


Lecture Notes in Computer Science 6849
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Dieter Pfoser Yufei Tao
Kyriakos Mouratidis Mario A. Nascimento
Mohamed Mokbel Shashi Shekhar
Yan Huang (Eds.)

Advances in Spatial
and Temporal Databases

12th International Symposium, SSTD 2011
Minneapolis, MN, USA, August 24-26, 2011
Proceedings

13



Volume Editors

Dieter Pfoser
Research Center "ATHENA", Athens, Greece
E-mail: pfoser@imis.athena-innovation.gr

Yufei Tao
Chinese University of Hong Kong, China
E-mail: taoyf@cse.cuhk.edu.hk

Kyriakos Mouratidis
Singapore Management University, Singapore
E-mail: kyriakos@smu.edu.sg

Mario A. Nascimento
ATH University of Alberta, Edmonton, AB, Canada
E-mail: mario.nascimento@ualberta.ca

Mohamed Mokbel
Shashi Shekhar
University of Minnesota, Minneapolis, MN, USA
E-mail: {mokbel, shekhar}@cs.umn.edu

Yan Huang
University of North Texas, Denton, TX, USA
E-mail: huangyan@unt.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22921-3 e-ISBN 978-3-642-22922-0
DOI 10.1007/978-3-642-22922-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011933231

CR Subject Classification (1998): H.2.0, H.2.8, H.2-4, I.2.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

SSTD 2011 was the 12th in a series of events that discuss new and exciting re-
search in spatio-temporal data management and related technologies. Previous
symposia were successfully held in Santa Barbara (1989), Zurich (1991), Sin-
gapore (1993), Portland (1995), Berlin (1997), Hong Kong (1999), Los Angeles
(2001), Santorini, Greece (2003), Angra dos Reis, Brazil (2005), Boston (2007),
and Aalborg, Denmark (2009). Before 2001, the series was devoted solely to spa-
tial database management, and called SSD. From 2001, the scope was extended
in order to also accommodate temporal database management, in part due to
the increasing importance of research that considers spatial and temporal aspects
jointly.

SSTD 2011 introduced several innovative aspects compared to previous events.
In addition to the research paper track, the conference hosted a demonstrations
track, and as a novelty, a vision and challenges track focusing on ideas that are
likely to guide research in the near future and to challenge prevalent assumptions.

SSTD 2011 received 63 research submissions from 22 countries. A thorough
review process led to the acceptance of 24 high-quality papers, geographically
distributed as follows: USA 9, Germany 3, Greece 2, Canada 2, Switzerland
1, Norway 1, Republic of Korea 1, Japan 1, Italy 1, Hong Kong 1, Denmark 1,
China 1. The papers are classified in the following categories, each corresponding
to a conference session: (1) Moving Objects and Sensor Networks, (2) Tempo-
ral and Streaming Data, (3) Knowledge Discovery, (4) Spatial Networks, (5)
Multidimensional Query Processing, (6) Access Methods.

This year’s best paper award went to“FAST: A Generic Framework for Flash-
Aware Spatial Trees.” The paper presents a general technique for converting
a traditional disk-oriented structure to an access method that works well on
flash-memory devices. Applicable to several well-known structures (including the
B- and R-trees), the technique aims at achieving two purposes simultaneously:
(a) minimizing the update and query overhead, and (b) preventing the loss of
data even in a system crash, thus ensuring data durability. The paper contains
several novel ideas, which are of independent interests since they may also be
useful in designing other flash-aware algorithms. In addition, the paper features
a real system that implements the proposed technique and is demonstrated to
have excellent performance in practice through extensive experiments. Besides
the best paper, a few other high-quality research papers were selected and the
authors were invited to submit extended versions of their work to a special issue
of the Geoinformatica journal (Springer).

Although the previous symposium in the SSTD series (2009) also included a
demonstrations track, submissions were evaluated alongside regular research pa-
pers by a single Program Committee. SSTD 2011, for the first time, appointed
dedicated Co-chairs to organize an autonomous demonstrations track, who in



VI Preface

turn recruited a separate Program Committee comprising 9 members. The pur-
pose of this track was to illustrate engaging systems that showcase underlying
solid research and its applicability. The track received 16 submissions from a
total of 51 authors or co-authors coming from Germany (21), USA (21), Canada
(5), Italy (2), Switzerland (1), and France (1). The selection criteria for the
demonstration proposals included novelty, technical advances, and overall prac-
tical attractiveness of the demonstrated system. Out of the 16 submissions, 8
were accepted and presented in a special session of the symposium. The best
demonstration paper was recognized with “SSTD 2011’s Best Demo Award.”

Another novelty in SSTD 2011 was the vision and challenges track. The aim
of this track was to describe revolutionary ideas that are likely to guide research
in the near future, challenge prevalent assumptions in the research community,
and identify novel applications and technology trends that create new research
directions in the area of spatial and spatiotemporal databases. A separate 12-
member Program Committee was formed for this track (coordinated by the same
Co-chairs of the demonstrations track). Twenty-one submissions were received
from a total of 58 authors and co-authors from USA (19), Germany (7), Italy (2),
Greece (2), Brazil (1), U.K. (1), Switzerland (1). Eight of the submissions were
accepted and were presented in the symposium in two dedicated sessions. The
top three contributions, chosen based on their technical merit as well as their
presentation in the symposium, received the Headwaters Awards. The awards
were valued at $1,000, $750, and $500 for the three selected contributions (in the
form of travel reimbursements), and were kindly sponsored by the Computing
Community Consortium (CCC) of the Computing Research Association (CRA).

The keynote address titled “Underexplored Research Topics from the Com-
mercial World” was delivered by Erik Hoel (ESRI). Two panels were held. Panel
A titled “Envisioning 2020 Spatial Research Challenges and Opportunities” was
chaired by Erwin Gianchandani (CCC) and Panel B titled “Sustainable Energy:
Spatial Challenge” was chaired by Ghaleb Abdulla (USDOE LLNL).

To be able to create such a highly attractive SSTD 2011 symposium program,
we owe our gratitude to a range of people. We would like to thank the authors,
irrespectively of whether their submissions were accepted or not, for their support
of the symposium series and for sustaining the high quality of the submissions.
We are grateful to the members of the Program Committees (and the external
reviewers) for their thorough and timely reviews. In addition, we are grateful to
Nikos Mamoulis for his advice and support. We hope the technical program put
together for this edition of the SSTD symposium series leads to interesting and
fruitful discussions during and after the symposium.

June 2011 Dieter Pfoser
Yufei Tao

Kyriakos Mouratidis
Mario Nascimento
Mohamed Mokbel

Shashi Shekhar
Yan Huang
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Keynote Speech: Underexplored Research Topics from 
the Commercial World 

Erik Hoel 

Redlands, CA, USA 
ehoel@esri.com 

Abstract. Active research in the spatio-temporal database domain is approaching 
fifty years of age, beginning with the early research by Waldo Tobler at Michi-
gan, Roger Tomlinson on CGIS, Edgar Horwood at Washington, Howard Fisher 
at Harvard, and Donald Cooke at Census. Very significant progress has been 
made during this period, with spatial data now becoming ubiquitous with the 
current generation of web applications, imbedded mapping, smartphones, and 
location-based services. However, many of the most challenging problems being 
faced by industry in the spatio-temporal domain remain relatively unaddressed 
by the research community. Many of these problems are related to the devel-
opment of technology and applications primarily intended for the defense and 
intelligence worlds. This domain generally involves: 

• Prohibitively large quantities of data,  
• Real time data fusion,  
• Remote sensing (including video and multispectral),  
• Large-scale automated and semi-automated feature extraction, and 
• Geostreaming, including real-time/continuous analysis and geoprocessing. 

In addition, in order to achieve scalability and elasticity, non-traditional archi-
tectures and data storage technologies (e.g., NoSQL and multi-tenant) are fre-
quently employed. The guiding mantras of “simple scales, complex fails”, as 
well as “precompute as if your life depends upon it” are key to success in these 
domains. 

Finally, another area that deserves the enhanced attention of the research 
community involves complex interactions between vast collections of objects in 
time and space (e.g., migrations, flocking behavior, or communications), with the 
goal being to infer something about the processes going on. The spatial interac-
tion domain is of particular significance to both social networking as well as 
intelligence. This talk will provide researchers with a discussion of these topics, 
presenting additional background and context to these difficult real-world 
problems along with an overview of what is currently considered the state of the 
art in framework architectures and production systems.  

 
 



SSCP: Mining Statistically Significant

Co-location Patterns

Sajib Barua and Jörg Sander

Dept. of Computing Science, University of Alberta, Edmonton, Canada
{sajib,jsander}@ualberta.ca

Abstract. Co-location pattern discovery searches for subsets of spatial
features whose instances are often located at close spatial proximity. Cur-
rent algorithms using user specified thresholds for prevalence measures
may report co-locations even if the features are randomly distributed. In
our model, we look for subsets of spatial features which are co-located
due to some form of spatial dependency but not by chance. We first in-
troduce a new definition of co-location patterns based on a statistical
test. Then we propose an algorithm for finding such co-location patterns
where we adopt two strategies to reduce computational cost compared to
a näıve approach based on simulations of the data distribution. We pro-
pose a pruning strategy for computing the prevalence measures. We also
show that instead of generating all instances of an auto-correlated feature
during a simulation, we could generate a reduced number of instances for
the prevalence measure computation. We evaluate our algorithm empir-
ically using synthetic and real data and compare our findings with the
results found in a state-of-the-art co-location mining algorithm.

1 Introduction

Co-location patterns are subsets of Boolean spatial features whose instances
are often seen to be located at close spatial proximity [6]. Co-location min-
ing gives important domain related insights for areas such as ecology, biol-
ogy, epidemiology, earth science, transportation etc. Co-location mining finds
frequently co-located patterns among spatial features. For instance, the Nile
crocodile and the Egyptian plover (a bird that has a symbiotic relationship with
the Nile crocodile) are often seen together giving rise to a co-location pattern
{Nile crocodile, Egyptian plover}. In urban areas, we may see co-location pat-
terns such as {shopping mall, parking}, {shopping mall, resturant}.

Existing co-location mining algorithms are motivated by the concept of asso-
ciation rule mining (ARM) [1]. However, in a spatial domain there is no natural
notion of a transaction as in market basket data [6]. Yet, most of the co-location
mining algorithms [6,16,2] adopt an approach similar to the Apriori algorithm
proposed for ARM in [1], introducing some notion of transaction over the space.
One such notion is the feature centric model [12] where each instance of a spa-
tial feature generates a transaction. Such a transaction includes other feature
instances (relevant to the reference feature) appearing in the neighborhood of

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 2–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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the instance that defines the transaction. Similar to the support measure of the
ARM algorithm, a prevalence measure called Participation Index (PI) is pro-
posed that is anti-monotonic and thus helps to prune the search space when
searching all prevalent co-location patterns. In existing co-location mining algo-
rithms [12,6,14,15], a co-location type C is declared as a prevalent co-location
pattern and finally reported, if its PI-value is greater than a user specified
threshold. With a small threshold value, meaningless co-location patterns could
be reported and with a large threshold value, meaningful co-location patterns
could be missed.

To overcome the limitations of the existing approaches when using global
prevalence thresholds, we define the notion of a co-location based on some form
of dependency among involved features. We also introduce a computationally
efficient method for mining such co-locations of different sizes. We argue that
the PI threshold should not be global but should be decided based on the dis-
tribution and the number of instances of each individual feature involved in a
co-location. Instead of a threshold based approach, we use a statistical test in
order to decide whether an observed co-location is significant or is likely to have
occurred by chance. First, we use a prevalence measure to capture the spatial
dependency among features in a co-location. Then we test the null hypothesis
H0 of no spatial dependency against an alternative hypothesis H1 of spatial
dependency among the spatial features in a co-location. We compute the preva-
lence measure of a co-location in the observed data. Using randomization test,
we compute the probability (p) of seeing the same value of prevalence measure or
greater under a null model. In the null model, each individual feature maintains
a similar spatial distribution as in the observed data but without any inter-
dependency among features. For a given level of significance (α), the prevalence
measure value computed from the observed data will be significant if p ≤ α.

A randomization test poses some computational challenges. The main compu-
tation here is the prevalence measure computation for each possible co-location.
We propose a pruning technique which is able to detect unnecessary candidate
co-locations ahead, prunes them and thus reduces the amount of prevalence mea-
sure computations. During the randomization test, we generate instances of each
feature based on the null model. This data generation step however takes time.
For auto-correlated features, we can avoid generating all instances in many cases
and thus save time in the data generation step. Since we use a clustering model
for simulating an auto-correlated feature during the randomization test, we can
identify those clusters that can not be involved in any co-location without gen-
erating the instances of such clusters. For the prevalence measure computation,
we also implement a grid based spatial index to find the neighbors of a feature
instance. With increasing number of feature instances, our approach shows an
increasing speedup compared to a näıve approach.

The rest of the paper is organized as follows. Section 2 describes related work.
In Sect. 3, we define the notion of a statistically significant co-location pattern
and propose our method SSCP for mining such patterns. In Sect. 4, we show
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how to improve the runtime of the baseline algorithm. We conduct experiments
to validate our proposed model in Sect. 5. Section 6 concludes the paper.

2 Related Work

In spatial statistics, the co-location mining problem is seen a bit different than
in the data mining community. There co-location pattern mining is similar to
the problem of finding associations in multi-type spatial point processes. Associ-
ation or interaction in a spatial point process is known as the second order effect.
The second order effect is a result of the spatial dependence and represents the
tendency of neighboring values to follow each other in terms of their deviation
from their mean. There are several measures used to compute spatial interaction
such as Ripley’s K-function [11], distance based measures (e.g., F function, G
function) [7], and co-variogram function [3]. These measures can summarize a
point pattern and are able to detect clustering tendency at different scales. With
a large collection of Boolean spatial features, computation of the above measures
becomes expensive as the number of candidate subsets increases exponentially in
the number of different features. Mane et al. in [9] combine a spatial statistical
measure with a data mining tool to find the clusters of female chimpanzees’ loca-
tions and investigate the dynamics of spatial interaction of a female chimpanzee
with other male chimpanzees in the community. There, each female chimpanzee
represents a unique mark. Two clustering methods (SPACE-1 and SPACE-2) are
proposed which use Ripley’s K-function to find clusters among different marked
point processes.

In the data mining community, co-location pattern mining approaches are
mainly based on spatial relationship such as “close to” proposed by Han and
Koperski in [8], which presents a method to mine spatial association rules indi-
cating a strong spatial relationship among a set of spatial and some non-spatial
predicates. Morimoto in [10] proposes a method to find groups of different ser-
vice types originated from nearby locations and report a group if its occurrence
frequency is above a given threshold. Such groups can give important insight to
improve location based services. Shekhar et al. [12] discuss three models (ref-
erence feature centric model, window centric model, and event centric model)
that can be used to materialize “transactions” in a continuous spatial domain
so that a frequent itemset mining approach can be used. A co-location mining
algorithm is developed which utilizes the anti-monotonic property of a proposed
participation index (PI) to find all possible co-location patterns.

Many of the follow-up work on the co-location mining approach in [12] have fo-
cused on improving the runtime. As an extension of the work in [12], [6] proposes
a multi-resolution pruning technique and also compares the PI with the cross
K-function, showing that the PI is an upper bound of the cross K-function.
To improve the runtime of the algorithm in [6], Yo et al. in [14,15] propose two
instance look-up schemes where a transaction is materialized in two different
ways. In [15], a transaction is materialized from a star neighborhood and in [14],
a transaction is materialized from a clique neighborhood. Xiao et al. in [13] im-
prove the runtime of frequent itemset based methods [10,6,14] by starting from
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the most dense region of objects and then proceeding to less dense regions. From
a dense region, the method counts the number of instances of a feature partici-
pating in a candidate co-location. Assuming that all the remaining instances are
in co-locations, the method then estimates an upper bound of the prevalence
measure and if it is below the threshold the candidate co-location is pruned.

All the above mentioned co-location pattern discovery methods use a pre-
defined threshold to report a candidate co-location as prevalent. Therefore, if
thresholds are not selected properly, meaningless co-location patterns could be
reported in the presence of spatial auto-correlation and feature abundance, or
meaningful co-location patterns could be missed when the threshold is too high.

3 Problem Definition

3.1 Motivating Examples

Consider a scenario (Fig. 1(a)) with two different animal species A and B. As-
sume there is a true spatial dependency so that As are likely to be seen close
to Bs. Assume furthermore that in the given study area, there are only few in-
stances of A but B is abundant. Hence many of the B’s instances will not have
As in their neighborhood. On the other hand, all As will be close to some Bs and
form co-locations. Since many of the Bs are without As, B’s participation ratio
will be small which results the participation index of {A, B} to be rather low
(likely lower than a given threshold to avoid reporting meaningless co-locations),
and we might not report the pattern.

(a) PI = min( 4
4
, 4

20
) (b) PI = min( 6

12
, 5

12
) (c) PI = min( 4

9
, 3

7
)

Fig. 1. Three scenarios with features A and B. Red instances are in co-location.

Consider another scenario (Fig. 1(b)) where two spatial features A and B
are abundant in a study area and randomly distributed. Even though there is
no true spatial dependency between A and B, we might see enough instances
of {A, B} so that the PI-value of {A, B} is above the given threshold. Hence
{A, B} would be reported as a prevalent co-location pattern.

The presence of spatial auto-correlation of features, i.e., the tendency of clus-
tering among instances of the same type (which is not uncommon in spatial
domains) can also lead to reporting meaningless co-location pattern as prevalent
if a threshold for the participation index is not set properly. Consider a scenario
(Fig. 1(c)) where both feature A and feature B are spatially auto-correlated.



6 S. Barua and J. Sander

If a cluster of A and a cluster of B happen to overlap by chance, a good number
of instances of {A, B} will be generated which could result in a high PI-value.
Even though no real spatial association or interaction between A and B exists,
{A, B} could be reported as a prevalent co-location pattern.

3.2 Basic Idea for Finding Significant Co-location Patterns

We suggest that, instead of using a global threshold, we could estimate, for the
given number of As and Bs, how rare the observed PI-value is compared to a
PI-value when A and B have no spatial relationship. If the observed PI-value is
significantly higher than a PI-value under no spatial relationship, we conclude
that A and B are spatially related, and {A, B} should be reported as a prevalent
co-location pattern. Hence, the decision of co-location pattern detection does not
depend on a user-defined prevalence measure threshold. In addition, note that
such an approach works with any type of prevalence measures to capture spatial
dependency among features and is not dependent only on the PI measure.

A measure for spatial dependency among features tries to capture the strength
of a co-location; the PI is one such measure that we will adopt in our method.
The idea is to estimate the probability of the observed PI-value (computed
from the given data set) under some null hypothesis. If features were spatially
independent of each other, what is the chance of observing a PI-value equal or
higher than the PI-value observed in the given data set? The answer gives us a
p-value. If the p-value is low, the observed PI-value is a rare phenomenon under
our null assumption, thus indicating a spatial dependency among the features.
The observed PI-value is said to be statistically significant at level α, if p ≤ α.

The current literature does not also consider the spatial auto-correlation prop-
erty in co-location pattern detection approaches. We study how the existing
participation index measure behaves in the presence of spatial auto-correlation.

3.3 Null Model Design

The null hypothesis for our approach is that different features are distributed in
the space independently of each other. However, an individual feature may be
auto-correlated, and in the given data set we determine how auto-correlated it
is by modeling it as in [7] as a cluster process. For instance, in a Poisson cluster
process, we start with a Poisson process of parent points. Each parent point
then gives rise to a finite set of offspring points according to some distribution
and these offsprings are distributed in a predefined neighborhood of their par-
ent point. The offspring sets finally give the final cluster process. The intensity
of a parent process can be homogenous or non-homogenous. In such a model,
auto-correlation can be measured in terms of intensity and type of distribution
of a parent process and offspring process around each parent. For instance, in a
Thomas process [7], cluster centers are generated from a Poisson process with
intensity κ. The spatial distribution of the offsprings of each cluster follows an
isotropic Gaussian N(0, σ2I) displacement from the cluster center. The number
of offsprings in each cluster is drawn from a Poisson distribution with mean μ.
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If an auto-correlated feature is present, we first estimate parameters using a
model fitting technique. The method of Minimum Contrast [4] fits a point pro-
cess model to a given point data set. This technique first computes a summary
statistics from the point data. A theoretically expected value of the model to
fit is either derived or estimated from simulation. Then the model is fitted to
the given data set by finding optimal parameter values of the model to give
the closest match between the theoretical curve and the empirical curve. For
the Thomas process cluster model, κ, σ, and μ are the summary statistics that
are estimated. Other alternative models such as the Matérn Cluster process [7]
and the log Gaussian Cox process [7] can be used for parameter estimation of
auto-correlated data.

We will simulate artificial data sets under our null hypothesis. The data sets
maintain the following properties of the observed data: (1) same number of
instances for each feature, and (2) similar spatial distribution for each individual
feature by maintaining the same values of the summary statistics estimated from
the given data set. For example, if a feature is spatially auto-correlated in the
original data set, in our artificial data sets, conforming to the null hypothesis,
the feature will also be clustered in the same degree and the clusters will be
randomly distributed over the study area. The distribution of a spatial feature
is described in terms of summary statistics, i.e. a set of parameters. For an
auto-correlated feature A, the summary statistics are κ, σ, and μ values. If A
is randomly distributed, we need to know its Poisson intensity which could be
either homogenous (a constant) or non-homogenous (a function of x and y).

3.4 Definition of Co-location

First we state two definitions from the literature [12,6] since we use them as a
spatial dependency measure:

Definition 1. Let C be a co-location of k different features f1, f2, . . . , fk. In an
instance of C, one instance from each of k features will be present and all these
feature instances are neighbors (based on a neighborhood relationship Rd) of
each other. The Participation Ratio of feature fi in co-location C, pr(C, fi),
is the fraction of instances of fi participating in any instance of C. Formally,

pr(C, fi) = |distinct(πfi
(all instances of C))|

|instances of fi|
. Here π is the relational projection.

For instance, let C = {P, Q, R} and P , Q, and R have nP , nQ, and nR instances
respectively. If nC

P , nC
Q, and nC

R distinct instances of P , Q, and R participate in

co-location C, the participation ratio of P , Q, R are nC
P

nP
, nC

Q

nQ
, nC

R

nR
respectively.

Definition 2. The Participation Index (PI) of a co-location C = {f1, f2, . . . ,
fk} is defined as PI(C) = mink{pr(C, fk)}

For example, let C = {P, Q, R} where the participation ratios of P , Q, and R
are 2

4 , 2
7 , and 1

8 respectively. The minimum participation ratio 1
8 is selected as

the participation index of co-location C.
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Lemma 1. The participation ratio and the participation index are monotoni-
cally non-increasing with the increase of co-location size that is if C′ ⊂ C then
pr(C′, f) ≥ pr(C, f) where f ∈ C′ and PI(C′) ≥ PI(C) [12].

Using PI as a measure of spatial dependency, we can define a statistically sig-
nificant co-location pattern so that a statistically significant co-location pattern
C is the effect of a true spatial dependency among features participating in C.

Definition 3. We say a co-location pattern C = {f1, f2, . . . , fk} is statistically
significant at level α, if the probability (p-value) of seeing the observed PI-value
or larger in a data set conforming to a null hypothesis is not greater than α.

Statistical Significance Test: The main idea of the statistical significance test
is to estimate the probability p of seeing the observed PI-value or greater for a
co-location C = {f1, f2, . . . , fk} under the null hypothesis. The null hypothesis
is an independence assumption H0 that there is no spatial dependency among
the k features of C. Let PIobs(C) denote the participation index of C in the
observed data, and let PI0(C) denote the participation index of C in a data set
generated under our null hypothesis. Then we have to estimate the probability
p = P (PI0(C) ≥ PIobs(C)) that PI0(C) is at least PIobs(C) if the k features
are independent of each other. This p-value is compared to a predefined threshold
α. If p ≤ α, the null hypothesis is rejected and the PIobs(C)-value is significant
at level α. Hence the co-location of f1, . . . , fk in the observed data is significant
at level α. α is the probability of committing type I error that is rejecting a null
hypothesis when the null hypothesis is true, i.e. the probability of accepting a
spurious co-location pattern. If a typical value of α = 0.05 is used, there is 5%
chance that a spurious co-location is reported as a prevalent co-location pattern.

To compute the desired probability p, we can do randomization tests. We gen-
erate a large number of simulated data sets that conform to the null hypothesis
[see Sect. 3.3]. Then we compute the PI-value of a co-location C, PIRi

0 (C), in
each simulation run (or data set) Ri and compute the p value as:

p =
R≥PIobs + 1

R + 1
(1)

Here the numerator is the number of simulations (R≥PIobs) plus the observed
data set where PIRi

0 (C) is equal or greater than PIobs(C). The denominator is
the total number of simulations (R) plus the observed data.

4 Algorithm

Given a set of spatial features, our objective is to mine all statistically significant
co-location patterns of different sizes. For each pattern we have to compute
the probability (p-value) of the observed PI-value under the null hypothesis.
Computing a p-value using a randomization test is computationally expensive,
since we have to compute the PI-value of each co-location in each simulation run.
The PI-value computation of a co-location C requires checking the neighborhood
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of each spatial feature participating in C. For a more accurate estimation of
the p-value, we generate at least 999 simulations, which results in a significant
amount of computation for a decision on whether a co-location is statistically
significant or not. The total computational cost also increases with the number
of distinct spatial features. Hence one important challenge is to reduce the total
amount of computation of a randomization test.

In each simulation run, we generate instances of each feature. For each auto-
correlated feature, we only generate feature instances of those clusters which are
close enough to other different features (auto-correlated or not auto-correlated)
to be potentially involved in co-locations. In Fig. 2, we show two auto-correlated
features ◦ and �. Instances of feature ◦ appear in six clusters and instances of
feature � also appear in six clusters. Each cluster is represented by a cluster
center. We sort the cluster centers according to their x-coordinate values. Let R1
and R2 be the cluster radius of feature ◦ and feature � respectively and let Rd

be the radius of a co-location neighborhood. Two clusters, each from different
features, are defined as close enough if the distance between their centers is not
more than R1 + R2 + Rd. Hence we can avoid generating instances of a cluster
whose center is far away (> R1 + R2 + Rd) from centers of cluster of different
features. In Fig. 3, we show that only a partial amount of instances of each auto-
correlated feature has to be generated to compute the PI-value which is same
as the PI-value even if it were computed from all the instances as in Fig. 2.

In each simulation run, we need the PI-value of each possible co-location C
to compare with its PIobs(C)-value. If the PI-value of C is greater than its
PI-value in the observed data, R≥PIobs of C is increased by one. The total
PI-value computation in a simulation run can be reduced by identifying those
candidate co-locations for which the PI-value in the current simulation run
is less than the PI-value computed from the observed data; and hence can not
increase the R≥PIobs-value of (1). We apply a pruning technique to identify those
candidate co-locations and prune them so that we do not need to compute their
PI-values.

Fig. 2. Instances of all clusters Fig. 3. Generated instances
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First, we compute the PI-value of each possible co-location in the observed
data. Let C be a co-location and let its PI-value in the observed data be
PIobs(C). In a simulation run Ri, PIRi

0 (C) can not be equal to or greater
than PIobs(C) (PIRi

0 (C) �≥ PIobs(C)) if the PI-value of any subset C′ of C is
less than PIobs(C) that is PIRi

0 (C′) < PIobs(C). If that happens, we can tell
C can not contribute to the R≥PIobs -value of (1). Hence the PI-value compu-
tation for C is unnecessary for Ri and C can be pruned. Only if the PI-values
of all subsets of C in Ri are greater than or equal to PIobs(C), there is still a
chance that PIRi

0 (C) can be greater than or equal to PIobs(C). In that case,
we compute the PI-value of C in Ri and compare it with PIobs(C).

Lemma 2. For a co-location C, its PI-value in simulation Ri, PIRi
0 (C), can

not be greater than or equal to its PI-value in the observed data, PIobs(C), if
the PI-value of any subset C′ of C in Ri, PIRi

0 (C′), is less than PIobs(C).

Proof. If C′ is a subset of C for which PIRi
0 (C′) < PIobs(C), then we have to

show that PIRi
0 (C) < PIobs(C). Assume PIRi

0 (C′) < PIobs(C). According to
lemma 1, PIRi

0 (C′) ≥ PIRi
0 (C), then PIRi

0 (C) < PIobs(C). 	

Using the lemma 2, whether PIRi

0 (C) is computed or not can be decided from
the PI-values of C’s subsets. For a C of size k (k > 2), there are k many subsets
of (k − 1)-size,

(
k

k−2

)
subsets of (k− 2)-size,

(
k

k−3

)
subsets of (k− 3)-size, and so

on. The decision on whether PIRi
0 (C) will be computed or not can be made by

checking C’s subsets of any size. Whatever subset size is chosen, the PI-value
of all possible subset of that size is required to be pre-computed and available.
Using lemma 2, the PI-values of some subsets (of size 3 or more) are not required
to be computed. Hence, the total computational cost can not be reduced if we
need to compute the PI-values even for such subsets. However computation
of PI-values for all subsets of C makes sense if their PIRi

0 -value is not less
than PIobs-value. This is, however, not very likely. On the other hand, to mine
statistically significant 2-size co-location patterns, we compute the PI-value of
all possible (

(
n
2

)
) 2-size subsets anyway. We just need to store these PI-values so

that they can be used for the pruning decision of C of k-size (k > 2). Although
storing

(
n
2

)
PI-values costs some space, we can reuse it for each simulation run

during the randomization test. Thus we save additional PI-value computations
for pruned subsets and even save space for storing those. While checking the
2-size subsets of C, if one is found for which the PI-value is less than PIobs(C),
we will stop checking the remaining 2-size subsets (see algorithm 2). Finally
after checking 2-size subsets of C, if C is not pruned, we compute the PI-value
of C (PIRi

0 (C)) for a simulation run Ri. If PIRi
0 (C) ≥ PIobs(C) in Ri, then

Ri contributes to the p-value of (1). We maintain a counter R≥PIobs which is
incremented by one in a simulation run if PIRi

0 (C) ≥ PIobs(C). Finally, C will

be reported as statistically significant at level α, if the p-value i.e. R
≥P Iobs+1

R+1 ≤ α.
Here we illustrate the pruning strategy using four features A,B,C, and D.

First we compute PIobs for each possible co-location pattern. In each simu-
lation run Ri, we start with computing the PIRi

0 -value of each possible 2-size
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pattern and increment R≥PIobs of a pattern by 1 if PIRi
0 ≥ PIobs. Now lets

consider a 3-size pattern {A, B, C}. Assume PIRi
0 {A, B} < PIobs{A, B, C}, then

PIRi
0 {A, B, C} < PIobs{A, B, C}. Hence we do not compute PIRi

0 {A, B, C} and
{A, B, C} can be pruned. The decision for a 4-size pattern {A, B, C, D} is done
by checking its 2-size subsets in a similar manner. Note that we can not prune
it based on the fact that we could prune {A, B, C} as PIobs{A, B, C, D} will,
in general, be different from PIobs{A, B, C} and it could still be possible that
PIRi

0 {A, B, C, D} ≥ PIobs{A, B, C, D}. The PI-value decreases with the in-
crease of the size of a co-location. Hence, if the number of features increases, we
will see more pruning effect in co-locations of smaller size than in co-locations of
larger size. Algorithm 1 shows the pseudo-code of our approach.

Complexity: In the worst case, there is no pruning in each simulation Ri

and we compute the PIRi
0 -value of each possible co-location C. Before com-

puting the PIRi
0 -value of C, we lookup the stored PIRi

0 -values of its 2-size
subsets. Hence the cost for C is the sum of the lookup cost and the cost for
computing its PIRi

0 -value. Assume that a lookup costs β unit of computa-
tion. For a co-location C of k-size, the lookup cost for its

(
k
2

)
pairs is P k

1 =(
k
2

)
β. For computing PIRi

0 (C), we lookup the neighborhoods of all instances
of each feature in C and determine if at least one instance of each feature
in C is present in a neighborhood. Hence the cost of PI-value computation
for C of k-size is P k

2 = k × maxk{# of instances of feature fk} × β ≈ kδβ
[assume δ = maxn

i=1{# of instances of feature fi}]. With n total features, there
are

(
n
k

)
different k-size co-locations. Hence the total cost for all different k-size

co-locations is
(
n
2

)
P 2

2 +
∑n

k=3

(
n
k

)(
P k

1 + P k
2

)
. Using the equalities of

∑n
k=q

(
n
k

)(
k
q

)
= 2n−q

(
n
q

)
and

∑n
k=2 k

(
n
k

)
= n(2n−1 − 1), the above cost is equal to

(
n
2

)
(2n−2 −

1)β + n(2n−1 − 1)δβ which is of O(2n) when n > 4. The worst case is expensive
with large n. In many real applications (e.g. ecology) the largest co-location size
that typically exists in the data is much smaller than n since a finite co-location
neighborhood can typically not accommodate instances of n different features
when n is large. While checking neighborhoods of feature instances, we can tell
the size of the largest co-location. Note that, we are not looking for a statistically
significant co-location pattern with weak spatial dependency. Hence, we do not
compute PIRi

0 -value of C in a simulation Ri, if its PIobs-value equals 0. All
these keep the actual cost in practice less than the cost in the worst case.

5 Experimental Evaluation

5.1 Synthetic Data

Negative Association: Here we show that existing support threshold based
co-location mining algorithms can report a set of negatively associated features
as a prevalent co-location pattern. We generate a data set of two features ◦
and �, each of 40 instances and these two features inhibit each other. Such
a pairwise inhibition type can be modeled by a Strauss process [7], which has



12 S. Barua and J. Sander

Algorithm 1. SSCP: Mining Statistically Significant Co-location Patterns
Input: A Spatial data set SD with N spatial features S = {f1, . . . , fN}. Each feature

fi has Ii number of instances. Level of significance α, and total simulation runs R.
Output: Set of statistically significant co-location patterns C.
Variables:

k: co-location size
Ck

O : Set of all k-size candidate co-locations. Each candidate co-location is stored
along with its PIobs-value and R≥PIobs -value.
C2

0 : Set of all 2-size co-locations of null model. Each co-location is stored along

with its PI
Rj

0 -value from a simulation run Rj .
Method:
1: C ← {}

// Compute PIobs-value of all candidate co-locations from SD
2: for k = 2 to N do
3: for i = 1 to

(
N
k

)
do

4: Generate k-size i-th candidate co-location and store it in
Ck

O [i].pattern
5: Compute its PIobs-value

6: Ck
O [i].P Iobs ← PIobs; Ck

O[i].R≥PIobs ← 0

7: for i = 1 to
(

N
2

)
do C2

0 [i].pattern ← C2
O[i].pattern

// Computing p-value for all candidate co-locations
8: for j = 1 to R do
9: Generate a simulated data set Rj under the null model
10: for i = 1 to

(
N
2

)
do

11: Compute its PI
Rj

0 -value and C2
0 [i].P I ← PI

Rj

0

12: if C2
0 [i].P I ≥ C2

O[i].P Iobs then

13: C2
O[i].R≥PIobs ← C2

O[i].R≥PIobs + 1
14: for k = 3 to N do
15: for i = 1 to

(
N
k

)
do

16: if (isPrunedCand(Ck
O [i].pattern,Ck

O[i].P Iobs, C2
0 , k)) then

17: continue // PI
Rj

0 -value of Ck
O[i].pattern is not computed

18: Compute the PI
Rj

0 -value of candidate co-location Ck
O[i].pattern

19: if PI
Rj

0 ≥ Ck
O [i].P Iobs then

20: Ck
O[i].R≥PIobs ← Ck

O [i].R≥PIobs + 1
21: for k = 2 to N do
22: for i = 1 to

(
N
k

)
do

23: Compute p-value of Ck
O[i].pattern as

Ck
O [i].R

≥PIobs+1

R+1

24: if p ≤ α then
25: C ← C⋃Ck

O[i].pattern
26: return C

three parameters (β, γ, and r). The probability density of the Strauss process
X is αβn(X)γs(X), where α is a normalizing constant, n(X) is the total number
of points, and s(X) is the number of pairs in X which lie closer than r units
apart. β is the contributing factor of each point to the density, γ controls the
strength of the interaction between points, and r is the interaction distance.
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Algorithm 2 isPrunedCand(CandPattern, PIobs, C2
0 , k)

1: for each 2-size subset l of CandPattern do
2: Find index x of l in C2

0 .pattern.
3: if C2

0 [x].P I < PIobs then
4: return TRUE
5: return FALSE

When γ = 1, the overall density becomes the density of a Poisson process. With
γ > 1, the point process exhibits clustering, with γ = 0, points exhibit no
interaction within distance r, and with 0 < γ < 1, the points exhibit a negative
association (inhibition). Our data is generated from a multi-type Strauss process
where the parameter of interaction among similar type of feature instances is
0.43, the parameter of interaction among different types of feature instances is
0.4, and the interaction radius (r) is set to 0.1. β is 210. The study area is a
unit square and co-location radius (Rd) is 0.1. Even when imposing a negative
association between ◦ and �, we might still see instances of co-location of {◦,�}.
The data set is shown in Fig. 4(a). The computed PIobs({◦,�})-value is 0.55
and the existing mining algorithm will report co-location {◦,�} as prevalent if
a value less than 0.55 is set as PI threshold. Through randomization test, we
find that the probability of seeing PI0({◦,�}) being at least 0.55 under the null
model is 0.931 (930+1

999+1 ) which means observing PIobs{◦,�}-value is quite likely
under a null model. Hence our method will not report {◦,�} as a significant
co-location pattern. This can be validated from the estimation of Ripley’s K-
function. In Fig. 4(b), we see that estimation of K◦,�(r) using Ripley’s isotropic
edge correction (solid line) is always below the theoretical curve (dashed line),
which means that the average number of � found in a neighborhood of radius
r of a ◦ is always less than the expected value (πr2).

Auto-correlation: In this experiment, we show the effect of spatial auto-
correlation in mining a true co-location pattern. We generated a synthetic data

Fig. 4. a) A data set where ◦ and� are negatively associated. b) Estimation of Ripley’s
K- function K◦,�(r) from the data set.
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set with 2 different features ◦, and �. Feature ◦ has 100 instances which are spa-
tially auto-correlated, and feature � has 120 instances which are independently
and uniformly distributed. The study area is a unit square. As a good number
of � instances are uniformly spread over the space, �s will be found in most
of the clusters of ◦. In our generated data (Fig. 5), it happens that each cluster
of ◦s contains some �s which makes a ◦ being co-located with at least one �
in a given neighborhood (a circle with a radius of 0.1 unit). Hence the partici-
pation ratio of ◦ is 1, whereas the participation ratio of � is 0.49 ( 59

120 ). Finally
the PI-value of {◦,�} is 0.49. The spatial distribution of ◦ follows the model
of Matérn’s cluster process [7]. The summary statistics of the Matérn’s cluster
process has three parameters. Here cluster centers are generated from a Poisson
process with intensity κ. Then each cluster center is replaced by a random num-
ber of offspring points with a Poisson (μ) which are uniformly and independently
distributed inside a disc of radius r centered at the cluster center. The summary
statistics of feature ◦ are κ = 40, μ = 5, and r = 0.05. During the randomization
tests, in each simulation feature ◦ is generated using the same summary statis-
tics value for κ, μ, and r. Feature � is uniformly distributed. The number of
instances for each feature are also kept the same as in the observed data. We run
999 simulations leading to a p-value of 0.383 (382+1

999+1 ) for {◦,�} which is greater
than α = 0.05. Hence co-location {◦,�} is not statistically significant. Due to
the presence of spatial auto-correlation and abundance of feature instances, the
PI-value of the co-location {◦,�} is 0.49 and high, but not unexpected, which
can mislead the existing algorithms when using thresholds less than 0.49. Note
that a value of 0.49 would be relatively high and not an unusual threshold.

Multiple Features: Here, we generated a synthetic data set of 5 different fea-
ture types ◦, �, +, ×, and ♦ (Fig. 6). Features ◦, � and × have 40 instances
each. Feature + has 118 instances, and feature ♦ has 30 instances. Our study area
is a unit square and the co-location neighborhood radius (Rd) is 0.1. In the data,
we impose some pairwise interactions among features. Features ◦ and � (with

Fig. 5. A data set with two features Fig. 6. A data set with five features
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individual β value as 300) have a negative association relationship and instances
of these two types are generated from an inhibition process (a Multi-Strauss
hardcore process [7]), where no two different types of features are seen within a
predefined distance threshold (called hardcore distance h, here h = 0.05); but an
inhibition (negative association) is present at a distance 0.05 < r < 0.1 where
the inhibition parameter γ is 0.3 between ◦ and �, and 0.43 among same feature
instances. Feature + is spatially auto-correlated (κ = 40, μ = 3, and r = 0.05)
and positively associated with feature ◦ and feature ×. Hence, we observe a
group of + around instances of ◦ and ×. Feature ♦ is randomly distributed over
the study area. In our null model, both ◦ and � are generated from a Strauss-
hardcore process (with the same parameter values as in the synthetic data set)
but with no inhibition between them. Feature +, feature ×, and feature ♦ have
a similar type of distribution as in the synthetic data set.

From Table 1 we see that {◦,�} is not reported (p > 0.05) as significant due
to their inhibitive interaction. Feature ◦, feature +, and feature × are strongly
associated in the synthetic data and that is captured in the result as we see
{◦, +}, {◦,×}, and {+,×} having a p-value of 0 are reported. {◦, ♦} is not
reported since both features are independent of each other. The same reasoning
applies to {�, ♦}, {+, ♦}, and {×, ♦}. Since an inhibition relationship exists
between feature ◦ and feature � and a positive association exists among three
features ◦, +, and ×; feature � show an inhibition relationship with feature
+ and feature ×. We find that in our result that {�, +}, and {�,×} are not
reported as significant. It is clear that the existing algorithms using a global
threshold for reporting a co-location as prevalent would either miss a true co-
location (presence of a relationship) or even report a meaningless co-location (no
relationship or inhibition among features), if a proper threshold is not set.

In Table 2, we find that {◦,�, +}, {◦,�,×}, and {◦,�, ♦} are not reported.
In these 3-size subsets, the presence of ◦ and � prohibits a positive association
among 3 features. On the other hand, the positive association among features
◦, +, and × is captured in our result. Table 2 reports {◦, +,×} as significant.
Feature � shows an inhibition relationship with feature + and feature ×. Hence
{�, +,×} can not be a true co-location which is also not reported as significant.
Feature ♦ is randomly distributed and independent of other features. {�, +, ♦}
and {�,×, ♦} are not reported. They can not be true co-locations as each of
those 3-size subsets includes two features (such as feature �, and feature +)
which are inhibitive to each other. Feature ♦ with a strongly associated pair (such
as feature ◦, and feature +) could result in a positive association. This is also
revealed and our result finds {◦, +, ♦}, {◦,×, ♦}, and {+,×, ♦} as significant.

Subset {◦, +,×, ♦} (PIobs = 0.55 and p = 0) is reported as significant. A pos-
itive association among ◦, +, and × gives rise to this co-location. {◦,�, +,×}
(PIobs = 0.4, p = 0.299), {◦,�, +, ♦} (PIobs = 0.275, p = 0.661), and
{◦,�,×, ♦} (PIobs = 0.25, p = 0.665) are not reported. This is due to the
fact that two negatively associated features ◦ and � are present in those 4-size
subsets. {�, +,×, ♦} (PIobs = 0.25, p = 0.668) is also not reported. The inhibi-
tion of � with + and × and the independence of ♦ with other features prohibits
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Table 1. 2-size co-locations

Co-location PIobs p-value Significant

{◦,�} 0.525 1 No

{◦, +} 1 0 Yes

{◦,×} 1 0 Yes

{◦, ♦} 0.55 0.697 No

{�, +} 0.593 0.988 No

{�,×} 0.475 0.997 No

{�, ♦} 0.575 0.539 No

{+,×} 1 0 Yes

{+, ♦} 0.559 0.63 No

{×, ♦} 0.6 0.451 No

Table 2. 3-size co-locations

Co-location PIobs p-value Significant

{◦,�, +} 0.525 0.669 No

{◦,�,×} 0.4 0.916 No

{◦,�, ♦} 0.275 0.987 No

{◦, +,×} 1 0 Yes

{◦, +, ♦} 0.55 0.039 Yes

{◦,×, ♦} 0.55 0.013 Yes

{�, +,×} 0.425 0.835 No

{�, +, ♦} 0.314 0.927 No

{�,×, ♦} 0.275 0.944 No

{+,×,♦} 0.559 0.011 Yes

a positive association among these 4 features. Finally, the only 5-size pattern
{◦,�, +,×, ♦} (PIobs = 0.25, p = 0.185) is also not reported.

Runtime Comparison: For an auto-correlated feature, we do not need to
generate all of its instances and we can also prune candidate co-locations which
can not contribute to the p-value computation under certain circumstances (see
Sect. 4). In a näıve approach, we do not apply any of these techniques.

We generate a data set with 4 different features ◦, �, +, and ×. Features ◦,�,
and + are auto-correlated features; whereas feature × is randomly distributed.
The study area is a square with an area of 100 sq. units and the co-location
neighborhood radius Rd is set to 0.1. We impose a strong spatial relationship
among ◦, �, and ×. Feature ◦, feature �, and feature + have 400 instances each
and feature × has 20 instances. In total there are 1220 instances. The significant
patterns found are {◦,�} (PIobs = 0.9125, p = 0), {◦,×} (PIobs = 0.17,
p = 0),{�,×} (PIobs = 0.16, p = 0), and ({◦,�,×} (PIobs = 0.145, p = 0).
We conduct four more, similar experiments, and in each experiment we keep
the total cluster number of each auto-correlated feature the same but the total
number of instances per cluster is increased by a factor k for all clusters. All these
experiments also report the mentioned co-location patterns as significant. Figure
7 shows the runtime. Figure 8 shows that with the increase of total instances,
we obtain an increasing speedup growing from 2.5 to 4.5. The experiment is
conducted on a 16 Quad-Core AMD Opteron processor machine with a cpu
speed of 2.4Ghz. The main memory size is 62GB and the OS is Linux. For
an auto-correlated feature, if the number of clusters increases, the chance of a
cluster being close to other features will be higher. Hence the data generation
step might have to generate more instances of each auto-correlated feature in
such cases. In another 5 experiments, we increase the number of instances of
feature × and the number of clusters of each auto-correlated feature by the
same factor but keep the number of instances per cluster same. Figure 9 shows
the runtime and Fig. 10 shows the speedup of the five experiments. We see that
with the increase of the number of clusters, after increasing first, the speedup
eventually goes down. This happens when more and more instances actually have
to be generated, eventually leaving only the speedup due to candidate pruning.
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Fig. 7. Runtime comparison Fig. 8. Speedup

5.2 Real Data Set

Ants Data: The nesting behavior of two species of ants (Cataglyphis bicolor
and Messor wasman) is investigated to check if they have any dependency on
biological grounds. The Messor ants lives on seeds while the Cataglyphis ants
collect dead insects for foods which are for the most part dead Messor ants.
Messor ants are killed by Zodarium frenatum, a hunting spider. The question is
if there is any possible connection we can determine between these two ant species
that could be derived from their nest locations. The full data set gives the spatial
locations of nests of the two species recorded by Professor R.D. Harkness at a
site in northern Greece [5]. It comprises 97 nests (68 Messor and 29 Cataglyphis)
inside an irregular convex polygon polygonal boundary (Fig. 11).

We run our algorithm on the ants data and computed the PI-value. Each
of the 24 Cataglyphis ant nests is close to at least one Messor ant’s nest, not
more than 50 unit away. Hence the participation ratio of Cataglyphis ant is
24
29 = 0.8275862. For Messor ants, the participation ratio is 30

68 = 0.4411765.
Finally the PIobs-value of co-location {Cataglyphis ,Messor} is 0.4411765. In
the randomization test, we generate 999 simulation runs and find that in 141
simulation runs, the PIRi

0 -value is greater than or equal to the PIobs-value. The
p-value = 141+1

999+1 = 0.142 is greater than 0.05. Hence we can conclude that the co-
location {Cataglyphis ,Messor} is not statistically significant at level 0.05 and

Fig. 9. Runtime comparison Fig. 10. Speedup
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Fig. 11. Ants data - ◦ =
Cataglyphis ants and � =
Messor ants Fig. 12. Toronto address data (4 features)

there is no spatial dependency between these two types of ants. In fact, clear
evidence of a spatial association between these two species is also not found [5].

Toronto Address Repository Data: The Toronto Open Data provides a data
set with over 500, 000 addresses within the City of Toronto enclosed in a polyg-
onal area. Each address point has a series of attributes including a feature class
with 65 features and coordinates. After removing missing data and removing
features with very high frequency (e.g. high density residential), we select 10
features for our experiment: low density residential (66 instances), nursing home
(31 instances), public primary school (510 instances), separate primary school
(166 instances), college (32 instances), university (91 instances), fire station (63
instances), police station (19 instances), other emergency service (21 instances),
and fire/ambulance station (16 instances). Due to space limitations, only some
of the feature distributions are shown in Fig. 12. To determine if a feature shows
clustering (spatial auto-correlation), regularity (inhibition), randomness (Pois-

son), we compute the pair co-relation function g(r) = K
′
(r)

2πr where K
′

is the
derivative of the K-function [7]. Values of g(r) > 1, at smaller distances r sug-
gest clustering; g(r) = 1 indicates randomness, and g(r) < 1 suggests inhibition.
Police stations, fire stations, fire/ambulance stations, separate primary schools
show regular distributions, since g(r) < 1 at smaller r values. The remaining
features are auto-correlated since their g(r) > 1 for smaller values of r. The
co-location neighborhood radius (Rd) is set to 500.

In Table 3, we show 2-size, 3-size, and 4-size co-locations. Note that the PIobs-
values are so low that existing algorithms would return almost every feature
combination as a co-location if their global threshold would be set so that the
above statistically significant co-locations can be returned.
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Table 3. Found co-locations. A feature present in a co-location is shown by
√

.

Low
density
resid.

Univ.
Fire
Station

Police
station

College
Other
emerg.
service

Nursing
home

Public
primary
school

Separate
primary
school

PIobs
√ √

0.363√ √
0.079√ √
0.157√ √
0.263√ √
0.095√ √
0.120√ √
0.022√ √
0.095√ √ √
0.030√ √ √
0.047√ √ √
0.087√ √ √
0.022√ √ √
0.0158√ √ √
0.0317√ √ √ √
0.0158√ √ √ √
0.012

6 Conclusions

In this paper, we propose a new definition of co-location patterns and a method
to detect them. Existing approaches in the literature find co-locations using
a predefined threshold value which can lead to not reporting meaningful co-
location patterns or reporting meaningless co-location patterns. Our method
is based on a statistical test. Such a statistical test is computationally expen-
sive; we improve the runtime by generating a reduced number of instances for
an auto-correlated feature in a simulated data generation step and by prun-
ing unnecessary candidate co-location patterns in the PI-value computation of
simulation runs. We evaluate our algorithm using synthetic and real data sets.
Future work includes studying and comparing alternative prevalence measures
in our framework which could also allow additional pruning techniques.
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Abstract. Road traffic accidents are a social and public challenge. Various spa-
tial concentration detection methods have been proposed to discover the con-
centration patterns of traffic accidents. However, current methods treat each 
traffic accident location as a point without consideration of the severity level, 
and the final traffic accident risk map for the whole study area ignores the users' 
requirements. In this paper, we propose an ontology-based traffic accident risk 
mapping framework. In the framework, the ontology represents the domain 
knowledge related to the traffic accidents and supports the data retrieval based 
on users' requirements. A new spatial clustering method that takes into account 
the numbers and severity levels of accidents is proposed for risk mapping. To 
demonstrate the framework, a system prototype has been implemented. A case 
study in the city of Calgary is also discussed. 

Keywords: Spatial clustering, GIS, Ontology, Traffic accident, Road safety.  

1   Introduction 

Road traffic accidents that cause injuries and fatalities are a social and public health 
challenge [1]. The World Health Organization estimates over 1 million people are 
killed each year in road collisions, which is equal to 2.1% of the annual global mortal-
ity, resulting in an estimated social cost of $518 billion [20]. In Canada, about 3,000 
people are killed every year [21]. To significantly reduce traffic fatalities and serious 
injuries on public roads, identification of the hidden patterns behind the accidents’ 
records is critical [1]. 

In most cases, the occurrences of traffic accidents are seldom random in space and 
time, but form clusters that indicate accident concentration areas in geographic space 
[1]. A concentration area is defined as an area or location where there is a higher 
likelihood for an accident to occur based on historical data and spatial dependency. 
Over the years, various spatial concentration detection methods have been proposed 
and applied to discover traffic accidents' concentration patterns, with the final result 
of a single map [1, 2, 8, 18, 19, 20, 27, 30, 34].   

Traffic analysts and the general public, however, are actually interested in accident 
concentration areas in terms of specific conditions, such as different time intervals, 
weather conditions, and road surface conditions. For example, a traffic analyst may be 
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interested in an accident concentration area for the downtown area during workday 
rush hours, so that he can locate the most vulnerable locations to accidents and ana-
lyze the reasons behind these accidents to improve road safety. A new driver may be 
interested in a map of the northwest part of city during winter weekends, which can 
help him avoid dangerous areas when practicing driving in the northwest part of the 
city in winter time. These different conditions reflect different requirements from 
users. Therefore, risk maps that meet users' manifold requirements are necessary. 

Nevertheless, integration of users' requirements into generating different concen-
tration maps is not an easy task. The first subtask is the selection of the proper data-
sets based on different users' requirements. One naive option is the translation of 
users' requirements into traditional database queries. For example, in the former ex-
ample, they need to define "downtown area" or "rush hours", so users can handle the 
traffic accident data at the data level, which can sometimes be quite challenging for 
users who have no or only limited knowledge of the study area and dataset. The sec-
ond option is the handling of users' requirements at the knowledge level. Knowledge 
of the study area and datasets are well defined and represented. Users do not need to 
know the details of the area, and the proper datasets can be retrieved based on their 
requirements. 

After selecting the proper datasets, the second task for generating a concentration 
map is the application of the proper traffic accident concentration detection methods. 
Existing traffic accident concentration detection methods treat each accident as a 
point and then apply traditional point pattern analysis methods on the extracted points. 
When defining the concentration area, they consider only the number of accidents, 
ignoring the severity levels associated with the accidents. However, accidents have 
different severity levels, including fatality, injury, and property damage only (PDO) 
[6]; and, each level should be treated differently. For example, accidents with fatali-
ties and injuries put more strain on the network than PDO accidents. An intersection 
with frequent fatal accidents may be more dangerous than an intersection with PDO 
accidents, in cases where both intersections have the same number of accidents.  

Ontology is the explicit specification of a conceptualization [11]. It provides do-
main knowledge relevant to the conceptualization and axioms for reasoning with it. 
For accident domain ontology, it has a conceptual and taxonomical representation of 
accident data, providing domain knowledge, including non-spatial and spatial con-
cepts and definitions relate to the traffic accidents. This enables the user to pose se-
mantic queries with a semantic representation of traffic accident concepts. Therefore, 
it can provide a knowledge source that supplements domain experts and integrates 
users' goals into the selection procedure.  

Spatial clustering is a data mining method that separates objects into groups (called 
clusters) based on spatial and non-spatial attributes [13]. For density-based clustering 
methods, clusters are regarded as regions in the data space where the objects are 
dense. These regions may have an arbitrary shape, and the points inside a region may 
be arbitrarily distributed. Therefore, it can be used to find accident concentrations in 
geographical space. 

In this paper, we propose a novel traffic accident risk mapping framework. This 
framework is based on traffic accident domain ontology that is built at a high generic 
level. This framework includes the interactive input module, an accident domain on-
tology, an ontology reasoner, datasets, a clustering engine with a risk model, and a 
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map publishing module. With this framework, spatial concepts are well defined; and, 
each accident record is described by several characteristics, such as crash time, loca-
tion and environmental factors.  

The users' requirements are translated into a set of subtasks by performing reason-
ing on the ontology. Appropriate datasets can be chosen by a selection procedure 
guided by the ontology with respect to the user's goals. After identifying the proper 
datasets, the proposed density-based spatial clustering method with a user selected 
traffic accident risk model is applied to the dataset to identify the traffic accident risk 
area. Finally, the different traffic accident risk maps that meet users' requirements can 
be generated and published. The following paragraphs summarize the contributions of 
the paper. 

First, we propose an ontology-based traffic accident risk-mapping 
(ONTO_TARM) framework. In ONTO_TARM, the ontology represents the domain 
knowledge, including the non-spatial and spatial concepts and definitions related to 
the traffic accidents, and helps to retrieve information based on users' goals. The 
framework performs reasoning based on the user's input, returns the most suitable 
dataset from the raw historical dataset to generate the user's own risk map. 

Second, a novel spatial clustering method, density-based clustering for traffic acci-
dent risk (DBCTAR), is proposed. This new clustering method has been extended 
from DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [8] by 
considering both total accident numbers and the severity levels of the accidents. In a 
simplified version, the value of equivalent property damage only is calculated for 
each cluster and used as a risk index. The proposed method is also used for the road 
network environment. The clustering result shows the boundary of each cluster sub-
ject to the boundary of the network.  

Third, a prototype of the proposed framework has been implemented. Real traffic 
accident data have been populated into the prototype. With the web-based publishing 
module, users can view maps through their web browser. 

The paper is organized as follows: Section 2 provides a literature review on the 
methods of identifying accident concentrations and ontology in traffic accidents; 
Section 3 describes the proposed ONTO_TARM framework and the DBCTAR spatial 
clustering method; and, Section 4 presents the implementation of the risk mapping 
prototype system with a case study in the Calgary area. Section 5 concludes the paper 
and discusses future research directions. 

2   Related Works 

2.1   Accident Concentration Detection 

Identification of an accident concentration area in a road network is usually simplified 
into a task that detects concentrations of point events in a network. Various methods 
have been proposed and applied, including spatial autocorrelation methods and kernel 
density methods. 

The autocorrelation methods detect whether a given point distribution differs from a 
random distribution throughout the study area [4], such as Ripley’s K-function, Getis’s 
G-statistic and Moran’s I. These methods can be classified as global methods [34] and 
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local methods [8][2], based on whether the methods apply the spatial autocorrelation 
significance test globally or locally within the study area. For the identification of acci-
dent concentrations, positive spatial autocorrelation indicates that accident distribution 
is clustered, which means the concentration may happen in the study area. A global 
method cannot reveal the location of clusters. Local methods need to aggregate point-
based accidents into basic spatial units (BSUs). There is no unique solution for the divi-
sion. A different division may lead to different results at different scales. 

A kernel density method aims at calculating and producing a density surface from 
point features. Here, the density is the total number of accidents per unit area. Usu-
ally, this method divides the whole area into grid cells. A hump or kernel with a 
mathematical equation, called a kernel function, is applied to each accident point. A 
kernel function is a weighting function that is used to estimate variables' density rang-
ing from 1 to 0 with a given radius, depending on its distance to the accident point. 
All the values from different points at a given cell are then totaled as the density esti-
mation value.  

The traditional kernel method is a two-dimensional planar method, which gener-
ates a continuous raster surface with equal-sized cells covering the whole area in 
which the network located. The raster cells with high values indicate the accident 
concentration areas. The planar method has inherent limitations: First, all of the acci-
dents are only located on streets. The cells that are located outside of the road have 
risk values that do not match the reality. Second, the density of the road network is 
ignored [28]. Even if some grid cells have the same density values, they may include 
different lengths of road sections. The real density values of road network are, there-
fore, biased. Third, the choice of bandwidth affects the outcome surface. 

To overcome these limitations, many studies have attempted to extend the conven-
tional planar method to network spaces. Flahaut et al. [9] developed a kernel density 
estimation method based on a simple network. Borruso [2] considered the kernel as a 
density function based on network distances. Xie and Yan [33] pointed out that point 
events in the network are better measured with density values per linear unit, but they 
did not consider the bias of their estimator explicitly. Okabe et al. [19] discussed three 
types of network kernel density estimation. The equal split kernel function and the 
equal split continuous kernel function have improved the kernel estimation methods. 
However, no kernel function exists that satisfies a combination of precisely estimating 
the density of events on a network without bias [28].  

Almost all the methods have their own weaknesses in addition to the limitations il-
lustrated. First, all of the above methods handle accident analysis at the data level. 
They fail to take into consideration users' requirements. As discussed previously, 
accident distributions are totally different due to many factors, such as time, weather 
or road surface state. For example, Fig. 1 provides a histogram showing the accident 
statistics on the 16th Avenue N, Calgary, Alberta, with the same time interval of the 
day for 4 years (1999-2002). From this chart, it can be seen that the accident numbers 
vary at different time intervals, meaning that in a specific time range of the day, the 
concentration of accidents should be different. Thus, it is not difficult to conclude 
that, given certain factors (such as the weather condition), the risks of the road net-
work should be different. However, current methods do not consider different factors. 
Although datasets can be generated from database query, the processing remains at 
the data level, not at the knowledge level. Therefore, current methods cannot satisfy 
users' needs. 
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Fig. 1. Accident statistics in the same time intervals on 16th Ave N in Calgary 

Second, all of the above methods ignore the severity level of accidents. When users 
consider the accident risk of the road network, the assumption is that, if an area on the 
map is marked as high risk, that area should be more vulnerable to accidents. How-
ever, the nature of the accidents may be different from one another. One of the obvi-
ous distinctions is the severity level. For example, a rear-end accident should not be 
considered the same as an accident with a fatality. Thus, the risk not only depends on 
the number of accidents, but also on the severity level of accidents. Unfortunately, 
most of the previous studies take the accident records as a point without considering 
the severity levels, and most of the statistical analyses are only based on the number 
of the accidents. 

2.2   Spatial Clustering  

Spatial clustering is the process of grouping a set of objects into groups (called clus-
ters) based on their geographical locations and other attributes. Spatial clustering 
algorithms exploit spatial relationships among the data objects in determining inher-
ent groupings of the input data. Spatial clustering methods can be classified into parti-
tioning methods, hierarchical methods, density-based methods, grid-based methods 
and model-based methods [13][14]. Among these different types of methods, a den-
sity-based clustering method is the most suitable for traffic accident risk analysis, 
because it can discover arbitrarily shaped clusters based on density. The following 
paragraphs discuss the classic density-based clustering method on which our research 
is based. 

DBSCAN [8] was the first and is the most classic density-based spatial clustering 
method. The key concept is the definition of a new cluster or extension of an existing 
cluster based on a neighborhood. The neighborhood around a point of a given radius 
(Eps) must contain at least a minimum number of points (MinPts). Given a dataset 
(D), a distance function (dist) and parameters Eps and MinPts, the following defini-
tions are used to define DBSCAN.  

For an arbitrary point p, p ∈  D, the neighborhood of p is defined as NEps(p) = {q 
∈  D | dist(p,q) ≤ Eps }. If | NEps(p) | ≥ MinPts, then p is a core point of a cluster. If p 
is a core point and q is p's neighbor, q belongs to this cluster, and each of q’s 
neighbors is examined to see if it can be added to the cluster. Otherwise, point q is 
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labeled as noise. The expansion process is repeated for every point in the neighbor-
hood. If a cluster cannot be expanded further, DBSCAN chooses another arbitrary 
unlabelled point and repeats the process. This procedure is iterated until all points in 
the dataset have been placed in clusters or labeled as noise.  

Compared with traditional concentration detection methods, a density-based spatial 
clustering method can inherently discover the concentrations; dataset segmentation is 
not needed at the beginning of the process. It can also find arbitrary concentration 
shapes from the dataset. However, most density-based clustering methods do not 
consider non-spatial attributes of the data point and cannot be directly applied to data-
sets on a spatial network. 

2.3   Ontology in Traffic Accidents  

Ontology is an explicit representation of knowledge. It is a formal, explicit specifica-
tion of shared conceptualizations, representing the concepts and their relations that are 
relevant for a given domain of discourse [11]. Generally, ontology contains basic 
modeling primitives such as classes or concepts, relations, functions, axioms and 
instances [11][12].  

The last few years have seen a growing interest [21] in approaches that have do-
main ontology add a conceptual level over the data, which is used as a middle layer 
between the user and the dataset, especially with spatial data. Several ontological 
approaches are proposed for road accidents. Hwang [14][16] built a high-level con-
ceptual framework that includes traffic accident domain ontology. However, this 
research focused on the task ontology and did not consider the disparity of accidents. 
Yue et al. [35] presented an ontology-based prototype framework for traffic accident 
management from a hierarchical structured point of view. However, their ontology 
was designed only for the traffic management system. It rarely considered the spatial 
knowledge associated with the accidents. 

3   Methodology 

3.1   An Ontology-Based Traffic Accident Risk Mapping Framework 

As discussed in Section 2, users may demand different road traffic risk maps under 
various users' requirements and conditions. Fig. 2 shows the proposed ONTO_TARM 
framework.  

 

Fig. 2. Ontology-based traffic accident risk mapping (ONTO_TARM) framework  
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The ONTO_TARM framework consists of 6 components: an interface, an accident 
domain ontology, an ontology reasoner, traffic accident datasets, a clustering engine, 
and a publishing module. The users' goals provide the input, which can be represented 
as natural language, with some predefined words, or it may use a more general for-
mat. For example, users can input the time range or select predefined time sections, 
such as morning or rush hours. The traffic accident domain ontology represents the 
knowledge of accidents. The ontology reasoner is used to reason the knowledge rep-
resented in the ontology. It contains the classification and decomposition rules. Traf-
fic accident datasets contain all the accident records. In this research, we assume the 
datasets include all the traffic accident data that different users' requirements. The 
clustering engine uses the proposed spatial clustering method to find the traffic con-
centration areas based on user' goals. The publishing module is the output part of this 
framework and is used for the final map generation and publication.  

The whole framework works as follows: The interface handles users' goals as in-
puts, sending them to the reasoner. The reasoner parses the users' goals into tasks 
based on the domain ontology, conducts queries for each task and returns with the 
proper dataset. Finally, the proper dataset is sent to the clustering engine, and a risk 
map is generated and published. In the following subsections, each component is 
introduced and discussed. 

Traffic Accident Domain Ontology 

Traffic accident domain ontology (TADO) provides formal descriptions of the classes 
of concepts and the relationships among those concepts that describe road traffic 
accidents. The structure of TADO is based on Wang et al. [31][32].  

Definition 1 (Domain ontology structure). An ontology structure of a domain is a 7-
tuple O:= {D, C, R, A, HC, prop, att}, where D is the domain context identifier, C is a 
set called concept, R is the relation identifiers (C and R are disjoint and provide nec-
essary conditions for membership), and A is a set of attributes to describe C and R. 
HC, which is a concept hierarchy classification, is a set of hierarchical trees that define 
the concept taxonomy in the domain. The prop function relates concepts non-
taxonomically: R  C × C. Each attribute in A can be treated as a specific kind of 
relation, where the function att relates literal values to concepts: A  C. Elements C 
and R can be regarded as the high-level encapsulation of the analysis and design 
model for the ontology.  

Definition 2 (Classification). HC is a set directed, transitive relations: HC = { hC ⊆  C 
× C }, where hC(C1, C2) means that C1 is a sub-concept of C2 in the relation hC. Usu-
ally, HC includes a set of classification instances. Depending on the application, the 
classification constraints may be different. Even the same concept can be categorized 
into several categories. 

Each component of the top-level ontology is discussed in detail.  

Domain Context Identifier 

In TADO, the domain context identifier D is TrafficAccidentRecordDomain. 
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Concepts 

Accident records include spatial and non-spatial information. For example, each acci-
dent record has the attributes of location and accident time. Therefore, the concept set 
C of TADO includes three main classes: GeospatialThing, AccidentRecord and Acci-
dentCondition to represent this information. 

For the spatial information, we extend the ontology conceptual tree from the Cyc 
knowledge base [5] by altering the GeographicalThing to GeospatialThing with cus-
tomized spatial classes. The Cyc knowledge base was selected because it is the most 
commonly used ontology and it contains a great quantity of common sense knowl-
edge encoded in formal logic. GeospatialThing is defined as an abstract class to pro-
vide the basic classes of geospatially related concepts or entities that can be used to 
describe the locations of accidents. It includes subclasses GeometricThing, Fixed-
Structure and GeographicalRegion. FixedStructure presents the facilities related to 
the accidents, such as the road. GeographicalRegion describes the geographical area 
with a specific boundary. Any geographical region used in TADO is an instance of 
GeographicalRegion. Various geographical regions, such as Province, City, County, 
Community and CitySection, are defined. Province, City and County are defined as 
regions with political boundaries. Community is derived from the census subdivisions 
and can be classified into city sections. CitySection is the region in the city that has 
formed over a long historical period. For example, Calgary is an instance of the class 
City. Within the boundaries of Calgary, there are around 100 communities, with each 
community belonging to at least one of the five Calgary CitySections, which are the 
NW, SW, SE, NE and downtown areas. 

The non-spatial information describes the non-spatial properties of the accidents. It 
includes two main subclasses, AccidentRecord and AccidentCondition. AccidentRe-
cord represents the class of the available accident record data. Any record used in 
TADO is an instance of AccidentRecord. Non-spatial properties of this class are de-
fined in AccidentCondition, such as TemporalConditions and EnvironmentalCondi-
tions. The TemporalConditions class includes different abstract classes based on dif-
ferent time scales, from hourly to yearly. The temporal concepts, such as rush hours 
and slow hours, are also defined. The EnvironmentalConditions define various acci-
dent related environmental factors. Examples of these classes are WeatherConditions 
and RoadConditions. 

Relations 

Relations consist of the relationships among GeospatialThing, AccidentRecord and 
AccidentCondition. Geospatial Relation and AccidentCondition Relation are the two 
major types of relations. Geospatial Relation includes the spatial relationships among 
GeospatialThing. There are three kinds of geospatial relations: direction, distance and 
topological relations. A direction relation describes the orientation in space of some 
objects, such as north, south, up, down, behind and front. A distance relation specifies 
the distance from an object to a reference object. Some examples of distance relations 
are far and close-to (near). A topological relation describes the location of an object 
relative to a reference object [7]. Topological relations include disjoint,  
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contains/insideof, overlap, cover/covered and meet. AccidentCondition Relation de-
fines relations between AccidentRecord and AccidentCondition. The relationships also 
include temporal and non-temporal relationships. Examples of temporal relationships 
are at time point of, around time, in the range of, early than, later than. An example 
of a non-temporal relationship is with the condition of.  

Attributes 

Attributes define the attributes and properties of the above classes and their sub-
classes. One example of spatial attributes is location. Some examples of non-spatial 
attribute include hasName, hasValue, hasTime, hasDate. 

Classification 

Classification includes the hierarchical classification used for TADO. Fig. 3 shows 
the top-level ontology defined in TADO and the hierarchical classification of Geospa-
tialThing and AccidentCondition. As shown in Fig. 4, GeospatialThing is the top class 
of all spatial things in TADO. In the three subclasses, the GeometricThing class in-
cludes abstract geometric shapes. FixedStructure presents the facilities related to the 
accidents and includes classes such as Building, Station, Roadway. The Roadway 
class includes subclasses Expressway, Highways, Majorroad, and Localroad. Under 
the class GeographicalRegion, we have EcologicalRegion, GeoculturealRegion, Geo-
politicalRegion. Subclasses Country, Province, City, County and Community belong 
to the GeopoliticalRegion. 

AccidentCondition can be classified into TemporalConditions and Environmental-
Conditions. The TemporalConditions include Instant, Interval and DateTimeDescrip-
tion class. The EnvironmentalConditions include the WeatherCondition, the road 
RoadSurfaceCondition, the RoadCondition, LightCondition. Each has detailed sub-
classes. For example, the WeatherCondition includes SevereWeather and Fair-
Weather. The high_wind, fog_smog_smoke_dust, hail_sleet, raining and snow are all 
in the severe weather condition class. 

Function prop 

The function prop relates concepts non-taxonomically among the concepts. It can be 
an instance of geospatial relation or non-geospatial relation, such as undercondi-
tionof() and insideof(). Here, we use insideof as an example. In Fig. 4, City and Com-
munity are two classes (concepts) in the ontology, and class City is not a super-class 
of the class Community; therefore, insideof(City, Community) represents whether a 
community is inside a city. Thus, insideof defines one type of relationship between 
instances of the two classes.  

Function att 

The function att is used to describe the properties or attributes of a class. For example, 
hasName is used to define the names of instances of each class. 
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Fig. 3. Top-level conceptual three in TADO 

 

 

Fig. 4. Classification of TADO 

Reasoner 

In the framework, the ontology reasoner is used to reason the knowledge represented 
in the ontology. The input of the reasoner is the user's goals, and the output is a set of 
proper accident records selected from the raw dataset. After generating a general task 
from a user's goals, the spatial task identifies the target geographical area. The non-
spatial task identifies the proper temporal and environmental factors. For example, if 
a user's goal is the generation of a risk map for accidents that happened in rush hours 
on workdays in downtown Calgary, the reasoner first finds "downtown Calgary". A 
spatial query task is generated as shown in Fig. 5. 

The non-spatial task is materialized by the task "accidents that happened in rush 
hours on workdays with severe weather". This task includes two main components: a 
temporal condition task and an environmental condition task, as shown in Fig. 6. The 
non-spatial attributes are both complex tasks that need further decomposition. The 
temporal condition task is composed of two subtasks: finding "rush hours" and find-
ing "working days". The weather condition task is finding "severe weather" and will 
return conditions including high_wind, fog_smog_smoke_dust, hail_sleet, raining, 
and snow.  
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sub-task: findDowntownAreaTask 
defgoal find Calgary Downtown Area 
Input:  
(object (is-a City) (object?ci) (hasName "Calgary")) 
(object (is-a CityfSection) (object?cs) 
  (hasName "Downtown Area") (insideOf?ci)) 
(object (is-a community) (object?co) (insideOf?ci) 
   (belong-section?cs)) 
Output:  

  (object (is-a $?community) (object? co)) 

Fig. 5. Pseudocode of spatial query task findDowntownAreaTask 

sub-task: findAccidentConditionTask 
defgoal find Accident Conditions 
Input:  
(object EnvironmentalCondition?ec 
 (RoadSurface-condition "dry"),  
 (RoadCondition "straight" || "curve"),
 (WeatherCondition findSevereWeatherTask())
 (LightCondition "artificial"||"nature")) 
(object TemporalCondition?tc 
 (DateTimeDescription? findWorkingdaysTask()) 
 (Interval? findRushHoursTask())) 
(object (is-a AccidentCondition) (object?ac)  
(include?ec & tc)) 
Output:  
(object (is-a $?AccidentCondition) (object?ac)) 

sub-task: findSevereWeatherTask  
defgoal find severe weather conditions    
Input:  
(object (is-a WeatherCondition) (object?we) include? 
"high_wind"||"fog_smog_smoke_dust"|| 
"hail_sleet"||"raining"||"snow") 
Output: (object (is-a WeatherCondition) (object?we)) 

sub-task: findWorkingdaysTask  
defgoal find working days    
Input: (object (is-a calendarDay) (object?cd)  
is-a?weekday is-not-a?holiday ) 
Output: (object (is-a calendarDay) (object?cd)) 

sub-task: findRushHoursTask  
defgoal find rush hours    
Input: (object (is-a timerange) (object?tr) 
equal?TimeofRushHour ) 
Output: (object (is-a timerange) (object?tr)) 

Fig. 6. Pseudocode of non-spatial query task findAccidentConditionTask 
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3.2   Density-Based Clustering for Traffic Accident Risk (DBCTAR) 

The traffic accident risk in this paper is derived from the accident concentration area. 
The accumulated accident number is the most common way to reflect the risk level. 
However, as fatality and injury accidents put more strain on the road network and 
increase the economic burden on society, these accidents need to be considered dif-
ferently from PDO accidents, in order to account for their larger effects [25]. There-
fore, the risk area should be defined by both the frequency and degree of the severity.  

Since the risk areas are arbitrary shapes on the road network, the proposed cluster-
ing method is a density-based clustering method for traffic accident risk (DBCTAR). 
This clustering method is extended from DBSCAN, which is described in Section 2.2.  

To consider the severity level of each accident, we propose to assign different 
weights to accidents with different severity levels. Within a given accident dataset D, 
we define a variable RiskIndex as follows: 

( )∑
=

=
n

i
ii SCount* WRiskIndex

1

 (1)

where Si is the ith severity level, Count() is a function to get the total number of  
accidents at that level, and Wi is the weight assigned to the ith severity level. The 
Riskindex not only considers the number of accidents, but also takes into account the 
severity level. A new parameter MinRisk, which is the threshold of RiskIndex, is also 
defined.  

Ideally, no two accidents have the same severity level. However, for the practical 
cases, assigning unique weights to each accident is not feasible. In road safety re-
search, accident records are usually classified into 3 classes: fatality, injury and PDO. 
Accident with fatalities and/or injuries can be converted into equivalent property 
damage only (EPDO) accidents [25].  

EPDO = W1* Count(Fatal) + W2* Count(Injury) + W3* Count(PDO) (2)

EPDO is calculated by assigning different weighting schemes, as shown in Fig. 7. 
One of the most commonly used conversion weight settings is recommended by 
PIARC (Permanent International Association of Road Congresses) with W1=9.5; 
W2=3.5; and W3=1 [22]. 

 

Fig. 7. Different weight models for accident severity level (DOT: Department of Transporta-
tion) (taken from [25]) 
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EPDO can be considered as a simplified format of Riskindex. To determine the pa-
rameter MinRisk, we use a method similar to the k-dist function [8]. We first build the 
most significant k-dist graph to identify the most suitable k value, then calculate the k-
nearest neighbor's Riskindex and sort these values by distance. The threshold MinRisk 
point is located near the first "valley" of the sorted k-nearest risk index graph. 

With DBCTAR, when the cluster extends an existing cluster from a neighborhood, 
the neighborhood around a point of a given radius (Eps) must contain at least a mini-
mum number of points (MinPts) and has a RiskIndex larger than MinRisk. This algo-
rithm is used in a network environment; therefore, we use road network distance 
rather than the Euclidian distance. The core point is an accident that has at least 
MinPts accidents within the search distance Eps; and, the RiskIndex of the accidents 
within the search distance is larger than MinRisk. This core point criteria can be stated 
as follows: For p∈D, the neighborhood of p is defined as NEps(p) = {q ∈  D | net-
work_dist(p,q) ≤ Eps }. If | NEps(p) | ≥ MinPts AND RiskIndex(p) > MinRisk, then p is 
a core point of a cluster.  

If p is a core point and q is p's neighbor, then q belongs to this cluster; and, each of 
q's neighbors is examined. Otherwise, if p is not a core point, point q is labeled as 
noise. The algorithm ends when every point is classified as in a cluster or labeled as 
noise. 

When we implemented the DBCTAR algorithm in the prototype, we simplified the 
Riskindex as follows:  

RiskIndex = W1* Count(Fatal) + W2* Count(Injury) + W3* Count(PDO)  (3)

 
where W1, W2 and W3 depend on the risk index model that the user selects from Fig. 7. 
These models use different weighting schemes that reflect different perspectives of 
the significance of each kind of accident. For example, Transport Canada uses the 
weight of 13.88 for accidents with injury, which suggests the injury accident is more 
important than the weight of 3.5 recommended by the PIARC. 

4   Implementation and Case Study 

To demonstrate the ONTO_TARM framework, a prototype has been developed for the 
traffic risk map generation and web publication. A graphical user interface has been 
implemented for setting users' goals. The accident domain ontology is represented with 
Protégé-OWL 4.0 software [23, 27]. The DBCTAR algorithm and a map generator is 
implemented using C# with ArcObject 9.3. DBCTAR identifies accident clusters with 
risk index values. The map generator transforms the clusters into traffic accident con-
centration areas with different colors for better visualization. The traffic concentration 
map can be exported as a KML file. An online platform based on Google Map with 3D 
viewer is also implemented with Apache 4 to publish the KML file. 

The testing database included all the reported collisions on the roads in Alberta 
from 1999 to 2005. The total number of records was more than 770,000. Each record 
had more than 60 columns of properties, such as date, time, on street, at intersection 
with street, severity levels and weather conditions. The data from 1999 to 2004 was 
used to generate traffic accident risk maps and the data from 2005 was used for  
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validation. Locations of the accidents were geocoded with the geocoding service of 
Google Maps API v3.  

Suppose the user's goal is to find the risk map in the downtown area of Calgary at 
rush hours in the morning. This task refers to the downtown area of Calgary. Without 
geographical knowledge of Calgary or a definition of rush hours, the traditional 
method cannot proceed, due to the lack of domain ontology. However, 
ONTO_TARM first generates the task based on the user's goal and performs the spa-
tial reasoning. The spatial query task is shown in Fig. 5. In the ontology, Calgary is an 
instance of the City class; and, all census units – communities in Calgary – are repre-
sented as instances of the Community classes. The downtown area is an instance of 
CitySection. This task finds the communities inside of Calgary that belong to the 
downtown area, returning with five communities – Eau Claire, Chinatown, downtown 
west end, downtown east village and downtown commercial core.  

As the second step, non-spatial reasoning is generated to filter the dataset. The 
non-spatial task is similar to the task shown in Fig. 6. The final dataset based on the 
ontology-based query includes 1,032 records. DBCTAR then identifies clusters of this 
dataset. Maps derived from the clustering results are generated by the map generator. 

 

Fig. 8. Result from the map generator – risk map of morning rush hour (7:30-9:00AM) of 
Calgary downtown area 

Fig. 8 shows one of the traffic accident risk maps. This map has been generated 
with the risk model parameters recommended by PIARC. The parameter MinRisk was 
set to 8, Eps was set to 45 meters, and MinPts was set to 3. The validation with the 
2005 dataset shows that 66.5% of accidents in 2005 were located in the risk area.  

We also compared the risk map generated by our method with the traditional ker-
nel density method. Fig. 9(a) shows the density estimation result when the radius was 
set to 40 meters and cell size was 10×10 meters. The kernel function was set as a 
Gaussian function. 

 

  
(a) (b) 

Fig. 9. Comparison with kernel density method 



 An Ontology-Based Traffic Accident Risk Mapping Framework 35 

Figs. 9(a) and 9(b) are two zoomed maps of the same area. Indicated by the arrows, 
one risk area (left arrow) is around 5 Ave and 5 St SW; and, a second one (right ar-
row) is around 5 Ave and Macleod Ave SE. According to the 1999-2004 dataset, 
there were 29 accidents (25 accidents were PDO, 4 were injury) that happened around 
the first intersection; and, there were 30 accidents (27 accidents were PDO, 3 were 
injury) happened around the second intersection. 

Table 1. Comparison at the intersections 

 Intersection 1 Intersection 2 
Location Around 5 Ave & 5 

St SW 
Around 5 Ave & 
Macleod Ave SE 

Total number of accidents in 1999-2004 29 30 
Number of PDO accidents 25 27 

Number of accidents with injury 4 3 
Risk index with DBCTAR (Transport Canada model) 80.25 68.64 

Average density estimation (per 100m2) 1.4 1.5 
Accidents located in the risk area in 2005 5 2 

 
Because the kernel density method only considers the total number of accidents, 

Intersection 1 has an average density potential of 1.4/100m2, which is less than Inter-
section 2, with an average density value of 1.5/100m2. However, according to our 
DBCTAR method with the Transport Canada model, Intersection 1 has a higher index 
(80.25) than Intersection 2 (68.64), as this method also takes into account the severity 
level of the accidents.  

During 2005, there were 5 accidents near Intersection 1, and only 2 accidents were 
located in Intersection 2. It shows that DBCTAR method is more suitable for deter-
mining the accident risk. 

The clustering result in the format of a shapefile can be transferred into a KML 
file, which can be overlaid on Google Map with an online publishing platform (Fig. 
10a). To achieve a better visualization result, 3D viewer was also added. Fig. 10b 
shows another risk map in 3D view. 

 

  
(a) (b) 

Fig. 10. Road accident risk mapping web publishing platform 
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5   Conclusions and Future Work 

This research proposes an ontology-based framework to generate road accident risk 
maps. In the framework, the ontology represents spatial and non-spatial knowledge 
about traffic accidents and returns the most suitable dataset from the raw historical 
datasets based on users' goals. To determine the traffic risk area, a density-based spa-
tial clustering method (DBCTAR) with the ability to handle the accident severity 
level is also proposed. To demonstrate the system, a prototype of the system has been 
implemented; and, the preliminary results from the case studies are promising. 

This research can be extended in the future in the following ways: 

1. A system prototype would benefit from an improved ontology reasoner and a 
more powerful map generator. The current prototype is still a proof of concept 
type, using the Jena reasoner actually only works on the level of 
RDFS(Resource Description Framework Schemas) and needs to be upgraded 
to handle more complex ontology queries. The map generator needs to be ex-
tended with regard to its efficiency. In our experiments, the execution time for 
more than 10,000 selected records with a complicated road network could take 
longer than 20 minutes.  

2. The current prototype cannot provide recommendations for the weight model 
selection and clustering parameter settings. We will investigate different risk 
patterns and collaborate with the experts from civil engineering to find out 
recommendation values. 

3. The risk index can be better defined. For example, the affect of traffic volume 
should be considered. In addition to the severity level, other properties of the 
accidents can be adopted in the risk index model. 
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Abstract. Various clustering methods have been applied to climate,
ecological, and other environmental datasets, for example to define cli-
mate zones, automate land-use classification, and similar tasks. Measur-
ing the “goodness” of such clusters is generally application-dependent
and highly subjective, often requiring domain expertise and/or valida-
tion with field data (which can be costly or even impossible to acquire).
Here we focus on one particular task: the extraction of ocean climate
indices from observed climatological data. In this case, it is possible to
quantify the relative performance of different methods. Specifically, we
propose to extract indices with complex networks constructed from cli-
mate data, which have been shown to effectively capture the dynami-
cal behavior of the global climate system, and compare their predictive
power to candidate indices obtained using other popular clustering meth-
ods. Our results demonstrate that network-based clusters are statistically
significantly better predictors of land climate than any other clustering
method, which could lead to a deeper understanding of climate processes
and complement physics-based climate models.

1 Introduction

Cluster analysis is an unsupervised data mining technique that divides data into
subsets (called clusters) of elements that are – in some way – similar to each
other [13]. As such, it is a versatile analysis tool that has been employed in a wide
range of application settings including image segmentation [31], text and docu-
ment analysis [22], and bioinformatics [1]. Clustering has also been applied for
mining climate, ecological, and other environmental data. Examples include def-
inition of ecoregions via multivariate clustering [11], automatic classification of
land cover from remotely sensed data [16], and the definition of climate zones [5];
for a more complete survey see [10].

In the domain of climate data sciences, clustering is especially useful for dis-
covery or validation of climate indices [23]. A climate index summarizes variabil-
ity at local or regional scales into a single time series and relates these values
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to other events [33]. Let us consider one particular task: the extraction of ocean
climate indices from historical data. For instance, one of the most studied indices
is the Southern Oscillation Index (SOI), which is strongly correlated with the El
Niño phenomenon and is predictive of climate in many parts of the world [20];
see [35] for other examples. Thus, ocean dynamics are known to have a strong
influence over climate processes on land, but the nature of these relationships is
not always well understood.

In fact, many climate indices – including the SOI – were discovered through
observation, then developed more formally with hypothesis-guided analysis of
data. However, given the increasing availability of extensive datasets, climate
indices can also be extracted in a data-driven fashion using clustering [23,19].
This approach presents a unique set of challenges including data representation,
selection of a clustering method, and evaluation. Because it is such a difficult
problem, climate scientists often resort to relatively simple algorithms such as
k-means [5,16].

For example, as anecdotal evidence of these challenges, Loveland et al. re-
ported that in developing a global land cover dataset, “The number of clusters
created for each continent was based on the collective judgment of the project
team” [16]. This and similar accounts therefore beg the fundamental question,
What is the best clustering method for climate datasets? In response we posit
that deriving clusters from complex networks, which have been shown to cap-
ture the dynamical behavior of the climate system [3,24,26,28,32], may be an
effective approach. This raises the issue of evaluation and validity of discovered
clusters as climate indices. As typical of any clustering task, evaluation is highly
subjective, relying on the judgment of a domain expert as field data for valida-
tion can be costly or even impossible to acquire. Instead of evaluating clusters
directly, however, one can measure performance in terms of an external criterion,
i.e., their predictive power.

Contributions. We combine these two challenges – “choice of clustering” and
“evaluation” – in a comprehensive comparative study within the context of cli-
mate indices. This paper expands upon the general methodology outlined in
our prior work [24,25] but focuses on comparing different clustering algorithms
as well as evaluating different regression algorithms for their predictability on
climate indices. Specifically, the contributions of the present work can be sum-
marized as follows. We extract ocean climate indices from historical data using
traditional clustering methods in addition to network-based clusters (Sections 3
& 4). We then generate predictive models for land climate at representative tar-
get regions around the globe using the clusters as predictors (Section 5), using
the same process as before [24]. We compare the clustering methods based on
their ability to predict climate variability and demonstrate that the network-
based indices have significantly more predictive power (Section 6). Finally, we
provide domain interpretations of the clustering results for a selected case study
to illustrate the potential value of data mining methodologies for climate science
(Section 7).
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To our knowledge, this is the first study to systematically address the problem
of clustering climate data for the purpose of discovering climate indices.

In particular, we cluster a large corpus of ocean climate data using various
popular clustering algorithms, in addition to the clusters obtained from complex
networks constructed with these data. Each set of clusters then serves as input
to a predictive model for land climate of the general form f : x → y, where x
represents a set of cluster centroids and y is given by one of two climate variables
(temperature and precipitation) at nine target regions around the globe.

Our experimental results demonstrate that the network-based clusters are
statistically significantly better predictors (climate indices) than clusters ob-
tained using traditional clustering methods. In comparing different regression
algorithms, we also note that more complex methods do not necessarily improve
performance for this particular predictive task.

2 Climate Data

In the following, we briefly describe the characteristics of the dataset used in our
analysis as well as the pre-processing steps required for the purpose of discovering
climate indices [24,25].

2.1 Dataset Description

The climate data stems from the NCEP/NCAR Reanalysis Project [14] (avail-
able at [34]). This dataset is constructed by assimilating remote and in-situ
sensor measurements from around the world and is widely recognized as one of
the best available proxies for global observations (it is obviously impossible to
obtain exact data for the entire globe).

Although most climate indices are defined for temperature and/or pressure-
related variables, we did not want to constrain ourselves by an a priori selection
of variables. In fact, one question of interest was whether other variables also
have predictive power, and hence we consider a wide range of surface and at-
mospheric measurements. Specifically, we include the following seven variables
(abbreviation, definition in parentheses): sea surface temperature (SST, water
temperature at the surface), sea level pressure (SLP, air pressure at sea level),
geopotential height (GH, elevation of the 500mbar pressure level above the sur-
face), precipitable water (PW, vertically integrated water content over the entire
atmospheric column), relative humidity (RH, saturation of humidity above the
surface), horizontal wind speed (HWS, measured in the plane near the surface),
and vertical wind speed (VWS, measured in the atmospheric column).

This line of research (including [24,25]) is the first to use such a wide range of
variables in climate networks studies. The data are available as monthly averages
for a period of 60 years (1948-2007), for a total of 720 data points. Measurements
are sampled at points (grid cells) on a 5◦ × 5◦ latitude-longitude spherical grid.
A schematic diagram of the data for a single time step ti is shown in Fig. 1.
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Fig. 1. Schematic depiction of gridded climate data for multiple variables at a single
timestep ti in the rectangular plane

2.2 Seasonality and Autocorrelation

The spatio-temporal nature of climate data poses a number of unique chal-
lenges. For instance, the data may be noisy and contain recurrence patterns of
varying phase and regularity. Seasonality in particular tends to dominate the
climate signal especially in mid-latitude regions, resulting in strong temporal
autocorrelation. This can be problematic for prediction, and indeed climate in-
dices are generally defined by the anomaly series, that is, departure from the
“usual” behavior rather than the actual values. We follow precedent of related
work [23,24,25,27] and remove the seasonal component by monthly z-score trans-
formation and de-trending.

At each grid point, we calculate for each month m = {1, ..., 12} (i.e., separately
for all Januaries, Februaries, etc.) the mean

μm =
1
Y

2007∑
y=1948

am,y (1)

and standard deviation

σm =

√√√√ 1
Y − 1

2007∑
y=1948

(am,y − μm)2 (2)

where y is the year, Y the total number of years in the dataset, and am,y the
value of series A at month = m, year = y. Each data point is then transformed
(a∗) by subtracting the mean and dividing by the standard deviation of the
corresponding month,

a∗
m,y =

am,y − μm

σm
(3)

The result of this process is illustrated in Fig. 2(b), which shows that de-
seasonalized series has significantly lower autocorrelation than the raw data. In
addition, we de-trend the data by fitting a linear regression model and retaining
only residuals. For the remainder of this paper, all data used in experiments or
discussed hereafter have been de-seasonalized and de-trended as just described.
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(a) Raw Data (b) De-Seasonalized

Fig. 2. The de-seasonlized data (b) exhibits significantly lower autocorrelation than
the raw data (a)

2.3 Data Representation

In this paper, we employ two distinct representations for the different analy-
sis methods. The first is used strictly to construct climate networks; it consid-
ers each grid point as a network vertex and the corresponding data as a time
series (Section 3). The second is used for the traditional clustering methods
(Sections 4.2-4.5) and consists of a flat-file format, wherein each grid point is
considered as an instance (row) and each time step as an attribute (column);
the temporal nature of the data as well as certain aspects of the relationships
between grid points is lost.

3 Climate Networks

The intuition behind this methodology is that the dynamics in the global climate
system can be captured by a complex network [3,24,28]. Vertices represent spatial
grid points, and weighted edges are created based on statistical relationships
between the corresponding pairs of time series.

3.1 Estimating Link Strength

When dealing with anomaly series we need not consider the mean behavior,
only deviations from it. Therefore, Pearson correlation (r) is a logical choice as
measure of the edge strength [23,24,25,27], computed for two series A and B of
length t as

r(A, B) =

t∑
i=1

(ai − ā)(bi − b̄)√√√√ t∑
i=1

(ai − ā)2
t∑

i=1

(bi − b̄)2

(4)
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where ai is the ith value in A and ā is the mean of all values in the series.
Note that r has a range of (−1, 1), where 1 denotes perfect agreement and -
1 perfect disagreement, with values near 0 indicating no correlation. Since an
inverse relationship is equally relevant in the present application we set the edge
weight to |r|, the absolute value of the correlation.

We should point out here that nonlinear relationships are known to exist
within climate, which might suggest the use of a nonlinear correlation measure.
However, Donges et al. [3] examined precisely this question and concluded that,
“the observed similarity of Pearson correlation and mutual information networks
can be considered statistically significant.” Thus it is sensible to use the simplest
possible measure, namely (linear) Pearson correlation.

3.2 Threshold Selection and Pruning

Computing the correlation for all possible pairs of vertices results in a fully
connected network but many (in fact most) edges have a very low weight, so
that pruning is desirable. Since there is no universally optimal threshold [21],
we must rely on some other criterion. For example, Tsonis and Roebber [27]
opt for a threshold of r ≥ 0.5 while Donges et al. [3] use a fixed edge density
ρ to compare networks, noting that “the problem of selecting the exactly right
threshold is not as severe as might be thought.”

We believe that a significance-based approach is more principled and thus
appropriate here. Specifically, we use the p-value of the correlation to determine
statistical significance. Two vertices are considered connected only if the p-value
of the corresponding correlation r is less than 1×10−10, imposing a very high level
of confidence in that relationship. This may seem like a stringent requirement
but quite a large number of edges satisfy this criterion and are retained in the
final network.

In [24], we examined the topological and geographic properties of these net-
works in some detail. Suffice it to say here that for all variables the networks
have a high average clustering coefficient and a relatively short characteristic
path length, suggesting that there is indeed some community structure; more on
this in the following section.

4 Clustering Methods

In this section we provide succinct descriptions of the clustering methods used
in this comparative study; for algorithms we defer the reader to the original
works, as cited. Sections 4.1 & 4.2 were developed in [24] but are included for
completeness. Note that climate networks employ a network-based data repre-
sentation whereas traditional clustering methods use a flat-file representation of
time series at each grid cell, as described in Section 2.3.

4.1 Network Communities

This method is based on the climate networks described in Section 3. There exists
a rich body of literature on the theory and applications of clustering in networks,
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also called community detection due to its origins in social network analysis [29];
other examples include discovery of functional modules in protein-protein in-
teractions [1], characterization of transportation networks [8], and many more.
However, to our knowledge we are the first to apply community detection in
climate networks [24].

In choosing an appropriate algorithm for this study, three constraints guided
our selection: (i) the ability to utilize edge weights, (ii) suitability for relatively
dense networks, and (iii) overall computational efficiency. The first requirement
in particular eliminates a large number of algorithms from consideration as they
only work with unweighted networks. Thus, all results presented here were ob-
tained with the algorithm described in [18] using the default parameter settings,
which meets all the above criteria (tests with other algorithms produced com-
parable results). A fringe benefit of this algorithm is an option to determine the
number of clusters from the data.

4.2 K-Means Clustering

The k-means algorithm is one of the oldest and well-known methods for cluster
analysis, and several refinements have been proposed over the years. We use the
implementation described in [12]. Its fundamental aim is to partition the data
into k distinct clusters such that each observation belongs to the cluster with the
“closest” mean, where closeness is measured by the Euclidean distance function.
Due to its simplicity the algorithm is popular and enjoys widespread use, but it
also suffers from drawbacks including the need to specify the number of clusters
k a priori as well as sensitivity to noise, outliers, and initial conditions (mitigated
by running the algorithm multiple times).

4.3 K-Medoids Clustering

This algorithm is a variation on k-means clustering in that it also seeks to
partition the data into k clusters by minimizing the distance to the cluster
centers, except that the data points themselves are chosen as centers (called
medoids). We use an implementation known as Partitioning Around Medoids
(PAM) [15]. It is subject to some of the same problems as k-means but is more
robust to outliers and noise in the data.

4.4 Spectral Clustering

This term refers to a class of clustering techniques that utilize the eigenvalues
of a similarity matrix constructed from the data (called the spectrum, hence
the name) for dimensionality reduction and then find clusters in the lower-
dimensional space. The method used to compute the similarity matrix is also
referred to as kernel function. Data can be partitioned either into two parts –
recursively if necessary – or directly into k subsets. We use the algorithm de-
scribed in [17], which utilizes multi-way partitioning and was shown to yield
good results on a wide variety of challenging clustering problems.
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4.5 Expectation Maximization

An expectation-maximization (EM) algorithm is a general technique for find-
ing maximum likelihood parameter estimates in statistical models, and cluster
analysis is one of its most common applications. In general, EM methods are
computationally expensive but work well in a variety of application settings. We
use the algorithm described in [6], which implements EM for a parameterized
mixture of k Gaussians and is reasonably efficient.

5 Experimental Setup

This section explains how the various algorithms are used to obtain potential
climate indices and how we compare them in a predictive setting.

5.1 Extracting Candidate Indices

Recall the definition of a climate index, that is, a summary of climate variability
over one or more ocean regions, which is related to climate on land. Our first
task is to extract potential indices from historical data using clustering. We run
each algorithm described in Sec. 4 on all data corresponding to ocean grid points.
With the exception of the network-based approach, the number of clusters k must
be specified a priori. Therefore, we perform a comprehensive set of experiments
by running each algorithm for k = 5, k = 10, and k equal to the number of
clusters kn obtained using community detection in networks to assure the fairest
possible comparison (78 clusters total where k differs between variables).

5.2 Evaluating Predictive Power

The upcoming report from the Intergovernmental Panel on Climate Change
(expected 2013) calls for attention to regional assessments of climate, so we
focus on prediction at regional scale. We use nine target regions covering every
continent, illustrated in Figure 3 (consistent with [24] for comparison). Some,
like Peru and the Sahel, have known relationships with major climate indices;
others were included to provide a representative set of regions around the world.

Moreover, we consider two climate variables in each region, temperature and
precipitation, for a total of 18 response variables (9 regions × 2 variables). We
chose these variables primarily for their relevance to human interests: they di-
rectly influence our health and well-being as well as our environment, infrastruc-
tures, and other man-made systems. Precipitation obtained from reanalysis has
potential issues but is used here to develop initial insights and to compare with
temperature, which is considered more reliable. In the following, we outline the
step-by-step procedure used for the predictive modeling [24]:

1. For each of the algorithm-parameter combinations described above, create
a corresponding set of predictors (x) consisting of the cluster centroids by
averaging the time series for all grid points assigned to each cluster.
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Fig. 3. Target regions for climate indices

2. Similarly, for each target region, create two response variables (y) by com-
puting average temperature / precipitation over all grid points in the region.

3. Divide the data into a 50-year training set (1948-1997) and a 10-year test
set (1998-2007).

4. For each of the 18 response variables, build a regression model f : x → y
on the training data and generate predictions for the unseen test data using
each set of predictors from Step 1 in turn.

While it is conceivable to use any number of machine learning algorithms in
Step 4, we start with linear regression in Section 6.1 as it gives us a performance
baseline while maintaining interpretability of the model, which is important to
domain scientists. In Section 6.3 we then go on to explore alternate prediction
algorithms in this context.

To quantify performance we calculate root mean square error (RMSE) be-
tween the predictions and the actual (observed) data. Unlike simple correlation,
which measures only covariance between two series, RMSE incorporates notions
of both variance and estimator bias in a single metric.

6 Experimental Results

In this section, we present our empirical comparison of clustering algorithms and
evaluate the predictive power of the derived climate indices.

6.1 Comparing Clustering Algorithms

First we seek to answer the question, Which clustering method produces the best
candidate indices? The RMSE scores for all prediction tasks are summarized in
Table 1; the lowest (best) and highest (worst) score in each row is shown in bold
and italic, respectively.

Examining the results in some detail, we note that network-based clusters
achieve the best score on 6 of 18 prediction tasks, more than any other algorithm-
parameter combination. This is a first indication that climate networks may be
well-suited for the discovery of climate indices. Network clusters also have the
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lowest mean RMSE across both temperature and precipitation, affirming that
they are effective for diverse predictive tasks; even in cases where networks are
not the outright best option they seem to offer competitive performance. To
support this notion, we evaluate network-based clusters relative to the other
methods using the Hochberg procedure of the Friedman test [2] at 95% confi-
dence intervals – a non-parametric way to determine statistical significance of
performance rankings across multiple experiments.

The outcomes are included at the bottom of Table 1; a checkmark (�) de-
notes that the network-based clusters are significantly better than the clusters in
that column. Indeed we find this to be unequivocally the case, suggesting that
networks capture the complex relationships in climate quite well. It is worth
noting that clusters obtained with k-medoids and spectral clustering achieve
scores comparable to, or even better than, the much more complex expectation-
maximization algorithm. Regardless, we are led to conclude that community
detection in climate networks yields the best candidate indices.

6.2 Validating Predictive Skill

Now that we established network-based clusters as having the highest predictabil-
ity we must address the question, Do these indices offer any true predictive
power? The answer was provided in [24]. To ascertain that the network clus-
ters indeed contain useful information, we showed that they provide “lift” over
random predictions as well as a simple univariate predictor. Our experimental
results demonstrated that the network clusters do in fact have some predictive
power, improving on the baseline by as much as 35%. Moreover, we can further
enhance performance through feature selection [24].

6.3 Prediction Algorithms

Knowing that there is predictive information in the ocean clusters begs yet
another question, namely, What type of model can best harness this predictive
power? As alluded to in Section 5, linear regression merely provided a baseline
comparison; it is entirely possible that other machine learning algorithms are
better suited for modeling the processes connecting ocean and land climatology,
for example, more sophisticated regressors that are able to capture nonlinear
relationships.

Therefore, we also compare several fundamentally different prediction algo-
rithms. In particular, we include neural networks (NN), regression trees (RTree)
and support vector regression (SVR). The RMSE scores for the corresponding
prediction tasks are summarized in Table 2; the lowest (best) score in each row
is shown in bold.

Most obviously, we find that support vector regression achieves the lowest
RMSE in 13 of 15 cases (including one tie), while linear regression comes in
close second; the actual scores of these two methods are generally quite close. In
contrast, neural networks and regression trees perform notably worse. These ob-
servations are confirmed by the statistical significance test (Hochberg procedure
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Table 2. RMSE scores for predictions with network clusters using linear regression
(LR), neural networks (NN), regression trees (RTree) and support vector regression
(SVR). The best score in each row is indicated in bold.

Region LR NN RTree SVR

A
ir

T
e
m

p
e
ra

tu
re

SE Asia 0.541 0.629 0.743 0.541
Brazil 0.534 0.568 0.686 0.570
India 0.649 0.646 0.704 0.595
Peru 0.468 0.459 0.616 0.589
Sahel 0.685 0.866 0.983 0.662
S Africa 0.726 0.838 0.849 0.714
East US 0.815 0.895 1.060 0.773
West US 0.767 0.835 0.860 0.755
W Europe 0.936 1.018 0.014 0.890

Mean 0.680 0.750 0.835 0.677
±StdDev 0.150 0.182 0.159 0.116

P
re

c
ip

it
a
ti

o
n

SE Asia 0.665 0.703 0.791 0.653
Brazil 0.509 0.547 0.771 0.597
India 0.672 0.809 1.045 0.646
Peru 0.864 1.006 0.960 0.842
Sahel 0.533 0.785 0.663 0.542
S Africa 0.697 0.787 0.767 0.684
East US 0.686 0.684 0.771 0.649
West US 0.605 0.647 0.696 0.603
W Europe 0.450 0.522 0.569 0.448

Mean 0.631 0.721 0.782 0.629
±StdDev 0.124 0.148 0.145 0.107

Friedman (α = 0.05) � �

of the Friedman test [2] at 95% confidence) included at the bottom of Table 2; a
checkmark (�) denotes that linear regression performs significantly better than
the algorithm in that column. Note: repeating the significance test relative to
the SVR scores does not change the results, i.e., they are significantly better
than NN and RTree, but not LR.

It is prudent not to draw any general conclusions from these results, but
empirical evidence suggests that the more complex regression models do not
necessarily improve performance. We conjecture that the reason for this is a
combination of high-frequency noise and a relatively small number of training
samples in the data, which collectively can lead to overfitting with more complex
modes. Thus, for the sake of computational efficiency as well as interpretability
of results, it is advisable to use a linear regression model.

However, given larger datasets or slightly different prediction tasks, it is pos-
sible that the gains from alternate prediction algorithms – including but not
limited to those compared in this paper – would indeed be more substantial.
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7 Domain Interpretation

Due to space constraints we cannot examine every set of clusters with respect to
its climatological interpretation, but we present one case study using Peru as il-
lustrative example (focused only on prediction, a descriptive analysis is provided
in our prior work [24]).

Air Temperature in Peru. We chose this region because it is related to the El
Niño phenomenon and hence domain knowledge in this area is plentiful. The
predictions for temperature using all and “selected” [24] network clusters are
shown in Figure 4, along with the actual (observed) data. It is apparent that the
predictive model works quite well here, capturing all major variations. In fact,
the RMSE score of 0.468 is among the lowest of any prediction task (Table 1).

Examining the nine “selected” clusters in more detail, we find that this par-
ticular index is composed of the following variables: 2 SST, 1 GH, 1 PW, 1 HWS
and 4 VWS. For reference, the clusters of SST and VWS are depicted in Figure 5.
It comes as no surprise that the selected clusters of sea surface temperature are
numbers 5 (containing the areas that define several prominent El Niño indices)
and 6 (the equatorial Pacific stretching into South-East Asia). However, VWS
clusters 1, 11, 12 and 14 are also included. This is curious as vertical wind speed
– convective activity over the oceans – is not thought to have any predictive
power in climate, yet our findings seem to suggest otherwise.

We contemplate this possibility with a thought experiment: How do clusters
obtained with our data mining approach compare to those supported by domain
knowledge?

To answer this question, we asked a domain expert to narrow down the clusters
to only those intuitively expected to be of relevance. SST-5 and SST-6 were
chosen based on known relationships, as well as PW-7 due to spatial proximity.
We repeat the regression with using only these three clusters and obtain an
RMSE of 0.552. This score is lower than most of the methods included in our
comparison (Table 1), meaning that traditional clustering methods cannot match
current domain knowledge. But network-based clusters significantly improve the

Fig. 4. Prediction of air temperature in Peru with all (red) and “selected” (blue)
network clusters compared to observations (black). Best viewed in color
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(a) SST clusters (b) VWS clusters

Fig. 5. Depictions of sample clusters (reproduced from [24]). Best viewed in color.

Fig. 6. Prediction of precipitation in Peru with all (red) and “selected” (blue) network
clusters compared to observations (black). Best viewed in color.

score, suggesting that climate networks glean additional predictive power from
the data. Whether and to what extent this holds in other situations remains an
open question for climate scientists.
Precipitation in Peru. The predictions for precipitation using all and “selected”
[24] network clusters are shown in Figure 6, along with the actual (observed)
data. In contrast to temperature, the RMSE score of 0.864 for this region is on
the low end across all prediction tasks (Table 1). While the very low-frequency
signal is predicted to some degree, the observed data has much more variability
not captured by the model. This is generally true for precipitation, namely, that
the mean behavior is represented reasonably well while the model fails to pre-
dict the more sporadic short-duration, large-magnitude events. Accordingly, it is
relatively more difficult to improve upon baseline methods (Table 2). Nonethe-
less, in some cases we observed considerable gains, prompting a more thorough
investigation of the circumstances under which predictions of precipitation are
improved by climate indices.

8 Discussion and Future Work

In this paper, we presented an empirical comparison of clustering methods
for climate data on the basis of their ability to extract climate indices. Our
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experimental results demonstrate that ultimately the choice of algorithm is quite
important: clustering matters! More specifically, community detection in climate
networks stands out among competing methods as the superior approach across
a diverse range of test cases, thereby reinforcing the notion that networks are
able to effectively capture the complex relationships within the global climate
system. In contrast, the prediction algorithm itself had a relatively smaller im-
pact on quality of the predictions.

Consequently, the application of network-theoretical concepts could have far-
reaching implications for climate science, e.g., studying properties of the climate
system, detecting changes over time, and complementing the predictive skill of
physics-based models with data-guided insights. In addition, complex networks
may also prove useful in other applications involving ecological, environmen-
tal and/or social data, helping us understand the behavior of and interactions
between these systems.
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Abstract. Medical image repositories contain very large amounts of
computer tomography (CT) scans. When querying a particular CT scan,
the user is often not interested in the complete scan but in a certain
region of interest (ROI). Unfortunately, specifying the ROI in terms of
scan coordinates is usually not an option because an ROI is usually
specified w.r.t. the scan content, e.g. an example region in another scan.
Thus, the system usually retrieves the complete scan and the user has
to navigate to the ROI manually. In addition to the time to navigate,
there is a large overhead for loading and transferring the irrelevant parts
of the scan.

In this paper, we propose a method for answering ROI queries which
are specified by an example ROI in another scan. An important feature of
our new approach is that it is not necessary to annotate the query or the
result scan before query processing. Since our method is based on image
similarity, it is very flexible w.r.t. the size and the position of the scanned
region. To answer ROI queries, our new method employs instance-based
regression in combination with interpolation techniques for mapping the
slices of a scan to a height model of the human body. Furthermore, we
propose an efficient search algorithm on the result scan for retrieving the
ROI with high accuracy. In the experimental evaluation, we examine the
prediction accuracy and the saved I/O costs of our new method on a
repository of 2 526 CT scans.

1 Introduction

Radiology centers all over the world currently collect large amounts of 3D body
images being generated by various scanners like PET-CT, MRT, x-ray or sono-
graphy. Each of these methods generates a three dimensional image of the human
body by transforming the echo of a different type of signal allowing a radiologist
to examine the inner parts of a human body. In the following, we will particularly
focus on CT body scans. However, the methods proposed in this paper are
generally applicable to other types of scans as well.
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Technically, the result of a CT scan is stored as a stack of 2D images rep-
resenting 3D slices of the human body, i.e. each slice is considered to have a
certain thickness. The scans in a radiology center are stored in a centralized
picture archiving and communication system (PACS) and they are transferred
via LAN to the workstation of a physician. In commercial PACS, querying CT
scans is currently restricted to retrieving complete scans being annotated with
certain meta information like patient name, date and type of the examination.
Therefore, each time a CT scan is queried, the complete scan, potentially com-
prising several thousand high-resolution images, has to be loaded from the image
repository. For example, the data volume of a thorax scan being generated by a
modern scanner comprises around 1GB of data. Considering that several physi-
cians will simultaneously query a PACS, the loading time of a single CT scan is
up to several minutes depending on network and server traffic.

However, in many cases it is not necessary to display the complete scan. For
example, if a physician wants to see whether a certain liver lesion has improved
between two scans, the user primarily requires the portion of both scans con-
taining the liver. Therefore, the physician loses up to several minutes by loading
unnecessary information and searching for the liver within both scans. Thus, a
system retrieving the parts of both scans containing the liver, would save valu-
able time and network bandwidth.

Parts of a CT scan can be efficiently loaded by raster databases [2] as long
as the coordinates of the ROI are specified. However, in the given context, the
ROI is rather defined by the image content. In other words, the coordinates of
organs and other anatomical regions may strongly vary because of differences
in the patients’ heights or in the scanned body region. Thus, raster coordinates
cannot be used to align to CT scans w.r.t. the image content.

In this paper, we focus on a query-by-example setting. Therefore, the query
is posed by selecting a certain body region in a scan. The result contains the
part of the scan showing the corresponding body region in one or multiple result
scans. For example, a radiologist could select a certain area in the scan being
currently under examination. He or she might want to see the corresponding
regions in scans of patients having the same disease or earlier examinations of
the same patient.

The most established approach to answer this type of queries is based on
landmark detection. [14] A landmark is an anatomically unique location in the
human body which is well-detectable by pattern recognition methods. To use
landmarks for query processing, it is first of all necessary to detect as many
landmarks as possible in the example scan and all result scans. Let us note that
landmark detection employs pattern recognition methods and thus, there is a
classification error, i.e. some of the predicted landmark positions are error prone.
Furthermore, it can happen that some of the landmarks are not detectable due to
disturbances while recording the scan. However, having detected a sufficiently
large number of landmarks, it is possible to align both scans and afterwards
select the area from the target scan corresponding to the query.
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An important aspect of this approach is that landmark detection should be
done as a preprocessing step. Thus, the example scan and the target scans need
to be annotated with the landmark position to allow efficient query processing.
However, this causes a problem when allowing example scans not being stored
in the same PACS. In this case, the query might not have any landmarks or
it is not labelled with the same set of landmarks. If the example scan and the
result scan are taken by CT scanners from different companies, the positioning
systems might not be compatible. Another drawback of the landmark approach
is the size of the scan. CT scans are often recorded for only a small part of the
body. Thus, it cannot be guaranteed that the scanned body region contains a
sufficiently large set of alignable landmarks. To conclude, a fixed and comparably
small set of landmarks is often not flexible enough to align arbitrary scans.

In this paper, we propose a more flexible approach being based on similarity
search on the particular slices of a CT scan. Our new method does not rely
on any time-consuming preproccesing step, but it can be directly applied on
any query and result scan. Whereas landmark-based approaches can only align
scans with respect to a limited amount of fixed points to be matched, our new
approach can generate the positions in the scan to be matched on the fly. Thus,
we can even align scans being labelled with different types of landmarks or scans
not having any detectable landmarks at all.

The key idea behind our method is to map single slices of a CT scan to
a generalized height model describing the relative distances between concepts
w.r.t. the height axis of the human body. The height model is independent of
the individual size and proportions of a particular patient. Let us note that it
is possible to use width and depth axes as well. However, the height axis is the
predominantly used navigation axis for CT scans.

By mapping single slices to the model, we can better adjust to limited informa-
tion about the scan and we are independent from the distribution of predefined
landmark positions. Our prediction algorithm employs instance-based regres-
sion based on Relevant Component Analysis [1] and the X-Tree [3] for efficiently
answering kNN queries.

ROI queries are answered as follows: In the first step, the user selects a certain
region of interest in the example scan. Afterwards, we employ instance-based
regression to determine the query position in the generalized height model. In
the next step, we need to determine the part in each target scan corresponding
to the query interval in the height model. Let us note that this second step
is more complicated, since we cannot directly determine the slice belonging to
a particular height value. One solution to this problem would be to label all
available slices with the height value in the model. However, labelling all DICOM
images in an average PACS would cause an enormous overhead in preprocessing.
Since the majority of images will never be involved in answering an ROI query,
we follow a different strategy. Instead of preprocessing each image in the PACS,
determining height values for a given slice is done on the fly. To make this type
of processing efficient, we propose a query algorithm that alternates regression
and interpolation steps until the queried ROI is found in the result scan.
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Let us note that although the solutions proposed in this paper are very
problem-oriented, the solution principle can be extended to other data as well.
For example, a similar processing scheme can be applied to video streams (e.g.
procedure timing in surveillance videos) or text mining (e.g. news tickers, twitter
streams, age classification in Internet forums).

The rest of the paper is organized as follows. Sect. 2 surveys methods that
are related to our approach or parts of it. In Sect. 3, we formalize ROI queries
and give an overview of our system. Afterwards, Sect. 4 introduces our method
for predicting height values for particular CT slices. Sect. 5 first describes inter-
polation methods for aligning CT scans to a generalized height model and then
presents our new query algorithm. The results of our experimental evaluation
are shown in Sect. 6. The paper concludes with a brief summary and ideas for
future work in Sect. 7.

2 Related Work

In medical imaging, there are various localization or registration approaches.
Most of them are very domain specific, like the Talairach space brain atlas [15]
or the MNI space [5]. Nevertheless, as these atlases are very specific to their
domain, they were not designed to cover the entire body and they can thus
hardly be used for general ROI queries.

Position mapping via landmark-detector-based approaches like the Theseus
Medico system presented in [14] are more appropriate for our purpose. This
prototype provides an image parsing system which automatically detects 22
anatomically relevant landmarks, i.e. invariant points, and 9 organs. [13] It is
thus possible to query the database directly for ROIs which are equivalent to
these automatically-annotated image regions. However, general queries for arbi-
trarily defined ROIs are not yet supported.

A more general, landmark-based interpolation approach for mapping a volume
into a standardized height space has been proposed by [7]. However, it is very
patient-specific and dependent on the used landmarks. Another approach that
uses partial volumes as query is described in [6]. It localizes query volumes with
sizes ranging from 4 cm to more than 20 cm by comparing the partial volume
with an implicit height atlas based on Haar-like features. In [4], we presented
an alternative method such that only a single query slice is needed in order to
achieve comparable results.

In Sect. 5.2, we introduce an iterative interpolation and regression approach.
In contrast to established regression methods, [9,11] we enhance our model with
newly generated information after each iteration in order to refine the final model
until convergence is reached.

We experimented with several regression methods from the Weka machine
learning package [8]. However, simple approaches like linear regression did not
yield a sufficient prediction accuracy and more complicated approaches like sup-
port vector regression using non-linear kernel functions could not cope with the
enormous amount of training data. Therefore, we decided to employ instance-
based regression which is robust and sufficiently fast when employing techniques
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Fig. 1. Workflow of ROI retrieval and two example queries. The first query is specified
by a ROI of only one slice, the second is given by a 3D ROI.

of efficiently computing the k-nearest neighbors (k-NN). In particular, we em-
ploy k-NN queries being based on the X-Tree [3]. Let us note that there are
multiple other index structures [12] for speeding up the same type of query. We
decided to employ the X-Tree because it represents an extension of the standard
R*-Tree [10] which is better suited for higher dimensionalities.

Current database systems like RasDaMan [2] already support conventional
region of interest queries in raster data like CT scans. Nevertheless, the system
needs to know the coordinate system in which the query is applied in order to
navigate to the requested region. As we do not know the complete coordinate
systems of the patients’ CT scans in advance and since patients differ in height
and body proportions, and thus, locations along the z-axis are not standardized,
a globally fixed coordinate system will not be available in our setting. Therefore,
our new approach represents a way to bridge the gap between the coordinates
in the example scan and the coordinate system of the result scan.

3 Example-Based ROI Queries

In this section, we specify the proposed query process and give an overview of the
proposed system. Formally, a dataset consists of n volumes vi ∈ INx(i)×y(i)×z(i)

with i ∈ {1, . . . , n} and varying voxel dimensions x, y, z. The height model H is
an interval [hmin, hmax] ∈ IR+

o representing the extension of the human body in
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the z-axis. A mapping function hi : IN → H maps slices of volume vi to a height
value h ∈ H . Correspondingly, the reverse mapping function si : H → IN maps
a position h in the height model to a slice number s in vi. A matching point
p = (sp,hp,wp) ∈ IN × H × IR is a triple of a slice number, its corresponding
height value in H and a reliability weight w. We use pi,j for naming the jth

matching point in scan vi.
In our system, a region of interest (ROI) query is specified by a set of consec-

utive slices (ŝe,lb, . . . , ŝe,ub) ⊆ {0, . . . , z(e) − 1} from an example scan ve and it
retrieves a consecutive sequence of CT slices (ŝi,lb, . . . , ŝi,ub) ⊆ {0, . . . , z(i)− 1}
from the result scan vi.

Fig. 1 illustrates the complete workflow of query processing for example-based
ROI queries. A user specifies the ROI query on the client computer by marking a
region in an example scan ve. Additionally, the queried scan vi has to be identified
for the server. Let us note that it is not necessary to transfer the complete marked
subset of the example scan. Instead it is sufficient to transfer a scale-reduced
version of the first and the last slice of the subset. After receiving the slices,
the server performs a feature extraction step generating image descriptors for
both slices. As an alternative, the client computer might directly compute the
required image descriptors and only transfer the descriptors.

In the next step, the server employs a mapping function to predict height
values ĥlb and ĥub to describe the borders of the query interval in the height
model H . In our system, hreg

e (s) is implemented by instance-based regression
(cf. Sect. 4). Afterwards, our algorithm starts with aligning the result scan vi to
the height model H by employing the algorithm described in Sect. 5.2. In par-
ticular, the algorithm employs hreg

i (s) for generating matching points Pi which
are required for the reverse mapping function si(h)Pi , an interpolation function
described in Sect. 5.1. Once the quality of si(h)Pi is satisfying, the server selects
the sequence of slices (ŝi,lb, . . . , ŝi,ub) ⊆ {0, . . . , z(vi) − 1} from vi correspond-
ing to the height interval [ĥlb, ĥub] and returns them to the client as the query
result. Let us note that (ŝi,lb, . . . , ŝi,ub) is extended by the amount of slices cor-
responding to 90% of the expected prediction error in order to compensate for
the inaccuracy of hreg

i (s).
Table 1 displays an overview of the defined parameters including some addi-

tional annotations that will be introduced in the next sections.

4 Efficient Instance-Based Regression

In this section, we introduce our method for mapping a single slice into the
standardized height scale H . We already mentioned that there exist methods for
landmark and organ detection which mark slices in the scan with the detected
landmarks or organs. [13] Using multiple landmarks detected at slices si,j , which
can be mapped to anatomical concepts with known standardized height positions
hj and reliabilities wj , we can infer the standardized height of our queried
slice. The landmark detector of [13] being used in our experiments was not
able to detect landmarks for all available scans, though. The reason why the
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Table 1. Notation of frequently used parameters

vi ∈ INx(i)×y(i)×z(i) one volume (i ∈ {1, . . . , n})
H ∈ IR+

o standardized height space / height model
hj one height value in H
si,j one slice number of vi in {0, . . . , z(i)− 1}
p = (si,p,hp, wp) matching point with reliability weight wj

Pi set of matching points of vi

hreg
i (s) regression function of IN→ H

si(h)Pi interpolation function of H → IN using a set Pi

(ŝi,lb, . . . , ŝi,ub) slice range in vi

[hlb, hub] interval in H

F (si,j) : IN→ F = IRd image feature transformation of slice j of vi with d ∈ IN
TR training set for regression

Fig. 2. Overview of content-based matching point generation using instance-
based regression on HoGs. (Human model visualization taken from Patrick
J. Lynch, medical illustrator and C. Carl Jaffe, MD, cardiologist at
http://commons.wikimedia.org/wiki/File:Skeleton whole body ant lat views.svg)

detector failed to find landmarks were the following: The image quality is too
fuzzy for the detector, the body region covered by the scan is not big enough
or only a single slice is available. Further drawbacks of employing landmark
detection for generating matching points are the complexity and availability of
reliable detectors and that their runtimes are not suitable for interactive query
processing. In order to allow instant query processing on arbitrary scans, a faster
and more flexible method should be employed that can efficiently generate a
matching point for any given slice in the queried scan.



ROI Queries in CT Scans 63

The idea behind our method is to represent the slice of interest si,j of the
scan vi by an image descriptor and to employ regression techniques to predict
its height value in H . To train the regression function, we employ a training
set of height annotated CT scans where each slice is labelled by a height value
h ∈ H . An overview of this approach can be see in Fig. 2.

We use a 7 bins histogram of oriented gradients (HoG) which is applied on
the cells of a 5x5 grid of the image’s sub-regions. In contrast to the image de-
scriptor introduced in [4], we omit the additional global extraction cell. Thus,
the concatenated HoGs form a descriptor of size d = (5 · 5) · 7 = 175. Since our
query algorithm requires multiple online feature extraction steps per query, we
down-scale the images to a 100x100 pixels resolution before feature extraction
for speeding up feature generation. We denote by F (si,j) : IN → IRd the feature
transformation of the sth

i,j slice of volume vi to the final, d-dimensional feature
space.

A d-dimensional feature vector fi,j corresponding to the jth slice of the scan
vi can be mapped to the height model H with any given regression function.
However, in our experiments the majority of standard regression methods ei-
ther required extensive training times on our large training datasets of up to
900 000 training examples or they did not yield the required prediction qual-
ity. Therefore, we employ an instance-based approach to regression determining
the k-nearest neighbors (k−NN) of the given feature vector fi,j in the training
set TR, consisting of image features r with existing labels h(r) ∈ H , w.r.t. Eu-
clidean distance. Afterwards, the height of slice si,j in scan vi is predicted using
the following decision function:

hreg
i (si,j) = median{r∈TR| r∈k-NN of F (si,j)} {h(r)} . (1)

Although instance-based regression does not suffer from extensive training
times, the cost for large example datasets has to be spent at prediction time.
However, the prediction rule does only require to process a single kNN query
and thus, allows us to use optimization methods for this well-examined problem.

In order to allow efficient query processing, we transform the high-dimensional
feature space of the proposed image features into a lower-dimensional space
which can be indexed by suitable spatial index structures. For this paper, we
use an X-Tree [3], which is well-suited for data of medium dimension.

We reduce dimensionality d in a supervised way employing Relevant Compo-
nent Analysis (RCA) [1] with the goal of maintaining the principal information
of the original feature vectors r ∈ IRd. RCA transforms the data into a space
minimizing the co-variances within subsets of the data, which are supposed to be
similar, the so-called chunklets. Chunklets can be defined by matching a set of
class labels or by using clusters. In our setting, we sort the data points used for
training the feature transformation according to their height labels and retrieve
a pre-defined number (150 chunklets performed well) of equally-sized data sub-
sets. For our datasets, using a 10-dimensional feature representation turned out
to be a viable trade-off between prediction time and accuracy. On the average,
a query took 22ms while yielding an average prediction error of only 1.88 cm.
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When using positions ĥreg
i,j computed with hreg

i (si,j) as matching points for
answering ROI queries, we are also interested in how reliable they are. One
way to determine a position’s reliability is to use the variance of the k-nearest
neighbors, with a low variance indicating a reliable prediction. [4] However, in
our setting, the best predictions could be observerd with k = 1 or k = 2. Since
building a deviation on 1 or 2 samples does not make any sense, we had to
develop an alternative approach for approximating the prediction quality.

We thus perform an additional pre-processing step assigning weights to all
instances r in the training database TR. The weight w(r) of instance r is deter-
mined in a leave-one-out run of hreg

i (r) on TR. The predicted height value ĥreg
r

is compared to the true position h(r), resulting in the weight w(r):

w(r) = 0.1/
(
0.1 +

∣∣∣ĥreg
r − h(r)

∣∣∣) . (2)

The reliability of a predicted value ĥreg
i,j is now approximated by the average

weight w(x) over all k-nearest neighbors x of the queried instance r.

5 Answering ROI Queries

In the following, we define a method for retrieving an ROI in a volume vi for
which no matching points are yet available. As mentioned before, the first step
of an ROI query is to determine the query interval [hlb, hub] in the standardized
space H corresponding to the ROI in the example scan ve. We employ instance-
based regression as proposed in the previous section for predicting the height of
the lower and upper bound of the marked ROI of the example scan.

Once such a query interval is defined, we need to collect a set of matching
points p ∈ Pi for being able to interpolate from the standardized height space
H to the volume space of a slice si,j ∈ IN of volume vi. We will now introduce
the interpolation approach used for this purpose.

5.1 Interpolation Using Matching Points

For mapping model positions hj ∈ H to slices si,j ∈ IN, we use an interpolation
approach based on a linear function. However, due to varying body proportions,
the patient’s position on the scanner table and the imperfect reliability of the
used matching points Pi, a strictly linear model is not sufficient. Therefore, we
additionally consider a non-linear component in our function which adds an
instance-based off-set, comparable to an approach introduced in [7].

