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Chapter 1
Introduction

1 From Archie to Google and Beyond

Information retrieval is a dynamic discipline with a rich history. However, for much
of its history, it had little or no impact on people’s everyday lives. Many of the ear-
liest consumers of information retrieval technologies were government researchers,
scientists, and librarians. That began to change after the invention of the World Wide
Web in the early 1990s.

Before the introduction of the Web, a number of information sources were avail-
able online. Most of the online information was published and controlled by govern-
ment organizations or academic institutions. It was uncommon for everyday citizens
to use these online systems, let alone publish their own content. The Web revolu-
tionized the way that information was published. It allowed individuals and orga-
nizations to create content that was instantly available and easy to access. It also
provided a way of linking content together, which was not possible with the older
online systems. As computing costs decreased and online popularity increased, the
amount of information available on the Web exploded.

As more electronic documents started appearing online, a natural desire to search
the content arose. Various search tools were developed to help users find relevant
files and documents. The earliest Internet search tools, Archie, Gopher, Veronica,
and Jughead allowed users to search FTP servers. However, the popularity of FTP
waned after the introduction of the Web. This ushered in a new era that gave rise to
Web search engines. Unlike their predecessors, which were used by small fractions
of the population, Web search engines such as Google are used every day by millions
of users across the globe. Therefore, what started as a small, relatively unknown field
of study, has evolved into an integral part of modern society.

2 The Academic and Industrial Perspectives

Yahoo and Google were both grown out of academic research projects. They cur-
rently are the two most popular commercial Web search engines in the United States.
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2 1 Introduction

Clearly, the academic research community, in the early days of the Web, was devel-
oping cutting edge search technologies. However, as the commercial search engines
came of age, it become increasingly difficult for the academic researchers to keep
up with the collection sizes and other critical research issues related to Web search.
This caused a divide to form between the information retrieval research being done
within academia and industry.

There are several reasons for this divide. First, as commercial search engines ma-
ture, they are able to collect more data in the form of query logs, click-through pat-
terns, and other types of user data which are invaluable to Web search. The compa-
nies have little incentive to release these data to academia, especially amid growing
privacy concerns. Second, commercial search engines have much more computing
power than most academic research institutions. Therefore, they are able to crawl
more Web pages, build larger indices, use real data streams, and experiment with
much more costly computations. Finally, commercial search engines are very pro-
tective of their search algorithms and techniques and do not typically publish their
findings in scholarly conferences and journals. This is not surprising, since reveal-
ing technical details of ranking functions may allow spammers and other malicious
entities to adversely influence search results.

To put things into perspective, let us compare academic and industrial collection
sizes. The Text REtrieval Conference (TREC), which was started in 1992, provides
a set of standard, reusable test collections (i.e., document collection, queries, and
relevance judgments) that most academic information retrieval researchers use when
evaluating retrieval systems. One of the largest TREC test collections, called GOV2,
is a 2004 crawl of the .gov top level domain. It consists of approximately 25 million
Web pages (428 GB of text). In comparison, it is believed that Google has upwards
of 25 billion items in its index, which is 1,000 times larger than GOV2. In an attempt
to reduce the academic-industrial gap, in terms of collection sizes, the ClueWeb09
collection set was recently released, which consists of approximately 1 billion Web
pages.

One of the goals of this work is to reduce the divide in understanding that exists
between academic and commercial information retrieval systems with respect to
large data sets. Many of the techniques and ideas developed here have been inspired
by large test collections, such as GOV2 and ClueWeb09. While these collections
are admittedly not Web-scale, they are significant and sizable improvements over
the test collections that have been used to develop most of the current state-of-the-
art information retrieval models.

3 Paradigm Shifts

As we just alluded to, large collections, such as those handled by commercial search
engines, provide a new set of challenges for information retrieval researchers. In this
work, we describe highly effective information retrieval models for both smaller,
classical data sets, and larger Web collections. As we will show throughout this
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work, the current state-of-the-art academic retrieval models are not robust enough
to achieve consistently effective retrieval results on large collections.

Most of the these models are based on the so-called “bag of words” assump-
tion. Under this assumption, text (e.g., queries and documents) are represented as
unordered sets of terms. This means that any notion of term ordering is lost. For
example, under this representation, the texts the bear ate the human and the human
ate the bear are identical. However, these pieces of text clearly have different mean-
ings. While this is an overly simplistic representation, very few have been able to
develop non-bag of words retrieval models that are consistently and significantly
better than the state-of-the-art bag of words models. Many researchers over the past
few decades have tried in vain, but there has been very little success.

The ranking functions associated with bag of words retrieval models often consist
of some combination of term frequency (TF) and inverse document frequency (IDF).
The IDF component acts to discriminate between informative and non-informative
query terms. Those terms that have a high IDF are considered more informative,
because they rarely occur in the collection. On the other hand, terms that have a
low IDF are considered uninformative, since they occur in many documents. As the
number of documents in a collection increases, IDF becomes increasingly important
in order to discriminate between those documents that only contain non-informative
query terms and those that contain highly informative query terms.

On the other hand, the TF component, which is often normalized in some way
with respect to the document length, is used to discriminate between documents that
contain a query term several times and those that contain the term many times. This
makes the assumption that documents that contain more mentions of a given query
term are more “about” the given term and therefore are more likely to be relevant
to the query. As we will discuss shortly, this is a bad assumption, especially as col-
lection sizes increase and documents become noisier. The TF component becomes
more important as documents get longer, since query terms are unlikely to occur
more than one time in a very short document, and since long documents are more
likely to contain more diverse term occurrence statistics.

Therefore, the TF and IDF components used within bag of words rank-
ing functions, when combined together, discriminate along two dimensions—
informativeness (IDF) and aboutness (TF). However, when dealing with large Web
collections, a third dimension that we call noisiness enters the picture.

All collections, even small ones that consist entirely of news articles, contain
some noise. However, large Web collections are likely to contain abundant amounts
of noise. The standard TF and IDF features are not enough to overcome this noise.
In fact, these features may actually help amplify the noise in some cases. Let us
consider the query habitat for humanity run against a large Web collection. Using
a state-of-the-art bag of words retrieval model, many of the top ranked results are
relevant to the request. However, there are several results very high in the ranked
list that do not contain a single occurrence of the term humanity. Instead, these
documents contain hundreds of occurrences of the high IDF term habitat. These
documents are ranked so highly because they contain many occurrences of a very
high IDF term.
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Documents that contain hundreds of occurrences of some high IDF term are go-
ing to result in poor, noisy matches for most bag of words models based on TF and
IDF. Such documents may arise by coincidence, or a spammer who wishes to in-
crease the ranking of a given Web page may “stuff” the page with such terms. In
either case, it is very undesirable for these documents to be ranked highly.

Another more subtle way that noise may be introduced into bag of words matches
happens when two or more query terms match a document, but the matches are ran-
dom or unrelated to the query. For example, in the habitat for humanity case, con-
sider a document that contains a paragraph that discusses habitat changes caused by
global warming and another paragraph that discusses the negative impacts of global
warming on humanity. Both the terms habitat and humanity will match this docu-
ment, but the matches are unrelated to the query. That is, the terms just happened to
match by chance. This is another example of noisy matches that can arise in large
collections. In fact, as collection size grows, so does the chance that any two query
terms will randomly match within some document.

Hence, new ranking function components, above and beyond TF and IDF must
be used in order to reduce the number of noisy matches. There are a few ways to
address this issue. First, one of the simplest ideas is to cap the TF component and
not allow it to grow unbounded. While this addresses some noise issues, it fails to
address the problem of randomly matching query terms. Second, in order to address
the so-called term stuffing problem, anti-spam techniques may be developed in order
to automatically detect malicious or misleading content. However, like capping TF,
this only addresses some of the noise issues. Finally, term proximity features may
be used in order to ensure that matches are not random and that they are somehow
related to the query. For example, these types of features could be used to promote
documents that contain the exact phrase habitat for humanity as opposed to those
that simply contain random occurrences of the terms habitat and humanity on their
own. It is this third option that we heavily explore within this work in order to
overcome the limitations imposed by TF and IDF alone. It is important to notice that
by using term position information, we are abandoning the bag of words assumption
and move to a richer, more realistic text representation.

Aboutness, informativeness, and noisiness reflect the three primary information
retrieval paradigm shifts. Here, a paradigm shift is a new way of approaching a
problem with a given set of characteristics. The paradigm shifts are summarized in
Fig. 1.1. The figure plots three data sets (CACM, TREC Disks 1 and 2, and GOV2)
with respect to their average document length and the number of documents in the
collection. As the figure shows, the TF paradigm shift moves along the average
document length axis and the IDF shift moves along the number of documents axis.
We also see that the noise shift moves along both axes, but is only present for large
collections, such as GOV2. The newer ClueWeb09 collection, which is not shown in
this plot, will likely require another (yet to be discovered) paradigm shift in retrieval
methodologies to achieve maximal effectiveness.

We hypothesize that many of the previous attempts to go beyond the bag of words
assumption have failed because of the small data sets used. In fact, most, if not all,
of the previous research on non-bag of words model have been evaluated on test
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Fig. 1.1 A summary of the
three primary information
retrieval paradigm shifts.
They include the TF shift
(aboutness), the IDF shift
(informativeness), and the
noise shift (noisiness)

collections within the region shown in Fig. 1.1. Poor, or inconclusive results, were
achieved because the data sets did not exhibit the characteristics necessary to exploit
the noise reducing features associated with non-bag of words models. Therefore,
new models that go beyond the bag of words assumption should be tested on large,
noisy data sets in order to properly evaluate their full potential.

4 A Robust Retrieval Model

In this work, we describe a robust statistical information retrieval model based on
Markov random fields. In particular, the model is designed to support the following
desiderata:

1. Support basic information retrieval tasks (e.g., ranking, query expansion, etc.).
2. Easily and intuitively model query term dependencies.
3. Handle arbitrary textual and non-textual features.
4. Consistently and significantly improve effectiveness over bag of words models

across a wide range of tasks and data sets.

The model we describe goes beyond the bag of words assumption in two ways.
First, the model can easily exploit various types of dependencies that exist between
query terms. This eliminates the term independence assumption that often accom-
panies bag of words models. Second, arbitrary textual or non-textual features can
be used within the model. Thus, it is possible to use simple features such as TF and
IDF, or more complex features, such as those based on term proximity. Other pos-
sible features include PageRank, inlink count, readability, spam probability, among
others. None of the current state-of-the-art models allow arbitrary features to be
incorporated as easily as the Markov random field model.

As we will show, combining term dependencies and arbitrary features results
in a very robust, powerful retrieval model. Within the model, we describe several
extensions, such as an automatic feature selection algorithm and a query expansion
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framework. The resulting model and extensions provide a flexible framework for
highly effective retrieval across a wide range of tasks and data sets.

5 Outline

The remainder of this work is laid out as follows.

• Chapter 2 summarizes several important classical retrieval models. The chapter
divides the discussion of the models into non-bag of words models (e.g., Binary
Independence Model, BM25, language modeling, etc.) and models that go be-
yond the bag of words assumption (n-gram language models, Inference Network
Model, etc.). It concludes with a brief discussion of the current state-of-the-art.

• Chapter 3 motivates and covers the basics of the Markov random field model
for information retrieval, which serves as the basis for exploring feature-based
retrieval models throughout the remainder of the work. The chapter begins with
a theoretical treatment of the model and concludes with a detailed analysis of the
practical aspects of the model.

• Chapter 4 explains how the Markov random field model can be used for robust,
highly effective feature-based query expansion via the use of a method called
Latent Concept Expansion (LCE). LCE and several of its extensions are described
in detail.

• Chapter 5 describes a powerful extension of the basic Markov random field model
that supports query-dependent term weighting. Unlike most existing retrieval
models that weight all features the same, regardless of the query, the approach
described in this chapter provides a means for adaptively weighting the impor-
tance of each feature based on properties of the query.

• Chapter 6 covers a number of techniques that can be used to estimate the parame-
ters of feature-based models. The emphasis of this chapter is on simple techniques
that can be used to learn the parameters of models typically encountered and used
within research environments. More sophisticated approaches that are more well-
suited for estimating parameters within industrial settings are also covered.

In addition to the primary technical content, this work also includes the two fol-
lowing appendices that are meant to provide readers with additional background
information.

• Appendix A covers the anatomy of TREC test collections and summarizes the
data sets used throughout this work.

• Appendix B explains how the various data sets used throughout this work are
computed.



Chapter 2
Classical Retrieval Models

1 Overview

This chapter provides a survey of classical information retrieval models. There is no
standard or formal way of describing retrieval models. However, most models can be
uniquely described in terms of their document representation, query representation,
and a ranking function. In the most common scenario, the ranking function takes a
document and query representation as input, and outputs a score that is indicative of
how relevant the document is to the query.

Throughout our discussion we will refer to documents, queries, and relevance.
However, it should be noted that these terms are actually intended to be used
quite generally. For example, in an automatic question answering system, a ‘doc-
ument’ is an answer, a ‘query’ is a question, and ‘relevance’ is defined according to
whether or not the answer, with regard to the question, is correct (Voorhees 1999).
Other examples include image retrieval, where the ‘documents’ are images, and a
query-query similarity task, where the ‘documents’ are queries (Metzler et al. 2007;
Metzler and Manmatha 2004).

2 Bag of Words Models

We begin by looking at so-called bag of words retrieval models. As we will see,
these models make use of many different types of document representations, query
representations, and ranking functions. However, the one thing that all of these mod-
els have in common is the fact that term order is ignored when constructing the
document and query representations. That is, given a document A and Aπ , a permu-
tation of A, the representations of A and Aπ are identical.

This assumption is obviously overly simple. It conflates many texts that have very
different semantic meanings into a single form. For example, the texts the human ate
the bear and the bear ate the human have very different semantic meanings, but are
represented the same way under the bag of words assumption. While it is not known
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8 2 Classical Retrieval Models

how the human brain represents text, it is unlikely that term ordering is completely
ignored. Indeed, term orderings play an important role in semantics. Therefore, it
is difficult to expect a computer, using such a simple representation, to determine
relevance as accurately as a human assessor can.

Despite the fact that the bag of words assumption is so simple, some believe that
it is a reasonable first approximation (Lavrenko 2004; Salton and Buckley 1988).
For example, in 1988, Salton and Buckley stated:

In reviewing the extensive literature accumulated during the past 25 years in the area of
retrieval system evaluation, the overwhelming evidence is that the judicious use of single
term identifiers is preferable to the incorporation of more complex entities. . .

Although this was written in 1988, there has been little, if any, conclusive evidence
to discredit this claim.

Throughout this work, we argue, and validate experimentally, that models based
on the bag of words assumption are inferior to models that consider richer repre-
sentations. We acknowledge that single term identifiers are likely to be the most
powerful and discriminative types of identifiers. However, we describe a number
of other identifiers (features) that can be used to significantly improve retrieval ef-
fectiveness well beyond the state-of-the-art bag of words models discussed in this
chapter.

Finally, one important thing to note is that the bag of words assumption does
not force the underlying model to treat term occurrences as independent events. For
example, it is possible for bag of words models to incorporate term co-occurrence
statistics into the ranking function, thereby modeling one very basic form of term
dependence (Berger and Lafferty 1999; van Rijsbergen 1977; Wei and Croft 2007).
We return to the subject of term dependence models shortly.

2.1 Binary Independence Retrieval Model

We begin our discussion of bag of words models by describing the Binary Indepen-
dence Retrieval (BIR) model, which is one of the earliest probabilistic models for
information retrieval (Robertson and Spärck Jones 1976). The model is also known
by many other names including the Okapi model, the City model, the Robertson–
Sparck Jones model, and the classical probabilistic model.

Under the BIR model, documents are represented as binary vectors d indexed
over a fixed vocabulary V (i.e., d ∈ {0,1}|V |). The vocabulary typically consists
of single terms, but may also include more general concepts, such as phrases. If
a term, w ∈ V , occurs one or more times in a document, then dw = 1, otherwise
dw = 0. Documents are then ranked according to the Probability Ranking Principle
(PRP) (Robertson 1977).

Probability Ranking Principle. If a reference retrieval system’s response to each request is
a ranking of the documents in the collection in order of decreasing probability of relevance
to the user who submitted the request, where the probabilities are estimated as accurately
as possible on the basis of whatever data have been made available to the system for this
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purpose, the overall effectiveness of the system to its user will be the best that is obtainable
on the basis of those data.

The PRP states that documents should be ranked in decreasing order of probabil-
ity of relevance given all of the available evidence. Thus, documents are ranked
according to P(R = 1|d), where R is a binary random variable that models rele-
vance. Also, in order to make parameter estimation feasible, the model assumes that
the term occurrence variables (dw) are conditionally independent, given a relevance
class. Using these assumptions, we now derive the BIR model’s ranking function:

P(R = 1|d)
rank= P(R = 1|d)

P (R = 0|d)

= P(d|R = 1)P (R = 1)

P (d|R = 0)P (R = 0)

rank= P(d|R = 1)

P (d|R = 0)

=
∏

w∈V

P(dw = 1|R = 1)δwP (dw = 0|R = 1)1−δw

P (dw = 1|R = 0)δwP (dw = 0|R = 0)1−δw

rank=
∑

w : δw=1

log
P(dw = 1|R = 1)P (dw = 0|R = 0)

P (dw = 0|R = 1)P (dw = 1|R = 0)
, (2.1)

where
rank= denotes rank equivalence1 and δw is 1 if term w occurs in the document

and 0 otherwise.
Although the model, at first glance, appears to make the relatively strong assump-

tion of conditional independence, the model is actually much less restrictive (Cooper
1991). Instead, as Cooper shows, the model allows dependencies to exist between
terms, but requires the strength of the dependence to be equal in both the relevant
(R = 1) and the non-relevant (R = 0) sets of documents, thereby linking the depen-
dence. Therefore, instead of assuming conditional independence, the model actually
assumes linked dependence. Even though this is a weaker assumption, it is still re-
strictive and unlikely to hold, in general.

One criticism of the model is that there is no explicit query involved. Rather,
the model assumes that P(R = 1|d) is implicitly conditioned on some underlying
information need. This simplifies the model to a certain extent, but raises certain
theoretical issues when researchers try to incorporate aspects of the query into the
model.

In order to use the model for ranking, P(dw = 1|R = 0) and P(dw = 1|R = 1)

must be estimated for all w. This is a total of 2|V | parameters, which for large
vocabularies, is an immense number of parameters. We now describe how these
parameters are typically estimated when we have relevance information and when
we do not.

1Two functions are defined to be rank equivalent if they guaranteed to produce the same ordering
of items when sorted according to function value. Monotonic transforms, scaling (by a constant),
and translation (by a constant) are all examples of rank-preserving operations.
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2.1.1 Estimation with Relevance Information

If we are given relevance information for a given information need then estimation
is straightforward. Assume we are given a set of documents that are known to be
relevant to the information need, as well as a set that are known to be non-relevant. In
the simplest case, we can get this information from a user who has manually judged
a set of documents. Using this information, we obtain the following estimates:

P(dw = 1|R = 0) = nrw + αnr

NR + αnr + βnr
, (2.2)

P(dw = 1|R = 1) = rw + αr

R + αr + βr

, (2.3)

where nrw is the number of judged non-relevant documents that term w occurs
in, NR is the total number of judged non-relevant documents, rw is the number of
judged relevant documents term w occurs in, R is the total number of documents
judged relevant, and α and β are smoothing parameters that avoid zero probabilities
and help overcome data sparsity. Historically, the smoothing parameters have been
set to αnr = αr = 0.5 and βnr = βr = 0, although there is no reason to believe these
are the optimal settings.

2.1.2 Estimation Without Relevance Information

As we just showed, estimation with relevance information is rather straightfor-
ward. However, for most queries, a system will not have access to relevance in-
formation. Not surprisingly, parameter estimation under this scenario proves to
be much more challenging. In order to use the model when there is no relevance
information, a number of assumptions must be made (Croft and Harper 1979;
Robertson and Walker 1997). These assumptions include:

1. P(dw = 1|R = 0) = P(dw = 1|R = 1) for all terms that do not occur in the
query.

2. P(dw = 1|R = 1) = 0.5 for all terms that occur in the query.
3. P(dw = 1|R = 0) = dfw+αnr

N+αnr+βnr
for all terms that occur in the query, where dfw

is the number of documents that w occurs in and N is the number of documents
in the collection.

The first two assumptions are poor and very unlikely to hold true. However, they
greatly simplify how the ranking function is computed, which is necessary, given
the lack of relevance information.

The third assumption is the most reasonable. It assumes that we have observed
no relevant documents and that every document in the collection is non-relevant.
This information is treated as real relevance information and plugged into Eq. 2.2 to
derive the estimate of P(dw = 1|R = 0) shown above. Of course, this assumption is
not completely accurate. However, it has been shown that the collection, as a whole,
acts as a good proxy for modeling the set of non-relevant documents.
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After invoking these assumptions, the BIR model ranking function simplifies to
the following form:

P(R = 1|d)
rank=

∑

w : δw=1∧w∈Q

log
N − dfw + 0.5

dfw + 0.5
, (2.4)

where w ∈ Q indicates that term w occurs in the query and we set αnr = βnr =
0.5, which is commonly used in this scenario. The term inside of the summation
is the well-known Okapi IDF. This derivation provides one of the many theoretical
justifications for the importance of IDF (Robertson 2004).

2.1.3 Tree Dependence Model

The tree dependence model is one of many extensions that have been proposed for
the BIR model (van Rijsbergen 1977). It attempts to model first-order dependencies
between terms by making use of the Chow expansion (Chow and Liu 1968). The
Chow expansion is a method for approximating a joint distribution in terms of first-
order dependencies.

The tree dependence model constructs a weighted, undirected graph G for both
the relevant and non-relevant sets, such that the vertices of G are the terms in the
vocabulary, there exists an edge between every pair of terms, and the edge weights
are the expected mutual information between the two terms, which is computed as

I (t1, t2|R) =
∑

δ1∈{0,1}

∑

δ2∈{0,1}
P(δ1, δ2|R) log

P(δ1, δ2|R)

P (δ1|R)P (δ2|R)
, (2.5)

where t1 and t2 are terms, and P(dt |R) and P(dt1 , dt2 |R) are typically estimated
using relevance information.

This graph is then used in the following way. First, a maximum spanning tree
is constructed from the graph. Next, an arbitrary node is chosen as the root, which
allows all of the edges to be directionalized. Finally, the directed graph is used to
compute a first-order approximation to the joint distribution over all of the terms by
assuming that a term is dependent on its parent term2.

Figure 2.1 show an example maximum spanning tree over a graph with five terms.
As we see, the root node is term D. The first-order approximation of the joint dis-
tribution can then be written as

P(A,B,C,D,E) = P(D)P (A|D)P (C|D)P (B|C)P (E|C). (2.6)

In the context of the BIR model, this approximation can be used to compute
P(d|R = 0) and P(d|R = 1), which results in the following ranking function:

∑

w : δw=1

log
P(dw = 1|dπw = δπw ,R = 1)P (dw = 0|dπw = δπw ,R = 0)

P (dw = 0|dπw = δπw ,R = 1)P (dw = 1|dπw = δπw ,R = 0)
, (2.7)

where πw is the parent term of w in the spanning tree.

2The root node, which has no parents, is assumed to not be dependent on any other terms.
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Fig. 2.1 An example
spanning tree for five terms,
rooted at D

Parameter estimation in the tree dependence model is even more difficult than
in the BIR model because the data sparseness problem is only exacerbated by the
large number of conditionals that must be estimated. Furthermore, the model has
never shown consistent improvements in effectiveness over the BIR model (van Ri-
jsbergen 1977). Therefore, the model is interesting mostly from a theoretical and
historical perspective.

2.2 2-Poisson Model

As we just explained, the BIR model represents documents as binary vectors. This
representation can only capture whether or not a term occurs in a document. It ig-
nores the number of times the term occurs (term frequency), which, as we discussed
in Chap. 1, is important, especially as document lengths increase.

The 2-Poisson model was proposed to overcome this limitation (Harter 1975;
Robertson et al. 1980). Under this model, documents are represented as vectors of
term frequencies. The vector is indexed over a fixed vocabulary V , and thus d ∈ N

|V |
for every document d .

The 2-Poisson ranking function is derived analogously to the BIR ranking func-
tion, as follows:

P(R = 1|d)
rank= P(d|R = 1)

P (d|R = 0)

=
∏

w∈V

P(dw = tfw|R = 1)

P (dw = tfw|R = 0)

rank=
∑

w : tfw>0

log
P(dw = tfw|R = 1)P (dw = 0|R = 0)

P (dw = 0|R = 1)P (dw = tfw|R = 0)
, (2.8)

where term frequencies, as before, as assumed to be conditionally dependent3 and
tfw denotes the number of times that term w occurs in the document.

3As in the BIR model, the weaker linked dependence assumption holds.
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To use the model, P(dw = tfw|R = 0) and P(dw = tfw|R = 1) must be esti-
mated. As its name implies, the 2-Poisson model assumes that term frequencies are
distributed according to a mixture of two Poissons, as given by

P(dw = tfw|R = 1) = P(E = 1|R = 1)
e−αwα

tfw
w

tfw!

+ P(E = 0|R = 1)
e−βwβ

tfw
w

tfw! , (2.9)

P(dw = tfw|R = 0) = P(E = 1|R = 0)
e−αwα

tfw
w

tfw!

+ P(E = 0|R = 0)
e−βwβ

tfw
w

tfw! , (2.10)

where αw and βw are parameters of the Poisson distributions, and E is a binary
variable that represents eliteness (Harter 1975; Robertson and Walker 1994).

Eliteness is a hidden, or latent, variable that reflects whether or not a given term is
actually “about” a document or not. Therefore, elite terms are “about” a document,
and non-elite terms are not. Given the subjective nature of its definition, it is very
difficult to quantify or actually model eliteness in practice. For this reason, the model
is interesting purely from a theoretical point of view.

2.3 BM25 Model

The BM25 model, proposed by Robertson and Walker, is an empirical, hand-crafted
approximation of the 2-Poisson model (Robertson and Walker 1994). It was first
introduced at TREC in 1995, and has been widely used ever since (Robertson et al.
1994). The ranking function is given by

P(R = 1|d) ≈
∑

w∈Q∩d

tfw,Q

(k1 + 1)tfw,d

k1((1 − b) + b
|d|

|d|avg
) + tfw,d

log
N − dfw + 0.5

dfw + 0.5
,

(2.11)

where tfw,Q is the number of times term w occurs in the query, tfw,d is the number
of times term w occurs in the document, |d| is the number of terms in the document,
|d|avg is the average document length, N is the number of documents in the collec-
tion, dfw is the number of documents term w occurs in the collection, and k1 and b

are model parameters.
The model is very simple to implement and, with carefully chosen model param-

eters, has been shown to consistently achieve state-of-the-art effectiveness. Unfor-
tunately, the model, despite being inspired by the 2-Poisson model, is heuristic and
has no built-in mechanism for modeling term dependencies. It has been shown that
it is possible to incorporate query independent features, such as PageRank into the
model (Craswell et al. 2005b), as well as term proximity information (Büttcher et



14 2 Classical Retrieval Models

al. 2006a). However, these improvements are heuristic and are unrelated to the as-
sumed underlying 2-Poisson model. Furthermore, there is no convenient, formally
motivated framework for easily adding other types of features to the model, which
limits the usefulness of the model.

2.4 Unigram Language Models

Language modeling, a statistical technique first applied to speech recognition
(Rosenfeld 2000), has also been successfully applied to information retrieval (Ponte
and Croft 1998). Since its introduction, it has grown in popularity and has been
proven to be a robust, highly effective retrieval model. In the context of information
retrieval, language models are statistical models of text generation. In this section
we will describe the simplest type of language model, the unigram model, which is
based on the bag of words assumption. Later, we describe more complex language
models.

The most common strategy for using language models for information retrieval
is called the query likelihood approach. Given a query Q, documents are ranked
according to the likelihood that the query was generated, given document D as
evidence. Typically, for the sake of smoothing the document model, a Bayesian
estimate is used. Using the approach, documents are ranked according to

P(Q|D) =
∏

q∈Q

P(q|D)

=
∏

q∈Q

∫

θD

P (q|θD)P (θD|D)

∝
∏

q∈Q

∫

θD

P (q|θD)P (D|θD)P (θD), (2.12)

where the unigram language model (θD) is typically a multinomial distribution over
a fixed vocabulary (Song and Croft 1999). In addition, for computational simplicity,
it is assumed that P(θD) is Dirichlet. This is typically called Bayesian or Dirich-
let smoothing (Zhai and Lafferty 2001b). Under these assumptions, we obtain the
following estimate for P(w|D):

P(w|D) = tfw,D + μP(w|C)

|D| + μ
, (2.13)

where it is assumed that the Dirichlet parameters are αw = μP(w|C), where μ is
a model hyperparameter and P(w|C) = cfw

|C| , with cfw being the number of times
term w occurs in the collection and |C| is the total number of terms in the collection.
Using this estimate, documents are then ranked according to:

P(Q|D)
rank=
∑

q∈Q

log
tfw,D + μP(w|C)

|D| + μ
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rank=
∑

q∈Q∩D

log

tfw,D+μP(w|C)

|D|+μ

μP(w|C)
|D|+μ

+
∑

q∈Q

log
μP(w|C)

|D| + μ

rank=
∑

q∈Q∩D

log

[
1 + tfw,D

μ
· |C|
cfw

]
− |Q| log

(|D| + μ
)

(2.14)

which can be interpreted as another variant on the standard tf.idf formula with built-
in document length normalization.

Although we described Bayesian smoothing here, it should be noted that many
other types of smoothing are possible (Zhai and Lafferty 2001b, 2002, 2004). Also,
distributions other than the multinomial have been proposed for modeling docu-
ments and queries, such as the multiple-Bernoulli distribution (Metzler et al. 2004a).

Even though language modeling is more formally motivated than BM25, the
ranking functions are quite similar, with both relying on the standard tf , idf , and
document length normalization components. Many of the problems with BM25 are
also carried over to this model. For example, language models are models of text
generation and therefore it is difficult to incorporate non-textual features into the
model. Arbitrary query independent features are often encoded using a document
prior (Kraaij et al. 2002), but this is not applicable to query dependent features. One
possible solution is to use a general Naïve Bayes model, but such a model, by its
very nature, is incapable of modeling term dependencies. As we will soon show,
there have been a number of models proposed to address this problem using more
complex language models.

2.5 Other Bag of Words Models

The axiomatic approach to retrieval (Fang and Zhai 2005) and the divergence from
randomness model (Amati and van Rijsbergen 2002) are two recently proposed bag
of words retrieval models. The ranking functions of these two models are variants on
the tf .idf theme. While the models shed interesting insights into retrieval modeling,
they have not been shown to be significantly better or more flexible than language
modeling or BM25.

The tree dependence model was one of the first bag of words models that at-
tempted to capture the dependence that exists between terms. Several other bag of
words models have been proposed to capture dependencies, as well. Early examples
include the Bahadur Lazarsfeld expansion (BLE) (Losee 1994) which is an exact,
but computationally intensive, method of modeling high order dependencies, and
the Generalized Dependence Model, which generalizes both the tree dependence
model and the BLE expansion (Yu et al. 1983).

Other examples include latent semantic analysis (Deerwester et al. 1990; Hof-
mann 1999), term association models (Berger and Lafferty 1999; Fang and Zhai
2006; Spärck Jones 1971; Wei and Croft 2007), cluster-based language models
(Diaz 2005; Kurland and Lee 2004; Liu and Croft 2004), topic models (Blei et al.
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2003a, 2003b; Griffiths et al. 2005; Wei and Croft 2006), and pseudo-relevance feed-
back (Diaz and Metzler 2006; Lavrenko and Croft 2001; Zhai and Lafferty 2001a).

Despite the increased complexity, many of these have failed to yield substan-
tial improvements in effectiveness. Several of the models, including cluster-based
language modeling and some of the topic models, have shown significant improve-
ments in retrieval effectiveness. However, these models are often computationally
intensive, making them impractical to apply to Web-scale collections. The model
that we focus on in this work does not require any expensive computations and can
easily be applied to very large collections. In addition, it allows other types of term
dependence features, beyond simple co-occurrence statistics, to be used, thus mak-
ing it more robust and practical for a wide range of tasks and data sets.

3 Models That Go Beyond the Bag of Words Assumption

We now describe a set of models that go beyond the bag of words assumption. These
models are typically more complex, less efficient, and less effective. For these rea-
sons they are not widely used within the information retrieval community. However,
it is important to describe the breadth of work done in this area in order to provide a
clear picture of the difficulty involved with developing highly effective models that
go beyond the bag of words assumption.

3.1 n-Gram Language Models

In this section we describe n-gram language models (for n > 1). These models are
simple generalizations of the unigram language model approach that take context
into account. That is, n-gram language models generate terms by conditioning on
the previous n − 1 terms encountered. In a unigram model, generating the term
Lincoln is equally likely regardless of the previous term. In a bigram model (n = 2),
Lincoln has a higher likelihood of being generated after president than after brick,
for example. Therefore, n-gram models capture the sequential structure of language
generation.

As with unigram language models, documents are ranked according to query
likelihood, which is computed as

P(Q|D) =
|Q|∏

i=1

P(qi |qi−1, . . . , qi−n+1,D), (2.15)

where P(qi |qi−1, . . . , qi−n+1,D) can be estimated in a number of ways (Gao et
al. 2004; Song and Croft 1999; Srikanth and Srihari 2002), many of which include
some form of backoff to a unigram model. One way of estimating bigram probabil-
ities, from Gao et al. (2004), is
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P(wi |wi−1,D) = (1 − λ1)

[
(1 − λ2)

tfwi,wi−1,D

tfwi−1,D

+ λ2
tfwi,D

|D|
]

+ λ1

[
(1 − λ3)

cfwi,wi−1

cfwi−1

+ λ3
cfwi

|C|
]
, (2.16)

where λ1, λ2, and λ3 are free parameters that control the smoothing.
Gao et al. showed that this model consistently outperformed unigram language

models across a number of data sets using description-length queries (Gao et
al. 2004). Unfortunately, the model, as described, performs poorly on title-length
queries. The model is a generalization of Jelinek–Mercer smoothing, which is
known to work well on longer queries (Zhai and Lafferty 2004). Therefore, the
model must be adjusted to be more like Dirichlet smoothing in order to perform
well on title queries. This can be achieved by setting λ1 = μ1

μ1+|D| . We note that this
modification does not follow naturally or formally from some underlying model.
Instead it is a heuristic modification that only works because it makes the ranking
function more like the Dirichlet ranking function.

Although n-gram language models capture the relationship between terms bet-
ter, they are still not adequately robust for our needs. One criticism of such models
is that they rely on evidence from the previous n − 1 terms, when in fact the next
n−1 terms might provide just as strong evidence. Consider the text white house rose
garden. In a reasonable bigram language model of general English, P(house|white)
would be assigned a high probability, but P(rose|house) would not. Therefore, un-
der the bigram model, the likelihood of this sequence may actually be underesti-
mated. However, conditioning on both past and future words could overcome such a
problem. It is also noted that n-grams are typically overly strict, in that they do not
allow the modeling of longer-range, unordered dependencies, such as the fact that
two terms tend to often appear, not necessarily in order, within close proximity to
each other. As we will show, the Markov random field model is capable of handling
a wide range of dependencies, including those that n-gram language models are not
capable of.

3.2 Indri Inference Network Model

The retrieval model implemented in the Indri search engine (Strohman et al. 2004)
is an enhanced version of the model described in Metzler and Croft (2004), which
combines the language modeling (Song and Croft 1999) and inference network (Tur-
tle and Croft 1991) approaches to information retrieval. The resulting model allows
rich, structured queries to be evaluated using language modeling estimates within
the network. Figure 2.2 shows a graphical model representation of the network.
Within the model, documents are ranked according to P(I |D,α,β), the belief the
information need I is met given document D and hyperparameters α and β as evi-
dence.
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Fig. 2.2 Indri’s inference network retrieval model
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Fig. 2.3 Example Indri document representation for the document A B C A B. The features
correspond to the single terms A, B , C, and bigrams “AA”, “AB”, “AC ”, “BA”, “BB”, “BC ”,
“CA”, “CB”, and “CC ”, respectively. The function f takes a document and set of features as input
and outputs a document representation

3.2.1 Document Representation

Typically, in the language modeling framework, documents are represented as a se-
quence of terms. Based on this sequence, a multinomial language model over the
vocabulary is estimated. However, it is often the case that we wish to model more
interesting text phenomenon, such as phrases or the absence of a term. Therefore, a
different representation scheme is necessary. In the Indri model, documents are rep-
resented as multisets of binary feature vectors. Given a document, a feature vector
is extracted for every position within the document. Figure 2.3 provides an example
representation using this scheme. As the figure shows, the document is represented
by a set of five vectors, one for each position within the document. This repre-
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sentation is very general and provides a way of modeling almost arbitrary textual
features.

