
Dataspaces: Where Structure
and Schema Meet

Maurizio Atzori� and Nicoletta Dess̀ı

Abstract. In this chapter we investigate the crucial problem that poses the
bases to the concept of dataspaces: the need for human interaction/inter-
vention in the process of organizing (getting the structure of) unstructured
data. We survey the existing techniques behind dataspaces to overcome that
need, exploring the structure of a dataspace along three dimensions: datas-
pace profiling, querying and searching and application domain. We will further
explore existing projects focusing on dataspaces, induction of data structure
from documents, and data models where data schema and documents struc-
ture overlaps will be reviewed, such as Apache Hadoop, Cassandra on Ama-
zon Dynamo, Google BigTable model and other DHT-based flexible data
structures, Google Fusion Tables, iMeMex, U-DID, WebTables and Yahoo!
SearchMonkey.

1 Introduction

Data integration has emerged over the last few years as a challenge to im-
proving search in vast collections of structured data that yield heterogeneity
at scale unseen before. Current information systems and IT infrastructures
are mainly based on the exchange of strongly-structured data and on well-
established standards (database, XML files and other known data formats).
Nevertheless, enterprise and personal data handled everyday are mostly un-
structured (estimates range from 80 to 95%), i.e., their contents do not follow
any rigid schema or format (e.g., text files or bitmap images), therefore not

Maurizio Atzori · Nicoletta Dess̀ı
University of Cagliari
e-mail: atzori@unica.it,dessi@unica.it

� The work of Dr. Atzori has been done within the project Unstructured Data
Integration for Dataspaces (U-DID) founded by “RAS PO Sardegna FSE 2007-
2013 L.R.7/2007”.

M. Biba and F. Xhafa (Eds.): Learning Structure and Schemas from Documents, SCI 375, pp. 97–119.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

atzori@unica.it, dessi@unica.it


98 M. Atzori and N. Dess̀ı

allowing complex queries or strong integration within automatic enterprise
business processes or workflows. Data in enterprise computer systems (email,
report, web pages, customers and supplier records) [1], in social networks [2]
and in personal computers (documents, images, videos, chats, short messages,
favourite web pages, appointments) [3] are often unused, or even forgotten,
because of the weak support this generation of IT infrastructures (mainly
based on databases management systems) offer for non-structured data.

Improving data integration in such heterogeneous information spaces leads
to a fundamental question: the presence of a plethora of structures limits or
makes too difficult the definition of some kind of global structure? In other
words, are traditional approaches for engineering data over selected resources
(i.e., mediator architectures and XML-based solutions) the only possible way
for data integration or can we extend the data structuring concepts to improve
data integration in such contexts?

The research community has recently proposed the concept of dataspace
[4, 5] as a new scenario for structuring information relevant to a particular
organization, regardless of its format and location, and capturing a rich col-
lection of relationships between them. The elements of a dataspace [5] are a
set of participants (i.e., individual data sources) and a set of relations denot-
ing the relation in which the participants are. In this sense, a dataspace is
an abstraction of databases that does not require data to be structured (i.e.,
in tabular form), with a minimal “off-the-shelf” set of search functions based
on keywords. The key idea is to enhance the quality of data integration and
the semantic meaning of information without an a priori schema for the data
sources [6, 7]. Advanced DBMS-like functions, queries and mappings are pro-
vided over time by different components, each defining relationships among
data when required. Integrated views over a set of data sources are provided
following the so-called pay-as-you-go principle (i.e., the more you give the
more you get, in an incremental and continuous fashion) that is currently
emerging on the Web [8, 9].

The dataspace concepts have been presented in a visionary way [10, 4, 5]
and their implementation on global scale opens new research challenges. From
the point of view of metadata, dataspaces may be seen as a generalization of
both DBMS and SE (search engines), where the schema of the former meets
the document structure of the latter. In fact, in the context of databases, a
schema is the set of metadata, relations and constraints regarding data. In
other words, it is everything that is stored but the data itself. In search en-
gines, the focus is instead on the documents, that are usually semi-structured
(XHML), with ranking algorithms exploiting metadata such as links, headers
and title. Despite this, the user cannot perform search using the structure
of the document; they are just a set of words. Dataspaces aim at having the
benefits of both DBMS and SE with minimal efforts for end users.

In this chapter we investigate the crucial problem that poses the bases to
the concept of dataspaces: the need for human interaction/intervention in
the process of organizing (getting the structure of) unstructured data. We



Dataspaces: Where Structureand Schema Meet 99

survey the existing techniques behind dataspaces to overcome that need, by
using algorithms for structure induction and flexible data models that take
into account the diversity among data sources (e.g., text documents, pictures,
tables) while leveraging all the knowledge about each document structure.

Our survey will explore the structure of a dataspace along three
dimensions:

Dataspace profiling. Analogous to databases profiling [11], this dimension
will analyze how recent proposals differ in defining the internal structure
(components and relationship) of a dataspace [12, 13].

Querying and searching. Querying and Searching represent one of the main
services supported by a dataspace [6, 7, 14]. Our review will investigate
how differences in dataspace profiling will affect the formulation of queries
on top of all participants in dataspaces.

Application domain. A dataspace defines a global “virtual location” con-
necting data from diverse application domains [4, 15]. This dimension will
explore the characteristics of the new types of functionalities the datas-
pace enables and the new possibilities it opens within domain-specific
applications.

Existing projects focusing on dataspaces, induction of data structure from
documents, and data models where data schema and documents structure
overlaps will be reviewed, such as Apache Hadoop [16, 17], Cassandra [18] on
Amazon Dynamo [19], Google BigTable model and other DHT-based flexible
data structures [20, 21], Google Fusion Tables [22], iMeMex [3, 23], U-DID,
WebTables [24] and Yahoo! SearchMonkey.

Chapter Organization. The chapter is organized as follows: in Section
2 an introduction to data structuring is given; Section 3 gives a review of
the approaches in data integration; Section 4 presents dataspaces, a new
concept born from the data integration community, further analyzed over
different dimensions in Section 5; finally, Section 6 describes existing and
ongoing projects in the field of massive structured data management with no
predetermined schema given.