The mapping function si(hq)Pi for mapping the height value hq to a slice
number si,q ∈ IN is dependent on the scan vi and the set of matching points
Pi. We approximate the slice spacing δi describing the thickness of a slice in the
target space H as the median slice spacing over all pairs of matching points in
Pi as δ̂i = medianp,p′∈Pi,si,p 	=si,p′ |hp −hp′ | / |si,p − si,p′ |.
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Let us note that the median is used to achieve a higher stability against
outliers caused by unreliable matching points. We define si : H → IN as:

si(hq)Pi =
hq

δi
−

∑
p∈Pi

wp · min
(
1, |hq −hp|−1

)
·
(

hp

δi
− si,p

)
∑

p∈Pi

wp · min
(
1, |hq −hp|−1

) . (3)

In order to avoid the case of hp = hq, we limit the maximal contribution of a
matching point p with the minimum terms. Other, more complex interpolation
models usually performed less stable and are thus omitted from this paper.

5.2 Retrieval Algorithm

The quality of the mapping si(h)Pi directly depends on the quality of the match-
ing points p ∈ Pi. Having a large set of matching points increases the map-
ping quality because it increases the likelihood that reliable matching points
being close to [hlb, hub] are available. Furthermore, having more matching points
decreases the impact of low-quality matching points. However, increasing the
amount of matching points is connected with generating costs for feature trans-
formation, dimension reduction and regression.

Thus, we want to employ a minimal number of matching points while achiev-
ing high interpolation quality. The core idea of our method is to start with a
minimal set of matching points and to measure the quality of the induced map-
ping function. As long as this quality is significantly increasing, we select slices
in the queried scan and induce additional matching points using the regression
method proposed in Sect. 4. This process is illustrated in Fig. 3.

height space H
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CT scan vi (ID only)[hlb, hub]
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Fig. 3. First steps of Algorithm 1: a query range [hlb, hub] is to be found in a scan
vi. In the initial step (1), the seed slices forming the matching points Pi are selected
and mapped to H with hreg

i . In step (2), Pi is used for interpolating a result range
(ŝlb, . . . , ŝub) in vi. Step (3) validates this result range using hreg

i and decides whether
a new range should be tested.
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Algorithm 1. ROI Query
Input: vi: Query volume, [hlb, hub]: query interval in H , hreg

i : height regression func-
tion IN→ H , si: interpolation function H → IN, ε: tolerated result range deviation

1: function ROI Query(vi, [hlb, hub], hreg
i , si, ε)

2: Pi = (si, h,w)← init(vi, h
reg
i ) � Initialize Pi

3: {errlb, errub} ← {∞,∞} � Errors for lb and ub
4: {ŝlb, ŝub} ← null � Resulting slice numbers
5: while errlb > ε or errub > ε do
6: {ŝ∗lb, ŝ∗ub} ← {si(hlb), si(hub)} � Interpolation

7: {ĥreg
lb , ĥreg

ub } ←
{
hreg

i (ŝ∗lb), hreg
i (ŝ∗ub)

}
� Regression

8: {err∗lb, err∗ub} ←
{∣∣∣ĥreg

lb − hlb

∣∣∣ , ∣∣∣ĥreg
ub − hub

∣∣∣}
9: if errlb > err∗lb then � New lower bound

10: ŝlb ← ŝ∗lb; errlb ← err∗lb
11: if errub > err∗ub then � New upper bound
12: ŝub ← ŝ∗ub; errub ← err∗ub

13: Get weights ŵreg
lb , ŵreg

ub of new matching points

14: Pi.append
(
(ŝ∗lb, ĥreg

lb , ŵreg
lb ), (ŝ∗ub, ĥreg

ub , ŵreg
ub )

)
� Extend Pi

15: return (ŝlb, . . . , ŝub)

Output: Result range (ŝlb, . . . , ŝub)

We use the mechanism of manually generating matching points via regression
hreg

i (s) for measuring the quality of a predicted result range (ŝlb, . . . , ŝub). The
error of a prediction ŝc for a value hc is thus defined as: |hreg

i (ŝc) − hc|.
Since hreg

i (ŝc) is fixed during query processing, the only possible way to reduce
the error is to improve the quality of the matching points. This can happen by
either updating their weights wj or by adding further matching points. Even
though it is sensible to update weights in special cases, the core component of
our algorithm involves the second improvement variant.

For a given query interval [hlb,hub] our method proceeds as follows (see also
Algorithm 1): We select g equally-spaced seed slices si ⊂ {0, . . . , z(i)−1} to gen-
erate an initial set of matching points by predicting their positions as ĥ ∈ Hg

using instance-based regression hreg
i (si). Using the weights obtained in the re-

gression procedure we can induce an initial set of matching points Pi = (si, ĥ,w).
We are now free to make our first prediction of the result range.

We interpolate ŝ∗lb = si(hlb)Pi and ŝ∗ub = si(hub)Pi in the queried scan using
the current set of matching points Pi. Next, we employ hreg

i (s) on (ŝ∗lb, . . . , ŝ∗ub)
and determine the prediction error estimate. If the lower or upper bound (ŝ∗lb or
ŝ∗ub) has been improved compared to the minimal error observed so far, we update
the corresponding lower or upper bound (ŝlb or ŝub). Finally, we augment the
set of matching points Pi by the regression prediction hreg

i (s) for the boundaries
of the target range ŝ∗lb and ŝ∗ub . The algorithm terminates if the improvement
on both sides of the target range is less than ε.

For simplicity reasons, this algorithm omits a number of special cases. Since
the derivation of matching points via regression is expensive due to the overhead
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of feature generation, the algorithm has to ensure that no slice number of vi is
tested multiple times. The search procedure should stop, once there is no more
change to the set of matching points Pi because this usually means that the
volume is not well enough resolved for perfectly matching the target range. It is
also beneficial to test for both bounds whether a new matching point generated
for the opposite bound is better suited. Additionally, if only one bound has
been established in an acceptable quality, but it remains stable over a couple
of iterations, one should refrain from trying to further improve this bound by
costly regression calls and only update the opposite bound.

Furthermore, a number of exceptions should be handled: both si and hreg
i

can be mapped outside of their allowed ranges. In the case of si, this may be
an indication that the query range is not contained in the volume. Repeated
range violations should thus terminate the algorithm with an indication of a
mismatch or a partial match. If hreg

i (s) goes astray, this can either be noise in
the regression function or it can be a reason for down-weighting the current set
Pi and for seeking further matching points.

6 Experimental Validation

In the following, we present the results of our experimental evaluation by mea-
suring the quality of the retrieval system and by demonstrating the improved
query time of our complete system. All of our experiments were performed on
subsets of a repository of 4 479 CT scans provided by the Imaging Science In-
stitute of the University Hospital Erlangen for the Theseus Medico project. The
scans display various subregions of the human body, starting with the coccyx
and ending with the top of the head.

For generating a ground truth of height labels, we used the landmark detec-
tor of [13] annotating each scan with up to 22 landmarks. This restricted the
dataset to 2 526 scans where landmarks could be detected. The complete repos-
itory contains more than a million single CT slices comprising a data volume of
520GB.

We implemented our prototype in JAVA 1.6 and stored the scans and their
annotations in a MySQL database. To simulate the distributed environment of a
radiology center, we employed the LAN and the workstations in our lab consist-
ing of common workstations of varying type and configuration being connected
by a 100Mb Ethernet.

6.1 Prediction via Regression

In the following section, we first examine the used image features on their suit-
ability for k-NN regression. Afterwards, we describe the beneficial effects of re-
ducing the original image feature space using RCA.

Regression Quality. For these experiments, we have to provide height labels
h(r) as ground truth for all entries of the required regression database, i.e. for



68 A. Cavallaro et al.

each scan in the training dataset TR. Basically, there are two methods for gen-
erating these labels. The first is to manually mark the highest and the lowest
point in all scans of a database and to linearly interpolate the height values. [4]
We refer to this method as manual labelling.

Since instance-based regressionprofits from a larger database,we also use an au-
tomatic labelling method. It assigns height labels to the slices of a volume with the
inverse interpolation approach introduced in Sect. 5.1, using standardized land-
mark positions as matching points. In our experiments, we use the 22 landmarks
of [13], marking meaningful anatomical points, which could be detected in 2 526 of
our CT scans. These landmarks are time-expensive to compute and their compu-
tation fails in the remaining 1 953 scans of our dataset. We will refer to the height
labels generated with this interpolation procedure as automatic labelling.

In our first test, we measure the regression performance of the original image
descriptors, which have not yet been transformed by RCA. We first examine a
manually annotated dataset of 33 CT scans with a total of 18 654 slices. The
average leave-one-out prediction errors are displayed in the first row of Table 2.
Let us note that leave-one-out in these experiments means that only slices from
other scans than the current query scan are accepted as k-nearest neighbors
in order to exclude distorting effects of within-scan similarities. When testing
k parameters between 1 and 5, we found k = 1 to be the best setting for all
experiments using the original slice descriptors.

Table 2. Leave-one-out validation (LOO) errors [in cm] of k-NN slice mapping
hreg

i (si,j) for two database sizes of n CT scans with m slices

Ground Truth n m Error [cm] Time / Query [ms]

manual 33 18 654 4.285 18
automatic 33 18 654 3.584 18

automatic 376 172 318 1.465 200

The next row of Table 2 displays the error of the same dataset, which has
been labelled automatically. Our experiments show that the average registration
error of 4.3 cm of the manual labelling is even lowered to 3.6 cm when using the
automatic labelling. Thus, we can safely test our regression method on larger
datasets, which have been automatically annotated. This allows to fully exploit
the strength of the proposed instance-based regression approach. For smaller
databases, alternative regression approaches should be considered, however, with
the wealth of information available, our lazy learner is very hard to beat.

We observe a steady improvement of the empirical errors for increasing
database sizes, however, this comes at the price of longer runtimes. For a dataset
of 376 volumes consisting of 172 318 slices, a single query performed as se-
quential scan in main memory requires 200ms. The additional cost of keeping
the complete training database in main memory poses an additional drawback.
The following section evaluates our method of runtime optimization, by using
an efficient indexing scheme.
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Speed-up via RCA and Indexing. In order to speed up regression, we index
the training data in an X-Tree [3] after reducing the dimensionality via RCA.
We tested the target dimensions 5, 10, 25 and 50. Using an index, we could now
employ the complete dataset of 2 526 scans. We used a subset of 697 scans
(= 163 525 slices) as training set for the RCA and tested the performance on the
remaining 2 104 scans (901 326 instances). Table 3 shows the average leave-one-
out (LOO) errors and query runtimes (excluding the time for feature generation)
for the indexes generated from the test set.

Table 3. LOO regression errors [in cm] for RCA-transformed data with query times
[in ms] in an X-Tree representing 2104 scans

Dimension Error [cm] Time / Query [ms]

5 2.764 4
10 1.881 22
25 1.343 440
50 1.209 2966

As can be been seen in Table 3, the curse of dimensionality causes the X-Tree
to lose much of its effectiveness for increasing dimensions. Additionally, the error
does only moderately increase for smaller dimensions. Based on these observa-
tions, we consider the 10 dimensional data set as the best trade-off, having a
prediction error of 1.88 cm and a query time of 22ms. We use this dataset for all
following experiments. The total runtime required for feature generation is com-
bined from the actual feature generation for a down-scaled version of the query
slice (20ms) and the time required for RCA transformation (0.1ms). Thus, our
selected query configuration results in a total prediction time of 42ms.

Next, in order to validate the performance of the proposed ROI query workflow
we will first analyze the accuracy of the retrieved ROIs and then proceed with
an examination of retrieval times.

6.2 Precision of ROI Queries

We could again use automatically detected landmarks for defining a ground truth
of lower and upper bounds, however, we cannot guarantee for the correctness of
these matching points.

Therefore, we generated a new set of annotation points with five new land-
mark types: “lower plate of the twelfth thoracic vertebra”, “lower bound of
coccyx”, “sacral promontory”, “cranial sternum” and “lower xiphoid process”.
These landmarks were hand-annotated by a medical expert for providing a set
of markers which have been verified visually.

In Table 4, we show the results of predicting all visible intervals with ROI
queries formed by pairs of these landmarks in the dataset of 33 manually an-
notated volumes. As not all landmarks were visible in all volumes, only 158
intervals could be tested. Since the annotation error – the deviation of these
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markers from their expected positions – is at 2.579 cm, we cannot expect the
queries to produce more reliable predictions.

Using Algorithm 1 with varying grid sizes g for the initial matching points Pi

provides good predictions. We observe, however, that using a larger number of
seed points only mildly improves the accuracy of the predictions, but it greatly
increases the number of matching points being generated by regression (q). We
conclude that two seed points are sufficient for our simple optimization scheme.
Any more sophisticated optimization procedures should rather involve an intel-
ligent screening of the proposed result range (ŝlb, . . . , ŝub) than use more seed
points.

Table 4. Average deviation [in cm] of the result ROI of Algorithm 1 from the manually
marked ROIs with the number of regression queries q and the runtime per query

Error Measure [cm]:
err(ŝlb) + err(ŝub)

Annotation Error:
2.579 cm

ROI prediction with Algorithm 1

g Error [cm] q Time / Query [ms]

2 2.655 6.8 1 273
5 2.549 9.2 1 951
10 2.430 15.2 3 032
25 2.573 30.0 5 946
50 2.385 55.5 10 081

In Fig. 4 we see the cumulative distribution function F (error ≤ x cm) for
the analyzed query intervals. The ‘Annotation’ bars show the performance of
the annotated ground truth landmarks, and the ‘Algorithm 1’ bars represent
our ROI query algorithm using two seed points. There is almost no difference
between the quality of the ground truth and our algorithm. The probability that
the total prediction error (err(ŝlb) + err(ŝub)) is at most 2 cm lies at 50%. Again,
with a height spacing of 5 mm, this means that in half of the cases, the retrieved
range deviates by only two slices for each the lower and upper bound. When
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error = err (ŝlb) + err (ŝub)  [in cm]
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Fig. 4. Cumulative distribution function: F (error ≤ x cm) (the steeper the better). It
compares the error of Algorithm 1 with the quality of the used annotation points.
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thus extending the returned query range by our pre-defined safety range, most
returned subvolumes will completely contain the requested ROI.

We thus conclude that ROI queries can be efficiently answered by using Al-
gorithm 1 with two initial matching points. The query time for grid size 2 is
1.5 seconds. Thus, our final experiments will show that the benefit of reducing
volume queries to a region of interest strongly outweighs this cost.

6.3 Runtime of ROI Queries

For our last experiment, we chose a random set of 20 volumes from the database
and tested them against four ROI queries defined in an example scan. Two
queries are aimed at organs (“Left kidney” and “Urinary bladder”), one query
ranges from the top of the hip bone to the bottom of Vertebra L5 and the
final query is only interested in the view of the arch of aorta. The four hereby
defined query ranges have heights of 16.8, 9.6, 4.7 and 0.9 centimeters In Fig. 5,
we display the retrieval times of the resulting ROIs and their fraction of the
complete dataset of 12 240 slices. Loading the complete 20 volumes from the
server takes 1 400 seconds, whereas transferring only the ROIs induced by the
given concepts takes 60 to 400 seconds, including the computation overhead for
finding the ROI.

To conclude, employing our system for answering ROI queries saved between
77 − 99% of the loading time compared to the retrieval of the complete scan.
Thus, in a clinical routine our system is capable to save valuable time as well as
hardware resources.
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Fig. 5. Average runtimes (ten repetitions) and volume size reduction using ROI queries
with Algorithm 1. Each experiment tests 20 volumes with a total of 12 240 slices.
Loading the complete dataset takes 1 400 seconds.
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7 Conclusion

In this paper, we proposed a method for processing region of interest (ROI)
queries on a repository of CT scans. An ROI query is specified by giving an
example ROI in another CT scan. Since CT scans are usually stored as stacks
of 2D images representing a slice in the scan, the answer of an ROI query on a
CT scan is a subset of the slices in the target scan representing an ROI which
is equivalent to the query ROI.

After query specification, the system maps the ROI to a general height model
of the human body. Then, the query region in the height model is mapped to
a subregion of the queried scan containing the ROI. Technically, our system
is based on an interpolation function using so-called matching points linking a
CT scan to the height model. To guarantee the availability of matching points
even for unannotated CT scans, we propose a method using content-based image
descriptors and regression that can generate matching points for arbitrary slices
in a scan. Finally, we propose a query algorithm for finding a stable mapping
while deriving a minimal amount of matching points.

In our experimental evaluation, we validated the accuracy of our approach on
a large database of 2 526 CT scans and displayed experiments for the reduced
transfer volume of ROI queries being processed by our system.

For future work, we plan to extend our system to restrict ROIs in all three
dimensions. We also aim to apply our retrieval solution to other types of 3D
objects being stored in raster databases and to further, more general regression
or interpolation problems.
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Abstract. Given a spatio-temporal network, a source, a destination,
and a start-time interval, the All-start-time Lagrangian Shortest Paths
(ALSP) problem determines a path set which includes the shortest path
for every start time in the given interval. ALSP is important for critical
societal applications related to air travel, road travel, and other spatio-
temporal networks. However, ALSP is computationally challenging due
to the non-stationary ranking of the candidate paths, meaning that a
candidate path which is optimal for one start time may not be optimal
for others. Determining a shortest path for each start-time leads to re-
dundant computations across consecutive start times sharing a common
solution. The proposed approach reduces this redundancy by determining
the critical time points at which an optimal path may change. Theoret-
ical analysis and experimental results show that this approach performs
better than naive approaches particularly when there are few critical
time points.

1 Introduction

Given a spatio-temporal (ST) network, a source, a destination, and a start-time
interval, the All-start-time Lagrangian shortest paths problem (ALSP) deter-
mines a path set which includes the shortest path for every start time in the
interval. The ALSP determines both the shortest paths and the corresponding
set of time instants when the paths are optimal. For example, consider the prob-
lem of determining the shortest path between the University of Minnesota and
the MSP international airport over an interval of 7:00AM through 12:00 noon.
Figure 1(a) shows two different routes between the University and the Airport.
The 35W route is preferred outside rush-hours, whereas the route via Hiawatha
Avenue is preferred during rush-hours (i.e., 7:00AM - 9:00AM) (see Figure 1(b)).
Thus, the output of the ALSP problem may be a set of two routes (one over
35W and one over Hiawatha Avenue) and their corresponding time intervals.

Application Domain: Determining shortest paths is a key task in many so-
cietal applications related to air travel, road travel, and other spatio-temporal

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 74–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) Different routes between
University and Airport [2]

(b) Optimal times

Fig. 1. Problem illustration

networks [9]. Ideally, path finding approaches need to account for the time de-
pendent nature of the spatial networks. Recent studies [6,21] show that indeed,
such approaches yield shortest path results that save up to 30% in travel time
compared with approaches that assume static network. These savings can poten-
tially play a crucial role in reducing delivery/commute time, fuel consumption,
and greenhouse emissions.

Another application of spatio-temporal networks is in the air travel. Main-
taining the shortest paths across destinations is important for providing good
service to passengers. The airlines typically maintain route characteristics such
as average delay, flight time etc, for each route. This information creates a spatio-
temporal network, allowing for queries like shortest paths for all start times etc.
Figure 2(a) shows the Delta Airlines flight schedule between Minneapolis and
Austin (Texas) for different start times [1]. It shows that total flight time varies
with the start time of day.

Challenges: ALSP is a challenging problem for two reasons. First, the rank-
ing of alternate paths between any particular source and destination pair in the
network is not stationary. In other words, the optimal path between a source
and destination for one start time may not be optimal for other start times.
Second, many links in the network may violate the property of FIFO behavior.
For example, in Figure 2(a), the travel time at 8:30AM is 6 hrs 31mins whereas,
waiting 30mins would give a quicker route with 9:10AM flight. This violation
of first-in-first-out (FIFO) is called non-FIFO behavior. Surface transportation
networks such as road network also exhibit such behavior. For example, UPS
[19,7] minimizes the number of left turns in their delivery routes during heavy
traffic conditions. This leads to faster delivery and fuel saving.

Related work and their limitations: The related work can be divided on
the basis of FIFO vs non-FIFO networks as shown in see Figure 2(b). In a FIFO
network, the flow arrives at the destination in the same order as it starts at
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(a) Minneapolis - Austin (TX)
Flight schedule

(b) Related work

Fig. 2. Application Domain and related work

the source. A* based approaches, generalized for non-stationary FIFO behavior,
were proposed in [5,15] for solving the shortest path problem in FIFO networks.
However, transportation networks are known to exhibit non-FIFO behavior (see
Figure 2(a)). Examples of Non-FIFO networks include multi-lane roads, car-pool
lanes, airline networks etc. This paper proposes a method which is suitable for
both FIFO and non-FIFO networks.

Proposed approach: A naive approach for solving the non-FIFO ALSP prob-
lem would involve determining the shortest path for each start time in the inter-
val. This leads to redundant re computation of the shortest path across consecutive
start times sharing a common solution. Some efficiencies can be gainedusing a time
series generalization of a label-correcting algorithm [18]. This approach was previ-
ously used to find best start time [13], and is generalized for ALSP in Section 5
under the name modified-BEST. However, this approach still entails large number
of redundant computations. In this paper, we propose the use of critical time points
to reduce this redundancy. For instance, consider again the problemof determining
the shortest path between University of Minnesota and MSP international airport
over a time interval of 7:30am through 11:00am. Figure 1(b) shows the preferred
paths at some time instants during this time interval, andFigure 3 shows the travel-
times for all the candidate paths during this interval.

As can be seen, the Hiawatha route is faster for times in the interval [7:30am
9:30am)1, whereas 35W route is faster for times in the interval [9:30am 11:00am].
This shows that the shortest path changed at 9:30am. We define this time instant
as critical time point. Critical time points can be determined by computing the
earliest intersection points between the functions representing the total travel
time of paths. For example, the earliest intersection point of Hiawatha route
was at 9:30am (with 35W route function). Therefore, it would be redundant to
recompute shortest paths for all times in interval (7:30am 9:30am) and (9:30am
11:00am] since the optimal path for times within each interval did not change.
This approach is particularly useful in case when there are a fewer number of
critical time points.

1 Note: an interval (a,b) does not include the end points a and b, [a,b] includes the
endpoints a and b, and [a,b) includes a but not b.
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Fig. 3. Total travel time of candidate paths

Contributions: This paper proposes the concept of critical time points, which
are the time points at which the shortest path between a source-destination
pair changes. Using this idea, we also propose an algorithm, Critical-Time-point-
based-ALSP-Solver (CTAS), for solving the ALSP problem. The correctness and
completeness of the CTAS is presented. The CTAS algorithm is experimentally
evaluated using real datasets. Experiment results show that the critical time
point based based approach is particularly useful in cases when the number of
critical times is small.

Scope and Outline: This paper models the travel time on any particular edge
as a discrete time series. Turn restrictions are not considered in the ST network
representation. The paper uses a Dijkstra-like framework. A*-like framework are
beyond the scope of the paper. Moreover, we focus on computing the critical time
points on the fly rather than precomputing them.

The rest of the paper is organized as follows. A brief description of the basic
concepts and a formal problem definition is presented in Section 2. A description
of the computational structure of the ALSP problem is presented in Section 3.
In Section 4, we propose the CTAS algorithm. Experimental analysis of the
proposed methods is presented in Section 5. Finally, we conclude in Section 6
with a brief description of future work.

2 Basic Concepts and Problem Definition

Spatio-temporal Networks: Spatio-temporal networks may be represented in
a number of ways. For example, snapshot model, as depicted in Figure 4, views
the spatio-temporal network as snapshots of the underlying spatio network at dif-
ferent times. Here, each snapshot shows the edge properties at a particular time
instant. For example, travel times in all the edges ((A, B),(A, C),(B, D),(B, C))
at time t = 0 is represented in the top left snapshot in Figure 4. For the sake
of simplicity, this example assumes that (B, C) and (C, B) have the same travel
time. The same network can also be represented as a time-aggregated graph
(TAG) [11] as shown in Figure 5(a). Here, each edge is associated with a time
series which represents the total cost of the edge. For example, edge (A, B) is
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Fig. 4. Snapshot model of spatio-temporal network

associated with the time series [3 3 1 1 2 2 2 2]. This means that the travel time
of edge (A, B) at times t = 0, t = 1, and t = 2 is 3, 3 and 1 respectively.

Both TAG and snapshot representations of our sample transportation network
use a Eulerian frame of reference for describing moving objects. In the Eulerian
frame of reference, traffic is observed as it travels past specific locations in the
space over a period of time [4]. It is similar to sitting on the side of a highway
and watching traffic pass a fixed location.

(a) Time aggregated graph (b) Transformed TAG

Fig. 5. Time aggregated graph example

Traffic movement can also described using a Lagrangian frame of reference,
in which the observer follows an individual moving object as it moves through
space and time [4]. This can be visualized as sitting in a car and driving down
a highway. The time-expanded graph (TEG) described later corresponds to this
view.

Both Eulerian and Lagrangian-based views represent the same information
and one view can be transformed into another view. The choice between the two
depends on the problem being studied. In our problem context, it is more logical
to use a Lagrangian frame of reference for finding the shortest paths because
the cost of the candidate paths should be computed from the perspective of
the traveler. TAG can also be used to view the network in Lagrangian frame of
reference, however we use TEG for ease of communication. We now define the
concept of a Lagrangian path.
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Lagrangian Path: A Lagrangian path Pi is a spatio-temporal path experienced
by the traveler between any two nodes in a network. A Lagrangian path may be
viewed as a pair of traditional path in a graph and a schedule specifying arrival
time at each node. During traversal of a Lagrangian path, the weight of any
particular edge e = (x, y) (where e ∈ Pi) is considered at the time of arrival at
node x. For instance, consider the path <A,C,D> for start time t = 0. Here, we
would start at node A at time t = 0. Therefore, the cost of edge (A, C) would be
considered at t = 0, which is 1 (see Figure 5(a)). Following this edge, we would
reach node C at time t = 1. Now, edge (C, D) would be considered at time t = 1
(because it takes 1 time unit to travel on edge (A, C)).

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A

B

C

D

0 1 2 3Time Step

A4 A5 A6

B4 B5 B6

C4 C5 C6

D4 D5 D6

A7

B7

C7

D7

A8

B8

C8

D8

4 5 6 7 8

Fig. 6. Time expanded graph example

Conceptually, a Lagrangian path can be visualized as an explicit path in a
time-expanded graph. Figure 6 depicts the ST network (shown in Figure 4)
represented as a time-expanded graph [17]. Here, each node is replicated across
the time instants and edges connect the nodes in a Lagrangian sense. This means
that if the travel time on an edge (A, C) is 1 time unit (at time t = 0), then
there is an edge between node A (at time t = 0) and node C (at time t = 1).
Consider the previous example of Lagrangian path <A,C,D>. This path can be
represented as a simple path among nodes A, (at time t = 0, which is A0 in
Figure 6), C (at time t = 1, which is C1 in Figure 6), and D (at time t = 4,
which is D4 in Figure 6).

As discussed previously, in the case of non-FIFO networks, we may arrive at
a destination earlier by waiting at intermediate nodes. For example, in Figure 6
if we start at node A at time t = 1 (node A1), we would reach node B at time
t = 4 (node B4). However, if we wait at node A for one time unit, then we can
reach node B at time t = 3 (node B3). For simplicity, Figure 6 does not show
the wait edges across temporal copies of a physical node e.g. A0-A1, A1-A2 etc.

Problem Definition: We define the ALSP problem by specifying input, output,
objective function and constraints. Inputs include:
(a) Spatio-temporal network G = (V, E), where V is the set of vertices, and E
is the set of edges;
(b) A source s and a destination d pair where {s, d} ∈ V ;
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(c) A discrete time interval λ over which the shortest path between s and d is
to be determined;
(d) Each edge e ∈ E has an associated cost function, denoted as δ. The cost of
an edge represents the time required to travel on that edge. The cost function
of an edge is represented as a time series.
Output: The output is a set of routes, Psd, from s to d where each route Pi ∈ Psd

is associated with a set of start time instants ωi, where ωi is a subset of λ.
Objective function: Each path in Psd is a shortest commuter-experienced travel
time path between s and d during its respective time instants.
We assume the following constraints: The length of the time horizon over which
the ST network is considered is finite. The weight function δ is a discrete time
series.

(a) Output (b) Non-stationarity

Fig. 7. Output of ALSP problem

Example: Consider the sample ST network shown in Figure 5(a). An instance
of the ALSP problem on this network with source A destination D and λ =
[0, 1, 2, 3], is shown in Figure 7(a). Here, path A-C-D is optimal for start times
t = 0 and t = 1, and path A-B-D is optimal for start times t = 2 and t = 3.

3 Computational Structure of the ALSP Problem

The first challenge in solving the ALSP problem involves capturing the inherent
non-stationarity present in the ST network. Due to this non-stationarity, tradi-
tional algorithms developed for static graphs cannot be used to solve the ALSP
problem because the optimal sub-structure property no longer holds in case of
ST networks [13]. On the other hand, algorithms developed for computing short-
est paths for a single start time [13,16,17,8,20] are not practical because they
would require redundant re-computation of shortest paths across the start times
sharing a common solution.

This paper proposes a divide and conquer based approach to handle network
non-stationarity. In this approach we divide the time interval over which the
network exhibits non-stationarity into smaller intervals which are guaranteed
to show stationary behavior2. These intervals are determined by computing the
critical time points, that is, the time points at which the cost functions repre-
senting the total cost of the path as a function of time intersect. Now, within

2 By stationarity, we mean that ranking of the alternate paths between a particular
source-destination pair does not change within the interval.
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these intervals, the shortest path can be easily computed using a single run of a
dynamic programming (DP) based approach [13]. Recall our previous example
of determining the shortest paths between the university and the airport over
an interval of [7:30am 11:00am]. Here, 9:30am was the critical time point. This
created two discrete sub-intervals [7:30 9:30) and [9:30 11:00]. Now, we can com-
pute the ALSP using two runs of a DP based algorithm [13] (one on [7:30 9:30)
and another on [9:30 11:00]).

Our second challenge for solving ALSP is capturing the non-FIFO behavior
of the network. We do this by converting the travel information associated with
an edge into earliest arrival time (at destination) information [12,20]. This is
a two step process. First, the travel time information is converted into arrival
time information. Second, the arrival time information is converted into earliest
arrival time information. The second step captures the possibility of arriving at
an end node earlier by waiting (non-FIFO behavior). For example, in the ST
network shown in Figure 5(a), the travel time series of edge (A, B) is [3 3 1 1 2 2
2 2]. First, we convert it into arrival time series. This is done by adding the time
instant index to the cost. For example, if we leave node A at times t = 0, 1, 2, 3 . . .,
we would arrive at node B at times t = 3+0, 3+1, 1+2, 1+3, 2+4 . . .. Therefore,
the arrival time series of (A, B) is [3 4 3 4 6 7 8 9]. The second step involves
comparing each value of the arrival time series to the value to its right in the
arrival time series. A lower value to its right means we can arrive at the end
node earlier by waiting. Consider the arrival time series of (A, B) = [3 4 3 4 6
7 8 9]. Here, the arrival time for t = 1 is 4 (which is less than the arrival time
for t = 2). Therefore, the earliest arrival time on edge (A, B) for time t = 1
is 3 (by waiting for 1 time unit at node A). This process is repeated for each
value in the time series. The earliest arrival time series of edge (A, B) is [3 3 3
4 6 7 8 9]. The earliest arrival time series of the edges are precomputed. Figure
5(b) shows the ST network from Figure 5(a) after the earliest arrival time series
transformation.

There are two ways to determine the stationary intervals, either by precom-
puting all the critical time points, or by determining the critical time points at
run time. The first approach was explored in [14] for a different problem. Precom-
puting the critical time points involves computing intersection points between
cost functions of all the candidate paths. Now, in a real transportation network
there can be exponential number candidate paths. Therefore, this paper follows
the second approach of determining the critical time points at run-time. In this
approach only a small fraction of candidate paths and their cost functions are
actually considered while computation. Now, we define and describe our method
of determining the critical time points.

Critical time point: A start time instant when the shortest path between a
source and destination may change.

Consider an instance of the ALSP problem on the ST network shown in
Figure 7(b), where the source is node A, the destination is C, and λ = [0 1
2 3 4]. Here, start time t = 2 is a critical time point because the shortest path
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between node A and C changes for start times greater that t = 2. Similarly,
t = 2 is also a critical time point for the network shown in Figure 5(a), where
the source node is A and the destination node is D (see Figure 7(a)). Now, in
order to determine these start time instants, we need to model the total cost of
the path. This paper proposes using a weight function to capture the total cost
of a path. This approach, which associates a weight function to a path, yields a
path-function which represents the earliest arrival time at the end node of the
path. A formal definition of the path-function is given below.

Path Function: A path function represents the earliest arrival time at the end
node of a path as a function of time. This is represented as a time series. A path
function is determined by computing the earliest arrival times on its component
edges in a Lagrangian fashion.

For example, consider the path <A,B,C> in Figure 7(b). This path contains
two edges, (A, B) and (B, C). The earliest arrival time (EAT) series of edge
(A, B) is [3 4 5 6 7], while the EAT of edge (B, C) is [1 2 3 4 6 8 10 12]. Now,
the path function of <A,B,C> for start times [0, 4] is determined as follows. If
we start at node A at t = 0, the arrival time at node B is 3. Now, arrival time at
node C through edge (B, C) is considered for time t = 3 (Lagrangian fashion),
which is 4. Thus, the value of the path function of <A,B,C> for start time t = 0
is 4. The value of the path-function for all the start times is computed in similar
fashion. This would give the path function of <A,B,C> as [4 6 8 10 12]. This
means that if we start at node A at times t = 0, 1, 2, 3, 4 then we will arrive at end
node C at times t = 4, 6, 8, 10, 12. Similarly, the path function of path <A,C> is
[5 6 7 8 9] (since it contains only one edge). By comparing the two path-functions
we can see that path <A,B,C> has an earlier arrival time (at destination) for
start times t = 0 and t = 1 (ties are broken arbitrarily). However, path <A,C> is
shorter for start time t ≥ 2. Thus, start time t = 2 becomes a critical time point.
In general, the critical time points are determined by computing the intersection
point (with respect to time coordinate) between path functions. In this case,
the intersection point between path functions <A,C> and <A,B,C> is at time
t = 2. Computing this point of intersection is the basis of the CTAS algorithm.

4 Critical Time-Point Based ALSP Solver (CTAS)

This section describes the critical time point based approach for the ALSP prob-
lem. This approach reduces the need to re-compute the shortest paths for each
start time by determining the critical time points (start times) when the short-
est path may change. Although Lagrangian paths are best represented by a
time-expanded graph (TEG), these graphs are inefficient in terms of space re-
quirements [13]. Therefore, this paper uses TEG model only for visualizing the
ST network. For defining and implementing our algorithm we use TAG [13].
Recall that since the optimal substructure property is not guaranteed in a ST
network, the given time interval is partitioned into a set of disjoint sub-intervals,
where the shortest path does not change. The Sub-interval Optimal Lagrangian
Path denotes this shortest path.
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Sub-interval optimal Lagrangian path: is a Lagrangian path, Pi, and its
corresponding set of time instants ωi, where ωi ∈ λ. Pi is the shortest path
between a source and a destination for all the start time instants t ∈ ωi.

The Lagrangian path <A,C,D> shown in Figure 7(a) is an example of sub-
interval Optimal Lagrangian Path and its corresponding set ω = 0, 1.

4.1 CTAS Algorithm

The algorithm starts by computing the shortest path for the first start time
instant in the set λ. Since the optimal substructure property is not guaranteed
in a ST network, the choice of the path to expand at each step made while
computing the shortest path for a particular start time may not be valid for
later time instants. Therefore, the algorithm stores all the critical time points
observed while computing the shortest path for one start time in a data structure
called path-intersection table. As discussed previously, the critical time point is
determined by computing the time instants where the path functions of the
candidate paths intersect. The earliest of these critical time points represents
the first time instant when the current path no longer remains optimal. The
algorithm re-computes the shortest paths starting from this time instant. Since
the path functions represent the earliest arrival time (at end node of path) for a
given start time, the intersection points represent the start times (at the source)
when there is a change in relative ordering of the candidate paths.

The pseudocode for the CTAS algorithm is shown in Algorithm 1. The outer
loop of ALSP ensures that a shortest path is computed for each start time instant
in the set λ. The inner loop computes a single sub-interval optimal Lagrangian
path. There may be several sub-interval optimal Lagrangian paths for the set
λ. First, a priority queue is initialized with the source node. The inner loop
determines the shortest path for start times greater than the earliest critical
time points stored in the path intersection table (tmins). For the first iteration,
this would just be the first start time instant of our set λ. In each iteration,
the algorithm expands along the path which has the minimum weight for time
t = tmin. After a path is expanded the last node of the path is closed for start
time t = tmin. For example, if a path s−x−y is expanded for start time t = tmin,
then node y is closed for start time t = tmin. This means there cannot be any
other shorter path from node s to node y for the start time t = tmin.

Before expanding a path, the algorithm computes the intersecting points
among the path functions available in the priority queue. The earliest inter-
section point (considering intersection points in the increasing order of their
time coordinate) involving the path with minimum weight is the time instant
when the stationary ordering among the candidate paths change. After that
the path is expanded and path functions to all its neighbors are computed and
added to the priority queue. The inner loop terminates when it tries to expand
a source-destination path. In the next iteration of the outer loop, the shortest
path computation starts from the earliest of the critical time points in path in-
tersection table. Now, the path determined in the previous iteration is closed
for all the start times earlier than earliest of the critical time point (and greater
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Algorithm 1. CTAS Algorithm
1: Determine the earliest arrival time series of each edge
2: Initialize the path intersection table with the first start time in λ
3: while a shortest path for each time t ∈ λ waits to be determined do
4: Select the minimum time instants among all time instants at which a shortest

path might change and clear path intersection table
5: Initialize a priority queue with the path functions corresponding to the source

node and its neighbors
6: while destination node is not expanded do
7: Choose the path with the minimum weight to expand
8: Determine the intersection points among the path functions in the priority

queue
9: Delete all the paths ending on that node from the priority queue

10: Save the time coordinate of the intersection point in the path intersection
table

11: Determine the path functions resulting from expansion of the chosen path
12: Push the newly determined path functions into the priority queue
13: end while
14: end while

than tmin of previous iteration). In a worst case scenario, the value of the earliest
critical time point could be the next time start time instant in the set λ (one
more than previous tmin). In such a case, the inner loop would have determined
the shortest path only for a single start time instant. The algorithm terminates
when the earliest of the critical time points is greater than the latest start time
instant in the set λ.

Execution Trace: Figure 8 gives an execution trace of the CTAS algorithm on
the ST network shown in Figure 5(b). The first iteration of the outer loop starts
with initializing the priority queue with the source node. The inner loop builds a
shortest path starting from the earliest critical time point. For the first iteration,
this would be time t = 0 (the first start time instant in λ). First, the source node
is expanded for time t = 0. Path functions for its immediate neighbors (path
<A,B> and <A,C>) are computed and added them to the priority queue. In
this case, the path functions just happen to be their edge weight functions.

In the first iteration of the inner loop, the algorithm chooses the path whose
path function has minimum weight at the start time instant chosen in step 4 of
the algorithm. This would be t = 0 for the first case. At this point the algorithm
has two choices, path function <A,C> and <A,B>(see Figure 8). The algorithm
chooses <A,C> because it has lowest cost for t = 0. This path is expanded and
path functions for its neighbors, <A,C,D> and <A,C,B>, are computed and
added to the priority queue. Again the choice of path <A,C> may not be valid
in later times, therefore, the algorithm closes the node C only for the start time
t = 0. The algorithm stores the intersection point between the path <A,B> and
<A,C> (which is at t = 2) in the path intersection table.

The next iteration expands path <A,C,B>. There is no intersection between
the path functions of <A,C,D> and <A,C,B> (in our interval λ). Again, node
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Fig. 8. Execution trace of CTAS algorithm

B is closed only for t = 0. At this point, all the paths which end in node
B are deleted from the priority queue. Now, the priority queue contains two
paths, <A,C,D> and <A,C,B,D>. This time the algorithm tries to expand along
path <A,C,D> because it has least cost. Again the intersection point between
the path functions is computed. Here, paths <A,C,D> and <A,C,B,D> do not
intersect3. This time a complete source to destination path was expanded. This
is the terminating condition of the inner loop. This completes one iteration of
the outer loop. Next iteration of the outer loop builds the shortest path starting
at the earliest of the critical time points stored in the previous iteration. This
happens to be t = 2 for our example. The next iteration of the inner loop starts
for start time t = 2. At this point the path intersection table is cleared. We see
that the algorithm did not compute the shortest path for start time t = 1. Figure
6 also showed that the shortest path did not change start time t = 1 (shortest
paths between node A and node D for start-times t = 0, 1, 2, 3 are shown in
bold). The fact that the next iteration of the CTAS algorithm starts with t = 2
shows that it saves computation. The algorithm terminates when shortest paths
of all time instants in the set λ have been determined. Figure 7(a) shows the
final result of the algorithm.

3 Note that here path <A,C,B,D> may also be expanded.
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4.2 Analysis of the CTAS Algorithm

The CTAS algorithm divides a given interval (over which shortest paths have
to be determined) into a set of disjoint sub-intervals. Within these intervals, the
shortest path does not change. The correctness of the CTAS algorithm requires
the path returned for a particular sub-interval to be optimal and the complete-
ness of the algorithm guarantees that none of the critical time points are missed.
The correctness of the CTAS can be easily argued on the basis greedy nature
of the algorithm. Lemma 1 shows that the CTAS algorithm does not miss any
critical time point.

Lemma 1. The CTAS algorithm recomputes the shortest path for all those start
times ti ∈ λ, where the shortest path for previous start time ti−1 can be different
from the shortest path for start time ti.

Proof. Consider the sample network shown in Figure 9, where a shortest path has
to be determined between node s and d for discrete time interval λ = [1, 2 . . . T ].
First, the source node is expanded for the start time instant t = 1. As a result,
path functions for all the neighbors <s,2>, <s,1>, <s,xi> are added to the
priority queue. With loss of generality assume that path <s,1> is chosen in the
next iteration of the inner loop. Also assume that the earliest intersection point
between path functions <s,xi > and <s,1> is at t = α between <s,1> and
<s,2>. Now, the queue contain paths <s,1,d>, <s,2>, <s,xi>. Here we have
two cases. First, path <s,1,d> has lower cost for start time t = 1. Second, path
<s,2> has lower cost for start time t = 1.

Considering the first case, without loss of generality assume that the earliest
intersection point between the path functions <s,1,d> and <s,2> is at t = β.
Note that both t = α and t = β denote the start times at the source node.
Consider the case when β ≤ α (Note that β cannot be greater than α as all the
edges have positive weights). In such a case the shortest path is recomputed for
starting time t = β and the path <s,1,d> is closed for all start times 1 ≤ t < β.
Assume for the sake of contradiction, that there is a shortest path Px from
source to destination that is different from path <s,1,d> which is optimal for
start time tx ∈ [1, β). Assume that Px =< s, x1, x2, x3, . . . , d >. This means that
path < s, x1 > had least for time t = tx. However, by the nature of the algorithm,
this path would have been expanded instead of path < s, 1 > (a contradiction).
Moreover, as all the travel times positive, if sub path <s,x1 > was not shorter
than <s,1,d> for start times earlier than t = β. Any positive weight addition to
the path function (through other edges) cannot make Px shorter than <s,1,d>.
Consider the second case when <s,2> had lower cost for start time t = 1. Now,
path <s,2> would be expanded and path function <s,2,d> would be added to
priority queue. Again, assume that path functions <s,1,d> and <s,2,d> intersect
at time t = β. A similar argument can be given for this case as well.

Theorem 1. CTAS algorithm is complete.

Proof. There may be several sub-interval optimal Lagrangian paths Pi over set
λ. Each Pi is associated with a set of time instants ωi, where

⋃
∀i∈|Psd| ωi = λ.
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Fig. 9. Network for Lemma 1 Fig. 10. Speed profiles for one highway
segment

The completeness proof of the CTAS algorithm is presented in two parts. First,
using Lemma 1 we can conclude that the CTAS algorithm does not miss any start
time instant when the shortest path changes. Secondly, the outer loop iterates
until the algorithm determines a shortest path for all the time instants in set λ.
This happens when the earliest of the path-order change times tmin falls outside
λ. This proves the completeness of the algorithm.

Discussion: The CTAS algorithm shows better performance than a naive ap-
proach which, determines the shortest paths for each start time in the user
specified time interval. However, this happens only when the ratio of the num-
ber of critical time points to that of start time instants is low. This ratio can be
denoted as the change probability shown by Equation 1.

change probability =
#critical time points

#start time instants
(1)

When the change probability is nearly 1, there would be a different shortest
path for each start time in an interval. In this worst case scenario, the CTAS
approach would also have to recompute the shortest path for each start time. A
theoretical bound of nΘ(log n) (where n is the number nodes in the graph) on the
number of critical time points was given in [10] for the case of piecewise linear
cost functions. In our case, the number of critical time points is bounded by
length of start time interval (|λ|) due to discrete nature of the input.

5 Experimental Evaluation

Experiments were conducted to evaluate the performance of CTAS algorithm as
different parameters were varied. The experiments were carried on a real dataset
containing the highway road network of Hennepin county, Minnesota, provided
by NAVTEQ [3]. The dataset contained 1417 nodes and 3754 edges. The data
set also contained travel times for each edge at time quanta of 15mins. Figure 10
shows the speed profiles for a particular highway segment in the dataset over a
period of 30days. As can be seen, the speed varies with the time of day. For ex-
perimental purposes, the travel times were converted into time quanta of 1mins.
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This was done by replicating the data inside time interval. The experiments were
conducted on an Intel Quad core Linux workstation with 2.83Ghz CPU and 4GB
RAM. The performance of CTAS algorithm was compared against a modified
version of the existing BEST start time algorithm proposed in [13].

Modified-BEST (MBEST) algorithm: The MBEST algorithm consists of
two main parts. First, the shortest path between source and destination is de-
termined for all the desired start time instants. Second, the computed shortest
paths are post-processed and a set of distinct paths is returned. The MBEST
algorithm uses a label correcting approach similar to that of BEST algorithm,
proposed in [13] to compute the shortest paths between source and destination.
The algorithm associates two lists viz, the arrival time list and ancestor list, with
each node. The arrival time array, Cv[t], represents the earliest arrival time at
node v for the start time t at the source. The ancestor array, Anv[t], represents
the previous node in the path from source for time t. These lists are updated
using Equation 2, where γuv represents the earliest arrival time series of the edge
(u, v). The algorithm terminates when there are no more changes in the arrival
time list of any node.

Cv[t] = min{Cv[t], γuv[Cu[t]]}, uv ∈ E (2)

Experimental setup: The experimental setup is shown in Figure 11. The first
step of the experimental evaluation involved combining the travel time infor-
mation along with the spatial road network to represent the ST network as a
Time-aggregated graph. A set of different queries (each with different parame-
ters) was run on the CTAS and the MBEST algorithms. The following param-
eters were varied in the experiments: (a) length of the time interval over which
shortest paths were desired (|λ|), (b) total travel time of the route, (c) time of
day (rush hour vs non-rush hours). A speedup ratio, given by Equation 3, was
computed for each run. The total number of re-computations avoided by CTAS
was also recorded for each run. In worst case, the shortest paths may have to
be re-computed for each time instant in the interval λ. The total number of re-
computations saved by CTAS is the difference between |λ| and re-computations
performed.

speed− up ratio =
MBEST runtime

CTAS runtime
(3)

Number of re-computations saved in CTAS: Figure 12 shows the number
of re-computations saved by the CTAS algorithm. The experiments showed that
more saving was gained where paths were shorter. Similarly, fewer number of re-
computations were performed in case of Non-rush hours. This is because there
were fewer intersections among the path-functions.

Effect of length of start time interval (|λ|): This experiment was performed
to evaluate the effect of length of start time interval (λ) over which the shortest
path was desired. Figure 13(a) shows the speed-up ratio for Non-rush hours
and Figure 13(b) shows the speed-up ratio for Rush hours. The speed ratio was
calculated for paths with travel time 30 and travel time 40. These travel times
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Fig. 11. Experimental setup
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Fig. 13. Effect of Lambda on Speed-up

indicate the time required to travel on these paths during non-rush hours when
there is no traffic. The experiments showed that run-time of both CTAS and
MBEST increased with increase in the lambda. Runtime of MBEST increases
steadily whereas CTAS increases very slowly with lambda for a travel time of
30. However, the run-time of CTAS increases rapidly for travel time of 40.

Effect of total travel time of a path: This experiment was performed to
evaluate the effect of total travel time of a path on the candidate algorithms.
Figure 14 shows the speed-up ratio as the total travel time of the path was varied.
The experiments showed that the runtime of CTAS algorithm increased with a
corresponding increase in the total travel time of the path, whereas the runtime
of the MBEST algorithm remained the same. This is because, CTAS algorithm
follows a Dijkstra’s like approach and expands the paths, but MBEST is follows
a label correcting approach and terminates when there no more changes in the
arrival time array of any node.

Effect of different start times: Experiments showed that better speed-up was
obtained for Non-rush hours than the rush hours (see Figure 14 and Figure 13).
This is because there are fewer number of intersection points in case of non-Rush
hours.
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Fig. 14. Effect of travel time on Speed-up

6 Conclusions and Future Work

The All-start-time shortest Lagrangian shortest path problem (ALSP) is a key
component of applications in transportation networks. ALSP is a challenging
problem due to the non-stationarity of the spatio-temporal network. Traditional
A* and Dijkstra’s based approaches incur redundant computation across the
time instants sharing a common solution. The proposed Critical Time-point
based ALSP Solver (CTAS), reduces this redundant re computation by deter-
mining the time points when the ranking among the alternate paths between
the source and destination change. Theoretical and experimental analysis show
that this approach is more efficient than naive particularly in case of few critical
time points.

In future the we plan to extend the CTAS algorithm by developing an A*
based approach. We plan to reduce the overhead of computing the earliest arrival
time series for all the time instants by doing the computation at runtime. We
also plan to explore alternative approaches similar to [15] for solving non-FIFO
ALSP. Performance of CTAS would also be evaluated on larger datasets.
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Abstract. The problem of point-to-point fastest path computation in static spa-
tial networks is extensively studied with many precomputation techniques pro-
posed to speed-up the computation. Most of the existing approaches make the
simplifying assumption that travel-times of the network edges are constant. How-
ever, with real-world spatial networks the edge travel-times are time-dependent,
where the arrival-time to an edge determines the actual travel-time on the edge. In
this paper, we study the online computation of fastest path in time-dependent spa-
tial networks and present a technique which speeds-up the path computation. We
show that our fastest path computation based on a bidirectional time-dependent
A* search significantly improves the computation time and storage complexity.
With extensive experiments using real data-sets (including a variety of large spa-
tial networks with real traffic data) we demonstrate the efficacy of our proposed
techniques for online fastest path computation.

1 Introduction

With the ever-growing popularity of online map applications and their wide deployment
in mobile devices and car-navigation systems, an increasing number of users search for
point-to-point fastest paths and the corresponding travel-times. On static road networks
where edge costs are constant, this problem has been extensively studied and many
efficient speed-up techniques have been developed to compute the fastest path in a mat-
ter of milliseconds (e.g., [27,31,28,29]). The static fastest path approaches make the
simplifying assumption that the travel-time for each edge of the road network is con-
stant (e.g., proportional to the length of the edge). However, in real-world the actual
travel-time on a road segment heavily depends on the traffic congestion and, therefore,
is a function of time i.e., time-dependent. For example, Figure 1 shows the variation
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of travel-time (computed by averaging two-years of historical traffic sensor data) for a
particular road segment of I-10 freeway in Los Angeles as a function of arrival-time
to the segment. As shown, the travel-time changes with time (i.e, the time that one ar-
rives at the segment entry determines the travel-time), and the change in travel-time is
significant. For instance, from 8AM to 9AM the travel-time of the segment changes
from 32 minutes to 18 minutes (a 45% decrease). By induction, one can observe that
the time-dependent edge travel-times yield a considerable change in the actual fastest
path between any pair of nodes throughout the day. Specifically, the fastest between a
source and a destination node varies depending on the departure-time from the source.
Unfortunately, all those techniques that assume constant edge weights fail to address
the fastest path computation in real-world time-dependent spatial networks.

Fig. 1. Real-world travel-time on a segment of I-10 in LA

The time-dependent fastest path problem was first shown by Dreyfus [10] to be
polynomially solvable in FIFO networks by a trivial modification to Dijkstra algorithm
where, analogous to shortest path distances, the arrival-time to the nodes is used as the
labels that form the basis of the greedy algorithm. The FIFO property, which typically
holds for many networks including road networks, suggests that moving objects exit
from an edge in the same order they entered the edge1. However, the modified Dijkstra
algorithm [10] is far too slow for online map applications which are usually deployed on
very large networks and require almost instant response times. On the other hand, there
are many efficient precomputation approaches that answer fastest path queries in near
real-time (e.g., [27]) in static road networks. However, it is infeasible to extend these
approaches to time-dependent networks. This is because the input size (i.e., the number
of fastest paths) increases drastically in time-dependent networks. Specifically, since the
length of a s-d path changes depending on the departure-time from s, the fastest path
is not unique for any pair of nodes in time-dependent networks. It has been conjectured
in [3] and settled in [11] that the number of fastest paths between any pair of nodes
in time-dependent road networks can be super-polynomial. Hence, an algorithm which
considers the every possible path (corresponding to every possible departure-time from

1 The fastest path computation is shown to be NP-hard in non-FIFO networks where waiting
at nodes is not allowed [23]. Violation of the FIFO property rarely happens in real-world and
hence is not the focus of this study.
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the source) for any pair of nodes in large time-dependent networks would suffer from
exponential time and prohibitively large storage requirements. For example, the time-
dependent extension of Contraction Hierarchies (CH) [1] and SHARC [5] speed-up
techniques (which are proved to be very efficient for static networks) suffer from the
impractical precomputation times and intolerable storage complexity (see Section 3).

In this study, we propose a bidirectional time-dependent fastest path algorithm (B-
TDFP) based on A* search [17]. There are two main challenges to employ bidirectional
A* search in time-dependent networks. First, finding an admissible heuristic function
(i.e., lower-bound distance) between an intermediate vi node and the destination d is
challenging as the distance between vi and d changes based on the departure-time from
vi. Second, it is not possible to implement a backward search without knowing the
arrival-time at the destination. We address the former challenge by partitioning the road
network to non-overlapping partitions (an off-line operation) and precompute the intra
(node-to-border) and inter (border-to-border) partition distance labels with respect to
Lower-bound Graph G which is generated by substituting the edge travel-times in G
with minimum possible travel-times. We use the combination of intra and inter distance
labels as a heuristic function in the online computation. To address the latter challenge,
we run the backward search on the lower-bound graph (G) which enables us to filter-in
the set of the nodes that needs to be explored by the forward search.

The remainder of this paper is organized as follows. In Section 2, we explain the
importance of time-dependency for accurate and useful path planning. In Section 3, we
review the related work on time-dependent fastest path algorithms. In Section 4, we
formally define the time-dependent fastest path problem in spatial networks. In Sec-
tion 5, we establish the theoretical foundation of our proposed bidirectional algorithm
and explain our approach. In Section 6, we present the results of our experiments for
both approaches with a variety of spatial networks with real-world time-dependent edge
weights. Finally, in Section 7, we conclude and discuss our future work.

2 Towards Time-Dependent Path Planning

In this section, we explain the difference between fastest computation in time-dependent
and static spatial networks. We also discuss the importance and the feasibility of time-
dependent route planning.

To illustrate why classic fastest path computations in static road networks may return
non-optimal results, we show a simple example in Figure 2 where a spatial network is
modeled as a time-dependent graph and edge travel-times are function of time. Con-
sider the snapshot of the network (i.e., a static network) with edge weights correspond-
ing to travel-time values at t=0. With classic fastest path computation approaches that
disregard time-dependent edge travel-times, the fastest path from s to d goes through
v1, v2, v4 with a cost of 13 time units. However, by the time when v2 is reached (i.e.,
at t=5), the cost of edge e(v2, v4) changes from 8 to 12 time units, and hence reaching
d through v2 takes 17 time units instead of 13 as it was anticipated at t=0. In con-
trast, if the time-dependency of edge travel-times are considered and hence the path
going through v3 was taken, the total travel-cost would have been 15 units which is the
actual optimal fastest path. We call this shortcoming of the classic fastest path compu-
tation techniques as no-lookahead problem. Unfortunately, most of the existing state
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of the art path planning applications (e.g., Google Maps, Bing Maps) suffer from the
no-lookahead shortcoming and, hence, their fastest path recommendation remains the
same throughout the day regardless of the departure-time from the source (i.e., query
time). Although some of these applications provide alternative paths under traffic con-
ditions (which may seem similar to time-dependent planning at first), we observe that
the recommended alternative paths and their corresponding travel-times still remain
unique during the day, and hence no time-dependent planning. To the best of our knowl-
edge, these applications compute top-k fastest paths (i.e., k alternative paths) and their
corresponding travel-times with and without taking into account the traffic conditions.
The travel-times which take into account the traffic conditions are simply computed
by considering increased edge weights (that corresponds to traffic congestion) for each
path. However, our time-dependent path planning results in different optimum paths
for different departure-times from the source. For example, consider Figure 3(a) where
Google Maps offer two alternative paths (and their travel-times under no-traffic and
traffic conditions) for an origin and destination pair in Los Angeles road network. Note
that the path recommendation and the travel-times remain the same regardless of when
the user submits the query. On the other hand, Figure 3(b) depicts the time-dependent
path recommendations (in different colors for different departure times) for the same
origin and destination pair where we computed the time-dependent fastest paths for 38
consecutive departure-times between 8AM and 5:30PM, spaced 15 minutes apart2. As
shown, the optimal paths change frequently during the course of the day.

Fig. 2. Time-dependent graph

One may argue against the feasibility of time-dependent path planning algorithms
due to a) unavailability of the time-dependent edge travel-times, or b) negligible gain
of time-dependent path planning (i.e., how much time-dependent planning can improve
the travel-time) over static path planning. To address the first argument, note that recent
advances in sensor networks enabled instrumentation of road networks in major cities
for collecting real-time traffic data, and hence it is now feasible to accurately model

2 The paths are computed using the algorithm presented in Section 5 where time-dependent edge
travel-times are generated based on the two-years of historical traffic sensor data collected from
Los Angeles road network.
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the time-dependent travel-times based on the vast amounts of historical data. For in-
stance, at our research center, we maintain a very large traffic sensor dataset of Los
Angeles County that we have been collecting and archiving the data for past two years
(see Section 6.1 for the details of this dataset). As another example, PeMS [24] project
developed by UC Berkeley generates time-varying edge travel-times using historical
traffic sensor data throughout California. Meanwhile, we also witness that the leading
navigation service providers (such as Navteq [22] and TeleAtlas [30]) started releas-
ing their time-dependent travel-time data for road networks at high temporal resolution.
With regards to the second argument, several recent studies showed the importance of
time-dependent path planning in road networks where real-world traffic datasets have
been used for the assessment. For example, in [7] we report that the fastest path com-
putation that considers time-dependent edge travel-times in Los Angeles road network
decreases the travel-time by as much as 68% over the fastest path computation that
assumes constant edge travel-times. We made the similar observation in another study
[15] under IBM’s Smart Traffic Project where the time-dependent fastest path com-
putation in Stockholm road network can improve the travel-time accuracy up to 62%.
Considering the availability of high-resolution time-dependent travel-time data for road
networks, and the importance of time-dependency for accurate and useful path plan-
ning, the need for efficient algorithms to enable next-generation time-dependent path
planning applications becomes apparent and immediate.

(a) Static path planning (b) Time-dependent path planning

Fig. 3. Static vs Time-dependent path planning

3 Related Work

In the last decade, numerous efficient fastest path algorithms with precomputation meth-
ods have been proposed (see [29,27] for an overview). However, there are limited num-
ber of studies that focus on efficient computation of time-dependent fastest path (TDFP)
problem.

Cooke and Halsey [2] first studied TDFP computation where they solved the prob-
lem using Dynamic Programming in discrete time. Another discrete-time solution to
TDFP problem is to use time-expanded networks [19]. In general, time-expanded
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network (TEN) and discrete-time approaches assume that the edge weight functions
are defined over a finite discrete window of time t ∈ t0, t1, .., tn, where tn is deter-
mined by the total duration of time interval under consideration. Therefore, the prob-
lem is reduced to the problem of computing minimum-weight paths over a static static
network per time window. Hence, one can apply any static fastest path algorithms to
compute TDFP. Although these algorithms are easy to design and implement, they have
numerous shortcomings. First, TEN models create a separate instance of network for
each time instance hence yielding a substantial amount of storage overhead. Second,
such approaches can only provide approximate results because the model misses the
state of the network between any two discrete-time instants. Moreover, the difference
between the shortest path obtained using TEN approach and the optimal shortest path is
unbounded. This is because the query time can be always between any two of the inter-
vals which are not captured by the model, and hence the error is is accumulated on each
edge along the path. In [12], George and Shekhar proposed a time-aggregated graph
approach where they aggregate the travel-times of each edge over the time instants into
a time series. Their model requires less space than that of the TEN and the results are
still approximate with no bounds.

In [10], Dreyfus showed that TDFP problem can be solved by a generalization of Di-
jkstra’s method as efficiently as for static fastest path problems. However, Halpern [16]
proved that the generalization of Dijkstra’s algorithm is only true for FIFO networks.
If the FIFO property does not hold in a time-dependent network, then the problem is
NP-Hard. In [23], Orda and Rom introduced Bellman-Ford based algorithm where they
determine the path toward destination by refining the arrival-time functions on each
node in the whole time interval T . In [18], Kanoulas et al. proposed Time-Interval All
Fastest Path (allFP) approach in which they maintain a priority queue of all paths to be
expanded instead of sorting the priority queue by scalar values. Therefore, they enumer-
ate all the paths from the source to a destination node which incurs exponential running
time in the worst case. In [9], Ding et al. used a variation of Dijkstra’s algorithm to
solve the TDFP problem. With their TDFP algorithm, using Dijkstra like expansion,
they decouple the path-selection and time-refinement (computing earliest arrival-time
functions for nodes) for a given starting time interval T . Their algorithm is also shown
to run in exponential time for special cases (see [4]). The focus of both [18] and [9] is
to find the fastest path in time-dependent road networks for a given start time-interval
(e.g., between 7:30AM and 8:30AM).

The ALT algorithm [13] was originally proposed to accelerate fastest path computa-
tion in static road networks. With ALT, a set of nodes called landmarks are chosen and
then the shortest distances between all the nodes in the network and all the landmarks
are computed and stored. ALT employs triangle inequality based on distances to the
landmarks to obtain a heuristic function to be used in A* search. The time-dependent
variant of this technique is studied in [6] (unidirectional) and [21] (bidirectional A*
search) where heuristic function is computed w.r.t lower-bound graph. However, the
landmark selection is very difficult (relies on heuristics) and the size of the search space
is severely affected by the choice of landmarks. So far no optimal strategy with respect
to landmark selection and random queries has been found. Specifically, landmark se-
lection is NP-hard [26] and ALT does not guarantee to yield the smallest search spaces
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with respect to fastest path computations where source and destination nodes are cho-
sen at random. Our experiments with real-world time-dependent travel-times show that
our approach consumes much less storage as compared to ALT based approaches and
yields faster response times (see Section 6). In two different studies, The Contraction
Hierarchies (CH) and SHARC methods (also developed for static networks) were aug-
mented to time-dependent road networks in [1] and [5], respectively. The main idea of
these techniques is to remove unimportant nodes from the graph without changing the
fastest path distances between the remaining (more important) nodes. However, unlike
the static networks, the importance of a node can change throughout the time under
consideration in time-dependent networks, hence the importance of the nodes are time
varying. Considering the super-polynomial input size (as discussed in Section 1), and
hence the super-polynomial number of important nodes with time-dependent networks,
the main shortcomings of these approaches are impractical preprocessing times and ex-
tensive space consumption. For example, the precomputation time for SHARC in time-
dependent road networks takes more than 11 hours for relatively small road networks
(e.g. LA with 304,162 nodes) [5]. Moreover, due to the significant use of arc flags [5],
SHARC does not work in a dynamic scenario: whenever an edge cost function changes,
arc flags should be recomputed, even though the graph partition need not be updated.
While CH also suffers from slow preprocessing times, the space consumption for CH
is at least 1000 bytes per node for less varied edge-weights where the storage cost in-
creases with real-world time-dependent edge weights. Therefore, it may not be feasible
to apply SHARC and CH to continental size road networks which can consist of more
than 45 million road segments (e.g., North America road network) with possibly large
varied edge-weights.

4 Problem Definition

There are various criteria to define the cost of a path in road networks. In our study
we define the cost of a path as its travel-time. We model the road network as a time-
dependent weighted graph as shown in Figure 2 where time-dependent travel-times are
provided as a function of time which captures the typical congestion pattern for each
segment of the road network. We use piecewise linear functions to represent the time-
dependent travel-times in the network.

Definition 1. Time-dependent Graph. A Time-dependent Graph is defined as G(V, E,
T ) where V = {vi} is a set of nodes and E ⊆ V × V is a set of edges representing
the network segments each connecting two nodes. For every edge e(vi, vj) ∈ E, and
vi �= vj , there is a cost function cvi,vj (t), where t is the time variable in time domain T .
An edge cost function cvi,vj (t) specifies the travel-time from vi to vj starting at time t.

Definition 2. Time-dependent Travel Cost. Let {s = v1, v2, ..., vk = d} denotes a
path which contains a sequence of nodes where e(vi, vi+1) ∈ E and i = 1, ..., k − 1.
Given a G(V, E, T ), a path (s � d) from source s to destination d, and a departure-
time at the source ts, the time-dependent travel cost TT (s � d, ts) is the time it takes
to travel the path. Since the travel-time of an edge varies depending on the arrival-time
to that edge, the travel-time of a path is computed as follows:
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TT (s � d, ts) =
k−1∑
i=1

cvi,vi+1(ti) where t1 = ts, ti+1 = ti + c(vi,vi+1)(ti), i = 1, .., k.

Definition 3. Lower-bound Graph. Given a G(V, E, T ), the corresponding Lower-
bound Graph G(V, E) is a graph with the same topology (i.e, nodes and edges) as
graph G, where the weight of each edge cvi,vj is fixed (not time-dependent) and is equal
to the minimum possible weight cmin

vi,vj
where ∀ e(vi, vj) ∈ E, t ∈ T cmin

vi,vj
≤ cvi,vj (t).

Definition 4. Lower-bound Travel Cost. The lower-bound travel-time LTT (s � d)
of a path is less than the actual travel-time along that path and computed w.r.t G(V, E)
as

LTT (s � d) =
k−1∑
i=1

cmin
vi,vi+1

, i = 1, .., k.

It is important to note that for each source and destination pair (s, d), LTT (s � d)
is time-independent constant value and hence t is not included in its definition. Given
the definitions of TT and LTT , the following property always holds for any path in
G(V, E, T ): LTT (s � d) ≤ TT (s � d, ts) where ts is an arbitrary departure-time
from s. We will use this property in subsequent sections to establish some properties of
our proposed solution.

Definition 5. Time-dependent Fastest Path (TDFP). Given a G(V, E, T ), s, d, and
ts, the time-dependent fastest path TDFP (s, d, ts) is a path with the minimum travel-
time among all paths from s to d for starting time ts.

In the rest of this paper, we assume that G(V, E, T ) satisfies the First-In-First-Out
(FIFO) property. We also assume that moving objects do not wait at any node. In most
real-world applications, waiting at a node is not realistic as it means that the moving
object must interrupt its travel by getting out of a road (e.g., exit freeway), and finding
a place to park and wait.

5 Time-Dependent Fastest Path Computation

In this section, we explain our bidirectional time-dependent fastest path approach that
we generalize bidirectional A* algorithm proposed for static spatial networks [25] to
time-dependent road networks. Our proposed solution involves two phases. At the pre-
computation phase, we partition the road network into non-overlapping partitions and
precompute lower-bound distance labels within and across the partitions with respect
to G(V, E). Successively, at the online phase, we use the precomputed distance labels
as a heuristic function in our bidirectional time-dependent A* search that performs si-
multaneous searches from source and destination. Below we elaborate on both phases.

5.1 Precomputation Phase

The precomputation phase of our proposed algorithm includes two main steps in which
we partition the road network into non-overlapping partitions and precompute lower-
bound border-to-border, node-to-border, and border-to-node distance labels.



100 U. Demiryurek et al.

5.1.1 Road Network Partitioning
Real-world road networks are built on a well-defined hierarchy. For example, in United
States, highways connect large regions such as states, interstate roads connect cities
within a state, and multi-lane roads connect locations within a city. Almost all of the
road network data providers (e.g., Navteq [22]) include road hierarchy information in
their datasets. In this paper, we partition the graph to non-overlapping partitions by
exploiting the predefined edge class information in road networks. Specifically, we first
use higher level roads (e.g., interstate) to divide the road network into large regions.
Then, we subdivide each large region using the next level roads and so on. We adopt
this technique from [14] and note that our proposed algorithm is independent of the
partitioning method, i.e., it yields correct results with all non-overlapping partitioning
methods.

With our approach, we assume that the class of each edge class(e) is predefined and
we denote the class of a node class(v) by the lowest class number of any incoming
or outgoing edge to/from v. For instance, a node at the intersection of two freeway
segments and an arterial road (i.e., the entry node to the freeway) is labeled with class
of the freeway rather than the class of the arterial road. The input to our hierarchical
partitioning method is the road network and the level of partitioning l. For example,
if we like to partition a particular road network based on the interstates, freeways, and
arterial roads in sequence, we set l = 2 where interstate edges represent the class 0.
The road network partitions can be conceptually visualized as the areas after removal
the nodes with class(v) ≤ l from G(E, V ).

Definition 6. Given a graph G(V, E), the partition of G(V, E) is a set of subgraphs
{S1, S2, ..., Sk} where Si = (Vi, Ei) includes node set Vi where Vi ∩ Vj = ∅ and
∪k

i=1Vi = V , i �= j.

Given a G(E, V ) and level of partitioning l, we first assign to each node an empty set
of partitions. Then, we choose a node vi that is connected to edges other than the ones
used for partitioning (i.e., a node with class(vi) > l) and add partition number (e.g.,
S1) to vi’s partition set. For instance, continuing with our example above, a node vi with
class(vi) > 2 represent a particular node that belongs a less important road segment
than an arterial road. Subsequently, we expand a shortest path tree from vi to all it’s
neighbor nodes reachable through the edges of the classes greater than l, and add S1 to
their partition sets. Intuitively, we expand from vi until we reach the roads that are used
for partitioning. At this point we determine all the nodes that belong to S1. Then, we
select another node vj with an empty partition set by adding the next partition number
(e.g., S2) to vj’s partition set and repeat the process. We terminate the process when
all nodes are assigned to at least one partition. With this method we can easily find the
border nodes for each partition, i.e., those nodes which include multiple partitions in
their partition sets. Specifically, a node v, with class(v) ≤ l belongs to all partitions
such that there is an edge e (with class(e) > l) connecting v to v′ where v′ ∈ Si and
i = 1, ..., k, is the border node of the partitions that it connects to. Note that l is a tuning
parameter in our partitioning method. Hence, one can arrange the size of the partitions
by increasing or decreasing l.

Figure 4 shows the partitioning of San Joaquin (California) network based on the
road classes. As shown, higher level edges are depicted with different (thicker) colors.
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Fig. 4. Road network partitioning

Each partition is numbered starting from the north-west corner of the road network. The
border nodes between partitions S1 and S4 are shown in the circled area. We remark
that the number of border nodes (which can be potentially large depending on the den-
sity of the network) in the actual partitions have a negligible influence on the storage
complexity. We explain the effect of the border nodes on the storage cost in the next
section.

5.1.2 Distance Label Computation
In this step, for each pair of partitions (Si,Sj) we compute the lower-bound fastest
path cost w.r.t G between each border in Si to each border node in Sj . However, we
only store the minimum of all border-to-border fastest path distances. As an example,
consider Figure 5 where the lower-bound fastest path cost between b1 and b3 (shown
with straight line) is the minimum among all border-to-border distances (i.e., b1-b4,
b2-b4, b2-b3) between S1 and S2. In addition, for each node vi in a partition Si, we
compute the lower-bound fastest path cost from vi to all border nodes in Si w.r.t. G and
store the minimum among them. We repeat the same process from border nodes in Si

to vi. For example, border nodes b1 and b4 in Figure 5 are the nearest border nodes to s
and d, respectively. We will use the precomputed node-to-border, border-to-border, and
border-to-node lower-bound travel-times (referred to as distance labels) to construct
our heuristic function for online time-dependent A* search. We used a similar distance
label precomputation technique to expedite shortest path computation between network
Voronoi polygons in static road networks [20].

We maintain the distance labels by attaching three attributes to each node represent-
ing a) the partition Si that contains the node, b) minimum of the lower-bound distances
from the node to border nodes, and c) minimum of the lower-bound distances from
border nodes to the node (this is necessary for directed graphs). We keep border-to-
border distance information in a hash table. Since we only store one distance value for
each partition pair, the storage cost of the border-to-border distance labels is negligible.
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Fig. 5. Lower-bound distance computation

Another benefit of our proposed lower-bound computation is that the lower-bounds
need to be updated when it is necessary. Specifically, we update the intra and inter dis-
tance labels only when the minimum travel-time of an edge changes, otherwise, the
travel-time updates are discarded. Note that intra distance label computation is local,
i.e., we only update the intra distance labels for the partitions in which the minimum
travel-time of an edge changes.

5.2 Online B-TDFP Computation

As showed in [10], the time-dependent fastest path problem (in FIFO networks) can
be solved by modifying Dijkstra algorithm. We refer to modified Dijkstra algorithm as
time-dependent Dijkstra (TD-Dijkstra). TD-Dijkstra visits all network nodes reachable
from s in every direction until destination node d is reached. On the other hand, a time-
dependent A* algorithm can significantly reduce the number of nodes that have to be
traversed in TD-Dijkstra algorithm by employing a heuristic function h(v) that directs
the search towards destination. To guarantee optimal results, h(v) must be admissible
and consistent (a.k.a, monotonic). The admissibility implies that h(v) must be less than
or equal to the actual distance between v and d. With static road networks where the
length of an edge is constant, Euclidian distance between v and d is used as h(v).
However, this simple heuristic function cannot be directly applied to time-dependent
road networks, because, the optimal travel-time between v and d changes based on the
departure-time tv from v. Therefore, in time-dependent road networks, we need to use
an estimator that never overestimates the travel-time between v and d for any possible
tv. One simple lower-bound estimator is deuc(v, d)/max(speed), i.e., the Euclidean
distance between v and d divided by the maximum speed among the edges in the entire
network. Although this estimator is guaranteed to be a lower-bound, it is a very loose
bound, and hence yields insignificant pruning.

With our approach, we obtain a much tighter bound by utilizing the precomputed
distance labels. Assuming that an on-line time-dependent fastest path query requests a
path from source s in partition Si to destination d in partition Sj , the fastest path must
pass through from one border node bi in Si and another border node bj in Sj . We know
that the time-dependent fastest path distance passing from bi and bj is greater than or
equal to the precomputed lower-bound border-to-border (e.g., LTT (bl, bt)) distance for
Si and Sj pair. We also know that a time-dependent fastest path distance from s to bi
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is always greater than or equal to the precomputed lower-bound fastest path distance of
s to its nearest border node bs. Analogously, same is true from the border node bd (i.e.,
nearest border node) to d in Sj . Thus, we can compute a lower-bound estimator of s by
h(s) = LTT (s, bs) + LTT (bl, bt) + LTT (bd, d).

Lemma 1. Given an intermediate node vi in Si and destination node d in Sj , the es-
timator h(vi) is admissible, i.e., a lower-bound of time-dependent fastest path distance
from vi to d passing from border nodes bi and bj in Si and Sj ,respectively.

Proof. Assume LTT (bl, bt) is the minimum border-to-border distance between Si and
Sj , and b′i, b′j are the nearest border nodes to vi and d in G, respectively. By definition
of G(V, E), LTT (vi, b

′
i) ≤ TDFP (vi, bi, tvi), LTT (bl, bt) ≤ TDFP (bi, bj, tbi), and

LTT (b′j, d) ≤ TDFP (bj, d, tbj ) Then, we have h(vi) = LTT (vi, b
′
i)+LTT (bl, bt)+

LTT (b′j, d) ≤ TDFP (vi, bi, tvi) + TDFP (bi, bj , tbi) + TDFP (bj, d, tbj )

We can use our h(v) heuristic with unidirectional time-dependent A* search in road net-
works. The time-dependent A* algorithm is a best-first search algorithm which scans
nodes based on their time-dependent cost label (maintained in a priority queue) to
source similar to [10]. The only difference to [10] is that the label within the prior-
ity queue is not determined only by the time-dependent distance to source but also by a
lower-bound of the distance to d, i.e., h(v) introduced above.

To further speed-up the computation, we propose a bidirectional search that simulta-
neously searches forward from the source and backwards from the destination until the
search frontiers meet. However, bidirectional search is challenging in time-dependent
road networks for two following reasons. First, it is essential to start the backward
search from the arrival-time at the destination td and exact td cannot be evaluated in ad-
vance at the query time (recall that arrival-time to destination depends on the departure-
time from the source in time-dependent road networks). We address this problem by
running a backward A* search that is based on the reverse lower-bound graph

←−
G (the

lower-bound graph with every edge reversed). The main idea with running backward
search in

←−
G is to determine the set of nodes that will be explored by the forward A*

search. Second, it is not straightforward to satisfy the consistency (the second optimal-
ity condition of A* search) of h(v) as the forward and reverse searches use different
distance functions. Next, we explain bidirectional time-dependent A* search algorithm
(Algorithm 1) and how we satisfy the consistency.

Given G = (V, E, T ), s and d, and departure-time ts from s, let Qf and Qb represent
the two priority queues that maintain the labels of nodes to be processed with forward
and backward A* search, respectively. Let F represent the set of nodes scanned by
the forward search and Nf is the corresponding set of labeled vertices (those in its
priority queue). We denote the label of a node in Nf by dfv. Analogously, we define
B, Nb, and dfv for the backward search. Note that during the bidirectional search F
and B are disjoint but Nf and Nb may intersect. We simultaneously run the forward

and backward A* searches on G(V, E, T ) and
←−
G , respectively (Line 4 in Algorithm 1).

We keep all the nodes visited by backward search in a set H (Line 5). When the search
frontiers meet, i.e., as soon as Nf and Nb have a node u in common (Line 6), the cost
of the time-dependent fastest path (TDFP (s, u, ts)) from s to u is determined. At this
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Fig. 6. Bidirectional search

point, we know that TDFP (u, d, tu) > LTT (u, d) for the path found by the backward
search. Hence, the time-dependent cost of the paths (found so far) passing from u is
the upper-bound of the time-dependent fastest path from s to d, i.e., TDFP (s, u, ts)+
TDFP (u, d, tu) ≥ TDFP (s, d, ts).

If we stop the searches as soon as a node u is scanned by both forward and back-
ward searches, we cannot guarantee finding the time-dependent fastest path from u to
d within the set of nodes in H . This is due to inconsistent potential function used in
bidirectional search that relies on two independent potential functions for two inner A*
algorithms. Specifically, let hf (v) (estimated distance from node v to target) and hb(v)
(estimated distance from node v to source) be the potential functions used in the for-
ward and backward searches, respectively. With the backward search, each original edge
e(i, j) considered as e(j, i) in the reverse graph where hb used as the potential func-
tion, and hence the reduced cost3 of e(j, i) w.r.t. hb is computed by chb

(j, i)=c(i, j)-
hb(j)+hb(i) where c(i, j) is the cost in the original graph. Note that hf and hb are
consistent if, for all edges (i, j), chf

(i, j) in the original graph is equal to chb
(j, i) in

the reverse graph. If hf and hb are not consistent, there is no guarantee that the short-
est path can be found when the search frontiers meet. For instance, consider Figure 6
where the forward and backward searches meet at node u. As shown, if v is scanned
before u by the forward search, then TDFP (s, u, ts) > TDFP (s, v, ts). Similarly if
w is scanned before u by the backward search, the LTT (u, d) > LTT (w, d) and hence
TDFP (u, d, tu) > TDFP (w, d, tw). Consequently, it is possible that TDFP (s, u,
ts) + TDFP (u, d, tu) ≥ TDFP (s, v, ts) + TDFP (w, d, tw). To address this chal-
lenge, one needs to find a) a consistent heuristic function and stop the search when
the forward and backward searches meet or b) a new termination condition. In this
study, we develop a new termination condition (the proof of correctness is given be-
low) in which we continue both searches until the Qb only contains nodes whose labels
exceed TDFP (s, u, ts) + TDFP (u, d, tu) by adding all visited nodes to H (Line
9-11). Recall that the label (denoted by dbv) of node v in the backward search pri-
ority queue Qb is computed by the time-dependent distance from the destination to
v plus the lower-bound distance from v to s, i.e., dbv = TDFP (v, d, tv) + h(v).
Hence, we stop the search when dbv > TDFP (s, u, ts) + TDFP (u, d, tu). As we
explained, TDFP (s, u, ts) + TDFP (u, d, tu) is the length of the fastest path seen so
far (not necessarily the actual fastest path) and is updated during the search when a new

3 A* search is equivalent to Dijkstra’s algorithm on a transformed network in which the cost of
each edge c(i, j) is equal to c(i, j)-h(i)+h(j).
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common node u′ found with TDFP (s, u′, ts)+TDFP (u′, d, tu′) < TDFP (s, u, ts)+
TDFP (u, d, tu). Once both searches stop, H will include all the candidate nodes that
can possibly be part of the time-dependent fastest path to d. Finally, we continue the
forward search considering only the nodes in H until we reach d (Line 12).

Algorithm 1. B-TDFP Algorithm

1: //Input: GT ,
←−
G , s:source, d:destination,ts:departure time

2: //Output: a (s, d, ts) fastest path
3: //FS():forward search, BS():backward search, Nf /Nb: nodes scanned by FS()/BS(),

dbv:label of the minimum element in BS queue
4: FS(GT ) and BS(

←−
G) //start searches simultaneously

5: Nf ← FS(GT ) and Nb ← BS(
←−
G)

6: If Nf ∩Nb �= ∅ then u← Nf ∩Nb

7: M = TDFP (s, u, ts) + TDFP (u, d, tu)
8: end If
9: While dbv > M

10: Nb ← BS(
←−
G)

11: End While
12: FS(Nb)
13: return (s, d, ts)

Lemma 2. Algorithm 1 finds the correct time-dependent fastest path from source to
destination for a given departure-time ts.

Proof. We prove Lemma 2 by contradiction. The forward search in Algorithm 1 is the
same as the unidirectional A* algorithm and our heuristic function h(v) is a lower-
bound of time-dependent distance from u to v. Therefore, the forward search is correct.
Now, let P (s, (u), d, ts) represent the path from s to d passing from u where forward
and backward searches meet and ω denotes the cost of this path. As we showed ω is the
upper-bound of actual time-dependent fastest path from s to d. Let φ be the smallest
label of the backward search in priority queue Qb when both forward and backward
searches stopped. Recall that we stop searches when φ > ω. Suppose that Algorithm
1 is not correct and yields a suboptimal path, i.e., the fastest path passes from a node
outside of the corridor generated by the forward and backward searches. Let P∗ be the
fastest path from s to d for departure-time ts and cost of this path is α. Let v be the first
node on P∗ which is going to be explored by the forward search and not explored by
the backward search and hb(v) is the heuristic function for the backward search. Hence,
we have φ ≤ hb(v) + LTT (v, d), α ≤ ω < φ and hb(v) + LTT (v, d) ≤ LTT (s, v)+
LTT (v, d) ≤ TDFP (s, v, ts)+TDFP (v, t, tv) = α, which is a contradiction. Hence,
the fastest path will be found in the corridor of the nodes labeled by the backward
search.

6 Experimental Evaluation

6.1 Experimental Setup

We conducted extensive experiments with different spatial networks to evaluate the per-
formance of our proposed bidirectional time-dependent fastest path (B-TDFP)
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approach. As of our dataset, we used California (CA), Los Angeles (LA) and San
Joaquin County (SJ) road network data (obtained from Navteq [22]) with approxi-
mately 1,965,300, 304,162 and 24,123 nodes, respectively. We conducted our experi-
ments on a server with 2.7 GHz Pentium Core Duo processor with 12GB RAM memory.

6.1.1 Time-Dependent Network Modeling
At our research center, we maintain a very large-scale and high resolution (both spa-
tial and temporal) traffic sensor (i.e., loop detector) dataset collected from entire LA
County highways and arterial streets. This dataset includes both inventory and real-time
data for 6300 traffic sensors covering approximately 3000 miles. The sampling rate of
the streaming data is 1 reading/sensor/min. We have been continuously collecting and
archiving the traffic sensor data for the past two years. We use this real-world dataset
to create time varying edge weights; we spatially and temporally aggregate sensor data
by assigning interpolation points (for each 5 minutes) that depict the travel-times on the
network segments. Based on our observation, all roads are un-congested between 9PM
and 6AM, and hence we assume static edge weights during this interval. In order to
create time-dependent edge weights for the local streets in LA, CA and SJ, we devel-
oped a traffic modeling approach [8] that synthetically generates the edge travel-time
profiles. Our approach uses spatial (e.g., locality, connectivity) and temporal (e.g., rush
hour, weekday) characteristics to generate travel-time for network edges that does not
have readily available sensor data.

6.2 Results

In this section, we report the experimental results from our fastest path queries in which
we determine the s and d nodes uniformly at random. We also pick our departure-
time randomly and uniformly distributed in time domain T . The average results are
derived from 1000 random s-d queries. We only present the results for LA and CA, the
experimental results for both SJ and LA are very similar.

6.2.1 Comparison with ALT
In this set of experiments we compare our algorithm with time-dependent ALT (TD-
ALT) approaches [6,21] with respect to storage and response time. We run our proposed
algorithm both unidirectionally and bidirectionally (in CA network) and compare with
[6] and [21], respectively. As we mentioned, selecting good landmarks that lead to good
performance is very difficult and hence several heuristics have been proposed for land-
mark selection. Among these heuristics, we use the best known technique; maxCover
(see [6]) with 64 landmarks. We computed travel-times between each node and the
landmarks with respect to G. Under this setting, to store the precomputed distances,
TD-ALT attaches to each node an array of 64 elements corresponding to the number of
landmarks. Assuming that each array element takes 2 bytes of space, the additional stor-
age requirement of TD-ALT is 63 Megabytes. On the other hand, with our algorithm,
we divide CA network to 60 partitions and store the intra and inter distance labels. The
total storage requirement of our proposed solution is 8.5 Megabytes where we con-
sume, for each node, an array of 2 elements (corresponding to from and to distances
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to the closest border node) plus the border-to-border distance labels. Since the exper-
imental results for both unidirectional and bidirectional searches differ insignificantly
and due to space limitations, we only present the results from unidirectional search be-
low. As shown in Figure 7(a) the response time of our unidirectional time-dependent
A* search (U-TDFP) is approximately three times better than that of TD-ALT for all
times. This is because the search space of TD-ALT is severely affected by the quality of
the landmarks which are selected based on a heuristic. Specifically, TD-ALT may yield
very loose bounds based on the randomly selected s and d, and hence the large search
space. In addition, with each iteration, TD-ALT needs to find the best landmark (among
64 landmarks) which yields largest triangular inequality distance for better pruning; it
seems that the overhead of this operation is not negligible. On the other hand, U-TDFP
yields a more directional search with the help of intra and inter distance labels with no
additional computation.

(a) ALT vs U-TDFP (b) Speed-up ratio

Fig. 7. TD-ALT Comparison and Speed-up Ratio Analysis

6.2.2 Performance of B-TDFP
In this set of experiments, we compare the performance of our proposed approach to
other existing TDFP methods w.r.t to a) preprocessing time, b) storage (byte per node),
c) the average number of relaxed edges, and d) average query time. Table 1 shows
the preprocessing time (Pre Processing), storage (Storage), number of scanned nodes
(#Nodes), and response time (Res. Time) of time-dependent Dijkstra (TD-Dijkstra) im-
plemented based on [10], unidirectional (U-TDFP) and bidirectional (B-TDFP)
time-dependent A* search implemented using our proposed heuristic function, time-
dependent Contraction Hierarchies (TD-CH) [1], and time-dependent SHARC (TD-
SHARC) [5]. To implement U-TDFP and B-TDFP, we divide CA and LA network to
60 (which roughly correspond to counties in CA) and 25 partitions, respectively. Com-
paring TD-Dijkstra with our approach, we observe a very high trade-off between the
query results and precomputation in both LA and CA networks. Our proposed B-TDFP
performs 23 times better than TD-Dijkstra depending on the network while prepro-
cessing and storage overhead is relatively small. As shown, the preprocessing time and
storage complexity is directly proportional to network size.

Comparing the time-dependent variant of SHARC (TD-SHARC) and CH (TD-CH)
with our approach, we observe B-TDFP outperforms TD-SHARC and TD-CH in pre-
processing and response time. We also observe that as the graph gets bigger or more
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Table 1. Experimental Results

Algorithm PreProcessing Storage #Nodes Res. Time
[h:m] [B/node] [ms]

CA

TD-Dijkstra 0:00 0 1162323 4104.11

U-TDFP 1:13 6.82 90575 310.17

B-TDFP 1:13 6.82 67172 182.06

TD-SHARC 19:41 154.10 75104 227.26

TD-CH 3:55 1018.33 70011 209.12

LA

TD-Dijkstra 0:00 0 210384 2590.07

U-TDFP 0:27 3.51 11115 197.23

B-TDFP 0:27 3.51 6681 101.22

TD-SHARC 11:12 68.47 9566 168.11

TD-CH 1:58 740.88 7922 140.25

edges are time-dependent, the preprocessing time of TD-SHARC increases drastically.
The preprocessing of TD-SHARC takes very long for both road networks, i.e., up to
20 times more than B-TDFP. The reason for the performance gap is that TD-SHARC’s
contraction routine cannot bypass the majority of the nodes in time-dependent road net-
works as in the static road networks. Recall that the importance of a node can change
throughout the time under consideration in time-dependent road networks. In addition,
TD-SHARC is very sensitive to edge cost function changes, i.e. whenever cost func-
tion of an edge changes, the preprocessing phase needs to be repeated to determine the
by-pass nodes. While TD-CH tend to have better response times than TD-SHARC, the
space consumption of TD-CH is significantly high (approximately 1000 bytes per node
in CA network). For this reason, TD-CH is not feasible for very large road networks
such as North America and Europe. We note that, to improve the response and prepro-
cessing time, several variations of TD-SHARC and TD-CH algorithms are implemented
in the literature. These variations trade-off between the optimality of the solution and
the response time. For example, the response time of Heuristic TD-SHARC [5] is shown
much better than that of original TD-SHARC algorithm. However, the path found by
the Heuristic TD-SHARC is not optimal and the error rate is not bounded. As another
example, the performance of TD-SHARC can be improved by combining with another
technique called Arc-Flags [5]. Similar performance improvements can be applied to
our proposed approach. For instance, we can terminate the search when the search fron-
tiers meet and report the combination of path found by the forward and backward search
as the result. However, as mentioned in Section 5.2, we cannot guarantee the optimal
solution in this setting. Moreover, based on our initial observation and implementation,
we can also integrate our algorithm with Arc-Flags. However, the focus of our study is
to develop a technique that yields exact solutions. Hence, for the sake of simplicity and
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fair comparison, we only compare the original algorithms that yields exact results and
do not consider integrating different methods.

6.2.3 Quality of Lower-Bounds
As discussed, the performance of time-dependent A* search depends on the lower-
bound distance. In this set of experiments, we analyze the quality of our proposed lower-
bound computed based on the Distance Labels explained in Section 5.1.2. We define the
lower-bound quality by lg = δ(u,v)

d(u,v) , where δ(u, v) and d(u, v) represent the estimated
and actual travel-times between nodes u and v, respectively. Table 2 reports lg based
on three different heuristic function, namely Naive, ALT, and DL (i.e., our heuristic
function computed based on Distance Labels). Similar to other experiments, the values
in Table 2 are obtained by selecting s, d and ts uniformly at random between 6AM and
9PM. We compute the naive lower-bound estimator by deuc(u,v)

max(speed) , i.e., the Euclidean
distance between u and v is divided by the maximum speed among the edges in the
entire network. We obtain the ALT lower-bounds based on G and the maxCover ([6])
technique with 64 landmarks. As shown, DL provides better heuristic function in both
LA and CA. The reason is that the ALT’s lg relies on the distribution of the landmarks,
and hence depending on the location of s and d it is possible to get very loose bounds.
On the other hand, the lower-bounds computed based on Distance Labels are more
directional. Specifically, with our approach the s and d nodes must reside in one of
the partitions and the (border-to-border) distance between these partitions is always
considered for the lower-bound computation.

Table 2. Lower-bound Quality

Network Naive ALT DL
(%) (%) (%)

CA 21 42 63
LA 33 46 66

6.2.4 Bidirectional vs. Unidirectional Search
In another set of experiments, we study the impact of path length (i.e., distance from
s to d) on the speed-up of bidirectional search. Hence, we measure the performance of
B-TDFP and U-TDFP with respect to distance by varying the path distance (1 to 300
miles) between s and d. Figure 7(b) shows the speed-up with respect to distance. We
observe that the speed-up is significantly more especially for long distance queries. The
reason is that for short distances the computational overhead incurred by B-TDFP is not
worthwhile as U-TDFP visits less number of nodes anyway.

7 Conclusion and Future Work

In this paper, we proposed a time-dependent fastest path algorithm based on bidirec-
tional A*. Unlike the most path planning studies, we assume the edge weights of the
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road network are time varying rather than constant. Therefore, our approach yield a
much more realistic scenario, and hence, applicable to the to real-world road networks.
We also compared our approaches with those handful of time-dependent fastest path
studies. Our experiments with real-world road network and traffic data showed that our
proposed approaches outperform the competitors in storage and response time signifi-
cantly. We intend to pursue this study in two different directions. First, we plan to in-
vestigate new data models for effective representation of spatiotemporal road networks.
This is critical in supporting development of efficient and accurate time-dependent al-
gorithms, while minimizing the storage and computation costs. Second, to support rapid
changes of the traffic patterns (that may happen in case of accidents/events, for exam-
ple), we intend to study incremental update algorithms for both of our approaches.
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Abstract. In the dynamic Pickup and Delivery Problem with Transfers
(dPDPT), a set of transportation requests that arrive at arbitrary times
must be assigned to a fleet of vehicles. We use two cost metrics that cap-
ture both the company’s and the customer’s viewpoints regarding the
quality of an assignment. In most related problems, the rule of thumb is
to apply a two-phase local search algorithm to heuristically determine a
good requests-to-vehicles assignment. This work proposes a novel solu-
tion based on a graph-based formulation of the problem that treats each
request independently. Briefly, in this conceptual graph, the goal is to
find a shortest path from a node representing the pickup location to that
of the delivery location. However, we show that efficient Bellman-Ford or
Dijkstra-like algorithms cannot be applied. Still, our method is able to
find dPDPT solutions significantly faster than a conventional two-phase
local search algorithm, while the quality of the solution is only marginally
lower.

Keywords: Pickup and delivery problem, dynamic shortest path.

1 Introduction

The family of pickup and delivery problems covers a broad range of optimization
problems that appear in various logistics and transportation scenarios. Broadly
speaking, these problems look for an assignment of a set of transportation re-
quests to a fleet of vehicles in a way that satisfies a number of constraints and at
the same time minimizes a specific cost function. In this context, a transporta-
tion request is defined as picking up an object (e.g., package, person, etc.) from
one location and delivering it to another; hence the name.

In its simplest form, the Pickup and Delivery Problem (PDP) only imposes
two constraints. The first, termed precedence, naturally states that pickup should
occur before delivery for each transportation request. The second, termed pair-
ing, states that both the pickup and the delivery of each transportation request
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should be performed by the same vehicle. The Pickup and Delivery Problem
with Transfers (PDPT) [11,26] is a PDP variant that eliminates the pairing con-
straint. In PDPT, objects can be transferred between vehicles. Transfers can
occur in predetermined locations, e.g., depots, or in arbitrary locations as long
as the involved vehicles are in close proximity to each other at some time. We
refer to the latter case as transfer with detours, since the vehicles may have to
deviate from their routes.

Almost every pickup and delivery problem comes in two flavors. In static,
all requests are known in advance and the goal is to come up with the best
vehicle routes from scratch. On the other hand, in dynamic, a set of vehicle
routes, termed the static plan, has already been established. Then, additional
requests arrive ad hoc, i.e., at arbitrary times, and the plan must be modified to
satisfy them. While algorithms for static problems can also solve the dynamic
counterpart, they are rarely used as they take a lot of time to execute. Instead,
common practice is to apply two-phase local search algorithms. In the first phase,
a quick solution is obtained by assigning each standing request to the vehicle that
results in the smallest cost increase. In the second phase, the obtained solution
is improved by reassigning requests.

This paper proposes an algorithm for the dynamic Pickup and Delivery Prob-
lem with Transfers (dPDPT). Although works for the dynamic PDP can be
extended to consider transfers between vehicles, to the best of our knowledge,
this is the first work targeting dPDPT. Our solution processes requests inde-
pendently, and does not follow the two-phase paradigm. Satisfying a request is
treated as a shortest path problem in a conceptual graph. Intuitively, the object
must travel from the pickup to the delivery location following the vehicles’ routes
and schedules.

The primary goal in pickup and delivery problems is to minimize the total
operational cost required to satisfy the requests, i.e., the company’s expenses.
Under our dPDPT formulation, a satisfied request is represented as a path p. We
define its operational cost Op as the additional cost (total delay), with respect to
the static plan, incurred by the vehicles in order to accommodate the solution p.
In addition, we consider the promptness of satisfying the request. We define the
customer cost Cp of a path p as the delivery time of the object. These costs are in
general conflicting, as they represent two distinct views. For example, the path
with the earliest delivery time may require significant changes in the schedule
of the vehicles and cause large delays on the static plan. In contrast, the path
with the smallest operational cost could result in late delivery. Our algorithm
can operate under any monotonic combination of the two costs. However, in this
work, we consider operational cost as more important; customer cost is used to
solve ties.

Finding the shortest path (according to the two costs) in the conceptual graph
is not straightforward. The reason is that the weights of the edges depend on
both the operational and customer cost of the path that led to this edge. In fact,
an important contribution of this paper is that we show, contrary to other time-
dependent networks, that the conceptual graph does not exhibit the principle
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of optimality, which is necessary to apply efficient Bellman-Ford or Dijkstra-like
algorithms. Hence, one has to enumerate all possible paths. However, despite
this fact, extensive experimental results show that our method is significantly
faster than a two-phase local search algorithm adapted for dPDPT.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work and Section 3 formally introduces dPDPT. Section 4 presents our
graph-based formulation and algorithm. Then, Section 5 presents an extensive
experimental evaluation and Section 6 concludes this work.

2 Related Work

This work is related to pickup and delivery, and shortest path problems.

Pickup and Delivery Problems
In the Pickup and Delivery Problem (PDP) objects must be transported by a
fleet of vehicles from a pickup to a delivery location with the minimum cost,
under two constrains: (1) pickup occurs before delivery (precedence), and (2)
pickup and delivery of an object is performed by the same vehicle (pairing).
PDP is NP-hard since it generalizes the well-known Traveling Salesman Problem
(TSP). Exact solutions employ column generation [14,34,36], branch-and-cut
[10,32] and branch-and-cut-and-price [31] methodologies. On the other hand,
the heuristics for the approximation methods take advantage of local search
[2,23,26,33].

Other PDP variations introduce additional constraints. For instance, in the
Pickup and Delivery Problem with Time Windows (PDPTW), pickups and de-
liveries are accompanied with a time window that mandates when the action
can take place. In the Capacitated Pickup and Delivery Problem (CPDP), the
amount of objects a vehicle is permitted to carry at any time is bounded by
a given capacity. In the Pickup and Delivery Problem with Transfers (DPDT),
studied in this paper, the pairing constraint is lifted. [11] proposes a branch-
and-cut strategy for DPDT. [26] introduces the Pickup and Delivery Problem
with Time Windows and Transfers and employs a local search optimization ap-
proach. In all the above problems, the transportation requests are known in
advance, hence they are characterized as static. A formal definition of static
PDP and its variants can be found in [4,9,28].

Almost all PDP variants also have a dynamic counterpart. In this case, a
set of vehicle routes, termed the static plan, has already been established, and
additional requests arrive ad hoc, i.e., at arbitrary times. Thus, the plan must
be modified to satisfy them. A survey on dynamic PDP can be found in [3].
Typically, two-phase local search methods are applied for the dynamic problems.
The first phase applies an insertion heuristic [30], whereas the second employs
tabu search [15,24,25]. To the best of our knowledge our work is the first to
address the dynamic Pickup and Delivery Problem with Transfers (dPDPT).

Shortest Path Problems
Bellman-Ford and Dijkstra are the most well-known algorithms for finding the
shortest path between two nodes in a graph. The ALT algorithms [16,17,29]
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perform a bidirectional A* search and exploit a lower bound of the distance
between two nodes to direct the search. To compute this bound they construct
an embedding on the graph. There exist a number of materialization techniques
[1,20,21] or encoding/labeling schemes [6,7] that can be used to efficiently com-
pute the shortest path. Both the ALT algorithms and the materialization and
encoding methods are mostly suitable for graphs that are not frequently updated,
since they require expensive precomputation.

In multi-criteria shortest path problems the quality of a path is measured by
multiple metrics, and the goal is to find all paths for which no better exists.
Algorithms are categorized into three classes. The methods of the first class
(e.g., [5]) apply a user preference function to reduce the original multi-criteria
problem to a conventional shortest path problem. The second class contains the
interactive methods (e.g., [18]) that interact with a decision maker to come up
with the answer path. Finally, the third class includes label-setting and label-
correcting methods (e.g., [19,22,35]). These methods construct a label for every
path followed to reach a graph node. Then, at each iteration, they select the
path with the minimum cost, defined as the combination of the given criteria,
and expand the search extending this path.

In time-dependent shortest path problems the cost of traveling from node ni to
nj in a graph (e.g., the road network of a city) depends on the departure time t
from ni. [8] is the first attempt to solve this problem using a Bellman-Ford based
solution. However, as discussed in [13], Dijkstra can also be applied for this prob-
lem, as long as the earliest possible arrival time at a node is considered. In the
context of transportation systems, the FIFO (a.k.a. non-overtaking) property of
a road network is considered as a necessity in order to achieve an acceptable level
of complexity. According to this property delaying the departure from a graph
node ni to reach nj cannot result in arriving earlier at nj. However, even when
the FIFO property does not hold it is possible to provide an efficient solution
[12,27] by properly adjusting the weights in graph edges [12].

3 Problem Formulation

Section 3.1 provides basic definitions and introduces the dynamic Pickup and
Delivery Problem with Transfers. Section 3.2 details the actions allowed for sat-
isfying a request and their costs.

3.1 Definitions

Assume that a company has already scheduled its fleet of vehicles to service a
number of requests. We refer to this schedule as the static plan, since we assume
that it is given as input. The static plan consists of a set of vehicles following
some routes; we overload notation ra to refer to both a vehicle and its route.
The route of a vehicle ra is a sequence of distinct spatial locations, where each
location ni is associated with an arrival time Aa

i and a departure time Da
i .

Note that the requirement for distinct locations within a route is introduced to
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simplify notation and avoid ambiguity when referring to a particular location.
Besides, if a vehicle visits a location multiple times, its route can always be
represented as a set of distinct-locations routes. The difference Da

i − Aa
i is a

non-negative number; it may be zero indicating that vehicle ra just passes by ni,
or a positive number corresponding to some service at ni, e.g., pickup, delivery,
mandatory stop, etc. For two consecutive locations ni and nj on ra, the difference
Aa

j − Da
i ≥ 0 corresponds to the travel time from ni to nj .

An ad-hoc dPDPT request is a pair of locations ns and ne, signifying that a
package must be picked up at ns and be delivered at ne. In order to complete
a request, it is necessary to perform a series of modifications to the static plan.
There are five types of modifications allowed, termed actions : pickup, delivery,
transport, transfer without detours, and transfer with detours. Each action, de-
scribed in detail later, results in the package changing location and/or vehicle. A
sequence of actions is called a path. If the initial and final location of the package
in a path are ns and ne, respectively, the path is called a solution to the request.

There are two costs associated with an action. The operational cost measures
the time spent by vehicles in order to perform the action, i.e., the delay with
respect to the static plan. The customer cost represents the time when the action
is completed. Furthermore, the operational cost Op of a path p is defined as the
sum of operational costs for each action in the path, and the customer cost Cp is
equal to the customer cost of the final action in p. Therefore, for a solution p, Op

signifies the company’s cost in accommodating the request, while Cp determines
the delivery time of the package according to p.

Any monotonic combination (e.g., weighted sum, product, min, max, average
etc.) of the two costs could be a meaningful measure for assessing the quality
of a solution. In the remainder of this paper, we assume that the operational
cost is more important, and that the customer cost is of secondary importance.
Therefore, a path p is preferred over q, if Op < Oq, or Op = Oq ∧ Cp < Cq.
Equivalently, we may define the combined cost of a path p as:

cost(p) = M · Op + Cp , (1)

where M is a sufficiently large number (greater than the largest possible customer
cost divided by the smaller possible operational cost) whose sole purpose is to
assign greater importance to the operational cost. Based on this definition, the
optimal solution is the one that has the lowest combined cost, i.e., the minimum
customer cost among those that have the least operational cost. The dynamic
Pickup and Delivery with Transfers (dPDPT) problem is to find the optimal
solution path.

3.2 Actions

It is important to note that, throughout this paper, we follow the convention
that an action is completed by vehicle ra at a location ni just before ra departs
from ni. Since ra can have multiple tasks to perform at ni according to the static
plan, this convention intuitively means that we make no assumptions about the
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order in which a vehicle performs its tasks. In any case, the action will have
concluded by the time ra is ready to depart from ni.

Consider a path p with operational and customer costs Op and Cp, respec-
tively. Further, assume that the last action in p results in the package being
onboard vehicle ra at location ni. Let p′ denote the path resulting upon per-
forming an additional action E on p. In the following, we detail each possible
action E, and the costs of the resulting path p′, denoted as Op′ , Cp′ , which may
depend on the current path costs Op, Cp.

Pickup
The pickup action involves a single vehicle, ra, and appears once as the first
action in a solution path. Hence, initially the package is at the pickup location
ns of the request, p is empty, and Op = Cp = 0.

We distinguish two cases for this action. First, assume that ns is included in
the vehicle’s route, and let Aa

s , Da
s denote the arrival and departure times of ra

at ns according to the static plan. In this case, the pickup action is denoted as
Ea

s . No modification in ra’s route is necessary, and thus there is zero additional
operational cost for executing Ea

s . The customer cost for the resulting path p′

becomes equal to the scheduled (according to the static plan) departure time
Da

s from ns; without loss of generality, we make the assumption that the request
arrives at time 0. Therefore,

Op′= 0
Cp′= Da

s

}
for p′ = Ea

s . (2a)

In the second case, the pickup location ns is not in the ra route. Let ni be
a location in the ra route that is sufficiently close to ns; then, ra must take a
detour from ni to ns. A location is sufficiently close to ns if the detour is short,
i.e., its duration, denoted as T a

si, is below some threshold (a system parameter).
Hence, it is possible that a sufficiently close location does not exists for route ra;
clearly, if no such location exists for any route, then the request is unsatisfiable.
When such a ni exists, the pickup action is denoted as Ea

si. Figure 1(a) shows a
pickup action with detour. The solid line in the figure denotes the vehicle route
ra and the dashed line denotes the detour performed by ra from ni to ns to
pickup the package. The operational cost of a pickup action with detour is equal
to the delay T a

si due to the detour. The customer cost of p′ is the scheduled
departure time from ni incremented by the delay. Therefore,

Op′= T a
si

Cp′= Da
i + T a

si

}
for p′ = Ea

si. (2b)

Delivery
The delivery action involves a single vehicle, ra, and appears once as the last
action in a solution path. Similar to pickup, two cases exist for this action. In the
first case, ne appears in the route ra, and delivery is denoted as Ea

e . The costs
for path p′ are shown in Equation 3a. In the second case, a detour of length T a

ie

at location ni is required, and delivery is denoted as Ea
ie. Figure 1(b) presents
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Fig. 1. Actions allowed for satisfying a dPDPT request

an Ea
ie delivery action with detour. The costs for p′ are shown in Equation 3b,

where we make the assumption that it takes T a
ie/2 time to travel from ni to ne.

Op′= Op

Cp′= Cp

}
for p′ = pEa

e . (3a)

Op′= Op + T a
ie

Cp′= Cp + T a
ie/2

}
for p′ = pEa

ie. (3b)

Transport
The transport action involves a single vehicle, ra, and corresponds to the car-
rying of the package by a vehicle between two successive locations on its route.
Figure 1(c) illustrates such a transportation action from location ni to nj on-
board vehicle ra. As assumed, path p results in the package being onboard ra

at location ni. The transport action, denoted as Ea
ij , has zero operational cost,

as the vehicle is scheduled to move from ni to nj anyway. The customer cost is
incremented by the time required by vehicle ra to travel from ni to nj and finish
its tasks at nj . Therefore,

Op′= Op

Cp′= Cp + Da
j − Da

i

}
for p′ = pEa

ij . (4)

Transfer without detours
The transfer without detours action, denoted as Eab

i , involves two vehicles, ra

and rb, and corresponds to the transfer of the package from ra to rb at a common
location ni, e.g., a depot, drop-off/pickup point, etc. For example, Figure 1(d)
shows such a transfer action via the common location ni. Let Ai

b, Di
b be the

arrival and departure times of vehicle rb at location ni. We distinguish three
cases.

In the first, the last action in path p concludes after vehicle rb arrives and
before it departs from ni, i.e., Ab

i ≤ Cp ≤ Db
i . Since there is no delay in the
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schedule of vehicles, the action’s operational cost is zero, while the customer
cost of the resulting path p′ becomes equal to the scheduled departure time of
rb from ni. Therefore,

Op′= Op

Cp′= Db
i

}
for p′ = pEab

i , if Ab
i ≤ Cp ≤ Db

i . (5a)

In the second case, the last action in path p concludes before vehicle rb arrives
at ni, i.e., Cp < Ab

i . For the transfer to proceed, vehicle ra must wait at ni until
rb arrives. The operational cost is incremented by the delay, which is equal to
Ab

i − Cp. On the other hand, the customer cost becomes equal to the scheduled
departure time of rb from ni. Therefore,

Op′= Op+Ab
i−Cp

Cp′= Db
i

}
for p′ = pEab

i , if Cp < Ab
i . (5b)

In the third case, the last action in p concludes after vehicle rb is scheduled
to depart from ni, i.e., Cp > Db

i . This implies that rb must wait at ni until the
package is ready for transfer. The delay is equal to Cp−Db

i , which contributes to
the operational cost. The customer cost becomes equal to the delayed departure
of rb from ni, which coincides with Cp. Therefore,

Op′= Op+Cp−Db
i

Cp′= Cp

}
for p′ = pEab

i , if Cp > Db
i . (5c)

Transfer with detours
Consider distinct locations ni on ra and nj on rb. Assume that short detours from
ni and nj are possible, i.e., the detour durations are below some threshold, and
that they have a common rendezvous point. The transfer with detours action,
denoted as Eab

ij , involves the two vehicles, ra and rb, and corresponds to the
transportation of the package on vehicle ra via the ni detour to the rendezvous
location, its transfer to vehicle rb, which has taken the nj detour, and finally its
transportation to nj . Figure 1(e) illustrates a transfer action between vehicles ra

and rb via a detour to their common rendezvous point nc. Notice the difference
with Figure 1(d) where the transfer action occurs without a detour. To keep the
notation simple, we make the following assumptions: (1) the ni detour travel
time of ra is equal to that of the nj detour of rb, denoted as T ab

ij ; and (2) it takes
T ab

ij /2 time for both ra and rb to reach the rendezvous location.
Similar to transferring without detours, we distinguish three cases. In the

first, the package is available for transfer at the rendezvous location, at time
Cp + T ab

ij /2, after the earliest possible and before the latest possible arrival of
rb, i.e., Ab

j + T ab
ij /2 ≤ Cp + T ab

ij /2 ≤ Db
j + T ab

ij /2. Both vehicles incur a delay in
their schedule by T ab

ij . Therefore,

Op′= Op+2·T ab
ij

Cp′= Db
j +T ab

ij

}
for p′ = pEab

ij , if Ab
j ≤ Cp ≤ Db

j . (6a)
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In the second case, the package is available for transfer before the earliest
possible arrival of rb at the rendezvous location, i.e., Cp + T ab

ij /2 < Ab
j + T ab

ij /2.
Vehicle ra must wait for Ab

j − Cp time. Therefore,

Op′= Op+Ab
j−Cp+2·T ab

ij

Cp′= Db
j +T ab

ij

}
for p′ = pEab

ij , if Cp < Ab
j . (6b)

Finally, in the third case, the package is available for transfer after the latest
possible arrival of rb at the rendezvous location, i.e., Cp + T ab

ij /2 > Db
j + T ab

ij /2.
Vehicle rb must wait for Cp − Db

j time. Therefore,

Op′= Op+Cp−Db
j+2·T ab

ij

Cp′= Cp+T ab
ij

}
for p′ = pEab

ij , if Cp > Db
j . (6c)

4 Solving Dynamic Pickup and Delivery with Transfers

Section 4.1 models dynamic Pickup and Delivery with Transfers as a dynamic
shortest path graph problem. Section 4.2 introduces the SP algorithm that iden-
tifies the solution to a dPDPT request.

4.1 The Dynamic Plan Graph

We construct a weighted directed graph, termed dynamic plan graph, in a way
that a sequence of actions corresponds to a simple path on this graph. A vertex
of the graph corresponds to a spatial location. In particular, a vertex V a

i rep-
resents the spatial location ni of route ra. Additionally, there exist two special
vertices, Vs and Ve, which represent the request’s pickup and delivery, respec-
tively, locations. Therefore, five types of edges exist:

(1) A pickup edge Ea
si connects Vs to V a

i , and represents a pickup action by
vehicle ra with a detour at ni. Edge Ea

ss from Vs to V a
s (two distinct

vertices that correspond to the same spatial location ns) represents the
case of pickup with no detour.

(2) A delivery edge Ea
ie connects V a

i to Ve, and represents a delivery action
by vehicle ra with a detour at ni. Edge Ea

ee from Ve to V a
e represents the

case of pickup with no detour.
(3) A transport edge Ea

ij connects V a
i to V a

j , and represents a transport action
by ra from ni to its following location nj on the route.

(4) A transfer without detours edge Eab
i connects V a

i to V b
i , and represents

a transfer from ra to rb at common location ni.
(5) A transfer with detours edge Eab

ij connects V a
i to V b

j , and represents a
transfer from ra to rb at a rendezvous location via detours at ni and nj .

Based on the above definitions, a simple path on the graph is a sequence of
distinct vertices that translates into a sequence of actions. Further, a solution
for the request is a path that starts from Vs and ends in Ve.
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Table 1. Edge weights

Pickup Delivery Transport

w(Ea
si) = 〈T a

si, D
a
i +T a

si〉 (7) w(Ea
ie) = 〈T a

ie, T
a
ie/2〉 (8) w(Ea

ij) = 〈0, Da
j −Da

i 〉 (9)

Transfer

w(Eab
ij ) =

⎧⎨⎩
〈2·T ab

ij , Db
j−Cp+T ab

ij 〉, if Ab
j ≤ Cp ≤ Db

j

〈Ab
j−Cp+2·T ab

ij , Db
j−Cp+T ab

ij 〉, if Cp < Ab
j

〈Cp−Db
j +2·T ab

ij , T ab
ij 〉, if Cp > Db

j .

(10)

The final issue that remains is to define the weights W of the edges. We assign
edge E a pair of weights w(E) = 〈wO(E), wC(E)〉, so that wO(E) (resp. wC(E))
corresponds to the operational (resp. customer) cost of performing the action
associated with the edge E. Recall from Section 3.2 that the costs of the last
action in a sequence of actions depends on the total costs incurred by all previous
actions. Consequently, the weights of an edge E from V to V ′ are dynamic, since
they depend on the costs of the path p that lead to V . Assuming Op and Cp

are the costs of p, and Op′ and Cp′ those of path p′ = pE upon executing E, we
have that w(E) = 〈Op′−Op, Cp′−Cp〉. Table 1 summarizes the formulas for the
weights of all edge types; note that the weights for actions with no detours are
obtained by setting the corresponding T value to zero. In the formulas, Ab

j , Da
i ,

Da
j and Db

j have fixed values determined by the static plan. On the other hand,
Cp depends on the path p that leads to V a

i .
Clearly, a path from Vs to Ve that has the lowest combined cost according to

Equation 1 is an optimal solution.

Proposition 1. Let R be a collection of vehicles routes and (ns, ne) be a dPDPT
request over R. The solution to the request is the shortest path from vertex Vs to
Ve on the dynamic plan graph GR with respect to cost() of Equation 1.

Example 1. Figure 2(a) pictures a collection of vehicle routes R = {ra(n1, n3),
rb(n2, n6), rc(n4, n8, n9)}, and the pickup ns and the delivery location ne of a
dPDPT request. Locations n1 on route ra and n2 on rb are sufficiently close to
location ns and thus, pickup actions Ea

s1 and Eb
s2 are possible. Similar, the Ec

9e

delivery action is possible at location n9 on route rc. Finally, we also identify
two transfer actions, Eac

34 and Ebc
68, as locations n3, n4 and n6, n8 have common

rendezvous points n5 and n7, respectively.
To satisfy the dPDPT request (ns, ne) we define the dynamic plan graph

GR in Figure 2(b) containing vertices Vs, V
a
1 , V b

2 , . . . , Ve. Notice that the graph
does not include any vertices for the rendezvous points n5 and n7. Dynamic
plan graph GR contains two paths from Vs to Ve which means that there two
different ways to satisfy the dPDPT request: p1(Vs, V

a
1 , V a

3 , V c
4 , V c

8 , V c
9 , Ve) and
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ra
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n9
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b
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b
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cV c V9
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(b) Dynamic plan graph GR

Fig. 2. A collection of vehicles routes R, a dPDPT request (ns, ne) over R, and the
dynamic plan graph GR. The solid lines denote the vehicle routes/transport edges while
the dashed lines denote the pickup, delivery and transfer with detour actions/edges.

p2(Vs, V
b
2 , V b

6 , V c
8 , V c

9 , Ve). Next, assume, for simplicity, that the detour cost is
equal to T for all possible actions. Further, consider paths p′1(Vs, V

a
1 , V a

3 ) and
p′2(Vs, V

b
2 , V b

6 ), i.e., just before the transfer of the package takes place, and as-
sume that Ac

4 < Cp′
1

< Dc
4 and Cp′

2
> Dc

8 hold. Note, that the operational
cost of the two paths is exactly the same, i.e., Op′

1
= Op′

2
= T , coming from

the pickup of the package at ns. Now, according to Equation 10 and after the
transfers Eac

34 and Ebc
68 take place, we get path p′′1 = p′1E

bc
68 and p′′2 = p′2E

bc
68

with Op′′
1

= 3 ·T < Op′′
2

= 3 ·T +Cp′
2
−Dc

8, and therefore, cost(p′′1) < cost(p′′2).
Finally, since no other transfer incurs in order to delivery the package, this holds
also for paths p1 and p2, i.e., cost(p1) < cost(p2), and thus, the solution to the
dPDPT request (ns, ne) is path p1(Vs, V

a
1 , V a

3 , V c
4 , V c

8 , V c
9 , Ve) with Op1 = 4 · T

and Cp1 = Dc
9 + 3·T

2 .

4.2 The SP Algorithm

According to Proposition 1, the next step is to devise an algorithm that com-
putes the two-criterion shortest path w.r.t. cost() on the dynamic plan graph.
Unfortunately, the dynamic weights of the edges in the graph violate the sub-
path optimality; that is, the lowest combined cost path from Vs to Ve that passes
through some vertex V may not contain the lowest combined cost path from Vs

to V . The following theorem supports this claim.

Theorem 1. The dynamic plan graph does not have subpath optimality for any
monotonic combination of the operational and customer costs.

Proof. Let p, q be two paths from Vs to V a
i , with costs Op, Cp and Oq, Cq, respec-

tively, such that Op < Oq and Cp < Cq, which implies that for any monotonic
combination of the operational and customer costs, p has lower combined cost
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than q. Let p′ and q′ be the paths resulting after traversing a transfer without
detours edge Eab

i .
Assume that Cp < Cq < Ab

i , so that the second case of Equation 10 applies
for the weight w(Eab

i ) (setting T ab
ij = 0). Then, Op′ = Op + Ab

i − Cp, Oq′ =
Oq + Ab

i − Cq, and Cp′ = Cq′ = Db
i . Assuming that Op − Cp > Oq − Cq, we

obtain that Oq′ < Op′ . Therefore, for any monotonic combination that considers
both costs, q′’s combined cost is lower that that of p′’s. 	


As a result, efficient algorithms based on the subpath optimality, e.g., Dijkstra
and Bellman-Ford cannot be employed to compute the shortest path on the
dynamic plan graph. In contrast, an exhaustive enumeration of all paths from
Vs to Ve is necessary, and for this purpose, we introduce a label-setting algorithm
called SP. Note that, in the sequel, we only discuss the case when actions occur
with detours as it is more general.

The SP algorithm has the following key features. First, similar to all algo-
rithms for multi-criteria shortest path, it may visit a vertex V a

i more than once
following multiple paths from the initial vertex Vs. For each of these paths p, the
algorithm defines a label in the form of 〈V a

i , p, Op, Cp〉, where Op is the opera-
tional and Cp the customer cost of path p as introduced in Section 4.1. Second,
at each iteration, SP selects the label 〈V a

i , p, Op, Cp〉 of the most “promising”
path p, in other words, the path with the lowest cost(p), and expands the search
considering the outgoing edges from V a

i on the dynamic plan graph GR. If vertex
V a

i has an outgoing delivery edge Ea
ie, SP identifies a path from initial vertex Vs

to final Ve called candidate solution. The candidate solution is an upper bound
to the final solution and it is progressively improved until it becomes equal to
the final. The role of a candidate solution is twofold; it triggers the termination
condition and prunes the search space. Finally, the algorithm terminates the
search when cost(p) of the most “promising” path p is equal to or higher than
cost(pcand) of the current candidate solution pcand which means that neither p
or any other path at future iterations can be better than current pcand.

Figure 3 illustrates the pseudocode of the SP algorithm. SP takes as inputs:
a dPDPT request (ns, ne) and the dynamic plan graph GR of a collection of
vehicle routes R. It returns the shortest path from Vs to Ve on GR with respect
to cost(). The algorithm uses the following data structures: (1) a priority queue
Q, (2) a path pcand, and (3) a list T . The priority queue Q is used to perform
the search by storing every label 〈V a

i , p, Op, Cp〉 to be checked, sorted by cost(p)
in ascending order. The target list T contains entries of the form 〈V a

i , 0, T a
ie〉,

where V a
i is a vertex of the dynamic plan graph involved in a delivery edge Ea

ie,
List T is used to construct or improve the candidate solution pcand.

The execution of the SP algorithm involves two phases: the initialization and
the core phase. In the initialization phase (Lines 1–4), SP first creates the pickup
Ea

si and delivery edges Ea
ie on the dynamic plan graph GR. For this purpose it

identifies each location ni on every vehicle route ra that is sufficiently close
to pickup location ns (resp. delivery ne), i.e., the duration T a

si (resp. T a
ie) of

the detour from ns to ni (resp. ni to ne) is below some threshold (a system
parameter). Then, the algorithm initializes the priority queue Q adding every
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Algorithm SP
Input: dPDPT request (ns, ne), dynamic plan graph GR

Output: shortest path from Vs to Ve w.r.t. cost()
Parameters:

priority queue Q: the search queue sorted by cost() in ascending order
path pcand: the candidate solution to the dPDPT request
list T : the target list

Method:

1. construct pickup edges Ea
si;

2. construct delivery edges Ea
ie;

3. for each pickup edge Ea
si(Vs, V a

i ) do

push label 〈V a
i , Ea

si, T a
si, Da

i +T a
si〉 in Q;

4. for each delivery edge Ea
ie(V a

i , Ve) do

insert 〈V a
i , T a

ie, T a
ie/2〉 in T ;

5. while Q is not empty do

6. pop label 〈V a
i , p, Op, Cp〉 from Q;

7. if cost(p) ≥ cost(pcand) then return pcand;

8. ImproveCandidateSolution(pcand,T , 〈V a
i , p, Op, Cp〉);

9. for each outgoing transport Ea
ij or transfer edge Eab

ij on GR do

10. extend path p and create p′;
11. compute Op′ and Cp′ ;
12. if cost(p′) < cost(pcand) then

ignore path p′;
13. else

14. push label 〈V ′, p′, Op′ , Cp′〉 in Q where V ′ is the last vertex in p′;
15. end if

16. end for

17. end while

18. return pcand if exists, otherwise null;

Fig. 3. The SP algorithm

vertex V a
i involved in a pickup edge Ea

si on GR and constructs the target list T .
In the core phase (Lines 5–17), the algorithm performs the search. It proceeds
iteratively popping, first, the label 〈V a

i , p, Op, Cp〉 from Q on Line 6. Path p has
the lowest cost(p) value compared to all others paths in Q. Next, SP checks the
termination condition (Line 7). If the check succeeds, i.e., cost(p) ≥ cost(pcand),
then current candidate pcand is returned as the final solution.

If the termination condition fails, the algorithm first tries to improve candidate
solution pcand calling the ImproveCandidateSolution(pcand, T , 〈V a

i , p, Op, Cp〉)
function on Line 8. The function checks if the target list T contains an entry
〈V a

i , T a
ie, T

a
ie/2〉 for the vertex V a

i of the current label and constructs the path
pEa

ie from Vs to Ve. If cost(pEa
ie) < cost(pcand) then a new improved candidate

solution is identified and thus, pcand = pEa
ie. Finally, SP expands the search con-

sidering all outgoing transport and transfer edges from V a
i on GR (Lines 9–17).

Specifically, the path p of the current label is extended to p′ = pEa
ij (transport

edge) or to p′ = pEab
ij (transfer edge), and the operational Op′ and the customer

cost Cp′ of the new path p′ are computed according to Equations 9 and 10. Then,
on Line 12, the algorithm determines whether p′ is a “promising” path and thus,
it must be extended at a future iteration, or it must be discarded. The algorithm
discards path p′ if cost(p′) ≥ cost(pcand) which means that p′ cannot produce a
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better solution than current pcand. Otherwise, p′ is a “promising” path, and SP
inserts label 〈V ′, p′, Op′ , Cp′〉 in Q where V ′ is the last vertex in path p′.

Example 2. We illustrate the SP algorithm using Figure 2. To carry out the
search we make the following assumptions, similar to Example 1. The detour
cost is equal to T for all edges. For the paths p′1(Vs, V

a
1 , V a

3 ) and p′2(Vs, V
b
2 , V b

6 ),
i.e., just before the transfer of the package takes place, Ac

4 < Cp′
1

< Dc
4 and

Cp′
2

> Dc
8 hold. Finally, we also assume that Da

1 < Da
3 < Db

2 < Db
6.

First, SP initializes the priority queue Q = {〈V a
1 , (Vs, V

a
1 ), T, Da

1 +T 〉, 〈V b
2 ,

(Vs, V
b
2 ), T, Db

2+T 〉} and constructs the target list T = {〈V c
9 , T, T/2〉}. Note that

the leftmost label in Q always contains the path with the lowest cost() value. At
the first iteration, the algorithm pops label 〈V a

1 , (Vs, V
a
1 ), T, Da

1 +T 〉, considers
transport edge Ea

13, and pushes 〈V a
3 , p′1(Vs, V

a
1 , V a

3 ), T, Da
3+T 〉 to Q. Next, at the

second iteration, SP pops label 〈V a
3 , p′1(Vs, V

a
1 , V a

3 ), T, Da
3+T 〉 from Q, considers

the transfer edge Eac
34 , and pushes 〈V c

4 , p′′1(Vs, V
a
1 , V a

3 , V c
4 ), 3 · T, Dc

4 + T 〉 to Q
(remember Ac

4 < Cp′
1

< Dc
4). The next two iterations are similar, and thus, after

the fourth iteration we have:

Q = {〈V c
4 , p′′1(Vs, V

a
1 , V a

3 , V c
4 ), 3 · T, Dc

4 + T 〉, and pcand = null
〈V c

8 , p′′2(Vs, V
b
2 , V b

6 , V c
8 ), 3 · T + Cp′

2
−Dc

8, Cp′
2
+ T 〉}

Now, at the next two iterations, SP expands path p′′1 considering transport edges
Ec

48 and Ec
89 as Op′′

1
< Op′′

2
. Therefore, at the seventh iteration, the algorithm

pops label 〈V c
9 , (Vs, V

a
1 , V a

3 , V c
4 , V c

8 , V c
9 ), 3 · T, Dc

9 + T 〉 from Q. Since the target
list T contains an entry for vertex V c

9 , SP identifies candidate solution pcand =
p1(Vs, V

a
1 , V a

3 , V c
4 , V c

8 , V c
9 , Ve) with Op1 = 4 · T and Cp1 = Dc

9 + 3·T
2 . Finally,

assuming without loss of generality that Db
6 > Dc

8 also holds and therefore,
Cp′

2
−Dc

8 = Db
6 + T − Dc

8 > T , at the eighth iteration, the algorithm pops
〈V c

8 , p′′2(Vs, V
b
2 , V b

6 , V c
8 ), 3 · T + Cp′

2
−Dc

8, Cp′
2

+ T 〉 and terminates the search
because Op′′

2
= 3 · T + Cp′

2
−Dc

8 > 4 · T = Op1 and thus, cost(p′′2) > cost(p1).
The solution to the dPDPT request (ns, ne) is p1(Vs, V

a
1 , V a

3 , V c
4 , V c

8 , V c
9 , Ve).