This representation moves away from modeling text toward modeling features of
text. Throughout the remainder of this section we refer to such models as language
models, although they really are better described as language feature models.

3.2.2 Language Models

Since the document event space is binary, it is no longer appropriate to estimate
multinomial language models for each document. Instead, multiple-Bernoulli mod-
els are estimated, as in Model B of Metzler et al. (2004a). This overcomes the the-
oretical issues encountered in Metzler and Croft (2004). Note that the multiple-
Bernoulli model imposes the assumption that the features (ri ’s) are independent,
which of course may be a poor assumption depending on the feature set.

A Bayesian approach is taken and a multiple-Beta prior is imposed over the dis-
tribution of language models (θ ). The Beta is chosen for simplicity, as it is the
conjugate prior to the Bernoulli distribution. Thus, P(D|θ) is distributed according
to Multi-Bernoulli(θ) and P(θ |α,β) is distributed according to Multi-Beta(α,β).
Hence, the belief at node θ is computed as

P(θi |D,α,β) = P(D|θi)P (θi |αi,βi)∫
θi

P (D|θi)P (θi |αi,βi)

= Beta
(
#(ri ,D) + αi, |D| − #(ri ,D) + βi

)
(2.17)

for each i where #(ri ,D) is the number of times feature ri is set to 1 in document
D’s multiset of feature vectors.

Such a model is estimated using the entire document text. Additionally, if a doc-
ument is structured, as HTML, SGML, and XML documents are, then language
models can be estimated for each field. To do so, we treat all of the text in that
appears within a given field as a pseudo-document. For example, a model can be
estimated for all of the text that appears within the h1 tags of a Web page document.

3.2.3 Representation Nodes

The ri nodes correspond to document features that can be represented in an Indri
structured query. There is a one-to-one correspondence between ri nodes and the
features used to represent the document. Therefore, the ri nodes represent binary
events that feature i is observed.

Indri implements a number of textual features, including single terms, #N (or-
dered window N ), and #uwN (unordered window N ). Please refer to Metzler and
Croft (2004) for more details on these operators.

Using the framework developed thus far, the belief at a given representation node
is computed as
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P(ri = 1|D,α,β) =
∫

θi

P (ri = 1|θi)P (θi |D,αi,βi)

= E
[
P(ri |θi)

]

= #(ri ,D) + αi

|D| + αi + βi

. (2.18)

Furthermore, selecting αi = μP(ri = 1|C) and βi = μ(1 − P(ri = 1|C)) results
in the multiple-Bernoulli model equivalent of the multinomial model’s Dirichlet
smoothing (Zhai and Lafferty 2001b) estimate:

P(ri |D,α,β) = #(ri ,D) + μP(ri |C)

|D| + μ
, (2.19)

where μ acts as a tunable smoothing parameter.

3.2.4 Query Nodes

The query node operators are soft probabilistic operators that are used to combine
evidence within the network. The operators are primarily used to combine evidence
from representation nodes and other query nodes. The operators implemented in
Indri are #combine (same as #and), #weight (same as #wand), #or, #not, #sum,
#wsum, and #max (Metzler and Croft 2004).

The information need node, I , is also a query node that acts to combine all of the
evidence of the query into a single belief. It is this belief (i.e., P(I = 1|D,α,β))
that is used to rank documents. Therefore, the ranking function is defined in terms
of query and representation nodes. For example, consider the following Indri query:

#weight(1.0 #or(american #1(united states)) 2.0
presidents)

For this query, the resulting ranking function would first compute beliefs for ameri-
can and #1(united states), then combine the beliefs using the probabilistic #or oper-
ator. The belief of this #or operator and the belief of presidents would be combined
using the probabilistic #weight operator to produce the belief that the information
need is satisfied. Within the inference network framework, queries are not explic-
itly defined. Instead, a structured query is used to construct a query network, which
encodes a user’s information need.

Finally, we note that, since language modeling probabilities are used within
the network, the #wsum operator no longer makes sense. Instead, the #combine
(#and) and #weight (#wand) operators are more appropriate, since they produce
an idf effect (Metzler and Croft 2004). It can be shown that the Indri query
#combine(q1 . . . qN ) using the estimates just described returns exactly the same
ranked list as the query q1 . . . qN using the traditional (multinomial with Dirichlet
smoothing) query likelihood model.
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3.2.5 Explicit vs. Implicit Query Generation

The Indri retrieval model can be used in two ways. First, given a simple keyword
query, a system can be developed to convert the query into a structured Indri query.
This process acts to transform the simple query into a richer representation. For
example, phrases, synonyms, or task-specific operators may be automatically added
to the query in order to improve effectiveness over the simple keyword query. The
Indri retrieval model was successfully used in this capacity during the 2004–2006
TREC Terabyte Tracks (Metzler et al. 2004b, 2005b, 2006), and the 2005 TREC
Robust Track (Metzler et al. 2005a).

Alternatively, users can use the query language to manually construct complex
queries. It has been shown that intelligently constructed manual queries can signifi-
cantly outperform automatically generated queries (Metzler and Croft 2004). How-
ever, the query language is too complex for novice users to use successfully. Only
expert users, such as information analysts and librarians, are likely to benefit from
such a query language. For this reason, algorithmic query construction is important.

Despite its success, the Indri retrieval model does not provide a formal mecha-
nism for learning how to combine various types of evidence, making use of arbitrary
evidence, or automatically converting a short keyword query into a rich structured
query. The feature-based model that we present in this work is inspired by the Indri
retrieval model, and attempts to overcome some of its limitations.

3.3 Other Models That Go Beyond the Bag of Words Assumption

There have been many models proposed to that go beyond the bag of words
assumption (Clarke et al. 1995; Croft et al. 1991; Croft 1986; Fagan 1987;
de Kretser and Moffat 1999). We now briefly highlight several of these models.

Fagan examines how to identify and use non-syntactic (statistical) phrases (Fa-
gan 1987). Fagan identifies phrases using factors such as the number of times the
phrase occurs in the collection and the proximity of the phrase terms. His results
suggest no single method of phrase identification consistently yields improvements
in retrieval effectiveness across a range of collections. For several collections, sig-
nificant improvements in effectiveness are achieved when phrases are defined as
any two terms within a query or document with unlimited proximity. That is, any
two terms that co-occurred within a query or document were considered a phrase.
However, for other collections, this definition proved to yield marginal or negative
improvements.

Work done by Croft et al. shows similar results (Croft et al. 1991). Their results
showed phrases formed with a probabilistic AND operator slightly outperformed
proximity phrases. The probabilistic AND operator boosts the scores of documents
where the phrase terms co-occur. Therefore, little benefit was shown as the result of
modeling term proximity.

In addition to the n-gram language models we described, several other language
model variants have been proposed that attempt to model term dependencies (Gao et
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al. 2004; Nallapati and Allan 2002). The dependence language model presented by
Gao et al. (2004) showed consistent improvements over a baseline query likelihood
system on a number of TREC collections. However, the model uses a link structure
for each query which is not straightforward to construct. Feature-based models do
not require a query link structure to be constructed. However, if such information is
available, it can easily be incorporated into such models.

Recently, Mishne and de Rijke explored the use of proximity information to im-
prove Web retrieval (Mishne and de Rijke 2005). The Markov random field model
shares many closely related insights. Despite the high level similarity, the details
of the models differ greatly, with the Markov random field model allowing more
general query dependencies and features to be considered in a more formally well-
grounded framework.

Therefore, there have been many models proposed to go beyond the bag of words
assumption, but none of them have allowed the use of arbitrary features, easy mod-
eling of term dependencies, and yielded consistent, significant improvements in re-
trieval effectiveness. The model that we describe in the next chapter combines and
generalizes the best aspects of these previous models within a robust, effective re-
trieval framework.

4 The Current State-of-the-Art

Despite the large number of attempts to go beyond the bag of words assumption,
there have been very few, if any, models that have been proven to be consistently bet-
ter than the current best bag of words models (i.e., language modeling and BM25).

In fact, strong evidence that BM25 and language modeling are considered the
state-of-the-art retrieval models comes from looking at the models used by partici-
pants in recent years at TREC. Outside of several obscure, poor performing models,
a majority of participant used either BM25 or language modeling, with some ad-
ditional task-specific engineering added on top. Therefore, little progress has been
made in advancing the state-of-the-art of retrieval models since the advent of lan-
guage modeling and BM25 a decade ago.



Chapter 3
Feature-Based Ranking

1 Overview

In this chapter we introduce a feature-based retrieval model based on Markov ran-
dom fields, which we refer to as the Markov random field model for information
retrieval (MRF model). Although there are many different ways to formulate a gen-
eral feature-based model for information retrieval, we focus our attention through-
out this work on the Markov random field model because it satisfies the following
desiderata, which we originally outlined in Chap. 1:

1. Supports basic information retrieval tasks (e.g., ranking, query expansion, etc.).
2. Easily and intuitively models query term dependencies.
3. Handles arbitrary textual and non-textual features.
4. Consistently and significantly improves effectiveness over bag of words models

across a wide range of tasks and data sets.

Another reason we focus on the MRF model is because it has been the focus of
a great deal of recent research and has been consistently shown to provide a ro-
bust, flexible, and extensible feature-based retrieva framework (Bendersky and Croft
2008; Eguchi 2005; Lang et al. 2010; Lease 2009; Metzler et al. 2004b, 2005b, 2006;
Metzler and Croft 2005, 2007; Wang et al. 2010a, 2010b). Furthermore, there are
a number of open source information retrieval toolkits, including Indri (Strohman
et al. 2004) and Ivory (Lin et al. 2009), that include implementations of the MRF
model and its various extensions, making it easy for researchers to experiment with
the models.

The remainder of this chapter covers the basic theoretical and practical founda-
tions of the model. Subsequent chapters will go into more detail and describe various
extensions of the basic model.

2 Modeling Relevance

We begin by describing what we seek to model. The four primary variables in most
information retrieval systems are users (U ), queries (Q), documents (D), and rele-
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vance (R). We define the event space to be U × Q × D and define relevance, R ∈ R,
to be a random variable over U × Q × D. Thus, some relevance value is associated
with every user, query, document tuple. Other factors, such as time and context are
ignored.

These variables interact in real information systems in the following way. Users
submit queries to the system and are presented a ranked list of documents. Some
of the documents in the ranked are relevant, while others are non-relevant. Suppose
that we were to collect a list of query/document pairs (Q,D), such that some user
found document D relevant to query Q. Imagine that such a list was collected across
a large sample of users. The resulting list can be thought of as a sample from some
underlying population of relevant query/document pairs that are aggregated across
users and conditioned on relevance. This, is then, a relevance distribution1, which
is similar in spirit to the one proposed by Lavrenko (2004). It is this distribution,
P(Q,D|R = 1), the joint distribution over query and document pairs, conditioned
on relevance, that we focus on modeling. For notational convenience, we drop the
explicit conditioning on relevance (i.e., R = 1) throughout the remainder of this
work, unless otherwise noted.

3 The Markov Random Field Model

There are many possible ways to model a joint distribution. In this work, we choose
to use Markov random fields. Markov random fields, sometimes referred to as undi-
rected graphical models, are commonly used in the statistical machine learning do-
main to model complex joint distributions. As we will show throughout the remain-
der of this section, there are many advantages and few, if any, disadvantages to using
MRFs for information retrieval.

A Markov random field is constructed from a graph G. The nodes in the graph
represent random variables, and the edges define the independence semantics be-
tween the random variables. The independence semantics are governed by the
Markov property.

Markov Property. Let G = (V ,E) be the undirected graph associated with a Markov ran-
dom field, then P (vi |vj �=i ) = P (vi |vj : (vi , vj ) ∈ E) for every random variable vi associ-
ated with a node in V .

The Markov Property states that every random variable in the graph is independent
of its non-neighbors given observed values for its neighbors. Therefore, different
edge configurations impose different independence assumptions.

There are several ways to model the joint distribution P(Q,D) using Markov
random fields. Figure 3.1 summarizes the various options that are available. Op-
tion A constructs a graph with two nodes, a query node Q and a document node D.

1Note that we make the assumption that relevance is binary, which is commonly used for infor-
mation retrieval tasks. If relevance is non-binary, then a different relevance distribution can be
estimated for each relevance level.
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Fig. 3.1 Three possible ways to model the joint distribution P (Q,D) using Markov random fields

However, this model is too coarsely specified and does not provide any insight into
the types of term dependencies that are being modeled since it models whole queries
and documents. Option B breaks the query apart into individual terms and treats the
document as a whole. Given a query of length n, this results in a graph with n

query term nodes and a document node. This option provides more specific con-
trol over which query term dependencies are modeled. Finally, option C breaks
apart both the document and the query into individual terms. Given a query of
length n and a document of length m, the graph would contain n query term nodes
and m document term nodes. This option provides the most flexibility for mod-
eling both query and document term dependencies. However, the model is likely
to be overly complex. Modeling dependencies between query terms is more feasi-
ble than modeling dependencies between document terms since queries are gener-
ally much shorter than documents and exhibit less complex dependencies between
terms.

Option B satisfies our needs without being overly complex, and so it will be
used throughout the remainder of this work. Thus, given a query of length n, the
graph G consists of n query term nodes and a single document node D. The random
variables associated with the query term nodes are multinomials over the underlying
vocabulary V and the random variable associated with the document node is also a
multinomial over the set of documents in the collection. We note that variations
on this theme are possible. For example, it may be appropriate to include several
document nodes or even other types of nodes, such as document structure nodes
within the MRF.

The joint probability mass function over the random variables in G is defined by:

PG,Λ(Q,D) = 1

ZΛ

∏

c∈C(G)

ψ(c;Λ), (3.1)

where Q = q1 . . . qn are the set of query term nodes, D is the document node, C(G)

is the set of maximal cliques in G, each ψ(·;Λ) is a non-negative potential function
over clique configurations parameterized by Λ and ZΛ =∑Q,D

∏
c∈C(G) ψ(c;Λ)

normalizes the distribution. It is generally infeasible to compute ZΛ due to the ex-
ponential number of terms in the summation.

Therefore, in order to compute the joint distribution we need a graph G, potential
functions ψ , and the parameter vector Λ. Detailed descriptions of these components
are given in the following sections.
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Fig. 3.2 Example Markov
random field model for three
query terms under various
independence assumptions,
including full independence
(top left), sequential
dependence (top right), and
full dependence (bottom)

3.1 Graph Structure

We have already described how the nodes of the MRF are chosen. We now must
show how these nodes can be connected together. As explained before, the Markov
Property dictates the dependence semantics of the MRF. Therefore, it is relatively
straightforward to explore various independence assumptions by constructing MRFs
with different graph structures.

We consider three generalized graph structures, each with different underlying
independence assumptions. The three structures are full independence (FI), sequen-
tial dependence (SD), and full dependence (FD). Figure 3.2 shows graphical model
representations of each. These generalized structures are considered because of their
significance to information retrieval. As we now show, each corresponds to a well-
studied class of retrieval models.

The full independence structure makes the assumption that query terms qi are in-
dependent given some document D. That is, the likelihood of observing query term
qi is not affected by the observation of any other query term, or more succinctly,
P(qi |D,qj �=i ) = P(qi |D). This corresponds to the independence assumption made
by many of the bag of words models that were described in Chap. 2.

As its name implies, the sequential dependence structure assumes a depen-
dence between neighboring query terms. Formally, this assumption states that
P(qi |D,qj �=i ) = P(qi |D,qi−1, qi+1). Models of this form are similar in nature to
bigram and biterm language models (Song and Croft 1999; Srikanth and Srihari
2002).

The last structure we consider is the full dependence structure. In this structure,
we assume all query terms are in some way dependent on each other. Graphically,
a query of length n translates into the complete graph Kn+1, which includes edges
from each query node to the document node D, as well. This model is an attempt
to capture longer range dependencies than the sequential dependence structure. If
such a model can accurately be estimated, it should be expected to perform at least
as well as a model that ignores term dependence.
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There are other reasonable ways of constructing G given a query, such as that
proposed by Gao et al. (2004), in which dependencies between terms are inferred
using natural language processing techniques. The advantage of using one of the
structures just described is that there is no need to rely on natural language pro-
cessing techniques, which can often produce noisy output, especially on short
segments of text. Of course, some of the dependencies imposed by the structure
may be incorrect, but in general, they capture meaningful relationships between
terms.

3.2 Potential Functions

In order to compute the MRF’s joint probability mass function (Eq. 3.1), a set of po-
tential functions must be defined over configurations of the maximal cliques in the
underlying graph. These potential functions can be thought of as compatibility func-
tions. That is, they are meant to reflect how compatible a given clique configuration
is. How compatibility is defined and measured depends on the task and clique.

For example, in Fig. 3.2, the nodes D and q1 form a maximal clique in the full
independence variant. The potential function defined over the clique should reflect
how compatible the term q1 is to D. Here, compatibility may be defined as “about-
ness” and measured using some tf .idf score for the term q1 in D.

Typically, potential functions are built top-down, starting with a maximal clique
and defining a potential over it. However, within the model, we choose to build
potential functions in a bottom-up fashion, which provides more fine grained con-
trol over the behavior of the functions. This is accomplished by first associating
one or more real-valued feature functions with each (maximal or non-maximal)
clique in the graph. Each feature function has a feature weight associated with
it that is a free parameter in the model. Then, non-negative potential functions
over the maximal cliques are constructed from these feature functions and feature
weights using an exponential form. We now formally describe the details of this
process.

1. Assign one or more feature functions to each clique in G. This assignment can
be encoded as a set of 3-tuples, C = {(c, f (·), λ)}ni=1, where c is a clique of G,
f (·) is the feature function assigned to the clique, and λ is the weight (parameter)
associated with the feature. Recall that the same clique may be associated with
more than one feature function.

2. For every (c, f (·), λ) ∈ C , assign c to one of the maximal clique(s) in G that c

is a sub-clique of. It is always possible to assign sub-cliques to maximal cliques,
although this assignment is not guaranteed to be unique.

3. For every maximal clique in G, define its potential function as ψ(·) =
exp(
∑

c λf (·)), where the sum goes over the cliques that were assigned to the
maximal clique in Step 2.

We now provide an example to illustrate the process. Consider the full indepen-
dence graph in Fig. 3.2. Suppose that we make the following assignment of feature
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functions and parameters to the graph:

({q1,D}, f1(q1,D),λ1
)
,

({q1,D}, f4(q1,D),λ4
)
,

({q2,D}, f2(q2,D),λ2
)
,

({q2,D}, f4(q2,D),λ4
)
,

({q3,D}, f3(q3,D),λ3
)
,

({q3,D}, f4(q3,D),λ4
)
,

({D}, f5(D),λ5
)
,

where each fi is some real-valued feature function defined over the configurations
of the clique. The specific form of the feature functions is not important in this
example.

After assigning each clique to a maximal clique, we construct the following po-
tential functions:

ψ(q1,D) = exp
[
λ1f1(q1,D) + λ4f4(q1,D) + λ5f5(D)

]
, (3.2)

ψ(q2,D) = exp
[
λ2f2(q2,D) + λ4f4(q2,D)

]
, (3.3)

ψ(q3,D) = exp
[
λ3f3(q3,D) + λ4f4(q3,D)

]
. (3.4)

This construction is not unique since the clique {D} is a sub-clique of all three
maximal cliques. Therefore, we can assign feature function f5(D) to any of the
maximal cliques. In the previous set of potential functions, it was assigned to the
maximal clique {q1,D}. If it had been assigned to the maximal clique {q3,D} in-
stead, the following potential functions would have been constructed:

ψ(q1,D) = exp
[
λ1f1(q1,D) + λ4f4(q1,D)

]
, (3.5)

ψ(q2,D) = exp
[
λ2f2(q2,D) + λ4f4(q2,D)

]
, (3.6)

ψ(q3,D) = exp
[
λ3f3(q3,D) + λ4f4(q3,D) + λ5f5(D)

]
. (3.7)

It is critical to note that, even though the potential function definitions are not
guaranteed to be unique using this formulation, the joint probability mass function
will be unique. It is easy to see that, for this example, the joint, under all possible
assignments is equal to:

P(Q,D) = Z−1
Λ exp

[
λ1f1(q1,D) + λ4f4(q1,D)

+ λ2f2(q2,D) + λ4f4(q2,D)

+ λ3f3(q3,D) + λ4f4(q3,D)

+ λ5f5(D)
]
. (3.8)
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This example also serves to illustrate that both functions and parameters can be
shared across potential functions. Here, the feature function f4 and parameter λ4

were shared across three cliques. In order to share a feature function across cliques,
we require that the input to the feature function be compatible with each clique.
For example, a feature function that takes two term nodes and a document node as
input can only be shared across cliques with two term nodes and a document node.
We do not permit a feature function that only takes a document node as input to
be shared with a clique that contains both a query term node and a document node.
There are no restrictions on sharing parameters across cliques, however. By sharing
parameters across cliques, we effectively tie parameters together, which reduces the
number of free parameters and can help overcome data sparseness issues.

4 Constructing Markov Random Fields

As we just showed, potential functions are constructed by assigning feature func-
tions and parameters to arbitrary cliques in the MRF. In this section, we describe
how textual and non-textual features can be represented and assigned to cliques.
Potentials can then be built from these features and be used to compute P(Q,D).

In this section, we describe a method for representing MRFs for information re-
trieval. We represent MRFs using a canonical form. The canonical form is designed
to be a compact, intuitive, and flexible method of representing MRFs. It can handle a
wide variety of graph structures and features that are useful for information retrieval
tasks. A canonical forms have the following structure:

(dependence model type, clique set type, weighting function)1 : λ1

(dependence model type, clique set type, weighting function)2 : λ2

· · ·
(dependence model type, clique set type, weighting function)n : λn

Here, a 3-tuple represents how feature functions are assigned to cliques. Each 3-
tuple assigns a feature function to one or more cliques within the graph. The variable
after the colon represents the parameter associated with all of the feature functions
assigned by the 3-tuple. As we showed in the previous section, this ties the parame-
ters of all of the feature functions associated with a 3-tuple together. The details of
this assignment and tying process will become clearer later in this section when we
work through several examples.

Given a canonical form, it is easy to systematically build the corresponding MRF
and derive both the joint probability mass function, as well as the ranking function.
We represent all MRFs throughout the remainder of this work using these canonical
forms. We now describe the meaning and details of each component in the 3-tuple.
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4.1 Dependence Model Type

The first entry in the tuple is the dependence model type, which specifies the depen-
dencies, if any, that are to be modeled between query terms. As we described before,
dependencies are encoded by the edges in the MRF, with different edge configura-
tions correspond to different types of dependence assumptions.

In this work, we only allow the dependence model type to be full independence
(FI), sequential dependence (SD), or full dependence (FD), which are the three gen-
eralized graph structures described in Sect. 3.1 and illustrated in Fig. 3.2.

For a given MRF, each feature function may have a different dependence model
type. The dependence model type simply defines the graph structure that the current
feature is applied to. The graph structure that the resulting MRF has depends on the
dependence model types of all of its features combined.

4.2 Clique Set Type

The second entry in the tuple, the clique set type, describes the set of (maximal or
non-maximal) cliques within the graph that the feature function is to be applied to.
Thus, each feature function can be applied to one or more cliques within the graph,
depending on the clique set.

There are seven clique sets that can be used within the model. These sets are
summarized in Table 3.1. In order to motivate these clique sets, we enumerate every
possible type of clique that is of interest to us, beginning with cliques that contain
the document node and one or more query term nodes.

First, the simplest type of clique that contains the document node and one or
more query nodes is a 2-clique consisting of an edge between a query term qi and
the document D. A potential function over such a clique should measure how well,
or how likely query term qi describes the document.

Next, we consider cliques that contain two or more query terms. For such cliques
there are two possible cases, either all of the query terms within the clique appear
contiguously in the query or they do not. The fact that query terms appear contigu-
ously within a query provides different (stronger) evidence about the information
need than a set of non-contiguous query terms. For example, in the query train sta-
tion security measures, if any of the sub-phrases, train station, train station security,
station security measures, or security measures appear in a document then there is
strong evidence in favor of relevance.

Although the occurrence of contiguous sets of query terms provide strong evi-
dence of relevance, it is also the case that the occurrence of non-contiguous sets of
query terms can provide valuable evidence. However, since the query terms are not
contiguous we do not expect them to appear in order within relevant documents.
Rather, we only expect the terms to appear ordered or unordered within a given
proximity of each other. In the previous example, documents containing the terms
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Table 3.1 Example clique sets for the query q1 q2 q3 under full dependence model

Description Notation Example

Set of cliques containing the
document node and exactly one
query term

TQD {{q1,D}, {q2,D}, {q3,D}}

Set of cliques containing the
document node and two or more
query terms that appear in sequential
order within the query

OQD {{q1, q2,D}, {q2, q3,D}, {q1, q2, q3,D}}

Set of cliques containing the
document node and two or more
query terms that appear unordered
within the query

UQD {{q1, q3,D}}

Set of cliques containing exactly one
query term

TQ {{q1}, {q2}, {q3}}

Set of cliques containing two or more
query terms that appear in sequential
order within the query

OQ {{q1, q2}, {q2, q3}, {q1, q2, q3}}

Set of cliques containing two or more
query terms that appear unordered
within the query

UQ {{q1, q3}}

Set containing only the singleton
node D

D {{D}}

train and security within some short proximity of one another also provide addi-
tional evidence towards relevance. This issue has been explored in the past by a
number of researchers (Croft et al. 1991; Fagan 1987).

Therefore, for cliques consisting of the document node and one or more query
term nodes, we have the following clique sets:

• TQD—set of cliques containing the document node and exactly one query term.
• OQD—set of cliques containing the document node and two or more query terms

that appear in sequential order within the query.
• UQD—set of cliques containing the document node and two or more query terms

that appear unordered within the query.

Note that the cliques that make up each set may change for different dependence
model types. For example, OQD and UQD are empty under the full independence
assumption since that would result in a graph where there are no cliques with two
or more query term nodes. However, under the sequential dependence assumption,
and with a query of length 2 or more, such cliques will exist and OQD and UQD

will be non-empty.
Next, we consider cliques that only contain query term nodes. These clique sets

are defined in an analogous way to those just defined, except the cliques are only
made up of query term nodes and do not contain the document node. Potential
functions over these cliques should capture how compatible query terms are to one
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another. These clique potentials may take on the form of language models that im-
pose well-formedness of the terms. Therefore, we define following query-dependent
clique sets:

• TQ—set of cliques containing exactly one query term.
• OQ—set of cliques containing two or more query terms that appear in sequential

order within the query.
• UQ—set of cliques containing two or more query terms that appear unordered

within the query.

Finally, there is the clique that only contains the document node. Potentials over
this node can be used as a type of document prior, encoding document-centric prop-
erties. This trivial clique set is then:

• D—clique set containing only the singleton node D.

We note that the clique sets form a partition over the cliques of G. This partition
separates the cliques into sets that are meaningful from an information retrieval
perspective. Thus, these clique sets make it easy to apply features in a very specific
manner within the MRF.

Of course, the clique sets we defined here are not unique. It is possible to define
many different types of clique sets. For example, another clique set may be defined
as “the clique that contains the first query term and the document node”. Given
enough training data, it may be possible to define such fine grained clique sets.
However, given the limited amount of training data, we focus our attention on the
coarse grained clique sets defined above.

4.3 Weighting Function

Finally, the third entry in the tuple is the weighting function, which defines the fea-
ture function that is applied to the cliques defined by the clique set. In this section
we define weighting functions that can be used with the different clique sets we
just defined. It is not our goal to provide a comprehensive list of possible feature
functions. Instead, we simply seek to provide a few examples of the types of feature
functions that are possible.

4.3.1 Weighting Functions for TQD, OQD, and UQD

We first describe weighting functions that can be used with cliques in the TQD,
OQD, and UQD clique sets. These cliques consist of a set of query term nodes and a
document node. Therefore, the weighting functions applied to these cliques should
measure how much the document is “about” the query terms.

The weighting functions we use are based on language modeling estimates and
the BM25 weighting model, which we described in Chap. 2. It is straightforward
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to use the standard forms for these weighting functions for the single term cliques
(TQD). However, we must define how to match the query terms within documents
when applying these weighting functions to ordered term cliques (OQD) and un-
ordered term cliques (UQD).

For ordered term cliques, we match terms in documents using the Indri or-
dered window operator (#M), where the parameter M determines how many
non-matching terms are allowed to appear between matched terms (Metzler and
Croft 2004). For clique {qi, . . . , qi+k,D}, we match documents according to
#M( qi . . . qi+k). This rewards documents for preserving the order that the query
terms occur in.

In the unordered clique set case, we match terms using the Indri unordered win-
dow operator (#uwN ), where N defines the maximum size of the window that the
terms may occur (ordered or unordered) in. For clique {qi, . . . , qj ,D} that con-
tains k query terms, documents are matched according to #uwNk(qi . . . qj ). Notice
that we multiply the number of terms in the clique set by N . If N = 1, then all
k query terms must occur, ordered or unordered, within a window of k terms of
each other within the document. As N increases, the matching becomes looser. If
N = unlimited, then any document that contains all k query terms is matched. By
using this matching scheme, we reward documents in which subsets of query terms
occur appear within close proximity of each other.

Table 3.2 summarizes these weighting functions. Of course, many different types
of weighting functions can easily be used within the model. For example, if new,
more effective term weighting functions are developed in the future, then they can be
easily used instead of, or in addition to, the Dirichlet or BM25 weighting functions.

4.3.2 Weighting Functions for TQ, OQ, and UQ

Next, we consider weighting functions for the cliques in the TQ, OQ, and UQ clique
sets. These cliques consist of one or more query terms and no document nodes.
Weighting functions defined over them should reflect their general importance or
informativeness. Therefore, IDF-based measures are a natural set of feature func-
tions to use for these types of cliques.

The two IDF measures that are used as feature functions are inverse collection
frequency (ICF) and the Okapi IDF. Inverse collection frequency is very similar to
IDF, except it considers the number of times an expression occurs, rather than the
number of documents it occurs in. As with the weighting functions described in the
previous section, it is straightforward to apply standard IDF features to the single
term cliques (TQ). We use the same matching semantics as described in the previous
section for the ordered terms cliques (OQ) and the unordered terms cliques (UQ).

Example feature functions are shown in Table 3.3. Other possible feature func-
tions for these types of cliques include measures of how lexically cohesive the terms
are and the average vocabulary level of the terms.
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Table 3.2 Summary of Dirichlet and BM25 weighting functions that can be used with cliques in
the TQD, OQD, and UQD clique sets. Here, M and N act as weighting function parameters that
affect how matching is done, tfe,D is the number of times expression e matches in document D,
cfe,D is the number of times expression e matches in the entire collection, dfe is the total number
of documents that have at least one match for expression e, |D| is the length of document D,
|D|avg is the average document length, N is the number of documents in the collection, and |C|
is the total length of the collection. Finally, idf (e) = log N−dfe+0.5

dfe+0.5 , and μt , μw , kt
1, kw

1 , bt , and
bw are weighting function hyperparameters. The t and w superscripts indicate term and window
hyperparameters, respectively

LM

fLM,T (qi ,D) = log

[
tfqi ,D

+μt cfqi|C|
|D|+μt

]

LM-O-M

fLM,O,M({qi},D) = log

[
tf#M({qi }),D+μw

cf#M({qi })|C|
|D|+μw

]

LM-U-N

fLM,U,N ({qi},D) = log

[
tf#uwNk({qi }),D+μw

cf#uwNk({qi })|C|
|D|+μw

]

BM25

fT,BM25(qi ,D) = (kt
1+1)tfw,D

kt
1((1−bt )+bt |D|

|D|avg
)+tfw,D

idf (w)

BM25-O-M

fBM25,O,M({qi},D) = (kw
1 +1)tf#M({qi }),D

kw
1 ((1−bw)+bw |D|

|D|avg
)+tf#M({qi }),D

idf (#M({qi}))

BM25-U-N

fBM25,U,N ({qi},D) = (kw
1 +1)tf#uwNk({qi }),D

kw
1 ((1−bw)+bw |D|

|D|avg
)+tf#uwNk({qi }),D

idf (#uwNk({qi}))

4.3.3 Weighting Functions for D

Depending on the task, there are a wide variety of weighting functions that can
be applied to the document node clique. Some examples include document length
(Singhal et al. 1996), document quality (Zhou and Croft 2005), PageRank (Brin
and Page 1998), URL depth (Kraaij et al. 2002), readability (Si and Callan 2001),
sentiment (Pang et al. 2002), and opinionatedness (Ounis et al. 2006).

Although we do not explore all of these query independent features in this work,
we do make use of several of them for a Web search task later in this chapter.
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Table 3.3 Summary of ICF
and IDF weighting functions
that can be used with cliques
in the TQ, OQ, and UQ clique
sets

ICF

fICF,T (qi ,D) = − log
cfqi|C|

ICF-O-M

fICF,U,M({qi},D) = − log
cf#M({qi })|C|

ICF-U-N

fICF,O,N ({qi},D) = − log
cf#uwNk({qi })|C|

IDF

fIDF,BM25(qi ,D) = log N−dfw+0.5
dfw+0.5

IDF-O-M

fIDF,O,M({qi},D) = log
N−df#M({qi })+0.5

df#M({qi })+0.5

IDF-U-N

fIDF,U,N ({qi},D) = log
N−df#uwNk({qi })+0.5

df#uwNk({qi })+0.5

4.4 Examples

Now that we have described each element that makes up the 3-tuple, we show how
to construct MRFs from canonical forms. We do this by working through a number
of examples. In all of the following examples, it is assumed that the query being
evaluated is new york city.

Our first example is for the following canonical form:

(FI, TQD,BM25) : λ.

This canonical form includes a single feature function. The feature uses the full
independence graph structure, is applied to the cliques in TQD, and uses the BM25
weighting function. This expands to the following assignment of feature functions:

({new,D}, fBM25,T (new,D),λ
)
,

({york,D}, fBM25,T (york,D),λ
)
,

({city,D}, fBM25,T (city,D),λ
)
.

Notice that all of the features share the same parameter.
This assignment can then be transformed into the following set of potential func-

tions, using the process described in Sect. 3.2:

ψ(new,D) = exp
[
λfBM25,T (new,D)

]
, (3.9)
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ψ(york,D) = exp
[
λfBM25,T (york,D)

]
, (3.10)

ψ(city,D) = exp
[
λfBM25,T (city,D)

]
, (3.11)

where fBM25,T takes on the BM25 form as given in Table 3.2. The resulting proba-
bility mass function is then given by:

P(new york city,D) = Z−1
Λ exp

[
λfBM25,T (new,D) + λfBM25,T (york,D)

+ λfBM25,T (city,D)
]
. (3.12)

We see that this joint probability mass function is rank equivalent to the BM25
score of query for document D. Analogously, if fBM25,T is replaced with fLM,T ,
the probability mass function is rank equivalent to query likelihood scoring in the
language modeling framework.

Next, we consider the following canonical form:

(SD, OQD, LM-O-4) : λ

which contains a single feature that uses the sequential dependence model, is applied
to cliques in OQD, and uses the Dirichlet weighting function. This expands into the
following assignment of feature functions to cliques:

({new,york,D}, fLM,O,4(new,york,D), λ
)
,

({york, city,D}, fLM,O,4(york, city,D), λ
)

which is then transformed into the following set of potential functions:

ψ(new,york,D) = exp
[
λfLM,O,4(new,york,D)

]
, (3.13)

ψ(york, city,D) = exp
[
λfLM,O,4(york, city,D)

]
, (3.14)

where fLM,O,4 takes on the Dirichlet form and M , the ordered window size, is set
to 4.

Finally, we provide an example of a more complex canonical form. Consider the
following canonical form:

(FD, OQD, LM-O-8) : λ1,

(FI, TQ, IDF) : λ2,

(FI, D,PageRank) : λ3

which then results in the following set of feature function assignments:

({new,york,D}, fLM,O,8(new,york,D), λ1
)
,

({york, city,D}, fLM,O,8(york, city,D), λ1),
({new,york, city,D}, fLM,O,8(new,york, city,D), λ1

)
,
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({new}, fIDF,T (new,D), λ2
)
,

({york}, fIDF,T (york,D), λ2
)
,

({city}, fIDF,T (city,D), λ2
)
,

({D}, fPageRank(D), λ3
)

and the following potential function:

ψ(new,york, city,D) = exp
[
λ1fLM,O,8(new,york,D)

+ λ1fLM,O,8(york, city,D)

+ λ1fLM,O,8(new,york, city,D)

+ λ2fIDF,T (new,D)

+ λ2fIDF,T (york,D)

+ λ2fIDF,T (city,D)

+ λ3fPageRank(D)
]
. (3.15)

These examples illustrate that the canonical form allows us to compactly define
a large, rich set of MRFs for use with information retrieval tasks.

