-bridge system for R. ��

H →
Fig. 3. Before and after one step of the construction of a c-bridge system for a region
R; the solid lighter grey area is exterior to R

Once we have a c-bridge system, we can apply a map in which we complement
an entire region of cells, making tiled cells empty and vice versa. This map sig-
nificantly reduces the perimeter, but can dramatically change the total number
of tiles. Recall we must maintain the total number of tiles, so we may need to
supplement by adding extra tiles from another region or we may have extra tiles,
which we will put in our “bank” for later. At the end of the process we will find
a roughly square region that we can again complement using the bank of extra
tiles so that the total number of tiles is restored to bn2 at minimal cost.

Finding a Sparse Box. We now show that after removing all but cn2 tiles,
there exists a region of low density where we can place the tiles in our bank.

Lemma 2. For (b − c)n2 ≤ a < bn2, there exists a constant n3 = n3(b) such
that for all n ≥ n3, if ρ is a configuration with at most cn2 tiles then ρ contains
a roughly square region R′ such that complementing R′ requires a additional tiles
and the change in total perimeter is at most 5

√
a.

Proof. Given a region R, let d(R) denote the number of tiles needed to comple-
ment R; this is exactly the area of R minus twice the number of tiles in R. Let
l = �√8a/7�. First we show that there exists a square l × l region R such that

d(R) ≥ a. Assume that such a square does not exist. Divide the grid into
⌊
n
l

⌋2

disjoint squares with side length l and consider any square. Let t be the number
of tiles in the square. The empty volume is at least l2 − t. By assumption each

square satisfies l2−t < t+a, and so t > l2−a
2 . In particular, 8a/7 ≤ l2 < a+2cn2,
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so we may assume that a < 14cn2. This implies that l ≤√
8a/7+1 ≤ 1+4

√
cn.

However, if T is the total number of tiles,

cn2 ≥ T >
⌊n
l

⌋2 l2 − a
2
≥ n2

2

(
1− l

n

)2 (
1− a

l2

)
>
n2

(
1− 1

n − 4
√
c
)2

16
≥ cn2,

since c ≤ 1
65 and n ≥ n3, a contradiction. Therefore there exists an l× l square R

such that d(R) ≥ a. Remove cells from R one at a time, starting with the bottom
row of R and moving across, until we obtain a region R′ ⊆ R with d(R′) = a.
This can be done because removing one cell at a time changes d by at most 1.
This region R′ is roughly square and has perimeter at most 4

√
8a/7 < 5

√
a. ��

The Proof of Theorem 1. Finally we can prove Theorem 1, showing that
for large λ a typical configuration will have the clustering property.

Fig. 4. A c-bridge system for σ ∈ Ω̂ \ Ψ ; the image f1(σ); and f(σ) = f2 ◦ f1(σ)

Proof of Theorem 1. Let σ ∈ Ω̂ \ Ψ . Construct a c-bridge system (B,S) for Ln
as described in Lemma 1. That is, (B,S) is a set of bridges in Ln connecting
some of the components, some of the holes within those components, some of
the islands within those holes, etc. For any bridged contour X , let r(X) be the
region bounded by X . If r(X) is a component with holes, then we remove all
outer tiles of r(X) and complement all unbridged holes in X , using a subset
of the tiles removed to fill in the holes. If r(X) is a hole with islands, then we
leave all of the unbridged islands alone. At this point, after complementing some
number of regions, we have a bank of extra tiles; let a be the number of tiles in
the bank. Notice that by the definition of a c-bridge system, the density of tiles
remaining is at most c, so a ≥ (b− c)n2.

Let f1(σ) be obtained from σ by removing the bridged components and com-

plementing as described above. Let F1 be the image of f1 on Ω̂ \ Ψ ; note that

F1 ⊂ Ω̂ since the configurations in F1 have too few tiles. Let κ be the total
perimeter of all contours bridged. Then for any ρ ∈ F1, we claim that the num-
ber of preimages of ρ whose bridged contours have total perimeter κ is at most
5c3 for c3 = (1+ 1−c

2c + 1
c2

)κ. Consider the c-bridge system obtained above for Ln.
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Let V denote the leftmost vertical edges of the region. Let S′ = S ∪ V . We per-
form what is essentially a depth-first-search traversal of the bridge system on S′,
starting at the top left corner of Ln. As we traverse an edge we record what type
of edge it was using five bits that represent forward, left, right, bridge east, or
bridge west (see full version for details). Given the encoded information, there
is a unique way to distribute the contours. Hence for all perimeters κ ≥ c2n the
number of preimages of ρ whose bridged contours have total perimeter κ is at
most 5|B|+κ+n ≤ 5c3 . Therefore |f−1

1 (ρ)| ≤∑
κ≥c2n 5c3 .

Let ρ ∈ F1 with bn2 − a tiles. Lemma 2 shows how to find a region S′ in ρ
to complement using the a tiles from the bank to obtain τ in such a way that
κ(τ)− κ(ρ) ≤ 5

√
a. Let f2(ρ) = τ and f = f2 ◦ f1. We can encode the boundary

of S′ with n23κ(S′) ≤ n235
√
a information. Hence for any τ ∈ Ψ ,

|f−1(τ)| ≤ n235
√
a max
ρ∈f−1

2 (τ)
|f−1

1 (ρ)|.

Let σ ∈ Ω̂ \ Ψ , and as above let κ be the total perimeter of components
bridged in σ (recall κ(σ) is the total perimeter of all contours in σ). If κ ≤ 8

√
a,

then σ ∈ Ψ , a contradiction. To see this, define the parity of a cell to be 1
if it is contained within an odd number of bridged contours and 0 otherwise,
and let R be the set of cells with parity 1. Then R has density at least 1 − c,
perimeter at most 8

√
a and a ≥ (b − c)n2 tiles. Moreover, R has density at

most c. Thus R is the region we require, and so σ ∈ Ψ . This implies κ > 8
√
a.

We have shown that κ(σ) − κ(f(σ)) > κ − 5
√
a > κ/4. Let τ ∈ Ψ and

define f−1
κ (τ) ≤ n2

(
3

1
2
√

7 5
1+ 1−c

2c + 1
16

√
b

)κ
to be the set of configurations with

perimeter κ that map to τ . Then

π(τ)−1
∑

σ∈f−1(τ)

π(σ) ≤
∑

σ∈f−1(τ)

μκ(σ)−κ(f(σ)) ≤
2n2∑

κ=8
√
a

μκ/4|f−1
κ (τ)| ≤ γn1 ,

for some γ1 < 1, if μ ≤ μ∗ <
(
3

1
2
√

7 5
1+ 1−c

2c + 1
16

√
b

)−4

. Thus the theorem holds if

λ ≥ λ∗ = μ∗−2 − 1. ��
As a corollary, we find that if a configuration has the clustering property then
there exists an n1/3 × n1/3 window with high density and one with low density.
We defer this straightforward proof to the full version of the paper.

Corollary 1. For 0 < b ≤ 1/2 there exists a constant n4 = n4(b) such that for
all n > n4, if σ satisfies the clustering property then σ contains square n1/3×n1/3

windows W1 and W2 such that the density of tiles in W1 is at least .99(1 − c)
and the density of tiles in W2 is at most 2.1c.

4 Low Density of B-tiles

We now examine the low density case and prove Theorem 2, stating that typical
configurations will not have the clustering property. For small enough λ, the
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A-tiles will be well-distributed throughout Ln, in the following sense. Any large
dense region must have perimeter on the order of n2.

Proof of Theorem 2. Define δ = ((1 − c)/(b − c))b−c. Let Ψ ′ ⊂ Ω̂ be the set of
configurations with a region R that have density at least 1− c, at least (b− c)n2

tiles, and perimeter less than αn2, where α satisfies 0 < α < (ln(δ)−b ln 2)/((1+
1/c) ln 5). We will show π̂(Ψ ′) is exponentially small. Clearly Ψ ⊂ Ψ ′, so this
implies that the clustering property is exponentially unlikely to occur.

For each σ ∈ Ψ ′, construct a c-bridge system for σ. As in the proof of Theo-
rem 1, we complement all bridged components and all non-bridged holes within
those components. We obtain f1(σ), which has tσ ≤ cn2 tiles, and a bank
of aσ ≥ (b − c)n2 tiles. Next we define N(σ) to be the set of all configura-
tions obtained from f1(σ) by adding aσ tiles back at any empty location; then

|N(σ)| = (
n2−tσ
aσ

)
. For each τ ∈ Ω̂, we need to bound the number of configura-

tions σ such that τ ∈ N(σ). As before, we can reconstruct the bridge system
for σ with 5(1+ 1−c

2c )κ+n information and we can recover the original with 2bn
2

information by recording whether each tile moved. Hence the number of σ that

map to τ is at most 5(1+ 1−c
2c )αn2+n2bn

2 ≤ (2bδ)n
2/2 for large enough n.

Finally, we define a weighted bipartite graph G(Ψ ′, Ω̂, E) with an edge of

weight π(σ) between σ ∈ Ψ ′ and τ ∈ Ω̂ if τ ∈ N(σ). The total weight of edges is

∑
σ∈Ψ ′

π(σ)|N(σ)| ≥
∑
σ∈Ψ ′

π(σ)

(
n2 − (bn2 − aσ)

aσ

)
≥ π(Ψ ′)δ−n

2
.

However, the weight of the edges is at most
∑

τ∈Ω̂ π(τ)μ−4(b−c)n2
(2bδ)n

2/2. Let

μ∗ = (2b/δ)1/(8(b−c)) and λ∗ = (μ∗)−2 − 1. Thus for all μ < μ∗,

π(Ψ ′) < μ−4(b−c)n2
(2bδ)n

2/2δ−n
2
< γn2 ,

for some γ2 < 1, completing the proof. ��

5 Other Models

We conclude by considering other natural models of binary mixtures and showing
that Theorems 1 and 2 still hold for the interfering models.

5.1 Interfering Binary Mixtures

Model 2: A-tiles are squares on Ln and B-tiles are unit squares centered on
vertices of Ln, (see Fig. 5(a)). It is not hard to see that this model corre-
sponds exactly to an independent set model on the rotated grid where vertices
correspond to the centers of A-tiles and B-tiles, and the number of even vertices
is fixed. The number of odd vertices varies according to λ. Again the A-tiles
will cluster together at high enough λ, leaving large regions to fill with B-tiles.
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The weight of a configuration σ is proportional to λv, where v is the number
of vertices in σ not intersecting any A-tiles (we call these open vertices). Hence
we must argue that by removing several components and putting them together
into a single large component, the number of open vertices increases. Indeed,
the number of open vertices is proportional to the length of the perimeter, so
this can be carried out. One must be careful, however, to define a component so
that two tiles are adjacent if they share a vertex (not an edge). Otherwise, if a
region looks like a checkerboard of tiles to empty space, and we remove every
other row to create a new component, we decrease the perimeter but increase the
number of occupied vertices. This cannot happen as long as we choose maximal
connected subsets of tiles according to this definition of adjacency.

(a) (b) (c) (d)

Fig. 5. (a) Model 2 (b) Model 3 (c) Model 4 (d) Model 4 and bond percolation

Model 3: A-tiles are triangles on the triangular lattice ΛA and B-tiles are
lozenges bisected by edges of ΛA, (see Fig. 5(b)). Model 3 maps bijectively
onto an Ising Model with fixed magnetization on ΛA. In models like this, where
the A-tiles are not square, the large component we create for Theorem 1 might
not be square, but some other shape with large area to perimeter ratio, such as
a hexagon in this context. The remaining details are similar.

5.2 Noninterfering Binary Mixtures

Model 4: A-tiles are unit squares on Ln and B-tiles are squares of side length
1/2 on the half-integer lattice, (see Fig. 5(c)). This model is qualitatively
different from the previous models since the placement of the A-tiles does not
influence the number of places in which we can put the B-tiles. In fact, this
model is just bond percolation on a rotated grid with a fixed number of edges,
where we do not expect clustering at any density. To see the bijection, label a
unit square with a Northwest-Southeast diagonal if it lies on an even face and
label it with a Northeast-Southwest diagonal otherwise, as in Fig. 5(d). Notice
that these lines form a subset of the edges of a rotated grid. If we have bn2

A-tiles then each edge in the rotated grid is present with probability b. To
illustrate the difference between the behavior of Model 4 and the interfering
binary mixtures, consider an n1/3 × n1/3 window in each. In Model 4, the
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probability that any n1/3×n1/3 box has density d such that d > 1.5b or d < 0.5b is
less than γn3 for some constant γ3 < 1 (see the full version for details). In contrast
by Corollary 1, a configuration with the clustering property has a window with
density d ≥ .99(1−c) and a window with density d ≤ 2.1c. Hence we see markedly
different behavior between interfering and non-interfering binary mixtures.
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16. Rodŕıguez-Guadarrama, L., Talsania, S., Mohanty, K., Rajagopalan, R.: Mixing
Properties of Two-Dimensional Lattice Solutions of Amphiphiles. J. of Colloid and
Interface Science 224, 188–197 (2001)



Approximating the Influence of Monotone Boolean
Functions in O(

√
n) Query Complexity

Dana Ron�, Ronitt Rubinfeld��, Muli Safra���, and Omri Weinstein†

Abstract. The Total Influence (Average Sensitivity) of a discrete function is one
of its fundamental measures. We study the problem of approximating the total
influence of a monotone Boolean function f : {0, 1}n → {0, 1}, which we
denote by I [f ]. We present a randomized algorithm that approximates the influ-
ence of such functions to within a multiplicative factor of (1 ± ε) by performing

O
(√

n log n
I[f ]

poly(1/ε)
)

queries. We also prove a lower bound of Ω
( √

n
log n·I[f ]

)
on the query complexity of any constant-factor approximation algorithm for this
problem (which holds for I [f ] = Ω(1)), hence showing that our algorithm is
almost optimal in terms of its dependence on n. For general functions we give a

lower bound of Ω
(

n
I[f ]

)
, which matches the complexity of a simple sampling

algorithm.