5 Experimental Evaluation

In this section, we present an experimental study of our methodology for solving
dynamic Pickup and Delivery Problem with Transfers (dPDPT). We compare
SP against HT, a method inspired by [15,25] that combines an insertion heuristic
with tabu search. All methods are written in C++ and compiled with gcc. The
evaluation is carried out on a 3Ghz Core 2 Duo CPU with 4GB RAM running
Debian Linux.

5.1 The HT Method

Satisfying dPDPT requests with HT involves two phases. In the first phase, for
every new dPDPT request, the method employs the cheapest insertion heuristic
to include the pickup ns and the delivery location ne in a vehicle route. The
idea is the following. HT examines every vehicle route ra and for each pair of
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consecutive locations ni and ni+1 in ra (forming an insertion “slot”), it computes
the detour cost DS = dist(ni, ns)+dist(ns, ni+1)−dist(ni, ni+1) for inserting
pickup ns (resp. delivery ne) in between ni and ni+1. The detour cost DS sig-
nifies the extra time vehicle ra must spend and therefore, it increases the total
operational cost. Then, HT selects the best overall insertion, i.e., the route ra

and the “slots”, such that the combined detour cost for inserting both pickup
ns and delivery location ne is minimized.

The second phase of HT takes place periodically after k requests are satisfied
with the cheapest insertion. It involves a tabu search procedure that reduces the
total operating cost. At each iteration, the tabu search considers every satisfied
request and calculates what would be the change (increase or decrease) in the
total operational cost removing the request from its current vehicle route ra and
inserting it to another rb. Then, the tabu search selects the request with the
best combination of removal and insertion, and performs these actions. Finally,
the selected combination is characterized as tabu and cannot be executed for a
number of future iterations.

5.2 Experiments

To conduct our experiments, we consider the road networks of two cities; Old-
ernburg (OL) with 6,105 spatial locations (Figure 4), and Athens (ATH) with
22,601 locations (Figure 5). First, we generate random pickup and delivery re-
quests at each network and exploit the HT method to construct collections of
vehicle routes varying either the number of routes |R|, from 100 to 1000, or the
number of requests |Reqs| involved, from 200 to 2000. Then, for each of these
route collections, we generate 500 random dPDPT requests and employ the SP
and the HT method to satisfy them. For HT, we introduce three variations HT1,
HT3 and HT5 such that the tabu search is invoked once (after 500 requests are
satisfied), three times (after 170) and five times (after 100), respectively. In ad-
dition, each time the tabu search is invoked, it performs 10 iterations. For each
method, we measure (1) the increase in the total operational cost of the vehicles
after all 500 requests are satisfied (sub-figures (a) and (c)) and (2) the total
time needed to satisfy the requests. Finally, note that we store both the road
network and the vehicle routes on disk and that, we consider a main-memory
cache mechanism capable of retaining 10% of the total space occupied on disk.

Examining Figures 4 and 5 we make the following observations. The SP
method requires significantly less time to satisfy the 500 ad-hoc dPDPT re-
quests, for all the values of the |Reqs| and |R| parameters, and for both the
underlying road networks. In fact, when varying |R|, SP is always one order of
magnitude faster than all three HT variants. In contrast, SP results in slightly
increased total operational cost compared to HT, in most of the cases, and espe-
cially for large road networks as ATH. However, this advantage of HT comes with
a unavoidable trade-off between the increase of the total operational cost and
the time needed to satisfy the ad-hoc dPDPT requests. The more often HT em-
ploys the tabu search, the lower the increase of the total operational cost of the
vehicles is. But, on the other hand, since each iteration of the tabu search needs
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Fig. 4. City of Oldenburg (OL) Road Network
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Fig. 5. City of Athens (ATH) Road Network

to examine every route and identify the best reassignment for all the existing
requests, the total time of HT5 is higher than the time of HT3 and HT1.

Finally, we notice that as the number of pickup and delivery requests |Reqs|
involved in the initial static plan increases, satisfying the 500 ad-hoc dPDPT
requests, either with HT or SP, results in a lower increase of the total operational
cost but the total time needed to satisfy these requests increases. Notice that this
is true regardless of the size of the underlying road network. As |Reqs| increases
and while |R| remains fixed, the vehicle routes contain more spatial locations.
This provides more insertion “slots” and enables both HT and SP to include the
pickup and the delivery location of a dPDPT request with a lower cost. On the
other hand, HT slows down since it has to examine the reassignment of more
requests during the tabu search, and SP needs more time because the dynamic
plan graph is larger. Similar observations can be made in case of varying the
number of routes |R|.

6 Conclusions

This work studies the dynamic Pickup and Delivery Problem with Transfers
(dPDPT). This is the first work addressing the dynamic flavor of the problem.
We propose a methodology that formulates dPDPT as a graph problem and
identifies the solution to a request as the shortest path from a node representing
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the pickup location to that of the delivery location. Our experimental analysis
shows that our method is able to find dPDPT solutions significantly faster than
a conventional two-phase local search algorithm, while the quality of the solution
is only marginally lower.
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Abstract. Networks can be represented as evolutionary graphs in a variety of
spatio-temporal applications. Changes in the nodes and edges over time may also
result in corresponding changes in structural garph properties such as shortest
path distances. In this paper, we study the problem of detecting the top-k most
significant shortest-path distance changes between two snapshots of an evolving
graph. While the problem is solvable with two applications of the all-pairs short-
est path algorithm, such a solution would be extremely slow and impractical for
very large graphs. This is because when a graph may contain millions of nodes,
even the storage of distances between all node pairs can become inefficient in
practice. Therefore, it is desirable to design algorithms which can directly deter-
mine the significant changes in shortest path distances, without materializing the
distances in individual snapshots. We present algorithms that are up to two orders
of magnitude faster than such a solution, while retaining comparable accuracy.

1 Introduction

The problem of network evolution [1,7,12,17] has seen increasing interest in recent
years of the dynamic nature of many web-based, social and information networks which
continuously change over time. The evolution of such networks may also result in
changes in important structural properties such as pairwise shortest-path distances. In
this paper, we will study the problem of finding the top k shortest path distance changes
in an evolutionary network. This problem may be interesting in the context of a number
of practical scenarios:

– Social and information networks are inherently dynamic, and the change in short-
est paths between nodes is critical in understanding the changes in connections
between different entities. It can also be helpful for tasks such as dynamic link
prediction modeling with the use of shortest-path recommendation models or in
providing insights about new events in the social graph. For example, the dis-
tance between tags in an inter-tag correlation graph may change because of tag-
ging events, or the distance between actors in IMDB1 may change because of the
introduction of new movies. Similarly, change in distances on word co-occurrence
graphs for micro-blogs (such as Twitter2 tweets) can result in better detection and
summarization of events.

� Work was partially done during employment at IBM T.J. Watson Research Center.
1 http://www.imdb.com/
2 http://twitter.com

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 130–148, 2011.
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– Many developing countries have witnessed a rapid expansion in their road net-
works. An example would be the well-known Golden Quadrilateral (GQ)3 project
in India. The detection of important distance changes may provide further insights
about connectivity implications. For example, given multiple plans to set up a road
network, one can measure the utility of a proposed plan in a particular marketing
scenario.

– The launch of collaborative programs changes the structure of virtual collaboration
networks. The underlying changes provide an understanding of critical connections
between collaborative entities (e.g., authors in DBLP) and their evolution.

The detection of interesting hot-spots for which average distance to other parts of the
network has changed suddenly is an interesting problem. This is closely related to the
problem of finding the top-k maximum distance change node pairs. We will present a
number of algorithms for this problem in this paper. We compare our algorithms on a
number of real data sets.

We note that the problem of shortest path change can be solved directly by running
well known all-pair shortest path algorithms and simply comparing the distance changes
between all pairs. However, this is not a practical solution for very large graphs. For
example, for a graph containing 108 nodes, the number of possible node pairs would
be 1016. The complexity of the all-pairs shortest path computation increases at least
quadratically [2] with the number of nodes. Furthermore, the storage of such pairwise
paths can be impractical. While this has not been a problem with the small memory-
resident graphs which are frequently used with conventional algorithms, it is much more
challenging for the large-scale networks which arise in social and information network
scenarios. In fact, in our experiments, we found it virtually impossible to use such brute-
force algorithms in any meaningful way. Therefore, the goal of the paper is to enable
practical use of such algorithms in large-scale applications.

The remainder of this paper is organized as follows. In Section 2, we provide an
overview of the related work. We introduce our basic algorithm, the Incidence Algo-
rithm and a randomized algorithm to estimate importance of an edge in a graph in
Section 3. In Section 4, we discuss various algorithms for ranking of nodes which can
potentially be a part of the top-k node pairs. We present our experiments on large graphs
in Section 5 and finally conclude with a summary of the work in Section 6.

2 Related Work

The problem of finding the top-k node pairs with maximum shortest path distance
change can be solved by a straightforward applications of two instances of the all-pairs
shortest path (APSP) problem. Clearly, the running time is sensitive to the method used
for APSP computation. Consider a graph containing n nodes and m edges. One can use
a variety of methods such as Shimbel’s algorithm [20], Dijkstra’s algorithm [11], John-
son’s algorithm [15], or the Floyd and Warshall [14,21] algorithms, all which require at
least O(n ·m) time. Such running times are not very practical for very large graphs con-
taining millions of nodes. A randomized algorithm by Cohen [10] allows us to compute
the number of nodes at a distance d from each of the nodes in the graph. While such an
approach can be used to approximately determine a superset of the relevant node pairs,
a part of the method requires O(mlog(n) + nlog2(n)) time. This is quite inefficient.

3 http://en.wikipedia.org/wiki/Golden Quadrilateral
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Our problem is also related to that of finding time-dependent shortest paths [25,26]
in a dynamic graph. A number of algorithms in computer networks [22,8] also solve
the problem of recomputing shortest path trees when edges are added to or removed
from the graph. Some related work [6,3,19,4] for this problem proposes methods for
exact computation of dynamic shortest paths in a variety of graph settings and in par-
allel or distributed scenarios. Our problem is however that of finding the maximum
shortest path change between pairs of nodes, rather than that of designing incremental
algorithms for maintaining shortest paths.

The problem of shortest path distance change is also related to that of outlier detec-
tion, since unusually large changes in distances can be considered abnormal behavior.
Some work has also been done on node outlier detection in static weighted networks [5].
Anomalies which are caused by dynamic behavior such as label modifications, ver-
tex/edge insertions and vertex/edge deletions have been studied in [13]. In [18], the au-
thors detect anomalies such as missing connected subgraphs, missing random vertices
and random topological changes over web crawl snapshots by measuring the amount
and the significance of changes in consecutive web graphs.

As we will see later, we need to design methods for measuring the betweenness of
edges in order to determine key changes in the network. A number of betweenness mea-
sures have been proposed in [23,24], though the methods for computing such measures
are too slow to be of practical use in very large scale applications.

3 Shortest Path Evolution: Model and Algorithms

Before discussing the problem further, we will introduce some formal notations and
definitions. Consider an undirected connected graph G with snapshots G1(V1, E1) at
time t1 and G2(V2, E2) at time t2. For the purpose of this paper, we only consider the
case where new nodes and edges are added to the graph, and they do not get removed.
This is quite often the case in many natural information networks such as IMDB movie
network or DBLP co-authorship network in which objects are constantly added over
time. Each edge e can be expressed as a three-tuple (u, v, w) where u and v are the
nodes on which the edge is incident and w is the weight of the edge. The edge weights
denote the distance between two nodes and can only decrease over time. Let d1(u, v)
and d2(u, v) denote the shortest path distances between nodes u and v in snapshots G1

and G2. Let the distance change between nodes u and v be denoted by Δd(u, v). We
aim to find these top-k node pairs (u, v) with the largest Δd(u, v), so that there exists
no pair (u′, v′) where u �= u′ and/or v �= v′, s.t. Δd(u′, v′) > Δd(u, v).4

One of the keys to determining the node pairs with the most change is to determine
the critical edges which lie on the shortest paths between many pairs of nodes. Clearly
the addition of such edges can lead to tremendous changes in the shortest path distances.
Therefore, we define the concept of edge importance as the probability that an edge will
belong to some shortest path tree. In this section, we first propose a randomized algo-
rithm for edge importance estimation. Then, we will leverage this notion to propose the

4 Suppose that Δ(u, v) is large, as a result of addition of a new set S of edges. It may superfi-
cially seem that pairs of the form (node near u, node near v) would also have huge distance
changes (since they are related in a somewhat similar way to S) and may swamp the top-k.
However, when we consider the effect of multiple new edges in a dense real graph, the swamp-
ing effect is not quite as explicit. This suggests that subtle structural effects play an important
role in defining the solutions of the underlying problem.
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Incidence Algorithm. This is followed by a method to improve its accuracy. Finally, we
propose node ranking algorithms to improve the efficiency of the Incidence Algorithm.

3.1 Edge Importance Estimation Algorithm

We first define some concepts which relate to edge-importance.

Definition 1 (Importance number of an edge). The Importance Number of an edge
e ∈ E in a graph G(V, E) is the probability that the edge will lie on a randomly chosen
shortest path tree in the graph.

Let us denote the shortest path tree rooted at any node x as the source node by SPTx.
The Edge importance I(e) for an edge e can be accurately estimated by using the edge
importance measured over a random sample of shortest path trees for the same graph.
We will present detailed results in Section 5 which show that a random sampling ap-
proach works quite well. For estimating the edge importance numbers, we first choose
a set of α nodes randomly into a set S and initialize the importance numbers for all
edges to 0. For each of the nodes x in set S, we run the well known Dijkstra algorithm
over the graph G by using x as the source node.

Algorithm 1. Edge importance number estimation
1: Input: Graph G(V, E) with n nodes and m edges.
2: Randomly sample α nodes from the graph into set S.
3: Initialize importance number I(e) of every edge e ∈ E as 0.
4: for each node x ∈ S do
5: Run Dijkstra with x as the source node in O(m + n) time to get a shortest path tree SPTx

6: Label the nodes of SPTx with the distance from the source node x. Figure 1 shows the labeling for a shortest path
tree on a unit weighted undirected graph.

7: For each edge (i, j) ∈ E, identify if (i, j) is an alternative tight edges for SPTx . Tight edges can be discovered
in O(m) time.

8: Choose β random shortest path trees by perturbing the tree SPTx by replacing γ number of edges in SPTx each
by one of the alternative tight edges.

9: for every alternative shortest path tree SPTxy chosen in Step 8 do
10: Estimate importance number I(e, SPTxy) for every edge e wrt SPTxy as the number of its descendants

normalized by n. This takes O(m) time.
11: Add I(e, SPTxy) to I(e).
12: end for
13: end for
14: Compute avg. importance numbers for each edge by normalizing I(e) by αβ.
15: return Average importance for each edge e ∈ E
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Definition 2 (Distance Label). The distance label dx(i) for a node i in a shortest path
tree SPTx is defined as the shortest path distance of the node from the source node x.
Note that distance labels are valid if dx(j) ≤ dx(i)+w(i, j) or dx(i) ≤ dx(j)+w(i, j)
where dx(i) and dx(j) are the distance labels for nodes i and j in SPTx.

Definition 3 (Tight edge). An edge (i, j) is a tight edge with respect to shortest path
tree SPTx, if dx(j) = dx(i) + w(i, j) or dx(i) = dx(j) + w(i, j).

Definition 4 (Alternative tight edge). An edge (i, j) is an alternative tight edge if it is
a tight edge, but it is not a part of the current shortest path tree.

After constructing the shortest path trees, we perform distance labeling on SPTx (as
shown in Figure 1). Further, we can generate alternative shortest path trees for SPTx

by replacing tree edges with alternative tight edges. Step 7 in Algorithm 1 iterates over
the entire edge set of the graph and checks if it is an alternative tight edge. Step 8
generates random shortest path trees by replacing one or more edges in SPTx by one
of the alternative tight edges.

Observation 1. For every alternative tight edge, there is a corresponding edge in SPTx,
which can be replaced to create a new perturbed shortest path tree.

We note that the edge to be replaced can be determined by adding the alternative tight
edges, and removing one of the tree edges from the cycle thus created.

We generate a random perturbation of original SPTx by selecting alternative tight
edges for some randomly selected edges of SPTx. This can be achieved easily by con-
sidering the subgraph of all tight edges, and picking one which forms a shortest path
tree. We consider β such shortest path trees for each SPTx.

Definition 5 (Descendant of an edge). A descendant in the context of an edge (i, j)
and a shortest path tree SPTx is defined as any node that lies in the subtree rooted at
the end-point of the edge farther from the source node x.

The concept of edge descendant is useful, because it measures the importance of the
edge (i, j) in connecting nodes contained in SPTx. Specifically, the number of descen-
dants of edge (i, j) provides a clear understanding of its connectivity level from the
source node x to other nodes of the tree. Step 10 computes edge importance as the
normalized number of descendants. Let I(e, SPTxy) denote the importance of an edge
for the yth SPT which is obtained by a random perturbation of SPTx. This is com-
puted as the ratio of number of descendants for edge (i, j) with respect to SPTxy to
|V |. 0 ≤ I(e, SPTxy) ≤ 1. Finally, in Step 14, average importance numbers are com-
puted for every edge by computing average across all the sampled shortest path trees.

Thus, the average importance of an edge is estimated as I(e) =
∑

x

∑
y I(e,SPTxy)

αβ . The
Importance estimation algorithm runs in O(αβm) time. We will use these importance
numbers later to improve the Incidence Algorithm described in the next subsection and
also for node ranking algorithms.

3.2 The Incidence Algorithm

In this subsection, we present the Incidence Algorithm (Algorithm 2).
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Definition 6 (Active node). A node is active if new edges or edges with changed weights
are incident on it.

The intuition for the Incidence Algorithm is that the maximum distance change node
pairs will include at least one node as an active node with high probability.

Observation 2. Node pairs containing at least one active node can cover most of the
top-k node pairs with maximum distance change with high probability for small values
of k. This is particularly true for more dense networks.

Example: Consider a path a− b− c− d as shown in Figure 2. The solid lines show the
shortest paths between the nodes in snapshot G1. (a, b) and (c, d) are the edges in graph
G1 while (b, c) appears as a new edge in graph G2. Let Path(a, d) and Path(b, c) be
the shortest paths between the corresponding nodes in graph G1.

Let us assume that the new shortest path between nodes b and c as well as the one
between nodes a and d passes through the edge (b, c). Then d1(b, c) should follow the
inequality: d1(a, d) − w(a, b) − w(c, d) ≤ d1(b, c) ≤ d1(a, d) + w(a, b) + w(c, d).
Note that Δ(a, d) = d1(a, d) − w(a, b) − w(c, d) − w(b, c) while for Δ(b, c), we have
d1(a, d)−w(a, b)−w(c, d)−w(b, c) ≤ Δ(b, c) ≤ d1(a, d)+w(a, b)+w(c, d)−w(b, c).
Thus, we observe that Δ(b, c) ≥ Δ(a, d). The distance change would be equal only if
shortest path between a and d contained the shortest path between nodes b and c in graph
G1. The changed shortest distance paths in graph G2 would make use of one or more of
the new edges. Using the above example, we can show that the distance change between
the endpoints of any new edge would always be greater than or equal to distance change
between any other node pair. As shown in Section 5 this is generally true in a wide
variety of scenarios, though it may not be true across all network structures.

Algorithm 2. Incidence Algorithm
1: Input: Graphs G1(V1, E1) and G2(V2, E2), Active node set V ′ .
2: HEAP h ← φ
3: for every node n ∈ V ′ do
4: Run Dijkstra Algorithm from n on G1 and G2.
5: for every node v ∈ V1 ∩ V2 do
6: h.insert((n, v), Δ(n, v)) (Regularly clean heap to control size)
7: end for
8: end for
9: return top-k pairs (u, v) with maximum Δ(u, v)

While the Incidence Algorithm provides a decent first-approximation, it is rather
naive in its approach. To improve the accuracy, we can consider active node set as the
seed set and try to expand from this seed set to include neighbors of nodes in active node
set. This expanded seed set is used for determining the source nodes for the different
runs of the Dijkstra shortest path algorithm. The goal is to consider only promising
neighbors of promising nodes from the active node set for expansion. We will discuss
below how this selective expansion is performed.

3.3 Selective Expansion of Active Node Set V ′

Without any expansion from the active node set, we just detect the epicenters of shortest
path distance changes. However, we may wish to find out node pairs that surround
these epicenters too. We use the following method for selective expansion. We first
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run Dijkstra algorithm from each of the currently active nodes and compute the current
top-k shortest path distance change node pairs. Within these top-k, we look at the active
nodes and can expand from them. However, we would like to expand one node at a time.
Hence, we need to rank the neighbors of the currently active nodes. We would select
the neighbor with the highest rank as the source node for the next run of the Dijkstra
algorithm. The rank of a neighbor node (say a in Figure 2 which is a neighbor of node
b where a /∈ V ′ and b ∈ V ′) should depend on the probability that a large number of
shortest paths from this node would use the edge (a, b).

Thus, the rank of a neighborawould be computed as rank(a)= I(edge(a,b))∑
x∈nbr(a) I(edge(a,x)) .

Then we simply choose the node with the maximum rank and use it as the source node
for running Dijkstra algorithm. We update the top-k node pairs using the new node pairs
obtained from the latest Dijkstra run. Node a also becomes active. If the top-k node pair
list changes, we choose a new node again, else we terminate the selective expansion.

4 Node Ranking for Improved Efficiency

The Incidence Algorithm with selective expansion helps us to obtain the top-k node
pairs with high accuracy. However, it is still not quite efficient. If the snapshots of the
graph are taken after long intervals, new edges would be incident on a large percentage
of the nodes in the graph. The efficiency of our Incidence Algorithm is dependent upon
the size of this set. Hence, when solving the problem over snapshots of a graph taken
over longer time intervals, the Incidence Algorithm would be computationally expen-
sive. In this section, we discuss strategies to rank the nodes in the active node set so that
the order helps to select the top few nodes which can be used to run single-source based
shortest path algorithms and capture the maximum distance change pairs. The trade-off
is between the number of nodes selected and accuracy. The goal is to rank the nodes, so
that by processing them one by one we obtain more accurate results by running shortest
path algorithms from a very small number of source nodes. In the following, we discuss
some of the ranking strategies that we used in order to achieve this goal.

4.1 Edge Weight Based Ranking (EWBR)

A node has a higher probability of contributing to the top-k node pairs with maximum
shortest distance path change if a large number of new low-weight edges are incident
on this node. The higher the number of new edges incident on the node, the greater the
likelihood that the distances of the other nodes to this node have changed. Of course,
such an approach is quite simple, and may have its own drawbacks. For example, an
edge contributes only a small part to the shortest path length. So, for graphs with longer
shortest path distances, a path would typically consist of a large number of edges and
hence the greedy approach of just considering the first edge in that path may not be
sufficient. This leads to low node ranking accuracy.

4.2 Edge Weight Change Based Ranking (EWCBR)

A node with a large number of edges whose weight has changed by relatively larger
amounts is more important. If the edge weight decreases by a large amount, this edge
would naturally become a part of more number of shortest paths. We note that the
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weight of an edge corresponds to the distance along it. Of course, this distance could
be defined differently for different applications. For example, for a co-authorship ap-
plication, the distance could be the inverse of the collaboration frequency. For edges
where one of the nodes was not present in the previous snapshot, change in similar-
ity (1/weight) is set to similarity in the new snapshot. This essentially implies that the
similarity in the old snapshot is considered as 0.

4.3 Importance Number Based Ranking (INBR)

The previous algorithm does not distinguish between the different kinds of edges. As
discussed earlier, the edge importance is estimated as its likelihood of occurring along
a shortest path. A node has a higher probability of contributing to the top-k node pairs
with maximum shortest distance path change, if a large number of new (or weight-
changed) important edges are incident on this node. The importance is measured on
the new snapshot. Thus, ranking nodes in this order and considering the top few nodes
would ensure that we are capturing the effect of most of the important edges. If impor-
tance numbers follow a power law, then contributions to distance changes by the tail of
this edge ordering should be minimal. Therefore, the consideration of only a top few
should provide us high accuracy.

4.4 Importance Number Change Based Ranking (INCBR)

If an edge has a lower importance number in the old graph snapshot and now its im-
portance number has increased a lot, it implies that the edge is important with respect
to our task. Similarly, edges with high edge importance scores in old snapshot and low
scores for the new snapshot are also interesting. Active nodes with large number of such
new or weight-changed edges become important. Note that the importance numbers in
the old snapshots for edges that are completely new (i.e., not just weight changes) is
considered to be 0.

4.5 Ranking Using Edge Weight and Importance Numbers (RUEWIN)

To rank a node, we can use both the number of important edges and the weight of the
new or weight-changed edges incident on a node. Apart from the absolute values of the
two quantities, we can also use the actual change in the quantities for node ranking.
RUEWIN uses change in weight multiplied by absolute values of importance numbers
in the new snapshot for ranking, while RUEWINC uses change in edge weight multi-
plied by change in importance numbers for ranking.

4.6 Clustering Based Ranking (CBR)

Intuitively a new inter-cluster edge with low weight would be more important in reduc-
ing the shortest path distance between a pair of nodes compared to an intra-cluster edge.
This is because nodes within a cluter are already well connected, and nodes across clus-
ters have high likelihood to be used in a shortest path. In other words, an edge which
connects two regions of high density is more important than an edge which connects
nodes within a high density region.
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In this scheme of ranking, we first partition the graph using a minimum cut based
algorithm. We use METIS [16] for this purpose. From each of the partitions, we ran-
domly choose one of the nodes (called the representative node of the cluster) on which
at least one new edge is incident. If we do not perform partitioning, we can randomly
select initial nodes from the entire set of nodes on which new edges are incident. We
call the approach with partitioning as CBRP and the one without partitioning as CBR.
The Dijkstra algorithm is run with the representative node as the source node. Other
nodes on which new edges are incident are assigned to clusters whose representative
nodes are the closest to the current node.

Now, we need to estimate the change in distance that occurs between two nodes
because of a new edge and use this measure as the importance of the new edge. Inter-
cluster distance is computed as the distance between the representative nodes of the two
clusters. Distance change is computed as the estimated old distance between the pair of
nodes on which the new edge is incident minus the weight of the new edge. The old
distance between the two nodes corresponding to an inter-cluster edge is estimated as
the sum of the distances of the nodes from the representative nodes of their respective
clusters and the inter-cluster distance between the corresponding clusters. We compute
the old distance corresponding to an intra-cluster edge in the same way, except that
both the nodes belong to the same cluster. Finally, the cluster based score of a node is
determined as the sum of the importance of the new edges incident on the node. Note
that in this method, the estimation of the old distance for an intra-cluster edge can be
very inaccurate. The accuracy of the estimate depends on the size of the cluster. If the
cluster has a high radius, the estimate would be bad. However, the intra-cluster edges
are not really important for finding the top-k node pairs for which maximum shortest
path distance change has occurred, unless they belong to clusters with very large radius.
We experimented and noticed that relative estimates of shortest path distances are quite
similar to actual distances. Also, we observed that the radius of the clusters are com-
paratively smaller when we use partitioning based method to choose the initial set of
source nodes rather than making a random choice from all over the graph. Lower radius
of clusters means better estimates of shortest path distances between nodes in the old
graph snapshot, which leads to better accuracy.

The preprocessing steps involved in this form of ranking are: (1) A graph partitioning
of the old snapshot using METIS (2) c Dijkstra algorithm runs where c is the number
of clusters. Also note that, for an edge that connects an old node to a new node, we
cannot use the above logic to estimate the distance saved. Hence, we set their cluster
based scores to 0.

5 Experimental Results

The goal of the section is to show the practical usability and efficiency of the method in
large scale systems at the expense of a modest loss of accuracy. In order to provide fur-
ther insights, we also present several intermediate results which show that in many real
data sets, a recurring theme is that there are often only few node pairs which share the
bulk of the changes in shortest path distances. This suggests that our ranking approach
for finding these nodes is likely to be efficient and accurate.
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5.1 Datasets

We used the DBLP co-authorship graphs5, IMDB co-starring graphs6 and Ontario road
network graphs7. The nodes for the DBLP co-authorship graphs are authors and the
edges denote the collaborations. The edge weight is the reciprocal of the co-authorship
frequency. We used five pairs of the co-authorship graphs from 1980 to 2000 for testing
purposes. The nodes for the IMDB co-starring graphs are actors and actresses and edges
denote the collaborations. The edge weight is the reciprocal of the co-starring frequency.
We consider the co-starring graphs from 1950 to 1952. The nodes for the Ontario Road
Network are road intersections and edges denote the road segments. The Geography
Markup Language (GML) files for this road network for 2005 and 2008 were obtained
from the Canada Statistics website8. The dataset are defined in terms of latitudes and
longitudes, which were converted into edge lengths for the purpose of the algorithm.
Edges from 2005, which were missing from the 2008 snapshot, were added to the data
set.

We provide details of the characteristics of these graphs in Tables 1, 2 and 3. In the
table, the set of edges with change in weight is denoted by E1C (c=change). The set of
edges which are absent in G1 and for which one of the nodes was in G1 is denoted by
E2ON (o=old, n=new). The set of edges which were absent in G1 but both the nodes
were present in G1 is denoted by E2OO .

Table 1. DBLP Details

Year Nodes Edges E1C E2ON E2OO |V ′| Max
in LCC freq

1980 4295 8096 45
1981 5288 10217 607 953 305 895 46
1984 10598 21592 52
1985 13025 27260 1272 2271 616 2128 56
1988 22834 50255 61
1989 27813 61704 3282 5016 1921 4963 63
1993 61592 148287 87
1994 74794 183738 10995 15446 6569 14633 111
1999 163203 456954 221
2000 188048 539957 32876 39542 21004 35723 231

Table 2. IMDB Details

Year Nodes Edges E1C E2ON E2OO |V ′| Max
in LCC freq

1950 144991 8.2M 739
1951 149260 8.6M 111097 74757 179698 16364 745
1952 154719 9.1M 118276 146661 207859 17596 745

Table 3. Ontario RN Details

Year Nodes Edges E1C E2ON E2OO |V ′| Max
in LCC freq

2005 348236 455804 250
2008 367628 494067 2280 11870 9041 29539 250

We note that the DBLP and IMDB graphs are naturally temporal, and therefore a
cumulative graph can be defined which aggregates all edges upto time t in order to
create a graph. The change is then computed between two such cumulative graphs. For
example, a DBLP graph at year 1980 captures all the co-authorship relationships in

5 http://www.informatik.uni-trier.de/∼ley/db/
6 http://www.imdb.com/
7 http://geodepot.statcan.gc.ca/
8 http://tinyurl.com/yfsoouu



140 M. Gupta, C.C. Aggarwal, and J. Han

DBLP until the year 1980. In the case of the Ontario road network, the two snapshots
in 2005 and 2008 were used in order to determine the change.

The ground truth (also referred to as the “golden set”) in terms of the node-pairs with
maximum change in distance value was determined. We used the fast implementation
mentioned in [9] to generate this golden set. As mentioned earlier, this is the alterna-
tive (but brute-force method) for determine the precise node pairs with the maximum
distance changes. It is important to note that this process required several days on mul-
tiple CPUs to compute the exact distance changes using direct applications of shortest
path algorithms. Our computational challenges in determining the ground truth is itself
evidence of the difficulty of the problem.

5.2 Evaluation Methodology

We compute the accuracy of the results by computing the top-k pairs with the greatest
change in the original data (also known as the ground truth or golden set), and compar-
ing it with the results of our algorithm. We refer to the fraction of such matching node
pairs as the topKAccuracy. We will show the tradeoffs between the running time and
the topKAccuracy achieved by the method. Since the core of our algorithm is to rank
and select (the top-ranking) nodes for use as source nodes, one proxy for the time spent
is the number of nodes from which the shortest path algorithm needs to be executed.
Hence, for every ranking method, we plot the topKAccuracy against the number of
source nodes. The area under such a curve is also a proxy for the average lift achieved
with the use of a small number of source nodes. Thus, we compare various ranking
algorithms with respect to these areas. Before, describing these results in detail, we will
provide some intermediate results which provide some interesting insights.

5.3 Typical Distribution of Maximum Distance Change Values

We first show that much of the change in distance values is large for a small number
of node pairs in the real data sets tested. Figure 3 shows the distribution of the top
1000 distance change values for each of the five DBLP snapshots. We plot the distance
change values on the Y -axis, whereas the rank of the node pair (with greatest change)
is illustrated on the X-axis. Figure 4 shows the same results for the IMDB data set for
snapshot changes across the years 1950-1951 and 1951-1952. We note that the distri-
bution of the change values is quite skewed. Only the top few distance change values
are very large. This suggests that there are only a few node pairs across which most of
the changes were concentrated. This was a recurring theme through the real data sets
encountered. The rarity of source nodes reflecting high changes makes it possible to
discover them with the use of ranking methods. In the next subsection, we will examine
this issue from the perspective of specific nodes (as opposed to node pairs).

5.4 Contributions by Individual Nodes

Next, we examine the involvement of specific nodes in these pairs of nodes between
which most of the distance change is concentrated. Table 4 shows the number of unique
nodes in top 1000 maximum distance change node pairs. The results show that a small
number of nodes (∼250 on the average, and not increasing significantly with graph
size) are a part of the top 1000 maximum distance change pairs. This provides evidence
that the ranking approach should approximate the top-k maximum shortest distance
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Table 4. Number of nodes in top 1000 maximum distance change node pairs

DBLP Snapshots #nodes
1980-1981 294
1984-1985 267
1988-1989 112
1993-1994 150
1999-2000 179

IMDB Snapshots #nodes
1950-1951 343
1951-1952 152

0

0.5

1

1.5

2

2.5

0 1 2

lo
g 

(n
um

be
r o

f t
im

es
 n

od
e 

ap
pe

ar
s 

in
 to

p 
10

00
 n

od
e 

pa
ir

s)

log (node rank in top 1000 node pairs)

1980-1981
1984-1985
1988-1989
1993-1994
1999-2000

(a) DBLP

1

1.5

2

2.5

3

ti
m

es
 n

od
e 

ap
pe

ar
s 

00
 n

od
e 

pa
ir

s)

1950-1951

1951-1952

0

0.5

1

0 1 2 3lo
g 

(n
um

be
r o

f 
in

 to
p 

10
0

log (node rank in top 1000 node 
pairs)

(b) IMDB

Fig. 5. A few nodes are responsible for the top few maximum distance change node pairs

change node pairs well, because most of the distances are concentrated in a few nodes.
The trends in this distribution are also illustrated graphically in Figures 5(a) and 5(b)
respectively.

5.5 Accuracy Using the Incidence Algorithm and Selective Expansion

Table 5 and Table 6 show the accuracy of our Incidence Algorithm for the DBLP and
IMDB graphs respectively. Each row shows the accuracy for a particular data set over
different values of k. Note that even without any selective expansion, the algorithm
performs quite well and almost always determines the top five node pairs accurately.

Table 7 shows the accuracy of our Incidence Algorithm with selective seed set ex-
pansion for the DBLP graphs. Note that selective expansion improves accuracy signifi-
cantly compared to the Incidence Algorithm, and the difference is especially significant
for large values of k.
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Table 5. Accuracy of Incidence Algorithm
(DBLP)

Snapshots K=1 K=5 K=10 K=50 K=100 K=500
1980-1981 1 0.8 0.8 0.8 0.86 0.638
1984-1985 1 1 0.9 0.92 0.8 0.776
1988-1989 1 1 1 0.76 0.84 0.784
1993-1994 1 1 1 1 0.76 0.734
1999-2000 1 1 0.8 0.62 0.69 0.86

Table 6. Accuracy of Incidence Algorithm
(IMDB)

Snapshots K=1 K=5 K=10 K=50 K=100 K=500
1950-1951 1 1 1 1 0.93 0.982
1951-1952 1 1 1 0.94 0.8 0.57

Table 7. Accuracy of the Incidence Algorithm with selective expansion (DBLP)

Snapshots K=1 K=5 K=10 K=50 K=100 K=500
1980-1981 1 0.8 0.8 0.8 0.88 0.84
1984-1985 1 1 1 1 1 1
1988-1989 1 1 1 0.76 0.84 0.896
1993-1994 1 1 1 1 0.76 0.734
1999-2000 1 1 1 0.8 0.69 0.86

5.6 Accuracy of Edge Importance Numbers

We note that the edge importance numbers are estimated in order to design the change
detection algorithm. For the change detection algorithm to work well, the edge impor-
tance numbers must also be estimated accurately. Therefore, in this section we will
show that this intermediate result on importance numbers is estimated accurately as
well. Later, we will show the final quality of the algorithm with the use of these im-
portance numbers. We note that the precise value of the importance numbers can be
estimated accurately, provided that we are willing to spend the time required to run the
shortest path algorithm from all the nodes. These precise values are compared with the
estimated values of the importance numbers. In order to do so, we compute the impor-
tance numbers with a varying level of sampling. Specifically, we vary the number of
source nodes from 100 to 1000 and also the number of shortest path trees per source
node as 100 and 1000. We report comparisons of some of these with the precise values
of the importance numbers.
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In our algorithm, the importance number was estimated in two ways: (a) The source
nodes were sampled randomly from the entire graph (b) The graph was partitioned
with the METIS graph partitioning algorithm [16] into a number of different partitions,
which was varied from 100 to 500. A node is then randomly selected from each partition
as a source node for edge importance number computation.

We note that only the top few important edges are used in the computation process.
Therefore, we are mostly interested in the convergence of the importance numbers of
the top few edges. Therefore, we will show the results for the top 100 most important
edges. The results are illustrated in Figure 6. Here, we plot the edge importance numbers
on Y-axis for each of the edges on the X-axis. Note that all of the curves follow the
trend which is quite similar to that of the curve corresponding to precise computations
(all 500). It is evident from the results that the importance number values converge quite
well for the top few edges. This is especially true, when the clustering-based algorithm
is used for the sampling process.

5.7 Accuracy Comparison of Ranking Algorithms

We note that a ranking algorithm is effective, if we can run Dijkstra algorithm from a
very small number of top ranked nodes and still achieve good accuracy for the maxi-
mum shortest path distance change node pairs. We executed each of our ranking algo-
rithms for the different data sets, for values of k ranging from 1 to 500. We varied the
number of source nodes used for Dijkstra runs in order to test the sensitivity. An ex-
ample of such a curve is shown in Figure 7, in which we show the curves for k=50 for
the DBLP datasets using the CBRP ranking algorithm. On the X-axis, we use the per-
centage of nodes from the original graph (from all nodes having at least one new edge
incident on them), which are used as a source node for Dijkstra runs. We note that the
area under such a curve is good proxy for the effectiveness of our algorithm, because
a more effective algorithm would provide a higher accuracy for a small percentage of
samples nodes, and provide a considerable amount of “lift”. Therefore, we can com-
pute the average area under the curve as a measure of the goodness of the algorithm.
For importance number estimation, we used the METIS-based selection of 100 random
nodes and 100 random shortest path trees per source node for all the graphs except for
the road network. In the case of the Ontario RN data set, we used 20 random nodes and
just one shortest path tree per source node as the road network is quite sparse.

Figure 8 shows9 the accuracy comparisons of our different algorithms for the DBLP
data set. In addition, we added a few baselines. Specifically, the algorithm labeled as
Random refers to the case were nodes were randomly chosen from the entire graph
for running the Dijkstra algorithm. The algorithm labeled as RandomNWNE refers to
the algorithm in which the nodes were randomly chosen only from the set of nodes on
which new edges were incident between two snapshots. We ran each of the algorithms
ten times and reported the average values in order to provide statistical stability to the
results. From the results, it is evident that the most simplistic algorithm (or EWBR algo-
rithm), which considers only the weight of the new edges incident on a node, performs
quite poorly. The algorithm which uses importance numbers (or INBR algorithm) turns
out to be much more accurate. However, the algorithm which considers change in im-
portance numbers (or INCBR algorithm) as well is more effective than either of the

9 The acronym for each algorithm in the figures may be found in the section in which these
algorithms were introduced.
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previous two algorithms. However, the most superior performance is achieved by the
clustering based algorithm (CBR). It is interesting to see that the initial selection of the
nodes with the use of graph partitioning in CBRP provides marginal improvement in
accuracy over the variant CBR which does not.

Figures 9 and 10 shows the accuracy comparisons of our different algorithms for the
IMDB and the Ontario RN data sets. The results are quite similar to the previous case
with some exceptions as noted well.

One difference is that for graphs such as the road network, our clustering based
approach does not work well. This is because a number of the edge changes involve
new nodes. The impact of such nodes is hard to estimate with the use of the clustering
algorithm.

5.8 Time Comparison of Ranking Algorithms

In this section, we will show the time-comparison of the different ranking algorithms.
We note that each ranking algorithm provides a tradeoff between accuracy and effi-
ciency, since the ranking process provides an order to the sampling of these nodes. By
picking more nodes along this order, it is possible to improve the effectiveness of the
algorithm at the expense of efficiency. In this section, we will explore this tradeoff. Re-
sults for the DBLP data set (1988-1989) are illustrated in Figure 11. We used k = 50 to
test the accuracy.

Notice that the individual points on each curve are plotted at intervals of 5% of the
nodes with new edges. Finally, all the algorithms reach a maximum accuracy of 0.76
reachable by our Incidence Algorithm on this data set for k = 50. The importance
number based algorithms (INBR and INCBR) take some time for the initial estimation
of the importance numbers. INCBR computes importance numbers for both the old
and new snapshots and so its initialization time is approximately twice that of INBR
which estimates importance numbers for the new snapshot only. The same relationship
is true between the RUEWIN and RUEWINC algorithms as well. The clustering based
algorithms (CBR and CBRP) require some additional time for the initial Dijkstra runs
from the representative nodes of the clusters and for finding the nearest cluster for all
other nodes with new edges. The CBRP algorithm requires some extra time for the
initial selection of the nodes with the use of graph partitioning.

We notice that the clustering based ranking technique is the most effective from an
overall perspective, and is able to provide almost the same amount of accuracy with
the use of just 10% of the time required by the Incidence Algorithm. This is because
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the ranking process is superior to the incidence approach from an algorithmic design
perspective, especially when most of the changes are concentrated in a few nodes.

5.9 Case Studies

In this section, we provide a number of insights gained from exploration of the maxi-
mum distance change pairs. One interesting observation was that highly ranked nodes
often also had a high level of change in the structural centrality. For the DBLP dataset,
Table 8 shows the authors that appeared the maximum number of times in the top 1000
node pairs with maximum shortest path distance change. Such authors are the ones
who never published with popular authors before, and were therefore at the fringes of
the co-authorship graph. However, their (or their neighbor’s) subsequent participation
in publications with popular authors resulted in increasing their structural centrality. In
some cases, these were authors who were working in a single research area who recently
started collaborating with authors in other research areas.

For example, let us consider the node (author) Nuno F. Paulino. The author pub-
lished with two other authors in 1993. The corresponding publications were also early
publications for these authors. In 1994, Nuno published a paper with five other authors
including Gabor C. Temes who had been publishing since 1971. As a result of this new
paper in 1994, Nuno became more central in the graph, and also appeared in the list of
top ranking nodes which were among the sources of greatest change in the graph.

Table 8. Nodes with Greatest Change
(DBLP)

Graphs Author
1980-1981 Seppo Sippu
1984-1985 W. Eric L. Grimson
1988-1989 Michael Walker
1993-1994 Nuno F. Paulino
1999-2000 R. Böhm

Table 9. Author-pairs with Greatest Change

Graphs Author1 Author2
1980-1981 B. Krishnamoorthi Reginald Meeson
1984-1985 W. Eric L. Grimson Zachary C. Fluhr
1988-1989 Michael Walker Cees J. A. Jansen
1993-1994 A. D. Bray Michael Smyth
1999-2000 Jitka Dupacová Tiecheng Yan

We also present node pairs with greatest change over different graph snapshots in
Table 9. These are typically pairs of authors who belong to two different research areas
but recently published a paper together, or published with the same common cluster of
nodes. E.g., the nodes Tiecheng Yan and Jitka Dupacová were typically on the fringes
of the co-authorship graph. However, Tiecheng Yan published a paper with Stein W.
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Table 10. Star pairs with the highest change in shortest path distance

Graphs Actor1 Actor2
1950-1951 Niculescu-Bruna, Ion Conabie, Gheorghe
1950-1951 Onea, Arion Conabie, Gheorghe
1950-1951 Niculescu-Bruna, Ion Scarlatescu, N.
1951-1952 Sanders, Kerry (II) Hoffman, Dustin
1951-1952 Sanders, Kerry (II) Gordon, Mark (I)

Table 11. Nodes with greatest change over time
period ’05-’08

Longitude,Latitude Location
78.7559W,45.3429N Clayton Lake, near Dorset
78.7343W,45.3464NBear Lake Road, Near Livingstone Lake
78.7024W,45.3112N Kawagama Lake, near Bear island
78.667W,45.3273N Near Kimball Lake
78.6956W,45.3216N Near Kawagama Lake

Table 12. Loc pairs with greatest
change (’05-’08)

Location1 Location2
78.704W,45.3321N 78.692W,45.3173N
78.6995W,45.3222N 78.692W,45.3173N
78.6995W,45.3222N 78.692W,45.3173N
78.7033W,45.3347N 78.6956W,45.3216N
78.704W,45.3321N 78.692W,45.3173N

Fig. 12. Representation of locations in Table 11 and 12

Wallace in 1993, and one with Jitka Dupacová in 2000. While the two authors Jitka
and Tiecheng were originally located on different corners of the graph, this authorship
behavior brought them close to one another.

The results for the IMDB data set are illustrated in Table 10. The IMDB graph was
quite dense with many cliques. This is because many actors may work in the same
movie, and this adds a large clique of edges in the graph. For example, Sanders Kerry
(II) acted as a correspondent for the TV series “Today” in 1952. IMDB lists 938 people
as related to this TV series. Furthermore, in 1947, he was involved in the “Meet the
Press” show. These factors, resulted in his becoming a node with a large change in
centrality. This was also reflected in the fact that it was identified as a top-ranked change
node.

The results for Ontario Road Network are illustrated in Tables 11 and 12. Locations10

in Table 11 are marked on the map (Google Maps11) in Figure 12 (left). From the
results, we can see that the shortest path distance between many locations changed in
the area situated in the south west part of Algonquin Provincial Park. We looked back
at the road networks and discovered that this happened because of the construction of
an extension to the Bear Lake Road during the time period from 2005 to 2008. We mark

10 http://tinyurl.com/mg-mapOne
11 http://maps.google.com
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the corresponding area12 in Figure 12 (right). Here points A, E correspond to column 3
of Table 12 and points B, C and D correspond to column 2 of Table 12.

From the above case studies, it is evident that our approach can discover interesting
node pairs for which shortest path distance change was maximum. Quite often these
changes are because of the combinatorial effect of multiple new edges that come in
the network. Our algorithms can also discover the most critical edges which result in a
significant part of the distance changes. This also helps provide a better understanding
of the causality of the changes in the distances.

6 Conclusions and Future Work

In this paper, we presented several fast algorithms to compute top-k node pairs with the
greatest evolution in shortest path distances. We experimented using large graphs and
showed the efficiency and scalability of our methods. We observed that the change in
edge importance number and clustering based methods work quite well for the task. One
advantage of the approach is that it was able to create effective results over extremely
large data sets in which it was not possible to use traditional methods efficiently. In
future work, we will perform investigation of specific structural aspects of graphs which
are related to considerable distance change. We will also exploit these algorithms for a
variety of event-detection applications in networks.
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Abstract. Spatial tree index structures are crucial components in spatial data
management systems, designed with the implicit assumption that the underlying
external memory storage is the conventional magnetic hard disk drives. This as-
sumption is going to be invalid soon, as flash memory storage is increasingly
adopted as the main storage media in mobile devices, digital cameras, embedded
sensors, and notebooks. Though it is direct and simple to port existing spatial tree
index structures on the flash memory storage, that direct approach does not con-
sider the unique characteristics of flash memory, i.e., slow write operations, and
erase-before-update property, which would result in a sub optimal performance.
In this paper, we introduce FAST (i.e., Flash-Aware Spatial Trees) as a generic
framework for flash-aware spatial tree index structures. FAST distinguishes itself
from all previous attempts of flash memory indexing in two aspects: (1) FAST
is a generic framework that can be applied to a wide class of data partitioning
spatial tree structures including R-tree and its variants, and (2) FAST achieves
both efficiency and durability of read and write flash operations through smart
memory flushing and crash recovery techniques. Extensive experimental results,
based on an actual implementation of FAST inside the GiST index structure in
PostgreSQL, show that FAST achieves better performance than its competitors.

1 Introduction

Data partitioning spatial tree index structures are crucial components in spatial data
management systems, as they are mainly used for efficient spatial data retrieval, hence
boosting up query performance. The most common examples of such index structures
include R-tree [7], with its variants [4,9,22,24]. Data partitioning spatial tree index
structures are designed with the implicit assumption that the underlying external mem-
ory storage is the conventional magnetic hard disk drives, and thus has to account for
the mechanical disk movement and its seek and rotational delay costs. This assump-
tion is going to be invalid soon, as flash memory storage is expected to soon prevail
in the storage market replacing the magnetic hard disks for many applications [6,21].
Flash memory storage is increasingly adopted as the main storage media in mobile de-
vices and as a storage alternative in laptops, desktops, and enterprise class servers (e.g.,
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and by a seed grant from UMN DTC.
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in forms of SSDs) [3,13,15,18,23]. Recently, several data-intensive applications have
started using custom flash cards (e.g., ReMix [11]) with large capacity and access to
underlying raw flash chips. Such a popularity of flash is mainly due to its superior char-
acteristics that include smaller size, lighter weight, lower power consumption, shock
resistance, lower noise, and faster read performance [10,12,14,19].

Flash memory is block-oriented, i.e., pages are clustered into a set of blocks. Thus, it
has fundamentally different characteristics, compared to the conventional page-oriented
magnetic disks, especially for the write operations. First, write operations in flash are
slower than read operations. Second, random writes are substantially slower than se-
quential writes. In devices that allow direct access to flash chips (e.g., ReMix [11]), a
random write operation updates the contents of an already written part of the block,
which requires an expensive block erase operation1, followed by a sequential write op-
eration on the erased block; an operation termed as erase-before-update [5,12]. SSDs,
which emulate a disk-like interface with a Flash Translation Layer (FTL), also need to
internally address flash’s erase-before-update property with logging and garbage collec-
tion, and hence random writes, especially small random writes, are significantly slower
than sequential writes in almost all SSDs [5].

Though it is direct and simple to port existing tree index structures (e.g., R-tree
and B-tree) on FTL-equipped flash devices (e.g., SSDs), that direct approach does not
consider the unique characteristics of flash memory and therefore would result in a sub-
optimal performance due to the random writes encountered by these index structures.
To remedy this situation, several approaches have been proposed for flash-aware index
structures that either focus on a specific index structure, and make it a flash-aware,
e.g., flash-aware B-tree [20,26] and R-tree [25], or design brand new index structures
specific to the flash storage [2,16,17].

Unfortunately, previous works on flash-aware search trees suffer from two major lim-
itations. First, these trees are specialized—they are not flexible enough to support new
data types or new ways of partitioning and searching data. For example, FlashDB [20],
which is designed to be a B-Tree, does not support R-Tree functionalities. RFTL [25]
is designed to work with R-tree, and does not support B-tree functionalities. Thus, if a
system needs to support many applications with diverse data partitioning and search-
ing requirements, it needs to have multiple tree data structures. The effort required to
implement and maintain multiple such data structures is high.

Second, existing flash-aware designs often show trade-offs between efficiency
and durability. Many designs sacrifice strict durability guarantee to achieve effi-
ciency [16,17,20,25,26]. They buffer updates in memory and flush them in batches
to amortize the cost of random writes. Such buffering poses the risk that in-memory
updates may be lost if the system crashes. On the other hand, several designs achieve
strict durability by writing (in a sequential log) all updates to flash [2]. However, this
increases the cost of search for many log entries that need to be read from flash in or-
der to access each tree node [20]. In summary, no existing flash-aware tree structure
achieves both strict durability and efficiency.

1 In a typical flash memory, the cost of read, write, and erase operations are 25, 200, and 1500
μs, respectively [3].
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In this paper, we address the above two limitations by introducing FAST; a frame-
work for Flash-Aware Spatial Tree index structures. FAST distinguishes itself from all
previous flash-aware approaches in two main aspects: (1) Rather than focusing on a
specific index structure or building a new index structure, FAST is a generic framework
that can be applied to a wide variety of tree index structures, including B-tree, R-tree
along with their variants. (2) FAST achieves both efficiency and durability in the same
design. For efficiency, FAST buffers all the incoming updates in memory while em-
ploying an intelligent flushing policy that smartly evicts selected updates from memory
to minimize the cost of writing to the flash storage. In the mean time, FAST guaran-
tees durability by sequentially logging each in-memory update and by employing an
efficient crash recovery technique.

FAST mainly has four modules, update, search, flushing, and recovery. The update
module is responsible on buffering incoming tree updates in an in-memory data struc-
ture, while writing small entries sequentially in a designated flash-resident log file. The
search module retrieves requested data from the flash storage and updates it with recent
updates stored in memory, if any. The flushing module is triggered once the memory
is full and is responsible on evicting flash blocks from memory to the flash storage to
give space for incoming updates. Finally, the recovery module ensures the durability of
in-memory updates in case of a system crash.

FAST is a generic system approach that neither changes the structure of spatial tree
indexes it is applied to, nor changes the search, insert, delete, or update algorithms of
these indexes. FAST only changes the way these algorithms reads, or updates the tree
nodes in order to make the index structure flash-aware. We have implemented FAST
within the GiST framework [8] inside PostgrSQL. As GiST is a generalized index
structure, FAST can support any spatial tree index structure that GiST is supporting,
including but not restricted to R-tree [7], R*-tree [4], SS-tree [24], and SR-tree [9],
as well as B-tree and its variants. In summary, the contributions of this paper can be
summarized as follows:

– We introduce FAST; a general framework that adapts existing spatial tree in-
dex structures to consider and exploit the unique properties of the flash memory
storage.

– We show how to achieve efficiency and durability in the same design. For efficiency,
we introduce a flushing policy that smartly selects parts of the main memory buffer
to be flushed into the flash storage in a way that amortizes expensive random write
operations. We also introduce a crash recovery technique that ensures the durability
of update transactions in case of system crash.

– We give experimental evidence for generality, efficiency, and durability of FAST
framework when applied to different data partitioning tree index structures.

The rest of the paper is organized as follows: Section 2 gives an overview of FAST
along with its data structure. The four modules of FAST, namely, update, search, flush-
ing, and recovery are discussed in Sections 3 to 6, respectively. Section 7 gives experi-
mental results. Finally, Section 8 concludes the paper.
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2 Fast System Overview

Figure 1 gives an overview of FAST. The original tree is stored on persistent flash
memory storage while recent updates are stored in an in-memory buffer. Both parts
need to be combined together to get the most recent version of the tree structure. FAST
has four main modules, depicted in bold rectangles, namely, update, search, flushing,
and crash recovery. FAST is optimized for both SSDs and raw flash devices. SSDs are
the dominant flash device for large database applications. On the other hand, raw flash
chips are dominant in embedded systems and custom flash cards (e.g., ReMix [11]),
which are getting popular for data-intensive applications.

2.1 FAST Modules

In this section, we explain FAST system architecture, along with its four main modules;
(1) Update, (2) Search, (3) Flushing, and (4) Crash recovery. The actions of these four
modules are triggered through three main events, namely, search queries, data updates,
and system restart.

Update Module. Similar to some of the previous research for indexing in flash mem-
ory, FAST buffers its recent updates in memory, and flushes them later, in bulk, to the
persistent flash storage. However, FAST update module distinguishes itself from pre-
vious research in two main aspects: (1) FAST does not store the update operations in
memory, instead, it stores the results of the update operations in memory, and (2) FAST
ensures the durability of update operations by writing small log entries to the persistent
storage. These log entries are written sequentially to the flash storage, i.e., very small
overhead. Details of the update module will be discussed in Section 3.

Fig. 1. Tree Modifications Table

Search Module. The
search module in FAST
answers point and
range queries that can
be imposed to the un-
derlying tree structure.
The main challenge
in the search module
is that the actual tree
structure is split be-
tween the flash storage
and the memory. Thus,
the main responsibility
of the search module
is to construct the recent image of the tree by integrating the stored tree in flash with
the tree updates in memory that did not make it to the flash storage yet. Details of the
search module will be discussed in Section 4.

Flushing Module. As the memory resource is limited, it will be filled up with the recent
tree updates. In this case, FAST triggers its flushing module that employs a flushing
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policy to smartly select some of the in-memory updates and write them, in bulk, into
the flash storage. Previous research in flash indexing flush their in-memory updates or
log file entries by writing all the memory or log updates once to the flash storage. In
contrast, the flushing module in FAST distinguishes itself from previous techniques
in two main aspects: (1) FAST uses a flushing policy that smartly selects some of the
updates from memory to be flushed to the flash storage in a way that amortizes the
expensive cost of the block erase operation over a large set of random write operations,
and (2) FAST logs the flushing process using a single log entry written sequentially on
the flash storage. Details of the flushing module will be discussed in Section 5.

Crash Recovery Module. FAST employs a crash recovery module to ensure the dura-
bility of update operations. This is a crucial module in FAST, as only because of this
module, we are able to have our updates in memory, and not to worry about any data
losses. This is in contrast to previous research in flash indexing that may encounter data
losses in case of system crash, e.g., [25,26,16,17]. The crash recovery module is mainly
responsible on two operations: (1) Once the system restarts after crash, the crash recov-
ery module utilizes the log file entries, written by both the update and flushing modules,
to reconstruct the state of the flash storage and in-memory updates just before the crash
took place, and (2) maintaining the size of the log file within the allowed limit. As the
log space is limited, FAST needs to periodically compact the log entries. Details of this
module will be discussed in Section 6.

2.2 FAST Design Goals

FAST avoids the tradeoff of durability and efficiency by using a combination of buffer-
ing and logging. Unlike existing efficient-but-not-durable designs [16,17,20,25,26],
FAST uses write-ahead-logging and crash recovery to ensure strict system durability.
FAST makes tree updates efficient by buffering write operations in main memory and
by employing an intelligent flushing policy that optimizes I/O costs for both SSDs and
raw flash devices. Unlike existing durable-but-inefficient solutions [2], FAST does not
require reading in-flash log entries for each search/update operation, which makes read-
ing FAST trees efficient.

2.3 FAST Data Structure

Other than the underlying index tree structure stored in the flash memory storage, FAST
maintains two main data structures, namely, the Tree Modifications Table, and Log File,
described below.

Fig. 2. Tree Modifications Table

Tree Modifications Table. This is an in-
memory hash table (depicted in Figure 2)
that keeps track of recent tree updates
that did not make it to the flash stor-
age yet. Assuming no hashing collisions,
each entry in the hash table represents
the modification applied to a unique node
identifier, and has the form (status, list)
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Fig. 3. An illustrating example for all FAST operations

where status is either NEW, DEL, or MOD to indicate if this node is newly created,
deleted, or just modified, respectively, while list is a pointer to a new node, null, or a
list of node modifications based on whether the status is NEW, DEL, or MOD, respec-
tively. For MOD case, each modification in the list is presented by the triple (type, index,
value) where type is either K , PF , or PM , to indicate if the modified entry is the key, a
pointer to a flash node, or a pointer to an in-memory node, respectively, while index and
value determines the index and the new value for the modified node entry, respectively.
In Figure 2, there are two modifications in nodes A and D, one modification in nodes
B and F , while node G is newly created and node H is deleted.

Log File. This is a set of flash memory blocks, reserved for recovery purposes. A log
file includes short logs, written sequentially, about insert, delete, update, and flushing
operations. Each log entry includes the triple (operation, node list, modification) where
operation indicates the type of this log entry as either insert, delete, update, or flush,
node list includes the list of affected nodes by this operation in case of a flush operation,
or the only affected node, otherwise, modification is similar to the triple (type, index,
value), used in the tree modifications table. All log entries are written sequentially to
the flash storage, which has a much lower cost than random writes that call for the erase
operation.

2.4 Running Example

Throughout the rest of this paper, we will use Figure 3 as a running example where
six objects O1 to O6, depicted by small black circles, are indexed by an R-tree. Then,
two objects O7 and O8, depicted by small white circles, are to be inserted in the same
R-tree. Figure 3a depicts the eight objects in the two-dimensional space domain, while
Figure 3b gives the flash-resident R-tree with only the six objects that made it to the
flash memory. Finally, Figure 3c gives the in-memory buffer (tree modifications table)
upon the insertion of O7 and O8 in the tree.

3 Tree Updates in FAST

This section discusses the update operations in FAST, which include inserting a new
entry and deleting/updating an existing entry. An update operation to any tree in FAST
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may result in creating new tree nodes as in the case of splitting operations (i.e., when
inserting an element in the tree leads to node overflow), deleting existing tree nodes as
in the case of merging operations (i.e., when deleting an element from the tree leads to
node underflow), or just modifying existing node keys and/or pointers.

Main idea. For any update operation (i.e., insert, delete, update) that needs to be ap-
plied to the index tree, FAST does not change the underlying insert, delete, or update
algorithm for the tree structure it represents. Instead, FAST runs the underlying up-
date algorithm for the tree it represents, with the only exception of writing any changes
caused by the update operation in memory instead of the external storage, to be flushed
later to the flash storage, and logging the result of the update operation. A main distin-
guishing characteristic of FAST is that what is buffered in memory, and also written in
the log file, is the result of the update operation, not a log of this operation.

Algorithm. Algorithm 1 gives the pseudo code of inserting an object Obj in FAST.
The algorithms for deleting and updating objects are similar in spirit to the insertion
algorithm, and thus are omitted from the paper. The algorithm mainly has two steps:
(1) Executing the insertion in memory (Line 2 in Algorithm 1). This is basically done
by calling the insertion procedure of the underlying tree, e.g., R-tree insertion, with two
main differences. First, The insertion operation calls the search operation, discussed
later in section 4, to find where we need to insert our data based on the most recent
version of the tree, constructed from main memory recent updates and the in-flash tree
index structure. Second, the modified or newly created nodes that result back from
the insertion operation are not written back to the flash storage, instead, they will be
returned to the algorithm in a list L. Notice that the insertion procedure may result in
creating new nodes if it encounters a split operation. (2) Buffering and logging the tree
updates (Lines 3 to 22 in Algorithm 1). For each modified node N in the list L, we
check if there is an entry for N in our in-memory buffer, tree modifications table. If
this is the case, we first add a corresponding log entry that records the changes that took
place in N . Then, we either add the changes in N to the list of changes in its entry in
the tree modifications table if this entry status is MOD, or update N entry in the tree
modifications table, if the entry status is NEW. On the other hand, if there is no entry
for N in the tree modifications table, we create such entry, add it to the log file, and fill
it according to whether N is a newly created node or a modified one.

Example. In our running example of Figure 3, inserting O7 results in modifying two
nodes, G and C. Node G needs to have an extra key to hold O7 while node C needs
to modify its minimum bounding rectangle that points to G to accommodate its size
change. The changes in both nodes are stored in the tree modifications table depicted in
Figure 3c. The log entries for this operation are depicted in the first two entries of the
log file of Figure 4a. Similarly, inserting O8 results in modifying nodes, D and B.

4 Searching in FAST

Given a query Q, the search operation returns those objects indexed by FAST and sat-
isfy Q. The search query Q could be a point query that searches for objects with a
specific (point) value, or a range query that searches for objects within a specific range.
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Algorithm 1. Insert an Object in the Tree
1: Function INSERT(Obj)

/* STEP 1: Executing the Insertion in Memory only */
2: L← List of modified nodes from the in-memory execution of inserting Obj in the underlying tree

/* STEP 2: Buffering and Logging the Updates */
3: for each Node N in L do
4: HashEntry ← N entry in the Tree Modifications Table
5: if HashEntry is not NULL then
6: Add the triple (MOD, N , updates in N ) to the log file
7: if the status of HashEntry is MOD then
8: Add the changes in N to the list of changes of HashEntry
9: else
10: Apply the changes in N to the new node of HashEntry
11: end if
12: else
13: HashEntry ← Create a new entry for N in the Tree Modifications Table
14: if N is a newly created node then
15: Add the triple (NEW, N , updates in N ) to the log file
16: Set HashEntry status to NEW, and its pointer to N
17: else
18: Add the triple (MOD, N , updates in N ) to the log file
19: Set HashEntry status to MOD, and its pointer to the list of changes that took place in N
20: end if
21: end if
22: end for

Algorithm 2. Searching for an Object indexed by the Tree
1: Function SEARCH(Query Q, Tree Node R)

/* STEP 1: Constructing the most recent version of R */
2: N ← RetrieveNode(R)

/* STEP 2: Recursive search calls */
3: if N is non-leaf node then
4: Check each entry E in N . If E satisfies the query Q, invoke Search(Q, E.NodePointer) for the subtree below E
5: else
6: Check each entry E in N . If E satisfies the search query Q, return the object to which E is pointing
7: end if

An important promise of FAST is that it does not change the main search algorithm for
any tree it represents. Instead, FAST complements the underlying searching algorithm
to consider the latest tree updates stored in memory.

Main idea. As it is the case for any index tree, the search algorithm starts by fetching
the root node from the secondary storage, unless it is already buffered in memory. Then,
based on the entries in the root, we find out which tree pointer to follow to fetch another
node from the next level. The algorithm goes on recursively by fetching nodes from
the secondary storage and traversing the tree structure till we either find a node that
includes the objects we are searching for or conclude that there are no objects that
satisfy the search query. The challenging part here is that the retrieved nodes from the
flash storage do not include the recent in-memory stored updates. FAST complements
this search algorithm to apply the recent tree updates to each retrieved node from the
flash storage. In particular, for each visited node, FAST constructs the latest version
of the node by merging the retrieved version from the flash storage with the recent
in-memory updates for that node.

Algorithm. Algorithm 2 gives the pseudo code of the search operation in FAST. The
algorithm takes two input parameters, the query Q, which might be a point or range
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Algorithm 3. Retrieving a tree node
1: Function RETRIEVENODE(Tree Node R)
2: FlashNode ← Retrieve node R from the flash-resident index tree
3: HashEntry ← R’s entry in the Tree Modifications Table
4: if HashEntry is NULL then
5: return FlashNode
6: end if
7: if the status of HashEntry is MOD then
8: FlashNode ← FlashNode ∪ All the updates in HashEntry list
9: return FlashNode
10: end if

/* We are trying to retrieve either a new or a deleted node */
11: return the node that HashEntry is pointing to

query, and a pointer to the root node R of the tree we want to search in. The output of
the algorithm is the list of objects that satisfy the input query Q. Starting from the root
node and for each visited node R in the tree, the algorithm mainly goes through two
main steps: (1) Constructing the most recent version of R (Line 2 in Algorithm 2). This
is mainly to integrate the latest flash-residant version of R with its in-memory stored
updates. Algorithm 3 gives the detailed pseudo code for this step, where initially, we
read R from the flash storage. Then, we check if there is an entry for R in the tree
modifications table. If this is not the case, then we know that the version we have read
from the flash storage is up-to-date, and we just return it back as the most recent version.
On the other hand, if R has an entry in the tree modifications table, we either apply the
changes stored in this entry to R in case the entry status is MOD, or just return the node
that this entry is pointing to instead of R. This return value could be null in case the
entry status is DEL. (2) Recursive search calls (Lines 3 to 7 in Algorithm 2). This step
is typical in any tree search algorithm, and it is basically inherited from the underlying
tree that FAST is representing. The idea is to check if R is a leaf node or not. If R is a
non-leaf node, we will check each entry E in the node. If E satisfies the search query Q,
we recursively search in the subtree below E. On the other hand, if R is a leaf node, we
will also check each entry E in the node, yet if E satisfies the search query Q, we will
return the object to which E is pointing to as an answer to the query.

Example. Given the range query Q in Figure 3a, FAST search algorithm will first fetch
the root node A stored in flash memory. As there is no entry for A in the tree modifica-
tions table (Figure 3c), then the version of A stored in flash memory is the most recent
one. Then, node C is the next node to be fetched from flash memory by the search-
ing algorithm. As the tree modifications table has an entry for C with status MOD, the
modifications listed in the tree modifications table for C will be applied to the version
of C read from the flash storage. Similarly, the search algorithm will construct the leaf
nodes F and G Finally, the result of this query is {O4, O5, O6, O7}.

5 Memory Flushing in FAST

As memory is a scarce resource, it will eventually be filled up with incoming updates.
In that case, FAST triggers its flushing module to free some memory space by evicting a
selected part of the memory, termed a flushing unit, to the flash storage. Such flushing is
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done in a way that amortizes the cost of expensive random write operations over a high
number of update operations. In this section, we first define the flushing unit. Then,
we discuss the flushing policy used in FAST. Finally, we explain the FAST flushing
algorithm.

5.1 Flushing Unit

An important design parameter, in FAST, is the size of a flushing unit, the granularity of
consecutive memory space written in the flash storage during each flush operation. Our
goal is to find a suitable flushing unit size that minimizes the average cost of flushing
an update operation to the flash storage, denoted as C. The value of C depends on
two factors: C1 = average writing cost

number of written bytes ; the average cost per bytes written, and C2 =
number of written bytes

number of updates ; the number of bytes written per update. This gives C = C1×C2.
Interestingly, the values of C1 and C2 show opposite behaviors with the increase

of the flushing unit size. First consider C1. On raw flash devices (e.g., ReMix [11]),
for a flushing unit smaller than a flash block, C1 decreases with the increase of the
flushing unit size (see [19] for more detail experiments). This is intuitive, since with
a larger flushing unit, the cost of erasing a block is amortized over more bytes in the
flushing unit. The same is also true for SSDs since small random writes introduce large
garbage collection overheads, while large random writes approach the performance of
sequential writes. Previous work has shown that, on several SSDs including the ones
from Samsung, MTron, and Transcend, random write latency per byte increases by ≈
32× when the write size is reduced from 16KB to 0.5KB [5]. Even on newer generation
SSDs from Intel, we observed an increase of ≈ 4× in a similar experimental setup.
This suggests that a flushing unit should not be very small, as that would result in a
large value of C1. On the other hand, the value of C2 increases with increasing the size
of the flushing unit. Due to non-uniform updates of tree nodes, a large flushing unit is
unlikely to have as dense updates as a small flushing unit. Thus, the larger a flushing
unit is, the less the number of updates per byte is (i.e., the higher the value of C2 is).
Another disadvantage of large flushing unit is that it may cause a significant pause to
the system. All these suggest that the flushing unit should not be very large.

Deciding the optimal size of a flushing unit requires finding a sweet spot between
the competing costs of C1 and C2. Our experiments show that for raw flash devices, a
flushing unit of one flash block minimizes the overall cost. For SSDs, a flushing unit of
size 16KB is a good choice, as it gives a good balance between the values of C1 and C2.

5.2 Flushing Policy

The main idea of FAST flushing policy is to minimize the average cost of writing each
update to the underlying flash storage. To that end, FAST flushing policy aims to flush
the in-memory tree updates that belong to the flushing unit that has the highest num-
ber of in-memory updates. In that case, the cost of writing the flushing unit will be
amortized among the highest possible number of updates. Moreover, since the maxi-
mum number of updates are being flushed out, this frees up the maximum amount of
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Algorithm 4. Flushing Tree Updates
1: Function FLUSHTREEUPDATES()

/* STEP 1: Finding out the list of flushed tree nodes */
2: FlushList ← {φ}
3: MaxUnit ← Extract the Maximum from FlushHeap
4: for each Node N in tree modifications table do
5: if N ∈ MaxUnit then
6: F ← RetrieveNode(N )
7: FlushList ← FlushList ∪ F
8: end if
9: end for

/* STEP 2: Flushing, logging, and cleaning selected nodes */
10: Flush all tree updates ∈ FlushList to flash memory
11: Add (Flush, All Nodes in FlushList) to the log file
12: for each Node F in FlushList do
13: Delete F from the Tree Modifications Table
14: end for

memory used by buffered updates. Finally, as done in the update operations, the flushing
operation is logged in the log file to ensure the durability of system transactions.

Data structure. The flushing policy maintains an in-memory max heap structure,
termed FlushHeap, of all flushing units that have at least one in-memory tree update.
The max heap is ordered on the number of in-memory updates for each flushing unit,
and is updated with each incoming tree update.

5.3 Flushing Algorithm

Algorithm 4 gives the pseudo code for flushing tree updates. The algorithm has two
main steps: (1) Finding out the list of flushed tree nodes (Lines 2 to 9 in Algorithm 4).
This step starts by finding out the victim flushing unit, MaxUnit, with the highest num-
ber of in-memory updates. This is done as an O(1) heap extraction operation. Then, we
scan the tree modifications table to find all updated tree nodes that belong to MaxUnit.
For each such node, we construct the most recent version of the node by retrieving the
tree node from the flash storage, and updating it with the in-memory updates. This is
done by calling the RetrieveNode(N ) function, given in Algorithm 3. The list of these
updated nodes constitute the list of to be flushed nodes, FlushList. (2) Flushing, logging,
and cleaning selected tree nodes (Lines 10 to 14 in Algorithm 4). In this step, all nodes
in the FlushList are written once to the flash storage. As all these nodes reside in one
flushing unit, this operation would have a minimal cost due to our careful selection of
the flushing unit size. Then, similar to update operations, we log the flushing operation
to ensure durability. Finally, all flushed nodes are removed from the tree modifications
table to free memory space for new updates.

Example. In our running example given in Figure 3, assume that the memory is full,
hence FAST triggers its flushing module. Assume also that nodes B, C, and D reside in
the same flushing unit B1, while nodes E, F , and G reside in another flushing unit B2.
The number of updates in B1 is three as each of nodes B, C and D has been updated
once. On the other hand, the number of updates in B2 is one because nodes E and F has
no updates at all, and node G has only a single update. Hence, MaxUnit is set to B1, and
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we will invoke RetrieveNode algorithm for all nodes belonging to B1 (i.e., nodes B, C,
and D) to get the most recent version of these nodes and flush them to flash memory.
Then, the log entry (Flush; Nodes B, C, D) is added to the log file (depicted as the last
log entry in Figure 4a). Finally, the entries for nodes B, C, and D are removed from the
tree modifications table.

6 Crash Recovery and Log Compaction in FAST

As discussed before, FAST heavily relies on storing recent updates in memory, to be
flushed later to the flash storage. Although such design efficiently amortizes the expen-
sive random write operations over a large number of updates, it poses another challenge
where memory contents may be lost in case of system crash. To avoid such loss of data,
FAST employs a crash recovery module that ensures the durability of in-memory up-
dates even if the system crashed. The crash recovery module in FAST mainly relies on
the log file entries, written sequentially upon the update and flush operations.

6.1 Recovery

The recovery module in FAST is triggered when the system restarts from a crash, with
the goal of restoring the state of the system just before the crash took place. The state of
the system includes the contents of the in-memory data structure, tree modifications ta-
ble, and the flash-resident tree index structure. By doing so, FAST ensures the durability
of all non-flushed updates that were stored in memory before crash.

Log# Operation Node Modification

1 MOD C K, 2, (12,4,14,2)

2 MOD G K, 2, O7

3 MOD B K, 2, (5,10, 8, 7)

4 MOD D K, 2, O8

5 FLUSH B, C, D *

Log# Operation Node Modification

2 MOD G K, 2, O7

(a) FAST Log File

(b) FAST Log File after Crash Recovery

Fig. 4. FAST Logging and Recovery

Main Idea. The main idea of the recovery op-
eration is to scan the log file bottom-up to
be aware of the flushed nodes, i.e., nodes that
made their way to the flash storage. During this
bottom-up scanning, we also find out the set of
operations that need to be replayed to restore
the tree modifications table. Then, the recovery
module cleans all the flash blocks, and starts to
replay the non-flushed operations in the order of
their insertion, i.e., top-down. The replay pro-
cess includes insertion in the tree modifications
table as well as a new log entry. It is important
here to reiterate our assumption that there will be no crash during the recovery process,
so, it is safe to keep the list of operations to be replayed in memory. If we will consider
a system crash during the recovery process, we might just leave the operations to be
replayed in the log, and scan the whole log file again in a top-down manner. In this
top-down scan, we will only replay the operations for non-flushed nodes, while writing
the new log entries into a clean flash block. The result of the crash recovery module is
that the state of the memory will be stored as it was before the system crashes, and the
log file will be an exact image of the tree modifications table.

Algorithm. Algorithm 5 gives the pseudo code for crash recovery in FAST, which has
two main steps: (1) Bottom-Up scan (Lines 2 to 12 in Algorithm 5). In this step, FAST
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Algorithm 5. Crash Recovery
1: Function RECOVERFROMCRASH()

/* STEP 1: Bottom-Up Cleaning */
2: FlushedNodes ← φ
3: for each Log Entry L in the log file in a reverse order do
4: if the operation of L is Flush then
5: FlushedNodes ← FlushedNodes ∪ the list of nodes in L
6: else
7: if the node in entry L /∈ FlushedNodes then
8: Push L into the stack of updates RedoStack
9: end if
10: end if
11: end for
12: Clean all the log entries by erasing log flash blocks

/* Phase 2: Top-Down Processing */
13: while RedoStack is not Empty do
14: Op ← Pop an update operation from the top of RedoStack
15: Insert the operation Op into the tree modifications table
16: Add a log entry for Op in the log file
17: end while

scans the log file bottom-up, i.e., in the reverse order of the insertion of log entries. For
each log entry L in the log file, if the operation of L is Flush, then we know that all
the nodes listed in this entry have already made their way to the flash storage. Thus,
we keep track of these nodes in a list, termed FlushedNodes, so that we avoid redoing
any updates over any of these nodes later. On the other side, if the operation of L is not
Flush, we check if the node in L entry is in the list FlushedNodes. If this is the case, we
just ignore this entry as we know that it has made its way to the flash storage. Otherwise,
we push this log entry into a stack of operations, termed RedoStack, as it indicates a non-
flushed entry at the crash time. At the end of this step, we erase the log flash blocks,
and pass the RedoStack to the second step. (2) Top-Down processing (Lines 13 to 17
in Algorithm 5). This step basically goes through all the entries in the RedoStack in a
top-down way, i.e., the order of insertion in the log file. As all these operations were not
flushed by the crash time, we just add each operation to the tree modifications table and
add a corresponding log entry. The reason of doing these operations in a top-down way
is to ensure that we have the same order of updates, which is essential in case one node
has multiple non-flushed updates. At the end of this step, the tree modifications table
will be exactly the same as it was just before the crash time, while the log file will be
exactly an image of the tree modifications table stored in the flash storage.

Example. In our running example, the log entries of inserting Objects O7 and O8 in
Figure 3 are given as the first four log entries in Figure 4a. Then, the last log entry
in Figure 4a corresponds to flushing nodes B, C, and D. We assume that the sys-
tem is crashed just after inserting this flushing operation. Upon restarting the system,
the recovery module will be invoked. First, the bottom-up scanning process will be
started with the last entry of the log file, where nodes B, C, and D are added to the list
FlushedNodes. Then, for the next log entry, i.e., the fourth entry, as the node affected
by this entry D is already in the FlushedNodes list, we just ignore this entry, since we
are sure that it has made its way to disk. Similarly, we ignore the third log entry for
node B. For the second log entry, as the affected node G is not in the FlushedNodes
list, we know that this operation did not make it to the storage yet, and we add it to the
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RedoStack to be redone later. The bottom-up scanning step is concluded by ignoring
the first log entry as its affected node C is already flushed, and by wiping out all log
entries. Then, the top-down processing step starts with only one entry in the RedoStack
that corresponds to node G. This entry will be added to the tree modifications table and
log file. Figure 4b gives the log file after the end of the recovery module which also
corresponds to the entries of the tree modifications table after recovering from failure.

6.2 Log Compaction

As FAST log file is a limited resource, it may eventually become full. In this case,
FAST triggers a log compaction module that organizes the log file entries for better
space utilization. This can be achieved by two space saving techniques: (a) Removing
all the log entries of flushed nodes. As these nodes have already made their way to the
flash storage, we do not need to keep their log entries anymore, and (b) Packing small
log entries in a larger writing unit. Whenever a new log entry is inserted, it mostly has a
small size that may occupy a flash page as the smallest writing unit to the flash storage.
At the time of compaction, these small entries can be packed together to achieve the
maximum possible space utilization.

The main idea and algorithm for the log compaction module are almost the same as
the ones used for the recovery module, with the exception that the entries in the Re-
doStack will not be added to the tree modifications table, yet they will just be written
back to the log file, in a more compact way. As in the recovery module, Figures 4a
and 4b give the log file before and after log compaction, respectively. The log com-
paction have similar expensive cost as the recovery process. Fortunately, with an ap-
propriate size of log file and memory, it will not be common to call the log compaction
module.

It is unlikely that the log compaction module will not really compact the log file
much. This may take place only for a very small log size and a very large memory size,
as there will be a lot of non-flushed operations in memory with their corresponding log
entries. Notice that if the memory size is small, there will be a lot of flushing opera-
tions, which means that log compaction can always find log entries to be removed. If
this unlikely case takes place, we call an emergency flushing operation where we force
flushing all main memory contents to the flash memory persistent storage, and hence
clean all the log file contents leaving space for more log entries to be added.

7 Experimental Evaluation

This section experimentally evaluates the performance of FAST, compared to the state-
of-the-art algorithms for one-dimensional and multi-dimensional flash index structures:
(1) Lazy Adaptive Tree (LA-tree) [2]: LA-tree is a flash friendly one dimensional index
structure that is intended to replace the B-tree. LA-tree stores the updates in cascaded
buffers residing on flash memory and, then empties these buffers dynamically based
on the operations workload. (2) FD-tree [16,17]: FD-tree is a one-dimensional index
structure that allows small random writes to occur only in a small portion of the tree
called the head tree which exists at the top level of the tree. When the capacity of
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the head tree is exceeded, its entries are merged in batches to subsequent tree levels.
(3) RFTL [25]: RFTL is a mutli-dimensional tree index structure that adds a buffering
layer on top of the flash translation layer (FTL) in order to make R-trees work efficiently
on flash devices.

All experiments are based on an actual implementation of FAST, LA-tree, FD-tree,
and RFTL inside PostgreSQL [1]. We instantiate B-tree and R-tree instances of FAST,
termed FAST-Btree and FAST-Rtree, respectively, by implementing FAST inside the
GiST generalized index structure [8], which is already built inside PostgreSQL. In our
experiments, we use two synthetic workloads: (1) Lookup intensive workload (WL):
that includes 80% search operations and 20% update operations (i.e., insert, delete, or
update). (2) Update intensive workload, (WU ): that includes 20% search operations and
80% update operations.

Unless mentioned otherwise, we set the number of workload operations to 10 million
operations, main memory size to 256 KB (i.e., the amount of memory dedicated to main
memory buffer used by FAST), tree index size to 512 MB, and log file size to 10 MB,
which means that the default log size is ≈2% of the index size.

The experiments in this section mainly discuss the effect of varying the memory size,
log file size, index size, and number of updates on the performance of FAST-Btree,
FAST-Rtree, LA-tree, FD-tree, and RFTL. Also, we study the performance of flushing,
log compaction, and recovery operations in FAST. In addition, we compare the imple-
mentation cost between FAST and its counterparts. Our performance metrics are mainly
the number of flash memory erase operations and the average response time. However,
in almost all of our experiments, we got a similar trend for both performance measures.
Thus, for brevity, we only show the experiments for the number of flash memory erase
operations, which is the most expensive operation in flash storage. Although we com-
pare FAST to its counterparts from a performance point of view, however we believe
the main contribution of FAST is not in the performance gain. The generic structure and
low implementation cost are the main advantages of FAST over specific flash-aware tree
index structures.

All experiments were run on both raw flash memory storage, and solid state drives
(SSDs). For raw flash, we used the raw NAND flash emulator described in [2]. The
emulator was populated with exhaustive measurements from a custom-designed Mica2
sensor board with a Toshiba1Gb NAND TC58DVG02A1FT00 flash chip. For SSDs,
we used a 32GB MSP-SATA7525032 SSD device. All the experiments were run on a
machine with Intel Core2 8400 at 3Ghz with 4GB of RAM running Ubuntu Linux 8.04.

7.1 Effect of Memory Size

Figures 5(a) and 5(b) give the effect of varying the memory size from 128 KB to
1024 KB (in a log scale) on the number of erase operations, encountered in FAST-Btree,
LA-tree, and FD-tree, for workloads WL and WU , respectively. For both workloads and
for all memory sizes, FAST-Btree consistently has much lower erase operations than
that of the LA-tree. More specifically, Fast-Btree results in having only from half to one
third of the erase operations encountered by LA-tree. This is mainly due to the smart
choice of flushing unit and flushing policy used in FAST that amortize the block erase
operations over a large number of updates.
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Fig. 5. Effect of Memory Size

The performance of FAST-Btree is slightly better than that of FD-tree, because FD-
tree does not employ a crash recovery technique (i.e., no logging overhead). FAST still
performs better than FD-tree due to FAST flushing policy that smartly selects the best
block to be flushed to flash memory. Although the performance of FD-tree is close
to FAST-Btree, however FAST has the edge of being a generic framework which is
applied to many tree index structures and needs less work and overhead (in terms of
lines of code) to be incorporated in the database engine.

Figures 5(c) and 5(d) give similar experiments to that of Figures 5(a) and 5(b), with
the exception that we run the experiments for two-dimensional search and update op-
erations for both the Fast-Rtree and RFTL. To be able to do so, we have adjusted
our workload WL and WU to Spatial-WL and Spatial-WU , respectively, which have
two-dimensional operations instead of the one-dimensional operations used in WL and
WU . The result of these experiments have the same trend as the ones done for one-
dimensional tree structures, where FAST-Rtree has consistently better performance than
RFTL in all cases, with around one half to one third of the number of erase operations
encountered in RFTL.

7.2 Effect of Log File Size

Figure 6 gives the effect of varying the log file size from 10 MB (i.e., 2% of the in-
dex size) to 25 MB (i.e., 5% of the index size) on the number of erase operations,
encountered in FAST-Btree, LA-tree, and FD-tree for workload WL (Figure 6(a)) and
FAST-Rtree and RFTL for workload Spatial-WU (Figure 6(b)). For brevity, we do not
show the experiments of FAST-Btree, LA-tree, and FD-tree for workload WU nor the
experiment of FAST-Rtree and RFTL for workload Spatial-WL. As can be seen from
the figures, the performance of both LA-tee, FD-tree, and RFTL is not affected by
the change of the log file size. This is mainly because these three approaches rely on
buffering incoming updates, and hence does not make use of any log file. It is interest-
ing, however, to see that the number of erase operations in FAST-Btree and FAST-Rtree
significantly decreases with the increase of the log file size, given that the memory size
is set to its default value of 256 KB in all experiments. The justification for this is
that with the increase of the log file size, there will be less need for FAST to do log
compaction.
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7.3 Effect of Index Size

Figure 7 gives the effect of varying the index size from 128 MB to 4 GB (in a log scale)
on the number of erase operations, encountered in FAST-Btree, LA-tree, and FD-tree
for workload WL (Figure 7(a)) and FAST-Rtree and RFTL for workload Spatial-WU

(Figure 7(b)). Same as in Section 7.2, we omit other workloads for brevity. In all cases,
FAST consistently gives much better performance than its counterparts. Both FAST
and other index structures have similar trend of a linear increase of the number of erase
operations with the increase of the index size. This is mainly because with a larger
index, an update operation may end up modifying more nodes in the index hierarchy,
or more overlapped nodes in case of multi-dimensional index structures.

7.4 Effect of Number of Updates

Figure 7 gives the effect of varying the number of update operations from one million to
100 millions (in a log scale) on the number of erase operations for both one-dimensional
(i.e., FAST-Btree, LA-tree, and FD-tree in Figure 8(a)) and multi-dimensional index
structures (i.e., FAST-Rtree and RFTL in Figure 8(b)). As we are only interested in
update operations, the workload for the experiments in this section is just a stream of
incoming update operations, up to 100 million operations. As can be seen from the
figure, FAST scales well with the number of updates and still maintains its superior
performance over its counterparts from both one-dimensional (LA-tree) and multi-
dimensional index structures (RFTL). FAST performs slightly better than FD-tree;
this is because FD-tree (one dimensional index structure) is buffering some of the tree
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updates in memory and flushes them when needed, but FAST applies a smart flushing
policy, which flushes only the block with the highest number of updates.

7.5 Log Compaction

Figure 9(a) gives the behavior and frequency of log compaction operations in FAST
when running a sequence of 200 thousands update operations for a log file size of
10 MB. The Y axis in this figure gives the size of the filled part of the log file, started as
empty. The size is monotonically increasing with having more update operations till it
reaches its maximum limit of 10 MB. Then, the log compaction operation is triggered to
compact the log file. As can be seen from the figure, the log compaction operation may
compact the log file from 20 to 60% of its capacity, which is very efficient compaction.
Another take from this experiment is that we have made only seven log compaction
operations for 200 thousands update operations, which means that the log compaction
process is not very common, making FAST more efficient even with a large amount of
update operations.

7.6 Recovery Performance

Figure 9(b) gives the overhead of the recovery process in FAST, which serves also as
the overhead of the log compaction process. The overhead of recovery increases linearly
with the size increase of the log file contents at the time of crash. This is intuitive as
with more log entries in the log file, it will take more time from the FAST recovery
module to scan this log file, and replay some of its operations to recover the lost main
memory contents. However, what we really want to emphasize on in this experiment is
that the overhead of recovery is only about 100 msec for a log file that includes 9 MB
of log entries. This shows that the recovery overhead is a low price to pay to ensure
transaction durability.

8 Conclusion

This paper presented FAST; a generic framework for flash-aware spatial tree index
structures. FAST distinguishes itself from all previous attempts of flash memory in-
dexing in two aspects: (1) FAST is a generic framework that can be applied to a wide
class of spatial tree structures, and (2) FAST achieves both efficiency and durability of
read and write flash operations. FAST has four main modules, namely, update, search,
flushing, and recovery. The update module is responsible on buffering incoming tree
updates in an in-memory data structure, while writing small entries sequentially in a
designated flash-resident log file. The search module retrieves requested data from the
flash storage and updates it with recent updates stored in memory, if any. The flush-
ing module is responsible on evicting flash blocks from memory to the flash storage to
give space for incoming updates. Finally, the recovery module ensures the durability of
in-memory updates in case of a system crash.
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Abstract. This work presents a pure multidimensional, indexing infrastructure
for large-scale decentralized networks that operate in extremely dynamic environ-
ments where peers join, leave and fail arbitrarily. We propose a new peer-to-peer
variant implementing a virtual distributed k-d tree, and develop efficient algo-
rithms for multidimensional point and range queries. Scalability is enhanced as
each peer has only partial knowledge of the network. The most prominent fea-
ture of our method, is that in expectance each peer maintains O(log n) state and
requests are resolved in O(log n) hops with respect to the overlay size n. In ad-
dition, we provide mechanisms for handling peer failures and improving fault
tolerance as well as balancing the load of peers. Finally, our work is comple-
mented by an experimental evaluation, where MIDAS is shown to outperform
existing methods in spatial as well as in higher dimensional settings.

Keywords: Peer-to-peer systems, kd-trees.

1 Introduction

Peer-to-peer (P2P) systems have emerged as a popular technique for exchanging infor-
mation among a set of distributed machines. Recently, structured peer-to-peer systems
gain momentum as a general means to decentralize various applications, such as lookup
services, file systems, content delivery, etc. This work considers the case of a structured
distributed storage and index scheme for multidimensional information, termed MI-
DAS, for Multi-Attribute Indexing for Distributed Architecture Systems. The important
feature of MIDAS is that it is capable of efficiently processing the most important types
of multi-attribute queries, such as point and range queries, in arbitrary dimensionality.

While a lot of research has been devoted to structured peer-to-peer networks, only
a few of them are capable of indexing multidimensional data. We distinguish three
categories. The first includes solutions based on a single-dimensional P2P method. The
most naive method is to select a single attribute and ignore all others for indexing, which
clearly has its disadvantages. A more attractive alternative is to index each dimension
separately, e.g., [4], [6]. However, these approaches still have to resort to only one of the
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dimensions for processing queries. The most popular approach, [9], [18], [5], within this
category is to map the original space into a single dimension using a space filling curve,
such as Hilbert or z-curve, and then employ any standard P2P system. These techniques
suffer, especially in high dimensionality, as locality cannot be preserved. For instance,
a rectangular range in the original space corresponds to multiple non-contiguous ranges
in the mapped space.

The second category contains P2P systems that were explicitly designed to store
multidimensional information, e.g., [15], [9]. The basic idea in these methods is that
each peer is responsible for a rectangular region of the space and it has knowledge of its
neighbors in adjacent regions. Being multidimensional in nature, allows them to feature
sublinear to the network size cost for most queries. Their main weakness, however, is
that they cannot take advantage of a hierarchical indexing structure. As a result, lookups
for remote (in the multidimensional space) peers are unavoidably routed through many
intermediate node, i.e., jumps cannot be made.

The last category includes methods, e.g., [10], [11], that decentralize a conventional
hierarchical multidimensional index, such as the R-tree. The basic idea is that each peer
corresponds to a node (internal or leaf) of the index, and establishes link to its par-
ent, children and selected nodes at the same depth of the tree but in different subtrees.
Queries are processed similar to the centralized approach, i.e., the index is traversed
starting from the root. As a result, these methods inherit nice properties like logarith-
mic search cost, but face a serious limitation. Peers that correspond to nodes high in the
tree can quickly become overloaded as query processing must pass through them. While
this was a desirable property in centralized indices in order to minimize the number of
I/O operations by maintaining these nodes in main memory, it is a limiting factor in
distributed settings leading to bottlenecks. Moreover, this causes an imbalance in fault
tolerance: a peer high in the tree that fails requires a significant amount of effort from
the system to recover. Last but not least, R-trees are known to suffer in high dimen-
sionality settings, which carries over to their decentralized counterparts. For example,
the experiments in [11] showed that for dimensionality close to 20, this method was
outperformed by the non-indexed approach of [15].

Motivated by these observations, MIDAS takes a different approach. First, it em-
ploys a hierarchical multidimensional index structure, the k-d tree. This has a series of
benefits. Being a binary tree, it allows for simple and efficient routing, in a manner rem-
iniscent of Plaxton’s algorithm [14] for single dimensional tree-like structures. Unlike
other multidimensional index techniques, e.g., [11], peers in MIDAS only correspond
to leaf nodes of the k-d tree. This, alleviates bottlenecks and increases scalability as no
single peer is burdened with routing multiple requests. Moreover, MIDAS is compatible
with conventional techniques for load balancing and replication-based fault tolerance.

In summary, MIDAS is an efficient method for indexing multi-attribute data. We
prove that in expectance point queries and range queries are performed in O(log n)
hops; these bounds are smaller than non-indexed multidimensional P2P systems, e.g.,
O(d d

√
n) of [15]. A thorough experimental study on real spatial data as well as on

synthetic data of varying dimensionality validates this claim.
The remainder of this paper is organized as follows. Section 2 compares MIDAS to

related work. Section 3 describes our index scheme and basic operations including load



170 G. Tsatsanifos, D. Sacharidis, and T. Sellis

balancing and fault tolerance mechanisms. Section 4 discusses multidimensional query
processing. Section 5 presents an extensive experimental evaluation of all MIDAS’ fea-
tures. Section 6 concludes and summarizes our contributions.

2 Related Work

Structured peer-to-peer networks employ a globally consistent protocol to ensure that
any peer can efficiently route a search to the peer that has the desired content, regardless
of how rare it is or where it is located. Such a guarantee necessitates a structured over-
lay pattern. The most prominent class of approaches is distributed hash tables (DHTs).
A DHT is a decentralized, distributed system that provides a lookup service similar
to a hash-table. DHTs employ a consistent hashing variant [12] that is used to assign
ownership of a (key, value) pair to a particular peer of an overlay network. Because of
their structure, they offer certain guarantees when retrieving a key (e.g., worst-case log-
arithmic number of hops for lookups, i.e., point queries, with respect to network size).
DHTs form a reliable infrastructure for building complex services, such as distributed
file systems, content distribution systems, cooperative web caching, multicast, domain
name services, etc.

Chord [19] uses a consistent hashing variant to associate unique (single-dimensional)
identifiers with resources and peers. A key is assigned to the first peer whose identifier
is equal to, or follows the key, in the identifier space. Each peer in Chord has log n state,
i.e., number of neighbors, and resolves lookups in log n hops, where n is the size of the
overlay network, i.e., the number of peers.

Another line of work involves tree-like structures, such as P-Grid [1], Kademlia [13],
Tapestry [?] and Pastry [17]. Peer lookup in these systems is based on Plaxton’s algo-
rithm [14]. The main idea is to locate the neighbor whose identifier shares the longest
common prefix with the requested (single-dimensional) key, and repeat this procedure
recursively until the owner of the key is found. Lookups cost O(log n) hops and each
peer has O(log n) state. MIDAS is similar to these works in that it has a tree-like struc-
ture with logarithmic number of neighbors at each peer, but differs in that it is able to
perform multidimensional lookups in O(log n) hops.

We next discuss various structured peer-to-peer systems that natively index multi-
attribute keys. In CAN [15], each peer is responsible for its zone, which is an axis-
parallel orthogonal region of the d-dimensional space. Each peer holds information
about a number of adjacent zones in the space, which results in O(d) state. A d-
dimensional key lookup is greedily routed towards the peer whose zone contains the
key and costs O(d d

√
n) hops. Analogous results hold for MURK [9], where the space

is a d-dimensional torus. The main concern with these approaches is that their cost
(although sublinear to n) is considerate for large networks.

Several approaches, e.g., SCRAP [9], ZNet [18], employ a space filling curve to map
the multidimensional space to a single dimension and then use a conventional system
to index the resulting space. For instance, [5] uses the z-curve and P-Grid to support
multi-attribute range queries. The problem with such methods is that the locality of the
original space cannot be preserved well, especially in high dimensionality. As a result a
single range query is decomposed to multiple range queries in the mapped space, which
increases the processing cost.
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MAAN [6] extends Chord to support multidimensional range queries by mapping
attribute values to the Chord identifier space via uniform locality preserving hash-
ing. MAAN and Mercury [4] can support multi-attribute range queries through single-
attribute query resolution. They do not feature pure multidimensional schemes, as they
treat attributes independently. As a result, a range query is forwarded to the first value
appearing in the range and then it is spread along neighboring peers exploiting the con-
tiguity of the range. This procedure is very costly particularly in MAAN, which prunes
the search space using only one dimension.

The VBI-tree [11] is a distributed framework based on balanced multidimensional
tree structured overlays, e.g., R-tree. It provides an abstract tree structure on top of
an overlay network that supports any kind of hierarchical tree indexing structures, i.e.,
when the region managed by a node covers those managed by its children. However, it
was shown in [5] that for range queries the VBI-tree suffers in scalability in terms of
throughput. Furthermore, it can cause unfairness as peers corresponding to nodes high
in the tree are heavily hit.

3 MIDAS Architecture

This section presents the information stored in each peer and details the basic operations
in the MIDAS overlay network. In particular, Section 3.1 introduces the distributed in-
dex structure, Section 3.2 discusses the information stored within each peer in MIDAS.
Section 3.4, 3.3 and 3.5 elaborates on the actions taken when a peer departs, joins, and
fails, respectively. Section 3.6 discusses load balancing and fault tolerance.

3.1 Index Structure

The distributed index of MIDAS is an instance of an adaptive k-d tree [3]. Consider a D-
dimensional space I = [�I , hI ], defined by a low �I and a high hI D-dimensional point.
The k-d tree T is a binary tree, in which each node T [i] corresponds to an axis parallel
(hyper-) rectangle Ii; the root T [1] corresponds to the entire space, i.e., I1 = I . Each
internal node T [i] has always two children, T [2i] and T [2i+1], whose rectangles are
derived by splitting Ii at some value si along some dimension di; the splitting criterion
(i.e., the values of si and di) are discussed in Section 3.3. Note that di represents the
splitting dimension of node T [i] and not the i-th dimension of the space.

Consider node T [i]’s two children, T [2i], T [2i + 1], and their rectangles I2i =
[�2i, h2i], I2i+1 = [�2i+1, h2i+1]. Assuming that the left child (T [2i]) is assigned the
lower part of Ii, it holds that (1) �2i[dj ] = �2i+1[dj ] and h2i[dj ] = h2i+1[dj ] on ev-
ery dimension dj �= di, and (2) h2i[di] = �2i+1[di] = si on dimension di. We write
I2i 	di I2i+1 to denote that the above properties hold for the two rectangles.

Each node of the k-d tree is associated with a binary identifier corresponding to its
path from the root, which is defined recursively. The root has the empty id ∅; the left
(resp. right) child of an internal node has the id of its parent augmented with 0 (resp.
1). Figure 1a depicts a k-d tree of eleven nodes obtained from five splits; next to each
node its id is shown. Due to the hierarchical splits, the rectangles of the leaf nodes in a
k-d tree constitute a non-overlapping partition of the entire space I . Figure 1b draws the
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Fig. 1. An example of a two-dimensional k-d tree

rectangles corresponding to the leaves of Figure 1a; the splits are numbered and shown
next to the corresponding axis parallel cuts.

A tuple with D attributes is represented as a point in the D-dimensional space I
indexed by a k-d tree. A leaf of a k-d tree stores all tuples that fall in its rectangle. The
hierarchical structure of the k-d tree allows for efficient methods to process queries,
such as range queries, which retrieve all tuples within a range.

3.2 MIDAS Peers

It is important to distinguish the concepts of a physical and a virtual peer. A virtual
peer, or simply a peer, is the basic entity in MIDAS. On the other hand, a physical peer
is an actual machine that takes part in the distributed overlay. A physical peer can be
responsible for several peers due to node departures or failures (Section 3.4, 3.5), or for
load balancing and fault tolerance purposes (Section 3.6).

A peer in MIDAS corresponds to a leaf of the k-d tree, and stores/indexes all tuples
that reside in the leaf’s rectangle, which is called its zone. A peer is denoted with small
letters, e.g., u, v, w, etc., whereas a physical peer with capital letters, e.g., A, B, C,
etc. For example, in Figure 1a, physical peer C acts as the single peer w corresponding
to leaf 01. We emphasize that internal k-d tree nodes, e.g., the non-shaded nodes in
Figure 1a, do not correspond to peers and of course not to physical peers. An important
property of peers in MIDAS is the following invariant.

Lemma 1. For any point in space I , there exists exactly one peer in MIDAS responsible
for it.

Proof. Each peer corresponds to a k-d tree leaf. The lemma holds because the leaves
constitute an non-overlapping partition of the entire space I .

A peer u in MIDAS contains only partial information about the k-d tree, which however
is sufficient to perform complex query processing discussed in Section 4. In particular,
peer u contains the following state. (1) u.id is a bitmap representing the leaf’s binary id;
u.id[j] is the j-th most significant bit. (2) u.depth is the depth of the leaf in the k-d tree,
or equivalently the number of bits in u.id. (3) u.sdim is an array of length u.depth so
that u.sdim[j] is the splitting dimension of the parent of the j-th node on the path from
the root to u. (4) u.split is an array of length u.depth so that u.split[j] is the splitting
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value of the parent of the j-th node on the path from the root to u. (5) u.link is an array
of length u.depth that corresponds to u’s routing table, i.e., it contains the peers u has
a link to. (6) u.backlink is a list that contains all peers that have u in their link array.

In the following, we explain the contents of u.link, which define the routing table
of peer u. First, we define an important concept. Consider the prefixes of u’s identifier;
there are u.depth of them. Each prefix corresponds to a subtree of the k-d tree that
contains the leaf u (more accurately the leaf that has id u.id) and identifies a node on
the path from the root to u. In the example of Figure 1a, u.id = 000 has three prefixes:
0, 00 and 000, corresponding to the subtrees rooted at the internal k-d tree nodes with
these ids. If we invert the least significant bit of a prefix, we obtain a maximal sibling
subtree, i.e., a subtree for which there exists no larger subtree that contains it and also
not contain the leaf u. Figure 2a shows the maximal sibling subtrees of u.id = 000,
which are rooted at nodes 1, 01 and 001, as shaded triangles.

#1
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#4

u y

w

z

(a) Maximal sibling subtrees of u
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#1

#4

u y

w

z

(b) Local knowledge at u

Fig. 2. Links of peer u

For each maximal sibling subtree, u establishes a link to a peer that resides in it.
Note that a subtree may contain multiple leafs and thus multiple peers; MIDAS re-
quires that peer u knows just any one of them. For example, Figure 2a shows the
peers in each maximal sibling subtree that u is connected to. Observe that each peer
has only partial knowledge about the k-d tree structure. Figure 2b depicts this local
knowledge for u, which is only aware about the splits (#1, #2 and #4) along its path
to the root. The shaded rectangles corresponds to the subtrees of the same shade in
Figure 2a. Peer u knows exactly one other peer within each rectangle. Observe, how-
ever, that these rectangles cover the entire space I; this is necessary to ensure that u can
locate any other peer, as explained in Section 4.1, and process queries, as discussed in
Section 4.

Array u.link defines the routing table. Entry u.link[j] contains the address of a peer
that resides in the maximal sibling subtree obtained from the j-length prefix of u.id.
Continuing the example, u connects to three peers, i.e., u.link = {z, w, y}. Table 1 de-
picts the link array for each peer. The notation u(000) indicates that peer u corresponds
to k-d tree leaf with id 000. The notation 01: w(01) signifies that peer w with leaf id 01
is located at the subtree rooted at node 01. The first row of Table 1 indicates that u has
three links z, w and y in its maximal sibling subtrees rooted at k-d tree nodes with ids
1, 01 and 001, respectively.
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Table 1. Routing tables example

Peer link entries

u(000) 1: z(101) 01: w(01) 001: y(001)
y(001) 1: z(101) 01: w(01) 000: u(000)
w(01) 1: v(100) 00: u(000)
v(100) 0: w(01) 11: x(11) 101: z(101)
z(101) 0: y(001) 11: x(11) 100: v(100)
x(11) 0: u(000) 10: v(100)

3.3 Peer Joins

When a new physical peer joins MIDAS, it becomes responsible for a single peer. Ini-
tially, the newly arrived physical peer chooses a uniformly random point p in the space
I and locates the peer v responsible for it; Section 4.1 details points query processing.
There are two scenarios depending on the status of the physical peer responsible for v.

In the first scenario, the physical peer responsible for v has no other peers. Then,
the k-d tree leaf node with id v.id is split and two new leaves are created. The splitting
dimension sdim of the node is chosen uniformly at random among all possible dimen-
sions, while the splitting value split is the value of the random point p on the sdim
dimension. Peer v now corresponds to the left child. Finally, a new peer w is created for
the right child and is assigned to the newly arrived physical peer.

To ensure proper functionality, MIDAS takes the following actions. (1) v sends to
w the tuples that fall in w’s zone. (2) Peer v: (2a) appends 0 to v.id; (2b) increments
v.depth by one; (2c) appends w as the last entry in v.link; (2d) appends to v.sdim and
v.split the new splitting dimension and value. (3) Peer w: (3a) copies v’s state; (3b)
changes the least significant bit of w.id to 1; (3c) changes the last entry in w.link to v.
(4) v keeps one half of its v.backlink. (5) w keeps the other half of its w.backlink. (4)
w notifies its backlinks about its address.

The second scenario applies when the physical peer responsible for v has multiple
peers, that is v is just one of them. In this case, v simply migrates to the newly arrived
physical peer, which has the responsibility to notify the backlinks of v about its address.

We present an example of how the network of Figure 1 was constructed. Assume
initially that there is a single physical peer A responsible for peer u, whose zone is the
entire space, as shown in Figure 3a. Then, physical peer B joins and causes a split of the
k-d tree root along the first dimension (Split #1 in Figure 1). Peer u is now responsible
for the leaf with id 0. A new peer v is created with the id 1 and is assigned to the newly
arrived physical peer B. Figure 3b depicts the resulting k-d tree; the split node is drawn
with a bold line.

Assume next that physical peer C joins and chooses a random point that falls in
peer u’s zone. Therefore, leaf 0 splits, along the second dimension (Split #2). Peer u
becomes responsible for the left child and has the id 00, while a new peer w with id
01 is created and assigned to physical peer C. Figure 3c depicts the resulting k-d tree.
Then, physical peer D joins selecting a random point inside v’s zone. As a result, leaf
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Fig. 3. Network creation

1 splits along v.sdim[2] (Split #3), v is assigned leaf 10, and a new peer x with id 11 is
assigned to D; see Figure 3d.

Physical peer E arrives and splits leaf 00 along u.sdim[3] (Split #4). Peer u becomes
responsible for the left child and obtains the id 000, while a new peer y with id 001 is
created and assigned to E. The resulting k-d tree is shown in Figure 3e. Finally, F joins
causing a split of leaf 10 along v.sdim[3] (Split #5). A new peer z is assigned to F with
id 101, while peer v gets the id 100. Figure 3f shows the k-d tree after the last join.

The following lemma shows that peer joins in MIDAS are safe, that is, Lemma 1
continues to hold.

Lemma 2. After a physical peer joins, the MIDAS invariant holds.

Proof. Assume that the MIDAS invariant initially holds. In the first scenario, a physical
peer join causes a k-d tree leaf to split. Let u be the peer responsible for the leaf that
splits, and let u′ denote the same peer after the split. Further, let w denote the new peer
created. It holds that k-d tree node u.id is the parent of leaves u′.id and w.id. Also, note
that MIDAS ensures that Iu = Iu′ 	du Iw. Therefore, any point in the space I that was
assigned to u is now assigned to either u′ or w, but not to both. All other points remain
assigned to the same peer despite the join.

In the second scenario, observe that when a physical peer joins, no changes in the
k-d tree and thus in the peers’ zones are made. Hence, in both scenarios, the MIDAS
invariant is preserved after a physical peer joins.

The probabilistic nature of the join mechanism in MIDAS achieves a very important
goal. It ensures that the (expected value of the) depth of the k-d tree, i.e., the maximum
length of a root to leaf path, is logarithmic to the number of total k-d tree nodes (and
thus of leaves and thus of peers). The following theorem proves this claim.
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Theorem 1. The expected depth of the distributed k-d tree of MIDAS when n peers join
on an initially empty overlay is O(log n) with constant variance.

Proof. Consider a MIDAS k-d tree of n peers. Since, each internal node has exactly
two children (it corresponds to a split), there are n − 1 internal nodes. The k-d tree
obtained by removing the leaves is an instance of a random relaxed k-d tree, as defined
in [8], which is an extension of a random k-d tree defined in [2]. This holds because the
splitting value and dimension are independently drawn from uniform distributions.

It is shown [8], [2] that the probability of constructing a k-d tree by n random in-
sertions is the same as the probability of attaining the same tree structure by n random
insertions into a binary search tree. It is generally known that, in random binary search
trees, the expected value of a root-to-leaf path length is logarithmic to the number of
nodes. However, a stronger result from [16] shows that the maximum path length, i.e.,
the depth, has expected value O(log n) and variance O(1). This results carries over to
the MIDAS k-d tree with n peers.

The previous theorem is essential for establishing asymptotic bounds on the perfor-
mance of MIDAS. First, it implies that the amount of information stored in each peer
is logarithmic to the overlay size. Moreover, as discussed in Sections 4.1 and 4, the
theorem provides bounds for the cost of query processing.

3.4 Peer Departures

When a physical peer departs, MIDAS executes the following procedure for each of the
peers that it is responsible for. Two possible scenarios exist, depending on the location
of the departing peer in the k-d tree.

Let y denote a peer of the departing physical peer E in the first scenario, which
applies when the sibling of y in the k-d tree is also a leaf and thus corresponds to a peer,
say u. Observe that y has a link to u, as the last entry in y.link must point to u. In this
scenario, when peer y departs, MIDAS adapts the k-d tree by removing leaves y.id and
u.id, so that their parent becomes a leaf. Peer u is properly updated so that it becomes
associated with this parent. In the example of Figure 1a, assume that physical peer E,
responsible for y, departs. Peer y’s sibling is 000, which is a leaf and corresponds to
peer u. Figure 4a shows the resulting k-d tree after E departs. Note that peer u is now
responsible for a zone which is the union of y’s and u’s old zones.

To ensure that all necessary changes in this scenario are propagated to the network,
MIDAS takes the following actions. (1) y sends to u all its tuples. (2) Peer u: (2a) drops
its least significant bit from its id; (2b) decreases its depth by one; and (2c) removes the
last entry from arrays u.sdim, u.split, u.link. (3) y notifies all its backlinks, i.e., the
peers that link to y, to update their link to u instead of y. (4) u merges list y.backlink
with its own.

Let w be a peer of the departing physical peer C in the second scenario, which
applies when the sibling of w in the k-d tree is not a leaf. In this case, k-d tree leaf w.id
cannot be removed along with its sibling. Therefore, peer w must migrate to another
physical peer. Peer w chooses one of its links and asks the corresponding physical peer
to assume responsibility for peer w. Ideally, the physical peer that has the lightest load
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Fig. 4. The two scenarios for peer departures

is selected1 (see also Section 3.6). Note that the backlinks of w must be notified about
the address of the new peer responsible for w. In the example of Figure 1a, assume that
physical peer C departs. C is responsible for w, whose sibling 00 in the k-d tree is not a
leaf. Therefore, w contacts its link v so that its physical peer B assumes responsibility
for w. Figure 4b shows the resulting k-d tree after C departs.

The following lemma shows that departures in MIDAS are safe, i.e., Lemma 1 con-
tinues to hold.

Lemma 3. After a physical peer departs, the MIDAS invariant holds.

Proof. Assume that the MIDAS invariant initially holds. Note that a physical peer de-
parture is treated as multiple departures of all peers that it controls.

In the first scenario, a peer departure causes the removal of two k-d tree leaves.
Let w be the departing peer and u be the peer responsible for the sibling of w.id in
the tree. Further, let u′ denote peer u after the departure. Observe that the zone of u′

must correspond to some old peer that split along dimension du′ , which implies that
Iu′ = Iu 	du′ Iw . Therefore, any point in the space I that was assigned to either u or
w is now assigned to u. All other points remain assigned to the same peer despite the
departure.

In the second scenario, observe that when a peer departs, no changes in the k-d tree
and thus in the peers’ zones are made. Hence, in both scenarios, the MIDAS invariant
is preserved after a physical peer departs.

3.5 Peer Failures

In a dynamic environment, it is common for peers to fail. MIDAS employs mechanisms
that ensure that the distributed index continues to function. Consider that a physical peer
fails; the following procedure applies for each peer under the responsibility of the failing
peer. MIDAS addresses two orthogonal issues when a peer w fails: (1) another physical
peer must take over w, and (2) the key-value pairs stored in w must be retrieved.

Regarding the first, note that all peers connected to w will learn that it failed; this
happens because a peer periodically pings its neighbors. Each of the peers responsible

1 Peers periodically inform their backlinks about their load.
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for one of w’s backlinks knows w’s zone (i.e., the boundaries of the region for which
w is responsible), but only one must take over w. This raises a distributed agreement
problem common in other works; for example, in CAN, the backlinks of w would fol-
low a protocol so that the one with the smallest zone takes over w’s zone. However,
communication among the peers is not necessary in MIDAS. If w’s sibling in the tree
is a peer (i.e., a leaf), say u, then the physical peer responsible for u will take over w. If
that is not the case, the peer with the smallest id, among w’s backlinks will take over w.

Regarding the second issue, note that w (or any peer for that matter) is not the owner
of the data it stores. Therefore, it is the responsibility of the owner to ensure that its data
exist in the distributed index. This is addressed in all distributed indices in a similar
manner. Each tuple is associated with a time-to-live (TTL) parameter. The owner peri-
odically (before the TTL expires) re-inserts the tuples in the index. Therefore, the lost
key-value pairs of w will eventually be restored. To increase fault tolerance, distributed
indices typically employ replication mechanisms. MIDAS is compatible with them as
explained in Section 3.6.

3.6 Load Balancing and Fault Tolerance

Balancing the load, i.e, the amount of work, among peers is an important issue in dis-
tributed indices. MIDAS can use standard techniques. For example, one could apply
the task-load balancing mechanism of Chord [19]. That is, given M physical peers, we
introduce N 
 M peers. Then each physical peer is assigned a set of peers so that the
combined task-load per physical peer is uniform.

To enhance fault tolerance, MIDAS can utilize standard replication schemes. For
example, consider the multiple reality paradigm, where each reality corresponds to an
instance of the domain space indexed by a separate distributed k-d tree. Each data tuple
has a replica in every reality. A physical peer contains (at least) one peer in each reality.
When initiating a query, a physical peer picks randomly a reality to pose the query to;
note that this also results in better load distribution. Then, in case of peer failures and
before the key-value pairs are refreshed (see Section 3.5), the physical peer can pose
the query to another reality.

4 Query Processing on MIDAS

This section details how MIDAS processes multi-attribute queries. In particular, Sec-
tion 4.1 discusses point queries, while Section 4.2 deals with range queries.

4.1 Point Queries

The distributed k-d tree of MIDAS allows for efficient hierarchical routing. We show
that a peer can process a point query, i.e., reach the peer responsible for a given point
in the space I , in number of hops that is, in expectation, logarithmic to the total number
of peers in MIDAS.

Algorithm 1 details how point queries are answered in MIDAS. Assume that peer u
receives a point query message for point q. If its zone contains q, it returns the answer
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(the value associated with the key q) to the issuer, say w, of the query (lines 1–3).
Otherwise, u needs to find the most relevant peer to forward the request to. The most
relevant peer is the one that resides in the same maximal sibling subtree with the q.
Therefore, peer u examines its local knowledge of the k-d tree (i.e., the sdim and split
arrays) and determines the maximal sibling subtree that q falls in (lines 4–10). The
query is then forwarded to the link corresponding to that subtree (line 7).

Algorithm 1. u.Point (q, w)
Peer u processes a point query for q issued by w

1: if u.IsLocal(q) then
2: u.Send to (w, u.Get val (q))
3: return
4: end if
5: for j ← 0 to u.depth do
6: d← u.sdim[j]
7: if (u.id[j] = 0 and q[d] ≥ u.split[j]) or (u.id[j] = 1 and q[d] < u.split[j]) then
8: u.link[j].Point (q, w)
9: return

10: end if
11: end for

To illustrate the previous procedure, consider a query for point q issued by peer u.
Figure 5a draws q and the local knowledge about the space I at peer u. Observe that
q falls outside u’s zone. Peer u thus forwards the query to its link z within the shaded
area since it contains q (1st hop). Next, peer z processes the query. Point q is inside the
shaded area of Figure 5a, which depicts z’s local k-d tree knowledge. Subsequently, z
forwards the query to its link x within that area (2nd hop). Finally, peer x responds to
the issuing peer u, as point q falls inside its zone.
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Fig. 5. Point query example for q

Lemma 4. The expected number of hops in a point query is O(log n).

Proof. We first show that the number of hops required is at the worst case equal to the
depth of the k-d tree.

Assume that the requested point is q. Consider a peer u that executes Algorithm 1.
u determines the maximal sibling subtree that q resides in, and let k be the depth of



180 G. Tsatsanifos, D. Sacharidis, and T. Sellis

its root. Then, u forwards the request to peer v in that subtree. We argue that v will
determine a maximal sibling subtree at depth � > k. Observe that u and q fall in the
same subtree rooted at depth k. Therefore, all subtrees rooted at depths higher than
k that contain u will also contain q. The argument holds because all maximal sibling
subtrees of u rooted at depths higher than k cannot contain q. The above argument
implies that point queries will be forwarded to subtrees of successively higher depth,
until the leaf which has q is reached; such a leaf exists because q ∈ I . Therefore, the
number of hops is at the worst case equal to the depth of the k-d tree.

From Theorem 1, we have that the expected depth of the k-d tree is O(log n), which
concludes the proof.

4.2 Range Queries

A range query specifies a rectangular area Q in the space, defined by a lower � and
a higher point h, and requests all tuples that fall in Q. Instead of locating the peer
responsible for a corner of the area, e.g., �, and then visit all relevant neighboring peers,
MIDAS utilizes the distributed k-d tree to identify in parallel multiple peers whose
zone overlaps with Q. The range partitioning idea is similar to the shower algorithm
[7], which however applies only for single-dimensional data.

Algorithm 2 details the actions taken by a peer u upon receipt of a range query for
area Q = [�, h] issued by w. First, u identifies all its tuples inside Q, if any, and sends
them to the issuer w (lines 1–3). Then, u examines all its maximal sibling subtrees by
scanning arrays sdim and split (lines 4–15). If the area of a subtree overlaps Q (lines
6 and 10), peer u constructs the intersection of this area and Q (lines 7–8 and 11–12).
Then, u forwards a request for this intersection to its link (lines 9 and 13). Lines 6–9
(resp. 10–14) apply when u is in the left (resp. right) subtree rooted at depth j.

Algorithm 2. u.Range (�, h, w)
Peer u processes a range query for rectangle Q = [�, h] issued by w.

1: if u.Overlaps (�, h) then
2: u.Send to (w, u.Get vals (�, h))
3: end if
4: for j ← 0 to u.depth do
5: d← u.sdim[j]
6: if u.id[j] = 0 and u.split[j] < h[d] then
7: �′ ← �
8: �′ [d]← u.split[j]
9: u.link[j].Range (�′ , h, w)

10: else if u.id[j] = 1 and u.split[j] > �[d] then
11: h′ ← h
12: h′ [d]← u.split[j]
13: u.link[j].Range (�, h′ , w)
14: end if
15: end for
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Figure 6 illustrates an example of a range query issued by peer u. Initially, u exe-
cutes Algorithm 2 for the range depicted as a bold line rectangle in Figure 6a. Peer u
retrieves the tuples inside its zone that are within the range; these tuples reside in the
non-shaded region of the range in Figure 6a. Then, u constructs the shaded regions,
shown in Figure 6a, as the intersections of the range with the area corresponding to
its maximal sibling subtrees. For each of these shaded regions, u forms a new query
and sends it to the appropriate link (1st hop); the messages are depicted as arrows in
Figure 6. For instance, peer z, which is u’ link in the maximal sibling subtree rooted at
depth one, receives a query about the light shaded area.

Peers w, y and z receive a query from u. The range for w and y falls completely
within their zone. Therefore, they process them locally and do not send any other mes-
sage. Figure 6b illustrates query processing at peer z, where the requested range is
drawn as a bold line rectangle. Observe that this range does not overlap with z’s zone;
therefore, z has no tuple that satisfies the query. Then, z constructs the intersections of
the range with the areas in its maximal sibling subtrees. Observe that the range does not
overlap with the maximal sibling subtree rooted at depth one; hence, no peer receives
a duplicate request. Peer z sends a query message to its links v and x with the shaded
regions of Figure 6b (2nd hop). Finally, peers v and x process the queries locally as the
requested ranges have no overlap with their zones.

#2

#1

#4

u y

w

z

(a) Processing at u

#1

#3

#5

y zv

x

(b) Processing at z

Fig. 6. Range query example

As explained in the example of Figure 6, the query is answered in two hops. In the
first, u reaches y, w, and z, and in the second, z reaches v and x. The following lemma
shows that the expected number of hops is logarithmic to the number of peers.

Lemma 5. The expected number of hops for processing a range query is O(log n).

Proof. We show that the number of hops required is at the worst case equal to the depth
of the k-d tree.

Consider that virtual peer v receives from u a query for range Q = [�, h]; assume
that v is the link at depth k in the link array of u. Due to its construction (the result
of an intersection operation), range Q is completely contained within the subtree that
contains v rooted at depth k. Therefore, Q cannot intersect with any maximal sibling
subtree of v at depth lower than k. As a result, if v forwards a range query, it will be to
links at depths strictly higher than k.
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In the worst case, a message will be forwarded to as many virtual peers as the depth
of the k-d tree. The fact that the expected depth is O(log n) (from Theorem 1) completes
the proof.

5 Experimental Evaluation

In order to assess our methods and validate our analytical results, we simulate a dynamic
environment and study each query type. We implement two methods from the literature,
CAN [15] and the VBI-tree [11], to serve as competitors to MIDAS.

5.1 Setting

Network. We simulate a dynamic topology to capture arbitrary peer joins, and depar-
tures, by implementing two distinct stages. In the increasing stage, peers continuously
join the network, while no peer departs. It starts from an overlay of 1,000 peers and
ends when 100K peers are available. On the other hand, in the decreasing stage, peers
continuously leave the network, while no new peer joins. This stage starts from an over-
lay of 100K peers and ends when only 1,000 peers are left. When depicting the effect of
these stages in the figures, the solid (resp. dashed) line represents the increasing (resp.
decreasing) stage.

Data and Queries. We use both a real as well as synthetic datasets of varying di-
mensionality. The real dataset, denoted as NE, consists of spatial (2D) points repre-
senting 125K postal addresses in three metropolitan areas (New York, Philadelphia and
Boston). The synthetic datasets contain 1M tuples uniformly and independently dis-
tributed in the domain space. The dimensionality is varied from 2 up to 19.

For each point query, we choose uniformly and independently a random location in
the domain space. For each range query, we also choose a random location, while the
length of the rectangular sides are selected so that the query returns approximately 50
tuples. In all figures, the reported values are the averages of executing 50K queries over
10 distinct overlay topologies.

Performance Metrics. We employ several metrics to evaluate MIDAS against other
methods. The basic metric indicative of query performance is latency, which is defined
as the maximum distance (in terms of hops) from the issuing peer to any peer reached
during query processing. Clearly, lower values suggest faster response.

Distributed query processing imposes a task load on multiple peers. Two metrics
quantify this load. Precision is defined as the ratio of the number of peers that contribute
to the answer over the total number of peers reached during processing of a query; the
optimal precision value is 1. Congestion is defined as the average number of queries
processed at any node, when n uniformly random queries are issued (n is the number
of peers in the network); lower values suggest lower average task load.

The next metrics are independent of the query evaluation process. Note that two types
of information are stored locally in each peer. The first is overhead information (e.g.,
links, zone description, etc.), which is measured by the average state a peer must main-
tain. As the number of peers increase, this is an important measure of scalability. The
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Fig. 7. Latency, state cardinality a peer maintains, and data load for the NE dataset
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Fig. 9. Latency, cardinality of the state a peer maintains for multidimensional dataset

second type is the number of tuples stored. As this depends on the dataset distribution
and the network topology, imbalances can occur. Data load measures the percentage of
the total data in the network, that resides in the top Q% most loaded peers. We show
measurements for Q = 10%, where the optimal fairness value is 0.1.

5.2 Results

This section presents the findings of our experimental study. Figure 7a illustrates query
performance aspects for point queries for spatial workloads, where MIDAS clearly
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outperforms the competition. Latency for MIDAS is bounded by O(log n), where n
stands for the overlay size, as Lemma 4 predicts; whereas, latency for CAN is bounded
by O( d

√
n). Figure 7b depicts the average state of a node maintains, as it is directly

related to the amount of traffic that occurs due to maintenance operations like detecting
failures, preserving updated routing tables each time a peer joins or leaves. Note that
state is increased in the VBI-tree compared to MIDAS as peers keep information about
the peers on their path from the root and their siblings at the same depth of the tree. State
in MIDAS has a logarithmic behavior in terms of the overlay size, as Theorem 1 states.
In low dimensionality settings, such as the spatial dataset NE, CAN peers maintain very
few links to others. Moreover, Figure 7c presents the data load. CAN achieves lower
data load mainly due to its joining protocol. In particular, it chooses to halve a peer’s
area for a newcomer, instead of splitting its data load like in MIDAS. As a result, CAN
becomes vulnerable to data skew. Note that in all methods, data load slightly decreases
as the number of peers increases.

We next discuss the case of range queries. Latency shows similar logarithmic be-
havior with range queries (Figure 8a) as Lemma 5 predicts. Figure 8b illustrates that
the congestion in MIDAS has logarithmic behavior in terms of the overlay size, and is
significantly lower than its competitors.

In Figure 8c precision improves with overlay size. The reason is that peers become
responsible for smaller areas, while the queries have fixed size, in other words less
irrelevant peers are reached. Precision is worse for VBI-tree and CAN compared to
MIDAS because of the longer routes required to reach relevant peers (see latency).

We finally discuss synthetic datasets of varying dimensionality. As Figures 9a and
9b, MIDAS is largely unaffected by dimensionality and is asymptotically better than
both the VBI-tree and CAN. The expected latency for CAN is bounded by O( d

√
n),

and thus, decreases as dimensionality increases. However, this comes at an extra cost.
As Figure 9c shows, the expected cardinality of a node’s routing table increases with
dimensionality and it is confirmed to be in O(d), whereas MIDAS’ peer state is in
O(log n) regardless dimensionality degree.

6 Conclusion

In this work we have presented MIDAS, a pure multidimensional indexing scheme
for large-scale decentralized networks, which significantly differs from other popular
overlays which are either single dimensional or implement a space filling curve. Our
peer-to-peer variant offers the possibility of combining DHT with hierarchical space
partitioning schemes, avoiding order-preserving hashing and space-filling curves. Yet,
it outperforms other multidimensional structures in terms of scalability. MIDAS allows
for multidimensional queries and offers guarantees concerning all operations. In partic-
ular, updates, points and range queries are resolved in O(log n) hops. Most importantly,
each peer in MIDAS maintains O(log n) state only. All things considered, MIDAS con-
stitutes an extremely attractive solution when it comes to high dimensional datasets that
provides a rich and wide functionality. Finally, interesting results arose from this work.
The curse of dimensionality has no impact on query performance and maintenance
costs, while MIDAS achieves high levels of fairness.
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Darius Šidlauskas1,�, Kenneth A. Ross2,��,
Christian S. Jensen3, and Simonas Šaltenis1
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Abstract. Modern processors consist of multiple cores that each sup-
port parallel processing by multiple physical threads, and they offer am-
ple main-memory storage. This paper studies the use of such processors
for the processing of update-intensive moving-object workloads that con-
tain very frequent updates as well as contain queries.

