
Chapter 8
Dynamic Simultaneous Equations with Panel
Data: Small Sample Properties and Application
to Regional Econometric Modelling

8.1 Introduction

The notion of simultaneity among variables arises for many economic relations.
This chapter seeks to analyze the appropriateness of different dynamic panel data
models for estimating small simultaneous equation systems. Using multiple equa-
tion extensions for the standard fixed effects model (FEM), a bias corrected FEM
version as well as different IV and GMM estimators, recently proposed in the liter-
ature, we judge among their performance in terms of bias and efficiency in Monte
Carlo simulations. Beside standard large N (cross-sections), small T (time dimen-
sion) assumptions we especially check for the estimators performance in two-sided
small samples with both moderate N and T . The latter setup is typically found for
data settings involving macroeconomic or regional analysis.

In an empirical application, we then estimate dynamic simultaneous equation
modelling with panel data to assess the role of spillovers from public capital forma-
tion and regional support policies for the regional growth of German states (NUTS1-
level). We explicitly set up a system of equations in order to account more appro-
priately for the possible sources of endogeneity for right-hand-side regressors in
the output and factor demand equations. Compared to the single-equation approach,
the system estimation is also able to spell out feed-back simultaneities among the
endogenous variables specified in the system and identify the direct and indirect
effects of policy variables on labor productivity growth and private/public capital
investment.

The remainder of the chapter is organized as follows: Sect. 8.2 specifies the un-
derlying econometric model involving a system of equations, where at least one
equation is of dynamic nature by the inclusion of a lagged endogenous variable as
right-hand-side regressor. Section 8.3 sketches the Monte Carlo simulation design
and discusses the results for a set of different parameter constellations. For the em-
pirical application in Sect. 8.4 we build up a small-scale 3-equation regional growth
model for labor productivity with endogenized equations for private and public cap-
ital input. We check the dynamic properties of the system and use the model for
regional policy analysis. The latter tests for the economic effects of interregional
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220 8 Dynamic Simultaneous Equations with Panel Data

public capital spillovers and regional equalization transfer schemes. Section 8.5 con-
cludes the chapter.

8.2 Model Setup: DSEM with Panel Data

8.2.1 General Specification

Consider a system of M dynamic equations, where its m-th structural equation has
the following general form

yi,t,m =α +
l∑

j=0

β ′
j Yi,t−j,m +

k∑

j=0

γ ′
jXi,t−j,m +ui,t,m, with ui,t,m =μi,m +νi,t,m,

(8.1)

for i = 1, . . . ,N (cross-sectional dimension) and t = 1, . . . , T (time dimension).
yi,t,m is the endogenous variable and Yi,t,m, . . . , Yi,t−j,m denote current and lagged
endogenous explanatory variables of the system including the lagged endogenous
variable of the m-th equation. Analogously, X is a (1 × K) vector of all further
(unmodelled) K explanatory regressors, ui,t,m is the combined error term, which is
composed of the two error components μi,m as the unobservable individual effects
and νi,m is the remainder error term. Both μi,m and νi,t,m are assumed to be i.i.d.
residuals with standard normality assumptions as

E(νi,t,mνj,s,m) = 0, for either i �= j or t �= s, or both,

E(μi,mμj,m) = 0, for i �= j, (8.2)

E(μi,mνj,t,m) = 0, ∀i, j, t,

where j and s have the same dimension as i and t , respectively. The first two as-
sumptions state that the homoscedastic error terms are mutually uncorrelated over
time and across cross-sections. Furthermore the unobserved individual heterogene-
ity is random and uncorrelated between individuals. The third assumption rules out
any correlation between the individual effects and the remainder of the disturbance
term. One has to note, that these assumptions hold for the error components of the
m-th equation of the system, while we allow for cross error correlations between
different equations of the system. Stacking the observations for each endogenous
yi,t , exogenous variable xi,t and the error term ui,t according to

y =

⎛

⎜⎜⎜⎜⎜⎜⎝

y11
...

yiT

...

yNT

⎞

⎟⎟⎟⎟⎟⎟⎠
, x =

⎛

⎜⎜⎜⎜⎜⎜⎝

x11
...

xiT

...

xNT

⎞

⎟⎟⎟⎟⎟⎟⎠
, u =

⎛

⎜⎜⎜⎜⎜⎜⎝

u11
...

uiT

...

uNT

⎞

⎟⎟⎟⎟⎟⎟⎠
(8.3)



8.2 Model Setup: DSEM with Panel Data 221

allows us to simplify the notation of (8.1) in the following way:

ym = Rmξm + um, um = μm + νm, (8.4)

where Rn = (Yn,Xn) and ξ = (β ′, γ ′). Further stacking the equations into the form
usual considered in a system analysis yields

y = Rξ + u, (8.5)

where y′ = (y′
1, . . . , y

′
M) and similar for ξ and u. R is defined as

R =
⎡

⎢⎣
R1 · · · 0
...

. . .
...

0 · · · RM

⎤

⎥⎦ . (8.6)

As in the single equation model, we assume that both μ and ν are standard normal
errors with the zero mean and covariance matrices for the error components as �μ =
[σ 2

μ(j,l)
] (with j = 1, . . . ,M and l = 1, . . . ,M) for the unobserved individual effects,

and �ν = [σ 2
ν(j,l)

] for the remainder error term, respectively.
As Krishnakumar (1995) points out, directly estimating the coefficients of a

structural equation of a simultaneous equation model by OLS or generalized least
squares (GLS) leads to inconsistent estimators, since the explanatory endogenous
variables of the equation are correlated with the error terms. In such cases, the
method of instrumental variables (IV) is an appropriate technique of estimation.
Typically, all contemporaneous and lagged values of the exogenous explanatory
variables (X) are used as instruments for the set of endogenous variables. In the
case of dynamic panel data estimators, the instrumentation problem is even more
complex, since appropriate instruments for the lagged regressors of the endogenous
variable have to be found as well.

8.2.2 Estimators for Dynamic Panel Data Models

In the recent literature, various contributions have been proposed on how to deal
with the problem introduced by the inclusion of a lagged dependent variable in the
estimation of a dynamic panel data model and its built-in correlation with the indi-
vidual effect: That is, since yit is a function of μi , also yi,t−1 is a function of μi

and thus yi,t−1 as right-hand side regressor is correlated with the error term. Even in
the absence of serial correlation of νit , this renders standard λ-class estimators such
as OLS, FEM and random effects (REM) models biased and inconsistent (see, e.g.,
Nickell 1981; Sevestre and Trognon 1995 or Baltagi 2008, for an overview). Since
the single equation dynamic panel data model is a nested version of (8.1), which
basically reduces the vector Y to yi,t−1,m, we first discuss solutions for the instru-
mentation problem along the lines of the single equation literature. The extension to
the system case is then rather straightforward. The most widely applied approaches
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of dealing with this kind of endogeneity typically start with first differencing (FD)
(8.1) to get rid of μi and then estimate the model by IV techniques. The advantage
of the FD transformation is that this form of data transformation does not invoke the
inconsistency problem associated with the standard FEM or REM estimation (see,
e.g., Baltagi 2008). Anderson and Hsiao (1981) were among the first to propose an
estimator for the transformed FD model of the nested single equation version (8.1):

(yit − yi,t−1) = α(yi,t−1 − yi,t−2) +
k∑

j=1

βj (Xi,t−j − Xi,t−j+1) + (uit − ui,t−1),

(8.7)

where (uit − ui,t−1) = (νit − νi,t−1) since (μi − μi) = 0. As a result of first differ-
encing, the unobservable individual effects have been eliminated from the model.
However, the error term (νit − νi,t−1) is correlated with (yi,t−1 − yi,t−2) and thus
the latter needs to be estimated by appropriate instruments which are uncorrelated
with the error term. Anderson and Hsiao (1981) recommend to use lagged variables,
either the lagged observation yi,t−2 or the lagged difference (yi,t−2 − yi,t−3) as in-
struments for (yi,t−1 − yi,t−2). Arellano (1989) compares the two alternatives and
recommends yi,t−2 rather than the lagged differences as instruments since they typ-
ically show a superior empirical performance in terms of bias and efficiency. The
respective orthogonality conditions for this IV approach can be stated as:

E(yi,t−2 
ui,t ) = 0 or alternatively E(
yi,t−2 
ui,t ) = 0, (8.8)

where 
 is the difference operator defined as 
ui,t = ui,t − ui,t−1 and likewise for
y. The Anderson–Hsiao (AH) model can only be estimated for t = 3, . . . , T due
to the construction of the instruments. Subsequently, refined instrument sets for the
estimation of (8.7) have been proposed in the literature. Trying to improve the small
sample behavior of the AH estimator, Sevestre and Trognon (1995) propose a more
efficient FD estimator which is based on a GLS transformation of (8.7).1 Searching
for additional orthogonality conditions, Arellano and Bond (1991) propose an GMM
estimator, which makes use of all lagged endogenous variables—rather than just
yi,t−2 or 
yi,t−2—of the form:2

E(yi,t−ρ 
ui,t ) = 0 for all ρ = 2, . . . , t − 1 and t = 3, . . . , T . (8.9)

Equation (8.9) is also called the ‘standard moment condition’ and is widely used
in empirical estimation. Thus, for each individual i, the full set of valid instruments
(including also a strictly exogenous regressor xi,t ) may be written compactly as

E(Z′DIF
i 
ui) = 0 (8.10)

1Since this GLS transformation leads to disturbances that are linear combinations of the ui,t ’s, the
only valid instruments for 
yi,t−1 are current and lagged values of 
X.
2The use of GMM in dynamic panel data models was introduced by Holtz-Eakin et al. (1988), who
propose a way to use ‘uncollapsed’ IV sets.
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where the matrix Z′DIF
i has the following form

Z′DIF
i =

⎛

⎜⎜⎜⎜⎜⎝

yi1 0 0 0 0 0 · · · 0 · · · 0 
xi3
0 yi1 yi2 0 0 0 · · · 0 · · · 0 
xi4
0 0 0 yi1 yi2 yi3 · · · 0 · · · 0 
xi5
...

...
...

...
...

...
. . .

...
. . .

...
...

0 0 0 0 0 0 · · · yi1 · · · yi,(T −2) 
xi,T

⎞

⎟⎟⎟⎟⎟⎠
.

(8.11)

However, one general drawback of the Arellano–Bond type dynamic GMM es-
timator in first differences is a rather poor empirical performance especially when
the persistence in the coefficient for the lagged endogenous variable is high or the
variance of the individual effects μi large relative to the total variance in ui,t (see
e.g. Soto 2009, for a discussion; Munnell 1992, and Holtz-Eakin 1994, provide em-
pirical evidence for the estimation of a production function using AB-GMM, Bond
et al. (2001) get similar results for growth equation estimates). Bond et al. (2001)
argue that the first difference estimators may behave poorly, since lagged levels of
the time series provide only ‘weak instruments’ for sub-sequent first-differences.

In response to this critique, a second generation of dynamic panel data models
has been developed which also makes use of appropriate orthogonality conditions
(in linear form) for the equation in levels (see e.g. Arellano and Bover 1995; Ahn
and Schmidt 1995, and Blundell and Bond 1998) as3

E(
yi,t−1ui,t ) = 0 for t = 3, . . . , T . (8.12)

Thus, rather than using lagged levels of variables for equations in first difference
as in the FD estimators, we now get an orthogonality condition for the model in
level that uses instruments in first differences. Equation (8.12) is also called the
‘stationarity moment condition’.4 Written compactly as

E(Z′LEV
i 
ui) = 0 (8.13)

the matrix Z′LEV
i is given by

Z′LEV
i =

⎛

⎜⎜⎜⎝


yi2 0 · · · 0 xi3
0 
yi3 · · · 0 xi4
...

...
. . .

...
...

0 0 0 
yi,(T −1) xi,T

⎞

⎟⎟⎟⎠ , (8.14)

for the case that xi,t is strictly exogenous. Blundell and Bond (1998) propose a
GMM estimator that jointly uses both the standard and stationarity moment condi-

3The original form in Ahn and Schmidt (1995) is E(
yi,t−1ui,T ) = 0 for t = 3, . . . , T derived
from a set of non-linear moment conditions. Blundell and Bond (1998) rewrote it as in (8.12) for
convenience. The latter moment condition is also proposed in Arellano and Bover (1995).
4That is because for (8.12) to be valid we need an additional stationarity assumption concern-
ing the initial values yi,1. Typically yi,1 = μ/(1 − α) + wi,1 is considered as an initial condition
for making yi,t mean-stationary, with assumptions on the disturbance wi,1 as E(μiwi,1) = 0 and
E(wi,1νi,t ) = 0.
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tions. This latter approach is typically labeled ‘system’ GMM as a combination of
‘level’ and ‘difference’ IV/GMM. Note however that this estimator still treats the
data system as a single-equation problem since the same linear functional relation-
ship is applied both for the FD-transformed and untransformed variables (see e.g.
Roodman 2009). The resulting instrument set of the Blundell–Bond (BB-)GMM
estimator is given by

ZBB
i =

(
ZDIF

i 0
0 ZLEV

i

)
. (8.15)

Building upon the instrument set ZBB
i the extension of the single equation GMM

approach—in first differences, levels as well as combined—is rather simple. As
Hayashi (2000) points out, this is because the multiple-equation GMM estimator can
be expressed as a single-equation estimator by suitably specifying the matrices and
vectors comprising the latter approach. The advantage from the multiple equation
approach is that joint estimation may improve efficiency. However, joint estimation
may also be sensitive to misspecifications of individual equations. To work out the
pros and cons more clearly, in the following, we set up the above described GMM-
estimators for dynamic panel data in a multiple equation setting.