1 Introduction

The influence of a function, first introduced by Ben-Or and Linial [2] in the context of
“collective coin-flipping”, captures the notion of the sensitivity of a multivariate func-
tion. More precisely, for a Boolean function f : {0, 1}n → {0, 1}, the individual influ-

ence of coordinate i on f is defined as Ii[f ] def= Prx∈{0,1}n [f(x) = f(x(⊕i))], where x

is selected uniformly1 in {0, 1}n and x(⊕i) denotes x with the ith bit flipped. The total
influence of a Boolean function f (which we simply refer to as the influence of f ) is
I[f ] =

∑
i Ii[f ].

The study of the influence of a function and its individual influences (distribution)
has been the focus of many papers – for a survey see [12]. The influence of functions has
played a central role in several areas of computer science. In particular, this is true for
distributed computing (e.g., [2,17]), hardness of approximation (e.g., [9,18]), learning
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theory (e.g., [13,6,24,8])2 and property testing (e.g., [10,4,5,22,26]). The notion of
influence also arises naturally in the context of probability theory (e.g., [27,28,3]), game
theory (e.g., [20]), reliability theory (e.g., [19]), as well as theoretical economics and
political science (e.g., [1,15,16]).

Given that the influence is such a basic measure of functions and it plays an impor-
tant role in many areas, we believe it is of interest to study the algorithmic question of
approximating the influence of a function as efficiently as possible, that is by querying
the function on as few inputs as possible. Specifically, the need for an efficient approx-
imation for a function’s influence might arise in the design of sublinear algorithms, and
in particular property testing algorithms.

As we show, one cannot improve on a standard sampling argument for the problem of
estimating the influence of a general Boolean function, which requires Ω( n

I[f ] ) queries

to the function, for any constant multiplicative estimation factor.3 This fact justifies the
study of subclasses of Boolean functions, among which the family of monotone func-
tions is a very natural and central one. Indeed, we show that the special structure of
monotone functions implies a useful behavior of their influence, making the computa-
tional problem of approximating the influence of such functions significantly easier.

Our Results and Techniques. We present a randomized algorithm that approximates
the influence of a monotone Boolean function to within any multiplicative factor of

(1 ± ε) in O
(√

n logn
I[f ] poly(1/ε)

)
expected query complexity. We also prove a nearly

matching lower bound of Ω
( √

n
logn·I[f ]

)
on the query complexity of any constant-factor

approximation algorithm for this problem (which holds for I[f ] = Ω(1)).
As noted above, the influence of a function can be approximated by sampling random

edges (i.e., pairs (x, x(⊕i)) that differ on a single coordinate) from the {0, 1}n lattice.
A random edge has probability I[f ]

n to be influential (i.e, satisfy f(x) = f(x(⊕i))), so a
standard sampling argument implies that it suffices to ask O( n

I[f ]poly(1/ε)) queries in

order to approximate this probability to within (1± ε).4

In order to achieve better query complexity, we would like to increase the probability
of hitting an influential edge in a single trial. The algorithm we present captures this
intuition, by taking random walks down the {0, 1}n lattice, and then averaging the total
number of influential edges encountered in all walks over the number of walks taken.
The crucial observation on which the algorithm relies, is that a monotone function can
have at most one influential edge in a single path, and thus it is sufficient to query

2 Here we referenced several works in which the influence appears explicitly. The influence of
variables plays an implicit role in many learning algorithms, and in particular those that build
on Fourier analysis, beginning with [21].

3 If one wants an additive error of ε, then Ω((n/ε)2) queries are necessary (when the influence
is large) [23].

4 We also note that in the case of monotone functions, the total influence equals twice the
sum of the Fourier coefficients that correspond to singleton sets {i}, i ∈ {1, . . . , n}. There-
fore, it is possible to approximate the influence of a function by approximating this sum,

which equals 1
2n ·

∑n
i=1

(∑
x∈{0,1}n:xi=1 f(x) −

∑
x∈{0,1}n:xi=0 f(x)

)
. However, the

direct sampling approach for such an approximation again requires Ω(n/I [f ]) samples.
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only the start and end points of the walk to determine whether any influential edge was
traversed.

Before continuing the technical discussion concerning the algorithm and its analysis,
we make the following more conceptual note. Random walks have numerous applica-
tions in Computer Science as they are an important tool for mixing and sampling almost
uniformly. In our context, where the walk is performed on the domain of an unknown
function, it is used for a different purpose. Namely, by querying only the two endpoints
of a random walk (starting from a uniformly sampled element) we (roughly) simulate
the process of taking a much larger sample of elements.5

The main issue that remains is determining the length of the walk, which we denote
by w. Let pw(f) denote the probability that a walk of length w (down the lattice and
from a uniformly selected starting point) passes through some influential edge.6 We are
interested in analyzing how pw(f) increases as a function of w. We show that for w that
is O(ε

√
n/ logn), the value of pw(f) increases almost linearly with w. Namely, it is

(1 ± ε) · wn · I[f ]. Thus, by taking w to be Θ(ε
√

n/ logn) we get an improvement by
a factor of roughly

√
n on the basic sampling algorithm. We note though that by taking

w to be larger we cannot ensure in general the same behavior of pw(f) as a function of
w and I[f ], since the behavior might vary significantly depending on f .

The way we prove the aforementioned dependence of pw(f) on w is roughly as fol-
lows. For any edge e in the Boolean lattice, let pw(e) denote the probability that a walk
of length w (as defined above) passes through e. By the observation made previously,
that a monotone function can have at most one influential edge in a given path, pw(f)
is the sum of pw(e), taken over all edges e that are influential with respect to f . For our
purposes it is important that pw(e) be roughly the same for almost all edges. Otherwise,
different functions that have the same number of influential edges, and hence the same
influence I[f ], but whose influential edges are distributed differently in the Boolean lat-
tice, would give different values for pw(f). We show that for w = O(ε

√
n/ logn), the

value of pw(e) increases almost linearly with w for all but a negligible fraction of the
influential edges (where ‘negligible’ is with respect to I[f ]). This implies that pw(f)
grows roughly linearly in w for w = O(ε

√
n/ logn).

To demonstrate the benefit of taking walks of length O(
√

n), let us consider the
classic example of the Majority function on n variables. Here, all influential edges are
concentrated in the exact middle levels of the lattice (i.e, all of them are of the form
(x, x(⊕i)) where the Hamming weight of x is �n/2� or �n/2�). The probability, pw(e),
of a walk of length w passing through an influential edge e is simply the probability
of starting the walk at distance at most w above the threshold n/2. Thus, taking longer
walks allows us, so to speak, to start our walk from a higher point in the lattice, and
still hit an influential edge. Since the probability of a uniformly chosen point to fall in
each one of the the first

√
n levels above the middle is roughly the same, the probability

of hitting an influential edge in that case indeed grows roughly linearly in the size

5 We also note that the relation between edges and certain paths that pass through them arises
in the context of Markov Chains when using the canonical paths method (see e.g. [14, Chap.
5]).

6 For technical reasons we actually consider a slightly different measure than pw(f), but we
ignore this technicality in the introduction.
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of the walk. Nevertheless, taking walks of length which significantly exceeds O(
√

n)
(say, even Ω(

√
n · log(n))) would add negligible contribution to that probability (as

this contribution is equivalent to the probability of a uniformly chosen point to deviate
Ω(

√
n · log(n)) levels from the middle level) and thus the linear dependence on the

length of the walk is no longer preserved.

2 Preliminaries

In the introduction we defined the influence of a function as the sum, over all its
variables, of their individual influence. An equivalent definition is that the influence
of a function f is the expected number of sensitive coordinates for a random input
x ∈ {0, 1}n (that is, those coordinates i for which f(x) = f(x(⊕i))).

It will occasionally be convenient to view f as a 2-coloring of the Boolean lat-
tice. Under this setting, any “bi-chromatic” edge, i.e, an edge (x, x(⊕i)) such that
f(x) = f(x(⊕i)), will be called an influential edge. The number of influential edges
of a Boolean function f is 2n−1 · I[f ].7

We consider the standard partial order ‘≺’ over the (n-dimensional) Boolean lattice.
Namely, for x = (x1, ..., xn), y = (y1, ..., yn) ∈ {0, 1}n, we use the notation x ≺ y
to mean that xi ≤ yi for every 1 ≤ i ≤ n, and xi < yi for some 1 ≤ i ≤ n. A
Boolean function f : {0, 1}n → {0, 1} is said to be monotone if f(x) ≤ f(y) for
all x ≺ y. A well known isoperimetric inequality implies that any monotone Boolean
function satisfies I[f ] = O(

√
n) (see [11] for a proof). This bound is tight for the

notable Majority function.
In this paper we deal mainly with monotone Boolean functions that have at least

constant Influence (i.e, I[f ] ≥ c, for some c ≥ 0), since the computational problem we
study arises more naturally when the function has some significant sensitivity. As shown
in [17], the influence of a function is lower bounded by 4 ·Pr[f(x) = 1] ·Pr[f(x) = 0],
and so our analysis holds in particular for functions that are not too biased (relatively
balanced, i.e., Pr[f(x) = 1] and Pr[f(x) = 0] do not differ by much).

Notations. We use the notation f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(g(n))).
Similarly, f(n) = Ω̃(g(n)) if f(n) = Ω(g(n)/polylog(g(n))).

3 The Algorithm

As noted in the introduction, we can easily get a (1± ε)-factor estimate of the influence

with high constant probability by uniformly sampling Θ
(

n
I[f ] · ε−2

)
pairs (x, x(⊕i))

(edges in the Boolean lattice), querying the function on these pairs, and considering
the fraction of influential edges observed in the sample. We refer to this as the direct
sampling approach. However, since we are interested in an algorithm whose complexity

7 To verify this, observe that when partitioning the Boolean lattice into two sets with respect to
a coordinate i, we end up with 2n−1 vertices in each set. The individual influence of variable
i, Ii[f ], is the fraction of the “bi-chromatic” edges among all edges crossing the cut. Since
I [f ] =

∑n
i=1 Ii[f ] we get that the total number of influential edges is 2n−1 · I [f ].
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Algorithm 1: Approximating the Influence (given ε, δ and oracle access to f )

1. Set ε̃ = ε/4, w = ε̃
√

n

16
√

2 log( 2n
ε̃

)
, s∗ = 1

2

√
2n log( 2n

ε̃
), and t =

96 ln ( 2
δ
)

ε2
.

2. Initialize α ← 0, m ← 0, and Î ← 0.
3. Repeat the following until α = t:

(a) Perform a random walk of length w down the {0, 1}n lattice from a uniformly chosen
point v with a cut-off at n/2 − s∗ − 1, and let u denote the endpoint of the walk.

(b) If f(u) 
= f(v) then α ←− α + 1.
(c) m ← m + 1

4. Î ← n
w
· t

m

5. Return Î.

Fig. 1. The algorithm for approximating the influence of a monotone function f

is
√
n

I[f ] ·poly(1/ε) we take a different approach. To be precise, the algorithm we describe

works for ε that is above a certain threshold (of the order of
√

log n/n). However, if

ε is smaller, then n
I[f ] · ε−2 is upper bounded by

√
n

I[f ] · poly(1/ε), and we can take the

direct sampling approach. Thus we assume from this point on that ε ≥ c
√

log n/n, for
some sufficiently large constant c.

As discussed in the introduction, instead of considering neighboring pairs, (x, x(⊕i)),
we consider pairs (v, u) such that v # u and there is a path down the lattice of length
roughly ε

√
n between v and u. Observe that since the function f is monotone, if the

path (down the lattice) from v to u contains an influential edge, then f(v) = f(u), and
furthermore, any such path can contain at most one influential edge. The intuition is
that since we “can’t afford” to detect influential edges directly, we raise our probability
of detecting edges by considering longer paths.