2 Data Structuring

The definition of a data structure allows for organizing, storing querying data
in a software system so that it can be managed efficiently. Besides technical
aspects related with data to be stored, a data structure expresses an organi-
zation of logical concepts of data and its careful choice often allows the most
efficient algorithms to be used. As well, being some data structures highly spe-
cialized to well-defined tasks, the choice of a specific data structure depends
on the kind of application. For instance, hash tables are particularly suited
for compilers, while queries in very large databases are usually made more
effective by using B-trees. The implementation of a data structure usually



100 M. Atzori and N. Dess̀ı

requires a schema describing how the instances of that structure can be
stored, accessed and manipulated by applications. Thus a schema addresses
both technical features related with the management of data (i.e., field for-
mats and data types) and some aspects concerning the contents and the
meaning of the data, such as the cardinality integrity, the referential con-
straints, etc. In some sense we may argue that the schema itself is a structure
of metadata expressing semantic properties and exhibiting varying capabili-
ties and expressiveness in supporting declarative access to and manipulation
of data. This observation motivates the assertion that the efficiency of a
schema cannot be analyzed separately from the operations that may be per-
formed on its instances and the properties of those operations, including their
efficiency and their cost.

To investigate more comprehensively the effectiveness of a schema, let us
present the possible ways of structuring data and discuss the effectiveness
of the related managing procedure. Regarding their structure, data can be
classified into the following four groups.

Structured data is organized according to a schema in order to allow re-
trieval of data via a structured query language. The schema is defined in
terms of constructs of some data model, for example, the relational model
or the object oriented model. Data is formatted according to the schema
prior to populate the database. The very front end of structured data deals
with modifying the schema to make it more suitable as requirements for
new types of entities and relationships arise. For example, in business en-
vironment, changes to the existing schema are rare and avoided wherever
possible with new linked tables being created rather than exiting table
modified.

Unstructured data includes word processing documents, pictures, digital
audio and video, emails and PDF attachments, files and folders, PDFs as
blobs. The conventional hypertext-based Web provides the illusion that
the relationship between two linked documents is defined by some schema
when in fact it is implicitly expressed by typed links in HTML.

Semi-structured data is generally regarded as data that is self-describing,
i.e., the schema may not be known in advance but schema information may
accompany the data, e.g., in the form of XML tags or RDF statements.
In the context of the Semantic Web, researchers have recently sought to
provide facilities for semantic annotation which assigns to an annotation
a reference to a concept within an ontology rather then an entity type
[25]. As well, data stored in a text form is considered semi-structured data
in that it may contain a few structured fields (such as title, sections, au-
thors etc.) that, usually, are not filled in. Without knowing the document
content, it is difficult to formulate effective queries for analyzing and ex-
tracting useful information from data. Queries that contain keywords are
the simplest search method on the Web whose growth results in impressive
amounts of information potentially relevant to the user, but very disorga-
nized at the moment. Usually, query results contain a large amount of



Dataspaces: Where Structureand Schema Meet 101

redundant information and it is difficult to estimate relevant values from
whole content that grew exponentially with the growth of Internet. Pre-
cision and Recall [26] are two basic measures for assessing the quality of
query answers.

Partially structured data where information consists partly of some un-
structured data conforming to a schema and partly as free text [27]. It
is generally regarded as data that is self-describing: in semi-structured
data there is not a schema defined but the data itself contains some struc-
tural information, such as XML tags. In contrast, the text in partially
structured data has no structure, while other parts of the document may
be structured. Examples include accidents reports, a databases such as
SWISS-PROT [28] that includes comment fields containing unstructured
information related to structured data.

3 Data Integration: The Story so Far

The advent of the Web led to the participation of the users into the content
creation and application development process lowering the barrier to publish
and accessing information. Data and information management is becoming
increasingly complex as more computational resources are made available
and more data is produced as part of large scale collaborative activities. This
results in a rapid increasing of loosely structured heterogeneous collections of
data and documents coming from a variety of information sources, and leads
to two fundamental and related questions:

1. Can we define and/or discover latent structural characteristics and regu-
larities on data coming from a constantly growing number of heterogeneous
information sources?

2. How traditional techniques for information retrieval and data mining can
be adapted with uniform capabilities in order to be effective over this
web-scale heterogeneity?

The above questions have received considerable attention within the research
community. The resulting proposals provide various benefits and articulate
data integration according to the following approaches.

3.1 Schema Mapping

Schema mapping combines data residing in different sources under a single in-
tegrated global view that provides a uniform query interface by transforming
the original query into specialized queries over the respective data sources.
This means to construct data elements or a mediated schema between dif-
ferent data models to meet the requirements of end users. A well-defined
set of queries can be formulated, each one having a precise answer. Since
the source schemas are independently developed, they often have different



102 M. Atzori and N. Dess̀ı

structure and terminology. Thus, a first step in integrating the schemas is to
identify and characterize these inter-schema relationships. This is the schema
matching process. It is performed to find relationships between concepts in
each schema, i.e., finding the semantic correspondences between elements of
two schemas. The input information provides element names, data types, de-
scription, constraints and so on. The instance data is exploited to characterize
the content and semantics of schema elements. Then the matching elements
can be unified, resulting in a set of mapping items. Comprehensive surveys
of schema matching approaches are presented in [29, 30, 31].

Before any service or application can be provided, a mapping schema must
be defined, aware of the precise relationships between the terms used in each
schema or data source. Schema matching nowadays is performed manually
by domain experts. Obviously, it is a tedious, time consuming, error prone
and expensive process. In general, it is not possible to fully automatically
determine all correspondences between two schemas due to their semantic
heterogeneity. Moreover autonomous changes in the sources require to mod-
ify the matching schema. In recent years, significant progresses in srning,
database and data mining allow for partially automating schema matching.
However, this approach is poorly suited in application environments (such as
scientific communities, personal computing, virtual organizations, etc.) where
it is difficult to capture consensus on a single schema.

3.2 Keyword-Driven Queries

Data integration appears with increasing frequency in a variety of situations
and is critical when the volume and the need to share existing data tremen-
dously increase according to the Web’s unconstrained growth. It has been
pointed out [10] that “traditional data integration techniques are no longer
valid in the face of such heterogeneity and scale” and new proposal are needed.
Schema matching solution is less effective for Web search engines and for on-
the-fly data integration whose application scenario makes difficult and often
impossible to get the right mappings. In this case, it is rather preferable
an approach that does not require a matching process over the data source
and allows the user to pose keywords query or to define structural search
constraints. The query model is either based on keywords over all available
sources (bag-of-words query model) or on defining XPaths expressions over a
XML schema (XML query model). It is worth noting that the bag-of-words
query model does not perform any data integration while the choice of a
specific XML Schema can seriously impact the effectiveness of a query.