5 Ranking

Using the canonical feature representation, we derive the following simplified form
of the joint distribution:

logP(Q,D) =
∑

c∈TQD

λcfc(c) +
∑

c∈OQD

λcfc(c) +
∑

c∈UQD

λcfc(c)

︸ ︷︷ ︸
document+query dependent

+
∑

c∈TQ

λcfc(c) +
∑

c∈OQ

λcfc(c) +
∑

c∈UQ

λcfc(c)

︸ ︷︷ ︸
query dependent

+
∑

c∈D

λDfc(c)

︸ ︷︷ ︸
document dependent

− logZΛ︸ ︷︷ ︸
document+query independent

, (3.16)

where λc and fc are the parameter and weighting (feature) function associated with
clique c, respectively.

Given a query Q as evidence, we can use the model to rank documents in de-
scending order according of the conditional P(D|Q). Fortunately, properties of
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Fig. 3.3 Illustration showing
how the full independence
model generalizes unigram
language modeling and
BM25 (top), and how the
sequential dependence model
generalizes bigram language
modeling (bottom)

rankings allow us to significantly simplify the computation. That is,

P(D|Q)
rank= logP(D|Q)

= log
P(Q,D)

P (Q)

= logP(Q,D) − logP(Q)

rank= logP(Q,D). (3.17)

After dropping document independent expressions from logP(Q,D), we derive
the following ranking function:

P(D|Q)
rank=

∑

c∈TQD

λcfc(c) +
∑

c∈OQD

λcfc(c) +
∑

c∈UQD

λcfc(c) +
∑

c∈D

λcfc(c) (3.18)

which is a simple weighted linear combination of feature functions that can be com-
puted efficiently for reasonable graphs since the partition function ZΛ does not need
to be computed. Later, in Chap. 4 we show how the reverse conditional, P(Q|D),
can be used for query expansion.

In this chapter, we described the basics of the Markov random field model for
information retrieval. We explained our underlying model of relevance, basic MRF
theory, and how MRF models can easily be constructed using a canonical form. The
model is very robust, as it can model a wide variety of dependencies between query
terms, and can make use of arbitrary textual and non-textual features, as well. This is
the first model for information retrieval that has both of these important properties.

It is easy to show that the MRF model subsumes many previously proposed in-
formation retrieval models, which further proves the model’s flexibility. Figure 3.3
shows two simple examples of how the MRF model generalizes other models. Here,
we see that the full independence model, with properly defined potential func-
tions, gives rise to unigram language modeling and the BM25 model. Similarly,
the sequential dependence model subsumes bigram and biterm language models.
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By studying previous retrieval models in the context of the MRF model, we gain
fresh perspective and insight into the underlying principles of these models.

This chapter skirted the issue of parameter estimation (i.e., how to set Λ). Since
this issue is critical to achieving good effectiveness, it is given a detailed treatment
in Chap. 6.

6 Ad Hoc Retrieval

Our discussion, up until this point, has focused entirely on the theoretical issues
surrounding the Markov random field model. We now shift our focus to more prac-
tical matters. In this chapter, we empirically evaluate the retrieval effectiveness of
the MRF model. This requires us to choose one or more tasks to evaluate the model
against. There are a large number of important information retrieval tasks, such
as Web search (Brin and Page 1998), enterprise search (Craswell et al. 2005a),
question answering (QA) (Voorhees 1999), blog search (Ounis et al. 2006), legal
search (Baron et al. 2006), desktop search (Peng and He 2006), and image search.
Rather than evaluating the model on all of these tasks, we restrict our focus to ad
hoc retrieval and Web search. As we will describe in more detail shortly, these two
tasks are the most common and widely used in information retrieval.

Ad hoc retrieval is one of the most important information retrieval tasks. In the
task, a user submits a query, and the system returns a ranked list of documents that
are topically relevant to the query. Therefore, the goal of the task is to find topically
relevant documents in response to a query. It is critical to develop highly effective ad
hoc retrieval models since such models often play important roles in other retrieval
tasks. For example, most QA systems use an ad hoc retrieval system to procure
documents that are topically relevant to some question. The QA systems then em-
ploy various techniques to extract answers from the document retrieved (Voorhees
1999). Thus, by improving on the current state-of-the-art ad hoc retrieval models, it
is possible to positively impact the effectiveness of a wide range of tasks.

In the remainder of this section we describe experiments using three different
basic MRF models. The aim is to analyze and compare the retrieval effectiveness
of each model across collections of varying size and type. We make use of the AP,
WSJ, and ROBUST04 data sets, which are smaller collections that consist of news
articles that are mostly homogeneous, and two Web data sets, WT10g and GOV2,
which are considerably larger and less homogeneous. Further details about the data
sets are provided in Appendix A.

Each of these are TREC data sets. A TREC data set consists of a collection of
documents, a set of topics, and human relevance assessments. An example ad hoc
topic is shown in Fig. 3.4. A TREC topic typically consists of a title, description,
and narrative. It is important to note that a topic is not the same thing as a query,
although the two terms are often used interchangeably. A query must be distilled
from a topic. This is typically done by using the text contained in one or more of
the topic fields as the query. For all of the experiments in this section, except where
noted otherwise, we follow the common TREC procedure of using only the title
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<top>
<num> Number: 744

<title>
Counterfeit ID punishments

<desc> Description:
What punishments or sentences have been given in the U.S. for
making or selling counterfeit IDs?

<narr> Narrative:
Relevant documents will describe punishments for manufacturing or
selling counterfeit identification, such as drivers licenses,
passports, social security cards, etc. Fake professional
certifications and fake credit cards are relevant. Counterfeit goods
or auto serial numbers not relevant. Counterfeit checks are not
relevant. “Counterfeiting” with no indication of type is relevant.

</top>

Fig. 3.4 TREC topic number 744

portion of the topic as the query. Therefore, the query that we distill for the topic
given in Fig. 3.4 is counterfeit id punishments.

TREC relevance judgments are done by human assessors. When determining rel-
evance, the entire TREC topic is considered. The assessors judge documents using
a binary2 scale, where rating 0 indicates not relevant and rating 1 indicates relevant.

All of the evaluation metrics that we consider in this section are based on binary
judgments. For all of the experiments, we return a ranked list of no more than 1000
documents per query, as is standardly done during TREC evaluations. Furthermore,
the primary evaluation metric that we use to evaluate ad hoc retrieval is mean av-
erage precision. Further details about the retrieval metrics we use can be found in
Appendix B.

Finally, for all of the experiments, documents were stemmed using the Porter
stemmer and a standard list of 418 stopwords was applied. All model parameters
were estimated by maximizing mean average precision using a coordinate ascent
algorithm (see Algorithm 2).

Throughout all of the experiments, statistical significance is always tested using
a one-tailed, paired t-test at significance level p < 0.05.

2Although some TREC collections actually do have ternary (i.e., not relevant, relevant, and highly
relevant) judgments, they have never been used during official evaluations. When ternary judg-
ments do exist, all relevant (rating 1) and highly relevant (rating 2) documents are considered
relevant, which thereby binarizes the judgments.
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6.1 MRF Models for Ad Hoc Retrieval

We now define the three basic MRF models for the ad hoc retrieval task. The models
correspond to the three dependence model types shown in Fig. 3.2. Each model
represents a different set of underlying dependence assumptions and makes use of
different features. We define each model in terms of its canonical form, provide its
joint probability mass function, and show its ranking function.

6.1.1 Full Independence

The first basic model that we consider makes use of the full independence model
shown in Fig. 3.2 (left). Recall that, under this model, query term nodes are inde-
pendent of each other given a document as evidence. This model, therefore, shares
many properties with standard bag of words retrieval models.

We now introduce the first basic MRF model, which we call the Full Indepen-
dence MRF Model (MRF-FI model). It is constructed using the following canonical
form:

(FI, TQD,LM) : λTD
,

(FI, TQ, ICF) : λTQ
.

The model defines two features. One feature is defined over the TQD clique set and
the other is defined over the TQ clique set. Both features use the full independence
assumption and language modeling features.

Notice that no feature is defined over D, the document node clique set. By not
defining a feature over the document node clique, we are enforcing the constraint
that documents, in isolation, provide no useful information for the ad hoc retrieval
task. While this may seem like an extreme assumption, it is actually quite valid. No
single document prior has ever been shown to significantly improve effectiveness
across a wide range of data sets. Therefore, in order to keep the model as simple as
possible, we simply do not define a feature over this clique. However, we note that
for specific tasks it may be beneficial to define such a feature.

The model results in the following joint probability mass function:

P(Q,D) = Z−1 exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λTQ

∑

qi∈TQ

log
|C|
cfqi

]
. (3.19)
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Table 3.4 Test set results for the MRF-FI model

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2077 0.3258 0.2920 0.1861 0.2984

GMAP 0.1219 0.2267 0.1970 0.1176 0.1891

P@10 0.3460 0.4860 0.4293 0.3204 0.5180

R-Prec 0.2448 0.3558 0.3291 0.2199 0.3515

μt 1750 2000 1000 1000 1500

Furthermore, it is easy to see that we obtain the following linear feature-based model
when ranking according to P(D|Q):

P(D|Q)
rank=

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt
(3.20)

which shows that the MRF-FI model reduces exactly to the unigram query likeli-
hood language modeling approach with Dirichlet smoothing (see Eq. 2.14).

Although the MRF-FI model is not technically a bag of words model, we con-
sider it as a bag of words baseline. This is appropriate, since, as we just showed, the
model is rank equivalent to the unigram language modeling approach, which is a bag
of words model. Therefore, we use the MRF-FI model as a baseline by which we
compare other MRF models that actually go beyond the bag of words assumption.

Table 3.4 shows the test set results for the MRF-FI model across data sets. In
the table, MAP refers to mean average precision, GMAP is geometric mean average
precision, P@10 is precision at 10 ranked documents, R-Precision is precision at R
(number of judged relevant documents), and μt denotes the smoothing parameter
learned on the training set. All models were trained to maximize mean average
precision. These numbers serve as the baselines, which we attempt to improve upon
by employing more complex models.

6.1.2 Sequential Dependence

The second of the basic MRF models corresponds to the sequential dependence
model shown in Fig. 3.2 (center). It is the Sequential Dependence MRF Model
(MRF-SD model), which is constructed according to the following canonical
form:

(FI, TQD,LM) : λTD
,

(FI, TQ, ICF) : λTQ
,

(SD,OQD,LM-O-1) : λOD
,

(SD,OQ, ICF-O-1) : λOQ
,
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(SD,OQD,LM-U-4) : λUD
,

(SD,OQ, ICF-U-4) : λUQ

which defines features over single term (i.e., TQD and TQ) clique sets, as well as
ordered term clique sets (i.e., OQD and OQ). Unlike the MRF-SI model, this model
makes use of some of the MRF model’s strengths. As we see, the model defines
ordered and unordered window features over the ordered cliques in the graph. By
doing so, we go beyond the bag of words assumption. The joint probability mass
function for the model is:

P(Q,D) ∝ exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λTQ

∑

qi∈TQ

log
|C|
cfqi

+ λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + μw cf#1(q1q2)

|C|
|D| + μw

+ λOQ

∑

(q1,q2)∈OQ

log
|C|

cf#1(q1q2)

+ λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + μw cf#uw8(q1q2)

|C|
|D| + μw

+ λUQ

∑

(q1,q2)∈UQ

log
|C|

cf#uw8(q1q2)

]
(3.21)

and the ranking function simplifies to the following linear feature-based model:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + μw cf#1(q1q2)

|C|
|D| + μw

+ λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + μw cf#uw8(q1q2)

|C|
|D| + μw

.

(3.22)
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Table 3.5 Mean average precision for various parameter settings for LM-U-N using the MRF-SD
model

N AP WSJ WT10g GOV2

2 0.1860 0.2776 0.2148 0.2697

8 0.1867 0.2763 0.2167 0.2832

50 0.1858 0.2766 0.2154 0.2817

Unlimited 0.1857 0.2759 0.2138 0.2714

Recall that both the ordered (LM-O-M) and unordered (LM-U-N ) features have
free parameters that allow the size of the unordered window (scope of proximity) to
vary. We now motivate why these specific values were chosen.

First, for M , the parameter that controls the ordered window matching, we de-
cided to use 1, because it results in an “exact phrase” feature that does not allow
any room in the ordered matching of query terms. This choice is motivated by the
fact that exact phrases are commonly used in many different applications. Further-
more, there has been little previous research that looked at relaxing such phrases.
Therefore, choosing 1 is the most reasonable choice.

The other value, N , which controls the window width for unordered matching,
was chosen after careful consideration of previous research. Fagan shows that the
best choice of N varies across collections (Fagan 1987). Optimal values found in-
cluded setting N to either 2, the length of a sentence, or “unlimited” (matches any
co-occurrences of the terms within a document). Croft et al. showed improvements
could be achieved with passage-sized windows of 50 terms (Croft et al. 1991).
Therefore, since there were no strong conclusions, we experimented with window
sizes of 2, 50, sentence, and “unlimited” to see what impact each had on effective-
ness. Instead of segmenting sentences at index time, we observe that the average
length of an English sentence is 8–15 terms, and choose a window size of 8 terms
to model sentence-level proximity.

The results, which were evaluated on the entire data set, are given in Table 3.5.
The results show very little difference across the various window sizes. However,
for the AP, WT10g, and GOV2 collection the sentence-sized windows performed the
best. For the WSJ collection, N = 1 performed the best. The only collection where
mean average precision varies noticeably is the GOV2 collection. These results sug-
gest that a limited scope of proximity (2–50 terms) performs reasonably, but can
be approximated rather well by an “unlimited” scope, which reaffirms past research
into dependence models based on co-occurrences. However, it appears as though
smaller scopes of proximity may provide better performance for larger collections,
as evidenced by the GOV2 results. Therefore, given this experimental evidence, we
decide to set N = 4 for use with the basic MRF-SD model.

Now that we have describe why the rationale behind the manual construction
of the model, we must see how well it performs compared to the simple MRF-FI
model. The results are given in Table 3.6. Results that are statistically significantly
better than the MRF-FI model are indicated by a †.
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Table 3.6 Test set results for the MRF-SD model. A † indicates a statistically significant improve-
ment over the MRF-FI model

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2147† 0.3425 0.3096† 0.2053† 0.3325†

GMAP 0.1265 0.2399† 0.2196† 0.1286† 0.2449†

P@10 0.3340 0.5080 0.4566† 0.3245 0.5680†

R-Prec 0.2580† 0.3633 0.3363 0.2374† 0.3716†

The results show that the MRF-SD model is significantly better than the MRF-
FI model on every data set except WSJ for mean average precision, which is the
primary evaluation metric. The improvements in mean average precision are 3.4%
for AP, 5.1% for WSJ, 6.0% for ROBUST04, 10.3% for WT10G, and 11.4% for
GOV2. These results indicate very strong, consistent improvements over the bag of
words baseline.

Similar results are exhibited for geometric mean average precision. GMAP heav-
ily penalizes queries with a low average precision Therefore, GMAP is often used
to measure robustness (Voorhees 2005). As the results show, the MRF-SD model
is quite robust and significantly improves GMAP for every data set except AP.
We do a deeper analysis of the robustness of the MRF model later in this chap-
ter.

We see that the precision at 10 is improved across most data sets, but is only
significant on two of them (ROBUST04 and GOV2). Therefore, it appears as though
most of the boost in mean average precision that is achieved from using the MRF-SD
model does not come from the very top of the ranked list. Instead, the improvement
is likely coming from lower in the ranked list, where the ordered and unordered
window features are bringing in more relevant documents and filtering out many of
the low ranked, poorly matching documents.

Finally, it is important to recall that training is done to maximize mean average
precision. It is likely that more significant improvements could be achieved for the
other metrics if the model were trained to optimize them.

6.1.3 Full Dependence

The third basic MRF model is derived from the full dependence model. The model,
which is shown in Fig. 3.2 (right), is called the Full Dependence MRF Model (MRF-
FD model). The model attempts to incorporate dependencies between every subset
of query terms and is the most general of the basic models. Here, the number of
cliques is exponential in the number of query terms, which restricts the application
of this variant to shorter queries. This is not a problem for the MRF-FI and MRF-SD
models, which have a linear number of cliques. The model is constructed according
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to the following canonical form:

(FI, TQD,LM) : λTD
,

(FI, TQ, ICF) : λTQ
,

(FD,OQD,LM-O-1) : λOD
,

(FD,OQ, ICF-O-1) : λOQ
,

(FD,OQD,LM-U-4) : λUD
,

(FD,OQ, ICF-U-4) : λUQ
,

(FD,UQD,LM-U-4) : λUD
,

(FD,UQ, ICF-U-4) : λUQ

which is similar to the MRF-SD model. However, the models differ in several key
ways. First, the MRF-FD model uses the full dependence model type. Second,
the MRF-FD model defines two new features for the unordered clique sets (UQD

and UQ). These clique sets are empty in the MRF-SD model. Furthermore, the pa-
rameters for all the unordered features are tied together. While this is not required,
it simplifies the model.

The resulting joint probability mass function for the model is then given by:

P(Q,D) ∝ exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λTQ

∑

qi∈TQ

log
|C|
cfqi

+ λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1({qi }),D + μw cf#1({qi })|C|

|D| + μw

+ λOQ

∑

(q1,...,qk)∈OQ

log
|C|

cf#1({qi })

+ λUD

∑

(q1,...,qk,D)∈UQD

log
tf#uw8({qi }),D + μw cf#uw8({qi })|C|

|D| + μw

+ λUQ

∑

(q1,...,qk)∈UQ

log
|C|

cf#uw8({qi })

]
(3.23)
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Table 3.7 Mean average precision using the MRF-FD model over different combinations of term,
ordered, and unordered features

Term + Ordered Term + Unordered

Train\Test AP WSJ WT10g GOV2 AP WSJ WT10g GOV2

AP 0.185 0.272 0.218 0.267 0.1840 0.267 0.218 0.275

WSJ 0.184 0.273 0.217 0.261 0.1840 0.267 0.218 0.275

WT10G 0.185 0.272 0.218 0.267 0.184 0.267 0.219 0.278

GOV2 0.184 0.271 0.215 0.268 0.184 0.267 0.219 0.278

Term + Ordered + Unordered

Train\Test AP WSJ WT10g GOV2

AP 0.187 0.272 0.223 0.284

WSJ 0.184 0.274 0.220 0.269

WT10G 0.187 0.272 0.223 0.278

GOV2 0.185 0.271 0.220 0.284

and the resulting ranking function is then:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1({qi }),D + μw cf#1({qi })|C|

|D| + μw

+ λUD

∑

(q1,...,qk,D)∈UQD

log
tf#uw4k({qi }),D + μw cf#uw4k({qi })|C|

|D| + μw
.

(3.24)

Now that we have defined the MRF-FD model, we would like to understand what
effect the ordered and unordered features have on the model’s effectiveness and how
well the models learned on one collection generalize to another. In order to measure
this, we train on one data set and then use the parameter values found to test on
the other data sets. Results for models trained using terms and ordered features,
terms and unordered features, and terms, ordered, and unordered features are given
in Table 3.7.

For the AP collection, there is very little difference between using ordered and
unordered features. However, there is a marginal increase when both ordered and
unordered features are used together. The results for the WSJ collection are differ-
ent. For that collection, the ordered features produce a clear improvement over the
unordered features, but there is very little difference between using ordered features
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Table 3.8 Test set results for the MRF-FD model. A † indicates a statistically significant im-
provement over the MRF-FI model and a ‡ indicates statistically significant improvement over the
MRF-SD model

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2128 0.3429† 0.3092† 0.2140†‡ 0.3360†

GMAP 0.1257 0.2404† 0.2196† 0.1361†‡ 0.2421†

P@10 0.3540 0.5080† 0.45605† 0.3469†‡ 0.5720†

R-Prec 0.2543† 0.3694† 0.3394† 0.2417†‡ 0.3763†

and the combination of ordered and unordered. The results for the two Web col-
lections, WT10g and GOV2, are similar. In both, unordered features perform better
than ordered features, but the combination of both ordered and unordered features
led to noticeable improvements in mean average precision.

From these results we can conclude that strict matching via ordered window fea-
tures is more important for the smaller newswire collections. This may be due to the
homogeneous, clean nature of the documents, where an ordered window match is
likely to be a high quality match instead of noise. For the Web collections, the oppo-
site is true. Here, the fuzzy unordered window matches provide better evidence. In
these less homogeneous, noisy collections, an ordered window match is less likely to
be a high quality match and more likely to be a noisy match. Instead, fuzzy matches
are appropriate because they deal better with the noise inherent in Web documents.

These results also suggest that parameters trained on any of the data sets general-
ize well to other data sets. This result is somewhat surprising; we expected parame-
ters trained on newswire (Web) data would generalize better to newswire (Web) test
data. However, this is not the case. It appears as though the parameters trained on
any reasonable data set will generalize well, which allows one to use a single setting
of the parameters across multiple data sets. This may imply that the features used
here only capture general aspects of the text and that more domain-specific features
may yield further improvements. We return to the issue of parameter generalization
later in this chapter.

We conclude our discussion of the MRF-FD model by reporting test set effective-
ness results. The results are given in Table 3.8. The improvements over the MRF-FI
model are highly consistent, even more so than the improvements we saw with the
MRF-SD model. Consistent and significant improvements in mean average preci-
sion and geometric mean average precision are observed on every data set except
AP. Furthermore, both precision at 10 and R-prec are consistently improved across
nearly all of the data sets, as well.

These results indicate that the MRF-FD model is better at improving precision at
the top of the ranked list. This suggests that modeling dependencies between non-
adjacent query terms, via the use of ordered and unordered features, enhances preci-
sion more so than modeling dependencies between adjacent query terms. By using
the full dependence model, we impose a more global (i.e., across all query terms)
type of proximity constraint on the query terms, whereas the sequential dependence
model imposes more of a local (i.e., only between adjacent query terms) proximity
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constraint. Hence, the MRF-FD model promotes documents where all of the query
terms occur within a close proximity to each other, and the MRF-SD model only
promotes documents based on the proximity of pairs of adjacent query terms. The
MRF-SD model, therefore, may result in lower quality matches that do not satisfy
the global proximity constraints imposed by the MRF-FD model, which may lead
to fewer relevant documents returned at the top of the ranked list.

Despite the fact that the MRF-SD model only enforces local proximity con-
straints, it is only significantly worse than the MRF-FD model on the WT10G data
set. The two models are statistically indistinguishable for all other metrics and data
sets.

This is an interesting result with practical ramifications. If a system builder
had to decide whether to implement the MRF-SD model or the MRF-FD model,
they would need to analyze this efficiency/effectiveness tradeoff closely. The re-
sults show that, statistically, there is often no difference between the two models.
However, as we showed, the MRF-FD model does tend to produce better results
across all data sets and metrics. In terms of efficiency, the MRF-SD model requires
less computation in order to rank documents, since there are only a linear number
of cliques. The MRF-FD model, on the other hand, has an exponential number of
cliques. Therefore, the key practical factors to consider are average query length,
importance of excellent effectiveness, and computational resources.

Recent advances in inverted indexing technology and query evaluation may be
able to significantly improve the efficiency by which both MRF-SD and MRF-FD
models can be evaluated. These new techniques, based on impact ordered indexes,
pre-compute complicated features and store them directly in the index (Anh and
Moffat 2005). Then, rather than computing an exponential number of feature func-
tions per query, the aggregated feature value can be read directly from the index. Of
course, applying such an indexing strategy requires a large amount of disk space to
store the “feature lists”, but could result in very fast query evaluation, especially
using recently developed query optimization techniques (Anh and Moffat 2006;
Strohman and Croft 2007).

6.2 Evaluation

In this section, we delve deeper into a number of issues related to the three basic
MRF models. By analyzing these issues, we help distill a better understanding of
the MRF model. Many of the insights described here can be widely applied to other
information retrieval models.

6.2.1 Smoothing

All three of the basic models have one or more model hyperparameters that con-
trol smoothing. These parameters live outside of the MRF model and must be tuned



50 3 Feature-Based Ranking

separately. Previous research has shown that language modeling effectiveness is of-
ten sensitive to the setting of the smoothing parameters (Zhai and Lafferty 2001b).
Therefore, it is important to consider how sensitive the effectiveness of the basic
models are to the setting of the hyperparameters.

There are two different hyperparameters associated with the basic models. They
are μt , which controls single term smoothing, and μw , which controls both ordered
and unordered window smoothing. We choose to smooth single terms different from
windows because terms tend to behave differently than windows and have different
occurrence statistics. Although not explored here, it is also possible to smooth the
ordered window features differently than the unordered windows. However, we feel
that the two window types are similar enough that they can be smoothed in the same
way.

Since nobody has ever applied smoothing to ordered and unordered windows in
this way, it is important to analyze how sensitive effectiveness is with regard to the
window smoothing parameters. Figure 3.5 plots the mean average precision surfaces
over a wide range of settings for μt and μw using the MRF-SD model for the AP,
WSJ, ROBUST04, and WT10G data set.

The surfaces show that, in general, effectiveness is more sensitive to the setting of
the window smoothing parameter (μw) than the term smoothing parameter (μt ). The
results suggest that it is important to tune the smoothing parameters, especially the
window smoothing parameter. These surfaces also support the decision to smooth
windows and terms differently, as it is apparent that setting μt = μw is often far
from the optimal setting.

Finally, we note that the AP, WSJ, and WT10G curves are shaped similarly. How-
ever, the ROBUST04 surface has a very distinct shape to it. The difference appears
to be that it is difficult to “saturate” the window smoothing parameter on the AP,
WSJ, and WT10G data sets, but that the window smoothing parameter quickly satu-
rates on the ROBUST04 collection. This result may have to do with the fact that the
ROBUST04 query set was specifically chosen to be difficult (for retrieval systems
built before 2004). It may be that these queries were “hard” because the models
that were applied to them did not take term proximity into account (Buckley 2004;
Voorhees 2004). Therefore, when we apply the model to these queries, it may be
possible to over smooth the window features, which reduces the effect of term prox-
imity on the ranking function and decreases effectiveness.

6.2.2 Collection Size

In Chap. 1, we described the various paradigm shifts that have occurred in informa-
tion retrieval. We argued that as collection sizes grew and average document lengths
increased, new types of features beyond term frequency and inverse document fre-
quency would become important. We argued that these new types of features that
go beyond bags of words would act to filter out all of the noisy matches that were
made by chance.

We test this hypothesis by analyzing how much better the MRF-FD model is
compared to the MRF-FI model across a range of data set sizes. This data is plotted



6 Ad Hoc Retrieval 51

Fig. 3.5 Training set mean average precision as a function of term and window smoothing param-
eters using the sequential dependence model on the AP, WSJ, ROBUST04, and WT01G data sets
(top to bottom)
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Fig. 3.5 (Continued)
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Fig. 3.6 Relationship
between the number of
documents in a collection and
the relative improvement in
mean average precision of the
MRF-FD model over unigram
language modeling
(MRF-FI). Note that the
x-axis is log scaled

in Fig. 3.6. In the figure, the x-axis represents the number of documents in the
collection (log scale) and the y-axis represents the relative improvement in mean
average precision of MRF-FD over MRF-FI.

Although there are only five data points, there is clearly an increasing trend in the
data, with bigger improvements seen for the larger collections. The trend, of course,
is not perfect, but it does help validate the hypothesis that bag of words features
begin to fail as collection sizes increase. It will be interesting to see whether this
trend continues as larger data sets are made available. Clearly, bag of words models,
such as language modeling or BM25, are not well suited for ad hoc retrieval against
Web-scale collections.

6.2.3 The Role of Features

We have just shown that going beyond the bag of words assumption and making use
of term proximity features is highly effective, especially on very large collections.
In this section, we take this analysis one step further and investigate the role of
various types of features across the data sets. This analysis provides insights into
why certain features are more effective than others on a given data set and helps us
understand which other types of features may be important in the future.

To aid the analysis, we compute statistics for various information retrieval fea-
tures. The statistics are computed in the following manner. For every query, we
compute the feature of interest for every document in D, the document set of inter-
est. The average feature value is then computed across all of the documents in D.
We then use the median of the average values as the primary statistic. We use the
median, rather than the average, because many of the feature distributions are highly
skewed. This procedure is carried out for the following features:

• Overlap— |Q∩D|
|Q| , which is the fraction of query terms that occur in the document.

If this value is 1, then every query term occurs in the document. We note that this
is similar in spirit to Buckley et al.’s titlestat measure (Buckley et al. 2006).
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Table 3.9 Median values for various statistics computed across judged relevant (Rel) and non-
relevant (Nonrel) documents

Overlap Avg. TF Avg. Dist. (Seq) Avg. Dist. (Tot)

Rel Nonrel Rel Nonrel Rel Nonrel Rel Nonrel

AP 0.63 0.52 2.6 1.84 212 207 215 210

WSJ 0.67 0.53 2.7 1.93 370 460 387 471

ROBUST04 0.67 0.53 2.9 2.42 430 4933 452 5998

WT10G 0.80 0.66 6.5 5.16 1389 10357 1414 10357

GOV2 0.94 0.76 18.6 18.79 7090 7826 7164 8017

• Average TF—
∑

w∈Q tfw,D

|Q| , which is the average term frequency of the query terms
in the document.

• Average Distance (Sequential)—The average distance (with respect to term po-
sitions) between every pair of query terms that are adjacent to each other. Single
term queries are ignored when computing this feature.

• Average Distance (Total)—The average distance between every pair of query
terms. Again, single term queries are ignored when computing this feature.

These features are meant to capture various bag of words features (overlap and av-
erage TF), as well as notions of term proximity (average distances).

The medians, as computed using the procedure described above, are given in
Table 3.9. Results are given for the AP, WSJ, ROBUST04, WT10G, and GOV2 data
sets. The statistics are computed for both the set of judged relevant documents and
the set of judged non-relevant documents. By comparing the median values of these
features in both sets, we are able to better understand which features discriminate
well between relevant and non-relevant documents.

Of course, the judged relevant and judged non-relevant documents are heavily
biased because of the pooling procedure used at TREC. However, these statistics
still provide valuable insights into the fine line between relevant and non-relevant
documents and what types of features are important for data sets with varying char-
acteristics.

We first analyze the overlap feature. As the results show, the overlap is higher
in the relevant set than in the non-relevant set. This is to be expected, as relevant
documents typically contain most of the query terms. However, there is a noticeable
increasing trend in the value as the collection size increases. This suggests that as
collections get larger, relevant documents that appear high in the ranked list (i.e.,
those that would get pooled and judged) will contain most, if not all, of the query
terms. This suggests that it might be useful to run the query as a simple conjunctive
Boolean query first, and then apply a more complex ranking function to the filtered
set of documents.

A similar trend exists for the average term frequency feature, with larger average
TF values for larger collections that contain longer documents. This, again, should
not be surprising, since collections that contain longer documents will naturally con-
tain more term occurrences. Furthermore, since many of the judgment pools include
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Fig. 3.7 Plot of average distance between adjacent query terms for WT10G data set. Coll rep-
resents the entire collection, nonrel the set of judged non-relevant documents, and rel the set of
judged relevant documents

a large number of runs that use bag of words models based on tf.idf scoring, it is
only natural for the results to be biased towards high term frequencies. The gap in
TF from the relevant to the non-relevant set is not very large, and therefore average
TF alone cannot be used as a very good discriminator. Indeed, it is very interest-
ing to observe that the median average TF of non-relevant documents for GOV2 is
larger than the median average TF of relevant documents. This suggests that many
of the bag of words models return documents that contain many chance occurrences
of the query terms. Since these are not meaningful occurrences of the query terms,
the documents were actually non-relevant. This is where the term proximity and
other types of features begin to become important, as we will now show.

The two term proximity features show the greatest discriminative potential of any
of the features we looked at, especially as collection sizes grow. For the AP and WSJ
collections, there is little difference between the term proximity features in the rele-
vant and non-relevant sets. However, for the ROBUST04, WT10G, and GOV2 data
sets, there is a noticeable divide between the term proximity characteristics of the
relevant and non-relevant document sets. The biggest divide occurs for the WT10G
data set, which, not surprisingly, showed the biggest boost in effectiveness when the
MRF-SD and MRF-FD models were used. These statistics validate the arguments
as to the importance of term proximity features, especially on larger collections.
They show that both local proximity, as modeled by the MRF-SD model, as well as
global proximity, as modeled by the MRF-FD model, actually model discriminative
characteristics of query terms that discriminate between relevant and non-relevant
documents.

Finally, in order to give an idea of the distribution of the average distance (se-
quential) feature, we plot a histogram and smoothed density estimate for the WT10g
data set in Fig. 3.7. In addition to the statistics about the judged relevant and non-
relevant documents, the same statistics were also computed for the entire set of
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documents. The entire set of documents is a much more realistic, less biased model
of “not relevant” than the judged non-relevant documents. As the figure shows, the
relevant distribution is highly skewed towards small values. The non-relevant distri-
bution is skewed, but not as much as the relevant distribution. The collection distri-
bution does not appear to be as skewed as the other distributions, but it is clear that
the average distances compute across the collection are generally much larger than
both the judged relevant and non-relevant documents.

6.2.4 Robustness

Next, we investigate the robustness of the MRF-SD and MRF-FD models. Here, we
define robustness as the number queries whose effectiveness is improved/hurt (and
by how much) as the result of applying these methods. A highly robust model will
significantly improve many queries over the baseline and only minimally hurt a few.

In order to evaluate the robustness of the MRF-SD and MRF-FD models, we plot
histograms that show how many queries were helped or hurt by a given amount.
These plots are given in Fig. 3.8. The bin labels indicate the relative change in
mean average precision with regard to the baseline MRF-FI model. We see from the
results that the distributions are skewed in the direction of positive improvements.
In fact, for most of the data sets, there are very few queries that are hurt by more
than 50%. Similarly, many queries are often improved by over 50% on every data
set.

These histograms are only useful for aggregate data analysis. However, we would
like to know which queries were the most helped and most hurt by these more
complex models. In Tables 3.10 and 3.11 we provide the 10 most improved and
10 most hurt queries when using the MRF-SD model on the ROBUST04 and GOV2
data sets, respectively.

The first observation we make about these results is that the most improved
queries are often those that have poor MRF-FI average precision (e.g., below 0.1).
Of course, since these queries are so poor, it is very easy to achieve large relative
improvements. However, some queries, such as price fixing (ROBUST04 topic 622),
big dig pork (GOV2 topic 835), and spanish civil war support (GOV2 topic 829)
are significantly improved and have “acceptable” MRF-SD average precision val-
ues. There are very few cases of queries with large MRF-FI average precisions being
significantly hurt when the MRF-SD model is applied to them.

The second observation is that queries consisting of meaningful, common two
word phrases, such as gasoline tax (ROBUST04 topic 700), price fixing (RO-
BUST04 topic 622), pol pot (GOV2 topic 843), and model railroads (GOV2 topic
830), are more likely to be improved than two word phrases that are not as common
or meaningful, such as ethnic population (ROBUST04 topic 651), tibet protesters
(ROBUST04 topic 612), eskimo history (GOV2 topic 837), and heredity obesity
(GOV2 topic 846). This may be the result of how ordered and unordered feature
weights are computed in the MRF-SD model. It may be useful in the future to in-
clude notions of lexical cohesiveness in the computation of ordered and unordered
phrase features in order to rectify this issue (Vechtomova et al. 2006).
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Fig. 3.8 Robustness of MRF-SD and MRF-FD models on the AP, WSJ, ROBUST04, WT10G,
and GOV2 test sets. The MRF-FI model is used as the baseline by which the improvements are
computed. The evaluation metric used is average precision

Finally, we note that parsing/stopword removal errors may have contributed to
the reduction in effectiveness observed for some of the queries. One clear example
of such an error is the query custers stand (GOV2 topic 822). The original title
is custer’s last stand. However, the query distillation process removes a large set
of stopwords, including the term last. When the MRF-SD model is applied to the
query custers stand, the exact phrase feature becomes a very poor feature, since the
actual exact phrase features that we want are custers last and last stand, instead of
custers stand. Interestingly, the query doctors borders (GOV2 topic 806), which is
originally doctors without borders is the most improved query for the GOV2 data
set. A better understanding of stopword removal from within phrases is needed in
order to deal with these cases in a more consistent manner.
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Table 3.10 The 10 most improved and 10 most hurt test set queries when using the MRF-SD
model on the ROBUST04 data set. Effectiveness is measure in terms of average precision

Topic Query MRF-FI MRF-SD % Change

615 timber exports asia 0.1477 0.0697 −52.81%

685 oscar winner selection 0.2689 0.1740 −35.29%

623 toxic chemical weapon 0.2982 0.2238 −24.95%

651 ethnic population 0.0381 0.0305 −19.95%

659 cruise health safety 0.3216 0.2589 −19.50%

644 exotic animals import 0.1719 0.1392 −19.02%

698 literacy rates africa 0.5278 0.4314 −18.26%

612 tibet protesters 0.4528 0.3733 −17.56%

695 white collar crime sentence 0.2746 0.2316 −15.66%

693 newspapers electronic media 0.3108 0.2680 −13.77%

· · ·
639 consumer line shopping 0.1353 0.2094 54.77%

629 abortion clinic attack 0.1568 0.2527 61.16%

700 gasoline tax 0.2811 0.4579 62.90%

684 part time benefits 0.0881 0.1482 68.22%

627 russian food crisis 0.0102 0.0175 71.57%

638 wrongful convictions 0.0231 0.0468 102.60%

690 college education advantage 0.0027 0.0062 129.63%

689 family planning aid 0.0224 0.0583 160.27%

666 thatcher resignation impact 0.0078 0.0333 326.92%

622 price fixing 0.0287 0.1354 371.78%

6.2.5 Long Queries

Up until this point, we have only considered queries that were constructed from the
title portion of the TREC topics. These queries tend to be very short, high qual-
ity queries that contain few, if any, function words. In this section, we examine
whether or not the MRF model maintains its effectiveness on long queries. In par-
ticular, we are interested in evaluating the model on queries constructed from the
description portion of the TREC topic. The description field contains a longer natu-
ral language description of the underlying information need and often contains more
useful terms. However, it also includes many function words. For this reason, a spe-
cial stopword list that contains common function words that often occur in TREC
description fields was developed. This stopword list is then applied to queries in
order to remove most of the noisy query terms, while keeping the important content
terms.