In our analysis we show that this intuition can be formalized so as to establish the
correctness of the algorithm. We stress that when considering a path, the algorithm only
queries its endpoints, so that it “doesn’t pay” for the length of the path. The precise
details of the algorithm are given in Figure 1. When we say that we take a walk of a
certain length w down the Boolean lattice with a cut-off at a certain level �, we mean
that we stop the walk (before taking all w steps) if we reach a point in level � (i.e., with
Hamming weight �).

Note that m, the number of walks taken, is a random variable. Namely, the algorithm
continues taking new walks until the number of “successful” walks (that is, walks that
pass through an influential edge) reaches a certain threshold, which is denoted by t.
The reason for doing this, rather than deterministically setting the number of walks and
considering the random variable which is the number of successful walks, is that the
latter approach requires to know a lower bound on the influence of f . While it is possible
to search for such a lower bound (by working iteratively in phases and decreasing the
lower bound on the influence between phases) our approach yields a somewhat simpler
algorithm.

In what follows we assume for simplicity that I[f ] ≥ 1. As we discuss subsequently,
this assumption can be easily replaced with I[f ] ≥ c for any constant c > 0, or even
I[f ] ≥ n−c, by slightly modifying the setting of the parameters of the algorithm.
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Theorem 1. For every monotone function f : {0, 1}n → {0, 1} such that I[f ] ≥
1, and for every δ > 0 and ε = ω(

√
log n/n), with probability at least 1 − δ, the

output, Î , of Algorithm 1 satisfies: (1 − ε) · I[f ] ≤ Î ≤ (1 + ε) · I[f ]. Furthermore,
with probability at least 1 − δ, the number of queries performed by the algorithm is

O
(

log(1/δ)
ε3 ·

√
n log(n/ε)
I[f ]

)
.

We note that the bound on the number of queries performed by the algorithm implies

that the expected query complexity of the algorithm is O
(

log(1/δ)
ε3 ·

√
n log(n/ε)
I[f ]

)
.

Furthermore, the probability that the algorithm performs a number of queries that is
more than k times the expected value decreases exponentially with k.

The next definition is central to our analysis.

Definition 1. For a (monotone) Boolean function f and integers w and s∗, let pw,s∗(f)
denote the probability that a random walk of length w down the Boolean lattice, from a
uniformly selected point and with a cut-off at n/2 − s∗ − 1, starts from f(v) = 1 and
reaches f(u) = 0.

Given the definition of pw,s∗(f), we next state and prove the main lemma on which the
proof of Theorem 1 is based.

Lemma 1. Let f satisfy I[f ] ≥ 1, let ε > 0 satisfy ε >
8
√

2 log( 8n
ε )√

n
, and denote

ε̃ = ε/4. For any w ≤ ε̃
√
n

16
√

2 log( 2n
ε̃I[f] )

and for s∗ = 1
2

√
n ·

√
2 log(2n

ε̃ ) we have that

(1− ε/2) · w
n
· I[f ] ≤ pw,s∗(f) ≤ (1 + ε/2) · w

n
· I[f ] .

Proof: For a point y ∈ {0, 1}n, let h(y) denote its Hamming weight (which we also
refer to as the level in the Boolean lattice that it belongs to). By the choice of s∗ =
1
2

√
n
√

2 log(2n
ε̃ ), and since I[f ] ≥ 1, the number of points y for which h(y) ≥ n/2 +

s∗ or h(y) ≤ n/2 − s∗, is upper bounded by 2n · ε̃I[f ]
n . It follows that there are at

most 2n−1 · ε̃I[f ] edges (y, x) for which h(y) ≥ n/2 + s∗ or h(y) ≤ n/2 − s∗.
Recall that an influential edge (y, x) for h(y) = h(x) + 1, is an edge that satisfies
f(y) = 1 and f(x) = 0. Let es∗(f) denote the number of influential edges (y, x) such
that n/2− s∗ ≤ h(x), h(y) ≤ n/2 + s∗. Since the total number of influential edges is
2n−1I[f ], we have that

(1 − ε̃) · 2n−1I[f ] ≤ es∗(f) ≤ 2n−1I[f ] . (1)

Consider any influential edge (y, x) where h(y) = � and � ≥ n/2 − s∗. We are
interested in obtaining bounds on the probability that a random walk of length w (where
w ≤ ε̃

√
n

16
√

2 log( 2n
ε̃I[f] )

) down the lattice, starting from a uniformly selected point v ∈
{0, 1}n, and with a cut-off at n/2 − s∗ − 1, passes through (y, x). First, there is the
event that v = y and the edge (y, x) was selected in the first step of the walk. This event
occurs with probability 2−n · 1
 . Next there is the event that v is at distance 1 from y (and
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above it, that is, h(v) = h(y)+ 1 = � +1), and the edges (v, y) and (y, x) are selected.
This occurs with probability 2−n · (n− �) · 1


+1 · 1
 . In general, for every 1 ≤ i ≤ w− 1
we have (n − �) · · · (n − � − i + 1) pairs (v, P ) where v # y and w(v) = � + i, and
where P is a path down the lattice from v to y. The probability of selecting v as the
starting vertex is 2−n and the probability of taking the path P from v is 1

(
+i)···(
+1) .
Therefore, the probability that the random walk passes through (y, x) is:

2−n·1
�
·
(

1 +
w−1∑
i=1

(n− �) · · · (n− �− i + 1)
(� + i) · · · (� + 1)

)
= 2−n·1

�

⎛⎝1 +
w−1∑
i=1

i−1∏
j=0

n− �− j

� + i− j

⎞⎠ .

(2)

Let � = n/2 + s (where s may be negative), and denote τ(�, i, j) def= n−
−j

+i−j . Then

τ(�, i, j) =
n/2− s− j

n/2 + s + i− j
= 1− 2s + i

n/2 + s + i− j
. (3)

Consider first the case that � ≥ n/2, i.e � = n/2 + s (s ≥ 0). In that case it is clear that
τ(�, i, j) ≤ 1 (since j ≤ i), so

∏i−1
j=0 τ(�, i, j) is upper bounded by 1. In order to lower

bound
∏i−1

j=0 τ(�, i, j), we note that

τ(�, i, j) ≥ 1− 2s + w

n/2
= 1− 2(2s + w)

n
. (4)

Thus, for s ≤ s∗ we have

i−1∏
j=0

τ(�, i, j) ≥
i−1∏
j=0

(
1− 2(2s + w)

n

)
≥

(
1− 2(2s + w)

n

)w

≥ 1− 2(2s + w)w
n

≥ 1− 6s∗w
n

= 1− 3ε̃

16
≥ 1− ε̃/2

where the second inequality uses i ≤ w, the fourth inequality uses s ≤ s∗ and w ≤ s∗,
and the fifth inequality uses the definitions of s∗ and w. Therefore, we have that for
n/2 ≤ � ≤ n/2 + s∗,

1− ε̃/2 ≤
i−1∏
j=0

n− �− j

� + i− j
≤ 1 , (5)

and for � > n/2 + s∗ it holds that

i−1∏
j=0

n− �− j

� + i− j
≤ 1 . (6)

We turn to the case where � = n/2− s for 1 ≤ s ≤ s∗. Here we have

τ(�, i, j) = 1 +
2s− i

n/2− s + i− j
≥ 1− 2w

n− 2w
≥ 1− 4w

n
(7)
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where the last inequality follows from the fact that w < n/4. Thus,

i−1∏
j=0

τ(�, i, j) ≥
(

1− 4w

n

)w

≥ 1− 4w2

n
= 1− 4

n
·
⎛⎝ ε̃

√
n

16
√

2 log( 2n
ε̃I[f ])

⎞⎠2

> 1− ε̃2/2 > 1− ε̃/2 . (8)

On the other hand,

τ(�, i, j) = 1 +
2s− i

n/2− s + i− j
≤ 1 +

2s

n/2− s
≤ 1 +

8s∗

n
, (9)

where the last inequality holds since n ≥ 2s. Thus, we have

i−1∏
j=0

τ(�, i, j) ≤
(

1 +
8s∗

n

)w

≤ 1 +
16s∗w

n
= 1 + ε̃/2 . (10)

where the second inequality follows from the inequality (1 + α)k ≤ 1 + 2αk which
holds for α < 1/(2k); Indeed, in our case 8s∗/n ≤ 1/(2w) (this is equivalent to
w ≤ n/16s∗ which holds given our setting of s∗ and the upper bound on w).
We therefore have that for n/2− s∗ ≤ � < n/2,

1− ε̃/2 ≤
i−1∏
j=0

n− �− j

� + i− j
≤ 1 + ε̃/2 . (11)

Combining Equations (5) and (11), we have that for n/2− s∗ ≤ � ≤ n/2 + s∗,

1− ε̃/2 ≤
i−1∏
j=0

n− �− j

� + i− j
≤ 1 + ε̃/2 . (12)

Now, we are interested in summing up the probability, over all random walks, that the
walk passes through an influential edge. Since the function is monotone, every random
walk passes through at most one influential edge, so the sets of random walks that cor-
respond to different influential edges are disjoint (that is, the event that a walk passes
through an influential edge (y, x) is disjoint from the event that it passes through an-
other influential edge (y′, x′)). Since the edges that contribute to pw,s∗(f) are all from
levels � ≥ n/2 − s∗ (and since there are 2n−1I[f ] influential edges in total), by Equa-
tions (2), (6) and (12) we have

pw,s∗(f) ≤ 2n−1I[f ]2−n · 1
n/2− s∗

(
1 +

w−1∑
i=1

(1 + ε̃/2)

)
(13)

≤ I[f ] · w
n

(1 + ε/2) , (14)

For lower bounding pw,s∗(f), we will consider only the contribution of the influential
edges that belong to levels � ≤ n/2 + s∗. Consequently, Equations (1), (2) and (12)
give in total

pw,s∗(f) ≥ I[f ] · w
n

(1− ε/2) , (15)
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(by applying similar manipulations to those used for deriving Equations (13)–(14)).

Equations (14) and (15) give

(1− ε/2) · w
n
· I[f ] ≤ pw,s∗(f) ≤ (1 + ε/2) · w

n
· I[f ] , (16)

as claimed in the Lemma.

Proof of Theorem 1: For w and s∗ as set by the algorithm, let pw,s∗(f) be as in
Definition 1, where we shall use the shorthand p(f). Recall that m is a random variable
denoting the number of iterations performed by the algorithm until it stops (once α = t).
Let m̃ = t

p(f) , m̃1 = m̃
(1+ε/4) , and m̃2 = m̃

(1−ε/4) . We say that an iteration of the
algorithm is successful if the walk taken in that iteration passes through an influential
edge (so that the value of α is increased by 1). Let p̂(f) = t

m denote the fraction of
successful iterations.

Suppose that m̃1 ≤ m ≤ m̃2. In such a case,

(1− ε/4) · p(f) ≤ p̂(f) ≤ (1 + ε/4)p(f) (17)

since p̂(f) = t
m = p(f)·m̃

m . By the definition of the algorithm, Î = n
w · t

m = n
w · p̂(f)

so by Lemma 1 (recall that by the premise of the theorem, ε = ω(
√

log n/n)) we have

(1− ε)I[f ] ≤ (1− ε/2)(1− ε/4)I[f ] ≤ Î ≤ (1 + ε/4)(1 + ε/2)I[f ] ≤ (1 + ε)I[f ]

and thus (assuming m̃1 ≤ m ≤ m̃2), the output of the algorithm provides the estimation
we are looking for.

It remains to prove that m̃1 ≤ m ≤ m̃2 with probability at least 1 − δ. Let Xi

denote the indicator random variable whose value is 1 if and only if the ith iteration
of the algorithm was successful, and let X =

∑m̃1
i=1 Xi. By the definition of Xi, we

have that E[Xi] = p(f), and so (by the definition of m̃1 and m̃) we have that E[X ] =
m̃1 · p(f) = t

1+ε/4 . Hence, by applying the multiplicative Chernoff bound [7],

Pr[m < m̃1] ≤ Pr[X ≥ t] = Pr[X ≥ (1 + ε/4)E[X ]] ≤ exp
(
− ε2t

100

)
(18)

Thus, for t = 100 ln ( 2
δ )

ε2 we have that Pr[m < m̃1] ≤ δ
2 . By an analogous argument

we get that Pr[m > m̃2] ≤ δ
2 , and so m̃1 ≤ m ≤ m̃2 with probability at least 1− δ, as

desired.
Since in particular m ≤ m̃2 with probability at least 1 − δ, and the query complex-

ity of the algorithm is O(m), we have that, with probability at least 1 − δ, the query
complexity is upper bounded by

O(m̃2) = O

(
t

p(f)

)
= O

(
t · n

w · I[f ]

)
= O

(
log(1/δ)

ε3
·
√

n log(n/ε)
I[f ]

)
(19)

as required.
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Remark. We assumed that I[f ] ≥ 1 only for the sake of technical simplicity. This
assumption can be replaced with I[f ] ≥ 1

nc for any constant c ≥ 0, and the only
modifications needed in the algorithm and its analysis are the following. The level of the

cutoff s∗ should be set to s∗ =
√

n/2 ·
√

log( 2n
ε̃n−c ) = 1

2

√
n
√

2c log(2n) + log(1/ε̃)
(which is a constant factor larger than the current setting), and the length w of the walks
in the algorithm should be set to w = ε̃

√
n

16
√

2 log( 2n

ε̃n−c )
(which is a constant factor smaller

than the current setting). For details of the analysis see the full version of this paper [25].
We note that the lower bound we give in Section 4 applies only to functions with

(at least) constant influence, and so in the above case where I[f ] = 1/poly(n), the
tightness of the algorithm (in terms of query complexity) is not guaranteed.