8.2.3 Extension of GMM Estimation for Multiple Equation
Settings

Starting with the IV set from (8.15) for BB-GMM as an example, the joint orthogo-
nality conditions for the M-equation system are just a collection of the orthogonal-
ity conditions for individual equations as Z

BB,S
i = [ZBB

i,1 ,ZBB
i,2 , . . . ,ZBB

i,M ]′, where the
subscript S denotes the system case. For the most general case, we do not assume
cross orthogonalities, that is, for instance, the instrument set for equation 1 does not
need to be orthogonal to the error term in equation 2 and so on. Only if a variable is
included both in the instrument set for equations 1 and 2, it also has to be orthogonal
to the error terms in equations 1 and 2, respectively. The main difference between
the single and multiple equation GMM estimators rests on the specification of the
weighting matrix for (two-step efficient) GMM estimation. This can be seen from
the definition of the multiple equation GMM (henceforth SGMM) estimators for the
M-equation system as (see e.g. Hayashi 2000, for details):

�̂SGMM = (
S′

ZX(V S)−1SZX
)−1

S′
ZX(V S)−1SZy, (8.16)

with SZX =
⎡

⎢⎣

1
N

∑N
i=1 Z′

i1xi1
. . .

1
N

∑N
i=1 Z′

iMxiM

⎤

⎥⎦ and (8.17)

SZy =
⎡

⎢⎣

1
N

∑N
i=1 Z′

i1yi1
...

1
N

∑N
i=1 Z′

iMyim

⎤

⎥⎦ . (8.18)
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The above equations are basically the SGMM operationalization of the stylized
system presentation given in (8.5) and (8.6). In empirical terms, the two-step effi-
cient weighting matrix V S has the following form

V̂ S =
⎡

⎢⎣

1
N

∑N
i=1 û2

i1Zi1Z
′
i1 · · · 1

N

∑N
i=1 ûi1ûiMZi1Z

′
iM

...
. . .

...
1
N

∑N
i=1 ûiMûi1ZiMZ′

i1 · · · 1
N

∑N
i=1 û2

iMZiMZ′
iM

⎤

⎥⎦ , (8.19)

where the individual equations’ ûi,m are based on consistent IV-based first stage es-
timates.5 Thus, while single equation or equation-by-equation estimation assumes a
block diagonal weighting matrix V̂ S = diag(

∑N
i=1 û2

i1Zi1Z
′
i1, . . . ,

∑N
i=1 û2

iMZiM ×
Z′

iM), the SGMM weighting matrix in (8.19) fully exploits cross error correlations
in the residuals.6

8.2.4 Evaluation Literature on Finite Sample Performance

As Hayashi (2000) shows, joint estimation is asymptotically more efficient as long
as at least one equation of the system is overidentified and the error terms are related
to each other. However, the asymptotic results only hold if the model is correctly
specified, that is, all the model assumptions are satisfied. Moreover, the asymptotic
results may not be true for small samples (see Hayashi 2000). Unfortunately, no
guidance is given in the literature with respect to the latter case.7

The only points of reference available are: 1) a rather small set of literature deal-
ing with the relative efficiency of full versus limited information for the static panel
data case (see Krishnakumar 1995, for an overview) as well as 2) a bulk of studies
dealing with the empirical performance of single equation estimators for a dynamic
panel data model. Here, a subset of the latter group also explicitly accounts for non-
standard small N and small T data settings. The Monte Carlo simulation based stud-
ies reported in Kiviet (1995), Harris and Matyas (1996), Judson and Owen (1999),
Islam (1999), Behr (2003), Hayakawa (2005), Soto (2009) and Lokshin (2008)
among others generally show that the gains in efficiency terms of moving from par-
simonious models to more complex representations with larger instrument sets (or-
thogonality conditions) are rather marginal in panel data settings with increasing T .

5In comparison to this, one-step estimation replace the first step residuals by an identity or related
transformation matrix.
6Giving that certain assumptions hold, the SGMM approach reduces to the more familiar 3SLS
notation. These assumptions are: Conditional homoscedasticity and identical instruments across
equations. For details see e.g. Arellano (2003).
7The only notable exception known to the author for the simultaneous equation case is Binder et al.
(2005). The authors take a Vector Autoregressive (VAR) perspective and compare GMM and quasi
maximum likelihood (QMLE) based estimation. The results generally favor the QMLE approach;
however, the authors also report good performance for the Blundell–Bond system estimator, while
GMM in first differences generally performs weak.
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GMM estimators of Arellano and Bond, Arellano and Bover, Ahn and Schmidt
and Blundell and Bond are typically designed for panel data sets with large N and
small T . According to Judson and Owen (1999) the associated loss in efficiency of
instrument reduction from more advanced GMM techniques to the standard Ander-
son and Hsiao (1981) estimator is negligible for large T (approximately T ≥ 10),
while at the same time the ‘many instruments problem’ and computational diffi-
culties associated with the large instrument sets are avoided. Indeed, Blundell and
Bond (1998) themselves argue that their system GMM estimator is only appropriate
for small T large N settings. An overview of the literature on the ‘many instruments
problem’ is given, e.g., Hayakawa (2005).

Soto (2009) runs a simulation experiment to compare first difference, level and
system GMM estimators in data settings where N is small compared to T (e.g.
N = 35, T = 12), which comes much closer to the empirical setup in this study
than the typical large N , small T assumption. His results show in terms of RMSE
and standard deviation that, on average, the empirical fit of the first difference esti-
mators is much lower compared to level and system counterparts. Though the latter
estimator shows the best overall performance, the relative advantage to the level
GMM estimator is rather marginal. If additionally the model is characterized by a
high level of persistence in the autoregressive parameter (as it is typically the case
in economic growth studies) the two estimators show an almost equal empirical per-
formance. Similarly, comparing first difference, level and system GMM estimators,
Hayakawa (2005) even finds that the system estimator has a more severe downward
bias than the level estimator, if the variance of the individual effects (σμ) deviates
from the variance of the remainder error term (σν ).8

The lack of simulation based guidance with respect to the proper estimator choice
for a system of equation in small sample, contrasts its growing number of empiri-
cal applications: For example, in a series of papers Driffield and associates propose
a FD-3SLS estimator, which generalizes the Anderson and Hsiao (1981) type ap-
proach to the system case (see e.g. Driffield and Girma 2003, Driffield and Tay-
lor (2006) as well as Driffield and De Propris 2006). Moreover, Kimhi and Rekah
(2005) apply an Arellano and Bond (1991) type estimator for a two equation sys-
tem that explicitly accounts endogeneity and predeterminedness of right-hand side
regressors. Finally, taking a time-series perspective both Di Giacinto (2010) as well
as Alecke et al. (2010a) use full information estimation (FIML and Blundell–Bond
based SGMM respectively) to specify VAR models with panel data.

In the following, we aim to bridge the gap between the growing number of em-
pirical applications for dynamic panel data estimation in a system of equation and
a systematic comparison of the small sample behavior for different estimation tech-
niques. In order to do so, we set up a Monte Carlo simulation exercise to compare

8That is, for many regions of the α-coefficient of the lagged dependent variable (especially mod-
erate and high value) and a (

σμ

σν
) = 0,25 the level estimator displays the smallest bias among the

estimators. This result indicates that the fact that the system estimator is a weighted sum of the
FD and level estimator becomes a disadvantage of particular combinations for (

σμ

σν
) = 0,25 and

moderate high regions of the autoregressive parameter.
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the finite sample performance of multiple equation extensions to a set of estimators,
which are frequently applied in the single equation case. We compare the estima-
tors regarding their bias and efficiency for standard large N , small T settings as
well as for two-sided small samples. In subsequent steps we also control for model
misspecifications in the error term such as heteroscedasticity.

8.3 Monte Carlo Simulations

8.3.1 Model Design and Parameter Settings

For the following Monte Carlo simulation exercise, we draw on a basic simulation
setup proposed by Matyas and Lovrics (1990), who use a two-equation model with
the endogenous variables y1 and y2 being defined in the following way:

y1i,t = α0 + α1y2i,t + α2y1i,t−1 + α3x1i,t + μ1i + ν1i,t , (8.20)

y2i,t = β0 + β1y1i,t + β2x2i,t + β3x3i,t + μ2i + ν2i,t . (8.21)

The exogenous regressors x1, x2, x3 are generated by the following DGP:9

x1i,t = ρ1x1i,t−1 + ψ1i,t , (8.22)

x2i,t = ρ2x2i,t−1 + ψ2i,t , (8.23)

x3i,t = ρ3x3i,t−1 + ψ3i,t . (8.24)

In this setup outlined above, special attention has to be given to the proper spec-
ification of the error terms. Here we make the following definitions mostly in line
with the recent mainstream body of Monte Carlo simulation work as

ν1i,t ∼ N(0, σ 2
ν1), (8.25)

ν2i,t ∼ N(0, σ 2
ν2), (8.26)

μ1i,t ∼ N2(0,�μ), (8.27)

μ2i,t ∼ N2(0,�μ), (8.28)

ψ1i,t ∼ N(0, σ 2
ψ1), (8.29)

ψ2i,t ∼ N(0, σ 2
ψ2), (8.30)

ψ3i,t ∼ N(0, σ 2
ψ3). (8.31)

As in Arellano and Bond (1991) we use σ 2
ν1 and σ 2

ν2 as normalization parameters
which we set equal to 1. Different from the time varying error term ν we model

9It is also possible to extend the basic setup in terms of endogenizing one or more xi,t variables
with respect to the error term as xi,t = ρxi,t−1 + τμi + θνi,t + ψ1i,t as, e.g., outlined in Soto
(2009). However, for the remainder we set τ = 0 and θ = 0, which is standard in the Monte Carlo
simulation based literature for single equation simulation models.
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the unobservable individual effects μ as multivariate normally distributed to test
whether a full information approach may enhance the estimator efficiency. The gen-
eral distribution function for a set of p variables is denoted Np(a,�), where a is
a (p × 1) vector of means and � is the (p × p) covariance matrix of the variables
(see also Mooney 1997). We specify μ as multivariate normally distributed with
zero mean and variance-covariance matrix according to

�μ =
[

1 0.8
0.8 1

]
. (8.32)

Throughout the Monte Carlo simulation experiment we also define a loading
factor ξ determining the ratio of the two error components as ξ = σμ

σν
. This gives

us the opportunity to test for the estimators’ performance for different weighting
schemes (as found, e.g., in Hayakawa 2005). While we keep some parameters con-
stant (σψi

= 0.9; ρi = 0.5; βi = 0.5), we modify the following parameters during the
exercise: α2 = (0.8;0.5), which then also varies α1,3 = (1 − α2) in order to guaran-
tee that a change in α2 only affects the short-run dynamics between x1, y2 and y1;
we also set ξ = (0.5;1;4); N = (15;25;50;100) and T = (5;10;15). With respect
to the initial observations we proceed as follows: y0,i = 0 and x0,i = 1/(1 − ρ). In
line with Arellano and Bond (1991), for the DGP we set T = T + 10 and cut off
the first 10 cross-sections so that the actual samples contain NT observations. The
total number of repetitions is set to 1000 for each permutation in y1, y2, u1 and
u2. The range of parameters gives a total set of 72 simulation designs, which are
summarized in Table 8.1.

We test the different estimators in their limited and full information specifica-
tion. Our primary interest rests on the empirical assessment of the different IV and
GMM estimators defined above. Thus, we estimate one-step and two-step efficient
versions of the DIF-SGMM, LEV-SGMM and BB-SGMM, respectively. The latter
BB-SGMM is the Blundell–Bond type system estimator, combining information of
the Arellano–Bond type DIF-SGMM and the orthogonality conditions for the level
equation LEV-SGMM. Since the Anderson–Hsiao approach rests on standard IV
specification, we construct the latter as AH-2SLS and AH-3SLS. Likewise, we also
specify a FEM based IV approach, resulting in a FEM-2SLS and FEM-3SLS spec-
ification. As Cornwell et al. (1992) point out for the static simultaneous equation
case, in the absence of assumptions about the individual effects, one cannot do bet-
ter than applying efficient estimation (such as 3SLS) after a within transformation.