In order to evaluate long queries, we define two new basic MRF models designed
specifically for long queries. The first, MRF-FI-L, is a variant of the MRF-FI model.
The LM weighting function is replaced with another language modeling weighting
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Table 3.11 The 10 most improved and 10 most hurt test set queries when using the MRF-SD
model on the GOV2 data set. Effectiveness is measure in terms of average precision

Topic Query MRF-FI MRF-SD % Change

822 custers stand 0.0815 0.0562 −31.04%

833 iceland government 0.5150 0.3669 −28.76%

847 portugal world war ii 0.2513 0.1859 −26.02%

837 eskimo history 0.0622 0.0486 −21.86%

838 urban suburban coyotes 0.2778 0.2402 −13.53%

846 heredity obesity 0.1734 0.1517 −12.51%

816 usaid assistance galapagos 0.7751 0.7056 −8.97%

850 mississippi river flood 0.1799 0.1663 −7.56%

808 north korean counterfeiting 0.7212 0.6717 −6.86%

845 new jersey tomato 0.3892 0.3635 −6.60%

· · ·
825 national guard involvement iraq 0.0755 0.1183 56.69%

843 pol pot 0.3158 0.5012 58.71%

849 scalable vector graphics 0.2080 0.4029 93.70%

842 david mccullough 0.0806 0.1799 123.20%

805 identity theft passport 0.0412 0.0961 133.25%

844 segmental duplications 0.0543 0.1486 173.66%

830 model railroads 0.0327 0.0992 203.36%

829 spanish civil war support 0.0637 0.2183 242.70%

835 big dig pork 0.0593 0.2141 261.05%

806 doctors borders 0.0061 0.0750 1129.51%

function based on Jelinek–Mercer smoothing. This is done because previous re-
search has suggested that Jelinek–Mercer smoothing is more effective on longer
queries than Dirichlet smoothing (Zhai and Lafferty 2001b). This small change re-
sults in the following ranking function:

P(D|Q)
rank=

∑

(qi ,D)∈TQD

log

[(
1 − δt

) tfqi ,D

|D| + δt cfqi

|C|
]
, (3.25)

where δt is the term smoothing parameter. In a similar fashion, we modify the MRF-
SD model to use Jelinek–Mercer smoothing instead of Dirichlet smoothing. This
model has this ranking function:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

log

[(
1 − δt

) tfqi ,D

|D| + δt cfqi

|C|
]
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+ λOD

∑

(q1,q2,D)∈OQD

log

[(
1 − δw

) tf#1(q1q2),D

|D| + δw cf#1(q1q2)

|C|
]

+ λUD

∑

(q1,q2,D)∈UQD

log

[(
1 − δw

) tf#uw8(q1q2),D

|D|

+ δw cf#uw8(q1q2)

|C|
]
, (3.26)

where δw is the ordered and unordered window smoothing parameter. Both δt and
δw must be in the range [0,1].

The long query results are given in Table 3.12. These results show that the
MRF-SD-L model significantly outperforms the MRF-FI-L model on all data sets.
In fact, the improvements here are much larger than those observed for the short
queries, which signifies that modeling dependencies between adjacent query terms
is even more important for longer queries. One potential reason for this behav-
ior is the fact that longer queries often contain many more spurious terms that,
when matched in a bag of words setting, will return many poor documents. In-
stead, when the adjacency constraint is enforced, the number of these poor matches
is reduced.

These results also indicate that the longer queries are much less effective than
the shorter version of the queries (see Table 3.6). This poor effectiveness is likely
caused by the increased noise in the query. Although many function words are re-
moved from the queries during pre-processing, some make it into the query. Similar
results have been observed at TREC, as well (Voorhees 2004, 2005). This brings
up the question of whether or not more information, in the form of longer natural
language queries, should be expected to return better results than short keyword
queries. If the search engine were replaced by a librarian, then it is obvious that the
more information that you were to provide, the better the results would ultimately
be. However, natural language processing techniques have failed to have a positive
effect on retrieval effectiveness, especially for longer queries. Perhaps once natural
language techniques are improved, it may be reasonable to expect better effective-
ness from longer queries. However, it remains to be seen whether or not users of
information retrieval systems will be willing to enter long descriptive queries. In-
stead, the most likely answer in some technology that lies between short keyword
queries and fully descriptive queries. For example, a user interface that allows users

Table 3.12 Test set mean
average precision for
description-length queries
using full and sequential
dependence models. All
improvements are statistically
significant

MRF-FI-L MRF-SD-L

AP 0.1778 0.1956 (+10.0%)

WSJ 0.2395 0.2544 (+6.2%)

ROBUST04 0.2910 0.3120 (+7.2%)

WT10G 0.1288 0.1639 (+27.3%)

GOV2 0.2003 0.2412 (+20.4%)
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to enter a keyword query and then provides a set of simple options to focus their
search results. Such technologies are starting to show up in Web search engines, but
whether or not they will enter the mainstream remains yet to be seen.

6.2.6 BM25 Weighting

All of the basic MRFs described so far have used language modeling weighting
functions. As described in Chap. 2, the BM25 weighting function has been shown
to have effectiveness comparable to language modeling. For this reason, we are in-
terested in examining the effectiveness of MRF models built using BM25 weighting
functions. It is straightforward to modify any of the MRF models described thus
far to use BM25 weighting. In order to keep things relatively simple and provide
for an easy comparison, we choose to modify the MRF-SD model. The resulting
MRF-BM25 model is then given by the following canonical form:

(FI, TQD,BM25) : λTD
,

(FI, TQ, IDF) : λTQ
,

(SD,OQD,BM25-O-1) : λOD
,

(SD,OQ, IDF-O-1) : λOQ
,

(SD,OQD,BM25-U-4) : λUD
,

(SD,OQ, IDF-U-4) : λUQ
,

where the weighting functions are defined in Sect. 4.3. The MRF-BM25 model has
the same form as the MRF-SD model, but replaces the LM and ICF weighting func-
tions with analogous BM25 and IDF ones. This results in the following ranking
function:

P(D|Q)
rank= λTD

∑

(qi ,D)∈TQD

(kt
1 + 1)tfw,D

kt
1

(
(1 − bt ) + bt |D|

|D|avg

)+ tfw,D

idf (w)

+ λOD

∑

(q1,q2,D)∈OQD

(kw
1 + 1)tf#1(q1q2),D

kw
1

(
(1 − bw) + bw |D|

|D|avg

)+ tf#1(q1q2),D

× idf
(
#1(q2q2)

)

+ λUD

∑

(q1,q2,D)∈UQD

(kw
1 + 1)tf#uw8(q1q2),D

kw
1

(
(1 − bw) + bw |D|

|D|avg

)+ tf#uw8(q1q2),D

× idf
(
#uw8(q1q2)

)
(3.27)

which has four hyperparameters, as opposed to the two hyperparameters in the
MRF-SD model. While the two extra parameters make the model more flexible,
to a certain extent, it also makes it more difficult to properly tune.
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Table 3.13 Test set results for the MRF-BM25 model. The †, ‡, and ∗ indicate statistically signif-
icant improvements over the MRF-FI, BM25 and MRF-SD models, respectively. Recommended
term and window hyperparameter values are also provided

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2210† 0.3512†‡ 0.3101†‡ 0.2129†‡ 0.3476†‡

GMAP 0.1366†∗ 0.2471†‡ 0.2199†‡ 0.1181‡ 0.2817†‡∗
P@10 0.3140 0.5140† 0.4525† 0.3388 0.6100†‡∗
R-Prec 0.2666† 0.3698† 0.3366‡ 0.2508†‡ 0.3834†

(kt
1, b

t ) (1.75, 0.3) (1.5, 0.3) (0.5, 0.3) (0.5, 0.2) (1.0, 0.4)

(kw
1 , bw) (0.25, 0.1) (0.25, 0.1) (0.25, 0.0) (0.25, 0.0) (0.25, 0.0)

The results of the experiments using the MRF-BM25 model are shown in Ta-
ble 3.13. Test set results are given and significance tests are done comparing the
retrieval effectiveness against MRF-FI, BM25 (see Eq. 2.11) and MRF-SD. Ac-
cording to the primary evaluation metric, mean average precision, we see that the
MRF-BM25 is always significantly better than the MRF-FI model and significantly
better than BM25 on all data sets, except AP. Furthermore, the MRF-BM25 model
is statistically indistinguishable from the MRF-SD model. These results indicate
that the improvement in effectiveness we observed when using the MRF-SD model
was not specific to the language modeling weights used. Indeed, as we just showed,
similar improvements can be obtained using BM25 weights. Therefore, this gen-
eral form of model can be used in a “plug ’n play” manner, using any reasonable
weighting function.

6.2.7 Comparison to Bigram Model

We now compare the model against another non-bag of words model. The model
that we choose to compare against is the bigram language model (see Eq. 2.16),
ranked using query likelihood. This model has recently been shown to be one of the
most consistently effective non-bag of words models to date (Gao et al. 2004). We
compare the effectiveness of the model against the MRF-FI and MRF-SD models.
We choose the MRF-SD model since it is a direct generalization of the bigram model
and models no additional dependencies, thus making it the most similar model to
compare against.

In the experiments, we train the bigram model’s smoothing parameters to maxi-
mize mean average precision. The test set results are shown in Table 3.14. For each
data set, we provide a set of recommended parameter settings. Furthermore, we indi-
cate statistically significant improvements over the MRF-FI model and statistically
significant decreases in effectiveness versus the MRF-SD model.

The results show that the bigram model is significantly better than the MRF-FI
model across all data sets. This result is consistent with previous results (Gao et al.
2004). However, the model is significantly worse than the MRF-SD model on the
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Table 3.14 Test set results for the bigram language model. The † indicates a statistically signifi-
cant improvement over the MRF-FI model and the ↓ indicates a statistically significant decrease
in effectiveness compared to the MRF-SD model (i.e., MRF-SD > MRF-BM25). Recommended
smoothing parameter values are also provided

AP WSJ ROBUST04 WT10G GOV2

MAP 0.2116† 0.3319†↓ 0.3012†↓ 0.2165† 0.3371†

GMAP 0.1229 0.2313↓ 0.2076†↓ 0.1347† 0.2137†↓
P@10 0.3420 0.4880↓ 0.4343↓ 0.3061 0.5500

R-Prec 0.2537† 0.3561↓ 0.3339 0.2499† 0.3744†

μ1 2750 2250 1000 2750 1250

λ2 0.995 0.998 0.970 0.950 0.990

λ3 1.00 1.00 1.00 0.99 1.00

WSJ and ROBUST04 data sets. We note that the bigram model is never significantly
better than the MRF-SD model for any metric. This result indicates that while the
bigram model can be highly effective, the MRF-SD model is still a better choice,
based purely on effectiveness.

Furthermore, we argue that the MRF framework, in general, is always a better
choice than the bigram model. Since the MRF model clearly generalizes and super-
sedes the bigram model, it will always be more flexible and provide more modeling
options. Furthermore, the bigram model uses a very rigid set of unigram and bigram
features that cannot be changed across tasks. However, the MRF model provides an
easy mechanism for including a wide range of arbitrary features. Therefore, there is
little reason to choose the bigram model over the MRF model.

One particularly interesting result of the bigram experiments is that the improve-
ment over the MRF-FI model increases as the collection size grows in a similar
manner to the MRF-SD model. This result further supports the claim that term de-
pendence and term proximity features are of the utmost importance when collection
sizes grow, document lengths increase, and collections become noisier.

6.2.8 Generalization

Finally, we investigate several aspects of how well the MRF model parameters gen-
eralize. An underlying goal of parameter selection strategies is to produce a model
that generalizes well. A model is said to generalize well if, when trained on one set
of data, remains effective on an unseen test set. A model that is capable of achieving
excellent effectiveness on a training set but performs poorly on a test set is of mini-
mal value. Therefore, if some parameter selection method results in effectiveness m̂,
and the optimal effectiveness is m∗, we then compute the following:

G = m̂

m∗ (3.28)
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Table 3.15 Intracollection generalization results for mean average precision. Values given are
effectiveness ratios

AP WSJ ROBUST04 WT10G GOV2 Avg.

LM 99.33 99.57 100.0 94.28 99.42 98.52

BM25 99.35 99.67 98.67 98.34 99.79 99.17

F2EXP 100.0 99.97 97.95 95.50 99.66 98.62

MRF-SD 97.93 97.39 99.23 100.0 100.0 98.91

which we define as the effectiveness ratio. An ideal model, that generalizes per-
fectly, would achieve an effectiveness ratio of 1 for every unseen data set. In in-
formation retrieval, even a 2–5% change in some measures, such as mean aver-
age precision, can be statistically significant, and therefore effectiveness ratios be-
low 0.90 indicate a model’s inability to generalize can severely hinder its effec-
tiveness. Most reasonable retrieval models will have an effectiveness ratio greater
than 0.95.

We are particularly interested in intracollection and intercollection generaliza-
tion, which are two different ways of measuring the generalization properties of a
model, which we now describe.

Intracollection generalization deals with how well a model trained on a set of
topics from some collection generalizes to another set of topics on that same col-
lection. This is a common setting in TREC evaluations, where collections are often
reused from year to year, and systems are typically trained on the topics from the
previous year(s).

We ran a number of experiments to test the intracollection properties of vari-
ous retrieval models. The retrieval models considered are language modeling (LM),
BM25, F2EXP (an axiomatic retrieval model that was designed to be less sensitive
to parameter estimation (Fang and Zhai 2005)), and the MRF-SD model. In these
experiments, parameters are estimated by maximizing mean average precision on
the training set. Models are evaluated according to the effectiveness ratio on the
test set. The metric used to compute the effectiveness ratio is mean average preci-
sion.

The results are given in Table 3.15. The table lists the effectiveness ratios of
each model across each data set, as well as the average effectiveness ratio across
all data sets. A model with perfect intracollection generalization would have an
effectiveness ratio of 100. The results indicate that all of the models do a relatively
good job of generalizing, with average effectiveness ratios well above 98%. We note
that the F2EXP model tends to generalize better within newswire collections, while
the dependence model generalizes better for Web collections. The BM25 model,
however, has the best average effectiveness ratio, which indicates its parameters do
a particularly good job of capturing collection-dependent characteristics, rather than
topic set-specific ones.

The other type of generalization we consider is intercollection generalization.
This type of generalization measures how well a model trained on a topic set from
one collection generalizes to a different topic set on a different collection. This is a
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Table 3.16 Intercollection generalization results. Table includes mean average precision effec-
tiveness ratios across all possible train/test splits using the F2EXP model

Train\Test AP WSJ ROBUST04 WT10G GOV2 Avg.

AP – 99.2 94.3 93.0 93.6 95.0

WSJ 99.1 – 97.4 96.4 96.2 97.3

ROBUST04 95.0 97.7 – 97.5 99.6 97.4

WT10G 91.8 92.7 96.5 – 93.4 93.4

GOV2 95.6 98.2 99.3 97.2 – 97.6

Avg. 95.4 96.9 96.9 96.0 95.8 96.2

Table 3.17 Intercollection generalization results. Table includes mean average precision effec-
tiveness ratios across all possible train/test splits using the MRF-SD model

Train\Test AP WSJ ROBUST04 WT10G GOV2 Avg.

AP – 100 99.7 98.4 98.9 99.3

WSJ 100 – 99.7 98.4 98.9 99.3

ROBUST04 99.6 99.6 – 99.7 99.3 99.5

WT10G 98.1 98.9 99.8 – 97.0 98.5

GOV2 99.6 99.4 99.7 98.0 – 99.2

Avg. 99.3 99.5 99.7 98.7 98.5 99.1

practical scenario for ‘off the shelf’ retrieval systems that may be used across a wide
range of different collections. It is unlikely that the end users of these systems will
be willing or able to provide training data to the system, and therefore the system
must be shipped with a very solid set of pre-tuned, highly generalizable parameters.

In order to measure the intercollection generalization, we compute the effective-
ness ratio for every possible combination of training/test splits. The results for the
F2EXP and MRF-SD models are shown in Tables 3.16 and 3.17, respectively.

As we see from the table, the cross-collection effectiveness ratios for the MRF-
SD model are higher for every training/test set pair, with very few exceptions. In
fact, on average, the MRF-SD comes within 1% of the optimal setting regardless of
which collection is used for training, whereas the F2EXP model only comes within
4% of the optimal on average. The Dirichlet and BM25 models (not shown) have
average effectiveness ratios of 98.9% and 96.9%, respectively. Therefore, the MRF-
SD model and Dirichlet models are more robust when it comes to cross-collection
generalization and make them good candidates for “out of the box” implementa-
tions that require a single parameter setting to work well across a wide range of
collections.

As further evidence of the model’s generalization properties, Fig. 3.9 illustrates
the well-behaved, nearly concave surfaces that arise when mean average precision
is plotted over the multinomial parameter simplex of the MRF-SD ranking function
for various data sets. Each of the mean average precision surfaces has the same
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Fig. 3.9 Mean average precision values plotted over MRF-SD parameter simplex for AP, WSJ,
WT10g, and GOV2 collections

general form, which indicates that the features capture an inherent property that
persists across different types of collections. Although there is no guarantee that
such a nicely concave surface will exist for all features and all evaluation metrics,
it provides some evidence that the functions we are maximizing over the simplex
are not too difficult to optimize using simple algorithms, such as those described in
Chap. 6.

6.3 Summary of Results

For completeness, we summarize the main results of the ad hoc retrieval experi-
ments in Table 3.18. The table shows test set mean average precision across all data
sets for the MRF-FI, MRF-SD, and MRF-FD basic models. It also includes recom-
mended smoothing parameters for each collection, as well as recommended MRF
model parameters for each model.

These results show that the hand constructed non-bag of words MRF models
(MRF-SD and MRF-FD) consistently outperform the bag of words model (MRF-
FI). Although we only show results here that make use of language modeling
weighting functions, we note that the results achieved using the MRF-BM25 model,
which uses BM25 weighting functions, did consistently and significantly outper-
form the MRF-FI model in terms of mean average precision across all data sets,
thereby satisfying one of the over-arching goals of the model. As we will show in
Chap. 6, moving away from hand built MRFs towards automatically constructed
ones yields even more significant increases in effectiveness.



7 Web Search 67

Table 3.18 Summary of test set mean average precision for the MRF-FI, MRF-SD, and MRF-
FD models across all of the ad hoc retrieval data sets. Values in parenthesis denote percentage
improvement over MRF-FI model. A † indicates a statistically significant improvement over the
MRF-FI model, and a ‡ indicates a statistically significant improvement over the MRF-SD model.
Recommended smoothing values are given for each collection, and recommended MRF model
parameters are provided for each model

MRF-FI MRF-SD MRF-FD (μt ,μw)

AP 0.2077 0.2147 (+3.4%)† 0.2128 (+2.5%) (1750, 5000)

WSJ 0.3258 0.3425 (+4.8%) 0.3429 (+5.2%)† (2000, 1000)

ROBUST04 0.2920 0.3096 (+6.0%)† 0.3092 (+5.9%)† (1000, 750)

WT10g 0.1861 0.2053 (+10.3%)† 0.2140 (+15.0%)†‡ (1000, 6000)

GOV2 0.2984 0.3325 (+11.4%)† 0.3360 (+12.6%)† (1500, 4500)

(λTD
,λOD

,λUD
) N/A (0.85, 0.10, 0.05) (0.80, 0.10, 0.10)

7 Web Search

Web search is one of the most popular and widely used information retrieval ap-
plications. The goal of a Web search system is to return a set of Web pages that
are relevant to a user’s query. There are several important differences between ad
hoc retrieval and Web search. First, not all Web search queries are content-based,
or informational, searches. For example, a user who enters the query mcdonalds lo-
cations is not looking for documents that are about McDonalds locations. Instead,
they are likely searching for the Web page on the McDonald’s Web page that lists
where their restaurants are located. This type of query, where a user seeks out a
specific page that they either know exists or think is very likely to exist, is known
as a navigational query. Additionally, a user who enters the query cheap digital
cameras is neither seeking information about digital cameras nor seeking a spe-
cific page. Instead, the user is likely interested in purchasing a digital camera. Such
queries, which are intended to lead to an online transaction, are known as transac-
tional queries. A study done by Broder in 2002 reports that approximately 50% of
Web queries are informational, 20% navigational, and 30% transactional (Broder
2002).

Since these three query types are so different, they are often evaluated differ-
ently. Content-based (informational) Web retrieval was evaluated in the previous
section with the experiments on the WT10G and GOV2 data sets. Evaluation of
transactional queries is difficult, since it often requires product databases and query
click-through logs, which are not currently publicly available for privacy and intel-
lectual property reasons. In this section, we focus on navigational queries, for which
there are publicly available TREC data sets.

These data sets were used during the TREC Web Track (1999–2004) and the
TREC Terabyte Track (2004–2006). During these tracks, there were several naviga-
tional search-related subtasks. Of particular interest to us is the named page finding
task that was run during the TREC Terabyte Track in 2005 and 2006. We are in-
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Fig. 3.10 Example TREC
named page finding topics <num> Number: NP1048

<title> us embassy vietnam
</top>

<top>
<num> Number: NP1049
<title> phil english biography
</top>

<top>
<num> Number: NP1050
<title> tenet 9/11 testimony
</top>

<top>
<num> Number: NP1051
<title> hubble timeline
</top>

<top>
<num> Number: NP1052
<title> cdc west nile 2003 statistics by state
</top>

terested in this task because of the large data (GOV2) set and the large number of
queries available to experiment with (252 from 2005, 181 from 2006).

The named page finding task requires systems to find “bookmarkable” pages that
users either know exist or presume are likely to exist (Clarke et al. 2006). One of the
main differences between named page finding and ad hoc retrieval is that there is
typically only one relevant document for every named page finding query. Another
key difference is that the primary evaluation metric is mean reciprocal rank, instead
of mean average precision3. Several example named page finding topics are shown
in Fig. 3.10.

In the remainder of this section, we first review previously proposed approaches
to Web search (named page finding). We then describe the basic MRF model for
Web search. Finally, we evaluate the model on the TREC Terabyte Track named
page finding topics.

3Average precision is equal to reciprocal rank for queries with only one relevant document, so the
two measures will only differ for those topics that have more than one relevant document.
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7.1 Previous Models for Web Search

Web data sets are very different than standard ad hoc retrieval data sets. They are
typically larger and tend to be noisier, because users may publish their own content.
Furthermore, Web pages contain HTML markup and can link to other pages. These
additional pieces of information play a particularly important role for navigational
queries. For this reason, navigational search models often focus on link structure
and document structure.

Link structure refers to the hyperlink structure of the Web. Graph-based algo-
rithms are typically applied to the link structure of the Web in order to find hubs
and authoritative pages. Examples of these algorithms include PageRank and HITS
(Brin and Page 1998; Kleinberg 1999). These algorithms, along with other Web-
specific features such as inlink count, and URL depth have been shown to be useful
for improvement the effectiveness of navigational queries (Kraaij et al. 2002).

Methods that make use of document structure often treat certain HTML fields in
a special way. For example, a common technique is to weight the importance of text
occurring in various fields differently, such as the title field or the anchor text
pointing to the document (Ogilvie and Callan 2003; Robertson et al. 2004).

Recently, other aspects of Web search, such as user behavior, have been found to
be useful, but is beyond the scope of this work (Agichtein et al. 2006).

In this section, we use a bag of words language modeling approach as the base-
line. The model, which we refer to as LM-Mixture, makes use of both link structure
and document structure, has been shown to be highly effective in the past (Ogilvie
and Callan 2003). Given a query, documents are ranked under the model according
to:

P(D|Q) = P(D)
∏

w∈Q

∑
f P (f |D)P (w|D,f )

∑
D P (D)

∏
w∈Q

∑
f P (f |D)P (w|D,f )

rank= P(D)
∏

w∈Q

∑

f

P (f |D)P (w|D,f ), (3.29)

where P(w|D,f ) is the probability of generating term w from field f in docu-
ment D (i.e., this is a language model built from field f in document D), P(f |D)

is a mixing probability, and P(D) is the document’s prior probability. It is easy
to see that this model is closely related to the standard query likelihood ranking
function, except the monolithic document model is replaced with a mixture of field
models and a document prior is introduced.

There are other models that attempt to combine evidence from multiple fields,
including The BM25F model, which is a field weighted variant of BM25 (Robert-
son et al. 2004). The model is similar in nature to the mixture of language models
approach described here, but field weighting is done differently. Rather than weight-
ing terms after document length normalization is done, as is done in Eq. 3.29, term
weights are incorporated before document length normalization. How to properly
combine evidence and handle document length normalization in the presence of
multiple fields is still an open question (Spärck Jones 2005).
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In order to fully specify the model we must describe how to estimate P(w|D,f ),
P(f |D), and P(D). We begin with the field language model, P(w|D,f ). This
probability is estimated in a straightforward manner by treating all of the text that
appears in field f of document D as a pseudo-document. By doing so, we induce
the pseudo-document Df for field i and the pseudo-collection Cf , which is made
up of all of the pseudo-documents constructed from field f . Now, standard language
modeling estimation can be applied. We choose to model each field language model
as a Dirichlet smoothed language model, which results in the following estimate:

P(w|D,f ) =
tfw,Df

+ μt
f

cfw,f

|Cf |
|Df | + μt

f

, (3.30)

where all of the f subscripts refer to statistics computed in the pseudo-document/
pseudo-collection and μt

f specifies the smoothing parameter for the field. Since
there is a single smoothing parameter per field, accurate estimation may be difficult.
Hence, smoothing parameter values are typically chosen to be two times the average
length of pseudo-documents of type f . We follow this general rule of thumb in the
experiments here.

The mixing probabilities, P(f |D) can either be set to
|Df |
|D| or uniformly. Al-

ternatively, they can be hand or automatically tuned in order to maximize mean
reciprocal rank. In this work, we use a set of hand tuned values that have been found
to be effective in previous experiments.

7.2 Document Priors

There are many different document priors that can be estimated for navigational
Web search tasks. In this section, we describe how to estimate priors based on inlink
count and PageRank. The priors are estimated using TREC relevance judgments, al-
though they may also be estimated in a completely unsupervised or semi-supervised
setting, given other resources, such as query click logs.

When computing P(D), we really are computing the prior probability that doc-
ument D is relevant given some external piece of evidence about D, such as the
number of links pointing to D or the PageRank of D. Therefore, instead of estimat-
ing P(D) directly, we estimate P(R = 1|evidence), where evidence is some random
variable that only depends on the document itself.

7.2.1 Inlink Count

The inlink count of document D is the number of Web pages that point to D. Inlink
count is often a good feature to use for navigational queries because the pages that
are “bookmarkable” often have a high inlink count associated with them. There-
fore, we expect documents with larger numbers of inlinks to have a higher prior
probability of relevance.
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Fig. 3.11 Inlink count prior

Following the framework we described above, we compute the probability of
relevance, given the log of the inlink count (simply denoted l). We choose to apply
the log function in order to compress the range of values to a more reasonable set.
The resulting probability estimate, using Bayes’ rule, is:

P(R = 1|l = X) = P(l = X|R = 1)P (R = 1)

P (l = X)
, (3.31)

where P(l = X|R) and P(R) are estimated empirically from TREC relevance judg-
ments. The relevance judgments used are from the TREC 2001 and 2002 Web Track
data set. Later, we will apply these priors to the larger TREC 2005–2006 Terabyte
Track data set (GOV2). It is unknown how well these probabilities will generalize to
this newer, larger data set, but we feel that the estimates should be fairly reasonable.

Figure 3.11 shows the estimated priors across a range of log inlink counts. We see
that the prior probability of relevance increases as the number of inlinks increases,
as expected.

7.2.2 PageRank

The problem with using inlink count alone is that there is no notion of authority
involved. It is very easy for a spammer to create thousands of fake Web pages and
have them all point to each other (this is a so-called link farm). This results in a large
number of inlinks, but none of the pages are actually authoritative at all. The Page-
Rank algorithm is based on the notion of spreading authority throughout a graph.
The basic idea is that if a page has many inlinks from highly authoritative pages,
then that page is likely to be authoritative, as well.

The PageRank of document D, denoted rD,t , can be computed iteratively. Let t

denote the current iteration. Then, the PageRank is computed as follows:

rD,t+1 = α + (1 − α)
∑

p : p→D

rp,t

deg(p)
, (3.32)
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Table 3.19 URLs in the
GOV2 collection with the
largest raw PageRank scores.
The number of inlinks for
each URL is also shown

URL # Inlinks

http://www.usgs.gov 1,329,036

http://www.ca.gov 471,819

http://www.nih.gov 1,502,324

http://www.epa.gov 1,386,329

http://es.epa.gov/cgi-bin/ncerqamail.pl 1,349,131

http://es.epa.gov/ncer/rfa 1,344,630

http://www.hhs.gov 778,652

http://www.ornl.gov 639,570

http://www.doi.gov 761,456

http://www.medicare.gov 186,948

where α ∈ (0,1] affects the amount of “random surfing” done, p → D indicates
that page p links to document D, and deg(p) is the number of links out of page p.
The values are iteratively updated and renormalized until they converge to the raw
PageRank value. There are other ways of computing PageRank, for example, by
solving an eigenvector problem, but we use the iterative approach for simplicity.

The raw PageRank is a value between 0 and 1. We assume that the true authorita-
tiveness, or importance, of Web pages is Zipfian in nature. That is, there are a small
number of highly authoritative pages, a larger number of less authoritative pages,
all the way down to a very large number of non-authoritative pages. Therefore, in
order to impose such a distribution, we sort the documents by their raw PageRank
scores and then geometrically bin the documents into 11 bins. This idea was inspired
by Anh and Moffat’s work on document-centric impact weighting (Anh and Mof-
fat 2005). This results in each document being assigned a binned PageRank value
between 0 and 10. We use these binned PageRank values in order to estimate the
document prior.

The PageRank prior is computed in a similar fashion to the inlink count prior, as
follows:

P(R = 1|PR = X) = P(PR = X|R = 1)P (R = 1)

P (PR = X)
, (3.33)

where PR denotes the binned PageRank value. Table 3.19 shows a list of the Web
pages in the GOV2 collection with the highest raw PageRank values and the number
of inlinks those pages have. Although many of the pages with the highest PageRank
have very many inlinks, this is not always the case. The best example of this is the
fact that the Medicare Web page has such a high PageRank, but only has 186,948
inlinks.

Lastly, Fig. 3.12 shows the estimated document priors for each binned PageRank
value. The plot has an interesting shape to it. Documents with very low PageRank
are given a very low prior probability of relevance. The prior probability dramati-
cally increases as the PageRank reaches 8 and 9. Interestingly, a higher prior is as-
signed to documents with PageRank 8 than 9 and that a zero probability is assigned

http://www.usgs.gov
http://www.ca.gov
http://www.nih.gov
http://www.epa.gov
http://es.epa.gov/cgi-bin/ncerqamail.pl
http://es.epa.gov/ncer/rfa
http://www.hhs.gov
http://www.ornl.gov
http://www.doi.gov
http://www.medicare.gov
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Fig. 3.12 PageRank prior

to documents with PageRank 10. This is very likely the result of data sparseness
and the fact that there are so few documents with PageRank 9 or 10 in the relevance
judgments.

7.3 MRF Models for Web Search

We now describe one of the many possible ways to use the MRF model for Web
search. The mixture of language modeling approach described earlier (see Eq. 3.29)
has been shown to be highly effective. Therefore, we wish to use the MRF frame-
work to generalize this model. By doing so, we will be able to model dependencies
between query terms, which allows us to make use of phrase and term proximity
weighting functions, which were shown to be very valuable for the ad hoc retrieval
task.

To achieve this, we modify the MRF-SD model by replacing the standard lan-
guage modeling feature weights (i.e., LM, LM-O-1, and LM-U-4) with analogous
mixture of language modeling feature weights. In addition, we add the inlink count
and PageRank document priors as feature weights defined over the document clique,
as well. These new feature weights, named NP, NP-O-M , NP-U-N , INLINK, and
PAGERANK are defined in Table 3.20. This gives rise to the basic MRF for Web
search, which we call the MRF-NP model, defined by the following canonical form:

(FI, TQD,NP) : λTD
,

(FI, TQ, ICF) : λTQ
,

(SD,OQD,NP-O-1) : λOD
,

(SD,OQ, ICF-O-1) : λOQ
,

(SD,OQD,NP-U-4) : λUD
,

(SD,OQ, ICF-U-4) : λUQ
,
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Table 3.20 Summary of named page finding weighting functions. The NP, NP-O-M , and NP-U-N
weighting functions are based on mixtures of field language models, and INLINK and PAGER-
ANK are based on document priors. The αf values correspond to the mixing probabilities P (f |D).
Term and window smoothing parameters are denoted by μt

f and μw
f , respectively

NP

fNP,T (qi ,D) = log

[∑
f αf

tfqi ,Df
+μt

f

cfqi ,f|Cf |
|Df |+μt

f

]

NP-O-M

fNP,O,M({qi},D) = log

[∑
f αf

tf#M({qi }),Df
+μw

f

cf#M({qi }),f|Cf |
|Df |+μw

f

]

NP-U-N

fNP,U,N ({qi},D) = log

[∑
f αf

tf#uwNk({qi }),Df
+μw

f

cf#uwNk({qi }),f|Cf |
|Df |+μw

f

]

INLINK

fINLINK(D) = logP (R = 1|l = l(D))

PAGERANK

fPR(D) = logP (R = 1|PR = PR(D))

(FI, D, INLINK) : λIN,

(FI, D,PAGERANK) : λPR.

Using this canonical form, the MRF-NP ranking function is given by:

P(D|Q)

rank= λTD

∑

(qi ,D)∈TQD

log

[
∑

f

αf

tfqi ,Df
+ μt

f

cfqi ,f|Cf |
|Df | + μt

f

]

+ λOD

∑

(q1,q2,D)∈OQD

log

[
∑

f

αf

tf#1(q1q2),Df
+ μw

f

cf# 1(q1q2),f

|Cf |
|Df | + μw

f

]

+ λUD

∑

(q1,q2,D)∈UQD

log

[
∑

f

αf

tf#uw8(q1q2),Df
+ μw

f

cf#uw8(q1q2),f

|Cf |
|Df | + μw

f

]

+ λIN logP
(
R = 1|l = l(D)

)

+ λPR logP
(
R = 1|PR = PR(D)

)
. (3.34)
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The model provides a mechanism for weighting fields (αf ), single term matches
(λTD

), ordered phrases (λOD
), unordered phrases (λUD

), inlink prior (λIN), and
PageRank prior (λPR). Thus, the model encompasses many of the features that have
been shown to be effective for navigational Web search.

There are many alternative ways that this model may have been constructed. For
example, rather than mixing the field language models within the NP weighting
functions, each field language model could be its own feature weight. This would
promote the αf hyperparameters to full-fledged MRF model parameters, which
would allow them to be estimated using the machinery described in Chap. 6. Al-
though we do not attempt to empirically analyze the differences in the formulations,
we believe that there would be little, if any, difference in the effectiveness of the two
models.

7.4 Results

We now empirically evaluate the retrieval effectiveness of the MRF-NP model. For
the experiments, we use the TREC 2005 and 2006 Terabyte Track named page find-
ing queries. These queries are evaluated against the GOV2 collection. Please refer
to Appendix A for further information on this data set.