4 A Lower Bound

In this section we prove a lower bound of Ω
( √

n
I[f ]·logn

)
on the query complexity of

approximating the influence of monotone functions. Following it we explain how a re-

lated construction gives a lower bound of Ω
(

n
I[f ]

)
on approximating the influence of

general functions. The idea for the first lower bound is the following. We show that

any algorithm that performs o
( √

n
I[f ]·logn

)
queries cannot distinguish with constant suc-

cess probability between as follows: (1) A certain threshold function (over a relatively
small number of variables), and (2) A function selected uniformly at random from a
certain family of functions that have significantly higher influence than the threshold
function. The functions in this family can be viewed as “hiding their influence behind
the threshold function”. More precise details follow.

We first introduce one more notation. For any integer 1 ≤ k ≤ n and 0 ≤ t ≤ k, let
τ tk : {0, 1}n → {0, 1} be the t-threshold function over x1, . . . , xk. That is, τ tk(x) = 1 if
and only if

∑k
i=1 xi ≥ t. Observe that (since for every 1 ≤ i ≤ k we have that Ii[τ tk] =

2−k · 2 · (k−1
t−1

)
while for i > k we have that Ii[τ tk] = 0), I[τ tk] = k · 2−(k−1) · (k−1

t−1

)
.

The above observation implies that for every sufficiently large k (k ≥ 2 logn
suffices), there exists a setting of t < k/2, which we denote by t(k, 1), such that

I[τ t(k,1)k ] = 1 − o(1) (where the o(1) is with respect to k). This setting satisfies(
k−1

t(k,1)−1

)
= Θ(2k/k) (so that t(k, 1) = k/2−Θ(

√
k log k)).

Theorem 2. For every I∗ such that 2 ≤ I∗ ≤ √n/ logn, there exists a family of
monotone functions FI∗ such that I[f ] ≥ I∗ for every f ∈ FI∗ , but any algorithm that
distinguishes with probability at least 2/3 between a uniformly selected function in FI∗

and τ
t(k,1)
k for k = 2 log n, must perform Ω

( √
n

I∗·logn
)

queries.

In particular, considering I∗ = c for any constant c ≥ 2, we get that every algorithm
for approximating the influence to within a multiplicative factor of

√
c must perform

Ω̃(
√

n) queries. If we increase the lower bound on the influence, then the lower bound
on the complexity of the algorithm decreases, but the approximation factor (for which
the lower bound holds), increases. We note that the functions for which the lower bound
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construction hold are not balanced, but we can easily make them very close to balanced
without any substantial change in the argument (by “ORing” τ

t(k,1)
k as well as every

function in FI∗ with x1). We also note that for I∗ = Ω(
√

log n) we can slightly im-

prove the lower bound on approximating the influence to Ω

( √
n

I∗·
√

log(
√
n/I∗)

)
(for a

slightly smaller approximation factor). We address this issue in the full version of this
paper [25].

Proof: For k = 2 logn and for any 0 ≤ t ≤ k, let Lt
k

def= {x ∈ {0, 1}k :
∑k

i=1 xi =
t}. We shall also use the shorthand t̃ for t(k, 1). Fixing a choice of I∗, each function
in FI∗ is defined by a subset R of Lt̃

k where |R| = β(I∗) · 2k for β(I∗) that is set
subsequently. We denote the corresponding function by fR and define it as follows:
For every x ∈ {0, 1}n, if x1 . . . xk /∈ R, then fR(x) = τ t̃k(x), and if x1 . . . xk ∈
R, then fR(x) = maj′n−k(x), where maj′n−k(x) = 1 if and only if

∑n
i=k+1 xi >

(n − k)/2. By this definition, each fR ∈ FI∗ is a monotone function, and I[fR] ≥
β(I∗) · I[maj′n−k]. If we take β(I∗) to be β(I∗) = I∗/I[maj′n−k] = cI∗/

√
n− k (for

c that is roughly
√

π/2), then in FI∗ every function has influence at least I∗. Since
β(I∗) is upper bounded by |Lt̃

k|/2k, which, (by the definition of t̃ = t(k, 1)), is of the
order of 1/k = Θ(1/ log n) this construction is applicable to I∗ = O(

√
n/ log n).

Consider an algorithm that needs to distinguish between τ t̃k and a uniformly selected
fR ∈ FI∗ . Clearly, as long as the algorithm doesn’t perform a query on x such that
x1 . . . xk ∈ R, the value returned by fR is the same as that of τ t̃k. But since R is

selected uniformly in Lt̃
k, as long as the algorithm performs less than |Lt̃

k|
c′·β(I∗)·2k queries

(where c′ is some sufficiently large constant), with high constant probability (over the

choice of R), it won’t “hit” a point in R. Since |Lt̃
k|

c′·β(I∗)·2k = Θ
( √

n
logn·I∗

)
, the theorem

follows.

A Lower Bound of Ω(n/I[f ]) for General Functions. A similar construction as in
the proof of Theorem 2 can be used to establish a lower bound of Ω(n/I[f ]) queries
for estimating the influence of general functions. The idea is the same, only now the
lack of the monotonicity constraint allows us to “hide” the influential part of the func-
tion “behind” an arbitrary small set R of assignments to the first k variables. We then
comepensate for the small probability of hitting R with a function having very high
influence (Parity) over the remaining n − k variables. For further details see the full
version of this paper [25].
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On Approximating the Number of Relevant

Variables in a Function

Dana Ron� and Gilad Tsur��

Abstract. In this work we consider the problem of approximating the
number of relevant variables in a function given query access to the
function. Since obtaining a multiplicative factor approximation is hard
in general, we consider several relaxations of the problem. In particular,
we consider a relaxation of the property testing variant of the problem
and we consider relaxations in which we have a promise that the function
belongs to a certain family of functions (e.g., linear functions). In the
former relaxation the task is to distinguish between the case that the
number of relevant variables is at most k, and the case in which it is
far from any function in which the number of relevant variable is more
than (1+ γ)k for a parameter γ. We give both upper bounds and almost
matching lower bounds for the relaxations we study.

1 Introduction

In many scientific endeavors, an important challenge is making sense of huge
datasets. In particular, when trying to make sense of functional relationships we
would like to know or estimate the number of variables that a function depends
upon. This can be useful both as a preliminary process for machine learning
and statistical inference and independently, as a measure of the complexity of
the relationship in question. For the sake of simplicity, in this extended abstract
we focus on Boolean functions over the Boolean hypercube, which is endowed
with the uniform distribution. We discuss extensions to other finite domains
and ranges (as well as other product distributions) in the full version of this
paper [13]

For a function f : {0, 1}n → {0, 1}, we let r(f) denote the number of vari-
ables that f depends on, which we shall also refer to as the number of relevant
variables. A variable xi is relevant to a function f if there exists an assignment
to the input variables such that changing the value of just the variable xi causes
the value of f to change. Given query access to f , computing r(f) exactly may
require a number of queries that is exponential in n (linear in the size of the
domain).1
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variables, but a uniformly selected function in the family cannot be distinguished
(with constant probability) from the all-0 function, which depends on 0 variables.
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Thus, we would like to consider relaxed notions of this computational task.
One natural relaxation is to compute r(f) approximately. Namely, to output
a value r̂ such that r(f)/B ≤ r̂ ≤ B · r(f) for some approximation factor
B. Unfortunately, this relaxed task may still require an exponential number of
queries (see the example in Footnote 1).

A different type of relaxation that has been studied in the past, is the one
defined by property testing [14,8]. We shall say that f is a k-junta if r(f) ≤ k.
A property testing algorithm is given k and a distance parameter 0 < ε < 1.
By performing queries to f , the algorithm should distinguish between the case
that f is a k-junta and the case that it differs from every k-junta on at least an
ε-fraction of the domain (in which case we shall say that it is ε-far from being
a k-junta). This problem was studied in several papers [7,5,3,4]. The best upper
bound on the number of queries that the algorithm performs (in terms of the
dependence on k) is O(k log k) [4], where this upper bound almost matches the
lower bound of Ω(k)[5].

A natural question, which was raised in [7], is whether it is possible to reduce
the complexity below Õ(k) if we combine the above two relaxations. Namely, we
consider the following problem: Given parameters k ≥ 1 and 0 < ε, γ < 1 and
query access to a function f , distinguish (with high constant probability) between
the case that f is a k-junta and the case that f is ε-far from any (1+γ)k-junta.2

This problem was recently considered by Blais et al. [2]. They apply a general
new technique that they develop for obtaining lower bounds on property testing
problems via communication complexity lower bounds. Specifically, they give a
lower bound of Ω

(
min{(kt )2, k} − log k

)
on the number of queries necessary for

distinguishing between functions that are k-juntas and functions that are ε-far
from (k + t)-juntas (for a constant ε). Using our formulation, this implies that
we cannot go below a linear dependence on k for γ = O(1/

√
k).

Our Results. What if we allow γ to be a constant (i.e., independent of k), say,
γ = 1? Our first main result is that even if we allow γ to be a constant, then the
testing problem does not become much easier. Specifically, we prove:

Theorem 1. Any algorithm that distinguishes between the case that f is a k-
junta and the case that f is ε-far from any (1 + γ)k-junta for constant ε and γ
must perform Ω(k/ log(k)) queries.

While Theorem 1 does not leave much place for improvement of the query com-
plexity as compared to the O(k log k) upper bound [4] for the standard property
testing problem (i.e., when γ = 0), we show that a small improvement (in terms
of the dependence on k) can be obtained:

Theorem 2. There exists an algorithm that, given query access to f : {0, 1}n →
{0, 1} and parameters k ≥ 1, and 0 < ε, γ < 1, distinguishes with high constant

2 We note that problems in the spirit of this problem (which allow a further re-
laxation to that defined by “standard” property testing) have been studied in the
past (e.g., [11,10,1]).
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probability between the case that f is a k-junta and the case that f is ε-far from
any (1 + γ)k-junta. The algorithm performs O

(
k log(1/γ)

εγ2

)
queries.

Given that the relaxed property testing problem is not much easier than the
standard one in general, we consider another possible relaxation: Computing
(approximately) the number of relevant variables of restricted classes of func-
tions. For example, suppose that we are given the promise that f is a linear
function. Since it is possible to exactly learn f (with high constant probability)
by performing O(r(f) log n) queries, it is also possible to exactly compute r(f)
in this case using this number of queries. On the other hand, Blais et al. [2]
show that in order to distinguish (with constant success probability) between
the case that a linear function has k relevant variables and the case that it has
more than k + 1 relevant variables, requires Ω(min{k, n− k}) queries3 (so that
Ω(r(f)) queries are necessary for exactly computing r(f)). However, if we allow
a constant multiplicative gap, then we get the following result:

Theorem 3. Given query access to a linear function f , it is possible to dis-
tinguish with high constant probability between the case that f has at most k
relevant variables and the case that f has more than (1 + γ)k relevant variables
by performing Θ(log(1/γ)/γ2) queries.

By standard techniques, Theorem 3 implies that we can obtain (with high con-
stant probability) a multiplicative approximation of (1 + γ) for r(f) (when f is
a linear function), by performing Õ(log(r(f))/γ2) queries to f .

Theorem 3, which deals with linear functions, extends to polynomials:

Theorem 4. There exists an algorithm that distinguishes between polynomials
of degree at most d with at most k relevant variables and polynomials of degree at
most d that have at least (1+γ)k relevant variables by performing O

(
2d log(1/γ)

γ2

)
queries.

Compared to Theorem 2, Theorem 4 gives a better result for degree-d polyno-
mials when d < log(k). A natural question is whether in this case we can do
even better in terms of the dependence on d. We show that it is not possible to
do much better (even if we also allow the property testing relaxation):

Theorem 5. For fixed values of ε (for sufficiently small ε), and for d < log(k),
any algorithm that distinguishes between polynomials of degree d with k relevant
variables and those that are ε-far from all degree-d polynomials with 2k relevant
variables must perform Ω(2d/d) queries.

Finally we show that a lower lower bound similar to the one stated in Theorem 1
holds when we have a promise that the function is monotone (except that it holds
for ε = O(1/ log(k)) rather than constant ε).

