
Automatic Document Layout Analysis through
Relational Machine Learning

Stefano Ferilli, Teresa M.A. Basile, Nicola Di Mauro, and Floriana Esposito

Abstract. The current spread of digital documents raised the need of effective
content-based retrieval techniques. Since manual indexing is infeasible and sub-
jective, automatic techniques are the obvious solution. In particular, the ability of
properly identifying and understanding a document’s structure is crucial, in order
to focus on the most significant components only. At a geometrical level, this task
is known as Layout Analysis, and thoroughly studied in the literature. On suitable
descriptions of the document layout, Machine Learning techniques can be applied
to automatically infer models of classes of documents and of their components. In-
deed, organizing the documents on the grounds of the knowledge they contain is
fundamental for being able to correctly access them according to the user’s needs.

Thus, the quality of the layout analysis outcome biases the next understanding
steps. Unfortunately, due to the variety of document styles and formats, the auto-
matically found structure often needs to be manually adjusted. We propose the ap-
plication of supervised Machine Learning techniques to infer correction rules to be
applied to forthcoming documents. A first-order logic representation is suggested,
because corrections often depend on the relationships of the wrong components with
the surrounding ones. Moreover, as a consequence of the continuous flow of doc-
uments, the learned models often need to be updated and refined, which calls for
incremental abilities. The proposed technique, embedded in a prototypical version
of the document processing system DOMINUS, using the incremental first-order
logic learner INTHELEX, revealed good performance in real-world experiments.

Stefano Ferilli · Teresa M.A. Basile · Nicola Di Mauro · Floriana Esposito
Dipartimento di Informatica – University of Bari (Italy)
e-mail: {ferilli,basile,ndm,esposito}@di.uniba.it

M. Biba and F. Xhafa (Eds.): Learning Structure and Schemas from Documents, SCI 375, pp. 73–96.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{ferilli,basile,ndm,esposito}@di.uniba.it

74 S. Ferilli et al.

1 Introduction

The current spread of documents available in digital format raised the need of effec-
tive retrieval techniques based on their content. Since manual indexing is infeasible
due to the amount of documents to be handled and to the subjectivity of experts’
judgements, automatic techniques are the obvious solution. In particular, a key fac-
tor for such techniques to be successful is represented by the ability of properly
identifying and understanding the structure of documents, in order to focus on the
most significant components only. The task aimed at identifying the geometrical
structure of a document is known as Layout Analysis, and represents a wide area of
research in document processing, for which several solutions have been proposed
in the literature. However, they are mostly based on statistical and numerical ap-
proaches that may fail in classification and learning, being not able to deal with the
lack of a strict layout regularity in the variety of documents available. On the other
hand, on suitable descriptions of the document layout, Machine Learning techniques
can be applied to automatically infer models of classes of documents and of their
components. Indeed, organizing the documents on the grounds of the knowledge
they contain is fundamental for being able to correctly access them according to
the user’s particular needs. For instance, in the scientific papers domain, in order to
identify the subject of a paper and its scientific context, an important role is played
by the information available in components such as Title, Authors, Abstract and
Bibliographic references.

Thus, the quality of the layout analysis outcome is crucial, because it determines
and biases the quality of the next understanding steps. Unfortunately, the variety of
document styles and formats to be processed makes the layout analysis task a non-
trivial one, so that the automatically found structure often needs to be manually fixed
by domain experts. To this aim, in this work we propose the application of Machine
Learning techniques to infer models of correction rules for wrong document layouts
from sample corrections performed by expert users, in order to automatically apply
them to future incoming documents. This task requires a first-order logic represen-
tation, because the structure of a document is not fixed, and the corrections typically
depend on the relationships of the wrong components with the surrounding ones.
Moreover, as a consequence of the continuous flow of new and different documents,
the learned models often need to be updated and refined, which calls for incremental
abilities of the system. Indeed, the layout correction setting prevents the possibility
of defining and fixing the number of correction typologies since the beginning of
layout analysis step, as it is not possible to foresee how many and what kinds of
corrections have to be performed in order to obtain a satisfactory document layout.
Hence the need of incremental abilities of the approach in order to be able to deal
with totally new layout correction instances.

This chapter proposes a technique that was actually embedded in a prototypi-
cal version of the document processing system DOMINUS, using the incremental
first-order logic learner INTHELEX. Experiments in a real-world task confirmed
the good performance of the proposed solution. The chapter is organized as fol-
lows: Sections 2 and 3 introduce the background in which the proposed solution is

Automatic Document Layout Analysis through Relational Machine Learning 75

intended to work; Sections 4 and 5 present the details of the proposal; Section 6
discusses the experimental evaluation of the technique; lastly, Section 7 concludes
the work.

2 Related Work

Document Image Understanding (DIU) is the process aimed at transforming the
informative content of a (paper or digital) document into an electronic format out-
lining its logical content. DIU strongly relies on a preliminary Document Image
Analysis process, whose goal is to discover the geometrical and logical layout struc-
ture of the document. Specifically, the geometric layout analysis aims at producing
a description of the geometric structure of the document, while the logical layout
analysis aims at identifying the different logical roles of the detected regions (titles,
paragraphs, captions, headings) and the relationships among them. In this work we
focus our attention on the geometric layout analysis step, with a particular empha-
sis on the ability for a document analysis system to automatically fix the wrong
behaviour of this phase.

The geometric layout analysis phase involves several processes, among which
page decomposition. Several works concerning the page decomposition step are
present in the literature, exploiting different approaches and having different objec-
tives. Specifically, it is possible to distinguish text segmentation approaches, which
analyse the document in order to extract and segment text. The textual part is di-
vided into columns, paragraphs, lines, and words in order to reveal the hierarchical
structure of the document. Page segmentation approaches aim at partitioning the
document into homogeneous regions. They can be grouped into different typologies
according to the technique they adopt: smoothing/smearing [1], projection profile
analysis [2, 3, 4, 5, 6, 7], texture-based or local analysis [8, 9], and analysis of
the background structure [10, 11]. On the other hand, there exist the Segmenta-
tion/Classification mixed approaches. These hybrid approaches do not clearly sep-
arate the segmentation step from the classification one. The techniques they exploit
are based on connected component analysis [12, 13] and texture or local analy-
sis [14, 15]. Finally, the block classification approaches aim at labelling regions
previously extracted in a block segmentation phase. Most of them are based on fea-
ture extraction and linear discriminant classifiers [1, 3, 7, 16].

All these approaches can be viewed as relying on two basic operations: split and
merge. Indeed, they all exploit the features extracted from an elementary block to
decide whether splitting or merging two or more of the identified basic blocks in a
top-down, bottom-up or hybrid approach to the page decomposition step.

One of the most representative top-down approaches is the recursive X–Y cut
method [5] that relies on projection profiles to cut a textual region into several sub-
regions. However, this approach has some difficulty in dealing with text regions that
lack a fully extended horizontal or vertical cut. In the same way, approaches that
exploit maximal white rectangles [17] or white streams [7] may also fail to find

76 S. Ferilli et al.

white margins that are large enough. For this reason, a multi-scale analysis method
that examines a document at various scales was proposed [18].