In the experiments, we consider four fields in the mixture models. These fields are
body (full text of the Web page), title (text within HTML elements) heading
(text within h1, h2, h3, and h4 elements), and anchor (all of the anchor text
that points to a page). The collection was stemmed using the Porter stemmer and
a standard list of 418 stopwords was applied. The MRF model parameters were
estimated by maximizing mean reciprocal rank. No more than 1000 results were
returned for each query.

Little research has been done on term dependence and non-bag of words mod-
els for named page finding. Hence, for experimental purposes, we use the mixture
of language models approach as the baseline. In order to ensure fairness, the LM-
Mixture model uses the same fields, mixing parameters (αf ), and smoothing pa-
rameters (μt

f ) as the MRF-NP model. In addition, we also use the inlink count and
PageRank document priors with the LM-Mixture model. The two priors are com-
bined into a single prior as described in Kraaij et al. (2002).

The results of the experiments are given in Table 3.21. We report results for mean
reciprocal rank (MRR), success at rank 10 (S@10), and not found. See Appendix B
for definitions of these metrics.

Table 3.21 Summary of named page finding results

LM-Mixture MRF-NP

MRR S@10 Not Found MRR S@10 Not Found

TREC 2005 0.414 0.563 0.175 0.441 0.583 0.171

TREC 2006 0.472 0.657 0.133 0.512 0.696 0.138
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Table 3.22 Results
comparing the mean
reciprocal rank of the
LM-Mixture and MRF-NP
models with and without
document priors

LM-Mixture MRF-NP

No Prior Prior No Prior Prior

0.463 0.472 0.498 0.512

The results show that the MRF-NP model outperforms the baseline language
modeling mixture model in terms of MRR on both data sets. There is 6.5% im-
provement on the 2005 queries and a 8.5% improvement on the 2006 queries.
Both of these results are statistically significant. Furthermore, the S@10 metric
is improved on both data sets, as well, indicating that the MRF-NP model pulls
relevant documents into the top 10. The last metric, not found, does not change
significantly for the two models, which indicates that they are both relatively
stable in terms of completely failing to find any relevant documents. Although
these numbers are relatively good, there is still considerable room for improve-
ment.

One thing that these results do not reveal, however, is how much of the increase
in effectiveness comes from the term proximity features and how much comes from
the document priors. In Table 3.22, we report the results of an ablation test that at-
tempts to quantify the importance of each type of feature. The results show that doc-
ument priors improve effectiveness 1.9% on for the LM-Mixture model and 2.8%
for the MRF-NP model. This indicates that the MRF model does a better job at
combining the evidence from the document priors than the LM-Mixture model. As
for the term proximity features, there is an improvement of 7.6% when no priors are
used, and an improvement of 8.5% when priors are used. These results show that
the term proximity features account for most of the improvement in effectiveness
and that, when used in conjunction with the document priors, there is a small addi-
tive effect. Therefore, despite what Google would like you to think about PageRank
being the heart of their ranking function4, it appears as though, in reality, PageRank
is far less important than fundamental information retrieval features, such as term
proximity.

As with the previous analysis, we are interested in developing a better under-
standing of the types of queries the MRF-based model excels at, and those it fails at.
Table 3.23 lists the 10 most helped and 10 most hurt queries from the 2006 data set.
These examples do not show any clear trends as to which types of queries are likely
to be helped or hurt by the model. In the future, it may be valuable to do an analysis
to determine if the most helped queries can be automatically detected using more
sophisticated techniques, such as the so-called notion of concept density (Diaz and
Metzler 2006).

Finally, we examine the robustness of the MRF-NP method. The results are given
in Fig. 3.13. These results are similar to the ad hoc retrieval results, with many
queries experiencing a large increase in reciprocal rank, and a small number expe-

4http://www.google.com/technology/.

http://www.google.com/technology/
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Table 3.23 The 10 most improved and 10 most hurt queries on the TREC 2006 Terabyte Track
named page finding data set. Effectiveness is measured in terms of reciprocal rank

Topic Query LM-Mixture MRF-NP % Change

980 medline search 0.00 0.00 −100.0%

962 us iraq rebuilding accomplishments 0.01 <0.00 −80.0%

1038 USPTO Guide and manuals 0.33 0.09 −72.7%

922 marine mammal gray whale 0.33 0.11 −66.6%

906 kickstart deviceprobe 0.33 0.17 −50.00%

943 american folklife center homepage 1.00 0.50 −50.0%

1033 Coastal & Marine Geology InfoBank 0.06 0.04 −33.3%

916 Texas Department of Banking, Agency
Philosophy

0.02 0.01 −31.5%

1005 bay trail map 0.20 0.14 −28.6%

1006 olympic games salt lake city new jobs 0.01 0.01 −26.6%

· · ·
1041 CDC homepage <0.00 0.01 204.2%

936 patent DRAM cell constructions 0.14 0.50 250.0%

939 Sun Earth student section 0.14 0.50 250.0%

951 us embassy vienna 0.14 0.50 250.0%

984 informal personal caregiver employment 0.13 0.50 300.0%

1030 Space Shuttle Mission #75 0.03 0.14 442.9%

912 Tips for Mobile Homes Residents in
Wisconsin

0.03 0.25 650.0%

903 reasons to reduce waste 0.13 1.00 700.0%

1008 land use bill december 2003 0.02 0.17 816.7%

1027 1997 Surface Flows to Nevada from
Canadian Province of Origin, by Truck

0.10 1.00 900.0%

Fig. 3.13 Robustness of the MRF-NP models for the 2005 and 2006 Terabyte Track named page
finding data sets. The LM-Mixture model is used as the baseline by which the improvements were
computed. The evaluation metric used is reciprocal rank
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riencing less significant decreases. The reason why there is a large peak in the [0%,
25%] bin is because the effectiveness of a large number of queries do not change
at all. The large peak around [50%, 75%] is likely the result of how the recipro-
cal rank is computed. If a relevant document moves up in the ranked list by a very
small number of positions, then, depending on where in the ranked list it original
appeared, the increase in reciprocal rank is likely to fall into this range.



Chapter 4
Feature-Based Query Expansion

1 Overview

Users of information retrieval systems are required to express complex information
needs in terms of Boolean expressions, a short list of keywords, a sentence, a ques-
tion, or possibly a longer narrative. A great deal of information is lost during the
process of translating from the information need to the actual query. For this reason,
there has been a strong interest in query expansion techniques. Such techniques are
used to augment the original query to produce a representation that better reflects
the underlying information need.

Query expansion techniques have been well studied for various models in the
past and have shown to significantly improve effectiveness in both the relevance
feedback and pseudo-relevance feedback setting (Lavrenko and Croft 2001; Rocchio
1971; Xu and Croft 2000; Zhai and Lafferty 2001a).

Until now, the MRF-based models have been solely used for ranking documents
in response to a given query. In this chapter, we show how these models can be
extended and used for query expansion using a technique that we call latent concept
expansion (LCE). The approach has three primary benefits.

First, LCE provides a mechanism for combining term dependence with query
expansion. Previous query expansion techniques are based on bag of words models.
Therefore, by performing query expansion using the MRF model, we are able to
study the dynamics between term dependence and query expansion.

Next, query expansion techniques in the past have implicitly only made use of
term occurrence features. By using more powerful feature sets, such as those we
have described earlier, it is possible to produce better expansion terms that discrim-
inate between relevant and non-relevant documents better.

Finally, the approach described here seamlessly provides a mechanism for gen-
erating both single and multi-term concepts. Most previous techniques, by default,
generate terms independently. There have been several approaches that make use of
generalized concepts, however such approaches were somewhat heuristic and done
outside of the model (Papka and Allan 1997; Xu and Croft 2000). The approach is
both formally motivated and a natural extension of the underlying model.
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Before describing the details of LCE and formally evaluating it, we review related
work in the area of query expansion.

2 Related Work

One of the classic and most widely used approaches to query expansion is the Roc-
chio algorithm (Rocchio 1971). Rocchio’s approach, which was developed within
the vector space model, re-weights the original query vector by moving the weights
toward the set of relevant or pseudo-relevant documents and away from the non-
relevant documents. Unfortunately, it is not possible to formally apply Rocchio’s
approach to a statistical retrieval model, such as language modeling for information
retrieval.

A number of formalized query expansion techniques have been developed for
the language modeling framework, including Zhai and Lafferty’s model-based
feedback and Lavrenko and Croft’s relevance models (Lavrenko and Croft 2001;
Zhai and Lafferty 2001a). Both approaches attempt to use pseudo-relevant or rele-
vant documents to estimate a better query model.

Model-based feedback finds the model that best describes the relevant documents
while taking a background (noise) model into consideration. This separates the con-
tent model from the background model. The content model is then interpolated with
the original query model to form the expanded query.

The other technique, relevance models, is more closely related to the approach
described here. Therefore, we go into the details of the model. Much like model-
based feedback, relevance models estimate an improved query model. The only dif-
ference between the two approaches is that relevance models do not explicitly model
the relevant or pseudo-relevant documents. Instead, they model a more generalized
notion of relevance, as we now show.

Given a query Q, a relevance model is a multinomial distribution over the vocab-
ulary, P(·|Q), that encodes the likelihood of each term given the query as evidence.
It is computed as

P(w|Q) =
∫

D

P (w|D)P (D|Q)

≈
∑

D∈RQ
P (w|D)P (Q|D)P (D)

∑
w

∑
D∈RQ

P (w|D)P (Q|D)P (D)
, (4.1)

where RQ is the set of documents that are relevant or pseudo-relevant to query Q.
In the pseudo-relevant case, these are the top ranked documents for query Q. Fur-
thermore, it is assumed that P(D) is uniform over this set. These mild assumptions
make computing the Bayesian posterior more practical.

After the model is estimated, documents are ranked by clipping the relevance
model by choosing the k most likely terms from P(·|Q). This clipped distribution is
then interpolated with the original, maximum likelihood query model (Metzler et al.
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2004b). This can be thought of as expanding the original query by k weighted terms.
Throughout the remainder of this work, we refer to this instantiation of relevance
models as RM3.

There has been relatively little work done in the area of query expansion in the
context of dependence models (Harper and van Rijsbergen 1978). However, there
have been several attempts to expand using multi-term concepts. Xu and Croft’s lo-
cal context analysis (LCA) method combined passage-level retrieval with concept
expansion, where concepts were single terms and phrases (Xu and Croft 2000). Ex-
pansion concepts were chosen and weighted using a metric based on co-occurrence
statistics. However, it is not clear based on the analysis done how much the phrases
helped over the single terms alone.

Papka and Allan investigate using relevance feedback to perform multi-term con-
cept expansion for document routing (Papka and Allan 1997). The concepts used in
their work are more general than those used in LCA, and include Indri query lan-
guage structures, such as #UW50(white house), which corresponds to the concept
“the terms white and house occur, in any order, within 50 terms of each other”.
Results showed that combining single term and large window multi-term concepts
significantly improved effectiveness. However, it is unclear whether the same ap-
proach is also effective for ad hoc retrieval, due to the differences in the tasks.

3 Basic Latent Concept Expansion

We now describe how the MRF framework can be used to generate single and multi-
term concepts that are topically related to some original query. As we will show, the
concepts generated using the technique can be used for query expansion or other
tasks, such as suggesting alternative query formulations.

We assume that when a user formulates their original query, they have some set
of concepts in mind, but are only able to express a small number of them in the form
of a query. We treat the concepts that the user has in mind, but did not explicitly
express in the query, as latent concepts. These latent concepts can consist of a single
term, multiple terms, or some combination of the two. It is our goal to recover these
latent concepts given some original query.

This can be accomplished within the framework by first expanding the original
MRF graph G to include the type of concept we are interested in generating. We call
this expanded graph H . In Fig. 4.1, the middle graph provides an example of how to
construct an expanded graph that can generate single term concepts. Similarly, the
graph on the bottom illustrates an expanded graph that generates two term concepts.
Although these two examples make use of the sequential dependence model (i.e.,
dependencies between adjacent query terms), it is important to note that both the
original query and the expansion concepts can use any dependence structure.

After H is constructed, we compute PH,Λ(E|Q), a probability distribution over
latent concepts, according to

PH,Λ(E|Q) =
∑

D∈R PH,Λ(Q,E,D)∑
D∈R

∑
E PH,Λ(Q,E,D)

, (4.2)
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Fig. 4.1 Graphical model
representations of relevance
modeling (top), latent concept
expansion using single term
concepts (middle), and latent
concept expansion using two
term concepts (bottom) for a
three term query

where R is the universe of all possible documents and E is some latent concept
that may consist of one or more terms. Since it is not practical to compute this
summation, we must approximate it. We notice that PH,Λ(Q,E,D) is likely to be
peaked around those documents D that are highly ranked according to query Q.
Therefore, we approximate PH,Λ(E|Q) by only summing over a small subset of
relevant or pseudo-relevant documents for query Q. This is computed as follows:

PH,Λ(E|Q) ≈
∑

D∈RQ
PH,Λ(Q,E,D)

∑
D∈RQ

∑
E PH,Λ(Q,E,D)

, (4.3)

where RQ is a set of relevant or pseudo-relevant documents for query Q and all
clique sets are constructed using H .

As an example, suppose that we were to perform LCE on a MRF-SD model and
expand by single term concepts. Then, the graph H would be like the middle one in
Fig. 4.1. Under this setting, expansion concepts would be generated in the following
way:

P(e|Q) ∝
∑

D∈RQ

exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt
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+ λOD

∑

(q1,q2,D)∈OQD

log
tf#1(q1q2),D + μw cf#1(q1q2)

|C|
|D| + μw

+ λUD

∑

(q1,q2,D)∈UQD

log
tf#uw8(q1q2),D + μw cf#uw8(q1q2)

|C|
|D| + μw

+ λ′
TD

log
tfe,D + μt cfqi|C|

|D| + μt

+ λ′
TQ

log
|C|
cfe

]
. (4.4)

As we see, the likelihood contribution for each document in RQ is a combi-
nation of the original query’s score for the document (first 3 components, refer
to Eq. 3.22), concept E’s score for the document (fourth component), and E’s
document-independent score (fifth component). Therefore, this equation can be in-
terpreted as measuring how well Q and E account for the top ranked documents
and the “goodness” of E, independent of the documents. For maximum flexibility,
we introduce a new set of parameters for the expansion concept (i.e., λ′

TD
and λ′

TQ
),

which allows us to weight the expansion features differently than those in the origi-
nal query.

For the sake of completeness, we show a more complex example, where the
original query uses the MRF-FD model and the expansion concept, which consists
of two terms, uses the MRF-SD model. Under this model, concept probabilities are
computed according to

P(e1, e2|Q) ∝
∑

D∈RQ

exp

[
λTD

∑

(qi ,D)∈TQD

log
tfqi ,D + μt cfqi|C|

|D| + μt

+ λOD

∑

(q1,...,qk,D)∈OQD

log
tf#1({qi }),D + μw cf#1({qi })|C|

|D| + μw

+ λUD

∑

(q1,...,qk,D)∈UQD

log
tf#uw8({qi }),D + μw

cf#uw8({qi })|C|
|D| + μw

+ λ′
TD

2∑

i=1

log
tfei ,D + μt cfei|C|

|D| + μt

+ λ′
OD

log
tf#1(e1e2),D + μw cf#1(e1e2)

|C|
|D| + μw



84 4 Feature-Based Query Expansion

+ λ′
UD

log
tf#uw8(e1e2),D + μw cf#uw8(e1e2)

|C|
|D| + μw

+ λ′
TQ

2∑

i=1

log
|C|
cfei

+ λ′
OQ

log
|C|

cf#1(e1e2)

+ λ′
UQ

log
|C|

cf#uw8(e1e2)

]
, (4.5)

where the first three components compute the MRF-FD score of the original query,
the next three components compute the MRF-SD score of the expansion concept,
and the last three components compute an IDF-based “goodness” score of the con-
cept.

3.1 Query Expansion

To use this framework for query expansion, we first choose an expansion graph H

that encodes the latent concept structure we are interested in expanding the query
using. We then select the k latent concepts with the highest likelihood given by
Eq. 4.3. A new graph G′ is constructed by augmenting the original graph G with
the k expansion concepts e1, . . . , ek . Finally, documents are ranked according to
PG′,Λ(D|Q,e1, . . . , ek).

3.2 Comparison to Relevance Models

Inspecting Eqs. 4.1 and 4.3 reveals the close connection that exists between LCE
and relevance models. Both models essentially compute the likelihood of a term (or
concept) in the same manner. It is easy to see that just as the MRF model can be
viewed as a generalization of language modeling, so too can LCE be viewed as a
generalization of relevance models. In fact, by setting λTD

= λ′
TD

= 1 and all other
parameters to 0 in Eq. 4.4, we derive the relevance model formula.

There are important differences between MRFs/LCE and unigram language mod-
els/relevance models. See Fig. 4.1 for graphical model representations of both mod-
els. Unigram language models and relevance models are based on the multinomial
distribution. This distributional assumption locks the model into the bag of words
representation and the implicit use of term occurrence features. However, the distri-
bution underlying the MRF model allows us to move beyond both of these assump-
tions, by modeling both dependencies between query terms and allowing arbitrary
features to be explicitly used.

Moving beyond the simplistic bag of words assumption in this way results in a
general, robust model and, as we show in the next section, translates into significant
improvements in retrieval effectiveness.
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Fig. 4.2 Graphical model
representation of generalized
latent concept expansion for a
three term query

4 Generalized Latent Concept Expansion

The basic version of LCE assumes that query terms and latent concepts are condi-
tionally independent given a document. It is likely that this independence assump-
tion can degrade retrieval effectiveness, because it is important to expand the query
with concepts that are actually related to the original query terms. Therefore, we
extend the model structure of LCE, by adding edges between each query term node
and the latent concept node. We refer to this generalized model as generalized LCE,
or LCE-GE. The graphical model representation of the model is shown in Fig. 4.2.
With the newly added edges, LCE-GE can explicitly model the dependencies be-
tween query terms and latent concepts.

Following the original LCE approach, we parameterize the MRF model based on
clique sets to provide more flexibility in encoding useful features over cliques in the
graph while keeping the number of features and parameters reasonable. Cliques in
the same clique set can share feature functions and parameters, which significantly
reduce the parameter space. Meanwhile, we can tune the parameters on the level of
clique sets, which is more effective and efficient than tuning on the level of cliques
for information retrieval. We expand upon the clique sets used by LCE and ulti-
mately make use of seven clique sets. The clique sets used by generalized LCE are
summarized in Table 4.1.

The first three clique sets consist of cliques containing query term nodes (or the
latent concept node) and the document node. Features over these cliques encode
how well the terms in the clique describe the document. The next three clique sets,
which are novel for LCE-GE and cannot be captured by the “basic” LCE, consist
of cliques containing query term nodes, the latent concept node, and the document
node. Features over these cliques encode the co-occurrence relationship between
query terms and latent concepts in the relevant or pseudo-relevant documents. Fi-
nally, there is the clique only contains the document node. Features over this node
can be used as a type of document prior, encoding document-centric properties.

After tying the parameters based on the clique sets, the joint distribution is de-
fined as

P(Q,E,D) = 1

Z
exp

{
λTD

∑

c∈TD

fTD
(c) + λOD

∑

c∈OD

fOD
(c)

+ λUD

∑

c∈UD

fUD
(c) + λTQE

∑

c∈TQE

fTQE
(c)
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+ λOQE

∑

c∈OQE

fOQE
(c) + λUQE

∑

c∈UQE

fUQE
(c)

+ λDfD(D)

}
. (4.6)

4.1 Features

To utilize the model, we must define the feature functions f (c). The correct choice
of features depends largely on the retrieval task and the evaluation metric. It is un-
likely there is a single, universally applicable set of features. Since the goal here is
not to find optimal features, we use a simple, fixed set of features that have shown
to be effective in previous work (Metzler and Croft 2005, 2007). Table 4.2 lists the
features used with the generalized LCE model. These features attempt to capture
various types of term occurrence and term proximity information.

4.2 Comparison with Previous Models

It is important to note that relevance-based language models, LCE, and gener-
alized version of LCE are all closely connected. The core difference between
the approaches, as is clearly illustrated by Fig. 4.2, is how the joint distribution
P(Q,D,E) is defined. Relevance models make the most assumptions (directed

Table 4.1 Summary of
generalized LCE clique sets Name Description

TD set of cliques containing the document node and exactly
one query term node or the latent concept node

OD set of cliques containing the document node and two or
more query term nodes that appear in sequential order
within the query

UD set of cliques containing the document node and two or
more query term nodes that appear in any order within
the query

TQE set of cliques containing the document node, the latent
concept node, and exactly one query term node

OQE set of cliques containing the document node, the latent
concept node, and two or more query term nodes that
appear in sequential order within the query

UQE set of cliques containing the document node, the latent
concept node, and two or more query term nodes that
appear in any order within the query

D set of cliques containing only the document node
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Table 4.2 Feature functions used for generalized latent concept expansion. Here, q is a query
term, b is a query bigram, tfw,D is the number of times term w occurs in document D, tf#1(b),D

denotes the number of times the exact phrase b occurs in document D, tf#uw(b),D is the number of
times the terms in b appear ordered or unordered within a window of 8 terms, and |D| is the length
of document D. The cf and |C| values are analogously defined on the collection level. Finally,
α and β are model hyperparameters that control smoothing for single term and phrase features,
respectively

Feature Value

fTD
(q,D) log[(1 − α)

tfq,D

|D| + α
cfq

|C| ]
fOD

(b,D) log[(1 − β)
tf#1(b),D

|D| + β
cf#1(b)

|C| ]
fUD

(b,D) log[(1 − β)
tf#uw(b),D

|D| + β
cf#uw(b)

|C| ]
fTQE

(q,E,D) log[(1 − β)
tf#uw(q,E),D

|D| + β
cf#uw(q,E)

|C| ]
fOQE

(b,E,D) log[(1 − β)
tf#uw(b,E),D

|D| + β
cf#uw(b,E)

|C| ]
fUQE

(b,E,D) log[(1 − β)
tf#uw(b,E),D

|D| + β
cf#uw(b,E)

|C| ]
fD 0

model, conditional independence between qi and e), while generalized LCE makes
the fewest (undirected model, no conditional independence between qi and e).

Although LCE-GE approach can incorporate all of the dependencies essential for
the query expansion task, its model structure may not be the most appropriate for
the following reasons.

High Computational Complexity In LCE-GE, the latent concept now explicitly
depends on the user query. Since a latent concept could be any term in the document
collection with some probability, there are large amount of pairs of query terms
and latent concepts that must be evaluated. Moreover, evaluating term proximity
features can be time consuming for most retrieval systems compared to evaluating
term occurrence features, especially when the retrieval system uses standard posi-
tional inverted indices. As a result, it may be practically infeasible to implement the
LCE-GE approach in a large-scale retrieval system. We will provide a more formal
analysis of the time complexity of LCE-GE in Sect. 5.4.

Data Sparseness Data sparseness refers to the fact that most query terms only
have a few number of occurrences distributed in a relatively long document and
hence a very sparse query term-latent concept relationship matrix is generated. This
problem is also compounded by the fact that term proximity feature functions are
often more sparse than term occurrence feature functions, since term co-occurrences
must be within a window size (e.g., 8 terms in LCE-GE).

In the next section, we will introduce a different, implicit way of modeling de-
pendencies between query terms and expansion concepts that can be computed more
efficiently than LCE-GE while maintaining strong retrieval effectiveness.
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5 LCE Using Hierarchical MRFs

In this section, we describe the Hierarchical Markov random field model, which can
be used in conjunction with LCE to construct a highly effective query expansion
approach.

5.1 Data Representation

For the query expansion task, it is important to use a representation that makes full
use of the document as evidence. Most previous approaches use unstructured bag of
words document representations, and therefore can only explore co-occurrence fea-
tures at the document level. This type of representation is too coarse for our needs,
especially for long documents which are more susceptible to topic drift (Macdonald
and Ounis 2007).

Instead, we need a representation that allows us to explore co-occurrence at dif-
ferent spatial scales within the document, such as sentence, paragraph, or passage-
level scales. Therefore, we represent documents using a tree structure. Each node in
the tree represents a content region within the document, with the root node repre-
senting the whole document. Each node is the aggregation of all its children nodes.
All leaf nodes are basic content units and form a flat segmentation of the document.

We are interested in partitioning documents into topical segments. Some learn-
ing methods have recently been proposed to automatically infer document structure
from unstructured documents (Blei et al. 2003b; Ji and Zha 2003). However, such
methods may be difficult to implement, computationally expensive, or simply in-
appropriate for the given task. Therefore, to approximate the effect of representing
a document as a tree structure, we represent a document as a two-layer tree. The
first layer contains a single root node representing the entire document, and the
second layer contains nodes that partition the document into fixed length segments
(passages). Thus, segments within the document are the basic content units now,
instead of the entire document. In principle though, there is nothing preventing the
model described in this section from extending beyond two layers or segmenting
documents in some other way.

Although the introduced two-layer tree can describe multiple scale information
of a document, it is inappropriate to use it as a basic data unit to explore co-
occurrence for query expansion. Since every document can have a different num-
ber of segments, the structure of the two-layer tree is document specific and thus
changes for every document. If the entire two-layer tree is used as a basic data unit
to explore co-occurrence, models with different structures are needed for different
documents, which would easily lead to overparameterization.

In this work, we are interested in triplets of nodes {Sj−1, Sj ,D} from the two-
layer tree. Nodes Sj−1 and Sj are associated with neighboring sibling nodes in the
second layer of the document tree (i.e., they are adjacent segments), while node D

is the root node of the tree (i.e., the entire document). Here, we use the positional
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Fig. 4.3 Illustration of LCE-HMRF structure for a three term query. Circles represent a triplet of
nodes extracted from the document tree. Layer 1 has a single node that is associated with the root
node at the first layer of the document tree and represents the whole document. Layer 2 contains
two nodes that are associated with neighboring sibling nodes at the second layer of the document
tree and represent basic content units (i.e. segments) within the document. Squares represent query
terms and a latent concept, which are under the same independence assumption adopted by LCE.
That is, neighboring query terms are linked, and both query terms and the latent concept are linked
to all the nodes of the triplet. Note that there is no link between query terms and the latent concept

information to sequentialize the nodes on the tree from left to right. The triplets
extracted from a single document form a set and cover all the nodes of the docu-
ment tree, but are not a partition, since some nodes appear in multiple triplets. The
remainder of this section describes how MRFs can be used to model a joint distri-
bution over a query, a latent concept, and this triplet, and how the distribution can
ultimately be used for query expansion.

5.2 Model Description

Given the hierarchical data representation and the triplets extracted from the docu-
ment tree, a Hierarchical Markov random field (HMRF) model can easily be con-
structed and used to generate latent concepts. When HMRFs are used in this way
(i.e., within the LCE framework to generate latent concepts), we refer to the re-
sulting approach as LCE-HMRF. Figure 4.3 provides a high level illustration of the
LCE-HMRF model structure. We assume there are dependencies between nodes
that are associated with parent and child nodes in the document tree. Meanwhile,
we assume a dependency exists between nodes that are associated with neighboring
sibling nodes at the same layer of the document tree. Query terms and the latent
concept are under the same independence assumptions adopted by LCE, that is,
neighboring query terms are linked, and both query terms and the latent concept are
linked to all the nodes of the triplet. Note that there are no edges between query
terms and the latent concept as in LCE-GE.

We parameterize LCE-HMRF based on clique sets in the same way as LCE-GE.
Unlike LCE-GE, LCE-HMRF can exploit different levels of contextual information
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Table 4.3 Two additional
clique sets used with
LCE-HMRF

Name Description

TSQ set of cliques containing exactly one query term node,
the root node at the first layer of the document tree,
and two neighboring nodes at the second layer of the
document tree.

TSE set of cliques containing the latent concept node, the
root node at the first layer of the document tree, and
two neighboring nodes at the second layer of the
document tree.

in a document. We describe two novel clique sets, which provide a mechanism to
exploit a document’s fine-grained evidence. Features over these cliques encode how
well the terms in the clique describe a basic content unit (i.e. a segment) within the
document. The two new clique sets are described in Table 4.3. Meanwhile, LCE-
HMRF can also exploit a document’s coarse-grained evidence, like LCE-GE. That
is, the clique sets TD , OD , UD , D that are used for LCE-GE are also used here,
where the original document node on the LCE-GE graph is replaced by the root
node at the first layer of the document tree. Putting everything together, the joint
distribution of LCE-HMRF can be written as

P(Q,E,Sj−1, Sj ,D)

= 1

Z
exp

{
λTD

∑

c∈TD

fTD
(c) + λOD

∑

c∈OD

fOD
(c) + λUD

∑

c∈UD

fUD
(c)

︸ ︷︷ ︸
FD(Q)+FD(E)—document level score

+ λTSQ

∑

c∈TSQ

fTSQ
(c) + λTSE

∑

c∈TSE

fTSE
(c)

︸ ︷︷ ︸
FS(Q)+FS(E)—segment level score

+λDfD(D)

}
, (4.7)

where FD and FS are convenience functions defined by coarse-grained evidence
oriented (at the document level) and fine-grained evidence oriented (at the segment
level) components of the joint distribution, respectively. Furthermore, FD(Q) and
FS(Q) are document and query dependent, while FD(E) and FS(E) are document
and latent concept dependent. These will be used to simplify and clarify expressions
derived throughout the remainder of this section.

Table 4.4 shows how fTSQ
and fTSE

are defined. The feature function fTSQ
es-

timates the relevance of a basic content unit (i.e., a segment) within the document
to the query. It is based on three hypotheses: (1) if a document is relevant to the
query, then a segment within the document is more likely to be relevant, (2) if a
segment’s neighboring segments are relevant to the query, then the segment itself
is more likely to be relevant, and (3) the more query term occurrences a segment
has, more likely the segment is likely to be relevant to the query. This is similar to
the smoothing used by Murdock and Croft for sentence retrieval, which was shown
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Table 4.4 Document structure feature functions used with LCE-HMRF. Here, D∗ =
(Sj−1, Sj ,D), and δ, ζ , δ̃, and ζ̃ are model hyperparameters that control smoothing for query
term and latent concept features, respectively

Feature Value

fTSQ
(q,D∗) log[(1 − δ − ζ )

tfq,Sj

|Sj | + δ
tfq,Sj−1
|Sj−1| + ζ

tfq,D

|D| ]

fTSE
(e,D∗) log[(1 − δ̃ − ζ̃ )

tfe,Sj

|Sj | + δ̃
tfe,Sj−1
|Sj−1| + ζ̃

tfe,D

|D| ]

to be highly effective (Murdock and Croft 2005). Additionally, the feature function
fTSE

measures how relevant the latent concept is with respect to the segment in a
similar manner.

5.3 Discussion

Both LCE-GE and LCE-HMRF attempt to relax the independence assumption be-
tween query terms and latent concepts. LCE-GE explicitly incorporates the depen-
dencies by linking query term nodes and the latent concept node on the graph. LCE-
HMRF instead implicitly models these same dependencies via the segment nodes.
In this way, the model can identify, and reward, expansion concepts that co-occur
with one or more query terms within one or more segments. Modeling such co-
occurrences on a per-segment basis, rather than at the document level provides an
implicit means for modeling dependencies between query terms and expansion con-
cepts.

By implicitly modeling the dependencies, the latent concept in LCE-HMRF now
depends on the hierarchical structure within documents rather than the user query
as in LCE-GE. As a result, LCE-HMRF does not have to evaluate expensive fea-
tures defined over pairs of query terms and latent concepts like LCE-GE. In this
way, LCE-HMRF can address LCE-GE’s high computational complexity and data
sparseness problems.

To illustrate how LCE-HMRF weights expansion concepts, we show the general
form of the LCE conditional probabilities, which take on the following form:

P(E|Q) ≈
∑

Sj−1,Sj ,D P (Q,E,Sj−1, Sj ,D)
∑

E

∑
Sj−1,Sj ,D P (Q,E,Sj−1, Sj ,D)

∝
∑

Sj−1,Sj ,D

exp
{
FD(Q) + FD(E) + FS(Q) + FS(E)

}
, (4.8)

where {Sj−1, Sj ,D} is the set of triplets extracted from the set of relevant or pseudo-
relevant documents RQ for query Q. As we see, the contribution for each triplet is
a combination of scores at the document level and scores at the segment level. The
document level score reflects how relevant the original query is to the document,
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as well as how relevant the expansion concept is. The same is true for the segment
level score. As a consequence, an expansion concept that dominates segments of
the document that are highly relevant to the original query will be assigned a high
likelihood.

Based on the above analysis, the problem of assigning a score to a latent concept
can be casted as two separate sub-problems, i.e. assigning relevance scores to basic
content units (i.e. segments) within a document, and measuring how well a latent
concept account for the basic content units. Since segments from different parts of
a document can have very diverse semantics, the first sub-problem is non-trivial.

The bag of words models, together with LCE, explore co-occurrence at the doc-
ument level only. Therefore, all segments within a document are assigned the same
relevance score to the query. In this way, each term occurrence within the document
equally contributes to the final score of the latent concept. Therefore, bad latent con-
cepts that frequently occur in the irrelevant part of the document would be assigned
high scores. Unlike these models, HMRFs can exploit a document’s fine-grained
evidence. Each segment is assigned different relevance score, totally based on its
relevance to the query. Therefore, a term occurrence within the relevant segment
contributes more to the final score of the latent concept.

We note that if we drop the dependence between adjacent segments from LCE-
HMRF (i.e., we only consider a single segment Sj as evidence at a time), the model
degrades into segment-based LCE, which we refer to as LCE-SB. With LCE-SB,
documents are split into segments first, and then LCE is applied to segments for
query expansion, treating each segment as a “document”. This is akin to the passage-
based query expansion performed by LCA (Xu and Croft 2000). While LCE-SB
can exploit fine-grained document information, it cannot utilize valuable contextual
information (e.g., information from sibling nodes). Thus, LCE-HMRF provides a
generalization of passage-based query expansion approaches.

Moreover, when exploring co-occurrence at the segment level, there exists insuf-
ficient co-occurrence domain to accurately estimate a segment’s topic distribution
(e.g. the relevance score of the segment). Unlike LCE-SB, HMRFs consider triple-
wise interactions, i.e. dependencies between neighboring sibling nodes and long
distance dependencies between parent and child nodes. The triple-wise interactions
provide a mechanism to utilize a document’s structure information to smooth the
segments.

5.4 Time Complexity

In this section, we compare the time complexity of LCE-GE and LCE-HMRF. The
efficiency of LCE-GE’s joint distribution computation in Eq. 4.6 is dominated by
the clique sets dependent on the query, since clique sets that do not depend on the
query can be precomputed at index-time. Among all the seven clique sets used for
LCE-GE, the clique set UQE is the most time-consuming one. For a query Q with
|Q| query terms, UQE has |Q| − 1 cliques (b,E,D) within it, where b is a query
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bigram. Given a fixed Q, the random variable E has |V | (i.e., the size of the vo-
cabulary) possible outcomes in total, and the random variable D has |RQ| (i.e.,
the number of feedback documents) possible outcomes. Thus, the feature function
fUQE

(b,E,D) needs to be computed (|Q| − 1)×|V |×|RQ| times. Supposing the
index contains term position information and a term occurs tfavg times within a
document on average, then fUQE

(b,E,D) must be computed O(tf 3
avg) times. As

a result, the total complexity is O(|Q|·|V |·|RQ|·tf 3
avg), where |V |, the vocabulary

size, is often very large. Thus, LCE-GE suffers from high computational complexity
problem.

Similarly, the efficiency of LCE-HMRF’s joint distribution computation with
Eq. 4.7 is dominated by the computation of fUD

(b,D) and fTSQ
(q,Sj−1, Sj ,D).

We see that neither of these feature functions depends on the latent concept node
E, and thus they do not need to be computed once for every term in the vo-
cabulary. Hence, the computational complexity of the model is significantly de-
creased compared to LCE-GE. The time complexity of computing fUD

(b,D) is
O(|Q|·|RQ|·tf 2

avg), while the time complexity of fTSQ
(q,Sj−1, Sj ,D) is

O(|Q|·|RQ|·tfavg·|S|avg) where |S|avg is the average number of segments per doc-
ument.

5.5 HMRFs for Ranking

The HMRF model provides a natural, formally motivated mechanism for modeling
term dependencies and document structure. Thus, we are interested in exploring how
effective the model is for ranking compared to the original MRF model (Metzler and
Croft 2005), independent of the query expansion task. As illustrated in Fig. 4.3, by
removing the latent concept node from the model structure, the HMRF model de-
fines a joint distribution over a query and a triplet of nodes in the document tree.
Hence, the conditional probability of a triplet given the query can easily be com-
puted and utilized for ranking. When HMRFs are used in this way (i.e., directly for
ranking document instead of expanding queries), we refer to the resulting approach
as Ranking-HMRF. In this work, we simply use the best match strategy to score a
document for ranking, as follows:

Score(Q,D) = max
{
P(Sj−1, Sj ,D|Q)

}

rank= max
{
P(Q,Sj−1, Sj ,D)

}
, (4.9)

where {Sj−1, Sj ,D} is the set of triplets extracted from document D, and
P(Q,Sj−1, Sj ,D) is the joint distribution of Ranking-HMRF.