The non-trivial challenge addressed is that of avoiding contention be-
tween long-running queries and frequent updates. Specifically, the paper
proposes a grid-based indexing technique. A static grid indexes a near
up-to-date snapshot of the data to support queries, while a live grid sup-
ports updates. An efficient cloning technique that exploits the memcpy

system call is used to maintain the static grid.

An empirical study conducted with three modern processors finds that
very frequent cloning, on the order of tens of milliseconds, is feasible, that
the proposal scales linearly with the number of hardware threads, and
that it significantly outperforms the previous state-of-the-art approach
in terms of update throughput and query freshness.

1 Introduction

As wireless networks and sensing devices continue to proliferate, databases with
frequently updated data will gain in prominence. A prominent instance of this
scenario occurs when a database is maintained of the locations of moving objects
carrying on-line devices with GPS receivers. In this setting, an update usually
concerns only a single object, while a query may concern a single object (object
query) or multiple objects (e.g., range, kNN, or aggregate query).

For example, consider a population of 10 million vehicles that send location
updates to a central server and that subscribe to services that are enabled by
queries against the vehicle location database. Assuming that a high location
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accuracy of 10 meters is required and that the vehicles move with an average
speed of 10 m/s, the resulting workload will contain some 10 million updates/s.

With a few notable exceptions [6, 19], past research on update performance
in spatio-temporal indexing assumes that the data is disk resident [3,11,16,18].
This paper’s focus is on supporting extreme workloads assuming main-memory
resident data using modern processors that consist of multiple cores, each with
multiple hardware threads. With main memories reaching terabytes, this as-
sumed setting is realistic. The challenge is to exploit this available parallelism,
e.g., by avoiding serialization bottlenecks.

Past studies [4] suggest that standard index concurrency control mechanisms
do not scale in such parallel settings; performance already degrades when the
number of threads exceeds two. This is due to interference between update and
query operations. An alternative strategy is to isolate the conflicting operations
by allowing them to operate on different copies of data [6]. Queries are carried
out on a near up-to-date, read-only snapshot of the data, whereas updates are
applied to a write-only data structure. This strategy improves performance at
the cost of slightly outdated query results.

Our proposal, called TwinGrid, adopts this general strategy. It takes an ex-
isting index structure [19] that couples a spatial grid index with a secondary
object-id based index as its starting point. TwinGrid is equipped with a second
grid index. Updates are directed to the first grid, while queries are served by
the second grid. A copying mechanism is proposed that supports the efficient
copying of an entire memory-resident data structure, thus enabling the second
grid to be a near up-to-date copy of the first, in turn resulting in near up-to-date
query results.
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Fig. 1. memcpy Performance

The copying mechanism uses the memcpy
system call. Figure 1 shows the results
of profiling the performance of memcpy on
three processors. For example, the Nehalem
processor (an 8-core Intel Xeon X5550) can
copy 8.5 GB/s using at least 8 of the 16
available hardware threads. As copying in-
volves reading and writing this copying uses
about half of Nehalem’s maximum memory
bandwidth of 32 GB/s. Continuing our ex-
ample from above with 10 million objects, if
an item occupies 20 bytes, the index occu-
pies 200 MB and can be copied in 24 ms. In contrast, the previous state-of-the-art
proposal, called MOVIES, is capable of building its index in about 3 seconds on
a 4-core AMD Opteron processor [6].

The paper reports on an extensive empirical study of TwinGrid and a multi-
threaded version of MOVIES. The study uses three different, modern processors
that provide from 8 to 64 hardware threads. The results show that TwinGrid’s
performance scales linearly with the number of threads on all three processors
and that TwinGrid is able to support up to 10 million updates per second with
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query results being outdated by only tens of milliseconds in realistic settings. Ad-
ditionally, the study shows that TwinGrid outperforms MOVIES substantially
in terms of both update throughput and query freshness.

The rest of the paper is structured as follows. The next section briefly covers
preliminaries and related work. Section 3 details the design of TwinGrid and
the ideas underlying its design, and it compares TwinGrid with the previous
state-of-the-art approach. Section 4 reports the results of a thorough empirical
study, and Section 5 concludes.

2 Preliminaries

2.1 Problem Setting

A setting is assumed where a collection of objects move within a two-dimensional
space, regularly sending updates with their current locations to a server. Each
object has a unique identifier termed oid.

To take into account future developments, we assume the objects acquire their
locations using a Global Navigation Satellite System (e.g., GPS or Galileo) that
offers an accuracy on the order of a few meters. An update of an object oid is a
three-tuple (oid, x, y). The object’s old location is deleted, and its new location
(x, y) is inserted.

We consider the problem of efficiently supporting workloads consisting of such
updates as well as spatial queries, such as range and kNN queries, against the
current locations of the objects. In particular, we assume a large population of
objects where each object issues updates frequently.

2.2 Related Work

Spatial indexes were initially invented primarily with efficient querying in mind
and were perfectly fine for static data (e.g., [2, 7]). However, new applications
such as location-based services exhibit workloads that not only contain queries,
but also contain frequent updates, studies now also consider update-intensive
workloads [3,11,16,18]. While data has traditionally been assumed to be stored
on disk, the needs for high performance and increases in main memory sizes call
for techniques that assume main-memory resident data [3, 6, 10, 19, 8].

This paper considers the natural next step in this evolution, namely that of
exploiting the parallelism that is increasingly becoming available in modern pro-
cessors. We are not aware of any spatio-temporal indexing proposals that aim to
exploit this parallelism. To the best of our knowledge, the proposal most closely
related to ours is MOVIES [6], which we describe and parallelize in Section 3.4
and empirically compare with TwinGrid in Section 4.4.

Since TwinGrid is based on data snapshots, an interesting and performance
critical question is how to create snapshots. One approach is to use the idea of
differential files [14], where changes to the snapshot are accumulated separately
from the snapshot and where the two are merged regularly. MOVIES follows
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this approach: logged updates and the previous snapshot are used to bulk-load
a new snapshot. We show that our technique outperforms this approach.

Another snapshot creation approach is based on the idea of copy-on-write file
systems [15]. A snapshot is made by maintaining an additional set of references to
the elements in the main data structure. Multiple copies of the same element then
represent the element at different times. Rastogi et al. [13] apply this idea in the
T-tree. New versions of tree nodes are created when updates are about to modify
them. The merging is relatively cheap as only pointers have to be swapped.
However, the high cost of creating versions renders this technique useful only for
workloads with query intensive workloads with at most 4% updates (according
to results obtained with a SPARCstation 20 with two 200 MHz processors and
256 MB of main memory [13]).

2.3 Multi-threaded Processing

Modern processors, known as chip multi-processors or CMPs, have multiple cores
and multiple hardware threads per core, where all hardware threads share mem-
ory and (parts of) the cache hierarchy. Although low inter-thread communication
and synchronization latencies on the same die enable fine-grained parallelization,
which was previously unprofitable (on symmetric multi-processors or SMPs), ef-
ficient utilization of such hardware remains a non-trivial task, especially for the
type of workload we consider.

In single-threaded processing, updates and queries are executed in their order
of arrival. At any point in time, either a query or an update is being processed.
This guarantees consistent results, as all operations are carried out in isolation.
However, updates that arrive during the processing of a query must be buffered.
Thus, an update can be delayed by the time it takes to process a query. This
may delay an update very substantially.

With multi-threaded processing, special care must be taken to guarantee con-
sistent results. Often full serializability (as in database transaction processing)
is not required. Rather, queries must be correct in the sense that they must re-
flect a state of the database that was correct at some point in time. This setting
renders it challenging to manage the possible interference between rapid updates
and relatively long-running queries.

To address this issue, a variety of concurrency control schemes can be used.
However, queries must wait until all necessary exclusive latches are released by
updaters so that a consistent state can be read; and updates must wait for queries
holding shared latches. Long-running queries have the potential to slow down
updates. Moreover, extra care must be taken to avoid deadlocks and phantom
problems. Deadlocks are especially common when updates and queries acquire
locks in opposite order (e.g., see bottom-up updates and top-down queries in
Section 3). Phantoms can, for instance, arise when queries obtain locks on the
fly and a later update alters a data item, before a query gets the chance to lock
it, in such a way that it no longer satisfies the query condition. The traditional
solution to phantoms is to use predicate locks or table locks, which have the
effect of delaying even more updates.
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3 Parallel Workload Processing

This section describes the TwinGrid indexing technique. First, we describe an
existing update-efficient index structure for a single-threaded environment. Sec-
ond, we extended this to efficiently support multi-threaded processing. Then, we
compare our approach with the preexisting state-of-the-art proposal that also
uses snapshots.

3.1 Single-Threaded Processing

TwinGrid extends an existing memory-resident grid-based index structure, called
u-Grid, that offers high performance for a traffic monitoring application [19].

Structure. The structure and components of u-Grid are shown in Figure 2 and
explained next. Two important design decisions underlie u-Grid. First, it was
decided to use a fixed and uniform grid [1], the equally-sized square cells of which
are oriented rectilinearly and partition a predefined region to be monitored.
Objects with coordinates within the boundaries of a cell belong to that cell.
This reduces index maintenance costs, as no grid refinement or re-balancing are
needed (in contrast to adaptive grids or hierarchical space partitioning methods,
e.g., [12, 7]).

Second, a secondary index is employed that enables updates in a bottom-up
fashion [11]. The objects are indexed on their oid so that the index provides
direct access to an object’s data in the spatial index.

Bucket 1
Secondary Index

bckt ptr

# of
entries

object
ID

coord
x

coord
y

entry1meta entry2

Bucket 2

entry1meta entry2 entry3

Uniform Grid
x

y cell ptr idx oid

next
bckt

Fig. 2. Basic Indexing Scheme

The grid directory is stored
as a 2-dimensional array,
where each element of the
array corresponds to a grid
cell. Each cell stores a pointer
to a linked list of buck-
ets. Instead of storing iden-
tifiers of (or pointers to) ac-
tual data, the objects them-
selves are stored in the buck-
ets to improve retrieval per-
formance. The data to be
processed during updates and
queries is loaded in units
of blocks (cache lines) into
the CPU cache. When com-
pared to using a linked list
of objects, the use of large
buckets increases data access
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locality and enables more effective prefetching by modern CPUs. Each bucket
has object data and metadata fields. The metadata field contains a pointer to
the next bucket and the current number of objects in the bucket.

Update. Updates are categorized as local or non-local. An update of an object
determines the object’s old and new cells. If the two are the same cell, the
update is local, and it involves only updating the x and y coordinates. A non-
local update involves deletion of the object from its old cell and insertion of it
into the new cell.

The objects in a bucket are unordered. However, the insertion and deletion
algorithms ensure that all but the first bucket of a grid cell are full. A new
object is inserted at the end of the first bucket. In case it is full, a new bucket is
allocated, and the necessary pointers are updated so that this bucket becomes
the first. The deletion algorithm moves the last object of the first bucket into
the place of the object to be deleted. If the first bucket becomes empty, it is
removed and the next bucket becomes the first or the grid cell becomes empty
and stores a null pointer. Also, since the secondary index knows where exactly
an object is located (cell pointer, cell ptr, bucket pointer, bckt ptr, and entry
index within bucket, idx, in Figure 2), there is no need for cell/bucket scanning
during updates. This is particularly desirable for dense cells that contain many
buckets.

To process an update, a secondary index entry is retrieved based on an in-
coming object’s oid, and a new cell is determined according to the new x and
y coordinates. The new cell is compared with the object’s old cell, referenced
by the pointer cell ptr, to check whether the update is local or non-local. Then,
bckt ptr and idx are used to compute the direct address of the entry to be up-
dated. If the update is non-local, pointer cell ptr is also used during the deletion
to move the last object from the first bucket of the old grid cell into the place
of the deleted object. Therefore, a non-local update also requires modifying the
affected values in cell ptr, bckt ptr, and idx.

Querying. Object queries are used in updates and involve only consulting the
secondary index with oid.

A range query is defined by a rectangle given by two corner points (xqmin ,
yqmin) and (xqmax , yqmax). The algorithm first partitions the cells covered by the
range query into fully covered cells and partially covered cells. The objects from
the fully covered cells are put into the result list by reading the corresponding
buckets. The buckets from the partially covered cells are scanned, each object
being checked individually to determine whether it is within the query range.

Other types of queries can easily be supported (e.g., kNN queries [19]).

3.2 TwinGrid

As mentioned earlier, one strategy that avoids interference between updates and
queries in parallel processing is to service queries using a separate, read-only
snapshot of the data that does not require locking. Then updates to the latest
data can progress in parallel with the queries. Based on this, TwinGrid extends
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the above indexing approach by maintaining two copies of the spatial index. One
copy, reader-store, is read-only and is used to service (long-running) queries. The
other, writer-store, is used to service updates and object queries. The writer-store
represents the most up-to-date copy of the data as incoming updates are always
applied to it as they are received.

To ensure near up-to-date query results, the read-only snapshot is refreshed
regularly, by copying the writer-store over the reader-store. Specifically, the en-
tire memory-resident writer-store is copied using the memcpy system call. Before
copying, updating is paused momentarily so that the writer-store achieves a
consistent state.

An important consideration when performing this copying is to ensure that
pointers are handled appropriately. For instance, if a bucket list with pointers is
simply copied, the pointers in the newly copied bucket still reference the original
bucket list, yielding a snapshot that is not a faithful copy of the data.

To overcome this pointer problem, TwinGrid uses what we call container-
based memory allocation in which data items are allocated within containers.
All data structures are allocated within a single container, and all pointers in
a container are interpreted as offsets from the base address of that container.
When data is copied, it is copied to a new container, thus preserving the relative
positioning within the container. This scheme thus enables the faithful copying of
pointer-based structures. TwinGrid allocates all writer-store components within
one container and copies this to the reader-store’s container during refreshing.

With container-based memory allocation, it is necessary to always preallocate
a large enough amount of memory to a container so that the container will
not run out of space. To embrace data growth, we set a minimum free space
requirement within each container. Whenever this requirement is violated, two
larger containers are allocated (before refreshing) and replicated with two copies
of the writer-store container. One container becomes the new (and bigger) reader-
store, while the other becomes the new writer-store. The old containers are
discarded. We note that in the workloads we are considering, the modifications
are predominantly updates rather than insertions or deletions.

Example. To make the presentation more concrete, we consider the following
example. Figure 3 shows how the uniform grid partitions the monitored region
into nine cells, assigning each moving object (o0, o1, . . . , o9) to some particular
cell (numbered from 0 to 8). Figure 4 depicts the resulting TwinGrid main-
memory structure. The components reader-store and writer-store are identical
and represent two copies of the data. Each store is stored within a container,
and each container includes the corresponding grid directory and array of buckets
populated with all the object data.

Bucket positions are determined based on offsets from a container base ad-
dress. Value -1 is equivalent to the null pointer. The cells numbered 0, 1, 3,
and 8 are empty; thus, the grid directory in reader-store (also in writer-store)
contains -1 in the corresponding entries. A non-empty cell contains the index of
the first bucket belonging to that cell. For instance, cell 6 contains 0, and the
bucket at offset 0 contains one object, which is object o1.
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Fig. 4. TwinGrid Main-Memory Components

Consider multi-bucket cell 4 with four objects that contains 3 as the offset
for the first bucket. Bucket 3 contains one object (o4), and the field for the next
bucket indicates a bucket at offset 5. Bucket 5 contains the remaining three
objects (o3, o8, and o5). This shows how only the first bucket may be non-full,
so that scanning in the insertion and deletion algorithms is avoided.

Simple oid-based lookups (during update or object query) are processed effi-
ciently on the current data, and the snapshot is targeted at long running queries
involving many objects for which the secondary index is not helpful. Therefore,
the secondary index is never copied and not stored in the container. Neverthe-
less, the actual object locations are described as offsets within the writer-store
container too—see the entry structure of the secondary index in Figure 4.

3.3 Multi-threaded Processing

Before the writer-store can be copied to the reader-store, it must be in a consis-
tent state. This is achieved by interrupting the processing of updates (Section 4.2
shows that the interruption is at the order of tens of milliseconds). Therefore,
TwinGrid progresses by switching between two phases: update processing and
cloning. This introduces a new parameter, the cloning period (cp), that defines
how often the reader-store is refreshed. From a query perspective, the parameter
defines the maximum staleness of a query result.

Figure 5 depicts the thread-level synchronization in TwinGrid. A main thread
starts by creating a number of worker threads. The workers start processing
incoming messages, updates and queries, while the main thread goes to sleep.
After cp time units have passed, the main thread wakes up, sends a message
to the workers that cloning is required, and blocks until cloning is done. When
the workers notice a cloning request, they do not take on new messages, but
finish their ongoing processing and go to a synchronization point (barrier). The
cloning starts when all worker threads are at the synchronization point.
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Fig. 6. Copying in Parallel

When cloning starts, all threads take part in copying the writer-store container
over the reader-store container. Each worker-thread gets assigned a memory
range. Figure 6 shows such an example with 6 thread copiers. After the cloning
is done (and all threads have arrived at the next synchronization point), one
worker-thread (the last to finish its copying) signals the main thread that cloning
is done. Again, all workers start workload processing while the main thread goes
to sleep for another cloning period.

Listing 1. Thread-safe Update in TwinGrid

1 bool update( Obj u ) {
2 bool done = fa l se ;
3 SIEntry obj = SI . lookup (u . o id ) ;
4 lock ( obj ) ;
5 int o l d c e l l = obj . c e l l i d x ;
6 int new ce l l = cellIdx (u . x , u . y ) ;
7 i f ( n ew ce l l == o l d c e l l ) {
8 /∗ Local update ∗/
9 obj . x = u . x ; obj . y = u . y ;

10 done = true ;
11 } else {
12 /∗ Non− l o c a l update ∗/
13 lockCells( o l d c e l l , n ew ce l l ) ;
14 Obj l s t o b j = lastObj ( o l d c e l l ) ;
15 i f ( trylock ( l s t o b j ) ) {
16 delete ( obj ) ; // using l s t o b j ;
17 unlock ( l s t o b j ) ;
18 insert (u , n ew ce l l ) ;
19 done = true ;
20 }
21 unlockCells ( o l d c e l l , n ew ce l l ) ;
22 }
23 unlock ( obj ) ;
24 return done ;
25 }

TwinGrid enables multi-
ple threads to serve queries
without interfering with con-
currently updating threads.
However, the arrangement
with multiple updates oper-
ating on the same writer-
store requires careful atten-
tion.

Listing 1 shows pseudo-
code for the thread-safe up-
date algorithm. Since local
updates read and write sin-
gle objects, they are rel-
atively easy to perform.
An updating thread re-
trieves the corresponding
object from a secondary in-
dex (line 3), obtains a lock
on it (line 4), and determines
the update type (lines 5–7).
If it is local, the old ob-
ject coordinates are simply
updated with the new ones
(line 9). Single object up-
dates are short, and due to
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application semantics, the server rarely, if ever, encounters concurrent update
messages operating on the same object.

In case of a non-local update, the object has to be removed from its old cell
and inserted into the new cell. When multiple non-local updaters operate within
the same cell(s), incorrect behavior can result. For example, multiple updaters
can try to move their objects into the same new cell. This implies that they
all try to write to the same (last) position of the first bucket. With unlucky
timing, the threads can overwrite each others insertions. Therefore, each non-
local updater, in addition to object locks, obtains locks on the two cells involved
(line 13). The locks are obtained in increasing order of cell number so that
deadlocks are avoided. This guarantees that only one thread will operate on the
two participating cells.

Next, the call lastObj retrieves the last object of the first bucket in the
given cell (line 14), which will be used to overwrite (delete) the old object’s
position. Since this object might already be locked by other updaters, we do
trylock, which returns immediately with false if the object is already locked.
If the lock was successfully obtained, the old object is deleted (line 16) and the
just acquired lock is released (line 17). After object insertion into the new cell
(lines 18), the remaining locks are released and the update completes. Note that
in case we failed to lock lst obj, all locks are released and false is returned
(the update has to be retried1). This eliminates (very rare) deadlocks that occur
when another non-local updater happens to lock lst obj already in line 4 and
waits until the same cell(s) will be unlocked by this updater.

The incoming update and query messages are placed in a queue-like data
structure and are processed by worker-threads in a FIFO manner. To guarantee
that the same message is not processed by more than one thread, we use the
atomic compare-and-swap instruction available on most commodity hardware.
In particular, each thread reads and atomically increments a counter that takes
as its value the number of the message in the queue to be processed next. This
mechanism causes threads to serialize their execution, thus reducing parallelism,
if the queue is accessed more frequently than the atomic operation can be pro-
cessed. To reduce the effects of such contention, TwinGrid uses multiple queues.
Each thread then reads messages only from one queue that is assigned to it.
To avoid load imbalances among the threads, the queues are filled in a round-
robin fashion. Section 4.3 studies the effect the number of queues can have on
TwinGrid performance.

The use of multiple queues may result in the queries and updates in a workload
being processed in an order slightly different from the submission order. This
is acceptable in the intended applications because some randomization in the
arrival order can already occur due to differences in transmission delays, which
have relatively larger effects than those caused by the use of multiple queues.
To ensure that an updater sees its own updates, all updates and queries from
a single data producer can be directed to the same queue. Only if there is a
small number of updaters relative to the number of threads, this may result

1 Similarly to reading retries in concurrency control of main-memory R-trees [8].
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in load imbalances. In the target application, where updaters are vehicles, load
imbalance is unlikely.

Note that the choice of copying the writer-store over the reader store can
be relaxed: multiple historical snapshots can be accumulated by copying the
writer-store to a newly allocated container. Old snapshots are kept as long as
there are queries using them. This arrangement ensures that cloning is not de-
layed by very-long running queries. This is so because cloning can be started
without waiting for threads processing very-long running queries to finish; only
the fast object queries need to finish before cloning can start. Specifically, with
a 200MB data structure and 20GB of main memory, one can keep 100 snap-
shots in main memory. At 24 ms between snapshots, these cover 2.4 s, thus
enabling the processing of queries that run very long for the setting considered
on memory-resident data. The maximum range query processing time in our
considered workloads is on the order of ten milliseconds (see Section 4).

3.4 Comparison with MOVIES

As MOVIES [6] is the only proposal known to us that uses the snapshot-
based strategy for the processing of moving-object workloads, we compare with
MOVIES in detail.

Conceptual Comparison. MOVIES is based on frequently building short-lived
throwaway indexes. In particular, during a time interval, called the frame time
Ti, a read-only index, Ii, is used to answer queries, while all incoming updates
are collected in a dedicated update buffer, Bi. In addition, an index Ii+1 is being
built during Ti based on the updates collected in the update buffer Bi−1 during
Ti−1. If the buffer Bi−1 does not contain updates for some objects (i.e., objects
not updated during Ti−1), index Ii is consulted for the missing data in order to
build Ii+1.

As soon as Ii+1 is built, the update buffer Bi−1 and the old index Ii are
destroyed, and a new time interval Ti+1 is started, where index Ii+1 is the new
read-only index that is used to answer queries, while all incoming updates are
collected in a new buffer, Bi+1, etc. Update buffers can be organized using an
array or hash table structure, while linearized kd-tries [17] are used for indexing.

The minimum Ti duration depends on how fast the read-only index can be
built using some bulk-loading technique (Ti > Tbulk). The query staleness is
2 × Ti because queries issued in time frame Ti+1 are processed using index Ii+1

that was built in Ti using update buffer Bi−1. In TwinGrid, query staleness
depends on the chosen cloning period because as soon as cloning is done, queries
are serviced using the fresh snapshot. Moreover, it can support some queries
with current data by scheduling cloning at the moment the query starts. The
penalty is additional cloning time, though.

Bulk-loading is beneficial only when substantial amounts of updates have been
accumulated; otherwise, an update-in-place approach is cheaper. Also it is expen-
sive to do single-object look-ups in the old index to retrieve un-updated objects.
MOVIES assumes that each object sends an update at least every tΔmax time
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units, which is less than a second in the reported empirical study [6]. Since work-
loads may contain many static objects (e.g., parked vehicles), this is a notable
limitation. TwinGrid does not suffer from this problem. However, TwinGrid
updates are applied to the index structure and are thus more expensive than
MOVIES updates, which are simply buffered.

To perform updates efficiently, each write-only buffer pre-allocates enough
memory to store all indexed objects. In addition, two read-only indexes are
maintained in parallel. As a result, the memory requirement is four times the
size of the database. This is twice that of TwinGrid.

MOVIES Implementation. To compare empirically with MOVIES, we mod-
ify the original implementation slightly.

In a machine-level parallelization experiment, the data is horizontally parti-
tioned by oid among machines that then work independently [6]. Assuming the
partitioning does not cause load imbalances2, one can expect a linear scale-up
with the number of machines employed. The same partitioning scheme can be
applied to TwinGrid. However, TwinGrid is built to exploit chip-level paral-
lelism. To obtain a fair and meaningful comparison with MOVIES, we use a
multi-threaded variant of MOVIES.

The MOVIES implementation compresses index and object data into 64-bit
values. An object identifier occupies 27 bits, a velocity vector occupies 5 bits,
leaving 16 bits per dimension (a discrete space of 216 × 216 is assumed). For
example, indexing the area of Germany yields a resolution of 26.3 meters per
point (index granularity). Since current devices can support accuracies of 1 me-
ter and we do not consider time-parametrized (predictive) queries, our MOVIES
implementation uses the speed vector bits to extend the discrete space (to in-
crease index granularity) up to 219 × 219 (one extra bit is borrowed from the oid
representation).

Therefore, single object updates operate on 64-bit values and can be per-
formed atomically3. In addition to multiple queries operating on the same read-
only index, this enables us to run multiple updates on the same write-only buffer
without introducing any locking scheme. Note that the same limitation (fitting
data into a 64-bit value) can be applied to TwinGrid. This would improve per-
formance further, as local update would be atomic and require no locking. Cur-
rently, all three attributes (oid, x, and y) are 32-bit integers, which we feel offer
greater versatility.

4 Experimental Study

4.1 Setting

We study performance on three modern platforms: a dual quad-core AMD
Opteron 2350 (Barcelona) with 8 hardware threads, a dual quad-core Intel Xeon
X5550 (Nehalem) with 16 hardware threads, and an 8-core Sun Niagara 2 (T2)
2 Empirical evidence suggests this is a strong assumption [18].
3 In a 64-bit system, 64-bit reads and writes are atomic.
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Table 1. Machines Used

Sun Dual Intel Dual AMD
UltraSPARC-T2 Xeon 5550 Opteron 2350

Chips×cores×threads 1×8×8 2×4×2 2×4×1

Clock rate (GHz) 1.2 2.67 2.0

RAM (GB) 32 24 16

L1 data cache (KB) 8 (core) 32 (core) 64 (core)

L2 (unified) cache (KB) 4k (chip) 256 (core) 512 (core)

L3 (unified) cache (MB) none 8 (chip) 2 (chip)

with 64 hardware threads; Table 1 offers additional detail. Caches are shared by
all threads in a core or an entire chip.

Table 2. Parameters and Their Values

Parameter Values

objects, ×106 5, 10, 15, 20
density, objects/km2 100
speedi, km/h 20, 30, 40, 50, 60, 90
nodes 500
query selectivity, km2 1, 2, 4, 8, 16, 32, 64
update/query ratio 1000:1

The indexes were studied in
a range of experiments with dif-
ferent workloads generated using
the COST benchmark [9] so as to
stress test the indexes under the
controlled and varying conditions.

We use a default workload that
is created to represent a realistic
scenario for the intended applica-
tions described earlier. Table 2 shows the parameters and their values; the values
in bold denote the default values used. Specifically, 10M objects are moving in
a square region between 500 nodes in a complete graph. Each edge simulates
a two-way road. The area is chosen so that the number of objects per km2 is
ca. 100, which corresponds to the average number of vehicles per km2 in Ger-
many. Objects start at a random position and are assigned at random one of the
six maximum speeds, speedi. The update/query ratio is fixed at 1000:14, and
the range query size is 2 km2.

4.2 Optimal Index Parameters

Determining the Cloning Period. An important TwinGrid parameter is the
cloning period that defines the cloning frequency and thus the query freshness.
Frequent cloning results in a high number of interruptions of actual workload
processing, as worker-threads are frequently suspended in order to refresh reader-
store. On the other hand, frequent cloning also results in low query staleness, as
queries operate on almost up-to-date states of the reader-store.

In an experiment, we vary the cloning period from 16 ms to 0.5 s and measure
the update throughput (updates/s). The results, shown in Figure 7, confirm our
speculations: With very frequent cloning, throughput deteriorates.

When cloning occurs, the CPU caches at all levels are flushed. Therefore,
many cache misses initially occur when workload processing resumes. With

4 We did not observe any new findings when the update/query ratio was varied.
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longer cloning periods, workload
processing enjoys warm caches longer.
Experiments (not included) using hard-
ware performance counters confirmed
this observation.

The experiment also shows that the
throughput stabilizes on all platforms
as the cloning period increases. For ex-
ample, with a cloning period longer
than 128 ms, the time Nehalem spends
on cloning becomes less than 10% of the
entire processing time. Larger cloning
periods thus do not offer significant performance gains.

With cloning periods below 50 ms, Nehalem, with 16 threads, outperforms
T2, with 64 threads. This is expected because it is more expensive to frequently
suspend and resume many relatively slow threads than it is to do so for few and
faster threads.

In Section 4.4, we shall see that MOVIES is unable to deliver a query staleness
of below 0.5 s. To obtain fair throughput comparisons, we thus conservatively set
the cloning period in TwinGrid at 0.5 s in the following experiments. Even with
this frequent cloning, the time spent on cloning is negligible. For example, on
Nehalem TwinGrid does a 10M-object clone in circa 0.02 s (Section 4.4), which
results in 144 s per hour (just 4%).

Determining the Grid Cell Size. To obtain the optimal performance for
both updates and queries, we exercised TwinGrid while varying the grid cell size
from 400 to 3200 meters. Since the same performance trends are observed on
all machines, Figure 8 shows results just for T2. Larger cells favor updates, as
fewer of them results in expensive non-local updates, while smaller cells favor
queries [19]. Nevertheless, only extreme values have a significant impact on per-
formance. Therefore, TwinGrid is configured with a grid cell size of 800 m in the
subsequent experiments. The corresponding update and query throughputs are
marked with circles in Figure 8.

The bucket size was tuned in a similar manner.
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4.3 TwinGrid Scalability

To understand the multi-threaded capabilities of TwinGrid, we vary the number
of worker-threads spawned by the main thread.

General Scalability. The results in Figure 9 show that TwinGrid generally
scales near-linearly with the number of hardware threads on all platforms. As
the number of threads used exceeds the number of hardware threads, throughput
either stabilizes or deteriorates slightly.

On Nehalem, throughput first increases rapidly, then slows down after 8 threads
are used. This is because the second thread on a core only helps in using pipeline
slots that are unused by the first thread, which may be only 10% of all slots. Also
up to 8 threads need not share L2 caches. Barcelona has one thread per core, and
so we do not observe any changes in performance increase until all available hard-
ware threads are exhausted. T2 has a two-level cache hierarchy, and its L2 cache
is shared among all 8 cores. Thus, threads need to share the L2 cache regardless of
whether they run on the same core or not. Interestingly, T2, with the lowest clock
rate but the most hardware threads, eventually outperforms its two competitors
and achieves a throughput of more than 21M update/s.

Contention Detection. As described in Section 3.3, to reduce contention
among worker-threads when retrieving messages, multiple message queues are
used. Figure 10 shows the quite dramatic effect on T2 of the number of queues
used. Using one queue yields a sharp performance drop when more than 22
worker threads are used. Using two queues delays the drop to 44 threads, and
using four queues completely eliminates contention. On Nehalem, two queues
are enough, and using two queues on Barcelona slightly improves performance.

To verify that the performance drops are due to contention on the counter
variable, we apply techniques that detect thread-level contention within parallel
database operations [5]. Specifically, we use an alternative to the compare-and-
swap intrinsic that also measures the contention during the atomic operation.
This leads to the finding that contention increases ten-fold at the point where
the performance drop occurs.

We also find that the used atomic operation has an execution time of circa
114 nanoseconds on T2, which implies a maximum input reading rate of 8.7M
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messages/s. This is indeed close to the maximum update throughput reached on
T2 using one queue in Figure 10.

4.4 TwinGrid vs. MOVIES

In the comparisons that follow, TwinGrid and MOVIES are configured to use the
maximum number of hardware threads available on the three different machines.

Update Throughput. Figure 11(b) shows the throughput when varying the
number of indexed objects from 5M to 20M. TwinGrid outperforms MOVIES
on all three platforms, by a factor ranging from 1.2 to 10. TwinGrid’s through-
put decreases slightly as more objects are being indexed. This is reasonable, as
updates operate on an increasingly large index, yielding fewer opportunities for
cache-sharing. The copying time during cloning also increases, as more objects
need to be copied. For MOVIES, increases in the number of objects have little
or no effect. This is because the increased update loads translate into increased
query staleness. That is, the cost of accumulating incoming updates remains
nearly the same (fast, constant-time hash table inserts), while the simultaneous
building of a larger index takes more time.

Interestingly, TwinGrid achieves the best update throughput on the machine
with the most hardware threads available (T2) and the worst throughput on
the machine with the least hardware threads (Barcelona). In contrast, MOVIES
achieves the best performance on the fastest machine (Nehalem) and the worst
performance on the slowest machine (T2). This suggests that MOVIES does not
make efficient use of parallelism.

Query Staleness. Both indexes report only near up-to-date query results. Fig-
ure 11(c) depicts the range query staleness for the same experiment as above.
TwinGrid’s staleness is slightly above 0.5 s, which corresponds to the cloning pe-
riod plus the time needed for all worker threads to arrive at the synchronization
points (see Section 3.3) and the time needed to do the actual copying. Since the
copying time is short comparing to cloning period, the query staleness increases
barely with an increasing number of objects. We also note that query staleness
can be set to be several times lower than in the figure while maintaining similar
throughput (recall Figure 7).

The staleness shown for MOVIES are the minimum ones possible, as we ad-
vance to the next time frame as soon as a new read-only index is built (i.e.,
Ti = Tbulk). The staleness increases markedly with the index size. On T2, the
staleness is about an order of magnitude higher than that of TwinGrid.

Figure 11(d) compares the copying time in TwinGrid with the bulk-loading
time in MOVIES, showing that copying is beyond an order of magnitude faster
on all three machines.

Update Locality. Recall that in TwinGrid, a local update stays within a sin-
gle cell, while a non-local update involves two cells and additional locking (see
Sections 3.1 and 3.3).

To observe the effect of update locality, we vary the percentage of local updates
from 4% to 92%. As can be seen in Figure 11(e), TwinGrid benefits from locality.
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In contrast, updates in MOVIES simply involves accumulating the updates in
an update buffer, which is unaffected by locality.

When less than half of all updates are local, MOVIES performs better than
TwinGrid on Barcelona, while TwinGrid always dominates on the two other
machines. When nearly all updates are local, TwinGrid’s average update cost
is comparable to that of MOVIES. However, since most of MOVIES’ processing
goes to the building of the next index, update throughput is several times better
in TwinGrid, where all CPU resources are used for workload processing.

Query Performance. Since object queries are used in updates, object query
performance is similar to that of update throughput as reported in Figure 11(b).
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Figure 11(f) depicts range query performance of both indexes when varying
the query size from 1 km2 to 64 km2. Both indexes are affected by the increased
query size that implies that more objects need to be inspected.

MOVIES indexes z-values of two-dimensional object locations. Although the
z-transformation exhibits good proximity-preservation, the resulting range
queries are inherently tighter in TwinGrid’s two-dimensional grid. On average,
range queries are an order of magnitude faster in TwinGrid.

5 Conclusions

Motivated by the increasing chip-level parallelism in processors and the lack
of studies on how to exploit this parallelism for efficient processing of update-
intensive workloads, this paper presents a new spatial indexing scheme called
TwinGrid that separates updates from queries by performing the latter on a near
up-to-date data snapshot. The memcpy system call, which is highly optimized
on most platforms, is used for refreshing the data snapshot. TwinGrid avoids
conflicts between reads and write as well as other forms of contention.

An empirical study with three modern machines show that TwinGrid’s
throughput scales linearly with the number of hardware threads on the ma-
chines. TwinGrid is capable of processing some 10M updates/s while ensuring
that the snapshots used for queries are stale by only about 100 ms on a single
multi-threaded machine. Moreover, TwinGrid outperforms the previous state-
of-the-art approach in terms of update throughput and query staleness.
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Abstract. Given a spatial location and a set of keywords, a top-k spatial
keyword query returns the k best spatio-textual objects ranked accord-
ing to their proximity to the query location and relevance to the query
keywords. There are many applications handling huge amounts of geo-
tagged data, such as Twitter and Flickr, that can benefit from this query.
Unfortunately, the state-of-the-art approaches require non-negligible pro-
cessing cost that incurs in long response time. In this paper, we propose a
novel index to improve the performance of top-k spatial keyword queries
named Spatial Inverted Index (S2I). Our index maps each distinct term
to a set of objects containing the term. The objects are stored differently
according to the document frequency of the term and can be retrieved
efficiently in decreasing order of keyword relevance and spatial proximity.
Moreover, we present algorithms that exploit S2I to process top-k spatial
keyword queries efficiently. Finally, we show through extensive experi-
ments that our approach outperforms the state-of-the-art approaches in
terms of update and query cost.

1 Introduction

Given a location and a set of keywords, a top-k spatial keyword query returns a
ranked set of the k best spatio-textual objects taking into account both 1) the
spatial distance between the objects (spatio-textual objects) and the query lo-
cation, and 2) the relevance of the text describing the objects to the query
keywords. There are several applications that can benefit from top-k spatial
keyword queries such as finding the tweets sent from a given location (Twit-
ter) or finding images near by a given location whose annotation is similar to
the query keywords (Flickr). There are also other applications for GPS-enabled
mobile phones that can benefit from such queries.

For example, Fig. 1 shows a spatial area containing objects p (bars and pubs)
with their respective textual description. Consider a tourist in São Paulo with
a GPS mobile phone that wants to find a bar playing samba near her current
location q. The tourist poses a top-3 spatial keyword query on her mobile phone

� On leave from the State University of Feira de Santana (UEFS).
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Fig. 1. Example of top-k spatial keyword query

with the keywords bar and samba (the query location q is automatically sent by
the mobile phone). The top-1 result is p4 because its description is similar to the
query keywords, and it is close to the query location q. The top-2 result is p6

that is nearer to q than p7 and has a better textual relevance to the query key-
words than p7. Here, we are assuming for simplicity that documents with higher
numbers of occurrences of query keywords are more textually relevant. Later,
we will drop this assumption and present a more advanced model. Consequently,
the top-3 results are 〈p4, p6, p7〉.

Top-k spatial keyword queries are intuitive and constitute a useful tool for
many applications. However, processing top-k spatial keyword queries efficiently
is complex and requires a hybrid index combining information retrieval and
spatial indexes. The state-of-the-art approaches proposed by Cong et al. [4] and
Li et al. [11] employ a hybrid index that augments the nodes of an R-tree with
inverted indexes. The inverted index at each node refers to a pseudo-document
that represents all the objects under the node. Therefore, in order to verify if
a node is relevant for a set of query keywords, the current approaches access
the inverted index at each node to evaluate the similarity between the query
keywords and the pseudo-document associated with the node. This process incurs
in non-negligible processing cost that results in long response time.

In this paper, we propose a novel method for processing top-k spatial keyword
queries more efficiently. Instead of employing a single R-tree embedded with in-
verted indexes, we propose a new index named Spatial Inverted Index (S2I)
that maps each keyword (term) to a distinct aggregated R-tree (aR-tree) [14]
that stores the objects with the given term. In fact, we employ an aR-tree only
when the number of objects exceeds a given threshold. As long as the thresh-
old is not exceeded, the objects are stored in a file, one block per term. How-
ever, for ease of presentation, let us assume that we employ an aR-tree for each
term. The aR-tree stores the latitude and longitude of the objects, and main-
tains an aggregated value that represents the maximum term impact (normalized
weight) of the objects under the node. Consequently, it is possible to retrieve
the best objects ranked in terms of both spatial relevance and keyword relevance
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efficiently and incrementally. For processing a top-k spatial keyword query with
a single keyword, only few nodes of a single aR-tree are accessed. For queries
with more than one keyword, we employ an efficient algorithm that aggregates
the partial-scores on keyword relevance of the objects to obtain the k best results
efficiently. In summary, the main contributions of this paper are:

– We present S2I, an index that maps each term in the vocabulary into a
distinct aR-tree or block that stores all objects with the given term.

– We propose efficient algorithms that exploit the S2I in order to process top-k
spatial keyword queries efficiently.

– Finally, we show through an extensive experimental evaluation that our ap-
proach outperforms the state-of-the-art algorithms in terms of update time,
I/O cost, and response time.

The rest of this paper is organized as follows. Sect. 2 gives an overview of
the related work. Sect. 3 poses the problem statement. In Sect. 4, we describe
S2I. In Sect. 5 and 6, we present the algorithms for processing top-k spatial
keyword queries. Finally, the experimental evaluation is presented in Sect. 7 and
the paper is conclude in Sect. 8.

2 Related Work

Initially, the research on spatial keyword queries focused on improving the per-
formance of spatial queries in search engines. Zhou et al. [17] did a relevant
work combining inverted indexes [18] and R-trees [2], and propose three ap-
proaches: 1) indexing the data in both R-trees and inverted indexes, 2) creating
an R-tree for each term, and 3) integrating keywords in the intermediary nodes
of an R-tree. They found out that the second approach achieved better perfor-
mance. However, they did not consider objects with a precise location (latitude
and longitude), and did not provide support for top-k spatial keyword queries.
Chen et al. [3] also had an information retrieval perspective on their work and
did not provide support for exact query location of objects. In their approach,
inverted indexes and R-trees are accessed separately in two different stages.

With the popularization of GPS-enabled devices, the research focused on
searching for objects in a specific location. Hariharan et al. [7] proposed aug-
menting the nodes of an R-tree with keywords extracted from the objects in the
sub-tree of the node. These keywords are then indexed in a structure similar to
an inverted index for fast retrieval. Their approach supports conjunctive query
in a given region of space. It is not clear, however, how their solution can be
extended to support top-k spatial keyword queries. Later, Ian de Felipe et al. [5]
proposed a data structure that integrates signature files and R-trees. The main
idea was indexing the spatial objects in an R-tree employing a signature on the
nodes to indicate the presence of a given keyword in the sub-tree of the node.
Consequently, at query processing time, the nodes that cannot contribute with
the query keywords can be pruned. The main problem of this approach is the
limitation to Boolean queries and to a small number of keywords per document.
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To the best of our knowledge, there are two previous approaches that support
top-k spatial keyword queries. They were developed concurrently by Cong et
al. [4] and Li et al. [11]. Both approaches augment the nodes of an R-tree with
a document vector that represents all documents in the sub-tree of the node.
For all terms present in the objects in the sub-tree of the node, the vector stores
the maximum impact of the term (normalized weight). Consequently, the vector
allows computing an upper bound for the textual score (textual relevance) that
can be achieved visiting a given node. Hence, it is possible to rank the nodes
according to textual relevance and spatial relevance, and decide which nodes
should be accessed first to compute the top-k results.

The work of Cong et al. goes beyond the work of Li et al. by incorporating
document similarity to build a more advanced R-tree namely DIR-tree. DIR-tree
groups, in the same node, objects that are near each other in terms of spatial
distance, and whose textual description are also similar. Furthermore, instead of
comparing vectors at query time, DIR-tree employs an inverted index associated
with each node that permits to retrieve the children of the node that can con-
tribute with a given query keyword efficiently. Only the posting lists associated
with the query keywords are accessed. Cong et al. also propose clustering the
nodes of DIR-tree (CDIR-tree) to further improve the query processing perfor-
mance. The main idea is grouping related entries (objects, in case of leaf-nodes)
and employing a pseudo-document to represent each group. Hence, more pre-
cise bounds can be estimated at query time, consequently, improving the query
processing performance. However, it is not clear if the improvement achieved
at query processing time compensates the additional cost required for clustering
the nodes (pre-processing), and the extra storage space demanded by CDIR-tree.
Moreover, keeping a CDIR-tree updated is more complex. For this reason, we
decided to compare our approach against the DIR-tree proposed by Cong et al.,
and we consider this approach as the state-of-the-art.

3 Problem Statement

Let P be a dataset with |P | spatio-textual objects p = 〈p.id, p.l, p.d〉, where p.id
is the identification of p, p.l is the spatial location (latitude and longitude) of
p, and p.d is the textual document describing p (e.g., menu of a restaurant).
Let q = 〈q.l, q.d, q.k〉 be a top-k spatial keyword query, where q.l is the query
location (latitude and longitude), q.d is the set of query keywords, and q.k is
the number of expected results. A query q returns q.k spatio-textual objects
{p1, p2, · · · , pq.k} from P with the highest scores τ(p, q), τ(p1, q) ≥ τ(p2, q) ≥
· · · ≥ τ(pk, q). Furthermore, a spatio-textual object p is part of the result set R
of q, if and only if exists at least one term t ∈ q.d that is also in p.d (p ∈ R ⇔
∃t ∈ q.d : t ∈ p.d). The score of p for a given query q is defined in the following
equation:

τ(p, q) = α · δ(p.l, q.l) + (1 − α) · θ(p.d, q.d) (1)

where δ(p.l, q.l) is the spatial proximity between the query location q.l and the
object location p.l, and θ(q.d, p.d) is the textual relevance of p.d according to
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q.d. Both measures return values within the range [0, 1]. The query preference
parameter α ∈ (0, 1) defines the importance of one measure over the other. For
example, α = 0.5 means that spatial proximity and textual relevance are equally
important. In the following, we define the measures more precisely.

Spatial proximity (δ). The spatial proximity is defined in the following
equation:

δ(p.l, q.l) = 1 − d(p.l, q.l)
dmax

(2)

where d(p.l, q.l) is the Euclidean distance between p.l and q.l, and dmax is the
largest Euclidean distance that any two points in the space may have. The
maximum distance may be obtained, for example, by getting the largest diagonal
of the Euclidean space of the application.

Textual relevance (θ). There are several similarity measures that can be used
to evaluate the textual relevance between the query keywords q.d and the text
document p.d [13]. In this paper, we adopt the well-known cosine similarity
between the vectors composed by the weights of the terms in q.d and p.d:

θ(p.d, q.d) =

∑
t∈q.d wt,p.d · wt,q.d√∑

t∈p.d(wt,p.d)2 ·
∑

t∈q.d(wt,q.d)2
(3)

In order to compute the cosine, we adopt the approach employed by Zobel and
Moffat [18]. Therefore, the weight wt,p.d is computed as wt,p.d = 1 + ln(ft,p.d),
where ft,p.d is the number of occurrences (frequency) of t in p.d; and the weight
wt,q.d is obtained from the following formula wt,q.d = ln(1 + |P |

dft
), where |P | is

the total number of documents in the collection. The document frequency dft of
a term t gives the number of documents in P that contains t. The higher the
cosine value, the higher the textual relevance. The textual relevance is a value
within the range [0, 1] (property of cosine).

We also define the impact λt,d of a term t in a document d, where d represents
the description of an object p.d or the query keywords q.d. The impact λt,d is
the normalized weight of the term in the document [1,16], λt,d = wt,d√∑

t∈d(wt,d)2
.

The impact takes into account the length of the document and can be used to
compare the relevance of two different documents according to a term t present in
both documents. Consequently, the textual relevance θ(p.d, q.d) can be rewritten
in terms of the impact [16], θ(p.d, q.d) =

∑
t∈q.d λt,q.d · λt,p.d.

Other types of spatial proximity and textual relevance measures such as Okapi
BM25 [13] can be supported by our framework. The focus of this paper is,
however, on the efficiency of top-k spatial keyword queries. In the following, we
present the S2I (Sect. 4) and describe the algorithms to process top-k spatial
keyword queries efficiently (Sect. 5 and 6).

4 Spatial Inverted Index

The S2I was designed taking in account the following observations. First, terms
with different document frequency should be stored differently. It is well-known
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term id dft type ptr

bar t1 4 tree ↪→
pop t2 2 block ↪→
pub t3 5 tree ↪→
rock t4 2 block ↪→
samba t5 2 block ↪→

storage

aRt1

〈p1, p5〉
aRt3

〈p2, p3〉
〈p4, p7〉

(a) S2I.

(b) aRt1 . (c) aRt3 .

Fig. 2. Spatial Inverted index and the aR-tree of terms t1 and t3

that the document frequency of terms in a corpus follows the Zipf’s law, which
means that there are a small number of terms that occur frequently, while most
terms occur infrequently [10]. Current approaches that support top-k spatial
keyword queries ignore this property and store frequent and infrequent terms in
the same way. For example, the impact of a term that occurs in a single object
has to be replicated in several nodes of the DIR-tree to indicate the path in the
tree for the given object. Second, good support for distribution is important for
scaling applications that can benefit from top-k spatial keyword queries. Third,
keeping the index update is important. The current approaches require accessing
one or several inverted files to perform a single update, which has a significant
cost. Finally, response time is critical for several applications. Our approach
accesses less disk pages and can perform queries more efficiently.

The S2I maps each term t to an aggregated R-tree (aR-tree) or to a block
that stores the spatio-textual objects p that contain t. The most frequent terms
are stored in aR-trees, one tree per term. The less frequent terms are stored in
blocks in a file, one block per term. Similarly to a traditional inverted index, the
S2I maps terms to objects that contain the term. However, we employ two dif-
ferent data structures, one for less frequent terms and another for more frequent
terms that can be accessed in decreasing order of keyword relevance and spatial
proximity efficiently.
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The S2I consists of three components: vocabulary, blocks, and trees.

– Vocabulary. The vocabulary stores, for each distinct term, the number of
objects in which the term appears (dft), a flag indicating the type of storage
used by the term (block or tree), and a pointer to a block or aR-tree that
stores the objects containing the given term.

– Blocks. Each block stores a set of objects, the size of a block is an application
parameter. For each object, we store the object identification p.id, the object
location p.l, and the impact of term t in p.d (λt,p.d). The objects stored in a
block are not ordered.

– Trees. The aggregated R-tree [14] of a term aRt follows the same structure
of a traditional R-tree. A leaf-node stores information about the data objects:
p.id, p.l, and λt,p.d. An intermediary-node stores for each entry (child node) a
minimum bounding rectangle (MBR) that encloses the spatial location of all
objects in the sub-tree. Differently from an R-tree, the nodes of an aR-tree
store also an aggregated non-spatial value among the objects in its sub-tree.
In our case, the aggregated value is the maximum impact of the term t among
the objects in the sub-tree of the node. Hence, we can access the objects in
aRt in decreasing order of term relevance and spatial proximity.

Example 1. Fig. 2 presents the S2I created from the objects depicted in Fig. 1.
In order to simplify the presentation, we assume in all examples that the impact
of a term in a document (λt,d) is defined by the number of occurrences of the
term in a document. We also assume that α = 0.5 in all examples. We drop these
assumptions in the experimental evaluation. The less frequent terms are stored
in a block, while the more frequent terms are stored in an aR-tree, see Fig. 2(a).
The aR-tree of terms t1 and t3 is depicted in Fig. 2(b) and 2(c), respectively.
The root of Rt1 contains two entries e1 and e2. The entry e1 contains the spatio-
textual objects {p1, p3}, while e2 contains {p4, p6}. The objects p1 and p3 have
one occurrence of t1 (f = 1), while p4 and p6 have two occurrences of t1 (f = 2).
The number of occurrences of a term in bold present the maximum number of
occurrences of a term among the entries of each node.

The S2I has several good properties. First, terms with different document fre-
quency are stored differently. Second, S2I has good support for distribution. S2I
employs a different data structure for each term and can benefit from techniques
used by traditional distributed search engines such as term partitioning [18].
Third, S2I provides good support for updates. Although one tree or block has to
be accessed for each term in an object, the operations executed at each tree or
block can be performed efficiently. Furthermore, the average number of distinct
terms per document is small in most of the applications that are target of this
query, as it can be seen in Table 2 (Section 7). Finally, S2I allows efficient query
execution. For queries with a single keyword, only one small tree (in general)
or a block needs to be accessed. For queries with several keywords only few
nodes of a set of small trees or blocks are accessed. No access to external in-
verted indexes is required. In the following, we present the algorithm to process
single-keyword (Sect. 5) and multiple-keyword queries (Sect. 6) employing S2I.
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Algorithm 1. SKA(MaxHeap Ht, Query q)
1: INPUT: MaxHeap Ht with entries e in decreasing order of score τ (e, q) and the

query q.
2: OUTPUT: The next object p with highest score τ (p, q).
3: Entry e← Ht.pop() //e is the entry with highest score τ (e, q) in Ht

4: while e is not an object do
5: if e is an intermediary-node then
6: for each node n ∈ e do
7: Ht.insert(n, τ (n, q))
8: end for
9: else //e is a leaf-node

10: for each spatio-textual object p ∈ e do
11: Ht.insert(p, τ (p, q))
12: end for
13: end if
14: e← Ht.pop()
15: end while
16: return e

5 Single-Keyword Queries

Top-k spatial keyword queries with a single keyword t can be efficiently processed
using the S2I, since only one single block or tree containing the objects with the
term t is accessed. If the objects are stored in a block, the query processing
steps are: 1) retrieve all objects p in the block, 2) insert the objects in a heap in
decreasing order of τ(p, q), and 3) report the top-k best objects. If the objects
are stored in an aR-tree, we employ an incremental algorithm (Algorithm 1) to
retrieve the objects in decreasing order of τ(p, q).

The SKA (Single Keyword Algorithm, Algorithm 1) visits entries e (nodes
or objects) in an aR-tree in decreasing order of τ(e, q). The score of a node n,
τ(n, q), and the score of an object p, τ(p, q), are computed in a similar way.
The spatial proximity δ(n, q) is obtained computing the minimum Euclidean
distance between q and any border of the MBR of n. On the other hand, the
textual relevance θ(n, q) is obtained multiplying the impact of t in the query
λt,q by the impact of t in the node λt,n that is the maximum impact among any
entry e in the sub-tree of n. Consequently, the score τ(n, q) is an upper bound
score for any entry e in the sub-tree of n, since any entry e in the sub-tree of n
has a distance to q longer or equal d(q, n), d(q, n) ≤ d(q, e); and the term impact
of n is higher or equal the term impact of any entry e, λt,n ≥ λt,e.

SKA receives as parameter a priority queue (MaxHeap) Ht and a query q.
The heap stores the entries e of Rt in decreasing order of score τ(e, q). Initially,
the heap has the root of Rt. The entry e (line 3) is the entry with highest score
in Ht. If e is an intermediary-node (line 5), the algorithm computes the score of
all nodes n children of e and insert n in Ht in decreasing order of τ(n, q) (lines
6-8). If e is a leaf-node (line 9), the algorithm computes the score of all objects
p children of e and insert p in Ht in decreasing order of score (lines 10-12).
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This process repeats until an object p achieves the top of the heap (line 4). This
means that there is no other object in Ht with higher score than p. Therefore,
p can be reported incrementally (line 16). The algorithm keeps the state of the
variables for future access.

Example 2. Assume that we want to obtain the top-1 object among the objects
depicted in Fig. 1 according to the query keyword q.d = {bar} and the query
location q.l = (6, 5). The query processing starts accessing the S2I and acquir-
ing the information that objects with the term “bar” (t1) are stored in aRt1 ,
Fig. 2(b). The SKA algorithm starts with the root of aRt1 in Ht1 and inserts
the entries e1 and e2 in the heap, Ht1 = 〈e2, e1〉. The entry e2 is in the top of
Ht1 because it has a better score, τ(e2, q) > τ(e1, q). The score of e2 is higher
because it has a higher term frequency (fe2,t1 = 2) and is nearer to q. The algo-
rithm continues removing e2 from the heap and inserting the objects p4 and p6

into Ht1 = 〈p4, p6, e1〉. In the next iteration, p4 reaches the top of the heap Ht1

and is returned as top-1.

The problem of retrieving the objects in increasing order of score is similar to the
problem of retrieving the nearest neighbors incrementally [8]. In the following,
we present the algorithm to process multiple keyword queries.

6 Multiple-Keyword Queries

We divide this section in two parts. First, we define partial-score that is the
score of an object according to a single term in the query, Sect. 6.1. Second, we
present the algorithm to aggregate the objects retrieved in terms of partial-score
to compute the top-k results, Sect. 6.2.

6.1 Partial-Score on Keyword

Processing multiple-keyword queries in the S2I requires aggregating objects from
different sources Si (aR-trees or blocks), where i refers to a distinct term ti ∈ q.d.
The näıve way is to retrieve objects p from each source Si in decreasing order
of score τ(p, q) (Equation 1) replacing q.d by a query term t ∈ q.d, τ(p, {t}).
The final score is obtained adding the scores retrieved for each term. However,
τ(p, q) 
=

∑
t∈q.d τ(p, {t}), because the spatial proximity is replicated in the

scores computed for each term τ(p, {t}). Hence, we propose to derive a partial-
score on keyword τ t(p, q) such that the score τ(p, q) can be computed in terms
of the sum of partial-scores obtained from each source, τ(p, q) =

∑
t∈q.d τ t(p, q).

In order to obtain the partial-score τ t(p, q), we rewrite Equation 1 so that the
score τ(p, q) can be obtained in terms of the sum of partial-scores of t:

τ(p, q) = α · δ(p.l, q.l) + (1 − α) · θ(p.d, q.d)

= α · δ(p.l, q.l) + (1 − α) ·
∑
t∈q.d

λt,p.d · λt,q.d

=
∑
t∈q.d

(α · δ(p.l, q.l)
|q.d| + (1 − α) · λt,p.d · λt,q.d)
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where |q.d| is the number of distinct terms in the query. From the equation
above, we define partial-score τ t(p, q) of p in relation to a term t as:

τ t(p, q) = α · δ(p.l, q.l)
|q.d| + (1 − α) · λt,p.d · λt,q.d . (4)

The partial-score reduces the weight of the spatial proximity δ(p.l, q.l) ac-
cording to the number of distinct terms in the query q.d. Furthermore, once we
have obtained an object p from a source Si, we can also derive a lower bound
partial-score τ t

−(p, q) for p on the other sources in which p has not been seen yet,
τ t
−(p, q) = α · δ(p.l,q.l)

|q.d| . This is the lowest possible partial-score that p may have
in a source where it has not been seen yet, since the proximity between p and
q will not change. With the partial-scores τ t(p, q) and τ t

−(p, q), we can compute
the lower bound and upper bound scores based on partial information about the
object.

Example 3. Assume a query with two terms ti and tj , where the partial-score of
p according to term ti is known. The lower bond score of p, p−, can be computed
adding the partial-score of p according to ti with the lower bound partial-score
of p according to tj , p− = τ ti (p, q) + τ

tj

− (p, q).

In the following, we present the MKA algorithm that employs the partial-scores
to compute the top-k results for queries with multiple-keywords.

6.2 Multiple Keyword Algorithm

The Multiple Keyword Algorithm (MKA) computes a top-k spatial keyword
query progressively by aggregating the partial-scores of the objects retrieved for
a given keyword. The objects containing a given term are retrieved in decreasing
order of partial-scores from the source (aR-tree or block). In order to retrieve the
objects in decreasing order of partial-score, we employ the SKA algorithm (Al-
gorithm 1) replacing the score τ(p, q) by partial-score τ t(p, q).

Each time an object p is retrieved from a source Si (Si.next()), we compute
the lower bound score of p, update the upper bound score for any unseen object,
and check if there is an object whose the lower bound score is higher or equal
the upper bound of any other object. Those objects are reported progressively.
We repeat this process until k objects have been found.

Algorithm 2 presents the MKA algorithm. MKA receives as parameter a top-
k spatial keyword query q and reports the top-k results incrementally. MKA
employ one source Si for each distinct term ti ∈ q.d (line 3). Next, for each
source Si, the algorithm sets an upper bound u−

i that maintains the highest
partial-score among the objects unseen from Si (line 6). The upper bound is
updated every time that an object p is retrieved from Si (line 10).

During each iteration (lines 7-23), MKA selects a source i (line 8), where
the procedure selectSource(q.d) defines the strategy to select the source. In
this paper, we employ a round-robin strategy that selects a source Si that is
not empty. Other more sophisticated strategies such as keeping an indicator
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Algorithm 2. MKA(Query q)
1: INPUT: The top-k spatial keyword query q.
2: OUTPUT: Progressively reports the top-k objects found.
3: Si ← source of the term ti ∈ q.d
4: C ← ∅ //List of candidate objects.
5: Li ← ∅ //List of objects seen in the source Si

6: u−
i ←∞ //Upper-bound score for any p ∈ Si

7: while ∃Si such that Si 
= ∅ do
8: i← selectSource(q.d)
9: p← Si.next() //Next object p in Si with highest τ ti(p, q)

10: u−
i ← τ ti(p, q) //Update upper bound score for source Si

11: Li ← Li ∪ p
12: p− ←∑

∀j:p∈Lj
τ tj (p, q) +

∑
∀j:p �∈Lj

τ
tj

− (p, q) //Update lower bound score of p

13: if p 
∈ C then
14: C ← C ∪ p
15: end if
16: for each p ∈ C do //Update upper bound score of the candidates

17: p− ←∑
∀j:p∈Lj

τ tj (p, q) +
∑

∀j:p �∈Lj
max(u−

j , τ
tj

− (p, q))

18: end for
19: while ∃p ∈ C : p− ≥ max∀o∈C,o �=p(o

−) do
20: C ← C − p
21: reports p as next top-k, halt if q.k objects have been reported
22: end while
23: end while
24: if less than q.k objects have been reported then
25: return the objects in C with highest lower bound score p−
26: end if

that express the effectiveness of selecting a source [6] can also be employed.
MKA continues retrieving from Si the next object p with highest partial-score
τ ti(p, q) (line 9), and updating the upper bound score u−

i (line 10) with the new
partial-score retrieved from Si. At this point, any unseen object in Si has a lower
or equal partial-score than u−

i . Next, MKA marks that p has been seen in Si

adding p into Li (line 11), and updating the lower bound score for p (line 12).
The lower bound score is computed by summing the partial-scores known for p
with the worst possible partial-score that p may have based on the sources in
which p has not been seen yet. Then, MKA checks if p is in the candidate set C,
inserting p otherwise (lines 13-15). Next, MKA updates the upper bound score
for any object in the candidate set C (lines 16-18). The upper bound score for
a given object in a source that it has not been yet, does not decrease bellow
its lower bound score on that source (line 17). The objects p ∈ C whose lower
bound p− is higher or equal the upper bound o− of any other object in C (lines
19-22) are reported incrementally. MKA repeats this process until k objects has
been reported, or the sources are empty. If the sources are empty and less than
k objects have been returned, MKA reports the objects in C with highest lower
bound score (lines 24-26) as the remaining top-k.
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Steps aRt1 aRt3 Candidate set C = {p[p−, p−]}
↓ ↓

2 τ t1(p4, q) ≈ 1.2 τ t3(p5, q) ≈ 1.21 p4[1.39, 2.41], p5[1.42, 2.41]
2 τ t1(p6, q) ≈ 1.17 τ t3(p6, q) ≈ 1.17 p4[1.39, 2.37], p5[1.42, 2.38], p6[2.34, 2.34]
1 τ t1(p3, q) ≈ 0.65 p4[1.39, 2.37], p5[1.42, 1.86], p6[2.34, 2.34]
1 τ t3(p2, q) ≈ 0.68 p4[1.39, 1.88], p5[1.42, 1.86], p6[2.34, 2.34]

Fig. 3. State of some variables during the execution of MKA. The candidates p2 and
p3 have low score and are omitted from the list of candidates.

Example 4. Assume a top-k spatial keyword query q, where q.l = (5, 6), q.d =
{bar, pub}, and q.k = 1. The MKA accesses the aR-trees aRt1 (bar) and aRt3

(pub) as depicted in Fig. 2. The state of some variables during the execution of
MKA is shown in Fig. 3. After the second iteration (step), MKA has retrieved
p4 and p5 from aRt1 and aRt3 respectively. MKA continues retrieving p6 from
both aR-trees aRt1 and aRt3 . Although p6 has been found in both aR-trees, it
cannot be reported as top-1 since the upper bound score of the other candidates
p4 and p5 is still smaller than the score of p6 (Fig. 3). However, after retrieving
p3 from aRt1 and p2 from aRt3 , p6 can be reported progressively as top-1 since
its score is smaller than the upper bound score of the other candidates.

Aggregating term-scores to compute the top-k spatio-textual objects is similar
to aggregating ranked inputs to compute the top-k results [9,15]. For simplicity,
we omit from the description of Algorithm 2 some implementation details that
permit reducing the size of the candidate set and the number of comparisons to
update the upper bound score [12]. In the following, we evaluate the performance
of SKA and MKA algorithms.

7 Experimental Evaluation

In this section, we compare our approach the S2I against the DIR-tree proposed
by Cong et al. [4]. All algorithms were implemented in Java using the XXL
library1. The nodes of the aR-trees, employed in S2I, have a block size of 4KB
that is able to store between 42 and 85 entries. The blocks in the file used to
store the non-frequent items has a maximum size of 4KB that permits to store a
maximum of 146 entries. The intuition behind this choice is that we store objects
in an aR-tree only when there are enough objects to fill more than one node of
an aR-tree. Each node of a DIR-tree also has a block size of 4KB and is able
to store between 46 and 92 entries. The parameter β used to balance textual
similarity and spatial location during the construction of the DIR-tree was set
to 0.1 as suggested by Cong et al. [4].

Setup. Experiments were executed on a PC with a 3GHz Dual Core AMD
processor and 2GB RAM. In each experiment, we execute 100 queries to warm-
1 http://dbs.mathematik.uni-marburg.de/Home/Research/Projects/XXL
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Table 1. Settings used in the experiments. The default values are presented in bold.

Parameter Values

Number of results (k) 10, 20, 30, 40, 50
Number of keywords 1, 2, 3, 4, 5
Query preference rate α 0.1, 0.3, 0.5, 0.7, 0.9
Twitter dataset 1M, 2M, 3M, 4M
Other datasets Data1, Wikipedia (Wiki), Flickr, OpenStreetMap (OSM)

Table 2. Characteristics of the datasets

Datasets Tot. no.
of. objects

Avg. no. of unique
words per object

Tot. no. of
unique words

Tot. no. of
words

Twitter1 1,000,000 11.94 553,515 12,542,414
Twitter2 2,000,000 12.00 1,009,711 25,203,367
Twitter3 3,000,000 12.26 1,391,171 38,655,751
Twitter4 4,000,000 12.27 1,678,451 51,661,462
Data1 131,461 131.70 101,650 32,622,168

Wikipedia 429,790 163.65 1,871,836 169,365,635
Flickr 1,471,080 14.49 487,003 25,417,021

OpenStreetMap 2,927,886 8.76 662,334 31,526,352

up the buffers, and collect the average results of the next 800 queries. The queries
are randomly generated using the same vocabulary and the same spatial area
of the datasets as used by Cong et al. [4]. We employed a buffer whose size
was fixed in 4MB for both approaches. In the experiments, we measured the
total execution time (referred as response time) and the number of I/Os (page
faults). All charts are plotted using a logarithmic scale on the y-axis. The main
parameters and values used through the experiments are presented in Table 1.

Datasets. Table 2 shows the characteristics of the datasets used in the experi-
ments. We employed four Twitter datasets of 1M, 2M, 3M, and 4M objects each,
where each object is composed by a Twitter message (tweet) and a random loca-
tion where latitude and longitude are within the range [0,100]. In order to create
these datasets, we used the first 10 million non-empty tweets from the Stand-
ford Twitter dataset2. The Data1 dataset was created combining texts from 20
Newsgroups dataset3 and locations from LA streets4. This dataset is similar to
the Data1 dataset used by Cong et al. [4]. However, instead of selecting only 5
groups, we employed all documents in the 20 Newsgroups dataset. We also con-
ducted experiments on real datasets: Wikipedia, Flickr, and OpenStreetMap.
The Wikipedia dataset is composed by Wikipedia articles with a spatial loca-
tion. The Flickr dataset contains objects referring to photos taken in the area

2 http://snap.stanford.edu/data/twitter7.html
3 http://people.csail.mit.edu/jrennie/20Newsgroups
4 http://barcelona.research.yahoo.net/websmapm/datasets/uk2007
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Fig. 4. Response time and I/O varying the number of results (k)

of London. Each object is composed by a spatial location and a text describing
the photo (title and description). Finally, the OpenStreetMap5 dataset contains
objects downloaded from OpenStreetMap covering the entire planet.

7.1 Query Processing Performance

In this section, we evaluate the query processing performance of the S2I and
DIR-tree for different setups. In all experiments, we employ the default set-
tings (Table 1) to study the impact on I/O and response time, while varying a
single parameter.

Varying the number of results (k). Fig. 4 plots the response time and I/O
of the S2I and DIR-tree, while varying the number of results k. The response
time achieved using S2I is one order of magnitude better than using DIR-tree
(Fig. 4(a)). Furthermore, the advantage of S2I increases when the number of
results increases. The main reason for this is that S2I accesses less disk pages
to process a query (Fig. 4(b). In order to process a query employing DIR-tree,
the inverted files at each node are accessed to obtain the posting lists of each
distinct keyword in the query. For example, a query with 3 distinct keywords is
performed in two steps: first, the postings lists of each keyword is retrieved in
order to identify the entries of the node that can contribute to the query results,
then the relevant entries are visited in decreasing order of score. Although the size
of the posting lists are small, since they are bounded by the maximum capacity
of a node, the process to perform such queries on inverted indexes incurs in
non-negligible cost.

Varying the number of keywords. Fig. 5 depicts the response time and I/O,
while varying the number of query keywords. Again, the response time (Fig. 5(a))
and I/O (Fig. 5(b)) achieved by using the S2I are one order of magnitude better.
Single-keyword queries are processed efficiently employing the SKA algorithm.
Hence, few pages are accessed during the query processing. As expected, the
larger the number of keywords, the higher the I/O required to process the query.

5 http://www.openstreetmap.org
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Fig. 5. Response time and I/O varying the number of keywords
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Fig. 6. Response time and I/O varying the cardinality of the Twitter dataset

However, the advantage of S2I over DIR-tree remains constant, which demon-
strates the efficiency of the MKA algorithm.

Varying the cardinality. In Fig. 6, we evaluate the impact of increasing the
dataset size (cardinality) on response time and I/O. Again, the response time
achieved by using the S2I is around one order magnitude better than S2I, see
Fig. 6(a). Moreover, the advantage increases when the dataset increases. The
same behavior is noted in the number of I/Os required, see Fig. 6(b).

Varying the query preference parameter (α). In Fig. 7, we study the
impact of α (Equation 1) on response time and number of I/Os. The perfor-
mance of the S2I increases for higher values of the query preference parameter
α (Fig. 7(a)), which means that S2I can terminate earlier if the preference pa-
rameter gives more weight to proximity over text relevance. The same behavior
repeats in Fig. 7(b) that plots I/O. The query preference parameter does not
present an impact on the performance of DIR-tree. The main reason for this is
that the Twitter dataset has a large vocabulary and the objects are uniformly
spread in the spatial space, which reduces the capacity of DIR-tree to put objects
with similar content and similar location in the same node.

Varying the datasets. In Fig. 8, we present response time and I/O for different
datasets. The S2I presents better response time (Fig. 8(a)) and I/O (Fig. 8(b))
for all datasets. The response time is influenced by the size of the dataset. The
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Fig. 7. Response time and I/O varying the query preference rate (α)
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Fig. 8. Response time and I/O for different datasets

Wikipedia dataset is one of the largest dataset evaluated, since the text as-
sociated with each object has many keywords. On the other hand, Flickr and
OpenStreetMap datasets have similar number of distinct terms per object, which
is, in general, small. Consequently, the performance on those datasets is similar.
Finally, Data1 presents the highest I/O. This happens because the total number
of unique words in Data1 is small compared to its dataset size. Data1 is cre-
ated combining 131,461 locations with only 20 thousand documents to create a
dataset with 131,461 spatio-textual objects. Hence, there are many objects with
the same textual description.

7.2 Maintenance and Space Requirements

In this section, we evaluate the maintenance cost and space requirements in both
the DIR-tree and S2I.

Maintenance. We evaluate the cost of insertions, which are more frequent than
updates and deletions. In order to obtain the insertion cost, we inserted 100
objects in S2I and DIR-tree and collected the average time. After each insertion,
we flush the data in the index structures. The results are presented in Fig. 9.

Several storage units (blocks and trees) of the S2I, one per distinct term,
are accessed due to an insertion of a new object. However, the tasks executed
in a block or in an aR-tree are performed efficiently since they do not require
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computing the textual similarity between the new object and the objects cur-
rently stored in the index. However, the cost of inserting a new object in a
DIR-tree requires comparing the similarity between the text of the new object
and the text of other several objects in order to find the region of DIR-tree that
better accommodates the new object. Moreover, the insertion requires updating
inverted files which is also challenging and costly.

Space requirements. Fig. 10 depicts the space required for both indexes DIR-
tree and S2I. The size required by S2I is larger than the size required by DIR-
tree. The main reason is that S2I employs more trees that do not use the space
in the nodes effectively. The figure shows also the space required by DIR-tree
to execute updates. This space includes the size of the vectors of the pseudo-
documents at each node. The vectors are required only during updates, since at
query time DIR-tree employs only inverted files. The space required by S2I to
perform search and update is the same.

8 Conclusions

In this paper, we present a new index named Spatial Inverted Index (S2I) and
algorithms (SKA and MKA) to support top-k spatial keyword queries efficiently.
Similar to an inverted index, S2I maps distinct terms to the set of objects that
contains the term. The list of objects that contain a term are stored differently
according to the document frequency of the term. If the term occurs often in
the collection, the objects with the term are stored in an aggregated R-tree and
can be retrieved in decreasing order of partial-score efficiently. Differently, the
objects of infrequent term are stored together in a block in a file. Furthermore,
we present algorithms to process single-keyword (SKA) queries and multiple-
keyword (MKA) queries efficiently. Finally, we show through extensive experi-
ments that our approach outperforms the state-of-the-art approach in terms of
query and update cost.

Acknowledgments. We are thankful to Massimiliano Ruocco for providing the
Flickr dataset used in the experimental evaluation.



222 J.B. Rocha-Junior et al.

References

1. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early
termination. In: Proc. of ACM Special Interest Group on Information Retrieval
(SIGIR), pp. 35–42 (2001)

2. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: An efficient and
robust access method for points and rectangles. In: Proceedings of the ACM Int.
Conf. on Management of Data (SIGMOD), pp. 322–331 (1990)

3. Chen, Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web
search engines. In: Proceedings of the ACM Int. Conf. on Management of Data
(SIGMOD), pp. 277–288 (2006)

4. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. In: Int. Conf. on Very Large Data Bases (VLDB), pp. 337–348 (2009)

5. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
Proceedings of Int. Conf. on Data Engineering (ICDE), pp. 656–665 (2008)
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Abstract. The advance of object tracking technologies leads to huge volumes 
of spatio-temporal data accumulated in the form of location trajectories. Such 
data bring us new opportunities and challenges in efficient trajectory retrieval. 
In this paper, we study a new type of query that finds the k Nearest Neighboring 
Trajectories (k-NNT) with the minimum aggregated distance to a set of query 
points. Such queries, though have a broad range of applications like trip plan-
ning and moving object study, cannot be handled by traditional k-NN query 
processing techniques that only find the neighboring points of an object. To  
facilitate scalable, flexible and effective query execution, we propose a k-NN 
trajectory retrieval algorithm using a candidate-generation-and-verification 
strategy. The algorithm utilizes a data structure called global heap to retrieve 
candidate trajectories near each individual query point. Then, at the verification 
step, it refines these trajectory candidates by a lower-bound computed based on 
the global heap. The global heap guarantees the candidate’s completeness (i.e., 
all the k-NNTs are included), and reduces the computational overhead of candi-
date verification. In addition, we propose a qualifier expectation measure that 
ranks partial-matching candidate trajectories to accelerate query processing in 
the cases of non-uniform trajectory distributions or outlier query locations. Ex-
tensive experiments on both real and synthetic trajectory datasets demonstrate 
the feasibility and effectiveness of proposed methods. 

1   Introduction 

The technical advances in location-acquisition devices have generated a huge volume 
of location trajectories recording the movement of people, vehicle, animal and natural 
phenomena in a variety of applications, such as social networks, transportation  
systems and scientific studies: In Foursquare [1], the check-in sequence of a user in 
restaurants and shopping malls can be regarded as a location trajectory. In many GPS-
trajectory-sharing websites like Geolife [17, 18, 19], people upload their travel routes 
for the purpose of memorizing a journey and sharing life experiences with friends. 
Many taxis in big cities have been embedded with GPS sensors to report their loca-
tions. Such reports formulate a large amount of trajectories being used for resource 
allocation, security management and traffic analysis [8]. Biologists solicit the moving 
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trajectories of animals like migratory birds for their research [2]. Similarly, climatolo-
gists are busy collecting the trajectories of natural phenomena such as hurricane and 
ocean currents [3].  

In the above-mentioned applications, people usually expect to retrieve the trajecto-
ries passing a set of given point locations. For example, the social network users want 
to retrieve their friend’s trails of visiting some scenic spots as references for trip plan-
ning. The fleet operators expect to analyze the business of their taxis traveling around 
several hot spots by the GPS traces. The biologists are interested in study the migra-
tion trails of birds passing some mountains, lakes and forests. In general, these appli-
cations need to efficiently query and access trajectories from large datasets residing 
on disks by geospatial locations. Note that, the system needs to select the top k trajec-
tories with the minimum aggregated distance to the given locations instead of the 
trajectory exactly passing those locations, since in most case exact match may lead to 
no result or not the best results returned. This study aims to provide an efficient me-
thod to expedite a novel geospatial query, the k-Nearest Neighboring Trajectory 
Query (k-NNT query), in a trajectory database. 

Unfortunately, the k-NNT query is not efficiently supported in existing systems. 
Most traditional k-NN query processing methods are designed to find point objects 
[11, 6, 5]. On the other hand, the traditional trajectory search techniques focus on 
retrieving the results with similar shapes to a sample trajectory [9, 13]. The new prob-
lem, searching top-k trajectories given a set of geospatial locations, poses the follow-
ing challenges:   

 Huge size: Many databases contain large volumes of trajectories. For example, 
the T-drive system [8] collects the trajectories from over 33,000 taxis for 3 
months. The total length of the trajectories is more than 400 million kilometers 
and the total number of GPS points reaches 790 million. The huge I/O overhead 
is the major cost in query processing. 

 Distance computation: The distance computation in k-NNT query is more com-
plex than traditional spatial queries. To compute the aggregated distance from a 
trajectory to a set of query points, the system has to check all the member points 
of the trajectory, find out the closest one to each individual query point (i.e., 
shortest matching pairs) and sum up all the matching pairs as the measure. The 
techniques of point k-NN queries, such as best-first search [6] and aggregate k-
NN [5], cannot handle this problem. 

 Non-uniform distribution: In many real applications, the distributions of trajec-
tories are highly skewed, e.g., taxi trajectories are much denser in downtown 
than suburban areas. In addition, query points are given by users in an ad-hoc 
manner and some of them may be far from all the trajectories.  

In this study, we propose a robust, systematic and efficient approach to process k-
NNT queries in the trajectory database. The system employs a data structure called 
global heap to generate candidate trajectories by only accessing a small part of the 
data and verifies the candidates with the lower-bound derived from global heap. To 
handle the skewed trajectory data and outlier query locations, a qualifier expectation 
measure is designed to rank the candidates and accelerate query processing.  

The rest of the paper is organized as follows. Section 2 provides the background 
and problem definition, Section 3 describes detailed query processing framework, and 
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Section 4 introduces the qualifier expectation-based algorithm. Section 5 evaluates the 
approaches by extensive experiments on both real and synthetic datasets. Section 6 
discusses related studies. Finally, Section 7 concludes the paper. 

2   Problem Formulation 

The trajectory data are collected in the form of point sequences. Trajectory Ri can be 
represented as Ri = {pi,1, p i,2, … pi,n}, where pi,j is the j-th member point of Ri. The 
input of k-NNT query Q, according to applications, is specified by a set of point loca-
tions, Q = {q1, q2, … qm}. In the following we first define the distance measures be-
tween trajectories and query points. 

Definition 1. Let trajectory Ri = {pi,1, pi,2, … pi,n} and q be a query point. The match-
ing pair of a member point pi,j and q is denoted as <pi,j, q>. If , , ,  , , , , , <pi,j, q> is the shortest matching pair of Ri and q. 

Definition 2. Let trajectory Ri = {pi,1, pi,2, …, pi,n} and query Q = {q1, q2,…, qm}. The 
distance between Ri and a query point q is the distance of the shortest matching pair 
<pi,j, q>, the aggregated distance between Ri and Q is the sum of distances of the 
shortest matching pairs from Ri to all query points. , , , ,  

Example 1. Figure 1 shows a matching example of two trajectories and three query 
points. The query points q1, q2 and q3 are matched with the closest points in R1 and R2. 
The nearest neighboring trajectory is selected by the aggregated distance of all the 
query points. Even R2 is more distant to q1 and q3, its aggregated distance is still 
smaller than R1. So R2 should be returned as the query result. 

With the distance measures, now we formally describe the task of k-NNT query. 

 

Fig. 1. Aggregated Distance Example 
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Task Definition: Given the trajectory dataset, D, and a set of query points, Q, the k-
NNT query retrieves k trajectories K from D, K = {R1, R2, …, Rk} that for 

, , , , . 
A direct way to process k-NNT query is to scan the whole trajectory dataset, com-

pute all the shortest matching pairs for each trajectory, and then compare their aggre-
gated distances. The I/O overhead is very high since all the trajectories are retrieved.  

A candidate-generation-and-verification framework was first proposed by Fagin  
et al. for processing top k aggregation queries for distributed systems and middleware 
[12]. The Fagin’s algorithm generates a candidate set by searching the objects listed at 
the top in each individual site, and then carries out the detailed verification only on 
such candidates. The general idea can be employed to solve this problem, since the k-
NNTs usually have member points close to some query locations. The system should 
search for candidate trajectories around each query point, and then verify them for 
final results. However, since Fagin’s algorithm is not designed for spatial query 
processing, the candidate search operations on individual sites are carried out in paral-
lel (i.e., the system retrieves the top member from each site, then gets the second 
member of each of the sites, and so on). In the scenarios of k-NNT query, the situa-
tions around each query points are different. It is inefficient to search in such parallel 
manner. Thus the key problem becomes how to coordinate the candidate searching 
processes. Meanwhile, the algorithm must guarantee that all the k-NNTs are included 
in the candidate set (i.e., completeness). Section 3 will discuss those issues in detail. 
Table 1 lists the notations used in the following sections. 

Table 1. A List of Notations 

 

3   Query Processing 

3.1   Candidate Generation  

The first task of candidate generation is to retrieve the neighboring points around 
query locations. In this study, we utilize the best-first strategy to search for k-NN 
points [6]. The best-first strategy traverses R-tree index from root node and always 
visits the node with the least distance to the query point, until it reaches the leaf node 
and returns it as the result. Based on the best-first search strategy, we construct a data 
structure of individual heap to search k-NN points.  

Notation

D
R

H
G
C

Explanation

the trajectory dataset
a trajectory

the individual heap list
the global heap
the candidate set

Notation

K
pi,j, pi

q, qj

N
δ

Explanation

the k-NNT result set
member points of traj.
k-NNT query points

an R-tree node
the pruning threshold

hi an individual heap
Q the k-NNT query

μ the full-matching ratio k a constant given by user
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Definition 3. Let qi be a query point. The individual heap hi is a minimum heap 
whose elements are the matching pairs of trajectory member point and qi. The match-
ing pairs are sorted by their distances to qi. 

The individual heap takes qi as the input and visits R-tree nodes with the shortest 
distance. If the R-tree node is an inner node, the heap retrieves all its children node 
and keeps to traverse the tree; if the R-tree node is leaf node (i.e., a trajectory’s mem-
ber point pj), the heap composes a matching pair of pj with qi.  

There are two advantages of individual heap: (1) It employs the best-first strategy 
to traverse R-tree and achieves optimal I/O efficiency [6]. (2) The individual heap 
does not need to know k in advance, it can pop out the matching pairs incrementally. 

For a query Q = {q1, q2, …, qm}, the system constructs a heap list H = {h1, h2, …, 
hm} and finds out the shortest matching pairs from the m heaps. Since there are mul-
tiple heaps, the key problem is to coordinate the searching processes of individual 
heaps. To this end, we introduce the global heap. 

Definition 4. Let k-NNT query Q = {q1, q2, …, qm} and individual heap list H = {h1, 
h2, …, hm}. The global heap G consists of m matching pairs, G = {<p1, q1>, <p2, 
q2>, …, <pm, qm>}, where <pi,

 qi> is popped from the individual heap hi. G is a mini-
mum heap that sorts the matching pairs by their distances. 

The global heap has two operations, pop and retrieve. The pop operation simply out-
puts the shortest matching pair of G. The retrieve operation is carried out immediately 
after popping a pair <pi, qi>. The global heap retrieves another matching pair <pi', qi> 
from the corresponding individual heap hi. In this way, there are always m matching 
pairs in G.  

The popped matching pairs are kept in a candidate set. In the beginning, the candi-
date trajectories only have a few matching pairs, we call them partial-matching can-
didates. When the global heap pops out more matching pairs, several trajectories will 
eventually complete all the matching pairs for query Q, they are called full-matching 
candidates. In Figure 2, trajectory R1 is a full-matching candidate with all shortest 
matching pairs, and R2 and R4 are partial-matching candidates since they miss the 
pairs of several query points. One may notice that, not all the matching pairs popped 
out by global heap G are added to the candidate set. For example, the current top 
element of G is <p1,4, q1>, and there is already a shortest matching pair <p1,2, q1> in 
candidate R1. Since the individual heap h1 reports the k-NN points in incremental 
manner, the oldest pair < p1,2, q1> is guaranteed to be the shortest one from R1 to q1. 
The new pair <p1,4, q1> is then a useless pair. It should be thrown away.  

The last issue of candidate generation is the stop criterion. The algorithm should 
not stop unless the candidate set has already contained all the k-NNTs. 

Property 1. If a candidate set has at least k full-matching candidates whose shortest 
matching pairs are all popped from the global heap, then the candidate set is  
complete. 
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Fig. 2. Data Structures for Candidate Generation 

Proof: A candidate set C is complete if it contains all the k-NNTs. That is, for any 
trajectory , we need to prove that Ri cannot be a k-NNT. 

For  , we denote the shortest matching pair from Ri to q as <pi, q>. Since 
, <pi, q> has not been popped out yet. The global heap G pops out matching 

pairs in the order of increasing distance, the distance of <pi, q> is large than or equal 
to current matching pair <pG, q> in G, that is: , , . 

Let  be a full-matching trajectory candidate, whose matching pair for q is 
<pj, q>. Since <pj, q> is already popped from G, its distance is less than <pG, q>: , , . Then , , . Hence we have: , , , ,  

There are at least k full-matching trajectories in C, their aggregated distances are 
all smaller than Ri, so Ri is not possible to be a k-NNT, candidate set C is complete.  

Based on Property 1, we develop the algorithm of k-NNT candidate generation. The 
algorithm first constructs the individual heaps and initializes the global heap and 
candidate set (Lines 1--3). Each individual heap pops a shortest matching pair to the 
global heap (Lines 4--5). In this way the global heap has m matching pairs. Then the 
candidate generation process begins. Once the global heap is full with m pairs, it pops 
out the shortest one. The system checks whether the candidate set already contains an 
old pair with the same trajectory and query point. If there is no such pair, the new 
popped pair is a shortest matching pair, it is then added to the candidate set (Lines 7--
9). After that, the global heap retrieves another pair from the corresponding individual 
heap (Line 10). This process stops when there are k full-matching trajectories in the 
candidate set (Line 11). 
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Algorithm 1. k-NNT Candidate Generation 
Input: Trajectory dataset D, Query Q, k
Output: k-NNT Candidate Set C 
1. for each   
2.     construct the individual heap hi on D; 
3. initialize the global heap G and candidate set C; 
4. for each individual heap hi  
5.    pop a matching pair and push it to G; 
6. repeat 
7.    pop the shortest pair <pj, qj> from G; 
8.    if <pj, qj> is a shortest matching pair, then 
9.       add <pj, qj> to C; 
10.    pop a matching pair from hj and push it to G; 
11. until C contains k full-matching candidates 
12. return C;  

 

Example 2. Figure 3 shows an example of the candidate generation algorithm. Sup-
pose k is set to 1. The algorithm first constructs the global heap with matching pairs 
<p1,4, q2>, <p1,6, q3> and <p1,2, q1>. In the first iteration the pair <p1,4, q2> is popped to 
the candidate list, candidate R1 is generated. Meanwhile the global heap retrieves the 
another pair <p5,5, q2> from q2’s individual heap. In the next three iterations, the glob-
al heap pops matching pairs <p1,6, q3>, <p5,5, q2> and <p4,5, q3> and generates two 
partial-matching candidates R4 and R5. At the 5th iteration, <p1,2, q1> is popped out 
and a full-matching candidate R1 is generated. The algorithm then stops and outputs 
the candidate set for further verification. 

 

Fig. 3. Running Example of Candidate Generation 

3.2   Candidate Verification  

After generating the candidates, the system needs to verify them to select k-NNTs. 
For the partial-matching candidates, the algorithm has to make up their missing pairs. 
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The computational and I/O costs are high for this task. Suppose the candidate set’s 
size is l (with k full-matching candidates), each trajectory contains average n member 
points and the number of query points is m. In the worst case, each partial-matching 
candidate only has one matching pair, the system has to carry out 1  times of distance calculation to make up the missing pairs. And it needs to access 
the  partial-matching trajectories. Fortunately the global heap provides a short-
cut to enhance the efficiency of candidate verification.  

Property 2. Let Q be the query, G be the global heap, R be a partial-matching candi-
date trajectory and  be the subset of query points that are contained in R’s 
matching pairs. Then LB(R, Q), as defined in the following equation, is a lower-bound 
of R’s aggregated distance. , , ,   
where <pR, qi> is a matching pair in R and <pG, qj> is a matching pair in G.  

Proof:  For  , we denote the shortest matching pair from R to qj as 
<pR, qj>.  <pR, qj> is a missing pair that has not been popped out from the global 
heap G yet. Since G is a minimum heap and pops out matching pairs with increasing 
distance, , , .  So we have: , , , ,  

, ,  ,    
Hence LB(R,Q) is a lower-bound of R’s aggregated distance.                                           

Note that, for   and  , the distances of <pR, qi> and <pG, qj> 
have been already computed. Thus LB(R, Q) is calculated without any I/O overhead.  

Algorithm 2 outlines the processing of candidate verification based on Property 2. 
The algorithm starts by adding all the full-matching trajectories to the result set and 
obtaining the k-th trajectory’s aggregated distance as the pruning threshold (Lines 1--
4). Then it computes the lower-bound for each partial-matching candidate. If the low-
er-bound is larger than the threshold, the trajectory is pruned without further computa-
tion (Lines 6--7). Otherwise, the algorithm has to access the trajectory’s member 
points and compute its aggregated distance (Lines 8--9). If the system finds a trajecto-
ry with a shorter distance than threshold, it adds the trajectory to the result set and 
updates the threshold (Lines 9--12). After processing all the partial-candidates, the 
algorithm outputs the top k trajectories in the result set as k-NNTs (Line 13). This 
pruning strategy is especially powerful if there are many partial-matching candidates 
with only one or two matching pairs. The more matching pairs a candidate lacks, the 
lager lower-bound it will have, and the higher probability it will be pruned. 
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Algorithm 2. k-NNT Candidate Verification 
Input: k-NNT candidate set C, global heap G, query Q.
Output: k-NNTs. 
1. initialize result set K; 
2. add all full-matching candidate of C to K; 
3. sort K in the order of increasing distance; 
4. threshold δ k-th trajectory’s aggregated distance in K;  
5. for each partial-matching candidate R in C 
6.    compute LB(R,Q); 
7.    if , δ then continue; 
8.    else  
9.       compute dist(R,Q); 
10.       if , δ then 
11.         add R to K; 
12.         sort K and update δ;                
13. return the top k trajectories in K;  

 

Example 3. Figure 4 shows the process to verify the candidates from Example 2. 
There are one full-matching candidate, R1, and two partial-matching candidates R4 
and R5. The algorithm first calculates LB(R4, Q) and LB(R5, Q). The calculations are 
carried out based on the results in the global heap and candidate set. Since LB(R4, Q) 
is larger than the threshold, R4 is pruned directly. The system only accesses the mem-
ber points of R5 for further computation. Finally, R1 is returned as the result. 

 

Fig. 4. Running Example of Candidate Verification 

4   Qualifier Expectation 

In k-NNT query processing, there are two steps that involve I/O overheads: (1) In 
candidate generation, the individual heaps traverse the R-tree to pop out matching 
pairs; (2) In candidate verification, if the lower-bound of a partial-matching candidate 
is less than the threshold, the system needs to access the trajectory’s member points 
for distance computation. The key to reduce I/O costs is to generate tight candidate 
set, i.e., the number of the candidates should be as small as possible. A tight candidate 
set costs less time to generate and is easier to be verified since the number of partial-
matching trajectories is also smaller.  
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The major function of global heap is to raise the candidate set’s tightness in the 
premise of guaranteeing completeness. The global heap controls searching processes 
of different individual heaps, restricts the search regions as equal-radius circles, as 
illustrated in Figure 5. When the trajectories and query points are all uniformly distri-
buted, the global heap can pop out a similar number of matching pairs to different 
locations. In this way, the k full-matching candidates are soon found and the candidate 
generation algorithm stops early. However, many real trajectory datasets are skewed: 
the taxi trajectories are dense in the downtown areas, the animal movements are con-
centrated around water/food sources. In addition, the query points are ad-hoc. It is 
possible that a user may provide an outlier location that is distant from all the trajec-
tories. In such cases, the matching pairs of outlier locations are much longer, they 
could be stuck in the global heap and significantly delay query processing.  

Example 4. Figure 5 shows an example of outlier location. The query point q3 is an 
outlier since it is far from all the trajectories. The distance of its shortest matching 
pair <p2,7, q3> is much larger than the pairs from other individual heaps. This pair 
cannot be popped out from the global heap and no full-matching candidate is found. 
The global heap has to increase the search radius and keep on popping useless pairs. 
Finally the algorithm ends with a large candidate set. And the system has to cost even 
more time in the verification step. The query efficiency is affected seriously due to a 
single outlier location.  

 

Fig. 5. Example of Outlier Point 

In the cases of outlier locations, the cost is high to wait global heap to pop k full-
matching candidates. Then can we compute them directly? The system can retrieve 
some partial-matching trajectories and make up their missing pairs. The key point is 
to guarantee the completeness of generated candidates. 

Property 3. If a candidate set has at least k full-matching candidates, and their aggre-
gated distances are smaller than the accumulated distance of all the matching pairs in 
the global heap, then the candidate set is complete. 
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Proof: A candidate set C is complete if it contains all the k-NNTs. In another word, 
for  , we need to prove that Ri cannot be a k-NNT. 

For  , we denote the shortest matching pair from Ri to q as <pi, q> and the 
current matching pair in G as <pG, q>. According to the proof of Property 1, we have , , , then , , ,  

Let Rj denote the full-matching candidate that,  and ,
. Then , , . There are at least k such full-matching 

candidates in C, then Ri is not possible to be a k-NNT, candidate set C is complete.   

Based on Property 3, if the candidate set contains k full-matching candidates with 
smaller distances than the distance sum of global heap’s matching pairs, the candidate 
generation can end safely. We call such full-matching candidates as qualifiers. Since 
the number of partial-matching candidates is usually much larger than k, the system 
needs to select out the ones that are most likely to become qualifiers to make up. A 
measure is thus required to represent the expectation of a partial-candidate to be a 
qualifier. To reveal the essential factors of such measure, let us investigate the follow-
ing example. 

Example 5. Figure 6 lists out the matching pairs in a candidate set. There are three 
partial-matching candidates R1, R2 and R4 with current aggregated distances as 70m, 
80m and 70m. q3 is an outlier location, the distance of its matching pair is much larger 
than others. Now if the system has to select a candidate and makes it up, which one is 
most likely to be a qualifier? 

 

Fig. 6. Partial-Matching Candidates 

Intuitively, we prefer R4 to R2, they have the same number of matching pairs but 
R4’s aggregated distance is smaller. Furthermore, R1 is better than R4, their aggregated 
distances are the same but R4 has one more missing matching pair than R1. To become 
a qualifier, R4 needs to make up two matching pairs but R1 only needs one. 

From the above example, we can find out that a candidate’s qualifier expectation is 
determined by two factors: the number of missing pairs and the advantage of existing 
matching pairs over the corresponding ones in global heap.  

<p2,6, q2>, 50; <p2,1, q1>, 65; <p6,3, q4>, 75; <p1,7, q3>, 150.     

R1: <p1,2, q1>, 10; <p1,4, q2>, 20;         ;<p1,6, q4>, 40. [Agg. : 70]
R2:                   ; <p2,5, q2>, 45;         ;<p2,8, q4>, 35. [Agg. : 80]
R4:                   ; <p4,4, q2>, 40;         ;<p4,5, q4>, 30. [Agg. : 70]

Global Heap (Accumulated distance: 340 m)

Candidate Set (Unit: m)
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Let R be a partial-matching candidate trajectory and  be the subset of 
query points that are contained in R’s matching pairs. The qualifier expectation of R is 
given in the following equation: ∑ , ,| |  

The qualifier expectation actually denotes an upper-bound of the average distance 
that R’s missing pairs could be larger than the corresponding ones in global heap. The 
larger this value is, the more likely that R will be a qualifier. Note that, the computa-
tion of qualifier expectation can be done with the current matching pairs in the candi-
date set and global heap, and no more I/O access is needed.  

 

Algorithm 3. Qualifier Expectation-based Generation 

Input: Trajectory dataset D, Query Q, Full-matching ratio μ 
Output: k-NNT Candidate Set C 
1.  (Lines 1-10 are the same as Algorithm 1) …… 
11.    while (|full-matching candidate| / |C|< μ) 
12.      compute partial-matching candidate’s expectation; 
13.      retrieve the candidate R with highest expectation;  
14.      make up the matching pairs for R; 
15. until C contains k qualifiers; 
16. return C; 

 

With the help of qualifier expectation, we can improve the candidate generation al-
gorithm as shown in Algorithm 3. The first few candidate generating steps are the 
same as Algorithm 1 (Lines 1--9). The difference is at Line 10, Algorithm 3 controls 
the size of full-matching candidates by a ratio parameter μ. Each time the global heap 
pops out a matching pair to candidate set, the proportion of full-matching candidate is 
compared with μ. If a full-matching candidate needs to be generated, the algorithm 
first calculates the qualifier expectations of all partial-matching candidates and picks 
the one with the highest expectation for making up. (Lines 11--13). The algorithm 
stops if there are k qualifiers (Lines 14--15).  

Example 6. Figure 7 illustrates the qualifier expectation-based method. Suppose k is 
set as 1 and the full-matching ratio μ is 0.33. At the 5th iteration, the candidate set 
size is 3 and a full-matching candidate should be generated. The algorithm calculates 
the qualifier expectations of the three partial-matching candidates. R1 is the one with 
the highest expectation. The algorithm then retrieves R1’s member points and makes 
up the missing pairs. Since dist(R1, Q) is less than the global heap’s accumulated 
distance, R1 is a qualifier. The candidate generation ends and R1, R2 and R4 are re-
turned as candidates. 
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Fig. 7. Qualifier Expectation-based Method 

5   Performance Evaluation 

5.1   Experiment Settings 

Datasets: We conduct extensive experiments to evaluate the proposed methods, using 
both real-world and synthetic trajectory datasets. The real datasets D3 is retrieved 
from the Microsoft GeoLife and T-Drive projects [8, 17, 18, 7]. The trajectories are 
generated from GPS devices with sampling rate from 5 seconds to 10 minutes. 
Meanwhile, to test the algorithm’s scalability, we also generate two synthetic datasets, 
being comprised of both uniform and skewed trajectory distributions, with a size more 
than 2 GB.  

Environments: The experiments are conducted on a PC with Intel 7500 Dual CPU 
2.20G Hz and 3.00 GB RAM. The operating system is Windows 7 Enterprise. All the 
algorithms are implemented in Java on Eclipse 3.3.1 platform with JDK 1.5.0. The 
parameter settings are listed in Table 2. 

Table 2. Experimental Settings 

Dataset Type Traj. # Total Points File Size 

Syn 1 (D1) syn., uniform 40,000 4.0*107 2.0 GB 

Syn 2 (D2) syn., skewed 40,000 4.0*107 2.0 GB 

Real (D3) taxi 12,643 1.1*106 54 M 

The value of k: 4 – 20, default 20 

The query size |Q| (number of query points): 2 –10, default 10 

The full matching ratio μ: 20% – 100%, default 40% 
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Competitors: The proposed Global Heap-based algorithm (GH) and Qualifier Ex-
pectation-based method (QE) are compared with Fagin’s Algorithm (FA) [12] and 
Threshold Algorithm (TA) [14]. 

5.2   Evaluations on Algorithm’s Performance 

We first evaluate the algorithm using uniform dataset D1. We start the experiments by 
tuning different k value. Figure 8 shows the query time and accessed R-tree nodes. 
Note that the y-axes are in logarithmic scale. GH achieves the best performance in 
both time and I/O efficiency. Because the trajectories are uniformly distributed in D1, 
the global heap does a good job to coordinate the candidate search around query 
points. No matching pair is stuck in the global heap. It is thus unnecessary to directly 
make up the partial-matching candidates, which involves higher cost. 

 

Fig. 8. Performances vs. k on D1 

 

Fig. 9. Performances vs. |Q| on D1 

Figure 9 illustrates the influences of query size |Q| in the experiments. When the 
query size is small, QE has better performance than GH, because in such cases, the 
partial-matching candidates have higher probability to become qualifiers. Hence the 
candidate generation ends earlier. When the query size grows larger, GH outperforms 
other algorithms with the power of coordinated candidate search. It is also more ro-
bust than other competitors.  
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The second part of our experiments is carried out on skewed dataset D2. Based on 
default settings, we evaluate the time and I/O costs of the four algorithms with differ-
ent values of k and |Q|. From Figures 10 and 11 one can clearly see the problem of 
outlier locations on skewed datasets. The best algorithm on D1, GH, has degenerated 
to two orders of magnitude slower. FA also has the same problem. Fortunately, QE 
still achieves a steady performance, it can process the k-NNT query in 10 seconds 
even with the largest k and |Q| (k = 20, |Q| = 10).   

 

Fig. 10. Performances vs. k on D2 

 

Fig. 11. Performances vs. |Q| on D2 

An interesting observation is that, in Figure 10, GH’s time and I/O costs are almost 
not influenced by the number of k, but the costs increase rapidly with |Q| in Figure 11. 
This phenomenon can be illustrated by the mechanism of global heap. In the case of 
outlier point locations, the global heap is difficult to pop out the first matching pair, 
since such query is distant from all the trajectories. The global heap has to wait for a 
long time before the first full-matching candidate is generated. Once the global heap 
pops out the first pair of an outlier point location, it may quickly pop out more match-
ing pairs of that outlier, because the search region has already been enlarged to reach 
the dense areas of trajectories. As an illustration, please go back to Figure 5, in which 
GH uses four more iterations to pop out <p2,7, q3>. But once this pair is popped out, 
other pairs such as <p1,7, q3> will soon be popped. Hence if GH generates the first full 
candidate, it can quickly generate more to form a complete candidate set.  
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We also conduct experiments on the real dataset D3. In the experiments of tuning k 
value, QE is the winner, as shown in Figure 12. Comparing to Figures 8 and 10, the 
algorithm performances on D3 are more to close to the ones on skewed dataset D2, 
since the distribution of real trajectories is more likely to be skewed.  

 

Fig. 12. Performances vs. k on D3 

In Figure 13, GH has better performance than QE when the query size is less than 
6. As query size grows, GH’s performance degenerates rapidly and QE will be the 
most efficient algorithm. With more query points, the probability of outlier location 
becomes higher. GH suffers from such a problem, but QE is relatively robust.  

 

Fig. 13. Performances vs. |Q| on D3 

Finally, we tune the full-matching ratio μ used in QE. The system starts by setting 
μ as 20% and gradually increases the parameter. The results are recorded in Figure 14. 
Overall, QE’s performance is much better on the real dataset since the data size is 
much smaller. From the figures one can learn that, when μ is smaller than 40%, the 
qualifiers are not enough to stop the candidate generation process, but if μ is larger 
than 60%, the system has to make up too many partial-matching candidates that  
are unlikely to be qualifiers. QE achieves the best efficiency when μ ranges from  
40% to 60%.  
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Fig. 14. Performances vs. μ 

5.3   Discussions 

In summary, GH achieves the best efficiency when the trajectories are uniformly 
distributed, QE is more suitable for the skewed dataset. Although there is no overall 
winner on real dataset, we suggest QE as the best choice since it is much robust than 
GH. In addition, QE is better to handle the complex queries with more location points. 

When processing k-NNT query, we set the upper-bounds of k as 20 and |Q| as 10. 
Since most users are only interested in the first few results, and it is impractical for 
them to enter tens of query points as input. From the trends of performances of QE 
and GH, we can see that the algorithms work without problem with even larger k and 
|Q|. In the experiments, datasets are indexed by R-trees. However, the proposed tech-
niques are flexible to higher dimensions or alternative indexes, such as R* Trees and 
A-trees. The methods can also be extended to road network. We only need to make 
minor changes by adjusting the distance computation of individual heap for road 
network distances.  

In the experiments, we use the GPS datasets with high sampling frequency. It is 
possible that the raw trajectory data collected from other tracking devices are not as 
ideal as expected. The trajectories could be sparse due to device limitations or users’ 
turning off tracking sensors. On the other hand, if a very long trajectory traverses the 
entire region, it has higher probability to be selected as k-NNT. In such cases, the 
trajectories should be preprocessed with similar sampling frequency and length.  

6   Related Work 

A number of algorithms were proposed to process k-NN queries for point objects. 
Roussopoulos et al. propose a depth-first algorithm for k-NN query in 2D Euclidean 
space [11]. Hjaltason et al. improve the algorithm with a best-first search strategy [6]. 
Papadias et al. propose the concept of Aggregate k-NN (ANN) query, for the first 
tiem, the problem is extended to multiple query points [5]. Those methods search k-
NN as points, while the objects in k-NNT query are trajectories. The distance meas-
ures are different. It is difficult to use them directly for k-NNT query processing.  
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There are many studies about searching trajectories by sample based on different 
similarity measures. Some representative works are: Chen et al. propose the ERP 
distance to support local time shifting [9], they show that ERP delivers superb prun-
ing power and search time performance; Sherkat et al. develop a uDAE-based MBR 
approximation approach [13]. Those methods define the similarity functions on the 
shape of trajectories, but they do not consider the spatial properties. 

There are several studies in the category of searching trajectory by point locations. 
As a pioneering work, Frentzos et al. propose the concepts of Moving Object Query 
(MOQ) to find the trajectories near a single query point [4]. The moving object query 
can be seen as a special case of k-NNT query with a single query point.  

More recently, Chen et al. propose the k-Best Connected Trajectory (k-BCT) query 
[20].  For the first time, they connect the trajectory query to multiple query locations, 
with both spatial distance and order constraints. The biggest difference between k-
BCT and k-NNT is the distance measure. In the k-BCT query, the similarity function 
between a trajectory R and query locations Q is defined by an exponential function, 
where R, ∑ e , . With the exponential function, the k-BCT query 
assigns a larger contribution to closer matched query points and trajectories than far 
away ones. However, the exponential function of k-BCT query may not be robust to 
the distance unit.  

For a query with m point locations, the FA algorithm generates candidates in a pa-
rallel manner around each point location [12]. Without the coordination of global 
heap, the FA algorithm costs more time on candidate search and also more time to 
prune the candidates since the lower-bound cannot be computed to help processing. 
Fagin et al. propose another Threshold Algorithm (TA) for top k aggregation query in 
distributed systems and middleware [14]. For any generated candidates, TA computes 
their aggregated distances immediately. Indeed it can be seen as a special case of 
qualifier expectation-based method when the full candidate ratio μ is set to 100%.  

7   Conclusions and Future Work 

In this study we present the k-Nearest Neighboring Trajectory (k-NNT) query to re-
trieve top k trajectories with the minimum aggregated distance to a set of point loca-
tions. This k-NNT query will facilitate a board range of applications, such as travel 
recommendation, traffic analysis and biological research. We propose a global heap-
based method, which coordinates candidate generation, guarantees the completeness 
of candidates and offers a lower-bound for candidate verification. Meanwhile, by 
leveraging the proposed measure of qualifier expectation, our method handles the 
trajectory dataset with skewed distribution and outlier query locations, which are 
practical situations we need to face in the real world. We evaluate our methods using 
both real-world and synthetic trajectory datasets, and compare our methods with the 
state-of-the-art algorithms. The results demonstrate the feasibility and effectiveness of 
our proposed methods.  

This paper is the first step of our trajectory search study. We plan to evaluate the k-
NNT queries with different constraints, e.g., temporal constraints and traffic conges-
tions. We are also interested in applying them to advanced spatial applications such as 
driving route recommendation and traffic management. 
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Abstract. Taxicab service plays a vital role in public transportation
by offering passengers quick personalized destination service in a semi-
private and secure manner. Taxicabs cruise the road network looking for
a fare at designated taxi stands or alongside the streets. However, this
service is often inefficient due to a low ratio of live miles (miles with a
fare) to cruising miles (miles without a fare). The unpredictable nature
of passengers and destinations make efficient systematic routing a chal-
lenge. With higher fuel costs and decreasing budgets, pressure mounts
on taxicab drivers who directly derive their income from fares and spend
anywhere from 35-60 percent of their time cruising the road network for
these fares. Therefore, the goal of this paper is to reduce the number of
cruising miles while increasing the number of live miles, thus increasing
profitability, without systematic routing. This paper presents a simple
yet practical method for reducing cruising miles by suggesting profitable
locations to taxicab drivers. The concept uses the same principle that a
taxicab driver uses: follow your experience. In our approach, historical
data serves as experience and a derived Spatio-Temporal Profitability
(STP) map guides cruising taxicabs. We claim that the STP map is
useful in guiding for better profitability and validate this by showing a
positive correlation between the cruising profitability score based on the
STP map and the actual profitability of the taxicab drivers. Experiments
using a large Shanghai taxi GPS data set demonstrate the effectiveness
of the proposed method.

Keywords: Profitability, Spatial, Temporal, Spatio-temporal, Taxi,
Taxicabs.

1 Introduction

Taxicab service plays a vital role in public transportation by offering passengers
quick personalized destination service in a semi-private and secure manner. A
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2006 study reported that 241 million people rode New York City Yellow Medal-
lion taxicabs and taxis performed approximately 470,000 trips per day, gener-
ating $1.82 billion in revenue. This accounted for 11% of total passengers, an
estimated 30% of total public transportation fares, and yielded average driver
income per shift of $158 dollars [1]. Taxicab drivers earn this by cruising the
road network looking for a passenger at designated taxi stands or alongside the
streets. However, this service is often inefficient from expensive vehicles with low
capacity utilization, high fuel costs, heavily congested traffic, and a low ratio of
live miles (miles with a fare) to cruising miles (miles without a fare).

With higher fuel costs and decreasing budgets, pressure mounts on taxicab
drivers who directly derive their income from fares yet spend anywhere from
35-60 percent of their time cruising the road network for fares [1]. The unpre-
dictable nature of passengers and destinations make efficient systematic routing
a challenge. Therefore, the goal is simultaneously reducing cruising miles while
increasing live miles, thus increasing profitability, without systematic routing.

This paper presents a simple yet practical method for suggesting profitable
locations that enable taxicab drivers to reduce cruising miles. The concept uses
the same principle that a taxicab driver uses: follow your experience. We propose
a framework to guide taxi drivers in locating fares. Specifically, this paper makes
three contributions. First, the proposed framework uses historical GPS data
to model the potential profitability of locations given the current location and
time of a taxi driver. This model considers the main factors contributing to the
profitability: time and the profit loss associated with reaching a location. Second,
this framework makes personalized suggestions to a taxi driver based on location
and time. This avoids the problem of communicating the same information to all
drivers, which may result in non-equilibrium in supply and demand. Third, we
demonstrate the effectiveness of the proposed framework using a large dataset
of Shanghai taxicab GPS traces and use correlation to compare the suggested
locations with actual driver behavior.

2 Related Work

Taxicab service falls into two general categories and research follows this, oc-
casionally attempting to bridge them. The first category is dispatching where
companies dispatch taxicabs to customer requested specific locations. A request
may be short-term (e.g., a customer requests a taxi for pickup within the next
20 minutes) or long-term (e.g., arrangements come hours or days in advance).
Logic dictates that the farther in advance the request, the easier it is to plan
efficient taxi service because routing algorithms already exist (mostly based on
Dijkstra’s work); the shorter the request time, the more challenging the routing
problem. The second category is cruising. The taxicab driver cruises the road
network looking for a fare at designated taxi stands or alongside the streets, us-
ing experience as a guide. This leads to an inefficient system where taxi drivers
spend significant time without a fare and often serve hot spots, leading to a sup-
ply and demand imbalance. Since cruising is a profit loss, this paper will refer
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to non-live miles as a cruising trip and live miles as a live trip. The following
highlights some recent research in this area.

Yamamoto et al. propose a fuzzy clustering based dynamic routing algorithm
in [2]. Using a taxicab driver’s daily logs, the algorithm creates an optimal route
solution based on passenger frequency on links (i.e., paths). The routes, not
intended to be used directly by the taxi driver, are shared among taxis through
mutual exchanges (i.e., path sharing) that assigns the most efficient path to
a taxi as they cruise. This potentially reduces the competition for a potential
fare, excessive supply to popular areas, and traffic congestion while increasing
profitability. Similarly, Li et al. present an algorithm using taxi GPS traces
to create a usage based road segment hierarchy from the frequency of taxis
traversing a road segment [3]. This hierarchy inherently captures the taxi driver
experience and is usable in route planning. In these two examples, the focus is
on routing but trip profitability—a key factor in the driver’s decision—is not
explicitly addressed.

Another example of taxicab routing is T-Drive, developed by Yuan et al.
to determine the fastest route to a destination at a given departure time [16].
T-Drive uses historical GPS trajectories to create a time-dependent landmark
graph in which the nodes are road segments frequently traversed by taxis and a
variance-entropy-based clustering approach determines the travel time distribu-
tion between two landmarks for a given period. A novel routing algorithm then
uses this graph to find the fastest practical route in two stages. The first stage,
rough routing, searches the graph for the fastest route for a sequence of land-
marks; the second stage, refined routing, creates the real network route using the
rough route. Similar to the previous example, this system does inherently cap-
ture taxi driver experience and suggests faster routes than alternative methods;
however, this method does not suggest profitable locations for taxicabs.

A thesis by Han Wang proposes a methodology for combining short-term and
long-term dispatching [4]. If a customer’s starting and ending locations follow
the path of a taxi as it heads to a different dispatch call, the taxi can pick up
the fare. This allows a reduction in cruising and an increase in profitability. The
catch is that it may not be common for passenger routes to align exactly. There-
fore, Wang proposes the Shift Match Algorithms that suggest drivers and/or
customers to adjust locations, creating a reasonable short delay in service but
an improvement overall. In this study, the cruise trips are different from those
in the aforementioned cruising category because they result from dispatching,
not from intent to cruise. This method is practical for dispatching but not for
general cruising.

Another approach, given by Cheng et al., focuses on customer queuing at taxi
stands and taxis switching between serving stands and cruising [5]. Phithakkit-
nukoon et al. developed an inference engine with error based learning to predict
vacant taxis [6] while Hong-Cheng et al. studied travel time variability on driver
route choices in Shanghai taxi service [7]. Additional research covers a variety of
issues from demand versus supply to pricing issues [8,9,10,11,12]; however, these
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studies do not consider location profitability, which is inherent to the driver’s
decision.

The work most similar to ours is by Ge et al., who provide a novel technique
in extracting energy-efficient transportation patterns from taxi trajectory traces
and a mobile recommender system for taxis [17]. The technique extracts a group
of successful taxi drivers and clusters their pick-up points into centroids with
an assigned probability of successful pick-up. The resulting centroids become
the basis for pick-up probability routes that the system distributes among taxis
to improve overall business success. The major contribution is how the system
evaluates candidate routes using a monotonic Potential Travel Distance (PTD)
function that their novel route-recommendation algorithm exploits to prune the
search space. They also provide the SkyRoute algorithm that reduces the com-
putational costs associated with skyline routes, which dominate the candidate
route set. This recommender system potentially improves success by using prob-
abilities; however, probabilities can be misleading in relation to the profitability
since high probabilities do not necessarily translate into highly profitable live
trips. In addition, the algorithm clusters locations using fix periods regardless
of when the taxicab actually arrives at a location. Furthermore, our framework
suggests a customized map of locations based on the taxicab’s current location to
eliminate route creation cost and taxi-route assignment distribution issues; how-
ever, their algorithms could enhance our framework by suggesting customized
paths for the taxi driver using a time series of STP maps.

3 Methodology

The taxicab driver is not concerned with finding profitable locations during a
live trip. Once the live trip is complete, assuming there is not a new passenger
available at the location, the driver must decide where to go. They may stay in
that general vicinity for a time in hopes of a passenger or, more likely, head to
another location based on experience. At this moment, the driver considers two
variables: profitable locations and reasonable driving distances. However, a driver
might be unaware of both variables. For example, a driver may be unreasonably
far from a highly profitable airport but unsure of closer profitable locations less
often visited. Given a map identifying these locations, the driver can make an
informed decision quickly and reduce cruising time.

Figure 1 summarizes the proposed methodology for identifying these loca-
tions. When a taxicab begins a cruising trip, the current location and time are
parameters for querying a historical database that serves as driver experiences.
The experience information coincides with locations and becomes a location-
based profitability score. The process assembles these scores into an STP map
that suggests potentially profitable locations to the taxicab driver. By following
the suggestions, the driver can reduce cruising time thus increase profitability.

STP map generation occurs when a taxicab is ready for a new fare, i.e. when
the driver begins a cruising trip. At this moment, and based on the current
location, the map encompasses a region of interest within a reasonable driving
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Fig. 1. The STP map generation process. The current location and time are parameters
for retrieving historical data that becomes profitability scores in an STP map.

distance and uses historical data to determine the profitability of locations within
this region. The map is personalized to the driver since each driver is at a different
location. This mechanism can prevent sending the same information to multiple
drivers, which could result in localized competition and a non-equilibrium state.
It is possible for multiple drivers to receive the same STP map if their closeness
is within error bounds of the distance calculations, but this occurs infrequently.

This region can be large enough to encompass all the historical data, but since
the taxicab moves spatially and temporally, it is not necessary to model the entire
region. The first step in generating this map is to define a sub-region M around
the taxicab’s current location in region R such that M ⊆ R. In other words,
region M is for short-term planning, the taxicab driver’s inherent process—the
driver moves towards locations of high live trip probability and profitability.
Figure 2 demonstrates this concept. At time t1, the taxi driver drops off the
passenger at the end of a live trip and receives STP map M1 of the surrounding
location. The driver chooses a profitable location within the region, moves to
that location, and picks up a passenger. This new live trip continues until t2
when the passenger is dropped off and the driver receives a new STP map. This
process continues until the taxi goes out of service. With this knowledge, the
driver can reduce overall cruising time.

This method defines locations within M and determines a profitability score
for each location. The simplest implementation is to divide M into a grid of
equally sized cells such that M = {x1, x2, ..., xn}, with the taxicab located at
center cell xc (see Figure 3). The grid granularity is important. The cell sizes
should be large enough to represent a small immediate serviceable area and to
provide enough meaningful historical information to determine potential prof-
itability. For instance, if the cell of interest xi has little or no associated historical
information, but the cells surrounding it do, it may be beneficial to increase the
granularity. On the other hand, it should also not be too large as to become
meaningless and distorted in terms of profitability. For instance, a cell the size
of a square kilometer may be unrepresentative of a location.

As mentioned previously, the historical data determines the cell profitabil-
ity since it captures the taxi drivers’ experiences in terms of trips. The natural
inclination is to use the count of live trips originating from the cell as the prof-
itability indicator; however, this can be misleading since it does not consider the
probability of getting a live trip and because a trip fare calculation, which de-
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Fig. 2. A taxicab moving through region R. At
each time ti, the driver receives a new STP map
M customized to that location and time with
the taxicab located at the center.

Fig. 3. An example sub-region M
composed of n cells with the taxi
located at xc. Each xi represents a
location with a profitability score.

termines profitability, uses distance and time, implying that the average of some
distance to time ratio for a location’s trips may be more appropriate. This ratio
still would not capture true profitability because trip fares are not a direct ratio
of distant to time. It is common practice to charge a given rate per distant unit
while the taxi is moving and a different rate when idling. Therefore, a location’s
profitability is a factor of trip counts (cruising and live), trip distances, and trip
times (idling and moving).

The formula for calculating the fare for live trip j, F (j), at starting location
xi is the amount of idle time ti(j) charged at rate ri, plus the distanced traveled
dl(j) charged at rl

1 (see Eq. 1). If unknown, one can estimate idle time ti using
the total trip time t and the taxicab speed s as t − dl/s. The cost of reaching
the starting point of trip j is the distance traveled between xc and xi, D(xc, xi),
times some proportion θ of rl since the rate charged has the cost factored into
it. Therefore the profitability of trip j with the taxi currently located at xc,
P (xc, j), is F (j) minus the cost associated with reaching xi from xc (see Eq. 2).
The profitability of location xi with respect to current location xc, P (xc, xi), is
the sum of all historical live trip fares from that location divided by the total
count of trips, both live nl and cruising nc, minus the cost between xc and xi (see
Eq. 3). Eq. 1 is actually a simplification of the fare pricing structure which can
vary for different cities, different locations within the city, and different times of
day. The fare price may be fixed; for example, the price from JFK airport in New
York is fixed, or more commonly, there is a fixed charged for a given distance,
a different charge per distance unit for a bounded additional distance, and a
third charge after exceeding a given distance. As an example, Table 2 gives the
Shanghai taxi price structure.

F (j) = (ti(j) ∗ ri) + (dl(j) ∗ rl) (1)

1 Note that rl is some proportion of ri.
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Table 1. A summary of the variables used to determine profitability

Variable Description

dl Total distance of a live trip
D(x1, x2) Distance between locations x1 and x2

F (j) The fare of trip j
nc Number of cruise trips
nl Number of live trips

P (xc, j) Profitability of trip j
P (xc, xi) Profitability of an STP map location

rl Charge rate per unit of distance
ri Charge rate per unit of idle time
s Taxicab speed
t Total time of a trip
tc Time of a cruise trip
ti Time of taxi idling
tl Time of a live trip
xc The taxicab location, which is the center of M
xi Location of interest within M
θ Proportion relating unit cost
ε Adjustment for low trip counts

P (xc, j) = F (j) − (D(xc, xi) ∗ rl ∗ θ) (2)

P (xc, xi) = (
nl∑

j=1

F (j))/(nl + nc) − (D(xc, xi) ∗ rl ∗ θ) (3)

Table 2. The Shanghai taxicab service price structure [15]. Taxi drivers charge a flat
rate of 12 Yuan for the first 3 kilometers plus a charge for each additional kilometer.

Trip Description 5am - 11pm 11pm - 5am

0 to 3 km 12.00 Total 16.00 Total
3 to 10 km 12.00 + 2.40/km 16.00 + 3.10/km
Over 10 km 12.00 + 3.60/km 16.00 + 4.70/km

Idling 2.40/5 minutes 5.10/5 minutes

It is difficult to use these equations without detailed historical information;
however, there is an exploitable relationship. Time can represent the profitability
by converting each variable to time; distance converts to time by dividing by
the speed and the rate charged for idle time is proportional to the rate charge
for movement time. Furthermore, the profit earned by a taxi driver is directly
proportional to the ratio of live time tl to cruising time tc. The average of all
live trip times originating from xi, minus the cost in time to get to xi from xc,
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can represent the profitability score of cell xi (see Eq. 4). The ε ensures that the
profitability reflects true trip probability when trip counts are low.

P (xi) = (
nl∑

j=1

tl)/(nl + nc + ε) − (D(xc, xi) ∗ rl ∗ θ)/s (4)

Each of these variables is derivable from GPS records. Given a set of records
with an indication of the taxicab’s occupancy status, the time stamps and status
can determine the live and cruising times, the GPS coordinates determine the
distances, and the distances and times determine speeds.

It is not a requirement to use all the historical data from the GPS records
to determine the location profitability used in the STP map; in fact, using all
the data may be misleading due to the changing conditions throughout the day.
For example, profitability for a specific location may be significantly different
during rush hour than during night traffic. Since the taxicab driver is looking
for a fare in the here and now, a small data window will better represent the
driver’s experience for this period. For each location, the data selected should
represent what the conditions will be when the driver reaches that location.
For example, if it is 1:00pm and takes 10 minutes to reach the location, the
historical data should begin at 1:10pm for the location. The size of this Delayed
Experience Window (DEW) may be fixed or variable as necessary, but the size
is important. If the DEW is too large, it may include data not representative
of the profitability; if too small, it may not include enough data. The following
case study gives an example of the proposed methodology applied to Shanghai
taxicab service.

4 Case Study – Shanghai Taxi Service

Shanghai is a large metropolitan area in eastern China with over 23 million
denizens [13] and a large taxicab service industry with approximately 45 thou-
sand taxis operated by over 150 companies [14]. To demonstrate our method, we
use a collection of GPS traces for May 29, 2009. The data set contains over 48.1
million GPS records (WGS84 geodetic system) for three companies between the
hours of 12am and 6pm and over 468,000 predefined live trips of 17,139 taxi-
cabs. We divided the data into the three companies and focused on the first
company, which yielded data for 7,226 taxis. The region R was limited to 31.0◦-
31.5◦ N, 121.0◦-122.0◦ E to remove extreme outliers and limit trips to the greater
metropolitan area. Furthermore, only trips greater than five minutes are included
since erratic behavior occurred more often in those below that threshold. Similar
erratic behavior occurred with trips above three hours, often the result of the
taxi going out of service, parking, and showing minute but noticeable movement
from GPS satellite drift. The three-hour threshold is partially arbitrary and par-
tially based on the distribution of trips times. While relatively rare, there are
times when taxis spend over an hour on a cruising trip, but cruising trips over
three hours occur much less frequently.
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These reductions left 144 thousand live trips remaining for the first company
from which we constructed cruising trips. For each taxicab, we defined the cruis-
ing trips as the time and distance between the ending of one live trip and the
beginning another. We assumed there is a cruising trip before the first chrono-
logical live trip if there is at least one GPS record before the live trip starting
time that indicated no passenger in the vehicle. We also assumed, that the end
of the taxi’s last live trip indicated that the taxicab was out of service and did
not incur any additional cruising trips. For example, if the taxicab first appears
at 12:04am, but its first live trip is at 12:10am, 12:04-12:10am became a cruising
trip. If the taxicab’s last live trip ended at 3:07pm, this became the last trip con-
sidered. This resulted in 948 fewer cruise trips than live trips, but did eliminate
all outlier trips outside the period.

(a) STP Map (b) Live Trip Counts (c) Live Trip Probability

Fig. 4. Results for the downtown region at 1:00pm with a 60-minute DEW, 190.5-meter
cell length, M size of 67.1 km2, and with the taxicab in the center. The Oriental Pearl
Tower is encircled. Using the live trip counts or probability could cause the taxicab
driver to incur a higher cost compared to using the STP map.

For the first demonstration, the square region around the taxicab location
was approximately 8.1x8.1 km2 divided into 43x43 square cells of approximately
190.5 meters in length. The DEW is 60 minutes, starting at a time delay based on
the time required for to reach the cell. We chose the taxi’s current time as 1:00pm
since the 1:00-3:00pm period has the largest percentage in data distribution. The
time and distance required to reach the cell’s center came from the L1 Manhattan
distance and average speed of 11 km/h based on instantaneous speeds recorded
in the GPS data. The distances of the live trips originating from the cell is
the sum of L2 Euclidean distances from the trip’s individual GPS records. For
the profitability score, θ was deduced from the data to be approximately 0.333;
although the exact value is unknown, it can be estimated by analyzing trip
times. Figure 4 and Figure 5 display the STP maps near the downtown region
and near the Shanghai Hongqiao International Airport, respectively, with the
taxicab at the center of the map. The figures also include the live trip counts
and probability for the areas as a comparison to the profitability. Additionally,
to show that two taxicabs at the same time get two distinct STP maps, Figure 6



Towards Reducing Taxicab Cruising Time 251

(a) STP Map (b) Live Trip Counts (c) Live Trip Probability

Fig. 5. Results for the Shanghai International Airport region at 1:00pm with a 60-
minute DEW, 190.5-meter cell length, M size of 67.1 km2, and with the taxicab in the
center. The airport terminal is encircled. The high count of live trips from the terminal
shadows the other locations, hiding other potentially profitable locations that our STP
map captures.