Significant examples of the bottom-up behavior are the document spectrum
method [19], the minimal-cost spanning tree method [13], and the component-based
algorithm [20]. The underlying idea of these methods is to build basic blocks based
on the distances between connected components. In particular, [21] used the span-
ning tree as a pre-classifier to gather connected components into sub-graphs. In
this approach, one crucial step involves cutting away a vertical sub-graph that has
been wrongly merged into a horizontal text line, or vice versa. Some empirically
estimated heuristics are exploited to solve this problem. Other authors developed a
rule-based bottom-up method [22] in which a set of rules is encoded, that allows to
merge connected components in text lines. Specifically, the rules are based on the
concept of nearest-neighbour connect-strength, which varies according to the size
similarity, distance, and offset of the components. In [23] a hybrid segmentation
method is proposed, that partitions a document into blocks based on field separators
and white streams, and then merges the components of each block into text lines.

Since all methods split or merge blocks/components based on certain parame-
ters, parameter estimation is crucial in layout analysis. All these methods exploit
parameters that are able to model the split or merge operations in specific classes of
the document domain. Few adaptive methods, where split or merge operations are
performed using estimated parameter values, are present in the literature [24, 25].
A step forward is represented by the exploitation of Machine Learning techniques
in order to automatically assess the parameters/rules able to perform the document
page decomposition, and hence the eventual correction of the performed split/merge
operations, without requiring an empirical evaluation on the specific document do-
main at hand. To this regard, learning methods have been used to separate textual
areas from graphical areas [26] and to classify text regions as headline, main text,
etc. [27, 28] or even to learn split/merge rules in order to carry out the corresponding
operations and/or correction [29, 30].

However, a common limit of the above reported methods regards the consider-
ation that they are all designed with the aim of working on scanned documents,
and in some cases on documents of a specified typology, thus lacking any gener-
ality of the proposal with respect to the online available documents that can be of
different digital formats. On the other hand, methods that work on natively digital
documents assume that the segmentation phase can be carried out by simply per-
forming a matching of the document itself with a standard template, even in this
case, of a specified format.

3 Preliminaries

Based on the ODA/ODIF standard, any document can be progressively partitioned
into a hierarchy of abstract representations, called its layout structure. Here we
describe an approach, named DOC (Document Organization Composer) [31], for
discovering a full layout hierarchy in digital documents based primarily on layout

Automatic Document Layout Analysis through Relational Machine Learning 77

a

b c

Fig. 1 Layout analysis steps on the original document (a): preprocessing for world/line
blocks aggregation (b) and final high-level layout structure (c).

information. The layout analysis process, whose main steps are shown in Figure 1,
starts with a preprocessing step performed by a module that takes as input a generic
digital document and extracts the set of its elementary layout components (basic-
blocks), that will be exploited to identify increasingly complex aggregations of basic
components.

The first step in the document layout analysis concerns the identification of rules
to automatically shift from the basic digital document description to a higher level
one. Indeed, the basic-blocks often correspond just to fragments of words (e.g.,
in PS/PDF documents), thus a preliminary aggregation based on their overlapping
or adjacency is needed in order to obtain blocks surrounding whole words (word-
blocks). Successively, a further aggregation of word-blocks could be performed to
identify text lines (line-blocks). As to the grouping of blocks into lines, since tech-
niques based on the mean distance between blocks proved unable to correctly han-
dle cases of multi-column documents, Machine Learning approaches were applied
in order to automatically infer rewriting rules that could suggest how to set some
parameters in order to group together rectangles (words) to obtain lines. To do this,
a kernel-based method was exploited to learn rewriting rules able to perform the
bottom-up construction of the whole document starting from the basic/word blocks
up to the lines. Specifically, such a learning task was cast to a Multiple Instance
Problem and solved by exploiting the kernel-based algorithm proposed in [32].

The next step towards the discovery of the high-level layout structure of a doc-
ument page consists in applying an improvement of the algorithm reported in [33].
To this aim, DOC analyzes the whitespace and background structure of each page

78 S. Ferilli et al.

in the document in terms of rectangular covers and identifies the white rectangles
that are present in the page by decreasing area, thus reducing to the ‘Maximal White
Rectangle problem’ as follows:

Given a set of rectangular content blocks (‘obstacles’) C = {r0, . . . ,rn}, all placed
inside the page rectangular contour rb,

Find a rectangle r contained in rb whose area is maximal and that does not overlap
any ri ∈C.

The algorithm exploits a representation based on the following data structures:

Rectangle represented by the coordinates of its Left-Top and Right-Bottom cor-
ners in the plane, i.e. (xL,yT ,xR,yB) respectively;

Bound a pair (r,O) made up of a Rectangle r and a Set of obstacles O, each of
which is in turn a Rectangle overlapping r;

Priority Queue of Bounds Q, whose elements are organized according to the
area of r and providing direct access to the element having the maximum value
for the area of r;

Set of Rectangles B, that collects the pieces of background as long as they are
identified.

Elements are iteratively extracted from the queue: if the set of obstacles correspond-
ing to the extracted element is empty, then it represents the maximum white rectan-
gle still to be discovered, so it is saved into B and added as an additional obstacle to
all bounds in the current queue to which it overlaps; otherwise one of its obstacles is
chosen as a pivot and the contour is consequently split into four regions (those rest-
ing above, below, to the right and to the left of the pivot), some of which partially
overlap. Each such region, along with the obstacles that fall in it, represents a new
structure to be inserted in the priority queue. In the end, computing the complement
of the areas in B would yield the document content blocks. The described procedure
is formally specified in Algorithm 1.

Algorithm 1. Maximal White Rectangle
1: B← /0
2: Q←{(rb,C)}
3: while Q �= /0 do
4: (r,O)← dequeue(Q)
5: if O = /0 then
6: B← B∪{r}
7: Add r as a new obstacle to all elements in Q overlapping it
8: else
9: p← pivot(O)

10: Q← Q∪{((r.xL,r.yT ,r.xR, p.yT) , {b ∈ O|b∩ rA �= /0})}
11: Q← Q∪{((r.xL, p.yB,r.xR,r.yB) , {b ∈O|b∩ rB �= /0})}
12: Q← Q∪{((r.xL,r.yT , p.xL,r.yB) , {b ∈O|b∩ rL �= /0})}
13: Q← Q∪{((p.xR,r.yT ,r.xR,r.yB) , {b ∈O|b∩ rR �= /0})}
14: return B

Automatic Document Layout Analysis through Relational Machine Learning 79

However, taking the algorithm to its natural end and then computing the com-
plement would result again in the original basic blocks, while the layout analysis
process aims at returning higher-level layout aggregates, such as single blocks filled
with the same kind of content and rectangular frames (meaningful collections of ob-
jects completely surrounded by white space that may be made up of many blocks of
the former type). This raised the problem of identifying a stop criterion to end this
process. An empirical study carried out on a set of 100 documents of three different
categories revealed that the best moment to stop the algorithm is when the ratio of
the last white area retrieved with respect to the total white area in the current page of
the document decreases up to 0, since before it the layout is not sufficiently detailed,
while after it useless white spaces are found. Indeed, this is the point in which all the
useful white spaces in the document, e.g. those between columns and sections, have
been identified. Such a consideration is generally valid for all the documents except
for those having a scattered appearance. It is worth noting that this value is reached
very early (around 1/4 of the steps needed by the algorithm to reach its natural end),
and before the size of the structure containing the blocks waiting to be processed
starts growing dramatically, thus saving lots of time and space resources.

Additional improvements are:

• choosing as a pivot a ‘side’ block (i.e., the top or bottom or leftmost or rightmost
block), or even better a ‘corner’ one (one which is at the same time both top
or bottom and leftmost or rightmost), which results in a quicker retrieval of the
background areas with respect to choosing it at random or in the middle of the
bound;

• considering horizontal/vertical lines in the layout as a natural separators, and
hence adding their surrounding white space to the background before the algo-
rithm starts;

• discarding any white block whose height or width is below a given threshold as
insignificant (this should avoid returning inter-word or inter-line spaces).