We compare the effectiveness of Ranking-HMRF with the original MRF model
in Table 4.5. Both MRF and Ranking-HMRF employ the sequential dependency
assumption, which assumes that dependencies exist between adjacent query terms.
For efficiency reasons, we conduct the Ranking-HMRF approach by re-ranking the
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Table 4.5 Mean average precision for LM, MRF, and Ranking-HMRF. The superscripts α and β

indicate statistically significant improvements (p < 0.05 using Wilcoxon test) over LM and MRF,
respectively

LM MRF Ranking-HMRF

ROBUST04 0.2532 0.2653α 0.2684αβ

WT10g 0.1968 0.2074α 0.2144αβ

GOV2 0.2981 0.3244α 0.3332αβ

top 3000 results returned by the baseline approach (i.e., unigram language model
(Ponte and Croft 1998)).

As shown in the table, Ranking-HMRF consistently and significantly outper-
forms the MRF model across all the data sets. We attribute the additional perfor-
mance gain to the hierarchical document structure which is naturally captured by
Ranking-HMRF. Basically, the original MRF model can capture two kinds of fea-
tures, namely term occurrence and term proximity features. The former features
are loosely defined at the document level while the latter ones are strictly defined
within a limited window size (e.g., 8 terms). The document structure aware Ranking-
HMRF approach provides a way for exploring co-occurrence at different spatial
scales, and can define features at segment level which are less strict than the prox-
imity features and more focused than the term occurrence features.

6 Experimental Results

In order to better understand the strengths and weaknesses of the technique, we
evaluate it on a wide range of data sets. Appendix A provides a summary of the
TREC data sets considered. For each data set, we split the available topics into a
training and test set, where the training set is used solely for parameter estimation
and the test set is used for evaluation purposes.

In all cases, only the title portion of the TREC topics are used to construct
queries. We construct G using the sequential dependence assumption for all data
sets (Metzler and Croft 2005).

6.1 Ad Hoc Retrieval Results

We now investigate how well the model performs in practice in a pseudo-relevance
feedback setting. We compare the MRF-FI model, the MRF-SD model (without ex-
pansion), relevance models, and LCE to better understand how each model performs
across the various data sets.

For the MRF models, we train the model parameters (i.e., Λ) and model hyper-
parameters (i.e., μt , μw). For RM3 and LCE, we also train the number of pseudo-
relevant feedback documents used and the number of expansion terms.
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Table 4.6 Test set mean average precision for MRF-FI, MRF-SD, relevance models (RM3), and
latent concept expansion (LCE). The superscripts α, β , and γ indicate statistically significant im-
provements over MRF-FI, MRF-SD, and RM3, respectively

MRF-FI MRF-SD RM3 LCE

AP 0.2077 0.2147α 0.2518αβ 0.2692αβγ

WSJ 0.3258 0.3425α 0.3493α 0.3943αβγ

ROBUST04 0.2920 0.3096α 0.3382αβ 0.3601αβγ

WT10g 0.1861 0.2053α 0.1944α 0.2269αβγ

GOV2 0.3234 0.3520α 0.3656α 0.3924αβγ

6.1.1 Expansion with Single Term Concepts

We begin by evaluating how well the model performs when expanding using only
single terms. The expansion term likelihoods are computed according to Eq. 4.4.
The equation clearly shows how LCE differs from relevance models. As we stated
before, when we set λTD

= λ′
TD

= 1 and all other parameters to 0, we obtain the
exact formula that is used to compute term likelihoods in the relevance modeling
framework. Therefore, LCE adds two very important factors to the equation. First,
it adds the ordered and unordered window features that are applied to the original
query. Second, it applies an intuitive tf .idf -like form to the candidate expansion
term w. The idf factor, which is not present in relevance models, plays an important
role in expansion term selection.

The results, evaluated using mean average precision, are given in Table 4.6. As
we see, the MRF-SD model, relevance models, and LCE always significantly out-
perform the bag of words MRF-FI model. In addition, LCE shows significant im-
provements over relevance models across all data sets. The relative improvements
over relevance models is 6.9% for AP, 12.9% for WSJ, 6.5% for ROBUST04, 16.7%
for WT10G, and 7.3% for GOV2.

We also note the interesting result that the MRF-SD model is statistically equiva-
lent to relevance models on the two Web data sets. In fact, the MRF-SD model out-
performs relevance models on the WT10g data set. This reiterates the importance
of non-unigram, proximity-based features for content-based Web search observed
previously (Metzler and Croft 2005; Metzler et al. 2005b).

We also evaluate the methods according to precision at 10 in Table 4.7. Not
surprisingly, the precision at 10 improvements achieved using LCE were not as sig-
nificant as those observed when using mean average precision. It is well understood
that expansion is recall enhancing, rather than precision enhancing. The MRF model
significantly improves upon the unigram language model on every data set, but only
in a few cases do relevance models or LCE significantly improve upon the MRF
model.

It should also be noted that, despite the fact that the model has more free parame-
ters than relevance models, there is surprisingly little overfitting. Instead, it exhibits
good generalization properties.
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Table 4.7 Test set precision at 10 for MRF-FI, MRF-SD, relevance models (RM3), and latent con-
cept expansion (LCE). The superscripts α, β , and γ indicate statistically significant improvements
over MRF-FI, MRF-SD, and RM3, respectively

MRF-FI MRF-SD RM3 LCE

AP 0.3460 0.3340 0.3640β 0.3720β

WSJ 0.4860 0.5080 0.4980 0.5400αβγ

ROBUST04 0.4293 0.4566α 0.4576α 0.4798αγ

WT10g 0.3204 0.3245 0.3265 0.3633αβγ

GOV2 0.5180 0.5680α 0.6160α 0.6060α

Table 4.8 Test set mean average precision values for multi-term concept LCE experiments

One Term One + Two Term

AP 0.2692 0.2648

WSJ 0.3943 0.3945

ROBUST04 0.3601 0.3464

WT10G 0.2269 0.2187

GOV2 0.3924 0.3900

Table 4.9 One and two term expansion concepts for the query price fixing (ROBUST04 topic
622) and tax evasion indicted (ROBUST04 topic 650). Concepts are listed in descending order of
P (e|Q) and P (e1, e2|Q), respectively

Price fixing Tax evasion indicted

price fixed pricing evasion tax evasion

fixed price fixing tax income tax

market control indicted tax charges

report market price federal los angeles

vote united states charges san diego

6.1.2 Expansion with Multi-term Concepts

We also investigated expanding using both single and two word concepts. For each
query, we expanded using a set of single term concepts, as well as a set of two term
concepts. The sets were chosen independently. The results of the experiments are
shown in Table 4.8. As the results show, there is little or no improvement when
including two term concepts. In fact, the results are statistically indistinguishable
for all data sets.

This unexpected result may be due to the fact that strong correlations exist be-
tween the single term expansion concepts. We found that the two word concepts
chosen often consisted of two highly correlated terms that are also chosen as single
term concepts. For example, for the query price fixing, there was a great deal of
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redundancy. Table 4.9 shows the single and two term concepts that were selected
for expansion. We see “fixed pricing” and “price fixing”, “price”, and “fixed” all
occur in the list. While these are excellent expansion terms, the fact that they appear
so many times likely results in terms “price” and “fixing” being overemphasized.
Additionally, this query adds “control control” and “united states”, which are poor
expansion concepts. These two concepts are given high probability because of the
features used within the model. A similar analysis holds for the query tax evasion
indicted. Therefore, other feature sets may ultimately yield different results, espe-
cially if they reduce the correlation among the expansion concepts. While the IDF-
like feature may be appropriate for choosing single terms, it may be better to apply
some other type of feature to the ordered and unordered cliques within the graph.
A better understanding of phrases and named entities (e.g., San Diego, Los Angeles,
United States in Table 4.9), and their effect on query expansion is still needed.

Furthermore, due to the computational complexity involved in computing multi-
term expansion, we had to limit the number of multi-term expansion concepts that
we used. We were unable to perform a full sweep over all such values. However, we
made sure to focus on the most promising values, and, based on previous experi-
ence, it is unlikely that the results would have been significantly better than the one
term expansion concepts, but perhaps would have been slightly improved over their
current value.

Therefore, the experiments yield no conclusive results with regard to expansion
using multi-term concepts. Instead, the results introduce interesting open questions
and directions for future exploration.

6.2 Robustness

As we have shown, relevance models and latent concept expansion can significantly
improve retrieval effectiveness over the baseline MRF-FI model. In this section we
analyze the robustness of these two methods.

Figure 4.4 provides an analysis of the robustness of relevance modeling and la-
tent concept expansion for the AP, WSJ, ROBUST04, and WT10G data sets. The
analysis for GOV2 is similar. The histograms provide, for various ranges of rela-
tive decreases/increases in mean average precision, the number of queries that were
hurt/improved with respect to the MRF-FI baseline.

As the results show, LCE exhibits strong robustness for each data set. For AP,
relevance models improve 38 queries and hurt 11, whereas LCE improves 35 and
hurts 14. Although relevance models improve the effectiveness of 3 more queries
than LCE, the relative improvement exhibited by LCE is significantly larger. For
the ROBUST04 data set, relevance models improve 67 queries and hurt 32, and
LCE improves 77 and hurts 22. Finally, for the WT10G collection, relevance mod-
els improve 32 queries and hurt 16, and LCE improves 35 and hurts 14. As with AP,
the amount of improvement exhibited by the LCE versus relevance models is sig-
nificantly larger for both the ROBUST04 and WT10G data sets. In addition, when
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Fig. 4.4 Histograms that demonstrate and compare the robustness of relevance models (RM3) and
latent concept expansion (LCE) with respect to the MRF-FI model for the AP, WSJ, ROBUST04,
and WT10G data sets

LCE does hurt performance, it is less likely to hurt as much as relevance modeling,
which is a desirable property.

Overall, LCE improves effectiveness for 65%–80% of queries, depending on the
data set. When used in combination with a highly accurate query performance pre-
diction system, it may be possible to selectively expand queries and minimize the
loss associated with sub-baseline performance.

6.3 Multi-term Concept Generation

Although we found that expansion using multi-term concepts failed to produce con-
clusive improvements in effectiveness, there are other potential tasks that these con-
cepts may be useful for, such as query suggestion/reformulation, summarization,
and concept mining. For example, for a query suggestion task, the original query
can be used to generate a set of latent concepts which correspond to alternative
query formulations.

Although evaluating the model on these tasks is beyond the scope of this work,
we wish to show an illustrative example of the types of concepts generated using the
model. In Table 4.10, we present the most likely one, two, and three term concepts
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Table 4.10 Fifteen most likely one, two, and three word concepts constructed using the top 25
documents retrieved for the query hubble telescope achievements on the ROBUST04 collection

1 word concepts 2 word concepts 3 word concepts

telescope hubble telescope hubble space telescope

hubble space telescope hubble telescope space

space hubble space space telescope hubble

mirror telescope mirror space telescope NASA

NASA telescope hubble hubble telescope astronomy

launch mirror telescope NASA hubble space

astronomy telescope NASA space telescope mirror

shuttle telescope space telescope space NASA

test hubble mirror hubble telescope mission

new NASA hubble mirror

discovery telescope astronomy space telescope launch

time telescope optical space telescope discovery

universe hubble optical shuttle space telescope

optical telescope discovery hubble telescope flaw

light telescope shuttle two hubble space

generated using LCE for the query hubble telescope achievements using the top 25
ranked documents from the ROBUST04 collection.

It is well known that generating multi-term concepts using a unigram-based
model produces unsatisfactory results, since it fails to consider term dependencies.
This is not the case when generating multi-term concepts using the model. Instead,
a majority of the concepts generated are well-formed and meaningful. There are
several cases where the concepts are less coherent, such as mirror. In this case, the
likelihood of the term mirror appearing in a pseudo-relevant document outweighs
the ICF features, which causes this non-coherent concept to have a high likelihood.
Such examples are in the minority, however.

Not only are the concepts generated well-formed and meaningful, but they are
also topically relevant to the original query. As we see, all of the concepts gener-
ated are on topic and in some way related to the Hubble telescope. It is interesting
to see that the concept hubble telescope flaw is one of the most likely three term
concepts, given that it is somewhat contradictory to the original query. Despite this
contradiction, documents that discuss the telescope flaws are also likely to describe
the successes, as well, and therefore this is likely to be a meaningful concept.

One important thing to note is that the concepts LCE generates are of a different
nature than those that would be generated using a bigram relevance model. For
example, a bigram model would be unlikely to generate the concept telescope space
NASA, since none of the bigrams that make up the concept have high likelihood.
However, since the model is based on a number of different features over various
types of cliques, it is more general and robust than a bigram model.
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Although we only provided the concepts generated for a single query, we note
that the same analysis and conclusions generalize across other data sets, with coher-
ent, topically related concepts being consistently generated using LCE.

6.4 Evaluation of LCE-GE and LCE-HMRF

Earlier in this chapter we described two LCE extensions called generalized LCE
(LCE-GE) and LCE using HRMFs (LCE-HMRF). Unlike basic LCE, both of these
approaches modeled the dependencies between query terms and expansion con-
cepts. In this section, we evaluate the effectiveness of these approaches empirically.
Experimental results show that these term dependencies can help improve the re-
trieval performance consistently and significantly during expansion.

6.4.1 Experimental Setup

Six different models are compared in the study, including: the unigram language
modeling with Dirichlet smoothing (LM), the relevance model (RM3); latent con-
cept expansion (LCE), the generalized LCE model (LCE-GE), LCE using Hierar-
chical Markov random fields (LCE-HMRF), and segment-based LCE (LCE-SB).

We compare LM, RM3, LCE, and LCE-HMRF to better understand how mod-
eling term dependencies can contribute to retrieval performance during expansion.
Additionally, we compare LCE-GE and LCE-HMRF to evaluate whether models
that explicitly model dependencies between query terms and expansion terms are
more effective than those that implicitly model such dependencies. Finally, we com-
pare LCE-SB and LCE-HMRF to evaluate the usefulness of the segment-level inter-
actions considered by LCE-HMRF compared to a simpler passage-based expansion
approach.

Unlike the previous experiments, which used a fixed training and test split, we
utilize cross-validation to estimate the parameters and evaluate the results for each
data set. Given a data set, topics are divided into subsets of 50 topics each. Each
subset, in turn, is used as a testing set, while the rest of the topics serve as a training
set. Experiments are run separately for each data set, and average results over all
testing sets are reported.

For the unigram language model, the smoothing parameter is trained. For RM3,
LCE, LCE-GE, we train the model parameters, model hyperparameters, the number
of pseudo-relevant documents used, and the number of expansion terms. For LCE-
HMRF and LCE-SB, we also train the segment length. Meanwhile, LCE-HMRF
adopts the same first-pass and second-pass retrieval algorithm (i.e. the MRF model
for information retrieval (Metzler and Croft 2005)) as LCE, where the only dif-
ference between LCE-HMRF and LCE is how each selects and weights expansion
terms.
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Table 4.11 Mean average precision for language modeling (LM), relevance model (RM3), latent
concept expansion (LCE), and LCE using Hierarchical Markov random fields (LCE-HMRF). The
superscripts α, β , and γ indicate statistically significant improvements (p < 0.05 using Wilcoxon
test) over LM, RM3, LCE, respectively

LM RM3 LCE LCE-HMRF

ROBUST04 0.2532 0.2834α 0.3057αβ 0.3313αβγ

WT10g 0.1968 0.2118α 0.2259αβ 0.2454αβγ

GOV2 0.2981 0.3179α 0.3454αβ 0.3634αβγ

6.4.2 Basic Results

In this section, we empirically evaluate the following hypothesis: Query expansion
approaches that properly consider term dependencies will perform better than ap-
proaches that do not consider all of dependencies essential for the query expan-
sion task (i.e., the dependencies between query terms and the dependencies between
query terms and expansion terms).

The mean average precision for LM, RM3, LCE, and LCE-HMRF are given
in Table 4.11. As would be expected, the relevance model, LCE, and LCE-HMRF
always significantly outperform the unigram language model.

Furthermore, LCE significantly outperforms the relevance model across all data
sets. This indicates that term dependencies can provide extra information to help es-
timate a better query model than using independent terms alone and can contribute
to the retrieval performance during expansion. The findings agree with similar ex-
periments that were previously carried out (Metzler and Croft 2007).

As the results show, by implicitly incorporating term dependencies between
query terms and expansion terms, LCE-HMRF achieves the best performance across
all of the data sets. In particular, it achieves 16.9%, 15.9%, and 14.3% relative im-
provements in mean average precision over the relevance model, on ROBUST04,
WT10g, and GOV2, respectively. Moreover, LCE-HMRF shows significant im-
provements over the original LCE approach, which demonstrates the benefits of
using the document structure to implicitly model dependencies between query terms
and expansion terms during expansion and support the hypothesis. The relative im-
provements over LCE are 8.4% for ROBUST04, 8.6% for WT10g, and 5.2% for
GOV2. All of the improvements, with respect to relevance models and LCE are
statistically significant.

6.4.3 Robustness

As we have observed, the relevance model, LCE, and LCE-HMRF can lead to signif-
icantly improvements in retrieval effectiveness on average versus a simple unigram
language modeling baseline. Here, we demonstrate and compare the robustness of
these query expansion techniques with respect to this baseline. We define robust-
ness as the number of queries whose effectiveness is improved/degraded (and by
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Fig. 4.5 Histograms that compare the robustness of the relevance model (RM3), latent concept
expansion (LCE), and LCE using Hierarchical Markov random fields (LCE-HMRF) with respect
to the unigram language model (LM) for the ROBUST04, WT10g, and GOV2 data sets

how much) as the results of applying these methods. A highly robust expansion
technique will significantly improve many queries and only minimally degrade very
few.

Figure 4.5 presents an analysis of the robustness of the relevance model, LCE,
and LCE-HMRF on ROBUST04, WT10g, and GOV2. The histograms present,
for various ranges of relative decreases/increases in mean average precision, the
number of queries that are hurt/improved over the baseline unigram language
model.

The models that consider term dependencies show strong robustness for each
data set. For the ROBUST04 data set, the relevance model improves 182 queries
and degrades 67, whereas LCE improves 190 and degrades 59 and LCE-HMRF
improves 188 and degrades 61. Although LCE improves the effectiveness of 2
more queries than LCE-HMRF, the relative improvement exhibited by LCE-HMRF
is significantly larger. For WT10g, the relevance model improves 52 and de-
grades 47, while LCE improves 61 and degrades 38 and LCE-HMRF improves
66 and degrades 33. Finally, for GOV2, the relevance model improves 92 and de-
grades 56, while LCE improves 104 and degrades 44 and LCE-HMRF improves
116 and degrades 32. Therefore LCE-HMRF exhibits good robustness characteris-
tics.
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Fig. 4.6 Sensitivity to
segment length

6.4.4 Parameter Sensitivity

Finally, we note that the HMRF model relies on automatically breaking documents
into segments. Therefore, we are interested in analyzing the sensitivity of the re-
trieval performance with respect to the size of the segment. This sensitivity analysis
is shown in Fig. 4.6. For each segment length, we train all of the other model pa-
rameters to fairly evaluate the sensitivity. The results show that the effectiveness
is relatively stable across different segment lengths. However, for ROBUST04, the
homogeneous newswire data set, segment length = 200 performed the best. For the
heterogeneous Web data sets such as WT10g and GOV2, segment length = 300 per-
formed the best. These results suggest that setting the segment length in the range
of 200–300 is a reasonable ‘default’ setting, at least for the data sets currently under
consideration.

6.4.5 LCE-GE vs. LCE-HMRF

In this section, we empirically evaluate the following hypothesis: Hierarchical mod-
els that seamlessly integrate the hierarchical document structure can address the
high computational complexity and data sparseness problems for modeling term
dependencies, which are suffered by non-hierarchical models.

We compare the effectiveness of LCE-GE, which is an non-hierarchical model
and explicitly models the dependencies between query terms and expansion con-
cepts, and LCE-HMRF, which models the same type of dependencies implicitly via
the hierarchical document structure.

The results of this comparison are provided in Table 4.12. The results show that
LCE-HMRF significantly outperforms LCE-GE on all data sets. The GOV2 data
set is not tested due to the high computational cost involved in applying LCE-GE.
Interestingly, LCE-GE shows improvements over LCE, but the improvements are
not statistically significant. Although LCE-GE and LCE-HMRF both model depen-
dencies between query terms and expansion concepts, LCE-GE is shown to not be
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Table 4.12 Mean average precision for LCE, LCE-GE, LCE-HMRF. The superscripts α and β

indicate statistically significant improvements (p < 0.05 using Wilcoxon test) over LCE and LCE-
GE, respectively

LCE LCE-GE LCE-HMRF

ROBUST04 0.3057 0.3092 0.3313αβ

WT10g 0.2259 0.2287 0.2454αβ

Table 4.13 Mean average precision for LCE, LCE-SB, and LCE-HMRF. The superscripts α and
β indicate statistically significant improvements (p < 0.05 using Wilcoxon test) over LCE and
LCE-SB, respectively

LCE LCE-SB LCE-HMRF

ROBUST04 0.3057 0.2981 0.3313αβ

WT10g 0.2259 0.2182 0.2454αβ

GOV2 0.3454 0.3511 0.3634αβ

as effective as LCE-HMRF, presumably due to the data sparseness issue described
earlier.

Additionally, the computational cost of LCE-GE is much higher than LCE-
HMRF. Unlike LCE-HMRF, LCE-GE explicitly models a large number of pairs of
query terms and latent concepts. Thus, LCE-GE has to compute many term proxim-
ity features over these pairs, which is very time consuming. Therefore, LCE-HMRF
is a practically appealing query expansion approach, both in terms of efficiency and
effectiveness. Of course, in a real, large-scale system, query expansion would likely
be either done offline or done online using a hybrid strategy, such as the one de-
scribed by Broder et al. (2009). However, even when such an architecture is used,
LCE-HMRF is still desirable to LCE-GE. As a consequence, we can support the
hypothesis.

6.4.6 Segment-Based LCE vs. LCE-HMRF

As mentioned earlier, the dependencies between sibling nodes and the parent node
considered by the HMRF model provides a mechanism for utilizing valuable con-
textual information inside a document. To quantify the utility of these dependencies,
we compare the effectiveness of LCE-SB (passage-based LCE) and LCE-HMRF.

As shown in Table 4.13, LCE-HMRF always significantly outperforms LCE-SB.
In fact, LCE-SB shows slightly lower performance than LCE on the ROBUST04
and WT10g data sets. Although LCE-SB has the capability to exploit a document’s
fine-grained evidence, it fails to significantly improve the retrieval performance over
LCE, likely due to data sparseness, which stems from the fact that LCE-SB only
considers information from a single segment, instead of from two adjacent segments
and the entire document, as is the case in LCE-HMRF. The segment-level depen-
dencies considered by LCE-HMRF can help alleviate this problem by leveraging the
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document’s structure information to smooth the segments and improve the retrieval
performance. Therefore, LCE-HMRF is more than simply a passage-based version
of LCE, as these results clearly show that modeling intra-segment dependencies is
highly effective.

7 Discussion

We conclude this chapter by discussing several theoretical issues involved with re-
gard to query expansion.

7.1 Relevance vs. Relevant Documents

There are other reasonable ways of using the MRF model for query expan-
sion beyond using Eq. 4.3. For example, given a set of relevant or pseudo-
relevant documents D1, . . . ,Dn, we could generate expansion concepts by com-
puting P(E|D1, . . . ,Dn).

The concepts generated in this way tend to show excellent effectiveness on the
training set. However, they fail to yield significant improvements in retrieval ef-
fectiveness on the test set. In fact, using this expansion model shows little-to-no
improvements over relevance models. It is somewhat surprising that this formula-
tion performs so much worse on the test set. Buckley and Salton noted a similar
observation when optimizing term weights using a Rocchio-based expansion tech-
nique (Buckley and Salton 1995). They argued that there is a subtle, yet important
difference between modeling relevance and modeling relevant documents.

Under this alternative formulation, we are directly modeling relevant documents.
By doing so, we are overfitting the model. This explains the poor generalization
behavior exhibited using this alternative formulation. This, however, is not an issue
when using the original formulation. Using that formulation, PH,Λ(E|Q) can be
thought of as a model of relevance, since it generates terms that are highly likely
given the query, which is the best evidence of relevance. This avoids the problem
of overfitting the model to the relevant documents by modeling a more generalized
notion of relevance.

Therefore, the results obtained by Salton and Buckley using the Rocchio-based
expansion technique apply to statistical query expansion techniques, as well. Thus,
future query expansion models, to avoid overfitting, should focus on modeling more
generalized notions of relevance, rather than the relevant documents themselves.

7.2 The Role of Dependence

Our latent concept expansion technique captures two semi-orthogonal types of de-
pendence. In information retrieval, there has been a long-term interest in under-
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standing the role of term dependence. Out of this research, two broad types of de-
pendencies have been identified.

The first type of dependence is syntactic dependence. This type of dependence
covers phrases, term proximity, and term co-occurrence (Clarke and Cormack 2000;
Croft 1986; Croft et al. 1991; Fagan 1987; van Rijsbergen 1977). These methods
capture the fact that queries implicitly or explicitly impose a certain set of positional
dependencies.

The second type is semantic dependence. Examples of semantic dependence
are relevance feedback, pseudo-relevance feedback, synonyms, and to some extent
stemming (Collins-Thompson and Callan 2005). These techniques have been ex-
plored on both the query and document side. On the query side, this is typically
done using some form of query expansion, such as relevance models or LCE. On
the document side, this is done as document expansion or document smoothing
(Kurland and Lee 2004; Liu and Croft 2004; Tao et al. 2006).

Although there may be some overlap between syntactic and semantic dependen-
cies, they are mostly orthogonal. The model uses both types of dependencies. The
use of phrase and proximity features within the model captures syntactic dependen-
cies, whereas LCE captures query-side semantic dependence. This explains why the
initial improvement in effectiveness achieved by using the MRF model is not lost
after query expansion. If the same types of dependencies were captured by both syn-
tactic and semantic dependencies, LCE would be expected to perform about equally
as well as relevance models. Therefore, by modeling both types of dependencies we
see an additive effect, rather than an absorbing effect.

An interesting area of future work is to determine whether or not modeling
document-side semantic dependencies can add anything to the model. Previous re-
sults that have combined query- and document-side semantic dependencies have
shown mixed results (Liu and Croft 2004; Wei and Croft 2006).



Chapter 5
Query-Dependent Feature Weighting

1 Overview

Most traditional information retrieval models, such as language modeling and
BM25, utilize very simple user query models. These models tend to treat query
terms as independent and of uniform importance. Simple heuristics, such as inverse
document frequency (idf ), are integral parts of these models and can be thought of
as a simple query term weighting model, but they are very rigid and are based on
a single data source. Furthermore, it is not clear if idf is an appropriate measure of
importance for phrases and other generic concepts (Pickens and Croft 1999). Recent
research has shown that modeling query term dependencies and using non-uniform
query term weighting (beyond idf ) can significantly improve retrieval effectiveness,
especially on very large collections and for long, complex queries (Bendersky and
Croft 2008; Lease 2009; Metzler and Croft 2005).

This chapter extends the basic MRF model by automatically learning query-
dependent concept weights. The extension is a generic framework for learning the
importance of query term concepts in a way that directly optimizes an underlying
retrieval metric. It is important to note that this is quite different from query seg-
mentation approaches (Bergsma and Wang 2007; Guo et al. 2008; Tan and Peng
2008). Optimizing segmentation accuracy is not guaranteed to optimize retrieval
effectiveness. By implementing concept weighting directly into the underlying re-
trieval model we avoid the issue of metric divergence (Morgan et al. 2004). As we
will show, this strategy yields strong retrieval effectiveness gains.

As an illustration of such metric divergence, Table 5.1 shows an actual exam-
ple of unigram and bigram concept importances learned within the model for the
query “civil war battle reenactments”. If, instead, the weighting was done based on
the output of a query segmenter, then it is likely that the phrase “civil war” and
perhaps “battle reenactments” would be given large weights. However, the model
assigns high weights to the unigram “reenactments” and the bigram “war battle”,
which happen to be the most discriminative (between relevant and non-relevant doc-
uments) concepts, not the most likely concepts in terms of query segmentation.

The remainder of this chapter, which is based on Bendersky et al. (2010), de-
scribes one possible approach for incorporating query-dependent weighting into the
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Table 5.1 Query-dependent
concept weights generated for
query “civil war battle
reenactments”

Concept Weight

civil 0.0619

war 0.1947

battle 0.0913

reenactments 0.3487

civil war 0.1959

war battle 0.2458

battle reenactments 0.0540

basic MRF framework. The chapter begins by laying out the theoretical foundations
and concludes with a detailed empirical evaluation that demonstrates the practical
utility of the approach.

2 Related Work

Modeling atomic query concepts through term dependencies, or proximities, proved
to have a significant positive impact on retrieval effectiveness on both TREC and
Web corpora (Bai et al. 2008; Bendersky et al. 2009; Cummins and O’Riordan 2009;
Metzler and Croft 2005; Mishne and de Rijke 2005; Tao 2007). Most of this work,
however, was restricted to modeling term dependencies, rather than weighting them.
In other words, all concept matches in the query had the same impact on the doc-
ument score. While this assumption is reasonable for short keyword queries, it is
much less reasonable for longer, more complex queries.

Recent work, focused on verbose queries, started to explore the direction of as-
signing varying document independent weights to query concepts. Kumaran and
Carvalho (2009) address this by automatically removing extraneous terms that may
have a negative effect on the overall retrieval performance of a query. Bendersky
and Croft (2008) use a supervised discovery method for “key concepts” in verbose
queries, and use a ranking approach that integrates the weighted key concepts with
the original query. They find that weighted key concepts approach outperforms the
standard bag-of-words model, however its performance is on par with the sequen-
tial dependence model that does not use any concept weighting (Metzler and Croft
2005). Most recently, Lease (2009) extended his previous work on term weighting
(Lease et al. 2009) to show that incorporating learned term weights in a sequential
dependence model improves the retrieval performance over the unweighted variant
for verbose description queries on a number of TREC collections.

An additional information retrieval method that is related to the work described
in this chapter is pseudo relevance feedback (PRF), which can be viewed as both
query expansion and query term weighting technique (Lavrenko and Croft 2001).
Recently, researchers separately focused on both modeling term dependencies (Met-
zler and Croft 2007) and term weighting (Cao et al. 2008) within the PRF frame-
work.
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There are two major differences between the model we describe here and the
aforementioned previous work. First, the extension of the basic MRF model de-
scribed here provides a principled retrieval framework that, unlike previously pro-
posed methods, naturally combines both term and phrase weights. Second, the
model parameters are estimated by directly maximizing the underlying retrieval
metric. This differentiates the model described here from previous methods for con-
cept weighting that employed indirect parameter estimation, maximizing metrics not
directly related to retrieval performance such as classification accuracy (Bendersky
and Croft 2008; Cao et al. 2008) or expected query model performance (Lease et
al. 2009; Lease 2009). We show that the direct optimization approach allows us to
achieve consistent performance gains over a range of query types, while previous
work on concept weighting was mainly concentrated on verbose (Bendersky and
Croft 2008; Lease 2009) or expanded (Cao et al. 2008) queries.

Direct optimization of an underlying retrieval metric ties the model described in
this chapter to learning-to-rank approaches for information retrieval (LR4IR) (see
Liu 2009 for a recent survey). The formulation of metric optimization is similar to
some previous work, and thus allows us to build upon the existing direct optimiza-
tion methods, such as those covered in Chap. 6. The primary benefit of the method
lies in the fact that we are not limited to a linear combination of pairwise query-
document features, as is usually the case in LR4IR (Liu 2009). Instead, we can also
use individual concept features to effectively learn a concept weighting model in
a similar, yet much more flexible, way than that proposed by Gey (1994). As we
will show, this approach allows us to improve upon retrieval models that use only
query-document dependent features.

3 Weighted Dependence Model

One of the primary limitations of the sequential dependence variant of the MRF
model is the fact that all matches of the same type (e.g., term, ordered window, or
unordered window) are treated as being equally important. This is the result of the
massive parameter tying that is done with the sequential dependence model. Instead,
it would be desirable to weight, a priori, different terms (or bigrams) within the
query differently based on query-level evidence. For example, in a verbose query,
there will likely be a few concepts (terms or phrases) within the query that will
carry the most weight. While the sequential dependence model would treat all of
the concepts as equally important, we would like to be able to weight the concepts
appropriately, with regard to each other.

There are several ways to model this in the MRF model, but perhaps the most
straightforward is to allow the parameters λ to depend on the concept that they are
being applied to, rather than some global weight. This can be achieved by defining
the potentials within the model as follows:

ψ(qi,D;Λ) = exp
[
λ(qi)fT (qi,D)

]
, (5.1)
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ψ(qi, qi+1,D;Λ) = exp
[
λ(qi, qi+1)fO(qi, qi+1,D)

+ λ(qi, qi+1)fU (qi, qi+1,D)
]
, (5.2)

where λ(qi) is a parameter that depends on term qi and λ(qi, qi+1) is a parameter
that depends on the bigram qi, qi+1. In this setting, each term and bigram has a sep-
arate weight associated with it that is independent of the document. This parameter
should be some measure of the general importance of the concept with respect to
the rest of the query.

Although this formulation of the model is more general, it results in an infeasi-
bly large number of parameters, since each λ now depends on the identity of one
(or two) query terms. This was not a problem in the original formulation of the se-
quential dependence model, because it was assumed that all of the λ parameters, for
a given match type, were tied to the same value, resulting in just three parameters.
The solution described here is in the middle ground between these two extremes.
We assume that the parameters λ take on a parameterized form. For simplicity, we
assume the following weighted linear form:

λ(qi) =
ku∑

j=1

wu
j gu

j (qi), (5.3)

λ(qi, qi+1) =
kb∑

j=1

wb
j g

b
j (qi, qi+1), (5.4)

where gu(qi) and gb(qi, qi+1) are features defined over unigrams and bigrams, re-
spectively. Similarly, wu and wb are free parameters that must be estimated. If there
are ku unigram features and kb bigram features, then we have a total of ku + kb total
parameters to estimate, compared to three in the sequential dependence model. The
features gu(qi) and gb(qi, qi+1) are document independent and should be useful for
determining the relative importance of the concept within the context of the query.

When the parameters λ have this parametric form, the final MRF ranking func-
tion can be shown to have the following form:

P(D|Q)
rank=

ku∑

i=1

wt
i

∑

q∈Q

gu
i (q)fT (q,D)

+
kb∑

i=1

wb
i

∑

qj ,qj+1∈Q

gb
i (qj , qj+1)fO(qj , qj+1,D)

+
kb∑

i=1

wb
i

∑

qj ,qj+1∈Q

gb
i (qj , qj+1)fU (qj , qj+1,D) (5.5)

which we call the weighted sequential dependence model. It is important to note
that this model can easily be extended to handle other dependence assumptions,
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Table 5.2 Statistics used to estimate term importance for a concept e. Concept e is either a query
term qi or a sequential query term pair qiqi+1

Data Source Feature Description

Collection cf e Collection frequency for concept e

df e Document frequency for concept e

G-Grams gf (e) n-gram count of concept e

MSN Query Log qe_cnt(e) Number of exact matches of e in the query log

qp_cnt(e) Number of times e occurs within the query log

Wikipedia Titles we_cnt(e) Does a concept e appear as a Wikipedia title?

wp_cnt(e) Number of times e occurs in a Wikipedia title.

including the so-called full dependence assumption (Metzler and Croft 2005) and
other models that focus on key dependencies in the queries (Bendersky et al. 2009).

4 Concept Importance Features

In this section, we describe the features used for determining the importance of a
term or a bigram in a weighted sequential dependence model. Recall that parame-
ters λ(qi) and λ(qi, qi+1), which determine the concept weights, are represented as
a weighted linear combination of features gu(qi) and gb(qi, qi+1). These features
are defined over concepts (either terms or bigrams) and are independent of a specific
document. This fact allows us to combine the statistics of the underlying document
corpus with the statistics of various external data sources to achieve a potentially
more accurate weighting. Accordingly, we divide the features used for concept im-
portance weighting into two main types, based on the type of information they are
using.

The first type, the endogenous, or collection-dependent, features are akin to stan-
dard weights used in information retrieval. They are based on collection frequency
counts and document frequency counts calculated over a particular document corpus
on which the retrieval is performed.