(a) STP Map 1 (b) STP Map 2

Fig. 6. Results for overlapping downtown regions at 1:00pm with a 60-minute DEW,
90.5-meter cell length, M size of 67.1 km2, and with the taxicab in the center. The
top-right quadrant of STP Map 1 overlaps the bottom-left quadrant of STP Map 2.
There is a clear difference between the overlapped regions as lower profitability areas
in one are often higher profitability areas in the other.

Fig. 7. Color scale from low to high values for Figures 4, 5, and 6
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Fig. 8. Results for the downtown region STP map over laid with the Google Earth’s
satellite image at 1:00pm, a 60-minute DEW, 190.5 meters cell length, and M size of
67.1 km2. Lighter areas represent higher profitability scores and often correlate with
areas expected to be profitable, such as the Shanghai International Convention Center.

shows two overlapping regions in which the top-right quadrant of Figure 6(a)
overlaps the bottom-left quadrant of Figure 6(b). For visualization purposes,
negative profitability areas are set to zero to highlight the profitable regions,
which are of interest to the taxi driver.

Figure 8 overlays the STP map in Figure 4(a) with the downtown area using
Google Earth and one-hour DEW. The results show a correlation with office
buildings and the STP map. There are two issues to note. First, Google Earth
distorts the cell edges in an effort to stretch the image over the area, leading to
potential misinterpretation, although minor. Second, the cell granularity plays
an important role in the results. Near the image center, the construction area
near the Grand Hyatt Hotel shows high profitability while the Grand Hyatt
itself does not show as high profitability as would be expected. This is because
the cell boundary between these locations is splitting the trips between them.
While this is an issue, it is more typical for a group of close cells to have similar
profitability scores. From the viewpoint of a taxicab driver, this is not an issue
because the goal to find general locations of high profitability, not necessarily
the specific 190.5 by 190.5 square meters. Figure 9 similarly shows an STP map
overlaying the airport. The airport is one of the hottest locations, producing
numerous profitable trips that make it a favorite location among taxi drivers. In
this case, the entire terminal area has similar profitability even though the cells
maybe splitting the activity among them. A graphical glitch is preventing the
red cell from completely showing near the image center.
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Fig. 9. Results for the Shanghai International Airport region STP map over laid with
the Google Earth’s satellite image at 1:00pm, a 60-minute DEW, 190.5 meters cell
length, and M size of 67.1 km2. Lighter areas represent higher profitability scores and
correlates with airport terminal and surrounding area. Note that a graphical glitch is
causing the red center cell to be distorted.

5 Validation

To validate this method, we must show that the STP maps correlate with actual
profitability. If assumed that taxicab drivers move towards high profitable areas
when cruising, then it is logical that the ending location of a cruising trip (i.e.,
the beginning location of a live trip) is a profitable location. If these ending
locations correlate to the higher profitable areas in the STP maps generated for
the taxicab throughout the day, and this correlates with known taxi profitability,
then the STP map correctly suggests good locations. In other words, if the
aggregate profitability scores associated with the ending locations of cruise trips
throughout the day correlates to actual profitability, which can be determined
by live time to total time for a taxi, then the correlation should be positive.

We selected five distinct test sets of 600 taxicabs and removed taxis with less
than 19 total trips to focus on those that covered the majority of the day. This
resulted in 516-539 taxis per test set. For each taxicab, we followed their path
of live and cruising trips throughout the day. When a taxicab switched from live
to cruising, we generated an STP map using a 15-minute DEW for a 15.8 by
15.8 km2 area divided into 167 by 167-square cells (approximately 95 meters
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in length) with the taxi at the center. We summed the profitability scores at
cruising trip ending locations and correlated them with the real live time to total
time ratio that defines actual profitability. We then repeated the experiment,
increasing the cell size and DEW while holding the region size constant.

Fig. 10. The total and cruise trips for one dataset with 538 taxis, sorted by total time.
Increasing the total time tends to disproportionately increase the count of cruise trips
to live trips.

Figures 10, 11, and 12 visualize typical characteristics of the test sets. Figure
10 shows trip counts and Figure 11 shows trip times with taxis sorted by total
time. There is a distinct group having higher total times, but this results from
a larger percent of cruising time relative to the other taxis. Comparing this
with Figure 12, the taxicab profits with taxis sorted by total time, reveals that
the total time in service does not necessarily improve profits; in fact, it has a
tendency to have the opposite effect. Figure 12 also shows that an increase in
total time typically yields more trips, but does not necessarily increase overall
profits.

Figure 13 displays the resulting average correlation over the datasets for three
cell sizes and DEWs. The average correlations approached 0.50 with a slightly
higher median. The trend in correlation clearly demonstrates the effect of cell
sizes. Small sizes do not accurately represent the profitability and larger sizes
tend to distort. Additionally, the DEW shows a definite trend. The more histori-
cal data, the better the correlation; however, caution should be taken. Increasing
the DEW increases the amount of historical data, but may cause it to include
data not representative of the current period. For example, if the DEW includes
both rush hour and non-rush hour traffic, then the profitability may not reflect
real profitability. In addition, if a taxi only cruises for a few minutes, the extra 50
minutes of a 60-minute DEW has less importance in making a decision. Figure



Towards Reducing Taxicab Cruising Time 255

Fig. 11. The total, live, and cruise times in seconds for one dataset with 538 taxis,
sorted by total time. The amount of cruising time is often greater than live time.

Fig. 12. The profit (live time/total time) for one dataset with 538 taxis, sorted by total
time. There is a slight upward trend in profits as the total time decreases, indicating
that an increase in total time does not guarantee an increase in profit.



256 J.W. Powell et al.

14 confirms this hypothesis—holding the 190x190 m2 cell size constant, the cor-
relation increases with the increasing DEW until past the 90-minute mark. Since
the DEW starts at 1:00pm but was time delayed as described in the method, it
started including the traffic pattern beyond the afternoon rush hour but before
the evening rush hour.

Fig. 13. Average correlation of the five test datasets for a given cell size and DEW.
The cell size 190x190 m2 produced the best overall correlation, reaching 0.51 for one
of the five datasets.

The positive correlation was not as high as expected, but investigating the
scatter plots revealed that there is a good correlation. As an example, Figure 15
shows the scatter plot correlation for one test set with a 30-minute DEW and
a 190x190 m2 cell size. The Hit Profit is the sum of all profit scores from cells
where the taxicab ended a cruising trip and the Live Time/Total Time is the
profitability of the taxicab for that day. As indicated by the trend line, the higher
the taxicab profitability, the higher the Hit Profit. While the correlation for this
specific set was 0.51, there is a definite upward trend in correlation among all
sets with the majority of taxis are ending cruise trips in the higher profitable
locations based on our method.

6 Future Work

There are several potential improvements for this method. First, we did not
focus on the temporal aspect beyond shifting the DEW at a delayed time and
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Fig. 14. Correlations values for the 190x190 m2 cell size with varying DEW size start-
ing at 1:00pm. A DEW size greater than 90 minutes causes a significant decrease in
correlation, demonstrating it’s importance.

adjusting the size. Patterns in time may affect results by allowing it to include
data from two distinct periods in relation to the traffic pattern; for example,
rush hour traffic data included with non-rush hour data. To a lesser extent, the
cell sizes and region M may need to adjust with time as well; for example, late at
night, there may be a need to increase the cell size due to lower probability of live
trips and an increase in M to include more potential locations. For validation
purposes, M was large enough to ensure that all cruising trips considered ended
within the area with our profitability scores; otherwise, the score would be zero
when in reality it should be positive or negative. The goal would be to develop
a dynamic STP mapping system that adjusts each of these components given
current conditions and time.

Another improvement involves the distance calculations. The L1 Manhattan
distance formula determined the distance between the current taxi location and
the location of interest. While this is more realistic than using the L2 Euclidean
distance, it relies on a grid city model, which is not always applicable to all
areas of the city. The live trip distances used the L2 Euclidean distance between
individual GPS records to determine total distance, which has an associated
error in accuracy as well. These calculations also did not consider obstacles;
for example, drivers must cross rivers at bridges or tunnels, which may add
distance and time to a trip. One potential solution is to use the road network,
current traffic conditions, and known obstacles to find the best path to a location
and then use the path to determine profitability. An alternative is to capture
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Fig. 15. An example of correlation results with an × marker indicating a taxicab.
This test set used a cell size 190x190 m2 with a 30-minute DEW. The Hit Profit is
the sum of all profit scores from cells where the taxicab ended a cruising trip and the
Live Time/Total Time is the profitability of the taxicab for that day. The majority of
taxicabs are ending in the more profitable locations, providing a positive correlation
between the STP map and actual profitability as shown by the upward trend line.

the driver’s intuitive nature to find the best path or to use distances of common
paths traveled by multiple taxis. A preliminary investigation into this alternative
revealed that it is a possibility given enough GPS records.

Since the ultimate goal is for a taxi driver to use the STP map, the system
needs to be real-time and use visuals that are easy to understand and not dis-
tractive to driving. It could also take into consideration the current traffic flow
to determine a more accurate profitability score, and give higher potential prof-
itability path suggestions leading to a profitable location. This could increase
the probability of picking up a passenger before reaching the suggested location
and thereby further reduce cruise time and increase profits.

7 Conclusion

The growing demand for public transportation and decreasing budgets have
placed emphasis on increasing taxicab profitability. Research in this area has
focused on improving service through taxi routing techniques and balancing sup-
ply and demand. Realistically, cruising taxicabs do not easily lend themselves to
routing because of the nature of the service and the driver’s desire for short-term
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profitability. Since the live and cruising times define the overall profitability, and
a taxicab may spend 35-60 percent of time cruising, the goal is reducing cruise
time while increasing live time. Our framework potentially improves profitability
by offering location suggestions to taxicab drivers, based on profitability infor-
mation using historical GPS data, which can reduce overall cruising time. The
method uses spatial and temporal data to generate a location suggesting STP
map at the beginning of a cruise trip based on a profitability score defined by
the live time to total time profitability definition. A case study of Shanghai taxi
service demonstrates our method and shows the potential for increasing profits
while decreasing cruise times. The correlation results between our method and
actual profitability shows a promising positive correlation and potential for fu-
ture work in increasing taxicab profitability.
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Abstract. In the same way as moving objects can change their loca-
tion over time, the spatial relationships between them can change over
time. An important class of spatial relationships are cardinal directions
like north and southeast. In spatial databases and GIS, they characterize
the relative directional position between static objects in space and are
frequently used as selection and join criteria in spatial queries. Trans-
ferred to a spatiotemporal context, the simultaneous location change of
different moving objects can imply a temporal evolution of their direc-
tional relationships, called development. In this paper, we provide an
algorithmic solution for determining such a temporal development of
cardinal directions between two moving points. Based on the slice rep-
resentation of moving points, our solution consists of three phases, the
time-synchronized interval refinement phase for synchronizing the time
intervals of two moving points, the slice unit direction evaluation phase
for computing the cardinal directions between two slice units that are
defined in the same time interval from both moving points, and finally
the direction composition phase for composing the cardinal directions
computed from each slice unit pair. Finally, we show the integration
of spatio-temporal cardinal directions into spatio-temporal queries as
spatio-temporal directional predicates, and present a case study on the
hurricane data.

1 Introduction

Objects that continuously change their positions over time, so-called moving ob-
jects, have recently received a lot of interest. Examples are moving points like
vehicles, mobile devices, and animals, for which the time-dependent position is
relevant. Temporal movements of spatial objects induce modifications of their
spatial relationships over time, called developments. In spatial databases and
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GIS, spatio-temporal queries are particularly interesting when they ask for tem-
poral changes in the spatial relationships between moving objects. An important
class of spatial relationships are cardinal directions like north and southeast that
characterize the relative directional position between spatial objects. Cardinal
directions between two static objects have been extensively studied and have
been frequently used as selection and join criteria in spatial queries. Transferred
to a spatio-temporal context, the simultaneous location change of different mov-
ing objects can imply a change of their directional relationships. For example, a
fishing boat that is southwest of a storm might be north of it some time later.
We call this a cardinal direction development. Such a development between two
moving objects describes a temporally ordered sequence of cardinal directions
where each cardinal direction holds for a certain time interval during their move-
ments. A development reflects the impact of time on the directional relationships
between two moving objects, and usually proceeds continuously over time if the
movements of the two objects are continuous.

It is an open, interesting, and challenging problem to capture the cardinal
direction development between moving objects. Consider a database containing
information about weather conditions. The query whether a hurricane stayed all
the time to the southeast of another hurricane, and the query whether a hurri-
cane has ever moved to the southeast of another hurricane can be particularly
interesting to hurricane researchers to understand dynamic weather movement
patterns. To answer these queries with current approaches and systems, we would
need to check the validity of the spatial directional predicate, e.g. southeast, at
all time instances during the common life time of both hurricanes. However, this
is not possible since the movements of the hurricanes are continuous. The fact
that the traditional, static cardinal directions cannot describe continuous, time
dependent relationships leads to the need for new modeling strategies.

We have proposed a modeling strategy for cardinal direction developments
in our previous work, in which we have defined the development of cardinal di-
rections over time as a sequence of temporally ordered and enduring cardinal
directions. In this paper, we propose our solution from an algorithmic perspec-
tive. We base our solution on the slice representation of moving points, which
represents the temporal development of a point with a sequence of timely or-
dered units called slices. We propose a three-phase solution for determining the
developments of the directional relationships between two moving points. In a
time-synchronized interval refinement phase, two moving points are refined by
synchronizing their time intervals. As a result, each slice unit of the refined slice
representation of the first moving point has a matching slice unit in the refined
slice representation of the second moving point with the time interval. In the
second phase, the slice unit direction evaluation phase, we present a strategy of
computing cardinal directions between two slice units from both moving points.
Finally, in the direction composition phase, the development of the cardinal di-
rection is determined by composing cardinal directions computed from all slices
pairs from both moving points.
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Section 2 introduces the related work in the literature. In Section 3, we review
our modeling stratergy for cardinal direction developments. We propose a three-
phase approach to computing the developments of cardinal directions between
two moving points in Section 4. Section 5 defines spatio-temporal directional
predicates for integrating cardinal direction developments into spatial-temporal
databases and query languages. We present a case study on the hurricane best
track data collected from National Hurricane Center (NHC) in Section 6, and
show how the cardinal direction developments can help hurricane researchers to
identify interesting weather event patterns. In Section 7, we draw some conclu-
sions and discuss future work.

2 Related Work

A number of spatio-temporal models have been proposed to represent and man-
age moving objects. Early approaches tried to extend the existing spatial data
models with temporal concepts. One approach is to store the location and ge-
ometry of moving objects with discrete snapshots over time. In [1], a spatio-
temporal object o is defined as a time-evolving spatial object whose evolution is
represented by a set of triplets (oid, si, ti), where oid identifies the object o and
si is the location of o at time instant ti. Another approach in [2] applies linear
constraints for modeling spatio-temporal data. It associates the spatial features
like location and geometry of a moving object with consecutive time intervals.
A common drawback of the two approaches mentioned so far is that, ultimately,
they are incapable of modeling continuous changes of spatial objects over time.
New approaches have been proposed to support a more integrated view of space
and time, and to incorporate the treatment of continuous spatial changes. In
[3,4], the concept of spatio-temporal data types is proposed as abstract data types
(ADTs) whose values can be integrated as complex entities into databases. A
temporal version of an object of type α is given by a function from time to α.
Spatio-temporal objects are regarded as special instances of temporal objects
where α is a spatial data type like point or region. A point (representing an air-
plane, for example) that changes its location in the Euclidean plane over time is
called a moving point. In this paper, we follow the specification of spatio-temporal
data types, particularly the moving point data type, and take it as our basis for
modeling cardinal directions.

Qualitative spatial relationships have a long tradition in GIS and spatial
databases. They can be grouped into three categories: topological, directional
and distance. The same classification holds for the relationships between moving
objects. The distinction is that spatial relationships between moving objects can
have a temporal evolution, i.e. they may change over time. So far, the focus
has been mainly on spatio-temporal topological relationships like cross and en-
ter [5,6], and spatio-temporal distance relationships like moving towards, moving
away from, [7] and opposite direction [6]. Cardinal directions in a spatio-temporal
context have been largely neglected in the literature. Static cardinal directions
like north and northeast represent important qualitative spatial relationships
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that describe relative direction positions between static spatial objects. Many
models follow a projection-based approach, where direction relationships are de-
fined using projection lines orthogonal to the coordinate axes [8,9]. Some models
apply a cone-based approach that defines direction relations by using angular
zones [10,11]. Others like the Minimum Bounding Rectangle (MBR) model [12]
make use of the minimum bounding rectangles of both operand objects and
apply Allen’s 13 interval relations to the rectangle projections on the x- and
y-axes respectively. However, all existing cardinal direction models only con-
sider static directional relationships, and when transferred to a spatio-temporal
context, none of the models is capable of modeling directional relationships that
continuously change over time. In [13], an attempt has been made to model mov-
ing spatio-temporal relationships (mst-relation), which includes both topological
relations and directional relations. During a time interval Ik, the mst-relation
between two moving objects Ai and Aj is expressed as Ai (α, β, Ik) Aj , where
α is any topological relation among Equal, Inside, Contain, Cover, Covered By,
Overlap, Touch and Disjoint and β is one of the 12 directional relations, South,
North, West, East, Northwest, Northeast, Southwest, Southeast, Left, Right, Be-
low and Above. Both Ai α Aj and Ai β Aj are true during the interval Ik. This
model provides a way of describing the topological and directional relationships
between two moving objects. However, it is not clear how the relationships are
determined. There are currently no well established strategies for modeling car-
dinal directions between two moving objects, and it is the main goal of this paper
to bridge this gap.

We have presented a modeling strategy for cardinal direction developments
in [14], in which the cardinal direction development between two moving points
is formally defined. In this paper, we focus on the design of algorithms for com-
puting such a cardinal directional development.

3 A Review of the Modeling Strategy for Cardinal
Direction Developments between Moving Points

The approach that is usually taken for defining cardinal directions between two
static points in the Euclidean plane is to divide the plane into partitions using the
two points. One popular partition method is the projection-based method that
uses lines orthogonal to the x- and y-coordinate axes to make partitions [12,8].
The point that is used to create the partitions is called the reference point,
and the other point is called the target point. The direction relation between
two points is then determined by the partition that the target object is in, with
respect to the reference object. Let Points denote the set of static point objects,
and let p, q ∈ Points be two static point objects, where p is the target point and
q is the reference point. A total of 9 mutually exclusive cardinal directions are
possible between p and q. Let CD denote the set of 9 cardinal directions, then
CD={northwest (NW ), restrictednorth (N), northeast (NE), restrictedwest
(W ), sameposition(SP ), restrictedeast (E), southwest (SW ), restrictedsouth
(S), southeast (SE)}. Let dir(p, q) denote the function that returns the cardinal
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Fig. 1. Plane partitions using the reference object q (a), and an example in which p
is northwest of q (b); the trajectories of moving points A and B in the time interval
[t0, t5] (c)

direction between two static points p and q where q is the reference point, then
we have dir(p, q) ∈ CD. Figure 1a shows the partitions of the plane with respect
to the reference point q, where each partition corresponds to the definition of
one cardinal direction. The example in Figure 1b gives the case when p is to the
northwest of q, i.e. dir(p, q) = NW .

When two points change their locations over time, the direction relation be-
tween them becomes time related, and may or may not change. First, we consider
the cardinal directions at time instances. Let time denote the temporal data type
representing time and MPoints denote the spatio-temporal data type that rep-
resents moving points. Figure 1c shows an example of two moving points A
and B. For A, B ∈ MPoints, let A(t) and B(t) denote the snapshots of A and
B at a time instance t ∈ time. If both A and B are defined at time t, then
A(t), B(t) ∈ Points. The cardinal direction between A and B at t is therefore
dir(A(t),B(t))∈ CD. For example, in Figure 1c, at time t1 when A and B locate
at A(t1) and B(t1), the cardinal direction between A and B at time instance t1 is
dir(A(t1), B(t1))=SW . At the time instance t2 when A and B move to A(t2) and
B(t2), the cardinal direction between them becomes dir(A(t2), B(t2))=NE. We
propose our solution to determine what happened in between and to answer the
question whether there exists a time instance t (t1 < t < t2) such that dir(A(t),
B(t))=W in the following sections. This scenario shows that within a common
time interval, we may get different cardinal directions at different time instances.
However, the change of time does not necessarily imply the change of cardinal
directions between two moving points. In Figure 1c, from time t3 to time t4, A
moves from A(t3) to A(t4) and B moves from B(t3) to B(t4). One observation
that we can make is that although the positions of A and B have changed, the
cardinal direction between A and B does not change. In this case, A is always
to the southwest of B between t3 and t4. In other words, the cardinal direction
between two moving points holds for a certain period of time before it changes.
Based on this fact, we propose our modeling strategy. To determine the cardinal
directions between two moving points during their life time, we first find out the
common life time intervals between two moving points, on which both two mov-
ing points are defined. This is necessary because only when both moving points
exist, we can determine the cardinal directions between them. In this case, the
common life time interval between A and B in Figure 1c is [t1, t5], and during the
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time interval [t0, t1], cardinal directions between A and B cannot be determined.
Then, each common life interval is split into a list of smaller sub-intervals such
that during each sub-interval the cardinal direction between two moving points
does not change Further, on adjacent sub-intervals, different cardinal directions
hold. Finally, we compose all cardinal directions determined on the common life
time intervals of two moving points, and define it as the development of cardinal
directions between the two moving points. Let DEV (A, B) denote the function
that computes the cardinal direction developments between two moving points
A and B. Then we define DEV (A, B) as DEV (A, B) = d1 	 d2 	 ... 	 dn, where
di ∈ CD or di = ⊥ (1 ≤ i ≤ n and ⊥ means undefined). Further, we restrain the
transition between two adjacent cardinal directions to follow a so-called state
transition diagram. The formal definitions and the detailed explanations can be
found in [14].

4 Computing Developments between Moving Points

The concept we have introduced in the previous section serves as a specifica-
tion for describing the changing cardinal directions between two moving points.
However, issues like how to find common life time intervals and how to split
them are left open. In this section, we overcome the issues from an algorith-
mic perspective. We first introduce the underlying data structure, called slice
representation, for representing moving points. Then we propose a three phase
strategy including the time-synchronized interval refinement phase, the slice unit
direction evaluation phase, and the direction composition phase.

4.1 The Slice Representation for Moving Points

Since we take the specification of the moving point data type in [3,4] as our ba-
sis, we first review the representation of the moving point data type. According
to the definition, the moving point date type describes the temporal develop-
ment of a complex point object which may be a point cloud. However, we here
only consider the simple moving point that involves exactly one single point. A
slice representation technique is employed to represent a moving point object.
The basic idea is to decompose its temporal development into fragments called
“slices”, where within each slice this development is described by a simple linear
function. A slice of a single moving point is called a upoint, which is a pair of
values (interval, unit-function). The interval value defines the time interval for
which the unit is valid; the unit-function value contains a record (x0, x1, y0, y1)
of coefficients representing the linear function f(t)=(x0 + x1t, y0 + y1t), where
t is a time variable. Such functions describe a linearly moving point. The time
intervals of any two distinct slice units are disjoint; hence units can be totally
ordered by time. More formally, let A be a single moving point representation,
interval = time × time, real4 = real × real × real × real, and upoint = in-
terval × real4. Then A can be represented as an array of slice units ordered by
time, that is, A = 〈(I1, c1), (I2, c2), ..., (In, cn)〉 where for 1 ≤ i ≤ n holds that



Computing the Cardinal Direction Development between Moving Points 267

t

X

Y

A B

t1

t2

t3

t4

t5

t6
t7

A(t2)

A(t4)

A(t6)

B(t1)

B(t3)

B(t5)

B(t7)

I1a

I2a I2b

I1b

I3b

t

X

Y

A B

t1t1

t2

t3

t4

t5

A6t17

A6t37

A6t57

B6t(7

B6t27

B6t47

B6t)7

I(A6t27

A6t47

B6t57

B6t17

B6t37 I1

I2

I3

(a) (b)

Fig. 2. An example of the slice representations of two single moving points A and B (a),
and the time-synchronized slice representation of two moving points A and B (b)

Ii ∈ interval and ci ∈ real4 contains the coefficients of a linear unit function fi.
Further, we require that Ii < Ij holds for 1 ≤ i < j ≤ n.

Figure 2 shows the slice representations of two single moving points A and B.
In this example, ti (1 ≤ i ≤ 7) is a time instance and for 1 ≤ i < j ≤ 7, ti < tj .
The moving point A is decomposed into two slices with intervals IA

1 = [t2, t4]
and IA

2 = [t4, t6]. Let the function fA
1 with its coefficients cA

1 and the function fA
2

with its coefficients cA
2 describe the movement of A in the intervals IA

1 and IA
2

respectively. Then A is represented as A =
〈
(IA

1 , cA
1 ), (IA

2 , cA
2 )
〉
. The snapshots

fA
1 (t2) and fA

1 (t4) of the moving point A at the times t2 and t4 are the start
and end points of the first slice, and fA

2 (t4) and fA
2 (t6) are the start and end

points of the second slice. Similarly, the moving point B can be represented as
B =

〈
(IB

1 , cB
1 ), (IB

2 , cB
2 ), (IB

3 , cB
3 )
〉

where cB
1 , cB

2 , and cB
3 contain the coefficients

of the three linear functions fB
1 , fB

2 , and fB
3 that describe the linear movement

of B in its three slice units. If the function fA
i or fB

i that in a slice unit maps a
time instant t to a point value in A or B is not important, we allow the notations
A(t) and B(t) respectively to retrieve the location of a moving point A or B at
the time instant t.

Further, we introduce a few basic operations for retrieving information from
the slice representation, which will be used by our algorithm later for computing
cardinal directions between moving points.

The first set of operations is provided for manipulating moving points. The
get first slice operation retrieves the first slice unit in a slice sequence of a moving
point, and sets the current position to 1. The get next slice operation returns
the next slice unit of the current position in the sequence and increments the
current position. The predicate end of sequence yields true if the current position
exceeds the end of the slice sequence. The operation create new creates an empty
MPoint object with an empty slice sequence. Finally, the operation add slice
adds a slice unit to the end of the slice sequence of a moving point.

The second set of operations is provided for accessing elements in a slice unit.
The operation get interval returns the time interval of a slice unit. The operation
get unit function returns a record that represents the linear function of a slice
unit. The create slice operation creates a slice unit based on the provided time
interval and the linear function.
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Based on the slice representation and the basic operations, we are now ready to
describe our strategy for computing the cardinal directions between two moving
points.

4.2 The Time-Synchronized Interval Refinement Phase

Since a slice is the smallest unit in the slice representation of moving points, we
first consider the problem of computing cardinal directions between two moving
point slices. According to our definitions in [14] the cardinal directions only
make sense when the same time intervals are considered for both moving points.
However, matching, i.e., equal, slice intervals can usually not be found in both
moving points. For example, in Figure 2, the slice interval IA

1 = [t2, t4] of A does
not match any of the slice intervals of B. Although the slice interval IB

1 = [t1, t3]
of B overlaps with IA

1 , it also covers a sub-interval [t1, t2] that is not part of
IA
1 , which makes the two slices defined in IA

1 and IB
1 incomparable. Thus, in

order to compute the cardinal directions between two moving point slices, a
time-synchronized interval refinement for both moving points is necessary.

We introduce a linear algorithm interval sync for synchronizing the intervals
of both moving points. The input of the algorithm consists of two slice sequences
mp1 and mp2 that represent the two original moving points, and two empty
lists nmp1 and nmp2 that are used to store the two new interval refined moving
points. The algorithm performs a parallel scan of the two original slice sequences,
and computes the intersections between the time intervals from two moving
points. Once an interval intersection is captured, two new slices associated with
the interval intersection are created for both moving points and are added to the
new slice sequences of the two moving points. Let I = [t1, t2] and I ′ = [t′1, t

′
2]

denote two time intervals, and let lower than denote the predicate that checks
the relationship between two intervals. Then we have lower than(I, I ′) = true if
and only if t2 < t′2. Further, let intersection denote the function that computes
the intersection of two time intervals, which returns ∅ if no intersection exists.
We present the corresponding algorithm interval sync in Figure 3.

As a result of the algorithm, we obtain two new slice sequences for the two
moving points in which both operand objects are synchronized in the sense that
for each unit in the first moving point there exists a matching unit in the second
moving point with the same unit interval and vice versa. For example, after the
time-synchronized interval refinement, the two slice representations of the mov-
ing points A and B in Figure 2 become A =

〈
(I1, c

A
1 ), (I2, c

A
1 ), (I3, c

A
2 ), (I4, c

A
2 )
〉

and B =
〈
(I1, c

B
1 ), (I2, c

B
2 ), (I3, c

B
2 ), (I4, c

B
3 )
〉
, where the cA

i with i ∈ {1, 2}
contain the coefficients of the linear unit functions fA

i , the cB
i with i ∈

{1, 2, 3} contain the coefficients of the linear unit functions fB
i , and I1 =

intersection(IA
1 , IB

1 ) = [t2, t3], I2 = intersection(IA
1 , IB

2 ) = [t3, t4], I3 =
intersection(IA

2 , IB
2 ) = [t4, t5], and I4 = intersection(IA

2 , IB
3 ) = [t5, t6].

Now we analyze the complexity of the algorithm for function interval sync.
Assume that the first moving point mp1 is composed of m slices, and the second
moving point mp2 is composed of n slices. Since a parallel scan of the slice
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method interval sync (mp1, mp2,
nmp1, nmp2)

s1← get first slice(mp1)
s2← get first slice(mp2)
while not end of sequence(mp1)
and not end of sequence(mp2) do

i1← get interval(s1)
i2← get interval(s2)
i← intersection(i1, i2)
if i 
= ∅ then

f1← get unit function(s1)
f2← get unit function(s2)
ns1← create slice(i, f1)
ns2← create slice(i, f2)
add slice(nmp1, ns1)
add slice(nmp2, ns2)

endif
if lower than(i1, i2) then

s1← get next slice(mp1)
else

s2← get next slice(mp2)
endif

endwhile
end

1 method compute dir dev(sl1, sl2)
2 dev list← empty list
3 s1← get first slice(sl1)
4 s2← get first slice(sl2)
5 slice dir list← compute slice dir(s1,s2)
6 append(dev list, slice dir list)
7 while not end of sequence(sl1)
8 and not end of sequence(sl2) do
9 (b, e)← get interval(s1)

10 s1← get next slice(sl1)
11 s2← get next slice(sl2)
12 (b new, e new)← get interval(s1)
13 if e < b new then
14 append(dev list, 〈⊥〉)
15 endif
16 slice dir list← compute slice dir(s1,s2)
17 last dir← get last in list(dev list)
18 new dir← get first in list(slice dir list)
19 if last dir = new dir then
20 remove first(slice dir list)
21 endif
22 append(dev list, slice dir list)
23 endwhile
24 return dev list
25 end

Fig. 3. The algorithm interval sync that computes the time-synchronized interval re-
finement for two moving points, and the algorithm compute dir dev that computes the
cardinal direction development for two moving points

sequences from two moving points is performed, the complexity is therefore
O(m + n) and the result contains at most (m + n) intervals.

4.3 The Slice Unit Direction Evaluation Phase

From the first phase, the time-synchronized interval refinement phase, we ob-
tain two refined slice sequences of both moving points that contain the same
number of slice units with synchronized time intervals. In the second phase, we
propose a solution for computing the cardinal directions between any pair of
time-synchronized slice units.

We adopt a two-step approach to computing the cardinal directions between
two slice units. The first step is to construct a mapping and apply it to both
slice units so that one of the slice units is mapped to a slice unit that consists
of a point that does not change its location. We prove that the mapping is a
cardinal direction preserving mapping that does not change the cardinal direction
relationships between the two slice units. The second step is to determine the
cardinal directions between the two mapped slice units.
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The difficulty of computing cardinal directions between two slice units comes
from the fact that the positions of the moving points change continuously in
both slice units. A much simpler scenario is that only one slice unit consists
of a moving point, whereas the other slice unit involves no movement. In this
simpler case, the cardinal directions can be easily determined. Thus, the goal is
to find a mapping that maps two slice units sua and sub to two new slice units
su′

a and su′
b that satisfy the following two conditions: (i) su′

a and su′
b have the

same cardinal directions as units sua and sub, that is, the mapping is a cardinal
direction preserving mapping; (ii) either su′

a or su′
b does not involve movement.

In order to find such a mapping for two slice units, we first introduce a simple
cardinal direction preserving mapping for static points. Let p and q denote two
points with coordinates (xp, yp) and (xq, yq). Let X(r) and Y (r) denote the
functions that return the x-coordinate and y-coordinate of a point r. We establish
a simple translation mapping M(r) = (X(r) − x0, Y (r) − y0), where x0 and y0

are two constant values. We show that the cardinal direction between p and q is
preserved by applying such a mapping.

Lemma 1. Given p = (xp, yp), q = (xq, yq), the mapping M(r)=(X(r) − x0,
Y (r) − y0), where r is a point and x0 and y0 are two constant values, and
p′ = M(p) and q′ = M(q), we have dir (p, q) = dir (p′, q′)

Proof. According to the definition in Section 3, the cardinal direction dir(p, q)
between two points p and q is based on the value of X(p)− X(q) and the value
of Y (p)−Y (q). Since we have X(p′)−X(q′) = X(p)−X(q) and Y (p′)−Y (q′) =
Y (p) − Y (q), we obtain dir(p, q) = dir(p′, q′). �

In Figure 4(a), two points p and q are mapped to p′ and q′, and the cardinal
direction is preserved after the mapping, i.e., dir(p, q) = dir(p′, q′) = NW .

Now we are ready to define a cardinal direction preserving mapping for two
slice units. Let suA and suB denote two slice units (upoint values) from the time-
synchronized moving points A and B where suA = (I, cA) and suB = (I, cB)
with I ∈ interval and cA, cB ∈ real4. Let fA and fB be the two corresponding
linear unit functions with the coefficients from cA and cB respectively. We estab-
lish the following mapping M for a unit function f ∈ {fA, fB}: M (f ) = f − fB

We show in Lemma 2 that by mapping the unit functions of the slices suA and
suB to two new unit functions, the cardinal directions between the slice units
suA and suB are still preserved.

Lemma 2. Let suA = (I, cA) ∈ upoint and suB = (I, cB) ∈ upoint, and let
fA and fB be the corresponding linear unit functions with the coefficients from
cA = (xA

0 , xA
1 , yA

0 , yA
1 ) and cB = (xB

0 , xB
1 , yB

0 , yB
1 ) respectively. We consider the

mapping M(f) = f − fB, where f is a linear unit function, and the translated
upoint values suA

t = (I, cA
t ) and suB

t = (I, cB
t ) where cA

t and cB
t contain the coef-

ficients of M(fA) and M(fB) respectively. Then, the cardinal directions between
the slice units suA

t and suB
t are the same as the cardinal directions between the

slice units suA and suB.

Proof. Let I = [t1, t2], fA(t) = (xA
0 + xA

1 t, yA
0 + yA

1 t), and fB(t) = (xB
0 +

xB
1 t, yB

0 + yB
1 t). Then we have M(fA) = (xA

0 − xB
0 + (xA

1 − xB
1 )t, yA

0 − yB
0 +
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Fig. 4. A simple cardinal direction preserving mapping from p, q to p′,q′ (a); the
cardinal direction preserving mapping from slice unit A, B (b) to A′,B′ (c)

(yA
1 − yB

1 )t) and M(fB) = (0, 0). Assume there exists a time t0 (t1 ≤ t0 ≤ t2)
such that dir(fA(t0), fB(t0)) 
= dir(M(fA)(t0), M(fB)(t0)). Let xB = xB

0 +
xB

1 t0 and yB = yB
0 + yB

1 t0 denote two constant values. Since M(fA)(t0) =
(xA

0 − xB
0 + (xA

1 − xB
1 )t0, yA

0 − yB
0 + (yA

1 − yB
1 )t0) and M(fB)(t0) = (0, 0),

we have M(fA)(t0) = (X(fA(t0)) − xB, Y (fA(t0)) − yB) and M(fB)(t0) =
(X(fB(t0))− xB , Y (fB(t0))− yB). This matches the cardinal direction preserv-
ing mapping function M(r) = (X(r) − x0, Y (r) − y0). Thus, the assumption
dir(fA(t0), fB(t0)) 
= dir(M(fA)(t0), M(fB)(t0)) contradicts to Lemma 1. �

After applying the cardinal direction preserving mapping M(f) to both unit
functions fA and fB, we now obtain two new unit functions f ′

a and f ′
b as follows:

gA(t) = M(fA)(t) = (xA
0 − xB

0 + (xA
1 − xB

1 )t, yA
0 − yB

0 + (yA
1 − yB

1 )t)
gB(t) = M(fB)(t) = (0, 0)

The unit function gA describes a linear movement in the unit interval, while
the unit function gB describes a static point that holds its position during the
entire unit interval. In other words, suA is mapped to a new slice unit suA

t which
has a linear movement, and suB is mapped to a new slice unit suB

t that has no
movement during the unit interval. Figure 4 shows an example of mapping the
slice units A and B to slice units A′ and B′. In this example, A = [I, cA] and
B = [I, cB] where I = [1, 2], cA and cB contain the coefficients of the two
unit functions fA and fB respectively, fA(t) = (−5 + 6t, 2 + t) and fB(t) =
(−1 + 3t,−1 + 3t). Thus, A(t1) = fA(1) = (1, 3), A(t2) = fA(2) = (7, 4),
B(t1) = fB(1) = (2, 2), and B(t2) = fB(2) = (5, 5). After applying the mapping,
we obtain gA(t) = (−4 + 3t, 3 − 2t) and gB(t) = (0, 0). Thus, A′(t1) = gA(1) =
(−1, 1), A′(t2) = gA(2) = (2,−1), and B′(t1) = B′(t2) = (0, 0).

So far, we have managed to reduce the problem of computing the cardinal
directions between two moving slice units to the problem of computing the car-
dinal directions between one moving slice unit and one static slice unit. The
second step is to compute the cardinal directions between suA

t and suB
t .

Since suB
t is located constantly at (0, 0) during the time interval and since

the trajectory of suA
t is a linear function with respect to time t, we apply the

projection based approach (Section 3) to determining the cardinal directions.
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The idea is to take suB
t as the reference point and to create partitions by using

the x- and y-coordinate axes. Then we project the slice unit suA
t to the xy-plane,

and the cardinal directions are determined by the partitions that its trajectory
intersects. Finally, the cardinal directions are ordered according to the time when
they occurred and are stored into a list. For example, the cardinal directions
between A′ and B′ in Figure 4b are NW, N , NE, E, and SE.

4.4 The Direction Composition Phase

Finally, in the direction composition phase, we iterate through all slice units,
compose all cardinal directions that have been detected in slice units, and form
a complete cardinal direction list in the temporal order. Further, we remove
duplicates between consecutive cardinal directions.

We introduce the linear algorithm compute dir dev in Figure 3 for computing
the final cardinal direction development (line 24) between two synchronized mov-
ing points. The input of the algorithm consists of two lists of slices sl1 and sl2
(line 1) that stem from the time-synchronized interval refinement phase. Since
the two slice lists are guaranteed to have the same length, the algorithm takes
a slice from each list (lines 3, 4, 10 and 11), determines the cardinal directions
for each pair of slices (lines 5 and 16), which have the same unit interval, and
traverses both lists in parallel (lines 7 and 8). For two consecutive pairs of slices,
we have to check whether the slice intervals are adjacent (lines 9, 12, and 13). If
this is not the case, we add the list with the single element ⊥ to the global list
dev list in order to indicate that the cardinal direction development is undefined
between two consecutive slice intervals (lines 13 to 15).

For each pair of slices, the function compute slice dir determines their cardinal
directions according to the strategy discussed in Section 4.3 (lines 5 and 16). We
maintain a list slice dir list to keep these newly computed cardinal directions
from the current slice pair and compare its first cardinal direction with the last
cardinal direction that has been computed from the last slice pair and is stored
in the global list dev list (lines 17 to 19). If both cardinal directions are the
same, the first cardinal direction from the list slice dir list is removed in order
to avoid duplicates (lines 19 to 21). The newly computed cardinal directions in
the list slice dir list are added to the global list dev list (lines 6 and 22).

The algorithm compute dir dev deploys a number of auxiliary list functions.
The function get first in list returns the first element in a list. The function
get last in list returns the last element in a list. The function append adds a list
given as its second argument to the end of another list given as its first argument.
The function remove first removes the first element from a list.

Now we analyze the complexity of the algorithm for function compute dir dev.
Assume that the first moving point mp1 consists of m slices, and the second mov-
ing point mp2 consists of n slices. The inputs of the function compute dir dev
are two lists of slices generated from the time-synchronized interval refinement
phase, thus each list contains at most m+n slices. The function compute dir dev
iterate through all slices in both list and compose the cardinal directions com-
puted. So the time complexity is O(m + n).
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5 Defining Spatial-temporal Direction Predicates within
Databases

In this section, we discuss how cardinal direction developments can be integrated
into spatio-temporal databases and query languages. This requires the formal
definition of cardinal direction developments as binary predicates since it will
make the query processing easier when using pre-defined predicates as selection
conditions. In the following part, we define some important predicates which
will be sufficient for most queries on cardinal direction developments between
moving objects.

First of all, we give the definition of existential direction predicates. This type
of predicates finds out whether a specific cardinal direction existed during the
evolution of moving objects. For example, a query like “Find all ships that
appeared north of ship Fantasy” belongs to this category. It requires a predicate
named exists north as a selection condition of a join. This predicate can be
defined as follows,

Definition 1. Given two moving points A, B ∈ MPoints, their cardinal direc-
tion development DEV (A, B) = d1 	 d2 	 . . . 	 dn with n ∈ N and di ∈ CD or
di = ⊥ for all 1 ≤ i ≤ n. Then we define the existential direction predicate
exists north as

exists north(A, B) = true def⇔ ∃ 1 ≤ i ≤ n : di = N

Definition 1 indicates that the predicate exists north is true if the direction north
exists in the sequence of the cardinal direction development. It can help us define
the above query. Assume that we have the following relation schema for ships

ships(id:integer, name:string, route:mpoint)

The query can be expressed using an SQL-like query language as follows:

SELECT s1.name FROM ships s1, ships s2

WHERE s2.name = ‘Fantasy’ AND exists_north(s1.route, s2.route);

The other existential cardinal direction predicates exists south, ex-
ists east, exists west, exists sameposition, exists northeast , exists southeast, ex-
ists northwest, and exists southwest are defined in a similar way.

Another important category of predicates expresses that one moving object
keeps the same direction with respect to another moving object. For example,
assume that there is a group of ships traveling from north to south and each
ship follows the ship in front of the group. Now the leader of the group wants to
know which ships belong to the group. The problem is to find out which ships
are keeping a northern position with respect to the leading ship.

Definition 2. Given two moving points A, B ∈ MPoints. The predicate
keeps north is defined as
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keeps north(A, B) = exists north(A, B) ∧ ¬exists south(A, B)
∧ ¬exists southeast(A, B) ∧ ¬exists east(A, B)
∧ ¬exists sameposition(A, B) ∧ ¬exists northwest(A, B)
∧ ¬exists northeast(A, B) ∧ ¬exists southwest(A, B)
∧ ¬exists west(A, B)

Definition 2 shows that the relationship keeps north between two moving objects
implies that the only existential direction predicate in the cardinal direction
development of these moving objects is exists north without any other existential
direction predicates. In other words, we have DEV (A, B) = N .

We consider the above example and assume that the identifier of the leader
ship is 1001. Then the query “Find all ships keeping a position north of the
leader ship 1001” can be expressed as

SELECT s1.id FROM ships s1, ships s2
WHERE s2.id = ‘1001’ AND keeps_north(s1.route, s2.route);

The other predicates that express that one moving object remains in
the same direction with respect to another moving object are keeps south,
keeps east, keeps west, keeps sameposition, keeps northeast, keeps southeast,
keeps northwest, and keeps southwest.

Another useful predicate checks for the transition between two cardinal direc-
tions in a cardinal direction development. The transition can be either a direct
change or an indirect change through a set of intermediate directions. We name
this predicate as from to. For example, the query “Find all ships that have
traveled from the south to the north of the ship Fantasy” can be answered by
using this predicate.

Definition 3. Given two moving points A, B ∈ MPoints, their cardinal direc-
tion development DEV(A, B) = d1 	d2 	 . . .	dn such that di ∈ CD or di = ⊥ for
all 1 ≤ i ≤ n, and two cardinal directions d′, d′′ ∈ CD. We define the predicate
from to as follows:

from to(A, B, d′, d′′) = true def⇔ d′ 
= ⊥ ∧ d′′ 
= ⊥ ∧
∃ 1 ≤ i < j ≤ n : di = d′ ∧ dj = d′′

We formulate the above query as follows:

SELECT s1.id FROM ships s1, ships s2
WHERE s2.name = ‘Fantasy’ AND

from_to(s1.route, s2.route, ‘S’, ‘N’);

Finally, we define the predicate cross north which checks whether a moving
point traverses a large extent of the region in the north of another moving point.

Definition 4. Given two moving points A, B ∈ MPoints and their cardinal
direction development DEV(A, B) = d1 	 d2 	 . . . 	 dn such that di ∈ CD or
di = ⊥ for all 1 ≤ i ≤ n. We define the predicate crosses north as follows:
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crosses north(A, B) = true
def⇔ n ≥ 3 ∧ ∃ 2 ≤ i ≤ n − 1 :

(di−1 = NW ∧ di = N ∧ di+1 = NE) ∨
(di−1 = NE ∧ di = N ∧ di+1 = NW)

The query “Find all the ships that have crossed the north of ship Fantasy” can
be expressed as follows:

SELECT s1.id FROM ships s1, ships s2

WHERE s2.name = ‘Fantasy’ AND crosses_north(s1.route, s2.route);

The other predicates cross south, cross east, and cross west can be defined in
a similar way.

6 Case Study: Cardinal Direction Development in
Hurricane Research

In this section, we apply our strategy to a real world application, and show how
the evaluation of cardinal direction development can help with the hurricane
research.

We have integrated the directional predicates into a moving object database
(MOD) developed for the NASA workforce. The moving object database is a full-
fledged database with additional support for spatial and spatiotemporal data in
its data model and query language. It maintains tropical cyclone and hurricane
data provided by public sources, and the weather data derived from the NASA
mission sensor measurements. It also provides functionality in terms of spa-
tiotemporal operations and predicates that can be deployed by decision makers
and scientists in ad-hoc queries. By enabling the capability of evaluating cardi-
nal direction developments among hurricanes, the scientists can have a better
understanding of dynamic patterns on weather events. We establish our experi-
ments on the historical hurricane data collected from National Hurricane Center
(NHC). The original data is available on the web site of NHC [15]. The sensors
collect six data points per day for a specific hurricane, i.e., at 00:00, 06:00, 12:00
and 18:00 UTC time. The data collected are the hurricane locations in terms
of longitudes and latitudes, time, and other thematic data like wind speed and
category. We load these data points into moving point types, and represent the
trajectory of each hurricane as a moving point in MOD. In this paper, we present
a case study on all hurricanes in year 2005 on the Atlantic Ocean. The following
table is created in the database:

test_moving(id:integer, name:string, track:mpoint)

In the schema test moving , name is the attribute that stores hurricane names
and track is a moving point type attribute that stores the trajectory of hurri-
canes. A total of 28 hurricanes that have been active on the Atlantic Ocean in
the year 2005 are loaded in the data table. Due to the space limit, we evaluate
the following two types of directional queries: the cardinal direction development
query and the top-k query.
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Fig. 5. The trajectories of hurricanes PHILIPPE and RITA

First, consider the query: “Find the cardinal direction development between
PHILIPPE and RITA.”, we can post the following SQL query:

SELECT m1.name, m2.name, mdir(m1.track, m2.track),
FROM test_moving m1, test_moving m2
WHERE m1.name = ‘PHILIPPE’ AND m2.name = ‘RITA’;

The function mdir is a user defined function registered at the database end
that computes the cardinal direction developments between two moving points.
A string representation is returned as the result. In this case, we obtain the
following result:

NAME NAME MDIR(M1.TRACK,M2.TRACK)
-------- ----- ---------------------------------
PHILIPPE RITA ->undefined[2005091712,2005091800)

->NW[2005091800,2005092212)
->W[2005092212,2005092212]
->SW(2005092212,2005092402)
->W[2005092402,2005092402]
->NW(2005092402,2005092406)
->undefined[2005092406,2005092606)

The result is a list of timely ordered cardinal directions. In the time inter-
val [2005-09-17 12:00:00,2005-09-18 00:00:00), RITA is not evolved yet, thus the
cardinal direction is undefined. When RITA is “born”, it starts from the north-
west of PHILIPPE, moves to the north of PHILIPPE. Then it crosses the west
of PHILIPPE and moves to the southwest of PHILIPPE on date 2005-09-22.
In the following two days, it moves back to the northwest of PHILIPPE. The
visualization of the two hurricane is shown in Figure 5. The result shows an
interesting movement pattern between the two hurricanes, which may suggest
the hurricane researchers to investigate the correlations in terms of wind speed,
air pressure, and ocean currents during a certain time interval between the two
hurricanes.

Another type of query that is intersecting to hurricane researchers is the
top-k query. Here, the top-k evaluates the lasting time of cardinal directions
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between two hurricanes. Thus, given two hurricanes, we are able to find the
top-k cardinal directions between them. Let us consider the query: “find top
2 cardinal directions between MARIA with other hurricane tracks”. We can
formulate the SQL query as follows:

SELECT m1.name, m2.name, topKDir(m1.track,m2.track,3)
FROM test_moving m1, test_moving m2
WHERE m1.name=‘MARIA’ AND m1.name<>m2.name
AND topKDir(m1.track,m2.track,2) <> ‘ ’

The function topKDir (m1.track, m2.track, 2) returns the top 2 cardinal di-
rections (excluding the undefined direction) between two moving points that last
the longest, and it returns empty string if there does not exist defined cardinal
directions between them. We get the following result:

NAME NAME TOPKDIR(M1.TRACK,M2.TRACK,2)
------ -------- ---------------------------
MARIA LEE NW NE
MARIA NATE SW
MARIA OPHELIA SW

The result shows that the top two cardinal directions lasting the longest be-
tween MARIA and LEE are NW and NE. NATE and OPHELIA are always to
the SW of MARIA. From this result, we can observe that during the life time
of MARIA, two hurricanes spent most of their time moving in the southwest of
MARIA and one hurricane spent most of its time in the northwest of MARIA.
No hurricanes exists in the other directions like SE or NE of MARIA. This
observation may raise the intersects of hurricane researchers to investigate the
causes and the facts that lead to the pattern, or to make conclusions from this
pattern.

7 Conclusions and Future Work

In this paper, we present a three-phase solution for computing the cardinal direc-
tions between two moving points from an algorithmic perspective. We show the
mapping of cardinal direction developments between moving points into spatio-
temporal directional predicates and the integration of these predicates into the
spatio-temporal query language of a moving objects database. We present a case
study on the hurricane data to show a real world application for the cardinal
direction development. In the future, we will implement a comprehensive set of
predicates for querying cardinal direction development. We will also extend our
concept to more complex moving objects like moving regions and moving lines.
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3. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-temporal Data
Types: an Approach To Modeling and Querying Moving Objects in Databases.
GeoInformatica 3(3), 269–296 (1999)

4. Forlizzi, L., Guting, R., Nardelli, E., Schneider, M.: A Data Model and Data Struc-
tures for Moving Objects Databases. In: ACM SIGMOD Int. Conf. on Management
of Data, pp. 319–330 (2000)

5. Erwig, M., Schneider, M.: Spatio-temporal Predicates. IEEE Trans. on Knowledge
and Data Engineering (TKDE) 14(4), 881–901 (2002)

6. Su, J., Xu, H., Ibarra, O.H.: Moving Objects: Logical Relationships and Queries.
In: 7th Int. Symp. on Spatial and Temporal Databases (SSTD), pp. 3–19 (2001)

7. de Weghe, N.V., Bogaert, P., Delafontaine, M., Temmerman, L.D., Neutens, T.,
Maeyer, P.D., Witlox, F.: How To Handle Incomplete Knowledge Concerning Mov-
ing Objects. Behaviour Monitoring and Interpretation, 91–101 (2007)

8. Frank, A.: Qualitative Spatial Reasoning: Cardinal Directions As an Example.
International Journal of Geographical Information Science 10(3), 269–290 (1996)

9. Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Direction Relations. Arti-
ficial Intelligence 152, 143–171 (2004)

10. Haar, R.: Computational Models of Spatial Relations. Technical Report: TR-478,
(MSC-72-03610) (1976)

11. Skiadopoulos, S., Sarkas, N., Sellis, T., Koubarakis, M.: A Family of Directional
Relation Models for Extended Objects. IEEE Trans. on Knowledge and Data En-
gineering (TKDE) 19 (2007)

12. Papadias, D., Theodoridis, Y., Sellis, T.: The Retrieval of Direction Relations Us-
ing R-trees. In: Karagiannis, D. (ed.) DEXA 1994. LNCS, vol. 856, pp. 173–182.
Springer, Heidelberg (1994)

13. Li, J.Z., Ozsu, M.T., Tamer, M., Szafron, D., Ddi, S.G.: Modeling of Moving Ob-
jects in a Video Database. In: IEEE International Conference on Multimedia Com-
puting and Systems, pp. 336–343 (1997)

14. Chen, T., Liu, H., Schneider, M.: Evaluation of Cardinal Direction Developments
between Moving Points. In: ACM Symp. on Geographic Information Systems
(ACM GIS), pp. 430–433 (2010)

15. NHC Archive of Hurricane Seasons, http://www.nhc.noaa.gov/pastall.shtml

http://www.nhc.noaa.gov/pastall.shtml


Continuous Probabilistic Count Queries in

Wireless Sensor Networks�

Anna Follmann1, Mario A. Nascimento2, Andreas Züfle1, Matthias Renz1,
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Abstract. Count queries in wireless sensor networks (WSNs) report
the number of sensor nodes whose measured values satisfy a given pred-
icate. However, measurements in WSNs are typically imprecise due, for
instance, to limited accuracy of the sensor hardware. In this context,
we present four algorithms for computing continuous probabilistic count
queries on a WSN, i.e., given a query Q we compute a probability dis-
tribution over the number of sensors satisfying Q’s predicate. These al-
gorithms aim at maximizing the lifetime of the sensors by minimizing
the communication overhead and data processing cost. Our performance
evaluation shows that by using a distributed and incremental approach
we are able to reduce the number of message transfers within the WSN
by up to a factor of 5 when compared to a straightforward centralized
algorithm.

1 Introduction

A wireless sensor network (WSN) is usually defined as a set of spatially dis-
tributed autonomous sensors that cooperatively monitor physical or environmen-
tal conditions in an area of interest. A single sensor node consists of one (or more)
sensor(s), a microprocessor, a small amount of memory, a radio transceiver and
a battery. However, measurements by nodes in WSNs are typically imprecise, be
it because of the sensor’s hardware or because of fluctuations in the environment
itself [1]. Processing uncertain data sets leads to a variety of novel problems and
demands more complex query algorithms. Typically, queries on uncertain data
known as probabilistic queries involve computation of probability distributions
over possible answers. In addition, if we want to process probabilistic queries
in wireless sensor networks we have to consider the general characteristics and
limitations of such networks. Even if sensors are gaining in computing ability
they remain constrained by limited batteries. With communication being the
primary drain on power it is crucial that we reduce transmissions to extend the
lifetime of the network [2].
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Table 1. Running example of probabilistic sensor readings

Sensor-ID Location Timestamp Probability that
temperature exceeds 27◦

s1 Room 101 11:40 0.2

s2 Room 102 11:40 0.8

s3 Room 103 11:40 0.7

s4 Room 203 11:40 0.4

s1 Room 101 11:50 0.0

s2 Room 102 11:50 0.8

s3 Room 103 11:50 1.0

s4 Room 203 11:50 0.4

This paper addresses count queries in WSNs. Such type of queries are very
useful for many applications, for example, if we want to control the climate of a
building complex using a number of sensors monitoring the current temperature
at different locations within the building. We could, for example, turn on the
heating if exactly k, at most k or at least k sensors measure a temperature
below (or above) a specific threshold temperature. Traditional count queries
simply count the number of sensors that satisfy the given query predicate and
return the value of the counter. In fact, in-network aggregation can be applied
easily to optimize the query’s energy cost [3]. However, adding uncertainty raises
new issues for the processing of the query itself as well as for the aggregation
strategies that can be applied. Instead of simply counting sensors fulfilling the
query predicate, now, for each sensor, we have to consider the probability that
it satisfies the query predicate. Thus, instead of counting the number of sensors
that satisfy the query, we now have a probability value that a specific number
of sensors satisfies the query. It can intuitively be understood that the result of
such a count query is in fact a probability distribution.

Consider the example in Table 1 which we will use as a running example
throughout the paper. Let S = {s1, s2, s3, s4} be a WSN with four sensors mon-
itoring a building. Sensors s1, s2 and s3 are installed on the first floor and s4 is
placed on the second floor. They measure the temperature and send their data
periodically (for example every 10 min.). Each sensor reading contains a given
timestamp as well as the probability that it satisfies a query Q, e.g. “Temper-
ature exceeds 27◦”. Table 1 shows example readings of the four sensors in such
an application. Examples for probabilistic count queries on this table could be
“What is the probability that exactly (at least/at most) two sensors satisfy the
query?” As our main contribution in this paper we investigate four algorithms to
answer these types of queries within WSNs with the ultimate goal of minimizing
the energy cost of processing such queries. We show that using an incremental
and distributed algorithm we can reduce, by up to 80%, the number of messages
transferred within the WSN.

The remainder of this paper is organized as follows. Next, we briefly discuss
related work. A formal description of our data model and query computation
is presented in Section 3. In Section 4 we develop four algorithms for solving
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the stated problem of continuous probabilistic count queries in WSNs, and ex-
perimentally evaluate them in Section 5. Our main findings and directions for
further work are discussed in Section 6.

2 Related Work

Due to the steady increase in the number of application domains where uncer-
tain data arises naturally, such as data integration, information extraction, sen-
sor networks, persuasive computing etc., modelling and querying probabilistic,
uncertain, incomplete, and/or fuzzy data in database systems is a fast growing
research direction. Previous work has spanned a range of issues from theoretical
development of data models and data languages [4], to practical implementation
issues such as indexing techniques, e.g. [5,6] and probabilistic similarity query
techniques [7]. In this paper we adopt the uncertainty model proposed in [8],
where uncertainty is attached to tuples instead of individual attributes.

In [9] Ross et. al. addressed the problem of answering probabilistic count
queries. However, they proposed a solution that requires the individual consid-
eration of each possible world. This implies a computational cost that is expo-
nential in the number of sensor nodes. The problem of answering probabilistic
count queries is related to the problem of answering probabilistic top-k queries,
e.g., [10,11,12,13,7]. In order to determine the rank of an uncertain tuple t, the
number of tuples which have a score higher than t needs to be counted. In
this work, we will generalize efficient techniques used to solve the probabilis-
tic ranking of uncertain objects in the context of databases in order to apply
these techniques to answer probabilistic count queries on sensor networks where
usually completely different parameters need to be optimized.

WSNs are studied in their various aspects with work ranging from optimiza-
tion [14], over practical implementation issues [15], to experimental analysis [16].
However most previous work considers data to be certain. To the best of our
knowledge Wang et al. are the only ones who studied the field of probabilistic
queries in a distributed system such as a WSN [17]. They address the problem
of answering probabilistic top-k queries in WSN which is related but different to
our problem. In addition to previous approaches, we introduce update strategies
to handle the continuous stream of data that is produced by the sensor network.

3 Background

3.1 Probabilistic Data Model

Given a WSN S = {s1, s2, . . . , sn} composed by a set of n sensors yielding n
sensor values1 at a given time t. For a given query Q, each sensor si has a
probability PQ

si,t
of satisfying Q’s predicate at time t. Consider the temperature

monitoring application of our first example. Each tuple in Table 1 consists of a

1 In the remainder we use the term sensor to refer to the corresponding sensor value.
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Table 2. Possible Worlds of Table 1

Possible World Wk,j Probability P (Wk,j)

W4,1 = {s1, s2, s3, s4} 0.2*0.8*0.7*0.4 = 0.0448

W3,1 = {s1, s2, s3} 0.2*0.8*0.7*(1-0.4) = 0.0672

W3,2 = {s1, s2, s4} 0.2*0.8*(1-0.7)*0.4 = 0.0192

. . . . . .

W1,1 = {s1} 0.2*(1-0.8)*(1-0.7)*(1-0.4) = 0.0072

W1,2 = {s2} (1-0.2)*0.8*(1-0.7)*(1-0.4) = 0.1152

W1,3 = {s3} (1-0.2)*(1-0.8)*0.7*(1-0.4) = 0.0672

W1,4 = {s4} (1-0.2)*(1-0.8)*(1-0.7)*0.4 = 0.0192

W0,1 = ∅ (1-0.2)*(1-0.8)*(1-0.7)*(1-0.4) = 0.0288

sensor id, a location reading, a time stamp t, a temperature value and a prob-
ability value PQ

si,t
indicating the likelihood that sensor si satisfies the predicate

of a given query Q at time point t2. Thereby we assume data vectors of two
sensors sx 
= sy to be mutually independent, i.e. each of the probability val-
ues assigned to the sensors is an independent Bernoulli random variable with
P (Xi = 1) = 1 − P (Xi = 0) = PQ

si,t
.

For solving probabilistic queries on our uncertain sensor network model, we
apply the possible worlds semantics model which was originally proposed by
Kripke [18] for modal logics and is commonly used for representing knowledge
with uncertainties. However, there have been different adaptations of the model
for probabilistic databases [19], [4], [8]. Here, we use the model as proposed in
[8], specifically, a possible world is a set of sensors satisfying Q associated with
the probability that this world is true at a certain time t. In particular, we define
Wk,j as the jth world where exactly k sensors satisfy Q at time t. The probability
P (Wk,j) of a possible world Wk,j at time t is computed by multiplying PQ

si,t
for

each sensor si ∈ Wk,j . For our four entries in the Table 1 there are 24 = 16
possible worlds in total. Table 2 displays a few of those possible worlds and their
respective probabilities.

3.2 Probabilistic Count Query

Given the WSN with the set of uncertain sensors S and any query Q as described
above and a count parameter k. The problem to be solved for a probabilistic
count query is to compute the probability P t(k, S, Q) that exactly k sensors in
the network S satisfy Q at time point t. We call P (k, S, Q) probabilistic count.
Instead of a single probabilistic count, a probabilistic count query returns the
probability distribution of P t(k, S, Q) over k (0 ≤ k ≤ |S|) called count his-
togram. To lighten the notation, we use Psj equivalent for PQ

sj,t
and P (k, S, Q)

equivalent for P t(k, S, Q), i.e., all probabilities and data are considered with
respect to the same point in time.
2 The predicate of Q is irrelevant for our observations. In the following we assume a

given Q as a base query on top of which we can later build our actual probabilistic
count queries.
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The distribution of the count probabilities depends on the probability values
Psi . However, as we shall see in the discussion that follows, the computation of
the distribution does not depend on the actual probability values.

A naive method to answer a probabilistic count query is to first enumerate
all possible worlds of S and then sum up the probabilities of those worlds where
exactly k tuples appear, that is:

P (k, S, Q) =
∑

j

P (Wk,j) (1)

Considering Table 1 and a query Q at t = 11:40, we can intuitively compute
the probabilities of all possible worlds and then sum up the possible worlds that
contain the same amount of sensors by using Equation 1. Figure 1 shows the
resulting count histogram. Since the number of possible worlds is exponential in
the number of sensors this naive method is not very efficient.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4

C
ou

nt
 P

ro
ba

bi
lit

y

Count

Example Histogram

0.0288

0.2088

0.4408

0.2768

0.0448

Fig. 1. Probability Count Histogram for Example 1

In the following, we show how to efficiently compute a probabilistic count
query in general, before we address the problem of answering continuous proba-
bilistic count queries in wireless sensor networks in Section 4. In [1], Hua et al.
have proposed an efficient algorithm based on the Poisson Binomial Recurrence
to avoid searching all possible worlds in a different setting. In fact, the problem
description and definitions given there can be adjusted to our problem.

3.3 Poisson Binomial Recurrence

Let S be a set of sensors and the order of the sensors sj ∈ S is irrelevant. Every
sensor sj satisfies Q with a probability Psj . The probabilistic count P (k, S, Q) is
the probability that k (0 ≤ k ≤ |S|) sensors in S satisfy Q’s predicate. Moreover,
the subset probability P (k, Sj , Q) is the probability that k sensors in the subset
Sj = S \ sj fulfill Q. Then, the probabilistic count P (k, S, Q) depends only on
the (k − 1) other tuples in the subset Sj . That is, k sensors in S satisfy Q only
when sj satisfies Q and at the same time k − 1 sensors in Sj satisfy Q or when
sj does not satisfy Q and at the same time k sensors in Sj satisfy Q. If we define
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base cases P (0, ∅, Q) = 1, P (j, ∅, Q) = 0 for (0 ≤ j ≤ |S|) and P (−1, S, Q) = 0
for any set of sensors, then

P (j, S, Q) = P (j − 1, Sj, Q)Psj + P (j, Sj , Q)(1 − Psj ) (2)

Equation 2 can be iteratively applied to compute the result of a probabilistic
count query. In fact, in [20] (Sec. 1.7) this is called the Poisson Binomial Re-

currence, and it is shown that: P (0, S, Q) = P (0, Sj, Q)(1−Psj ) =
k∏

j=1

(1−Psj ),

and P (j, S, Q) = P (j − 1, Sj, Q)Psj + P (j, Sj , Q)(1 − Psj ) for 0 < j ≤ |S|.
In each iteration we can omit the computation of any P (j, S, Q) where j ≥ k,

since we are not interested in any counts other than k and do not need them to
process the query. In total, for each 0 ≤ j < k and each of the n sensors si ∈ S,
P (j, S, Q) has to be computed resulting in O(k · n) time complexity.

Example 1. Consider the sensor readings of our example application in Section
1 with a query Q at time t = 11 : 40 and k = 2. Assuming that all tuples
satisfy Q’s predicate with the probabilities listed in Table 1, we have Ps1 = 0.2,
Ps2 = 0.8, Ps3 = 0.7 and Ps4 = 0.4. Note that the order in which we process the
sensor readings is irrelevant. For the sake of simplicity, we process the table line
by line starting at the top. Using Equation 2 we have S = {s1}, S1 = ∅ and

P (0, S, Q) = P (−1, S1, Q)Ps1 + P (0, S1, Q)(1 − Ps1 ) = 0.8
P (1, S, Q) = P (0, S1, Q)Ps1 + P (1, S1, Q)(1 − Ps1) = 0.2

Next we process s2 by adding another iteration of Equation (2). With S =
{s1, s2} and S2 = {s1} we obtain the following:

P (0, S, Q) = P (−1, S2, Q)Ps2 + P (0, S2, Q)(1 − Ps2) = 0.16,
P (1, S, Q) = P (0, S2, Q)Ps2 + P (1, S2, Q)(1 − Ps2) = 0.68,
P (2, S, Q) = P (1, S2, Q)Ps2 + P (2, S2, Q)(1 − Ps2) = 0.16.

With s3 and S = {s1, s2, s3} we have: P (0, S, Q) = 0.048, P (1, S, Q) = 0.316
and P (2, S, Q) = 0.524. Since k = 2 we can stop at that point and do not need to
compute P (3, S, Q). Finally, we add s4 (S = {s1, s2, s3, s4}): P (0, S, Q) = 0.0288,
P (1, S, Q) = 0.2088 and P (2, S, Q) = 0.4408, and we can return the result of our
query: P (2, S, Q) = 0.4408.

As illustrated in Example 1, Equation 2 can be used to efficiently compute
the probabilistic count P (k, S, Q) that k sensors satisfy a query Q. Hence, we
can easily compute the probability, that at most or at least k sensors satisfy Q’s
predicate. To compute the probability that at most k sensors satisfy a query Q,
we intuitively sum up all probabilistic counts P (j, S, Q) with 0 ≤ j ≤ k, i.e.,

P−(k, S, Q) =
k∑

j=0

P (j, S, Q) (3)
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To compute the probability that at least k sensors satisfy Q it is useful to
know that the values of a complete count histogram sum up to 1. Hence, we can
compute the probability of at least k sensors satisfying Q by using Equation 3
as follows:

P+(k, S, Q) = 1 −
k−1∑
j=0

P (j, S, Q) (4)

3.4 Allowing Certainty

Until now, we assumed all sensors to be uncertain at all times (0 < Psj < 1). But
certain circumstances or queries call for the existence of certain values. On one
hand, sensors can die or wake up from one round to another, messages can get
lost, or there can be restrictions to the query, i.e., we only want to query sensors
in a bounded area. Thus, particular sensors do not participate in a query at all,
and we can safely set their probability Psj to zero. On the other hand there
could be reasons to set the probability Psj to one, e.g., if a sensor’s samplings
are very stable over a sufficient period of time. In the following, we explore the
effects of Psj = 0 and Psj = 1.

Effect of Psj = 0. Reconsider Example 1. We now add a fifth sensor s5

with Ps5 = 0 and observe the effect of a zero probability. After processing the
four sensors in Example 1 we had P (0, S4, Q) = 0.048, P (1, S4, Q) = 0.316 and
P (2, S4, Q) = 0.524. We now incorporate Ps5 and compute the probability that
exactly two sensors satisfy the query predicate (c.f. Equation 2): P (2, S, Q) =
P (1, S4, Q)Ps4 +P (2, S4, Q)(1−Ps4) = 0.316 ·0+0.524 ·1 = 0.524 = P (2, S4, Q).
The incorporation of a value Psj = 0 does not affect P (j, S, Q) (0 ≤ j ≤ k) at
all. The following lemma formalizes this observation.

Lemma 1. Let 0 ≤ k ≤ n, Psj = 0. It holds that

∀k : P (k, S, Q) = P (k, S \ sj , Q).

Proof. Using Equation 2 we obtain:

P (k, S, Q) = P (k − 1, S \ sj, Q) · 0 + P (k, S \ sj , Q)(1 − 0) = P (k, S \ sj , Q).

Thus, Lemma 1 allows us to ignore any sensor sj with Psj = 0 in the computation
of the Poisson binomial recurrence.

Effect of Psj = 1. Again, we use the example of the previous section, but
now assuming Ps5 = 1. The probability that exactly two sensors satisfy the
query predicate is derived by using Equation 2: P (2, S, Q) = P (1, S4, Q)Ps4 +
P (2, S4, Q)(1 − Ps4) = 0.316 · 1 + 0.524 · 0 = 0.316 = P (1, S4, Q).

The incorporation of a value Psj = 1 shifts all values in the Poisson Binomial
Recurrence to the right, formalized by the following lemma:
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Lemma 2. Let 0 ≤ k ≤ n, Psj = 1. It holds that

∀k : P (k, S, Q) = P (k − 1, S \ sj , Q).

Proof. Using Equation 2 we obtain:

P (k, S, Q) = P (k − 1, S \ sj , Q)· 1+ P (k, S \ sj , Q)(1 − 1) = P (k − 1, S \ sj , Q).

Lemma 2 allows us to avoid iterations of the Poisson binomial recurrence for
each sensor sj with Psj = 1. Instead we can use a counter which is incremented
by one for each such sj , thus, counting the number of positions that the Poisson
Binomial Recurrence has to be shifted to the right.

In summary, Lemma 1 and Lemma 2 allow us to handle zero and one values
in a very efficient way.

4 Probabilistic Count Queries in Wireless Sensor
Networks

As mentioned in Section 1, it is crucial for applications on WSNs to reduce energy
cost, and this is mainly achieved through reducing CPU costs and communica-
tion. In the previous section showed how to reduce the CPU costs for computing
the count distribution. In this section, we focus on reducing the communication
costs. For that purpose, we must consider the typical underlying characteristics
of WSNs such as network topology, routing and scheduling. We will propose four
algorithms which solve the problem of answering continuous count queries in a
WSN. Thus, we now take the local distribution of data as well as the temporal
dimension into consideration and reinstate the notation P t(k, S, Q). We assume
that the nodes in S are connected together via a logical tree where the sink node
(or base-station) is the tree’s root. The choice of the tree’s topology does matter,
but is outside the scope of this paper. For the sake of simplicity, we assume it
to be a hop-based shortest path tree commonly used in other works, e.g., [3].

4.1 A Centralized Algorithm

In the centralized approach all probability values are sent to the root node at
every round without previous processing. Thus, the sink node can be seen as a
central database that receives and temporarily stores the readings of all sensor
nodes within the network and that centrally processes queries on the WSN. The
probabilistic count histogram can then be easily computed by using Equation 2.

While leaf nodes send only one value to their parent node, intermediate nodes
send their own value plus all values received from their child nodes. Thus, the
payload size of the packages that are sent within the network increases as we get
closer to the root node. With 0 ≤ Psj ≤ 1 for all sensors and unlimited payload
size for any message sent within the network, n−1 messages are sent to the root
in every round. However, in reality, the number of messages is likely to be much
larger, depending on the topology and the fixed payload size.
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Fig. 2. Example Network Structure

With the knowledge that we gained in Section 3.4, aggregation strategies
can be applied whenever a sensor has a zero probability or a one probability.
According to Lemma 1, all sensors sj with Psj = 0 can safely be ignored in
the computation. For sensors sj with Psj = 1, Lemma 2 applies and we use a
counter variable Ct

1 that denotes the number of such tuples. Thus, Equation 2
is only required for sensors sj for which 0 < Psj < 1, allowing us to have shorter
messages, thus saving energy in packet transmission.

Example 2. Consider the sensors in Example 1 having a network structure as
shown in Figure 2. Sensors si are depicted as circles, mi denotes a message sent
from one node to the other with i indicating the ordering among messages. In
the first round (t = 11:40) all sensors report probability values. At time t =
11:50, s1 has zero probability and therefore no message is sent at all. Whereas
sensor s3 is certain to satisfy Q with probability Ps3 = 1. Instead of sending
a value, s3 increments its counter (Ct

1 = 1) and sends the counter only. Sensor
s4 sends its value as usual and sensor s2 forwards the two probability values as
well as the counter to the sink. With two iterations of Equation 2 we obtain for
t =11:50: P t(0, S, Q) = 0.12, P t(1, S, Q) = 0.56, P t(2, S, Q) = 0.32 and Ct

1 = 1.

4.2 A Centralized Incremental Algorithm

The naive solution works well if the probability values Psj change often from one
round t to the next round t + 1. However, this is expensive in terms of messages
sent when only a few values change. In some cases it is more efficient to send all
probability values and process the query as proposed in Section 4.1 only in the
initial computation. In all subsequent rounds, only sensors that have changed
their probability will send an update. The sink node will then compute the new
count probability incrementally as described next.

We can update P t(k, S, Q) using the results of previous iterations. Let sx be
a sensor and let PQ

sx,t
and PQ

sx,t+1
denote the previous and new probability that

sx satisfies Q, respectively. Our update algorithm has two phases, summarized
next:



288 A. Follmann et al.

- Phase 1: We remove the effect that PQ
sx,t

had on the previous probabilistic
counts P t(j, S, Q), 0 ≤ j ≤ k. This yields an intermediate result of the
probabilistic counts P̂ t(j, S, Q), 0 ≤ j ≤ k.

- Phase 2: We incorporate the new probability PQ
sx,t+1

by adding it to the
temporary probabilistic counts P̂ t(j, S, Q), 0 ≤ j ≤ k using Equation (2).

In Phase 1, the following cases have to be considered:

Case 1: PQ
sx,t

= 0. In this case, nothing has to be done to remove the effect of
PQ

sx,t
= 0 and P̂ t(j, S, Q) = P t(j, S, Q).

Case 2: PQ
sx,t

= 1. When PQ
sx,t

= 1 we must decrement the counter Ct
1 by one.

Thus, P̂ t(j, S, Q) = P t(j, S, Q) and Ĉt
1 = Ct

1 − 1.
Case 3: 0 < PQ

sx,t
< 1. To remove the effect of any probability PQ

sx,t
from all

P t(j, S, Q), (0 ≤ j ≤ k) we look at its incorporation via Equation 2:
P t(j, S, Q) = P̂ t(j − 1, Sx, Q)PQ

sx,t
+ P̂ t(j, Sx, Q)(1 − PQ

sx,t
).

We can remove the effect of PQ
sx,t

by resolving Equation 2 as follows:

P̂ t(j, S, Q) =
P t(j, S, Q) − P̂ t(j − 1, S, Q) · PQ

sx,t

1 − PQ
sx,t

(5)

Since any P t(−1, S, Q) = 0 we have:

P̂ t(0, S, Q) =
P t(0, S, Q)

1 − PQ
sx,t

(6)

for j = 0 and can step by step compute P̂ t(j, S, Q) by using P̂ t(j − 1, S, Q) and
Equation (5) for any 0 < j ≤ k.

In Phase 2 we have to consider the same cases as in Phase 1:

Case 1: PQ
sx,t+1

= 0 has no influece on the result at time t + 1 and
P t+1(j, S, Q) = P̂ t(j, S, Q).

Case 2: PQ
sx,t+1

= 1. When PQ
sx,t

= 1 we must increment the counter Ct
1 by

one. Thus, P̂ t(j, S, Q) = P t(j, S, Q) and Ĉt
1 = Ct

1 + 1.
Case 3: 0 < PQ

sx,t+1
< 1. We can incorporate the new probability PQ

sx,t+1
by an

additional iteration of Equation (2):
P t+1(j, S, Q) = P̂ t(j − 1, S, Q)PQ

sx,t+1
+ P̂ t(j, S, Q)(1 − PQ

sx,t+1
).

This means that, whenever a sensor sends an update, it has to send both its pre-
vious probability and its new probability. Thus, in the worst case we send twice
the number of values compared to the centralized algorithm. On the other hand,
the less updates are sent, the better the results for the incremental approach.

Regarding the computational complexity, the following holds for both, Phase
1 and Phase 2: Case 1 and 2 have a cost of O(1) since either nothing has to be
done, or Ct

1 has to be incremented or decremented. Case 3 has a total cost of
O(k) leading to a total execution time of O(k) per old-new value pair in the root
node.
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Example 3. Reconsider Example 1 where at time t = 11:40 PQ
s1,t

= 0.2, PQ
s2,t

=
0.8, PQ

s3,t
= 0.7 andPQ

s4,t
= 0.4. At time t + 1 =11:50 only s1 and s3 change their

values: PQ
s1,t+1

= 0.0 and PQ
s3,t+1

= 1.0.
We start with P t(0, S, Q) = 0.0288, P t(1, S, Q) = 0.2088, P t(2, S, Q) = 0.4408

and Ct
1 = 0 and remove the effect of PQ

s1,t
by using Equations 5 and 6:

P̂ t(0, S, Q) =
P t(0, S, Q)

1 − PQ
s1,t

= 0.036

P̂ t(1, S, Q) =
P t(1, S, Q) − P̂ t(0, S, Q) · PQ

s1,t

1 − PQ
s1,t

= 0.252

P̂ t(2, S, Q) =
P t(2, S, Q) − P̂ t(0, S, Q) · PQ

s1,t

1 − PQ
s1,t

= 0.488

Next we incorporate the new probability of s1 but notice that PQ
s1,t+1

= 0, so
Phase 2 can be skipped. We go on with removing the effect of PQ

s3,t
and obtain:

P̂ t(0, S, Q) =
P t(0, S, Q)

1 − PQ
s1,t

= 0.12

P̂ t(1, S, Q) =
P t(1, S, Q) − P̂ t(0, S, Q) · PQ

s1,t

1 − PQ
s1,t

= 0.56

P̂ t(2, S, Q) =
P t(2, S, Q) − P̂ t(0, S, Q) · PQ

s1,t

1 − PQ
s1,t

= 0.32

Since PQ
s3,t+1

= 1 we only need to increment the counter Ct
1 = 1.

4.3 An In-Network Algorithm

In both previous algorithms the sink computes the histogram in a centralized
manner. Despite the counter, there is no aggregation strategy applied. But we
can benefit from computing the histogram at intermediate nodes as we send the
values up to the root node. On the one hand, we can decrease the number of
messages sent. On the other hand, intermediate count histograms could be used
to query subtrees or apply early stopping conditions if a subtree satisfies the
query [1].

Like in the centralized algorithm every sensor sends its value in every round.
The idea is that every intermediate node sj computes the probability histogram
of its subtree by pairwise multiplying the probability histograms of its child nodes
and its own probability PQ

sj
on the fly. Zero probabilities and one probabilities

are processed as usual. As we only need the first k count probabilities to answer
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Fig. 3. Multiplication of two Count Histograms

a query, it is sufficient to compute only the first k count probabilities and then
forward them. Hence, a maximum number of k + 1 values per message is sent
at every hop up to the sink and, compared to the centralized approach, we can
gain as the maximum payload size gets smaller.

Each probability Psi can be modelled as a minimal probabilistic count his-
togram with P t(0, S, Q) = 1 − Psi and P t(1, S, Q) = Psi . To obtain the count
histogram in an intermediate sensor node, we can use Equation 2 as long as
all child nodes are leaf nodes. The more general task of merging two count his-
tograms where k > 1 can be solved by multiplying them component-wise.

Consider Figure 3 where s1, s2 are intermediate nodes and send their count
histograms to root node s0. We can model their probabilistic distribution (shown
in the tables besides the nodes) as polynomials, e.g., for node s1 we would have
S1(x) = S1,0 +S1,1x+S1,2x

2 + · · ·+S1,nxn, where each S1,j = P t(j, S, Q) and a
similarly defined polynomial S2(x) for node s2. Merging the probabilistic counts
of those two nodes into the root node s0 becomes a matter of simply computing:

S0(x) = S1(x) × S2(x) = S0,0 + S0,1x + S0,2x
2 + · · · + S0,n+mx2n+m,

from where we can obtain each probabilistic count at s0, i.e., P t(j, S, Q) = S0,j

In every node, we can stop the computation at k, because we only need the
first k probabilistic counts to answer our queries. It suffices to implement a simple
(component-wise) polynomial multiplication algorithm taking O(k2) time.

Example 4. Consider the wireless sensor network in Table 1 at time t = 11:40
and the topology of Figure 2. Let k = 1. Sensors s1, s3 and s4 are leaf nodes
and send their values to their parent node. s2 is an intermediate node and com-
putes the intermediate probabilistic counts for k = 0 and k = 1. This means
s2 needs to merge S3(x) = 0.3 + 0.7x and S4(x) = 0.6 + 0.4x by multiplying
them pairwise and then incorporate its own probability value Ps2 = 0.8. Again
the order is irrelevant. Here we only have two polynomials S3(x) and S4(x) re-
sulting in S3(x) × S4(x) = 0.18 + 0.54x. Next, we incorporate Ps2 and get our
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final intermediate histogram with S2(x) = 0.036+0.252x. Sensor s2 forwards the
probabilistic counts to the root. The sink finally multiplies S1(x) = 0.8+0.2x and
S2(x) = 0.036+ 0.252x to compute the probabilistic counts, i.e., the coefficients
of resulting polynomial, of the whole tree S0(x) = 0.0288 + 0.2088x.

4.4 An Incremental In-Network Algorithm

Next we present an algorithm that brings together both, the in-network aggrega-
tion of Section 4.3 and the incremental update strategy of Section 4.2. To enable
updates of intermediate count probabilities, every intermediate node has to save
its current count histogram as well as the count histograms of its child nodes
along with their associated id as unique key. In the first round t = 0 we process
the query as proposed in Section 4.3 but store all required values in intermedi-
ate sensors. In all subsequent rounds only updates are reported and processed
as described in the following. We start with the updating process for child count
histograms.

There are two types of updates: either a number of old-new value pairs, or a
whole updated function. Whenever an intermediate node receives an update, it
either updates the child polynomial as described in Section 4.2 or it replaces the
whole function with the new function. When P̂ t(0, S, Q) = 1 and P̂ t(j, S, Q) = 0
for all (0 ≤ j ≤ k) after removing an old probability value and at the same time
no new probability value is sent (sensor either changed its probability to zero or
one), we remove the whole count histogram3. After processing the updates of the
child nodes the intermediate node needs to update its own polynomial. Again we
need to consider two cases: We can either merge all updated child polynomials
analog to Section 4.2 or use the old-new value pairs of all child nodes to compute
the new probabilistic count function. Obviously, we have to multiply all child
polynomials as soon as the histogram of a child node was replaced by a new one.

For the number of messages the following applies: If we start with sending
updates in the manner of the incremental centralized algorithm and continue
sending only old-new value pairs, the number of messages equals the number
of messages sent in approach 4.2. Thus, the number of values increases as we
come closer to the root note. However, we want to make sure that analog to
the in-network approach, the maximum number of values per message is fixed
to k + 1. This means we send the whole polynomial as soon as the number of
old-new value pairs exceeds k

2 .
With this strategy, we reduce the number of messages if only few sensors

report an update. In addition, we ensure that in the worst case (all sensors
update) the number of messages does not surpass the number of messages sent
in the in-network approach.

Example 5. We process the initialization analog to Example 4 but store all rel-
evant data structures. At time t + 1 =11:50 only s1 and s3 change their values:
PQ

s1,t+1
= 0.0 and PQ

s3,t+1
= 1.0. Sensor s3 sends an update message with its

3 This usually happens only when leaf nodes are updated.
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unique key, old value and in this case no new value but its incremented counter
Ct

1 = 1 to sensor s2. Sensor s2 uses the key to find the matching count his-
togram and updates it by using Equations 5 and 6: P̂ t(0, S, Q) = P t(0,S,Q)

1−P Q
s1,t

= 1

and P̂ t(1, S, Q) =
P t(1,S,Q)−P̂ t(0,S,Q)·P Q

s1,t

1−P Q
s1,t

= 0.

Since all values but the first one of s3’s count histogram are 0 and the
P̂ t(1, S, Q) is 1, we delete its entry in s2 and increment the counter of s2 by
the value of the sent counter. With s4 and s2 keeping their values we only
need to update the resulting count histogram in s2 to complete the update. As
no other child node sent an update with a completely new count histogram,
we also use Equations 5 and 6 to update the resulting probabilistic counts:

P̂ t(0, S, Q) = P t(0,S,Q)

1−P Q
s1,t

= 0.12 and P̂ t(1, S, Q) =
P t(1,S,Q)−P̂ t(0,S,Q)·P Q

s1,t

1−P Q
s1,t

= 0.56.

As the number of updated values exceeds the threshold value (1 > 1
2 ), we

forward the whole polynomial to the intermediate node. The update of sensor
s1 is processed analog to the update of s3 in s2 and the entry of s1 is deleted in
s0. Now, sensor s2 sends its update with the entire count histogram. Sensor s0

replaces the histogram and increments its counter. To update the histogram in
s0, we now need to merge the child polynomials as described in Section 4.3. But
as there is only one entry, we do not need to perform a polynomial multiplication
and have our final result.

5 Performance Evaluation

We performed our experiments by varying five parameters: the number of sensors
within the network (n), the percentage of uncertain sensors (γ), the probability
that a sensors probability value changes from one round to the next round (δ),
the probabilistic count (k), and the message size measured in bytes (m). Table
3 shows the values used for those parameters.

The positions of the sensors were randomly chosen within a 100m × 100m
area and each sensor node was assumed to have a fixed wireless radio range of
30m. As mentioned in Section 3, the actual distribution of the probability values
is not relevant for the query computation in terms of messages sent – hence not a
relevant parameter for our performance evaluation. But for the sake of complete-
ness the probability values follow a normal distribution N(0.5,0.5). Results are
based on an average of 10 simulation runs whereas each run consists of 100 time
stamps. All generated instances of the WSNs used a hop-wise shortest-path tree
as the routing topology. We assume in all experiments that messages are deliv-
ered using a multi-hop setup. Since the query is only sent once from the root to
all child nodes and will be amortized over time, we only measure nodes-to-root
messages.

Every coefficient was taken into account with 8 bytes, counters as well as ids
were taken into account with 4 bytes each. For the sake of simplicity, we assumed
data packages with a header size of 0 bytes.
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Table 3. Parameter Values Used in the Performance Evaluation (Default Values
Printed in Bold Face)

Parameter Values

n (Number of Sensors) 100, 500, 1000, 2500

γ (Ratio of Uncertain Sensors) 25%, 50%, 100%

δ (Probability of Change) 25%, 50%, 75%, 100%

k (Number of Coefficients) 1, 5, 10, 25

m (Message Size in bytes) 64, 128, 256

In the following figures the arithmetic mean is plotted with upper (lower) error
bar denoting the overall best (worst) performance. We abbreviate the centralized
algorithm with “Central”, the centralized incremental algorithm with “IncCen-
tral”, the in-network algorithm with “InNet” and the incremental in-network
algorithm with “IncInNet”.

5.1 Experiments and Results

The results of our experiments are summarized in Figures 4 to 8. In each exper-
iment all parameters but the one in focus are fixed to their default value.

The foremost trend that we can see in Figure 4 is that IncInNet consistently
sends less messages than all others. Both in-network algorithms further improve
as the network grows bigger. Particularly in the case of IncInNet the improve-
ment is significant. The reason for this is that the number of values sent per
message is restricted to k + 1 which is 11 with k set to a default of 10. Thus,
with a default maximum payload size of 128 bytes there is no need to send more
than one message per sensor. This also explains, why for the InNet approach
best case and worst case coincide with the arithmetic mean (no error bars).
Since for the InNet algorithm every sensor sends exactly one message per round
to its parent node, independent of their respective topology, always n − 1 mes-
sages are sent4. As expected, when n increases, the costs for all algorithms rise
as well, however, both in-network algorithms grow slower than the centralized
algorithms. Overall, InNet and IncInNet offers better scalability with IncInNet
being the overall best solution saving up to 80% of the communication cost
compared to Central.

Figure 5 illustrates how a counter as introduced in Section 4.1 affects the
performance of the algorithms. Note that for our experiments, the number of
certain sensors was equally split into one and zero probabilities. A counter is
taken into account with constantly 4 bytes per message. The larger the number
of uncertain sensors the better perform the in-network algorithms. Since in every
round different nodes have zero probabilities the error bars become wider.

Varying δ (Figure 6) creates a scenario that allows observing how the dynam-
ics of the observed probabilities affect the algorithms’ performance. Since Central
and InNet do not mind updates but always compute the count probabilities from

4 This explanation also applies to the plots that follow.
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scratch, varying δ does not affect them at all. However, for IncCentral and IncIn-
Net naturally applies that the more dynamic the observed values, the more up-
dates will be required. In essence, increasing δ creates more communication traffic
in the tree. It is interesting to note that Central outperforms IncCentral for high
values (δ ≥ 75%) while IncInNet and InNets performance results even up.
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Figure 7 shows the results of the experiments conducted with varying k. As
expected, k only has an influence on InNet and IncInNet. As k increases, the
performance of both algorithms slowly decreases. Since we chose k relatively
small, varying k does not seem to have a significant effect on the performance at
all. Nonetheless, in the extreme case the centralized algorithms outperform the
in-network algorithms for k = n. This is because InNet as well as IncInNet send
k + 1 values resulting in n + 1 values (IncInNet additionally also sends a value
to identify the sender).

Following [16] we chose a (payload) message size of 128 bytes. For the following
experiment, m varies within a range of 64 bytes and 256 bytes. Obviously, the
smaller the size of a single message, the more messages need to be sent. Figure 8
illustrates the result of our experiments. For Central and IncCentral we therefore
observe a steady decreasing number of sent messages. InNet and IncInNet also
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record a higher number of messages for m =64 bytes. However, the number of
messages is constant for m =128 bytes and m =256 bytes, indicating that the
total number of bytes never exceeds 128 bytes. Thus, InNet sends n−1 messages
in total. As mentioned in Section 4.1 with unlimited payload size this also applies
to Central. In general, with increasing payload size Central draws near to InNet
and IncCentral draws near to IncInNet until they finally concide (m = ∞).
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6 Conclusions

In this paper, we studied the problem of answering continuous probabilistic
count queries in wireless sensor networks. After formalizing the problem, we
first discussed how to reduce the CPU overhead for processing the query and we
then proposed four different algorithms aiming at minimizing the communication
cost. All algorithms were examined empirically in a performance evaluation.
The results show that the incremental in-network algorithm is the overall best
solution, in particular when we have a small message size, a small probability
of change, a high number of nodes, a high ratio of uncertain nodes and a small
count.

To the best of our knowledge, this paper is the first one that addresses con-
tinuous probabilistic count queries in wireless sensor networks. In this paper we
assumed probabilities of two sensors to be mutually independent. One future
goal should be finding solutions to cope with more complex uncertainty models
where readings of two different sensors can be correlated. Another interesting
project would be the transfer of our algorithms to different topologies. By sim-
ulating our algorithm on different tree structures we could gain further insight
into the strengths and weaknesses of the algorithms. Finally, intermediate count
histograms could be used to query subtrees or apply early stopping conditions if
a subtree satisfies the query. Future work could address those topics and thereby
further reduce transmission costs.
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Abstract. As Global Positioning Systems (GPSs) are increasingly ubiquitous, 
spatial database systems are also encountering increasing use of location or 
point data, which is often expressed in geodetic coordinates: longitude and lati-
tude. A simple but very important question regarding this data is whether the 
locations lie within a given region. This is normally called the point-in-polygon 
(PIP) problem. Within the Geodetic space, PIP queries have additional chal-
lenges that are not present in the Cartesian space. In this paper, we discuss sev-
eral techniques implemented in Oracle Spatial to speed up geodetic PIP query 
processing. Our experiments utilizing real-world data sets demonstrate the PIP 
query performance can be significantly improved using these new techniques.  

Keywords: Point-In-Polygon, Geodetic Data, Spatial Databases, R-tree. 

1   Introduction 

To better approximate the Earth as an ellipsoid, many spatial database systems, in-
cluding IBM Informix Geodetic Datablade [3], Microsoft SQL server 2008 [8], Ora-
cle Spatial [9], and PostGIS [12], currently support geography or geodetic data types. 
When compared with projected geometry data types that treat the Earth as a flat sur-
face, geography or geodetic data types are useful to represent the curved surface of 
the Earth, and they can give more accurate results for a large area such as North 
America, Europe or the entire world as a single entity. Geodetic coordinates are 
commonly expressed in the form of longitude and latitude. The latest version of the 
World Geodetic System (WGS 84) standard is widely used in many applications. For 
example, WGS 84 is the reference coordinate system used by the Global Positioning 
System (GPS).  

As GPS is now widely prevalent, many spatial database systems see increasing use 
of point data as expressed in the longitude and latitude format. For example, an insur-
ance company stores the location of its insured properties in its database, and needs to 
quickly determine which properties might be affected by a natural disaster such as a 
hurricane. Normally, the area affected by the disaster is specified as a polygon. An-
other example is a truck company that can track the location of its trucks periodically, 
store the truck location as point data in its database, and determine how many of them 
lie inside a given region, such as New York City. Thus, the point-in-polygon (PIP) 
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problem not only is one of fundamental computational geometry problems [10], but 
also arises naturally in many geospatial or Location-Based Services (LBS) applica-
tions [7]. Furthermore, because PIP in geodetic space has additional challenges that 
are not present in the Cartesian space, new techniques are needed to meet these chal-
lenges. This paper reports our experience of implementing several techniques in Ora-
cle Spatial to speed up geodetic PIP query processing. 

The rest of this paper is organized as follows. Section 2 reviews prior art. Section 3 
discusses new techniques used in Oracle Spatial to speed up geodetic PIP queries. 
Section 4 presents results of an experimental study using real-world data sets. Section 
5 concludes the paper. 

2   Prior Art 

A well-known solution to the PIP problem [7, 10] is to draw a ray or line segment 
from the candidate point (e.g. the location of a property or a truck) to a point known 
to be outside the query polygon, and count the number of intersections between this 
ray and the edges of the query polygon (e.g. for either a natural disaster or New York 
City). If the number of intersections is odd, the point is inside; otherwise, it is outside. 
In a two-dimensional flat plane, the ray is normally either horizontal or vertical to 
simplify computations. When geodetic coordinates are used, the ray can be obtained 
by selecting a point that is outside the polygon and connecting the two points along a 
geodesic1. Thus, the ray is not necessarily horizontal or vertical for the geodetic case. 

The ray-crossing algorithm described above works fine when there are a small 
number of query points. However, two factors can cause performance problems for 
this ray-crossing algorithm: (i) number of query points; and (ii) number of vertices in 
the query polygon. When there are millions of query points, spatial indexes have to be 
built to reduce the search scope. This is the two-step query processing: (1) the filter 
step is to use spatial indexes and returns a candidate set; (2) the refinement step is a 
test on exact geometries in the candidate set [2]. For example, the ray-crossing algo-
rithm can be used in the refinement step to determine if a point is inside a polygon. In 
commercial database systems, two classes of spatial indexes—Quad-tree indexes and 
R-tree indexes are supported. Microsoft SQL server supports multiple-level Quad-tree 
indexes [4], and Oracle Spatial supports both Quad-tree indexes and R-tree indexes 
[6]. Because Quad-tree indexes need more fine-tuning to set an appropriate tessella-
tion level, and they can be used to index only 2D non-geodetic geometries in Oracle 
Spatial, we will focus on the use of R-tree indexes in this paper. To use R-tree indexes 
to manage geodetic geometries, Oracle Spatial converts geodetic coordinates to 3D 
Earth-centered coordinates, and builds 3D minimal bounding boxes (MBBs) on them. 
Consequently, while 2D geodetic geometries have two dimensions (longitude, lati-
tude), R-tree indexes built on them are 3D (Geocentric 3D) in Oracle Spatial.  

To further reduce the candidate set returned from the filter step, previous work [5, 
1] discusses how interior approximations for a non-geodetic query polygon help 
achieve the goal: a non-geodetic query polygon is tessellated, and if a point or an 

                                                           
1 A geodesic is the shortest path between two points on the ellipsoid. 
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MBR is inside an interior tile, this point or MBR is also inside the query polygon. For 
geodetic geometries, Voronoi tessellations [3] can be used to speed up geodetic com-
putations. However, users have to carefully select appropriate Voronoi tessellations 
for their data sets, as some Voronoi tessellations are good for some data sets, yet de-
grade query performance on other data sets. To help users avoid the difficulties of 
choosing right tessellations, this paper reports new techniques, based on an in-
memory R-tree structure, which are designed and implemented in Oracle Spatial. This 
in-memory R-tree structure not only requires no tuning from users, but also signifi-
cantly improves the performance of many geodetic queries, including geodetic PIP 
queries that are the focus of this paper.  

3   Geodetic PIP Query Processing 

In the refinement step of spatial index-based query processing, the problem with the 
ray-crossing algorithm is that for each candidate point, every line segment in a query 
polygon has to be checked once. If the number of vertices in the query polygons is 
large, this can lead to performance degradation. If we build a hierarchy structure (e.g. 
a tree structure) on the query polygon, we can quickly determine which line segments 
are intersected. We choose an in-memory R-tree structure, because it is versatile to 
approximate different shaped geometries. For example, this in-memory R-tree struc-
ture not only can handle 3D MBBs for geodetic geometries, which is the focus of our 
paper, but also can handle 2D MBRs for non-geodetic geometries, which we will 
discuss in the Appendix.    

Fig. 1 shows how a line segment on the boundary of Great Britain is used to build a 
3D MBB when Great Britain is used as a query polygon. Since there are 53 line seg-
ments in the simplified version of Great Britain, 53 MBBs are obtained, and an in-
memory R-tree structure can be built on top of these 53 MBBs. Note that because the 
in-memory R-tree structure is built once per query polygon, the cost of building it is 
amortized over a large number of data points. Furthermore, this new in-memory R-
tree structure is used not only in the refinement step, but also in the filter step, as 
discussed in Section 3.1. 

3.1   New R-Tree Index Query Processing 

In the original two-step R-tree index query processing method [2], the filter step only 
uses MBRs (or MBBs in 3D2) to quickly return a candidate set. In other words, both 
query polygons and data geometries are approximated by MBBs, and R-tree index 
nodes are built on top of their children (MBBs). Therefore, only MBBs are used in the 
filter step to determine the candidate set. However, for a large point data set and a 
relatively large query polygon, we find many index nodes that can be either inside or 
outside the query polygon. If we can use the above in-memory R-tree structure to 
 

                                                           
2 In the rest of this paper except the Appendix, we will only consider MBBs because Oracle 

Spatial geodetic R-tree indexes are 3D. 
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Fig. 1. A simplified version of Great Britain: The pink line is the Prime Meridian and the white 
line has a latitude 60° north. Three axes in black have their origins at the center of the Earth. 
The 3D MBB (in green) is obtained from a line segment of Great Britain. Some green lines are 
dotted because they are under the Earth’s surface. 

quickly determine the topological relationship between these index nodes and the 
query polygon in the filter step, we don’t need to wait until the refinement step to 
determine if a point is inside a polygon. For example, if we know that an index node 
is inside (or outside) a query polygon, all its descendant data points are inside (or 
outside) a query polygon. However, because in an index node, its MBB can cover at 
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most 8 regions in the Earth, we have to make sure all these regions are either inside or 
outside the query polygon (See Fig. 2). Note that this is different from the 2D Carte-
sian case, where an index node corresponds an MBR, i.e. only one region. We will 
discuss the geodetic case in more detail in Section 3.2. In summary, the query poly-
gon is used to check if R-tree index nodes are inside the polygon as early as possible.  

The new R-tree index based PIP query processing is described in the following 
pseudo code. Note that it is tailored to make PIP query processing clearer. For exam-
ple, other topological relationship determination (such as TOUCH, etc) [11] and other 
data geometries (e.g. lines, etc) are purposely not described. As R-tree index leaf 
nodes already contain the information about data points, we just use these index leaf 
nodes to determine if they are inside a query polygon or not. Therefore, although the 
filter step and the refinement step are well separated in theory, the two steps are seam-
lessly integrated in Oracle Spatial to improve query performances.  

 
Algorithm PIP R-tree Index Query Processing 
1.  build an In-memory R-tree structure (IR) of the 
    query polygon (Q) 
2.  push the R-tree index root into stack 
3.  while (stack is not empty) 
4.  {  
5.    pop an R-tree index entry (RE) from a stack; 
6.    if (RE is not from an R-tree index leaf node) 
7.    { 
8.    if (RE’s inclusion flag is set) 
9.    { 
10.      for each child entry of RE,  
11.      { 
12.        set its inclusion flag; 
13.        push it into stack; 
14.      } 
15.    } 
16.    else 
17.    { 
18.      determine the topological relationship 
          between RE and Q using IR;   
19.       if (RE is inside Q) 
20.       { 
21.        for each child entry of RE,  
22.        { 
23.          set its inclusion flag; 
24.          push it into stack; 
25.        } 
26.       } 
27.       else if (RE intersects with Q) 
28.        for each child entry of RE,  
29.          push it into stack; 
30.       else /* RE is outside Q */ 
31.         continue; 
32.     } 
33.   }  
34.   else  /* an entry in a leaf node */ 
35.   {     
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36.    if (RE’s inclusion flag is set) 
37.       put this data point into the result set; 
38.     else 
39.    { 
40.      determine the topological relationship 
          between RE and Q using IR;   
41.       if (RE is inside Q) 
42.         put this data point into the result set; 
43.       else  
44.         continue; 
45.     } 
46.   } 
47. } 

 
Note that the above algorithm works for both geodetic and non-geodetic geome-

tries. We will discuss the non-geodetic case in the Appendix. 

3.2   Determining Topological Relationship between R-Tree Index Entry and 
Query Polygon 

To determine the topological relationship between an R-tree index entry (MBB) and a 
query polygon, we have a two-step procedure:  

(1) Use the MBB to search the in-memory R-tree structure that is built for the 
query polygon, and check if there is any intersection between the MBB and the 
line segments of the query polygon. The search can be simply fulfilled using a 
normal in-memory R-tree search algorithm. Note that for a leaf entry in the  
in-memory R-tree structure, we not only use its MBB, but also use the line seg-
ment inside its MBB. For example, in Fig. 1 it is possible that the MBB is inter-
sected while the line segment inside the MBB is not intersected at all. If there is 
no intersection, go to the next step.  

(2) Compute how many regions this MBB can cover and, for each region, select an 
arbitrary point and check if the selected point is inside the query polygon. If all 
points are inside the query polygon, we are certain that any regions covered by 
this MBB are also inside the query polygon. If all points are outside the query 
polygon, we are certain that any regions covered by this MBB are also outside 
the query polygon. Otherwise, this MBB intersects with the query polygon.  

Note that step (2) is executed only if there is no intersection from step (1). Because 
there is no intersection from step (1), we are certain that the points covered by the 
MBB are either inside or outside the query polygon. No points that are covered by the 
MBB can be on the query polygon. Otherwise, there must be one intersection between 
the MBB and the line segments of the query polygon. Furthermore, if a point in a 
region is inside or outside the query polygon, all points in this region will be inside or 
outside the query polygon. If some points in this region are inside the query polygon 
while others in this region are outside the query polygon, there must be a point in this 
region that is on the query polygon because this point has to cross the boundary of the 
query polygon. This is in contradiction with the fact that step (2) is executed only if 
there is no intersection from step (1). Therefore, we can select an arbitrary point from 



 Geodetic Point-In-Polygon Query Processing in Oracle Spatial 303 

each region, check if the selected point is inside the query polygon, and determine if 
the whole region is inside the query polygon. But it is possible that one region is 
completely inside the query window while another region is completely outside the 
query window, if the two regions are not connected. Thus, this case can pass step (1), 
and it is determined in step (2) that this MBB intersects with the query polygon.     

We will discuss in Section 3.3 how to use the in-memory R-tree structure to deter-
mine if a point is inside a query polygon, while in this section we focus on the ques-
tion: “Why can an MBB cover at most 8 regions?” For example, Fig. 2 shows that an 
MBB (in green) covers 4 regions on the Western Hemisphere and we assume there 
are another 4 similar regions on the Eastern Hemisphere. Note that in Fig. 2 we only 
draw the portion of the MBB that is above the Earth’s surface, and the portion under 
the Earth’s surface is not shown. For example, the portion of the top straight line that 
connects point A (-120°, 30°) and point B (-60°, 30°) is not drawn because it is under 
the Earth’s surface. If we have the Northern Hemisphere as a query polygon, the 
MBB in Fig. 2 does not intersect with any line segments of the query polygon, i.e. the 
Equator. So this MBB passed step (1). In step (2), we select one point from each of 8 
regions. It is easy to see there are 4 points inside the Northern Hemisphere, and an-
other 4 points outside the Northern Hemisphere. So this MBB intersects with the 
Northern Hemisphere. 

Although an MBB can cover at most 8 regions on the Earth like the MBB in Fig. 2, 
most MBBs typically cover only 1 region on the Earth. To determine how many re-
gions are covered by an MBB, we can label 8 corner points in a way as shown in Fig. 
3. Since we can associate a region with each corner point, we call them region-0 
through region-7. Thus, the problem is reduced to determining how many regions are 
connected. For example, if only region-0 and region-1 are connected, and other re-
gions are not connected, there will be 7 regions. We can run breadth-first search 
(BFS) twice: (a) Forward BFS: {0} -> {0, 1, 2, 4} -> {0, 1, 2, 4, 3, 5, 6} -> {0, 1, 2, 4, 
3, 5, 6, 7} and (b) Reverse BFS: {7} -> {7, 6, 5, 3} -> {7, 6, 5, 3, 4, 2, 1} -> {7, 6, 5, 
3, 4, 2, 1, 0}. In the Forward BFS, if region-0 and region-1 are connected, we set 
region-1 to “0”. Thus if region-7 is connected to region-3, then connected to region-1, 
and region-0, region-7 is also set to “0”. So once the Forward BFS is done, every 
region is set to the lowest value from the Forward BFS. The Reverse BFS deals with 
the case where region-4 is connected to region-0, because they are connected by re-
gion-1 and region-5, not because of the direct link between region-0 and region-4. So 
once the Reverse BFS is done, every region is set to the lowest value from all possible 
connections. Finally, we just count different values from the 8 regions, and obtain 
how many regions are covered by this MBB.  

3.3   Geodetic Point-In-Polygon Methods  

For geodetic coordinates, as we already discussed in Section 2, a ray or line segment 
could be obtained by selecting another point that is outside the polygon, and connect-
ing the two points along a geodesic. Note that we cannot simply use horizontal or 
vertical lines, such as lines of latitude or longitude. For example, assume that we have 
the tropics as a query polygon and we would like to determine if a point on the Equa-
tor is inside the tropics. If we draw a horizontal ray, i.e. the Equator, this ray will not 
intersect with any line segments of the tropics (i.e. the Tropic of Cancer or  
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Fig. 2. An MBB (in green) covers 4 regions (in pink) on the Western Hemisphere. Assume 
there are another 4 similar regions on the Eastern Hemisphere. If we have the Northern Hemi-
sphere as a query polygon, the MBB does not intersect with the Equator, i.e. the boundary of 
the query polygon. However, there are some points (such as points A and B) inside the North-
ern Hemisphere and other points (such as points C and D) outside the Northern Hemisphere. 

 
 

   
 

 

 

 

 

Fig. 3. 8 corner points are labeled in an MBB 
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the Tropic of Capricorn). Therefore, we have to use a different method. For example, 
we can use the first point of the query polygon, draw a line segment by connecting it 
with the point in question along a geodesic, use this line segment to search the in-
memory R-tree structure we already built for the query polygon to see how many 
intersections occur between this line segment and line segments of the query polygon, 
and determine if the point in question is inside the query polygon. This is similar to 
the ray-crossing algorithm; i.e., one intersection means one boundary crossing. How-
ever, we still have to determine how the line segment ends with the first point of the 
query polygon. In other words, we need to determine whether this line segment gets 
to the first point of the query polygon from outside the query polygon, or inside the 
query polygon. This can be easily accomplished, because in Oracle Spatial, coordi-
nates are defined sequentially around the polygon (counterclockwise for an exterior 
polygon ring, clockwise for an interior polygon ring). So the sequential order can be 
used to determine if a point is inside or outside a query polygon. 

However, if the first point of the query polygon is very far from the point in ques-
tion, the line segment connecting them along a geodesic can be very long so that it 
can have many intersections with line segments of the query polygon and 3D MBBs 
on top of these line segments. To avoid this problem, we can also use the R-tree 
Nearest Neighbor (NN) search method to get a point on the query polygon that is the 
closest to the point in question. And we get an open line segment that connects the 
point in question and its closest point on the query polygon (along a geodesic). Be-
cause they are the nearest neighbors, there is no intersection between this open line 
segment and line segments of the query polygon. We just need to determine whether 
this open line segment is inside the query polygon or not. This is also done in the 
same way as how we determine the line segment gets to the first point of the query 
polygon (i.e. either from inside the query polygon, or from outside the query poly-
gon). If the open line segment is inside (or outside) the query polygon, the point in 
question is also inside (or outside) the query polygon. In summary, the NN-based PIP 
method can be proved in the following theorem.  
 
Theorem 1. If a point is inside (or outside) a polygon, the open line segment that 
connects the point and its closest point on the polygon (along a geodesic for the geo-
detic case) is also inside (or outside) a polygon. 

Proof Sketch: Assume that a point (P1) is inside a polygon and an open line segment 
connects this point (P1) and its closest point (P2) on the polygon (along a geodesic for 
the geodetic case). If there is a point (P3) in the open line segment that is outside the 
polygon, the open line segment must intersect with the polygon somewhere (say point 
(P4)) between the two points (P1) and (P3). It is obvious that P4 is on the polygon, 
and P4 is closer to P1 than P2. This is in contradiction with the fact that P2 is P1’s 
closest point on the polygon. Therefore, every point on the open line segment must be 
inside the polygon. And the same technique can be applied for the case that a point is 
outside a polygon. 
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Note the above theorem also works for the non-geodetic case, if we ignore the geo-
desic and simply connect the point and its closest point on the polygon along a 
straight line, which is the shortest path in 2D Cartesian space. We will discuss the 
non-geodetic case in the Appendix.  

3.4   Memory Usage 

Oracle Spatial is a spatial database system not only applicable for a small group of 
users, but also for a large number of enterprise users. To make it highly scalable, each 
user query needs to consume as little memory as possible. To limit the memory usage 
associated with the in-memory R-tree structure, we group several line segments into a 
single entry to construct the in-memory R-tree structure. For example, assume that a 
query polygon has 50,000 line segments. We can take 10 continuous line segments, 
and put them into one entry. Thus, there will be only 5,000 entries vs. 50,000 entries 
originally. Since the number of entries is reduced, the total memory usage for the in-
memory R-tree structure is also reduced by almost 90%. In Section 4, we show that 
the performance does not degrade much when we set smaller limits of entries.  

4   Experiments 

Three real-world data sets are used for our experimental study. The first data set is 
from an energy company; it has about 39,000 locations for its properties in the United 
States, and a large region about 4 times as big as Texas is used as the query polygon. 
Note that this region is a multi-polygon with many voids and it has 197,146 line seg-
ments. The second real-world data set is from a transportation system; it has 3 million 
locations and 30 regions around world, such as “Canada/Mountain”, “Amer-
ica/Honolulu”, and “Germany”. The 30 regions have an average of approximately 
59,000 line segments, and “Norway” has the most line segments (343,395). For each 
region we run a PIP query to determine how many locations are in this region, and we 
report the total execution time. The third real-world data set is the US Business Area 
(ABI) data set consisting over 10 million locations. For this data set, we use two sets 
of query polygons: a) 50 US states, and b) 1061 local regions, such as “Manhattan 
NY”, and report the total execution time for each of the two sets of query polygons. 
The 50 US states have an average of 1,755 line segments, and “Alaska” has the most 
line segments (18,603). The 1061 local regions have an average of 520 line segments, 
and “Long Island” has the most line segments (6,915). The areas of the 1061 local 
regions range from 5.83 km2 to 78,200 km2, with an average of 4,330 km2. In Section 
4.1, we present performance results of the three data sets under different optimization 
configurations, in Section 4.2, we show that performance results with lower limits of 
entries in the in-memory R-tree structure (such as 4,096 entries) are almost as good as 
those without a limit, and in Section 4.3, we compare two geodetic PIP methods, 
which use the in-memory R-tree.  
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4.1   Compare Geodetic PIP with Different Configurations 

In this subsection, we compare results from the following configurations: (A) the 
filter step uses MBBs only and the refinement step uses the original ray-crossing 
algorithm. (B) The filter step uses MBBs only and the refinement step uses the new 
geodetic PIP algorithm based on the in-memory R-tree structure, which is discussed 
in Section 3.3. (C) Both the refinement step and the filter step use the in-memory R-
tree structure. Note that in Configuration (C), the in-memory R-tree structure is used 
for not only index leaf entries, but also other index entries, as shown in the pseudo 
code of Section 3.1.   

Table 1. Geodetic PIP query execution times under different optimization configurations. 

 The first data set The second data setThe third data set 
with US states 

The third data set 
with local regions 

Configuration 
(A) 

204s 20883s 2559s 11685s 

Configuration 
(B) 

10.8s 349s 277s 282s 

Configuration 
(C) 

1.4s 88s 52s 81s 

 
Table 1 shows query execution times from three data sets. It is clear that when we 

replace the ray-crossing algorithm with the new algorithm based on the in-memory R-
tree structure in the refinement step, query performance improves about 20 (204/10.8) 
times as fast as before in the first data set, 60 (20883/349) times as before in the sec-
ond data set, 9.2 (2559/277) times as before in the third data set with US states as 
query polygons, and 41 (11685/282) times as before in the third data set with local 
regions as query polygons. And when we also use the in-memory R-tree structure in 
the filter step, query performance improves further: 7.7 (10.8/1.4) times in the first 
data, 4.0 (349/88) times in the second data set, 5.3 (277/52) times in the third data set 
with US states as query polygons, and 3.5 (282/81) times in the third data set with 
local regions.  

4.2   Different Limits of Entries in In-Memory R-Tree Structure 

Table 2 shows the query execution times when running the in-memory R-tree struc-
ture based algorithm with different limits of entries in the in-memory R-tree structure. 
It is clear that the results with lower limits (such as 4,096 entries) are almost as good 
as those without a limit. Note that when the limit of entries is 8,192, the query execu-
tion time for the first data set is actually better than that without a limit. The reason is 
that the first data set is small, and the benefit of building a big in-memory R-tree 
structure is offset by the cost of building it. For instance, if there’s no maximum num-
ber of entries, it takes 0.44s to build an in-memory R-tree structure for the query 
polygon in the first data set, which has 197,146 entries because of 197,146 line seg-
ments. If the limit of entries is set to 8,192, it takes only 0.07s to build an in-memory 
R-tree structure. Furthermore, when using lower limits, the memory usage is also 
reduced significantly. For example, if there is no entry limit, a memory of 28M bytes 
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is used for building the in-memory R-tree structure in the first data set and a max 
memory of 48M bytes is used for building the in-memory R-tree structure (for “Nor-
way”) in the second data set. If the entry limit is 8192, both data sets will use only 
1.15M bytes to build their in-memory R-tree structures. So in practice, a lower limit 
(4096) is used by default because of benefits of lower memory usage.    

Table 2. Geodetic PIP query execution times with different limits of entries. 

Limit of entries The first data set The second data setThe third data set 
with US states 

The third data set 
with local regions 

32 28s 543s 170s 162s 
64 18s 237s 124s 127s 
128 10s 154s 90s 99s 
256 5.7s 126s 70s 89s 
512 3.85s 106s 61s 83s 
1024 2.26s 95s 56s 82s 
2048 1.81s 90s 55s 82s 
4096 1.4s 88s 53s 82s 
8192 1.22s 88s 52s 81s 
NONE 1.4s 88s 52s 81s 

4.3   Compare NN-Based PIP and Ray-Based PIP  

To compare the NN-based geodetic PIP method with other geodetic PIP methods, 
we implement a simpler version of the ray-based geodetic PIP method: we assume 
the North Pole is an exterior point to query polygons and connect the North Pole 
and the point in question along a geodesic to construct a ray, and use this ray to 
search the in-memory R-tree to obtain the number of intersections between ray and 
the line segments of the query polygon. Note that this simple implementation is just 
used to compare the performances of different PIP methods, because we cannot 
always guarantee that the North Pole is an exterior point to query polygons. But 
since our query polygons in our previous experiments do not contain the North 
Pole, the simple implementation works for them. We use the default limit of entries 
(4096) to run this experiment. To make them clearer, we put the results for the  
default limit of entries (4096) from Table 2 into Table 3, and list them as “NN-
Based”. “Ray-based” is for results from the simple implementation of the Ray-
based PIP method. It is clear that the NN-based geodetic PIP method is slightly 
better than the ray-based PIP method. 

Table 3. Geodetic PIP query execution times with NN-based and ray-based PIP methods 

 The first data set The second data setThe third data set 
with US states 

The third data set 
with local regions 

NN-Based 1.4s 88s 53s 82s 
Ray-Based 1.5s 90s 66s 96s 
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5   Conclusions 

This paper presents new techniques implemented in Oracle Spatial to speed up  
geodetic point-in-polygon query processing. These new techniques not only require 
no user tuning, but also improve geodetic point-in-polygon query performances  
significantly.  

Acknowledgments.  We thank Chuck Murray for reviewing this paper. 
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Appendix: Non-geodetic PIP Query Processing 

In this Appendix, we discuss how our new techniques can be applied to non-geodetic 
geometries in a similar but simpler way to speed up non-geodetic PIP query process-
ing in Oracle Spatial.  
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A.   Algorithms 

Fig. 4 shows that there are 14 line segments in a query polygon (in blue). Each line 
segment is used to get its MBR, which corresponds to an entry in a leaf node. An in-
memory R-tree can be built on the 14 MBRs: in Fig. 4, 14 MBRs are with dashed 
lines, and 4 MBRs (leaf nodes) are with dotted lines. (Some lines are both dashed and 
dotted.) However, the root MBR is not shown, in order to make the 4 MBRs or leaf 
nodes clearer. Again, note that because the in-memory R-tree is built once per query 
polygon, the cost of building it is amortized over a large number of data points.  

As we already discussed in Section 3.1, an R-tree index is built on a large point 
data set to speed up PIP query processing. The pseudo code in Section 3.1 works for 
both geodetic geometries and non-geodetic geometries. In the Appendix, we just fo-
cus on how to determine the topological relationship between an R-tree index entry 
and a query polygon. For example, Fig. 4 shows that a green MBR (A), which is from 
a disk-based R-tree index, is inside the query polygon. It is obvious that A’s descen-
dant nodes (MBRs and points in index leaf nodes) will be inside the query polygon.  

To decide if an MBR is inside a query polygon, we use a two-step procedure, 
which is similar to but simpler than that described in Section 3.2:  

(1) Search the in-memory R-tree to check if there is any intersection between the 
MBR and line segments of the query polygon. Note that although the MBR (A) 
intersects with the entry MBR (C) in Fig. 4, it does not intersect with any line 
segments in the query polygon. If there is any intersection, child MBRs of the 
MBR (A) will be fetched from disk or buffer cache for further processing recur-
sively. Otherwise, go to the next step.  

(2) Choose the right-top corner point of the MBR (A) and draw a horizontal line 
segment (B, shown in red) from this point to cross the maximum X value of the 
query polygon. Then this line segment (B) can be used to search this in-memory 
R-tree again and get how many line segments of the query polygon intersect 
with it. As the ray-crossing algorithm is already discussed, if the number of in-
tersections is odd we are sure that the corner point is inside the query polygon, 
and thus the whole MBR and its descendants are also completely inside the 
query polygon. Otherwise, the MBR and its descendants can be skipped.  

Note that in step (2), for an MBR we choose only one point (i.e. the right-top cor-
ner point of the MBR), because in 2D Cartesian space, all points in an MBR belong to 
a single region. This is different from the geodetic case where at most 8 points have to 
be selected from an MBB to determine if the MBB is inside the query polygon. And 
in step (2), we can also use the R-tree Nearest Neighbor (NN) search method to find 
out the point on the query polygon that is the closest to the right-top corner point of 
the MBR (A), and use Theorem 1 to determine if the right-top corner point of the 
MBR (A) is inside the query polygon. We find that using the ray or the line segment 
(such as the horizontal line segment (B)) to search the in-memory R-tree is better than 
the R-tree NN search method. This is different from the geodetic case, because the ray 
in the non-geodetic case is simply a degenerated MBR (i.e. without area) and can be 
directly used to search the in-memory R-tree. 
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The above two steps can also be applied to a point. If we ignore the case of point-
on-polygon, we may skip the first step and use only the second step. In Oracle Spatial, 
the case of point-on-polygon is supported, so that we use the same steps to process a 
point. In other words, the first step can decide if a point is on, or touches, a polygon.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig. 4. An in-memory R-tree is built on a query polygon to speed up PIP query processing 

B.   Experiments 

We use the same real-world data sets as described in Section 4 and run the Mercator 
projection to transform them to 2D projected (or non-geodetic) geometries. Since we 
have already seen in Section 4.1 that Configuration (A), where the filter step uses 
MBBs only and the refinement step uses the original ray-crossing algorithm, is sig-
nificantly slower than other configurations, we replace Configuration (A) with Con-
figuration (A’), where interior tile approximations are used in both the filter and re-
finement steps, and if in the refinement step interior tile approximations cannot de-
termine a candidate geometry, then the original ray-crossing algorithm is used, as 
described in [5]. Configurations (B) and (C) are similar to those in Section 4.1 and the 
default PIP method is to use a ray to search the in-memory R-tree, as described in step 
(2) of Section A of this Appendix. We also have the R-tree NN search method to 
replace the ray-based R-tree search method in step (2) of Section A of this Appendix, 
and run the same queries under Configurations (B) and (C). These results of using the 
R-tree NN search method are put into the same column with parentheses.  

B 

A 
C 
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Table 4 shows query execution times from three non-geodetic data sets. It is clear 
that our new techniques also work well for non-geodetic geometries, and they are 
significantly faster than interior tile approximations [5]. Although geodetic computa-
tion is more complex than non-geodetic computation, the geodetic results under  
Configuration (C) in Table 1 are comparable to the non-geodetic results under Con-
figuration (C) in Table 4. In fact, some geodetic results are better than corresponding 
non-geodetic results, for example, the experiment with the second geodetic data set 
takes 88s while that with the second non-geodetic takes 190s. One of reasons is that 
MBBs in geodetic R-tree indexes are more clustered than MBRs in non-geodetic R-
tree indexes, especially for large query polygons.  

Table 4. Non-geodetic PIP query execution times under different optimization configurations. 
Under Configurations (B) and (C), the results without parentheses are from the ray-based R-tree 
search method and the results with parentheses are from the R-tree NN search method. 

 The first data set The second data setThe third data set 
with US states 

The third data set 
with local regions 

Configuration 
(A’) 

71s 7778s 935s 2158s 

Configuration 
(B) 

2.98s (13.41s) 226s (504s) 122s (333s) 130s (333s) 

Configuration 
(C) 

2.44s (2.55s) 190s (190s) 58s (62s) 64s (75s) 

 
Table 5 shows the non-geodetic query execution times when running the in-

memory R-tree structure based algorithm with different limits of entries in the in-
memory R-tree structure. Again, it is clear that the results with lower limits (such as 
4,096 entries) are as good as those without a limit. So with a lower limit of entries in 
the in-memory R-tree structure, our new techniques do not introduce large memory 
overhead for both geodetic and non-geodetic cases, and meanwhile they improve 
geodetic and non-geodetic PIP query performance significantly. 

Table 5. Non-geodetic PIP query execution times with different limits of entries. The results 
without parentheses are from the ray-based R-tree search method and the results with parenthe-
ses are from the R-tree NN search method. 

Limit of entries The first data set The second data setThe third data set 
with US states 

The third data set 
with local regions 

32 8.43s (16.79s) 240s (298s) 92s (120s) 80s (108s) 
64 5.05s (10.49s) 213s (258s) 76s (97s) 69s (92s) 
128 3.12s (6.96s) 201s (216s) 68s (80s) 68s (81s) 
256 2.50s (4.50s) 195s (200s) 62s (71s) 64s (77s) 
512 2.16s (3.20s) 191s (191s) 60s (66s) 64s (76s) 
1024 2.09s (2.72s) 191s (191s) 59s (64s) 64s (76s) 
2048 2.08s (2.42s) 191s (191s) 59s (63s) 64s (76s) 
4096 2.03s (2.22s) 190s (190s) 58s (62s) 64s (75s) 
8192 2.02s (2.16s) 190s (190s) 58s (62s) 64s (75s) 
NONE 2.44s (2.55s) 190s (190s) 58s (62s) 64s (75s) 
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Abstract. Skyline queries have gained attention lately for supporting effective
retrieval over massive spatial data. While efficient algorithms have been studied
for spatial skyline queries using Euclidean distance, or, L2 norm, these algo-
rithms are (1) still quite computationally intensive and (2) unaware of the road
constraints. Our goal is to develop a more efficient algorithm for L1 norm, also
known as Manhattan distance, which closely reflects road network distance for
metro areas with well-connected road networks. Towards this goal, we present
a simple and efficient algorithm which, given a set P of data points and a set
Q of query points in the plane, returns the set of spatial skyline points in just
O(|P | log |P |) time, assuming that |Q| ≤ |P |. This is significantly lower in
complexity than the best known method. In addition to efficiency and applicabil-
ity, our proposed algorithm has another desirable property of independent com-
putation and extensibility to L∞ norm, which naturally invites parallelism and
widens applicability. Our extensive empirical results suggest that our algorithm
outperforms the state-of-the-art approaches by orders of magnitude.

1 Introduction

Skyline queries have gained attention [1,2,3,4,5] because of their ability to retrieve “de-
sirable” objects that are no worse than any other object in the database. Recently, these
queries have been applied to spatial data, as we illustrate with the example below:

Example 1. Consider a hotel search scenario for an SSTD conference trip to Minneapo-
lis, where the user marks two locations of interest, e.g., the conference venue and an
airport, as Figure 1 (a) illustrates. Given these two query locations, one option is to
identify hotels that are close to both locations. When considering Euclidean distance,
we can say that hotel H5, located in the middle of the two query points is more desirable
than H4, i.e., H5 “dominates” H4. The goal of a spatial skyline is to narrow down the
choice of hotels to a few desirable hotels that are not dominated by any other objects,
i.e., no other object is closer to all the given query points simultaneously.

However, as Figure 1 (b) shows, considering these query and data points on the
map, Euclidean distance, quantifying the length of the line segment between H5 and
query points, does not consider the road constraints and thus severely underestimates the
actual distance. For well-connected metro areas like Minneapolis, Manhattan distance,

� Work by Son and Ahn was supported by National IT Industry Promotion Agency (NIPA) un-
der the program of Software Engineering Technologies Development and Experts Education.
Work by Hwang was supported by Microsoft Research Asia.
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or L1 norm, would be more reliable. Going back to Figure 1 (a), we can now assume the
dotted lines represent the underlying road network and revisit the problem to identify
desirable objects with respect to L1 norm. In this new problem, H4 and H5 are equally
desirable, as both are three blocks away from the conference venue and two blocks from
the airport.

This problem has been actively studied for Euclidean distance [6,7,8,9] and the most ef-
ficient algorithm known so far has the complexity of O(|P |(|S| log |CH(Q)|+log |P |))
[8,9] for the given set P of data points and set Q of query points in the plane. We denote
set spatial skyline points as S, and the convex hull of Q as CH(Q).