In the end, each black block should correspond to a section or column in the page,
depending on the layout detail level. The lower the threshold, the more white spaces
should be identified. Starting from these blocks, the frames can be found.

4 Learning Layout Correction Theories

The strategy for automatically assessing a threshold to stop the background retrieval
loop allows to immediately reach a layout. Often the identified layout is already
good for many further tasks of document image understanding. Nevertheless, such
a threshold is clearly a tradeoff between several document types and shapes, and
hence in some cases the layout needs to be slightly improved through a fine-tuning
step that must be specific for each single document. A first, straightforward way
to perform this adjustment is allowing the user to take the loop some additional
steps forward with respect to the stop condition, adding more background, or some
steps backward, removing the most recently found background. However, there are
cases in which the greedy technique it implements does not guarantee an optimal

80 S. Ferilli et al.

outcome. For instance, retrieving useful (e.g., those that concur to separate different
target frames in the document layout) but very small pieces of background (possibly
due to excessive fragmentation operated by the algorithm) might require, using the
normal priority-based behavior, to preliminary retrieve several meaningless ones as
a side-effect. Even worse, some pieces of background might not be retrieved at all,
being smaller than the minimum size threshold. To handle these cases, a tool was
provided that allows the user to directly point out useful background fragments that
were not yet retrieved from the queue and add them explicitly, or, conversely, to
select useless ones that were erroneously retrieved and remove them from the final
layout. Let us call these types of manual intervention ‘white forcing’ and ‘black
forcing’, respectively. In the rest of the chapter, the following groups of terms will
be considered as synonyms, referred to the document layout:

• white, background;
• black, foreground, content;
• contour, area, rectangle.

4.1 From Manual to Automatic Improvement of the Layout
Correction

The forcing functionality allows the user to interact with the layout analysis al-
gorithm and suggest which specific blocks are to be considered as background or
content. To see how it can be obtained, let us recall that the algorithm, at each step,
extracts from the queue a new area to be examined and can take three actions corre-
spondingly:

1. if the contour is not empty, it is split and the resulting fragments are enqueued;
2. if the contour is empty and fulfils the constraints, it is added to the list of white

areas;
3. if the contour is empty but does not fulfil the constraints, it is discarded.

Allowing the user to interact with the algorithm means modifying the algorithm
behavior as a consequence of his choices. First of all, the white areas that were
discarded because too small must be stored in a list. This would allow the user to
retrieve any white space in the document page. Thus, since in general, due to the stop
criterion, the algorithm terminates much before the queue is completely emptied, the
following structures will be available as its outcome:

• a queue Q of the contours yet to be examined, some of which actually white,
others to be further split;

• a list B of the white areas (background blocks) retrieved thus far;
• a list D of the discarded white areas (background blocks) deemed as insignificant

because not satisfying the constraints.

Now, the interactive extension allows the user to make the algorithm perform some
more steps forward or backward, causing a corresponding movement of blocks
among these three structures. For instance, when a step forward is requested, Q

Automatic Document Layout Analysis through Relational Machine Learning 81

is processed until the first white contour that satisfies the constraints is found and
put in B. As already noticed, this functionality is still not sufficient, because sig-
nificant but very small white rectangles might require several steps forward to be
retrieved, causing the previous retrieval of several insignificant ones in the mean-
time. In the worst case, such significant rectangles might not be retrieved at all (they
would be discarded if not satisfying the constraints), preventing a correct layout to
be returned. In these cases, the user would directly ‘force’ the retrieval or removal
of specific blocks from the document layout, by pointing with the mouse the cor-
responding area. If he wants to force the retrieval of a background piece (white
forcing), all the white blocks in Q and D are scanned to find one underlying the
pointed spot, and in case it is found it is added to the background B (even if it does
not satisfy the requirements). A technical trick is needed to properly manage these
blocks in case of backward/forward steps by the user. Indeed, if put back into the
queue by taking a step backward, the blocks would be placed at the bottom, and
hence a subsequent step forward would not retrieve them immediately, as expected
(being considered as the inverse of the backward step). To avoid this, they are as-
signed as priority the area of the rectangle placed in that moment at the top of the
queue, instead of their actual area. This also solves the problem of losing meaningful
whites. Conversely, the ‘black forcing’ functionality allows the user to retrieve and
remove a white block from B in order to include it in a frame, placing it in D. Both
these operations can be undone, this way restoring the original algorithm behavior.

From the above discussion, it turns out that the relevance of a (white or black)
block to the overall layout can be assessed based on its position inside the docu-
ment page and its relationships with the other layout components. According to this
assumption, each time the user applies a manual correction the information on his
actions and on their effect can be stored in a logfile for subsequent analysis. In par-
ticular, each manual correction (user intervention) can be exploited as an example
from which learning a model on how to classify blocks as meaningful or meaning-
less for the overall layout. For instance, non-forced white blocks can be considered
as negative examples for ‘black forcing’, while the discarded blocks and the non-
forced blocks in the queue can be assumed to be negative examples for ‘white forc-
ing’. Applying the learned models in subsequent incoming documents, it would be
possible to automatically decide whether or not any white (resp., black) block is to
be included as background (resp., content) in the final layout, this way reducing the
need for user intervention.

4.2 Tool Architecture

The whole procedure of preliminary layout analysis and automatic layout correc-
tion, endowed with learning functionality to improve future performance, was im-
plemented in the Java language. A Document is considered as an aggregate of Pages,
each of which specifies six lists of components, one for each of the following kinds:

82 S. Ferilli et al.

Box a fragment of text as extracted from the source file (possibly a single letter
or just a fragment of word);

Word a set of overlapping or adjacent, and co-linear, Boxes;
Line a set of co-linear Words belonging to the same text column;
Stroke a graphical line in the document;
Fill a solid rectangle in the document;
Image a raster image extracted from the source document, of an aggregation of

overlapping graphical items (such as Fills and Strokes);

and separately undergoes the layout analysis process as described before. This pro-
cess results in two kinds of aggregate structures, namely blocks and frames, repre-
sented as their minimum bounding box. Boxes, words, lines, images, strokes, fills,
blocks, frames and pages are described as generic rectangles, according to the co-
ordinates of their top-left and bottom-right corners, plus a unique identifier. This
way, the computation of areas, distances, overlappings etc. can be easily carried
out as geometrical operations. More specifically, the following main functionality is
provided for:

stepForward applies a single step of the layout analysis algorithm, by pro-
cessing the queued boundaries until the first white is found;

findLayout repeatedly applies ‘stepForward’s until the pre-specified thresh-
old is reached, and returns a contour representing the page, con-
taining a set of background blocks (‘whites’) retrieved;

findInverse returns a contour representing the page, containing a set of con-
tent blocks (‘blacks’) obtained as the complement of the back-
ground;

stepBackward removes the last white found from the current layout reconstruc-
tion;

forceWhite forces the retrieval of a white block, overriding the normal be-
havior of the findLayout algorithm;

forceBlack forces the removal of a specific white block previously found,
in order to consider it as content (‘black’);

undoForceWhite withdraws the forcing of a white block;
undoForceBlack withdraws the forcing of a black block.

Additional service functionality allows, given a coordinate of the page, to scan the
queue in order to retrieve an underlying queued boundary, or to search for an under-
lying white block from the current background.