3.3 The Web of Data

Recent research aims to overcome some of the problems encountered in data
integration by addressing not the definition of the best integrating structure,



Dataspaces: Where Structureand Schema Meet 103

but instead the solution of semantic conflicts between heterogeneous data
sources. In semantic web settings, a popular strategy to solve this problem,
the approach involves the use of ontologies whose role is analogous to the
mapping schema. Ontologies express semantic relationships over data in or-
der to resolve semantic conflicts. As of 2006 the trend in semantic integration
has favored integrating independently-developed ontologies into a single on-
tology according to the vision of a Web of Data connecting data from diverse
domains with database-like functionality. The aim is replacing a global infor-
mation space of linked documents to one where both documents and data are
linked [32]. The following rules, also denoted as Linked Data principles [13],
provide directions for publishing and interlinking data on the Web in a way
that all published data become part of a single Web of Data:

1. Use the URIs as names for things
2. Use HTTP URIs so that people can look up those names
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL)
4. Include links to other URIs, so that they can discover more things.

Started in 2007 by the W3C Linking Open Data Community, the Web of
Linked Data is a public repository consisting of hundred of datasets published
by heterogeneous organizations (Universities, Companies, Governments) and
comprising data of diverse nature such as music, films, scientific publications,
genes, statistical data, television programs etc. The Linked Data approach
allows data to be easily discovered and used by various applications. Accord-
ing to a navigation-based query model, RDF links allow client applications
to navigate between data sources and to discover additional data. However
few mechanisms exist for discovering relevant sources and getting the data
automatically.

4 Dataspaces

By expressing a query to a web search engine users pursue a variety of
concerns. They interact opportunistically with the web environment, won-
dering what the components they encounter can contain and then exploring
the consequence of various possible browsing actions. They search for in-
formation they imagine might exist, no matter how it is structured. They
seek explanation for events and relationships they may note. Much of the
interaction with the web environment results in carrying on browsing activ-
ity on linked sites and searching by keywords. The problem with this kind
of approach is that it generates unmanageably huge datasets with no in-
ternal structure, no principle for integrating information since users cannot
query data using a structured query. A recent proposal within database com-
munity is called dataspaces [4, 5] that try to offer uniform access to het-
erogeneous data sources. The key idea of a dataspace is to offer best-effort
queries that return possibly related data. In contrast with the data integration



104 M. Atzori and N. Dess̀ı

approaches presented previously, a dataspace does not consider the existence
of a matching schema nor assumes that complete semantic mappings have
been specified. It raises the abstraction level at which data is managed in or-
der to manage all information relevant to a particular organization regardless
of its format and location, and relationships between them.

A dataspace consists of components (also called participants) and a set of
relationships among them. The participants are individual data sources such
as Relational Databases, XML schemas, unstructured or partially structured
information. Each participant knows the relationships to other participants
and their source, i.e., if the participant is added by a user or automati-
cally generated. As well, each participant contains information about the
kind of data it contains, the data allocation, the storage format and which
querying mechanisms are allowed. In detail, a dataspace considers two mod-
els of queries [6]: predicate queries and neighborhood queries. A predicate
query is formulated according to a simple structure and allow users to spec-
ify keyword-based query. An example of predicate query is as follows: “a
Professor named Smith, teaching Database course, at University X”.

A neighborhood query is also a keyword-based query, but it explores all
possible associations between data items. For example, a neighborhood query
searching for “Smith” will return all courses Smith teaches, all Smith pub-
lications, people working with Smith etc. Broadly speaking, data resides in
distributed systems, but there is not a single schema to which all the data
conform to.

A dataspace management system provides keyword search over all data
sources: when the user formulates a more sophisticated query, tighter inte-
grations are created only if their benefits balance the effort for their definition.
The core idea of a dataspace is to start just with a simple data structure to
formulate predicate queries over all its data source and to produce additional
effort to semantically integrate those resources only when it is absolutely
needed. This means that a dataspace addresses the data integration problem
in a pay-as-you-go fashion by postponing difficult and expensive aspects re-
lated to the schema matching process. The schema is defined incrementally
by discovering the latent structure of data. It is only available when the query
requires a structure to be expressed over heterogeneous datasets. Therefore
we believe dataspaces may be intended as an abstraction where schema meets
structure.

5 Dataspace Dimensions

As described in the previous section, the goal of a dataspace is to discover and
verify latent structural properties among its datasets in order to provide users
with a query interface. Indeed, a measure of how well structural properties
are defined is the extent to which the resulting user interface is effective in
querying the dataspace. A dataspace is neither a data integration system



Dataspaces: Where Structureand Schema Meet 105

nor a user interface. It merely provides the best effort to call attention to the
aspects of a query that may still require work for structuring data. There is no
guarantee that there will be a structured answer to the query but discovering
latent structural properties of data explicitly helps to get out the relevant
information.

Database dimensions are explored in [12] where the proposed framework
considers the life cycle of a dataspace as composed by a set of phases. Just like
any traditional data integration software, a dataspace is initialized, deployed,
maintained and updated. The paper details each phase with a view of eliciting
dimensions over which existing dataspace proposals have varied.

Here we propose a completely different approach that considers dataspaces
dimensions as defined by three fundamental concerns that can affect their ef-
fectiveness: dataspace profiling, querying and searching, application domain.

5.1 Dataspace Profiling

Similar to database profiling [11], dataspace profiling concerns with defin-
ing a set of components and relationships among them in order to offer a
rich and dynamic context for user queries. However, it differs from data in-
tegration approaches in taking the broader-scope perspective on user query
activity. There is not a mediated schema to which all the data conform to and
data is hosted in a plethora of systems. Conversely, a dataspace is a concrete
representation supporting the query processes a user might engage in while
pursuing a particular concern. As such, this representation is necessarily in-
complete and there is an infinity of possible representations that depend on
the relationships among components. The best effort in profiling a dataspace
aims at having a representation that provides good coverage of the possible
query activity. An approach to building a dataspace would start with a defi-
nition of the kinds of components in the system. The nature of relationships
between components is structural and sacrifices much of their semantics. Re-
lationships could be used to organize components, but also to generate other
components. Given a set of components S = (X, Y, Z), possible relationships
are as follows:

• X was manually created from Y and Z
• X and Z came from the same source at the same time
• X is a view or a replica of Y
• X and Y are created independently, but reflect the same physical system

The dataspace contains a detailed description of basic and semantic infor-
mation about the data in the components. Specific applications automatically
create relationships between the participants, and improve and maintain al-
ready existing relationships. Location and data mining techniques are used
to discover relationships, but human attention is required for creation of rela-
tionships. Often, additional data management features (backup, recovery, and
replication) are provided for components that have no or only limited data



106 M. Atzori and N. Dess̀ı

management functions. As well, cooperation among participants is enhanced
by special support such as translation tables for coded values, classification
and ratings of document, etc. Of course, relationships might fail in organiz-
ing even the majority of available components, but still it is useful both for
providing structural insight about components and for generating new com-
ponents. In terms of traditional database properties, a dataspace exhibits
often common form of inconstancy about data (where the values come from
and how they are created) that increases uncertainty. As stronger guarantees
are required, it is necessary to develop formalisms to represent and reason
about external lineage and promote agreements among the various owners
of data sources. Among a few papers featuring dataspace profiling we men-
tion [7] that underlines the importance of analyzing the structures and the
properties exposed by an information source and investigates techniques for
property and path analysis over a variety of data sources. Specifically, the pa-
per presents Quarry, a software environment to browse and refine harvested
metadata in scientific domains.