The second type, the exogenous, or collection-independent, features are calcu-
lated over an array of external data sources. The use of such sources was found to
be beneficial for information retrieval models in previous work (Bai et al. 2008;
Bendersky and Croft 2008; Lease et al. 2009). Some of these data sources provide
better coverage of terms, and can be used for smoothing sparse concept frequencies
calculated over smaller document collections. Others provide more focused sources
of information for determining concept importance. We consider three external data
sources: (i) a large collection of Web n-grams, (ii) a sample of a query log, and
(iii) Wikipedia. Although there are numerous additional data sources that could be
potentially used, we intentionally limit our attention to these three sources as they
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Table 5.3 Summary of language modeling-based unigram and concept weighting functions. Here,
tfe,D is the number of times concept e matches in document D, cf e,D is the number of times
concept e matches in the entire collection, |D| is the length of document D, and |C| is the total
length of the collection. Finally, μ is a weighting function hyperparameter that is set to 2500

Weighting

fT (qi ,D) = log

[
tfqi ,D

+μ
cfqi|C|

|D|+μ

]

fO(qi , qi+1,D) = log

[
tf#1(qi ,qi+1),D+μ

cf#1(qi ,qi+1)

|C|
|D|+μ

]

fU (qi , qi+1,D) = log

[
tf#uw8(qi ,qi+1),D+μ

cf#uw8(qi ,qi+1)

|C|
|D|+μ

]

are available for research purposes, and can be easily used to reproduce the reported
results.

The first source, Google n-grams corpus1, contains the frequency counts of En-
glish n-grams generated from approximately 1 trillion word tokens of text from
publicly accessible Web pages. We expect these counts to provide a more accurate
frequency estimator, especially for smaller corpora, where some concept frequen-
cies may be underestimated due to the collection size.

In addition, we use a large sample of a query log consisting of approximately
15 million queries2. We use this data source to estimate how often a concept occurs
in user queries. Intuitively, we assume a positive correlation between an importance
of a concept for retrieval and the frequency with which it occurs in queries formu-
lated by search engine users.

Finally, the third external data source is a snapshot of Wikipedia article titles3.
Due to the large volume and the high diversity of topics covered by Wikipedia
(∼3 million articles in English alone), we assume that important concepts will often
appear as (a part of) article titles in Wikipedia.

Table 5.2 details the statistics used for determining concept weights. As described
above, these statistics are based either on the collection or on one of the external
data sources. These statistics are used to compute term and bigram features (gu(qi)

and gb(qi, qi+1), respectively) in the weighted sequential dependence model (see
Eq. 5.5).

For computing the term features, we calculate the statistics presented in the Ta-
ble 5.2 for all query terms qi . This provides us with 7 features gu(qi) for determining
term importance weights.

To compute the bigram features, we calculate the statistics presented in the Ta-
ble 5.2 for all sequential query term pairs qi , qi+1. For computing collection statis-
tics, we use both the “exact phrase” matches and “unordered window” matches,

1Available from the Linguistic Data Consortium catalog.
2Available as a part of Microsoft 2006 RFP dataset.
3Available at: http://download.wikimedia.org/enwiki/.

http://download.wikimedia.org/enwiki/
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as described in Table 5.3. In addition, as bigram features, we compute a ratio
s(qiqi+1)

s(qi )s(qi+1)
for every statistic s in the Table 5.2. Overall, the combination of the

above statistics, provides us with 18 features gb(qi, qi+1) for determining bigram
importance weights.

For each of the data sources, we use a number of standard functions to cal-
culate the features. For endogenous features, we use collection frequency (cf )
and document frequency (df ). We calculate these functions for both unigram, ex-
act bigram matches (#ow1(b1, b2)) and unordered bigram matches within a win-
dow of fixed size (#uw8(b1, b2)). For exogenous features, we use exact n-gram
matches (e_cnt(·)) and partial n-gram matches (p_cnt(·)) (note that by definition
p_cnt(·) ≥ e_cnt(·), and for the Wikipedia titles e_cnt(·) is a binary feature).

5 Evaluation

This section presents the experimental results of the method just described. We start
by detailing the experimental set-up in Sect. 5.1. Next, in Sect. 5.2, we perform
a comprehensive evaluation of the method using several publicly available corpora
used at the Text REtrieval Conference (TREC), including newswire and Web collec-
tions. Finally, to illustrate the benefits of the approach for Web search, in Sect. 5.3
we test the performance of the method using a proprietary Web corpus and a large
sample of user queries.

5.1 Experimental Setup

The retrieval experiments are set up as follows. For all TREC collections, we obtain
an initial list of top-1000 results retrieved by an unweighted sequential dependence
model. This initial ranking provides a very competitive baseline, as the sequential
dependence model was consistently shown to outperform the standard bag-of-word
models (Lease 2009; Metzler and Croft 2005). We append all the non-retrieved rel-
evant documents to the top-1000 list, and use this set of results for training and
evaluating all the compared retrieval models.

For the proprietary Web corpus, we only index Web pages that have relevance
judgments for the query samples. Training and evaluation of the retrieval models is
done using this set of judged Web pages, which is a common evaluation practice for
this type of test collection. There are, on average, 27 judgments per query.

We compare the performance of the weighted sequential dependence model
(WSD) to two baseline retrieval models. The first is the query-likelihood model
(Ponte and Croft 1998) (QL), a standard bag-of-words retrieval model implemented
by the Indri search engine. The second is the unweighted sequential dependence
model (SD). All the initial retrieval parameters are set to default Indri values, which
reflect the best-practice settings. All the training/evaluation is done using five fold
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cross-validation. The statistical significance of the differences in the performance is
determined using a two-sided Wilcoxon sign test, with α < 0.05.

We measure the performance using standard retrieval metrics for TREC and Web
corpora. For TREC corpora, which uses binary relevance judgments, we use pre-
cision at top 10 documents retrieved (P@10) and mean average precision (MAP)
at rank 1000. See Appendix B for a more detailed description of these measures.
When estimating the parameters for the WSD model, we directly optimize MAP (see
the next chapter for further details).

For the Web corpus, which uses graded relevance judgments, we use the dis-
counted cumulative gain measure (DCG) (Järvelin and Kekäläinen 2002) at ranks 5
and at the total depth of the ranked list. Relevance is judged as either Perfect, Ex-
cellent, Good, Fair, or Bad. The corresponding DCG gains for these grades are 10,
7, 3, 0.5, and 0, respectively. In the direct optimization of the weighted dependence
model, we use normalized DCG as the target metric.

5.2 TREC Evaluation

In this section, we describe the retrieval results obtained by the model on three
standard TREC collections. A summary of the corpora used for these experiments
is shown in Appendix A. We note that collections vary both by type (ROBUST04
is a newswire collection, while W10g and GOV2 are Web collections), number of
documents and number of available topics, thus providing a diverse experimental
set-up for assessing the robustness of the weighted dependence model.

In the evaluation we use both the title and the description portions of TREC top-
ics as queries. Title queries are generally short, and can be viewed as a keyword
queries on the topic. Description queries are generally more verbose and syntac-
tically richer natural language expressions of the topic. For instance queries pet
therapy and How are pets or animals used in therapy for humans and what are the
benefits? are examples of title and description queries on the same topic, respec-
tively.

5.2.1 Retrieval Results

Table 5.4 shows the summary of the retrieval results for the three TREC collections
on both title and description queries. It is evident that both sequential dependence
models (SD and WSD) significantly outperform the query-likelihood model QL in
almost all the cases on all the metrics. This verifies the positive impact of term
dependencies on the retrieval performance.

From the two sequential dependence models, weighted sequential dependence
model (WSD) significantly outperforms the unweighted one (SD) on all collections
in terms of MAP (which is used as the metric for direct optimization). The gains in
MAP range between 1.6% and 19.5%, and are statistically significant for all collec-
tions and both query types.
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Table 5.4 Comparison of retrieval results for title (top table) and description (bottom table) TREC
queries with query-likelihood (QL), sequential dependence model (SD) and weighted sequential
dependence model (WSD). Numbers in parentheses indicate % improvement in MAP over QL/SD
(if available)

title ROBUST04 W10g GOV2

P@10 MAP P@10 MAP P@10 MAP

QL 0.4225 0.2493 0.2560 0.1904 0.5342 0.3019

SD 0.4410∗ 0.2661∗ 0.2890∗ 0.2063∗ 0.5785∗ 0.3247∗

WSD 0.4462∗ 0.2721∗
† 0.2890∗ 0.2220∗

† 0.5779∗ 0.3338∗
†

desc ROBUST04 W10g GOV2

P@10 MAP P@10 MAP P@10 MAP

QL 0.4269 0.2507 0.3270 0.1971 0.5168 0.2606

SD 0.4177 0.2558 0.3610∗ 0.2032 0.5356 0.2694∗

WSD 0.4269 0.2718∗
† 0.3710∗ 0.2523∗

† 0.5181 0.2738∗
†

∗ Statistically significant difference with QL
† Statistically significant difference with SD

It is interesting to note that even on P@10, which was not directly optimized for,
WSD is more effective than SD in all but two comparisons (P@10 for GOV2). The
gains observed are as high as 2.7% for P@10. We expect that even higher gains for
P@10 can be attained by WSD by directly training the model for these measures of
interest rather than MAP.

5.2.2 Feature Analysis

In this section we perform a detailed feature analysis, in order to identify the key
elements in the success of the weighted sequential model, as compared to its un-
weighted counterpart.

Unigrams and Bigrams Table 5.5 compares the impact on the retrieval effective-
ness of the importance weights assigned by WSD to either unigrams or bigrams in
the sequential dependence model. Recall that the weighted sequential dependence
model WSD is derived from its unweighted counterpart by replacing the static se-
quential dependence parameters λT , λ, and λU with concept dependent parameters
λ(qi) and λ(qi, qi+1), as shown in Eq. 5.5.

The WSD-UNI model, shown in Table 5.5, is obtained by replacing λT with the
term dependent λ(qi), while fixing the values of λO and λU to those of the un-
weighted sequential dependence model. Alternatively, WSD-BI model is obtained
by replacing λO and λU with the term dependent λ(qi, qi+1), while fixing the value
of λT .
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Table 5.5 Comparison of retrieval results for title (left) and description (right) TREC queries with
either only unigram features (WSD-UNI), only bigram features (WSD-BI) or both

title ROBUST04 W10g GOV2 desc ROBUST04 W10g GOV2

WSD 0.2721 0.2220 0.3338 WSD 0.2718 0.2523 0.2738

WSD-UNI 0.2685† 0.2188 0.3343 WSD-UNI 0.2717 0.2486 0.2677†

WSD-BI 0.2675† 0.2065† 0.3258 WSD-BI 0.2602† 0.2043† 0.2700

† Statistically significant difference with WSD

Table 5.5 compares the performance of both WSD-UNI and WSD-BI models to
the performance of the fully weighted sequential dependence model (WSD). We note
that while, in general, both WSD-UNI and WSD-BI outperform SD, in most cases
WSD-UNI outperforms WSD-BI as well. This indicates that a unigram weighting
has more impact on the retrieval performance than the bigram weighting. This result
is in line with previous results reported by Lease for TREC collections (Lease 2009),
which showed that by solely weighting unigrams, one can significantly outperform
the unweighted sequential model baseline.

Another important finding shown in Table 5.5, is that WSD, which combines both
unigram and bigram weights, outperforms WSD-UNI in 5 out of 6 comparisons,
and always outperforms WSD-BI. In addition, WSD attains statistically significant
differences in comparison with WSD-UNI for description queries on a large Web
collection GOV2. This fact underscores the importance of weighting for all the con-
cepts in the sequential dependence model.

Endogeneous and Exogenous Features Recall from Sect. 4 that WSD uses
two types of features for estimating concept importance: endogeneous (collection-
dependent) and exogeneous (collection-independent). While applying collection-
dependent features for term weighting has been extensively studied in traditional
information retrieval (Salton and Buckley 1988), the research on combining them
with external sources of information is more recent (Bendersky and Croft 2008;
Lease et al. 2009). Therefore, it is interesting to examine the contribution of each of
these feature types to the overall model performance.

Table 5.6 compares the performance of the weighted sequential dependence
model when either only endogeneous (WSD-ENDO) or only exogeneous (WSD-
EXO) features are used to the performance of the fully weighted sequential depen-
dence model (WSD). It is evident from Table 5.6 that using either the endogeneous
or the exogeneous features results in comparable performance, and both of them
outperform the unweighted dependence model. This indicates that both of these fea-
tures are useful for learning the optimal weights for WSD. In both cases, however,
their combination results in gains in MAP in 5 out of 6 cases. In addition, we found
that both WSD-ENDO and WSD-EXO display statistically significant differences with
WSD on a large Web collection GOV2 for description queries.
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Table 5.6 Comparison of retrieval results for title (left) and description (right) TREC queries with
either only endogenous features (WSD-ENDO), only exogenous features (WSD-EXO) or both

title ROBUST04 W10g GOV2 desc ROBUST04 W10g GOV2

WSD 0.2721 0.2220 0.3338 WSD 0.2718 0.2523 0.2738

WSD-ENDO 0.2685† 0.2176 0.3281 WSD-ENDO 0.2707 0.2328 0.2695†

WSD-EXO 0.2701 0.2119† 0.3354 WSD-EXO 0.2733 0.2468 0.2733†

† Statistically significant difference with WSD

Table 5.7 Comparison of retrieval results over a sample of Web queries with query-likelihood
(QL), sequential dependence model (SD) and weighted sequential dependence model (WSD).
Numbers in parentheses indicate % improvement in DCG over QL/SD (if available)

Len-2 Len-3 Len-4+

DCG@5 DCG DCG@5 DCG DCG@5 DCG

QL 2.231 10.750 2.290 8.204 1.691 5.844

SD 2.733 11.539 2.971 9.139 2.383 6.681

WSD 2.754 11.585 2.929 9.087 2.443 6.741

All the differences are statistically significant

5.3 Large-Scale Web Evaluation

Previous research has shown that modeling sequential term dependencies has a sig-
nificant positive impact on retrieval performance in the Web search setting (Bai et
al. 2008; Metzler and Croft 2005; Mishne and de Rijke 2005). Given the retrieval
performance gains obtained from using the weighted variant of the sequential de-
pendence model demonstrated on TREC collections in the previous section, the fol-
lowing set of experiments explores whether these gains can be directly transferred
into a Web search setting. To this end, in this section we test the ranking with a
weighted sequential dependence model on a proprietary Web corpus provided by a
large commercial search engine.

To differentiate between the effect of concept weighting on queries of varying
length, as was done in the case of TREC corpora, we divide the queries into three
groups based on their length. Length is defined as a number of word tokens separated
by space in the query. The first group of queries (Len-2) includes very short queries
of length two. The second group (Len-3) includes queries of length three. The third
group (Len-4+) consists of more verbose queries of length varying between four
and twelve. While the queries in the first two groups mostly have a navigational
intent, the queries in the third group tend to be more complex informational queries.
For each group, we randomly sample 1,000 Web search queries for which relevance
judgments are available. We then train and evaluate (using five fold cross-validation)
a separate sequential dependence model and weighted sequential dependence model
for each group.
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Table 5.8 Concept weights
generated for query
“information about peer gynt
suite”

Concept Weight

information 0.0210

about 0.0193

peer 0.1591

gynt 0.4114

suite 0.1555

information about −0.0399

about peer 0.0122

peer gynt 0.0891

gynt suite 0.0399

5.3.1 Retrieval Results

Table 5.7 shows the summary of the retrieval results on the three query groups.
To demonstrate the impact on the relevance at the top ranks of the retrieved list we
report the DCG@5. To demonstrate the overall ranking quality, we report the results
for DCG at unlimited depth (denoted DCG).

Table 5.7 demonstrates two important findings. First, including term dependence
information is highly beneficial for queries of all lengths. SD attains up to 12.5% im-
provement over QL, which is a bag-of-words model. This result is highly significant,
given the large size of the query set. Second, concept weighting results in signifi-
cant improvements for longer (Len-4+) queries, and its performance is comparable
for shorter queries to the performance of the unweighted dependence model (slight
improvement on Len-2 and slight decrease in performance on Len-3). For group
Len-4+, WSD attains improvement of close to 2.5% for DCG@5, a highly signifi-
cant improvement, especially when taking into account the importance of relevance
at top ranks for the Web search task.

5.3.2 Feature Analysis

Similarly to the feature analysis performed in Sect. 5.2.2 for TREC corpora, in this
section we analyze the importance of different weights and features in the weighted
sequential model for the Web corpus.

Unigrams and Bigrams Table 5.9 compares the impact on the retrieval effective-
ness of the importance weights assigned by WSD to either unigrams or bigrams in
the sequential dependence model. Notice that, contradictory to what was observed in
Table 5.5 for the TREC data, the bigram weights have more impact on the retrieval
effectiveness than the unigram weights. For short queries in groups Len-2 and Len-3,
using bigram weights alone and omitting the unigram weights results in a slightly
higher DCG at all measured ranks than using the fully weighted dependence model.
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Table 5.9 Comparison of retrieval results for a sample of Web queries with either only unigram
features (WSD-UNI), only bigram features (WSD-BI) or both

Len-2 Len-3 Len-4+

DCG@5 DCG DCG@5 DCG DCG@5 DCG

WSD 2.754 11.585 2.929 9.087 2.443 6.741

WSD-UNI 2.743 11.556 2.963 9.132 2.379 6.677

WSD-BI 2.758 11.602 2.967 9.132 2.409 6.711

All the differences are statistically significant

Table 5.10 Comparison of retrieval results for a sample of Web queries with either only endoge-
nous features (WSD-ENDO), only exogenous features (WSD-EXO) or both

Len-2 Len-3 Len-4+

DCG@5 DCG DCG@5 DCG DCG@5 DCG

WSD 2.754 11.585 2.929 9.087 2.443 6.741

WSD-ENDO 2.687 11.487 2.924 9.085 2.455 6.760

WSD-EXO 2.749 11.575 2.919 9.079 2.439 6.732

All the differences are statistically significant

A likely explanation for this effect is the dominance of navigational intent for
short queries in Web search. TREC topics, including the short title queries, mostly
have an informational intent and often consist of several separate concepts of un-
equal importance (e.g., “abandoned mine reclamation”). Short two-three word Web
queries, on the other hand, often consist of a single navigational bigram (“yahoo
mail”), or a bigram followed by an auxiliary term (“yahoo mail login”).

Compared to the first two groups, using both unigram and bigram weights in
queries in group Len-4+ results in a better performance than using either of them
alone, which is in line with the results for the TREC collections. We hypothesize
that this stems from the fact that a higher percentage of these queries have an in-
formational intent, and they contain both unigram and bigram concepts of varying
importance (“best metal songs of the 1980s”).

Overall, as evident from Table 5.9, the impact of concept weights is influenced
both by the query type and by the collection. While the weighted sequential model
can naturally incorporate weighted and unweighted concepts, the optimal weighting
policy has to be determined using training on the available data.

Endogenous and Exogenous Features Table 5.10 compares the performance of
the weighted sequential dependence model when either only endogeneous (WSD-
ENDO) or only exogeneous (WSD-EXO) features are used to the performance of the
fully weighted sequential dependence model (WSD). It is evident from Table 5.10
that using either the endogeneous or the exogeneous features results in most cases
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in comparable performance. Similarly to WSD, both of them outperform the un-
weighted dependence model on queries in group Len-4+.

For shorter queries in the first two groups combining the two types of features
results in a better performance than using either one in isolation. For queries in a
group Len-4+ using endogenous features alone results in a slightly better perfor-
mance than the WSD, however the difference is relatively minor (0.3% improvement
of the DCG metric). In addition, the impact of exogeneous features on the overall
retrieval performance of the Web queries might be potentially boosted by including
additional external sources, instead of just three, as is currently done. For instance,
a larger and a more recent sample of user queries than the one used in this study
could be employed.

As a general “rule of thumb” strategy, a combination of both endogenous and
exogenous features appears to be the preferred option both for the TREC and for the
Web corpora.

Some illustrative examples of learned concept weights are shown in Table 5.8.



Chapter 6
Model Learning

1 Parameter Estimation

In this section we describe how to estimate the parameters of linear feature-based
models, which corresponds to solving the optimization proposed earlier in this chap-
ter. This is often called the learning-to-rank problem. The topic has recently gained
popularity in the machine learning and information retrieval fields, generating a
large number of tools and techniques. While many of these techniques take a purely
machine learning approach to the problem, we attempt to focus more on the impor-
tant information retrieval aspects of the problem. We believe this is important, be-
cause critical information retrieval issues are often ignored during the development
of new learning-to-rank techniques. This is somewhat unfortunate, since valuable
insights can often be gleaned by attacking these types of problems from an informa-
tion retrieval perspective (e.g., via feature engineering, failure analysis, etc.) instead
of a machine learning perspective.

Many of the linear feature-based models that have been used for information
retrieval use parameters that are estimated using maximum likelihood, maximum
a posteriori, or maximum margin techniques. These techniques, however, do not
maximize the correct metric. Classification accuracy, likelihood, and margin size are
generally of little concern when ranking documents. It may be argued that estimat-
ing parameters by maximizing the likelihood of some training data or minimizing
classification error is optimizing a function that is correlated with the underlying
retrieval metric, such as mean average precision. However, this has been shown to
be experimentally invalid, and it can also be shown to be theoretically invalid, as
well. This phenomenon, where the metric being optimized diverges from the actual
metric of interest, is known as metric divergence (Morgan et al. 2004). Hence, the
appropriate way to estimate the parameters of linear feature-based models is to op-
timize the model parameters with respect to some rank-based information retrieval
metric.

The remainder of this section describes various approaches for solving this op-
timization problem, including two algorithms that perform a direct search over the
multinomial manifold. These algorithms can easily handle large training sets, such
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as those that typically arise in information retrieval. They can also handle the highly
unbalanced nature of the training data. Although these techniques have nice prop-
erties, they also have several pitfalls, as we will show. We will also briefly describe
other learning-to-rank approaches that have been proposed recently.

1.1 Direct Search

We now describe two direct search techniques that operate on the multinomial man-
ifold. Here, direct search refers to the fact that the optimization problem in solved
in the original metric space. It is important to remember that these metric spaces
are typically non-smooth with respect to the parameter settings, which prevents us
from applying standard, gradient-based optimization techniques, such as gradient
ascent. The techniques described here are very simple, yet have been shown to be
very effective.

1.1.1 Grid Search

The most naïve approach to solving the optimization problem is to perform an ex-
haustive grid search over the parameter space. That is, we place a grid over the
parameter space and evaluate E(RΛ; T ) at every grid intersection, outputting the
parameter setting that yields the maximum at the end.

A grid search over R
d is unbounded and ill-defined. For this reason, we restrict

the discussion to the case where the parameter space is the multinomial manifold.
For this case, the grid search is bounded and can be easily implemented.

Given a parameter ε = 1
K

for K ∈ Z
+ that controls how fine grained the grid is,

we define G , the set of grid points in P
d+1 that we search over, as

G =
{
Λ = (k1ε . . . kdε) :

∑

i

kiε = 1, ki ∈ N

}

=
{
Λ = (k1ε . . . kdε) :

∑

i

ki = K,ki ∈ N

}
. (6.1)

It is clear from this definition that |G|, the number of parameter values we must
evaluate E at, depends both on d (the number of parameters) and K (how fine
grained the grid is). In fact, |G| ∈ Θ(Kd−1). Therefore, a grid search is feasible
only if both d and K are relatively small. For larger values, other training methods
that do not require as many sorting operations and metric evaluations must be used.
Although the grid search algorithm is relatively costly, it is guaranteed to find a
global maximum as K gets large. Algorithm 1 provides a simple implementation of
the grid search algorithm.



1 Parameter Estimation 123

Algorithm 1 Grid Search
1: (k1, k2, . . . , kd) ← (0,0, . . . ,0)

2: Λ∗ ← {}
3: E∗ ← −∞
4: while kd ≤ K do
5: i ← 1
6: ki ← ki + 1
7: while i < d and ki = K do
8: ki ← 0
9: i ← i + 1

10: ki ← ki + 1
11: end while
12: if

∑
i′ ki′ = K then

13: Λ ← ( k1
K

, k2
K

, . . . ,
kd

K
)

14: E ← E(RΛ; T )

15: if E > E∗ then
16: E∗ ← E

17: Λ∗ ← Λ

18: end if
19: end if
20: end while
21: Return Λ∗

1.1.2 Coordinate Ascent

Coordinate ascent is another technique that can be used to solve non-smooth opti-
mization problems. One of the benefits of the algorithm is that it reduces multivari-
ate search problems into a set of single variable problems, which are often easier
to tackle in non-smooth spaces. The algorithm first chooses one parameter to be
free. It then holds all other parameters as fixed and optimizes the objective function
over the single free parameter. This produces an uphill step along one coordinate
dimension. This process is repeated for all parameters over a number of iterations.
The technique is known to converge slowly on objective functions with long ridges.
Variations of the method, including Powell’s method, have been proposed to over-
come this issue (Press et al. 1992).

Coordinate ascent can be applied to the optimization problem under considera-
tion regardless of whether we choose to optimize in the original Euclidean parame-
ter space (Rd ) or the mapped multinomial parameter space (Pd−1). Optimizing over
the manifold may be beneficial due to the reduction in the number of repeated local
extrema.

If coordinate ascent is performed over the multinomial manifold, then only a mi-
nor modification to the original algorithm is necessary. All one dimensional searches
done by the algorithm will be performed as if they were being done in R

d . How-
ever, this does not ensure that the updated parameter estimate will be a point on the
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Algorithm 2 Coordinate Ascent

1: Initialize Λ0 ← (λ0
1, λ

0
1, . . . , λ

0
d)

2: t ← 1
3: repeat
4: Λt ← Λt−1

5: for i from 1 to d do
6: λt

i ← arg maxλi
E(RΛt ; T )

7: λt
j ← λt

j∑′
i λt

i′
∀j (optional)

8: end for
9: until |E(RΛt ; T ) − E(RΛt−1; T )| > ε

10: Return Λt

manifold. Therefore, after a step is taken in R
d , we project the point back onto the

manifold, which we showed is always possible. Note that this projection preserves
the function value since the unnormalized and projected parameter estimates lead to
equivalent rankings. Therefore, the optimization is implicitly being done in a space
that we know how to optimize over (Rd ), but is continually being projected back
onto to the manifold.

The coordinate ascent algorithm is given in Algorithm 2. In the algorithm, Λt

denotes the parameter setting during iteration t . The algorithm first initializes Λ0,
which can be done uniformly (i.e., λ0

i = 1
d

), randomly, or in a more informed man-
ner using prior knowledge about the importance of each feature. Then, each λt

i is
updated according to arg maxλi

E(RΛt ; T ), which holds all parameter values fixed
except λi , and finds the setting of λi that results in the maximum evaluation metric
score. This single dimensional search problem can be solved using a line search. The
line search can be done exhaustively or finite difference derivatives can be estimated
and used in lieu of exact derivatives. Of course, if E is partially differentiable with
respect to each parameter, then it may be possible to solve the single dimensional
search problem analytically. After λt

i is updated, the updated parameter vector Λt is
optionally projected back onto the multinomial manifold.

The algorithm continues until the evaluation metric does not change more than ε

between subsequent iterations. If ε is set to 0, then the algorithm stops only when no
more uphill moves are possible. Setting ε > 0 may cause the algorithm to return a
solution that is not maximal. However, it also results in faster training and can help
minimize overfitting.

Our implementation of the algorithm uses a line search to solve the single dimen-
sional search problem, projects updated parameters onto the multinomial manifold,
and uses ε = 0.0001. After extensive evaluation, it was found that these settings
resulted in the most well-behaved configuration of the algorithm.
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1.1.3 Discussion

Finding the maximum of an arbitrary evaluation function E using direct search can
be very difficult and error-prone, especially in high-dimensional space. Only a grid
search method, with a suitably chosen granularity, is guaranteed to find a global
maxima. Coordinate ascent is a local search technique that only finds a global max-
ima if the evaluation function E is concave. The experiments using this approach,
show that, for a certain set of term and phrase features, mean average precision is
approximately concave over a wide range of collections. This may be the case for
many related applications and feature sets, but is not true in general, as was pointed
out in Gao et al. (2005). For functions with many local maxima, a multiple random
restart strategy can be used to increase the chances of finding a global solution.

Another potential disadvantage of the direct search techniques presented here is
the fact that they are fully supervised. If few or no training data exist, then unsuper-
vised and active learning (Shen and Zhai 2005) techniques from machine learning
can potentially be employed. However, such methods are out of the scope of the
current work.

Despite these disadvantages, the approach has the advantage that it can make use
of all of the training data and does not suffer in the face of highly unbalanced train-
ing data. When training using maximum likelihood or SVMs, it is often important
to have balanced training data. However, in information retrieval it is very often the
case that there are many more relevant documents compared to non-relevant doc-
uments for a given query. For this reason, the training data are very unbalanced.
Nallapati found that the data needed to be balanced in order to achieve good gener-
alization performance (Nallapati 2004). Balancing was done by undersampling the
majority (non-relevant) class. Although this led to improved performance over the
unbalanced case, it had the negative effect of throwing away valuable training data.
Other solutions to the unbalanced data problem for SVMs exist that do not require
training data to be compromised, such as allowing separate costs for training errors
in the positive and negative classes (Morik et al. 1999). Since the coordinate ascent
approach does not make any implicit or explicit assumptions about the underlying
distribution, we can use the training data in their entirety.

1.2 Optimization Using Surrogate Functions

A number of other estimation techniques have been proposed for training linear
feature-based models for information retrieval. The common thread among these
approaches is that they do not attempt to directly search in the evaluation metric
space. Instead, they typically optimize some smooth surrogate function that is re-
lated to the evaluation metric space. By using a smooth, typically convex, surrogate
function, it is possible to apply standard optimization machinery to the problem.
However, it is not always the case that the optimum of the surrogate is equal to the
optimum of the actual metric. For example, the surrogate function may be a lower
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or upper bound on the metric. Although these surrogates may yield reasonable es-
timates, many exhibit metric divergence. In certain cases, however, the optimum of
the surrogate is equal to the optimum of the evaluation metric, thereby eliminating
any metric divergence. In the remainder of this section we summarize the various
techniques proposed and describe the properties of their surrogate functions.

1.2.1 Perceptron Learning

Gao et al. proposed using a perceptron-based algorithm to optimize mean average
precision (Gao et al. 2005). The technique uses pairwise preferences as training
data (Wong and Yao 1988). That is, training data, denoted by R, come in the form
of tuples of the form (di, dj )q , which indicates that document i should be ranked
higher than document j for query q . There are various ways to derive such pref-
erences from manual relevance judgments or click-through data (Joachims 2002).
The perceptron learning algorithm is demonstrated in Algorithm 3. The perceptron

Algorithm 3 Perceptron Learning

1: Initialize Λ0 ← (1,0, . . . ,0)

2: for t from 1 to MAX_ITERATIONS do
3: for each (di, dj )q ∈ R do
4: if ΛT f (dj , q) > ΛT f (di, q) then
5: λi ← λi + η(f (di, q) − f (dj , q))

6: end if
7: end for
8: end for
9: Return Λ

approach, like the coordinate ascent algorithm described earlier, is not guaranteed to
find a global maxima. Instead, the perceptron learning algorithm optimizes a lower
bound on mean average precision. Therefore, metric divergence may be a problem.
In addition, this technique cannot easily be applied to other evaluation metrics. De-
spite this, the algorithm has been shown to produce reasonable effectiveness over a
wide range of data sets.

1.2.2 RankNet

Another approach, based on neural networks, called RankNet, has recently been
proposed (Burges et al. 2005). A RankNet is trained using gradient descent over the
following differentiable cost function:

C(Q, R) =
∑

q∈Q

∑

(i,j)∈R
−P̂q,i,j logPq,i,j − (1 − P̂q,i,j ) log(1 − Pq,i,j ), (6.2)
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where Q is the set of queries, R is the set of pairwise preferences used for training,
Pq,i,j = 1

1+exp[s(q,dj )−s(q,di )] is the probability that document i ranks higher than
document j for query q under the current neural network (s(q, di) is the score of
document d for query q as computed by the neural network), and P̂q,i,j is the target
probability of document i being ranked higher than j (obtained from training data).

The gradients of this smooth cost function can be computed analytically, which
makes it easy to apply gradient descent to solve the optimization problem. How-
ever, the model suffers from standard neural network training issues, such as local
minima. In addition, the cost function, which is simply the cross entropy between
the target distribution and the distribution modeled using the neural network, does
not minimize (or maximize) any specific retrieval metric. Therefore, it is vulnerable
to metric divergence. Several recent studies have attempted to address this problem
(Burges et al. 2007; Matveeva et al. 2006).

We also note that RankNet is a linear feature-based model when the underly-
ing neural network has no hidden layers. The underlying ranking function, in the
presence of hidden layers, may be highly non-linear.

1.2.3 Support Vector Machine Optimization

Finally, Joachims proposed a large margin training technique for multivariate per-
formance measures (Joachims 2002, 2005). The technique uses a surrogate objective
function based on SVM using structured outputs that can be solved using quadratic
programming. The approach can maximize a variety of information retrieval met-
rics, such as precision at k, precision-recall break-even, and area under the ROC
curve. In fact, any metric that can be computed based solely on a contingency table
can be maximized efficiently. One particularly nice property of these metrics is that
the maximum found is the actual maximum, and therefore, there is no metric diver-
gence. However, this is not the case for any arbitrary metric. Recently, approaches
based on this work have been proposed to optimize lower bounds of average pre-
cision (Yue et al. 2007) and nDCG (Le and Smola 2007). Furthermore, since the
method is based on SVMs, it is easy to employ the “kernel trick” and implicitly
project inputs into a higher, possibly infinite, dimensional space.

1.2.4 Discussion

There are two downsides to these types of approaches. First, they specifically work
for one metric or a family of metrics. Second, many of them suffer from metric
divergence, even though the resulting optimization problems are easier and more ef-
ficient to solve using well-established optimization techniques. The grid search and
coordinate ascent algorithms, however, do not suffer from either of these problem.

There currently is no well developed understanding of best practices for esti-
mating the parameters of linear feature-based information retrieval models. Most
studies have looked at traditional machine learning problems, which typically differ
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from information retrieval tasks. Therefore, an interesting, and necessary, direction
of future work is to undertake a comprehensive evaluation of these techniques, in
terms of how effective they are across a wide range of retrieval data sets and met-
rics, how well they generalize, and how efficient they are. Another critical question
that must be answered is whether or not non-linear models, such as those that arise
when using neural networks or SVMs with non-linear kernels, are more effective
than simple linear models.

2 Feature Selection

As we showed in Chap. 2, many different types of retrieval models have been pro-
posed throughout the years. These include Boolean, vector space, logic-based, prob-
abilistic, and feature-based. One critical factor that must be considered when devel-
oping information retrieval models is the type of features to be used or modeled.
Term frequency, inverse document frequency, document length, and term proximity
are the fundamental features that are used in most of the modern information re-
trieval models including BM25 (Robertson and Walker 1994), language modeling
(Song and Croft 1999), divergence from randomness (DFR) (Amati and van Rijs-
bergen 2002), axiomatic approach to IR (Fang and Zhai 2005), and the MRF model.

However, most of these models make use of hand selected, statistically inspired,
or implicit features. Therefore, it is often difficult to adapt these types of mod-
els to new tasks, especially when the task has new, completely different types
of features associated with it. Applying these models to new tasks typically re-
quires an information retrieval expert to modify the underlying model in some
way in order to properly account for the new types of features. This is a common
theme in information retrieval modeling. Examples include incorporating PageR-
ank as a prior into the BM25 model (Craswell et al. 2005b), allowing term prox-
imity information as evidence in BM25 (Büttcher et al. 2006a), modeling docu-
ment structure in both language modeling and BM25 (Ogilvie and Callan 2003;
Robertson et al. 2004), including term dependence in the DFR model (Peng et al.
2007), and allowing term associations in the axiomatic model (Fang and Zhai 2006).
These examples illustrate that incorporating new types of evidence and features into
existing retrieval models is often non-trivial and can require significant amounts of
human involvement.

Therefore, it is desirable for models to be flexible and robust enough to easily
handle a wide range of features and provide a mechanism for automatically selecting
relevant features. Then, given a large pool of candidate features, it would be possible
to automatically learn the best model. Under this model learning paradigm, there
would no longer be a need to manually tune or modify some existing retrieval model
whenever a new task or data set is encountered. Instead, attention could be paid to
developing a rich pool of features that are widely applicable.