DOC also maintains the log of manual corrections performed by the expert user.
After he acknowledges the final layout, a translation functionality is activated to
transform all manual applied corrections for black and white blocks into positive ex-
amples, and to produce a corresponding set of negative examples, for the two classes
‘force white’ and ‘force black’. Hence, on such a log file of manual corrections, a
typical problem of supervised inductive learning is set up and, since the relationships
between different objects are significant, a first-order logic description language is
used to represent these logs. At this stage, a first-order logic learner is exploited.
Specifically, here we adopt INTHELEX that was already successfully exploited for

Automatic Document Layout Analysis through Relational Machine Learning 83

document image understanding tasks [34] and hence turns out to be a natural candi-
date for application. Indeed, the incremental characteristic of the system allows to
exploit each manual correction to refine the learned theory, and hence contributes
to progressively optimize the system behavior and avoid further user intervention.

4.3 The Learning System

INTHELEX is an Inductive Logic Programming [35] system that learns hierar-
chical first-order logic theories from positive and negative examples. It is fully
incremental (in addition to the possibility of refining previously generated hypothe-
ses/definitions, learning can also start from an empty theory), and adopts a represen-
tation language that ensures effectiveness of the descriptions and efficiency of their
handling, while preserving the expressive power of the unrestricted case [36]. It can
learn simultaneously multiple concepts/classes, possibly related to each other, and
it guarantees validity of the learned theories on all the processed examples.

The system is able to exploit feedback on performance to activate the theory
revision phase, as described in the following. An initial theory is set up for the target
concepts, learned by the system from a previous set of examples selected from the
environment and classified by an expert, or provided directly by the expert, or even
empty. Subsequently, such a theory can be applied to new available observations,
producing a decision. If an oracle is available, that compares such a decision to the
correct one, whenever the prediction is incorrect, the cause of such a wrong decision
can be automatically pointed out by the system and the proper kind of correction
applied by a theory revision process. In this way, it is able to incrementally modify
incorrect theories according to a data-driven strategy.

Specifically, when a positive observation is not covered, a revision of the theory
to restore its completeness is performed as follows: replacing a rule in the theory
with one of its least general generalizations against the problematic observation;
adding a new rule to the theory, obtained by properly turning constants into vari-
ables in the problematic example; adding the problematic observation as a positive
exception. On the other hand, when a negative observation is covered, the system re-
vises the theory to restore consistency by performing one of the following actions:
adding positive information able to characterize all the past positive observations
(and exclude the problematic one) to the rule that covers the example; adding nega-
tive information to discriminate the problematic observation from all the past posi-
tive ones to the rule that covers the problematic observation; adding the problematic
observation as a negative exception.

Another peculiarity in the learning system is the embedding of multistrategy op-
erators that may help in solving the theory revision problem. Induction, Deduction,
Abduction and Abstraction were integrated according to the Inferential Theory of
Learning theoretical framework [37]. For the present study, abstraction, in particu-
lar, is a precious support to tackle the complexity of the domain and of the related
descriptions. It is a pervasive activity in human perception and reasoning, and aims
at removing superfluous details from the description of both the examples and the

84 S. Ferilli et al.

theory. Thus, the exploitation of abstraction results in the shift from the language
in which the theory is described to a higher level one. According to the framework
proposed in [38], in INTHELEX abstraction takes place by means of a set of oper-
ators that replace a number of components by a compound object, or decrease the
granularity of a set of values, or ignore whole objects or just part of their features,
or neglect the number of occurrences of some kind of object.

5 Description Language

Now let us turn to the way in which the manual corrections are to be described. The
assumption is that the user changes the document layout when he considers that the
proposed layout is wrong (by observing it before applying the correction), then he
forces a specific block because he knows the resulting effect on the document (he
foresees the situation after the correction) and considers it as satisfactory. Thus, to
properly learn rules that can help in automatically fixing and improving the document
layout analysis outcome, one must consider what is available before the correction
takes place, and what will be obtained after it is carried out. For this reason, each
example, representing a correction, will include a description of the blocks’ layout
both before and after the correction. However, the modification is typically local,
i.e. it does not affect the whole document layout, but involves just a limited area
surrounding the forced block. This allows to limit the description to just such an
area. To sum up, the log file of the manual corrections, applied by the user after the
execution of the layout analysis algorithm, will include both the white and the black
blocks he forced, and will record, for each correction, information about the blocks
and frames surrounding the forced block, both before and after the correction.

Each learning example is represented as a first-order logic clause H :− B, whose
head reports whether the description in the body represents a positive or negative
example for the forcing of a black or white block. Positive examples are denoted by
the following predicates:

• force white(forced block, document)
• force black(forced block, document)

while negative examples are expressed as negations thereof. The clause body is built
on the set of predicates reported in Table 1. It contains information about the page
in which the correction took place, i.e. horizontal/vertical size and position in the
overall document (whether it is at the beginning, in the middle or at the end of
the document, and specifically whether it is the first or last one), furthermore it de-
scribes the forced block and the layout situation both before and after the correction.
Specifically, for a given correction id correction, to denote these two moments, cor-
responding identifiers, id correction before and id correction after, are generated
and introduced by two specific literals, respectively:

• before(idCorrection,idCorrection before)
• after(idCorrection,idCorrection after)

Automatic Document Layout Analysis through Relational Machine Learning 85

Table 1 First-order logic descriptors for layout correction observations: Attributes (bold) and
Relations (italic) to be applied to entities (Document, Page, Block, Frame)

Correction identification
before(idCorrection,idCorrection before) identifies the layout description before correc-

tion
after(idCorrection,idCorrection after) identifies the layout description after correction

Page General Information
page(idDocument,idPage) correction applied to page idPage in document

idDocument
page height(idPage,h) h is the height of page idPage
page width(idPage,w) w is the width of page idPage
first page(idPage) idPage is the first page of the document
last page(idPage) idPage is the last page of the document
first pages(idPage) idPage belongs to the first 1/3 pages of the doc
middle pages(idPage) idPage belongs to the middle 1/3 pages of the

doc
last pages(idPage) idPage belongs to the last 1/3 pages of the doc

Rectangle (Block or Frame) General Information (% wrt the page dimensions)
pos x(idRectangle,x) horizontal position x of the centroid of rectangle
pos y(idRectangle,y) vertical position y of the centroid of rectangle
width(idRectangle,w) width w of rectangle idRectangle
height(idRectangle,h) height h of rectangle idRectangle

Rectangle Typology
frame(idPage,idFrame) for each frame idFrame that touches or overlaps

the forced block
block(idPage,idBlock) for each block idBlock that touches or overlaps

the forced block
type(idRectangle,Type) Type ∈ {text, line, image, mixed}

Relationships between Rectangles (Blocks or Frames)
belongs(idBlock,idFrame) block idBlock belongs to frame idFrame
overlaps(idForcedBlock,idBlock, p) p is the percentage of overlapping between the

two blocks idForcedBlock and idBlock
touches(idForcedBlock, idRectangle) rectangle idRectangle touches (but does not

overlap) the forced block idForcedBlock
overlap part N(idRectangle1, idRectangle2) spatial relation (N ∈ {1, . . . ,25}) between

idRectangle1 and idRectangle2 according to the
25-plane model; specifically, between a block
or frame and the forced block, or between two
frames involved in the correction being de-
scribed (each of which touches or overlaps the
forced block), or between two blocks in the
same frame (each of which touches the forced
block)

The description of each of the two situations (before and after the correction) is
based on literals expressing the page layout. While the predicates, on which such
literals are built, are mostly the same that can be used for document image un-
derstanding purposes, for the specific task aimed at learning correction rules it is

86 S. Ferilli et al.

Fig. 2 Partition of the plane with respect to a rectangle according to [39]

sufficient to express only a subset of the whole layout, and specifically the neigh-
borhood of the forced block that is considered as the most significant and useful to
understand why that block is being forced. In our case, the focus was put on the
blocks and frames surrounding the forced block, and, among them, only on those
touching or overlapping the forced block. The relationships between these compo-
nents are described by means of a set of predicates representing the spatial relation-
ships existing among all considered frames and among all blocks belonging to the
same frame, that touch or overlap the forced block. Furthermore, for each frame or
block that touches the forced block, a literal specifying that they touch is introduced.
Finally, for each block of a frame that overlaps the forced block, the percentage of
overlapping is reported.