Since we know that the FEM model as λ-class estimator is biased in dynamic
panel settings, we also aim to test for a bias corrected alternative, which has shown
a good small sample performance in the single equation case (see, e.g., Kiviet 1995,
1999; Bun and Kiviet 2003; Bruno 2005). Unfortunately, no analytical bias cor-
rected FEM estimator is available for the multiple equation case. We thus take a
practical approach (as, e.g., proposed in Gerling 2002) and derive the bias correc-
tion from a single equation estimation and then set a parameter restriction for α2
based on these results in an otherwise unrestricted system 3SLS approach.10 One

10An alternative approach would be to rely on bootstrapped based bias correction as, e.g., outlined
in Everaert and Pozzi (2007).



8.3 Monte Carlo Simulations 229

Table 8.1 Parameter settings
in MC simulation designs Design No. T N ξ α2

1 5 25 0.5 0.8

2 5 25 1 0.8

3 5 25 4 0.8

4 5 50 0.5 0.8

5 5 50 1 0.8

6 5 50 4 0.8

7 5 100 0.5 0.8

8 5 100 1 0.8

9 5 100 4 0.8

10 5 250 0.5 0.8

11 5 250 1 0.8

12 5 250 4 0.8

13 5 25 0.5 0.5

· · · · · · · · · · · · · · ·
14 5 25 1 0.5

· · · · · · · · · · · · · · ·
25 10 25 0.5 0.8

· · · · · · · · · · · · · · ·
49 15 25 0.5 0.8

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
72 15 250 4 0.5

drawback of the bias corrected FEM approach is that it is only valid for models with
strictly exogenous regressors, which is violated in our case given the inclusion of
y2 in (8.20) (see Bruno (2005b) for details).

An important modelling step for the regression approach is the choice of in-
struments for the respective estimators. Following Cornwell et al. (1992) and Ahn
and Schmidt (1999) we assume that the same instruments are available for each
structural equation. An aspect worth noting is that in the static case under the ho-
moscedasticity assumption the asymptotic equivalence between 3SLS and GMM
holds. However, Ahn and Schmidt (1999) have shown that this is not the case for the
dynamic model using the full set of orthogonality conditions, in particular (8.9).11

Thus, using a GMM framework could potentially bring additional gains in effi-
ciency, however at the same time the ‘many instruments problem’ may be present.
Especially for sample settings with a small number of individuals this is a delicate
point since the optimal weighting matrix in SGMM estimation has for each equation
a rank of, at most, N . If the number of instruments exceeds N , the weighting matrix

11For the full argument see Ahn and Schmidt (1999).
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is singular and no 2-step estimator can be computed. We thus keep the total number
of instruments small.

We specify in total 16 limited and full information estimators with instruments
for y1i,t , y1t,i−1 and y2i,t according to:12

• FEM-2SLS Within-type transformed model using contemporaneous and one pe-
riod lagged information for x1 to x3 as instruments

• FEM-3SLS Instrument set as for FEM-2SLS, additional GLS-transformation
• FEMc-2SLS Instrument set as for FEM-2SLS, analytical bias correction up to

order O(1/NT2)

• FEMc-3SLS Instrument set as for FEM-2SLS, bias correction and GLS transfor-
mation

• AH-2SLS Anderson and Hsiao (1981) estimator using contemporaneous and one
period lagged information for x1 to x3, twice lagged levels of y1 as instruments

• AH-3SLS Instrument set as for AH-2SLS, additional GLS-transformation
• AB-GMM One-step Arellano and Bond (1991) estimator using contemporaneous

and one period lagged information for x1 to x3, all available lags for y1 as in (8.9)
• AB-SGMM Instrument set as for AB-GMM, two-step efficient weighting matrix

as in (8.19)
• LEV1-GMM One-step level GMM estimation using contemporaneous and one

period lagged information for x1 to x3
• LEV1-SGMM Instrument set as for LEV1-GMM, two-step efficient weighting

matrix as in (8.19)
• LEV2-GMM One-step level GMM estimation using contemporaneous and one

period lagged information for x1 to x3 and 
y1t−1 according to (8.12)
• LEV2-SGMM Instrument set as for LEV2-GMM, two-step efficient weighting

matrix as in (8.19)
• BB1-GMM One-step Blundell and Bond (1998) system GMM, instrument set as

combination of LEV2-GMM and AH-IV
• BB2-GMM Instrument set as for BB1-GMM, two-step efficient weighting matrix

as in (8.19)
• BB1-SGMM One-step Blundell and Bond (1998) system GMM, instrument set

as combination of LEV2-GMM and AB-GMM
• BB2-SGMM Instrument set as for BB2-GMM, two-step efficient weighting ma-

trix as in (8.19)

All estimators account for the endogeneity of y1, y1t−1 and y2 based on valid
instruments. The subset of 3SLS/SGMM estimators also accounts for the cross-
equation error correlation. For estimator comparison we compute common evalu-
ation criteria as bias, standard deviation, root mean square error (rmse), NOMAD
and NORMADSQD. The bias for each regression coefficient (δ̂) is defined as

bias(δ̂) =
M∑

m=1

(δ̂m − δtrue)/M, (8.33)

12Computations are made in Stata with selective use of the routines ivreg2 (Baum et al. 2003),
xtlsdvc (Bruno 2005c) and xtabond2 (Roodman 2006).
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where m = (1,2, . . . ,M) is the number of simulation runs. The rmse puts a special
weight on outliers:

rmse(δ̂) =

√√√√√
(

M∑

m=1

(δ̂m − δtrue)/M

)2

. (8.34)

Extending the scope from a comparison of single variable coefficients to an anal-
ysis of overall measures of model bias and efficiency for the aggregated parameter
space, we compute NOMAD and NORMSQD values, where the NOMAD (normal-
ized mean absolute deviation) computes the absolute deviation of each parameter
estimate from the true parameter, normalizing it by the true parameter and averag-
ing it over all parameters as

NOMAD = 1

K

K∑

k=1

[
1

M

M∑

m=1

( |δ̂m,k − δtrue,k|
δtrue,k

)]
. (8.35)

The NORMSQD computes the mean square error (mse) for each parameter, nor-
malizing it by the square of the true parameter, averaging it over all parameters and
taking its square root (for details see Baltagi and Chang 2000)

NORMSQD =
√√√√ 1

K

K∑

k=1

[
1

M

M∑

m=1

(
(δ̂m,k − δtrue,k)2

δ2
true,k

)]
. (8.36)

Both overall measures are thus straightforward extensions to the single parameter
bias and rmse statistics defined above.

8.3.2 Simulation Results

Turning to the results, we evaluate the estimators’ performance in different dimen-
sions. In the single equation literature, most attention is spent on evaluating the
estimators bias and efficiency for the autoregressive parameter α2 of the endoge-
nous variable y1. In order to have a reference value for our simulation design, we
also focus on this parameter first. Thereby, our simulation results merely confirm the
results given in the literature so far: As Fig. 8.1 shows for standard large N , small
T settings (N = 250, T = 5, ξ = 1) and a high persistence in the autoregressive pa-
rameter α2 = 0.8, among the different full information estimators the LEV-SGMM
and BB-SGMM specifications perform best in terms of bias from the true α2-value.
The box plots in Fig. 8.1 show that the distribution of estimates for the two LEV-
SGMM and BB-SGMM estimators is very close to the true value of 0.8, while on
top the LEV-SGMM models show an even smaller standard deviation. This results
is also confirmed when comparing the estimators’ rmse.13

13Detailed results for all estimated coefficients under the different parameter settings can be ob-
tained from the author upon request.
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Fig. 8.1 α̂2-simulation
results with N = 250, T = 5,
α2 = 0.8, ξ = 1

Fig. 8.2 α̂2-simulation
results with N = 250,
T = 15, α2 = 0.8, ξ = 1

The latter difference in the rmse originates from the rather poor performance of
the estimators in first differences (both the AH-3SLS as well as the AB-SGMM),
which are significantly biased and show a large standard deviation around the
true point estimate. If we recall from above that the Blundell–Bond estimator is
a weighted average of the level and first difference specification, it becomes obvi-
ous that the poor performance of the first difference specifications also deteriorates
the efficiency of the BB-SGMM model. The FEM and FEMc specification show a
smaller standard deviation compared to the first difference specifications, however
they also show a considerable bias. In the case of the FEMc this supports our ar-
gument from above that the bias correction may only work well for dynamic spec-
ifications with strictly exogenous regressors. The results hold qualitatively, if we
increase the number of time periods to T = 15 in Fig. 8.2. We observe that with
increasing time dimension the performance of all estimators—both in terms of bias
and rmse—improves. Only the FEMc is still biased, which indicates that for equa-
tions with right hand side endogeneity beside the lagged autoregressive parameter
of the dependent variable, the method performs rather weak, although it shows a
very small variance.
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Fig. 8.3 α̂2-simulation
results with N = 25, T = 15,
α2 = 0.8, ξ = 1

Fig. 8.4 α̂2-simulation
results with N = 25, T = 15,
α2 = 0.5, ξ = 1

Moving from standard large N , small T panel data assumptions to simulation
designs for two-sided small samples with both a small or moderate time and cross-
section dimension, the results in Fig. 8.3 show for the case of N = 25, T = 15,
ξ = 1 and α2 = 0.8 that the FD estimators (AH and AB) break down. Reducing
the degree of persistence in the autoregressive parameter α2 = 0.5 however, leads
to a significant improvement of the latter estimators (see Fig. 8.4). The best perfor-
mances in terms of bias nevertheless are shown by the LEV-SGMM specifications.
The FEM-3SLS also shows satisfactory small sample properties in two-sided small
samples and moderate persistence in α2. The performance of the latter estimator
relative to the others is even increased, if we allow for a dominant share of the
unobserved individual effects (μi ) in the composition of the overall error term by
setting ξ = 4. Here the FEM-3SLS outperforms all SGMM counterparts in terms of
bias and efficiency (see Fig. 8.5).14

In order to compare the overall performance of the estimators, we finally compute
ranking schemes for the absolute bias and the rmse with respect to α2. The ranking

14Results for ξ = 0.5 are shown in Fig. 8.6.
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Fig. 8.5 α̂2-simulation
results with N = 25, T = 15,
α2 = 0.5, ξ = 4

Fig. 8.6 α̂2-simulation
results with N = 25, T = 15,
α2 = 0.5, ξ = 0.5

scheme is constructed as follows (for a similar approach see Lokshin 2008): For
each parameter constellation we compute the absolute bias and rmse of each esti-
mator. We then rank the estimator according to their relative performance and assign
points in descending order. That is, in a first weighting scheme we give 16 points
for the best estimator, 15 for the second best, 14 for the third and so forth. In order
to price a superior performance, in a second weighting scheme we assign 10 points
to the best estimator, 7 to the second best, 5 to the third, 3 to the fourth and 1 to the
fifth best estimator. The results nevertheless show to be rather insensitive regarding
the chosen weighting scheme. In the following, we thus only report results from
scheme one, further results can be obtained upon request.

We present the average cumulative score for the different categories listed in Ta-
bles 8.2 and 8.3 defined as 1

D

∑D
i=1 Pi , where D is the total number of simulation

designs i considered and Pi is the number of points given to each estimator ac-
cording to weighting scheme 1 with Pi ∈ 1, . . . ,16. Looking the absolute bias, for
almost all categories the two-step efficient BB-SGMM with instrument set 1 per-
forms best. Also the limited information alternative BB1-GMM and both Blundell–
Bond estimators using the larger instrument set 2 perform well. Second best are
the LEV-GMM estimators, where again the system specification outranks the lim-
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Table 8.2 Ranking of absolute bias for α2

All α2 = 0.8 α2 = 0.5

BB1-SGMM 13.17 BB1-GMM 13.58 BB1-SGMM 12.78

BB1-GMM 12.82 BB1-SGMM 13.17 BB2-SGMM 11.81

BB2-SGMM 12.17 BB2-GMM 12.58 BB1-GMM 11.61

BB2-GMM 11.82 LEV1-SGMM 12.44 BB2-GMM 10.64

LEV1-SGMM 11.03 BB2-SGMM 12.17 LEV1-SGMM 9.33

LEV1-GMM 10.58 LEV1-GMM 11.94 LEV1-GMM 8.89

LEV2-SGMM 10.03 LEV2-SGMM 11.44 FEM-2sls 8.78

LEV2-GMM 9.58 LEV2-GMM 10.94 LEV2-SGMM 8.36

FEM-2sls 8.74 FEM-2sls 8.47 FEM-3sls 7.97

FEM-3sls 7.88 FEM-3sls 7.58 AH-GMM 7.94

AH-GMM 6.11 FEMc-2sls 5.00 LEV2-GMM 7.92

AH-SGMM 5.61 AH-GMM 4.11 AH-SGMM 7.89

AB-GMM 5.11 FEMc-3sls 4.00 AB-GMM 6.97

AB-SGMM 4.61 AH-SGMM 3.22 AB-SGMM 6.92

FEMc-2sls 3.88 AB-GMM 3.11 FEMc-2sls 2.69

FEMc-3sls 2.88 AB-SGMM 2.22 FEMc-3sls 1.72

No. of designs 72 36 36

T = 5 T = 15 ξ = 4

BB1-SGMM 13.50 BB1-SGMM 13.00 BB1-SGMM 13.08

BB1-GMM 12.71 BB1-GMM 12.67 BB2-SGMM 12.08

BB2-SGMM 12.50 BB2-SGMM 12.00 BB1-GMM 11.54

LEV1-SGMM 11.92 BB2-GMM 11.67 FEM-2sls 11.25

BB2-GMM 11.71 LEV1-SGMM 10.50 BB2-GMM 10.54

LEV1-GMM 11.00 LEV1-GMM 10.17 FEM-3sls 10.50

LEV2-SGMM 10.92 FEM-2sls 10.04 AH-GMM 8.42

LEV2-GMM 10.00 LEV2-SGMM 9.50 LEV1-SGMM 8.33

FEM-2sls 7.33 FEM-3sls 9.29 AH-SGMM 7.58

FEM-3sls 6.17 LEV2-GMM 9.17 AB-GMM 7.42

AH-GMM 5.67 AH-GMM 6.50 LEV2-SGMM 7.33

FEMc-2sls 5.29 AH-SGMM 6.00 LEV1-GMM 7.17

AB-GMM 4.67 AB-GMM 5.50 AB-SGMM 6.58

AH-SGMM 4.67 AB-SGMM 5.00 LEV2-GMM 6.17

FEMc-3sls 4.29 FEMc-2sls 3.00 FEMc-2sls 4.50

AB-SGMM 3.67 FEMc-3sls 2.00 FEMc-3sls 3.50

No. of designs 24 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16
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Table 8.3 Ranking of RMSE for α2

