
Data De-duplication: A Review

Gianni Costa, Alfredo Cuzzocrea, Giuseppe Manco, and Riccardo Ortale

Abstract. The wide exploitation of new techniques and systems for generating, col-
lecting and storing data has made available growing volumes of information. Large
quantities of such information are stored as free texts. The lack of explicit struc-
ture in free text is a major issue in the categorization of such kind of data for more
effective and efficient information retrieval, search and filtering. The abundance of
structured data is problematic too. Several databases are available, that contain data
of the same type. Unfortunately, they often conform to different schemas, which
avoids the unified management of even structured information. The Entity Resolu-
tion process plays a fundamental role in the context of information integration and
management, aimed to infer a uniform and common structure from various large-
scale data collections, with which to suitably organize, match and consolidate the
information of the individual repositories into one data set. De-duplication is a key
step of the Entity Resolution process, whose goal is discovering duplicates within
the integrated data, i.e., different tuples that, as a matter of facts, refer to the same
real-world entity. This attenuates the redundancy of the integrated data and, also,
enables more effective information handling and knowledge extraction through a
unified access to reconciled and de-duplicated data. Duplicate detection is an active
research area that benefits from contributions from diverse research fields, such as,
machine learning, data mining and knowledge discovery, databases as well as in-
formation retrieval and extraction. This chapter presents an overview of research
on data de-duplication, with the goal of providing a general understanding and

Gianni Costa · Alfredo Cuzzocrea · Giuseppe Manco · Riccardo Ortale
ICAR-CNR, Via P. Bucci, 41C, 87036 Rende (CS) - Italy
e-mail: {costa,cuzzocrea,manco,ortale}@icar.cnr.it

M. Biba and F. Xhafa (Eds.): Learning Structure and Schemas from Documents, SCI 375, pp. 385–412.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{costa,cuzzocrea,manco,ortale}@icar.cnr.it


386 G. Costa et al.

useful references to fundamental concepts concerning the recognition of similar-
ities in very large data collections. For this purpose, a variety of state-of-the-art
approaches to de-duplication is reviewed. The discussion of the state-of-the-art con-
forms to a taxonomy that, at the highest level, divides the existing approaches into
two broad classes, i.e., unsupervised and supervised approaches. Both classes are
further divided into sub-classes according to the common peculiarities of the in-
volved approaches. The strengths and weaknesses of each group of approaches are
presented. Meaningful research developments to further advance the current state-
of-the-art are covered as well.

1 Introduction

Recognizing similarities in large collections of data is a major issue in the context
of information integration. The wide exploitation of new techniques and systems
for generating, collecting and storing data has made available very large collections
of data, such as personal demographic data, bibliographic information, phone and
mailing lists. Often, the integration of such data is a problematic process, that in-
volves dealing with two major issues, namely structural and syntactic heterogeneity.

Structural heterogeneity is essentially due to the lack of a common (explicit or la-
tent) structure in the available data, that avoids a proper organization of such data for
a more effective and efficient information retrieval, search and filtering. Structural
heterogeneity depends on the nature of the available data. In the case of structured
data, the individual repositories explicitly exhibit their own schemas and, thus, deal-
ing with the arising structural heterogeneity involves finding a common schema for
the representation of the integrated data. Instead, when the available data collections
are unstructured, such as in the case of free text, it is likely that they are character-
ized by a latent segmentation into specific semantical entities (e.g., personal de-
mographic information typically comprises names, addresses, zip codes and place
names, which indicate a convenient organization for the these kind of data). Such
a segmentation is not a-priori known and, hence, handling with structural hetero-
geneity of textual data means finding an explicit common schema from the various
latent ones (if any). In principle, such a common schema would allow to fit the inte-
grated textual data into some field structure, so that to exploit the mature relational
technology for more effective information management. Structural heterogeneity is
addressed through the exploitation of suitable methods and techniques that recon-
cile distinct collections of (structured or unstructured) data, by integrating them into
one data set with a uniform schema.

However, once reconciled, the integrated data can be affected by syntactic het-
erogeneity. This is a fundamental issue in the context of information integration
systems, that consists in discovering duplicates within the integrated data, i.e., syn-
tactically different records that, as a matter of facts, refer to the same real-world
entity. Duplicate detection is necessary to avoid data redundancy as well as inaccu-
racies in query processing and knowledge extraction [13]. A typical example is the



Data De-duplication: A Review 387

reconciliation of demographic data sources into a data warehousing environment.
Consider, e.g., a banking scenario, where the main interest is to rank the credit
risk of a customer, by looking at the past insolvency history. In this setting, useful
information about payments may come from different sources, each of which likely
conforming to a different encoding of the data, so that names and addresses may
be stored in rather different formats. The reconciliation of the various data sources
is a first step towards the design of a decision support system. However, it is the
de-duplication of the reconciled data that allows to correctly analyze the attitude of
insolvency of the individual customers, thus enabling an effective decision making.

More generally, besides the post-processing of reconciled data, de-duplication
techniques are also particularly useful in all those applicative settings where large
collections of data are available. In such domains, such techniques can be exploited
in a preliminary exploratory phase, for the purpose of reducing the number of du-
plicated data, which ultimately improves the quality of the underlying data.

Four challenging requirements of duplicate detection are: (i) the capability to
handle huge volumes of data; (ii) efficiency; (iii) scalability; (iv) the availability of
incremental algorithms.

In particular, the requirement to process large bodies of data generally imposes
severe restrictions on the design of data structures and algorithms for de-duplication.
Such restrictions are necessary to ultimately limit both the computational complex-
ity of the de-duplication scheme (a required time, that is quadratic in the size of the
underlying database, is prohibitively high) and its I/O operations on disk (several
random accesses to secondary storage imply continuous paging activities).

Efficiency and scalability issues do play a predominant role in many applica-
tive contexts, where large data volumes are involved, especially when the object-
identification task is part of an interactive application, calling for short response
times. For instance, the typical volume of data collected on a daily basis in a banking
context amounts on average to 500,000 instances, representing credit transactions
performed by customers throughout the various agencies. In such a case, the naive
solution of comparing such instances in a pairwise manner, according to some given
similarity measure, is infeasible. As an example, for a set of 30,000,000 tuples (i.e.,
data collected in a 2 months-monitoring), the naive strategy would require O(1014)
tuple comparisons, which is clearly prohibitive.

Also, the detection of duplicates should preferably be performed in an incre-
mental manner, so that to properly account for the possibly streaming nature of the
data. In such cases, the available data collection is incrementally augmented through
the progressive integration of newly arrived data, whose prior de-duplication raises
a stringent online requirement, i.e., that the redundancy of such data is promptly
recognized. Practically speaking, the cost of incremental de-duplication should be
(almost) independent of the size of the available data.

This chapter surveys seminal research in the field of duplicate detection and dis-
cusses consolidated results in the light of the aforementioned requirements. The dis-
cussion proceeds as follows. Section 2 introduces the process of duplicate detection
and identifies two categories of approaches, namely, supervised and unsupervised
techniques. Section 3 deals with the supervised approaches. Section 4 is devoted to



388 G. Costa et al.

the unsupervised approaches. In both sections 3 and 4, the strengths and the weak-
nesses of each encountered family of approaches are discussed. Finally, Section 5
concludes by highlighting directions of further research, that can advance the cur-
rent state-of-the-art in duplicate detection.

2 Problem Description

Duplicate detection is a step of a more complex process, referred to as Entity Res-
olution [11, 13, 26, 41, 47, 73, 98], that plays a fundamental role in the context
of information integration and management. The typical scenario in the design of
information systems is the availability of multiple data repositories, with different
schemas and assumptions on the underlying canonical data representation. Schema
differences imply a segmentation of data tuples1 into sequences of strings, that cor-
respond to specific semantical entities. However, such a segmentation is not known
in advance and this is a challenging issue for duplicate detection. Moreover, the
adoption of various canonical data representations (such as the presence of distinct
data separators and/or various forms of abbreviations) coupled with erroneous data-
entry, misspelled strings, transposition oversights and inconsistent data collection
further exacerbates the foresaid difficulties behind the recognition of duplicates.
The goal of Entity Resolution is to suitably reconcile, match and consolidate the
information within the different repositories [14], so that all data exhibits a uniform
representation and duplicates are properly identified. The process of Entity Resolu-
tion consists of the following three steps.

• Schema reconciliation, which consists in the identification of a common repre-
sentation for the information in the available data [1, 18, 21, 66, 71, 77].

• Data reconciliation, that is the act of discovering synonymies in the data, i.e.
apparently different records that, as a matter of fact, refer to the same real-world
entity.

• Identity definition, aimed to find groups of duplicate tuples and to extract one
representative tuple for each discovered group. Representative tuples allow better
information processing as well as a meaningful compression of the size of the
original data.

The focus of this chapter in on the techniques for the detection of duplicated data,
typically employed in the second step of the Entity Resolution process. Duplicate
detection has given rise to a large body of works in several research communities,
where it is referred to with as many umbrella names, such as, e.g., Merge/Purge [53],
Record Linkage [39, 97], De-duplication [85], Entity-Name Matching [30], Object
Identification [79].

1 The term tuple is abstractedly used throughout the chapter to denote a reconciled fragment
of data, that can be either a textual sequence of strings or a structured record.



Data De-duplication: A Review 389

In most of these approaches, a major issue is represented by the definition of a
method for comparing tuples, that typically consist of many components. Recog-
nizing similar tuples involves matching their constituting components. These can
represent both numbers and strings. Depending on the structured or unstructured
nature of the underlying data, such components can be either values of the fields of
some database schema or tokens from textual data. In both cases, approaches to data
de-duplication require dealing with mismatches between tuple components. While
research on the identification of mismatches between numbers is not yet mature, a
variety of schemes have been developed for dealing with various kinds of hetero-
geneity and mismatches between strings across different information sources [58].