It is fundamental to completely describe the mutual spatial relationships among
all involved elements. All, and only, the relationships between each block/frame and
the forced blocks are expressed, but not their inverses (i.e., the relationships between
the forced block and the block/frame in question). To this aim, the model proposed
in [39] for representing the spatial relationships among the blocks/frames was con-
sidered. Specifically, according to such a model, once a rectangle is fixed, its plane
is partitioned in 25 parts (as shown in Figure 2) and its spatial relationships to any
other rectangle in the plane can be specified by simply listing the parts with which
the other rectangle overlaps. From this basic representation, higher-level topological
relations [40, 39], such as closeness, intersection and overlapping between rectan-
gles can be automatically derived using deductive capabilities.

For instance, the following fragment of background knowledge could be provided
to the learning system:

overlap part 14(B1,B2)∧¬overlap part 13(B1,B2)⇒ touch(B1,B2)
overlap part 17(B1,B2)∧¬overlap part 13(B1,B2)⇒ touch(B1,B2)
overlap part 18(B1,B2)∧¬overlap part 13(B1,B2)⇒ touch(B1,B2)
overlap part 19(B1,B2)∧¬overlap part 13(B1,B2)⇒ touch(B1,B2)

and, given a description involving two blocks b1 and b2, and including a literal
overlap part 14(b2,b1), but not a literal overlap part 13(b2,b1), it would be able
to automatically recognize that touch(b2,b1).

Automatic Document Layout Analysis through Relational Machine Learning 87

Finally, each involved frame or block is considered as a rectangular area of the
page, and described according to the following parameters:

• horizontal and vertical position of the rectangle centroid with respect to the top-
left corner of the page (coordinates expressed as percentages of the page dimen-
sions),

• height and width of the rectangle (expressed as percentages of the page dimen-
sions), and

• content type (text, graphic, line).

Note that, as regards the relationships between frames and blocks, since only
those frames that touch or overlap the forced block are taken into account, if the
forced block touches or overlaps just one frame no instance of such relationships
will be included; the same holds for the blocks in a frame that touch or overlap
the forced block. This often happens when the correction significantly changes the
layout structure, modifying the number of blocks or frames. To clearly distinguish
the various corrections, they are identified by the document identifier, followed by
the page number and lastly by the progressive block number in that page.

The example depicted in Figure 3 shows a case in which the user must force a
white block (b2 in figure) to become black because it is interpreted as a spacing.
The reference frame (f 1 in figure) contains two other blocks, one of which (b1)
overlaps the rectangle to be forced (b2), while the other (b3) touches it. After the
correction, the situation is as follows: there are two frames (f 2 and f 3) that touch
the forced rectangle, both containing a block (b4 and b5 respectively) that touches
it. The corresponding clause is:

[not(force_black(b2,d1),force_white(b2,d1)]:-
... general information of the block to force b2
before(d1,d1_before), page_1(d1_before,d1_before_p1),
... general information of the page
frame(d1_before_p1,f1), overlaps(b2,f1,100%),
.... general information of the frame f1
// spatial relationships between blocks f1 and b2
overlap_part_2(f1,b2), overlap_part_3(f1,b2),
overlap_part_4(f1,b2), overlap_part_5(f1,b2),
overlap_part_7(f1,b2), overlap_part_8(f1,b2),
overlap_part_9(f1,b2), overlap_part_10(f1,b2),
overlap_part_12(f1,b2), overlap_part_13(f1,b2),
overlap_part_14(f1,b2), overlap_part_15(f1,b2),
overlap_part_17(f1,b2), overlap_part_18(f1,b2),
overlap_part_19(f1,b2), overlap_part_20(f1,b2),
overlap_part_22(f1,b2), overlap_part_23(f1,b2),
overlap_part_24(f1,b2), overlap_part_25(f1,b2),
block(d1_before_p1,b3), belongs(b3,f1), touches(b2,b3),
.... general information of the block b3
block(d1_before_p1,b1), belongs(b1,f1),overlaps(b2,b1,10%),
.... general infomation on the block b1
... spatial relationships between blocks b3 and b2
... spatial relationships between blocks b1 and b2

88 S. Ferilli et al.

Fig. 3 Example of a situation before and after the correction

... spatial relationships between blocks b3 and b1
after(d1,d1_after), page_1(d1_after,d1_after_p1),
frame(d1_after_p1,f2), touches(b2,f2),
.... general infomation on the frame f2
block(d1_after_p1,b4), belongs(b4,f2), touches(b2,b4) ,
.... general infomation on the block b4
frame(d1_after_p1,f3), touches(b2,f3),
.... general infomation on the frame f3
block(d1_after_p1,b5), belongs(b5,f3), touches(b2,b5) ,
.... general information on the block b5

... spatial relationships between blocks f2 and b2

... spatial relationships between blocks b4 and b2

... spatial relationships between blocks f3 and b2

... spatial relationships between blocks b5 and b2

... spatial relationships between blocks f2 and f3

6 Experiments

The proposed description language was used to run two experiments aimed at check-
ing whether it is possible to learn a theory that can profitably automatize, at least
partially, the layout correction process. Two target concepts were considered: ‘force
white’ (corresponding to the fact that a block discarded or not yet retrieved by the
layout analysis algorithm must be forced to belong to the background) and ‘force
black’ (corresponding to the fact that a white rectangle found by the lauyout analy-
sis algorithm must, instead, be discarded). In both cases, a 10-fold cross-validation
technique was exploited to obtain the training and test sets. The experiments were
run on a PC endowed with WindowsXP running on an Intel 2.4 GHz Core 2 Duo
Processor and 2 GB RAM. INTHELEX was set so as to force each generalization to
preserve not less than 40% of the original clause description and no more that 70%

Automatic Document Layout Analysis through Relational Machine Learning 89

thereof (computed as the number of literals in the body), in order to limit the search
space and, as a consequence, the computational requirements.

The experimental dataset concerned the corrections applied to obtain the cor-
rect layout on about one hundred documents (specifically, papers published in sci-
entific journals and conference proceedings), evenly distributed in four categories
(ECAI, Elsevier, ICML, Springer-Verlag Lecture Notes). According to the strategy
described above, the examples concern significant background blocks that were not
retrieved (‘white forcing’) or useless white blocks erroneously considered as back-
ground (‘black forcing’) by the basic layout analysis algorithm. Since the layout
analysis algorithm already treats isolated graphic lines as separators, it was neces-
sary to force white blocks around such lines. The experimental evaluation was sum-
marized in tables organized as follows. For each fold (specified in column Fold), the
following figures are reported: the number of corresponding positive (PosEx) and
negative (NegEx) training examples, the number of clauses in the learned theory
(NewCl), the number of generalizations performed (Lgg), the number of positive
exceptions introduced in the theory (Pexc), the number of positive (Plit) and nega-
tive (Nlit) literals added to specialize the theory, the number of negative exceptions
introduced (Nexc), runtime in seconds (Time), predictive accuracy of the learned
theories on the corresponding test sets (% in percentage), the ratio between the pos-
itive examples covered by the theory and the total number of positive examples
(TP = Pcov/TotExPos) and, lastly, the ratio of rejected negative examples over the
total number of negative examples (TN = NNCov/TotExNeg).