All α2 = 0.8 α2 = 0.5

LEV1-SGMM 14.99 LEV1-SGMM 15.56 LEV1-SGMM 13.97

LEV2-SGMM 13.99 LEV2-SGMM 14.56 LEV2-SGMM 13.00

LEV1-GMM 13.58 LEV1-GMM 14.44 LEV1-GMM 12.33

LEV2-GMM 12.58 LEV2-GMM 13.44 FEM-2sls 11.61

BB1-GMM 10.13 BB1-GMM 10.89 LEV2-GMM 11.36

FEM-2sls 9.74 BB2-GMM 9.89 FEM-3sls 10.69

BB2-GMM 9.13 FEMc-2sls 8.89 BB1-GMM 9.08

FEM-3sls 8.93 BB1-SGMM 8.53 BB1-SGMM 8.86

BB1-SGMM 8.81 FEMc-3sls 7.89 BB2-GMM 8.11

FEMc-2sls 7.86 BB2-SGMM 7.53 BB2-SGMM 7.89

BB2-SGMM 7.81 FEM-2sls 7.53 FEMc-2sls 6.67

FEMc-3sls 6.86 FEM-3sls 6.86 FEMc-3sls 5.69

AH-GMM 4.28 AH-GMM 3.75 AH-GMM 4.69

AB-GMM 3.33 AB-GMM 2.81 AB-GMM 3.78

AH-SGMM 2.47 AH-SGMM 2.19 AH-SGMM 2.69

AB-SGMM 1.53 AB-SGMM 1.25 AB-SGMM 1.78

No. of designs 72 36 36

T = 5 T = 15 ξ = 4

LEV1-SGMM 15.17 LEV1-SGMM 14.88 LEV1-SGMM 13.92

LEV2-SGMM 14.17 LEV2-SGMM 13.88 LEV2-SGMM 12.92

LEV1-GMM 13.75 LEV1-GMM 13.25 LEV1-GMM 12.08

LEV2-GMM 12.75 LEV2-GMM 12.25 LEV2-GMM 11.08

BB1-GMM 10.79 FEM-2sls 11.67 FEM-2sls 10.71

BB2-GMM 9.79 FEM-3sls 10.92 BB1-SGMM 10.04

FEMc-2sls 9.25 BB1-GMM 9.50 FEM-3sls 9.96

BB1-SGMM 9.04 BB1-SGMM 8.58 BB1-GMM 9.71

FEMc-3sls 8.25 BB2-GMM 8.50 BB2-SGMM 9.04

BB2-SGMM 8.04 BB2-SGMM 7.58 BB2-GMM 8.71

FEM-2sls 7.50 FEMc-2sls 6.75 FEMc-2sls 8.50

FEM-3sls 6.50 FEMc-3sls 5.75 FEMc-3sls 7.50

AH-GMM 4.08 AH-GMM 4.46 AH-GMM 4.38

AB-GMM 3.08 AB-GMM 3.54 AB-GMM 3.46

AH-SGMM 2.42 AH-SGMM 2.71 AH-SGMM 2.46

AB-SGMM 1.42 AB-SGMM 1.79 AB-SGMM 1.54

No. of designs 24 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16
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Fig. 8.7 α̂1-simulation
results with N = 250,
T = 15, α2 = 0.8, ξ = 1

Fig. 8.8 α̂1-simulation
results with N = 25, T = 15,
α2 = 0.8, ξ = 1

ited information alternative for most parameter constellations. Estimators based on
the within-type and first difference transformation (AH and AB) follow with lower
scores. With respect to the rmse in Table 8.3, the LEV1-SGMM specification out-
ranks all other estimators. The first differenced estimators rank worst in this cate-
gory, while the FEM-type models show on average a small comparably rmse.

In a system of equations with endogenous, predetermined and exogenous vari-
ables we are not only interested in inference on the autoregressive parameter α2,
but also care for performance of the respective estimators regarding all other coeffi-
cients. The ability to properly instrument the coefficients of the endogenous vari-
ables y1 and y2, which both enter as explanatory regressors, thus also matters.
Looking at the bias and rmse error of the coefficients α1 and β1 respectively, the
results for α1 generally show that all estimators roughly perform equally well (see
Figs. 8.7 and 8.8). However, this picture changes for the estimation of β1, where
the estimators in first differences perform poorly for most parameter constellations
(and thus also affecting the quality of the Blundell–Bond type system estimator).
The latter holds especially for small N settings as shown in Fig. 8.9. The results
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Fig. 8.9 β̂1-simulation
results with N = 25, T = 15,
α2 = 0.8, ξ = 1

Fig. 8.10 β̂1-simulation
results with N = 250,
T = 15, α2 = 0.8, ξ = 4

indicate that properly instrumenting y2 based on transformations of the exogenous
variables and predetermined endogenous variables is challenging.

When the error term is dominated by the unobserved individual effects with
ξ = 4, both the LEV-GMM and BB-GMM specifications behave poorly (see
Fig. 8.10). Here, estimation strategies that wipe out the individual effects either
by the within-type transformation or by first differencing the data perform better.
Looking at the joint ranking for bias and rmse in Tables 8.4 and 8.5, we see that
the LEV-GMM specification (and also the SGMM alternative) is on average the
preferred estimator (both overall as well as for specific parameter values). These
results underline the relative estimators’ performance for α2. The FEM estimator
indeed shows the best performance, when ξ is high, that is, when the overall error
term is driven by the individual time-invariant effects μ. In general, the difference in
the performance of the estimators is smaller compared to the results for α2, which
can be measured in terms of the difference in the average points allocated to the
individual estimators for the parameter constellations shown in Tables 8.4 and 8.5.
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Table 8.4 Ranking of absolute bias for α1 and β1

All α2 = 0.8 T = 5 ξ = 4

LEV2-GMM 11.69 LEV2-GMM 11.13 LEV1-GMM 11.69 FEM-2sls 11.40

LEV1-GMM 11.66 LEV1-GMM 10.99 LEV2-GMM 11.63 AH-GMM 10.79

LEV2-SGMM 11.32 LEV2-SGMM 10.88 LEV1-SGMM 11.10 AB-GMM 10.67

LEV1-SGMM 11.29 LEV1-SGMM 10.74 LEV2-SGMM 11.04 FEM-3sls 10.35

FEM-2sls 9.83 FEM-2sls 9.97 FEM-2sls 10.00 AH-SGMM 10.17

AB-GMM 8.99 AB-GMM 9.89 AB-GMM 9.27 AB-SGMM 9.85

FEM-3sls 8.91 AB-SGMM 9.67 FEM-3sls 8.58 LEV2-GMM 9.06

AB-SGMM 8.13 FEM-3sls 8.85 AB-SGMM 8.33 LEV1-GMM 8.92

FEMc-3sls 7.60 BB2-GMM 7.75 AH-GMM 8.29 LEV2-SGMM 8.88

BB2-SGMM 7.48 BB2-SGMM 7.26 AH-SGMM 8.04 LEV1-SGMM 8.73

BB2-GMM 7.44 FEMc-3sls 7.19 FEMc-3sls 7.92 FEMc-3sls 8.33

AH-GMM 6.96 AH-SGMM 7.07 BB2-SGMM 6.75 BB2-GMM 6.50

AH-SGMM 6.78 BB1-GMM 6.81 BB2-GMM 6.38 FEMc-2sls 6.46

BB1-GMM 6.48 AH-GMM 6.65 FEMc-2sls 6.19 BB1-GMM 6.15

FEMc-2sls 5.93 BB1-SGMM 5.63 BB1-GMM 5.88 BB2-SGMM 5.40

BB1-SGMM 5.53 FEMc-2sls 5.54 BB1-SGMM 4.92 BB1-SGMM 4.35

No. of designs 72 36 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16

Finally, in the multiple equation setting, we may further move up the level of
aggregation and compare the overall performance of the various estimators. Here
we use the NOMAD and NORMSQD extensions of the single parameter bias and
rmse indicators. Figure 8.11 reports the NOMAD and NORMSQD values for stan-
dard N = 250, T = 10 settings with α2 = 0.8 and ξ = 1. As the figure shows, the
absolute bias averaged over all parameter values is the smallest for the LEV-SGMM
and the FEM-3SLS specifications. This result also holds for the NORMSQD com-
putation in Fig. 8.12. As shown above, the estimators in first differences show the
highest variance of estimates around the true parameter. To some extent this also
has an impact on the efficiency of the Blundell–Bond type specifications. Basically
the same results hold, if we reduce the number of cross sections to N = 25. Here,
Fig. 8.13 for the NOMAD and Fig. 8.14 for the NORMSQD criterion show the
following general picture: First, both the NOMAD and the NORMSQD increases.
Second, the difference in terms of overall bias and efficiency between the best per-
forming estimators (LEV-SGMM and FEM-3SLS) relative to the BB-SGMM and
AB-SGMM shrinks.

Looking at the differences between the full and limited information approaches
for different parameter settings, Fig. 8.15 (NOMAD) and Fig. 8.16 (NORMSQD)
show that in two-sided small sample settings the gain in efficiency of the full in-
formation approach is rather marginal. As the figure shows for the parameter con-
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Table 8.5 Ranking of absolute RMSE for α1 and β1

All α2 = 0.8 T = 5 ξ = 4

LEV1-SGMM 11.74 LEV1-SGMM 11.04 LEV1-SGMM 13.52 FEM-2sls 13.31

LEV2-SGMM 11.69 LEV2-SGMM 11.03 LEV2-SGMM 13.46 FEM-3sls 11.77

FEM-2sls 11.65 FEM-2sls 11.01 LEV1-GMM 12.27 FEMc-3sls 11.33

LEV1-GMM 10.76 FEMc-2sls 10.46 LEV2-GMM 12.21 FEMc-2sls 11.04

LEV2-GMM 10.71 LEV1-GMM 9.88 FEM-2sls 9.83 AH-GMM 9.85

FEM-3sls 10.22 LEV2-GMM 9.86 BB2-GMM 8.90 AB-GMM 9.29

FEMc-2sls 9.92 AB-GMM 9.40 FEMc-3sls 8.69 LEV1-SGMM 8.50

FEMc-3sls 9.11 FEM-3sls 9.21 BB1-GMM 8.42 LEV2-SGMM 8.46

BB2-GMM 7.94 BB2-SGMM 8.42 BB2-SGMM 8.10 AH-SGMM 7.71

BB2-SGMM 7.56 BB2-GMM 8.31 FEM-3sls 7.81 LEV1-GMM 7.52

AB-GMM 7.38 AB-SGMM 7.71 FEMc-2sls 6.79 LEV2-GMM 7.48

BB1-GMM 6.85 BB1-GMM 6.99 AB-GMM 6.19 AB-SGMM 7.38

AB-SGMM 5.79 FEMc-3sls 6.61 BB1-SGMM 6.08 BB2-GMM 6.29

BB1-SGMM 5.33 BB1-SGMM 6.07 AH-GMM 5.67 BB1-GMM 5.92

AH-GMM 5.19 AH-GMM 5.54 AB-SGMM 4.25 BB2-SGMM 5.75

AH-SGMM 4.17 AH-SGMM 4.47 AH-SGMM 3.81 BB1-SGMM 4.40

No. of designs 72 36 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16

Fig. 8.11 NOMAD criterion
for N = 250, T = 10,
α2 = 0.8, ξ = 1

stellation N = 25, T = 10, α2 = 0.8 and ξ = 1, the limited information estimators
perform at least equally well as their respective full information counterparts. How-
ever, when increasing the total number of observations in the sample, the relative
performance of full versus limited information estimators increases as shown for
the case of N = 250, T = 10 in Fig. 8.17 (NOMAD) and Fig. 8.18 (NORMSQD).
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Fig. 8.12 NORMSQD
criterion for N = 250,
T = 10, α2 = 0.8, ξ = 1

Fig. 8.13 NOMAD criterion
for N = 25, T = 10,
α2 = 0.8, ξ = 1

Fig. 8.14 NORMSQD
criterion for N = 25, T = 10,
α2 = 0.8, ξ = 1
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Fig. 8.15 NOMAD of full and limited information estimation for N = 25, T = 10

Fig. 8.16 NORMSQD of full and limited information estimation for N = 25, T = 10

Looking at the overall performance, Fig. 8.19 (for high persistence in the autore-
gressive parameter α2 = 0.8) and Fig. 8.20 (for α2 = 0.5) plot the percentage share
of those cases, where the full information approach outranks the limited informa-
tion counterpart for all estimated parameters with fixed ξ = 1. Both figures show
that the relative superiority of the full system estimators increases, when both the
time and cross-sectional dimension increases. However, only in rare cases the full
information approaches show a better performance relative to the limited informa-
tion counterparts (that is in more than 50% of cases for the respective parameter
constellation, as indicated by the horizontal line in both figures). The results are in
line with Soto (2009) for a comparison of one- and two-step efficient weighting ma-
trices in the single equation case, where the author does not find large differences
in the relative distribution. Similarly, Matyas and Lovrics (1990) report simulation
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Fig. 8.17 NOMAD of full and limited information estimation for N = 250, T = 10

Fig. 8.18 NORMSQD of full and limited information estimation for N = 250, T = 10

results that favor OLS over the (generalized) G2SLS system estimator even for large
samples with N > 20; T > 20.