A categorization of the most commonly adopted schemes for matching string
components in the context of duplicate detection is provided in [58]. Such a cate-
gorization includes two major classes of string (dis)similarity functions [50], i.e.,
character-based similarity metrics, that are meant for dealing with differences in
the individual characters of string components, and token-based similarity metrics,
that instead aim to capture a degree of similarity between two tuples, even if their
components are rearranged.

A detailed analysis of these metrics is beyond the scope of this chapter. For our
purposes, it suffices to know that the availability of such schemes for matching
individual component allows the design of suitable approaches to the detection of
duplicates in the domains of both structured and textual data [15, 29, 75, 76, 85], in
which individual tuples consist of multiple components. These approaches can be
divided into two broad and widespread families, i.e., supervised and unsupervised
techniques, which are respectively covered in section 3 and section 4.

3 Supervised Approaches to De-duplication

The common idea behind such category of approaches is to learn from the training
data suitable models for tuple matching [6, 81, 92, 36]. This involves learning prob-
abilistic models [39, 82] or deterministic classifiers [15, 30] characterizing pairs of
duplicates from training data, consisting of known duplicates. Such methods assume
that training data contain the wide variety of possible errors in practice. However,
such a comprehensive collection of training data very rarely exists in practice. Par-
tially, this issue was addressed by approaches based on active learning [85, 91].
These require an interactive manual guidance. In many scenarios, it is not plain to
obtain satisfying training data or interactive user guidance.

For what specifically regards supervised approaches to de-duplication, we ar-
gue that, being state-of-the-art proposals of the literature very heterogenous among
them, the most convenient classification to be proposed here is the one based on
the kind of data to be de-duplicated, and can be reasonably devised as follows:
(i) supervised approaches for de-duplicating relational data; (ii) supervised ap-
proaches for de-duplicating multidimensional data; (iii) supervised approaches
for de-duplicating Data-Mining data/results; (iv) supervised approaches for de-
duplicating linked and XML data; (v) supervised approaches for de-duplicating



390 G. Costa et al.

streaming data. The remaining part of this Section is organized in sub-sections
that strictly follow the proposed classification for supervised approaches to de-
duplication.

3.1 Relational Data De-duplication Approaches

In the context of relational data, [75] proposes an efficient algorithm for recog-
nizing clusters of approximatively duplicate records in large databases. The main
goal of the proposed algorithm consists in overcoming limitations exposed by a
previous relevant approach, the Smith-Waterman algorithm [89], which has been
early proposed for identifying common molecular subsequences in the context of
molecular biology research, by means of three innovative steps. First, an optimized
version of the Smith-Waterman algorithm is introduced in order to compute min-
imum edit distances among candidate duplicate records according to a domain-
independent approach. Second, a meaningful union algorithm for keeping track of
duplicate clusters as long as new duplicates are discovered is exploited. Third, a
novel priority-queue-based method is used to finally retrieve clusters of duplicate
records depending on the size and the homogeneity of the underlying database. Ex-
perimental results demonstrate the benefits of algorithm [75] over the state-of-the-
art Smith-Waterman algorithm.

[35] moves the attention on the problem of improving spatial join algorithms
over spatial databases via detecting duplicates that may occur in the set of candi-
date spatial database objets involved by (spatial join) queries. The most remarkable
contribution of this research consists of a significant improvement of performance
of two state-of-the-art spatial join algorithms, namely PBMS [83] and S3J [67],
as confirmed by experiential results shown in [35]. [35] clearly demonstrates how
duplicate record/object detection not only is useful for Data Mining and Data Ware-
housing, but even for Database query processing issues.

Blocking techniques [61] represent a traditional indexing approach for reducing
the number of comparisons due to data de-duplication, at the cost of potentially
missing some true matches. These techniques typically divide the target database
into blocks and compare only the records that fall into the same block. One tradi-
tional method is to scan the database and compute a value of an appropriate hash
function for each record. The value of the hash function defines the block to which
this record is assigned. The limit of this approach is that conventional hashing tech-
niques cannot be used for obtaining approximate duplicate detections, since the hash
value of two similar records could not be the same (due to unexpected collisions).

[85] focuses the attention on the presence of duplicates in data integration sys-
tems, hence it elects de-duplication as one of the most important research chal-
lenge to be faced-off in such systems. Indeed, integrating data from multiple and
heterogeneous sources easily exposes to the presence of duplicates, both data and
concept duplicates. Starting from limitations of actual approaches, which are mainly



Data De-duplication: A Review 391

hand-coded in nature, [85] proposes an innovative learning-based de-duplication
method whose main idea consists in interactively discovering critical training pairs,
i.e. those training pairs that may effectively provide a benefit for the ongoing de-
duplication process, via so-called active learning [31]. This method is then em-
bedded into the core layer of a complete interactive de-duplication system, called
ALIAS, for which reference architecture and main functionalities are provided.
Overall, [85] indeed proposes a sort of learning-based classifier, whose perfor-
mance is assessed via a comprehensive set of experiments on both synthetic and
real-life data sets.

Christen [16] provides us with an extremely useful research experience on
the performance and scalability of so-called blocking techniques [61] for data
de-duplication. This study first depicts a meaningful “high-level” view about the
general data de-duplication process, and then a very comprehensive experimental
analysis and evaluation of performance issues as well as scalability aspects of block-
ing techniques, which puts in emphasis benefits and limitations of state-of-the-art
approaches, mostly focusing on main-memory management and time complexity
results. As a secondary, yet useful, result of [16] the author concludes that blocking
techniques are very sensitive to the ranging of parameter values, and, since find-
ing the optimal setting for these parameters depends on the quality and the specific
characteristics of the databases to be de-duplicated, it is not easy to apply these tech-
niques in real-life database settings, where the ranging above can become arbitrary
and completely-impredicative at all. The latter one is another significant lesson to
be learned with respect to data de-duplication research principles.

Christen again proposes the Febrl (Freely Extensible Biomedical Record Link-
age) system in [17]. Febrl is an open source tool, provided with a nice graphical user
interface, which embeds a relevant number of state-of-the-art data de-duplication
approaches in order to improve data cleaning and standardization in the domain of
health databases of Australia. The most distinctive characteristic of Febrl relies in
the fact that it is prone to house and integrate any novel arbitrary data de-duplication
technique one would like to embed in the system, hence providing interesting ex-
tensible and cross-analysis facilities that allow researchers to boost the finding ca-
pabilities in this so-interesting scientific area. In [17], Christen provides us with a
very detailed description of architecture and main functionalities of Febrl, plus dis-
cussion on data de-duplication tasks end-users are allowed to define and run in this
open source environment.

Finally, [51] focuses the attention on studying the quality of de-duplication re-
sults due to clustering-based approaches, in order to discover limitations and po-
tentialities of this family of data de-duplication methods. The analysis is conducted
within the context of the Stringer system, a modular architecture that provides a reli-
able evaluation framework for stressing the effectiveness-on-arbitrary-domains and
the scalability of clustering-based data de-duplication approaches. The result of this
study makes us aware about some surprising evidences: some clustering algorithms
that have never been considered for duplicate detection problems expose good per-
formance as regards both accuracy and scalability of the data de-duplication phase.
As a further result, in [51] authors conclude that it is not possible to obtain perfect



392 G. Costa et al.

duplicate clusters by means of actual methods available in literature, so that quan-
titative approaches (e.g., [52]) oriented to find accurate confidence scores for each
duplicate cluster detected are mandatory.

3.2 Multidimensional Data De-duplication Approaches

In the context of Data Warehousing systems, [27] proposes an efficient data rec-
onciliation approach, whose main benefit consists in introducing an approximate
matching method that incorporates Machine Learning [74] tools and statistical tech-
niques with the goal of sensitively reducing the spatio-temporal complexity due to
the very large number of comparisons to be performed in order to detect matches
across different data sources. The approach in [27], mainly proposed for data recon-
ciliation purposes (which, in some sense, is more general than data de-duplication
issues), can be straightforwardly adapted for data de-duplication purposes, yet pre-
serving similar performance.

In [2], authors investigate the problem of detecting duplicate records in the rele-
vant application scenario represented by Data Warehousing systems. To this end,
authors propose and experimentally assess DELPHI, a duplicate detection algo-
rithm tailored to the specific target of dimensional tables one can find in the data
layer of Data Warehousing systems. DELPHI takes advantages from the semantics
expressed by dimensional hierarchies available in such systems in order to improve
the quality and the effectiveness of state-of-the-art approaches for duplicate record
detection that, as authors correctly state, still expose a high number of false positives
over conventional database tables.

[69] proposes a nice theoretical work focusing on general aspects of data cleaning
for Data Warehousing. The idea carried out by [69] consists in a novel knowledge-
based approach that exploits the degree of similarity of nearby records of large
databases to detect duplicates within such databases. In more details, [69] trades-off
the recall of the duplicate detection phase, i.e. the sensitivity of the target method in
accepting as duplicates those records exposing a low degree of similarity with other
records, and the precision of the duplicate detection phase, i.e. the sensitivity of the
target method in accepting as duplicates only records having an high degree of sim-
ilarity with other records. This conveys in the so-called recall-precision dilemma
[69]. Authors propose a solution to this dilemma by means of a theoretical frame-
work that makes use of transitive-closure tools over suitable graphs modeling the
uncertainty of similarities among candidate records, and advocates for approximate
solutions.