3 A slightly weaker bound of Ω(k/polylog(k)) was proved independently by
Chakraborty et al. [6] based on work by Goldriech [9]).
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Techniques. Our lower bounds build on reductions from the Distinct Elements
problem: Given query access to a sequence of length n, the goal is approximate
the number of distinct elements in the sequence. This problem is equivalent to
approximating the support size of a distribution where every element in the
support of the distribution has probability that is a multiple of 1/n [12]. Several
works [12,15,17] gave close to linear lower bounds for distinguishing between
support size at least n/d1 and support size at most n/d2 (for constant d1 and
d2), where the best lower bound, due to Valiant and Valiant [17], is Ω(n/ log(n)),
and this bound is tight [17].

Turning to the upper bounds, assume first that we have a promise that the
function f is a linear function, and we want to distinguish between the case that
it depends on at most k variables and the case that it depends on more than 2k
variables. Suppose we select a subset S of the variables by including each variable
in the subset, independently, with probability 1/2k. The first basic observation
is that the probability that S contains at least one of the relevant variables of f
when f depends on more than 2k variables, is some constant multiplicative factor
(greater than 1) larger than the probability that this occurs when f depends on at
most k relevant variables. The second observation is that given the promise that
f is a linear function, using a small number of queries we can distinguish with
high constant probability between the case that S contains at least one relevant
variable of f , and the case that it contains no such variable. By quantifying
the above more precisely, and repeating the aforementioned process a sufficient
number of times, we can obtain Theorem 3

The algorithm for degree-d polynomials is essentially the same, except that
the sub-test for determining whether S contains any relevant variables is more
costly. The same ideas are also the basis for the algorithm for general functions,
only we need a more careful analysis since in a general function we may have
relevant variables that have very small influence. Indeed, as in previous work
on testing k-juntas [7,3,4], the influence of variables (and subsets of variables),
plays a central role (and we use some of the claims presented in previous work).

Organization. We start by introducing several definitions and basic claims in
Section 2. In Section 3 we prove Theorems 1 and 2 (the lower and upper bounds
for general functions). In Section 4 we describe our results for restricted function
classes, where the algorithms for linear functions and more generally, for degree-
d polynomials, are special cases of a slight variant of the algorithm for general
functions. All missing details as well as extensions of our results can be found in
the full version of this paper [13]

2 Preliminaries

For two functions f, g : {0, 1}n → {0, 1}, we define the distance between f and
g as Prx[f(x) = g(x)] where x is selected uniformly in {0, 1}n. For a family of
functions F and a function f , we define the distance between f and F as the
minimum distance over all g ∈ F of the distance between f and g. We say that
f is ε-far from F , if this distance is at least ε.
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Our work refers to the influence of sets of variables on the output of a Boolean
function (in a way that will be described presently). As such, we often consider
the values that a function f attains conditioned on a certain fixed assignment
to some of its variables, e.g., the values f may take when the variables x1 and
x3 are set to 0. For an assignment σ to a set of variables S we will denote the
resulting restricted function by fS=σ. Thus, fS=σ is a function of {0, 1}n−|S|
variables. When we wish to relate to the variables {x1, . . . , xn} \ S we use the
notation S̄.
We now give a definition that is central for this work:

Definition 1. For a function f : {0, 1}n → {0, 1} we define the influence of
a set of variables S ⊆ {x1, . . . , xn} as Prσ,y,y′ [fS̄=σ(y) = fS̄=σ(y′)] where σ is
selected uniformly at random from {0, 1}n−|S| and y, y′ are selected uniformly
at random from {0, 1}|S|. For a fixed function f we denote this value by I(S).
When the set S consists of a single variable xi we may use the notation I(xi)
instead of I({xi}).
Proofs of the following claims can be found in [7]. The first claim tells us that
the influence of sets of variables is monotone and subadditive:

Claim 1. Let f be a function from {0, 1}n to {0, 1}, and let S and T be subsets
of the variables x1, . . . , xn. It holds that I(S) ≤ I(S ∪ T ) ≤ I(S) + I(T ).

Definition 2. For a fixed function f the marginal influence of set of variables
T with respect to a set of variables S is I(S ∪ T )− I(S). We denote this value
by IS(T ).

The marginal influence of a set of variables is diminishing:

Claim 2. Let S, T , and W be disjoint sets of variables. For any fixed function
f it holds that IS(T ) ≥ IS∪W (T ).

The next claim relates between the distance to being a k-junta and the influence
of sets of variables.

Claim 3. Let f be a function that is ε-far from being a k-junta. Then for every
subset S of f ’s variables of size at most k, the influence of {x1, . . . , xn} \S is at
least ε.

The converse of Claim 3 follows from the definition of influence:

Claim 4. Let f be a function such that for every subset S of f ’s variables of
size at most k, the influence of {x1, . . . , xn} \ S is at least ε. Then f is ε-far
from being a k-junta.

3 Distinguishing between k-Juntas and Functions Far
from Every (1 + γ)k-Junta

In this section we prove Theorems 1 and 2 (stated in the introduction).
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3.1 The Lower Bound

The lower bound stated in Theorem 1 is achieved by a reduction from the Distinct
Elements problem. In the Distinct Elements problem an algorithm is given query
access to a string s and must compute approximately and with high probability
the number of distinct elements contained in s. For a string of length t, this
problem is equivalent to approximating the support size of a distribution where
the probability for every event is in multiples of 1/t [12]. Valiant and Valiant
[17] give the following theorem (paraphrased here):

Theorem 6. For any constant ϕ > 0, there exists a pair of distributions p+, p−

for which each domain element occurs with probability at least 1/t, satisfying:

1. |S(p+)− S(p−)| = ϕ · t, where S(D) def= |{x : PrD[x] > 0}|.
2. Any algorithm that distinguishes p+ from p− with probability at least 2/3

must obtain Ω( t
log(t) ) samples.

While the construction in the proof of this theorem relates to distributions where
the probability of events is not necessarily a multiple of 1/t, it carries to the
Distinct Elements problem [16].

In our work we use the following implication of this theorem - Ω(t/ log(t))
queries are required to distinguish between a string of length t with t

2 distinct
elements and one with fewer than t

16 distinct elements (for a sufficiently large
t).4

In what follows we assume k = n/8. It is possible to (easily) modify the
argument for the case that k ≤ n/8 by “padding”. We set γ = 1 (so that
1+γ = 2), which implies the bound holds for all γ ≤ 1. Using terminology coined
by Raskhodnikova et al. [12], we refer to each distinct element in the string as a
“color”. We show a reduction that maps strings of length t = Θ(n) to functions
from {0, 1}n to {0, 1} such that the following holds: If there exists an algorithm
that can distinguish (with high constant probability) between functions that are
k-juntas and functions that are ε-far from any 2k-junta (for a constant ε) using
q queries, then the algorithm can be used to distinguish between strings with at
most k −Θ(log(k)) colors and strings with at least 8k −Θ(log(k)) colors using
q queries.

We begin by describing a parametrized family of functions, which we denote
by Fn

m. Each function in Fn
m depends on the first log(n) variables and on an ad-

ditional subset of m variables.5 The first log(n) variables are used to determine
the identity of one of these m variables, and the value of the function is the as-
signment to this variable. More formally, for each subset U ⊂ {log(n)+1, . . . , n}
4 We note that allowing a bigger gap between the number of distinct elements (e.g.,

distinguishing between strings with at least t/d distinct elements for some constant
d and strings with at most t1−α distinct elements for a (small) constant α), does not
make the distinguishing task much easier: Ω(t1−o(1)) queries are still necessary [12].

5 In fact, it depends on an integer number of variables, and thus depends, e.g., on
the �log n� first variables. We ignore this rounding issue throughout the paper, as it
makes no difference asymptotically.



682 D. Ron and G. Tsur

of size m and each surjective function ψ : {0, 1}log(n) → U , we have a function
fU,ψ in Fn

m where fU,ψ(y1, . . . , yn) = yψ(y1,...,ylog(n)). For a given function fU,ψ

we call the variables {xi}i∈U active variables.

Claim 5. For any constant value c and for t > n/c, every function in Fn
t/2 is

ε-far from all t/4-juntas, for a constant value ε.

Proof: From Claim 4 we know that it suffices to show that for every function
f ∈ Fn

t/2, and for every set of variables S ⊂ {x1, . . . , xn} having size at most t/4,
the set of variables S̄ = {x1, . . . , xn} \S has influence at least ε for a constant ε.

Consider a particular function f ∈ Fn
t/2. For any set S having size at most

t/4, the set S̄ contains at least t/4 active variables. We next show that the
influence of a set T of t/4 active variables is at least 1/8c, and by the mono-
tonicity of the influence (Claim 1) we are done. The influence of T is defined
as Prσ,y,y′(fT̄=σ(y) = fT̄=σ(y′)) where σ is selected uniformly at random from
{0, 1}n−|T | and y, y′ are selected uniformly at random from {0, 1}|T |. The prob-
ability of xψ(σ1,...,σlog(n)) belonging to T is at least |T |/n = t/4 ≥ n/4c. The
probability of this coordinate having different values in y and y′ is 1/2, and the
claim follows.

We now introduce the reduction R(s), which maps a string of colors s (a potential
input to the distinct elements problem) to a function from {0, 1}n to {0, 1} (a
potential input to the “k-junta vs. far from (1 + γ)k-junta” problem):

Let s be a string of length n, where every element i in s gets a color from the
set {1, . . . , n−log(n)}, which we will denote by s[i]. The mapping R(s) = f maps
a string with m colors to a function in Fn

m. Informally, we map each color to
one of the variables xlog(n)+1, . . . , xn in f ’s input, and compute f(y1, . . . , yn) by
returning the value of the variable that corresponds to the color of the element
in s indexed by the values y1, . . . , ylog(n). More precisely, let b : {0, 1}log(n) →
{0, . . . , n− 1} be the function that maps the binary representation of a number
to that number, e.g., b(010) = 2. We define the function f (that corresponds
to a string s) as follows: f(y1, . . . , yn) = ys[b(y1,...,ylog(n))]+log(n) (recall that the
colors of s range from 1 to n− log(n)).
The next claim follows directly from the definition of the reduction.

Claim 6. The reduction R(s) has the following properties:

1. For a string s, each query to the function f = R(s) of the form f(y1, . . . , yn)
can be answered by performing a single query to s.

2. For a string s with n/2 colors the function f = R(s) belongs to Fn
n/2.

3. For a string s with n/16 colors the function f = R(s) belongs to Fn
n/16.

By Claims 5 and 6, any algorithm that can distinguish (with high constant prob-
ability) between functions that are n/8-juntas and functions that are ε-far from
all n/4-juntas can be used to distinguish (with high constant probability) be-
tween strings with n/2 distinct elements and strings with n/16 distinct elements.
Given the lower bound from [17], we have that any algorithm that distinguishes
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(with high constant probability) between functions with at most n/8 relevant
variables and functions that are ε-far from all functions with at most n/4 relevant
variables must perform Ω(n/ log(n)) queries.

3.2 The Algorithm

In this subsection we present the algorithm referred to in Theorem 2. This al-
gorithm uses the procedure Test-for-relevant-variables (given in Figure 1),
which performs repetitions of the independence test defined in [7]. The number
of repetitions depends on the parameters η and δ, which the algorithm receives
as input.

Test-for-relevant-variables
Input: Oracle access to a function f , a set S of variables to examine, an influence
parameter η and a confidence parameter δ.

1. Repeat the following m = Θ(log(1/δ)/η) times:
(a) Select σ ∈ {0, 1}n−|S| uniformly at random.
(b) Select two values y, y′ ∈ {0, 1}|S| uniformly at random. If fS̄=σ(y) 
= fS̄=σ(y′)

return true.
2. Return false.

Fig. 1. Test-for-relevant-variables

Claim 7. When given access to a function f , a set S, and parameters η and δ,
where S has influence of at least η, Test-for-relevant-variables returns true
with probability at least 1− δ. When S contains no relevant variables, Test-for-
relevant-variables returns false with probability 1. It performs Θ(log(1/δ)/η)
queries.

Claim 7 follows directly from the definition of influence and a standard amplifi-
cation argument.

Proof of Theorem 2: We prove that the statement in the theorem holds
for Algorithm Separate-k-from-(1 + γ)k, given in Figure 2. For a function f
that has at most k relevant variables (i.e., is a k-junta), the probability that S
(created in Step 1a of Separate-k-from-(1 + γ)k) contains at least one such
relevant variable is (at most) pk = 1 − (1 − 1

2k )k (note that 1/4 < pk ≤ 1/2).
It follows from the one-sided error of Test-for-relevant-variables that the
probability that it will return true in Step 1b is at most this pk. We will show
that if f is ε-far from every (1 + γ)k-junta, then the probability of Test-for-
relevant-variables returning true in Step 1b is at least p′k = pk +Ω(γ). Having
established this, the correctness of Separate-k-from-(1+γ)k follows by setting
the threshold τ to τ = (pk + p′k)/2.