This general picture is also reflected in the overall ranking of the estimators,
shown in Tables 8.6 and 8.7 for the aggregation over all parameter constellations
as well as different sub-categories. Here, the results lead to the following simple
solution: For the parameter space employed in this Monte Carlo simulation exercise
the simplest estimator is also the best: The FEM-2SLS ranks the best in terms of the
NOMAD and has also a good second position regarding the NORMSQD criterion.
This result particularly holds for a high parameter value of ξ = 4, that is, when the
unobserved fixed effects make up a dominant part of the overall error term. How-
ever, there is also a second story to tell and that is, for various constellations with
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Fig. 8.19 Superiority of full and limited information estimation for N × T constellations with
α2 = 0.8

Fig. 8.20 Superiority of full and limited information estimation for N × T constellations with
α2 = 0.5

a high persistence in the autoregressive parameter α2 and a small time dimension,
e.g. T = 5, the LEV-SGMM estimator performs best. This estimator also ranks best
in terms of efficiency as measured by the NORMSQD criterion. While the latter two
estimators may thus be seen as a good choice for empirical applications, when right-
hand-side endogeneity and simultaneity matters, GMM based estimation techniques
in first differences, which are still common tools in dynamic panel data setups, per-
form rather weak.
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Table 8.6 Ranking of NOMAD for different parameter settings

All α2 = 0.8 T = 5 ξ = 4

FEM-2sls 12.81 LEV1-SGMM 13.53 LEV1-SGMM 13.46 FEM-2sls 14.00

LEV1-SGMM 12.53 LEV2-SGMM 12.50 LEV2-SGMM 12.13 FEMc-3sls 13.71

LEV2-SGMM 11.42 FEMc-2sls 12.11 LEV1-GMM 11.96 FEMc-2sls 13.13

FEM-3sls 11.35 LEV1-GMM 11.44 LEV2-GMM 10.88 FEM-3sls 12.67

FEMc-2sls 11.26 FEM-2sls 11.36 FEMc-3sls 10.29 AH-GMM 9.38

FEMc-3sls 10.94 FEMc-3sls 10.58 FEM-2sls 10.04 AB-GMM 8.71

LEV1-GMM 10.65 LEV2-GMM 10.42 FEMc-2sls 9.38 LEV1-SGMM 8.29

LEV2-GMM 9.63 FEM-3sls 9.56 BB1-GMM 8.46 AH-SGMM 7.96

BB2-SGMM 7.22 BB2-GMM 8.11 FEM-3sls 8.25 AB-SGMM 7.21

BB2-GMM 7.04 BB2-SGMM 7.53 BB2-SGMM 8.17 LEV2-SGMM 7.21

AB-GMM 6.36 BB1-GMM 6.64 BB2-GMM 8.00 LEV1-GMM 6.13

BB1-GMM 6.19 AB-GMM 6.11 BB1-SGMM 6.17 BB1-GMM 6.04

AB-SGMM 5.04 BB1-SGMM 5.56 AB-GMM 5.46 BB2-SGMM 5.96

BB1-SGMM 5.03 AB-SGMM 4.67 AH-GMM 5.33 BB2-GMM 5.38

AH-GMM 4.65 AH-GMM 3.42 AB-SGMM 4.04 BB1-SGMM 5.13

AH-SGMM 3.88 AH-SGMM 2.47 AH-SGMM 4.00 LEV2-GMM 5.13

No. of designs 72 36 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16

8.3.3 Extension: Simulation with Heteroscedastic Errors

So far we have assumed that the error terms are homoscedastic. In this section we
alter this assumption. Our goal is to analyze whether the above obtained results also
hold for heteroscedastic errors. As Bun and Carree (2005) point out, in data settings
with large N and increasing T two types of heteroscedasticity (cross-section and
time-series type) may be in order. For the scope of this analysis we focus on the
cross-sectional case. As in Soto (2009) we therefore model the error terms u1it and
u2it as uniformly distributed over the interval U(0.5;1.5).15 We are specifically in-
terested in investigating which consequences arise from the misspecification of the
errors for estimators’ empirical performance. Soto (2009) finds in Monte Carlo sim-
ulation designs for two-sided small samples that in the case of heteroscedasticity the
variance and rmse of estimators increases, while the ranking of the alternatives is
not affected. Generally, for large samples we expect that IV methods (2SLS/3SLS)

15Alternatively, one could follow Bun and Carree (2005), who propose to specify the variance as
χ2(1) distributed.



246 8 Dynamic Simultaneous Equations with Panel Data

Table 8.7 Ranking of NORMSQD for different parameter settings

All α2 = 0.8 T = 5 ξ = 4

LEV1-SGMM 12.76 LEV1-SGMM 13.69 LEV1-SGMM 13.58 FEM-2sls 14.13

FEM-2sls 12.74 LEV2-SGMM 12.69 LEV1-GMM 12.25 FEMc-2sls 13.92

FEMc-2sls 11.72 FEMc-2sls 12.53 LEV2-SGMM 12.04 FEM-3sls 12.75

LEV2-SGMM 11.57 LEV1-GMM 11.83 LEV2-GMM 11.17 FEMc-3sls 11.58

FEM-3sls 11.10 FEM-2sls 11.03 FEMc-2sls 10.54 LEV1-SGMM 8.88

LEV1-GMM 11.07 LEV2-GMM 10.83 FEM-2sls 10.29 AH-GMM 8.46

LEV2-GMM 10.03 BB2-SGMM 9.22 FEM-3sls 8.96 LEV2-SGMM 7.75

FEMc-3sls 9.93 BB2-GMM 8.97 FEMc-3sls 8.96 BB1-GMM 7.50

BB2-SGMM 7.97 FEM-3sls 8.61 BB2-SGMM 8.63 BB2-SGMM 7.42

BB2-GMM 7.46 FEMc-3sls 8.58 BB1-GMM 8.25 AH-SGMM 7.21

BB1-GMM 6.56 BB1-GMM 7.56 BB2-GMM 8.17 LEV1-GMM 6.92

AB-GMM 5.53 BB1-SGMM 6.53 BB1-SGMM 6.33 BB2-GMM 6.79

BB1-SGMM 5.08 AB-GMM 5.06 AH-GMM 4.75 AB-GMM 6.33

AB-SGMM 4.32 AB-SGMM 3.89 AB-GMM 4.58 LEV2-GMM 5.88

AH-GMM 4.26 AH-GMM 2.78 AH-SGMM 4.25 BB1-SGMM 5.79

AH-SGMM 3.90 AH-SGMM 2.19 AB-SGMM 3.25 AB-SGMM 4.71

No. of designs 72 36 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16

are still consistent but less efficient than GMM based estimators given that het-
eroscedasticity can be interpreted as cross-sectional correlation of arbitrary form.

The overall results for Monte Carlo simulations with heteroscedastic error terms
are shown in Table 8.8 (NOMAD) and in Table 8.9 (NORMSQD). We focus on
the same parameter settings as for the homoscedastic case. The tables show that the
results basically hold for non-normal residuals, that is again FEM type and LEV-
GMM specifications are the best choice in terms of bias and efficiency, respectively.
On average the LEV1-SGMM estimator is the best choice except for model set-
tings, where the error term is dominated by the unobserved individual effects. Here
the bias corrected FEM estimator (both 2SLS as well as 3SLS) has the most favor-
able track record. Again, the estimators in first differences generally rank the lowest.
Summing up, for non-normal errors there is no conflicting simulation evidence re-
garding the choice among different estimators relative to the homoscedastic case.
Generally, FEM-type models, both full as well as limited information specification,
show to be good estimators when consistency and efficiency of all regression coeffi-
cients matters. They outperform rival specifications in particular, when the share of
the unobservable individual effects in the combined error term is large. Otherwise,
and in particular if one is interested in capturing the time dynamics of the model
properly, the LEV-SGMM is the preferred choice.
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Table 8.8 Ranking of NOMAD for different parameter settings under heteroscedasticity

All α2 = 0.8 T = 5 ξ = 4

FEMc-2sls 10.56 LEV1-SGMM 14.19 LEV1-SGMM 11.50 FEMc-2sls 13.29

LEV1-SGMM 10.22 LEV2-SGMM 12.97 LEV2-SGMM 10.42 FEMc-3sls 12.33

FEM-2sls 10.17 LEV1-GMM 12.94 LEV1-GMM 10.21 FEM-2sls 12.21

LEV1-GMM 9.46 FEMc-2sls 11.72 BB2-GMM 9.58 AB-GMM 10.71

LEV2-SGMM 9.11 LEV2-GMM 11.72 BB1-GMM 9.54 FEM-3sls 10.50

AB-GMM 8.99 FEM-2sls 11.03 LEV2-GMM 9.13 AB-SGMM 8.88

FEMc-3sls 8.93 FEMc-3sls 10.22 FEMc-2sls 9.08 AH-GMM 8.79

BB2-GMM 8.88 FEM-3sls 8.69 AB-GMM 8.79 LEV1-SGMM 8.29

FEM-3sls 8.71 BB2-GMM 8.25 AH-GMM 8.54 AH-SGMM 7.63

LEV2-GMM 8.35 BB2-SGMM 7.97 FEMc-3sls 8.42 BB2-GMM 7.21

AH-GMM 7.89 BB1-GMM 7.42 BB2-SGMM 7.63 LEV2-SGMM 7.21

BB1-GMM 7.79 BB1-SGMM 6.22 FEM-2sls 7.13 LEV1-GMM 7.13

AB-SGMM 7.49 AB-GMM 5.06 AH-SGMM 7.08 BB1-GMM 6.25

AH-SGMM 6.96 AB-SGMM 3.67 BB1-SGMM 7.04 LEV2-GMM 6.04

BB2-SGMM 6.93 AH-GMM 2.19 AB-SGMM 6.92 BB2-SGMM 5.33

BB1-SGMM 5.58 AH-SGMM 1.72 FEM-3sls 5.00 BB1-SGMM 4.21

No. of designs 72 36 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16

8.4 Empirical Application: A Small-Scale Regional Economic
Model

8.4.1 Model Specification

In this section we use the results from our Monte Carlo simulation experiment to
estimate a small simultaneous equation model, which can be used for policy analy-
sis. We are interested in estimating the effects of capital accumulation, both private
as well as public, on regional economic growth. According to the public capital
hypothesis, public capital is expected to have significant positive effects on private
sector output, productivity and capital formation (see e.g. Wang 2002). Thus, public
capital is assumed to enter directly and indirectly in the production process lead-
ing to q-complementary between public and private capital.16 The latter concept
of q-complementary implies that public investments are able to ‘crowd-in’ private

16In general, q-complementary and q-substitutability refers to the effect of the quantity of one
resource on the marginal product of another source.
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Table 8.9 Ranking of NORMSQD for different parameter settings under heteroscedasticity