One may think the above existing algorithms for L2 could run faster for L1, as there
are such cases for other spatial algorithms. However, this is not the case if we follow
the approach in [8,9]. It is not difficult to see that all the properties of skyline points for
the Euclidean distance metric in [8,9] also hold for L1 (or L∞), based on which we can
compute a “subset” of the spatial skylines by constructing

(a) the rectilinear convex hull of the queries (all data points lying in the convex hull are
skylines), and

(b) the rectilinear Voronoi diagram of data points (if a Voronoi cell intersects the con-
vex hull, its site is a skyline),

The above procedure takes O(|Q| log |Q|) time and O(|P | log |P |) time, respec-
tively. However, Figure 2 shows that there are still some skyline points not belonging
to the two cases above. For example, p2 is a skyline, because none of the other points
dominates it. Moreover, as its Voronoi cell (gray region) does not intersect CH(Q), it
does not belong to the cases (a) or (b).

The above example shows that, we need not only to maintain the set of skyline points
for cases (a) and (b), but also check whether the remaining data points are skylines or
not. This takes O(|P ||S| log |CH(Q)|) time, which is exactly the same as the total time
complexity required for L2 norm.

In a clear contrast, we develop a simple and efficient algorithm that computes sky-
lines in just O(|P | log |P |) time for L1 metric, assuming |Q| ≤ |P |. Our extensive
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Fig. 1. Hotel search scenario
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bisecting line of p0 and p2

bisecting line of p1 and p2

Fig. 2. The point p2 is a skyline, which satisfies neither case (a) nor (b)

empirical results suggest that our algorithm outperforms the state-of-the-art algorithms
in spatial and general skyline problems significantly, especially for large queries and
high dimensional data. Our contributions can be summarized as follows:

– We study the Manhattan Spatial Skyline Queries (MSSQ) problem, which can ap-
ply to spatial queries in well-connected metro areas. We show a straight extension
of the existing algorithm using L2 metric is inefficient for our problem, then present
a simple and efficient algorithm that computes skylines in just O(|P | log |P |) time.

– We show that our algorithm, by computing each skyline independently, can easily
be parallelized. Our algorithm also straightforwardly extends for chebyshev dis-
tance, or L∞ norm, used for spatial logistics in warehouses.

– We extensively evaluate our framework using synthetic data and show that our
algorithms are faster by orders of magnitude than the current-state-of-the-art ap-
proaches.

2 Related Work

This section provides a brief survey of work related to (1) skyline query processing, and
(2) spatial query processing.

2.1 Skyline Computation

Since early work on skyline queries [1,2] studied the maximal vector problem and ap-
plied to database applications, many algorithms and structures have been proposed.
State-of-the-art approaches include using bitmaps or B+-trees [3], extending nearest
neighbor algorithm [10], or developing branch and bound skyline (BBS) algorithm [4],
sort-filter-skyline (SFS) algorithm leveraging pre-sorted lists [5], and linear elimination-
sort for skyline (LESS) algorithm [11] for efficient skyline query processing. While the
above efforts aims at enhancing efficiency, another line of work focuses on enhancing
the quality of results [12,13,14], by narrowing down skyline results, often too large
when dimensionality is high, using properties such as skyline frequency, k-dominant
skylines, and k-representative skylines.

However, both lines of work address general skyline problems, and thus do not ex-
ploit spatial properties in spatial skyline problems.
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2.2 Spatial Query Processing

The most extensively studied spatial query mechanism is ranking neighboring objects
by the distance to a single query point [15,16,17]. For multiple query points, Papadias
et al. [18] studied ranking by a class of monotone “aggregation” functions of the dis-
tances from multiple query points. As these nearest neighbor queries require a distance
function, which is often cumbersome to define, another line of research studied skyline
query semantics which do not require such functions.

For a spatial skyline query using L2 metric, efficient algorithms have been proposed
[8,9] and the best known complexity is O(|P |(|S| log |CH(Q)| + log |P |)). To the best
of our knowledge, our work is the first for L1 metric and is significantly more efficient
with complexity O(|P | log |P |). Meanwhile, extending existing L2 algorithms for L1

metric cannot reduce their complexity, as discussed in Section 1.

3 Problem Definition

In the spatial skyline query problem, we are given two point sets: a set P of data points
and a set Q of query points in the plane. Distance function d(p, q) returns the L1 dis-
tance between a pair of points p and q, that is, the sum of the absolute differences of
their coordinates.

Given this distance metric, our goal is to find the set of spatial skyline points. Our
definitions are consistent with prior literatures [8], as we restate below.

Definition 1. We say that p1 spatially dominates p2 if and only if d(p1, q) ≤ d(p2, q)
for every q ∈ Q, and d(p1, q

′) < d(p2, q
′) for some q′ ∈ Q.

Definition 2. A point p ∈ P is a spatial skyline point with respect to Q if and only if p
is not spatially dominated by any other point of P .

4 Observation

The basic idea of an algorithm for this problem is the following. To determine whether
p ∈ P is a skyline or not, existing approach under the Euclidean distance metric is to
perform dominance tests with the current skylines (which we later discuss in details,
denoted as baseline algorithm PSQ, in Section 6).

Under L1 distance metric, we use a different approach in which we check the exis-
tence of a point that dominates p. To do this, we introduce another definition (below) on
spatial dominance between two points which is equivalent to Definition 1. We denote
by C(p, q) the L1 disk (its closure) centered at q with radius d(p, q).

Definition 3. We say that p1 spatially dominates p2 if and only if p1 is always contained
in C(p2, q) for every q ∈ Q, and is contained in the interior of C(p2, q

′) for some
q′ ∈ Q.

Based on this new definition above, a trivial approach would be, for each data point p, to
compute L1 disks for every q ∈ Q, and check whether there is any data point satisfying
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the definition. However, this already takes O(|Q|) time only for computing L1 disks.
Instead, we use some geometric properties of the L1 disks C(p, q) and compute the
common intersection of L1 disks in O(log |Q|) time for each data point p, and perform
the dominance test efficiently. We denote by R(p) the common intersection of C(p, q)
for every q ∈ Q. Note that p itself is always contained in R(p) (in fact p is on the
boundary of R(p)).

By Definitions 2 and 3, we have the following three cases for data points contained
in R(p):

(a) There is no data point in R(p), other than p, or
(b) There is some data point p′ in the interior of R(p), or
(c) There is some data point p′ in R(p), other than p, but no data point in the interior

of R(p).

Case (a) obviously implies that p is a skyline point. For case (b), p′ dominates p, and
therefore p is not a skyline point. For case (c), if p′ is contained in the interior of some
L1 disk C(p, q) for a q ∈ Q, then p′ dominates p, and therefore p is not a skyline point.
If every data point in R(p) lies on the boundary of C(p, q) for all q ∈ Q, p is a skyline
point.

(a)

p p

p p

(b)

(c) (d) (e)

p

Fig. 3. The cases of common intersection R(p) (gray) in the plane
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5 Algorithm

In this section, we show how to handle each of the three cases efficiently so as to achieve
an O(log |P |) time algorithm for determining whether a data point is a skyline point or
not.

5.1 Data Structure

We first introduce data structures we build on P or Q, to support “range counting query”
and “segment dragging query” efficiently. These two queries are the building blocks of
our proposed algorithm.

Range counting is a fundamental problem in computational geometry and spatial
databases. Given a set points P , we want to preprocess P such that, for the given query
range R, it returns the number of points of P lying in R efficiently. Among the spe-
cific results, we implement the range counting structure proposed in [19], building a
balanced binary tree for one dimension and storing the information for the other dimen-
sion as well. This structure on n points in the plane can be constructed in O(n log n)
time, and the structure answers a range counting query in O(log n) time. We build this
structure for both P and Q, which we denote as rCountP and rCountQ respectively.
Note, rCountP can be built once offline, while rCountQ needs to be built at query time.
(However, this cost is negligible, as we will empirically report in Section 7).

Segment dragging query, informally speaking, is to determine the next point “hit”,
by the given query line (or, segment) st, when it is “dragged” along two rays. Given a
set P of points and three orientations θ, φs, and φt, we want to preprocess P such that
for any segment st parallel to θ, it returns the point hit by the segment s′t′ efficiently
where s′ slides along the ray from s in direction φs and t′ slides along the ray from
t in direction φt and s′t′ is parallel to θ. There are two types of queries, parallel and
dragging out of a corner. When two rays are parallel, therefore φs and φt are parallel,
such queries belong to parallel type. When the initial query segment st is a point, such
queries belong to dragging out of a corner type. From [20,21], it was shown that, one
can preprocess a set P of n points into a data structure of O(n) size in O(n log n) time
that answers a segment dragging query of “parallel” or “dragging out of a corner” type
in O(log n) time. We build this structure on Q, which we denote as sDragQ.

5.2 Computing the Common Intersection R(p)

Because each C(p, q) is a “diamond” (or, more formally, a square rotated by 45 degree)
in the xy plane, R(p) is obviously a rectangle with sides parallel to the lines y = x or
y = −x (See Figure 3 (a).) Therefore, R(p) is determined by at most four query points:
when R(p) is a point, it is the common intersection of four L1 disks. Otherwise, it is
determined by at most three query points.

Lemma 1. There are at most four query points that determine the sides of R(p). We
can identify them in O(log |Q|) time after O(|Q| log |Q|) time preprocessing.

Proof. We first show that the sides of R(p) are determined by at most four query points.
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Consider the subdivision of the plane into regions (quadrants) defined by the vertical
line through p and the horizontal line through p. Then at least one of four quadrants
contains some query points in its closure unless Q = φ. Without loss of generality, we
assume that the top right quadrant contains some query points. That is, the set Q1 =
{q | q.x ≥ p.x, q.y ≥ p.y, q ∈ Q} is not empty. We also denote by Q2, Q3, and Q4

the set of query points in the top left, the bottom left, and the bottom right quadrants,
respectively. Note that a data point lying on the border of two quadrants belongs to both
sets.

Consider the case that Q1 = Q. Then the bottom left side of R(p) is determined
by p. The other three sides are determined by the three query points: the one with the
smallest x-coordinate determines the bottom right side, the one with the smallest y-
coordinate determines the top left side, and the one with the smallest L1 distance from
p determines the top right side of R(p). Figure 3 (a) shows the case.

Consider now the case that Q2 
= φ and Q = Q1 ∪ Q2 as shown in Figure 3 (b). In
this case, p is the bottom corner of R(p), and therefore the bottom left and the bottom
right sides are determined by p. The top right side is determined either by the query
point in Q1 with the smallest L1 distance from p or by the query point in Q2 with the
smallest y-coordinate. The top left side is determined by one of two such query points
as above, after switching the role of Q1 and Q2.

If Qi 
= φ for all i = 1, 2, 3, 4, R(p) is a point that coincides with p as shown in
Figure 3 (e).

Otherwise, R(p) is just a line segment. If Q3 
= φ and Q = Q1 ∪Q3, then C(p, q)∩
C(p, q′) for any q ∈ Q1 and q′ ∈ Q3 is a line segment. Figure 3 (c) illustrates the case.
The lower endpoint of the segment is determined either by the query point in Q1 with
the smallest x-coordinate or by the query point in Q3 with the largest y-coordinate. If
two of Q2, Q3, and Q4 are not empty, R(p) is a line segment whose one endpoint is
p. Figure 3 (d) shows the case that both Q2 and Q3 are not empty. In this case, the
lower endpoint of R(p) is p and the upper endpoint is determined by one of three query
points: the query point in Q1 with the smallest y-coordinate or the query point in Q3

with the largest x-coordinate or the query point in Q2 with the smallest L1 distance
from p. For the cases in which Q2 and Q4 are not empty, or that Q3 and Q4 are not
empty, one endpoint of R(p) is p and the other endpoint is determined by one of three
such extreme query points.

For a data point p, we perform four range counting queries on rCountQ, using each
region (or quadrant) subdivided by the vertical and horizontal lines through p as a query.
Based on the results of the range counting queries, we determine the case it belongs to
and identify query points that determine the sides of R(p). Once we construct the seg-
ment dragging query structure sDragQ, we can find these query points in at most four
segment dragging queries as follows. For the query point in Q1 that has the smallest
x-coordinate (or y-coordinate), we use “dragging by parallel tracks” with the vertical
(or horizontal) line through p as in Figure 4 (a) (or (b)). For the query point in Q1 that
has the smallest L1 distance from p, we use “dragging out of a corner” with p as in
Figure 4 (c). The extreme query points in Q2, Q3, and Q4 can also be found similarly
by using the same segment dragging queries.
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p

(a) (b) (c)

π/4
p p

Fig. 4. Segment dragging queries to find (a) the query point with the smallest x-coordinate, (b) the
query point with the smallest y-coordinate, and (c) the query point with the smallest L1 distance
from p in Q1

Once we identity four query points that determine the sides of R(p), we perform a
counting query on rCountP using range R(p) as a query. If there is only one data point
p in R(p), it belongs to the case (a) in Section 4 and p is a skyline point. Otherwise,
we perform a range counting query with the interior of R(p) to check additional eight
counting queries on P , whether there is any data point in the interior of R(p). If this is
the case (case (b) in Section 4), p is not a skyline point. If there is no data point in the
interior of R(p), this case corresponds to case (c) in Section 4.

5.3 For Data Points on the Boundary of R(p)

We will show how to handle the case (c) in Section 4. For this case, we should check
whether p′ lies on the boundary of C(p, q) for every q ∈ Q or not. We will show that
p′ lies on the boundary of C(p, q) for every q ∈ Q if and only if all points in Q lie
on the specific regions related to p′. We can check whether all points in Q lie on these
specific regions in O(log |Q|) time, after O(|Q| log |Q|) time preprocessing. Without
loss of generality, we assume that Q1 is not empty, that is, p lies on the bottom left side
of R(p) as in Section 5.2.

Recall that C(p, q) for every q ∈ Q contains R(p) by definition. We denote by �v and
�h the vertical line through the bottom corner of R(p) and the horizontal line through
the left corner of R(p), respectively. We denote by �s the line consisting of points at
equidistance from the bottom left side and the top right side of R(p) (See Figure 5 (a)).

Lemma 2. Assume that the interior of R(p) is not empty and p lies in the interior of
the bottom left side of R(p). A data point p′(
= p) lies on the boundary of C(p, q) for
every q ∈ Q if and only if

(i) p′ lies on the bottom left side of R(p) and all query points lie above or on �h and
�s, and lie on the right of or on �v (Figure 5 (a)),

(ii) p′ lies on the top left side of R(p) and all query points lie on �h but lie above or
on �s (Figure 5 (b)),

(iii) p′ lies on the bottom right side of R(p) and all query points lie on �v but lie above
or on �s, or

(iv) p′ lies on the top right side of R(p) and all data points lies on �s but lie above or
on �h and on the right of or on �v (Figure 5 (c)).
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Proof. As it is straightforward to see that the necessary condition holds, we only prove
the sufficiency condition. Since the interior of R(p) is not empty and p lies in the interior
of the bottom left side of R(p), p always lies on the bottom left side of C(p, q) for every
q ∈ Q. If there is a query point q′ below �h, the left corner of C(p, q′) lies on the interior
of the bottom left side of R(p) and R(p) is not contained in C(p, q′), which contradicts
the definition of R(p). We can show that all query points lie on or in the right of �v

analogously. For any query point q′ below �s, C(p, q′) does not contain the top right
side of R(p), which again contradicts the definition of R(p).

Consider case (i) in which there is a data point p′ on the bottom left side of R(p).
Then p′ lies on the bottom left side of C(p, q) for every q ∈ Q. Since the bottom left
side of R(p) is the common intersection of the bottom left sides of all C(p, q) for every
q ∈ Q, p′ does not impose any additional constraint on the locations of query points.

Consider case (ii) in which there is a data point p′ on the top left side of R(p). Then
p′ lies on the top left side of C(p, q) for every q ∈ Q. Therefore the only additional
constraint is that all query points lie on �h. Case (iii) can be shown analogously.

Consider case (iv) in which there is a data point p′ on the top right side of R(p). Then
p′ lies on the top right side of C(p, q) for every q ∈ Q. Therefore the only additional
constraint is that all query points lie on �s.

Note that when p′ lies on a corner of R(p), we consider it contained on both sides
of R(p) sharing the corner. Therefore the lemma holds if every query point satisfies
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Fig. 5. A data point p′( 
= p) lies on the boundary of C(p, q) for every q ∈ Q if and only if all
query points lie in the gray region or thick line segments
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one of two conditions of the sides. The lemma above implies that we can test whether
d(p′, q) = d(p, q) for every q ∈ Q in O(log |Q|) time by performing a few range
counting queries on rCountQ.

The case in which p lies on the bottom or the left corner of R(p) can be handled
as follows. When Q2 
= φ, p lies on the bottom corner of R(p), and all query points
in Q2 must lie on or above the horizontal line through the right corner of R(p). When
Q4 
= φ, p lies on the left corner of R(p), and all query points in Q4 must lie on or in
the right of the vertical line through the top corner of R(p).

It remains to show the case in which R(p) degenerates to a line segment (See Fig-
ure 3 (c) and (d)). (Note that when R(p) is a point, d(p′, q) = d(p, q) for every q ∈ Q if
and only if p = p′. (See Figure 3 (e)). We denote by R1 the region bounded from below
by �h and bounded from the left by �v. We denote by R2 the region bounded from above
by the horizontal line through the lower endpoint of R(p) and bounded from right by
the vertical line through the upper endpoint of R(p). Let �′s be the line consisting of
points at equidistance from p and p′ (or, bisector).

Lemma 3. Assume that R(p) is a line segment. A data point p′(
= p) lies on the bound-
ary of C(p, q) for every q ∈ Q if and only if

(i) p or p′ lies in the interior of the segment R(p) and all query points lie in R1 ∪ R2

(Figure 5 (d)), or
(ii) p and p′ lie on the opposite endpoints of R(p) and all query points lie in R1∪R2∪�′s

(Figure 5 (e)).

Again, we can test whether d(p′, q) = d(p, q) for every q ∈ Q in O(log |Q|) time by
performing a few range counting queries on rCountQ.

Lemma 4. We can decide in O(log |Q|) time whether the data points on a side of R(p)
dominate p or not.

5.4 Computing all the Skyline Points

The following pseudocodes summarize our algorithm.

Algorithm MSSQ
Input: a set P of data points (and range counting structure rCountP) and a set Q of

query points
Output: the list S of all skylines
1. initialize the list S
2. construct range counting query structures rCountQ of Q
3. construct a segment dragging query structure sDragQ of Q
4. for i ← 1 to |P |
5. do
6. determine the quadrants containing query points, by querying rCountQ

with quadrants of pi /* Section 5.2 */

7. determine the side of R(pi), by querying sDragQ with pi /* Section

5.2 */
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8. count ←query rCountP with R(pi)
9. if count = 1 /* pi is the only point in R(pi) */

10. then insert pi to S /* pi is a skyline */

11. else query rCountP with interior of R(pi)
12. if there is no data point in the interior of R(pi)
13. then query rCountP with the regions defined by sides or cor-

ners of R(pi) to check whether they contain data points /*
Section 5.3 */

14. query rCountQ with regions defined by �h, �v, and �s (or
R1, R2, �

′
s) for sides and corners of R(pi) containing a data

point /* Section 5.3 */

15. if all query points lie in the regions defined above
16. then insert pi to S /* pi is a skyline */

17. return S

In Line 2 of algorithm MSSQ, we construct range counting query structures for Q
which take O(|Q| log |Q|) time and O(|Q|) space [19]. The segment dragging query
structure in Line 3 can be constructed in O(|Q| log |Q|) time and O(|Q|) space [20,21].
In the for-loop, we use four queries to rCountQ to determine the quadrants containing
query points, at most four queries to sDragQ to find the query points determining the
sides of R(pi), and eight queries to rCountP and at most six queries to rCountQ to de-
termine whether any data point on the boundary of R(pi) dominates p. Each such query
can be answered in logarithmic time - a query to sDragQ or rCountQ takes O(log |Q|)
time, and a query to rCountP takes O(log |P |) time [19]. Therefore the for-loop takes
O(|P |(log |P | + log |Q|)) time in total. Because we assume that |P | ≥ |Q|, the to-
tal time complexity of algorithm MSSQ is O(|P | log |P |) and the space complexity is
O(|P |).

Theorem 1. Given a set P of data points and a set Q of query points in the plane, the
algorithm MSSQ returns the set of all skyline points in O(|P | log |P |) time.

Our algorithm has the following two desirable properties:

– Easily parallelizable: As shown in algorithm MSSQ, each loop represents an in-
dependent computation for pi and does not depend on other points. This property
naturally invites loop parallelization.

qp

C1(p, q)

q

p
C∞(p, q)

(a) L1 disk (b) L∞ disk

Fig. 6. Comparing L1 and L∞ disks
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– Easily extensible to L∞: Our observations for L1 disk C(p, q) also holds for L∞
disk, which is simply a 45 degree rotation of L1 disk as illustrated in Figure 6. This
illustrates that our algorithm can straightforwardly support L∞ metrics, widely
used for spatial logistics in warehouses, simply by rotating the input dataset by
45 degree around the origin.

6 Implementation

In our implementation of MSSQ, an R-tree is used to efficiently prune out the points that
cannot be skyline points from P . More specifically, we first find a range bounding Q
and read a constant number of points in this region from the R-tree. For each such point
p, we identified the bounding box for ∪|Q|

i=1C(p, qi). Any point outside of this bounding
box can be safely pruned as it would be dominated by p. We intersect such bounding
boxes and retrieve the points falling into this region, which can be efficiently supported
by R-tree, as the intersected region will also be a rectangular range. We call the reduced
dataset P ′.

For fair comparison, we build all our baselines to use this reduced dataset P ′. In
this section, we discuss more on our two baselines– PSQ and BBS– representing the
current-state-of-the-art for spatial and classic skyline algorithms respectively.

6.1 PSQ

PSQ builds upon Lemma 1 and 2 in [9] to compute skyline queries in L1 metric space.
By these two lemmas, after sorting points in P in an ascending order of distance from
some query point q ∈ Q, we can compute all skyline points in O(|P ||S||Q|) time.
Specifically, in this sorting, if some points have same distance from q, then we break
the tie by the distance from the other query points in Q. After this sorting, we check
each point p in the sorted order, to check whether it is a skyline or not, by testing
dominance with the skylines points already found. This algorithm is essentially [8,9].
The following pseudocodes formally presents PSQ.

Algorithm PSQ
Input: P ′, Q
Output: S
1. initialize the list S, array A
2. A←(p,d(p,q)) for all p ∈ P ′ and one query point q ∈ Q
3. sort A by distance in ascending order
4. for i←1 to |P ′|
5. do if A[i] is not dominated by points in S
6. then insert A[i] to S
7. return S

6.2 BBS

Meanwhile, BBS is a well-known algorithm for general skyline problems [4]. To apply
a general skyline algorithm for spatial problems, we need to compute the distance of
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each point in P ′ from all query points, then generate |Q|-dimensional data, where each
dimension i of point p representing the distance of p to qi. The following pseudocodes
summarize this transformation procedure.

Algorithm BBS
Input: P ′, Q
Output: S
1. initialize the list S, array Ai where i is an integer 1 ≤ i ≤ |Q|
2. for i←1 to |Q|
3. do Ai←d(p, qi) for all p ∈ P ′

4. run BBS for A to get S
5. return S

7 Experimental Evaluation

In this section, we outline our experimental settings, and present evaluation results to
validate the efficiency and effectiveness of our framework. We compare our algorithm
(MSSQ) with PSQ and BBS. As datasets, we use both synthetic datasets and a real
dataset of points of interest (POI) in California. We carry out our experiments on Linux
with Intel Q6600 CPU and 3GB memory, and the algorithms are coded in C++.

7.1 Experimental Settings

Synthetic dataset: A synthetic dataset contains up to two million uniformly distributed
random locations in a 2D space. The space of the datasets is limited to the unit space,
i.e., the upper and lower bound of all points are 0 and 1 for each dimension, respec-
tively. Specifically, we use four synthetic datasets with 100 K, 500 K, 1 M, and 2 M
uniformly distributed points. Data points in two dimensions are not related, i.e., they
are independent, as mentioned in Table 1.

We also randomly generate queries using the parameters in Table 1. Query points are
normally distributed with deviation σ to control the distribution. When σ is low, query
points are clustered in a small area, and when high, they are scattered over a wide area.

Table 1. Parameters used for synthetic datasets

Parameter Setting
Dimensionality 2
Distribution of data points Independent
Dataset cardinality 100K, 500K, 1M, 2M
The number of points in a query 4, 8, 12, 16, 20
Standard deviation of points in a query 0.06
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POI dataset: We also validate our proposed framework using a real-life dataset. In
particular, we use a sampled POI dataset that has 104,770 locations in 63 different
categories, as shown in Figure 10 (a).

7.2 Efficiency

We first validate the efficiency in Figure 7, by comparing the response time of the three
algorithms over varying datasize |P |. From the figure, we can observe that our pro-
posed algorithm is highly scalable over varying |P |, consistently outperforming both
baselines. The performance gap only increases as |P | and |Q| increase. For example,
when |P | = 2M and |Q| = 20, our algorithm is up to 100 times faster than BBS.

Figure 8 similarly studies the effect of the query size |Q|. We similarly observe that
our algorithm is the clear winner in all settings, outperforming BBS by up to 100 times,
when |P | = 2M and |Q| = 20.

For closer observation, Figure 9 shows the breakdown of our response time reported
in Figure 8 (a) (i.e., when |Q| = 4). From this breakdown, we can observe that I/O costs
(of traversing the R-tree) dominate the response time, and the second dominant factor
is computation of dominance tests. The remaining cost, including that of building data
structures, is left insignificant.

(a) |Q| = 4 (b) |Q| = 12

(c) |Q| = 20 (d) |S|

Fig. 7. Effect of the dataset cardinality for synthetic datasets
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(a) |P | = 1M (b) |P | = 2M

Fig. 8. Effect of |Q| for synthetic datasets

Fig. 9. Break down of the response time in Figure 8(a)

0     1
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(a) 10k sampled points from the (b)
California’s POI dataset

Fig. 10. Effect of the dataset cardinality for POI datasets
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Lastly, we report our results for real-life California POI data shown in Figure 10 (a).
The response time is reported in Figure 10 (b) for varying |Q|, and observe that our
proposed algorithm consistently outperforms baselines, and the performance gap in-
creases as the query size increases. The speedup of our algorithm was up to 12 (when
|Q| = 20). This finding is consistent with that from synthetic data.

8 Conclusion

We have studied Manhattan spatial skyline query processing and presented an efficient
algorithm. We showed that our algorithm can identify the correct result in O(|P | log |P |)
time with desirable properties of easy parallelizability and extensibility. In addition, our
extensive experiments validated the efficiency and effectiveness of our proposed algo-
rithms using both synthetic and real-life data.
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Abstract. Traditional spatial queries return, for a given query object q, all
database objects that satisfy a given predicate, such as epsilon range and k-nearest
neighbors. This paper defines and studies inverse spatial queries, which, given a
subset of database objects Q and a query predicate, return all objects which, if
used as query objects with the predicate, contain Q in their result. We first show a
straightforward solution for answering inverse spatial queries for any query pred-
icate. Then, we propose a filter-and-refinement framework that can be used to
improve efficiency. We show how to apply this framework on a variety of inverse
queries, using appropriate space pruning strategies. In particular, we propose so-
lutions for inverse epsilon range queries, inverse k-nearest neighbor queries, and
inverse skyline queries. Our experiments show that our framework is significantly
more efficient than naive approaches.

1 Introduction

Recently, a lot of interest has grown for reverse queries, which take as input an object
o and find the queries which have o in their result set. A characteristic example is the
reverse k-NN query [6,12], whose objective is to find the query objects (from a given
data set) that have a given input object in their k-NN set. In such an operation the roles
of the query and data objects are reversed; while the k-NN query finds the data objects
which are the nearest neighbors of a given query object, the reverse query finds the ob-
jects which, if used as queries, return a given data object in their result. Besides k-NN
search, reverse queries have also been studied for other spatial and multidimensional
search problems, such as top-k search [13] and dynamic skyline [7]. Reverse queries
mainly find application in data analysis tasks; e.g., given a product find the customer
searches that have this product in their result. [6] outlines a wide range of such ap-
plications (including business impact analysis, referral and recommendation systems,
maintenance of document repositories).

In this paper, we generalize the concept of reverse queries. We note that the cur-
rent definitions take as input a single object. However, similarity queries such as k-NN
queries and ε-range queries may in general return more than one result. Data analysts
are often interested in the queries that include two or more given objects in their result.

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 330–347, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Such information can be meaningful in applications where only the result of a query can
be (partially) observed, but the actual query object is not known. For example consider
an online shop selling a variety of different products stored in a database D. The online
shop may be interested in offering a package of products Q ⊆ D for a special price.
The problem at hand is to identify customers which are interested in all items of the
package, in order to direct an advertisement to them. We assume that the preferences of
registered customers are known. First, we need to define a predicate indicating whether
a user is interested in a product. A customer may be interested in a product if

– the distance between the product’s features and the customer’s preference is less
than a threshold ε;

– the product is contained in the set of his k favorite items, i.e., the k-set of product
features closest to the user’s preferences;

– the product is contained in the customer’s dynamic skyline, i.e., there is no other
product that better fits the customer’s preferences in every possible way.

Therefore, we want to identify customers r, such that the query on D with query object
r, using one of the query predicates above, contains Q in the result set. More specifi-
cally, consider a set D ∈ R

d as a database of n objects and let d(·) denote the Euclidean
distance in R

d. Let P(q) be a query on D with predicate P and query object q.

Definition 1. An inverse P query (IPQ) computes for a given set of query objects Q ⊆
D the set of points r ∈ R

d for which Q is in the P query result; formally:

IPQ = {r ∈ R
d : Q ⊆ P(r))}

Simply speaking, the result of the general inverse query is the subset of the space de-
fined by all objects r for which all Q-objects are in P(r). Special cases of the query
are:

– The mono-chromatic inverse P query, for which the result set is a subset of D.
– The bi-chromatic inverse P query, for which the result set is a subset of a given

database D′ ⊆ R
d.

In this paper, we study the inverse versions of three common query types in spatial
and multimedia databases as follows.

Inverse ε-Range Query (Iε-RQ). The inverse ε-range query returns all objects which
have a sufficiently low distance to all query objects. For a bi-chromatic sample appli-
cation of this type of query, consider a movie database containing a large number of
movie records. Each movie record contains features such as humor, suspense, romance,
etc. Users of the database are represented by the same attributes, describing their pref-
erences. We want to create a recommendation system that recommends to users movies
that are sufficiently similar to their preferences (i.e., distance less than ε). Now, assume
that a group of users, such as a family, want to watch a movie together; a bi-chromatic
Iε-RQ will recommend movies which are similar to all members of the family. For a
mono-chromatic case example, consider the set Q = {q1, q2} of query objects of Figure
1(a) and the set of database points D = {p1, p2, · · · , p6}. If the range ε is as illustrated
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q1

q2p4

p1
p3p2

p6

p5

(a) Iε-RQ

q1

q2p4

p1

p5

p3p2

p6

(b) Ik-NNQ, k = 3

Fig. 1. Examples of inverse queries

in the figure, the result of the Iε-RQ(Q) is {p2, p4, p5} (e.g., p1 is dropped because
d(p1, q2) > ε).

Inverse k-NN Query (Ik-NNQ). The inverse k-NN query returns the objects which
have all query points in their k-NN set. For example, mono-chromatic inverse k-NN
queries can be used to aid crime detection. Assume that a set of households have been
robbed in short succession and the robber must be found. Assume that the robber will
only rob houses which are in his close vicinity, e.g. within the closest hundred house-
holds. Under this assumption, performing an inverse 100NN query, using the set of
robbed households as Q, returns the set of possible suspects. A mono-chromatic in-
verse 3NN query for Q = {q1, q2} in Figure 1(b) returns {p4}. p6, for example, is
dropped, as q2 is not contained in the list of its 3 nearest neighbors.

Inverse Dynamic Skyline Query (I-DSQ). An inverse dynamic skyline query returns
the objects, which have all query objects in their dynamic skyline. A sample application
for the general inverse dynamic skyline query is a product recommendation problem:
assume there is a company, e.g. a photo camera company, that provides its products via
an internet portal. The company wants to recommend products to their customers by
analyzing the web pages visited by them. The score function used by the customer to
rate the attributes of products is unknown. However, the set of products that the cus-
tomer has clicked on can be seen as samples of products that he or she is interested
in, and thus, must be in the customer’s dynamic skyline. The inverse dynamic skyline
query can be used to narrow the space which the customers preferences are located in.
Objects which have all clicked products in their dynamic skyline are likely to be inter-
esting to the customer. In Figure 1, assuming that Q = {q1, q2} are clicked products,
I-DSQ(Q) includes p6, since both q1 and q2 are included in the dynamic skyline of p6.

For simplicity, we focus on the mono-chromatic cases of the respective query types
(i.e., query points and objects are taken from the same data set); however, the proposed
techniques can also be applied for the bi-chromatic and the general case. For details,
refer to the full version of this paper [2].

Motivation. A naive way to process any inverse spatial query is to compute the corre-
sponding reverse query for each qi ∈ Q and then intersect these results. The problem of
this method is that running a reverse query for each qi multiplies the complexity of the
reverse query by |Q| both in terms of computational and I/O-cost. Objects that are not
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shared in two or more reverse queries in Q are unnecessarily retrieved, while objects
that are shared by two or more queries are redundantly accessed multiple times. We
propose a filter-refinement framework for inverse queries, which first applies a num-
ber of filters using the set of query objects Q to prune effectively objects which may
not participate in the result. Afterwards, candidates are pruned by considering other
database objects. Finally, during a refinement step, the remaining candidates are verified
against the inverse query and the results are output. When applying our framework to
the three inverse queries under study, filtering and refinement are sometimes integrated
in the same algorithm, which performs these steps in an iterative manner. Although for
Iε-RQ queries the application of our framework is straightforward, for Ik-NNQ and
I-DSQ, we define and exploit special pruning techniques that are novel compared to
the approaches used for solving the corresponding reverse queries.

Outline. The rest of the paper is organized as follows. In the next section we review
previous work related to inverse query processing. Section 3 describes our framework.
In Sections 4-6 we implement it on the three inverse spatial query types; we first briefly
introduce the pruning strategies for the single-query-object case and then show how to
apply the framework in order to handle the multi-query-object case in an efficient way.
Section 7 is an experimental evaluation and Section 8 concludes the paper.

2 Related Work

The problem of supporting reverse queries efficiently, i.e. the case where Q only con-
tains a single database object, has been studied extensively. However, none of the pro-
posed approaches is directly extendable for the efficient support of inverse queries
when |Q| > 1. First, there exists no related work on reverse queries for the ε-range
query predicate. This is not surprising since the the reverse ε-range query is equal to
a (normal) ε-range query. However, there exists a large body of work for reverse k-
nearest neighbor (Rk-NN) queries. Self-pruning approaches like the RNN-tree [6] and
the RdNN-tree [14] operate on top of a spatial index, like the R-tree. Their objective is
to estimate the k-NN distance of each index entry e. If the k-NN distance of e is smaller
than the distance of e to the query q, then e can be pruned. These methods suffer from
the high materialization and maintenance cost of the k-NN distances.

Mutual-pruning approaches such as [10,11,12] use other points to prune a given
index entry e. TPL [12] is the most general and efficient approach. It uses an R-tree to
compute a nearest neighbor ranking of the query point q. The key idea is to iteratively
construct Voronoi hyper-planes around q using the retrieved neighbors. TPL can be used
for inverse k-NN queries where |Q| > 1, by simply performing a reverse k-NN query
for each query point and then intersecting the results (i.e., the brute-force approach).

For reverse dynamic skyline queries, [3] proposed an efficient solution, which first
performs a filter-step, pruning database objects that are globally dominated by some
point in the database. For the remaining points, a window query is performed in a re-
finement step. In addition, [7] gave a solution for reverse dynamic skyline computation
on uncertain data. None of these methods considers the case of |Q| > 1, which is the
focus of our work.
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In [13], the problem of reverse top-k queries is studied. A reverse top-k query returns,
for a point q and a positive integer k, the set of linear preference functions for which q
is contained in their top-k result. The authors provide an efficient solution for the 2D
case and discuss its generalization to the multidimensional case, but do not consider the
case where |Q| > 1. Although we do not study inverse top-k queries in this paper, we
note that it is an interesting subject for future work.

Inverse queries are very related to group queries, i.e. similarity queries that retrieve
the top-k objects according to a given similarity (distance) aggregate w.r.t. a given set of
query points [9,8]. However, the problem addressed by group queries generally differs
from the problem addressed in this paper. Instead of minimizing distance aggregations,
here we have to find efficient methods for converging query predicate evaluations w.r.t.
a set of query points. Hence, new strategies are required.

3 Inverse Query (IQ) Framework

Our solutions for the three inverse queries under study are based on a common frame-
work consisting of the following filter-refinement pipeline:

Filter 1: Fast Query Based Validation: The first component of the framework, called
fast query based validation, uses the set of query objects Q only to perform a quick
check on whether it is possible to have any result at all. In particular, this filter verifies
simple constraints that are necessary conditions for a non-empty result. For example,
for the Ik-NN case, the result is empty if |Q| > k.

Filter 2: Query Based Pruning: Query based pruning again uses the query objects
only to prune objects in D which may not participate in the result. Unlike the simple
first filter, here we employ the topology of the query objects.

Filters 1 and 2 can be performed very fast because they do not involve any database
object except the query objects.

Filter 3: Object Based Pruning: This filter, called object based pruning, is more ad-
vanced because it involves database objects additional to the query objects. The strategy
is to access database objects in ascending order of their maximum distance to any query
point; formally:

MaxDist(o, Q) = max
q∈Q

(d(e, q)).

The rationale for this access order is that, given any query object q, objects that are close
to q have more pruning power, i.e., they are more likely to prune other objects w.r.t. q
than objects that are more distant to q. To maximize the pruning power, we prefer to
examine objects that are close to all query points first.

Note that the applicability of the filters depends on the query. Query based pruning
is applicable if the query objects suffice to restrict the search space which holds for
the inverse ε-range query and the inverse skyline query but not directly for the inverse
k-NN query. In contrast, the object based pruning filter is applicable for queries where
database objects can be used to prune other objects which for example holds for the
inverse k-NN query and the inverse skyline query but not for the inverse ε-range query.
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Refinement: In the final refinement step, the remaining candidates are verified and the
true hits are reported as results.

4 Inverse ε-Range Query

We will start with the simpler query, the inverse ε-range query. First, consider the case
of a query object q (i.e., |Q| = 1). In this case, the inverse ε-range query computes all
objects, that have q within their ε-range sphere. Due to the symmetry of the ε-range
query predicate, all objects satisfying the inverse ε-range query predicate are within
the ε-range sphere of q as illustrated in Figure 2(a). In the following, we consider the
general case, where |Q| > 1 and show how our framework can be applied.

r1

r2
r3q

(a) Single query case

q1

q2
q3

(b) Multiple query case

Fig. 2. Pruning space for Iε-RQ

4.1 Framework Implementation

Fast Query Based Validation: There is no possible result if there exists a pair q, q′ of
queries in Q, such that their ε-ranges do not intersect (i.e., d(q, q′) > 2 · ε). In this case,
there can be no object r having both q and q′ within its ε-range (a necessary condition
for r to be in the result).

Query Based Pruning: Let Sε
i ⊆ R

d be the ε-sphere around query point qi for all
qi ∈ Q, as depicted in the example shown in Figure 2(b). Obviously, any point in
the intersection region of all spheres, i.e. ∩i=1..mSε

i , has all query objects qi ∈ Q in
its ε-range. Consequently, all objects outside of this region can be pruned. However,
the computation of the search region can become too expensive in an arbitrary high
dimensional space; thus, we compute the intersection between rectangles that minimally
bound the hyper-spheres and use it as a filter. This can be done quite efficiently even in
high dimensional spaces; the resulting filter rectangle is used as a window query and all
objects in it are passed to the refinement step as candidates.

Object Based Pruning: As mentioned in Section 3 this filter is not applicable for in-
verse ε-range queries, since objects cannot be used to prune other objects.
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Refinement: In the refinement step, for all candidates we compute their distances to all
query points q ∈ Q and report only objects that are within distance ε from all query
objects.

4.2 Algorithm

The implementation of our framework above can be easily converted to an algorithm,
which, after applying the filter steps, performs a window query to retrieve the candi-
dates, which are finally verified. Search can be facilitated by an R-tree that indexes D.
Starting from the root, we search the tree, using the filter rectangle. To minimize the I/O
cost, for each entry P of the tree that intersects the filter rectangle, we compute its dis-
tance to all points in Q and access the corresponding subtree only if all these distances
are smaller than ε.

5 Inverse k-NN Query

For inverse k-nearest neighbor queries (Ik-NNQ), we first consider the case of a single
query object (i.e., |Q| = 1). As discussed in Section 2, this case can be processed by the
bi-section-based Rk-NN approach (TPL) proposed in [12], enhanced by the rectangle-
based pruning criterion proposed in [4]. The core idea of TPL is to use bi-section-
hyperplanes between database objects o and the query object q in order to check which
objects are closer to o than to q. Each bi-section-hyperplane divides the object space
into two half-spaces, one containing q and one containing o. Any object located in the
half-space containing o is closer to o than to q. The objects spanning the hyperplanes
are collected in an iterative way. Each object o is then checked against the resulting
half-spaces that do not contain q. As soon as o is inside more than k such half-spaces,
it can be pruned. Next, we consider queries with multiple objects (i.e., |Q| > 1) and
discuss how the framework presented in Section 3 is implemented in this case.

5.1 Framework Implementation

Fast Query Based Validation. Recall that this filter uses the set of query objects Q
only, to perform a quick check on whether the result is empty. Here, we use the obvious
rule that the result is empty if the number of query objects exceeds query parameter k.

Query Based Pruning. We can exploit the query objects in order to reduce the Ik-
NN query to an Ik′-NN query with k′ < k. A smaller query parameter k′ allows us to
terminate the query process earlier and reduce the search space. We first show how k
can be reduced by means of the query objects only. The proofs for all lemmas can be
found in the full version of this paper [2].

Lemma 1. Let D ⊆ R
d be a set of database objects and Q ⊆ D be a set of query

objects. Let D′ = D − Q. For each o ∈ D′, the following statement holds:

o ∈ Ik-NNQ(Q) inD ⇒ ∀q ∈ Q : o ∈ Ik′-NNQ({q}) in D′ ∪ {q},
where k′ = k − |Q|+ 1.



Inverse Queries for Multidimensional Spaces 337

Simply speaking, if a candidate object o is not in the Ik′-NNQ({q}) result of some
q ∈ Q considering only the points D′∪{q}, then o cannot be in the Ik-NNQ(Q) result
considering all points in D and o can be pruned. As a consequence, Ik′-NNQ({q})
in D′ ∪ {q} can be used to prune candidates for any q ∈ Q. The pruning power of
Ik′-NNQ({q}) depends on how q ∈ Q is selected.

From Lemma 1 we can conclude the following:

Lemma 2. Let o ∈ D − Q be a database object and qo
ref ∈ Q be a query object such

that ∀q ∈ Q : d(o, qo
ref ) ≥ d(o, q). Then

o ∈ Ik-NNQ(Q) ⇔ o ∈ Ik′-NNQ({qo
ref}) in D′ ∪ {q},

where k′ = k − |Q| + 1.

Lemma 2 suggests that for any candidate object o in D, we should use the farthest query
point to check whether o can be pruned.

o1

qref1
o2

d(o1,qref1)

(a) Pruning o1

o1 o2

qref2

d(o2,qref2)

(b) Pruning o2

Fig. 3. Ik-NN pruning based on Lemma 4

Object Based Pruning. Up to now, we only used the query points in order to reduce
k in the inverse k-NN query. Now, we will show how to consider database objects in
order to further decrease k.

Lemma 3. Let Q be the set of query objects andH ⊆ D−Q be the non-query(database)
objects covered by the convex hull of Q. Furthermore, let o ∈ D be a database object
and qo

ref ∈ Q a query object such that ∀q ∈ Q : d(o, qo
ref ) ≥ d(o, q). Then for each

object p ∈ H it holds that d(o, p) ≤ d(o, qo
ref ).

According to the above lemma the following statement holds:

Lemma 4. Let Q be the set of query objects, H ⊆ D− Q be the database (non-query)
objects covered by the convex hull of Q and let qo

ref ∈ Q be a query object such that
∀q ∈ Q : d(o, qo

ref ) ≥ d(o, q). Then for a given database object o ∈ D

∀o ∈ D −H − Q : o ∈ Ik-NNQ(Q) ⇔



338 T. Bernecker et al.

at most k′ = k − |H| − |Q| objects p ∈ D −H are closer to o than qo
ref , and

∀o ∈ H : o ∈ Ik-NNQ(Q) ⇔

at most k′ = k − |H| − |Q| + 1 objects p ∈ D −H are closer to o than qo
ref .

Based on Lemma 4, given the number of objects in the convex hull of Q, we can prune
objects outside of the hull from Ik-NN(Q). Specifically, for an Ik-NN query we have the
following pruning criterion: An object o ∈ D can be pruned, as soon as we find more
than k′ objects p ∈ D − H outside of the convex hull of Q, that are closer to o than
qo
ref . Note that the parameter k′ is set according to Lemma 4 and depends on whether o

is in the convex hull of Q or not. Depending on the size of Q and the number of objects
within the convex hull of Q, k′ = k−|H|+1 can become negative. In this case, we can
terminate query evaluation immediately, as no object can qualify the inverse query (i.e.,
the inverse query result is guaranteed to be empty). The case where k′ = k − |H| + 1
becomes zero is another special case, as all objects outside of H can be pruned. For all
objects in the convex hull of Q (including all query objects) we have to check whether
there are objects outside of H that prune them.

As an example of how Lemma 4 can be used, consider the data shown in Fig. 3 and
assume that we wish to perform an inverse 10NN query using a set Q of seven query
objects, shown as points in the figure; non-query database points are represented by
stars. In Figure 3(a), the goal is to determine whether candidate object o1 is a result,
i.e., whether o1 has all q ∈ Q in its 10NN set. The query object having the largest
distance to o1 is qref1. Since o1 is located outside of the convex hull of Q (i.e, o ∈
D − H − Q), the first equivalence of Lemma 4, states that o1 is a result if at most
k′ = k − |H| − |Q| = 10 − 4 − 7 = −1 objects in D − H − Q are closer to o1

than qref1. Thus, o1 can be safely pruned without even considering these objects (since
obviously, at least zero objects are closer to o1 than qref1). Next, we consider object
o2 in Figure 3(b). The query object with the largest distance to o2 is qref2. Since o2 is
inside the convex hull of Q, the second equivalence of Lemma 4 yields that o2 is a result
if at most k′ = k − |H| − |Q|+ 1 = 10− 4− 7 + 1 = 0 objects D−H−Q are closer
to o2 than qref2. Thus, o2 remains a candidate until at least one object in D−H−Q is
found that is closer to o2 than qref2.

Refinement. Each remaining candidate is checked whether it is a result of the inverse
query by performing a k-NN search and verifying whether its result includes Q.

5.2 Algorithm

We now present a complete algorithm that traverses an aggregate R-tree (ARTree),
which indexes D and computes Ik-NNQ(Q) for a given set Q of query objects, using
Lemma 4 to prune the search space. The entries in the tree nodes are augmented with
the cardinality of objects in the corresponding sub-tree. These counts can be used to
accelerate search, as we will see later.

In a nutshell, the algorithm, while traversing the tree, attempts to prune nodes based
on the lemma using the information known so far about the points of D that are included
in the convex hull (filtering). The objects that survive the pruning are inserted in the
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Algorithm 1. Inverse kNNQuery
Require: Q, k, ARTree
1: //Fast Query Based Validation
2: if |Q| > k then
3: return ”no result” and terminate algorithm
4: end if
5: pq PriorityQueue ordered by maxqi∈QMinDist
6: pq.add(ARTree.root entries)
7: |H| = 0
8: LIST candidates, prunedEntries
9: //Query/Object Based Pruning

10: while ¬pq.isEmpty() do
11: e = pq.poll()
12: if getPruneCount(e,Q, candidates, prunedEntries, pq) > k − |H| − |Q| then
13: prunedEntries.add(e)
14: else if e.isLeafEntry() then
15: candidates.add(e)
16: else
17: pq.add(e.getChildren())
18: end if
19: if e ∈ convexHull(Q) then
20: |H|+ = e.agg count
21: end if
22: end while
23: //Refinement Step
24: LIST result
25: for c ∈ candidates do
26: if qo

ref ∈ knnQuery(c, k) then
27: result.add(c)
28: end if
29: end for
30: return (result)

candidates set. During the refinement step, for each point c in the candidates set, we run
a k-NN query to verify whether c contains Q in its k-NN set.

Algorithm 1 is a pseudocode of our approach. The ARTree is traversed in a best-
first search manner [5], prioritizing the access of the nodes according to the maximum
possible distance (in case of a non-leaf entry we use MinDist) of their contents to the
query points Q. In specific, for each R-tree entry e we can compute, based on its MBR,
the farthest possible point qo

ref in Q to a point p indexed under e. Processing the entries
with the smallest such distances first helps to find points in the convex hull of Q earlier,
which helps making the pruning bound tighter.

Thus, initially, we set |H| = 0, assuming that in the worst case the number of non-
query points in the convex hull of Q is 0. If the object which is deheaped is inside the
convex hull, we increase |H| by one. If a non-leaf entry is deheaped and its MBR is
contained in the hull, we increase |H| by the number of objects in the corresponding
sub-tree, as indicated by its augmented counter.
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During tree traversal, the accessed tree entries could be in one of the following sets (i)
the set of candidates, which contains objects that could possibly be results of the inverse
query, (ii) the set of pruned entries, which contains (pruned) entries whose subtrees may
not possibly contain inverse query results, and (iii) the set of entries which are currently
in the priority queue. When an entry e is deheaped, the algorithm checks whether it
can be pruned. For this purpose, it initializes a prune counter which is a lower bound
of the number of objects that are closer to every point p in e than Q’s farthest point
to p. For every entry e′ in all three sets (candidates, pruned, and priority queue), we
increase the prune counter of e by the number of points in e′ if the following condition
holds: ∀p ∈ e, ∀p′ ∈ e′ : dist(e, e′) < dist(e, qo

ref ). This condition can efficiently be
checked [4]. An example where this condition is fulfilled is shown in Figure 4. Here the
prune counter of e can be increased by the number of points in e′.

q1
q2

e
q3

q4

e‘

Fig. 4. Calculating the prune count of e

While updating prune counter for e, we
check whether prune counter > k − |H| −
|Q| (prune counter > k−|H|−|Q|+1) for
entries that are entirely outside of (intersect)
the convex hull. As soon as this condition is
true, e can be pruned as it cannot contain ob-
jects that can participate in the inverse query
result (according to Lemma 4). Considering
again Figure 4 and assuming the number of
points in e′ to be 5, e could be pruned for
k ≤ 10 (since prune counter(5) > k(10) −
|H|(2)−|Q|(4) holds). In this case e is moved
to the set of pruned entries. If e survives prun-
ing, the node pointed to by e is visited and
its entries are enheaped if e is a non-leaf en-
try; otherwise e is inserted in the candidates
set. When the queue becomes empty, the fil-

ter step of the algorithm completes with a set of candidates. For each object c in this
set, we check whether c is a result of the inverse query by performing a k-NN search
and verifying whether its result includes Q. In our implementation, to make this test
faster, we replace the k-NN search by an aggregate ε-range query around c, by setting
ε = d(c, qc

ref ). The objective is to count whether the number of objects in the range is
greater than k. In this case, we can prune c, otherwise c is a result of the inverse query.
ARTree is used to process the aggregate ε-range query; for every entry e included in
the ε-range, we just increase the aggregate count by the augmented counter to e without
having to traverse the corresponding subtree. In addition, we perform batch searching
for candidates that are close to each other, in order to optimize performance. The details
are skipped due to space constraints.

6 Inverse Dynamic Skyline Query

We again first discuss the case of a single query object, which corresponds to the reverse
dynamic skyline query [7] and then present a solution for the more interesting case
where |Q| > 1. Let q be the (single) query object with respect to which we want to
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compute the inverse dynamic skyline. Any object o ∈ D defines a pruning region, such
that any object o′ in this region cannot be part of the inverse query result. Formally:

Definition 2 (Pruning Region). Let q = (q1, . . . , qd) ∈ Q be a single d-dimensional
query object and o = (o1, . . . , od) ∈ D be any d-dimensional database object. Then
the pruning region PRq(o) of o w.r.t. q is defined as the d-dimensional rectangle where

the ith dimension of PRq(o) is given by [ qi+oi

2 , +∞] if qi ≤ oi and [−∞, qi+oi

2 ] if
qi ≥ oi.

The pruning region of an object o with respect to a single query object q is illustrated
by the shaded region in Figure 5(a).

q

o

(a) pruning region

oo4
o1

o
o3

q

o2

q
o5
o7o8

o6
7

(b) candidates

Fig. 5. Single-query case

Filter step. As shown in [7], any object p ∈ D can be safely pruned if p is contained in
the pruning region of some o ∈ D w.r.t. q (i.e. p ∈ PRq(o)). Accordingly, we can use q
to divide the space into 2d partitions by splitting along each dimension at q. Let o ∈ D
be an object in any partition P ; o is an I-DSQ candidate, iff there is no other object
p ∈ P ⊆ D that dominates o w.r.t. q.

Thus, we can derive all I-DSQ candidates as follows: First, we split the data space
into the 2d partitions at the query object q as mentioned above. Then in each partition,
we compute the skyline1, as illustrated in the example depicted in Figure 5(b). The
union of the four skylines is the set of the inverse query candidates (e.g., {o1, o2, o3, o5,
o6, o8} in our example).

Refinement. The result of the reverse dynamic skyline query is finally obtained by
verifying for each candidate c, whether there is an object in D which dominates q w.r.t.
c. This can be done by checking whether the hypercube centered at c with extent 2 · |ci−
qi| at each dimension i is empty. For example, candidate o5 in Figure 5(b) is not a result,
because the corresponding box (denoted by dashed lines) contains o7. This means that
in both dimensions o7 is closer to o5 than q is.

1 Only objects within the same partition are considered for the dominance relation.
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6.1 IQ Framework Implementation

Fast Query Based Validation. Following our framework, first the set Q of query ob-
jects is used to decide whether it is possible to have any result at all. For this, we use
the following lemma:

Lemma 5. Let q ∈ Q be any query object and let S be the set of 2d partitions derived
from dividing the object space at q along the axes into two halves in each dimension. If
in each partition r ∈ S there is at least one query object q′ ∈ Q (q′ 
= q), then there
cannot be any result.

q2

q :qq1:q2

q2:q3

q1

2 3

1
q1:q3

q3

q 3q 2 q 3

q 1
:q

q 1
:q

q 2
:q

(a) |Q| = 3

q2
q2:q3

q3
q1:q2

q :q
q2:q4

q

q1:q3
q3:q4

q1
q1:q4

q 3q 2 q 3

q4

q 4 q 4q 4

q 2
:q

q 1
:q

q 1
:q

q 2
:q

q 3
:q

q 1
:q

(b) |Q| = 4

Fig. 6. Pruning regions of query objects

Query Based Pruning. We now propose a filter, which uses the set Q of query objects
only in order to reduce the space of candidate results. We explore similar strategies as
the fast query based validation. For any pair of query objects q, q′ ∈ Q, we can define
two pruning regions, according to Definition 2: PRq(q′) and PRq′(q). Any object in-
side these regions cannot be a candidate of the inverse query result because it cannot
have both q1 and q2 in its dynamic skyline point set. Thus, for every pair of query ob-
jects, we can determine the corresponding pruning regions and use their union to prune
objects or R-tree nodes that are contained in it. Figure 6 shows examples of the pruning
space for |Q| = 3 and |Q| = 4. Observe that with the increase of |Q| the remaining
space, which may contain candidates, becomes very limited.

The main challenge is how to encode and use the pruning space defined by Q, as it
can be arbitrarily complex in the multidimensional space. As for the Ik-NNQ case,
our approach is not to explicitly compute and store the pruning space, but to check on-
demand whether each object (or R-tree MBR) can be pruned by one or more query pairs.
This has a complexity of O(|Q|2) checks per object. In the full version of the paper [2],
we show how to reduce this complexity for the special 2D case. The techniques shown
there can also be used in higher dimensional spaces, with lower pruning effect.

Object Based Pruning. For any candidate object o that is not pruned during the query-
based filter step, we need to check if there exists any other database object o′ which
dominates some q ∈ Q with respect to o. If we can find such an o′, then o cannot have
q in its dynamic skyline and thus o can be pruned for the candidate list.
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q1 o1

q2
Fig. 7. Refinement area defined
by q1, q2 and o1

Refinement. In the refinement step, each candidate
c is verified by performing a dynamic skyline query
using c as query point. The result should contain all
qi ∈ Q, otherwise c is dropped. The refinement step
can be improved by the following observation (cf. Fig-
ure 7): for checking if a candidate o1 has all qi ∈ Q in
its dynamic skyline, it suffices to check whether there
exists at least one other object oj ∈ D which prevents
one qi from being part of the skyline. Such an object
has to lie within the MBR defined by qi and q′i (which

is obtained by reflecting qi through o1). If no point is within the |Q| MBRs, then o1 is
reported as result.

6.2 Algorithm

The algorithm for I-DSQ, during the filter step, traverses the tree in a best first man-
ner, where entries are accessed by their minimal distance (MinDist) to the farthest query
object. For each entry e we check if e is completely contained in the union of pruning
regions defined by all pairs of queries (qi, qj) ∈ Q; i.e.,

⋃
(qi,qj)∈Q PRqi(qj). In addi-

tion, for each accessed database object oi and each query object qj , the pruning region
is extended by PRqj (oi). Analogously to the Ik-NN case, lists for the candidates and
pruned entries are maintained. Finally, the remaining candidates are refined using the
refinement strategy described in Section 6.1.

7 Experiments

For each of the inverse query predicates discussed in the paper, we compare our pro-
posed solution based on multi-query-filtering (MQF), with a naive approach (Naive)
and another intuitive approach based on single-query-filtering (SQF). The naive algo-
rithm (Naive) computes the corresponding reverse query for every q ∈ Q and intersects
their results iteratively. To be fair, we terminated Naive as soon as the intersection of
results obtained so far is empty. SQF performs a Rk-NN (Rε-range / RDS) query using
one randomly chosen query point as a filter step to obtain candidates. For each can-
didate an ε-range (k-NN / DS) query is issued and the candidate is confirmed if all
query points are contained in the result of the query (refinement step). Since the pages
accessed by the queries in the refinement step are often redundant, we use a buffer to
further boost the performance of SQF. We employed R∗-trees ([1]) of pagesize 1Kb to
index the data sets used in the experiments. For each method, we present the number of
page accesses and runtime. To give insights into the impact of the different parameters
on the cardinality of the obtained results we also included this number to the charts.
In all settings we performed 1000 queries and averaged the results. All methods were
implemented in Java 1.6 and tests were run on a dual core (3.0 Ghz) workstation with 2
GB main memory having windows xp as OS. The performance evaluation settings are
summarized below; the numbers in bold correspond to the default settings:
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parameter values
db size 100000 (synthetic), 175812 (real)
dimensionality 2, 3, 4, 5
ε 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1
k 50, 100, 150, 200, 250
# inverse queries 1, 3, 5, 10, 15, 20, 25, 30, 35
query extent 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006

The experiments were performed using several data sets:

– Synthetic data sets: Clustered and uniformly distributed objects in d-dimensional
space.

– Real Data set: Vertices in the Road Network of North America2. Contains 175,812
two-dimensional points.

The data sets were normalized, such that their minimum bounding box is [0, 1]d. For
each experiment, the query objects Q for the inverse query were chosen randomly from
the database. Since the number of results highly depends on the distance between in-
verse query points (in particular for the Iε-RQ and Ik-NNQ) we introduced an addi-
tional parameter called extent to control the maximal distance between the query ob-
jects. The value of extent corresponds to the volume (fraction of data space) of a cube
that minimally bounds all queries. For example in the 3D space the default cube would
have a side length of 0.073. A small extent assures that the queries are placed close to
each other generally resulting in more results. In this section, we show the behavior of
all three algorithms on the uniform data sets only. Experiments on the other data sets
can be found in the full version of the paper [2].

7.1 Inverse ε-Range Queries

We first compared the algorithms on inverse ε range queries. Figure 8(a) shows that
the relative speed of our approach (MQF) compared to Naive grows significantly with
increasing ε; for Naive, the cardinality of the result set returned by each query depends
on the space covered by the hypersphere which is in O(εd). In contrast, our strategy ap-
plies spatial pruning early, leading to a low number of page accesses. SQF is faster than
Naive, but still needs around twice as much page accesses as MQF. MQF performs even
better with an increasing number of query points in Q (as depicted in Figure 8(b)), as
in this case the intersection of the ranges becomes smaller. The I/O-cost of SQF in this
case remains almost constant which is mainly due to the use of the buffer which lowers
the page accesses in the refinement step. Similar results can be observed when varying
the database size (Figure 8(e)) and query extent (Figure 8(d)). For the data dimension-
ality experiment (Figure 8(c)) we set epsilon such that the sphere defined by ε covers
always the same percentage of the dataspace, to make sure that we still obtain results
when increasing the dimensionality (note, however, that the number of results is still
unsteady). Increasing dimensionality has a negative effect on performance. However

2 Obtained and modified from http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm. The original
source is the Digital Chart of the World Server (http://www.maproom.psu.edu/dcw/).
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Fig. 8. Iε-Q algorithms on uniform data set

MQF copes better with data dimensionality than the other approaches. Finally, Figure
8(f) compares the computational costs of the algorithms. Even though Inverse Queries
are I/O bound, MQF is still preferable for main-memory problems.

7.2 Inverse k-NN Queries

The three approaches for inverse k-NN search show a similar behavior as those for the
Iε-RQ. Specifically the behavior for varying k (Figure 9(a)) is comparable to varying
ε and increasing the query number (Figure 9(b)) and the query extent (Figure 9(d))
yields the expected results. When testing on data sets with different dimensionality,
the advantage of MQF becomes even more significant when d increases (cf. Figure
9(c)). In contrast to the Iε-RQ results for Ik-NN queries the page accesses of MQF
decrease (see Figure 9(e)) when the database size increases (while the performance
of SQF still degrades). This can be explained by the fact, that the number of pages
accessed is strongly correlated with the number of obtained results. Since for the Iε-
RQ the parameter ε remained constant, the number of results increased with a larger
database. For Ik-NN the number of results in contrast decreases and so does the number
of accessed pages by MQF. As in the previous set of experiments MQF has also the
lowest runtime (Figure 9(f)).

7.3 Inverse Dynamic Skyline Queries

Similar results as for the Ik-NNQ algorithm are obtained for the inverse dynamic sky-
line queries (I-DSQ). Increasing the number of queries in Q reduces the cost of the
MQF approach, while the costs of the competitors increase. Since the average number
of results approaches 0 faster than for the other two types of inverse queries we choose
4 as the default size of the query set. Note that the number of results for I-DSQ intu-
itively increases exponentially with the dimensionality of the data set (cf. Figure 10(b)),
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Fig. 10. I-DSQ algorithms on uniform data set

thus this value can be much larger for higher dimensional data sets. Increasing the dis-
tance among queries does not affect the performance as seen in Figure 10(c); regarding
the number of results in contrast to inverse range- and k-NN queries, inverse dynamic
skyline queries are almost insensitive to the distance among the query points. The ra-
tionale is that dynamic skyline queries can have results which are arbitrary far from the
query point, thus the same holds for the inverse case. The same effect can be seen for
increasing database size (cf. Figure 10(d)). The advantage of MQF remains constant
over the other two approaches. Like inverse range and k-NN queries, I-DSQ are I/O
bound (see Figure 10(e)), but MQF is still preferable for main-memory problems.
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8 Conclusions

In this paper we introduced and formalized the problem for inverse query processing.
We proposed a general framework to such queries using a filter-refinement strategy and
applied this framework to the problem ofanswering inverseε-rangequeries, inversek-NN
queries and inverse dynamic skyline queries. Our experiments show that our framework
significantly reduces the cost of inverse queries compared to straightforward approaches.
In the future, we plan to extend our framework for inverse queries with different query
predicates, such as top-kqueries. In addition, we will investigate inverse query processing
in the bi-chromatic case, where queries and objects are taken from different data sets.
Another interesting extension of inverse queries is to allow the user not only to specify
objects that have to be in the result, but also objects that must not be in the result.
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Abstract. K-nearest-neighbor (k-NN) queries have been widely studied
in time-independent and time-dependent spatial networks. In this paper,
we focus on k-NN queries in time-dependent spatial networks where the
driving time between two locations may vary significantly at different
time of the day. In practice, it is costly for a database server to collect
real-time traffic data from vehicles or roadside sensors to compute the
best route from a user to an object of interest in terms of the driving
time. Thus, we design a new spatial query processing paradigm that uses
a spatial mashup to enable the database server to efficiently evaluate k-
NN queries based on the route information accessed from an external
Web mapping service, e.g., Google Maps, Yahoo! Maps and Microsoft
Bing Maps. Due to the expensive cost and limitations of retrieving such
external information, we propose a new spatial query processing algo-
rithm that uses shared execution through grouping objects and users
based on the road network topology and pruning techniques to reduce
the number of external requests to the Web mapping service and pro-
vides highly accurate query answers. We implement our algorithm using
Google Maps and compare it with the basic algorithm. The results show
that our algorithm effectively reduces the number of external requests
by 90% on average with high accuracy, i.e., the accuracy of estimated
driving time and query answers is over 92% and 87%, respectively.

1 Introduction

With the ubiquity of wireless Internet access, GPS-enabled mobile devices and
the advance in spatial database management systems, location-based services
(LBS) have been realized to provide valuable information for their users based
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on their locations [1, 2]. LBS are an abstraction of spatio-temporal queries.
Typical examples of spatio-temporal queries include range queries (e.g., “How
many vehicles in a certain area”) [3, 4, 5] and k-nearest-neighbor (k-NN) queries
(e.g., “Find the k-nearest gas stations”) [4, 6, 7, 8].

The distance between two point locations in a road network is measured in
terms of the network distance, instead of the Euclidean distance, to consider the
physical movement constrains of the road network [5]. It is usually defined by the
distance of their shortest path. However, this kind of distance measure would hide
the fact that the user may take longer time to travel to his/her nearest object
of interest (e.g., restaurant and hotel) than other ones due to many realistic
factors, e.g., heterogeneous traffic conditions and traffic accidents. Driving time
(or travel time) is in reality a more meaningful and reliable distance measure
for LBS in road networks [9, 10, 11]. Figure 1 depicts an example where Alice
wants to find the nearest clinic for emergency medical treatment. A traditional
shortest-path based NN query algorithm returns Clinic X . However, a driving-
time based NN query algorithm returns Clinic Y because Alice will spend less
time to reach Y (3 mins.) than X (10 mins.).

Clinic X

Clinic Y

Distance: 500 meters
Driving time: 10 mins

Alice: Where is my
nearest clinic?

Distance: 1000 meters
Driving time: 3 mins

Fig. 1. A shortest-path based NN (X) versus a driving-time based NN (Y )

Since driving time is highly dynamic, e.g., the driving time on a segment of
I-10 freeway in Los Angeles, USA between 8:30AM to 9:30AM changes from
30 minutes to 18 minutes, i.e., 40% decrease in driving time [9], it is almost
impossible to accurately predict the driving time between two point locations
in a road network based on their network distance. The best way to provide
real-time driving time computation is to continuously monitor the traffic in road
networks; however, it is difficult for every LBS provider to do so due to very
expensive deployment cost and privacy issues.

A spatial mashup1 (or GIS mashup), one of the key technologies in Web 2.0,
provides a more cost-effective way to access route information in road networks
from external Web mapping services, e.g., Google Maps, Yahoo! Maps, Microsoft
1 A mashup is a web application that combines data, representation, and/or function-

ality from multiple web applications to create a new application [12].
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Bing Maps and government agencies. However, existing spatial mashups suffer
from the following limitations. (1) It is costly to access direction information
from a Web mapping service, e.g., retrieving driving time from the Microsoft
MapPoint web service to a database engine takes 502 ms while the time needed
to read a cold and hot 8 KB buffer page from disk is 27 ms and 0.0047 ms,
respectively [13]. (2) There is usually a limit on the number of requests to a
Web mapping service, e.g., Google Maps allows only 2,500 requests per day for
evaluation users and 100,000 requests per day for premier users [14]. (3) The
use of retrieved route information is restricted, e.g., the route information must
not be pre-fetched, cached, or stored, except only limited amount of content can
be temporarily stored for the purpose of improving system performance [14].
(4) Existing Web mapping services only support primitive operations, e.g., the
driving direction and time between two point locations. A database server has
to issue a large number of external requests to collect small pieces of informa-
tion from the supported simple operations to process relatively complex spatial
queries, e.g., k-NN queries.

In this paper, we design an algorithm to processing k-NN queries using spatial
mashups. Given a set of objects and a k-NN query with a user’s location and a
user specified maximum driving time tmax (e.g., “Find the k-nearest restaurants
that can be reached in 10 minutes by driving”), our algorithm finds at most k
objects with the shortest driving time and their driving time is no longer than
tmax. The objectives of our algorithm are to reduce the number of external re-
quests to a Web mapping service and provide query answers with high accuracy.
To achieve our objectives, we use shared execution by grouping objects based
on the road network topology and pruning techniques to reduce the number
of external requests. We design two methods to group objects to adjust a per-
formance trade-off between the number of external requests and the accuracy
of query answers. We first present our algorithm in road networks with bidi-
rectional road segments, and then adapt the algorithm to road networks with
both one- and two-way road segments. In addition, we design another extension
to further reduce the number of external requests by grouping users based on
their movement direction and the road network topology for a system with high
workloads or a large number of continuous k-NN queries.

To evaluate the performance of our algorithm, we build a simulator to compare
it with a basic algorithm in a real road network. The results show that our
algorithms outperform the basic algorithm in terms of the number of external
requests and query response time. We also implement our algorithm using Google
Maps [15]. The experimental results show that our algorithm provides highly
accurate k-NN query answers.

The remainder of this paper is organized as follows. Section 2 describes the
system model. Section 3 presents the basic algorithm and our algorithm. Sec-
tion 4 gives two extensions to our algorithm. Simulation and experimental results
are analyzed in Section 5. Section 6 highlights related work. Finally, Section 7
concludes this paper.
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2 System Model

In this section, we describe our system architecture, road network model, and
problem definition. Figure 2 depicts our system architecture that consists of
three entities, users, a database server, and a Web mapping service provider.
Users send k-NN queries to the database server at a LBS provider at anywhere
and anytime. The database server processes queries based on local data (e.g.,
the location and basic information of restaurants) and external data (i.e., routes
and driving time) accessed from the Web mapping service. In general, accessing
external data is much more expensive than accessing internal data [13].

Users Database
Server

Web Mapping
Service Provider

Queries

Local Data
(e.g., restaurant data)

(Low Cost)

(High Cost)

External Data
(e.g., routes and driving time)

Fig. 2. System architecture

We use a graph G = (V, E) to model a road network, where E and V are a set
of road segments and intersections of road segments, respectively. For example,
Figure 3a depicts a real road map that is modeled into an undirected graph
(Figure 3b), where an edge represents a road segment (e.g., I1I2 and I1I5) and a
square represents an intersection (e.g., I1 and I2). This road network model will
be used in Section 3 because we assume that each road segment is bidirectional.
In Section 4, we will use a directed graph to model a road network where each
edge with an arrow or double arrows to indicate that the corresponding road
segment is one-way or two-way, respectively (e.g., Figure 9).

Our problem is defined as follows. Given a set of objects O and a NN query
Q = (λ, k, tmax) from a user U , where λ is U ’s location, k is U ’s specified max-
imum number of returned objects, and tmax is U ’s required maximum driving
time from λ to a returned object, our system returns U at most k objects in O
with the shortest driving time from λ and their driving time must be no longer
than tmax, based on the routes and driving time accessed from a Web mapping
service, e.g., Goolge Maps [15]. Since accessing the Web mapping service is ex-
pensive, our objectives are to reduce the number of external requests to the Web
mapping service and provide highly accurate query answers.

3 Processing k-NN Queries Using Spatial Mashups

In this section, Section 3.1 describes a basic algorithm to process k-NN queries
using spatial mashups. Then, Section 3.2 presents our efficient algorithm that
aims to minimize the number of external requests to a Web mapping service by
using shared execution and pruning techniques.
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3.1 Basic Algorithm

Since there could be a very large number of objects in a spatial data set, it is ex-
tremely inefficient to issue an expensive external request to the Web mapping ser-
vice to retrieve the route information and driving time from a user to each object
in the data set. To reduce the number of external requests, the basic algorithm ex-
ecutes a range query in spatial networks [5] to prune the whole data set into a much
smaller set of candidate objects that are within the maximum possible driving dis-
tance, distmax, from the user. The most conservative way to compute distmax is to
multiply the user-specified maximum driving time tmax by the maximum allowed
driving speed of the road network. Since only the candidate objects can be reached
by the user within the driving time of tmax, the database server only needs to is-
sue one external request to the Web mapping service for each candidate object to
access the route and driving time from the user to the object.

Figure 4 shows an example for the basic algorithm, where a user U is repre-
sented by a triangle, 10 objects R1 to R10 are represented by circles, and the
maximum allowed driving speed is 80 km/h. If U wants to find the nearest object
within a driving time of five minutes (i.e., k = 1 and tmax = 5 mins.), distmax

is 6.7 km. The database server executes a range query with a range distance of
6.7 km, where the road segments within the range distance are highlighted. Thus,
the whole data set is pruned into a subset of seven candidate objects R1, R2,
R4, R5, R8, R9 and R10; the database server only needs to issue seven external
requests rather than ten requests.

3.2 Our Efficient k-NN Query Processing Algorithm

Although the basic algorithm can reduce the whole data set into a much smaller
subset, if the user-specified maximum driving time is very long or the object

(a) A road map

I15I14

I12I11

I8I7

I10

I6

I13

I9

I5

I1 I2 I4

Road segment Intersection

I3

(b) A graph model

Fig. 3. Road network model



Efficient Evaluation of k-NN Queries Using Spatial Mashups 353

Object

I15I14

I12I11

I8I7

I10

I6

I13

I9

I5

I1 I2 I4

R1

I3

R2

R10

R9

R8

R7

R6R5

R4

R3U

User Intersection

Fig. 4. Basic algorithm

Object

I15I14

I12I11

I8I7

I10

I6

I13

I9

I5

I1 I2 I4I3

R2

R10

R9

R8

R7

R6R5

R4

R3U

User Intersection
Intersection of an object group

R1

Fig. 5. Object grouping

density in the vicinity of the user is very high, the database server may still need to
issue a large number of external requests to the Web mapping service. To this end,
we propose a new k-NN query processing algorithm that utilizes shared execution
and pruning techniques to further reduce the number of external requests.

Overview. Our algorithm has four main steps. (1) Our algorithm takes a set
of candidate objects computed by the basic algorithm as an input (Section 3.1).
(2) It selects representative points in the road network and clusters objects to
them to form groups (Section 3.2.1). (3) It issues an external request for each
group to retrieve the route information from the user to the corresponding rep-
resentative point and estimates the driving time from the user to each object in
the group (Section 3.2.2). (4) The algorithm prunes candidate objects that can-
not be part of a query answer (Section 3.2.3). The control flow of our algorithm
is as follows. After it performs steps (1) and (2), it repeats steps (3) and (4)
until all the candidate objects are processed or pruned.

3.2.1 Grouping Objects for Shared Execution
We observe that many spatial objects are generally located in clusters in
real world. For example, many restaurants are located in a downtown area
(Figure 3a). Thus, it makes sense to group nearby objects to a representative
point. The database server issues only one external request to the Web mapping
service for an object group. Then, it shares the retrieved route and driving time
information from a user to the representative point among the objects in the
group to estimate the driving time from the user to each object. This object
grouping technique reduces the number of external requests from the number
of candidate objects in the basic algorithm to the number of groups (at the
worst case) for a k-NN query. Section 3.2.3 will describe another optimization
to further reduce the number of external requests.
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There are two challenges in grouping objects: (a) How to select representative
points in a road network? and (b) How to group objects to representative points?
Our solution is to select intersections as representative points in a road network
and group objects to them. The reason is twofold: (1) Since there is only one
possible path from the intersection of a group G to each object in G, it is easy to
estimate the driving time from the intersection to each object in G. (2) A road
segment should have the same conditions, e.g., speed limit and direction. The
estimation of driving time would be more nature and accurate by considering a
road segment as a basic unit [16].

Figure 5 gives an example for object grouping where objects R8, R9 and
R10 are grouped together by intersection I11. The database server only needs
one external query from user U to I11 to the Web mapping service to retrieve
the route information and driving time from U and I11. Then, our algorithm
estimates the driving time from I11 to each of its group members.

In the reminder of this section, we will present two methods for grouping ob-
jects. These methods have different performance trade-offs between the number
of external requests and the accuracy of query answers. Section 3.2.2 (the third
step) will discuss how to perform driving time estimation and Section 3.2.3 (the
forth step) will discuss how to prune intersections safely to further reduce the
number of external requests.

Method 1: Minimal intersection set (MinIn). To minimize the number of
external requests to the Web mapping service, we should find a minimal set of
intersections that cover all road segments having candidate objects, which are
found by the basic algorithm. Given a k-NN query issued by a user U , we convert
the graph G of the road network model into a subgraph Gu = (Vu, Eu) such that
Eu is an edge set where each edge contains at least one candidate object and
Vu is a vertex set that consists of the vertices (intersections) of the edges in Eu.
The result vertex set V ′

u ⊆ Vu is a minimal one covering all the edges in Eu.
This problem is the vertex cover problem [17], which is NP-complete, so we use
a greedy algorithm to find V ′

u.
In the greedy algorithm, we calculate the number of edges connected to a

vertex v as the degree of v. The algorithm selects the vertex from Vu with the
largest degree to V ′

u. In case of a tie, the vertex with the shortest distance to U
is selected to V ′

u. The selected vertex is removed from Vu and the edges of the
selected vertex are removed from the Eu. After that, the degree of the vertices
of the removed edges is updated accordingly.

Figure 6 gives an example for the MinIn method. After the basic algorithm
finds a set of candidate objects (represented by black circles in Figure 7). The
MinIn method first constructs a subgraph Gu = (Vu, Eu) from G. Since edges
I2I6, I5I9, I9I10, I7I11 and I11I12 contain some candidate objects, these five
edges constitute Eu and their vertices constitute Vu. Then, the MinIn method
calculates the degree for each vertex in Vu. For example, the degree of I11 is two
because two edges I7I11 and I11I12 are connected to I11. Figure 6a shows that
I11 has the largest degree and is closer to U than I9, I11 is selected to V ′

u and the
edges connected to I11 are removed from Gu. Figure 6b shows that the degree
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of the vertices I7 and I12 of the two deleted edges is updated accordingly. Any
vertex in Gu without any connected edge is removed from Vu immediately. Since
I9 has the largest degree, I9 is selected to V ′

u and the edges connected to I9 are
removed. Similarly, I6 is selected to V ′

u (Figure 6c). Since I2 has no connected
edge, I2 is removed from Vu. After that, Vu becomes empty, so the MinIn method
clusters the candidate objects into three groups (indicated by dotted rectangles),
I6 = {R4, R5}, I9 = {R1, R2}, and I11 = {R8, R9, R10} (Figure 7).

Method 2: Nearest intersections (NearestIn). Although the MinIn method
can minimize the number of external requests to the Web mapping service, it
may lead to low accuracy in the estimated driving time for some objects. For
example, consider object R1 in Figure 7, since R1 is grouped to intersection I9

and I10 is not selected to V ′
u, the MinIn method will result in a path P1 : U →

I6 → I5 → I9 → R1. However, another path P2 : U → I10 → R1 may give shorter
driving time than P1. To this end, we design an alternative method, NearestIn,
that groups objects to their nearest intersections. Figure 8 gives an example for
NearestIn, where the candidate objects are represented by black circles. Since R2

is closer to intersection I9 than I5, R2 is grouped to I9. The NearestIn method
constructs six groups (indicated by dotted rectangles), I9 = {R2}, I10 = {R1},
I2 = {R4, R5}, I7 = {R8}, I11 = {R9}, and I12 = {R10}; thus, the database
server needs to issue six external queries.

In general, NearestIn gives more accurate driving time than MinIn, but Near-
estIn needs more external requests than MinIn. As in our running examples,
MinIn and NearestIn need to issue three and six external requests (one re-
quest per group), respectively. Thus, these methods provide different perfor-
mance tradeoffs between the overhead of external requests and the accuracy of
driving time estimation. We verify their performance tradeoffs in Section 5.

I12

I11

I7I6I5

I9

I2

d=2

d=1

d=1
d=1

d=1

d=2
d=1

(a) Vu = { I11 }’
I12

I7I6I5

I9

I2

d=2

d=1

d=1

d=1

d=0

d=0

(b) Vu = { I11,  I9 }’

I10

d=1
I10

d=1

I6I5

I2

d=1
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(c) Vu = { I11,  I9,  I6 }’

I10

d=0
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Fig. 6. Greedy algorithm for MinIn
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Fig. 7. MinIn object grouping
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Fig. 8. NearestIn object grouping

3.2.2 Calculating Driving Time for Grouped Objects
Most Web mapping services, e.g., Goolge Maps, return turn-by-turn route in-
formation for a request. For example, if the database server sends a request
to the Web mapping service to retrieve the route information from user U to
intersection I9 in Figure 7, the service returns the turn-by-turn route informa-
tion, i.e., Route(U → I9) = {〈d(U → I6), t(U → I6)〉, 〈d(I6 → I5), t(I6 → I5)〉,
〈d(I5 → I9), t(I5 → I9)〉}, where d(A → B) and t(A → B) are the Euclidean
distance and driving time from location point A to location point B, respectively.

After grouping objects to intersections, each intersection in V ′
u is processed

based on its distance to the user in ascending order. The reason is that knowing
the driving time of more objects closer to the user at an earlier stage gives more
pruning power to the next step (Section 3.2.3). If a group contains only one
object, the database server simply issues an external request to retrieve the route
information from the user to the object. Otherwise, our algorithm calculates the
driving time for each object and selects the best route (if appropriate) as follows.

Driving time calculation. Based on whether a candidate object is on the last
road segment of a retrieved route, we can distinguish two cases.

Case 1: An object is on the last road segment. In this case, we assume that the
speed of the last road segment is constant. For example, given the information
of the route from U to I9 (i.e., Route(U → I9)) retrieved from the Web mapping
service, object R2 is on the last road segment of the route, i.e., I5I9. Hence, the
driving time from U to R2 is calculated as: t(U → R2) = t(U → I9) − t(I5 →
I9) × d(R2→I9)

d(I5→I9) .

Case 2: An object is NOT on the last road segment. In this case, a candidate
object is not on a retrieved route, i.e., the object is on a road segment S connected
to the last road segment S′ of the route. We assume that the driving speed of
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S is the same as that of S′. For example, given the retrieved information of the
route from U to I9 (i.e., Route(U, I9)), object R1 is not on the last road segment
of the route, i.e., I5I9. Hence, the driving time from U to R1 is calculated as:
t(U → R1) = t(U → I9) + t(I5 → I9) × d(I9→R1)

d(I5→I9) .

Route selection. The object grouping methods may select both the inter-
sections of a road segment for a candidate object. In this case, the database
server finds the route from the querying user to the object via each of the
intersections. Thus, our algorithm selects the route with the shortest driv-
ing time. For example, since both the intersections of edge I9I10, i.e., I9 and
I10, are selected (Figure 8), the driving time from user U to R1 is selected as
t(U → R1) = min(d(U → I9 → R1), d(U → I10 → R1)).

3.2.3 Object Pruning
After the algorithm finds a current answer set A (i.e., the best answer so far) for
a user U ’s k-NN query, this step keeps track of the longest driving time Amax

from U to the objects in A, i.e., Amax = max{t(U → Ri)|Ri ∈ A}. It uses Amax

to prune the candidate objects to further reduce the number of external requests
to the Web mapping service. The basic idea is that a candidate object can be
pruned safely if the smallest possible driving time from U to the object is not
shorter than Amax, because the object cannot be part of a query answer. The
smallest possible driving time of a candidate object is calculated by dividing the
distance of the shortest path from the user to the object by the maximum allowed
driving speed of the underlying road network. Whenever Amax is updated, this
step checks all unprocessed candidate objects and prunes objects that cannot be
part of the query answer. After removing an object from a group, if the group
becomes empty, the corresponding intersection is also removed from the vertex
set V ′

u.

4 Extensions

In this section, we present two extensions to our advanced k-NN query pro-
cessing algorithm. The first extension enables our algorithm to support one-way
road segments (Section 4.1). Our algorithm with the second extension can group
users for shared execution to further reduce the number of external requests
(Section 4.2).

4.1 One-Way Road Segments

In real world, a street could be only one-way, so it is essential to extend our
algorithm to support one-way road segments. The basic algorithm can be easily
extended to support one-way streets by using a directed graph to model a road
network. Figure 9 depicts an example where the objects on the highlighted road
segments are probably reached from user U with the user-specified maximum
driving time tmax. In this example, edges I10I14 and I11I12 are no longer con-
sidered, compared to the road network with only bi-directional road segments
depicted in Figure 4.
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To enable our algorithm to support one-way road segments, we only need to
slightly modify the object grouping methods.

The MinIn method. After the basic algorithm finds a set of candidate objects,
the MinIn method constructs a directed graph Gu = (Vu, Eu) where Eu is a set
of road segments containing some candidate objects and Vu is set of vertices of
the edges in Eu. The degree of each vertex in Vu is calculated by the number
of its outgoing edges in Eu. The basic idea of the greedy algorithm is that a
vertex in Vu with the highest degree is selected to the result vertex set V ′

u.
Then, the edges of the selected vertex are removed from Eu and the degree of
other adjacent vertices are updated accordingly. Any vertex with no edges is also
removed from Vu.

Figure 12 depicts an example, where six candidate objects are found by the
basic algorithm. Since there are four edges containing some candidate objects,
we construct a directed graph Gu with Eu = {I5I9, I9I10, I2I6, I7I11} and Vu =
{I2, I5, I6, I7, I9, I10, I11}. Since I9 has two outgoing edges I9I5 and I9I10, the
degree of I9 is two (Figure 11a). Figure 11a shows that I9 has the largest degree,
I9 is selected to V ′

u and I9 is removed from Vu. After the edges of I9 are removed,
I5 and I10 have no more edges, so they both are deleted from Vu. Then, since I6

is closer to U than I11, I6 is selected (Figure 11b). I11 is next to be selected to
V ′

u (Figure 11c). After deleting I7, Vu becomes empty (Figure 11d), so the MinIn
method is done. The candidate objects are grouped into three groups indicated
by dotted rectangles, i.e., I9 = {R1, R2}, I6 = {R4, R5}, and I11 = {R8, R9}, as
illustrated in Figure 12.

The NearestIn method. Since a candidate object on a one-way road segment
can only be reached from a user through its starting intersection, the object is
simply grouped to the starting intersection. For example, object R1 is grouped
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to I9, in Figure 12. However, a candidate object is grouped to the nearest inter-
section for a two-way road segment.

4.2 Grouping Users for Shared Execution

To further improve the system performance of a database server with a very high
workload, e.g., a large number of users or continuous queries, we design another
shared execution for grouping users. Similar to object grouping, we consider
intersections in the road network as representative points. The database server
only needs to issue one external request from the intersection of a user group Gu

to the intersection of an object group Go to estimate the driving time from each
user Ui in Gu to each object Rj in Go. In general, our algorithm with the user
grouping extension has five main steps.

User grouping. The key difference between user grouping and object grouping
is that users are moving. Grouping users has to consider their movement direc-
tion, so a user is grouped to the nearest intersection to which the user is moving.
Figure 10 depicts an example, where user A on edge I9I10 is moving towards
I10, so A is grouped to I10. Similarly, users D and E are also grouped to I10.
Users C and B on edges I1I2 and I6I2, respectively, are both moving to I2, so
they are grouped to I2.

Candidate objects. This step uses the basic algorithm (described in Sec-
tion 3.1) to find a set of candidate objects R for a user group Gu. Since the
users in Gu may have different user-required maximum driving times, the ba-
sic algorithm finds the candidate objects that are within the largest required
maximum driving time of the intersection of Gu. Consider the user group of in-
tersection I10 in Figure 10, if the required maximum driving times of users A,
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D, and E are 5, 10, and 20 minutes, respectively, the basic algorithm finds a set
of candidate objects within 20 minutes driving time from I10.

Object grouping. This step employs one of the object grouping methods pre-
sented in Section 3.2.1 to group candidate objects in R to intersections.

Driving time calculation. For each user group Gu, our algorithm processes the
object groups one by one based on the distance between their intersection and the
intersection of Gu in ascending order. Such a processing order not only gives more
pruning power to the object pruning step, but it also provides a fair response
time for the users in Gu. When our algorithm finds that a candidate object
cannot be part of answers of any users in Gu, the object is pruned. Similarly,
when we guarantee that the remaining candidate objects in R cannot be part
of a user’s answer, the user’s current answer is returned to the user without
waiting the completion of processing all the queries issued by the users in Gu.
After the database server retrieves the route and driving time information from
the intersection of Gu (Iu) to the intersection of an object group Go (Io), this step
computes the driving time from Iu to each object Rj in Go, i.e., t(Iu → Rj), as
presented in Section 3.2.2. Then, this step estimates the driving time from each
user Ui in Gu to Iu, i.e., t(Ui → Iu). Since a user is grouped to an intersection to
which the user is moving, the driving time from the user Ui to Iu has to be added
to the driving time from Iu to each object Rj in Go. The user is either on the
first road segment IuIp of the route retrieved from the Web mapping service or
on another road segment IuIq connected to IuIp, so we use the driving speed of
IuIp to estimate the required diving time by t(Ui → Iu) = t(Iu → Ip)× d(Ui→Iu)

d(Iu→Ip) ;
hence, the driving time from Ui to Rj is t(Ui → Rj) = t(Ui → Iu)+ t(Iu → Rj).

Object pruning. After the algorithm finds a current answer set Ai (i.e., the
best answer so far) for each user Ui in a user group Gu, this step keeps track of
the longest driving time Amaxi from Ui to the objects in Ai and the smallest
possible driving time AminG (Rj) from any user Ui in Gu to an unprocessed
candidate object Rj ∈ R. AminG (Rj) is calculated by dividing the distance of
the shortest path from Ui to Rj by the maximum allowed driving speed of the
underlying road network. The step finds the largest value of Amaxi of Gu, i.e.,
AmaxG = max{Amaxi |Ui ∈ Gu}. For a candidate object Rj in R, if AminG (Rj) ≥
AmaxG , Rj is pruned from Gu because Rj cannot be part of any query answer.
Whenever AmaxG is updated, this step checks the candidate objects in R. If
an object group becomes empty, the intersection of the object group is removed
from V ′

u. If Amaxi < min{AminG (Rj)|Rj ∈ R}, any unprocessed candidate object
cannot be part of Ui’s query answer; thus, Ui’s current answer is returned to Ui

and Ui is removed from Gu. The processing of Gu is done if all the intersections
in V ′

u have been processed/pruned or Gu becomes empty.

4.3 Performance Analysis

We now evaluate the performance of our algorithm. Let M and N be the number
of users and the number of objects in the database server, respectively. Without
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any optimization, a naive algorithm issues N external requests for each user;
hence, the total number of external requests is CostN = N × M . By using
the basic algorithm, the database server executes a range query to find a set of
candidate objects for each user. Suppose the number of candidate objects for user
Ui is αi; the total number of external requests of M users is CostB =

∑M
i=1 αi.

Since usually αi � N , CostB � CostN .
Our efficient algorithm further uses object- and user-grouping shared execu-

tion schemes to reduce the number of external requests. For each user group Gj ,
our algorithm uses one of the object grouping methods to group its candidate
objects. Suppose that the number of user groups is m and the number of object
groups is βj . The total number of required external requests is CostE =

∑m
j=1 βj .

In general, m � M and βi � αi � N , so CostE � CostB � CostN . We will
confirm our performance analysis through the experiments in Section 5.

5 Performance Evaluation

In this section, we evaluate our efficient k-NN query processing algorithm us-
ing spatial mashups in a real road network of Hennepin County, MN, USA. We
select a square area of 8 × 8 km2 that contains 6,109 road segments and 3,593
intersections, and the latitude and longitude of its left-bottom and right-top cor-
ners are (44.898441, -93.302791) and (44.970094, -93.204015), respectively. The
maximum allowed driving speed is 110 km per hour. In all the experiments, we
compare our advanced algorithm with user grouping (UG) and object grouping,
including MinIn and NearestIn, which are denoted as MI-UG and NI-UG, re-
spectively, with the basic algorithm. We first evaluate the performance of our
algorithm through a large-scale simulation (Section 5.1), and then evaluate its
accuracy through an experiment using Google Maps [15] (Section 5.2).

5.1 Simulation Results

Unless mentioned otherwise, we generate 10,000 objects and 10,000 users that
are uniformly distributed in the road network for all the simulation experiments.
The default user required maximum driving time (tmax) is 120 seconds and the
requested number of nearest objects (k) is 20. We measure the performance of
our algorithm in terms of the average number of external requests per user to
the Web mapping service and the average query response time per user.

Effect of the number of objects. Figure 13 depicts the performance of our
algorithms with respect to increasing the number of objects from 4,000 to 20,000.
Our algorithms, i.e., MI-UG and NI-UG, outperform the basic algorithm. The
performance of our algorithms is only slightly affected by the increase of the
number of objects (Figure 13a). The results confirm that our algorithms can scale
up to a large number of objects. Figure 13b shows the average query response
time of our algorithms. The average query response time is the sum of the average
query processing time of the algorithm and the multiplication of the average
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Fig. 13. Number of objects

number of external queries per user and the average response time per external
request. The average response time per external request is 32 milliseconds that
is derived from the experiments (Section 5.2).

Effect of the number of users. Figure 14 gives the performance of our algo-
rithms with an increase of the number of users from 4,000 to 20,000. The results
also show that our algorithms outperform the basic algorithm. It is expected
that MI-UG needs smaller numbers of external requests than NI-UG. Since our
algorithms effectively group users to intersections for shared execution, when
there are more users, the number of external requests reduces.

Effect of the user-required maximum driving time. Figure 15 shows
the performance of our algorithms with various user-required maximum driv-
ing times (tmax) that are increased from a range of [60, 120] to [60, 600] seconds.
When tmax gets longer, more candidate objects can be reached by the user; thus,
the number of external requests increases. The results also indicate that the in-
crease rate of our algorithms is much smaller than that of the basic algorithm,
so our algorithms significantly improve the system scalability.

In summary, all the simulation results consistently show that our algorithms
outperform the basic algorithms, in terms of both the number of external re-
quests to the Web mapping service and the query response time. The results
also confirm that our algorithms effectively scale up to a large number of ob-
jects, a large number of users, and long user-required maximum driving times.

5.2 Experiment Results

To evaluate the accuracy of our query processing algorithm, we implement it
with the proposed object and user grouping schemes using the Google Maps [15].
Because Google Maps allows only 2,500 requests per day for evaluation users,
all the experiments in this section contain 100 users and 500 objects that are
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uniformly distributed in the underlying road network. We evaluate the accuracy
of the driving time estimation and the accuracy of k-NN query answers.

Accuracy of the driving time estimation. The first experiment evaluates
the accuracy of the driving time estimation used in object- and user-grouping
methods with respect to varying the user required maximum driving time tmax

from 120 to 600 seconds, as depicted in Figure 16. We compare the accuracy of
the driving time estimation of our algorithms MI-UG and NI-UG with the basic
algorithm which retrieves the driving time from each user to each object from
the Google Maps directly and finds query answers. The accuracy of an estimated
driving time is computed by:

Accuracy of estimated driving time (Acctime) = 1 − min

(
|T̂ − T |

T
, 1

)
, (1)

where T and T̂ are the actual driving time (retrieved by the basic algorithm)
and the estimated one, respectively, and 0 ≤ Acctime ≤ 1. The results show that
the accuracy of our algorithms is at least 0.92; our algorithms achieve highly
accurate driving time estimation. Since MI-UG generates the smallest number
of external requests, its accuracy is worse than NI-UG.

Accuracy of query answers. The second experiment evaluates the accuracy
of k-NN query answers returned by our algorithms MI-UG and NI-UG with
respect to increasing the required number of nearest objects (k) from 1 to 50.
The accuracy of a query answer returned by our algorithms is calculated by:

Accuracy of a query answer (Accans) =
|Â ∩ A|
|A| , (2)

where A is an exact query answer returned by the basic algorithm and Â is a
query answer returned by our algorithms and 0 ≤ Accans ≤ 1. Figure 17 shows
that our algorithms can provide highly accurate query answers. When k = 1,
the accuracy of all our algorithms is over 87%. When k increases, the accuracy
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of our algorithms improves. Therefore, the results confirm that our algorithms
not only effectively reduce the number of external requests to the Web mapping
service, but they also provide highly accurate k-NN query answers.

6 Related Work

Existing location-based query processing algorithms can be categorized into two
main classes: location-based queries in time-independent spatial networks and in
time-dependent spatial networks. (1) Time-independent spatial networks. In this
class, location-based query processing algorithms assume that the cost or weight
of a road segment, which can be in terms of distance or travel time, is constant
(e.g., [5, 18, 19]). These algorithms mainly rely on pre-computed distance or
travel time information of road segments in road networks. However, the actual
travel time of a road segment may vary significantly during different times of the
day due to dynamic traffic on road segments [9, 10]. (2) Time-dependent spatial
networks. The location-based query processing algorithms designed for time-
dependent spatial networks have the ability to support dynamic weights of road
segments and topology of a road network, which can change with time. Location-
based queries in time-dependent spatial networks are more realistic but also more
challenging. George et al. [11] proposed a time-aggregated graph, which uses time
series to represent time-varying attributes. The time-aggregated graph can be
used to compute the shortest path for a given start time or to find the best start
time for a path that leads to the shortest travel time. In [9, 10], Demiryurek
et al. proposed solutions for processing k-NN queries in time-dependent road
networks where the weight of each road segment is a function of time.

In this paper, we focus on k-nearest-neighbor (NN) queries in time-dependent
spatial networks. Our work distinguishes from previous work [9, 10, 11] is that
our focus is not on modeling the underlying road network based on different
criteria. Instead, we rely on third party Web mapping services, e.g., Google
Maps, to compute the travel time of road networks and provide the direction
and driving time information through spatial mashups. Since the use of external
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requests to access route information from a third party is more expensive than
accessing local data [13], we propose a new k-NN query processing algorithm for
spatial mashups that uses shared execution and pruning techniques to reduce
the number of external requests and provide highly accurate query answers.

There are some query processing algorithms designed to deal with expen-
sive attributes that are accessed from external Web services (e.g., [13, 20, 21]).
To minimize the number of external requests, these algorithms mainly focused
on using either some cheap attributes that can be retrieved from local data
sources [13, 20] or sampling methods [21] to prune candidate objects, and they
only issue absolutely necessary external requests. The closest work to this paper
is [13], where Levandoski et al. developed a framework for processing spatial
skyline queries by pruning candidate objects that are guaranteed not to be part
of a query answer and only issuing an external request for each remaining can-
didate object to retrieve the driving time from the user to the object. However,
all previous work did not study how to use shared execution techniques and the
road network topology to reduce the number of external requests to external
Web services that is exactly the problem that we solved in this paper.

7 Conclusion

In this paper, we proposed a new k-nearest-neighbor query processing algorithm
for a database server using a spatial mashup to access driving time from a Web
mapping service, e.g., Google Maps. We first designed two object grouping meth-
ods (i.e., MinIn and NearestIn) to group objects to intersections based on the
road network topology to achieve shared execution and use a pruning technique
to reduce the number of expensive external requests to the Web mapping service.
We also extended our algorithm to support one-way road segments, and designed
a user grouping method for shared execution to further reduce the number of
external requests. We compare the performance of our algorithms with the basic
algorithm through simulations and experiments. The results show that our algo-
rithms significantly reduce the number of external requests and provide highly
accurate of k-NN query answers.
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Abstract. Location data generated from GPS equipped moving objects
are typically collected as streams of spatiotemporal 〈x, y, t〉 points that
when put together form corresponding trajectories. Most existing studies
focus on building ad-hoc querying, analysis, as well as data mining tech-
niques on formed trajectories. As a prior step, trajectory construction
is evidently necessary for mobility data processing and understanding,
including tasks like trajectory data cleaning, compression, and segmen-
tation so as to identify semantic trajectory episodes like stops (e.g. while
sitting and standing) and moves (while jogging, walking, driving etc).
However, semantic trajectory construction methods in the current liter-
ature are typically based on offline procedures, which is not sufficient for
real life trajectory applications that rely on timely delivery of computed
trajectories to serve real-time query answers. Filling this gap, our paper
proposes a platform, namely SeTraStream, for online semantic trajectory
construction. Our framework is capable of providing real-time trajectory
data cleaning, compression, segmentation over streaming movement data.

1 Introduction

With the growth of location-based tracking technology like GPS, RFID and
GSM networks, an enormous amount of trajectory data are generated from var-
ious real life applications, including traffic management, urban planning and
geo-social networks. A lot of studies have already been established on trajecto-
ries, ranging from data management to data analysis. The focus of trajectory
data management includes building data models, query languages and imple-
mentation aspects, such as efficient indexing, query processing, and optimization
techniques [12][25]; whilst the analysis aims at trajectory data mining includ-
ing issues like classification, clustering, outlier detection, as well as trajectory
pattern discovery (e.g. sequential, periodic and convoy patterns) [9][13][20][21].
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Recently, semantic trajectory computation has attracted the research inter-
est [1][3][29][30][31][32]. The focus of semantic trajectory construction is initially
on the extraction of meaningful trajectories from the raw positioning data like
GPS feeds. Moreover, sensory elements placed on vehicles can provide additional
lower-scale information about their movement. Semantic trajectories manage to
encompass both objects’ spatiotemporal movement characteristics (at a certain
level of abstraction) as well as useful information regarding objects’ movement
patterns (e.g dwelling, speeding, tailgating) and social activities (see Fig. 1) as-
signed to different time intervals throughout their lifespan. Current methods of
such kind of trajectory construction are mainly offline [1][3][29][30][31][32], which
is not enough for modern, real life applications, because positioning data of mov-
ing objects are continuously generated as streams and corresponding querying
operations often demand result delivery in an online and continuous fashion.

home office market home 

bus metro walk 

<x,y,t> streaming movement data 

Fig. 1. From streaming movement data to semantic trajectory

Motivating Examples. Online semantic trajectory construction can be useful
in many traffic monitoring scenarios where authorities are interested in identify-
ing apart from recent (i.e., within a restricted time window) objects’ trajectory
representation, the behavior of the drivers by posing queries of the form: “Re-
port every τ secs the movement and driving behavior of the objects within area A
during the last T minutes”. In that, authorities are able to continuously diagnos-
ing streets where the density of vehicles whose drivers tend to have aggressive
(speeding, tailgating, driving at the edges of the lanes etc.) behavior has recently
become high, thus enabling suitable placement and periodic rearrangement of
traffic wardens and patrol cars. As another example, state-of-the-art navigation
services (http://world.waze.com/) provide the potential for combining traditional
routing functionality with social networking facilities. Online semantic trajec-
tory construction allows users to acquire a compact picture of the movement
and the social activities of interconnected friends around their moving area.

This paper proposes SeTraStream, a real-time platform that can progressively
process raw mobility data arriving within a restricted time window and compute
semantic-aware trajectories online. Before that, a number of data preparation
steps need to be considered so as to render data easy to handle and ready to
reveal profound movement patterns. The talk regards data cleaning and compres-
sion that precede the online segmentation and semantic trajectory computation
procedures. Data cleaning is dealing with trajectory errors, including systematic
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errors (outlier removal) and random errors (smooth noise) [22][31]; compres-
sion considers data reduction because trajectory data grow rapidly and lack of
compression sooner or later leads to exceeding system capacity [16][23]; segmen-
tation is used for dividing trajectories into episodes where each episode is in some
sense homogeneous (e.g. sharing similar velocity, direction etc.) [3] and thus ex-
presses unchanged movement pattern; semantic computation can further extract
high-level trajectory concepts like stops/moves [29], and even provide additional
tagging support like the activity for stops (e.g. home, office, shopping) and the
transportation mode (e.g. metro, bus, walking) for moves [1][30][31][33].

Challenges. It is non-trivial to establish a real-time semantic trajectory compu-
tation platform. There exist new technical challenges compared to the existing
offline solutions: (1) Efficient Computation: Large amounts of movement data
are generated continuously, therefore we need to come up with more efficient
algorithms which can handle different levels of trajectories in an acceptable
time – including all data processing aspects like data cleaning, compression,
segmentation, and semantic tagging; (2) Suitable Trajectory Segmentation Deci-
sion Making: Algorithms in offline trajectory construction typically tune a lot of
thresholds placed on movement features (like acceleration, direction alteration,
stop duration etc.) to find their most suitable values, sometimes in a per object
fashion. However, in the real-time context the movement attribute distribution
may tremendously vary over time and continuous parameter tuning is prohibitive
for real-time semantic trajectory construction. Thus, suitable techniques should
not rely on many predefined thresholds on certain movement features but in-
stead consider pattern alterations during the trajectory computation process.
(3) Semantic Trajectory Tagging: After trajectory segmentation, the outcomes
should provide the potentials for semantic tags to be explored, e.g. characteriza-
tion of the activity (shopping, work) or means of movement that is taking place
in episodes (e.g. car, metro, bus in Fig. 1).

Contributions. Towards the objective of real-time semantic trajectory con-
struction, the core contributions of our paper are:

– Online Trajectory Preprocessing. As a prior step for constructing semantic
trajectories, we significantly redesign trajectory data preprocessing in the
real-time context, including online cleaning and online compression. Our
cleaning includes an one-loop procedure for removing outliers and alleviating
errors based on a Kernel smoothing method. SeTraStream’s compression
scheme uses a combination of the Synchronized Euclidean Distance (sed)
and the novel definition of a Synchronized Correlation Coefficient (scc).

– Online Trajectory Construction. We design techniques for finding division
points which infer trajectory episodes during online trajectory segmenta-
tion. SeTraStream’s segmentation outcomes are later easy to handle and a
semantic tagging classifier can then be applied for tag assignment on identi-
fied episodes, e.g. “driving”, “jogging”, “dwelling for shopping” etc.

– Implementation Platform & Evaluation. We implement SeTraStream’s multi-
layer procedure for semantic trajectory construction and evaluate it, con-
sidering different real life trajectory datasets. The results demonstrate the
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ability of SeTraStream to accurately provide computed semantic-aware tra-
jectories in real-time, readily available for applications’ querying purposes.

The rest of the paper proceeds as follows. In the upcoming section we dis-
cuss existing related works. Section 3 describes the preliminaries for semantic
trajectory computation in SeTraStream, while in section 4 we present the data
preparation procedures regarding incoming data cleaning and compression. In
Section 5 we present SeTraStream’s online segmentation algorithms and in Sec-
tion 6 we experimentally evaluate our techniques. Eventually, section 7 includes
concluding remarks and future work considerations.

2 Related Work

Trajectory construction is the procedure of reconstructing trajectories from the
original sequence of spatiotemporal records of moving objects. Tasks involved in
this procedure mainly include data cleaning, data compression and data segmen-
tation. Data cleaning is dealing with trajectory errors which are quite common
in GPS alike trajectory recordings. There are two types of errors: the outliers
which are far away from the true values and need to be removed; the noisy data
that should be corrected and smoothed. Several works [22][28][31] design specific
filtering methods to remove outliers and smoothing methods to deal with small
random errors. Regarding network-constrained moving objects, a number of map
matching algorithms have been designed to refine the raw GPS records [2][16].

Trajectory data are generated continuously, in a high frequency and sooner
or later grow beyond systems’ computational and memory capacity. Therefore,
data compression is a fundamental task for supporting scalable applications. The
spatiotemporal compression methods for trajectory data can be classified into
four types: i.e. top-down, bottom-up, sliding window, and opening window. The
top-down algorithm recursively splits the trajectory sequence and selects the
best position in each sub-sequence. A representative top-down method is the
Douglas-Peucker (DP) algorithm [6], with many extended implementation tech-
niques. The bottom-up algorithm starts from the finest possible representation,
and merges the successive data points until some halting conditions are met. Slid-
ing window methods compress data in a fixed window size; whilst open window
methods use a dynamic and flexible window size for data segmentation. To name
but a few methods: Meratnia et al. propose Top-Down Time Ratio (TD-TR) and
OPen Window Time Ratio (OPW-TR) for the compression of spatiotemporal
trajectories [23]. In addition, the work of [26] provides two sampling based com-
pression methods: threshold-guided sampling and STTrace to deal with limited
memory capacity.

Recently, semantic-based trajectory model construction has emerged as a hot
topic for reconstructing trajectories, such as the stop-move concept in [29]. From
a semantic point of view, a raw trajectory as a sequence of GPS points can be
abstracted to a sequence of meaningful episodes (e.g. begin, move, stop, end).
Yan et al. design a computing platform to progressively generate spatiosemantic
trajectories from the raw GPS tracking feeds [31][32]. In that approach, different
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levels of trajectories are constructed, from spatiotemporal trajectories, structured
trajectories to the final semantic trajectories, in four computational layers, i.e.
data preprocessing, trajectory identification, trajectory structure and semantic
enrichment.

Trajectory episodes like stops and moves can be computed with given ge-
ographic artifacts [1] or only depend on spatiotemporal criteria like density,
velocity, direction etc. [24][27][31]. Alvares et al. develop a mechanism for the
automatic extraction of stops that is based on the intersection of trajectories and
geometries of geographical features considered relevant to the application [1]. In
this approach the semantic information is limited to geographic data that inter-
sect the trajectories for a certain time interval. This approach is restricted to
applications in which geographic information can help to identify places visited
by the moving object which play the essential role.

Recently, more advanced methods use spatiotemporal criteria to perform tra-
jectory segmentation and identify episodes like stops/moves: Yan et al design
a velocity-based method providing a dynamic velocity threshold on stop com-
putation, where the minimal stop duration is used to avoid false positives (e.g.
congestions) [31]; several clustering-based stop identification methods have been
developed, e.g. using the velocity [24] and direction features [27] of movement.
Finally, Buchin et al. provide a theoretical trajectory segmentation framework
and claim that the segmentation problem can be solved in O(nlogn) time [3].

Online segmentation concepts can be traced back to the time series and sig-
nal processing fields [17], but not initially for trajectories. Although, some of the
above works are capable of adapting to an online context [2][16], none of them
focuses on revealing the profound semantics present in the computed trajecto-
ries in real-time. To the best of our knowledge, online algorithms for semantic
trajectory construction are significantly missing. Our objective is to design such
online computation methods for real-time semantic trajectory construction.

3 Preliminaries

3.1 Data and Semantic Trajectory Models

In our setting, a central server continuously collects the status updates of moving
objects that move inside an area of interest – monitoring area of moving objects.
First, such updates involving an object Oi contain spatiotemporal 〈x, y, t〉 points
forming its “Raw Location Stream”.

Definition 1 (Raw Location Stream). The continuous recording of spa-
tiotemporal points that update the status of a moving object Oi, i.e. 〈Q�s

1 , Q�s
2 , . . . ,

Q�s
n 〉, where Q�s

i = 〈x, y, t〉 is a tuple including moving object’s Oi, position 〈x, y〉
and timestamp t.

By means of the raw location stream, we can derive information of movement
features such as acceleration, speed, direction etc., which make up a “Location
Stream Feature Vector” (Q�f ). Moreover, depending on the application, updates
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include additional attributes such as heading, steering wheel activity, lane po-
sition, distance to headaway vehicle (e.g to assess tailgating), displacement and
so on. These features formulate a “Complementary Feature Vector” (Qcf ). Con-
sequently, the two types of feature vectors combined together are forming the
“Movement Feature Vector” (Q = 〈Q�f , Qcf〉) of d dimension describing d at-
tributes of Oi movement at a specific timestamp.
Definition 2 (Movement Feature Vector). The movement attributes of ob-
ject Oi at timestamp t can be described by a d-dimensional vector that is the
concatenation of the location stream feature vector and the complementary fea-
ture vector Q = 〈Q�f , Qcf〉.
– Location Stream Feature Vector (Q�f): The movement features of object Oi

that can be derived from the raw location stream tuple Q�s.
– Complementary Feature Vector (Qcf): The movement features that cannot be
derived from the location stream but are explicitly included in Oi’s status updates.

To provide better understanding and mobility data abstraction, in [29][31] the
concept of semantic trajectories is introduced, where the trajectory is thought of
as a sequence of meaningful episodes (e.g. stop, move, and other self-contained
and self-correlated trajectory portions).

Definition 3 (Semantic Movement). A semantic movement or trajectory con-
sists of a sequence of meaningful trajectory units, called “episodes”, i.e. Tsem =
{efirst, . . . , elast}.
– An episode (e) groups a subsequence of the location stream (a number of con-
secutive 〈x, y, t〉 points) having similar movement features.
– From a semantic data compression point of view, an episode stores the subse-
quence’s temporal duration as well as its spatial extent ei = (timefrom, timeto,
geometrybound, tag).

The geometrybound is the geometric abstraction of the episode, e.g. the bounding
box of a stop area or the shape trace of roads that the moving object has followed.
The term tag in the last part of the previous definition refers to the semantics
of the episode, i.e. characterization of the activity or means of movement that
is taking place in an episode (see Fig. 1).

3.2 Window Specifications

The window specification is a fundamental concept in streaming data process-
ing [8]. In our context, the time window size T expresses the most recent portion
of semantic trajectories the server needs to be informed about. An additional
parameter τ specifies a time interval in which client side devices, installed on
moving objects, are required to collect and report batches of their time ordered
status updates [8]. Thus, T

τ batches are included in the window. Obviously, posed
prerequisites are: 1) τ � T and 2) T mod τ = 0. As the window slides, for each
monitored object Oi, the most aged batch expires and a newly received one is
appended to it. The size of τ may vary from a few seconds to minutes depending
on the application’s sampling frequency. Small τ values enable fine-tuned episode
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extend determination with the make-weight of increased processing costs, while
larger τ values reduce the processing load by increasing the granules that are
assigned to episodes.

3.3 SeTraStream Overview

Having presented the primitive concepts utilized by our framework, in this sub-
section we outline SeTraStream’s general function. Details will be provided in
the upcoming sections. The whole process is depicted in Fig. 2. Upon the receipt
of a batch containing the status updates including Q�s, Qcf vectors at different
timestamps in τ , a cleaning and smoothing technique is applied on it (Step 1 on
the right part of the figure). Consequently, a novel compression method (Step
2) is applied on the batch considering both Q�s, Qcf characteristics while per-
forming the load shedding. Finally, at a third step Q�f , Qcf feature vectors are
extracted, a corresponding matrix is formed and the batch is buffered until it
is processed at the SeTraStream’s segmentation stage. During the segmentation
stage (left part of Fig. 2), a previously buffered batch is dequeued and compared
with other batches’ feature matrices in Oi’s window. SeTraStream seeks both for
short and long term changes in Oi’s movement pattern, and identifies an episode
whenever feature matrices are found to be dissimilar based on the RV-Coefficient
(to be defined later) and a specified division threshold σ.

…
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Fig. 2. The SeTraStream Framework

4 Online Data Preparation

As already described, arriving batches involving monitored objects contain their
raw location stream, as well as complementary feature vectors. In this section,
we discuss the initial steps of data preparation before proceeding to episode de-
termination (i.e. trajectory segmentation). The talk regards three steps depicted
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in the right part of Fig. 2: (1) an online cleaning step that deals with noisy tu-
ples, (2) an online compression stage that manages to reduce both the available
memory usage and the processing cost in computing trajectories, and (3) ex-
tracting movement feature vectors, including both the location stream features
and complementary features. Table 1 summarizes the symbology utilized in the
current and the upcoming sections as well.

Table 1. Notations of symbols

Symbol Description

N Number of monitored objects

T , τ Window size and batch interval

d Number of movement features

Oi The i-th monitored object id

Bi The i-th batch from a candidate div. point

Q�s Tuple including 〈x, y, t〉 triplet of an objects’ raw location stream

Q�f Feature vector derived from the raw location stream at t

Qcf Complementary feature vector at timestamp t

δoutlier, δsmooth, σ Filtering, smoothing and segmentation thresholds respectively

res The residual between the smoothed and the true value

sed, scc Synchronous Euclidean Distance and Correlation Coefficient

W�, Wr A left and right workpiece respectively

ei The i-th episode in an object’s window

4.1 Online Cleaning

The main focus of trajectory data cleaning is to remove GPS errors. Jun et al.
[14] summarize two types of GPS errors: systematic errors (i.e. the totally differ-
ent GPS positioning from the actual location which is caused by low number of
satellites in view, Horizontal Dilution Of Position HDOP etc.) and random er-
rors (i.e. the small errors up to ±15 meters which can be caused by the satellite
orbit, clock or receiver issues). These systematic errors are also named “out-
liers”, where researchers usually design filtering methods to remove them; whilst
random errors are small distortions from the true values and their influences can
be decreased by smoothing methods. Many offline GPS data cleaning works can
be found such as [14][28][31].

In the context of streaming data, online filtering & smoothing of streaming
tuples has become a hot topic [5][10][11][15][19]. Different from the focus of prior
works on data accuracy and distribution estimation, our primary concern of
cleaning streaming movement data is refining the data points that have sub-
stantial distortion of movement features for computing semantic trajectories1.

For efficient data cleaning, we need to combine online filtering and online
smoothing in a single loop. When a new batch B regarding object Oi arrives
(right part of Fig.2), we do the following cleaning steps:
1 Qcf values are not examined as the micro-sensory devices of vehicles usually possess

self-calibrating capabilities.
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1. Build a kernel based smoothing model: (x̂, ŷ) =
∑

i k(ti)(xti
,yti

)∑
i k(ti)

where k(t) is

a function with the property
∫ |B|
0

k(t)dt = 1. The kernel function describes
the weight distribution, with most of the weight in the area near the point. In

our experiments, as in [28], we apply the Gaussian kernel k(ti) = e−
(ti−t)2

2ß2 ,
where ß refers to the bandwidth of the kernel.

2. Calculate the residual between the model prediction and the true value 〈x, y〉
of the examined point Q�s

p , i.e. res =
√

(x̂ − x)2 + (ŷ − y)2.
3. By using a speed limit vlimit and the speed vQ�s

p−1
at the previous point Q�s

p−1,
respectively compute the outlier bound (δoutlier = vlimit × (tQ�s

p
− tQ�s

p−1
))

and the smooth bound (δsmooth = vQ�s
p−1

× (tQ�s
p
− tQ�s

p−1
) × 120%2).

4. Filter out the point if the residual is more than the outlier bound, i.e. res >
δoutlier , or replace the location of the point 〈x, y〉 with the smoothed value
〈x̂, ŷ〉 if the residual is between the outlier bound and the smooth bound, i.e.
δsmooth < res < δoutlier . Otherwise, we keep the original 〈x, y〉 of the point.

This cleaning method has taken both advantages of the distance based outlier
removal and the local-weighted kernel smoothing method with linear memory
requirements of O(|B|), where |B| is the size of a batch.

4.2 Online Compression

A primary concern when operating in a streaming setting regards the load shed-
ding with respect to incoming tuples. In the context of semantic trajectory com-
putation, this happens both for limiting the available buffer usage as well as to
reduce the processing cost [4][16][23][26]. In our approach, as both Definitions 2, 3
imply, the approximation quality of the mere spatiotemporal trajectories is not
our only concern. Semantic trajectories will be extracted based on additional
features other than those derived from spatiotemporal 〈x, y, t〉 points. On the
other hand, if we overlook the spatiotemporal trajectory approximation quality,
the portion of the movement features that rely on the pure location stream will
later be uncontrollably distorted. To cope with the previous requirements, we
propose a method and define a significance score suitable to serve our purposes.

Assume that a batch regarding object Oi is processed (step. 2 at right part of
Fig.2) and (Q�s

p−1, Q
�s
p ) is the last examined pair of points in it. When a new point

Q�s
p+1 is inspected, we first obtain the significance of Q�s

p from a spatiotemporal
viewpoint by fostering the Synchronous Euclidean Distance, defined as [23][26]:
sed(Q�s

p , Q�s
p−1, Q

�s
p+1)=

√
(xQ′�s

p
− xQ�s

p
)2+ (yQ′�s

p
− yQ�s

p
)2, with xQ′�s

p
= xQ�s

p−1
+

vx
Q�s

p−1Q�s
p+1

· (tQ�s
p
− tQ�s

p−1
) and yQ′�s

p
= yQ�s

p−1
+ vy

Q�s
p−1Q�s

p+1
· (tQ�s

p
− tQ�s

p−1
) while

vx, vy refer to the velocity vector (please refer to [26] for further details).
Nevertheless, sed constitutes an absolute number that lacks the ability to quan-

tify the particular significance of a point with respect to other spatiotemporal

2 Here, we increase the smooth bound by 20% of the location prediction provided by
the speed of the previous point.
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points within the current batch. In order to appropriately derive the aforemen-
tioned significance quantification, in SeTraStream’s compression scheme we nor-
malize sed and define the relative spatiotemporal significance SigSP :

SigSP (Q�s
p ) =

sed(Q�s
p , Q�s

p−1, Q
�s
p+1)

maxsed
(1)

with 0 ≤ SigSP (Q�s
p ) ≤ 1. The denominator maxsed denotes the current max-

imum sed of points in the batch. Obviously, increased SigSP (Q�s
p ) estimations

represent points of higher spatiotemporal significance.
Carefully inspecting sed’s formula, we can conceive that the intuition behind

its definition is to measure the amount of distortion that can be caused by
pruning the spatiotemporal point Q�s

p . That is, having omitted Q�s
p we could

virtually infer the respective data point at timepoint tQ�s
p

using the preceding
and succeeding ones (Q�s

p−1, Q
�s
p+1). And calculating Q′�s

p , sed(Q�s
p , Q�s

p−1, Q
�s
p+1)

measures the incorporated distortion.
Thus, as regards the complementary feature vectors of Oi we choose to base

the measure of their significance on the Correlation Coefficient (corr) metric.
First, fostering an attitude similar to that in sed’s calculation as explained in
the previous paragraph, we estimate the value at the i-th position of vector

Q′cf
p as: [Q′cf

p ]i = [Qcf
p−1]i +

[Qcf
p+1]i−[Qcf

p−1]i

t
Q

cf
p+1

−t
Q

cf
p−1

(tQcf
p

− tQcf
p−1

). Then, based on corr

we define the Synchronized Correlation Coefficient (scc) between (Q′cf
p , Qcf

p ) of
complementary feature vectors:

scc(Q′cf
p , Qcf

p ) =
E(Q′cf

p Qcf
p ) − E(Q′cf

p )E(Qcf
p )√

(E((Q′cf
p )2) − E2(Q′cf

p ))(E((Qcf
p )2) − E2(Qcf

p ))
(2)

where E() refers to the mean and −1 ≤ scc(Q′cf
p , Qcf

p ) ≤ 1.
The choice of scc is motivated by the fact that its stem, corr, possesses the

ability to indicate the similarity of the trends that are profound in the exam-
ined vectors rather than relying on their absolute values [5][10][11][19]. Hence, it
provides an appropriate way to identify (dis)similar patterns in the complemen-
tary vectors and can be generalized in order to detect similar patterns between
movement feature vectors in their entirety. Values of scc that are close to -1 ex-
hibit high dissimilarity between (Q′cf

p , Qcf
p ), indicating that omitting Qcf

p results
in higher pattern distortion. Calculating 1 − scc enables higher measurements
to account for more dissimilar patterns and taking one step further, min-max
normalization on 1 − scc allows (dis)similarity values lie within [0, 1]. Thus, we
eventually compute the relative significance of the complementary feature vector:

SigC(Qcf
p ) =

1 − scc(Q′cf
p , Qcf

p )
2max{(1 − scc)} (3)

In the context of our compression scheme, the more dissimilar (Q′cf
p , Qcf

p ) are,
the higher the probability to be included in the window should be. As a result,
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the overall significance Sig(Qp) of Qp can be estimated by the combination of
both the location stream feature SigSP (Q�s

p ) and the complementary feature
SigC(Qcf

p ). The weight balance between them is application dependent, though
we choose to treat them equally important [20]:

Sig(Qp) =
1
2
(SigSP (Q�s

p ) + SigC(Qcf
p )) (4)

Eventually, for a threshold 0 ≤ Sigthres ≤ 1, Qp remains in the batch when
Sig(Qp) ≥ Sigthres, or it is removed for compression purposes otherwise.

5 Semantic Trajectory Construction

We now describe the core of SeTraStream, the online trajectory segmentation
stage. This stage comes after data cleaning and compression utilizing the ex-
tracted feature vectors of a batch (step. 3 at right part of Fig.2).

5.1 Online Episode Determination – Trajectory Segmentation

Upon deciding the data points of a batch that are to be included in the window as
devised in the previous subsection, SeTraStream proceeds by examining episode
existence in T . To start with, we assume the simple case of the current window
consisting of a couple of τ -sized batches (i.e. T = 2τ). We will henceforth refer to
each part of the window composed of a number of compressed batches as work-
piece. Intuitively, distinguishing episodes is equivalent to finding a division point,
where the movement feature vectors on its left and right sides are uncorrelated
and thus correspond to different movement patterns. In our simple scenario, a
candidate division point is placed in the middle of the available workpieces.

Hence, we subsequently need to dictate a suitable measure in order to de-
termine movement pattern change existence. We already noted the particular
utility of the correlation coefficient on the discovery of trends [5][10][11][19], and
thus (in our context) patterns in the movement data. In this processing phase
movement feature vectors composing each workpiece essentially form a pair of
matrices for which correlation computation needs to be conducted. As a result,
we will reside to the RV-coefficient which constitutes a generalization of the cor-
relation coefficient for matrix data. We organize W� into a d×m matrix, where
d is the number of movement features and m represents a number of vectors
(at different timestamps) that are the columns of the matrix. Similarly, Wr is
organized in a d × n matrix i.e. n columns exist. The RV-Coefficient between
〈W�, Wr〉 is defined as:

RV (W�, Wr) =
Tr(W�W

′
�WrW

′
r)√

Tr([W�W ′
� ]2)Tr([WrW ′

r ]2)
(5)

where W ′
� , W

′
r refer to the transpose matrices, Tr() denotes the trace of a ma-

trix and 0 ≤ RV ≤ 1. RV values closer to zero are indicative of uncorrelated
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movement patterns. Based on a division point threshold σ workpieces W�, Wr

can be assigned to a pair of different episodes e� = (0, T − τ, geometrybound),
er = (T − τ + 1, T, geometrybound) when:

RV (W�, Wr) ≤ σ (6)

or to a single episode e = (0, T, geometrybound) otherwise.
Now, consider the general case of T covering an arbitrary number of batches. It

can easily be conceived that in a larger time window an alteration in the move-
ment pattern may happen: (a) instantly as a sharp change, or (b) in a more
smooth manner as time passes. As a result, upon the arrival of a new work-
piece Wr, we initially check for short-term changes in the patterns of movement.
We thus place a candidate division point between the newly received workpiece
and the last of the existing ones. Then the correlation between the movement
feature vectors present in 〈W1�, Wr〉 is computed. Notice that W1� this time pos-
sesses an additional subscript which denotes the step of the procedure, as will be
shortly explained. Similarly to our discussion in the previous paragraphs, when
RV1(W1�, Wr) is lower than the specified division threshold, a division point
exists and signals the end of the previous episode e� and starts a new one er.

No short-term change existence triggers our algorithm to proceed by seeking
long-term dis-correlations. For this purpose, we first examine RV2(W2�, Wr) dou-
bling the time scale of the left workpiece by going 2τ units back in the window
from the candidate division point. In case RV2 does not satisfy Inequality 6,
this procedure continuous by exponentially expanding the time scale of the left
workpiece in a way such that at the i-th step of the algorithm the size of Wi�

is 2(i−1)τ units and RVi(Wi�, Wr) is calculated. When Inequality 6 is satisfied
the candidate division point is a true division point which bounds the previous
episode ei = (timefrom, timeto, geometrybound) and constitutes the onset of a
new. Otherwise, Wr is rendered the current bound of the last episode by being
appended to it. If no long-term change is detected, the aforementioned expansion
ceases when either the beginning of the last episode or the start of T (in case
all previous batches have been attributed to the same episode) is reached, i.e.
no data points of the penultimate episode are considered since its extend has
already been determined.

The exponential workpiece expansion fostered here is inspired by the tilted
time window definition [8] as a general and rational way to seek movement pat-
tern changes in different time granularities. Other expansion choices can also
be applied. All of these options are orthogonal to our approaches and do not
affect the generic function of SeTraStream. Our approach manages to effec-
tively handle sliding windows as a slide of τ time units results in: (1) the ex-
piration of the initial batch of the first episode efirst of Oi which affects its
(timefrom, geometrybound) attributes and (2) the appendage of a newly received
batch that either extends the last episode elast (when no division point is de-
tected) or starts a new episode. The outcome of the online segmentation consists
of tuples TOi = {efirst, . . . , elast} representing objects’ semantic trajectories.
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5.2 Time and Space Complexity

The introduced trajectory segmentation procedure, premises that a newly ap-
pended batch will be compared with left workpieces that may be (depending
on whether a division point is detected) exponentially expanded until either the
previous episode end or the start of the window is reached. Based on this ob-
servation, the lemma below elaborates on the complexity of the checks required
during candidate division point examination.