Finally, in [30] authors address the particular context represented by large high-
dimensional data sets, and propose the innovative tasks of “entity-name match-
ing” and “entity-name clustering”, which, as authors claim, play critical roles in
data cleaning over high-dimensional data [30]. In more detail, “entity-name match-
ing” deals with the problem of taking two lists of entity names from two different
sources and determining which pairs of names are co-referent (i.e., refer to the same
real-world entity). The term “entity-name clustering” instead refers to the task of



Data De-duplication: A Review 393

taking a single list of entity names and assigning entity names to clusters such that
all names in a cluster are co-referent. The major benefit due to [30] consists in
proposing an adaptive approach, meaning that accuracy of the duplicate detection
phase can be progressively improved by training.

3.3 Data-Mining Data/Results De-duplication Approaches

In the context of Data Mining, Winkler [99] studies the conceptual/theoretical over-
lap between duplicate detection and Bayesian networks, which are well-understood
tools of Machine Learning research [74]. In more detail, Winkler finds five spe-
cial conditions such that the Expectation Maximization (EM) algorithm [34] can be
used for parameter estimation within the core layer of Bayesian networks, in order
to gain a significant speed-up during the duplicate detection phase performed by
these networks. Hence, main results from [99] are of theoretical nature, and have
been further exploited for subsequent research in the duplicate detection context.
On the other hand, in [99] the author experimentally shows the performance gain
due to applying the EM algorithm for making Bayesian networks faster on dupli-
cate detection situations, and he also proves that this approach performs better than
traditional approaches that are, generally, based on iterative refinement methods.

In [88], authors address the record de-duplication problem in the context of
conventional Knowledge Discovery in Databases (KDD) [38] processes from a
completely-novel perspective that, indeed, turns to be innovative with respect to
previous research experiences. Here, the main idea consists in making use of an in-
novative multi-relational approach able of performing simultaneous inference for
all the pairs of candidate duplicate records, while allowing the model information to
propagate from one candidate match to another via exploiting the set of (database)
attributes these candidates share in common. Based on this theoretical model for rep-
resenting and processing candidate duplicate records simultaneously, authors design
the guidelines of a general framework for supporting the so-called collective infer-
ence of possible duplicates. Analytical and theoretical results presented in [88] are
fully-supported by a comprehensive campaign of experiments that truly demonstrate
the benefits of the multi-relational de-duplication approach over state-of-the-art con-
ventional ones on both syntectic and real-life data sets.

Finally, [44] deals with the problem of making data de-duplication methods au-
tomatic, in order to provide a more reliable and effective support to Data Mining
processes, hence avoiding tedious manual clerical reviews needed to (manually)
check possible data links that may still exist. It should be noted that the situation
above would be not even possible in some real-life critical application scenarios
where real-time linkage of streaming data is required (e.g., credit card transactions,
public health survey systems, and so forth). The main proposal from authors in
[44] consists in a decision-tree-based approach that embeds some state-of-the-art
compression methods aimed at improving the efficiency of the data de-duplication
phase. Combining efficient previous methods makes the approach proposed in [44]



394 G. Costa et al.

particularly suitable to support record de-duplication over very large data sets, per-
haps via invoking well-understood parallel processing paradigms.

3.4 Linked and XML Data De-duplication Approaches

The identity uncertainty problem related to the context of citing research papers,
which fall in the context of linked data, is investigated in [84], as a practical
data/object de-duplication issue arising in real-life information systems. This chal-
lenge is becoming relevant for a large spectrum of modern application scenarios,
as actually enormous, massive amounts of bibliographic knowledge is made avail-
able to open research communities via citation tools and more-conventional dig-
ital libraries via the Web. Hence, multiple observations may easily correspond to
the same (bibliographic) object, thus introducing severe flaws during the fruition
of bibliographic knowledge. Starting from these motivations, authors in [84] attack
uncertainty of identities via innovative probabilistic models over mappings defined
between terms and objects, and infer (probabilistic) matches via well-understood
Markov-Chain Monte Carlo [42] solving paradigms on top of such models. One
of the significant and singular particularities of the approach [84] is represented by
some specific optimizations introduced in the classical Markov-Chain Monte Carlo
solving method in order to generate efficient object candidates when the target do-
main contains a large number of object duplicates for a certain term. Experimental
results shown in [84] demonstrate the effectiveness of the proposed identity uncer-
tainty management approach over the bibliographic data set underlying the well-
known Web citation system Citeseer [68].

Correlation clustering [8] is an elegant clustering method that was originally
proposed for clustering graphs with binary edge labels modeling the existence of
correlation or un-correlation between the connected nodes. As highlighted in previ-
ous studies, correlation clustering can be adapted as a solving method for data de-
duplication problems. In fact, (i) nodes can store candidate duplicate data/objects,
(ii) labels can be assigned to edges on the basis of user-defined similarity scores
between pairs of nodes, and (iii) unconstrained clustering algorithms can be used to
cluster duplicate data/objects, based on a given threshold over similarity scores.

Detecting duplicates in XML data, which are relevant for modern Web applica-
tions and systems, is first investigated in [95]. [95] particularly considers the inter-
esting scenario of detecting duplicates for all the kinds of parent/child relationships
that can occur in an XML data set. Previous studies have focused on the problem of
detecting duplicates for 1 : n parent/child (XML) relationships only. The most rele-
vant contribution of [95] consists in the fact that an innovative comparison order of
pairwise classification is introduced, being this order able of reducing the number
of (re)classifications of the same pair of candidate duplicate XML objects. Two dif-
ferent algorithms that efficiently exploit this novel ordering solution are presented,
and experimentally tested on real-life movie data sets.



Data De-duplication: A Review 395

[96, 55] instead introduces the duplicate detection problem for graph data. Sim-
ilarly to the case of XML data [95], here authors make use of relationships among
objects (of the underlying database) in order to build a suitable graph modeling such
relationships, and then study how to improve the effectiveness and the efficiency of
traditional duplicate detection approaches over this graph, by reducing spatial and
time complexity. Here, the main idea consists of an hybrid approach that encom-
passes an initialization phase and an iterative phase, both aimed at gaining per-
formance over traditional solutions. Furthermore, the proposed framework argues
to achieve high scalability over large amount of data thanks to a proper RDBMS
layer, which provides support for some specific elementary routines of the duplicate-
detection-in-graphs phase by means of very efficient SQL statements implemented
in forms of well-understood stored procedures. In [96, 55], a wide and pertinent
experimental assessment of the proposed RDBMS-supported framework on both
synthetic and real-life data sets clearly demonstrates the effectiveness and the ef-
ficiency of the framework, even in comparison with traditional data de-duplication
approaches.

Finally, [70] moves the attention on duplicate detection over large XML docu-
ments, as a further extension of previous work [96, 55]. The proposed method is
based on the well-known cryptographic hashing algorithm Message Digest algo-
rithm 5 (MD5) by Rivest MD5 algorithm [12], an efficient algorithm that takes as
input messages of arbitrary length and returns as output message digests of fixed
length, and it encompasses three different modules: (i) the selector, which retrieves
candidate duplicate objects from the input XML document and a fixed set of can-
didate definitions; (ii) the pre-processor, which pre-processes candidate duplicate
objects in order to code them into 512-bit padded messages; (iii) the duplicate iden-
tifier, which finally selects the duplicate objects based on the MD5 algorithm run-
ning on the padded messages generated by the pre-processor module.

3.5 Streaming Data De-duplication Approaches

Finally, in the context of streaming data, [100] addresses the relevant research chal-
lenge represented by detecting duplicates in streaming data, which has received
considerable attention from the Database and Data Mining research communities
(e.g., [87]). Indeed, in the context of data stream processing, renouncing to the
uniqueness assumption on observed data items from an input stream is very de-
manding, as almost all the actual aggregation approaches over streaming data avail-
able in literature would need significant revision at both the theoretical and the
implementation-wise level. Based on this key observation, authors propose a fam-
ily of techniques able of computing duplicate-insensitive order statistics over data
streams, with provable error guarantees. The proposed techniques are proven to be
space- and time-efficient and suitable to support on-line computation of very high-
speed data streams. Authors complete their nice analytical and theoretical contribu-
tions by means of a comprehensive set of experiments on both syntectic and real-life



396 G. Costa et al.

data stream sets, which further confirm the effectiveness and the efficiency of the
proposed techniques.

4 Unsupervised Approaches to De-duplication

A major disadvantage of supervised approaches to duplicate detection is the require-
ment for appropriate amounts of labeled training data, which involves a considerable
human effort in labeling pairs of training data as either duplicates or non-duplicates.
This task becomes especially challenging when it comes to provide examples of
ambiguous cases (e.g., apparently duplicate tuples that are really non duplicates and
viceversa), from which to learn more effective models, that are capable to sharply
discriminate duplicates from non-duplicates [58]. In practice, supervised approaches
assume the availability of training data explaining the wide variety of possible er-
rors for each targeted entity. However, such comprehensive collections of training
data very rarely exist. Partially, this issue was addressed by resorting to active learn-
ing [85, 91]. Unfortunately, this still requires an interactive manual guidance. As a
matter of fact, in many practical applications of supervised duplicate detection, it is
not plain to obtain satisfying training data or interactive user guidance.