Originally conceived to provide browsing and querying services over a set
of triples, Quarry accepts resource-properties-value triples (initially provided
through scripts created by domain experts such as scientists) and automat-
ically recognizes signatures, i.e., common property patterns for resources.
Being each signature materialized in a multi-column table, a user can in-
spect a set of property-value conditions asserted on a collection of resources.
Inspection is supported by an API that returns a set of unique proper-
ties used to describe a restricted set of resources and/or a set of unique
values for a given property over a restricted set of resources. This allows
the set of resources to be described by a path expression where each node
of is a conjunctive query of propertyvalue pairs. From a merely technical
viewpoint, a path type is a simple sequence of property names such as
belongs_to.is_author_of.has_title. Profiling a dataspace means to ex-
plore the characteristics of these paths. While in a relational setting following
a path generally means to join relations, in a dataspace examining path char-
acteristics may mean, for instance, to explore whether instances of a specific
type exist for every entity in a collection of participants, to calculate how
many instances of a fixed type originate from participants, etc. Quarry fol-
lows a pay-as-you-go approach in discovering paths and aims at supporting
users who don’t have any technical knowledge about databases and, in gen-
eral, about how the data is stored or managed.

5.2 Querying and Searching

A dataspace aims at supporting incremental refinement of automatic map-
ping using information from different resources with minimal effort. From the
users perspective, the distinction between search and query disappears and
the user should be able to iteratively refine and modify the previous query



Dataspaces: Where Structureand Schema Meet 107

as well to formulate queries about the source of data that can be itself a
new answer other than traditional answers. The focus is on finding meth-
ods to interpret queries in various languages on participants that support
multiple data models and/or unstructured and heterogeneous. Due to data
inconstancy, metrics must be defined for comparing the quality of answers
and the efficiency of query processing techniques. To correct errors, results
should be inspected by humans, but it is impossible at web scale. Hence, it is
necessary to provide feedback from user on the quality of results. Popular ap-
proaches to get implicit feedback are to record which of the answers the user
clicks on, to supply sample answer that would meet user needs, to observe
which sources are viewed in the same session, etc. Proposed methods aim at
managing the transitions among keyword querying, browsing and structured
querying.

Following an information retrieval-based approach, [6] considers indexing
support for predicate and neighborhood queries on heterogeneous data that
are not semantically integrated. The basic idea is to build an index whose
leaves are references to data items in the individual sources. Data is modelled
by a set of triples either of the form (instance, attribute, value) or of the
form (instance, association, instance). An instance is described by a set of
attributes and linked to another instance by associations. Both instance and
associations are extracted out of the data sources using a variety of methods.
A query is formulated as a predicate that contains an attribute and some
keywords [k1, k2, . . . , kn]. It is supported by an inverted list stored in a matrix
where the cell at the i-th row and the j-th column memorizes the occurrence
of the keyword ki in the instance j. Synonyms and hierarchies are used to
accommodate heterogeneity.

A pay-as-you-go method is proposed in [23]. Data is represented using a
graph model and a technique is proposed to gradually model relationships in a
dataspace through trails that include traditional semantic attribute mapping
as well as traditional keyword expansions as special cases. A trail asserts
a (bidirectional) correspondence between two keywords k1 and k2 meaning
that the query Q1 (k1) induces the query Q2 (k2), and vice versa. By mean of
trails, it is possible to define equivalences between any two sets of elements in
the dataspace. A query is modeled by a graph and the query process consists
of three major phases. First, matching detects whether a trail should be
applied to a given query by checking the query with the left side of the itrail.
Then, the right side of the trail is used to transform the original query graph.
Finally, the transformed query is merged with the information provided by
itrail definition to obtain a new query that extend the semantic of the original
one.

Leveraging ideas from keywords search in a databases, work in [33] pro-
poses a method for automatic adding new data sources and relating them
to the existing ones. Given a set of databases that contain known cross-
references, the user specifies a keyword-based query that is dynamically
expanded into a query graph by a system, called Q. From each graph,



108 M. Atzori and N. Dess̀ı

Q generates a conjunctive SQL query and associates a cost expression. Fi-
nally, Q provides a ranked view consisting of a union of conjunctive queries
over different combination of the sources. This view is materialized and re-
fined through user feedback. When the user registers a new source, i.e., a
new database, the new source relevance is evaluated to the existing ranked
views that are updated as appropriate if the relevance is found to be signifi-
cant. The paper incorporates state-of-the-art methods from database [34] and
machine learning literature [35] not only to automatically discover semantic
links among data sources, but also to combine information resulting from
multiple matching methods. Through experiments on actual bioinformatics
schemas, authors demonstrate that their strategy is an effective step towards
the ultimate goal of automating data integration. However, the considera-
tion of heterogeneous and unstructured dataset, including Web sources, is an
ongoing work.