All α2 = 0.8 T = 5 ξ = 4

LEV1-GMM 11.50 LEV1-GMM 13.19 LEV1-SGMM 12.25 FEMc-2sls 11.13

LEV1-SGMM 11.28 FEMc-2sls 12.92 LEV1-GMM 11.67 LEV1-SGMM 10.63

LEV2-GMM 10.17 LEV1-SGMM 12.72 BB1-GMM 11.50 LEV1-GMM 10.54

BB2-GMM 10.01 LEV2-GMM 11.44 BB2-GMM 11.17 BB2-GMM 10.04

LEV2-SGMM 9.94 LEV2-SGMM 10.97 LEV2-SGMM 11.00 BB1-GMM 10.00

BB1-GMM 9.93 FEM-2sls 10.94 LEV2-GMM 10.42 LEV2-SGMM 9.29

FEMc-2sls 9.53 FEMc-3sls 9.11 FEMc-2sls 8.38 LEV2-GMM 9.21

FEM-2sls 8.14 BB1-GMM 9.00 AB-GMM 8.13 FEM-2sls 9.04

AB-GMM 7.76 BB2-GMM 8.47 BB2-SGMM 8.13 AB-GMM 8.33

BB2-SGMM 7.38 FEM-3sls 8.47 BB1-SGMM 8.04 FEMc-3sls 7.96

AB-SGMM 7.03 BB2-SGMM 8.22 AH-GMM 7.67 AB-SGMM 7.50

BB1-SGMM 6.90 BB1-SGMM 7.75 AB-SGMM 6.83 AH-GMM 7.46

AH-GMM 6.75 AB-GMM 4.64 AH-SGMM 6.63 FEM-3sls 7.21

FEM-3sls 6.65 AB-SGMM 3.47 FEM-2sls 5.38 AH-SGMM 6.96

AH-SGMM 6.51 AH-GMM 2.47 FEMc-3sls 4.88 BB2-SGMM 5.58

FEMc-3sls 6.51 AH-SGMM 2.19 FEM-3sls 3.96 BB1-SGMM 5.13

No. of designs 72 36 24 24

Note: The average cumulative number of points is calculated as 1
D

∑D
i=1 Pi , where D is the total

number of simulation designs i considered and Pi is the number of points given to each estimator
according to weighting scheme 1 with Pi ∈ 1, . . . ,16

investment by increasing the rate of return to private capital and thereby stimulates
economic growth. As Wang (2002) points out, public capital in terms of infrastruc-
ture can have three different effects on aggregate output. Firstly, it contributes di-
rectly as a measurable final product; secondly, as an intermediate input, and thirdly,
as a source of positive externalities.

The latter link has been extensively studies in the field of the ‘new growth’ lit-
erature (see e.g. Barro 1990; Jones 2001; Barro and Sala-i-Martin 2003). Here, the
mainstream approach in the literature typically starts from a standard Solow (1956)
production function model, augmented by the inclusion of other productive fac-
tors in addition to private capital and labor. Besides the analysis of public capital,
this model is also used to estimate the effect of fiscal policy on growth (see, e.g.,
Bajo-Rubio 2000). At the core of the model is a general production function of the
form

Y = KαZ
β1
1 · · ·Zβm

m (AL)1−α−∑m
i=1 βi

(
KG

K

)γ (
T R

K

)θ

, (8.37)

where Y denotes output, K is private physical capital, Zi with i = 1, . . . ,m are other
private inputs such as human or knowledge capital (see e.g. Lall and Yilmaz 2001),
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L is labor and A is a labor augmenting factor. Additionally, KG and TR are govern-
ment provided inputs as public physical capital and transfer payments, respectively.
Equation (8.37) can be transformed in its intensive per capita formulation as

y = Ak̄αz̄1
β1 · · · z̄m

βm

(
KG

K

)γ (
TR

K

)θ

, (8.38)

with variables in small letters as per capita variables and the bar indicates per capita
variables in efficiency units (such as X : x = (X/L), x̄ = (X/AL)). As Bajo-Rubio
(2000) points out, the standard per capita production function exhibits decreasing
returns to scale in both private capital and all private inputs. For empirical estimation
in a cross-sectional (panel) analysis of countries or regions, the model in (8.38) is
typically used in its standard empirical growth formulation (see e.g. Barro and Sala-
i-Martin 1991, 1992, 2003) in log-levels as:

log(yi,t ) − log(yi,t−1) = const − b × log(yi,t−1)

+
1∑

j=0

αj log(invi,t−j ) +
1∑

j=0

βj log(n + g + δ)i,t−j

+
1∑

j=0

γj log(pubi,t−j ) + � ′Z + ui,t , (8.39)

where i = 1, . . . ,N is the cross-sectional dimension and t = 1, . . . , T is the time
dimension. The dependent variable yit is defined as output per employee for re-
gion i and time period t , yi,t−1 is the one-period lagged observation. Next to its
own lagged value, the model includes current and (one-period) lagged values of the
following factor inputs as right-hand side regressors: invi,t is the private sector in-
vestment rate, ni,t is the labor force growth rate, g and δ are exogenous technical
change and depreciation, pubi,t is the public sector investment rate. Z is a vector of
further growth determinants including factors such as human capital or public trans-
fer payments, uit is the error term and b, α, β , γ , δ, φ, ω and � are coefficients to
be estimated.17

The model in (8.39) assumes that causality runs from private and public inputs
to output growth. However, as Wang (2002) summarizes the recent empirical liter-
ature, evidence remains ambiguous as to whether a significant positive correlation
indicates that public infrastructure raises private output, or whether in turn a rise
in private output raises the demand for public infrastructure. Thus, the direction of
causality is a priori not clear (see also Holtz-Eakin 1994). To account for the likely
existence of two-way causality, in empirical estimation, we will use (8.39) and add
further equations for the factor inputs of private and public investment. By account-
ing for the endogeneity of the two factor inputs we are able to explicitly channel
the relationship between the variables in the core model and are better equipped for

17The inclusion of lagged income growth in (8.39) measures, whether convergence forces among
the i cross-sectional units are at work (implying a negative regression coefficient b).
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opening up the system to conduct regional policy analysis in an augmented setup.
Some of the likely gains associated with this system approach compared to the sin-
gle equation estimation are as follows:18 First, the role of the policy variables in the
system can be interpreted more meaningful. That is, the indirect effects of regional
policies on the production function are modelled via the endogenized factor inputs,
so the policy variables in the growth equation are left to determine the effect on total
factor productivity in isolation.

Second, by addressing potential right-hand-side endogeneity and cross-equation
residual correlation, this setup may generally result in consistent and more efficient
parameter estimates compared to the single equation approach. By using appro-
priate instrumental variables for endogenous right-hand side variables in the system
approach, the single parameters are estimated consistently (see e.g. Bond et al. 2001,
with a reference to growth model estimates), further the system approach leads to
more efficient results, especially if there is a non-zero covariance matrix of the error
terms (see Greene 2003).

We can thus set up a small-scale 3-equation system using a partial adjustment
framework, which is formulated as a simple dynamic process with time lag accord-
ing to

⎡

⎣

y∗

i,t

inv∗
i,t

pub∗
i,t

⎤

⎦ =
⎡

⎣
inv∗

i,t , pub∗
i,t , Z


y∗
i,t , pub∗

i,t , Z

y∗

i,t , inv∗
i,t , Z

⎤

⎦ +
⎡

⎣
u1i,t

u2i,t

u3i,t

⎤

⎦ , (8.40)

where “∗” denote the equilibrium level for a variable x. 
 is the difference operator
defined as 
yi,t = log(yi,t ) − log(yi,t−1). The equilibrium level is assumed to be
connected to actual current and past observations of x as

log(xi,t ) − log(xi,t−1) = η log(x∗
i,t ) − η log(xi,t−1) (8.41)

and solving for x∗
i,t yields:

log(x∗
i,t ) = 1

η
log(xi,t ) + log(xi,t−1), (8.42)

where η can be interpreted as the speed of adjustment parameter for variable x. Sub-
stituting this equation for each x∗

i,t in the equation system of (8.40) yields for each
equation a relationship for estimation with only observable variables, since equilib-
rium values are substituted by current and one-period lagged observed values for
the respective variable. Alternatively, we also estimate specifications which solely
depend upon lagged values.

We apply the 3-equation system of output growth (
y), private capital invest-
ment (inv) and public capital investment (pub) for German regions (NUTS1 level)
since re-unification. As Uhde (2009) points out, the investigation of economic ef-
fects arising from public infrastructure and transfer payments is still rarely analyzed
at the regional and federal state level in Germany. The next section briefly outlines

18See e.g. Ulubasoglu and Doucouliagos (2004) for a further discussion.
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the dataset. Empirical results for the baseline model as well as augmented speci-
fications including interregional spillover effects from public capital and regional
policy variables are presented subsequently.

8.4.2 Data and Empirical Results for Baseline Model

For the empirical estimation we use panel data for the 16 German states between
1991 and 2006 (total 256 observation). All monetary variables are denoted in real
terms with base year 2000 (in Euro). If no specific price indices are available, the
GDP deflator is used to deflate the series. A detailed description of the variables
and source is given in Table 8.10. Besides the three main variables 
yi,t , invi,t and
pubi,t we use a set of control variables to serve as (excluded) instruments for the
system estimation. The latter comprises the population level, unemployed persons,
human capital, the share of manufacturing sector in total regional output as well as
the regional ex-ante tax base.

Since we are dealing with a moderate time dimension T = 16, non-stationarity
of the data—and thus spurious regression—may be an issue. We therefore perform
a set of panel unit root tests for the main variables in our 3-equation system. The
results are reported in Table 8.11. We use test statistics proposed by Im et al. (2003)
and Pesaran (2007), respectively. The advantage of the latter is that the test is robust
with respect to cross-sectional correlation of the variables in focus. Since we are
dealing with regional entities, cross-sectional interdependency cannot be excluded
per se.

As the results of both the IPS as well as Pesaran’s CADF test show, for out-
put growth and public capital investments the null hypothesis of non-stationarity in

yi,t , invi,t and pubi,t can clearly be rejected for reasonable confidence levels. For
private investments, both tests are only able to reject the null hypothesis at the 10
percent significance level, giving weak support that the variable may be integrated.
However, taken together with our ex-ante theoretical expectations that output and
private/public capital are typically found to be integrated of order I (1), while their
growth rates (that is investments) are difference stationary respectively, we treat all
variables as stationary and include them in our 3-equation system.

Turning to the regression results, we first estimate the baseline 3-equation system
using different limited and full information approaches. Guided by the MC based
small sample evidence above, we focus on FEM and LEV-GMM based alternatives.
We start with the limited information approach, which accounts for the endogenous
variables of the system by appropriate instruments but ignores cross equations resid-
ual correlations (as done in the full information approach). The results are presented
in Table 8.12. As the results show, the IV-based FEM and LEV-GMM approaches
yield qualitatively similar results for all three equations.

For output growth, both estimation techniques report only a moderate coefficient
for the included lagged endogenous variable, there is a positive contemporaneous
correlation between GDP growth and both private as well as public investment rates.
However, the lagged variable coefficients turn out to be significantly negative and al-
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Table 8.10 Data description and sources

Variable name Description Source

yit Output per employee, 1000 EUR, in real terms (base
year 2000)

VGR der Länder
(VGRdL 2009)

invit Private sector investment rate as gross fixed capital
formation per employee, in real terms

VGRdL (2009)

pubit Public sector investment rate as ratio of public
investment relative to total regional government
spendings

Council of Economic
Advisors (SVR 2009)

Exogenous control variables

(n + g + δ)it Employment growth plus constant term (0.05) VGRdL (2009); own
calculations

hcit Human capital as a weighted composite indicator from
1) high school graduates with university qualification per
total population between 18–20 years (hcschool),
2) number of university degrees per total population
between 25–30 years (hcuni), 3) share of employed
persons with university degree relative to total
employment (hcsvh), 4) number of patents per
populations (hcpat)

Destatis (2008a,
2008b), Federal
Employment Agency
(2009), DPMA
(2008), own
calculations

unempit Total number of unemployed persons Federal Employment
Agency (2009)

ISi,t Share of industry sector GVA relative to total GVA VGRdL (2009), own
calculations

τit Total regional tax volume (ex ante) as share of regional
GDP

Destatis (2009c),
own calculations

nmrit Net migration (in- minus out-migration) per population Destatis (2009d),
own calculations

popit Population VGRdL (2009)

East (0,1)-Dummy for East Germany Own calculations

Interregional spillovers from public capital

Wpubit Distance weighted average of public sector investments
for regions j with j �= i

SVR (2009), own
calculations

Wpubtransit Distance weighted average of public sector investments
in transport infrastructure for regions j with j �= i

(machinery & equipment, buildings & construction in
transport and communication networks)

DIW (2000), own
calculations

Wpubscienceit Distance weighted average of public sector investments
in science infrastructure for regions j with j �= i

(machinery & equipment, buildings & construction for
universities and public research facilities)

DIW (2000), own
calculations

Regional policy transfers

LFAit Federal government and interstate redistribution
transfers per capita, in real terms

BMF (2009a, 2009b),
own calculations

GRW it Federal transfers to private sector and business related
infrastructure per employee, in real terms

BAFA (2008), own
calculations
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Table 8.11 Panel unit root tests for variables in the 3-equation system