To avoid the limitations of supervised duplicate detection, a large body of unsu-
pervised approaches to data de-duplication has been proposed in the literature. Such
approaches essentially define suitable techniques for grouping duplicate tuples, so
that to minimize two types of incorrect matchings: false-positives (i.e., tuples recog-
nized as similar, that actually do not correspond to the same entity) and false-negatives
(i.e., tuples corresponding to the same entity, that are not recognized as similar). The
pursuit of such objectives has largely prompted the design of unsupervised classifica-
tion methods, mostly based on clustering or nearest-neighbor classification. Therein,
in order to meet the earlier requirements on effectiveness, efficiency and scalabil-
ity, various categories of schemes for approaching de-duplication in terms of unsu-
pervised classification have been developed. We focus on three major categories of
unsupervised de-duplication schemes, which are discussed separately in the rest of
this section. Precisely, subsection 4.1 covers the exploitation of consolidated cluster-
ing schemes for duplicate detection. Subsection 4.2 is devoted to de-duplication via
(dis)similarity-search in metric spaces. Finally, subsection 4.3 deals with duplicate-
detection through locality-sensitive hashing.

4.1 De-duplication Based on Clustering

Clustering methods [45, 59, 60] have been exploited for the de-duplication purpose
to divide a set of tuples into various clusters. The individual clusters refer to corre-
sponding real-world entities and meet the following two requirements: homogeneity,
i.e. pairs of tuples within a same cluster are highly similar and, hence, expected to



Data De-duplication: A Review 397

be duplicates, and neatly separation, i.e. pairs of tuples within distinct clusters are
very dissimilar and, therefore, deemed to refer to distinct real-world entities.

A variety of clustering methods can be exploited in the context of duplicate de-
tection. A very effective approach would be using a hierarchical clustering method2,
equipped with an accurate component-wise similarity metric, such as edit distance,
affine gap distance, smith-waterman distance and Jaro distance (see [58] for a de-
tailed survey) to match tuple tokens. Unfortunately, the quadratic complexity of
hierarchical clustering in the number of available tuples, combined with the high
computational cost of the schemes for matching tuple components (that becomes
quadratic w.r.t. the length of tokens in the case of edit distance), would penalize the
efficiency and scalability of the resulting de-duplication process, up to the point of
making the latter impractical in the great majority of applicative domains, where
even a small amount of data is available.

Apart from hierarchical methods, several consolidated clustering algorithms [37,
40, 48, 49, 53] are at the heart of various de-duplication techniques. However, al-
though generally effective, these techniques do not generally guarantee an adequate
level of scalability. As a matter of fact, these approaches would not work adequately
in a scenario, where far too many clusters are expected to be found, as it does happen
in a typical de-duplication scenario, where the actual number of clusters of dupli-
cate tuples can be of the same order as the size of the database. The only suitable
approaches appear to be the ones in [23, 72].

Precisely [72] avoids costly pairwise comparisons by grouping objects in canopies,
i.e., subsets containing objects suspected to be similar according to some cheap (i.e.
computationally inexpensive) similarity function and, then, computing actual pair-
wise similarities only within the discovered canopies. Since in a typical duplicate
detection scenario there are several canopies, and an object is shared in a very few
number of canopies, the main issue of the approach is the creation of canopies.

In [23], an efficient two-phase approach is proposed: first determine the nearest
neighbors of every tuple in the database and, then, partition the original collection
into groups of duplicates. The efficiency of the algorithm strictly relies on the near-
est neighbors computation phase, where the availability of any disk-based index
(i.e., inverted index associated with edit or fuzzy similarity functions) is assumed.
Efficiency comes from the lookup order in which the input tuples are scanned, in or-
der to retrieve nearest neighbors. The order corresponds to a breadth first traversal of
a tree, where the children of any node are its nearest neighbors. The benefit consists
in accessing, for consecutive tuples, the same portion of the index, thus improving
the buffer hit ratio.

Despite their strengths, the approaches in [23, 72] are not meant for incremental
de-duplication.

2 Hierarchical clustering algorithms are well known in the literature for producing top qual-
ity results [60].



398 G. Costa et al.

4.2 De-duplication Based on (dis)Similarity-Search in Metric
Spaces

De-duplication can also be performed by grouping duplicates through neighbor-
driven clustering. Given a collection of tuples equipped with a suitable (dis)similarity
metric, the idea is that the cluster membership of a tuple should be established by
looking at the clusters to which other similar tuples belong.

Neighbor-driven de-duplication consists of three basic steps. Initially, the pair-
wise distance between tuples is computed. Then, a list of neighbors is retrieved for
each query tuple, that is, for each tuple to be de-duplicated. A tuple is essentially a
neighbor of the query tuple, when the former is similar to the latter according to the
adopted similarity metric. Ultimately, the cluster membership for the query tuple is
determined through a voting procedure, in which the retrieved neighbors, that are
likely duplicates of the query tuple, vote for the cluster to which the latter should
be assigned. The most basic voting scheme is the majority one, in which the query
tuple is assigned to the cluster that is most common among its neighbors.

Similarity-search [24, 56] plays a major role in neighbor-driven de-duplication,
since it allows the identification of all neighbors of a query tuple. However, the
high dimensionality [94] of the space in which the search is typically performed
is a major weakness of neighbor-driven de-duplication. Moreover, similarity-search
requires setting an appropriate upper bound (or, also, a threshold) to the maximum
distance from the query tuple, that actually identifies the neighborhood of the latter.
Computing a distance threshold is problematic, since, as it is pointed out in [23],
one absolute global distance threshold does not guarantee an effective retrieval of
neighbors. This has undesirable effects. Indeed, the identification of too few neigh-
bors may make duplicate clustering susceptible to overfitting. Instead, too many
neighbors may lead to noisy duplicate detection, since far dissimilar tuples may
be involved in the voting procedure. According to the results in [23], the distance
threshold should be actually considered as a local property of the individual group
of duplicates [23]. Therefore, each real-world entity in the data should require the
computation of a suitable distance threshold, that differs from the thresholds asso-
ciated with the other entities in the same data. Unfortunately, the tuning of several
distance thresholds would make the resulting de-duplication process impractical.
Additionally, the basic similarity-search for neighboring duplicates involves com-
puting similarities between all pairs of tuples in the underlying data, thus being
computationally quadratic in the overall number of available tuples. This exceed-
ingly penalizes both the efficiency and the scalability of de-duplication.

In order to speed up the basic approach to neighbor-driven de-duplication, var-
ious refinements have been proposed [2, 22, 46], that exploit efficient indexing
schemes. Unfortunately, these refinements are not specifically designed to approach
neighbor-driven de-duplication from an incremental clustering perspective. Therein,
neighbor-driven clustering would in principle benefit from an indexing scheme, that
supports the execution of similarity queries and can even be incrementally updated
with new tuples. Nonetheless, the syntactic heterogeneity of the tuples at hand is
likely to heavily increase the size of the index, which would ultimately degrade the



Data De-duplication: A Review 399

performance of the overall neighbor-driven de-duplication process. To further elab-
orate on this point, the exploitation of an indexing scheme for neighbor-driven de-
duplication was empirically investigated in [32]. In particular, this study focused on
the M-Tree index [25], a well-known, state-of-the-art index/storage structure, which
looks like a n-ary tree.

The M-Tree allows to index and organize tuples, provided that a suitable distance
metric dist is defined for pairwise tuple comparison. Precisely, tuples are arranged
into a balanced tree structure, in which each node has a fixed size (related to the
size of a page to be stored on disk). The individual entries of a non-leaf node store
routing objects, i.e., summaries of the information about the contents of the subtrees
rooted at the children of that node. In turn, each routing object Or is associated with
two further elements: a pointer referencing the root of a sub-tree T (Or) (the so-
called covering tree of Or) and a covering radius r(Or), which guarantees that all
objects in T (Or) are within the distance r(Or) from Or. The search for the neighbors
of a query tuple t can be efficiently answered by simply traversing the M-Tree: at
each non-leaf node storing a routing object Or, the evaluation of both dist(t,Or) and
r(Or) allows to decide whether the corresponding subtree T (Or) contains candidate
neighbors and, hence, whether it has to be explored or not. In other words, querying
the M-Tree for the neighbors of a query tuple involves traversing the M-Tree and
ignoring those subtrees, that are reputed uninteresting for the search purpose.

A neighbor-driven approach to duplicate detection would strongly benefit from
the exploitation of an index structure such as the M-Tree, since the latter would, in
principle, answer similarity queries with minimal processing time and I/O cost. Ad-
ditionally, the M-tree has three features, that are highly desirable in a de-duplication
setting. First, it is a paged, balanced, and dynamic secondary-memory structure, ca-
pable to index data sets from generic metric spaces. Second, similarity range and
nearest-neighbor queries can be performed and results can be ranked with respect
to a given query tuple. Third, query execution is optimized to reduce both the num-
ber of pages read and the number of distance computations. However, the empirical
analysis in [32] revealed that, when several tuples exhibit heterogeneous syntactic
representations, the magnitude of the covering radii increases (especially at higher
levels) and, hence, most of the internal nodes of the M-Tree tend to correspond to
quite heterogeneous groups of tuples. Therefore, a high number of levels, nearly
linear in the number of distinct entities in the data collection, is required to suitably
index and organize the original collection of tuples. Thus, since in the typical de-
duplication scenario the number of entities is likely to be of the same order as the
number of available data tuples, the cost of similarity search actually tends to be
nearly linear in the number of the original tuples. Clearly, this negatively affects the
performance of the M-Tree and makes the overall neighbor-driven de-duplication
process unable to scale for manipulating very large collections of data.

The problem of finding all tuples similar to a certain query tuple has been
intensively studied within the database and information-retrieval communities with
important achievements. Unfortunately, the incorporation of these results in neighbor-
driven de-duplication would not make its computational cost independent on the size
of the available data.