For the first dataset the layout correction activity resulted in a set of 786 exam-
ples of block correction, of which 263 for ‘force white’ and 523 for ‘force black’.
Positive examples for ‘force white’ were considered as negative for ‘force black’
and vice versa, this way exploiting the whole dataset. Thus, each single correction
was interpreted from two perspectives: obviously as a positive example for the kind
of forcing actually carried out by the user, and additionally as a negative example
for the other kind of forcing. The head for a block forced block forced white is as
follows:

[
not(force black(forced block, document)),
force white(forced block, document)
]
while for a forced black is:
[
not(force white(forced block, document)),
force black(forced block, document)
]

Table 2 reports the results for concept ‘force white’. Given the amount of available
examples in the dataset, the experimental outcome reveals good predictive accuracy
of the learned theories, that is 98,47% on average, never falling below 94.87%, and
reaching 100% in 4 cases out of 10. Also runtimes are satisfactory: an average of
175.13 seconds (i.e., about 3 minutes), mostly due to a single problematic case that

90 S. Ferilli et al.

required 790.17 seconds (about 13 minutes) for accomplishment. INTHELEX added
1.4 positive literals and 1.5 negative ones on average during the specialization steps.
The number of generalizations performed (16 on average) and the small number of
clauses for each theory (5.4 on average) are good, because they indicate that the
positive examples shared common features. A possible weakness is the number of
negative exceptions (5 in the case of fold fb04), but a possible explanation is that
the parameter that requires each generalization to preserve at most 70% of the de-
scription length tends to yield too general theories. Lastly, the ratios of correctly
classified test examples (True Positives, TP, and True Negatives, TN, respectively)
reveals that the various theories never failed on more than two negative examples,
indicating a cautious behavior, as desired. In general, it might happen that too cau-
tious theories cover too few positive examples, and hence might be useless, but the
number of covered test examples (Pcov) shows this is not the case (the theories miss
at most 4 thereof). In particular, the theory learned in fold fb05 might be selected as
the best theory to be exploited, having predictive accuracy of 100%, just 4 clauses
and no exception.

Table 2 Experimental outcomes for concept ‘force white’

Fold TP TN PosEx NegEx NewCl Lgg Pexc Plit Nlit Nexc Time %
fb01 27/27 52/53 236 470 6 17 0 2 0 0 120.54 98.75
fb02 26/27 53/53 236 470 7 16 0 2 4 0 271.89 98.75
fb03 27/27 53/53 236 470 5 17 0 1 1 0 83.71 100
fb04 26/26 50/52 237 471 6 21 0 2 6 5 790.17 97.44
fb05 26/26 52/52 237 471 4 10 0 2 1 0 36.87 100
fb06 22/26 52/52 237 471 6 19 0 0 0 0 171.74 94.87
fb07 24/26 51/52 237 471 6 19 0 2 0 0 72.84 96.15
fb08 25/26 52/52 237 471 4 11 0 1 1 0 46.55 98.72
fb09 26/26 52/52 237 471 5 17 0 2 1 0 90.56 100
fb10 26/26 52/52 237 471 5 13 0 0 1 0 68.12 100

Average 5.4 16 0 1.4 1.5 0.5 175.13 98.47
Mean Dev. 0.97 3.59 0 0.84 1.96 1.58 226.98 1.79
Max 7 21 0 2 6 5 790.17 100
Min 4 10 0 0 0 0 36.87 94.87

Table 3 reports the results for concept ‘force black’. In this case, there were more
positive examples than negative ones. The figures are again satisfactory, although
slightly worse than those obtained for the previous concept. Indeed, the predictive
accuracy of the various theories amounts to 97.82% on average, never falls below
94.87% and only in two cases reaches 100% (fn02 and fn03). Runtimes are worse
than those of the previous experiment (394.41 seconds, i.e. about 6.5 minutes, on
average). The number of generalizations carried out (17.6 on average) is quite sim-
ilar for the previous concept. The number of negative exceptions is high (up to 13
in fold fn09), which means that there are negative examples (i.e., positive examples
for ‘force white’) very similar to the positive ones, so that INTHELEX is not able

Automatic Document Layout Analysis through Relational Machine Learning 91

to distinguish between them. However, it is encouraging that the best theories for
predictive accuracy (fn02 and fn03) has very few (2 and 1 respectively). Lastly, by
observing the ratio between covered examples and total examples during the test
phase (Pcov and NNCov), one can note that the number of uncovered examples is
quite stable. The best theory, among those produced by the ten folds, to be chosen
for use seems to be that of fold fn03, that has 100% accuracy, just 2 clauses and one
negative exception.

Table 3 Experimental outcomes for concept ‘force black’

Fold TP TN PosEx NegEx NewCl Lgg Pexc Plit Nlit Nexc Time %
fn01 52/53 27/27 470 236 4 12 0 2 0 0 85.62 98.75
fn02 53/53 27/27 470 236 3 13 0 6 2 2 235.04 100
fn03 53/53 27/27 470 236 2 8 0 2 2 1 105.34 100
fn04 51/52 25/26 471 237 5 20 0 4 6 7 618.49 97.44
fn05 51/52 25/26 471 237 8 30 0 7 1 0 309.46 97.44
fn06 49/52 26/26 471 237 6 15 0 5 7 4 638.58 96.15
fn07 50/52 24/26 471 237 7 26 0 4 0 1 257.05 94.87
fn08 51/52 26/26 471 237 5 21 0 8 8 2 820.33 98.72
fn09 51/52 25/26 471 237 2 13 0 3 4 13 462.44 97.44
fn10 51/52 25/26 471 237 4 18 0 1 0 0 411.78 97.44

Average 4.6 17.6 0 4.2 3 3 394.41 97.82
Mean Dev. 2.01 6.79 0 2.3 3.06 4.14 241.88 1.61
Max 8 30 0 8 8 13 820.33 100
Min 2 8 0 1 0 0 85.62 94.87

The outcomes of the first experiment suggest that the description language pro-
posed and the way in which the forcings are described are effective to let the system
learn rules that can be successfully used for automatic layout correction. This sug-
gested to try another experiment to simulate the actual behavior of such an automatic
system, working on the basic layout analysis algorithm. Recall that, after finishing
the execution of the layout analysis algorithm according to the required stop thresh-
old, three queues are produced (the queued areas still to be processed, the white
areas discarded because not satisfying the constraints and the white blocks selected
as useful background). Among these, the last one contains white blocks that can be
forced to black, while the other two contain rectangles that might be forced to white.

Since the rules needed by DOC to automatize the layout correction process must
be able to evaluate each block in order to decide whether forcing it or not, it is not
sufficient anymore to consider each white block forcing as a counterexample for
black forcing and vice versa, but to ensure that all learned rules are correct, also
all blocks in the document that have not been forced must be exploited as nega-
tive examples for the corresponding concepts. The adopted solution was to still ex-
press forcings as discussed above, including additional negative examples obtained
from the layout configuration finally accepted by the user. Indeed, when the layout

92 S. Ferilli et al.

is considered correct, all actual white blocks that were not forced become nega-
tive examples for concept ‘force black’ (because they could be forced as black, but
weren’t), while all white blocks, discarded or still to be processed become negative
examples for the concept ‘force white’ (because they weren’t forced). The dataset
for this experiment was obtained by running the layout analysis algorithm until the
predefined threshold was reached, and then applying the necessary corrections to fix
the final layout. The 36 documents considered were a subset of the former dataset,
evenly distributed among categories (ICML, ECAI, Elsevier, Springer-Verlag Lec-
ture Notes). Specifically, the new dataset included 113 positive and 840 negative
examples for ‘force black’, and resulted in the performance reported in Table 4. The
predictive accuracy was improved with respect to the previous experiment, reaching
99.16% on average, with several folds obtaining 100%, which is a very good result.
The presence of very few negative exceptions (especially considering the number
of examples), the presence of no more than 5 clauses in each theory along with the
number of generalizations performed, suggest that the concept was properly learned
and that the application of any of such theories to real cases may provide satisfactory
results.