5.3 Application Domain

One challenge of Web-based environments is to move from the idea of a local
site towards networked collaborative environments that are requested to pro-
vide access to a variety of information and data sources. These environments
are constantly in evolution and keep on increasing the aggregation and shar-
ing of heterogeneous and geographically dispersed resources via temporary
collaboration. In practice, this means that data sources are more or less in-
visible to the users whose search and query processes do not occur at a single
location in a single context, but rather spans a multitude of situations and
locations covering a significant number of heterogeneous data sources. Often,
results are composed of parts that may themselves be data sources and no
limit exists in this deep structure. For these reasons, dataspaces encompass
more than just an integration data approach aiming to be an highly versatile
and dynamic paradigm for integrating data on-demand. There are a num-
ber of domains where they can be defined to promote and mediate people’s
interactions with computers and other peoples. A basic step is to recognize
that queries cluster around pervasive user search. Because users are allowed
to influence the behavior of a dataspace by customizing their usage on his
preferences, a dataspace implementation has to consider the context in which
user operates. This context can spawn a staggering number of aspects, but
the dataspace could restrict attention to those concerns that can be classified
at similar level of abstraction. Often these concerns involve datasets whose
heterogeneity is not perceived by the user who is, in turn, overwhelmed by the
similarities of information. Structural differences akin to the various ways of
performing a musical piece: people perceives the leitmotif but often would be
enabled to appreciate technical differences in various executions. As such, we
believe that the principles enabling a dataspace for a research environment
[36] can substantially differ from those supporting access and manipulation



Dataspaces: Where Structureand Schema Meet 109

of all of the information on a person’s desktop with possible extension to
personal information on the Web. To explain these differences next section
presents a survey on existing projects in different domains.

6 A Roundup of Existing Projects on Managing
Structured Data

In this section we analyze existing and ongoing projects and proposals focus-
ing on dataspace-like approaches to data management or correlated topics
such as induction of data structure from documents and data models mixing
schema and document structure. When observing data management systems
from a higher point of view than enterprise DBMSs, structured storage is
the term generally used in literature [37, 18] referring to a large set of data
management systems of which standard DBMSs are just a subset. Struc-
tured storage generalize DBMSs by not requiring fixed schemas and usually
making distributed storage as a built-in feature in order to manage massive
datasets transparently to the client. If we think of data handled as tables,
structured storage data tend to grow horizontally by having weak constraints
on the structure (columns) of the tuples. Apache Cassandra [18] (backed by
Amazon Dynamo [38]), Google’s BigTable [20, 21] and Apache HBase [17]
are considered the most significant examples of structured storage, currently
used in production environments from major web players. In the following we
summarize the main aspects of each project, with a focus on the data model
adopted to store or represent data and the query interface made available to
users.

6.1 Google BigTable

BigTable [20, 21] is a data model and a structured storage system proposed by
Google. It is built on top of Google File System (GFS for short) and Google
Chubby locking service [39]. GFS [40] is a proprietary file system developed
and used internally by Google to save data in commodity, cheap, with high
failure-rate expected commodity servers. Data is usually appended to existing
files, overwrites are rare. GFS is therefore distributed and like DBMSs it
operates in the userspace (not being part of the underlying operating system
kernel).

As in the Google paper of 2006 [21], BigTable is currently used by over
60 Google’s products, including MapReduce, Google Reader, Google Maps,
Google Book Search, “My Search History”, Google Earth, Blogger.com,
Google Code hosting service, Orkut, YouTube1, and Gmail. According to
the authors of the paper, it has been developed to enhance scalability, and
better control performance characteristics, but in the conclusions they also
1 Excluding the video storage.



110 M. Atzori and N. Dess̀ı

state they “have gotten a substantial amount of flexibility from designing
our own data model for BigTable”. From the data model point of view, the
main characteristic of this very influential work is that, despite standard
relational databases, tables have not a fixed number of columns. They are
sparse, distributed multi-dimensional sorted maps, sharing characteristics of
both row-oriented and column-oriented databases. Thus, the data model be-
hind BigTable can be summarized by the following function:

(row : string, column : string, time : int64) → string

Collisions are not allowed (the corresponding item would be overwritten),
and avoided by the model since the time key always change over time. The
Application programming interface (API) offered to client applications is sim-
ple, while allowing very flexibility and full configurability. Rows are indexed
by the row key, and are kept sorted by this key. Columns are also indexed,
and kept grouped in a few families configurable in terms of access control,
enabling compression, disk or memory storage, and data retention delays.

The usual operations performed against a BigTable are get and put to
get/write an item with a specific key and scan to iterate over the items. Of-
ten the concept of BigTable is associated with a Google-patented approach to
data analysis, called MapReduce [41, 42, 43]. Instead of accessing BigTable
data with the basic API (get, put, scan), users exploit the functional pro-
gramming approach of MapReduce, that forces the development of Divide-
and-Conquer algorithms, therefore natively writing parallelizable data access.

After the publication of the paper, there has been a large number of at-
tempts to implement the proprietary Google BigTable model, such as Hyper-
Table, Open Neptune2 and most notably the open source Apache’s Cassandra
and HBase (on top the Hadoop Core [16]), reviewed later in this section. Most
of the code base of the Apache projects at hand has been donated and fre-
quently contributed by web players like Facebook and Yahoo!, as described
later on this section.

6.2 Apache Cassandra

Apache Cassandra is something similar to BigTable, initially developed and
used by the Facebook team, and currently considered by the Apache Founda-
tion a sort of open source implementation of the BigTable data model on top
of a storage system similar to the DHT-featuring proprietary solution Ama-
zon Dynamo [38]. A table in Cassandra is a distributed multidimensional map
indexed by a key. The value is an object which is highly structured. Transac-
tions are per-row, no matter the number of columns involved. Columns are
grouped together into sets called column families, allowing personalization
of column groups containing similar columns, as it happens in the BigTable
2 See http://openneptune.com/

http://openneptune.com/


Dataspaces: Where Structureand Schema Meet 111

system. Cassandra also supports the use of multiple tables, although deploy-
ments often do not require this feature, expoiting instead the schema-free
model of just one big table.

6.3 Apache Hadoop

Contributed by Yahoo! and used within their products, Hadoop is a Java
framework on top of a number of supported file systems (including ad-hoc
Hadoop File System, HDFS). As of 2008, Yahoo! Search Webmap was consid-
ered the largest in-production application featured by the Hadoop framework,
with around 10K cores (approx 4K machines, also called nodes) powered
by Linux. Facebook recently stated a 20 Petabyte Hadoop deployment for
data warehouse of logs, being the largest known structured storage systems.
Hadoop common framework exposes to clients a way to compute in parallel
analysis over distributed data, in a MapReduce fashion [41, 42, 43] allow-
ing, for instance, 1 terabyte of data sorted in order of 1 minute, assuming
a reasonable amount of available nodes. Hadoop is an umbrella project for
a number of subprojects; usually with the basic term of Hadoop it is meant
the use of a framework to handle HDFS together to a job launcher/scheduler
for MapReduce scripts. It is often distributed with some important subpro-
jects, such as HBase, Hive, Pig and others. Interestingly, Hadoop has large
support from open source community and big web companies, with further
external projects such as Ganglia to monitor distributed Hadoop instances,
and Mahout as a scalable machine learning library backed by Hadoop.