400 G. Costa et al.

Some works from the database community, such as [86] and [5], focused on solv-
ing the problem exactly, by defining set-similarity joins, i.e. suitable operators for
database management systems. Informally, a similarity join is an operation for rec-
ognizing different representation of a real-world entity. More precisely, given two
relations, a similarity join finds all pairs tuples from the two relations, that are syn-
tactically similar. Similarity is evaluated by means of a string-based similarity func-
tion: two tuples are considered similar if the value of the similarity function for these
two tuples is greater than a certain threshold. An important drawback of the opera-
tors in [86] is that they scale quadratically with respect to the size of the data, which
makes their exploitation impractical in the de-duplication of very large databases.
The notion of set-similarity join was introduced in [5] as a primitive that takes two
collections of sets as input and identifies all pairs of sets exhibiting a strong simi-
larity. The latter is established through suitable predicates concerning the size and
overlap of the sets. Set-similarity joins are performed through signature-based algo-
rithms. These algorithms generate signatures for the input sets, with the desirable
property that, if the similarity of two sets exceeds a certain threshold, then the two
sets share a common signature. By exploiting this property, signature-based schemes
find all pairs of sets with common features and, eventually, output all those pairs
of sets whose pairwise similarity actually trespasses some preestablished thresh-
old. The algorithms developed in [5] for performing set-similarity joins improve the
basic performance of signature-based algorithms in two respects: the adoption of
a different scheme for computing set signatures as well as the incorporation of a
theoretical guarantee, according to which two highly dissimilar sets are not consid-
ered as duplicates with a high probability. The latter property of set-similarity joins
considerably lowers the overall number of false-positive candidate pairs and, also,
increases the efficiency of the resulting operators, that scale almost linearly in the
size of the input set. However, linear scalability comes at expense of a non trivial pa-
rameter tuning, since no single parameter setting is appropriate for all computations.
In practice, for a fixed parameter setting, the operators still scale quadratically and
some properties of the input data must be analyzed so that to establish an optimal
tuning, that ensures linear scalability.

Recently, an approach inspired from information retrieval methods [10] proposed
to scale exact join-set methods to large volumes of real-valued vector data. This
work refines the basic intuition in [86] of dynamically building an inverted list in-
dex of the input sets with some major indexing and optimization strategies, mainly
concerning how the index is manipulated to evaluate the (cosine) similarity between
the indexed records and the query one.

As a concluding remark, despite its effectiveness and the recent efforts for im-
proving its scalability, similarity search for duplicates is not always a feasible ap-
proach to neighbor-driven de-duplication. It was shown in [3, 4] that either the
space or the time required by the solutions devoted to expedite similarity search is



Data De-duplication: A Review 401

exponential in the dimensionality of the data3. Moreover, it was also proven in [94]
that similarity search based on space-partitioning indexing-schemes degenerates
into a sequential scan of the data, even when dimensionality is moderately high.
Therein, theoretical and empirical achievements lead to postulate in [94] that all
approaches to nearest-neighbor search ultimately become linear in the size of the
data, when dimensionality is sufficiently high. In the context of neighbor-driven de-
duplication, the degeneration of the search for neighbors of the query tuple to a
linear scan is undesirable, especially when processing very large volumes of data
tuples.

4.3 De-duplication Based on Locality-Sensitive Hashing

De-duplication based on locality-sensitive hashing overcomes the limited scalability
of neighbor-driven de-duplication. The premise is that in many de-duplication sce-
narios there exist several tuples, that are predominantly dissimilar from one another.
Therefore, the number of groups of duplicates is likely to be of the same order as
the overall number of tuples. In this context, finding few tuples mostly similar to
the query tuple (i.e., to the generic tuple to be de-duplicated) is deemed to provide
enough information for assigning the latter to the most appropriate group of dupli-
cates through voting mechanisms.

The foregoing arguments motivate the exploitation of approximated similarity
search for nearest neighbors of the query tuple, which can be performed much faster
than exact similarity search by means of a suitable hash-based indexing method, that
expedites the overall de-duplication process. To elaborate, an index structure is used
to allow direct access to subsets of tuples with the same features.4 The assignment
of each individual tuple to the buckets of the index structure is managed by means
of suitable hashing schemes. Precisely, the buckets associated to one tuple are the
values of some hash function(s) on the features of the tuple. De-duplication bene-
fits from a typical situation of hashing known as collision: the higher the similarity
between two tuples, the likelier it is that these share the same features and, conse-
quently, that both are assigned the same hash values, thus falling within the same
buckets of the underlying index structure. This permits to narrow the search for
neighbors of the query tuple to a focused linear search for nearest neighbors among
those tuples falling within the buckets associated to (the individual features of) the
query tuple. Therefore, in the de-duplication of the latter, nearest neighbors can be
retrieved by issuing, against the index structure, similarity queries for neighboring

3 The dimensionality of a structured tuple is simply the number of attributes in its schema.
Instead, the dimensionality of a textual sequence can be viewed, in principle, as the number
of distinguishing string tokens, chosen to represent the textual sequence as a point in a
multidimensional space, according to the vector space model [7].

4 Features are essentially distinguishing properties of a tuple, that are also commonly re-
ferred to as indexing keys (e.g., q-grams [46], i.e., contiguous substrings of length q, can
be adopted to define suitable features for strings). Various key-generation schemes exist,
that operate according to both the nature of available data and the specific applicative re-
quirements.



402 G. Costa et al.

tuples with the same features as the query tuple. Hash-based indexing guarantees
that such queries can be efficiently answered. In particular, locality-sensitive hash-
ing allows an indexing method for approximated similarity search, with a sub-linear
dependence on the number of tuples. The idea behind locality-sensitive hashing is
to bound the probability of collisions to the similarity between the tuples. In other
words, a locality-sensitive hash function guarantees that the probability of collisions
is much higher for similar tuples than it is for dissimilar ones. An important family
of locality-sensitive hash functions, in which the similarity of two tuples is measured
by their degree of overlap, can be naturally defined through the theory of min-wise
independent permutations [19].

Various approaches to de-duplication based on locality-sensitive hashing have
been proposed in the literature [20, 32, 43, 57].

Locality-sensitive hashing was originally developed in [57], as an efficient tech-
nique for accurately approximating the nearest-neighbor search problem.

The approach in [43] refines the basic proposal of [57] in several respects, in-
cluding new theoretical guarantees on the worst-case time required for performing a
nearest neighbor search as well as the generalization to the case of external memory.
In particular, given a set of tuples and a family H of locality-sensitive hash func-
tions, the generic tuple is associated with a corresponding bitstring signature, that
identifies an index bucket. The bitstring is obtained from the values of k locality-
sensitive hash functions (randomly extracted from H ) over the tuple. Since the
overall number of buckets identified by the resulting bitstrings can be huge, a second
level of standard hashing is exploited to compress the foresaid buckets by mapping
their contents into one hash table T , whose buckets are directly mapped to blocks
on disk. The size of T is proportional to the ratio of the number of tuples to the
maximal bucket-size of T . In general, it is possible to loose proximity relationships
if a point and its nearest neighbor are hashed to distinct buckets. Therefore, in order
to lower the probability of such an event, the same tuple is stored in [43] into l hash
tables T1, . . . ,Tl , respectively indexed by as many independent bitstrings.

When it comes to de-duplicate a query tuple, its nearest neighbors are identified
through the technique in [43] as follows. The query tuple is hashed to the buckets
within the individual hash tables T1, . . . ,Tl . All tuples previously hashed within
these same buckets are gathered as candidate neighbors. A linear search is then
carried out across these candidates, to find the neighbors actually closest to the query
tuple. These are guaranteed to be at a distance from the latter within a small error
factor of the corresponding optimal neighbors.

The drawback of the technique in [43] is the requirement for the identification of
an optimal, data-specific tradeoff between two contrasting aspects of the index [9],
namely accuracy and storage space. By increasing l, accuracy is guaranteed for the
great majority of queries, through a correspondingly larger number of hash tables.
However, this makes the storage requirement inversely proportional to the error fac-
tor. Also, it raises the number of potential neighbors and, hence, the overall response
time. In such cases, one may act on k, since a high value of this parameter would
sensibly lower the number of collisions and, hence, mitigate the increase in response



Data De-duplication: A Review 403

time. Unfortunately, large values of k augment the miss rate. By the converse, small
values of parameter l cannot guarantee accuracy for all queries.

An approach for identifying near duplicate Web pages is proposed in [20]. Here,
each Web page is first tokenized and then represented as the set of its distinct, con-
tiguous n-grams (referred to as shingles). The most frequent shingles are removed
from the set to both improve performance and avoid potential causes of false resem-
blance. After preprocessing, near duplicates are identified via a clustering strategy
that consists of the following four steps. A sketch is computed for each Web page,
by applying a suitable min-wise independent permutation to its shingle representa-
tion. Sketches are then expanded to generate a list of all the individual shingles and
the Web pages they appear in. Subsequently, this list is exploited to generate a new
list of all the pairs of Web pages with common shingles, along with the number of
shared shingles. Clustering is eventually achieved by examining the triplet elements
of the latter list. If a certain pair of Web pages exceeds a pre-specified threshold for
resemblance (estimated by the ratio of the number of shingles they have in common
to the total number of shingles between them), the two Web pages are connected
by a link in a union-find algorithm, that outputs final clusters in terms of connected
components.

The algorithm in [20] requires a considerable amount of time and space on disk,
especially due to the third phase, which makes it unscalable. Optimizations based on
the notion of super-shingle addressed such an aspect, although these do not properly
work with short Web pages. Yet, the de-duplication process strictly requires that the
resemblance threshold is very high to effectively prune several candidate pairs of
similar Web pages. Lower values of the threshold, corresponding to a typical setting
for similarity search, cause several negative effects. False positive candidates are
not appropriately filtered, which lowers precision. Very low values of the similarity
threshold may also diminish false negatives, with a consequently moderate increase
in recall. However, in such cases, the impact on the effectiveness of a small gain in
recall would be vanished by the corresponding (much larger) loss in precision.