Variable IPS and CADF t-bar test N , T = 16,16

H0: Series non-stationary

W[t-bar] No. of lags Z[t-bar] No. of lags


yi,t −8.29*** 0.88 −4.94*** 1

invi,t −1.59* 1.75 −1.57* 1

pubi,t −6.78*** 1.38 −3.03*** 1

Note: For the IPS test, the average number of lags included has been determined according to the
Akaike information criterion (AIC). The set of excluded instruments for the endogenous current
and predetermined variables contains current and one period lagged values of: τi,t ISi,t , nmri,t

and unempi,t (all in log-levels). For the LEV-GMM also variable transformations based on the
stationarity moment condition are used
*Denote statistical significance at the 10% level **Denote statistical significance at the 5% level
***Denote statistical significance at the 1% level

Table 8.12 Limited information DSEM estimation for 
yi,t , invi,t and pubi,t

Model: FEM-2SLS LEV-GMM FEM-2SLS LEV-GMM FEM-2SLS LEV-GMM

Dep. var.: 
yi,t 
yi,t invi,t invi,t pubi,t pubi,t


yi,t 1.62*** 1.86* 1.03** 3.09***

(0.509) (1.016) (0.461) (0.515)

invi,t 0.24*** 0.20*** 0.20 −0.41*

(0.069) (0.049) (0.194) (0.223)

pubi,t 0.19** 0.22*** 0.25 −0.47*

(0.088) (0.042) (0.274) (0.276)


yi,t−1 0.18* 0.26*** 0.37 0.42 −0.54*** −1.10***

(0.096) (0.093) (0.281) (0.723) (0.200) (0.278)

invi,t−1 −0.22*** −0.22*** 0.81*** 0.96*** −0.08 0.48**

(0.053) (0.045) (0.043) (0.064) (0.164) (0.226)

pubi,t−1 −0.17*** −0.14*** −0.01 0.25 0.49*** 0.81***

(0.044) (0.048) (0.168) (0.263) (0.074) (0.062)

N 240 240 240 240 240 240

Time
dummies

yes yes yes yes yes yes

R2 0.69 0.71 0.77 0.77 0.67 0.87

ξ 0.35 1.07 1.81

χ2
het 32.4 (p = 0.14) 33.8* (p = 0.08) 30.4 (p = 0.21)

Note: ξ is the ratio of the two error components μ and ν, χ2
het is the Pagan and Hall’s (1983) test of

heteroscedasticity for instrumental variables (IV) estimation. External instruments used are current
and one-period lagged values of: τit , unempit , nmrit and ISit
*Denote statistical significance at the 10% level **Denote statistical significance at the 5% level
***Denote statistical significance at the 1% level
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most of equal sign, so that the partial long-run effect from each variable are mostly
tested to be insignificant, except for public capital investments in the LEV-GMM
specification with a statistically significant long-run elasticity of 0.09 (standard er-
ror: 0.013).19

For both the private and public investment rate the degree of autocorrelation is
found to be much higher. Besides this, output growth has a positive effect on both
variables. In the equation for public investment, the FEM specification also finds
a statistically significant long-run elasticity of private investment of 0.23 (standard
error: 0.077), which gives first empirical support for q-complementary between the
variables. Also in the LEV-GMM model lagged private investments turn out to be
statistically significant and of expected positive sign, however, given that current
investment enter the equation with a negative sign, the long-run elasticity (0.39,
standard error: 0.288) turns out to be statistically insignificant in this specification.

The estimated specifications show a rather good fit with values of R2 ranging
between 0.70 and 0.90. For none of the models we detect any sign of heteroscedas-
ticity in the error terms. However, the fraction of the unobservable individual effects
relative to the remainder error component may become quite large (about two, in the
case of pubi,t ). In these settings, the FEM based alternatives have shown the best
performance in our Monte Carlo simulation exercise. We thus focus on fixed effects
model, when turning to the full information estimation.

The results for the Panel DSEM in its FEM-3SLS specification are reported in
Table 8.13. While the estimated regression coefficients remain rather stable relative
to the limited information approach, we get strong empirical evidence that full in-
formation approach enhances the estimation efficiency. That is, the residuals from
the first stage 2SLS regression show a significant cross-equation correlation in all
cases. This result is also supported by a Harvey–Phillips (1982) type exact indepen-
dence test, which checks for the joint significance of the other equations’ residuals
in an augmented first step regression (see e.g. Dufour and Khalaf 2002, for details).
In all cases, the null hypothesis of insignificance is clearly rejected.

Finally, to compare the 2SLS and 3SLS estimators with respect to estimation
efficiency, we employ the Hausman (1978) m-statistic, which is defined as:

m = q̂ ′(Q̂ − V̂ )−1q̂, (8.43)

where q̂ = β̂3SLS − β̂2SLS is the difference between the 3SLS and 2SLS estimators of
the same parameter, Q̂ and V̂ denote consistent estimates of the asymptotic covari-
ance matrices of β̂3SLS and β̂2SLS respectively. The m-statistic has a χ2 distribution
with degrees of freedom equal to the number of parameter estimates. The underly-
ing idea of the test is quite simple: Under the assumption that the 3SLS estimator is
generally more efficient than the 2SLS estimator, we test whether the difference be-
tween the estimators is large, indicating that the more complex GLS transformation
in the 3SLS case induced a misspecification in the model which renders it inconsis-
tent. Thus, under the null hypothesis, both estimators are consistent but only β̂3SLS

19Computation of the partial long-run elasticity is based on the delta method, where the long-run
effect for pubi,t is calculated as [(pubi,t + pubi,t−1)/(1 − 
yit−1)].
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Table 8.13 Full information
DSEM estimation for 
yi,t ,
invi,t and pubi,t

Note: |m|-stat. is the absolute
value of the Hausman
m-statistic. χ2(2)HP reports
the Harvey–Phillips (1982)
type independence test for
cross-equation residual
correlation. External
instruments used are current
and one-period lagged values
of: τit , unempit , nmrit

and ISit

*Denote statistical
significance at the 10% level
**Denote statistical
significance at the 5% level
***Denote statistical
significance at the 1% level

Model: Panel DSEM

Dep. var.: 
yi,t invi,t pubi,t


yi,t 2.33*** 1.16***

(0.211) (0.297)

invi,t 0.39*** −0.35**

(0.036) (0.157)

pubi,t
0.41*** −0.67***

(0.113) (0.336)


yi,t−1 −0.11 0.28 0.18

(0.088) (0.218) (0.193)

invi,t−1 −0.36*** 0.89*** 0.37***

(0.028) (0.040) (0.128)

pubi,t−1 −0.28*** 0.52** 0.59***

(0.071) (0.201) (0.071)

N 240 240 240

Time dummies yes yes yes

|m|-stat. 4.96 9.41 11.66

(0.99) (0.97) (0.94)

χ2(2)HP 93.81 972.26 544.26

(0.00) (0.00) (0.00)

u
y uinv upub

u
y 1.00

uinv −0.92*** 1.00

upub −0.51*** 0.26*** 1.00

is efficient. Under the alternative hypothesis only β̂2SLS is consistent.20 The results
of the Hausman |m|-statistic in Table 8.13 show that for all equations the null hy-
pothesis cannot be rejected for reasonable confidence levels, giving strong support
for the 3SLS compared to the 2SLS results.

The estimated FEM-3SLS model in Table 8.13 may be seen as the standard
DSEM approach adapted to dynamic panel data settings in regional economics.
However, as Rickman (2010) points out, this approach of structural modelling has
recently been criticized for various reasons. One argument is the rather ad-hoc clas-

20By construction, if the 2SLS variance is larger than the 3SLS variance, the test statistic will be
negative. Though the original test is not defined for negative values, here we will follow Schreiber
(2007) and take the absolute value of the m-statistics as indicator for rejecting the null hypothesis
of 3SLS efficiency.
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Table 8.14 Full information PVAR estimation for 
yi,t , invi,t and pubi,t

Model: PVAR(1) PVAR(2)

Dep. var.: 
yi,t invi,t pubi,t 
yi,t invi,t pubi,t


yi,t−1 0.64*** 1.51*** 0.39*** 0.84*** 1.60*** 0.40**

(0.049) (0.161) (0.109) (0.065) (0.225) (0.155)

invi,t−1 −0.07*** 0.68*** 0.03 −0.15*** 0.52*** −0.01

(0.011) (0.036) (0.024) (0.016) (0.055) (0.038)

pubi,t−1 0.06*** 0.29*** 0.55*** 0.02 0.24** 0.46***

(0.027) (0.091) (0.061) (0.031) (0.105) (0.072)


yi,t−2 −0.01 0.51** 0.12

(0.061) (0.211) (0.146)

invi,t−2 0.11*** 0.18*** 0.03

(0.017) (0.059) (0.041)

pubi,t−2 0.04 0.02 0.16**

(0.033) (0.113) (0.078)


yLR
i,t 4.84*** 0.87*** 7.25*** 1.15**

(0.731) (0.257) (1.305) (0.501)

invLR
i,t −0.21*** 0.08 −0.70* 0.06

(0.044) (0.051) (0.382) (0.076)

pubLR
i,t 0.18** 0.95*** 0.41* 0.89***

(0.077) (0.262) (0.231) (0.319)

N 240 240 240 224 224 224

Time dummies yes yes yes yes yes yes

Log likelihood 765.53 791.5

AIC −1235.1 −1237.8

*Denote statistical significance at the 10% level **Denote statistical significance at the 5% level
***Denote statistical significance at the 1% level

sification of endogenous and exogenous variables used in the IV estimation setup to
instrument the contemporaneous endogenous explanatory variables in the respective
equations. An alternative to this approach is thus to start from an unrestricted VAR
perspective, where each variable is treated as endogenous. The VAR then models
each variable of the 3-equation system as a function of own lagged values and lags
from the other variables of the system. A further advantage of the VAR methodol-
ogy is that the dynamic properties of the system can be analyzed with the help of
impulse–response functions. The latter approach may be seen as advancement com-
pared to the ‘dynamic multiplier’ approach in standard DSEM modelling (see, e.g.,
Stein and Song 2002, for an overview).

Based on the FEM-3SLS estimator, we thus also estimate the model of 
yi,t ,
invi,t and pubi,t as VAR(1) and VAR(2) processes for panel data, where (1) and (2)
indicate the maximum number of lags included. The results for the resulting PVAR
models are shown in Table 8.14. As the table shows, both the PVAR(1) and PVAR(2)
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model get similar coefficient estimates, while the partial long-run elasticities of the
PVAR(2) tend to be slightly higher compared to the PVAR(1) specification. In terms
of minimizing the Akaike information criteria (AIC) the PVAR(2) is preferred over
the single lag alternative.21 We thus take this model to analyze the dynamic proper-
ties of the system and the potential two-way effects among the variables.

Impulse-response functions (IRF) describe the reaction of one variable to inno-
vations in another variable of the system while holding all other shocks equal to
zero (for details, see Lütkepohl 2005). In order to interpret the results, we com-
pute orthogonalized IRFs which impose a certain causal ordering of the variables
included in the VAR. Here we follow the standard in the literature and assume the
following identification scheme (see, e.g., Marquez et al. 2009): Innovations in pub-
lic investment affect contemporaneously private investment and output growth, but
the reverse is not true; shocks to private investment affect contemporaneously out-
put growth, but not the other way around. In this sense, the identified shocks are not
subject to the reverse causality problem. The IRFs are shown in Fig. 8.21.

Figure 8.21 shows the responses of each variable to a one standard deviation
shock in the remaining variables of the PVAR. We report the dynamic adjustment
path of each variables up to 12 periods (years) together with 5% errors bands gen-
erated through Monte Carlo simulations with 500 repetitions.22 Throughout this pe-
riod, most of the dynamic adjustment processes have been taken place and the sys-
tem returns to its long-run equilibrium. The general short-run adjustment dynamics
of the system thus further supports the hypothesis of stationarity of the variables.

Both private and public investments react positively to shocks in output growth,
where the effect levels out after about six to nine periods. On the contrary, a shock
in private investment leads to a temporary negative reaction in 
y, while a shock in
public investment does not show to have a significant impact on output growth. The
reaction of public investment to a private investment shock turns out to be insignifi-
cant. However, private investment is positively affected by a shock in public capital
investment. The latter effect of public capital is also found by Afonso and St. Aubyn
(2009) for a sample of OECD countries.

In general, the predictions of the PVAR(2) are plausible in the light of economic
theory. We find one-way causality from public to private investment. Both private
and public investments show a positive reaction to shocks in output growth. How-
ever, there is no feedback causality from private and public investments to output
growth. One likely explanation for the latter result is that the aggregate result is par-
ticularly driven by the economic evolution of the East German economy. Through-
out the second half of the 1990s, the speed of growth and convergence for the East
German economy towards the Western average considerably lost pace, while at the
same time private and public investment rates were still relatively high compared to
the Western states. Thus, the link between capital accumulation and output growth
is found to be less tight for this sample period (see e.g. Alecke et al. 2010b).