6.3.1 HBase

It is the component of Hadoop that, on top of HDFS, allows the BigTable data
model in the Apache framework, with random read/write of the multidimen-
sional associative array, leading to a column-oriented database management
system [44, 17]. Efficient random access is not inherited by HDFS, but in-
stead developed with appended-only log files, only occasionally merged with
the remaining datafiles.

6.3.2 Hive

Hive [45, 46] is an extension of the Hadoop framework initially developed a
few years ago by a Facebook team to data warehousing in a very scalable
fashion, where a bunch of Mysql servers were failing in handling responsively
lots of terabyte, with an average of 5Tb of data added every day. Hive adds
to Hadoop the power of HQL, an SQL-like query language with a few exten-
sion w.r.t. Standard SQL. From a data model point of view it is interesting
to note it handles sequences of data natively, by using commands Expand and
Collapse. The former transforms the content of a column (actually a cell)



112 M. Atzori and N. Dess̀ı

into a sequence (i.e., another row with multiple columns), while the latter
is the reverse operation, able to transform a multi-column row into a single
value. The system also provides the command Transform to run MapReduce
scripts within HQL.

As in standard SQL, the Hive data model consists of standard tables (i.e.,
typed columns, plus sequences and maps), and partitions (e.g., to partition
tables by date) which are backed by directories in the HDFS subsystem.
Bucketing can be applied to partitions (hash partitions within ranges, for
sampling, optimizing hash joins, etc.). Regarding the implementation, tables
and all the data of Hive are files in the HDFS (where directories determine the
partitioning of tables), and the format of such files are arbitrary (e.g., comma
separated, XML, YAML, JSON or any other chosen by the user). Sort of java
“drivers” (usually very simple scripts, java classes called SerDe classes) must
be provided in order to parse such unknown format files transforming them
into Hive tables, although such parsers are already provided for most used
formats. Another important component of the architecture is the Metastore,
a component backed by any SQL-based management system as long as it
provides a JDBC wrapper, such as MySQL or most notably Java Derby.
Metastore is in charge of managing metadata, meaning for instance what
in Oracle is contained in tables like ALL_TAB_COLUMNS; in the same way,
Metastore saves metadata such as type of columns and any other information
about the data which is not the data itself.

6.4 Apache CouchDB

Apache CouchDB is a document-based storage system characterized by its
schema-free design, with a flat address space [47]. Documents can be consid-
ered semi-structured objects, essentially associative arrays where values can
be either strings, dates, or even structured data like ordered lists or maps.
The low level infrastructure allows data to be distributed among a number
of server, with incremental replication and automatic bi-directional conflict
detection between servers and user clients (in case of network failures or of-
fline nodes). A free and commercial zero-configuration versions are currently
supported by Cloudant [48].

6.5 DHT-Based Data Management Systems

The term Distributed Hash Table (DHT) is usually referred to systems able
to handle very large hash tables over a medium-to-large set of nodes (ma-
chines). It is usually the ground level to construct higher level of abstraction
on top of. One of the critical aspects of a DHT-based system is the rout-
ing protocol, that is, how to distribute (keys) over the network of nodes
and how to search/recover them. Figure 1 shows a possible architecture fea-
turing multi-level routing. Depending on the applications, needs of security



Dataspaces: Where Structureand Schema Meet 113

Fig. 1 An example of distributed architecture with clients (e.g., web browsers)
facing front-end nodes, multi-level routing nodes and cloud-based storage servers
(e.g., Amazon Dynamo instances and others)

(untrusted nodes, no single point of failure) or high availability (redundancy,
decentralization), DHT systems can be much more complicated than a basic
distributed hash table structure. They are currently used in several projects,
including the projects presented so far and most peer-to-peer projects such
as BitTorrent, eMule and Freenet [49]. From the data model point of view,
at the lowest level they basically represent and implement associative arrays.
Partitioning, replication, versioning, failure management and low latency vs.
high throughput are the key aspects to be considered for each DHT-Based
Data Management System [50].

6.6 Google Fusion Tables

Fusion Tables [22] is a web-based application featured by Google that allows
table data to be uploaded into Google servers and then shared, queried in
a structured way (including joins with other table sources) or used within
other web applications. For example, supposing each row of a table contains
latitude-longitude pairs, they can be showed through the Google Map service.
This kind of data visualization and integration of structured data are easy
to obtain given the tight collaboration among different Google applications.



114 M. Atzori and N. Dess̀ı

It is an interesting proposal on a possible UI for data, although being most
data in form of tables, it reduces the range of applications to structured-only
data and appears similar to spreadsheets (with no computed values).

6.7 WebTables

Webtables is a shortcut for Tables in the Web. According to [24], almost 15
billion tables have been crawled by Google, many of them used for web site
layout, but still a subset of 154M tables found by the authors as contain-
ing high-quality relational data. One of the contribution of the paper is that
web-scale analysis of tables allowed the definition of an attribute correlation
statistics database (called AcsDB) containing statistics about correlated at-
tributes in the tables, useful in a number of contexts, including “semantic
analysis” of table contents such as finding attribute synonyms and automatic
join traversal of the tables.

6.8 Yahoo! SearchMonkey

Yahoo! SearchMonkey (SM) is a framework in charge of transforming the
way search results are displayed. It is an interesting way to show how exter-
nal structured data can be integrated to personalize web search results. In
fact users like web site owners should share structured data (they may be in
microformats3, XML feeds, semantic web RDF or links to other structured
data), then create a SearchMonkey application that handles the provided
structured data to show a personalized search results. For instance, when
someone queries Yahoo! for “best pizza in NY”, if the search results include
the web page personalized with SM, then that single result will appear differ-
ently, depending on the SM application behaviour (e.g., with review stars, a
picture, a menu of site contents, etc.). In order to personalize “snipets” results
we will use Yahoo! and user provided data input sources. Interestingly, data
are structured into trees, where each data input is the root of a tree contain-
ing different type of information. For instance, trees are labeled yahoo:index
or com.yahoo.uf.hcard, while nodes like yahoo:index/dc:language or
com.yahoo.uf.hcard/rel:Card/vcard:fn respectively contain the language
of the url at hand (e.g., “en”) and the author of the page at that url (e.g.,
“Sam”). Recently Yahoo! marked this service as deprecated [51], and going
to shift from a model where developers build lightweight apps to install on
Yahoo! to one where publishers enhance their own site markup to produce
similar results.
3 For further information on microformats, see http://www.microformats.org/

http://www.microformats.org/


Dataspaces: Where Structureand Schema Meet 115

6.9 iMeMex

iMeMex is the first attempt to develop an opensource dataspace for personal
information management (PIM), run at ETH Zurich by a team leaded by
Dr. Jens-Peter Dittrich. It follows the dataspace ideas in [4, 5], enabling
the loose integration of different data sources (primarily files of any kind,
emails, documents) through the use of user-defined views that give structure
interpretation of the data belonging to each source. The iMeMex data model
(called iDM) [3] is essentially a tree-based structure (with each node being
any kind of object, e.g., a directory, a PDF file, a subsection of a LATEX file),
with links among nodes, leading therefore to a graph.