An incremental clustering technique for duplicate detection in very large
databases of textual sequences is proposed in [32]. The techniques works by assign-
ing each newly arrived tuple to an appropriate cluster of duplicates. More precisely,
the de-duplication of a new tuple is accomplished by retrieving a set of neighboring
tuples from a hash-based index structure. Neighbors are highly similar to the new
tuple and, hence, their cluster membership provides useful information about the
real-world entity corresponding to the new tuple. The latter is eventually assigned
to the cluster of duplicates shared by the majority of neighbors.

The de-duplication process in [32] relies on a suitable hash-based index, that
maps any tuple to a set of indexing keys and assigns syntactically similar tuples to
the same buckets. In this manner, the neighbors of a query tuple can be efficiently
identified by simply retrieving those tuples stored within the same buckets assigned
to the query tuple itself, without either completely scanning the original database or
using costly similarity metrics. Indexing keys are computed through a two-step key-
generation procedure, in which locality-sensitive hash functions (based on a fam-
ily of practically min-wise independent permutations [19, 43]) are hierarchically



404 G. Costa et al.

combined for a twofold purpose: reflecting the syntactic differences both among
tuples and their components as well as enabling effective on-line matching. The
first step of the key-generation scheme recognizes similar tuple components (i.e.
string tokens) across tuples, despite some extent of syntactic heterogeneity. For this
purpose, the individual tuples are purged into intermediate representations. These
are obtained by encoding each component of the generic tuple via a min-wise hash
function, that bounds the probability of collisions of two string tokens to the overlap
between their respective sets of 1-grams (i.e., substrings of unit length) [46]. The
choice of such a hash function guarantees that two similar but different tokens are,
with high probability, assigned a same encoding. Therefore, any two tuples shar-
ing syntactically similar tokens are purged into two intermediate representations,
where such tokens converge towards a unique encoding. The second step of the
key-generation scheme associates the intermediate representations of the original
tuples with their indexing keys, through another min-wise hash function. The lat-
ter bounds the probability of collisions of two intermediate tuple representations
to the overlap between their first-step token encodings. Again, this guarantees that
two intermediate tuple representations sharing several first-step token encodings are
associated with a same indexing key.

As a matter of fact, multiple min-wise hash functions are exploited both at the
first and at the second step, for a twofold purpose, i.e., lowering the probability of
false positives and false negatives (that essentially allows for a controlled level of
approximation in the search for the nearest neighbors of the query tuple) as well as
gaining a direct control over the number of keys used for indexing any tuple, which
is necessary to guarantee the compactness of the overall storage space.

Interestingly, the approach in [32] has connections with several techniques from
the literature.

Foremost, the two-step procedure for hashing tuples can be viewed as a smarter
implementation of canopies (which are collected within the same buckets in the
index). The main difference is that the properties of min-wise hashing functions
allow to approximately detect such canopies incrementally.

Also, the key-generation scheme allows a constant (moderate) number of disk
writes and reads to/from the index structure on secondary memory, which are two
key aspects. Indeed, on one hand, the hash-based approach to de-duplication could
cause continuous leaps in the disk-read operations, even when a small number of
comparisons is needed for retrieving the neighbors of the query tuple. On the other
hand, the number of disk pages written while updating the index structure is espe-
cially relevant in the incremental maintenance of the latter. Notably, the constant
number of disk writes and reads is achieved in [32] along with a fixed (low) rate
of false negatives. These are likely contrasting objectives in hash-based approaches
to de-duplication, since few indexing keys must generally be produced to lower the
amount of I/O operations, although this tends to increase the rate of false negatives.

Yet, from a methodological point of view, the approach in [32] exhibits analo-
gies with the ones in [10, 86]. Indeed, a hash-based index is employed to maintain
associations between a certain tuple feature and the subset of all available tuples
that share that same feature. The actual difference with respect to the techniques



Data De-duplication: A Review 405

in [10, 86] is that these approaches essentially pre-compute the nearest neighbors of
each tuple, so that retrieving them becomes a simple lookup. Instead, the approach
in [32] does not support neighbor pre-computation. Notwithstanding, it still enables
neighbor search in a time that, on average, is independent on the number of database
tuples.

Finally, the tradeoff between accuracy and storage space in [32] is much less
challenging than in [43], since there exists a single hash-based index. Moreover,
guaranteeing accuracy for all queries in [32] (i.e., lowering both the false-positive
and false-negative rates) can be simply achieved by hashing a same tuple into as
many buckets of the index as the number of first-step encodings of the tuple it-
self (for each such a representation, the concatenation of its second-step encodings
yields the hash key associated to the tuple). Actually, a very limited number of
distinct hash functions is used both at the first and at the second step to enforce
de-duplication effectiveness, at the acceptable cost of a compact storage space.

5 Conclusions and Further Research

Duplicate detection is a necessary building block both for information integration
and for the design of information systems, that allows more effective information
handling and knowledge extraction, through a unified access and manipulation of
consolidated and reconciled data. The current practices behind state-of-the-art ap-
proaches to duplicate detection have been discussed so far. Despite the consider-
able advances in the field, there are still various opportunities for further improve-
ments [41, 47, 58, 98]. An overview of some major open problems and challenges
is provided below.

5.1 Efficiency and Scalability

The detection of duplicates in very large volumes of data involves a huge number
of pairwise tuple comparisons. In turn, each tuple comparison encompasses sev-
eral matchings between the individual tuple components. A meaningful reduction
of the number and the cost of both types of comparisons is key to devise solutions
with which to improve the efficiency and scalability of de-duplication. Therein,
various strategies have been proposed: blocking [58], sorted neighborhood [54],
canopies [72], similarity joins [28] are some proposals for reducing comparisons
between pairs of tuples without penalizing de-duplication effectiveness, whereas
expedients such as [93] aim to speed up the individual comparison between tuple
components. However, despite all such developments, efficiency and scalability of-
ten contrast with effectiveness. Indeed, the current state-of-the-art techniques can be
divided into two broad classes [58], that highlight the foresaid contrast. Precisely,
the techniques relying upon results from the field of databases privilege efficiency
and scalability over effectiveness. On the contrary, other techniques exploiting con-
tributions from the areas of machine learning and statistics reveal to be more effec-
tive. Unfortunately, their reduced efficiency and scalability makes the application of



406 G. Costa et al.

such techniques better suited for collections of data, whose size is orders of magni-
tude smaller than the collections processable through the techniques of the former
type.

A worthwhile opportunity of further research is to devise new approaches com-
bining the strengths of both types of de-duplication techniques.

5.2 Systematic Assessment of De-duplication Performance

Although several approaches to data de-duplication have been proposed in the liter-
ature, there is not yet a comprehensive and systematic knowledge of their relative
performances in terms of de-duplication effectiveness as well as efficiency, across
various data collections and domains. Recently, some efforts have been geared to-
wards the design of evaluation frameworks [63, 64, 65], wherein to compare some
de-duplication techniques. However, the process of gaining a systematic insight into
the actual performances of de-duplication techniques is still in its infancy. The
performed comparisons take into account only a limited number of approaches,
that are compared on few collections of data from few real-world domains. Ad-
ditionally, some collections of data were not effectively processed in [64]. This de-
serves further insights, that may be useful for the development of more sophisticated
approaches.

Additionally, further research efforts for the identification of suitable perfor-
mance metrics and state-of-the-art approaches across real-world domains should
be fostered by the recent release of standard benchmarking data sets as the ones
from [33]. Hopefully, the increasing availability of standard data sets will shed light
on which metrics and techniques are best suited for the various applicative domains.

5.3 Ethical, Legal and Anonymity Aspects

Duplicate detection raises ethical, legal and privacy issues, whenever dealing with
sensitive information about persons [62, 80]. Meeting the related national and
international laws in force is thus a major requirement in the process of data de-
duplication and subsequent management. A wide discussion concerning some ma-
jor issues in data de-duplication and the mechanisms for the protection of individual
privacy can be found in [90]. Anonymity preservation is one challenging issue, that
is related to the release of large data collections for research and analytical pur-
poses. The public release of any collections of data demands balancing analytic and
research requirements with anonymity and confidentiality. Currently, a commonly
adopted expedient to maintain the anonymity of persons in the underlying data is
encrypting the identifying information. However, encryption may decrease the ef-
fectiveness of duplicate detection over time [78]. Another strategy for anonymity
preservation would be the focused removal of the information necessary for tuple
identification (and, hence, duplicate detection) from the available data sets. Unfortu-
nately, this would still involve trust in some suitable preprocessing of the data [62].



Data De-duplication: A Review 407

One promising line of research for anonymity and confidentiality preservation is
the development of ad-hoc models, with which to accurately assess identifying in-
formation leakage in the context of duplicate detection [41]. This would be useful to
evaluate the leakage consequent to the release of identifying or sensible information
and may be adopted as a criterion for carrying out the necessary precautions, e.g.,
global recoding and local suppression, additive noise and data perturbation as well
as micro-aggregation (see [98] for a discussion of such precautions). Also, it would
be very useful to incorporate models of analytic properties and re-identification risk
in the process of de-duplication to answer two research questions, namely, under-
standing how the foresaid precautions compromise the analytic validity of the re-
leased data and estimating the re-identification rate if analytic validity is maintained.

5.4 Uncertainty

Uncertainty plays an important role in duplicate detection and is thus necessary to
deal with it. Therein, a proposal is to attach confidences to the individual tuples.
Confidences are essentially quantitative beliefs, whose actual meaning of confi-
dences depends on the targeted applicative settings. In certain domains, confidences
can be interpreted as the probability that the related tuples faithfully correspond to
certain entities [41]. In other settings, confidences can be viewed as measures of the
accuracy of the data.