In the following we assume that when applied to a subset of the variables with
influence at least η, Test-for-relevant-variables executed with the influence
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Separate-k-from-(1 + γ)k
Input: Oracle access to a function f , an approximation parameter γ < 1 and a
distance parameter ε.

1. Repeat the following m = Θ(1/γ2) times:
(a) Select a subset S of the variables, including each variable in S independently

with probability 1/2k.
(b) Run Test-for-relevant-variables on f and S, with influence parameter

η = Θ(ε/k) and with confidence parameter δ = 1/8m.
2. If the fraction of times Test-for-relevant-variables returned true passes a

threshold τ , return more-than-(1 + γ)k. Otherwise return up-to-k. We determine
τ in the analysis.

Fig. 2. Separate-k-from-(1 + γ)k

parameter η, returns true. We will later factor the probability of this not hap-
pening in even one iteration of the algorithm into our analysis of the algorithm’s
probability of success.

Consider a function f that is ε-far from every (1 + γ)k-junta. For such a
function, and for any constant c > 1, by Claim 3 one of the following must hold.

1. There are at least (1+γ)k variables in f each with influence at least ε/c(1+
γ)k.

2. There are (more than c(1 + γ)k) variables each with influence less than
ε/c(1 + γ)k that have, as a set, an influence of at least ε.

To verify this, note that if Case 1 does not hold, then there are fewer than (1+γ)k
variables in f with influence at least ε/c(1 + γ)k. Recall that by Claim 3, the
variables of f except for the (1 + γ)k most influential variables have a total
influence of at least ε, giving us Case 2.

We first deal with Case 1 (which is the simpler case). We wish to show that
the probability that S (as selected in Step 1a) contains at least one variable with
influence Ω(ε/(1+γ)k) is pk+Ω(γ). As there are at least (1+γ)k variables with
influence Ω(ε/(1 + γ)k), it suffices to consider the influence attributed to these
variables, and to bound from below the probability that at least one of them
appears in S. If we consider these (1 + γ)k variables one after the other (in an
arbitrary order), for the first k variables, the probability that (at least) one of
them is assigned to S is pk (as defined above). If none of these were assigned to
S, an event that occurs with probability at least 1− pk ≥ 1/2, we consider the
additional γk variables. The probability of at least one of them being selected is
at least γpk, and so we have that the total probability of S containing at least
one variable with influence Ω(ε/(1 + γ)k) is at least pk(1 + γ/2). Given that
pk > 1/4 we have that the probability is at least pk + γ/8, as required.

For our analysis of Case 2 we will focus on the set of variables described
in the case. Recall that this set has influence of at least ε while every vari-
able in the set has influence of less than ε/c(1 + γ)k. We denote this set of
variables by Y = {y1, . . . , y
}. We wish to bound from below the influence of
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subsets of Y . To this end we assign to each variable from the set Y a value that
bounds from below the marginal influence it has when added to any subset of
Y . By the premise of the claim we have that I(Y ) ≥ ε. We consider the values
I(y1), I{y1}(y2), . . . , I{y1,...,y�−1}(y
). The sum of these must be at least ε by the
definition of marginal influence (Definition 2). Let us denote by I ′(yi) the value
I{y1,...,yi−1}(yi). We refer to this as the marginal influence of yi. If we consider
adding (with probability 1/2k) each element in Y to S in the order y1, . . . , y
,
we get by Claim 2 that the total influence of S is no less than the total of the
marginal influences of those variables added to S. It now suffices to show that
the sum of marginal influences in S is likely to be at least ε/4k, and we are done.
This can be established using a multiplicative Chernoff bound.

We now turn to lower bounding the algorithm’s probability of success. By
the choice of δ = 1/8m, the probability that any of the m runs of Test-for-
relevant-variables fails to detect a set with influence Ω(ε/(1 + γ)k) is at most
1/8. Conversely, when the set S contains no variables with influence, Test-for-
relevant-variables never accepts. Thus, for a function with at most k relevant
variables, Test-for-relevant-variables accepts with probability at most pk. On
the other hand, for a function that is ε-far from all functions with at most (1 +
γ)k relevant variables,Test-for-relevant-variables accepts with probability at
least pk + γ/8. We therefore set the threshold τ to pk + γ/16. Recall that the
number of iterations performed by the algorithm is m = Θ(1/γ2). By an additive
Chernoff bounds (for a sufficiently large constant in the Θ notation), conditioned
on Test-for-relevant-variables returning a correct answer in each iteration,
the probability that we “fall on the wrong side of the threshold” is at most 1/8.
Thus, with probability at least 3/4 our algorithm returns a correct answer.

Finally, we bound the query complexity of the algorithm. The algorithm
perform m = Θ(1/γ2) iterations. In each iteration it runs Test-for-relevant-
variables with influence parameter η = Θ(ε/k) and with confidence parameter
δ = 1/8m. The query complexity of the procedure Test-for-relevant-variables
is Θ(log(1/δ)/η), giving a total of Θ(k log(1/γ2)

γ2ε ) queries.

4 Restricting the Problem to Classes of Functions

Given that in general, distinguishing between functions that are k-juntas and
functions that are ε-far from (1+γ)k juntas requires an almost linear dependence
on k, we ask whether this task can be performed more efficiently for restricted
function classes (and possibly without the introduction of the distance parameter
ε). In particular, let Cη be the class of functions where every variable has influence
at least η. As we shall see later, there are natural families of functions that are
subclasses of Cη.
Theorem 7. Given query access to a function f ∈ Cη, it is possible to dis-
tinguish with high constant probability between the case that f has at most k
relevant variables and the case that f has more than (1 + γ)k relevant variables
by performing Θ( log(1/γ)

γ2η ) queries.
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Proof: We use the exact same algorithm as we use in the general case (that is,
Separate-k-from-(1 + γ)k given in Figure 2) with the following exception. In
Step 1b, instead of setting the influence parameter to Θ(ε/k), we set it to Θ(η).
The proof of correctness follows Case 1 in the general proof of correctness.

4.1 Linear Functions

A well studied class of functions for which we can test whether a function in
the class has k relevant variables or more than (1 + γ)k relevant variables, by
performing a number of queries that depends only on γ, is the class of linear
functions. For each function in the class, every influential variable has influence
1/2. As a corollary of Theorem 7 we get Theorem 3 (stated in the introduction).

4.2 Polynomials over GF (2)

It is well known that every Boolean function can be represented by a polyno-
mial over GF (2). A common measure of the simplicity of such a polynomial is
its maximum degree d. The upper bound for determining whether a degree-d
polynomial has at most k relevant variables or more than (1+ γ)k relevant vari-
ables, stated in Theorem 4, follows from Theorem 7 and from the fact that every
relevant variable in a polynomial of degree d has influence Ω(2−d).

The lower bound for polynomials of degree d, stated in Theorem 5, uses a
reduction from the distinct elements problem just as in the general case. Here,
however, the families of functions that strings are mapped to must be realizable
by degree-d polynomials where the number of relevant variables may be greater
than 2d. We describe a parametrized family of functions, which we denote Fn

m,d.
Each function in Fn

m,d : {0, 1}n → {0, 1} is a polynomial of degree d that depends
on the first d−1 variables and on an additional subset of m variables. The setting
of the first d− 1 variables determines a particular subset of the m variables, of
size (n − d + 1)/2d−1, and the value of f is the parity of the variables in this
subset. For the reduction we map strings of length 2d−1 to functions with an
arbitrarily large input size n.

References

1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. SIAM Journal on
Discrete Math. 16(3), 393–417 (2003)

2. Blais, E., Brody, J., Matulef, K.: Property testing lower bounds via communication
complexity. In: To appear in the 26th Conference on Computational Complexity,
CCC (2011)

3. Blais, E.: Improved bounds for testing juntas. In: Goel, A., Jansen, K., Rolim,
J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp.
317–330. Springer, Heidelberg (2008)

4. Blais, E.: Testing juntas nearly optimally. In: Proceedings of the Fourty-First An-
nual ACM Symposium on the Theory of Computing, pp. 151–158 (2009)



On Approximating the Number of Relevant Variables in a Function 687

5. Chockler, H., Gutfreund, D.: A lower bound for testing juntas. Information Pro-
cessing Letters 90(6), 301–305 (2004)
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Abstract. An errorless circuit for a boolean function is one that outputs
the correct answer or “don’t know” on each input (and never outputs the
wrong answer). The goal of errorless hardness amplification is to show
that if f has no size s errorless circuit that outputs “don’t know” on
at most a δ fraction of inputs, then some f ′ related to f has no size s′

errorless circuit that outputs “don’t know” on at most a 1− ε fraction of
inputs. Thus the hardness is “amplified” from δ to 1− ε. Unfortunately,
this amplification comes at the cost of a loss in circuit size. This is because
such results are proven by reductions which show that any size s′ error-
less circuit for f ′ that outputs “don’t know” on at most a 1− ε fraction
of inputs could be used to construct a size s errorless circuit for f that
outputs “don’t know” on at most a δ fraction of inputs. If the reduction
makes q queries to the hypothesized errorless circuit for f ′, then plugging
in a size s′ circuit yields a circuit of size ≥ qs′, and thus we must have
s′ ≤ s/q. Hence it is desirable to keep the query complexity to a mini-
mum. The first results on errorless hardness amplification were obtained
by Bogdanov and Safra (FOCS 2007). They achieved query complexity
O
(
( 1

δ
log 1

ε
)2 · 1

ε
log 1

δ

)
when f ′ is the XOR of several independent copies

of f . We improve the query complexity (and hence the loss in circuit
size) to O

(
1
ε
log 1

δ

)
, which is optimal up to constant factors for nonadap-

tive black-box errorless hardness amplification. Bogdanov and Safra also
proved a result that allows for errorless hardness amplification within
NP. They achieved query complexity O

(
k3 · 1

ε2
log 1

δ

)
when f ′ consists of

any monotone function applied to the outputs of k independent copies
of f , provided the monotone function satisfies a certain combinatorial
property parameterized by δ and ε. We improve the query complexity
to O

(
k
t
· 1

ε
log 1

δ

)
, where t ≥ 1 is a certain parameter of the monotone

function.
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1 Introduction

Traditionally, an algorithm for solving a computational problem is required to
be correct on all inputs and is judged in terms of its efficiency (the amount
of computational resources it uses). One criticism of this model is that it is
too strict: In practice, an algorithm only needs to be correct on “real-world”
inputs and not on contrived worst-case inputs. To address this issue within the
framework of complexity theory, researchers developed the theory of average-case
complexity (starting with the work of Levin [7]). In this theory, an algorithm
is judged in terms of both its efficiency and the fraction of inputs on which it
fails to solve the problem correctly. The topic of this paper is the relationship
between these two measures of the quality of an algorithm.

There are two standard settings for average-case complexity. In the original
setting proposed by Levin [7], one only considers errorless algorithms, which are
required to output the correct answer or “don’t know” on each input. An errorless
algorithm is judged in terms of both its efficiency and the fraction of inputs on
which it outputs “don’t know”. We refer to this setting as errorless average-
case complexity. In the other setting, one considers arbitrary algorithms which
may output the wrong answer rather than just “don’t know” on an input. We
refer to this setting as non-errorless average-case complexity. Errorless average-
case complexity is an intermediate setting between worst-case complexity and
non-errorless average-case complexity.

We first discuss non-errorless average-case complexity. A boolean function
is said to be mildly average-case hard if no efficient algorithm can compute it
on almost all inputs. Applications such as derandomization and cryptography
require functions that are strongly average-case hard, meaning that no efficient
algorithm can compute the function on noticeably more than half the inputs.
This motivates hardness amplification, which is the problem of transforming a
mildly average-case hard function into a strongly average-case hard function. A
classic result in this area is the XOR Lemma [8,5,3], which states that the XOR
of sufficiently many independent copies of a mildly average-case hard function
is strongly average-case hard, provided the model of efficient algorithms is small
circuits.