Despite the fact that different sources can be distributed over a network,
the core architecture of the iMeMex system is essentially focused on a main
centralized index (customizable and enhanced by the Apache Lucene full-
text search engine), containing the information to answer user queries or to
locate the required resource over the different data sources. This fact makes
iMeMex less scalable w.r.t. projects described so far, but also more flexible
on the structure and storage of data. It also has a rule-based query processor
that is able to operate in three different querying modes: warehousing (only
local indexes and replicas are queried), mediation (local indexes are ignored,
queries are shipped to the data sources), and hybrid (combination of the
former methods). Pay-as-you-go query rewriting techniques such as iTrails
[23] (we described them in Section 5.2) are currently under development.

7 Conclusions and Future Work

In this Chapter we discussed the problems arising when large data with di-
verse structures need to be stored, managed, queried and integrated to im-
prove user utility. Dataspaces are a promising framework to manage all kind
of data in a uniform way, based on a simple data structure to formulate
predicate queries over all its data source and to produce additional effort to
semantically integrate those resources only when needed. The schema in the
data is defined incrementally by providing the latent structure of data, thus
letting the schema meet the structure. We reviewed the state of the art of
both research results and commercial/opensource projects in the area.

Although very advanced, we believe these systems are still lacking of auto-
matic algorithms to exploit unstructured data in order to learn their hidden
structure. In fact, as we noted in the previous sections, most of the existing
proposals are based on a pay-as-you-go user intervention, allowing keyword-
only search over the data unless structure is explicitly given by the user. In
an attempt to further analyze these aspects, Unstructured Data Integration
for Dataspaces (U-DID for short), a recent ongoing project carried out by
the authors of this chapter at the University of Cagliari, aims to investigate
the topic of dataspaces as a possible kernel for data management in next-



116 M. Atzori and N. Dess̀ı

generation infrastructures. The project activities are focusing on defining a
common model for managed data, uniforming the heterogeneity of data but
meanwhile being able to represent the characteristics of each data type. The
use of data wrappers, i.e., middleware algorithms able to convert “sequence of
bytes” to structured data, either centralized (within a data management sys-
tem) or distributed, will be fundamental for investigating the various possible
dataspace architectures.

This important step involves the study of algorithms that extract a set of
structured and integrable data (through metadata) out of input sequences
with no previously-established format. Such algorithms can be divided into
two groups: fully unsupervised, i.e., able to automatically compute the output
without human intervention, and semi-supervised, i.e., taking into account
online information (interactively provided) or offline information (datasets
the algorithm will use to learn how to structure data). As we said, this kind
of structure learning algorithms have not been investigated enough in litera-
ture and the project is therefore committed to contribute to this lack in the
dataspace community.

Another approach under consideration is about the use of data mining
techniques, well-studied for model extraction in the context of structured
data. Clustering and association rules for structure extraction are definitely
innovative, and seem to be promising, though they will require heavy adap-
tation of current algorithms.

References

1. Gounbark, L., Benhlima, L., Chiadmi, D.: Data integration system: toward a
prototype. In: ACS/IEEE International Conference on Computer Systems and
Applications, pp. 33–36 (2009)

2. Gatterbauer, W., Suciu, D.: Managing structured collections of community
data. In: CIDR 2011, Fifth Biennial Conference on Innovative Data Systems
Research, Online Proceedings, Asilomar (January 2011)

3. Dittrich, J.-P., Salles, M.A.V.: idm: A unified and versatile data model for
personal dataspace management. In: Dayal, et al [52], pp. 367–378

4. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Record 34(4), 27–33 (2005)

5. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of dataspace systems. In:
Vansummeren, S. (ed.) PODS, pp. 1–9. ACM, New York (2006)

6. Dong, X., Halevy, A.Y.: Indexing dataspaces. In: Chan, C.Y., Ooi, B.C., Zhou,
A. (eds.) SIGMOD Conference, pp. 43–54. ACM, New York (2007)

7. Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying dataspaces: Schemaless
profiling of unfamiliar information sources. In: ICDEW 2008: Proceedings of
the 2008 IEEE 24th International Conference on Data Engineering Workshop,
pp. 270–277. IEEE Computer Society Press, Washington, DC, USA (2008)

8. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for
dataspace systems. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, pp. 847–860. ACM, New
York (2008)



Dataspaces: Where Structureand Schema Meet 117

9. Hedeler, C., et al.: Pay-as-you-go mapping selection in dataspaces. In: Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2011. ACM Press, New York (to appear 2011)

10. Madhavan, J., Halevy, A.Y., Cohen, S., Dong, X.L., Jeffery, S.R., Ko, D.,
Yu, C.: Structured data meets the web: A few observations. IEEE Data Eng.
Bull. 29(4), 19–26 (2006)

11. Marshall, B.: Data quality and data profiling - a glossary (2007),
http://www.w3.org/DesignIssues/LinkedData.html

12. Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.:
Dimensions of dataspaces. In: Sexton, A.P. (ed.) BNCOD 26. LNCS, vol. 5588,
pp. 55–66. Springer, Heidelberg (2009)

13. Lee, B.: Linked data - design issues (2006),
http:/www.w3.org/DesignIssues/LinkedData.html

14. Liu, J., Dong, X., Halevy, A.Y.: Answering structured queries on unstructured
data. In: WebDB (2006)

15. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years.
In: Dayal, et al [52], pp. 9–16

16. White, T.: Hadoop: The Definitive Guide, 1st edn. O’Reilly Media, Sebastopol
(2009)

17. Apache Foundation Software. Apache hbase, subproject of hadoop (2006),
http://hbase.apache.org/#Overview

18. Lakshman, A., Malik, P.: Cassandra: a structured storage system on a p2p
network. In: auf der Heide, F.M., Bender, M.A. (eds.) SPAA, p. 47. ACM, New
York (2009)

19. Decandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,
Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: ama-
zon’s highly available key-value store. SIGOPS Oper. Syst. Rev. 41(6), 205–220
(2007)

20. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system
for structured data. ACM Trans. Comput. Syst. 26(2) (2008)

21. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.: Bigtable: A distributed storage system for
structured data (best paper award). In: OSDI [53], pp. 205–218

22. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley,
R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data
management and collaboration. In: Elmagarmid, Agrawal [54], pp. 1061–1066

23. Salles, M.A.V., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi,
L.: itrails: Pay-as-you-go information integration in dataspaces. In: Koch, C.,
Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Flo-
rescu, D., Chan, C.Y., Ganti, V., Kanne, C.-C., Klas, W., Neuhold, E.J. (eds.)
VLDB, pp. 663–674. ACM, New York (2007)

24. Cafarella, M.J., Halevy, A.Y., Wang, D.Z., Wu, E., Zhang, Y.: Webtables: ex-
ploring the power of tables on the web. PVLDB 1(1), 538–549 (2008)

25. Uren, V.S., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: Requirements
and a survey of the state of the art. J. Web Sem. 4(1), 14–28 (2006)

26. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Reading (2005)

http://www.w3.org/DesignIssues/LinkedData.html
http:/www.w3.org/DesignIssues/LinkedData.html
http://hbase.apache.org/#Overview


118 M. Atzori and N. Dess̀ı

27. King, P.J.H., Poulovassilis, A.: Enhancing database technology to better man-
age and exploit partially structured data. Technical report bbkcs-00-14, Birk-
beck University of London (2000),
http://www.dcs.bbk.ac.uk/research/techreps/2000/bbkcs-00-14.pdf

28. Bairoch, A., Boeckmann, B., Ferro, S., Gasteiger, E.: Swiss-prot: Juggling be-
tween evolution and stability. Briefings in Bioinformatics 5(1), 39–58 (2004)

29. Doan, A., Halevy, A.Y.: Semantic-integration research in the database commu-
nity. AI Mag. 26, 83–94 (2005)

30. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.
Eng. Rev. 18, 1–31 (2003)

31. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD
Rec. 35, 34–41 (2006)

32. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.
Semantic Web Inf. Syst. 5(3), 1–22 (2009)

33. Talukdar, P.P., Ives, Z.G., Pereira, F.: Automatically incorporating new sources
in keyword search-based data integration. In: Elmagarmid, Agrawal [54], pp.
387–398

34. Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Inf.
Syst. 32(6), 857–885 (2007)

35. Talukdar, P.P., Reisinger, J., Pasca, M., Ravichandran, D., Bhagat, R., Pereira,
F.: Weakly-supervised acquisition of labeled class instances using graph random
walks. In: EMNLP, pp. 582–590. ACL (2008)

36. Dess̀ı, N., Pes, B.: Towards scientific dataspaces. In: Web Intelligence, IAT
Workshops, pp. 575–578. IEEE, Los Alamitos (2009)

37. Hamilton, J.: Perspectives: One size does not fit all (2009),
http://perspectives.mvdirona.com/

CommentViewguidafe46691-a293-4f9a-8900-5688a597726a.aspx
38. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A.,

Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s
highly available key-value store. In: Bressoud, T.C., Frans Kaashoek, M. (eds.)
SOSP, pp. 205–220. ACM, New York (2007)

39. Burrows, M.: The chubby lock service for loosely-coupled distributed systems.
In: OSDI [53], pp. 335–350

40. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Scott,
M.L., Peterson, L.L. (eds.) SOSP, pp. 29–43. ACM, New York (2003)

41. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clus-
ters. In: OSDI 2004, pp. 137–150 (2004)

42. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing tool. Commun.
ACM 53(1), 72–77 (2010)

43. Dean, J.: Experiences with mapreduce, an abstraction for large-scale compu-
tation. In: PACT 2006: Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques, p. 1. ACM Press, New York
(2006)

44. George, L.: Hbase architecture (2009),
http://www.larsgeorge.com/2009/10/

hbase-architecture-101-storage.html
45. Apache Foundation Software. Apache hive, data warehouse infrastructure built

on top of apache hadoop (2010), http://hive.apache.org/
46. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu,

H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce
framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)

http://www.dcs.bbk.ac.uk/research/techreps/2000/bbkcs-00-14.pdf
http://perspectives.mvdirona.com/CommentViewguidafe46691-a293-4f9a-8900-5688a597726a.aspx 
http://perspectives.mvdirona.com/CommentViewguidafe46691-a293-4f9a-8900-5688a597726a.aspx
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://hive.apache.org/


Dataspaces: Where Structureand Schema Meet 119

47. Apache Foundation Software. The couchdb project (2008),
http://couchdb.apache.org/

48. Cloudant.com. Cloudant bigcouch (2008), https://cloudant.com/
49. Evans, N.S., GauthierDickey, C., Grothoff, C.: Routing in the dark: Pitch black.

In: ACSAC, pp. 305–314. IEEE Computer Society, Los Alamitos (2007)
50. Balakrishnan, H., Frans Kaashoek, M., Karger, D., Morris, R., Stoica, I.: Look-

ing up data in p2p systems. Commun. ACM 46, 43–48 (2003)
51. Yahoo! Searchmonkey (2011), http://developer.yahoo.com/searchmonkey/
52. Dayal, U., Whang, K.-Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten,

M.L., Cha, S.K., Kim, Y.-K. (eds.): Proceedings of the 32nd International Con-
ference on Very Large Data Bases, Seoul, Korea, September 12-15. ACM, New
York (2006)

53. Symposium on Operating Systems Design and Implementation (OSDI 2006),
November 6-8. USENIX Association, Seattle (2006)

54. Elmagarmid, A.K., Agrawal, D. (eds.): Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2010, June 6-10.
ACM, USA (2010)

http://couchdb.apache.org/
https://cloudant.com/
http://developer.yahoo.com/searchmonkey/

	Dataspaces: Where Structure and Schema Meet
	Introduction
	Data Structuring
	Data Integration: The Story so Far
	Schema Mapping
	Keyword-Driven Queries
	The Web of Data

	Dataspaces
	Dataspace Dimensions
	Dataspace Profiling
	Querying and Searching
	Application Domain

	A Roundup of Existing Projects on Managing Structured Data
	Google BigTable
	Apache Cassandra
	Apache Hadoop
	Apache CouchDB
	DHT-Based Data Management Systems
	Google Fusion Tables
	WebTables
	Yahoo! SearchMonkey
	iMeMex

	Conclusions and Future Work
	References