Lemma 1. The time complexity of SeTraStream’s online segmentation proce-
dure, for N monitored objects, under exponential Wi� expansion is O(Nlog2(T

τ ))
per candidate division point.

Proof. For a single monitored object, the current window is composed of T
τ − 1

batches (excluding the one belonging to Wr). The worst case scenario appears
when no previous episode exists in the window and the candidate division point
is not proven to be an actual division point. By considering the exponential
workpiece expansion, comparisons (i.e., σ checks) may reach a number of k =
min{i ∈ N

∗ :
T
τ −1

2(i−1) ≥ 1} at most. Adopting logarithms on the previous expres-
sion and summing for N objects completes the proof. �
Now, recalling the definition of the RV-Coefficient measure, it can easily be
observed that its computation relies on the multiplication of the bipartite matri-
ces with their transpose. Assume that the number of d-dimensional movement
feature vectors in a cleaned and compressed batch are n. Based on the above
observation we can see that instead of maintaining the original form of the vec-
tors which requires O(d ·n) memory space, we can reduce the space requirements
during episode determination by computing the product of the d × n matrix of
the batch with its transpose. This reduces the space requirements to O(d2) per
batch since in practice d � n. So, to check a short-term change in the move-
ment patterns we do not need to store the full matrices of W1�, Wr which in this
case are composed of one batch each, but only the matrix products as described
above.

However, this point may not be of particular utility since left workpieces are
expanded during the long-term pattern alteration checks. A natural question
that arises regards whether or not the product Wi�W

′
i� can be expressed by

means of the multiplication of single batch matrices, with their transposes.

Lemma 2. Wi�W
′
i� is the sum of batch matrix products with their transposes:

Wi�W
′
i� =

∑2(i−1)

j=1 BjB
′
j, where Bj is used to notate the matrix formed by the

vectors in the j-th batch (from a candidate division point to the end of Wi�).

Proof. Let Wi� = [B1|B2| · · · |B2(i−1) ] the matrix of the (i-th) left workpiece
during the current division point check. Bjs are used to denote sub-matrices
belonging to individual batches that were appended to the workpiece. It is easy to
see that the transpose matrix can be produced by transposing these submatrices:
W ′

i� = [B′
1|B′

2| · · · |B′
2(i−1) ]. And then Wi�W

′
i� can be decomposed into BjB

′
j

products: Wi�W
′
i� = B1B

′
1 + B2B

′
2 + · · · + B2(i−1)B′

2(i−1) =
∑2(i−1)

j=1 BjB
′
j �
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Thus, for each batch we only need to store a square d× d matrix3, which deter-
mines the space complexity of online segmentation leading to Lemma 3.

Lemma 3. During the online episode determination stage of SeTraStream, the
memory requirements per object Oi are O(d2 T

τ ) and assuming N objects are
being monitored the total space utilization is O(d2N T

τ ).

5.3 Episode Tagging

Having detected an episode ei, SeTraStream manages to specify in an online fash-
ion the triplet (timefrom, timeto, geometrybound) describing its spatio-temporal
extend. The final piece of information associated with an episode regards its
tag as it was described in Section 3.1. Given application’s context, possible tag
instances form a set of movement pattern classes and notice that the instances
of the classes are predetermined for the applications we consider (Section 1).
Hence, the problem of episode tag assignment can be smelted to a trivial classi-
fication task, where the classifier can be trained in advance based on the collected
episodes (with features like segment distance, duration, density, avg. speed, avg.
acceleration, avg. heading etc.) and the detected episode ei can be timely clas-
sified based on the trained model and the episode features. Suitable techniques
include decision trees, boosting, SVM, neural or Bayesian networks [7]. Addi-
tional Hidden Markov Model based trajectory annotation can be referred to [30].

6 Experiments

In this section, we present our experimental results in real-time construction of
semantic trajectories from streaming movement data.

Experimental Setup. We utilize two different datasets: Taxi Data - this dataset
includes taxi trajectory data for 5 months with more than 3M GPS records,
which do not have any complementary features. We mainly use taxi data to
validate compression. It is non-trivial to get real life on-hand dataset with both
complementary features and the underlying segment ground-truth tags. There-
fore, we collect our own trajectory data by developing Python S60 scripts de-
ployed in a Nokia N95 smartphone, which can generate both GPS data and
accelerometer data from the embedded sensors. We calculate GPS features (e.g.
transformed longitude, latitude, speed, direction) as the location stream vectors
(Q�f ) and accelerometer features (e.g. mean, variance, magnitude, covariance of
the 3 accelerometer axis) as the complementary feature vectors (Qcf ). We term
the latter dataset as Phone Data within which, we also provide our own real
segment tags (e.g. standing, jogging, walking) to validate the online segmenta-
tion accuracy. For Phone Data, we also work on the GPS data from the data
campaign organized by Nokia Research Center - Lausanne, which has collected
185 users’ phone data with about 7M records in total [18][30].
3 We also keep the geometry bound of the batch that is utilized in the final episode

geometry bound determination as well as some additional aggregate statistics, of
minor storage cost, for classification and tag assignment in the next step.
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Fig. 3. Data cleaning (outlier removal and smoothing)

Data Cleaning. As described previously, our online data cleaning needs to con-
sider two types of GPS data errors, i.e. filtering outliers as systematic errors and
smoothing the random errors. The experimental cleaning results are shown in
Fig. 3: (a) sketches the original trajectory data; (b) identifies the outliers during
the online cleaning process; (c) and (d) present the original movement sequences
together with the final smoothed trajectories, where (c) includes the outliers in
the original sequences, whilst (d) removes them for better visualization.

Online Compression. Technically, compression makes sense when dealing with
large data sets, however both Taxi Data and the big part of Phone Data have
no complementary features (Qcf

p ) available but only the GPS features (Q�s
p ).

Thus, our current experiment validates the sensitivity of data compression rate
with respect to the spatiotemporal significance SigSP (Q�s

p ) on location streams,
without considering the significance of the complementary features SigC(Qcf

p ).
As shown in Fig. 4, we plot the compression rate sensitivity when applying
different thresholds on SigSP (Q�s

p ). The results are proportional when using the
Phone Data with respective Sig(Qp) thresholds.

Online Segmentation. SeTraStream’s procedure in online trajectory segmen-
tation relates to (1) initially computing the RV-coefficient between two work-
pieces RV (W�, Wr) and (2) expanding W� if RV (W�, Wr) is bigger than the given
threshold σ (otherwise, we identify a division point between two episodes). Re-
sults are shown in Fig. 5, where for T = 60s we can discover two main division
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points (with RV-coefficient< 0.6 and batch size τ < 16), which is consistent with
the underlying ground-truth tags. The stars in the figures are the real division
points in the streaming data, which indicate when user changes their movement
behaviors e.g. from jogging to walking and finally to standing.

Fig. 5 analyzes the sensitivity of using different batch sizes, where the best
outcome (i.e accurate episode extend determination) is τ = 8s; when τ = 16s,
we actually identify three division points, which is partially correct, since as we
can see there are only two real division points in the stream. Similarly, we also
investigate the segmentation sensitivity regarding different division thresholds σ
in Fig. 6. The best segmentation result is achieved when σ = 0.6.

Finally, we evaluate the time performance of SeTraStream’s trajectory seg-
mentation module. We measure the segmentation latency with 25 users in the
Phone Data. In the experiments, we used a laptop with 2.2 Ghz CPU and 4 Gb
of memory. From Fig.7 and Fig. 8, we can see the segmentation time is almost
linear, in both situations with different batch sizes (τ) and different division
thresholds (σ), which is quite consistent with Lemma 1.
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7 Conclusions and Future Work

In this paper, we proposed a novel and complete online framework, namely Se-
TraStream that enables semantic trajectory construction over streaming move-
ment data. As far as we know, this is the first method proposed in the literature
tackling with this problem in real-time streaming environments. Moreover, we
considered challenges occurring in real world applications including data cleaning
and load shedding procedures before accurately identifying trajectory episodes
in objects’ streaming movement data.

Our future work is to further evaluate this method with larger datasets in-
cluding more complementary features and ground-truth tags. In addition, we are
planning to extend SeTraStream to (1) handle multiple window types for online
trajectory segmentation, and (2) perform real-time trajectory construction in
distributed settings often encountered in large scale application scenarios.
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Abstract. Spatio-temporal data collected from GPS have become an
important resource to study the relationships of moving objects. While
previous studies focus on mining objects being together for a long time,
discovering real-world relationships, such as friends or colleagues in hu-
man trajectory data, is a fundamentally different challenge. For example,
it is possible that two individuals are friends but do not spend a lot of
time being together every day. However, spending just one or two hours
together at a location away from work on a Saturday night could be a
strong indicator of friend relationship.

Based on the above observations, in this paper we aim to analyze and
detect semantically meaningful relationships in a supervised way. That is,
with an interested relationship in mind, a user can label some object pairs
with and without such relationship. From labeled pairs, we will learn
what time intervals are the most important ones in order to characterize
this relationship. These significant time intervals, namely T-Motifs, are
then used to discover relationships hidden in the unlabeled moving object
pairs. While the search for T-Motifs could be time-consuming, we design
two speed-up strategies to efficiently extract T-Motifs. We use both real
and synthetic datasets to demonstrate the effectiveness and efficiency of
our method.

1 Introduction

With the increasing popularity of GPS devices, the tracking of moving objects
in general has become a reality. As a result, a vast amount of trajectory data is
being collected and analyzed. Based on the temporal meeting pattern of objects,
one of the most important and interesting problems in trajectory data analysis
is relationship detection.

Previous studies of moving object relationships have been constrained to de-
tecting moving object clusters. Studies such as flock [13], moving cluster [11],
convoy [10], and swarm [16] focus on the discovery of a group of objects that
move together. All these studies take the entire trajectory as a sequence of time
points, and treat every time point or time interval equally. Therefore, the longer
two moving objects are together, the better they are in terms of forming a clus-
ter. However, all of these studies suffer from several drawbacks. On one hand,
clusters discovered in this way usually do not carry any semantical meaning,
such as friends, colleagues and families which naturally exist in human trajec-
tory data. On the other hand, object pairs with certain relationship may not

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 386–403, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Meeting frequency for a friend and a non-friend pair

necessarily meet more often than the other pairs, hence it leads to the failure of
aforementioned methods in detecting such relationship. Considering the follow-
ing example.

Example 1. Reality Mining project1 collected 94 human trajectories of the 2004-
2005 academic year and conducted a survey about their friendship to each other.
In Figure 1, we plot the meeting frequencies for one friend pair and one non-
friend pair. Comparing two frequency curves, the one has overall higher meeting
frequency is the non-friend pair. Thus, longer overall meeting time does not
necessarily indicate friend relationship. In addition, we observe that the friend
pair shows significantly higher meeting frequency on weekends, which indicates
that, in the friend relationship case, not every time point has equal importance.
In other words, since two people who meet more frequently on weekends are more
likely to be friends, the weekend time interval are considered more discriminative
and should play a more important role in the friend relationship detection task.

The above example reveals an important problem when analyzing relationship
for moving objects: some time intervals are more discriminative than the others
for a particular relationship. In fact, besides friend relationship, many relation-
ships have their unique temporal patterns. For example, if we want to examine
whether or not two people are colleagues, daytime on weekdays becomes the dis-
criminative time intervals. If two people are family members, they often gather
on holidays. Therefore, to detect semantically meaningful relationships in mov-
ing objects, we cannot treat all time intervals equally, instead we need to learn
from the data what time intervals are the most important ones to characterize
a relationship.

Consequently, in this paper we aim to detect relationship for moving object in
a supervised way. That is, given a set of labeled data consisting of positive pairs
having such relationship and negative pairs not having such relationship, our
job is to first find those discriminative time intervals, namely T-Motifs. Then,
these T-Motifs are used as features to detect this relationship in the remaining
unlabeled pairs. Consider the following example.

Example 2. In Reality Mining dataset, [21:56 Wed., 23:08 Wed.] is a T-Motif
for friend relationship, because 37.3% friend pairs have meeting frequency more
1 http://reality.media.mit.edu/
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than 12 minutes in this time interval whereas only 3.17% non-friend pairs have
meeting frequency that could reach 12 minutes.

According to the above example, we can interpret T-Motif as a time interval
for which the meeting frequency between positive and negative pairs can be well
split by a frequency value. Hence we propose to use information gain to measure
the significance of a time interval. We need to calculate the significance score
for any time interval and pick those intervals with high scores as T-Motifs. So
the main technical challenge remains in the computation of significance score for
huge number of T-Motif candidates.

To efficiently handle the large number of T-Motifs candidates, we design two
efficient speed-up techniques for our algorithm. The first speed-up strategy is
based on the observation that two similar time intervals, such as [S, T ] and
[S, T + 1], should have similar significance scores. Therefore, we propose to use
time-indexed meeting pairs, so that when shifting the ending time from T to
T + 1, we only need to update pairs who meet at time T + 1 and at the same
time maintain the sorted list for all the pairs. The second speed-up technique
takes advantage of skewed data. That is, positive pairs are only a small portion
of all pairs. Based on a property of information gain, we could reduce the time
to find the best split point from O(|D|) to O(|D+|), where |D+| is the number of
positive pairs. This further speeds up the computation when the positive pairs
are only a small portion of all pairs, which is indeed the case for our problems.

In summary, the contributions of our work are as follows. (1) Our work is
the first to detect semantically meaningful relationships in moving objects in a
supervised way. This is done by introducing the concept of T-Motifs to prop-
erly represent the temporal characteristics for a relationship. (2) Two speed-up
techniques are proposed to efficiently discover the T-Motifs. (3) The effective-
ness and efficiency of our methods are demonstrated on both real and synthetic
datasets.

The rest of this paper is organized as follows. Section 2 depicts the gen-
eral framework. Section 3 describes the basic algorithm to mine T-Motifs. In
Section 4, we introduce the speed-up techniques. Section 5 shows experimental
results with respect to effectiveness and efficiency. Related work is discussed in
Section 6, and the paper concludes in Section 7.

2 Problem Analysis

In this paper, the time intervals are defined in a relative time frame instead
of an absolute one. This is because the movements of objects such as human
usually have strong spatio-temporal regularities [8][6][19]. Therefore for human
movements, for instance, it is more informative use “week” as the relative time
frame. By default, we take minute as the basic time unit and consider any time
point in a weekly time window (see Figure 1). Hence the total number of time
points is P = 7 (days) × 24 (hours) × 60 (minutes) = 10080. Any minute in
the original absolute frame can be mapped to an integer from 1 to P . Similarly,
a time interval [S, T ] is also defined in the relative time frame and should be
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classification
[15:00 Sat., 1:00 Sun.]

[10:00 Mon., 15:00 Mon.]

[20:00 Fri., 2:00 Sat.]

...

T−Motifs

as features

labeled pairs

mine

main focus of the paper

meeting frequency

freqoi,oj
(t)

Fig. 2. Framework Overview

understood in a cyclic order when S > T . The maximum length of a time
interval is P by definition.

Let ODB = {o1, o2, . . . , on} be the set of all moving objects. The meeting
frequency between any two objects could be inferred from their movements. For
any object pair (oi, oj) and time t, 1 ≤ t ≤ P , the meeting frequency freqoi,oj(t)
is defined as the total number of times they meet at t in the relative time
frame. There are various ways to determine whether two objects meet at one
time. The most common way is to see whether the distance of their spatial
locations are within certain distance threshold. Such distance threshold is based
on the property of moving objects and the specific application. Another way
could be using bluetooth to detect nearby objects, such as the dataset used in
our experiment.

With a particular relationship in mind, a user can label some pairs of objects
having or not having such relationship. We use D+ and D− to denote the set of
positive and negative pairs, respectively. For example, we write (oi, oj) ∈ D+ if
objects oi and oj are labeled by the user to have such a relationship. Further,
we use D = D+

⋃
D− to denote the set of all labeled pairs.

Figure 2 shows an overview of our framework. Given the meeting frequencies
of the labeled pairs, a set of significant time intervals, namely T-Motifs, are
extracted to capture the temporal characteristics of the relationship. Then, a
classification model is built using T-Motif features of training data. The remain-
ing unlabeled pairs can be classified using the learned classification model. In
this framework, the most challenging part is how to find T-Motifs. In the follow-
ing sections, we will present the definition of T-Motifs and an efficient method
to extract them.

3 Finding T-Motifs

A T-Motif is a significant time interval to characterize the relationship. In this
section, we will first describe how to calculate the significance score for a time
interval and then analyze the basic algorithm to extract top-k T-Motifs.
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3.1 Significance of Time Intervals

To examine the significance of a time interval [S, T ], we need to first calculate
the meeting frequency for every pair in this time interval. Meeting frequency
freqoi,oj (S, T ) is the amount of time that oi and oj meet within the time interval
[S, T ]:

freqoi,oj (S, T ) =
∑

t∈[S,T ]

freqoi,oj(t).

In addition, for any set of pairs A consisting of positive pairs A+ and A−, its
entropy is

H(A) = −α log α − (1 − α) log(1 − α),

where α = |A+|
|A| is the fraction of positive numbers.

Intuitively, a time interval [S, T ] is significant if a large portion of positive (or
negative) pairs have higher meeting frequencies than most of the negative (or
positive) pairs. Once we select a meeting frequency value v as the split point,
the pairs in D having meeting frequency in [S, T ] no less than split point form
the set DS,T

≥ (v) and the rest form DS,T
< (v):

DS,T
≥ (v) = {(oi, oj)|freqoi,oj (S, T ) ≥ v}, DS,T

< (v) = {(oi, oj)|freqoi,oj (S, T ) < v}.

The information gain of [S, T ] at split point v is:

IGS,T (v) = H(D) −
|DS,T

≥ (v)|
|D| H(DS,T

≥ (v)) − |DS,T
< (v)|
|D| H(DS,T

< (v)).

The significance score of [S, T ] is the highest information gain that any split
point can achieve:

G(S, T ) = max
v

IGS,T (v).

freq(S,T)
V’V

H(DS,T
< (v′)) = −1

7
log 1

7
− 6

7
log 6

7
≈ 0.59 H(DS,T

≥ (v′)) = 0

H(DS,T
< (v)) = −1

5log
1
5 −

4
5log

4
5 ≈ 0.72 H(DS,T

≥ (v)) = −2
5log

2
5 −

3
5log

3
5 ≈ 0.97

Fig. 3. An example for calculation of G(S, T )

This concept is illustrated in Figure 3.

Example 3. Suppose the labeled set D contains 4 positive pairs and 6 negative
pairs. Figure 3 shows the meeting frequency of each pair in a time interval
[S, T ]. We compute H(D) = − 4

10 log 4
10 − 6

10 log 6
10 ≈ 0.97. At split point v, the

information gain of [S, T ] is IGS,T (v) = 0.97 − 5
10 × 0.72 − 5

10 × 0.97 ≈ 0.125.
The highest information gain is achieved at split point v′: G(S, T ) =IGS,T (v′)=
0.97 − 7

10 × 0.59 − 3
10 × 0 ≈ 0.557.
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3.2 Overview of Basic Algorithm

The basic algorithm is summarized in Algorithm 1. To find the T-Motifs, we
first need to compute the significance score (i.e., information gain) for every
time interval [S, T ]. But sometimes it is unnecessary to consider time intervals
which are too short or too long, such as one-minute time interval or the intervals
with maximum length such as [1, P ]. So the algorithm has an option to limit
the length of time interval to [δmin, δmax], where δmin and δmax are specified
by the user. Now, for a time interval [S, T ], to get the meeting frequency of
each pair takes O(|D|) time (Line 5 in Algorithm 1). In order to calculate the
significance score, the pairs will be sorted first (Line 6 in Algorithm 1). The
sorting takes O(|D| log |D|) time. Taking each meeting frequency as split point
v, the information gain IGS,T (v) can be calculated (Line 7-10 in Algorithm 1).
The time complexity for this step is O(|D|). And finally the maximal information
gain value is set as the significance score for interval [S, T ]. With the significance
scores for all time intervals, we pick the top-k non-overlapped time intervals as
T-Motifs. This procedure is similar to the selection of discriminative patterns in
[3][17].

From Algorithm 1, we can see that the number of all time intervals is O(P 2) in
the worst case. And for each time interval [S, T ], it takes O(|D| log |D|) to com-
pute the significance score. So the overall time complexity is O(P 2|D| log |D|).

Algorithm 1. Find T-Motifs
Input:
freq: meeting frequency for each pair;
D+: positive pairs;
D−: negative pairs.
Output: T-Motifs.
Algorithm:

1: D ← D+
⋃

D−

2: for S ← 1 to P do
3: for len← δmin to δmax do
4: T ← S + len− 1
5: freq arr ← {freqoi,oj (S, T ),∀(oi, oj) ∈ D}
6: Sort freq arr
7: for i← 1 to |D| do
8: v ← freq arr(i)
9: if IG(D, v) > best IG then

10: best IG = IG(D, v)
11: G(S, T ) = best IG
12: Return top-k non-overlapped time intervals

4 Speed Up the Searh for T-Motifs

In this section, we propose two accelerating techniques to our basic algorithm.
The first one is to build a time-indexed data structure, which allows us to quickly
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retrieve the pairs that meet at a certain time point T , and locally adjust the order
of all pairs based on the changes in meeting frequencies. The second speed-up
technique is based on an important property of information gain, which greatly
reduces the number of split points one needs to examine for each time interval
in order to compute its significance score.

4.1 Time-Indexed Meeting Pairs

In Algorithm 1, for a time interval [S, T ], we need to compute the meeting
frequency for every pair (Line 5), which takes O(|D|) time. However, it may be
unnecessary to update every pair when expanding time interval from [S, T ] to
[S, T +1], since in the real data only a limited number of pairs meet at time T +1.
For any time point t, to retrieve the pairs that meet at t, we use a time-based
list T list(t) to record those pairs,

T list(t) = {(oi, oj)|freqoi,oj(t) �= 0}.

With this data structure, Line 5 in Algorithm 1 can be replaced by retrieving
every pair stored in T list(t) and just update frequencies for those pairs. Even
though T list takes Ω(P · d) additional memory, where d is the average num-
ber of meeting pairs per time point, it helps the updating step reduce its time
complexity from O(|D|) to O(d). In real scenarios, as shown in our experiments
(Section 5.3), d is usually much smaller than |D|

After updating frequencies, all the pairs need to be sorted according to their
frequencies (Line 6 in Algorithm 1), which takes O(|D| log |D|) time. But when
expanding T to T + 1, only a few pairs update their frequencies. Therefore,
instead of doing sort all over again, we can update the sorted list with a small
number of adjustments.

meeting frequency
3 4 6 1510 207

3 4 16 1510 207

3 4 7 2010 1615

frequency updated

updated sorted list

sorted list[S,T]

[S,T+1]

[S,T+1]

Fig. 4. Updating sorted list

Take Figure 4 for example. All the pairs are sorted in ascending order when
ending time is T . When a pair increases its meeting frequency from 6 to 16
for time interval [S, T + 1], it switches its position with the one on the right
repeatedly, until it reaches the right-most position or the value on the right is
larger than 16.
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To update the position for one pair, it takes O(|D|) in the worst case. In total,
it takes O(d|D|) to adjust the positions in the sorted list for all the updated
pairs in T list. Theoretically, this sorting strategy is no better than fast sort
(O(|D| log |D|)) because d may not be smaller than log |D|. However, it takes
much less time in practice since one pair will not increase its meeting frequency
drastically by expanding ending time from T to T + 1. We will verify this in
experiment.

4.2 Finding the Best Split Point

Given the order of all pairs, it takes O(|D|) time to consider each pair as a
split point and calculate corresponding significance score. We next prove that it
suffices to enumerate the values of all positive pairs, which takes O(|D+|) time.
We observe that, in most real scenarios, the data have an important property:
the number of pairs having the labeled relationship only takes a small portion
of all the pairs (i.e., |D+| � |D|).

For a split point v in time interval [S, T ], let p(v) and q(v) be the fractions
of positive and negative pairs whose meeting frequencies are no less than v,
respectively:

p(v) =
|D+

⋂
DS,T

≥ (v)|
|D+| , q(v) =

|D−⋂DS,T
≥ (v)|

|D−| . (1)

Given a pair (p(v), q(v)), we can write the information gain IG(v) as a function
of p and q:

IG(v) = IG(p(v), q(v)).

To introduce our second speed-up technique, we will find the following general
property of information gain useful:

Lemma 1. Given a pair of probabilities (p, q) as defined in (1), we have the
following two properties of information gain:

1. if p > q, then ∂IG
∂p > 0, ∂IG

∂q < 0,
2. if p < q, then ∂IG

∂p < 0, ∂IG
∂q > 0.

Basically, the above lemma states that if the frequency difference of positive pairs
and negative pairs increases, then the split point v becomes more significant. In
fact, in addition to information gain, it can be proven that many other popular
statistical measures, such as the G-test score, also satisfy this good property.
Interested readers are referred to [23] and the reference therein for the proof and
more discussion of the lemma.

In the context of our work, Lemma 1 could be interpreted as follow.

Corollary 1. For any two split points v1 and v2 and a time interval [S, T ],

1. if p(v1) > q(v1), p(v2) ≥ p(v1) and q(v2) ≤ q(v1) where the two equalities do
not hold simultaneously, then IG(v2) > IG(v1),
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p(v2)=3/4
freq(S,T) freq(S,T)v1 v2

p(v1)<q(v1)p(v1)>q(v1)

v2 v1
p(v2)=0
q(v2)=3/5

p(v1)=0p(v1)=3/4

v2 is a better split point than v1

q(v1)=1/5q(v1)=2/5 q(v2)=1/5

Fig. 5. Illustration for Corollary 1

2. if p(v1) < q(v1), p(v2) ≤ p(v1) and q(v2) ≥ q(v1) where the two equalities do
not hold simultaneously, then IG(v2) > IG(v1).

The left subfigure of Figure 5 illustrates the first case in Corollary 1, i.e., p(v1) >
q(v1). As we can see, v1 takes a negative pair as a split point. If we select v2 as the
split point, there is one less negative pair on the right side (i.e., q(v2) < q(v1))
but the number of positive pairs on the right side remains the same (i.e., p(v2) =
p(v1)). Since the difference between positive pairs and negative pairs on the right
side increases, IG(v2) > IG(v1). In practice, we can observe the following two
facts in the real data: (1) |D−| 	 |D+| and (2) a considerable portion of negative
pairs have very low or zero meeting frequency for any given time interval [S, T ].
Therefore, for any time interval [S, T ], we can always assume p(v) > q(v), where
0 < v ≤ max(oi,oj)∈D+{freqoi,oj (S, T )}. With this assumption, we can skip any
negative pair whose meeting frequency is no larger than the maximum meeting
frequency among all positive pairs.

Therefore, in addition to the positive pairs, we only need to examine those
negative pairs which are on the right of the rightmost positive pair, as shown
in the right subfigure of Figure 5. In fact, among all of these negative pairs,
examining the leftmost one suffices. This is because in this case we have p(v1) =
0 < q(v1). Therefore, by further shifting the split point to the left from v1 to v2,
we always have p(v2) = p(v1) = 0 and q(v2) > q(v1), thus IG(v2) > IG(v1) by
Corollary 1.

We summarize our second speed-up technique as the following theorem.

Theorem 1. For a time interval [S, T ], assume the maximum meeting frequency
of all positive pairs is v∗, then the best split point v must take one of following
values:

1. the value of one positive pair: v ∈ {freqoi,oj(S, T ) : (oi, oj) ∈ D+},
2. the smallest value for the negative pairs that is larger than the maximum

meeting frequency of all positive pairs:

v = min
(oi,oj)∈D−

{freqoi,oj (S, T ) : freqoi,oj(S, T ) > v∗}.
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Therefore, for a time interval [S, T ], it takes O(|D+|) to compute significance
score G(S, T ). Since |D+| � |D| in our problem, this saves a lot of time com-
paring with original time complexity O(|D|).

5 Experiment

Our experiments are carried on both real and synthetic datasets. All the algo-
rithms are implemented in C++, and all the experiments are carried out on a
2.13 GHz Intel Core machine with 4GB memory, running Linux with version
2.6.18 and gcc 4.1.2.

5.1 Dataset Description

To evaluate the effectiveness of our method, we use the Reality Mining dataset2.
The Reality Mining project was conducted from 2004-2005 at MIT Media Lab-
oratory. The study followed 94 subjects using mobile phones. We filtered the
subjects with missing information and 86 subjects are left. The proximity be-
tween subjects can be inferred from repeated Bluetooth scans. When a Bluetooth
device conducts a discovery scan, other Bluetooth devices within a range of 5-10
meters respond with their user-defined names. Therefore, instead of using the
trajectory data, we take the Bluetooth data directly to generate the meeting
frequencies for any two subjects. Although 86 subjects should form 3655 pairs,
there are 1856 pairs which have zero meeting frequency. After filtering those
pairs, our dataset has 1799 pairs in total.

We study two relationships on this dataset.

– Friend relationship. Subjects were asked about their friend relationship to
the other individuals in the study. The survey question was “Is this person
a part of your close circle of friends?” According to the survey, there are
22 reciprocal friend pairs, 39 non-reciprocal friend pairs and 1718 reciprocal
non-friend pairs. In the survey, subjects were also asked about their physical
proximity with the other individuals. In this analysis, we only use the pairs
who have mutually reported some proximity. By doing so, we filter out those
pairs with low meeting frequencies. The reason of doing this is because it is
more trivial to achieve high accuracy if we include those pairs with few inter-
actions. Similar pre-processing step was conducted in work [7] to study friend
relationship. In the remaining pairs, we take reciprocal and non-reciprocal
friend pairs as positive pairs (i.e., |D+| = 59) and the non-friend pairs as
negative ones (i.e., |D−| = 441).

– Colleague relationship. One subject could belong to one of the affiliations
such as media lab graduate student, media lab staff, professor, Sloan business
school, etc.. To study colleague relationship, we take all the pairs belong to
Sloan business school as the positive pairs and the remaining ones as the
negative pairs. There are 218 positive pairs (i.e., |D+| = 218) and 1561 (i.e.,
|D−| = 1561) negative pairs in this case.

2 http://reality.media.mit.edu/
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5.2 Discovery of T-Motifs

In this section, we will show the T-Motifs for friend relationship and colleague
relationship separately.

Table 1. Top-10 T-Motifs for friend relationship

T-Motif [S, T ] best split point v
|DS,T

≥ (v)∩D+|
|D+|

|DS,T
≥ (v)∩D−|

|D−|
[21:56 Wed., 23:08 Wed.] 12 0.372881 0.031746

[22:45 Tue., 23:39 Tue.] 55 0.305085 0.0181406

[19:07 Sat., 7:07 Sun.] 249 0.220339 0.00453515

[20:56 Tue., 22:44 Tue.] 1 0.508475 0.113379

[23:55 Tue., 1:42 Wed.] 10 0.355932 0.0453515

[23:22 Wed., 3:43 Thurs.] 53 0.220339 0.00680272

[7:08 Sun., 16:49 Sun.] 53 0.40678 0.0770975

[1:20 Fri., 5:12 Fri.] 12 0.20339 0.00680272

[21:52 Mon., 9:00 Tue.] 11 0.644068 0.240363

[18:12 Sun., 20:01 Sun.] 3 0.389831 0.0793651

Table 1 shows the top-10 T-Motifs mined for friend relationship. Among all
time intervals, [21:56 Wed., 23:08 Wed.] plays the most important role, as 37.3%
friends have meeting frequency more than 12 minutes whereas only 3.17% non-
friends can exceed 12-minutes meeting frequency. As one can see, the interactions
at night are more discriminative for friend relationship in general, with excep-
tions during the daytime on weekends, such as [7:08 Sun., 16:49 Sun.].

Table 2. Top-10 T-Motifs for colleague relationship

T-Motif [S, T ] best split point v
|DS,T

≥ (v)∩D+|
|D+|

|DS,T
≥ (v)∩D−|

|D−|
[9:20 Thurs., 10:30 Thurs.] 7 0.7201 0.0557

[9:42 Tue., 10:35 Tue.] 3 0.7431 0.0749

[10:36 Tue., 11:34 Tue.] 56 0.6376 0.0384

[10:34 Thurs., 11:04 Thurs.] 31 0.6055 0.0358

[11:05 Thurs., 11:40 Thurs.] 31 0.6146 0.0589

[7:31 Tue., 8:44 Tue.] 1 0.4449 0.0109

[21:16 Thurs., 9:10 Fri.] 7 0.6376 0.0723

[8:02 Thurs., 8:49 Thurs.] 2 0.4220 0.0128

[8:45 Tue., 9:19 Tue.] 22 0.3853 0.0070

[5:32 Wed., 10:28 Wed.] 2 0.5917 0.0749

Table 2 shows the top-10 T-Motifs for the colleague relationship. Interestingly,
the colleague pairs (students from Sloan business school) usually have high meet-
ing frequencies during the morning, especially on Tuesdays and Thursdays. It
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may suggest that these students have classes on Tuesday and Thursday morn-
ings. Comparing to the friend relationship, it is obvious that colleagues have
quite different temporal interaction patterns. T-Motifs provie us an insight in
the uniqueness of each relationship.

5.3 Efficiency Study

In this section, we analyze the scalability issue w.r.t. different data sizes and
parameter settings. We compare the T-Motif mining baseline method as shown
in Algorithm 1 (denoted as baseline) with the one with speed-up techniques
(denoted as speedup). We first present the comparison results on the friend re-
lationship data. By default, we will use all the pairs in D to find T-Motifs and
set δmin = 1 and δmax = 6 × 60.

Figure 6 shows the time spent on each step when computing the significance
scores for time intervals. In baseline method, to compute G(S, T ), there are three
steps: updating meeting frequency with the time complexity O(|D|), sorting all
pairs with the time complexity O(|D|log|D|) and finding the best split point with
the time complexity O(|D|). As shown in Figure 6, all the steps take roughly the
same time. Compared to baseline, speedup compresses updating and sorting of the
meeting frequencies into one step. As we mentioned in Section 4.1, even though this
step takes O(d|D|) time in theory, it is actually much faster in practice. In partic-
ular, updating and sorting by speedup together take 10.15 seconds whereas they
take 175 seconds for baseline. The reason is illustrated in Figure 7. For many time
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Fig. 9. Running time on colleague relationship

points, especially the ones at mid-night, very few pairs meet. On average, there are
only 56.86 pairs meeting at each time point. Therefore, it is unnecessary to update
the frequency for every pair and sort the frequencies all over again. Besides, the
second speed-up technique reduces the best split point step from 299 seconds to 28
seconds since we only need to enumerate positive pairs as the split points.

Now we randomly select p% of the pairs from the entire dataset as the training
samples and apply Algorithm 1. p% is enumerated from 10% to 100% with an
increment of 10% in each trial. Figure 8(a) shows the running time w.r.t different
data sizes. It is obvious that speedup techniques make the T-Motifs mining
process much faster. The difference between speedup and baseline becomes bigger
as the data size increases. When applying to the whole dataset, baseline takes
260 seconds whereas speedup only takes 23 seconds.

In Algorithm 1, we use δmin and δmax to limit the length of time intervals.
When δmax − δmin increases, the search space for T-Motifs also increases. By
setting δmin = 1, we increase δmax by hour, until it reaches 24 hours. The
running times for baseline and speedup are plotted in Figure 8(b). Again, speedup
is significantly faster than baseline, especially when δmax is large.
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Fig. 10. Running time on synthetic dataset

We also conduct the same experiments on the dataset of colleague relationship.
Figure 9 shows the running times w.r.t. different parameters, from which we can
see that speedup is much faster than baseline.

Finally, we synthesize an even larger dataset based on the Reality Mining
dataset. In our synthetic dataset, there are 1, 000 positive pairs and 10, 000
negative pairs. To generate a new positive pair, we randomly select one positive
pair from the Reality Mining dataset and perturb its meeting frequency for
each time point within 10% of the original value. We repeat this process to
generate new negative pairs. We report the efficiency w.r.t. data size and δmax

in Figure 10. Compared to Figure 8, the difference in running time between the
two methods is getting bigger in larger dataset.

5.4 Relationship Detection Using T-Motifs

Next we use the extracted T-Motifs to find the interested relationship in unla-
beled data. In this experiment, we set δmin = 1 and δmax = 12 ∗ 60 to mine
T-Motifs and use the top-20 T-Motifs. A classification model is built using la-
beled pairs as training data and the meeting frequency within each T-Motif as
the feature. We report the classification results using Support Vector Machine
(SVM) and Gradient Boosting Machine (GBM) as learning methods. For com-
parison, we set the baseline as directly counting the meeting frequency over the
entire time frame, which is equal to freqoi,oj (1, P ) for a pair (oi, oj).

Using the classification model, we will get a score for each test sample indi-
cating the probability to be a positive pair. In the top-k ranked test samples Sk,
we use precision to examine the ratio of true positives, and recall to measure
how many pairs having such relationship are retrieved. Precision and recall are
defined as:

Prec@k =
|D+

test

⋂
Sk|

k
, Rec@k =

|D+
test

⋂
Sk|

|D+
test|

,

where D+
test is the set of positive pairs in the test set.
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Fig. 11. Effectiveness comparison on friend relationship

We use 5-fold cross validation on the friend relationship data. Figure 11 shows
the precision and recall of T-Motif based methods comparing with that of base-
line. We can see that Prec@1=0.8 for both T-Motif(SVM) and T-Motif(GBM).
It means that, when using T-Motifs, 80% top-1 pairs are real friends. In contrast,
Prec@1=0.2 for baseline method, which indicates that the pair that has the high-
est meeting frequency does not necessarily have the friend relationship. In terms
of recall measure in Figure 11(b), the methods based on T-Motif have higher re-
call value when k is smaller than 30. It means that T-Motifs can promote friend
pairs to higher ranks. But it is worth noting that the baseline can retrieve 89%
friend pairs at top-50 ranked pairs. This suggests that friends generally meet
more frequently.
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Fig. 12. Effectiveness comparison on colleague relationship

For colleague relationship, we use 10-fold cross validation. As one can see
in Figure 12, baseline method performs poorly on this dataset, as it barely
retrieves any colleague pair in the top-20 pairs. Even in the top-100 pairs, as
shown in Figure 12(b), baseline can only retrieve less than 30% colleague pairs.
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This indicates that the pairs meeting very often are not necessarily colleagues.
As we have seen in Table 2, colleagues meet only at particular times. These
patterns are well captured by T-Motifs, and we can retrieve 60% colleague pairs
from top-100 pairs using T-Motifs.

6 Related Work

Previous studies mainly focus on the discovery of one specific relationship -
moving object clusters, such as flock [13], moving cluster [11], convoy [10], and
swarm [16]. They try to find a group of objects that move together for k con-
secutive or non-consecutive times. All these work simply count the timestamps
that objects are being together. Laube et al. [14][9] define several spatio-temporal
patterns, including flock, leadership, convergence, and encounter. However, each
pattern is defined and studied individually. These patterns cannot be generalized
to detect any real-world relationship for moving objects.

Many methods have been proposed to measure the similarity between two
trajectories, such as Dynamic Time Warping (DTW) [25], Longest Common
Subsequences (LCSS) [20], Edit Distance on Real Sequence (EFR) [2], and Edit
distance with Real Penalty (ERP) [1]. The geometric trajectory distance plays
an important role in determining the similarity between two objects. However,
two objects having some relationship may not necessarily have similar trajec-
tories. There are also studies to measure the similarities between two human
trajectories [15][22]. But the similarity is measured by the travel sequence, such
as shopping → movie → restaurant. Such similarity does not consider the times
that two objects are being close.

There are several interesting studies showing the potential of using mobile or
positioning technologies to study the human social behavior, such as mobility
regularity [8][6][19] and interactions [18][7][4]. Miklas et al. [18] and Eagle et
al. [7] focus on the analysis of the relationships between physical network and
social network. [18] finds that “friends meet more regularly and for longer dura-
tion whereas the strangers meet sporadically” and [7] shows that “friend dyads
demonstrate distinctive temporal and spatial patterns in their physical proxim-
ity and calling patterns”. A more recent work by Cranshaw et al. [4] develops a
technique to infer friendship in a supervised way, which is the most related work
to ours. They design a set of spatial-temporal features and build a classification
model for friend relationship. Their temporal features, such as the number of co-
locations in evening/weekends, are heuristically designed. Our work is a much
more general approach to detect any relationship with any temporal patterns.

Our idea of making use of T-Motifs is also motivated by a recent work [24]
on time series classification problem. Different from other time series classifi-
cation methods [12][21][5], Ye et al. [24] use shapelets, which are time series
subsequences that can maximally represent a class. The pruning rules developed
in [24] try to avoid the expensive time cost to compute the distance between
a shapelet and a time series. Our problem is different from typical time series
classification because our time dimension is fixed to a relative time frame, such
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as a week, and it only takes O(1) to calculate the meeting frequency for each
object pair. Our speed-up techniques aim to save time for computing significance
scores.

7 Conclusion

In this paper, we introduce a supervised framework to detect relationships for
moving objects from their meeting patterns. In this framework, the concept of T-
Motifs is proposed to capture the temporal characteristics for relationships. A T-
Motif is a time interval which has high information gain with respect to meeting
frequencies for labeled pairs. We develop two speed-up techniques to enumerate
T-Motif candidates and calculate their significance scores. In the experiments
with real-world datasets, the proposed method is both efficient and effective in
discovering the relationship for moving objects. Extensions to make use of spatial
features to better detect the relationships could be interesting themes for future
research.
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8. González, M.C., Cesar, A., Hidalgo, R., Barabási, A.-L.: Understanding individual
human mobility patterns. Nature 453, 779–782 (2008)



Mining Significant Time Intervals for Relationship Detection 403

9. Gudmundsson, J., Laube, P., Wolle, T.: Movement patterns in spatio-temporal
data. Encyclopedia of GIS, 726–732 (2008)

10. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. PVLDB 1(1), 1068–1080 (2008)

11. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Anshelevich, E., Egenhofer, M.J., Hwang, J. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

12. Keogh, E.J., Kasetty, S.: On the need for time series data mining benchmarks:
A survey and empirical demonstration. Data Min. Knowl. Discov. 7(4), 349–371
(2003)

13. Laube, P., Imfeld, S.: Analyzing relative motion within groups of trackable moving
point objects. GIScience, 132–144 (2002)

14. Laube, P., van Kreveld, M.J., Imfeld, S.: Finding remo - detecting relative motion
patterns in geospatial lifelines. In: Int. Symp. on Spatial Data Handling (2004)

15. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.-Y.: Mining user similarity
based on location history. In: GIS, p. 34 (2008)

16. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: Mining relaxed temporal moving object
clusters. PVLDB 3(1), 723–734 (2010)

17. Lo, D., Cheng, H., Han, J., Khoo, S.-C., Sun, C.: Classification of software behav-
iors for failure detection: a discriminative pattern mining approach. In: KDD, pp.
557–566 (2009)

18. Miklas, A.G., Gollu, K.K., Chan, K.K.W., Saroiu, S., Gummadi, P.K., de Lara,
E.: Exploiting social interactions in mobile systems. In: Krumm, J., Abowd, G.D.,
Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 409–428.
Springer, Heidelberg (2007)

19. Song, C., Qu, Z., Blumm, N., Barabasi, A.L.: Limits of predictability in human
mobility. Science, 1018–1021 (2010)

20. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional tra-
jectories. In: ICDE, pp. 673–684 (2002)

21. Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., Ratanamahatana, C.A.: Fast time
series classification using numerosity reduction. In: ICML, pp. 1033–1040 (2006)

22. Xiao, X., Zheng, Y., Luo, Q., Xie, X.: Finding similar users using category-based
location history. In: GIS, pp. 442–445 (2010)

23. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap
search. In: SIGMOD Conference, pp. 433–444 (2008)

24. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
KDD, pp. 947–956 (2009)

25. Yi, B.-K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences
under time warping. In: ICDE, pp. 201–208 (1998)



A Uniform Framework for Temporal Functional

Dependencies with Multiple Granularities

Carlo Combi1, Angelo Montanari2, and Pietro Sala1

1 Dipartimento di Informatica, Università degli Studi di Verona
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Abstract. Temporal functional dependencies (TFDs) add a temporal
component to classical functional dependencies to deal with temporal
data. As an example, while functional dependencies model constraints
like “employees with the same role get the same salary”, TFDs can rep-
resent constraints like “for any given month, employees with the same
role get the same salary (but their salary may change from one month to
the next one)” or “current salaries of employees uniquely depend on their
current and previous roles”. In this paper, we propose a general frame-
work for specifying TFDs, possibly involving different time granularities,
and for checking whether or not a given database instance satisfies them.
The proposed framework subsumes existing formalisms for TFDs and it
allows one to encode TFDs which are not captured by them.

1 Introduction

Temporal functional dependencies (TFDs) add a temporal dimension to classical
functional dependencies (FDs) to deal with temporal data [2,11,12,13,14] (as a
matter of fact, two temporal dimensions have been considered only in [6], where
standard FDs are evaluated at every database snapshot). As an example, while
FDs model constraints like “employees with the same role get the same salary”,
TFDs can represent constraints like “for any given month, employees with the
same role have the same salary, but their salary may change from one month to
the next one” [2,13] or “current salaries of employees uniquely depend on their
current and previous roles” [11]. Since temporal constraints may refer to different
time units, e.g., university courses are organized on semesters, the scheduling of
business activities usually refers to business months or weeks, follow-up visits
are usually planned on working days, TFDs must allow one to express temporal
constraints at different time granularities.

In this paper, we propose a general framework that makes it possible to for-
mally specify TFDs, possibly involving multiple time granularities, and to check
whether or not a given database instance satisfies them. We will prove that the
proposed framework subsumes all existing formalisms for TFDs, and it allows
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one to express TFDs which are not captured by them. As an example, assuming
months as the basic time unit, we can encode constraints such as “employees
with the same role, who will not change it from the current month to the next
one, will get the same (unchanged) salary”. Moreover, we will show the effec-
tiveness of the approach by applying it to a real-world medical domain, related
to the administration of chemotherapies.

The paper is organized as follows. In Section 2, we provide a motivating
scenario. In Section 3, we describe the temporal data model the proposed frame-
work relies on. In Section 4, we introduce a new formalism for the representation
of TFDs, and we show that it allows one to capture a large variety of TFDs.
Then, in Section 5, we explain how to reduce the problem of checking whether
a temporal relation satisfies a given TFD to the problem of checking whether
the evaluation of a suitable algebraic expression returns the empty relation. We
conclude the section with a short discussion of computational aspects. In Sec-
tion 6, we briefly survey existing systems for TFDs and we compare them with
the framework we propose. Section 7 provides an assessment of the work and it
outlines future research directions.

2 A Motivating Scenario from Clinical Medicine

Most health care institutions collect a large quantity of clinical information about
patients and physicians’ actions, such as therapies and surgeries, and health care
processes, such as admissions, discharges, and exam requests. All these pieces of
information are temporal in nature and thus the associated temporal dimension
must be carefully modeled to make it possible to properly represent clinical data
and to reason on them.

To illustrate the relevance of properly expressing and checking temporal con-
straints on data, we consider a real-world example taken from the domain of che-
motherapies for oncology patients. Oncology patients undergo several chemother-
apy cycles. Each one can be repeated several times, and it typically includes the
administration of several drugs according to a predefined temporal pattern. The
problem of managing chemotherapy plans has been extensively studied by the
clinical research. Several clinical practice guidelines describe and recommend
them in detail.

We consider the following chemotherapy recommendations related to FAC
and CEF regimens [1,8] for the treatment of breast cancer.

Example 1. Recommended FAC and CEF regimens.

FAC regimen: “The recommended FAC regimen consists of 5-fluorouracil
on days 1 and 8, and doxorubicin and cyclophosphamide on day 1. This
is repeated every 21 days for 6 cycles (that is, 6 cycles of 21 days each)”.

CEF regimen: “The recommended CEF regimen consists of 14 days of
oral cyclophosphamide, and intravenous injection of epirubicin and 5-
fluorouracil on days 1 and 8. This is repeated every 28 days for 6 cycles.”
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A relation schema Patient to be used for storing information about patients
who underwent chemotherapies can be structured as follows. For each patient,
we store the therapy, the patient’s identifier, the blood group, the physician
who prescribed the therapy, the taken drug with its quantity, and the specific
drug-taking time by means of attributes Chemo, PatId, BG, Phys, Drug, Qty,
and VT, respectively. We assume that attribute V T specifies the valid time of
a tuple in term of days (starting from an implicit day taken as the origin of the
time domain).

Table 1 shows a possible instance r of Patient describing chemotherapy treat-
ments for patients with PatId p1, p2, and p3. As an example, according to the
prescription of the FAC treatment reported in Example 1, the first day of the
cycle the patient has to take drugs Flu, Dox, and Cyc, that is, drugs containing
5-fluorouracil, doxorubicin, and cyclophosphamide, respectively.

Table 1. An instance r of Patient storing data about chemotherapy treatments

tuple# Chemo PatId BG Phys Drug Qty VT
1 FAC p1 0+ Smith Flu 500 1
2 FAC p1 0+ Hubbard Dox 50 1
3 FAC p1 0+ Verdi Cyc 500 1
4 FAC p1 0+ Smith Flu 500 8
5 CEF p2 AB- Verdi Cyc 600 1
6 CEF p2 AB- Hubbard Flu 600 1
7 CEF p2 AB- Hubbard Epi 60 1
8 CEF p2 AB- Verdi Cyc 600 2
9 CEF p2 AB- Smith Cyc 500 3

.. .. .. .. .. .. ..
20 CEF p2 AB- Verdi Cyc 600 8
21 CEF p2 AB- Hubbard Flu 600 8
22 CEF p2 AB- Hubbard Epi 60 8

.. .. .. .. .. .. ..
33 CEF p3 AB- Verdi Cyc 550 1

According to the clinical meaning of data, several requirements can be im-
posed on this relation schema. They stem from both clinical/medical reasons
and organizational rules of the medical unit managing the chemotherapy admin-
istration. In the following, we list some typical requirements to be represented
and managed by the database systems.

(1) A patient may take any given drug at most one time per day: such a re-
quirement prevents any patient from taking two or more times the same drug
during the same day. As the administration of a drug within a chemotherapy
has relevant side effects on the patient status, it is a quite obvious requirement.
Nevertheless, checking it prevents possible data insertion errors.
(2) For any chemotherapy, the quantities of a given drug prescribed to a patient
on two days which are at most 14 days far away cannot be different : for any



A Uniform Framework for Temporal Functional Dependencies 407

patient, such a requirement forces drug quantities of chemotherapies to remain
unchanged whenever the drug is taken several times within 14 days (notice that
the relation depicted in Table 1 violates it). According to the considered chemo-
therapies, this amounts to impose that drug quantities cannot change during a
chemotherapy cycle (obviously, they can change if the chemotherapy changes).
(3) For any chemotherapy, the quantities of a given drug administered during
the same month cannot be different : this requirement states that, regardless of
the patient, for any chemotherapy and any month, the administered quantity
of a drug is always the same. A possible explanation of such a requirement is
that there exists some form of synchronization among different administrations
of the same chemotherapy, which forces changes in drug quantities to be done
only when changes in month occur (for instance, to take into account different
seasonal conditions).
(4) For patients undergoing a specific chemotherapy regimen, with the same drug
being prescribed on two consecutive days, the quantity of the drug administered
on the latter day depends solely on the drug quantity administered on the former :
this requirement constrains different patients not to take different quantities of
the drug on the next day, if they take the same quantity of it on the current
day. A possible explanation of such a requirement is that, regardless of the
patient and the chemotherapy, the physician must follow a predefined therapy
plan, suggested by the clinical practice, for what concerns the quantities of drugs
administrated on consecutive days.
(5) For any pair of administrations of the same drug prescribed by the same
physician to the same patient on two consecutive days, the quantity of the sec-
ond administration uniquely depends on (the drug and) the quantity of the first
administration: this requirement slightly differs from the previous one as it fur-
ther constrains the physician to be the same.
(6) For any pair of successive administrations of the same drug to the same
patient within the same chemotherapy, the quantity of the second administra-
tion uniquely depends on (the drug and) the quantity of the first administration:
such a requirement constrains successive administrations of a drug to a patient
within an assigned chemotherapy. As a general rule, time delays between succes-
sive administrations may differ from one drug to another. As an example, oral
cyclophosphamide in the CEF regimen is taken daily for 14 days, while there is
an interval of 7 days between two successive intravenous injections of epirubicin.
(7) For any pair of successive administrations of the same drug to the same pa-
tient within the same month, the quantity of the second administration uniquely
depends on (the drug and) the quantity of the first administration: such a re-
quirement imposes suitable constraints on successive drug administrations only
when they occur during the same month. We may assume the rationale of this
requirement to be the same as that of Requirement (4).
(8) For any given chemotherapy, the quantities of drugs taken by patients with
successive administrations that take place one 7 days after the other cannot
change: for any chemotherapy, such a requirement basically imposes that (only)
the quantities of drugs taken by patients every 7 days cannot change.
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3 Temporal Data Model and Temporal Views

In the next two sections, we will outline a general framework for the specification
and verification of different kinds of TFD. As a preliminary step, in this section,
we describe the temporal data model we rely on.

To represent TFDs, we will make use of a simple data model based on the
notion of temporal relation. We assume the time domain T to be isomorphic to
the set of natural numbers N with the usual ordering ≤. Let U be a set of atem-
poral attributes and V T be a temporal attribute, called valid time attribute. A
temporal relation r is a relation on a temporal relation schema R with attributes
U ∪{V T } (r ∈ R for short). Given a tuple t ∈ r and an attribute A ∈ U ∪{V T },
we denote by t[A] the value that t assumes on A. The temporal attribute V T
specifies the valid time of a tuple, and it takes its value over the time domain T ,
that is, t[V T ] ∈ T .

In the following, we will exploit the tuple relational calculus [10] to define suit-
able temporal views on data, that will help us in specifying and analyzing TFDs
without harming the simplicity of the data model. In particular, these views
will allow us to easily “move through time” in order to establish a connection
between corresponding tuples valid at different time points.

A special role will be played by the following two temporal views, respectively
called next and nexttuple, that allow one to link tuples that satisfy a specific
temporal relation in order to represent relevant cases of (temporal) evolution.

Given a temporal distance k, with k ≥ 1, the temporal view next allows one
to join pairs of corresponding tuples at distance k (for k = 1, it joins pairs
of consecutive corresponding tuples). More precisely, given a temporal relation
schema R, with attributes U ∪{V T }, r ∈ R, and t, t′ ∈ r, the application of next
to r, denoted χk

Z(r), with Z ⊆ U and k ≥ 1, joins t, t′ if (and only if) t[Z] = t′[Z]
and t′[V T ] = t[V T ] + k as formally stated by the following definition.

Definition 1. Let R be a temporal relation schema with attributes U ∪ {V T },
Z ⊆ U , W = U −Z, W be obtained from W by renaming each attribute A ∈ W
as A, r ∈ R, and t, t′ ∈ r. The relation χk

Z(r), with schema ZWW ∪ {V T, V T},
is defined as follows:

χk
Z(r) def= {s | ∃t, t′(t ∈ r ∧ t′ ∈ r ∧ t[Z] = t′[Z] ∧ t′[V T ] = t[V T ] + k ∧

s[U ] = t[U ] ∧ s[V T ] = t[V T ] ∧ s[W ] = t′[W ] ∧ s[V T ] = t′[V T ])}

Hereinafter, when no confusion may arise, we will write χZ(r) for χ1
Z(r). It is

worth pointing out that, in the definition of χk
Z(r), we make use of the non-

standard (arithmetic) selection condition t′[V T ] = t[V T ] + k. However, the ex-
pression for χk

Z(r) can be turned into a standard relational calculus expression,
as shown in detail in [4].

The temporal view nexttuple allows one to join pairs of successive (with re-
spect to the values they take on attribute V T ) tuples. More precisely, given a
temporal relation schema R, with attributes U ∪ {V T }, r ∈ R, and t, t′ ∈ r, the
application of nexttuple to r, denoted τZ(r), with Z ⊆ U , joins t, t′ if (and only
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if) t[Z] = t′[Z] and t′ is the tuple immediately following t with respect to V T .
The view nexttuple is formally defined as follows.

Definition 2. Let R be a temporal relation schema with attributes U ∪ {V T },
Z ⊆ U , W = U − Z, W be obtained from W by replacing each attribute A ∈ W
by A, r ∈ R, and t, t′ ∈ r. The relation τZ(r), with schema ZWW ∪ {V T, V T},
is defined as follows:

τZ(r) def= {s | ∃t, t′(t ∈ r ∧ t′ ∈ r ∧ t[Z] = t′[Z] ∧ t[V T ] < t′[V T ] ∧
s[U ] = t[U ] ∧ s[V T ] = t[V T ] ∧ s[W ] = t′[W ] ∧ s[V T ] = t′[V T ] ∧
¬∃t′′(r(t′′) ∧ t[Z] = t′′[Z] ∧ t[V T ] < t′′[V T ] ∧ t′′[V T ] < t′[V T ]))}

Table 2. The view χPatId,Phys(r) for the instance r of Patient given in Table 1

tuples# Chemo PatId BG Phys Drug Qty VT Chemo BG Drug Qty VT
5-8 CEF p2 AB- Verdi Cyc 600 1 CEF AB- Flu 500 2

The temporal views next and nexttuple make it possible to represent non-trivial
aspects of the temporal evolution of data. More precisely, next joins pairs of
corresponding tuples, that is, tuples with matching values for the specified attri-
butes, which are a given temporal distance apart; nexttuple joins pairs of cor-
responding tuples with one tuple being the next occurrence of the other (with
no constraints on their temporal distance) in a data-dependent manner. As an
example, let us consider the instance r of the relation schema Patient given in
Table 1 (we restrict our attention to the tuples explicitly reported in Table 1).
The view χPatId,Phys(r), depicted in Table 2, joins pairs of tuples that take the
same values on PatId and Phys and are valid at two consecutive points t and
t+1. The view τPatId,Phys(r), depicted in Table 3, joins pairs of tuples that take
the same values on PatId and Phys and such that there are no tuples temporally
located in between of them with the same values for PatId and Phys.

Table 3. The view τPatId,Phys(r) for the instance r of Patient given in Table 1

tuples# Chemo PatId BG Phys Drug Qty VT Chemo BG Drug Qty VT
1-4 FAC p1 0+ Smith Flu 500 1 FAC 0+ Flu 500 8
5-8 CEF p2 AB- Verdi Cyc 600 1 CEF AB- Flu 500 2
6-21 CEF p2 AB- Hubbard Flu 600 1 CEF AB- Flu 600 8
8-20 CEF p2 AB- Verdi Cyc 600 2 CEF AB- Cyc 600 8
7-21 CEF p2 AB- Hubbard Epi 60 1 CEF AB- Flu 600 8
6-22 CEF p2 AB- Hubbard Flu 600 1 CEF AB- Epi 60 8
7-22 CEF p2 AB- Hubbard Epi 60 1 CEF AB- Epi 60 8
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4 A Uniform Framework for TFDs

In this section, we propose a new formalism for the specification of TFDs. We
first introduce its syntax and semantics; then, we show that it allows one to
express all TFDs dealt with by existing formalisms as well as to cope with new
classes of TFDs.

Definition 3. Let R be a temporal relation schema with attributes U ∪ {V T }.
A TFD is an expression of the following form:

[E-Exp(R), t-Group(i)]X → Y,

where E-Exp(R) is a relational expression on R, called evolution expression,
t-Group is a mapping N → 2N, called temporal grouping (t-Group(i) denotes
the image of a generic element i ∈ N), and X → Y is a functional dependency.
We distinguish two types of TFD:

1. if the schema of the expression E-Exp(R) is U ∪ {V T }, then, X, Y ⊆ U ;
2. if the schema of the expression E-Exp(R) ∩ (U ∪ {V T}) �= ∅, then X, Y ⊆

UU and, for each A ∈ Y , both XA ∩ U �= ∅ and XA ∩ U �= ∅.

Temporal grouping specifies how to group tuples on the basis of the values they
take on the temporal attribute V T (and on the temporal attribute V T , if present),
when X → Y is evaluated.

For the sake of simplicity, we confined ourselves to TFDs involving at most two
database states. However, Definition 3 can be easily generalized to the case of
tuple evolutions involving n database states.

Evolution expressions E-Exp(R) make use of temporal views to select those
tuples, valid at different time points, that must be merged in order to track the
evolution of domain objects over time.

In principle, there are no restrictions on the form that t-Group may assume.
However, such a generality is not necessary from the point of view of applica-
tions. In the following, we will restrict ourselves to specific mappings, as those
captured by Bettini et al.’s granularities [2] and Wjisen’s time relations [13]. A
time granularity G is a partition of the time domain T in groups of indivisi-
ble, disjoint units, called granules. Formally, a time granularity G is defined as a
mapping from an index set I ⊆ N to subsets of T . Classical examples of granular-
ity are Day, WorkingDay, Week, and Month. Various formalisms for representing
and reasoning about time granularities have been proposed in the literature, in-
cluding Granular Calendar Algebra by Ning et al. [9] and Ultimately Periodic
Automata, by Bresolin et al. [3]. Wijsen’s time relations are subsets of the set
{(i, j) | i ∈ N, j ∈ N, i ≤ j}. As an example, we can define a time relation
that, for any i ∈ N, collects all and only the pairs of time points (i, j) such that
j − i ≤ k, for some fixed k. Granularities can be recovered as special cases of
time relations, called chronologies (it is not difficult to see that there exist quite
natural time relations that cannot be expressed by means of granularities).
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We constrain t-Group(i) to take one of the following two forms:

t-Group(i) def= G(i),
where G(i) is the i-th granule of granularity G;

t-Group(i) def=
n⋃

j=1

{(i + αj)} for some n ≥ 1,

where α1 = 0, ∀j ∈ [1, n] (αj ∈ N), and ∀k ∈ [1, n− 1] (αk < αk+1).

In the first case, given a granularity G, t-Group(i) groups time points accord-
ing to the granule G(i) (for some i ∈ I) they belong to. In the second case,
t-Group groups time points into an infinite number of intersecting finite sets.
For every i ∈ I, the i-th set t-Group(i) consists of the i-th time point plus other
n−1 time points identified by their offset with respect to such a point (n is fixed
and it does not depend on i).

As in the case of standard FDs, a TFD is a statement about admissible tem-
poral relations on a temporal relation schema R. We say that r ∈ R satisfies
a TFD [E-Exp(R), t-Group(i)]X → Y if it is not possible that the relation
obtained from r by applying the expression E-Exp(R) (hereinafter, the evolu-
tion relation) features two tuples t, t′ such that (i) t[X ] = t′[X ], (ii) t[V T ] and
t′[V T ] (the same for t[V T ] and t′[V T ], if present) belong to the same temporal
group t-Group(i), and (iii) t[Y ] �= t′[Y ]. This amounts to saying that the FD
X → Y must be satisfied by each relation obtained from the evolution relation
by selecting those tuples whose valid times belong to the same temporal group
t-Group(i). We partition the set of relevant TFDs into four classes.

– Pure temporally grouping TFDs. E-Exp(R) returns the given temporal re-
lation r. Tuples are grouped on the basis of t-Group.

– Pure temporally evolving TFDs. E-Exp(R) merges tuples modeling the evo-
lution of a real-world object. There is no temporal grouping, that is, there
is only one group collecting all tuples of the computed relation.

– Temporally mixed TFDs. First, E-Exp(R) merges tuples modeling the evolu-
tion of a real-world object; then, temporal grouping is applied to the resulting
set of tuples.

– Temporally hybrid TFDs. First, E-Exp(R) selects those tuples of the given
temporal relation that contribute to the modeling of the evolution of a real-
world object, that is, it removes isolated tuples; then, temporal grouping is
applied to the resulting set of tuples.

In the following, we will describe in some detail the above classes of TFDs and
we will give some meaningful examples of TFDs belonging to them.

Pure temporally grouping TFDs. In these TFDs, E-Exp(R) returns the
(original) temporal relation r. This forces FD X → Y , with X, Y ⊆ U , to be
checked on every (maximal) subset of r consisting of tuples whose V T values
belong to the same temporal group t-Group(i).

Example 2. Let us consider the first three requirements of relation Patient re-
ported in Section 2:
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1. a patient may take any given drug at most one time per day;
2. for any chemotherapy, the quantities of a given drug prescribed to a patient

on two days which are at most 14 days far away cannot be different ;
3. for any chemotherapy, the quantities of a given drug administered during the

same month cannot be different.

The first requirement is captured by the following TFD:

[Patient , {i}]PatId ,Drug → Chemo,BG ,Phys ,Qty

For each time point i, the FD PatId ,Drug → Chemo,BG ,Phys ,Qty must be
satisfied by the tuples of (the instance of the relation schema) Patient valid at
time i. As a matter of fact, this forces attributes PatId ,Drug to be a snapshot
key for relation schema Patient: the set of tuples of Patient valid at a given
time point (snapshot) must have PatId ,Drug as a (standard) key [6].

The second requirement can be encoded as follows:

[Patient , {i, i + 1, . . . , i + 13}]PatId ,Chemo,Drug → Qty

In such a way, we force the FD PatId ,Chemo, Drug → Qty to be checked at each
time point i on the tuples of (the instance of the relation schema) Patient valid
at time points i, i+1, i+2, . . ., or i+13, that is, for each i, Chemo,PatId ,Drug →
Qty must be satisfied by the tuples belonging to the union of snapshots of the
temporal relation at time instants i, . . . , i + 13.

The third requirement can be expressed by means of the following TFD:

[Patient , Month(i)]Chemo,Drug → Qty

Pure temporally evolving TFDs. In these TFDs, E-Exp(R) returns a rela-
tion over (a subset of) attributes UU ∪ {V T, V T}, which is computed by means
of join operations on some subset of U . Temporal grouping considers all tuples
together.

Example 3. Let us consider the following three requirements of relation Patient
reported in Section 2:

4. for patients undergoing a specific chemotherapy regimen, with the same drug
being prescribed on two consecutive days, the quantity of the drug adminis-
tered on the latter day depends solely on the drug quantity administered on
the former ;

5. for any pair of administrations of the same drug prescribed by the same
physician to the same patient on two consecutive days, the quantity of the
second administration uniquely depends on (the drug and) the quantity of
the first administration;

6. for any pair of successive administrations of the same drug to the same
patient within the same chemotherapy, the quantity of the second adminis-
tration uniquely depends on (the drug and) the quantity of the first admin-
istration.
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Let Top(i) be the top granularity collecting all time points in a single nonempty
granule [2]. Requirement (4) can be formalized as follows:

[χPatId,Chemo,Drug(Patient), Top(i)]Drug,Qty → Qty

while Requirement (5) is captured by the following TFD:

[χPatId,Chemo,Drug,Phys(Patient), Top(i)]Drug,Qty → Qty

TFDs in this class can be viewed as a generalization of Vianu’s dynamic depen-
dencies [11]: E-Exp(R) defines an evolution mapping (update mapping, accord-
ing to Vianu’s terminology) that associates each tuple valid at a time i with
its corresponding tuple (if any) valid at time i + 1 making use of the values
of specific relation attributes. In the relational framework we propose, evolu-
tion mappings are thus expressed by means of suitable joins on a subset of U .
Moreover, TFDs for Requirements (4) and (5) show the possibility of defining
dynamic dependencies according to a number of evolution mappings.

Let us consider now Requirement (6). To cope with it, we need the ability to
join tuples valid at non-consecutive time points. Successive administrations of
the same drug to the same patient may indeed occur at consecutive time points
(tuples #8 and #9 in Table 1), but they may also take place at time points which
are far away from one another (tuples #1 and #4 in Table 1), and thus we must
be able to deal with a kind of “asynchronous” temporal evolution. Requirement
(6) is encoded by the following TFD:

[τPatId,Chemo,Drug(Patient), Top(i)]Drug,Qty → Qty

Temporally mixed TFDs. In these TFDs, E-Exp(R) returns a relation over
(a subset of) attributes UU ∪ {V T, V T}, which is computed by means of join
operations on some subset of U . Temporal grouping groups together tuples ac-
cording to their V T values. In such a way, one can define evolving (dynamic)
dependencies that must hold at all (and only) time points belonging to the same
temporal group.

Example 4. Let us consider now the seventh requirement of relation Patient
reported in Section 2:

7. For any pair of successive administrations of the same drug to the same
patient within the same month, the quantity of the second administration
uniquely depends on (the drug and) the quantity of the first administration.

Such a requirement is encoded by the following TFD:

[τPatId,Drug(Patient), Month(i)]Drug,Qty → Qty

Temporally hybrid TFDs. In these TFDs, E-Exp(R) returns a relation over
the schema U ∪ {V T }, which is computed by means of join operations on some
subset of U and further renaming, project, and union operations. Temporal



414 C. Combi, A. Montanari, and P. Sala

grouping groups together tuples according to their V T values. These TFDs allow
one to express requirements on evolving values that must be preserved by all
evolutions. As we will show in Section 6, such a class of requirements is captured
neither by Vianu’s dynamic dependencies nor by the other “grouping” TFDs
proposed in the literature.

Example 5. Let us consider the last requirement of the relation Patient reported
in Section 2:

8. For any given chemotherapy, the quantities of drugs taken by patients with
successive administrations that take place one 7 days after the other cannot
change.

In this case, grouping tuples which “happen” every seven days and then check-
ing dependency Chemo,Drug → Qty against them is not enough, and thus TFD
[r, {i, i + 7}]Chemo,Drug → Qty does not help us in representing this last re-
quirement. A TFD that takes into consideration the evolution of tuples in an
appropriate way is the following one:

[HePatient , Top(i)]Chemo,Drug → Qty,

where

HePatient def= {t| ∃t′(t′ ∈ τPatId,Chemo,Drug(Patient) ∧ t′[V T ] = t′[V T ] + 7 ∧
t[PatId, Chemo, Drug] = t′[PatId, Chemo, Drug] ∧
((t[BG, Phys, Qty] = t′[BG, Phys, Qty] ∧ t[V T ] = t′[V T ]) ∨
(t[BG, Phys, Qty] = t′[BG, Phys, Qty] ∧ t[V T ] = t′[V T ])))}.

The evolution expression HePatient first joins tuples representing successive
administrations (of a given drug to a given patient), that is, pairs of administra-
tions with no administrations in between. Then, two sets of tuples, respectively
featuring the attribute values of the first and of the second drug administration,
are computed by two existential subqueries. Finally, the two sets are merged
(logical disjunction) to make it possible to specify (and check) the functional
dependency. In such a way, the functional dependency is only checked on tuples
referring to successive administrations of a given drug to a given patient that
take place on time points (days) which are 7 unit (days) from one another. As
all tuples have to be considered together, temporal grouping is Top(i).

We conclude the section by giving another example of this new kind of TFD.
Let us consider the constraint “employees with the same role, who will not change
it from the current month to the next one, will get the same (unchanged) salary”
that we already mentioned in the introduction. We need both to join consecutive
tuples modeling old and new values for a given employee (this can be done
with Vianu’s DFDs as well) and to compare these old and new values (no one
of existing formalisms for TFDs support these comparisons). Given a relation
Employee over the schema U = {empId , salary , role} and r ∈ Employee , the
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above constraint can be encoded by means of the following temporally hybrid
TFD:

[evEmployee , {i, i + 1}]role → salary ,

where

evEmployee def= {t|∃t′(t′ ∈ χempId,role(Employee)∧
t[empId, role] = t′[empId, role]∧

((t[salary] = t′[salary] ∧ t[V T ] = t′[V T ])∨
(t[salary] = t′[salary] ∧ t[V T ] = t′[V T ])))}.

The evolution expression evEmployee joins tuples related to the same employee
with the same role holding at two consecutive time points, taking months as
the basic time unit. Then, two sets of tuples, respectively featuring the attribute
values holding at the first time point and at the second one, are computed by two
existential subqueries. Finally, the two sets are merged (logical disjunction) to
make it possible to specify (and check) the functional dependency role → salary .
In such a way, tuples describing employees that change their role and, in the new
role, get a salary different from that of the other employees already in this role
are allowed, as they do not appear in evEmployee .

5 TFD Checking

In this section, we show that the problem of checking whether a temporal rela-
tion r ∈ R satisfies a given (set of) TFD(s) can be reduced to the problem of
establishing whether the evaluation of a suitable relational query on r returns the
empty relation [7]. To make the computational steps of the checking procedure
explicit, we adopt the named relational algebra featuring selection, projection,
natural join, set difference, set union, and renaming as its basic operations [7].

We can verify whether a given relation r ∈ R satisfies the TFD [E-Exp(R),
t-Group(i)]X → Y by checking the emptiness of the result of the following query:

σCnd (E-Exp(R) �X=X̂ ρ
W→Ŵ

E-Exp(R))

where W is the set of attributes of E-Exp(R) and Cnd stands for
∨

A∈Y (A �= Â)∧
SameTGroup.

The predicate SameTGroup verifies that all the given valid times belong to the
same group, according to the expression t-Group. Thus, if E-Exp(R) is defined
over a schema ⊆ UU∪{V T, V T}, then SameTGroup ≡ V T ∈ t-Group(i)∧V T ∈
t-Group(i)∧V̂ T ∈ t-Group(i)∧V̂ T ∈ t-Group(i); if E-Exp(R) is defined over the
schema U ∪ {V T }, then SameTGroup ≡ V T ∈ t-Group(i) ∧ V̂ T ∈ t-Group(i).

The predicate SameTGroup can take two different forms depending on the
way in which temporal grouping is defined: a granularity or a set of intersecting
finite sets. For the sake of simplicity, we restrict our attention to the case of
an evolution relation over the schema U ∪ {V T }. The proposed solution can be
easily adapted to the other cases.
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As a preliminary remark, we observe that we are interested in checking TFDs
on finite database instances, and thus temporal grouping returns a finite set of
granules of a given granularity, each one consisting of a finite set of time points
(resp., a finite set of intersecting finite sets of time points).

Let us consider first the case of granularities. Granularities are modeled by
means of a relation Gran over the attributes (G Id, I, Gs, Ge), where G Id is the
granularity identifier, e.g., Month, I is the granule identifier (granule index), Gs

and Ge are respectively the starting point and the ending point of the granule
(in fact, the attribute I can be omitted). For the sake of simplicity, we restrict
ourselves to granularities with no internal gaps. Let t-Group(i) denote the i-
th granule of granularity G (G(i) for short). It can be easily shown that the
problem of checking whether or not a temporal relation r ∈ R satisfies a TFD
[E-Exp(R), t-Group(i)]X → Y is equivalent to the problem of checking whether
or not the following relational algebra query returns the empty set:

σCnd (E-Exp(R) �X=X̂ ρW→Ŵ E-Exp(R) � σG Id=“G”Gran),

where Cnd stands for ∨A∈Y (A �= Â)∧Gs ≤ V T∧V T ≤ Ge∧Gs ≤ V̂ T∧V̂ T ≤ Ge.
Let us consider now the case of intersecting finite sets. Without loss of gener-

ality, we may assume (the finite set of) intersecting finite sets of time points to
be represented by a relation tGroups over the attributes (I, T1, T2), where I is
the group index and (T1, T2) is an ordered pair of time points belonging to the
same temporal group (identified by the value of the group index). It can be easily
shown that the problem of checking whether or not a temporal relation r ∈ R
satisfies a TFD [E-Exp(R), t-Group(i)]X → Y is equivalent to the problem of
checking whether or not the following query returns the empty set:

σCnd (E-Exp(R) �X=X̂ ρ
W→Ŵ

E-Exp(R) � tGroups)

where Cnd stands for ∨A∈Y (A �= Â) ∧ V T = T1 ∧ V̂ T = T2.
As a matter of fact, in various practical cases the join with the relation

tGroups can be avoided by including temporal grouping into Cnd. Concrete
examples are given below.

We now exemplify the checking-for-emptiness approach to TFD verification
by providing a query for each class of TFDs (we refer to the TFDs encoding the
requirements of chemotherapy recommendations given in the previous section).

Pure temporally grouping TFDs. The TFD [Patient , {i, . . . , i+13}]Chemo,
PatId ,Drug → Qty encodes requirement (2). We can establish whether or not
Patient satisfies it by checking for emptiness the following query:

σ
Qty 
=Q̂ty∧(V̂ T−V T )≤13

(Patient

�
Chemo=Ĉhemo∧PatId=P̂atId∧Drug=D̂rug

ρ
W→Ŵ

Patient)

Pure temporally evolving TFDs. The TFD [χPatId,Chemo,Drug(Patient),
Top(i)] Drug,Qty → Qty, encoding requirement (4), can be verified by checking
for emptiness the following query:
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σ
Qty 
=Q̂ty

(χPatId,Chemo(Patient)
�

Drug=D̂rug∧Qty=Q̂ty
ρ

W→Ŵ
χPatId,Chemo,Drug(Patient))

Temporally mixed TFDs. To verify whether or not Patient satisfies the TFD
[τPatId,Drug(Patient), Month(i)]Drug,Qty → Qty, encoding requirement (7), we
can check for emptiness the following query:
σ
Qty 
=Q̂ty∧Gs≤V T∧V T≤Ge∧Gs≤V̂ T∧V̂ T≤Ge

(τPatId,Drug(Patient)
�

Drug=D̂rug∧Qty=Q̂ty
ρ

W→Ŵ
τPatId,Drug(Patient) � σG Id=“Month”Gran)

Temporally hybrid TFDs. Finally, the TFD [HePatient , Top(i)]Chemo,Drug
→ Qty, encoding requirement (8), can be verified by checking for emptiness the
following query:

σQty 
=Q̂ty(HePatient �
Drug=D̂rug∧Chemo=Ĉhemo

ρ
W→Ŵ

HePatient )),

which can be expanded as follows:
σQty 
=Q̂ty((πU∪{V T}(σV T=V T+7(τPatId,Chemo,Drug(Patient)))

⋃
ρU,V T→U,V T πU∪{V T}(σV T=V T+7(τPatId,Chemo,Drug(Patient))))
�

Drug=D̂rug∧Chemo=Ĉhemo

ρ
W→Ŵ

(πU∪{V T}(σV T=V T+7(τPatId,Chemo,Drug(Patient)))
⋃

ρU,V T→U,V T πU∪{V T}(σV T=V T+7(τPatId,Chemo,Drug(Patient)))))

Let us briefly analyze the computational complexity of TFD verification based
on the proposed checking-for-emptiness method. As TFDs are represented by
expressions of the form [E-Exp(R), t-Group(i)]X → Y, the cost of checking
the functional dependency X → Y depends on the structure of the evolution
expression E-Exp(R) and on the nature of the temporal grouping condition
t-Group(i).

Let n, nE , and nG be the cardinalities of the temporal relation r ∈ R, of
the corresponding instance of the evolution relation, and of the relation repre-
senting the temporal grouping, respectively. The emptiness check consists of the
execution of the join:

E-Exp(R) �X=X̂ ρ
W→Ŵ

E-Exp(R),

followed by the execution of the join of the resulting relation with the relation
representing the temporal grouping, and the execution of an operation of selec-
tion on the resulting relation to verify the condition on the consequent(s) of the
functional dependency.

The cost of computing the instance of the evolution relation is in O(n3) (the
most complex case being that of the temporal view nexttuple). An upper bound
to the cost of executing the two joins is given by the cost of executing two
cartesian products, which is in O(n2

E · nG) (we assume that no special indexing
data structures are available). The cost of the subsequent selection operation
is in O(n2

E · nG) as well (it must be executed as many times as the tuples of
the resulting relation are). Hence, the overall cost of the emptiness check is in
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O(n3 + n2
E · nG). As nE ranges from n (for pure temporally grouping TFDs) to

O(n2) (for pure temporally evolving, mixed, and hybrid TFDs), the complexity
of the emptiness check ranges from O(n3 +n2 ·nG), for pure temporally grouping
TFDs, to O(n4 · nG), for pure temporally evolving, mixed, and hybrid TFDs.

Similarly to the atemporal case [5], if it is known that relation r is a legal state
and t is a tuple to be inserted, then checking whether or not r ∪ {t} satisfies a
TFD can be performed in time O(n3 + nE ·nG) (in O(nE ·nG) if we assume the
current value of the evolution expression to be cached).

6 Related Work

Various representation formalisms for TFDs have been developed in the litera-
ture [2,6,11,12,13], which differ a lot in their structure as well as in the underlying
data model. All of them basically propose alternative extensions to the relational
model, often introducing non-relational features (this is the case with Wijsen’s
objects [13] and Vianu’s update mappings [11]), making it difficult to identify
their distinctive features and to systematically compare them in order to pre-
cisely evaluate their relative strength and their limitations. In the following, we
take the set of requirements given in Section 2 as a sort of benchmark for their
evaluation. A systematic analysis is provided in [4], where we first describe the
most significant TFD formalisms proposed in the literature, following as much
as possible the original formulation given by the authors, and, then, we formally
prove that our proposal actually subsumes all of them. In the following, we pro-
vide a short account of such an analysis. In particular, we show that existing
formalisms significantly differ in the requirements they are able to express and
that there exist meaningful requirements they are not able to cope with. As
an example, existing TFD systems are not able to express Requirements (5-7),
which (from the point of view of the conditions they impose) look like minor
variations of Requirement (4).

Let us assume to have a representation of the patient database example in
(the data model underlying) all the TFD systems we are going to analyze. We
first show how to represent Requirements (1-4). As a matter of fact, not all these
requirements can be encoded in all TFD systems.

In [6], Jensen et al. propose a bitemporal data model that allows one to
associate both valid and transaction times with data. Jensen et al.’s TFDs make
it possible to express conditions that must be satisfied at any (valid) time point
taken in isolation. Requirement (1), which prevents any patient from having two
or more administrations of the same drug during the same day, can be modeled
by Jensen et al. ’s TFDs as follows:

PatId ,Drug→T Chemo,BG ,Phys ,Qty

A general formalism for TFDs on complex (temporal) objects has been pro-
posed by Wijsen in [13]. It is based on a data model that extends the relational
model with the notion of object identity, which is preserved through updates,
and with the ability of dealing with complex objects, that is, objects that may
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have other objects as components. Wijsen’s TFDs have the form c : X →α Y .
Their meaning can be intuitively explained as follows. Let t1 and t2 be two ob-
jects of class c valid at time points i and j, respectively, where (i, j) belongs to
the time relation α. If t1 and t2 agree on X , then they must agree on Y as well.

For any patient, Requirement (2) forces drug quantities of chemotherapies to
remain unchanged whenever administrations take place within 14 days. Such a
requirement constrains the duration of the time span between two administra-
tions and it can be modeled using Wijsen’s TFDs as follows:

Patient : PatId ,Chemo,Drug →14Days Qty,

where 14Days is a time relation grouping 14 consecutive days.
Bettini, Jajodia, and Wang’s notion of TFD takes advantage of time granu-

larity [2]. Their TFDs allow one to specify conditions on tuples associated with
granules of a given granularity and grouped according to a coarser granularity.
It is not difficult to show that Wijsen’s TFDs actually subsume Bettini et al.’s
TFDs. More precisely, Bettini et al.’s TFDs are exactly all and only Wijsen’s
TFDs on chronologies (the class TFD-C in Wijsen’s terminology).

Requirement (3) essentially states that, regardless of the patient, for any
chemotherapy and any month, the administered quantity of a drug is always
the same. This requirement can be expressed in Bettini et al.’s formalism by the
following TFD on the temporal module schema (Patient , Day):

Chemo,Drug →Month Qty,

where Month is the granularity grouping days of the same month.
Its representation in Wijsen’s TFD formalism is as follows:
Patient : Chemo,Drug →Month Qty,

where Month is a time relation grouping days of the same month.
It is not difficult to show that pure temporally grouping TFDs are very close

to TFDs proposed by Jensen et al., Wijsen, and Bettini et al., as witnessed by
the above three temporal functional dependencies.

In [11], Vianu proposes a simple extension to the relational model in order to
describe the evolution of a database over time. He defines a database sequence
as a sequence of consecutive instances of the database, plus “update mappings”
from one instance (the “old” instance) to the next one (the “new” instance).
Constraints on the evolution of attribute values of tuples (objects) over time
are expressed by means of dynamic functional dependencies (DFDs), that make
it possible to define dependencies between old and new values of attributes on
updates. For example, Requirement (4) constrains the administrations of a drug
on two consecutive days by imposing different patients not to take different
quantities of the drug on the next day, if they take the same quantity of it on
the current day. Assuming that the update mapping represents the evolution of
a tuple for a given patient and a given drug and chemotherapy, Requirement (4)

can be expressed by the following DFD, where for each attribute A,
∨
A represents

its old value and
∧
A its new value:

∨
Drug,

∨
Qty→

∧
Qty
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We conclude the section by an intuitive account of the fact that the last four
requirements cannot be dealt with by existing TFD systems. This is true, in par-
ticular, for Requirements (5-7) that present some similarities with Requirement
(4), which can be easily encoded using Vianu’s DFDs.

Consider, for instance, Requirement (5). Such a requirement is based on an
update mapping which differs from the one of Requirement (4) in an essential
way. Such a mapping must indeed associate any tuple involving a patient, a drug,
a chemotherapy, and a physician, valid at a given day, with a tuple involving the
same patient, drug, chemotherapy, and physician, valid at the next day (if any).
Unfortunately, Vianu’s DFDs cannot help, as they are based on a fixed update
mapping (that does not allow one to constrain the physician to be the same).
Moreover, Vianu’s update mappings are partial one-to-one mappings, and thus
they cannot be exploited to deal with the case where a tuple, valid at a given day,
must be associated with more than one tuple, valid at the next day. Requirement
(6) constrains successive administrations of a drug possibly involving different
delays: Vianu’s update mappings cannot cope with “asynchronous” updates of
different tuples. Requirement (7) cannot be fulfilled by existing TFDs as well.
It indeed requires a sort of combination of Vianu’s DFDs and tuple temporal
grouping supported by Wijsen’s TFDs (and by Bettini et al.’s TFDs).

Requirement (8) deserves a deeper analysis. Basically, it imposes that, for
any chemotherapy, (only) the quantities of drugs taken by patients every 7 days
cannot change. On the one hand, this constraint cannot be expressed by Vianu’s
DFDs, as they do not allow one to formulate a condition of the form: “some-
thing cannot change in the evolution of the database”. On the other hand, the
other TFD systems have no the capability of “mapping tuples’ evolution” (the
evolution of a database can only be modeled through the union of consecutive
states). As an example, Wijsen’s TFD Patient : Chemo,Drug →7Days Qty,
where the time relation 7Days groups days which are exactly 7 days far from
each other, does not capture the intended meaning. Consider, for instance, the
tuples belonging to the relation depicted in Table 1. The relation violates such
a TFD as the tuple for patient 3 at time 1 violates it with respect to drug Cyc
and chemotherapy CEF, with respect to time points 1 and 8. On the contrary,
according to its intended meaning, requirement (8) is actually fulfilled by the
relation depicted in Table 1, as the drugs that are taken by patients every 7
days (Flu by patient p1, and Flu and Epi by patient p2) do not change their
quantities from one administration to the successive one (7 days later).

7 Conclusions

In this paper, we focused our attention on the specification and checking of tem-
poral functional dependencies (TFDs), possibly involving multiple time granu-
larities. To overcome the limitations of existing TFDs, we have proposed a new
general notion of TFD, that subsumes all of them and allows one to cope with
temporal requirements they cannot deal with. The simplest TFDs are directly
brought back to atemporal FDs; to manage the most complex ones some addi-
tional machinery is needed. As for the problem of checking whether a temporal
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relation satisfies a given set of TFDs, we have shown how to uniformly reduce it
to the problem of checking for emptiness a suitable relational algebra expression
over the considered temporal relation.

References

1. Assikis, V., Buzdar, A., Yang, Y., et al.: A phase iii trial of sequential adjuvant
chemotherapy for operable breast carcinoma: final analysis with 10-year follow-up.
Cancer 97, 2716–2723 (2003)

2. Bettini, C., Jajodia, S., Wang, X.: Time granularities in Databases, Data Mining,
and Temporal Reasoning. Springer, Heidelberg (2000)

3. Bresolin, D., Montanari, A., Puppis, G.: A theory of ultimately periodic languages
and automata with an application to time granularity. Acta Informatica 46(5),
331–360 (2009)

4. Combi, C., Montanari, A., Sala, P.: A uniform framework for temporal functional
dependencies with multiple granularities. Technical Report RR 81/2011, Depart-
ment of Computer Science, University of Verona, Verona, Italy (2011)

5. Hegner, S.J.: The relative complexity of updates for a class of database views.
In: Seipel, D., Torres, J.M.T. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 155–175.
Springer, Heidelberg (2004)

6. Jensen, C., Snodgrass, R., Soo, M.: Extending existing dependency theory to tem-
poral databases. IEEE Transactions on Knowledge and Data Engineering 8(4),
563–581 (1996)

7. Kanellakis, P.C.: Elements of relational database theory. In: van Leeuwen, J. (ed.)
Handbook of Theoretical Computer Science, Volume B: Formal Models and Se-
mantics (B), pp. 1073–1156. Elsevier and MIT Press (1990)

8. Levine, M., Sawka, C., Bowman, D.: Clinical practice guidelines for the care and
treatment of breast cancer: 8. Adjuvant systemic therapy for women with node-
positive breast cancer (2001 update). Canadian Medical Association Journal, 164
(2001)

9. Ning, P., Jajodia, S., Wang, X.S.: An algebraic representation of calendars. Annals
of Mathematics and Artificial Intelligence 36, 5–38 (2002)

10. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. I. Computer
Science Press, Rockville (1988)

11. Vianu, V.: Dynamic functional dependency and database aging. Journal of the
ACM 34(1), 28–59 (1987)

12. Wijsen, J.: Design of temporal relational databases based on dynamic and tem-
poral functional dependencies. In: Clifford, J., Tuzhilin, A. (eds.) International
Workshop on Temporal Databases. Recent Advances in Temporal Databases, pp.
61–76. Springer, Heidelberg (1995)

13. Wijsen, J.: Temporal FDs on complex objects. ACM Transactions on Database
Systems 24(1), 127–176 (1999)

14. Wijsen, J.: Temporal dependencies. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
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Abstract. Time series data objects can be interpreted as high-
dimensional vectors, which allows the application of many traditional
distancemeasures aswell asmore specializedmeasures.However,manydis-
tance functions are known to suffer from poor contrast in high-dimensional
settings, putting their usefulness as similarity measures into question. On
the other hand, shared-nearest-neighbor distances based on the ranking of
data objects induced by some primary distance measure have been known
to lead to improved performance in high-dimensional settings. In this pa-
per, we study the performance of shared-neighbor similarity measures in
the context of similarity search for time series data objects. Our findings
are that the use of shared-neighbor similarity measures generally results in
more stable performances than that of their associated primary distance
measures.

1 Introduction

One of the most fundamental operations in data mining applications is that of
similarity search. The retrieval of similar objects during a given data mining task
may be facilitated using a ‘k-nearest-neighbor’ (k-NN) search with an appropri-
ate distance or similarity measure. For data representable as real-valued feature
vectors, many similarity measures are in common usage, such as the cosine dis-
tance measure and Lp norms — which include the Euclidean distance (p = 2)
and Manhattan distance (p = 1).

The effectiveness of similarity measures in data mining applications depends
on their ability to discriminate among the various groupings of the data that arise
from different generation mechanisms or statistical processes. These groupings
or subsets, although usually unknown in practical settings, may be regarded as
‘classes’ in the context of classification, as ‘clusters’ in the context of clustering,
as ‘usual’ vs. ‘conspicuous’ data objects in outlier detection, or simply as ‘similar’
vs. ‘dissimilar’ or ‘relevant’ vs. ‘irrelevant’ objects in the context of similarity
search and information retrieval applications. Generally speaking, k-NN queries
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should return for a query object generated by a given mechanism other objects
generated by the same mechanism.

For data mining applications involving time-series data, the presence of such
spatio-temporal phenomena generally prevents the use of simple distance mea-
sures (such as cosine similarity and Lp norms) for meaningful similarity measure-
ment. To cope with spatio-temporal data, several specialized distance measures
have been developed that attempt to determine the best matching of events
along the time axis. One of the most prominent of these is the Dynamic Time
Warping (DTW ) distance [1], used extensively in speech recognition. DTW sup-
ports asynchronous matching — matches with shifts along the time dimension
— by extending each sequence with repeated elements, and applying Lp norms
to the extended time series. The advantages of DTW are invariance to (local)
phase-delays, the acceleration or deceleration of signals along the time dimen-
sion, and the ability to support matches between series of differing lengths. Like
the Lp norms, DTW requires a complete matching of both time series, in that
each value from one time series must be matched with at least one value from
of the other time series. For this reason, DTW is sensitive to noise and outliers.

In general, distance measures that are robust to extremely noisy data typically
violate the triangle inequality [2], and thus are inapplicable for most indexing
methods. Well-known distance measures for sequence data that fall into this
category are the Longest Common Subsequence (LCSS ) distance [2], the Edit
Distance on Real sequence (EDR) [3] and the Edit distance with Real Penalty
(ERP) [4]. In contrast with DTW, LCSS and EDR, the measure ERP has the
advantage of satisfying the triangle inequality and is therefore a distance metric.
The aforementioned measures are adaptations of the edit distance, a commonly-
used distance measure for matching strings that can accommodate gaps in the
matching. Unlike the Lp norms and DTW, these measures are able to ignore
noise and outliers. As such, edit distance variants are better at coping with
different sampling rates, different time rates, and different series lengths; they
can also be computed more efficiently.

The high computational cost associated with distance measures for time-series
data has led to the development of many methods for dimensionality reduction,
in which distance measures are applied to subsets of features extracted from
objects in the series [5,6,7,8,9]. Distance measures based on dimensionality re-
duction can be regarded as specialized similarity measures, in that they process
the full set of spatio-temporal features to ultimately produce similarity values
for the original objects.

A rather different approach to the design of similarity measurement is that
of ‘shared nearest neighbor’ (SNN ) dissimilarity, in which ‘secondary’ similarity
measures are derived from any ‘primary’ similarity measure supplied for the ob-
jects. Given two objects for which the similarity is to be computed, secondary
similarity measures consider the extent to which the neighbor sets of these ob-
jects resemble each other, where the neighbors are determined according to the
primary similarity measure. In principle, any primary similarity measure can be
used — including Lp norms and any specialized time series distance measures —
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although the effectiveness of the secondary measure does depend on that of the
primary measure. SNN measures have found many applications for computing
k-NN sets in high-dimensional data, and have been reported to be less prone
to the ‘curse of dimensionality’ than conventional distance measures. The ‘curse
of dimensionality’ is a general phenomenon that drastically limits the perfor-
mance of search, clustering, classification, and other fundamental operations in
applications of data mining for high-dimensional data (see for example [10]).

The earliest known use of SNN dissimilarity was as the merge criteria for
agglomerative clustering algorithms [11]. SNN was also used for clustering high-
dimensional data sets [12,13], and for finding outliers in subspaces of high-
dimensional data [14]. In these applications, the preference for SNN dissimilarity
was due to the perception of it being more stable and robust than conventional
distance measures for high-dimensional data; however, in all of these early stud-
ies, any such claims were intuitive and unsubstantiated (when articulated at all).
The first detailed study of the merits of SNN dissimilarity for high-dimensional
real-valued feature vector data appeared in [15], which assessed the effects of the
curse of dimensionality on Lp distances, the cosine distance, and SNN measures
based upon these primary distance measures. For this context, the study came
to the following general conclusions:

1. The quality of a ranking, and thus the separability of different groupings
(such as classes or clusters), depends less on the data dimensionality, and
more on the proportion of data elements that are relevant to the grouping.

2. The use of SNN dissimilarity with Lp distances or the cosine distance sig-
nificantly boosts the quality of neighbor ranking, compared to the use of the
corresponding primary distances.

3. The performance of similarity search and related problems in data mining
becomes more accurate and more reliable (less variable) when using SNN
distance measures in place of their associated primary distance measures.

As time-series data are representable as high-dimensional feature vectors, they
too are susceptible to the curse of dimensionality. Although the study did not
directly consider the effect of SNN dissimilarity for time-series data, the im-
provements observed for high-dimensional vector data for Lp norms and the
cosine distance do suggest the possibility of improvements for time series. On
the other hand, specialized time series distance measures perform rather differ-
ently from Lp norms or the cosine distance: assumptions that hold for Euclidean
vector spaces do not necessarily apply to the spaces within which time-series
data reside. SNN dissimilarity measures work best when the groupings (classes
or clusters) form compact, ‘spherical’ structures. Classes and clusters of time-
series data objects are generally not compact in terms of Euclidean distance. It
is possible, however, that these groupings may be made more compact by means
of a transformation to some suitable space or geometry.

The potential impact of transformation on the performance of search serves as
an interesting motivation for the investigation of SNN measures for time-series
data. In this paper, we extend the study of [15] to time series of varying lengths
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(dimensionalities), by comparing the accuracy of common primary distance mea-
sures with that of their associated secondary SNN dissimilarity measures. Pre-
viously, no comprehensive study has been made of the effects of shared-neighbor
distance measures on the alleviation of the curse of dimensionality for the spe-
cialized distance measures used for typical time-series data sets.

Distance measures based on dimensional reduction techniques will not be con-
sidered in our study. The dimensional reduction effectively transforms the orig-
inal time-series data domain into a second time-series data domain, one whose
nature is harder to characterize than the original set. It is important that the na-
ture of the data sets for the experimental study be transparently understood, so
that the effects of the secondary similarity methods can be properly assessed. For
this reason, we consider the effects of SNN dissimilarity only on simple bench-
mark data sets, and higher-dimensional extensions of these data sets, where the
characteristics of the data can be clearly understood. The interaction of SNN
dissimilarity and specific dimensional-reduction techniques is beyond the scope
of this paper.

The structure of the remainder of this paper is as follows. We will first in-
troduce the concept of SNN in more detail in Section 2. Section 3 presents the
experimental setup for this study. We compare the performance of ‘secondary’
SNN measures with their respective ‘primary’ measures in Section 4. Finally, we
summarize and discuss our findings in Section 5.

2 Shared Nearest Neighbor Similarity

The most basic form of the shared-nearest-neighbor (SNN ) similarity measure is
that of the ‘overlap’. Given a data set S consisting of n = |S| objects and s ∈ �+,
let NN s(x) ⊆ S be the set of s nearest neighbors of x ∈ S as determined using
some specified primary similarity measure. The overlap between objects x and
y is then defined to be the intersection size

SNN s(x, y) = |NN s(x) ∩ NN s(y)|. (1)

In addition to the overlap, a number of similarity measures have been proposed
in the research literature, including:

– The ‘cosine measure’, given as:

simcoss(x, y) =
SNN s(x, y)

s
, (2)

so called as it is the cosine of the angle between the characteristic vectors for
NN s(x) and NN s(y). This normalization of the overlap was used in [12,16]
as a local density measure for clustering.

– The ‘set correlation’, given as:

simcorr s(x, y) =
n

n − s

(
SNN s(x, y)

s
− s

n

)
, (3)
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which results when the standard Pearson correlation formula

r =
∑n

i=1 xiyi − nx̄ȳ√
(
∑n

i=1 x2
i − nx̄2)(

∑n
i=1 y2

i − nȳ2)

is applied using the coordinates of the characteristic vectors of NN s(x) and
NN s(y) as variable pairs. Objects of S that appear in both NN s(x) and
NN s(y), or neither of NN s(x) and NN s(y), support the correlation of the
two neighborhoods (and by extension the similarity of x and y); those ob-
jects that appear in one neighborhood but not the other detract from the
correlation. Note that the set correlation value tends to the cosine measure
as s

n tends to zero. Set correlation was introduced in [13] for the purpose
of assessing the quality of cluster candidates, as well as ranking the cluster
objects according to their relevance (or centrality) to the cluster.

It should be noted that when s and n are fixed (as they typically are in practice),
the rankings determined by each of these similarity measures are identical. The
functions only differ in the contrast of distance values achieved over different
neighborhood subranges.

Dissimilarity measures can generally be derived from similarity measures in
straightforward fashion. For the SNN similarity simcos (Equation 2) with a
given choice of s, the following distance measures have been proposed [15]:

dinv s(x, y) = 1 − simcoss(x, y) (4)
dacoss(x, y) = arccos (simcoss(x, y)) (5)

dlns(x, y) = − ln simcoss(x, y) (6)

3 Experimental Setup

3.1 Distance Measures

We study the behavior of several representative distance measures for time se-
ries, including L1 (Manhattan distance) and L2 (Euclidean distance) as baseline
measures, and DTW, LCSS, EDR, and ERP as distance measures specialized for
time series data (see Section 1). Note that we will not compare and discuss the
accuracies of different primary distance functions on time-series data, since the
‘best’ primary distance function in any case depends heavily on the characteris-
tics of the data set. Rather, we will limit our investigations to the effects of the
use of the secondary (SNN ) distance measure dinv s (as defined in Equation 4)
relative to their corresponding primary distance measures.

All primary and secondary distance measures were implemented in the ELKI
framework [17].

3.2 Evaluation Criteria

The purpose of a distance function or similarity measure is to discriminate be-
tween relevant and irrelevant data. Relevant objects should be closer or more
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similar to the reference object than irrelevant objects. In time-series data sets
whose objects are of multiple classes, ‘relevant’ objects are those objects belong-
ing to the same class as the query object, whereas ‘irrelevant’ objects belong to
a different class. The ability of a distance function to separate out relevant from
irrelevant data can be best evaluated by computing a nearest neighbor ranking
of all data objects with respect to a given query object. Ideally, we would find
all objects of the same class as the query object at the highest ranks, followed
by the objects belonging to the remaining classes.

As a visual presentation of the effectiveness of dissimilarity measures in dis-
criminating between different classes within a data set, we make use of grey-scale
similarity matrices, where black values indicate high similarity and white values
indicate low similarity. Along each dimension, the items are sorted according to
their class labels. Since all items are self-similar, the diagonal entries are always
black.

The quality of a particular distance function is also presented numerically in
the form of a pair of histogram plots, where one plot displays distances between
members sharing the same class (intra-class distances), and the other displays
distances between members of differing classes (inter-class distances). If the two
histograms do not overlap, a single distance threshold would be sufficient to dis-
criminate between the cluster and all others. However, in most real applications
these histograms would interpenetrate substantially. The visualization gives a
good impression of the over-all separability of classes over different ranges of
distance values.

The discriminative ability of a dissimilarity measure can be rated over the full
range of distance values by means of ‘received operator characteristic’ (ROC)
curves, which plot the ratio between the true positive rate and the false positive
rate against neighborhood size s. For each query, the objects are ranked according
to their similarity to the query object, and objects are said to be true positives
when they belong to the same class as the query object. For each ranked list
of results, we compute an ROC curve and the corresponding area under the
curve (AUC). We shall denote the AUC values by AUC(o, D, d), where o is the
query object, D the database and d the distance function used. An AUC of 1.0
indicates a perfect separation using the distance function, whereby all relevant
objects are ranked ahead of all irrelevant objects. The expected AUC value for
a random ordering of objects is 0.5.

The ROC curve and its AUC value summarize the quality of a query result
ranking for a single reference object. By performing a query based at each object
of the database, we can generate an ROC curve and an AUC value for each object
in the data set and aggregate these either using histograms, or more compactly
by computing the mean AUC value and variance. The mean AUC value can be
used to rate the quality of a particular distance measure for the entire data set:

MAUC(D, d) :=
1
|D|

∑
o∈D

AUC(o, D, d))) (7)
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(a) Euclidean (b) DTW (c) DTW SNN100 (d) DTW SNN70

(e) LCSS (f) LCSS SNN100 (g) LCSS SNN70 (h) LCSS SNN50

Fig. 1. Similarity matrices for CBF : All items are sorted according to their class label
and pairwise distances are plotted. Similarity values are shown in grey scale, where
black indicates high similarity and white indicates low similarity.

Note again that primary distance measures will be evaluated only against their
corresponding secondary distance measures.

The difference 1 − MAUC can be regarded as the ‘mean ranking error’. By
comparing the mean error of a primary distance (the reference distance, referred
to here as dref ) and a secondary distance (the distance to be evaluated, referred
to here as deval) we can evaluate the gain in ranking quality achieved using the
SNN distance:

Gain(D, dref , deval) := 1 − 1 − MAUC(D, deval )
1 − MAUC(D, dref )

(8)

3.3 Data Sets

For our experiments we used two synthetic data sets derived from the data used
in [18], as well as two real-world data sets. The first and most basic synthetic
data set, the Cylinder-Bell-Funnel (CBF ) set, describes an artificial problem
first proposed by [19] where the task is to classify an instance of a data stream
into one of three pattern classes Cylinder, Bell or Funnel, where each instance
is bracketed by a non-class-specific base signal. The original data set consists of
930 objects per class, with each object represented as a 128-dimensional vector.
In our experiments, the evaluation was performed over the first 100 objects of
each class.
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The Synthetic Control data set from [20] features synthetically generated con-
trol charts. This data set consists of 600 time series of length 60. There are six
classes with different shape characteristics: Normal, Cyclic, Increasing Trend,
Decreasing Trend, Upward Shift and Downward Shift. Each class contains ex-
actly 100 objects.

The Leaf data set from [21] is in fact not a time series, but rather a spatial
series taken from the outlines of leaves from 6 different types of tree (such as
maple). It has been shown that time warping distances work well for such data,
in that they are capable of adapting to variations in natural leaf growth. This
set has 442 instances with 150 dimensions.

The real-world Lightning-7 data set is the largest (7-class) variant of the
FORTE (‘Fast On-orbit Rapid Recording of Transient Events’) time series data
used in [22]. The objects represent information on lightning strokes as captured
by a low-orbit satellite. While this data set has only 143 objects, the series are
rather long, with 3181 dimensions. An additional challenge to classification arises
from one class containing ‘Off-Record’ objects that could potentially belong to
the other classes.

3.4 Dimensional Scaling

Some of the experiments presented here are specifically designed to assess the
impact of dimensionality on the quality of similarity rankings for time series
data, using different primary distance measures and the corresponding secondary
distance measures. The evaluation framework is similar to that of [15], here using
sets that exhibit the typical characteristics of time series data, together with
specialized distance measures for time series.

In order to assess the performance of the similarity measures over a wide range
of dimensions, we extend the original time series data in several different ways.
Ideally, any extension of time series should be done in a way that is semanti-
cally meaningful. It should also be noted that extension has the potential to
improve or weaken the discriminative ability of similarity measures, depending
on whether it reinforces the relevant data content, or acts as noise. To extend the
dimensionality of the time series for our experimentation, we modify the data
set in one of two ways (always keeping the original data as a subseries unless
explicitly stated otherwise):

Relevant attributes. To extend a time series so as to increase the amount of
information that relates to its class, we extend the series by appending other
time series data objects randomly selected from the same class.

Irrelevant attributes. To extend a time series so as to decrease the amount of
information that relates to its class, we append noise values to the time series.
Although there are many conceivable ways of introducing noise into a time series,
we adopted different methods of noise generation for each data set, each method
specifically tailored to the data domain. For the data sets CBF and Leaf, we
generate noise values as follows. Let the average value amplitude of the data
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set be denoted by mean, let ext be the maximum possible deviation from the
mean, and let 0 < p ≤ 1 be a reduction factor. The noise points are uniformly
distributed around mean in a reduced range based on p and ext . The creation
of a noise point N can be formalized as:

N = mean ± Uniform [−1, 1] · p · ext

In our experimentation, p is set to 0.1 so as to emulate the noise observed in
the original data sets. Increasing this type of noise leads to distortion of the
original class information, which in turn makes it more difficult to discriminate
between classes. In the CBF data set, this type of noise resembles the ‘base
signal’ — that is, the values that bracket the cylinder, bell and funnel time-series
patterns associated with each data object. This is true since these bracketing
values predominate over all time series of the data set, and thus contribute
highly to the mean value at which the generation of noise is based. As a result,
increasing the amount of noise reduces the proportion of information associated
with the three class-distinctive pattern types. In the Leaf data set, the noise
simply results in a much lower amplitude compared to the original data, since
all amplitudes of the data points contribute to the mean value with a similar
impact. The noise values for the Synthetic Control data set were generated in
a similar manner. However, the center of the generation interval was set at a
baseline value far lower than the data values of patterns from any of the six
classes, so as to be fully distinct from any of these.

For the second real-world data set, Lightning-7, noise elements are introduced
in an entirely different way, since the original data clearly follows a more complex
distribution: all series begin with an initial peak, followed by an interval of rela-
tive low values (‘silence’), and then by a region with a higher baseline containing
spikes that coincide with the main part of the lightning stroke. Here, we chose
to use sampling to extend the series: assuming that we will be appending a noise
series of length n, the value of the i-th entry of the noise series is decided by
selecting the i-th entry from a randomly-chosen time-series data object, where
i = 1 . . . n. As a consequence of appending noise series generated in this way,
the distinctions among the classes are blurred, and discrimination between them
becomes more difficult.

Dimensional Scaling. Dimensional scaling is effectuated by appending to the
original time series one or more additional series of the same length (either
class-relevant or noise, as described above). Each of these (the original and all
appended series) can be regarded as a ‘block’ within the expanded time series.
The total length of the expansion is then an integer multiple of the original time
series length (the original dimensionality, denoted by d). For our experimenta-
tion, the first block contains the original data, and subsequent blocks consist of
either relevant information or noise. The total time-series lengths considered are
of the form m = 2n × d with n ∈ {1, 2, 3, 4}. Since none of the data sets under
consideration, and since none of our algorithms take advantage of periodic infor-
mation in the time series, we opt for a straightforward design in which the first
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k blocks of the series consists of class-relevant data, and the remaining m − k
blocks consist of noise. We vary the choice of parameter k so as to produce time
series with various ratios between ‘signal’ (the class-relevant information at the
head of the series) and ‘noise’; these ratios include 1/2l for l = 0 . . . 4 as well
as 3/4.

4 Performance of Secondary Measures on Time Series

4.1 Discriminability of Classes

The similarity matrices plotted in Figure 1 give an indication of the compactness
of the different classes in CBF for a given distance measure. The classes are
compact for the measure if there are distinct dark squares along the diagonal
with a side-length roughly corresponding to the number of class members.

Perhaps surprisingly, under DTW the classes in this data set can be seen to
be less compact than with the Euclidean distance. Nevertheless, SNN based on
DTW (first row), as well as based on LCSS (second row), considerably increases
the compactness and separability of the different classes. The choice of parameter
s — the number of neighbors considered for the computation of SNN — does
have an impact on the degree of compactness and separability (as will be seen
in the next subsection).
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Fig. 2. Distance histograms for CBF : distribution of intra-class distances (red) vs.
inter-class distances (blue). The y-axis has been normalized to facilitate the comparison.
Shared-nearest-neighbor distances (lower plots) allow for much better discrimination
of classes than their corresponding primary distances (upper plots).
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Fig. 3. Performance on the CBF data set for varying choices of the SNN neighborhood
size s. Horizontal lines indicate the corresponding mean primary distance plus/minus
one standard deviation.

The compactness of individual classes and separability of pairs of classes can
be assessed by means of a visualization of the (normalized) distributions of intra-
class distances and of inter-class distances. If both distributions overlap strongly,
the discrimination power of the corresponding distance measure is generally poor.
We see in Figure 2 the results on the CBF data set. The upper plots indicate
the primary distances, and the lower plots indicate the derived SNN distances.
Together, they show that the numerical contrast improves significantly when the
SNN measures are adopted, as the pairs of distributions are much more widely
separated in all of the lower plots. Consider the plots that would result after
vertical scaling by the number of intra-class and inter-class distances, respec-
tively. When the discrimination boundary is placed at the intersection of these
scaled plots, the classification error would be proportional to the intersection of
the areas under the scaled curves. The strong increase in the inter-class distance
means for the SNN measures indicates that these areas would be substantially
smaller than those arising from their corresponding primary measures.

4.2 Impact of the Choice of s on SNN Distances

In the case of traditional spatial vector data representations, it has been already
observed that SNN performs well when s is chosen to be of the same approximate
size as the natural cluster to which the query object belongs (or larger) [15]. For
the data sets used in our experimentation, as with most realistic data sets, the
classes are fragmented into several smaller natural clusters, which explains why
performance is best when s is chosen to be slightly less than the expected class
size. However, as a general rule we chose s to be equal to the class size in the
experiments described below.
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Table 1. Mean ROC AUC scores for unmodified data sets

CBF
Distance Primary SNN100 Gain SNN70 Gain
Euclid. 0.769 0.792 9.9% 0.800 13.5%
Manh. 0.789 0.815 12.5% 0.825 17.3%
DTW 20% 0.820 0.879 33.1% 0.930 61.1%
ERP 20% 0.804 0.860 28.4% 0.861 28.7%
EDR 20% 0.840 0.905 40.7% 0.932 57.8%
LCSS 20% 0.871 0.947 59.3% 0.958 67.5%

synthetic control
Distance Primary SNN100 Gain SNN80 Gain
Euclid. 0.898 0.929 29.7% 0.933 34.2%
Manh. 0.902 0.932 30.2% 0.937 35.4%
DTW 20% 0.961 0.972 27.1% 0.979 46.2%
ERP 20% 0.934 0.941 10.8% 0.945 16.7%
EDR 20% 0.930 0.967 53.1% 0.970 57.6%
LCSS 20% 0.948 0.979 59.2% 0.980 62.4%

leaf shapes
Distance Primary SNN80 Gain SNN60 Gain
Euclid. 0.550 0.556 1.3% 0.570 4.3%
Manh. 0.578 0.594 3.7% 0.613 8.2%
DTW 20% 0.713 0.777 22.3% 0.810 33.6%
ERP 20% 0.751 0.823 28.7% 0.826 30.2%
EDR 20% 0.716 0.761 15.7% 0.778 21.9%
LCSS 20% 0.766 0.823 24.4% 0.838 30.8%

FORTE lightning 7-class
Distance Primary SNN30 Gain SNN20 Gain
Euclid. 0.656 0.688 9.3% 0.684 8.1%
Manh. 0.673 0.697 7.3% 0.692 5.7%
DTW 10% 0.661 0.677 4.9% 0.665 1.1%
ERP 10% 0.668 0.677 2.7% 0.670 0.7%
EDR 10% 0.624 0.652 7.4% 0.641 4.5%
LCSS 10% 0.687 0.771 27.0% 0.775 28.2%

First, we evaluate the impact of the choice of s over broad range of values.
Figure 3 shows the results obtained for the CBF data set when s is varied, with
vertical error bars indicating the extent of one standard deviation from the mean.
The plots indicate that SNN improves over the corresponding primary distance
measure (the straight horizontal lines) over a fairly wide range of s. Only very
small or very large values of s lead to poor performance. Similar results were
obtained for the other data sets as well. For each data set, Table 1 displays the
gain of SNN over the primary measure for various choices of s. From this table,
it can also be observed that across the various choices of data sets and primary
similarity measures, SNN measures can be expected to perform relatively well
whenever the associated primary measures perform relatively well. Combinations
where the primary distance performed relatively poorly (such as the Lp norms
on the Leaf data set) see the smallest improvement when using SNN. For most
of our experiments, the relative improvement of SNN over the primary measure
(as expressed by the gain) is significant.

4.3 Results on Dimensionally Scaled Data Sets

In Figure 4, we show the normalized intra-class distances and inter-class dis-
tances (in the same format as in Figure 2) for the CBF data set, after 3-fold
extension with noise blocks. Compared to the original data set, the overlap in
the primary distances is larger, diminishing the separability of the classes. The
SNN distances remain largely unaffected.

We next examine the effect of noise objects on performance. Figure 5 shows
the results obtained when the data set is augmented with objects comprising
a single noise block each. Although one would perhaps expect the performance
of the Euclidean distance to drop rapidly as the data set size increases, it in
fact remained relatively stable, with only a slight quality drop observed. Despite
having performed well before the introduction of noise data, the distance func-
tions LCSS and EDR showed the biggest sensitivity to the added noise, while
the other distance measures appear to be largely unaffected. The SNN-based
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Fig. 4. Distance histograms for CBF after extension with 3-fold noise: the relative
numerical contrast for the primary distance functions decreases, but the classes remain
well-differentiated under SNN. Compare with Figure 2.

distances remained stable, handling more than twice the amount of noise as
their corresponding primary measures, before eventually deteriorating as well.

The reason why most of the distance functions considered here are largely
unaffected by noise can be attributed to the characteristics of the added noise.
When adding hundreds of independently and identically distributed attributes to
a data set, their total effect accumulates to an almost constant value with a low
variance. As long as this variance is lower than the variance within the relevant
attributes, the added noise does not strongly affect the resulting ranking.

Note that the EDR distance on the CBF data set shows an anomaly, since
the results improve even for the primary distance function after the addition
of the first block of noise. This however is an artifact of the way this synthetic
data set was created. Essentially, the noise appended has values similar to the
baseline mean value of the data set, and as such the extended records can indeed
be more similar to each other for those situations in which a series has only few
bracketing values before or after the main pattern (cylinder, bell, or funnel). In
realistic data sets, such effects are not likely to occur. They can be regarded as
record-boundary effects wherein one series has only a limited range remaining
for matching. Such effects have previously been noted in the research literature,
for example in [2]. Since they affect the comparative performance of primary
distance measures, they fall outside the scope of this study. With the synthetic
control set, the effect is exactly the opposite: despite its low variance, the added
noise is sufficiently different from the original data as to negatively affect the
performance of EDR.
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Fig. 5. Result quality after extension with noise blocks, shown with the x-axis in log
scale
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Fig. 6. Result quality in relation to noise ratio for the Leaf data set expanded 4-fold
and 16-fold with noise blocks. As the number of relevant dimensions increases, a higher
ratio of noise is tolerated. With a ratio of 1.0, the data would consist only of noise, and
all ROC curves would be expected to have an AUC of 0.5.

For the next experiment, we fix the total number of dimensions and vary the
proportion of noise added. Figure 6 shows the performance of distance measures
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Fig. 7. Result quality with increasing dimensionality and fixed noise ratio for the CBF
data set. The left-hand plots show the performances of the primary distance, the right-
hand plots show the performances of the corresponding SNN s = 100 distances.
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for the Leaf data set, when expanded 4-fold and 16-fold with class-relevant blocks
and noise blocks. The performance remains relatively stable when the amount
of noise is moderate. With the 16-fold expanded data set, the drop in quality
occurs later, indicating that longer time series may be more robust to noise
than smaller ones. Apart from improving the general result quality, SNN also is
apparently able to handle a larger share of noise in the data. The other data sets
show essentially the same behavior.

To assess the relative performance of primary and secondary similarity with
respect to the absolute dimensionality, we maintain fixed proportions of noise and
vary only the total dimensionality. The results for the CBF data set can be seen
in Figure 7. The trend in these results holds throughout all settings: increasing
the data dimensionality for a fixed amount of noise improves the performance,
with higher dimensionality leading to good performance for higher proportions
of noise. This confirms the findings of [15] also for time series data and time
series distance measures. The performance of SNN measures again essentially
depends only on the performance of the primary measure, not on the actual
characteristics of the data set.

5 Discussion and Conclusions

Studies of the infamous curse of dimensionality (such as [23,24,25]) have long
been used as a rationale for practitioners and researchers to justify their avoid-
ance of large data sets, or for algorithms failing to find meaningful results in
such data, or for the motivation of new heuristics (see [15] for a discussion of
examples). The same has also been alleged for time series or sequence data
[5,26,27,28,29]. Other researchers (such as [30,23], and more recently [15]) have
argued that the findings of such studies should be interpreted with a degree of
caution.

The essential point made in [15] is that the effects of the curse of dimension-
ality largely depend on the presence or absence of clusters in a dataset, and
similarity measures by which they may be distinguished. In the presence of data
clusters (or localized distributions of any kind), the curse applies to the dis-
crimination between pairs of neighbors within clusters (in that the nearest and
farthest neighbors within a cluster may become indistinguishable with increas-
ing dimensionality), but not between pairs of neighbors from different clusters.
As long as the proportion of class-relevant information remains sufficiently high,
the contrast between different clusters may even improve with increases in di-
mensionality. The experimental study of this paper confirms the findings of [15],
and shows that they also apply to distance measures specific to time series data.

Aside from the (expected) confirmation of earlier findings, we demonstrated
the capability of shared-neighbor-based secondary distance measures to improve
on the quality of similarity rankings provided by primary measures, in the con-
text of time series data and time series distance measures. Furthermore, we
showed that SNN similarity measures are capable of withstanding larger propor-
tions of noise than their associated primary distances. Even in cases where the
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contrast between clusters has deteriorated due to noise, provided that the pri-
mary distance measure still produces meaningful ranking information, secondary
SNN measures often remain capable of discrimination between the clusters.

Although extensive within the scope outlined early on, this study could not
account for all situations that may be of interest to practitioners or researchers.
For example, we did not evaluate the use of approximations such as wavelets
and Fourier transformation for dimensional reduction. We also did not work
with periodic signals that could be better analyzed in a frequency domain. Only
a few common distance functions could be considered, and the patterns of di-
mensional expansion and noise generation were also of necessity very limited —
and doubtlessly there are instances for which even the best distance functions
(both primary and secondary) must fail. Any of these topics could conceivably
be greatly expanded into a large study in its own right.

However, the goal of this study was not to debate the issue as to which primary
distance measure is generally better than another, but instead to support three
key conclusions:

1. High dimensionality of a data set does not in itself lead to the effect known
as the curse of dimensionality. The proportion of data attributes that is
relevant to the query has far more influence on quality and performance.

2. The relative ranking of data objects according to a similarity measure can
remain meaningful even when the absolute distance values become difficult
to distinguish. Poor distance contrast can be boosted by using an approriate
secondary distance measure as SNN.

3. Rank-based similarity measures such as SNN can be more discriminative
than their associated primary distance measures.

These points relate to conclusions 1-3 in [15], and establish these observations
also in the context of time series data and time series distance measures.
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Abstract. Modern massive-multiplayer-online games (MMOs) allow thousands
of users to simultaneously interact within a virtual spatial environment. Devel-
oping an MMO servers yields a lot of new challenges in managing and mining
spatial temporal data. In this paper, we describe problems of handling spatial data
in an MMO and outline why analyzing spatial patterns is an important task for
keeping an MMO successful over a long period of time. Though many of these
problems share a close connection to well-known tasks in temporal and spatial
databases, there are many significant differences as well. Thus, we will describe
the similarities to established problems and outline new challenges for managing
and mining spatial temporal data in MMOs.

1 Introduction

In recent years, computer games have become a driving factor in the entertainment
industry having a business volume exceeding even the movie business and the music
business. An important factor in modern computer games is the possibility to link the
gaming experience of thousands of players via the internet. Massive-Multiplayer-Online
games (MMOs) allow several thousand players to simultaneously participate within the
same virtual spatial environment. Since each game entity in the game, e.g. a player char-
acter, has a spatial position on a virtual landscape, MMO servers often have to provide
similar functionalities as spatio-temporal databases. For example, a player needs infor-
mation about all other game entities being located in his current area of sight which
can be mapped to an ε-range query. Thus, computing the result of spatial queries is an
important functionality within processing the game state in an MMO server. However,
the requirements for game server w.r.t. query processing, data management or persis-
tency are often quite different from those in a database system yielding new challenges
to data structures and algorithms. Beyond efficient processing of the game state there
is another interesting relation between data mining in temporal spatial databases and
monitoring player behavior which can be modeled by trajectory data. Monitoring the
player behavior is an important tool in maintaining the interest of players over a long
period of time. Tracking and analyzing the player behavior has two main purposes. The
first purpose is to detect cheating: A cheating player may either use unallowed tools
like bot-programs, directly modify the gaming client or employ other unallowed ac-
tions violating the rules of the game. In most cases, the goal of cheating is to gain an
unfair advantage. If cheating becomes a common practice, large groups of fair playing
customers might lose their interest in the game which causes a large economic damage.
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Furthermore, many modern MMOs rely on the concept of Micro Transactions which
allows players to gain game advantages by directly paying the game operator. Thus,
cheating players may gain these advantages for free for instead of paying for them. Due
to these reasons, game companies treat the problem of cheating very seriously.

The second purpose of analyzing the player behavior is to adjust the game design to
be interesting for large number of players over a long period of time. A game should be
challenging, but it should allow gaming progress for players having a wide variety of
playing skill. Furthermore, their should be a balance between the powers of the classes,
units or fractions a player can select. When designing game content, the developers
imagine a certain portfolio on strategies a player or a team might pursue to solve a
particular situation. Since the challenge of this situation is adjusted around these strate-
gies, a game provider should automatically detect unexpected new strategies which do
not fit to the intended difficulty level. Since playing an identical game for up to several
years eventually gets boring, the game providers change rules and add new content from
time to time. However, changing the rules in a running game where instantly thousands
of players a confronted with new situations often leads to unexpected results. Again
monitoring player actions is essential to detect unexpected effects and quickly react
accordingly.

The rest of the paper is structured as follows. Section 2 discusses tasks related to
managing spatial temporal data in a game. Afterwards section 3 discusses the challenges
in mining player behavior for cheat detection and general player behavior. The paper
concludes with a brief summary in section 4.

2 Spatial Temporal Data Management

As mentioned above, many MMOs have to offer similar functionalities as temporal spa-
tial databases managing the movement of real persons w.r.t. GPS coordinates. Thus, we
might encounter similar types of spatial queries, e.g. ε-range queries. An MMO server
employs spatial queries for several purposes. For example, if a player drops a water
bomb into a crowd the server needs to find out who is getting wet. A further exam-
ple are monsters which may always attack the closest player, requiring a bi-chromatic
nearest neighbor join.

The most important requirement of a game server is to consistently achieve very low
response times. An ordinary real time game is processed in so called ticks. In each tick
the game state is processed one step further. To run a game fluidly the server must pro-
cess the complete tick in at most 100 ms. If the server starts to exceed this time limit
too often the game begins to stutter noticeable and cannot by played fluidly anymore.
For the data structure managing the spatial locations this yields the challenge of pro-
cessing potentially thousands of updates within the fraction of the tick being reserved
for spatial data management. Furthermore, we need to consider the worst case insertion
time to make sure that the update does not cause regular lags. Let us note that there
are first solutions for achieving persistency [1] on game servers considering this ef-
fect. However, these methods do not especially cover the spatial requirements but with
generally saving a game state without generating lags. To further emphasize the impor-
tance of low response times, we want to point out that the problem can be expected to
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increase because game companies keep pushing the maximum amount of players being
simultaneously online on the same server.

Another important requirement is spatio-temporal accuracy. While systems tracking
real world objects via GPS often have to allow positioning errors and unsynchronized
position updates, spatial management in a gaming server should be accurate and con-
sistent in time. In other words, the server must synchronize to the time on a client to
prevent confusing the temporal order of events. However, the network delay (lag) often
represents a source of uncertainty which must be dealt with. If a game server sends po-
sitioning information belonging to time tk to a player who submitted his last update at
time t0 << tk, the server has to make sure that an update having a time stamp tl < tk
is processed in a way not compromising the causality of the gaming world.

A further challenge of managing spatial information in a game server is to optimize
the amount of queries the server has to process. Though it is necessary to determine a
list of all other entities being within interaction range, it might not be required to com-
pletely process this list at each point of time. Further directions for reducing processing
costs are the use of join processing and distributing the required queries as uniform as
possible over multiple ticks.

A final aspect that should be mentioned being a further source of challenging new
problems is that game servers are more and more implemented within a cloud envi-
ronment. Thus, there is a need for large distributed algorithms maintaining the high
requirement for temporal synchronization. First solution can be found in [2].

3 Monitoring Player Behavior

Monitoring player behavior is an important aspect when trying to maintain a successful
MMO over a long period of time. The behavior of a player can be modeled by two com-
ponents: A spatio-temporal trajectory, describing the position of a player at each point
of time; and the set of actions performed by the player each associated with its respec-
tive time-stamp. In the following, we will survey tasks that arise in the field of MMOs
and relate them to the field of Spatio-Temporal data management and data mining.

A first very important purpose for monitoring player behavior is detecting cheating
players. There are currently two common ways of cheating: hacks and bots. A hack
comprises every action that circumvents the rules of the games. Hacks often aim at
causing spatial and temporal effects. Common examples are speed hacks (a characters
moves faster than allowed), teleport hacks (a character instantly changes its location
to a far off place) and map/wall hacks(the player accesses location information which
should not be available to him). The other well established form of cheating is us-
ing bots. A bot is a computer program controlling a player character. Using a bot is
useful if game progress can be achieved by spending time in performing primitive ac-
tions or being online at a regular basis. Since most bots usually act according to static
scripts determining their actions, they often generate specific temporal patterns which
are distinguishable from human behavior. A further purpose of monitoring players is
analyzing their success and their strategy. This information can be used to adjust the
difficulty of a game depending to the skill level of a player. Furthermore, it is necessary
to check whether the game is played as intended by the developers. In many games,
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proper movement is an essential part of the game-play. In many situations, it is required
to move closer or farther away from your team mates to be successful. Furthermore,
a skilled player simultaneously moves and acts differently than a beginner. Thus, the
movement patterns represent important information about players and strategies.

To monitor players, the necessary data has to be collected and stored within server
logs. As mentioned in the previous section, processing time on the game server is a
limiting factor. Thus, the first problem is to write server logs while straining the server
resources as little as possible. A further problem is the constantly growing amount of
logged data which is caused by the high frequency of ticks and the large amount of
game entities. Thus, running data analysis on complete server log may not be a viable
option. Instead, it is necessary to select a fraction of the log containing the behavior of
a subset of players in certain time periods. However, identifying interesting players and
time intervals for a particular purpose is not a trivial task. For example, how can a game
provider detect as many cheaters as possible while processing as little logged data as
possible?