While some efforts have been performed to efficiently compute the confidence of
the de-duplicated tuples when confidences are explicitly attached to the tuples [73],
the indirect estimation of some sort of de-duplication confidence, when uncertainty
is not originally available, appears to be still unexplored.

References

1. Agichtein, E., Ganti, V.: Mining Reference Tables for Automatic Text Segmentation. In:
Proc. of ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining, Seattle,
Washington, USA, pp. 20–29 (2004)

2. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating Fuzzy Duplicates in Data
Warehouses. In: Proc. of Int. Conf. on Very Large Databases, Hong Kong, China,
pp. 586–597 (2002)

3. Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. In: Proc. of IEEE Symposium on Foundations of Com-
puter Science, Las Vegas, Nevada, USA, pp. 459–468 (2006)

4. Andoni, A., Indyk, P.: Near-optimal Hashing Algorithms for Approximate Nearest
Neighbor in High Dimensions. Communications of the ACM 51(1), 117–122 (2008)

5. Arasu, A., Ganti, V., Kaushik, R.: Efficient Exact Set-Similarity Joins. In: Proc. of Int.
Conf. on Very Large Databases, Seoul, Korea, pp. 918–929 (2006)

6. Axford, S.J., Newcombe, H.B., Kennedy, J.M., James, A.P.: Automatic Linkage of Vital
Records. Science 130, 954–959 (1959)

7. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (1999)



408 G. Costa et al.

8. Bansal, N., Blum, A., Chawla, S.: Correlation Clustering. Machine Learning 56(1-3),
89–113 (2004)

9. Bawa, M., Tyson Condie, S., Ganesan, P.: LSH Forest: Self-Tuning Indexes for Simi-
larity Search. In: Proc. of Int. Conf. on World Wide Web, Chiba, Japan, pp. 651–660
(2005)

10. Bayardo, R.J., Srikant, R., Ma, Y.: Scaling Up All Pairs Similarity Search. In: Proc. of
Int. Conf. on World Wide Web, Banff, Alberta, Canada, pp. 131–140 (2007)

11. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom, J.:
Swoosh: a generic approach to entity resolution. VLDB Journal 18(1), 255–276 (2009)

12. Berson, T.A.: Differential Cryptanalysis Mod 232 with Applications to MD5. In: Proc.
of Ann. Conf. on Theory and Applications of Cryptographic Techniques, pp. 71–80
(1992)

13. Bhattacharya, I., Getoor, L.: Collective Entity Resolution in Relational Data. ACM
Trans. Knowl. Discovery from Data 1(1), 1–35 (2007)

14. Bhattacharya, I., Getoor, L., Licamele, Louis: QueryTime Entity Resolution. In: Proc.
of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Philadelphia,
Pennsylvania, USA, pp. 529–534 (2006)

15. Bilenko, M., Mooney, R.J.: Adaptive Duplicate Detection Using Learnable String Sim-
ilarity Measures. In: Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining, Washington, DC, USA, pp. 39–48 (2003)

16. Christen, P.: Towards Parameter-free Blocking for Scalable Record Linkage. Tech. Rep.
TR-CS-07-03, Australian National University, Canberra, Australia (2007)

17. Christen, P.: Febrl - An Open Source Data Cleaning, Deduplication and Record Linkage
System with a Graphical User Interface. In: Proc. of ACM Int. Conf. on Knowledge
Discovery and Data Mining, pp. 1065–1068 (2008)

18. Borkar, V.R., Deshmukh, K., Sarawagi, S.: Automatic Segmentation of Text into Struc-
tured Records. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, Santa
Barbara, California, USA, pp. 175–186 (2001)

19. Broder, A., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Minwise Independent Per-
mutations. In: Proc. of ACM Symposium on Theory of Computing, Dallas, Texas, USA,
pp. 327–336 (1998)

20. Broder, A., Glassman, S., Manasse, M., Zweig, G.: Syntactic Clustering on the Web. In:
Proc. of Int. Conf. on World Wide Web, Santa Clara, California, USA, pp. 1157–1166
(1997)

21. Cesario, E., Folino, F., Locane, A., Manco, G., Ortale, R.: Boosting Text Segmentation
Via Progressive Classification. Knowl. and Inf. Syst. 15(3), 285–320 (2008)

22. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and Efficient Fuzzy Match
for Online Data Cleaning. In: Proc. of ACM SIGMOD Conf. on Management of Data,
San Diego, California, USA, pp. 313–324 (2003)

23. Chaudhuri, S., Ganti, V., Motwani, R.: Robust Identification of Fuzzy Duplicates. In:
Proc. of Int. Conf. on Data Engineering, Tokyo, Japan, pp. 865–876 (2005)

24. Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in Metric Spaces.
ACM Comput. Surv. 33(3), 273–321 (2001)

25. Ciaccia, P., Patella, M., Zezula, P.: M-Tree: An Efficient Access Method for Similar-
ity Search in Metric Spaces. In: Proc. of Int. Conf. on Very Large Databases, Athens,
Greece, pp. 426–435 (1997)

26. Cochinwala, M., Dalal, S., Elmagarmid, A.K., Verykios, V.S.: Record Matching: Past,
Present and Future. Technical Report, number CSD-TR #01-013. Department of Com-
puter Sciences, Purdue University (2001)



Data De-duplication: A Review 409

27. Cochinwala, M., Kurien, V., Lalk, G., Shasha, D.: Efficient Data Reconciliation. Infor-
mation Sciences 137(1-4), 1–15 (2001)

28. Cohen, W.W.: Data Integration using Similarity Joins and a Word-based Information
Representation Language. ACM Trans. on Inf. Syst. 18(3), 228–321 (2000)

29. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A Comparison of String Distance Metrics
for Name-Matching Tasks. In: Proc. of IJCAI Workshop on Information Integration on
the Web, Acapulco, Mexico, pp. 73–78 (2003)

30. Cohen, W.W., Richman, J.: Learning to Match and Cluster Large High-Dimensional
Data Sets for Data Integration. In: Proc. of ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 475–480 (2002)

31. Cohn, D.A., Atlas, L., Ladner, R.E.: Improving Generalization with Active Learning.
Machine Learning 15(2), 201–221 (1994)

32. Costa, G., Manco, G., Ortale, R.: An Incremental Clustering Scheme for Data De-
duplication. Data Min. and Knowl. Discovery 20(1), 152–187 (2010)

33. Database Group Leipzig. Benchmark datasets for entity resolution,
http://dbs.uni-leipzig.de/en/research/projects/object
matching/fever/benchmark datasets for entity resolution

34. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data
via the EM Algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–28
(2001)

35. Dittrich, J.-P., Seeger, B.: Data Redundancy and Duplicate Detection in Spatial Join
Processing. In: Proc. of IEEE Int. Conf. on Data Engineering, pp. 535–546 (2000)

36. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Sur-
vey. IEEE Transanctions on Knowledge and Data Engineering 19(1), 1–16 (2007)

37. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: Proc. of Int. Conf. on Knowledge
Discovery and Data Mining, Portland, Oregon, USA, pp. 226–231 (1996)

38. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Widener, T.: The KDD Process
for Extracting Useful Knowledge from Volumes of Data. Communications of the
ACM 39(11), 27–34 (1996)

39. Fellegi, I.P., Sunter, A.B.: A Theory for Record Linkage. Am. Stat. Assoc. 64, 1183–
1210 (1969)

40. Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A.: Clustering Large Datasets in Ar-
bitrary Metric Spaces. In: Proc. of Int. Conf. on Data Engineering, Sydney, Austrialia,
pp. 502–511 (1999)

41. Garcia-Molina, H.: Entity resolution: Overview and challenges. In: Atzeni, P., Chu, W.,
Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 1–2. Springer,
Heidelberg (2004)

42. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice.
Chapman and Hall, Boca Raton (1996)

43. Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hashing.
In: Proc. of Int. Conf. on Very Large Databases, Edinburgh, Scotland, pp. 518–529
(1999)

44. Goiser, K., Christen, P.: Towards Automated Record Linkage. In: Proc. of Australasian
Data Mining Conf., pp. 23–31 (2006)

45. Grabmeier, J., Rudolph, A.: Techniques of Cluster Algorithms in Data Mining. Data
Min. and Knowl. Discovery 6(4), 303–360 (2002)

46. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava,
D.: Approximate String Joins in a Database (Almost) for Free. In: Proc of Int. Conf. on
Very Large Databases, Rome, Italy, pp. 491–500 (2001)

http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution


410 G. Costa et al.

47. Gu, L., Baxter, R.A., Vickers, D., Rainsford, C.: Record Linkage: Current Practice and
Future Directions. Technical Report, number 03/83. CSIRO Mathematical and Infor-
mation Sciences (2001)

48. Guha, S., Rastogi, R., Shim, K.: CURE: An Efficient Clustering Algorithm for Large
Databases. In: Proc. of ACM SIGMOD Int. Conf. on Management of Data, Seattle,
Washington, USA, pp. 73–84 (1998)

49. Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for Categorical
Attributes. Inf. Syst. 25(5), 345–366 (2001)

50. Gunsfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Davis (1997)

51. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller, R.J.: Framework for Evaluating Cluster-
ing Algorithms in Duplicate Detection. Proceedings of VLDB 2(1), 1282–1293 (2009)

52. Hassanzadeh, O., Miller, R.J.: Creating Probabilistic Databases from Duplicated Data.
The VLDB Journal 18(5), 1141–1166 (2009)