21We do not try higher-order lag lengths in order to keep the number of observations for estimation
as large as possible.
22We use a Stata code kindly provided by Inessa Love to compute impulse–responses and variance
decomposition in a Panel VAR framework.
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8.4.3 Interregional Spillovers from Public Capital and the Impact
of Regional Transfers

We then use the baseline PVAR model to augment the scope of investigation to
policy analysis. We run two types of exercises. First, we analyze the role of in-
terregional spillovers from public capital installed in other regions. This issue was
first addressed in Munnell and Cook (1990), arguing that the use of state level data
misses important parts of the total spillover benefits relevant for the effective stock
public capital and thus the policy making decision process. As Alvarez et al. (2006)
points out, spatial spillovers from public capital may be explained as the result of
network effects of public capital, where the stock of public capital is expected to
affect production in other regions. This may particularly be relevant for building up
transport infrastructure (e.g. roads, railways etc.).

According to Boarnet (1998) spillovers may not necessarily be positive. Negative
spillovers from public capital may be present if the regional stock of public capital
enhances the comparative advantages of a location relative to others so that public
infrastructure investment in one location draws resources and thus production away
from others. Different authors have contributed to the analysis of spillover effects
from public capital. Pereira and Andraz (2008) find significant spatial spillover ef-
fects from public investments in highways for US state level data. The findings are
supported by Pereira and Roca-Sagales (2003, 2006) and Marquez et al. (2010) for
Spanish regions based on a general definition of public capital, while Alvarez et al.
(2006) do not find any interregional spillover effect from public capital for Spanish
provinces. Finally, using a different methodological approach based on bi-regional
modelling, Marquez et al. (2009) show that both positive as well as negative inter-
regional spillover effects may arise from public capital.

The typical approach to measure spillover effects from public capital is to intro-
duce a spatially weighted variable capturing public capital investments in other re-
gions as

∑N
j �=i,j=1 wij × pubj,t , where wij is the ij -element of a spatial weighting

matrix (W ), which measures the degree of interregional dependence. As Alvarez
et al. (2006) summarize common choices for the weighting scheme are i) a com-
mon border based definition with wij = 1 for adjacent regions and zero otherwise,
ii) a distance related measure such as the inverse of the distance from other regions,
iii) weights reflecting commercial relationships among regions and finally iv) equal
weights as 1/(N − 1).

We employ different weighting schemes to the analysis of interregional spillovers
from public investments in transport and science infrastructure.23 The IRF results
for the distance based weighting scheme in ii) are reported in Figs. 8.22 and 8.23.24

To keep the number of estimated parameters as small as possible we restrict the
analysis to the PVAR(1) case. The impact of shocks for public capital investments
in other German states on the remaining variables of the system are reported in

23Data is taken from DIW (2000) providing gross capital stock estimates for public infrastructure
items at the state level until 2005.
24Further results for alternative weighting schemes can be obtained from the author upon request.
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column IV of Figs. 8.22 and 8.23. For transport infrastructure (machinery & equip-
ment, buildings & construction in transport and communication networks) we find
positive but merely insignificant effects on 
yi,t , invi,t and pubi,t . These results are
qualitatively in line with recent results by Barabas et al. (2010), who find positive
but mostly insignificant results for interregional spillover effects from transport in-
frastructure to output growth among German states. Bertenrath et al. (2006) as well
as Uhde (2009) report mixed results, where the latter author even reports negative
effects. One likely explanation for the absence of strong positive effects for German
transport infrastructure investments is that the density of the transport network is
high on average, so that gains from further investments turn out to be small.

Turning to the impact of spillovers from science infrastructure (machinery &
equipment, buildings & construction for universities and public research facilities),
the results in Fig. 8.23 hint at statistically negative effects from public capital invest-
ment installed in other regions to output growth and investment activity in the own
region. This may enforce the argument raised by Boarnet (1998) that public capital
enhances the comparative advantages of locations relative to others so that public
infrastructure investment draws resources and thus production away from these lo-
cations. Especially for the case of science infrastructure, this may be relevant given
the importance of human capital in the regions knowledge creation as an important
determinant of economic development. Science infrastructure in turn may be seen
as a necessary precondition for the region to attract human capital.

In a second type of exercise, we augment the PVAR by policy instruments oper-
ating as regional equalization payments. We focus on two of major policy schemes
in the actual institutional setup of German regional policy: 1) the federal/interstate
fiscal equalization transfer scheme (Länderfinanzausgleich, henceforth LFA), 2) the
joint federal and state government program ‘Improvement of Regional Economic
Structures’ (Gemeinschaftsaufgabe ‘Verbesserung der regionalen Wirtschaftsstruk-
tur’, henceforth GRW).

Especially the LFA is a matter of constant debate at the political and academic
level. A central question is whether those transfers associated with the LFA are
effective in fostering growth in the relatively poor recipient regions and thus support
the central goal of income convergence among German states. In the latter sense,
equalization payments of the LFA are seen as an ‘allocative’ policy instrument,
where positive macroeconomic effects are likewise associated with spillovers from
public (infrastructure) investments as well as scale effects in the production of public
goods (for a summary see, e.g., Kellermann 1998).25

In the recent literature, contrasting arguments can be found with respect to the
likely macroeconomic effects of federal transfer payments such as the LFA. A typ-
ical argument against equalization transfers is that they may result in persistent

25The two layers of the LFA comprise a horizontal reallocation between different regional units of
the same administrative level (states) as well as transfers stemming from vertical linkages between
the federal government and the state level. The LFA targets the level of regional tax revenues, where
equalization is achieved through a combination of horizontal and vertical transfer payments. Both
elements serve as to subsidize low revenue states to fill the gap between a state’s actual revenues
relative to a population weighted average level of tax revenues across states.
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‘transfer dependencies’, where poor net recipient regions have little incentives to
boost their revenue base. However, LFA transfers can also been seen as a form of
public capital which in turn may help to foster the productivity of private capital
stock and thus also output growth. For the magnitude of this growth channel, the
share of public investive spending items relative to total net transfers is important:
The higher the share of investive (or supply side) spendings relative to total transfers,
the stronger we expect the impulse of the LFA on the regional growth pattern to be.

Previous empirical contributions have shown mixed results: For Canada, Kauf-
man et al. (1997) find a significant positive influence of net transfer payments on the
regional growth and convergence process of its provinces. Studies based on German
data mainly reveal a negative relationship between LFA transfers and regional eco-
nomic growth: Baretti (2001) uses data for 10 West German states between 1970 and
1997, Berthold et al. (2001) expand the approach to a panel of all 16 German states
using a shorter observation period between 1991 and 1998. Both studies find a sig-
nificant negative relationship between the elements of the LFA and regional growth
in Germany. Alecke and Untiedt (2007) use a ‘Barro’-type convergence equation to
test for output effects using panel data for all 16 German states between 1994 and
2003. The results do not support any causal relationship between LFA payments and
regional economic growth.

For LFA payments, the impulse–response functions from the PVAR(1) in
Fig. 8.25 generally support the negative findings already reported in the empiri-
cal literature. That is, there a negative two-way effect running both from a shock
in LFA payments to economic variables, as well as negative feedback effects. Re-
garding the impact of LFA transfers we get a significant negative reaction of private
and public capital, while the effect on output growth is shown to be insignificant.
A shock in output growth and public capital in turn leads to negative LFA payments.
The output effect thereby basically mirrors the institutional setting of the LFA, while
the two-way causality between public capital and LFA transfers gives support to the
‘transfer dependency’ argument, where the latter is typically faced by federal states
with strong financial constraints due to a high burden of current spendings in total
public spendings (see, e.g., Seitz 2004).

Another transfer scheme, the joint federal/state government programme Gemein-
schaftsaufgabe ‘Verbesserung der regionalen Wirtschaftsstruktur’ (GRW), com-
prises two major components: First, the GRW operates as a regional investment
support scheme for the private sector. Second, it provides public infrastructure to
subsidized regions, where the infrastructure projects are closely related to the pri-
vate sector business activity. There is a broad empirical literature analyzing the im-
pact of various investment incentives on an economy’s investment and growth path
(a literature overview is given by Tondl 2001). So far, most evaluation studies of the
GRW indicate a positive correlation between financial support and regional growth
(for instance, Blien et al. 2003; SVR 2005; Eckey and Kosfeld 2005; Alecke and
Untiedt 2007; Röhl and von Speicher 2009). However, only few studies try to spell
out the transmission channels in a (structural) multiple equation model (see, e.g.,
Schalk and Untiedt 2000, for the latter approach).

The IRF results for the GRW are shown in Figs. 8.24 and 8.25, respectively. The
impacts of shocks in regional GRW payments (per employee) to the remaining vari-
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ables of the system are reported in column IV of Fig. 8.24. As the impulse–response
functions show, the GRW has indeed a positive impact on public and private sector
investment, although the effect already levels out after 3 periods (indicated by the
intersection of the lower bound confidence interval with the zero line). However,
this gives support to the effectiveness of the policy programme in terms of fostering
private sector investment. Nevertheless, the graphs do not show any significant di-
rect or indirect impact on output growth. That is, the GRW does not affect growth
in total factor productivity directly. Moreover, as already seen in the baseline spec-
ification, there is also no indirect link running from an increase of investment to
output growth. We finally observe significant positive feedback effects from shocks
in 
yi,t , invi,t and pubi,t to regional GRW financial payments. This may indicate
that a positive business climate in supported regions induces further demand for
funding. Of course, these results only give a broad macro regional perspective and
should be complemented up by other types on analysis, which are able to more
carefully account for results at a more disaggregate regional scale.

8.5 Conclusion

Despite is potential use for efficient structural modelling, simultaneous equation
estimation with panel data is still seldom applied in economics and regional sci-
ence. This is particular true for time-dynamic processes. In this chapter we have
taken up this point, dealing with two distinct research questions: First, we wanted
to gain more insights regarding the small sample properties of different estimators.
Although efficiency of full information approaches for the estimation of a system of
equations is well known in large sample settings, the researcher is often left with-
out device for finite samples. We thus provide further finite sample evidence for
dynamic panel data models in multiple equation settings. We especially focus on
two-sided small (N , T )-samples. Using a broad set of Monte Carlo simulation de-
signs, we test the empirical performance of different multiple equation extensions
for the standard FEM, its bias corrected form, as well as familiar IV and GMM style
estimators, which have recently been proposed in the literature.

For the parameter settings employed in this Monte Carlo simulation exercise,
our results show that simple estimators are also among the best: The FEM estima-
tor using 2SLS/3SLS with valid exogenous instruments ranks best in terms of bias
and also shows to have a good performance regarding the relative efficiency of the
estimators. Note that we evaluate all regression parameters, not only regarding the
autoregressive parameter in the dynamic specification. This result particularly holds
for data settings, where the unobserved fixed effects make up a dominant part of the
overall error term. For constellations with a high persistence in the autoregressive
parameter of the endogenous variables as well as a small time dimension, e.g. T = 5,
the LEV-SGMM estimator performs best. This estimator in general also ranks best
in terms of efficiency (rmse). While the latter two estimators may thus be seen as
a good choice for empirical applications, when right hand side endogeneity and si-
multaneity matters, GMM based estimation techniques in first differences, which are
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still a common tool in dynamic panel data setups, perform generally rather weak. To
some extent, this also affects the performance of Blundell–Bond type system GMM
estimators. These results can also be extended to the case of heteroscedastic errors.

The chapter then applies different dynamic simultaneous equation specification
to a small-scale regional economic model for German states. Using a 3-equation ap-
proach for output growth, private and public capital investment, the model is able to
identify the two-way effects among capital inputs and output growth. Augmenting
this baseline model by variables to measure interregional spillover effects from pub-
lic capital as well as transfer payments from regional equalization schemes, allows
us to use to model for policy analysis. Here the results show that we find positive but
insignificant effects from interregional spillovers in transport infrastructure, while
spillovers from science infrastructure are shown to be even negative. The latter result
is likely to originate from specific locational advantages of science infrastructure,
which allows regions to poach production factors from their neighborhood. For re-
gional equalization transfers we find mixed results, depending on the specific policy
programme. While the German private sector investment promotion scheme (GRW)
is found to have an positive impact on private and public investment, negative effects
were found for equalization transfers at the level of the public sector (LFA).

Future research effort should more carefully account for the following aspects:
From a methodological point of view it has to be further investigated whether stan-
dard statistical inference is valid for the evaluation of the different estimators in
the two-sided small panel setting or whether bootstrapped standard errors should be
seen as a promising alternative (see, e.g., Galiani and Gonzalez-Rocha 2002). For
empirical application, full information estimation of small economic systems seems
promising in order to properly control for endogeneity and simultaneity. Here, fu-
ture attention should be paid to combine theoretical approaches (such as the dynamic
stochastic general equilibrium approach, DSGE) with the power of dynamic panel
econometric modelling and testing as recently proposed in the DSGE-VAR frame-
work (see, e.g., Rickman 2010, for an overview). Another important step from a
regional scientist perspective is to open up these models for a thorough analysis of
spatial dependence, a topic which has been raised here only indirectly in the analysis
of interregional spillovers.
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