Analyzing gaming data requires multiple data mining tasks. Checking logged info
for well-known cheats or bots is a classification task, while analyzing team strategies
requires clustering techniques. For many tasks, outlier detection might reveal important
information. Since a game provider does not exactly know which types of cheats are
currently employed, finding unusual behavior is essential. Furthermore, outliers often
reveal unintended gaming strategies circumventing the intended design.

A major challenge in data mining in game logs is their highly dynamic nature. First
of all, having several thousand players yields a large potential for unexpected behav-
ior. Thus, new playing strategies will emerge frequently. Furthermore, cheats are often
developed by highly skilled programmers and thus, hacks and bots are often updated
to counter possible detection methods. Finally, player communities are usually highly
connected. Thus, yesterdays outliers often become todays clusters.

4 Conclusion

In this paper, we briefly pointed out the usefulness of methods from the area of man-
aging and mining temporal spatial data to massive multiplayer online (MMO) games.
While many tasks in MMOs are quite similar to current research problems, there still
exists multiple new challenges in this interesting application area offering a rewarding
direction for future work. Let us note that we do not consider the list challenges as com-
plete. Especially, there is a wide variety of further problems in designing the artificial
intelligence of computer opponents.
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1 Users as Data Providers

Crowd sourcing [1], citzens as sensors [2], user-generated content [3,4], or volun-
teered geographic information [5] describe a relatively recent phenomenon that
points to dramatic changes in our information economy. Users of a system, who
often are not trained in the matter at hand, contribute data that they collected
without a central authority managing or supervising the data collection pro-
cess. The individual approaches vary and cover a spectrum from conscious user
actions (‘volunteered’) to passive modes (‘citizens as sensors’). Volunteered user-
generated content is often used to replace existing commercial or authoritative
datasets, for example, Wikipedia as an open encyclopaedia, or OpenStreetMap
as an open topographic dataset of the world. Other volunteered content exploits
the rapid update cycles of such mechanisms to provide improved services. For
example, fixmystreet.com reports damages related to streets; Google, TomTom
and other dataset providers encourage their users to report updates of their spa-
tial data. In some cases, the database itself is the service; for example, Flickr
allows users to upload and share photos. At the passive end of the spectrum,
data mining methods can be used to further elicit hidden information out of the
data. Researchers identified, for example, landmarks defining a town from Flickr
photo collections [6], and commercial services track anonymized mobile phone
locations to estimate traffic flow and enable real-time route planning.

In short, user-generated content drastically reduces the costs of data collection
and time to next update. Users expect free access: the data is user-generated and
shared, reproduction and distribution costs are close to zero [7]. Further, user-
generated data has proven to match the quality of authoritative datasets [8]. In
studying the motivation of people to contribute, Benkler demonstrates “that the
diverse and complex patterns of behavior observed [. . . ] are perfectly consistent
with much of our contemporary understanding of human economic behavior” [9,
p. 91]. The phenomenon of user-generated content is not going away soon. The
traditional economy of spatial information is fundamentally challenged.

Thinking this emergent field further into the future, some limitations become
immediately obvious. User-generated spatial data consists of a combination of
sensor data (e.g., coordinates) and user-added semantics (e.g., place descrip-
tions). While databases are good at collecting and interpreting sensor data, the
management and use of the user-added semantics is still in its infancy.
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Traditionally, semantics is inferred by data mining methods on sensor data,
and the same has been done for user-added semantics. We believe that this
traditional approach will fall short, since, fundamentally, adding the kind of se-
mantics discussed in this paper is a human intelligence task. Human Intelligence
Tasks (HIT) are simple, often menial tasks (e.g., identifying objects on a photo),
which appear to be ideally suited to be solved automatically, but are in fact eas-
ier and cheaper to be solved through crowd-sourcing. The term was introduced
by Amazon’s Mechanical Turk (https://www.mturk.com).

The kind of semantic information envisioned here goes well beyond the simple
tasks of Mechanical Turk, so it is bound to be contributed by humans. Accord-
ingly, the true challenge is collecting highly redundant user-added semantics and
developing novel information inference processes for semantically rich data.

2 The Volunteered Image of the City

Crowd sourcing in its various forms is ideally suited to collect semantic informa-
tion rather than just data. In the spatial domain, locals provide not only their
tracks or locations, but also their local expertise for free. For example, users map
their neighbourhoods in OpenStreetMap, or annotate places in CityFlocks [10],
which can then be accessed by others for local decision making. Since contribu-
tors are in the environment when they trace geographic features’ geometries and
describe their semantics, they are ideal candidates to provide their insights and
experience for others to use: physical presence increases their credibility when
reporting on the experience of spatial and social structures of environments.

People’s local experience is captured in the idea of the image of the city [11].
This ‘image’ is a metaphor for people’s mental conceptualisation of the envi-
ronment they are living in—its spatial layout in a narrow sense and, more
broadly, how they conceive the environment’s social structure. It evolves over
time through interaction with the environment. It is this image that lets us find
our way around, know which places to avoid at night, recommend places to
buy specialist items to others, and figure out that our favourite restaurant and
favourite coffee place are really only two blocks away from each other.

We all carry this ‘image of the city’ with us all the time—in our heads: the
citizen as a database. Imagine it could be externalised! Suddenly, everybody else
could benefit from our experiences. Partially, this information is already available
today of course. But it is fragmented, distributed, and often only implicitly in-
ferable. It is scattered on various web sources, such as restaurant reviews, Flickr
image collections, local news, or social networks. If we could store each individ-
ual’s ‘image of their city’ in electronic form in a holistic, comprehensive way, i.e.,
represent it in a common data structure, this would open up opportunities for
location based services and man-machine communication that are unheard of
today. Such future services would replace asking the ‘local expert.’ In fact they
would access the collective wisdom of multiple local experts at any location,
which would filter our individual eccentricities. These externalised, holistic im-
ages would deliver topographic data of the neighbourhood and place annotations
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as in CityFlocks [10], and provide access to local and global landmarks for navi-
gation and gazetteers of official and vernacular place names, to name just a few
examples. More generally, these services could communicate like humans [12],
which would be vastly beneficial since humans are not necessarily experts when
it comes to communicating with machines.

This vision of volunteering the image of the city has implications for data col-
lection (how to capture the images), for data maintenance and integration (how
to represent and map their semantics), for querying and analysis (how to exploit
their semantics), and for communication (how to express semantics). Further,
capture and communication require careful design of the human-computer inter-
action. For reasons of space in this paper, we will discuss only capturing of such
images of the city in more detail. Already this limited discussion will illustrate
some of the long-term research questions that come with this vision.

The problem can be phrased as: How to externalise the experientiable and
experienced image of the city? And how then to put it into a (crowd-sourced)
content platform for sharing with others? In contrast to general user-generated
content, for spatial content users have to be or been in-situ to document their
experiences; they report in real-time or from memory. Both ways have their ad-
vantages. In-situ collection may be more reliable and less distorted, but collec-
tion from memory had already a filter on selection and relevance. This interplay
of capturing of both sensor and semantic information of corporeal experiences
through crowd-sourcing methods is summarised as conscious ubiquity.

3 Conscious Ubiquity in Data Collection

Great advances in sensor technology and mobile computing allow for running
powerful software while on the move. The ubiquity of mobile Internet provides
means for data communication. The technologies of Web 2.0 enable users to con-
tribute content using sophisticated (web-based) interfaces. These are the foun-
dations for the vision of smart mobile devices capturing the image of the city.

Collecting data for this image requires a balance between ubiquity of service
and dedicated human-computer interaction. People will contribute such content
in large numbers and over longer periods of time only if this collection is facil-
itated unobtrusively, casually, or, as Weiser put it, calmly [13]. Data collection
needs to be supported by automated capturing processes in order for users to ac-
cept this service as they cannot be constantly involved. Then again, externalising
the image of the city requires significant human interaction; it is a human intelli-
gence task. Adding semantic information will always be an active process, at least
partly. Thus, communication between users and devices must become as natural
and unobtrusive as possible. Interfaces need to disappear; contributing semantic
information must become a negligible task, supported by intelligent, sensor-rich
devices, such that people stay “tuned into what is happening around” [13].

At the same time, the collected data is highly sensitive, many privacy issues are
involved. It is crucial that users are informed about which data gets collected and
how it is distributed. They need to be in absolute control of their data. Keeping
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this control may require breaks in the seamless collection process outlined above,
in order to make users aware of potential breaches of privacy.

Just as the image of the city develops over time in our heads, it will develop
and change over time in external representations. New semantic information
must be integrated in these representations in a consistent and coherent manner.
Often, this may make existing information obsolete. But as this information is
semantic and highly individual, it may not be obvious which information to
replace. Issues of semantic similarity and automatic conflict resolution need to
be solved, even more so if images of multiple users are to be integrated.

In summary, technologies for volunteering the image of the city need to be
smart enough to collect sensor observations, provide disappearing interfaces for
collection of semantic information, report to the user on request and in criti-
cal situations, contribute the collected observations to a content platform, and
smoothly integrate these observations into the platform’s databases. This inter-
play between human intelligence, calm technology, and autonomy leads to con-
scious ubiquity in data collection, and, ultimately, to the citizen as a database.
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Abstract. We present desiderata for improved i/o performance of spa-
tial data structures over flash memory and hybrid flash-magnetic storage
configurations. We target the organization of the data structures and
the management of the in-memory buffer pool when dealing with spa-
tial data. Our proposals are based on the fundamentals of flash memory,
thereby increasing the likelihood of being immune to future trends.

1 Introduction

Flash memory has moved from being used for short-term, low-volume storage and
data transfer, to becoming the primary alternative to magnetic disks for long-
term, high-volume and persistent storage. Appearing in systems as disparate as
pdas, handheld tablets, laptops and desktops, enterprise servers and clusters, it
is one of the most ubiquitous storage media on the market. At the same time,
the proliferation of location-based services means that spatial data management
techniques acquire increasing traction. As a result, access to and processing of
spatial data moves from highly customized application scenarios to commodity
ones. The combination of these two trends necessitates revisiting spatial data
management for flash memory both at the server and at the client levels. In
this paper we will present ideas that we posit are imperatives when it comes to
high-performing techniques for flash-resident spatial data.

Solid state drives, or ssds, are arrays of flash memory chips packaged in a
single enclosure with a controller. An ssd is presented to the operating system
as a single storage device using the same interface as traditional hdds (e.g.,
sata). The similarities between the two types of storage medium, however, stop
here. The key characteristics of ssds are (a) the lack of mechanical moving parts;
(b) the asymmetry between their read and write latencies; and (c) their erase-
before-write limitation. The first characteristic means that there is no difference
between sequential and random access latencies. Performance is not penalized
by being dependent on the seek time or the rotational delay, as is the case for
hdds. The second characteristic has to do with the physical characteristics of
flash memory, which make reading the value of a flash memory cell faster than
changing it; therefore, reads are in general faster than writes. The discrepancy
between read and write latencies is further influenced by the underlying tech-
nology of flash memory and, in particular, by how many bits are stored in each
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cell: a single-level cell (slc) device can store a single bit, while a multi-level cell
(mlc) can store two bits. slc devices inherently have higher performance but
lower density; on the other hand, mlc devices have higher density but lower
performance. Finally, the third characteristic stems for the inherent properties
of ssds: to update an already written flash page, the controller must first erase
it and then overwrite it. Erasures are performed at an erase unit granularity,
where each erase unit is a flash block, i.e., a number of contiguous flash pages.
A garbage collection mechanism is required to reclaim flash blocks as pages be-
come invalid due to user overwrites. This is especially detrimental to the perfor-
mance of random write workloads: random writes result in continuously erasing
blocks and moving data at the flash level. It is not uncommon for the random
write throughput to be five times less than the random read throughput for slc
devices; or even up to two orders of magnitude less for mlc devices. Though
approaches for efficient spatial data structures have been proposed [1,5], clearly,
data management over flash memory requires rethinking our priorities and not
improving performance in specific cases. To complicate the situation, existing
hdd-based hardware is not going to disappear any time soon; the trend is to-
wards augmenting hdd storage with flash memory. It is therefore imperative to
design towards hybrid storage configurations employing both ssds and hdds.

We propose ways to tackle spatial data management in flash and hybrid se-
tups for the applications of the foreseeable future. We cannot claim that these
ideas will be future-proof; however, we solidly ground them on the inherent char-
acteristics of flash memory, thereby increasing their potential for applicability.
We do not require any flash features be exposed apart from a standard i/o in-
terface. Our proposals revolve around two axes: the organization of spatial data
structures in ssd-only as well as in hybrid configurations, and the management
of pages belonging to spatial data structures once the pages have been brought
in main memory. In what follows we will present each axis in turn.

2 Data Structure Organization

One of the key goals of secondary storage data structures is performance guaran-
tees. For instance, the best performing spatial data structures are balanced trees.
Their guarantee is that all paths from root to leaves are of equal length. This is
achieved through bottom-up management algorithms: insertions and deletions
cause splits and merges at the leaves; these splits and merges are recursively ap-
plied in the bottom-up traversal and propagate higher up in the tree; resulting in
the tree having its height increased or decreased. Such algorithms make perfect
sense for structures over hdds where the read and write costs are uniform.

Consider, however, the read/write discrepancy of ssds and an insertion like
the one of Fig. 1. Typically, as shown in the left part, an insertion to a full leaf
L will cause a split of the leaf into itself and a sibling S; and an update at the
original leaf’s parent P with the new bounding box for L; and the insertion of
the bounding box for S. To balance the tree we must perform three disk writes.
An alternative, instead of splitting L into L and S, is to allow L to overflow into
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Fig. 1. Balanced vs. unbalanced insertions

S and we not update P , since L’s bounding box has not changed (right part of
Fig. 1). Thus, instead of performing three writes, we perform one: only for S.

Assume now that the ratio between write and read is x, i.e., reading is x times
faster than writing. Depending on the application, the cost associated with each
type of operation may be any combination of the latency and throughput of the
ssd for that type of operation. Saving two writes during insertion and causing
the imbalance means that we have saved 2x time units: any operation that will
read L would have read it anyway; any operation having to access S too, would
have accessed it anyway, but going through a direct child pointer from P . Thus,
the structure overall has x time units to spare with respect to its optimal form
(i.e., the fully balanced one). Then, we allow this imbalance and maintain a
counter c at L that measures how many times the overflow pointer to S has
been traversed. As long as c < x, the data structure still is more efficient; once
c = x we can rebalance it by propagating the bounding box from S to P , thereby
expensing the write we saved in the first place. This idea can work across all
levels of the tree, though one must be careful to avoid long overflow chains. In
such cases rebalancing can be prioritized using global rather than local metrics.

In a typical scenario, the savings will be substantial. As the tree structure
grows, the likelihood of a single leaf being “bombarded” with read or write
requests decreases for all typical scenarios. Thus, the likelihood of the tree’s
imbalance paying off increases. Though generally applicable to all tree structures,
catering for imbalance is more likely to pay off for spatial data and location-based
applications: the update rate of the spatial data is low, while the point queries
themselves are highly volatile as users move about the area.

Observations like the one that lead to unbalanced structures can be gener-
alized for hybrid configurations. In more detail, and for a tree structure, the
likelihood of having to write data increases as we descend the tree. One might
then consider placing the different parts of the tree structure on different media.
The top levels of the tree have a read-intensive workload, used to direct searches.
Whereas the bottom levels of the tree might have an update-intensive workload;
moreover, the likelihood of an update being propagated upstream decreases with
the height of the tree. It might then be conducive to place the write-intensive
leaves of the tree on the hdd and the read-intensive index nodes on the ssd [3].
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Coupled with the previous idea of keeping the flash-resident portion of the tree
unbalanced, this will result in further performance boosts.

3 Buffer Management

The next issue to focus on is buffering spatial data from the ssd into main
memory. As is usually the case, we assume demand paging: data pages can only
be processed in main memory and they are brought from the ssd into main
memory only on reference. Main memory is of limited capacity and smaller than
the capacity of the ssd; thus, only a subset of the flash-resident data pages can
be kept in main memory at any point in time. Once the memory is full, data
pages will be evicted to make room for new ones.

There has been a substantial body of research targeting general buffer man-
agement for ssds [2,4]. Tailoring the approaches to spatial data, in conjunction
with the i/o asymmetry of ssds, offers further room for improvement. Consider
a location-based application which continuously accesses a spatial data index for
information (e.g., points of interest close to the user’s location). Such an appli-
cation will generate multiple hot paths in the index, tracking the user’s motion.
As the user moves about, the paths followed from the root of the tree to the
leaves will be constantly changing. Therefore, using simple reference counts as
the eviction decision metric, though correct, can be further improved. By pre-
dicting the motion we can make more informed decisions regarding which pages
to keep in the buffer pool and which have a lower probability of being referenced
in the future. By selectively caching the parts of the indexed space that are
more likely to receive updates, a lot of flash writes, and thereby, erasures can be
avoided. Coupled with cost-based replacement policies [3], such an approach can
improve i/o performance. One might even envision horizontal or vertical tree
partitioning and placement based on access frequency and storage capabilities.

4 Conclusions and Outlook

While ssds are attracting more traction from the research community and in-
dustry alike, surprisingly enough, one of the areas that is under-represented is
spatial data management over flash memory. We have presented some initial
ideas on improving the performance of flash-resident spatial data structures.

One of the aspects we did not address is endurance and wear-leveling. More
precisely, each flash cell can only be written to a fixed number of times. Thus,
the controller spreads writes evenly throughout the flash chips and maintains a
mapping between logical block identifiers and physical ones, through a software
layer called the flash translation layer, or ftl. While ftl algorithms are typically
inaccessible to the user, some ssd manufacturers are now pushing more of that
functionality to the os driver level; in addition, ssd-specific commands have
lately been introduced, giving direct control to the filesystem for some flash
operations (e.g., the trim command for explicitly erasing blocks). In light of
that, the ideas presented in the previous sections can be more efficiently coupled
with the ssd and result in further i/o savings.
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Abstract. Tipping points represent significant shifts that change the general 
understanding or belief of a given study area.  The recent late winter 2011 
events in the Mid-East and climate-level changes raise issues of whether such 
events are the result of random factors, tipping points, chaos theory or 
completely unpredicted black swans. Our vision is to understand how spatio-
temporal data mining analysis can discover key variables and relationships 
involved in spatial temporal events and better detect when mining may give 
completely spurious results.  One of the main challenges in discovering tipping 
point-like events is that the general assumptions inherent in any technique may 
become violated after an event occurs.  In this paper, we explore our vision and 
relevant challenges to discover tipping point-like events in spatio-temporal 
environments. 

Keywords: Data Mining, Spatial and Temporal, Tipping Points, Black Swans, 
Chaos Theory. 

1   Vision 

Though much research remains to be done, the Federal Government looks to the tools 
of data mining and spatio-temporal data mining to assist in identifying and 
understanding key patterns proactively, rather than reactively.   Diverse events such 
as the climate changes occurring over differing parts of the world (e.g., El Niño) [8], 
or the spatially uneven economic recovery within the U.S. since 2008, or the recent 
late 2011 winter events in the Mid-East all represent key problems that need to be 
better understood and quantified so that strategies for managing can be formulated.  
Data mining of spatial, temporal and non-spatial data can help reveal patterns from 
assembled data that either reinforce or refute hypotheses, or quantify novel 
relationships.  The trouble is that the three examples above represent case studies 
where additional forces may have played a role to further complicate the discovery 
and understanding of key underlying patterns.       

A number of authors raise important questions about our human tendency to 
“rationalize by hindsight” [10] and have described examples in which accepted 
patterns of normality fall apart and may challenge accepted practices within the data 
mining community. One of these is the tipping point, which Gladwell defines as “the 
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moment of critical mass, the threshold, the boiling point” [4].  For example, in 
climate-change, tipping-points are seen as significant shifts from one state to another, 
such as a fertile landscape shifting to a barren desert due to a drought in the area [12].  
In a differing explanation, Taleb characterizes unpredicted surprise events having a 
major impact such as “Black Swans” which involve unpredictable patterns that do not 
appear to be Gaussian with an exponential diminishing tail, but a flatter curve with 
tails that are fatter with elevated probabilities [10].  Finally, a third possibility from 
Chaos theory seeks to explain the behavior of dynamical systems that are highly 
sensitive to initial conditions and/or their topological mixing; popularly known as the 
“butterfly effect” [5].   

This paper envisions overcoming these challenges in spatio-temporal data mining 
so that more powerful tools are able to surface key patterns and identify possible 
tipping point-like events.   Equally important is to better quantify during mining when 
patterns are either overly sensitive to their inputs (e.g., chaotic systems) or result in 
such spurious answers that attempting to understand tipping points is futile.  

2   Challenges 

Discovering “tipping points” (TP) in any analysis of a spatio-temporal dataset brings 
in three significant conceptual and computational challenges.  First, assumptions on a 
dataset or phenomena may differ before and after a TP occurs.  Second, characterizing 
a “tipping point” may be a challenge in itself based on how they are observed. Finally, 
an outside force that may not be known in advance nor represented in the observable 
data, e.g., natural disaster, may cause TPs.   

One of the first challenges in discovering TPs is the significant shift of 
assumptions when identifying spatio-temporal patterns.  For example, assumptions 
over a spatial region may differ such as Tobler’s first law of geography, which states 
that “Everything is related to everything else, but near things are more related than 
distant things” [11] and the property of teleconnections where there may be a strong 
interaction between paired events that are spatially distant from each other [6].  For 
example, climate maps often illustrate contiguous surface areas where colder regions 
may appear in the northern hemisphere and warmer areas may appear in the south. In 
contrast, weather patterns due to El Niño exhibit a different relationship between a 
pair of linked events involving the eastern pacific region and unusual weather patterns 
occurring throughout the world [8]. The main challenge is to account for multiple or 
contrasting assumptions on a dataset to identify any indicators or warning signs that a 
significant shift or tipping point is imminent. 

The second main challenge in discovering TPs may be characterizing the event 
itself. A TP may be seen as a single transient event such as a major traffic accident 
causing the normal patterns of rush hour in a city to change.  Or a TP may be seen as 
a gradual persistent event such as the transition to a recession economy causing 
spending habits to change all over the world.  For example, in this late winter of 2011, 
numerous significant events are ongoing in the Mid-East. Numerous reporting of the 
events try to connect underlying causes across differing countries such as the 
Washington Post Feb 25th “Turmoil in the Middle East” article [9] which had a 
graphic entitled “Behind the uprising: Oil wealth, widespread poverty.” While Taleb’s 
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“rationalize by hindsight” will certainly apply to ultimately understanding these 
events in the Mid-East, from a data and spatial data mining perspective, having tools 
that mine for patterns to pull out obvious and non-obvious factors  or indicators of 
change would be incredibly useful. In addition, a quick compilation of statistics from 
countries experiencing current protests from CIA’s “the-world-factbook” [2] reveals a 
greater diversity across key variables than one would expect.  For example, estimates 
of percent of population below the poverty line range from 4% in Tunisia to 45% in 
Yemen. Similarly, the literacy ranges from 83% in Libya to 50% in Yemen. 
Unemployment in Egypt is 10%; in Yemen it’s 35%. Percentage of population 
owning cells phones ranges from 33% in Yemen to 176% in Saudi Arabia.  The 
question related to tipping points is whether you would need a lot of historical trend 
datasets by country to detect and characterize tipping points or whether mining of data 
of all 267 countries in the world would suddenly make these variables appear less 
diverse creating patterns that exhibit tipping points.  

In considering the final challenge of the need for tools to understand novel spatial 
and temporal events and trends, a greater question emerges. Are mining techniques 
robust enough to reject mined patterns that are overly sensitive to their inputs (chaotic 
systems)? Can mining someday detect when the input data is too insufficient to 
characterize a significant event as in the case of Black Swans? Clearly, the rule 
concerning garbage in-garbage out applies. In reality, we are often inept at 
differentiating good data from bad data or which data are key and which are irrelevant 
or understanding when we have sufficient data bounding a problem and when we do 
not. A prime example of this quandary is the internet-enabled plethora of data 
quantifying all aspects of the stock market over the last two decades and the 
realization of how little difference this has made in the performance of both 
professional and private stock portfolio performance during the same period.   One of 
the points that Taleb [10] makes about Black Swans that after its first recording, the 
event is rationalized by hindsight, as if it could have been expected.   In other words, 
some events may be so complex that they cannot possibly be detected beforehand by 
humans or powerful tools such as data mining and spatial data mining.  For example, 
in the early days of March 2011, as the Mid-East events continue, some experts are 
categorizing these as black swans [7].    The reality is that we really do not and cannot 
know at this time.  It will only be in hindsight, that we have the wisdom to know what 
data to assemble for mining to quantify the patterns and tipping points so we may 
properly write history and, possibly, in some way be better prepared for a future black 
swan. 

3   Summary 

In this paper, we first introduced our vision for the need to identify significant 
changes in the patterns discovered that may lead to the quantification of detected 
tipping points to further understand our environment. We illustrated this vision with 
several real-world examples of possible tipping-point-like events occurring today. A 
set of hard challenges was posed to discover these tipping-points in the dataset.  These 
challenges showed how current assumptions on spatial datasets may be violated when 
observing the change or shift by a tipping-point. We also raise challenges that as 
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mining gets more sophisticated and attempts to detect and quantify tipping points that 
we might also detect instability in variables (maybe better than sensitivity analysis) 
and/or detect when statistically we have too few variables relative to the size of the 
problem. We implore the data mining community to explore our vision and challenges 
of discovering these complex, yet interesting events.   
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Abstract. Spatiotemporal reasoning is a basic form of human cogni-
tion for problem solving. To utilize this potential in the steadily in-
creasing number of mobile and Web applications, significant amounts
of spatiotemporal data need to be available. This paper advocates user-
generated content and crowdsourcing techniques as a means to create
rich, both, in terms of quantity and quality, spatiotemporal datasets.

1 Problem Description

Effective discovery, integration, management and interaction with spatiotempo-
ral knowledge is a major challenge in the face of the somewhat recent discovery
of the spatial “dimension” of the World Wide Web. In many contexts, space
in connection with time is used as the primary means to structure and access
information simply because spatiotemporal (ST ) reasoning is essential to ev-
eryday problem solving. In combination with the already staggering number of
spatially-aware mobile devices, we are faced with a tremendous growth of user-
generated content and demand for spatiotemporal knowledge in connection with
novel applications and challenges.

With the proliferation of the Internet as the primary medium for data pub-
lishing and information exchange, we have seen an explosion in the amount of
online content available on the Web. Thus, in addition to professionally-produced
material being offered free on the Internet, the public has also been allowed, in-
deed encouraged, to make its content available online to everyone. The volumes
of such User-Generated Content (UGC) are already staggering and constantly
growing. Our goal has to be to tame this data explosion, which applied to the
spatial domain translates to massively collecting and sharing knowledge to ul-
timately digitize the world. Our ambition has to be to go beyond considering
traditional ST data sources and to include any type of available content such
as narratives in existing Web pages in a ST data collection effort. We view all
available content that has a ST dimension as a potential data source that can
be used for computation. When utilized, this vast amount of data will lead to a
digitized ST world view beyond mere collections of co-ordinates and maps.

One could argue that as early maps were traces of people’s movements, i.e.,
view representations of people’s experiences, digitizing the world in the this
context relates to collecting pieces of knowledge gained by a human individual

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 458–461, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On User-Generated Geocontent 459

tied not only to space and time, but also to her context, personal cognition, and
experience.

To realize this vision, (i) a proper understanding of ST language expressions
will allow us to utilize non-traditional sources, e.g., narratives containing spatial
objects and their relationships, (ii) appropriate representations of the collected
data and related data management techniques will enable us to relate and inte-
grate data, (iii) data fusion techniques will combine individual observations into
an integrated ST dataset and (iv) adequate algorithms and queries will take
(the continuously changing) uncertainty of the data into account. In addition,
ST data is typically delivered and queried through map-based interfaces. With
a thorough ST language understanding, (v) novel user interfaces that abstract
and represent ST information in qualitative human terms might become a reality
and provide for effortless and naive natural language interaction.

Overall, these ideas promote the GeoWeb 2.0 vision and advance the state of
the art in collecting, storing, analyzing, processing, reconciling, and making large
amounts of semantically rich user-generated geospatial information available.

2 Research Directions

In order for the proposed vision to become a reality, several research challenges
spanning multiple disciplines have to be addressed.

User experience related to ST information is currently directly linked to the
representation of the data; geographic co-ordinates pinpoint locations on maps,
routing algorithms determine the best route based on distance, etc. In contrast,
human interaction with the world is based on experience, learning and reason-
ing upon loosely coupled, qualitative entities, e.g., spatial relationships such
as “near/far”. The challenge will be on devising means to better understand
people’s perception of space by deciphering how people express ST concepts in
natural language terms by means of a Rosetta-stone-equivalent tool for decipher-
ing the ST component of (a range of) natural languages and, if possible, define
the underlying building blocks, i.e., cognitive concepts inherent in ST reasoning.
To improve natural language processing, a key aspect will be to engage the user
in providing her conceptions of space in natural language terms. For example,
games-with-a-purpose (GWAP) [10] can be used as a vehicle to record and ana-
lyze natural language descriptions of known ST scenarios, i.e., to provide spatial
descriptions of scenes by means of text or audio during the course of the game.
GWAP will be the motivator for crowdsourcing of spatial scene descriptions for
a multitude of languages and to finally produce a ST language corpus. This
corpus can then be used to extract ST knowledge from non-traditional content
sources such as narratives in travel blogs.

Data capture focusses then on amassing user-generated ST data from vari-
ous sources. Existing attentional information can be exploited by data mining
user-generated ST content, e.g., point cloud data such geocoded flickr images
[2] and by extracting ST data from text/audio narratives using NLP techniques,
e.g., translating the phrase “the hospital is next to the church” to two spatial
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objects and respective relationship. In addition, specifically designed tools can
support the user in the creation of geospatial content (cf. “Geoblogging” [7]). A
means for the collection of un-attentional data is ubiquitous positioning, i.e., us-
ing a large number of complementary positioning solutions (GPS, WiFi, RFIDs,
indoor positioning) to relate content to absolute spatial (coordinates) and tem-
poral (time stamps) values. Data capture will not only produce quantitative
data, i.e., spatial objects and their locations, but also qualitative data in terms
of spatial relationships.

Efficient data management techniques will be of outmost importance when
tapping into large amounts of geospatial data streams. The focus in this research
will be on distributed data management schemes such as cloud computing. Issues
to be addressed are spatial indexing and query processing (cf. geospatial data
management using Apache Cassandra [5]). In addition, one needs to investigate
novel concepts such as dataspaces [4] and linked data [1] for the specific case of
geospatial information. Mobile devices are increasingly used as Web infrastruc-
ture nodes and, hence, will play an important role not only in data collection
but also in distributed geospatial data management.

Data Fusion presents us with the problem of processing diverse incoming
information and to specify the relationships and correspondences between data
and/or metadata of different sources so as to reconcile them. Such a framework
for matching and mapping different data streams of user-generated content in-
volves identifying related data and generating better mappings by developing
specific tools that involve the user in the process. The final goal is then to
reconcile and fuse user-generated data to arrive at a single ST dataset. Spatial
uncertainty has been described as “the Achilles’ Heel of GIS, the dark secret that
once exposed will bring down the entire house of cards” [3]. Uncertainty will be
essential to the process of correlating and fusing previously unrelated ST data
sources. In part, data fusion can be seen similar to the problem of adjustment
computation in surveying engineering, in which for a number of observations
the best fitting (mathematical) model and its parameters are determined, i.e.,
to derive the true values based on observations. Research needs to focus on
relating and mapping qualitative data (relative ST data as denoted by topolog-
ical, metric and directional spatial relationships) to uncertainty. To achieve this
task, techniques based on graph similarity, spatial reasoning [11] and Bayesian
statistics [8] need to be investigated.

Working with user-generated spatiotemporal data sources has the drawback
that there are no “final” datasets, i.e., all datasets are affected by a varying
degree of uncertainty, which any kind of computation has to take into consider-
ation. An additional aspect is the evolving nature of the data. Given that each
observation increases the scope and/or reduces the uncertainty, algorithms have
to accommodate this fact (cf. Canadian Traveller Problem [6]).

Current spatial information visualization and interaction is typically map-
based. Even in novel geographic fusion services over the Web, e.g., Google Maps,
the dependence on map-based interfaces for querying and delivering informa-
tion is dominant and quite often lacking in expressiveness and usability. While
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recently systems based on augmented reality concepts have been developed, im-
proved ST language understanding may lead to alternative text and audio-based
interfaces to consume ST information (cf. [9]).

3 Summary

The presented vision targets user-generated geocontent and turning it into a
viable data source that will complement ST knowledge created by expert users.
New means to harness, aggregate, fuse and mine massive amounts of ST data
are needed in order to achieve best possible coverage and extract hidden knowl-
edge. The task at hand is nothing less than taming this semantically rich user-
generated geodata tsunami and addressing the challenge of transforming the
data into meaningful chunks of information obtained with simplicity and speed
comparable to that of Web-based search.
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Abstract. The Internet allows for near-total anonymity in online dis-
cussions and transactions; leading to challenges such as identity theft,
spear phishing, cyber-bullying and lack of user-retailer trust for small
online retailers. In an effort to restore prosperity, security and trust to
our increasingly digitally interconnected society, it is important to tie
some sense of the physical world in with the cyber world, e.g., creating
a geo-coded Internet. However, geo-coding the vast amount of content
currently on the web, along with providing reliable geo-location authenti-
cation services against the difficulties of spatial analysis and the inherent
probabilistic estimate of current location-identification technology.

Keywords: GIS, Geo-coding, Moving Objects, Spatial Databases.

1 Vision

Location information for everything on the Internet has the potential to impact
our prosperity, security and civility. Location is fast becoming an essential part
of Internet services, with HTML 5 providing native support for locating browsers
and GPS-enabled phones locating people on the move. The Internet currently
provides anonymity to a large degree, which in turn inhibits trust and leads to
rampant problems such as spam, phishing, identity theft, banking fraud, etc.
In the physical world, we are surrounded by context clues for making decisions,
especially when it comes to safety. Could such problems be reduced if we knew
the physical location of every packet, document, computer, server and person on
the Internet?

Geo-coding the Internet will facilitate prosperity. In December 2010,
daily deal website Groupon turned down a $6 billion dollar buyout offer from
Google. In Groupon’s wake is a sea of copycat startups, all aiming to make money
out-‘localizing’ Groupon’s daily deals [1]. The suggested weakness of Groupon’s
model is in the broadness of its daily deals. Already in 500 cities, Groupon targets
entire metro areas, some with populations in the millions. Copycat startups are
aiming for hyperlocal advertising, targeting down to the street or even block
level, ensuring that each person finds a deal close to where they live and work.
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Websites like Facebook and eBay utilize user profiles to establish trust be-
tween users [2]. eBay builds reputations via seller feedback, Facebook through
friendship networks. When users build these reputations, trust levels increase as
people become less random and anonymous. This leads to more direct sharing,
collaboration and commerce. A geo-coded Internet would increase this trust by
connecting an online persona to a physical real-world location.

Geo-coding the Internet will improve security. In the physical world, we
are surrounded by context clues for making decisions, especially when it comes to
safety. Shoppers walking into flea markets and department stores naturally have
different expectations of service and trust. Would it be possible to transition
some of these physical clues into the cyber world? When visiting an unfamiliar
online retailer, a user has few clues to determine a site’s credibility - for example,
if the site looks ‘cheap’, as compared to polished, it might affect a user’s decision
to purchase from the site. Being able to tie an online retailer to a physical
location allows for context clues and implicit laws protecting customers based
on the location. The ability to geo-locate online retailers will help build trust
and enable commerce.

Although the security of online banking has increased dramatically over the
years, there is still much work to be done. Currently, most banks authenticate
users only through something they know (e.g., passwords, secret questions), as
hardware-based tokens remain unused by the general public. Phishing attacks by
fraudulent websites posing as major banking websites are becoming ever more
sophisticated, targeting specific sets of users with more detailed attacks, known
as spear phishing. Adding geo-location information to both the client connecting
to the online banking server, and the online banking service itself will reduce
fraud on both sides of the equation.

In 2010, 15% of global Internet traffic was briefly routed through China, in-
cluding some US Military traffic [3]. This raises questions regarding privacy and
security, and indicates a need for location validation technology. While it would
likely involve modifying internet protocols and perhaps new hardware, adding
verified location information to network level components, such as routers and
servers, could provide crucial security guarantees.

Geo-coding the Internet will build civility. Online anonymity has been
show in the social sciences to increase aggression and uninhibited, sometimes
dangerous, behavior [4]. The ability to authenticate spatio-temporal location of
users, client-server devices, documents and message sources, etc, would provide
a dramatically improved Internet experience. While civilized communication is
sometimes difficult to achieve even in the physical world, it can be even more
difficult in online situations when widespread anonymity results in a lack of
accountability. Enforcing geo-coded Internet technology will help bridge the di-
vide between the cyber and physical world, hopefully allowing for transfers of
empathy and humanity to an otherwise hostile online environment.
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2 Challenges

There are major technical and societal challenges to fully realizing a geo-coded
Internet.

Geo-coding Internet content is challenging. Early work in automated geo-
coding information dealt with algorithms for textual content, such as news sto-
ries, textual driving directions, pictures, etc. The next step, of high value to
law enforcement and US Department of Defense, is inferring location directly
from picture images or videos. Repeated cases of terrorists and kidnappers using
video and pictures to make threats is motivating urgent work in this area. An
initiative was started by Dr. Beth Driver at the National Geospatial-Intelligence
Agency to fund and develop various video and image geo-coding techniques.
Simple things such as background textures, noises (e.g., in The Fugitive, where
a call location is placed due to a background train whistle), landscapes, etc, can
help give some bounds to the media’s origin location.

This sort of technology will require massive databases of geo-located images
and sounds, along with fast and efficient ways to query for partial matches. In
addition, spatial reasoning is required to correctly deduct possible locations via
these clues. Lastly, denial and deception attempts by our foes will increase the
difficulty in these sort of geo-coding problems.

Geo-locating content for security, or using location as a part of an authenti-
cation scheme, will increase security on the Internet. New hardware is needed to
enable authenticated personal location reporting through location-aware hard-
ware tokens, combining location-determination technology (e.g., GPS or cell-
phone tracking) with traditional hardware tokens (e.g., RSA SecurID [5]). This
location-aware token could report to a server, sending spatio-temporal informa-
tion along with entity identifier to ensure continued entity authorization.

Research needs include investigation into threat-relevant movements for de-
velopment expiration policies (e.g., timeout, geo-fence violation) using move-
ment parameters (e.g., trajectory, speed, direction, acceleration) and authorized
geometry (e.g., building-size). Geo-coded Internet authentication will require
challenge-response protocols; and could be based on local broadcast, i.e. location-
based signals accessible only from designated places. For example, a fixed kiosk
may display CAPTCHA-like [6] message to challenge users. Alternatively, Wi-Fi
transmitter power levels or variants of cell towers may be varied to challenge
devices similar to work mentioned in [7].

Current authentication techniques are boolean in that they provide yes or no
authentication responses. However, spatio-temporal location sensors and service
provide a probabilistic estimate of location. For example, global positioning sys-
tem (GPS) provides a root mean square error with each location-estimate. This
‘fuzziness’ presents difficulties for current querying models, such as the OGIS
SQL extensions [8].
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Geo-locating advertising, known as hyperlocal advertising, is the next step in
the popular wave of ‘daily deal’ websites like Groupon.com [1]. However, a fully
realized geo-coded Internet presents scalability issues. Tracking and tailoring
content to location-providing mobiles, for example, will require fast and efficient
indexing and querying techniques in database systems [9]. Hundreds of millions
of cell phones sending real-time spatial join queries will quickly overload existing
technology. Web Content servers will need to quickly do spatial queries to localize
information for a user [10].

Spatial data mining algorithms need to be developed to take advantage of
the exponential rise of location-aware content. Spatio-temporal hotspots of like-
minded users could be clustered for more specific location-based advertising (e.g.,
target only the hipsters in the southeast section of town about an upcoming bar
special). New user- and location-specific associations can be mined out of detailed
geo-located transaction information [11].

3 Conclusion

The incorporation of authenticated and continuous location information for in-
ternet entities such as users, documents and servers will allow a flourishing of
services designed around enhanced security and trust. Technology that allowed
for universal authentication and location-determination services for permitted
parties would allow a person to restrict online banking access to their own homes,
or a government entity to require that classified information be accessed within
pre-determined spatial boundaries. New avenues of research would open in ef-
ficient challenge/response protocols to ensure validity of a reported location,
digital rights management algorithms for important documents or services that
can only be accessed from certain locations. We believe that the development
of spatio-temporal location authentication services may reduce or even prevent
online fraud and facilitate Internet growth.
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Abstract. Spatial and temporal (ST) databases have traditionally been
used to manage geographic data. However, the human body is another
important low dimensional physical space which is extensively measured,
queried and analyzed in the field of medicine. Health care is fundamental
to the lives of all people, young or old, rich or poor, healthy or ill. This
is an opportune time for research in this area due to the international
priority to improve human health and the recent passage of health care
legislation to provide electronic medical records and databases in many
countries such as the United States. ST datasets in medicine include 3-D
images (e.g., CT and MRI), spatial networks in the body (e.g., circu-
latory system), recorded for each patient at various times (per visit or
frequently during hospitalization). We envision a spatio-temporal frame-
work for monitoring health status over the long term (via dental X-rays,
mammograms, etc.) or predicting when an anomalous decay or growth
will change in size. An ST framework may play an important role in im-
proving health care quality by providing answers on the progression of
disease and the treatment of many pathologies (e.g., cancer). However,
realizing such a framework poses significant challenges for researchers,
each of which is a non-trivial task that has not been addressed by previ-
ous work. Taking on these challenges, therefore, would mark the begin-
ning of the next fantastic voyage [2] in spatial and temporal databases.

Keywords: Spatial and Temporal Databases, Medical Data, Radiology.

Vision. Spatial and temporal (ST) data in medicine is available in many forms
such as spatial networks formed by bodily systems, 3-D medical images, etc. [9,3].
Spatial networks in the body include the circulatory system or blood vessels, the
network of nerves, the network of bronchi and bronchioles in the lungs, and the
skeletal system. An example source of a spatial network in this context is an
angiogram showing blood vessels with blockage. 3-D images, on the other hand,
include computer aided tomography (CT), ultrasound, etc.; they allow visual-
ization of important structures in great detail and are therefore an important
tool for the diagnosis and surgical treatment of many pathologies [4].
� Innerspace [1] is a Spielberg remake of Fantastic Voyage [2], a science fiction movie

about a journey inside the human body in a miniaturized submarine exploring the
brain, blood vessels, eyes, ears, etc.
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A patient’s spatial network or 3-D image data taken over time can be used
in new ways such as long term study in which crucial monitoring, predictive,
and routing questions may be answered algorithmically. Examples of monitoring
questions include discovering how an anomalous growth (e.g., cancer) is changing
over time or detecting the narrowing of blood vessels. Predictive questions involve
determining therapy effect on tumors across a population as a guide for future
therapies. Routing questions are asked to find a route through the body for
minimally invasive surgery to remove a tumor.

A spatio-temporal framework for answering long term questions plays a crit-
ical role in improving health care quality by providing answers regarding the
progression of disease and the comparative effectiveness of interventions. Such a
framework (in conjunction with other information technologies) may also assist
individuals to stay healthier by helping those with chronic or acute conditions
to manage their disease outside of acute care settings [12]. Providers are em-
powered with a means of simplifying the tracking of multi-focal disease based on
3D images or spatial networks taken over time and this might go a long way in
reducing expenses such as the $2 trillion a year that the United States spends
on health care [5].

Previous work such as PACS [6] focuses on image and graphics processing
to produce accurate 4-D images or models (3-D + time) of clinical quality
data [15, 13]. Current commercially available tools in advanced image process-
ing include applications for finding and measuring lesions on previous studies
and applications for identifying parts of the brain automatically for comparison
with a database of normals to determine if there has been relative mass loss in
certain areas [7]. However, these tools have limited exploratory, associative and
predictive analysis capabilities. Exploratory analysis enables the user to con-
struct completely new queries on the data set (beyond a fixed list of canned
queries), predictive analysis uses a time series of snapshots to determine fu-
ture behavior using data driven techniques and associative analysis correlates a
patient’s history and context (e.g., age, race, comorbidities). Additional limita-
tions include the fact that they are largely based on the raster data model (e.g.,
pixel, voxel) and do not adequately support vector data models (e.g., points,
line strings, polygons, networks) and queries (e.g., topological operations, short-
est path, etc.). They also do not provide a general frame of reference similar
to geographic-based latitude/longitude or postal addresses. Applying solutions
from spatial and temporal databases and data mining may well help answer mon-
itoring, predictive and routing questions in the human body. There are, however,
several challenges that must be overcome in order to make this vision a reality.

Challenges. Answering long term questions based on ST medical data sets
gathered over time raises five conceptual and computational challenges. First, a
reference frame analogous to latitude/longitude must be developed for the hu-
man body. Second, location determination methods are needed to know where we
are in the body. Third, routing in a continuous space where no roads are defined
is required to reduce the invasiveness of certain procedures. Fourth, defining and
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capturing change across two images is crucial for understanding trends. Fifth,
scalability to potential petabyte and exabyte-sized data sets is essential.

Developing a reference frame for the human body entails defining a coordinate
system to facilitate looking across snapshots. Rigid structures in the body such
as bone landmarks provide important clues as to the current spatial location in
relation to soft tissues. This has been used in Stereotactic surgery to locate small
targets in the body for some action such as ablation, biopsy or injection [10, 8].
Identifying nodes (e.g., the start and end of branches), edges (e.g., vessels linking
nodes), and locations on branches (e.g., using distance from end-nodes) might
be useful for pin-pointing vessel blockage and tracking changes over time. For
spatial networks in the body, using identified nodes and edges is equivalent to
the use of street addresses by the US Post Office. However, the resolution of this
coordinate system is important in automatically aligning certain structures in
the body across snapshots; it may be difficult to accomplish this if the coordinate
system’s resolution is too coarse.

A related challenge is location determination. Although the reference frame
might be useful in defining a coordinate system, location determination is needed
to pinpoint specific coordinates in the body. Analogies include using global po-
sitioning systems to determine one’s location on the earth or taking snapshots
of a street network so that traffic on a certain street can be monitored across
different times. In medicine, the challenge lies in aligning each structure in the
body across multiple 3-D images so that it can be guaranteed that the same
structure is being observed.

If we know our location in the body, it becomes possible to answer routing
questions. Routing based on the body’s spatial network over time is a difficult
task given that the space is continuous. Defining ”roads” in the human body for
the purposes of routing is an interesting challenge. Analogous structures to roads
are blood vessels and anatomic divisions of organs. Using these structures to
discretize the space might be a useful way to attack the routing issue. An example
of this problem is to find the shortest path to a brain tumor that minimizes
tissue damage. What is unclear are corresponding definitions of shortest path
weight [11] and paths for routing in the human body.

Once a patient’s 3-D image is taken several different times, it is necessary to
define change across the snapshots. An example of this is change detection in
tumors where images at different times need to be observed. This is challenging
because the images may be taken with different instruments across several visits
and so calibration becomes a problem. Changes in the body’s chemistry, for
example, fasting status pre-PET Scan which alters physiologic distribution of
the radiotracer, can impact imaging and thus should be accounted for. Hence
defining changes across snapshots given a coarse resolution might be problematic.

Finally, we need to be able to scale up to potentially petabyte and exabyte-
sized data sets. Large amounts of data are produced from medical imaging tech-
niques [4] and replicating this data across different snapshots makes long term
analysis prohibitive. Compression techniques (lossy and lossless) have been used
to enable fast retrieval of static 3-D data (i.e., a single snapshot) but they are not
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adequate for dynamic 3-D data with features like interactive zoom in and out
across the time dimension. For example, each snapshot of a large image might be
approximately 8 - 16 gigabytes [14]; when this is multiplied by number of visits,
number of images/visit and number of patients, scale increases to exabytes.

Summary. In this paper, we presented our vision of a spatio-temporal frame-
work capable of answering long term questions based on 3-D medical images
and spatial networks in the human body taken across several snapshots. This
framework could play an important role in improving health care quality by
providing answers about the comparative effectiveness of interventions. It could
also provide doctors with a means of more quickly diagnosing and characteriz-
ing disease progression. We articulated the challenges associated with realizing
such a vision including defining a reference frame for the human body, location
determination, routing in a continuous space, observing change across snapshots
and scalability. We encourage the Data Mining community to explore the vision
and challenges we have proposed and we welcome future collaboration.
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Abstract. Developing intelligent water resource management systems
is necessary for a sustainable future. Many aspects of these systems are
highly related to spatio-temporal (ST) databases, particularly spatio-
temporal network databases (STNDB). However, this domain poses
several challenges. In this paper we present our view of the important
research issues, including the challenges of modeling of spatio-temporal
networks (STN) and data access methods.

Keywords: Water Management System, Network Tomography, Spatio
Temporal Network Database System, Lagrangian Reference Framework.

Vision. Water is one of our most important natural resources and water scarcity
may be the most underestimated resource issue facing the world today. The
United Nations Millennium project reported, “By 2025 about 3 billion people
could face water scarcity due to the climate change, population growth, and
increasing demand for water per capita” [1,12]. Water scarcity is not only an
issue of enough water but also of access to safe water [9,13]. About 80 per-
cent of diseases in the developing world are attributed to lack of access to safe
drinking water and basic sanitation [1,12]. Developing intelligent water resource
management systems is necessary to remedy the problem.

According to a recent report [14], developing infrastructure for water distri-
bution is one of the main issues for a sustainable future because water is not
evenly distributed in the world. One technological approach to remedy this prob-
lem is to implement fully integrated systems which allow monitoring, analyzing,
controlling, and optimizing of all aspects of water flows.

As a result, IBM Smarter Planet emphasizes smarter water management for
planning, developing, distributing, and managing optimal use of limited water re-
sources under relevant policies and regulations [2,3]. IBM smarter water projects
explore sensor networks and smart water meters, integrated with the water net-
work, to gather and integrate spatio-temporal network (STN) datasets [4,5].
Spatio-temporal network databases (STNDB) will likely be a key component of
smarter water management since effectiveness of decision depends on the qual-
ity of information (e.g., current, past, and future data about water availability,
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quality, usage, distribution, and management). Such data are inherently spatial
and temporal. For example, smart water meters have a geographic location (e.g.,
home address) and their readings are reported at a specific time instant [11,10].
In addition, water distribution networks may be modeled as spatial graphs with
nodes (e.g., sinks and branching points) and edges (e.g., pipes and channels).
Many common queries on such datasets are spatio-temporal as well. For exam-
ple, data warehouse reading from a smart meter may be queried to identify hot
moments (e.g. work-day morning) of water consumption and hot pipes (a.k.a.
water mains) to identify pipes with highest consumer demand. In addition to
ST pipe access analysis, planning and design of distribution networks needs to
consider location, demand, leakage, pressure, pipe-size, pressure loss, fire fight-
ing flow requirements, etc [6]. Particularly, location must include spatial factors,
such as distance between source and faucet, elevation of water tower and home,
depth of water pipe to prevent freeze damage, as well as topological factors, such
as loop or branch network, and zone.

The key issue is the quality of the datasets used to fully understand, model,
and predict water flows in the network. Access and analysis of STN datasets is
one of most important parts of these systems. In this paper, we mainly focus on
STNDB, which is applicable for a variety of water network applications. In the
following section, we discuss research challenges for STN.

Challenges. Storing and accessing STN datasets poses a number of challenges.
First, STN datasets are imperfect due to errors of measurement and losses of
data. Inference approach, therefore, is used to extrapolate the missing data. Con-
sider, for example, a nuclear power plant and its water cooling system. The water
cooling system delivers fresh water to cool the reactor and stabilize it. To cope
with a malfunction such as Japan’s nuclear crisis, the system should be mon-
itored, upgraded, and tested based on various scenarios. However, the internal
structure and status of the system may not be directly observable due to radioac-
tive emissions from the damaged nuclear reactors. Network tomography is one
solution to understand the internal characteristic of the network using end-to-
end measurements, without needing the cooperation of internal nodes [15]. This
approach is relatively easy and scalable, but inherently suffers from accuracy
problem. General network tomography assumes that all links are independent
although some links are correlated. Furthermore, network tomography simplifies
the problem to linear-programming or convex optimization. These limitations
lead to the need for novel network tomography techniques to facilitate rich anal-
ysis and use of STN datasets to further understanding of STN phenomena.

The second challenge concerns the complexity of STN datasets that arises
from spatial, temporal, and network connectivity properties. To keep track of
changes through time series, temporal attributes are associated with both geo-
metric and topological data. As the number of dimensions increases, the size of
the datasets grows massively while the density of the datasets becomes sparse.
This situation creates other challenges to collect and analyze the activities in
the network space. Consider, for example, a leakage problem. In this case, a
water supply network transmits water using pipelines and water pressurizing
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components. Breaks occur frequently in these pipelines, causing a large amount
of water leakage, reduced pressure, and service disruption. These leaks accelerate
the deterioration of cracked pipelines, resulting in corroding of neighboring pipes
and cascading effect. The problem is the detection of flow anomalies to prevent
the loss of leakage. A general approach for identifying the water leaks is to mea-
sure subsurface moisture conditions or to detect changes in soil temperature. A
sonic leak-detection technique, which identifies the sound of water escaping a
pipe, can be used in small leaks. However, these methods do not focus on the
network distribution and indirectly estimate the source of leaks. By associating
with sensors which measure pressures and flow rates inside pipelines along with
time series, the detection of unusual network flows help to pinpoint exact loca-
tion of these leakages. The challenge here is that the detection algorithm would
be intractable due to the size of the STN datasets. Furthermore, the complexity
of the STN datasets will be increased by additional network constraints, such as
direction, capacity, pressure, and flow rate.

Third, access of STN datasets requires a Lagrangian frame of reference which
coordinates STN datasets with STN connectivity [8]. For instance, when describ-
ing a moving fluid, the motion of a particle is represented by space and time. To
retrieve the path of the movement, an access operation should trace and follow
the particle along STN connectivity. Consider a water quality specialist monitor-
ing flow anomalies. If he retrieves information at a stationary point, he may miss
the change due to ignoring of spatial variance. Tracking the flow of water through
Lagrangian paths could show the overall flow status. The key challenge is that
the Lagrangian frame of reference requires new data types, storage models, and
query operations to efficiently store and query STN datasets.

Finally, STNDB lack general frameworks to analyze STN datasets. A mathe-
matical approach uses differential equations to represent network-based phenom-
ena (e.g., fluid flow). However, in many applications the underlying network model
is unknown or too complex to be mathematically described. Statistics approaches
use a statistical hypothesis and spatial framework to find interesting patterns.
The key concept of spatial statistical analysis is that spatial data are highly self
correlated; Datasets are gathered and analyzed using the notion of spatial rela-
tionships and similarity measures. In a STN model, relationships are defined by
connectivity, centrality, and shortest-path. The challenge of designing analytical
frameworks for STN is that the complexity would be increased by spatial corre-
lation and network connectivity as well as flow constraints. In addition, tempo-
ral attributes change these relationships over time, which leads to the need for
even more complex frameworks. Consider, for example, Nokia water supply con-
tamination; a cross-connection between clean and sewage pipeline caused a mas-
sive contamination of drinking water distribution network and an epidemic with
thousands of cases of diarrhea and vomiting [7]. This contamination is fundamen-
tally occurred by misunderstanding of flow direction and water pressure. The STN
model will help to find the origin of outbreak and ban all use of water. Also, the
pipelines will be cleaned according to the STN connectivity. Therefore network
connectivity and time-varying properties should be necessarily coupled together
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and modeled as interdependent networks. As an extension of this issue, multi-
modal networks lead to other challenges. Multimodal networks are constructed
from multiple features or environments. In order to provide real world network
models, the integration of heterogeneous networks is necessary (e.g., network of
clean and sewage water, and water distribution network and power grid). How-
ever, current STN models are limited in their ability.

Conclusion. In this paper we focused on spatio-temporal networks (STN),
which are applicable for water network applications. We discussed the research
issues that need to be addressed in order to retrieve useful information from
STN datasets. We believe that the need of STN storage and access methods
have been widely acknowledged through various water network models. The de-
mand for STN increasingly impacts the societal and environmental applications.
Therefore, new paradigms will be needed to meet the challenges posed by re-
search in these areas.
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Abstract. We describe the FlexTrack system for querying trajectories
using flexible pattern queries. Such queries are composed of a sequence of
simple spatio-temporal predicates, e.g., range and nearest-neighbors, as
well as complex motion pattern predicates, e.g., predicates that contain
variables and constraints. Users can interactively select spatio-temporal
predicates to construct such pattern queries using a hierarchy of regions
that partition the spatial domain. Several different query processing algo-
rithms are currently implemented and available in the FlexTrack system.

1 Introduction

In this paper we describe FlexTrack , a system that allows users to query, in a
very intuitive way, trajectory databases using flexible patterns [1,2]. A flexible
pattern query (or pattern query for short) is specified over a fixed set of areas
that partition the spatial domain and is defined as a combination of predicates
that allow the end user to focus on specific parts of the trajectories that are of
interest. For example, the pattern query “Find all trajectories that first were in
downtown LA, later passed by Santa Monica, and then were closest to LAX”
provides a mixture of range and Nearest-Neighbor (NN) predicates that have to
be satisfied in the specific order. Essentially, flexible patterns cover that part of
the query spectrum between the single predicate spatio-temporal queries, such as
the range predicate that covers certain time instances of the trajectory life (e.g.
“Find all trajectories that passed by area A at 11pm”), and similarity/clustering
based ones, such as extracting similar movement patterns and periodicities from
a trajectory archive that cover the whole lifespan of the trajectory (e.g. “Find
all trajectories that are similar to a given query trajectory according to some
similarity measure”).

In order to provide more expressive power, flexible pattern queries can also
include variables as predicates. An example of a query with a variable is “Find
all taxi cabs that visited the same city district twice in the last 1 hour”. Here
the area of interest is not known in advance but it is specified by its properties
(visited twice in the last 1 hour). We term these variable-enabled pattern queries
as “flexible” as they provide a powerful way to query trajectories. Both the
fixed and variable spatial predicates can express explicit temporal constraints
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Fig. 1. Example of a set of regions defined using a hierarchy of 3 levels

(e.g., “between 10am and 11am”) and/or implicit temporal ordering between
them (“anytime later”). Flexible predicate queries can also include “numerical”
constraints (NN and their variants) to provide “best fit” capabilities to the query
language. Using this general and powerful querying framework, the user can
“focus” the search only on the portions/events in a trajectory’s lifetime that are
of interest.

2 The Flexible Pattern Query Language

In this section we provide the definition of key elements in the FlexTrack system,
as well as the description of the query language syntax.

A trajectory Tid is defined as a list of locations collected for a specific moving
object over an ordered sequence of timestamps, and is stored as a sequence of
w pairs {(ls1, ts1),. . . (lsw, tsw)}, where lsi ∈ R

d is the object location recorded
at timestamp tsi (tsi−1 < tsi). In the FlexTrack system, the spatial domain is
partitioned by a leveled hierarchy, where at each level l the spatial domain is
divided by a fixed set Σl of non-overlapping regions, as shown in Figure 1. A
region in level l is formed by the union of regions in the previous level l − 1.
Regions correspond to areas of interest (e.g. school districts, airports) and form
the alphabet Σ =

⋃
l Σl = {A, B, C, ...}. Note the non-overlapping property

between regions at a given level (e.g., W”, X”, Y” in level 0), while regions from
different levels can overlap (e.g., regions W” in level 0 and F’ in level 1).

In the FlexTrack query language, a spatio-temporal predicate P is defined by
a triplet 〈op,R[, t]〉, where R corresponds to a predefined spatial region in Σ or a
variable in Γ (R ∈ {Σ∪Γ}), op describes the topological relationship (e.g. meet,
overlap, inside) that the trajectory and the spatial region must satisfy over the
(optional) time interval t (t := (tfrom : tto) | ts | tr). A predefined spatial region
is explicitly specified by the user in the query predicate (e.g. “the convention
center”). In contrast, a variable, e.g. “@x”, denotes an arbitrary region using
the symbols in Γ = {@a, @b, @c, ...}. Unless otherwise specified, a variable takes
a single value (instance) from a given level Σl (e.g. @a=C), where the level l is
specified in the query. Conceptually, variables work as placeholders for explicit
spatial regions and can become instantiated (bound to a specific region) during
the query evaluation.

Such spatio-temporal predicates P however cannot be used to specify distance
based constraints (e.g., “best-fit” type of queries, like NN, that find trajectories
which best match a specified pattern). This is because topological predicates
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involved are binary in nature and thus cannot capture distance based properties
of the trajectories. To solve this problem we introduce the optional D part of a
pattern query Q which allows us to describe distance-based or other constraints
among the variables in S and the predefined regions (for more details, see [1]).

Having defined spatio-temporal predicates and the distance based constraints,
we can now define a pattern query Q = (S [∪ D]) as a combination of a sequential
pattern S and (possibly) a set of constraints D, where a trajectory matches Q if
it satisfies both S and D parts. Here S := S.S | P | !P | P# | ?+ | ?∗ corresponds
to a sequence of spatio-temporal predicates, while D represents a collection of
distance functions (e.g. NN ) and constraints (e.g. @x!=@y, @z={A,D,F}) that
may contain regions defined in S. The wild-card “?” is also considered a variable,
however it refers to any region without occurring multiple times within a S.

The use of the same set of variables in describing both the topological predi-
cates and the numerical conditions provides a very powerful language to query
trajectories. To describe a query in FlexTrack , the user can use fixed regions
for the parts of the trajectory where the behavior should satisfy known (strict)
requirements, and variables for those sections where the exact behavior is not
known but can be described by variables and the constraints between them.

3 Pattern Query Evaluation

We continue with a description of the system architecture, its major components
and evaluation algorithms.

In order to efficiently evaluate flexible pattern queries, the FlexTrack system
employs two lightweight index structures in the form of ordered lists that are
stored in addition to the raw trajectory data. There is one region-list (R-list)
per region and one trajectory-list (T-list) per trajectory. The R-list LI of a
given region I ∈ Σ acts as an inverted index that contains all trajectories that
passed by region I. Each entry in LI contains a trajectory identifier Tid, the
time interval (ts-entry:ts-exit ] during which the trajectory was inside I, and a
pointer to the T-list of Tid. Entries in a R-list are ordered first by Tid and then
by ts-entry.

The only requirement for the region partitioning is that regions should be
non-overlapping. In practice, there may be a difference between the regions pre-
sented to the end user as Σ and what is used internally for space partitioning.
In the FlexTrack system we use a uniform grid to partition the space and we
overestimate the regions in Σ by approximating each one of them with the small-
est collection of grid cells that completely encloses the region. Because of the
overestimation, false positives may be generated from regions that do not com-
pletely fit the set of covering grid cells. They, however, can be removed with a
verification step using the original trajectory data.

In order to fast prune trajectories that do not satisfy S, the FlexTrack system
uses the T-list, where each trajectory is approximated by the sequence of regions
it visited in each level of the partitioning space. A record in the T-list of Tid con-
tains the region and the time interval (ts-entry:ts-exit ] during which this region
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Fig. 2. The main interface of the FlexTrack System

was visited by Tid, ordered by ts-entry. In addition, entries in T-list maintain
pointers to the ts-entry part in the original trajectory data. Given those index
structures available, we propose four different strategies for evaluating flexible
pattern queries (for the details on how D is evaluated, see [1]):

1. Index Join Pattern (IJP): this method is based on a merge join operation
performed over the R-lists for every fixed predicate in S. The IJP uses the
R-lists for pruning and the T-lists for the variable binding;

2. Dynamic Programming Pattern (DPP): this method performs a subse-
quence matching between every predicate in S (including variables) and the
trajectory approximations stored as the T-lists. The DPP uses mainly the
T-lists for the subsequence matching and performs an intersection-based
filtering with the R-lists to find candidate trajectories based on the fixed
predicates in S;

3. Extended-KMP (E-KMP): this method is similar to DPP, but uses the
Knuth-Morris-Pratt algorithm [3] to find subsequence matches between the
trajectory representations and the query pattern;

4. Extended-NFA (E-NFA): this is an NFA-based approach to deal with all
predicates of our proposed language. This method also performs an
intersection-based pruning on the R-lists to fast prune trajectories that do
not satisfy the fixed spatial predicates in S.

4 Demonstration

For our demonstration we will use the Trucks and Buses datasets that con-
tain moving object trajectories collected from the greater metropolitan area of
Athens, Greece (www.rtreeportal.org). The Trucks dataset contains 112,203
locations generated from 276 moving objects. The Buses dataset has 66,096
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locations from 145 moving objects. For the purposes of the demonstration we
partition the spatial domain into regions using uniform grid with three levels.
The granularity at levels 0, 1 and 2 is, respectively, 100×100, 50×50 and 25×25.

The first step in the query evaluation is to load the trajectory dataset from
secondary storage. The next step is to create the index structures (R-list and T-
list) used by our evaluation algorithms. During this process the users can tune
several parameters (e.g. grid size, number of levels) for optimal performance.
Using the system main interface, shown in Figure 2, users can visualize the
trajectories in the spatial domain for a particular time interval. This property
allows users to inspect, navigating in space and time, which regions have high
concentration of trajectories. The system also has the property to “replay” the
movement of the trajectories timestamp-by-timestamp.

After the data is loaded and the index structures are created, the user can
create pattern queries using the Σ alphabet. The user can zoom in/out to select a
lower/higher level of interest in the hierarchy. This allows the user to form a query
with mixed size predicates where more detailed, lower level regions correspond
to areas of particular interest, and less detailed, higher level regions are used
otherwise. The user can also select variables or distance-based constraints at
any level of the hierarchy. In addition to that, the user can create predicates
that contain a set of regions or is defined by a maximum bounding rectangle
(i.e. range predicate).

After the user’s query Q is composed using the GUI it is then translated into
the system’s internal representation, as described in Section 2, and passed to the
query engine. The pattern query is then evaluated using one of the four query
evaluation algorithms available in the FlexTrack system (IJP, DPP, E-KMP or
E-NFA). The trajectories in the result set are then plotted on the visualization
canvas. Users can then zoom in/out and select parts of the trajectories by spec-
ifying the time interval of interest. The system also allows users to “replay” the
movement of all the trajectories in the result set. Upon request, the system can
provide textual description of trajectories using the regions in Σ.

5 Conclusion

This paper describes the FlexTrack system, which allows users to intuitively
query trajectory databases by specifying complex motion pattern queries. Using
the system GUI, users can easily construct those pattern queries that are further
translated into a regular expression-like representation, which is then evaluated
by the query evaluation module. Because of its expressive power, fast perfor-
mance and intuitive user interface, the system can be of great help for users that
work with large spatio-temporal archives.

Acknowledgements. This research was partially supported by NSF IIS grants
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Ph.D fellowship.



480 M.R. Vieira, P. Bakalov, and V.J. Tsotras

References

1. Vieira, M.R., Bakalov, P., Tsotras, V.J.: Querying trajectories using flexible pat
terns. In: EDBT, pp. 406–417 (2010)

2. Vieira, M.R., Mart́ınez, E.F., Bakalov, P., Mart́ınez, V.F., Tsotras, V.J.: Querying
spatio-temporal patterns in mobile phone-call databases. In: MDM, pp. 239–248
(2010)

3. Knuth, D., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM J. on
Computing (1977)



A System for Discovering Regions of Interest

from Trajectory Data

Muhammad Reaz Uddin, Chinya Ravishankar, and Vassilis J. Tsotras

University of California, Riverside, CA, USA
{uddinm,ravi,tsotras}@cs.ucr.edu

Abstract. We show how to find regions of interest (ROIs) in trajectory
databases. ROIs are regions where a large number of moving objects
remain for at least a given time interval. Our implementation allows
a user to quickly identify ROIs under different parametric definitions
without scanning the whole database. We generalize ROIs to be regions
of arbitrary shape of some predefined density. We also demonstrate that
our methods give meaningful output.

Keywords: Spatio-temporal database, Trajectory, Region of Interest.

1 Introduction

The widespread use of GPS-enabled devices has enabled many applications that
generate and maintain data in the form of trajectories. Novel applications allow
users to manage, store, and share trajectories in the form of GPS logs, and find
travel routes, interesting places, or other people interested in similar activities.

This demonstration is based on the paper [1], where we give a novel and
more intuitive definition of ROIs and propose a framework for identifying them.
Recent works on discovering ROIs from trajectory data [2] define ROI as an
(x, y) average of the points of a subtrajectory in which the object moves less
than a prespecified distance threshold δ and takes longer than a prespecified
time threshold τ . If either δ or τ changes, the entire trajectory database must
be re-scanned. In contrast, our work removes this important limitation.

It is more intuitive to define ROIs in terms of speed. If an object takes at
least time τ to travel at most distance δ, it maintains an average speed no more
than δ

τ for at least time τ . In our framework, we actually use a speed range to
define ROIs, as this leads to a more generic definition. Further, we introduce the
notion of trajectory density to define ROIs. In summary, our ROI definition uses
(1) a range of speed that an object maintains while in an ROI (2) a minimum
duration of staying in an ROI area and (3) the density of objects in that area.

We build an index on object speeds to avoid scanning the whole database.
Given a range or a particular speed, we first retrieve trajectory segments with
that speed using this index. We then verify the minimum stay duration condi-
tion. Objects that fulfill the speed and duration condition are candidate objects.
Finally, we identify dense regions of candidate objects.

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 481–485, 2011.
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2 Defining Regions of Interest

Conceptually, an ROI is intended to be a region where moving objects pause
or wait or move slow in order to complete activities that are difficult or im-
possible to carry out while in fast motion. Examples of ROIs are restaurants,
museums, parks, places of work, and so on. Generally, individual trajectories
display idiosyncrasies, so ROIs are best defined in terms of collective behaviors
of a collection of trajectories. That is, a collection of trajectories is needed to
identify a location as an ROI.

The duration of an object’s stay in a location is important in filtering out
spurious ROIs, e.g. busy road intersections. So we will require a minimum stay
duration for objects at ROIs. Nevertheless, if an object spends a long time in a
large spatial region, a city, say, then that large region should not be considered as
an ROI either. Hence, we must also consider the geographic extent of the object’s
movement, that is, the maximum area within which an object remains (or the
maximum distance traveled by an object) during the minimum stay duration.
Finally, to capture the collective behavior we consider the density of candidate
objects in such a region. We identify dense regions adapting the point-wise dense
region approach of [3].

Definition 1. A region R is a region of interest if every point p ∈ R has
an l-square neighborhood containing segments from at least N distinct trajec-
tories with object speeds in the range [s1, s2], and where each such object re-
mains in R for at least time τ before leaving R. The parameters l, N, τ, s1, s2 are
user-defined.

3 Indexing Trajectory Segments by Speed

Typically, objects in an ROI will maintain very low (or zero) speed. Hence, if we
can quickly retrieve and analyze low speed trajectory segments, we can reduce
query costs significantly.

Let smax and smin be the maximum and minimum speeds specifiable in an ROI
query. We partition the speed values into index ranges R = [smin, s1), [s1, s2),
. . ., [sn−1, smax). These ranges can be of arbitrary length. We maintain one
bucket for each index range, with bucket Bi holding trajectory segments with
speed range [si, si+1).

We consider the segments of a trajectory sequentially, and compute speeds
assuming linear motion between two successive timestamps. If a series of con-
secutive segments fall within the same speed range, we combine them into one
subtrajectory, and insert it into the index as one entry. Thus each entry in an
index bucket points to a subtrajectory all of whose segments fall into within the
speed range of the bucket.

We assume trajectories are sorted according to TID, so that subtrajectories
in the buckets are also sorted according to TID. Having TID sorted entries in
the buckets allows to perform a merge join to reconstruct trajectories from these
buckets. When new trajectories are added to the database the index can easily
be updated using the above algorithm.
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4 Finding Regions of Interest

We find ROIs in three steps. First, we retrieve the appropriate buckets from the
index. In the second step, we collect subtrajectories spanning multiple buckets
by performing a merge-join, and check the stay durations. In the third step, we
find regions with line segment density N/l2, where each of N segments has to
be from different trajectories.

It is straightforward to retrieve the segments falling into a given speed range
[s1, s2) using the speed index. No further discussion is needed.

4.1 Step 2: Verifying the Duration Condition

In this step, we consider only the buckets obtained from the previous step. To
verify the duration condition for each trajectory we must join subtrajectories
with same TID from different buckets. Let the query speed range include buckets
Bi and Bj , and let Si ∈ Bi and Sj ∈ Bj be subtrajectories. Let the start and
end timestamps for Si and Sj be [ti1, ti2] and [tj1, tj2] respectively. If Si and Sj

have the same TID and ti2 = tj1 or ti1 = tj2, then Si and Sj should be merged
into a single subtrajectory. The object’s stay duration is the interval between
the first and the last timestamps of the merged subtrajectory. We discard all
subtrajectories with stay duration less than τ after merge, since they do not
fulfil the stay duration condition.

In addition to minimum stay duration, our implementation also supports other
temporal conditions, such as time intervals and weekdays/weekends. For exam-
ple, ROIs during any weekday with τ = 15 to 30 minutes, carry different seman-
tics than those found in the afternoon or evening of any weekend, with a few
hours of stay duration.

4.2 Step 3: Finding Dense Regions

This step involves finding points p whose l2-neighborhood contains at least N
distinct trajectories. For our purpose we use the Pointwise Dense Region (PDR)
method [3] which was originally presented for point objects. The work in [3]
describes two variations: (1) an exact, and (2) an approximate method. We use
both of them. [3] uses Chebyshev polynomials to approximate the density of 2D
points. We take the middle point pm of each trajectory segment, and update the
Chebyshev coefficient for the l-square neighborhood of pm. A trajectory segment
is a straight line between two points of a trajectory recorded at consecutive
timestamps.

5 Demonstration

We develop a user interface where a user can specify values of query parameters
e.g., speed, stay duration, other temporal conditions etc. Users can also select
their data or use datasets on which we test our implementation. We show the
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Table 1. Description of real data set

Description Time of collection �trajectories

GeoLife Data: Beijing, China [4]. Apr 2007 to Aug 2009 165

TaxiCab Data: San Francisco, USA [5]. 2008-05-17 to 2008-06-10 536

ROIs found by our methods using Google Maps API. The user can change any
parameter value leaving others same and see the change. For example after
identifying all ROIs for a region user can select only weekends or weekdays
ROIs and see the difference. Figure 1 shows the user interface of our system.

Table 1 provides the description of the real datasets that we use to test our
implementation. Using a short stay duration (15 to 30 min) for GeoLife data, we
found bus stops, railway and subway stations, the Tsinghua University canteen,
etc. We then considered weekends and a longer stay duration (1.5 to 4 hr). This
resulted in ROIs in (1) the Sanlitun area which houses many malls, bars and is
a very popular place, (2) the Wenhua square which contains churches, theaters,
and other entertainment places, and (3) Zhongguancun, referred to as ‘China’s
Silicon Valley’, having a lot of IT and electronics markets. Figure

Figure 2(a) shows all the ROIs found using the TaxiCab dataset. We further
zoomed in to ROIs and found (b) The San Francisco international airport, (c)
a car rental, (d) the main downtown, union square, (e) San Francisco Caltrain
station (f) the yellow cab access road. We also found hotels e.g. Star Wood,
Westin, Mariott, Radisson, Ramada Plaza, Regency hotel, etc. These were found
for short stay duration of 10 minutes. When the stay duration was increased to
12 hours we found only yellow cab access road, while for 2 − 3 hours of stay
duration we also found the airport.

Figure 2(g) and (h) shows Sanlitun and Zhongguancun area respectively in
Beijing. When considering lunch and dinner time we found places that contain

Fig. 1. The User Interface
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. ROIs identified for the TaxiCab and GeoLife data

many restaurants. Interestingly ROIs found at lunch time contain regions near
the Microsoft China head quarters which are absent in dinner time ROIs. Finally,
we identified ROIs on each individual day from April 2007 to August 2009. These
resulted in (1) the Olympic media village, the Olympic sports center stadium
during the Olympics 2008, (2) Peking University when the ‘Regional Windows
Core Workshop 2009 - Microsoft Research’ was taking place in the PKU campus,
(3) areas near the Great Wall in a weekend, (4) the Beijing botanical gardens,
(5) the Celebrity International Grand Hotel, Beijing, etc.
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Abstract. In recent years, the Open Street Map (OSM) project collected a large
repository of spatial network data containing a rich variety of information about
traffic lights, road types, points of interest etc.. Formally, this network can be
described as a multi-attribute graph, i.e. a graph considering multiple attributes
when describing the traversal of an edge. In this demo, we present our frame-
work for Multi-Attribute Routing in Open Street Map (MARiO). MARiO in-
cludes methods for preprocessing OSM data by deriving attribute information
and integrating additional data from external sources. There are several routing
algorithms already available and additional methods can be easily added by using
a plugin mechanism. Since routing in a multi-attribute environment often results
in large sets of potentially interesting routes, our graphical frontend allows vari-
ous views to interactively explore query results.

1 Introduction

The Open Street Map (OSM)1 project collects rich and up-to-date information about
road networks and the landscape surrounding them. Combining this information with
other publicly available information about the spatial landscape allows us to derive a
large variety of information that previously has not been considered in routing systems.
For example, a network might contain information about the distance, the speed limit,
the altitude difference or the number of traffic lights for each road segment. Thus, a
driver looking for the route which fits best to his personal preferences might want to
consider various cost criteria at the same time. When employing ordinary shortest path
routing, multiple attributes can be integrated by selecting a preference function com-
bining cost criteria. For example, a user might enter that his major preference is driving
the fastest path with a weight of 80%, but still wants to consider driving distance with a
minor weight of 20%. By still considering travel distance with a minor weight, the se-
lected route might be considerable shorter and only slightly slower than the fastest path.
Thus, the gas consumption and the risk of getting into a congestion should be consider-
ably smaller. However, finding an appropriate weighting is not intuitive and thus, better
solutions should be found.

To conclude, considering multiple attributes has the potential to improve the usability
of routing but raises a lot of further research questions requiring new problem specifi-
cations and solutions. First works in the area where proposed in [1] and [2]. While [1]

1 http://www.openstreetmap.org
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ranks possible destinations w.r.t. to multiple cost attributes, [2] introduced route skyline
queries. The result of a route skyline query consists of all routes connecting one starting
point and one destination having an optimal cost value w.r.t. any linear combination of
cost values.

In our demonstration, we want to present our framework for Multi-Attribute-Routing
in OSM data (MARiO). MARiO is an open source project combining functionalities for
data integration and preprocessing, implementation of new algorithms and performance
evaluation. Our graphical frontend provides methods for posing queries and interac-
tively exploring result routes. Since there is a number of queries computing multiple
result routes, handling a result set of potentially hundreds of routes requires sophisti-
cated tools. Thus, we integrated various interconnected views on the potentially mul-
tidimensional cost space and perform post processing in the form of clustering result
routes.

The rest of this paper is organized as follows. In section 2, we provide an overview
of the framework and its functionalities. Section 3 describes the already implemented
algorithms. Afterwards, we sketch the content of the demonstration in section 4. Section
5 briefly summarizes the demonstrated system features.

2 System Overview and Functionalities

In this section, we want to give an overview of the functionalities of MARiO. We im-
plemented our framework in Java 1.6 to be independent from a particular hardware
platform.

A first functionality is importing map data from OSM. In order to apply multi-
attribute routing, we cannot rely on the rich map representation provided by OSM. First
of all, the OSM format contains a lot of unnecessary information for route computation.
A second more important reason is that several of the employed optimization criteria
are not directly maintained in the maps. For example, we have information about traf-
fic lights and altitudes connected to the nodes which have to be reassigned and post
processed into edge attributes of a multi-attribute graph. Furthermore, there is publicly
available data from other sources than OSM that provide further useful information.
Therefore, we allow to add topographic data from the SRTM2 program. Another reason
making preprocessing of the map information advisable is that available maps often
contain a lot of nodes which are not required for routing purposes, e.g. nodes that are
integrated to display turns in an edge. In order to allow efficient path computation,
deleting these nodes and combining the neighboring edges can significantly reduce the
number of considered routes.

After loading network data into an internal adjacency list representation, it is pos-
sible that additional preprocessing steps are required. An important functionality for
many routing algorithms, e.g. A*-Search, is to compute an approximation for the min-
imal cost of a path between two nodes. A common approximation for the shortest path
w.r.t. network distance is the Euclidian distance between the spatial coordinates of both
nodes. However, the same idea is not applicable for general attributes. For example, the
number of traffic lights on a route cannot be estimated based on distance. Therefore, we

2 http://www2.jpl.nasa.gov/srtm/
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Fig. 1. Screen shot of the MARiO Frontend

implemented a reference node embedding storing at each node the distance to each of a
well selected set of reference nodes. The advantage of this approach is that it is viable
to arbitrary positive edge attributes. The drawback of the approach is the large memory
consumption because it is necessary to store a distance value for each node, each refer-
ence node and each attribute type. To significantly lower the memory consumption of
this method, we implemented a sparse variant of the embedding being proposed in [3].

To integrate various query types and compare algorithms solving the same problem,
we designed our framework in a way allowing the fast and flexible integration of new
algorithms. Therefore, new algorithms are integrated by employing a plugin mecha-
nism. As a result, it is possible to add further query types or algorithms without altering
the original code of the framework. After adding the algorithm the framework lists the
algorithms in the frontend and automatically generates a dialog to select parameter val-
ues. The result is expected to be a list of result routes which can be displayed in the user
interface. A further generalized feature of the framework is the possibility to analyze
the performance of the algorithms. Therefore, is is possible to monitor and report gen-
eral performance measures for route planning algorithms like query time, result size,
the number of accessed network nodes or the number of extended routes.

A final component of the MARiO framework is its frontend which is displayed in
figure 1. The frontend allows to display the OSM map data by using the map view
component of SwingX-WS3 which contains versatile viewing controls. Furthermore,
the frontend allows the user to pose queries using various algorithms and provides
multiple methods for displaying the result set. The first view on the result set con-
sists of a grid control containing the cost w.r.t. each of the selected cost attributes.
There exists further views visualizing the cost values for the case of two and three at-
tributes. To handle the particularly large number of result routes that sometimes occur in

3 http://swinglabs.org
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multi-attribute routing, we can display the result in the form of a clustering tree. The
clustering is derived by single link clustering which is based on a weighted variant of
Hamming distance. Thus, the result is clustered w.r.t. the visited nodes instead of the
cost attributes. The resulting clustering can be seen in the lower left corner of figure 1.

3 Implemented Algorithms

In the previous section, we described the general functionalities that can be used when
implementing and testing a routing algorithm. In this section, we shortly review the
already available algorithms. For basic shortest path computation based on a single
cost attribute, the framework implements Dijkstra’s algorithm and A*-search. The A*-
search is based on the reference point embedding named above.

A second type of query being already implemented is a route skyline query. To calcu-
late the route skyline for a given set of quality criteria, we employ the ARSC algorithm
described in [2]. The basic idea of this algorithm is a best first traversal of the graph
beginning with the starting position. During query procession the algorithm maintains
two data structures. The first is a priority queue containing all nodes that still must be
visited to find all skyline paths. The second structure consists of a table storing the
already encountered pareto-optimal sub-routes for each visited node. Due to the mono-
tonicity of local sub-routes, it can be shown that each sub route of a skyline route ending
at the destination must be a skyline route between the starting location and its ending
location. Thus, extending any path which is not part of the local skyline of its ending
location cannot lead to a skyline route to the destination. To further speed up skyline
computation, we additionally compare the lower bound approximation for any path to
the current skyline of paths of the destination. If the lower bound approximation is al-
ready dominated by a member of the current skyline of the destination, the path can
be pruned as well. The algorithms terminates when there is no path left that could be
extended into a member of the route skyline to the destination node. For a more detailed
description of the algorithm please refer to [2].

4 Demonstration

To demonstrate the functionalities of the MARiO framework, we will focus on query
processing and result browsing in the frontend.

To pose a query, the user has to select an available query algorithm. Depending on
this selection, the system can now generate a query dialog requesting the required input
parameters from the users. For example, a route skyline query being processed by the
ARSC algorithm requires a set of cost attributes, a starting point and a destination. The
cost attributes are selected as a subset of the attributes being supported by the currently
loaded graph. To select spatial locations the system allows to mark the coordinates
directly on the map view. As an alternative, MARiO supports an address search to
pinpoint locations. After parameter selection, the search is being started and the system
collects the statistical information about query times, visited nodes and extended routes.

The result is a set of routes in the network which are characterized by a trajectory
and a cost vector describing the cost of each of the selected attribute types. A basic view
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of this result set is a grid control containing a row for each result route and a column for
each type of selected cost attribute. When clicking one or several routes in the control
the corresponding route is marked in the map view. Furthermore, it is possible to sort
the result set by any type of selected cost in the result set. A further view on the result
data that is being made available for two attributes is a 2D vector view. For the route
skyline query, this view always displays the well-known step function of a skyline. For
3D data, there exists a further view displaying the result set in a simplex control.

A final feature being extremely useful for rather large result sets is to view the result
routes by browsing its cluster tree. The tree is displayed in a tree control and thus, a user
can navigate deeper into the cluster by expanding the nodes. To get an impression of the
contents of a cluster, it is possible to select a node in the tree and simultaneously display
all contained routes in the map view. Furthermore, the tool tip of the node displays up-
per and lower bounds for each cost value of the clustered routes. For example, a cluster
might be described by 4 routes having a travel time between 0.25 and 0.5 hours and a
distance between 10 and 12 km. By clustering result routes w.r.t. the visited nodes in the
graph, the routes within a cluster do not have to minimize the displayed intervals. How-
ever, the clusters display similar trajectories on the map view. Thus, top-level clusters
distinguish rather general areas a trajectory is visiting while low-level clusters rather
represent local variations. Thus, examining the top level can be employed to explore
general directions and by traversing the tree the user can stepwise decide which route
fits best to her particular preferences.

5 Conclusion

In this proposal, we introduced MARiO a framework for Multi-Attribute Routing in
OSM data. Our framework, has three main functionalities. The first is data integration
and preprocessing in order to construct multi-attribute graphs from OSM data. The sec-
ond is the simple implementation and integration of new algorithm via a plugin mech-
anism. Finally, we provide a frontend for posing queries and exploring query results.
Since the result set being generated by a multi-attribute routing algorithm can be rather
large, there exists several interconnected views displaying result routes on the map, in
the cost space or summarize the result with a clustering algorithms.
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Abstract. Time series of sensor databases and scientific time series
often consist of periodic patterns. Examples can be found in environ-
mental analysis, where repeated measurements of climatic attributes like
temperature, humidity or barometric pressure are taken. Depending on
season-specific meteorological influences, curves of consecutive days can
be strongly related to each other, whereas days of different seasons show
different characteristics. Analyzing such phenomena could be very valu-
able for many application domains. Convenient similarity models that
support similarity queries and mining based on periodic patterns are
realized in the framework TiP, which provides methods for the compari-
son of similarity query results based on different threshold-based feature
extraction methods. In this demonstration, we present the visual and
analytical methods of TiP of detecting and evaluating periodic patterns
in time series using the example of environmental data.

1 Introduction

In a large range of application domains, e.g. environmental analysis, evolution of
stock charts, research on medical behavior of organisms, or analysis and detec-
tion of motion activities, we are faced with time series data featuring activities
which are composed of regularly repeating sequences of activity events. For that
purpose, existing periodic patterns that repeatedly occur in specified periods
over time have to be considered. Though consecutive motion patterns show sim-
ilar characteristics, they are not equal. We can observe changes of significant
importance in the shape of consecutive periodic patterns.

TiP utilizes the dual-domain representation of time series and the threshold-
based approach [1] to extract periodic patterns from them. Beyond the interest of
[2], the temporal location and the evolution of consecutive patterns are focused.
For efficient similarity computation, relevant feature information is extracted
so that data mining techniques can apply. By visualization, TiP provides first
information about the existence and the location of periodic patterns in the time
domains in the 3D space. Further knowledge about large datasets and the choice
of adequate parameter settings for similarity queries and mining can be obtained
by diverse analysis methods.
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Fig. 1. Feature extraction and similarity computation on dual-domain time series

Overall, TiP serves as a framework to effectively and efficiently manage dual-
domain time series. Furthermore, it provides several methods to process simi-
larity queries on this type of time series based on user-defined features as well
as an intuitive graphical user interface. Theoretical background of the applied
techniques in TiP will be given in Section 2. Details of the system and the ar-
chitecture will be explained in Section 3. Section 4 describes the planned demo
tour in more detail.

2 Theoretical Background

Time Series Representation. A time series X can be split into a sequence of
subsequences of fixed length by adding an additional time domain [1]. This yields
a dual-domain representation having a 3D surface. A dual-domain time series
represents the temporal behavior along two time axes. Consider an example of
environmental research. The trend of temperature within one month of a year
having one value for each hour of a day is then represented by the evolution
of the temperature within one day (first time domain), and, additionally, over
consecutive days of the entire time period (second time domain). Formally, a
dual-domain time series is defined as

Xdual = 〈〈x1,1, . . . , x1,N−1, x1,N 〉, . . . , 〈xM,1, . . . , xM,N−1, xM,N 〉〉

where xi,j denotes the value of the time series at time slot i in the first (discrete)
time domain T = {t1, . . . , tN} and at time slot j in the second (discrete) time
domain S = {s1, . . . , sM}.
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Time Series Similarity. TiP compares dual-domain time series based on their
periodic patterns that we call intersection sets. An intersection set Pτ (X) of a
time series X is created by a set of polygons that are derived according to [2],
where time series with one time domain are represented as a sequence of intervals
w.r.t. to a threshold value τ . In this case, τ corresponds to a 2D plane which
intersects the 3D time series X . The polygons of an intersection set represent
the evolution of amplitude-level patterns as spatial objects, as they deliver all
information about the periods of time during which the amplitudes of the time
series exceed τ . In the temperature example, the polygons contain only values
beyond a certain temperature level. Thus, the patterns emerge from temperature
values that are greater than τ . However, patterns of summer and winter months
are different in their occurrence and their dimensions, as depicted in Figure 1:
the patterns of August 2003 are more concentrated within the days, but they are
more constant over the whole month, whereas January 2001 contains patterns
having a lower variance over consecutive days but that hardly change within the
days. The degree of periodicity of a time series is reflected by the extent of the
polygons, so even non-periodic patterns can be detected and addressed by their
spatial location. The distance dτ (X, Y ) of two time series X and Y reflects the
dissimilarity of the intersection sets Pτ (X) and Pτ (Y ) for a certain τ . This step
reduces the comparison of time series to comparing the sets of polygons such
that spatial similarity computation methods can apply. To save computational
cost while computing the distance as well as to allow for the usage of index
structures like the R∗-tree [3], TiP derives local features (e.g. approximations
or numerical values) from the polygons and global features (e.g. characteristics)
from the intersection sets and computes the distance based on them (cf. Figure
1). The number of polygons and, thus, the number of local features varies for
different intersection sets, so TiP employs the Sum of Minimal Distances (SMD)
measure [4]. The distance based on global features is simply calculated as the
Lp-distance between the associated features, as, for each intersection set, TiP
derives the same amount of global features. For similarity calculation and further
analysis, intersection sets for different threshold values can be pre-computed for a
dataset and stored in an underlying database. Thus, relevant feature information
of intersection sets can simply be reloaded for similarity queries. Furthermore,
this threshold-based method is very efficient as, contrary to simple measures
like the Euclidean distance, it does not need to consider the originally high-
dimensional structure of time series.

3 Architecture

TiP has been implemented using Java and the Java3D API. The framework
is able to load datasets of time series following the ARFF format1 into the
application. For each time series, the user can set several threshold planes to
compute intersection sets w.r.t. these threshold values. The polygons can be
approximated by simple conservative bounds like minimum bounding rectangles
1 http://weka.wiki.sourceforge.net/ARFF
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(a) Dual-domain time
series visualization.

(b) 2D view. (c) iView displaying
polygons and features.

Fig. 2. Visual exploration of dual-domain time series with TiP

(MBRs) and thus be stored efficiently in the internal database by the support of
internal index structures. This also accelerates similarity queries, as multi-step
query processing can be applied. For a time series X , each intersection set Pτ (X)
w.r.t. a specific value for the threshold τ does only have to be computed once.
Once stored in the internal database, the ID of Pτ (X) can simply be associated
with the ID of the time series X from which was derived when X is opened by TiP
for another time. The user is able to perform an extensive evaluation using several
techniques to mine databases of time series that are based on periodic patterns,
such as k-nearest-neighbor (kNN) queries with distance ranking, precision-recall
analysis and kNN classification.

TiP provides an intuitive graphical user interface. Exemplary elements are
depicted in Figure 2. The core elements include two Java3D applets display-
ing two time series simultaneously in their dual-domain representation (cf. Fig.
2(a)). As several user-defined threshold planes can be set for each time series,
TiP offers two additional applets called iView to depict the polygons and the
presentable features (i.e. approximations) of the corresponding intersection sets.
Additionally, the user is able to split a time series along each axis. Then each
subsequence of a dual-domain time series can be displayed in an external 2D
chart (cf. Fig. 2(b)).

4 Demo Tour

In this section, a short overview of the nature of the demonstration of TiP is
given, which will be performed applying the example of environmental research
where the time series are built of normalized temperature measurements. The
recorded and prepared data, labelled corresponding to the four seasons of a year,
was provided by the Environmental State Office of Bavaria, Germany2.

2 http://www.lfu.bayern.de/
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In the demo, we first present how the dual-domain time series representation
can discover a higher content of information compared to the original, sequential
representation. For example, depending on the season, the temperature curves
show different characteristics in their course, so representative patterns can al-
ready be derived visually from this 3D surface. When setting threshold planes
arbitrarily, the user can materialize those patterns. By setting several threshold
planes, the user can examine how to find suitable values for τ that should be
used while performing similarity queries. In general, the higher a threshold is, the
less is the number of amplitude values of a time series that exceed the threshold
and, thus, contribute to a polygon of the intersection set. By defining a value
or a range for τ , we show how to define the relevant time series values for the
queries. A high τ value, e.g. τ = 80◦F, in the temperature example corresponds
to the query: “Given the curve of a query month showing temperature values
higher than 80◦F on the first days at one certain time of day, please return all
months that also show values higher than 80◦F on their first days at this time of
day.”. If the query time series contains measurements of a summer month, it is
likely to get summer months returned in the result set, as winter months show
a different behavior, even if the amplitudes of the dataset are normalized. As an
additional feature, the system supports the automatic detection of the value for
τ that yields the best results without specifying any minimum query tempera-
ture level. For that purpose, a kNN classification is performed in order to find
a τ value to obtain the best accuracy results. Exemplarily for the normalized
temperature dataset, choosing τ = 0.6 yields an accuracy value of 0.65, where by
applying the Euclidean distance we get an accuracy of 0.56. To get an overview
of the quality of the results that can be achieved with different values for τ , a pa-
rameter analysis shows the classification accuracies and average precision values
for every possible τ within the amplitude range of the time series. Of course the
result strongly depends on the selection of the features of the intersection sets.
Therefore, we show that features can be combined to improve the expressiveness
of the results.
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Abstract. Integrating spatial operators in commercial data streaming engines 
has gained tremendous interest in recent years. Whether to support such  
operators natively or to enable the operator through an extensibility framework 
is a challenging and interesting debate. In this paper we leverage the Microsoft 
StreamInsightTM extensibility framework to support spatial operators enabling 
developers to integrate their domain expertise within the query execution  
pipeline.  

We first justify our choice of adopting an extensibility approach over a  
native support approach. Then, we present an example set of spatiotemporal  
operations, e.g., KNN search, and range search; implemented as user defined 
operators using the extensibility framework within Microsoft StreamInsight. 
More interestingly, the demo showcases the how embedded devices and smart-
phones  are shaping the future of streaming spatiotemporal applications. The 
demo scenario specifically features a smartphone based input adapter that pro-
vides a continuous stream of moving object locations as well a continuous 
stream of moving queries. To demonstrate the scalability of the implemented 
extensibility framework, the demo includes a simulator that generates a larger 
set of stationary/moving queries and streams of stationary/moving objects. 

Keywords: Microsoft StreamInsight, extensibility, spatiotemporal data stream-
ing, geostreaming. 

1   Introduction 

It has been a debate in the database community whether to support spatial operators 
natively or to provide an extensibility framework capable of integrating user defined 
operators across multiple domains within the query execution pipeline. This  
same debate has naturally evolved to include the data streams domain as more and 
more business scenarios demand spatiotemporal stream processing. In this demo,  
we explore the utility of the second approach (extensibility) to design a set of  
spatiotemporal streaming operators. 
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1.1   Motivation 

Spatial queries are becoming increasingly popular and are a necessary building block 
for a number of location-enabled applications (e.g. find coffee shops near me as I 
travel down the freeway, or alert the police cars nearest to a fleeing suspect.) Our 
approach utilizes a commercial data stream management system (DSMS), Microsoft 
StreamInsight, to handle streams of spatiotemporal location data. We leverage the 
extensibility features to update and query our spatial indexes. StreamInsight natively 
handles the details of the streaming data, so that we can focus our development efforts 
on the business logic implementation of real-time spatial queries. 

1.2   The Case for Extensibility in a DSMS 

Microsoft StreamInsight (StreamInsight, for brevity) is a commercial DSMS that 
adopts the semantics of the Complex Event Detection and Response (CEDR) project 
[1-2]. The underlying basis for processing long-running continuous queries in 
StreamInsight is a well-defined temporal stream model and operator algebra. It corre-
lates stream data from multiple sources and executes standing queries on a low-
latency query processor to extract meaningful patterns and trends [3-4].  

Several business domains have explored the value that could be gained by using 
DSMSs to process real-time workloads. In previous work, StreamInsight has been 
used as a platform for web click analysis and online behavioral targeting [5], compu-
tational finance [6], and spatiotemporal query processing [7-9]. Because of the wide 
applicability of data streaming in many domains, and because of the domain expertise 
involved in each domain, the extensibility model provides a way to make DSMS ca-
pabilities more readily accessible to developers within their domain of expertise. For 
this demo, we leverage StreamInsight’s extensibility model in the spatiotemporal 
domain. We discuss StreamInsight’s extensibility model [10] in Section 2.3. 

1.3   Applying StreamInsight to the Spatial Domain 

Ali et al present two approaches (the extensibility approach and the native support 
approach) to enable spatiotemporal query processing in DSMSs and, more specifi-
cally, in StreamInsight [7]. Some have also investigated the extensibility approach  
[8-9] to extend StreamInsight with the capabilities of the SQL Server Spatial Library 
[11]. However, the SQL Server Spatial Library is tuned for non-streaming data and, 
hence, performance at real time remains an issue. Using the extensibility framework 
proposed by Ali et al [10], incremental streaming-oriented versions of spatial opera-
tors can be developed and integrated with the query execution pipeline. In particular, 
we utilize user defined operators (UDOs) in our demo.  

This demo implements a set of K- nearest neighbor (KNN) search and range search 
operators. These operators receive a stream of location updates. Note that there are 
various flavors of the KNN search and range search problems. Typically, a fixed 
KNN search or range search can be posed against a stream of continuously moving 
objects (i.e. querying device is not moving, the query answers are derived from a 
stream of moving entities). Alternatively, the KNN search or the range search center 
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can be moving while the objects are stationary – e.g. show me locations of coffee 
shops as I drive along on a freeway. More interestingly, both the objects and the 
search center can be moving; e.g. a user and the friends nearest to them at any given 
time in a public location such as a shopping mall. We support all these flavors in  
the demo.  

2   StreamInsight Overview 

This section summarizes the major features of StreamInsight and gives an overview 
of its developer’s interface with an emphasis on the extensibility framework.  

2.1   Capabilities of StreamInsight 

Speculation and consistency levels: StreamInsight handles imperfections in data 
delivery and provides consistency guarantees on the resultant output. Such consis-
tency guarantees place correctness measures on the output that has been generated so 
far, given that late and out-of-order stream events are still in transit. 

Windowing Semantics: Windowing is achieved by dividing the time-axis into a set 
of possibly overlapping intervals, called windows. An event belongs to a window if 
and only if the event’s lifetime overlaps with the window’s interval (time span). The 
desired operation (e.g., sum or count) is applied over every window as time moves 
forward. The output of a window is the computation result of the operator over all 
events in that window, and has a lifetime that is equal to the window duration. 

Scalability: Scalability is achieved by both stream partitioning and query partitioning. 
Stream partitioning clones a query into multiple queries (of the same operator tree) 
such that each query operates on a portion of the stream. Query partitioning divides a 
query into many sub queries, each deployed on an instance of StreamInsight. 

Debugging: StreamInsight provides a graphical tool (the Event Flow Debugger) for 
the inspection of event flow in a query as a means of debugging and performing root 
cause analysis of problems. The Event Flow Debugger reports the per-query memory 
and CPU usage, latency, throughput, and other runtime statistics as well.  

2.2   Developing a Streaming Solution with StreamInsight 

To develop a streaming application using StreamInsight, a set of modules have to be 
written to interact with the system. These modules are classified as: 

Input/output Adapters: Input data streams are fed to the streaming engine through 
the appropriate input adapters. Input adapters have the ability to interact with the 
stream source and to push the stream events to the streaming engine. The engine 
processes the queries issued by the user and streams the resultant output to the con-
sumer through output adapters. For the demo, we wrote two input adapters – one that 
generates test data and one for real data streamed from smartphone apps. We also 
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created an output adapter that provides the output data as a service consumed by our 
display applications on a PC or smartphone. 

Declarative Queries in LINQ: Language Integrated Query (LINQ) [12] is the ap-
proach taken by StreamInsight to express continuous queries. The LINQ that invokes 
our spatial query, for example, might look like this: 

var outputStream = inputStream.Scan(  
new RTreeUDO( queryType, xRange, yRange)); 

This scans the input stream with our R-tree UDO, and provides us with the output 
stream. The code inside our UDO will accept a set of input event to produce a set of 
output events. We define the payload of our input and output events to include geo-
graphic location, phone ID, and IP address. 

User Defined Operators (UDOs): The extensibility framework enables domain ex-
perts to extend the system’s functionality beyond relational algebra. Domain experts 
package their logic as libraries of UDOs that are invoked by the continuous query.  

 

Fig. 1. Query output visualization of KNN search and range search query using the dashboard 

StreamInsight’s extensibility framework addresses two types of UDO developers. 
The first type is software developers who are not trained to think under the data 
streaming paradigm with its temporal attributes: for them there is the non-incremental 
model which provides a relational view of the world. The second type is developers of 
streaming applications where temporal attributes are first class citizens in their busi-
ness logic. These developers seek maximum achievable performance through incre-
mental query processing and may require full control over the temporal attributes of 
events as well. For them there is the incremental model, which provides the deltas or 
changes in the input to the UDO since the UDO’s last invocation. 
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3   Demo Scenario 

The demo scenario features a dashboard (Figure 1) that simultaneously visualizes a 
set of stationary objects (e.g., landmarks, coffee shops, shopping malls) and a set of 
moving objects (e.g., streamed from handheld devices and smartphones) using Bing 
Maps [13]. The dashboard is also used to compose and issue continuous queries 
against these objects. There are two versions of the dashboard: a PC-based dashboard 
and a smartphone-based dashboard. Note that a query that is issued using the smart-
phone based dashboard is assumed to have a continuously moving query center (as 
described in Section 1). The queries are processed using a data streaming engine and 
the query results are visualized using either version of the dashboard.  

The demo utilizes Microsoft StreamInsight as the underlying data streaming en-
gine. To interface with StreamInsight, a set of input/output adapters, a set of LINQ 
queries and a set of user defined operators (UDOs) are developed. We provide two 
types of input adapters. The first type of input adapters streams, at real time, GPS 
locations from handheld devices (e.g. smartphones) to the data streaming engine. The 
second type of input adapters simulates a larger set of moving objects/queries for the 
sake of demonstrating scalability. The simulator moves the device locations by ran-
dom displacement vectors to simulate the variability we expect in real data. More-
over, it can replay historical logs of moving objects and feed them to the streaming 
engine to process queries over historical data. On the output side, the output adapter 
visualizes the query results using Bing Maps over the PC-based dashboard or sends 
the result back to be visualized at the dashboard of the moving object (say, a smart-
phone) that issued the query.  

We implement R-tree and M-tree spatial index structures to track the objects as 
they roam the space. Our UDOs incrementally update and query these indexes at real 
time. In this demo, we present UDOs for KNN search and range search operations 
such that the various flavors of stationary/moving queries issued against station-
ary/moving objects are supported. Finally, LINQ queries are automatically composed 
and instantiated through the dashboard. These queries invoke the UDOs along with a 
set of relational operators (filters and projections) to declaratively define the requested 
output. 
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Abstract. We present a Sensor Web browser with an efficient spatio-temporal 
data loading mechanism as a client-side application in GeoCENS project. The 
same way the World Wide Web needs a web browser to load and display web 
pages, the World Wide Sensor Web needs a Sensor Web browser to access dis-
tributed and heterogeneous sensor networks. However, most existing Sensor 
Web browsers are just mashups of sensor locations and base maps that do not 
consider the scalability issues regarding transmitting large amount of sensor 
readings over the Internet. While caching is an effective solution to alleviate 
transmission latency and bandwidth problems, a method for efficiently loading 
spatio-temporal sensor data1 from Sensor Web servers is currently missing. 
Therefore, we present LOST-Tree, a new spatio-temporal structure, intended to 
be the sensor data loading component on a Sensor Web browser. By applying 
LOST-Tree, redundant transmissions are avoided and consequently enables ef-
ficient loading with cached sensor data. 

Keywords: sensor data management, spatio-temporal indexing, Sensor Web. 

1   Introduction 

The World-Wide Sensor Web [1] is increasingly attracting interests for a wide range 
of applications, including: large-scale monitoring of environment [2], roadways [3], 
etc. Thanks to the international sensor web standards (e.g., Open Geospatial Consor-
tium (OGC)), it is possible to access heterogeneous sensor networks and their data 
with standard web service interfaces. The same way the World Wide Web needs a 
web browser to load and display web pages, the World-Wide Sensor Web needs a 
coherent frontend to access distributed and heterogeneous sensor networks. We call 
this kind of coherent frontend a Sensor Web browser. EarthScope2, Sensorpedia3 and 
SensorMap4 are some example Sensor Web browsers. 

                                                           
1 By sensor data, we mean the observations collected by sensors. They can be time series col-

lected by stationary in-situ sensors, or a collection of single readings collected by transient 
sensors. 

2 http://www.earthscope.org/ 
3 http://www.sensorpedia.com/ 
4 http://atom.research.microsoft.com/sensewebv3/sensormap/ 
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Nath et al. [4] discussed the challenges they encountered when building Sensor-
Map. They highlighted transmitting large amount of sensor data efficiently over the 
network as one major challenge. They addressed this challenge by aggregating and 
sampling sensor data with COLR-Tree [5]. However, data uncertainty and quality 
degradation issues could occur with that approach. Therefore, we take a different ap-
proach in this research. One common solution for such challenge is to employ a cach-
ing mechanism that stores server responses on clients’ local disks. The clients then 
only need to request for data in the case of cache miss. Take today’s earth browser 
systems (e.g., Google Earth) as examples. They use a quadtree-based tiling scheme to 
store and manage the cached image tiles at different level of details. Before sending 
requests to servers, these systems check cache first. In the case of cache hit, no re-
quest needs to be sent. Otherwise (cache miss), the request will be sent, and the re-
turned image tiles will then be inserted into the cache for future uses.  

However, the same tiling and caching method cannot be directly applied to sensor 
data. There are two major reasons. First, sensor data is spatio-temporal in nature. 
Comparing to static map images, there is an additional temporal dimension to con-
sider. Second, sensor data may be distributed sparsely in space and even more 
sparsely in time (e.g., transient sensors or sensors with very different sampling fre-
quency). As a result, many spatio-temporal requests for sensor data of a particular 
phenomenon have server responses without any sensor data (empty hits). In order to 
prevent redundant empty hits, not only the responses need to be stored and managed 
in a cache, the requests also need to be stored and managed as a separate cache. 

This work presents LOST-Tree, which stands for LOading Spatio-Temporal Tree. 
LOST-Tree uses predefined hierarchical spatial and temporal frameworks to manage 
requests. By applying LOST-Tree as a data loading management layer between a Sen-
sor Web browser and servers, redundant requests can be prevented. Consequently, we 
can reduce server load, optimize data transmission, and save bandwidth. 

2   LOST-Tree 

The LOST-Tree manages a Sensor Web browser’s requests. A typical request R from 
a Sensor Web browser to a Sensor Web server (e.g., an OGC Sensor Observation Ser-
vice server [6]) can be defined by three parameters: Rbbox, Rt_period, and Robs, where 
Rbbox is the minimum bounding box of the request’s spatial extent, Rt_period is the re-
quest’s temporal extent defined by a start time t1 and an end time t2, and finally Robs is 
the observed phenomenon of interest (e.g., air temperature). In fact, we can further 
define the combination of Rbbox and Rt_period as a spatio-temporal cube RSTCube. Thus, a 
request R and its corresponding server response can be defined as follows: R (RSTCube, 
Robs): {o1, o2, …, oi}, where oi is an observation collected by a sensor that fulfill the 
request R. 

LOST-Tree is a data loading management layer between a Sensor Web browser 
and servers. Its overall objective is to prevent sending unnecessary requests to Sensor 
Web servers. When our Sensor Web browser sends a request R through LOST-Tree, it 
consists four steps: (1) Decompose, (2) Filter, (3) Update, and (4) Aggregate. (Fig.1) 
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Fig. 1. Workflow of LOST-Tree 

Decompose step: The purpose of the decompose step is to convert an ad-hoc RSTCube 

into one or many non-overlapping LOST-Tree-based requests: LTSTCubes. The decom-
position is based on two predefined and hierarchical spatial and temporal frameworks. 
In this demo paper, we implement LOST-Tree with quadtree [7] as the spatial frame-
work and with Gregorian calendar as the temporal framework. We use the LTSTCube 

key, that is the combination of a quadkey q and a calendar string gc (e.g., YYYY, 
YYYYMM, YYYYMMDD, YYYYMMDDHHMMSS) to represent a LTSTCube. A 
quadkey q represents a bounding box, and a calendar string gc represents a time pe-
riod. One important characteristic in both quadkey q and calendar string gc is that 
they are hierarchical in nature. That means the length of q and gc represents its level-
of-detail. That also means we can simply use a prefix matching method to identify 
whether LTSTCube_A ⊆ LTSTCube_B. Consequently we can easily and efficiently manage 
LTSTCubes in a client’s local cache by manipulating the LTSTCube key. 

Filter step: The objective of the filter step is to filter out the requests that have been 
sent to servers previously. LTCCubes are previously loaded LTSTCubes found in the cache, 
and the filtering process is defined in Algorithm 1. 

Update step: The aim of this step is to keep LTCCubes up-to-date. Once the client re-
ceives responses from servers, the corresponding LTSTCubes are inserted into LTCCubes. 
What makes LOST-Tree algorithm new is that even if the server responses contain no 
sensor data (i.e., empty hits), their corresponding LTSTCubes will still be cached as 
LTCCubes. In this way, LOST-Tree avoids sending repeated empty-hit requests. 

Aggregate step: This step is intended to minimize the memory footprint of LTCCubes. 
With the hierarchical characteristic of the spatial and temporal frameworks in LOST-
Tree, when all sub-LTCCubes (e.g., the eight small green cubes) of an LTCCube (e.g., the 
two large green cubes) are loaded, we can replace all the sub-LTCCubes with just one 
LTCCube. Therefore, whenever the loaded LTSTCubes are inserted in the update step, 
LOST-Tree first identifies aggregatable LTCCubes and aggregates them into one 
LTCCube. In this way, the smaller number of LTCCubes allows better filtering perform-
ance in LOST-Tree. In addition, since LOST-Tree only maintains a quadkey and a 
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calendar string for each LTCCube, the tree size is small enough (<25Kbytes) to fit into 
memory for efficient filtering processing. 

As can be seen from Fig. 2, which depicts the end-to-end latency with and without 
proposed scheme, LOST-Tree and local cache improves the system performance. 

Algorithm 1. The filter function 

Function  Filter(LTSTCubes, LTCCubes): FilteredLTSTCubes 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

FilteredLTSTCubes = {} 
FOREACH LTSTCube ∈ LTSTCubes 

     previously_loaded ← false 

     FOREACH LTCCube ∈ LTCCubes 
         IF LTSTCube is contained by LTCCube THEN  
             previously_loaded ← true 

             BREAK 
         ELSE IF LTSTCube contains LTCCube THEN  
             LTSTCube  ← LTSTCube –LTCCubes          
         END IF 
     END FOREACH 
     IF NOT previously_loaded THEN 
         FilteredLTSTCubes ← FilteredLTSTCubes ∪ 

LTSTCube 
     END IF 
END FOREACH 
RETURN FilteredLTSTCubes 

 

Fig. 2. End-to-end latency with and without proposed scheme 

3   Demonstration 

We will demonstrate the Sensor Web browser in the Geospatial Cyberinfrastructure 
for Environmental Sensing (GeoCENS) project (Fig. 3). GeoCENS Sensor Web 
browser is an OGC Sensor Web standard-based frontend, and users can browse sensor 
data from various sources within a coherent virtual globe geographical interface. We 
will first load sensor data through Internet then load the same data after restarting the 
Sensor Web browser. This will clearly show the contribution of this work. Then we 
will show other features that also benefit from the proposed scheme, such as point-to-
surface interpolation. 
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Fig. 3. The GeoCENS Sensor Web browser 
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Abstract. Over the past years, several pruning criteria for spatial objects
have been proposed that are commonly used during the processing of similarity
queries. Each of these criteria have different properties and pruning areas. This
demo offers a visual interface for comparing existing pruning criteria under vari-
ous settings and in different applications allowing an easy integration of new cri-
teria. Thus, the proposed software helps to evaluate and understand the strengths
and weaknesses of pruning criteria for arbitrary spatial similarity queries.

1 Introduction

During the processing of spatial similarity queries such as distance-range (a.k.a. ε-
range) queries, k-nearest neighbor (NN) queries, reverse-kNN queries, etc., an impor-
tant efficiency aspect is early pruning of objects which can not be part of the result set.
Typically, in an early stage of the processing, the objects are approximated by suitable
representations like minimum bounding rectangles (MBRs) or bounding spheres (BS).
These representations are used in various applications in the spatial and/or temporal do-
main. In addition, using a feature-based similarity model, any type of objects (e.g. text
documents) can be transferred into feature vectors (e.g. using term frequency) ending
up in spatial objects.

Approximations like MBRs and BSs may be used in different contexts. For example,
if the data objects have a complex spatial representation (e.g. polygons or probability
density functions), MBRs serve as an approximation of the objects. During query exe-
cution costly distance functions can be avoided by using lower/upper bound distances
on the approximations. Furthermore, spatial index structures use MBRs or BSs to ap-
proximate the area covered by the children of a node of the index structure.

Effective pruning criteria are among the most important components for efficiently
answering spatial similarity queries. For decades, the minimum and maximum distance
[1] between the approximations have been used to decide about pruning. Recently it has
been shown that theses metrics can be improved under various settings (cf. [2,3,4]). In
this work we describe and implement a system which visualizes the impact of several
pruning criteria in different applications under various settings. The system should be
helpful for giving insights on different pruning strategies under user specified settings.
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2 Domination Criteria

Depending on the underlying application and the type of query to be answered, prun-
ing is performed differently. Thus, we will rely on the generalized concept of spatial
domination introduced in [3] that can be used for any of the mentioned types of spatial
similarity queries. Given the approximation A∗, B∗, R∗ of three objects (A, B, R) then
A∗ dominates B∗ w.r.t. R∗, written as Dom(A∗, B∗, R∗), if

Dom(A∗, B∗, R∗) ⇔ ∀a ∈ A∗, b ∈ B∗, r ∈ R∗ : dist(a, r) < dist(b, r),

where a, b and r are points within the corresponding approximations (and not nec-
essarily within the objects) and dist is a distance function defined on points (e.g. the
Lp-norm).

For a kNN query with query object Q, we can prune an object Oi if we find k objects
Oj �= Oi for which Dom(Oj , Oi, Q) holds. For a RkNN query with query object Q,
we can prune an object Oi if we find k objects Oj �= Oi for which Dom(Oj , Q, Oi)
holds.

In the following, we will review three pruning techniques and explain how to derive
the domination concept using them. Figure 1 illustrates these techniques.

Mi Di t(R B)R BMinDist(R, B)

A

MaxDist(R, A)

A

(a) MinMax pruning

R B

AA

(b) Trigonometric pruning

R B

AA

(c) Optimal DDC pruning

Fig. 1. Pruning Criteria for NN-queries

2.1 MinMax Domination

In [1] the minimum (MinDist) and the maximum (MaxDist) distance between a pair of
objects is used for pruning in the context of kNN queries and MBR-based approxima-
tions (see Figure 1(a) for illustration). It can easily be used for other query types and
spherical approximations (BSs), too. In relation to MBRs the minimum/maximum dis-
tance between two MBRs X� and Y � is the minimal/maximal distance that two points
x ∈ X�, y ∈ Y � can possibly have. Domination can be derived as follows:

DomMinMax(A�, B�, R�) ⇐ MaxDist(A�, R�) < MinDist(B�, R�)

Although the MinMax criterion is correct and efficiently computable it is not optimal
(by means of pruning always the maximum amount of objects).
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2.2 Trigonometric Pruning

Trigonometric pruning has been developed independently for all-nearest-neighbour
queries [2] and for probabilistic reverse nearest neighbour queries [4] assuming spher-
ical BS approximations. The hyperbola HX,Y between two approximating spheres X◦

and Y ◦ which consists of all points e for which it holds that MaxDist(X◦, e) =
MinDist(Y ◦, e) is used for pruning (see Figure 1(b) for illustration). Trigonomet-
ric pruning extends MinMax pruning since it is optimal in case of spherical approx-
imations. However, it works for euclidean distance only and it cannot be applied to
MBR-based approximations. Domination is defined as follows:

DomTrig(A◦, B◦, R◦) ⇐ R◦ is completely on the same side as A◦ of HA,B

The check involves complex trigonometric computations (see [4] for more details).

2.3 Optimal DDC

In [3] an optimal pruning criterion based on MBRs was developed. It also utilizes the ge-
ometric structure which consists of all points e for which it holds that MaxDist(A, e) =
MinDist(B, e) (cf. Figure 1(c)). Instead of materializing this complex structure (even
in the two dimensional case), the criterion efficiently decides on which side of the struc-
ture a third object is.

DomOpt(A
� , B� , R�)⇐

d∑
i=1

max
ri∈{Rmin

i
,Rmax

i
}
(MaxDist(Ai, ri)

2 −MinDist(Bi, ri)
2) < 0

where Xi (X ∈ {A�, B�, R�}) denotes the projection interval of the rectangular
region of X on the ith dimension, Xmin

i (Xmax
i ) denotes the lower (upper) bound

of the interval Xi, and MaxDist(I, p) (MinDist(I, p)) denotes the maximal (minimal)
distance between a one-dimensional interval I and a one-dimensional point p.

3 Visual Evaluation of Pruning Criteria

The choice of an adequate pruning criterion for a given application is not always ob-
vious as the pruning power of a criterion depends on the character of the individual
objects as well as the data distribution of the whole data set. For a deeper understanding
which criterion to choose it is important to separately consider these two aspects. Thus,
our visualisation tool offers two visualisation modes. In both modes, any Lp-norm can
be applied as basic distance measure.

3.1 Individual Object View

In this mode only three objects (Q, A and B) are visualized in order to examine the
concept of domination. For the Trigonometric and the Optimal domination decision
criterion (DCC) pruning, the areas of domination are colored in dark gray. The three
different pruning techniques can be evaluated against each other in this basic relation
using a split screen. In order to evaluate variations and changes of the data objects on
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the domination relationship, objects can be re-sized as well as moved easily and the
domination areas (if displayed) are adjusted accordingly. For each split screen, a signal
light shows whether B is dominated (green light) or not dominated (red light) by A
w.r.t. Q using the selected pruning technique.

Figure 2 illustrates a sample snapshot of this object view. It displays the MinMax
pruning (left) and the Optimal DCC pruning (right) with query object Q and two data
objects A, B. The red light in the screen showing the MinMax criterion indicates, that
object B is not dominated by A w.r.t. Q when using the MinMax method (and cannot
be pruned in a NN query setting with Q as the query). Contrary, the green light in the
screen showing the Optimal DCC criterion indicates, that object B is dominated by
object A w.r.t. Q and can be pruned when issuing a NN query around Q.

Fig. 2. Individual Object View

3.2 Data Set View

While the Object View is intended to illustrate the domination relationships among three
objects, in the Data Set View, an entire data set can be visually analyzed and pruning
can be visualized for different types of queries. Again, different pruning criteria can be
compared using split screens. In particular, after loading a data set from a file, the user
has the following options:

– The user can chose the pruning technique. Note that the Trigonometric pruning
only works for BS approximations.

– The user can specify a query type, i.e., kNN or RkNN, and can set the parameter k.
– Finally, the user needs to pick a query object by clicking on an object in one of the

split screens. The query object is highlighted in red color.

For each pruning criterion, the software highlights the true hits in green, the pruned true
drops in blue. Objects that cannot be decided based on the approximations are colored
in orange. In addition, a quantitative summary of the results is given for each criterion
listing the number of true hits, true drops and candidate objects. Analogously to the
Individual Object View, objects can be re-sized and moved to evaluate the impact of
changes of the data objects on the pruning.
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Figure 3 displays a sample snapshot showing true hits, true drops, and candidates
computed by the Trigonometric pruning method for a R1NN query (query object in
red) on a data set of 50 objects approximated with BS. In this setting, we can obtain one
true hit (green), three undecidable objects (orange) and 46 pruned true drops (blue).

Fig. 3. Data Set View

4 Conclusions

In this demo, we enable visual comparison of different pruning techniques supporting
rectangular and spherical object approximations that can be in spatial similarity query
processing. The framework allows to use different Lp norms as basic distance mea-
sures and implements different types of query predicates. Finally, query parameters and
individual data objects can be adjusted. Thus, this demo supports the evaluation of ad-
vantages and limitations of different pruning strategies that are an important ingredient
in efficient processing of spatial similarity queries.
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Abstract. Current Geographic/Geospatial Information Systems (GIS)
and Data Mining Systems (DMS) so far are usually not designed to
interoperate. GIS research has a strong emphasis on information man-
agement and retrieval, whereas DMS usually have too little geographic
functionality to perform appropriate analysis. In this demonstration, we
introduce an integrated GIS-DMS system for performing advanced data
mining tasks such as outlier detection on geo-spatial data, but which also
allows the interaction with existing GIS and this way allows a thorough
evaluation of the results. The system enables convenient development of
new algorithms as well as application of existing data mining algorithms
to the spatial domain, bridging the gap between these two worlds.

1 Introduction

Geo Information Systems (GIS) are commonly associated with tasks such as
the fast retrieval of cartography data at varying resolutions as seen in popular
applications such as Google Maps and Google Earth. This poses a wide array of
challenges, ranging from multi-resolution indexing, handling of polygon and 3D
raster data types to fast route searching in dynamic traffic networks. However,
many of these problems can now efficiently be handled by a wide array of software
ranging from open source products such as PostGIS to commercial applications
such as Oracle Spatial. The role of these systems closely resembles that of a
traditional RDBMS system with strong query capabilities but few integrated
advanced analysis methods.

From the initial challenges of efficiently managing these data, recent research
often focuses on analyzing these data in detail, often in combination with non-
spatial information. While the current systems are powerful in managing large
route networks, they offer little assistance when analyzing geo-annotated infor-
mation often found in health, government and marketing situations beyond the
ability to select a subset of the data. Current systems are often specialized for
specific tasks such as pareto-optimal route search (e.g. [1]).

In spatial data mining, instead of partitioning the data according to some
more or less arbitrary geographical boundary – administrative zones and grid

D. Pfoser et al. (Eds.): SSTD 2011, LNCS 6849, pp. 512–516, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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partitions are very often used – the spatial and non-spatial attributes are pro-
cessed as two sides of the same coin. In the most basic view, objects that are
spatially close are expected to have similar values in the non-spatial attributes
as well. The spatial attributes are used to define a neighborhood an object can
be compared to without having to partition the data and potentially introducing
artefacts by this partitioning. Artefacts however are a major obstacle in many
data mining applications, in particular when working with real data.

For this demonstration, we will focus on the data mining discipline known as
outlier detection or anomaly detection which has seen an increasing interest over
several years [2,3,4,5,6,7,8]. As opposed to traditional outlier detection (which
can trivially be applied on the non-spatial attributes only of a data set), the
objects of interest for spatial outlier detection are those who deviate from a “local
trend” in the data, although they might be globally unremarkable. For example,
a temperature low of −10◦C might globally be common, for an outdoor sensor
near Los Angeles where temperatures barely drop to the freezing point it clearly
is an outlier. Our demonstration uses traditional GIS features to compute the
neighborhood sets for the database objects, then apply spatial outlier detection
methods to identify trends and unusual behavior. However we do not just apply
the algorithm in a standalone way, but we leverage a complete tool-chain starting
from data import, running multiple algorithms, evaluating and comparing the
results and inspecting the results in a traditional GIS front-end.

2 Workbench: System, Functionality, Work-Flow

The integrated GIS and Data-Mining system introduced here is written in Java
employing a modular architecture, to allow the easy extension with additional
modules. As it comes along with release 0.4 of ELKI1 [9,10,11], modularization
is not limited to algorithms: there are also modules for additional data types,
distance functions, neighborhoods, input parsing, index structures, evaluation,
visualization and output formats. A generic parametrization tool assists the user
in choosing and configuring the modules as needed. Figure 1 gives a schematic
overview of the information flow in the system.

2.1 Data – Typical Formats and Conversions

A classic but rather limited format for spatial data is the ESRI Shapefile format.
While this is sufficient for representing simple shapes such as the outline of a lake,
it does not store much more than 2D polygons. Another format in widespread
use is the Keyhole Markup Language (KML) used by Google Earth. However,
this format is designed with a strong focus on presentation. The most flexible
format, published by the Open Geospatial Consortium, is the Geography Markup
Language (GML). It still has a strong focus on “map features”, but also can store
observations and measurements. As of March 2011, this part of GML is still in
flux with a 2.0 standard nearby. As such, it is not yet in widespread use.
1 http://elki.dbs.ifi.lmu.de
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Fig. 1. System overview for the integrated GIS Data Mining system

In order to obtain a database with both spatial and non-spatial attributes
it will often be necessary to join multiple data sets. A very popular data set is
published by the U.S. Census Bureau and contains various demographic values
such as age, ethnicities, family and household sizes.2 The whole data set consists
of various Shapefiles that represent districts at varying resolution ranging from
state to city district levels and a large set of tables that contain the summarized
census results (“summary files”). These files can be joined using the FIPS codes
which serve as geographic object ID. Given the amount of attributes and redun-
dancy within attributes of the summary file, the analyst also needs to choose
the interesting attributes and only load these parts of the data set.

2.2 Spatial Outlier Detection Algorithms

The workbench includes many specialized spatial outlier algorithms, for example
SLOM [5,6], SOF [12], Trimmed-mean-approach [13], Random-Walk based Out-
lier Detection [7], and GLS-SOD along with its predecessors [2,3,4,8]. Addition-
ally, the system allows the application of some non-specialized outlier detection
methods such as LOF [14] (and many more) for comparison. This is particularly
useful for evaluation of the effects of the actual spatial locality of the results,
since global outliers will often also be local outliers. A fundamental motivation
for developing a framework integrating re-implementations of the algorithms of
different groups for a certain research topic (like spatial outlier detection) is to
aim at consolidation of a research area that has shown some steps of innovation
already but also is still ongoing. In an active research area, newly proposed al-
gorithms are often evaluated in a sloppy way taking into account only one or
two partners for comparison of efficiency and effectiveness, presumably because
for most algorithms no implementation is at hand. And if an implementation
is provided by the authors, a fair comparison is nonetheless all but impossi-
ble due to different performance properties of different programming languages,
2 Available at the United States Census Bureau. http://www.census.gov/
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(a) Google Earth showing KML file (b) Direct webbrowser interface
Background map data c©2011 Google, Europa Technologies, Geocentre Consulting, INEGI, Tele Atlas

Fig. 2. Visual analysis of detected outliers

frameworks, and, last but not least, implementation details. Eventually, an eval-
uation based on implementations of different authors is more likely to be a com-
parison of the efforts of different authors in efficient programming rather than
truly an evaluation of algorithmic merits. But also w.r.t. effectiveness, using an
integrated system allows the fair comparison of different algorithms within the
same context to eliminate effects that result for example from data normaliza-
tion, indexing and other implementation details.

2.3 Visualizations

Visualization components of the workbench include interfaces to KML (that can
for example be read by Google Earth or NASA World Wind) and a webbrowser
based application that uses map overlays and allows for greater interactivity
than it is currently possible with KML files. Examples are depicted in Figure 2.

3 Conclusion

The software described in this paper comes along with release 0.4 of ELKI
[9,10,11] as an application of the framework. Both ELKI and this application
can be downloaded at

http://elki.dbs.ifi.lmu.de

The framework ELKI itself provides much more possibilities as are used by
the application introduced here. The integrated nature of the ELKI workbench
allows for rapid development of new methods, since existing components can be
reused. The published source code of the methods ensures reproducible results.
In addition, it allows for fair comparison of existing and new methods that
eliminates bias introduced by implementation details.

http://elki.dbs.ifi.lmu.de
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