53. Hernández, M.A., Stolfo, S.J.: The Merge/Purge Problem for Large Databases. In: Proc.
of ACM SIGMOD Int. Conf. on Management of Data, San Jose, California, USA, pp.
127–138 (1995)

54. Hernández, M.A., Stolfo, J.: Real-world Data is Dirty: Data Cleansing and the
Merge/Purge Problem. Data Min. and Knowl. Discovery 2(1), 9–37 (1998)

55. Herschel, M., Naumann, N.: Scaling up Duplicate Detection in Graph Data. In: Proc. of
ACM Int. Conf. on Information and Knowledge Management, pp. 1325–1326 (2008)

56. Hjatason, G.R., Samet, H.: Index-Driven Similarity Search in Metric Spaces. ACM
Trans. on Database Syst. 28(4), 517–518 (2003)

57. Indyk, P., Motwani, R.: Approximate Nearest Neighbor - Towards Removing the Curse
of Dimensionality. In: Proc. of Symposium on Theory of Computing, Dallas, Texas,
USA, pp. 604–613 (1998)

58. Ipeirotis, P.G., Verykios, V.S., Elmagarmid, A.K.: Duplicate Record Detection: A Sur-
vey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

59. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood
Cliffs (1998)

60. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Comput.
Surv. 31(3), 264–323 (1999)

61. Jaro, M.A.: Advances in Record Linkage Methodology as Applied to Matching the
1985 Census of Tampa, Florida. Journal of the American Statistical Society 84, 420–
424 (1989)

62. Kingsbury, N.R., et al.: Record Linkage and Privacy: Issues in Creating New Federal
Research and Statistical Information. U.S. General Accounting Office (2001)

63. Kopcke, H., Rahm, E.: Frameworks for Entity Matching: A Comparison Data and
Know. Engineering 69(2), 197–210 (2010)

64. Kopcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-
world match problems. Proc. of the VLDB Endowment 3(1), 484–493 (2010)

65. Kopcke, H., Thor, A., Rahm, E.: Evaluation of Learning-Based Approaches for Match-
ing Web Data Entities. IEEE Internet Computing 14(4), 23–31 (2010)

66. McCallum, A.: MALLET: A Machine Learning for Language Toolkit,
http://mallet.cs.umass.edu

67. Koudas, N., Sevcik, K.C.: Size Separation Spatial Join. In: Proc. of ACM Int. Conf. on
Management of Data, pp. 324–335 (1997)

68. Lawrence, S., Bollacker, K., Giles, C.L.: Autonomous Citation Matching. In: Proc. of
ACM Int. Conf. on Autonomous Agents, pp. 392–393 (1999)

http://mallet.cs.umass.edu


Data De-duplication: A Review 411

69. Low, W.L., Lee, M.L., Ling, T.W.: A Knowledge-Based Approach for Duplicate Elim-
ination in Data Cleaning. Information Systems 26(8), 585–606 (2001)

70. Lwin, T., Nyunt, T.T.S.: An Efficient Duplicate Detection System for XML Documents.
In: Proc. of IEEE Int. Conf. on Computer Engineering and Applications, pp. 178–182
(2010)

71. McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy Markov Models for Informa-
tion Extraction and Segmentation. In: Proc. of Int. Conf. on Machine Learning, Stan-
dord, California, USA, pp. 591–598 (2000)

72. McCallum, A., Nigam, K., Ungar, L.: Efficient Clustering of High-Dimensional Data
Sets with Application to Reference Matching. In: Proc. of ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, Boston, Massachusetts, USA, pp. 169–178
(2000)

73. Menestrina, D., Benjelloun, O., Garcia-Molina, H.: Generic Entity Resolution with
Data Confidences. In: Int. VLDB Workshop on Clean Databases, Seoul, Korea (2006)

74. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
75. Monge, A.E., Elkan, C.P.: An Efficient Domain-Independent Algorithm For Detecting

Approximately Duplicate Database Records. In: Proc. of SIGMOD Workshop on Re-
search Issues on Data Mining and Knowledge Discovery, Tucson, Arizona, USA, pp.
23–29 (1997)

76. Monge, A.E., Elkan, C.P.: The Field Matching Problem: Algorithms and Applications.
In: Proc. of Int. Conf. on Knowledge Discovery and Data Mining, Portland, Oregon,
USA, pp. 267–270 (1996)

77. Mukherjee, S., Ramakrishnan, I.V.: Taming the Unstructured: Creating Struc-
tured Content from Partially Labeled Schematic Text Sequences. In: Proc. of
CoopIS/DOA/ODBASE Int. Conf., Agia Napa, Cyprus, pp. 909–926 (2004)

78. Muse, A.G., Mikl, J., Smith, P.F.: Evaluating the quality of anonymous record linkage
using deterministic procedures with the New York State AIDS registry and a hospital
discharge file. Statistics in Medicine 14, 499–509 (1995)

79. Neiling, M., Jurk, S.: The Object Identification Framework. In: Proc. KDD Workshop
on Data Cleaning, Record Linkage, and Object Consolidation, Washington, DC, USA,
pp. 37–39 (2003)

80. Neutel, C.I.: Privacy Issues in Research Using Record Linkage. Pharmcoepidemiology
and Drug Safety 6, 367–369 (1997)

81. Newcombe, H.B.: Record Linking: The Design of Efficient Systems for Linking
Records into Individual and Family Histories. American Journal of Human Genetics 19,
335–359 (1967)

82. Newcombe, H.B., Kennedy, J.M., Axford, S.J., James, A.P.: Automatic Linkage of Vital
Records. Science 130, 954–959 (1959)

83. Patel, J., DeWitt, D.J.: Partition Based Spatial-Merge Join. In: Proc. of ACM Int. Conf.
on Management of Data, pp. 259–270 (1996)

84. Pasula, H., Marthi, B., Milch, B., Russell, S.J., Shpitser, I.: Identity Uncertainty and
Citation Matching. In: Proc. of Ann. Conf. on Neural Information Processing Systems,
pp. 1401–1408 (2002)

85. Sarawagi, S., Bhamidipaty, A.: Interactive Deduplication using Active Learning. In:
Proc. of ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Edmon-
ton, Alberta, Canada, pp. 269–278 (2002)

86. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: Proc. of SIG-
MOD Int. Conf. on Management of Data, Paris, France, pp. 743–754 (2004)

87. Shen, H., Zhang, Y.: Improved Approximate Detection of Duplicates for Data Streams
over Sliding Windows. Journal of Computer Science and Technology 23(6), 973–987
(2008)



412 G. Costa et al.

88. Singla, P., Domingos, P.: Multi-Relational Record Linkage. In: Proc. of ACM Int. Ws.
on Multi-Relational Data Mining, pp. 31–38 (2004)

89. Smith, S., Waterman, M.S.: Identification of Common Molecular Subsequences. Jour-
nal of Molecular Biology 147(1), 195–197 (1981)

90. Statistical Linkage Key Working Group. Statistical Data Linkage in Community Ser-
vices Data Collections (2002)

91. Tejada, S., Knoblock, C.A., Minton, S.: Learning Domain-Independent String Transfor-
mation Weights for High Accuracy Object Identification. In: Proc. of ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp.
350–359 (2002)

92. Tepping, J.B.: A Model for Optimum Linkage of Records. Journal of the American
Statistical Association 63, 1321–1332 (1968)

93. Verykios, V.S., Elmagarmid, A.K., Houstis, E.N.: Automating the approximate record-
matching process. Inf. Sci. 126(1-4), 83–98 (2000)

94. Weber, R., Schek, H.J., Blott, S.: A Quantitative Analsysis and Performance Study for
Similarity Search in High-Dimensional Spaces. In: Proc. of Int. Conf. on Very Large
Databases, New York City, USA, pp. 194–205 (1998)

95. Weis, M., Naumann, N.: Detecting Duplicates in Complex XML Data. In: Proc. of IEEE
Int. Conf. on Data Engineering, p. 109 (2006)

96. Weis, M., Naumann, N.: Space and Time Scalability of Duplicate Detection in Graph
Data. Tech. Rep. 25, Hasso-Plattner Institut, Potsdam, Germany (2007)

97. Winkler, W.E.: String Comparator Metrics and Enhanced Decision Rules in the Fellegi-
Sunter Model of Record Linkage. In: Proc. Section on Survey Research Methods,
American Statistical Association, pp. 354–359 (1990)

98. Winkler, W.E.: Overview of Record Linkage and Current Research Directions. Techni-
cal Report. Statistical Research Division, U.S. Census Bureau (1999)

99. Winkler, W.E.: Methods for Record Linkage and Bayesian Networks. Tech. Rep.
RRS2002/05, U.S. Bureau of the Census, Washington, D.C., USA (2002)

100. Zhang, Y., Lin, X., Yuan, Y., Kitsuregawa, M., Zhou, X., Yu, J.X.: Duplicate-insensitive
Order Statistics Computation over Data Streams. IEEE Transanctions on Knowledge
and Data Engineering 22(4), 493–507 (2010)


	Data De-duplication: A Review
	Introduction
	Problem Description
	Supervised Approaches to De-duplication
	Relational Data De-duplication Approaches
	Multidimensional Data De-duplication Approaches
	Data-Mining Data/Results De-duplication Approaches
	Linked and XML Data De-duplication Approaches
	Streaming Data De-duplication Approaches

	Unsupervised Approaches to De-duplication
	De-duplication Based on Clustering
	De-duplication Based on (dis)Similarity-Search in Metric Spaces
	De-duplication Based on Locality-Sensitive Hashing

	Conclusions and Further Research
	Efficiency and Scalability
	Systematic Assessment of De-duplication Performance
	Ethical, Legal and Anonymity Aspects
	Uncertainty

	References