However, the XOR Lemma (as well as the numerous subsequent results on
hardness amplification) incurs an unfortunate loss in circuit size. Suppose the
original function f is mildly average-case hard in the sense that no size s circuit
succeeds on at least a 1− δ fraction of inputs, and we wish for the new function
f ′ to be strongly average-case hard in the sense that no size s′ circuit succeeds
on at least a 1/2 + ε fraction of inputs. Then we would like s′ to be as large
as possible, but the XOR Lemma requires that s′ is actually smaller than s.
This is because such results are proven by reductions which show that if f ′

is not strongly average-case hard, then a circuit witnessing this could be used
to construct a circuit witnessing that f is not mildly average-case hard. If the
reduction makes q queries to the hypothesized circuit, then plugging in a size
s′ circuit yields a circuit of size ≥ qs′, and thus we must have s′ ≤ s/q. Hence
the query complexity q governs the loss in circuit size. For the XOR Lemma,
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the query complexity is well-understood. The proof due to Impagliazzo [5] and
Klivans and Servedio [6] shows that q = O

(
1
ε2 log 1

δ

)
queries are sufficient, and

Shaltiel and Viola [10] showed that in a certain sense, q = Ω
(

1
ε2 log 1

δ

)
queries

are necessary.
Bogdanov and Safra [2] initiated the study of hardness amplification in Levin’s

original setting of errorless average-case complexity. A boolean function is said
to be mildly errorless average-case hard if no efficient errorless algorithm (say,
size s circuit) can compute it on almost all inputs (say, a 1 − δ fraction). A
function is said to be strongly errorless average-case hard if no efficient errorless
algorithm (say, size s′ circuit) can compute it on a noticeable fraction of inputs
(say, an ε fraction). Note that in the non-errorless setting, computing a boolean
function on half the inputs is trivial (using constant 0 or constant 1), but in the
errorless setting, computing a boolean function on even a small fraction of inputs
is nontrivial. The goal of errorless hardness amplification is to transform a mildly
errorless average-case hard function f into a strongly errorless average-case hard
function f ′. Such results suffer from a loss in circuit size for the same reason as in
the non-errorless setting. Bogdanov and Safra [2] showed that q = O

(
(1
δ log 1

ε )
2 ·

1
ε log 1

δ

)
queries are sufficient when f ′ is the XOR of several independent copies

of f . The result of Shaltiel and Viola [10] can be modified without difficulty to
show that in a certain sense, q = Ω

(
1
ε log 1

δ

)
queries are necessary. We close the

gap by showing that q = O
(

1
ε log 1

δ

)
queries are sufficient.

Another natural goal for hardness amplification is to guarantee that if f rep-
resents an NP language at some input length, then f ′ also represents an NP
language at some input length. In the non-errorless setting this goal has been
studied, for example, in [9,4], and in the errorless setting this goal has been stud-
ied by Bogdanov and Safra [2]. We significantly improve the query complexity
of the Bogdanov-Safra result.

1.1 The Errorless XOR Lemma

Given f : {0, 1}n → {0, 1} we define f⊕k : {0, 1}n×k → {0, 1} as follows:
f⊕k(x1, . . . , xk) = f(x1)⊕ · · · ⊕ f(xk).

Definition 1 (Errorless Average-Case Hardness). We say a circuit A :
{0, 1}n → {0, 1,⊥} is a δ-errorless circuit for f : {0, 1}n → {0, 1} if

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and
(ii) Prx[A(x) = ⊥] ≤ δ where x ∈ {0, 1}n is chosen uniformly at random.

We say f is (s, δ)-hard if it has no δ-errorless circuit of size ≤ s.

Theorem 1 (Query-Optimal Errorless XOR Lemma). If f is (s, δ)-hard
then f ′ = f⊕k is (s′, 1− ε)-hard where s′ = s/

(
4
ε ln 2

δ

)
, provided k ≥ 16

δ ln 2
ε .

We prove Theorem 1 in Section 2. Bogdanov and Safra [2] proved a version of
Theorem 1 where s′ = s/

(
k2 · 2

ε ln 2
δ

)
, provided k ≥ 2

δ ln 2
ε . Even for the best

value of k, they only achieve O
(
(1
δ log 1

ε )
2 · 1

ε log 1
δ

)
query complexity. Also, our

bound on the query complexity does not depend on k.
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We prove Theorem 1 by a reduction similar to the one used in [2]. Our con-
tribution is a new, tight analysis of the reduction. The crux of the reduction is
a randomized procedure that solves f errorlessly (meaning that for each input
x it may output f(x) with some probability and ⊥ with some probability, but it
never outputs f(x)) while making one query to a hypothesized (1− ε)-errorless
circuit A′ for f ′. Suppose for some β > 0 we knew that ≤ δ/2 fraction of inputs
x are bad in the sense that the probability the procedure outputs f(x) is < β.
Then by amplifying the success probability on the good inputs and hard-wiring
the randomness appropriately, we obtain a δ-errorless circuit A for f , via a re-
duction with query complexity O

(
1
β log 1

δ

)
. The heart of our improvement over

the Bogdanov-Safra proof is in arguing that we can take β = ε/4. To prove
this, we suppose the fraction of bad inputs is > δ/2 and prove that then A′

must compute f ′ on < ε fraction of inputs. The procedure outputs f(x) if and
only if the query is an input on which A′ computes f ′; furthermore the distri-
bution of this query (x1, . . . , xk) is obtained by setting xi = x for a uniformly
random i and picking x1, . . . , xi−1, xi+1, . . . , xk uniformly at random. Consider
the following two distributions on queries to A′: the uniform distribution, and
the distribution obtained by picking a random bad x and running the procedure
on input x. We know A′ computes f ′ with probability < β = ε/4 under the
latter distribution, and we wish to show that A′ computes f ′ with probability
< ε under the former. For this, we show the two distributions are “close” in the
sense that the probability of any event under the former is less than twice the
probability under the latter plus ε/2. The argument involves a dichotomy: Since
we assume a large fraction of x’s are bad, a uniform query is unlikely to have few
bad coordinates. Assuming there are many bad coordinates, we can essentially
pretend there is one bad coordinate and then argue that we have overcounted
the probability by a lot. This is the intuition behind the proof of Theorem 1.

It can be shown that Ω
(

1
ε log 1

δ

)
queries are needed by any nonadaptive black-

box reduction achieving errorless hardness amplification, regardless of how f ′ is
constructed from f (see the full version of this paper for the precise statement).
Since our proof of Theorem 1 (and the Bogdanov-Safra proof) is by a nonadaptive
black-box reduction, this shows that Theorem 1 is optimal in a sense. Shaltiel and
Viola [10] gave a general technique for lower bounding the query complexity of
nonadaptive black-box reductions in various settings, and we observe that their
technique applies to errorless hardness amplification. Artemenko and Shaltiel [1]
have proven a Ω

(
1
ε

)
query lower bound even for adaptive black-box reductions.

The optimal Ω
(

1
ε log 1

δ

)
lower bound for adaptive reductions remains open.

1.2 Monotone Errorless Amplification

Consider the problem of errorless hardness amplification within NP. That is,
if f is computable in nondeterministic polynomial time, then we want f ′ to
also be computable in nondeterministic polynomial time. Taking f ′ = f⊕k does
not guarantee this. We instead consider more general constructions of the form
f ′ = C ◦ fk where C : {0, 1}k → {0, 1}, and fk : {0, 1}n×k → {0, 1}k is defined
as fk(x1, . . . , xk) =

(
f(x1), . . . , f(xk)

)
. In the setting of the XOR Lemma, the



692 T. Watson

combiner function C is the k-bit parity function. If C is monotone (that is,
C(y1, . . . , yk) ≤ C(z1, . . . , zk) whenever yi ≤ zi for all i ∈ [k]) and f and C are
both computable in nondeterministic polynomial time, then f ′ is computable in
nondeterministic polynomial time. This approach dates back to [9,4].

Bogdanov and Safra [2] showed that this construction yields errorless hardness
amplification provided the monotone combiner function C satisfies a certain com-
binatorial property. To describe this property, we need some definitions from [2]
(though we use somewhat different notation). Fix b ∈ {0, 1}. Given a monotone
function C : {0, 1}k → {0, 1} and a string y ∈ {0, 1}k, we say that coordinate
i ∈ [k] is b-sensitive if flipping the ith bit of y causes the value of C to flip from
b to b, and we let σ(C, y, b) denote the set of b-sensitive coordinates. That is,

σ(C, y, b) =
{
i ∈ [k] : C(y) = b and C(y ⊕ ei) = b

}
.

Note that if C(y) = b then σ(C, y, b) = ∅ and if C(y) = b then by the monotonic-
ity of C, σ(C, y, b) only contains coordinates i such that yi = b. For p ∈ [0, 1],
we use y ∼p {0, 1}k to denote that y is sampled from the p-biased distribution,
that is, each bit is independently set to 1 with probability p.

Definition 2. For b ∈ {0, 1}, a function C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-
amplifier if C is monotone and

Pr
y∼p{0,1}k

[∣∣σ(C, y, b)
∣∣ ≥ t

]
≥ 1− ρ.

Note that a monotone function C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier if
and only if its monotone complement C† : {0, 1}k → {0, 1} is a (t, ρ, 1 − p, b)-
amplifier, where C† is defined as C†(y1, . . . , yk) = C(y1, . . . , yk).

For reasons discussed in [2], it is necessary to consider the following one-sided
version of Definition 1.

Definition 3 (One-Sided Errorless Average-Case Hardness). For b ∈
{0, 1}, we say a circuit A : {0, 1}n → {0, 1,⊥} is a (δ, b)-errorless circuit for
f : {0, 1}n → {0, 1} if

(i) A(x) ∈ {f(x),⊥} for all x ∈ {0, 1}n, and
(ii) Prx[A(x) = ⊥] ≤ δ where x ∈ f−1(b) is chosen uniformly at random.

We say f is (s, δ, b)-hard if it has no (δ, b)-errorless circuit of size ≤ s.

Note that if f is (s, δ)-hard then f is either (s/2, δ, 0)-hard or (s/2, δ, 1)-hard.

Theorem 2 (Monotone Errorless Amplification Lemma). For b ∈ {0, 1},
if f is (s, δ, b)-hard and C : {0, 1}k → {0, 1} is a (t, ρ, p, b)-amplifier then f ′ =
C ◦ fk is (s′, 1− ε)-hard where s′ = s/

(
k
t · 4

ε ln 2
δ

)
, provided t ≥ 16

δ ln 4
ε , ρ ≤ ε/4,

and p = Prx
[
f(x) = 1

]
.

We prove Theorem 2 in Section 3. Bogdanov and Safra [2] proved a version of
Theorem 2 where s′ = s/

(
k3 · 64ε2 ln 2

δ

)
, provided t ≥ 4

δ ln 8
ε and ρ ≤ ε/2. Their ar-

gument involves considering the subcubes of {0, 1}n×k given by fk(x1, . . . , xk) =
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y for each y individually and then combining the results for the different sub-
cubes using a nontrivial probabilistic argument. We show how to give a direct
argument that handles all the subcubes simultaneously. This idea alone actu-
ally simplifies the proof and reduces the query complexity to O

(
k2 · 1

ε log 1
δ

)
.

Combining this idea with the ideas from our analysis in the proof of Theorem 1
allows us to further reduce the query complexity to O

(
k
t · 1

ε log 1
δ

)
. We believe

this bound on the query complexity cannot be improved without exploiting some
non-obvious structural property of (t, ρ, p, b)-amplifiers; however, we could not
come up with a compelling way to formalize this.

Bogdanov and Safra [2] showed how to construct good amplifiers (with large
t and small ρ) and how to use Theorem 2 with these amplifiers to do uniform
and nonuniform errorless hardness amplification within NP.

1.3 Preliminaries

We use the following standard Chernoff bound several times.

Theorem 3. If X1, . . . , Xτ are fully independent indicator random variables
each with expectation π, then Pr

[∑τ
j=1 Xj < πτ/2

]
< e−πτ/8.

2 Proof of Theorem 1

We prove the contrapositive. Suppose f ′ is not (s′, 1− ε)-hard and thus there is
a circuit A′ of size ≤ s′ such that

(i) A′(x1, . . . , xk) ∈
{
f ′(x1, . . . , xk),⊥

}
for all x1, . . . , xk, and

(ii) Prx1,...,xk

[
A′(x1, . . . , xk) = ⊥] ≤ 1− ε.

We give a nonuniform reduction that makes 4
ε ln 2

δ nonadaptive queries to A′

and combines the results with some trivial computation, yielding a circuit A
that witnesses that f is not (s, δ)-hard. To start out, we give a randomized
algorithm (Algorithm 1) that solves f errorlessly using oracle access to A′ and
oracle access to f . The oracle queries to f only depend on the randomness (and
not on the input), and later we will hard-wire a particular choice of randomness
to get a circuit without oracle access to f .

Define the good set

G =
{

x ∈ {0, 1}n :

Pr
i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥

] ≥ ε/4
}

and define the bad set B = {0, 1}n\G. That is, G is the set of inputs for
which each iteration of the loop has at least an ε/4 probability of producing
output.
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Input: x ∈ {0, 1}n

Output: f(x) or ⊥
repeat 4

ε
ln 2

δ
times1

pick i ∈ [k] and x1, . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n uniformly at random2

if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 
= ⊥ then halt and output3

f(x1)⊕· · ·⊕f(xi−1)⊕A′(x1, . . . , xi−1, x, xi+1, . . . , xk)⊕f(xi+1)⊕· · ·⊕f(xk)

end4

halt and output ⊥5

Algorithm 1. Reduction for Theorem 1

Proposition 1. |B| ≤ (δ/2) · 2n.
Proof. Suppose for contradiction that |B| > (δ/2) ·2n, and define γ = |B|/2n+1.
We define the event

W =
{
(x1, . . . , xk) ∈ {0, 1}n×k :

∣∣{i : xi ∈ B
}∣∣ ≥ γk

}
.