Table 4 Experimental outcomes for concept ‘force black’ (no neg ex)

Fold TP TN PosEx NegEx NewCl Lgg Pexc Plit Nlit Nexc Time %
fn01 12/12 84/84 101 756 4 12 0 0 1 0 77.81 100
fn02 12/12 83/84 101 756 3 8 0 1 1 0 62.25 98.96
fn03 12/12 84/84 101 756 4 11 0 1 0 0 57.73 100
fn04 9/11 84/84 102 756 3 11 0 0 2 0 241.60 97.89
fn05 11/11 84/84 102 756 3 9 0 0 0 1 88.52 100
fn06 9/11 83/84 102 756 3 11 0 1 0 2 153.15 96.84
fn07 11/11 84/84 102 756 4 12 0 0 1 0 94.16 100
fn08 10/11 84/84 102 756 2 7 0 0 0 4 69.38 98.95
fn09 11/11 84/84 102 756 5 14 0 4 1 0 264.99 100
fn10 11/11 83/84 102 756 3 8 0 1 0 1 164.81 98.95

Average 3.4 10.3 0 0.8 0.6 0.8 127.44 99.16
Mean Dev. 0.84 2.21 0 1.23 0.7 1.32 75.70 1.09
Max 5 14 0 4 2 4 264.99 100
Min 2 7 0 0 0 0 57.73 96.84

As to the concept ‘force white’, the dataset was made up of 101 positive and
10046 negative examples. The large number of negative examples is due to the num-
ber of white blocks discarded or still to be processed being typically much greater
than that of white blocks found. Since exploiting such a large number of negative
examples might have significantly unbalanced the learning process, only a random
subset of 843 such examples was selected, in order to keep the same ratio between
positive and negative examples as for the ‘force black’ concept. The experiment run
on such a subset provided the results shown in Table 5. The number of clauses in

Automatic Document Layout Analysis through Relational Machine Learning 93

each theory is significantly larger than that resulting from the ‘force black’ experi-
ment suggesting that the white forcing examples have less common features. This
is most likely due to the intrinsic complexity of the current concept, that is more
complex than the previous one because many different situations may lead to forc-
ing a white, differently from blacks that are typically forced to remove indentations.
Another explanation might be that the lower bound of 40% set for generalizations
during the learning phase causes the production of theories that are not very gen-
eral. The predictive accuracy of the various theories is very encouraging (98.10%
on average, with peaks of 98.95%). This is due to the reduction of the set of neg-
ative examples, indeed the various theories fail more on positive examples than on
negative ones.

Table 5 Experimental outcomes for concept ‘force white’ (no neg ex)

Fold TP TN PosEx NegEx NewCl Lgg Pexc Plit Nlit Nexc Time %
fb01 10/11 84/84 90 759 6 13 0 0 4 3 166.63 98.95
fb02 9/10 85/85 91 758 9 20 0 2 2 1 249.31 98.95
fb03 7/10 84/85 91 758 9 22 0 0 5 0 343.20 95.79
fb04 8/10 84/85 91 758 7 14 0 1 6 2 375.85 96.84
fb05 10/10 82/84 91 759 7 10 0 4 8 3 284.60 97.87
fb06 9/10 84/84 91 759 10 19 0 1 3 1 335.25 98.94
fb07 9/10 84/84 91 759 13 17 0 4 2 1 519.40 98.94
fb08 10/10 83/84 91 759 8 14 0 0 3 2 163.16 98.94
fb09 8/10 83/84 91 759 7 18 0 2 5 1 213.40 96.81
fb10 9/10 84/84 91 759 9 13 0 2 2 5 525.50 98.94

Average 8.5 16 0 1.6 4 1.9 317.63 98.10
Mean Dev. 2.01 3.77 0 1.51 2 1.45 129.77 1.20
Max 13 22 0 4 8 5 525.50 98.95
Min 6 10 0 0 2 0 163.16 95.79

To confirm or reject this hypothesis, they were applied to the remaining negative
examples previously discarded (9203), and the results (reported in Table 6) provide
an ultimate confirmation of this: a predictive accuracy of 98.91% that, being ob-
tained on so large a test set, is likely to correctly approximate the true behavior on
real-world cases.

Table 6 Experimental outcomes for the test of concept ‘force white’ on the discarded 9203
negative examples

Fold fb01 fb02 fb03 fb04 fb05 fb06 fb07 fb08 fb09 fb10 Av. Max Min
TN 9089 9122 9153 9124 9077 9111 9059 9135 9084 9069
% 98.76 99.12 99.46 99.14 98.63 99 98.44 99.26 98.71 98.54 98.91 99.46 98.44

94 S. Ferilli et al.

7 Conclusions

The huge amount of documents available in digital form and the flourishing of dig-
ital repositories raise the need of effective retrieval techniques based on their con-
tents. Automatic techniques able to properly identify and understand the structure
of documents in order to focus on the most significant components only seem to
be the most suitable solution as manual indexing is infeasible due to the amount
of documents to be handled. Hence, the quality of the layout analysis outcome is
crucial because it determines and biases the quality of the next understanding steps.

However, due to the variety of document styles and formats to be processed, the
layout analysis task is a non-trivial one and often the automatically found structure
needs to be manually fixed by domain experts. In this work we proposed a tool,
embedded in a prototypical version of the document processing system DOMINUS,
able to use the steps carried out by the domain expert with the aim of correcting the
outcome of the layout analysis phase. Specifically, the tool is able to infer rules for
the layout correction to be applied to future incoming documents. It makes use of a
first-order logic representation of the document structure because corrections often
depend on the relationships of the wrong components with the surrounding ones.
Moreover, the tool exploits the incremental abilities of the system INTHELEX as
the continuous flow of new and different documents requires the learned models to
be updated and refined. Experiments in a real-world domain made up of scientific
documents have been presented and discussed, showing the validity of the proposed
approach.