That is, W is the event that at least a γ fraction of coordinates are bad. We
have

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥

] ≤
Pr

x1,...,xk

[
(x1, . . . , xk) ∈W

]
+ Pr

x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈W

]
and we show that both terms on the right side are < ε/2, thus contradicting
property (ii) of A′.

Bounding the first term. Applying Theorem 3 with Xi as the indicator vari-
able for xi ∈ B, and with τ = k and π = |B|/2n, we have

Pr
x1,...,xk

[
(x1, . . . , xk) ∈W

]
< e−k·|B|/2

n+3
< e−kδ/16 ≤ ε/2

where the middle inequality follows by our assumption on |B| and the last in-
equality follows by k ≥ 16

δ ln 2
ε .

Bounding the second term. For each S ⊆ [k] we define the event

WS =
{
(x1, . . . , xk) ∈ {0, 1}n×k : ∀i xi ∈ B ⇔ i ∈ S

}
.

Note that the WS ’s are disjoint and W =
⋃
S : |S|≥γk WS . We have

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈W

]
=

∑
S : |S|≥γk

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈ WS

]
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≤ 1
γk

∑
S⊆[k]

|S| · Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈WS

]
=

1
γk

∑
i∈[k]

∑
S i

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈ WS

]
=

1
γk

∑
i∈[k]

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and xi ∈ B

]
=

1
γk

∑
i∈[k]

∑
x∈B

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥

∣∣ xi = x
] · Pr

x1,...,xk

[xi = x]

=
1

γk2n
∑
x∈B

∑
i∈[k]

Pr
x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥

]
=

1
γk2n

∑
x∈B

k · Pr
i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥

]
<

1
γk2n

∑
x∈B

k · ε/4

=
ε/4
γ2n
· |B|

= ε/2

where the second and fifth lines follow by the disjointness of the WS ’s, and the
remaining lines follow by simple rearrangements. ��
The rest of the proof of Theorem 1 is similar to the argument from [2]. First
we note that for all x ∈ {0, 1}n and all choices of randomness, Algorithm 1
does indeed output either f(x) or ⊥. This follows trivially from the fact that
if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥ then A′(x1, . . . , xi−1, x, xi+1, . . . , xk) =
f(x1)⊕ · · · ⊕ f(xi−1)⊕ f(x)⊕ f(xi+1)⊕ · · · ⊕ f(xk) by property (i) of A′. Next
we observe that for each x ∈ G, we have

Pr
randomness

[
Algorithm 1 outputs ⊥] ≤ (

1− ε/4
) 4

ε ln 2
δ ≤ δ/2.

Therefore

Pr
x, randomness

[
Algorithm 1 outputs ⊥]

≤ Pr
x

[
x ∈ B

]
+ E

x

[
Pr

randomness

[
Algorithm 1 outputs ⊥] ∣∣∣∣ x ∈ G

]
≤ δ/2 + E

x

[
δ/2

∣∣ x ∈ G
]

= δ

where the second inequality follows by Proposition 1 and by the above observa-
tion. It follows that there exists a setting of the randomness such that
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(i) Algorithm 1 outputs f(x) or ⊥ for all x, and
(ii) Prx

[
Algorithm 1 outputs ⊥] ≤ δ.

To get a circuit A that witnesses that f is not (s, δ)-hard, just hard-wire the
randomness and the values of f(x1) ⊕ · · · ⊕ f(xi−1) ⊕ f(xi+1) ⊕ · · · ⊕ f(xk)
needed for this choice of randomness, and plug in the hypothesized circuit A′.
Since A′ has size ≤ s′ and Algorithm 1 makes 4

ε ln 2
δ queries to A′, A has size

≤ s′ · 4
ε ln 2

δ = s. Note that Algorithm 1 can trivially be implemented with
nonadaptive access to A′.

3 Proof of Theorem 2

We prove the contrapositive. Suppose f ′ is not (s′, 1− ε)-hard and thus there is
a circuit A′ of size ≤ s′ such that

(i) A′(x1, . . . , xk) ∈
{
f ′(x1, . . . , xk),⊥

}
for all x1, . . . , xk, and

(ii) Prx1,...,xk

[
A′(x1, . . . , xk) = ⊥] ≤ 1− ε.

We give a nonuniform reduction that makes k
t · 4

ε ln 2
δ nonadaptive queries to

A′ and combines the results with some trivial computation, yielding a circuit A
that witnesses that f is not (s, δ, b)-hard. To start out, we give a randomized
algorithm (Algorithm 2) that solves f errorlessly using oracle access to A′ and
oracle access to f and σ(C, ·, b). The oracle queries to f and σ(C, ·, b) only
depend on the randomness (and not on the input), and later we will hard-wire
a particular choice of randomness to get a circuit without oracle access to f or
σ(C, ·, b).

Input: x ∈ {0, 1}n

Output: f(x) or ⊥
repeat k

t
· 4

ε
ln 2

δ
times1

pick i ∈ [k] and x1, . . . , xi−1, xi+1, . . . , xk ∈ {0, 1}n uniformly at random2

if A′(x1, . . . , xi−1, x, xi+1, . . . , xk) 
= ⊥ and i ∈ σ(C, y, b) where3

y =
(
f(x1), . . . , f(xi−1), b, f(xi+1), . . . , f(xk)

)
then halt and output A′(x1, . . . , xi−1, x, xi+1, . . . , xk)

end4

halt and output ⊥5

Algorithm 2. Reduction for Theorem 2

Define the good set

G =
{

x ∈ f−1(b) : Pr
i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥

and i ∈ σ(C, y, b)
] ≥ εt/4k

}
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where y is as in line 3 of Algorithm 2, and define the bad set B = f−1(b)\G.
That is, G is the set of inputs in f−1(b) for which each iteration of the loop has
at least an εt/4k probability of producing output.

Proposition 2. |B| ≤ (δ/2) · ∣∣f−1(b)
∣∣.

Proof. Suppose for contradiction that |B| > (δ/2) · ∣∣f−1(b)
∣∣, and define γ =

|B|/2
∣∣f−1(b)

∣∣. We define the event

W =
{

(x1, . . . , xk) ∈ {0, 1}n×k :∣∣∣{i : xi ∈ B and i ∈ σ
(
C, fk(x1, . . . , xk), b

)}∣∣∣ ≥ γt

}
.

That is, W is the event that at least a γt/k fraction of coordinates are both bad
and b-sensitive. We have

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥

] ≤
Pr

x1,...,xk

[
(x1, . . . , xk) ∈W

]
+ Pr

x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈W

]
and we show that both terms on the right side are < ε/2, thus contradicting
property (ii) of A′.

Bounding the first term. We have

Pr
x1,...,xk

[
(x1, . . . , xk) ∈W

]
≤ Pr

x1,...,xk

[∣∣σ(C, fk(x1, . . . , xk), b
)∣∣ < t

]
+

Pr
x1,...,xk

[
(x1, . . . , xk) ∈ W

∣∣∣ ∣∣σ(C, fk(x1, . . . , xk), b
)∣∣ ≥ t

]
.

To show that this is < ε/2, we show that the first of the two terms on the right
side is ≤ ε/4 and the second is < ε/4. Since C is a (t, ρ, p, b)-amplifier, we have

Pr
x1,...,xk

[∣∣σ(C, fk(x1, . . . , xk), b
)∣∣ < t

]
= Pr

y∼p{0,1}k

[∣∣σ(C, y, b)
∣∣ < t

]
≤ ρ

which is at most ε/4 by assumption. We have

Pr
x1,...,xk

[
(x1, . . . , xk) ∈W

∣∣∣ ∣∣σ(C, fk(x1, . . . , xk), b
)∣∣ ≥ t

]
=

E
y∼p{0,1}k

[
Pr

x1,...,xk

[
(x1, . . . , xk) ∈ W

∣∣∣ fk(x1, . . . , xk) = y
] ∣∣∣∣ ∣∣σ(C, y, b)

∣∣ ≥ t

]
.

Fix any y ∈ {0, 1}k such that
∣∣σ(C, y, b)

∣∣ ≥ t, and for now let us abbreviate
σ(C, y, b) as σ. Then we have

Pr
x1,...,xk

[
(x1, . . . , xk) ∈W

∣∣∣ fk(x1, . . . , xk) = y
]

= E
(xi)i�∈σ

[
Pr

(xi)i∈σ

[
(x1, . . . , xk) ∈ W

∣∣∣ f(xi) = b ∀i ∈ σ
] ∣∣∣∣ f(xi) = yi ∀i ∈ σ

]
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since σ ⊆ {
i : yi = b

}
. Now fix any (xi)i�∈σ such that f(xi) = yi for all i ∈ σ.

Then we have

Pr
(xi)i∈σ

[
(x1, . . . , xk) ∈W

∣∣∣ f(xi) = b ∀i ∈ σ
]

= Pr
(xi)i∈σ

[∣∣{i ∈ σ : xi ∈ B
}∣∣ < γt

∣∣∣ f(xi) = b ∀i ∈ σ
]

≤ Pr
(xi)i∈σ

[∣∣{i ∈ σ : xi ∈ B
}∣∣ < γ · |σ|

∣∣∣ f(xi) = b ∀i ∈ σ
]

where the inequality follows by t ≤ |σ|. Applying Theorem 3 with Xj as the
indicator variable for xi ∈ B where i is the jth value in σ and xi is chosen
uniformly from f−1(b), and with τ = |σ| and π = |B|/∣∣f−1(b)

∣∣, we have that the
latter quantity is less than

e−|σ|·|B|/8|f
−1(b)| < e−|σ|·δ/16 ≤ e−tδ/16 ≤ ε/4

where the first inequality follows by our assumption on |B|, the middle inequality
follows by |σ| ≥ t, and the last inequality follows by t ≥ 16

δ ln 4
ε . This establishes

Pr
x1,...,xk

[
(x1, . . . , xk) ∈ W

∣∣∣ ∣∣σ(C, fk(x1, . . . , xk), b
)∣∣ ≥ t

]
< ε/4.

Bounding the second term. This is similar to the corresponding part of the
analysis in the proof of Theorem 1. For each S ⊆ [k] we define the event

WS =
{
(x1, . . . , xk) ∈ {0, 1}n×k :

∀i
(
xi ∈ B and i ∈ σ

(
C, fk(x1, . . . , xk), b

))⇔ i ∈ S
}
.

Note that the WS ’s are disjoint and W =
⋃
S : |S|≥γtWS . Using the shorthand

y as in line 3 of Algorithm 2, we have

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈ W

]
=

∑
S : |S|≥γt

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈ WS

]
≤ 1

γt

∑
S⊆[k]

|S| · Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈WS

]
=

1
γt

∑
i∈[k]

∑
S i

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and (x1, . . . , xk) ∈ WS

]
=

1
γt

∑
i∈[k]

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and xi ∈ B

and i ∈ σ
(
C, fk(x1, . . . , xk), b

)]
=

1
γt

∑
i∈[k]

∑
x∈B

Pr
x1,...,xk

[
A′(x1, . . . , xk) = ⊥ and
i ∈ σ

(
C, fk(x1, . . . , xk), b

) ∣∣∣ xi = x
]
· Prx1,...,xk

[xi = x]
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=
1

γt2n
∑
x∈B

∑
i∈[k]

Pr
x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥
and i ∈ σ(C, y, b)

]
=

1
γt2n

∑
x∈B

k · Pr
i,x1,...,xi−1,xi+1,...,xk

[
A′(x1, . . . , xi−1, x, xi+1, . . . , xk) = ⊥
and i ∈ σ(C, y, b)

]
<

1
γt2n

∑
x∈B

k · εt/4k

=
ε/4
γ2n
· |B|

≤ ε/2

where the second and fifth lines follow by the disjointness of the WS ’s, the
last line follows by

∣∣f−1(b)
∣∣ ≤ 2n, and the remaining lines follow by simple

rearrangements. For the seventh line, we used the fact that x ∈ B implies f(x) =
b and thus y = fk(x1, . . . , xi−1, x, xi+1, . . . , xk). ��
The rest of the proof of Theorem 2 follows similarly as in Theorem 1.

Acknowledgments. I thank anonymous reviewers for helpful comments.
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Ron, Dana 664, 676
Roy, Sambuddha 111
Rozenberg, Eyal 542
Rubinfeld, Ronitt 664

Sabharwal, Yogish 111
Sachdeva, Sushant 327
Safra, Muli 664
Saha, Barna 38
Saket, Rishi 327

Salavatipour, Mohammad R. 302
Schmidt, Christiane 206
Schudy, Warren 277
Schwartz, Roy 218
Servedio, Rocco A. 460
Shaltiel, Ronen 377
Shapira, Asaf 495
Shmoys, David B. 99, 135
Shpilka, Amir 400
Snir, Sagi 339
Srinivasan, Srikanth 640
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