References

1. Wong, K.Y., Casey, R.G., Wahl, F.M.: Document analysis system. IBM Journal of Re-
serch and Development 26, 647–656 (1982)

2. Nagy, G., Seth, S.: Hierarchical representation of optically scanned documents. In: Pro-
ceedings of the 7th International Conference on Pattern Recognition, pp. 347–349. IEEE
Computer Society Press, Los Alamitos (1984)

3. Wang, D., Srihari, S.N.: Classification of newspaper image blocks using texture analysis.
Computer Vision, Graphics, and Image Processing 47, 327–352 (1989)

4. Nagy, G., Seth, S., Viswanathan, M.: A prototype document image analysis system for
technical journals. Computer 25, 10–22 (1992)

5. Krishnamoorthy, M., Nagy, G., Seth, S., Viswanathan, M.: Syntactic segmentation and
labeling of digitized pages from technical journals. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 15, 737–747 (1993)

6. Sylwester, D., Seth, S.: A trainable, single-pass algorithm for column segmentation. In:
Procedings of International Conference on Document Analysis and Recognition, vol. 2,
pp. 615–618. IEEE Computer Society Press, Los Alamitos (1995)

7. Pavlidis, T., Zhou, J.: Page segmentation and classification. CVGIP: Graphical Models
Image Process. 54, 484–496 (1992)

8. Jain, A.K., Bhattacharjee, S.: Text segmentation using gabor filters for automatic docu-
ment processing. Machine Vision and Applications 5, 169–184 (1992)

Automatic Document Layout Analysis through Relational Machine Learning 95

9. Tang, Y.Y., Ma, H., Mao, X., Liu, D., Suen, C.Y.: A new approach to document analysis
based on modified fractal signature. In: Procedings of International Conference on Doc-
ument Analysis and Recognition, vol. 2, pp. 567–570. IEEE Computer Society Press,
Los Alamitos (1995)

10. Normand, N., Viard-Gaudin, C.: A background based adaptive page segmentation algo-
rithm. In: ICDAR 1995: Proceedings of the Third International Conference on Docu-
ment Analysis and Recognition, vol. 1, pp. 138–141. IEEE Computer Society Press, Los
Alamitos (1995)

11. Kise, K., Yanagida, O., Takamatsu, S.: Page segmentation based on thinning of back-
ground. In: ICPR 1996: Proceedings of the International Conference on Pattern Recog-
nition (ICPR 1996), vol. III, 7276, pp. 788–792. IEEE Computer Society Press, Los
Alamitos (1996)

12. Wang, S.-Y., Yagasaki, T.: Block selection: a method for segmenting a page image of var-
ious editing styles. In: ICDAR 1995: Proceedings of the Third International Conference
on Document Analysis and Recognition, vol. 1, pp. 128–133. IEEE Computer Society
Press, Los Alamitos (1995)

13. Simon, A., Pret, J.-C., Johnson, A.P.: A fast algorithm for bottom-up document layout
analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 273–277
(1997)

14. Sauvola, J., Pietikainen, M.: Page segmentation and classification using fast feature ex-
traction and connectivity analysis. In: ICDAR 1995: Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition, vol. 2, pp. 1127–1131. IEEE
Computer Society Press, Los Alamitos (1995)

15. Jain, A.K., Zhong, Y.: Page segmentation using texture analysis. Pattern Recognition 29,
743–770 (1996)

16. Shih, F.Y., Chen, S.S.: Adaptive document block segmentation and classification. IEEE
Transactions on Systems, Man, and Cybernetics 26, 797–802 (1996)

17. Ittner, D., Baird, H.: Language-free layout analysis. In: ICDAR 1993: Proceedings of
the Second International Conference on Document Analysis and Recognition, vol. 1,
pp. 336–340. IEEE Computer Society Press, Los Alamitos (1993)

18. Lee, S.W., Ryu, D.S.: Parameter-free geometric document layout analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 23, 1240–1256 (2001)

19. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 15, 1162–1173 (1993)

20. Liu, F.: A new component based algorithm for newspaper layout analysis. In: ICDAR
2001: Proceedings of the Sixth International Conference on Document Analysis and
Recognition, pp. 1176–1180. IEEE Computer Society Press, Washington, DC, USA
(2001)

21. Xi, J., Hu, J., Wu, L.: Page segmentation of chinese newspapers. Pattern Recognition 35,
2695–2704 (2002)

22. Chen, M., Ding, X., Liang, J.: Analysis, understanding and representation of chinese
newspaper with complex layout. In: Proceedings of the 2000 International Conference
on Image Processing (ICIP), pp. 90–93. IEEE Computer Society Press, Los Alamitos
(2000)

23. Okamoto, M., Takahashi, M.: A hybrid page segmentation method. In: Proceedings of the
Second International Conference on Document Analysis and Recognition, pp. 743–748.
IEEE Computer Society Press, Los Alamitos (1993)

24. Liu, J., Tang, Y.Y., Suen, C.Y.: Chinese document layout analysis based on adaptive split-
and-merge and qualitative spatial reasoning. Pattern Recognition 30, 1265–1278 (1997)

96 S. Ferilli et al.

25. Chang, F., Chu, S.Y., Chen, C.Y.: Chinese document layout analysis using adaptive re-
grouping strategy. Pattern Recognition 38, 261–271 (2005)

26. Etemad, K., Doermann, D., Chellappa, R.: Multiscale segmentation of unstructured doc-
ument pages using soft decision integration. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19, 92–96 (1997)

27. Dengel, A., Dubiel, F.: Computer understanding of document structure. International
Journal of Imaging Systems and Technology 7, 271–278 (1996)

28. Laven, K., Leishman, S., Roweis, S.: A statistical learning approach to document im-
age analysis. In: ICDAR 2005: Proceedings of the Eighth International Conference on
Document Analysis and Recognition, pp. 357–361. IEEE Computer Society Press, Los
Alamitos (2005)

29. Malerba, D., Esposito, F., Altamura, O., Ceci, M., Berardi, M.: Correcting the document
layout: A machine learning approach. In: ICDAR 2003: Proceedings of the Seventh In-
ternational Conference on Document Analysis and Recognition, pp. 97–103. IEEE Com-
puter Society Press, Los Alamitos (2003)

30. Wu, C.C., Chou, C.H., Chang, F.: A machine-learning approach for analyzing document
layout structures with two reading orders. Pattern Recogn. 41, 3200–3213 (2008)

31. Esposito, F., Ferilli, S., Basile, T.M.A., Di Mauro, N.: Machine Learning for digital doc-
ument processing: from layout analysis to metadata extraction. In: Marinai, S., Fuji-
sawa, H. (eds.) Machine Learning in Document Analysis and Recognition. SCI, vol. 90,
pp. 105–138. Springer, Heidelberg (2008)

32. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the Multiple Instance Problem
with axis-parallel rectangles. Artificial Intelligence 89, 31–71 (1997)

33. Breuel, T.M.: Two geometric algorithms for layout analysis. In: Lopresti, D.P., Hu, J.,
Kashi, R.S. (eds.) DAS 2002. LNCS, vol. 2423, pp. 188–199. Springer, Heidelberg
(2002)

34. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T.M.A., Di Mauro, N.: Incremental multi-
strategy learning for document processing. Applied Artificial Intelligence Journal 17,
859–883 (2003)

35. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. Journal
of Logic Programming 19/20, 629–679 (1994)

36. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for
the incremental inductive synthesis of datalog theories. In: Fuchs, N.E. (ed.) LOPSTR
1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)

37. Michalski, R.S.: Inferential Theory of Learning. Developing foundations for Multistrat-
egy Learning. In: Michalski, R., Tecuci, G. (eds.) Machine Learning. A Multistrategy
Approach, vol. IV, pp. 3–61. Morgan Kaufmann, San Francisco (1994)

38. Zucker, J.D.: Semantic abstraction for concept representation and learning. In: Proceed-
ings of the 4th International Workshop on Multistrategy Learning (MSL), pp. 157–164
(1998)

39. Papadias, D., Theodoridis, Y.: Spatial relations, minimum bounding rectangles, and
spatial data structures. International Journal of Geographical Information Science 11,
111–138 (1997)

40. Egenhofer, M.J.: Reasoning about binary topological relations. In: Günther, O., Schek,
H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)

	Automatic Document Layout Analysis through Relational Machine Learning
	Introduction
	Related Work
	Preliminaries
	Learning Layout Correction Theories
	From Manual to Automatic Improvement of the Layout Correction
	Tool Architecture
	The Learning System

	Description Language
	Experiments
	Conclusions
	References