We argue that the MRF model, and similar types of models, such as Gao et al.’s
linear discriminant model (Gao et al. 2005), are the correct types of models to use
when model flexibility and robustness are important. In this chapter, we describe an
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automatic, supervised feature selection algorithm that can be used in conjunction
with these types of models. The algorithm is general and can be applied to a wide
range of feature sets, evaluation metrics, and methods for learning to rank. Besides
being more robust and flexible, we also show that models constructed using the al-
gorithm are often significantly more effective than the hand built basic MRF models
described in Chap. 3.

2.1 Related Work

A number of feature selection techniques for random field models have been pro-
posed in the machine learning literature (Della Pietra et al. 1997; McCallum 2003).
The algorithm is an adaptation of the feature induction technique proposed by Della
Pietra et al. (1997). Della Pietra et al. propose a greedy approach for adding induced
features to the underlying model. During each iteration, the information gain for
each induced feature is computed. The feature with the highest information gain
is then added to the model and the entire model is retrained. Although we do not
actually induce new features in the present work, we use a similar algorithm for se-
lecting from a large pool of features. Another difference is that the algorithm scores
each feature according to any information retrieval metric of interest. The feature
that improves the metric the most is the one that is added to the model.

There has also been some information retrieval research into automatically learn-
ing ranking function using genetic programming (Fan et al. 2004). These algorithms
attempt to find a locally optimal ranking function by iteratively “evolving” a popu-
lation of ranking functions using mutations and crossovers. Ranking functions are
represented as arithmetic trees that consist of arithmetic operators and standard bag-
of-words information retrieval features (e.g., term frequency, document length, etc.).
The learned ranking functions have been shown to be significantly more effective
than baseline ranking algorithms for several data sets (Fan et al. 2004).

Finally, result fusion techniques are another way of combining evidence from
multiple types of features (Bartell et al. 1994; Fox and Shaw 1993). If each individ-
ual feature is used as a ranking function, then data fusion techniques can be used to
determine the best way to combine the rankings. However, using these techniques
in this way does not directly address the feature selection problem, which is the
primary focus.

2.2 Automatic Feature Selection

As we described before, feature selection techniques are commonly used in the ma-
chine learning community. In this section, we describe a feature selection algorithm
that can be used with the MRF model. The algorithm is specifically designed to be
used for information retrieval tasks.
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Feature selection is important for a number of reasons. First, it provides a gen-
eral, robust way of building models when there is little a priori knowledge about
the types of features that may be important for a given task or data set. By using a
feature selection algorithm, the model designer can focus less on building the best
model and can instead focus on designing good features. Second, feature selection
can reduce the number of noisy or redundant features in a large feature set. Such
features may reduce training efficiency and may result in a model that contains a
number of non-identifiable parameters. Non-identifiable parameters are those that
cannot be reasonably estimated given the training data. This often results from hav-
ing redundant or highly correlated parameters. Feature selection helps overcome the
problems associated with non-identifiable parameters. Finally, feature selection can
provide insights into the important features for a given task or data set. By inspect-
ing the order in which features are selected, we can often learn what characteristics
of a given task are the most important or the most exploitable. This knowledge can
then be used by the feature engineer to construct better features.

We now describe the automatic feature selection algorithm. While the discussion
will focus on how the algorithm can be applied to the MRF model for IR, it should
be noted that it can also be applied to a variety of other models. In particular, it can
be easily applied to any linear feature-based model.

Let Mt denote the model learned after iteration t . Features are denoted by f and
the weight (parameter) associated with feature f is denoted by λf . The candidate
set of features is denoted by F . The entire set of feature weights for a model is de-
noted by Λ. A model, then, is represented as set of feature/weight pairs. Finally, we
assume that SCORE(M) returns the utility or ‘goodness’ of model M with respect
to some training data. The utility function and the form of the training data largely
depends on the underlying task. For example, for ad hoc retrieval, it is likely that
SCORE(·) would return the mean average precision of using model M against some
set of training data, such as TREC topics and relevance judgments. For a homepage
finding task, SCORE(·) might be another metric, such as mean reciprocal rank. The
important thing to note here is that any utility function, regardless of whether or not
it is differentiable with respect to the model parameters, can be used. The ultimate
goal of our feature selection algorithm is to select features and set feature weights
in such a manner as to maximize the metric imposed by SCORE(·).

The algorithm begins with an empty model (i.e., M0 = {}). Then, we temporar-
ily add a feature f to the model. We then hold all weights except λf fixed and find
the setting for λf that maximizes the utility of the augmented model. This step can
be done using any number of learning-to-rank techniques or parameter estimation
techniques, including the ones described earlier in this chapter. The utility of fea-
ture f (SCOREf ) is defined to be the maximum utility obtained during training.
The feature’s utility measures how good the current model would be if the feature
were added to it. This process is repeated for every f ∈ F , resulting in a utility
being computed for every feature in the candidate pool. The feature with the maxi-
mum utility is then added to the model and removed from F . After the new feature
is added, we can, optionally, retrain the entire set of weights. The entire process
is then repeated until either some fixed number of features have been added to the
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model or until the change in utility between consecutive iterations drops below some
threshold. Algorithm 4 provides pseudo-code for this algorithm.

Note that the algorithm is not guaranteed to find the global maximum for
SCORE(M). Instead, we are only guaranteed to find a local maxima. Many factors,
including properties of SCORE(M), the number of features used, and the properties
of the feature used, will affect the quality of the learned model.

Algorithm 4 Feature selection algorithm
1: t ← 0
2: Mt ← {}
3: while SCORE(Mt) − SCORE(Mt−1) > ε do
4: for f ∈ F do
5: λ̂f ← arg maxλf

SCORE(M ∪ {(f,λf )})
6: SCOREf ← SCORE(M ∪ {(f, λ̂f )})
7: end for
8: f ∗ ← arg maxf SCOREf

9: M ← M ∪ {(f ∗, λ̂f ∗)}
10: Λ ← arg maxΛ SCORE(M) (optional)
11: F ← F − {f ∗}
12: t ← t + 1
13: end while

2.3 Evaluation

In this section we experimentally evaluate various aspects of the greedy feature
selection algorithm.

In order to investigate the strengths and weaknesses of the algorithm, we evaluate
its effectiveness on a wide range of ad hoc retrieval data sets. The TREC data sets
used in the experiments are summarized in Appendix A.

All collections were stopped using a standard list of 418 common terms and
stemmed using a Porter stemmer. Only the title portion of the TREC topics are
used to construct queries. The primary evaluation metric is mean average precision.
Statistical significance is determined using a one-tailed paired t-test evaluated at the
p < 0.05 level.

We now describe the feature candidate pool in terms of the feature representation
scheme we described in Sect. 4. For dependence model type, the features may be
either FI (full independence), SD (sequential dependence), or FD (full dependence).
The clique set type may either be TQD, OQD, or UQD. The weighting functions in-
clude LM, BM25, [LM, BM25]-O-[1, 2, 4, 8, 16, or 32], and [LM, BM25]-U-[1,
2, 4, 8, 16, 32, or unlimited]. As we see, the pool is very robust and covers many
different types of important features. It includes features that span all three type of
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Table 6.1 Training and test set mean average precision values for no retraining and retraining

No Retrain Retrain

Train Test Train Test

AP 0.1863 0.2266 0.1865 0.2246

WSJ 0.2700 0.3553 0.2703 0.3543

ROBUST04 0.2387 0.3079 0.2391 0.3065

WT10G 0.2344 0.2129 0.2357 0.2140

dependence, use all three types of clique sets, allow both Dirichlet or BM25 weight-
ing, and vary the window sizes for the ordered and unordered window matchings
across a wide range of values. In total, after removing trivial and duplicate features,
the candidate pool consists of 48 features.

For all of the experiments, features are added until there is no change in training
set mean average precision between iterations (i.e., ε = 0) or until we have added
5 features. Preliminary experiments showed that adding more than 5 features never
resulted in significantly different training or test rest results.

2.3.1 No Retraining vs. Retraining

We wish to analyze what effect, if any, retraining (see Algorithm 4, line 10) has on
training and generalization properties of the model. Table 6.1 summarizes the mean
average precision obtained on the training and test set when retraining is used and
when it is not.

We first investigate whether or not the models learned with retraining vary sig-
nificantly from those learned without retraining. As Table 6.1 shows, the training set
mean average precision values for no retraining and retraining are nearly equivalent
for every data set. In fact, the differences are statistically indistinguishable. In addi-
tion, we discovered that the same set of features were added regardless of whether
or not retraining was done or not. Therefore, it appears as though retraining has little
effect on the learned model, both in terms of the features selected and the training
set mean average precision.

Next, we study the effect of retraining on the generalization properties of the
model. As the test set results in Table 6.1 show, there is very little difference in
mean average precision for no retraining versus retraining. The results, again, are
statistically indistinguishable for every data set. Hence, retraining does not signifi-
cantly affect how well the model generalizes to unseen data.

Therefore, given that retraining requires more computational power, has no ef-
fect on either the learned model or the generalization properties of the model, we
conclude that there is no need to retrain the model each iteration.
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Fig. 6.1 Mean average precision versus number of iterations for the training and test sets of the
AP, WSJ, ROBUST04, WT10G and GOV2 data sets

2.3.2 Number of Features

We now analyze how sensitive the models are to the number of parameters, both in
terms of potential overfitting, and in terms of test set effectiveness.

Figure 6.1 plots the training and test set mean average precision versus the num-
ber of features that have been added to the model. As the figure indicates, there
appears to be little, if any overfitting happening. The test set mean average precision
never significantly drops as more features are added to the model.
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2.3.3 Feature Analysis

The greedy nature of the feature selection algorithm provides us with a mechanism
for analyzing the importance of different types of features across data sets. By look-
ing at the order in which features are selected, and the weight assigned to each, we
can develop deeper insights into the role that features play for a given task and/or
data set.

For example, for the WT10G data set, with no retraining, the features are selected
in the following order:

(FI, TQD, BM25) : 0.8138 (6.3)

(FD, UQD, LM-U-8) : 0.0001 (6.4)

(SD, UQD, BM25-U-unlimited) : 0.0090 (6.5)

(FD, UQD, BM25-U-8) : 0.1575 (6.6)

(SD, OQD, BM25-O-8) : 0.0196 (6.7)

where the numbers after the colons are the weights assigned to each feature in the
final model.

As Fig. 6.1 shows, there is a large increase in both training and test set mean
average precision after the second feature, LM-U-8, is added to the model. This large
increase, which is also exhibited for the GOV2 data set, reiterates the importance
of term proximity models for large Web collections (Metzler and Croft 2005). We
see that simply adding a single proximity feature increases mean average precision
substantially. However, there is a much smaller effect observed after further term
proximity/dependence model features are added to the model.

To provide a different example, we consider the order in which features are se-
lected for the WSJ collection. The features selected, in order, are:

(FI, TQD, BM25) : 0.5864 (6.8)

(SD, UQD, BM25-U-1) : 0.3746 (6.9)

(FD, UQD, BM25-U-32) : 0.0193 (6.10)

(FI, TQD, LM) : 0.0196 (6.11)

(FD, UQD, BM25-U-unlimited) : 0.0001 (6.12)

As with the WT10G model, the first feature selected is the full independence,
single term, BM25 feature. In fact, this feature was the first selected for every data
set. This is not surprising, however, since the overwhelming importance of single
term features has long been understood.

However, no other strong regularities were observed across data sets. This in-
dicates that each data set has unique characteristics that make certain features
more discriminative than others. Such characteristics may include things like query
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Table 6.2 Comparison of test set mean average precision for language modeling (MRF-FI),
BM25, MRF model using language modeling weighting (MRF-SD), MRF model using BM25
weighting (MRF-BM25), and MRF learned using the greedy feature selection algorithm (MRF-
FS). A † indicates a statistically significant improvement over both the MRF-FI and BM25 models
and a ‡ indicates a significant improvement over the MRF-BM25 model

MRF-FI BM25 MRF-SD MRF-BM25 MRF-FS

AP 0.2077 0.2149 0.2128 0.2210 0.2266†‡

WSJ 0.3258 0.3332 0.3429† 0.3512† 0.3553†‡

ROBUST04 0.2920 0.2892 0.3092† 0.3101† 0.3079†

WT10G 0.1861 0.1948 0.2140† 0.2129† 0.2129†

GOV2 0.2984 0.2971 0.3360† 0.3476† 0.3398†

length, noise, document length distribution, and properties of the underlying vocab-
ulary. This suggests that no single model, with a fixed feature set and fixed feature
weights, can be applied to every possible task and data set. Instead, adaptive models
and techniques, such as the one presented here, can provide a means for automati-
cally and robustly learning the best set of features to use on a task-by-task basis.

2.3.4 Summary of Results

Finally, we compare the retrieval effectiveness of the models automatically learned
using the feature selection algorithm (MRF-FS) with several other retrieval models,
including language modeling (MRF-FI model), BM25, and two MRF models with
hand selected features (MRF-SD and MRF-BM25, as defined in Chap. 3) that we
have been shown to be highly effective. For each model, parameters are tuned on the
training set to maximize mean average precision. Therefore, every model is properly
trained in accordance with the same evaluation metric. This allows us to compare
the effectiveness of automatically learned models with models that use manually
chosen features and have been proven to be highly effective.

Our results, which are summarized in Table 6.2, support previous observations
that show that using MRF models with hand chosen features are generally more
effective than bag-of-words models for ad hoc retrieval. However, we are interested
in how effective the automatically learned models are. For both the AP and WSJ data
sets, the mean average precision of the automatically learned model is statistically
significantly better than all of the other models, including the MRF models with
manually chosen features. The improvement in mean average precision over BM25
for the AP data set is 5.4% and 6.6% on the WSJ data set.

On the ROBUST04, WT10G, and GOV2 data sets, the automatically learned
models are statistically significantly better than language modeling and BM25, but
statistically indistinguishable from the two models with hand selected features. De-
spite the lack of a statistically significant improvement over the models with hand
selected features, the results still provide evidence that the learned model is highly
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effective. Indeed, compared to BM25, the automatically learned model is 6.5% bet-
ter for ROBUST04, 9.3% better for WT10G, and 14.4% better for GOV2.

Therefore, the results show that the greedy feature selection algorithm produces
very effective models that are competitive with, and often significantly better than
models with hand selected features. The most important result, however, is that ev-
ery automatically learned model was significantly better than the two state-of-the-art
bag-of-words models. This result is very powerful, as it shows that using this frame-
work, models can be automatically learned from a rich set of features and are very
likely to be significantly better than the best hand crafted bag-of-words models.

3 Learning to Efficiently Rank

To be successful, search engines must return the most relevant information to the
user in a short amount of time. However, efficiency (speed) and effectiveness (rel-
evance) are competing forces that often counteract each other. It is often the case
that methods developed for improving relevance incur moderate-to-large computa-
tional costs. Therefore, sustained relevance gains must often be counter-balanced
by buying more (or faster) hardware, implementing caching strategies if possible,
or spending additional effort in low-level optimizations.

It is common for search engines to select a single operating point in the space of
all possible efficiency-effectiveness tradeoffs. However, users and information needs
are diverse. While most users may want their search results immediately, others
may not mind waiting a little extra time if it means their results, on average, would
be better. This same idea can be applied to information needs. Certain classes of
queries, such as those for simple information needs, are expected to be answered
immediately. However, for very complex information needs, users may be willing
to incur additional latency for better results. Hence, operating at a “one size fits all”
point along the tradeoff curve may not be optimal for all users and queries.

This section explores issues related to the efficiency-effectiveness tradeoff in the
context of developing highly effective, highly efficient search engine ranking func-
tions. We describe a framework for automatically learning ranking functions that
optimize the tradeoff between efficiency and effectiveness. Traditional learning-to-
rank approaches (Liu 2009), have focused entirely on effectiveness. Therefore, it is
more appropriate to think of the proposed approach as a learning-to-efficiently rank
method. We will show that learning to rank (i.e., only optimizing effectiveness) is
simply a special case of the proposed framework.

The framework consists of two components. The first is a set of novel metrics
for quantifying the tradeoff between efficiency and effectiveness. The second is an
approach to optimizing the metrics for a class of linear ranking functions. As we
will show, the framework is robust and effective. It can be used to learn a “one size
fits all” ranking function, or be used to learn different ranking functions for different
classes of users and information needs that may have their own unique efficiency-
effectiveness tradeoff requirements.
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The remainder of this section, which is based on Wang et al. (2010a), describes
the theoretical foundations of the framework and concludes with an empirical eval-
uation that shows the approach yields models that are both effective and efficient.

3.1 Related Work

There has been a great deal of research devoted to developing efficient and effective
retrieval systems. This has given rise to two distinct research threads. The focus of
the first thread is on designing effective retrieval models. This has given rise to a
steady stream of effectiveness-centric models, such as language models for infor-
mation retrieval (Ponte and Croft 1998), the BM25 model (Robertson et al. 1994),
numerous term proximity models (Metzler and Croft 2005; Büttcher et al. 2006a;
Tao 2007; Bai et al. 2008), and learning to rank (Gey 1994; Nallapati 2004;
Burges et al. 2005; Liu 2009). The other thread is devoted to building efficient
retrieval systems. Improved query execution strategies (Strohman et al. 2005;
Anh and Moffat 2006) and advanced index pruning techniques (Carmel et al. 2001;
Büttcher et al. 2006b; Ntoulas and Cho 2007) are just two examples of successful
research directions along this thread.

The fact that these two threads are almost always investigated exclusively of each
other has created a virtual dichotomy in the information retrieval research commu-
nity. On one side there are researchers who develop highly effective, yet practically
infeasible models and methods en masse. On the other side of the dichotomy are the
researchers who design blazingly fast, yet spectacularly ineffective systems. One of
the goals of the approach is to take a step toward eliminating this dichotomy by
taking an efficiency-minded look at building effective retrieval models.

Our problem is quite different from previous work in index pruning (Carmel et
al. 2001; Buttcher and Clarke 2005; Büttcher et al. 2006b; Anh and Moffat 2006;
Ntoulas and Cho 2007) and query segmentation (Bendersky et al. 2009). The pri-
mary goal of index pruning is to create a small index and search over this reduced
index to gain better efficiency. In query segmentation, a syntactic parser is used to
identify key term dependence features in a query, and only these key features, rather
than all term dependence features, are used to retrieve documents. While both tech-
niques are designed for dealing with query latency, these methods do not directly
optimize the underlying efficiency and effectiveness metrics, e.g., optimizing index
pruning or optimizing segmentation accuracy is not guaranteed to optimize retrieval
effectiveness and efficiency, and their tradeoff.

Another way to speed up query evaluation is through caching (Baeza-Yates et al.
2007) (i.e., term posting lists or query search results caching). The problem being
addressed here and caching can be viewed as two complementary approaches for
improving efficiency in search. Cached postings/results for a given query can be
used during the query evaluation stage to improve efficiency, where the ranking
function has been specified. In contrast, we learn efficient ranking functions, where
a query evaluation strategy and a caching strategy are assumed to be given.
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There have been several solutions proposed for dealing with such tradeoffs in
various contexts. First, in the machine learning community, it was shown that l1
regularization is useful for “encouraging” models to have only a few non-zero pa-
rameters, thereby greatly decreasing the time necessary to process test instances
(Tibshirani 1994). Thus, l1 regularized loss functions balance between model ef-
fectiveness (e.g., mean squared error, classification accuracy, etc.) and efficiency
(number of non-zero parameters). However, quantifying efficiency in this way is
overly simple and not very flexible. Indeed, the efficiency of most ranking functions
cannot be modeled simply as a function of the number of non-zero parameters,
since the costs associated with evaluating different features are unlikely to be uni-
form (e.g., unigram scoring vs. term proximity scoring). The efficiency of a system
ultimately depends on the specific implementation, architecture, etc. Therefore, l1
regularization is too simple to be effective for jointly optimizing the effectiveness
and efficiency of ranking functions.

In a similar direction, Collins-Thompson and Callan (2005) investigated strate-
gies for robust query expansion by modeling expansion term selection and weight-
ing using convex programming. Their model included a variant of l1 regularization
that imposed a penalty for including common terms in the expanded query, since
such terms would likely increase query execution time. This was the first effort that
we are aware of that modeled efficiency in a search engine-specific manner. How-
ever, we note that query expansion and constructing ranking functions are two dif-
ferent problems and hence present different challenges. Furthermore, in this work,
we model system efficiency using actual query execution times, instead of simple
surrogates, such as term frequency, that may or may not accurately model the actual
efficiency of the underlying retrieval system.

Finally, the work can be viewed as an enhancement of existing learning-to-rank
strategies, which have, until now, focused exclusively on effectiveness. We expect
the exploitation of efficiency in constructing effective ranking functions will allow
for rapid development of highly effective and efficient retrieval models.

3.2 Tradeoff Metrics

In this section we describe a class of tradeoff metrics that consider both effectiveness
and efficiency. We begin by defining a general class of efficiency functions and
describing how different functions yield different tradeoffs.

3.2.1 Measuring Efficiency

There are many different ways to measure the efficiency of a search engine, such as
query execution time and queries executed per second. We are primarily interested
in measuring how efficient a ranking function is at producing a ranked list for a
single query. Throughout the remainder of this section, we will assume that the
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measure of interest is query execution time, although any other query-level measure
of efficiency could also be used.

Query execution times are, in theory, unbounded. This makes them difficult to
work with from an optimization point of view. Instead, we would like to map query
execution times into the range [0,1]. We accomplish this by defining a function
σ(·) : R

+ → [0,1] that takes a query execution time, denoted by τ(Q) as input and
returns an efficiency metric in the range [0,1], where 0 represents an inefficient
ranking function and 1 represents an efficient ranking function.

We now define four different efficiency metrics. Each metric differs by how σ(·)
is defined.

Constant The most trivial efficiency metric is defined as σ(Q) = c, for c ∈ [0,1].
This constant efficiency metric is always the same, regardless of the query execution
time. This is the default assumption made by previous learning-to-rank approaches,
which ignore efficiency altogether.

Exponential Decay This loss function is defined as:

σ(Q) = exp
(
α · τ(Q)

)
, (6.13)

where α < 0 is a parameter that controls how rapidly the efficiency metric decreases
as a function of query execution time. If a large (negative) decay rate (i.e., α) is
specified, then the metric will drop off very quickly, penalizing all but the fastest
query execution times.

Step Function Often it is necessary to incorporate query execution time prefer-
ences into the efficiency metric. For instance, users may have a certain tolerance
level for query execution time, such that they would expect the time to be less than
a target t milliseconds for each query. A step function can naturally account for this
requirement, as follows:

σ(Q) =
{

1, if τ(Q) ≤ t,

0, if τ(Q) > t.
(6.14)

The step function metric is maximal (1) when query execution time is less than t

and minimal (0) otherwise.

Step + Exponential Decay If query execution time exceeds the threshold t in the
step function efficiency metric, but only by a small amount, the metric assigned will
still be 0, which may be overly harsh. Instead, it may be more reasonable to define
a soft loss-like function, as follows:

σ(Q) =
{

1, if τ(Q) ≤ t,

exp(α · (τ (Q) − t)), if τ(Q) > t,
(6.15)
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Fig. 6.2 Efficiency
functions. Constant and
exponential decay are self
explanatory. The step
function and step +
exponential function can
model time preferences
(threshold t = 300 ms here);
when exceeding the time
requirement, the ranking
model either gets zero
efficiency value or an
exponentially lower
efficiency value (respectively)

where α < 0. The resulting function is a step function up until the threshold t and
an exponential decay after time t with parameter α.

Figure 6.2 summarizes the four efficiency metrics just described. Note that there
are many other ways to define σ(·) beyond those explored here. The best functional
form for a given task will depend on many factors, including data set size, hardware
configuration, among others.

3.2.2 Measuring Effectiveness

There has been a great deal of research into evaluating the effectiveness of infor-
mation retrieval systems. Therefore, we simply make use of existing effectiveness
measures here. We define the effectiveness of a query Q as γ (Q).

As with the efficiency metrics, we are primarily interested in effectiveness mea-
sures with range [0,1]. Most of the commonly used effectiveness metrics satisfy
this property, including precision, recall, average precision, and NDCG. We will
exclusively focus on average precision as the effectiveness metric of interest, al-
though any of the above metrics can be substituted in the framework without loss of
generality.

3.2.3 Efficiency-Effectiveness Tradeoff Metric

Our goal is to automatically learn ranking models that achieve an optimal middle
ground between effectiveness and efficiency. However, before we can learn such a
well-balanced model, we must define a new metric that captures the tradeoff. The
metric, which we call Efficiency-Effectiveness Tradeoff (EET), is defined for a query
Q as the weighted harmonic mean of efficiency σ(Q) and effectiveness γ (Q):

EET(Q) = (1 + β2) · (γ (Q) · σ(Q))

β2 · σ(Q) + γ (Q)
, (6.16)
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where β is a parameter that controls the relative importance between effectiveness
and efficiency. In this work, we set β = 1, which weighs both equally, but other
settings can be trivially applied in the approach as well.

Given a ranking model R, the value of EET is computed for each query. To quan-
tify the average tradeoff performance across N queries for a given ranking function,
we define the following metric:

MEET(R) = 1

N

∑
EET(Q) (6.17)

which is simply the mean EET value for the set of N queries.
It should now be clear that different choices of efficiency metrics will have a

direct influence on MEET. For instance, a sharply decaying exponential efficiency
metric represents a low tolerance for inefficient ranking models. Under such a func-
tion, the efficiency metric for a ranking function with high query execution time
will likely be extremely low, resulting in a small MEET value, even if the ranking
function is effective. On the other hand, if the efficiency function decays slowly or
is constant, a ranking function with high effectiveness will also likely have a large
MEET value.

Different combinations of efficiency metric and effectiveness metric will give
rise to different MEET instantiations. Therefore, MEET is not a single metric, but
a family of tradeoff metrics that depends on an efficiency component σ(Q), an
effectiveness component γ (Q), and a tradeoff factor β .

3.3 Model

We focus our attention on linear feature-based ranking functions, such as those are
derived within the MRF retrieval framework, which have the following form:

S(Q,D) =
∑

j

λjfj (Q,D), (6.18)

where Q is a query, D is a document, fj (Q,D) is a feature function, and λj is the
weight assigned to feature j .

Since we are also interested in optimizing for efficiency, we would like a mech-
anism for altering the efficiency characteristics of the ranking function. The most
straightforward way to accomplish this is to eliminate one or more features from
the ranking function. A logical way of choosing features to eliminate are those with
small weights, as is done with l1 regularization. We adopt a slight variant of this
approach, where we assume that each weight λ also takes on a parametric form, as
follows:

λj (Q) =
∑

i

wigi(Q), (6.19)



142 6 Model Learning

where gi(Q) is a meta-feature that takes Q as input (discussed a bit later), and
wi is the weight assigned to the meta-feature. Notice that the weights λ are now
query dependent, which means they can adapt better to different query scenarios
via the feature functions gi . We will show shortly that allowing λ to depend on
Q provides an intuitive way to prune features. This is precisely the same query-
dependent feature weighting model that was described in Chap. 5.

Plugging these query-dependent weights into the original linear ranking function
(Eq. 6.18) gives us the following ranking function:

S(Q,D) =
∑

i

wi

∑

j

gi(Q)fj (Q,D) (6.20)

which is still a linear ranking function, but now with respect to wi , which are the
global, query-independent free parameters that must be learned.

As a concrete example of a highly effective ranking function that takes on this
functional form, we consider the weighted sequential dependence (WSD) ranking
function that was described in Chap. 5. The WSD ranking function is formulated as:

S(Q,D) =
∑

i

wt
i

∑

q∈Q

gt
i (q)fT (q,D)

+
∑

i

wb
i

∑

qj ,qj+1∈Q

gb
i (qj , qj+1)fO(qj , qj+1,D)

+
∑

i

wb
i

∑

qj ,qj+1∈Q

gb
i (qj , qj+1)fU (qj , qj+1,D), (6.21)

where the features fT and gt
i are defined over query unigrams, and fO , fU , and gb

i

are defined over query bigrams. Table 5.3 shows how the features fT , fO , and fU

are defined, while Table 5.2 summarizes the meta-features gt
i and gb

i . Hence, this
specific ranking function consists of three general components: (1) a unigram term
score, (2) a bigram phrase score, and (3) a bigram proximity score.

While the effectiveness of the ranking function depends on the weights w, mod-
els of this form provide a natural mechanism for eliminating features in a query-
dependent manner, thereby improving efficiency. We drop features according to the
magnitude of λi(Q), the query-dependent weight assigned to feature i. If λi(Q) is
nearly zero, then feature i is unlikely to have a significant impact on the final rank-
ing. Therefore, it should be safe to drop feature i from the ranking function, thereby
increasing the efficiency of the model, with minimal impact on effectiveness. This
suggests the general strategy of pruning features if |λi(Q)| ≤ ε, where ε is a pruning
threshold.

However, in this work, we are dealing with a model that we have specific domain
knowledge about, and therefore use a more suitable pruning strategy. Previous work
by Lease (2009) demonstrated that unigrams have more positive impact on retrieval
effectiveness than bigrams; hence, we only prune bigram features from the WSD
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ranking function. Bigram features are pruned if they satisfy the condition

λ(qi, qi+1)

λ(qi) + λ(qi+1)
≤ ε. (6.22)

This condition says that if the ratio between the bigram feature weight and the
sum of individual unigram feature weights is less than ε, then the bigram is elimi-
nated. Preliminary experiments found the general strategy of pruning according to
|λi(Q)| ≤ ε to be effective, but found this ranking function-specific strategy to yield
superior results. Therefore, it is likely that different ranking functions will require
different pruning strategies to be maximally effective.

3.4 Parameter Estimation

We now describe the method for automatically learning the parameters of the model
from training data. We must not only learn the parameters w, but also the con-
cept pruning threshold ε. Although there are many learning-to-rank approaches for
learning a linear ranking function (i.e., estimating w), the optimization problem is
complicated by the fact that we also have to learn the best ε, which is directly tied to
the efficiency of the ranking function. Since the relationship between the metric and
ε cannot be modeled analytically, we are forced to directly estimate the parameters
using a non-analytical optimization procedure.

We used a simple optimization procedure that directly optimizes MEET: the
coordinate-level ascent algorithm that was described earlier in this chapter. The
algorithm performs coordinate ascent in the MEET metric space. Each (single di-
mensional) optimization problem is solved using a simple line search. Given that
the MEET space is unlikely to be convex, there is no guarantee that this greedy
hill-climbing approach will find a global optimum, but, as we will show, it tends
to reliably find good solutions for this particular optimization problem. The final
solution to the optimization problem is a setting of the parameters w and a pruning
threshold ε that is a local maximum for the MEET metric.

3.5 Experimental Results

To illustrate the benefits of the approach across a diverse set of document collec-
tions, we used three TREC Web collections (WT10g, GOV2, and ClueWeb09). We
compare the model, which we call the efficient sequential dependence model (ESD),
to two baseline models. One is the bag-of-words query-likelihood model (Ponte and
Croft 1998) (QL), with Dirichlet smoothing parameter μ = 1000. The other is the
less efficient, but more effective sequential dependence variant of the MRF model
(SD). The SD model is a special case of the WSD and ESD models. The best prac-
tice implementation of the SD model uses the same features and functional form as
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Table 6.3 Comparison between models under step + exponential efficiency function (slow decay
on top, fast decay on bottom); parameters t (time threshold) and α (decay rate) are shown in the
column headings for each collection. Symbol * denotes significant difference with QL; † denotes
significant difference with SD. Percentage improvement shown in parentheses: over QL for SD,
and over QL/SD for ESD

“Slow” Decay Rate

WT10g GOV2 ClueWeb09

Time MAP MEET Time MAP MEET Time MAP MEET

QL 0.168 0.2151 0.2175 1.97 0.3194 0.3196 4.09 0.2075 0.2055

SD 0.401 22.43∗ 0.2212 7.09 0.3357∗ 0.3291 13.46 0.2168 0.2141

ESD 0.235 0.2404∗
† 0.2303∗

† 6.42 0.3474∗
† 0.3394∗

† 11.18 0.2234∗ 0.2214

“Fast” Decay Rate

WT10g GOV2 ClueWeb09

Time MAP MEET Time MAP MEET Time MAP MEET

QL 0.168 0.2151 0.2103 1.97 0.3194 0.3187 4.09 0.2075 0.2053

SD 0.401 0.2243∗ 0.1963∗ 7.09 0.3357∗ 0.3177 13.46 0.2168 0.2126

ESD 0.215 0.2342∗ 0.2155∗
† 5.46 0.3365∗ 0.3258 8.55 0.2124 0.2108

the WSD model, but sets wt
5 = 0.82, wb

5 = 0.09. All of the other parameters are set
to 0, yielding query independent λi weights. The SD model does not prune features,
meaning that all features are evaluated for every query.

Effectiveness is measured in terms of mean average precision (MAP), although
as previously noted a variety of other effectiveness metrics can be substituted. As
for efficiency, we explored several different efficiency functions, and analyzed the
resulting impacts on the tradeoff between efficiency and effectiveness (detailed be-
low). When training the model, we directly optimized the MEET metric. A Wilcoxon
signed rank test with p < 0.05 was used to determine the statistical significance of
differences in the metrics.

In the remainder of this section we describe the performance of the model in
terms of its ability to optimally balance effectiveness and efficiency. We show the
impact of different efficiency functions on the learned models and also present an
analysis of the distribution of query times, demonstrating reduced variance. Finally,
we show that with specific efficiency functions, the learned models converge to ei-
ther baseline query likelihood or the weighted sequential dependence model, thus
illustrating the generality of the framework in subsuming ranking approaches that
only take into account effectiveness.

3.5.1 Tradeoff Between Effectiveness and Efficiency

Table 6.3 presents results of two sets of experiments using the step + exponential
function, with what we subjectively characterize as “slow” decay and “fast” de-
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cay. The time threshold t (below which efficiency is one) was chosen to be roughly
halfway between the QL and SD running times for each collection. Due to the dif-
ferences in collection size, it is unlikely that a common decay rate (α) is appropriate
for all collections. Therefore, we manually selected a separate decay rate for each
collection. Both t and α are shown in the column headings of Table 6.3. The fast de-
cay function penalizes low efficiency ranking functions more heavily, thus a highly
efficient ranking function with reasonable effectiveness is preferred over a less ef-
ficient function with potentially better effectiveness. With the slow decay function,
effectiveness plays a greater role.

For both fast and slow decay, we compared the model described here (ESD)
with the query-likelihood model (QL) and the sequential dependence model (SD)
in terms of query evaluation time, MAP, and MEET. In both tables, percentage im-
provements for MAP and MEET are shown in parentheses: over QL for SD, and
over QL/SD for ESD. Statistical significance is denoted by special symbols.

As expected, the mean query evaluation time for ESD is greater than that of QL,
but less than that of SD for both sets of experiments. Furthermore, the mean query
evaluation time for ESD is lower for the fast decay rate than for the slow decay
rate, which suggests that the efficiency loss function is behaving as expected. In the
learned models, ESD is 41.4%, 9.4%, and 16.9% faster than SD for the slow decay
rate on WT10g, GOV2, and ClueWeb09, respectively; ESD is 46.4%, 23.0%, and
36.5% faster than SD for the fast decay rate on the same three collections, respec-
tively. Once again, this makes sense, since the fast decay rate penalizes inefficient
ranking functions more heavily.

In terms of mean average precision, in five out of the six conditions, the ESD
model was significantly better than baseline QL. In the one condition in which this
was not the case (ClueWeb09 with fast decay), SD was not significantly better than
QL either. While the ESD model is much more efficient than the SD model, it is able
to retain the same effectiveness as SD, and in some cases actually performs signif-
icantly better (in the case of WT10g and GOV2 for slow decay rate). We believe
that this result demonstrates the ability of the framework to select a more optimal
operating point in the space of effectiveness-efficiency tradeoffs than previous ap-
proaches.

In terms of MEET, the ESD model outperforms QL and SD, although gains are
not consistently significant. Interestingly, we note that SD has a lower MEET score
than default QL in two out of three collections when the fast decay rate is used. This
suggests that the default formulation of the sequential dependence model trades off
a bit too much efficiency for effectiveness, at least based on the metrics.

Lastly, note that setting the time target t in the efficiency function implies that
the ranking model will be penalized by an exponential decay in efficiency if its
query ranking time exceeds t . This is a soft penalization factor, which contrasts
with the more harsh step function where efficiency is assigned a zero value for
time exceeding t . An implication of using this soft efficiency loss function is that
for a ranking function with time > t , if it is highly effective for user queries, it
may still have a reasonable tradeoff value, because essentially, its high effectiveness
compensates for the loss in efficiency. This fact is also confirmed by results shown
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Fig. 6.3 Distribution of query execution times for WT10g queries for (i) query likelihood (QL);
(ii) sequential dependence model (SD); (iii) efficient sequential dependence model (ESD)

in Table 6.3, where the average query time of ESD is consistently greater than the
time threshold t .

3.5.2 Analysis of Query Latency Distribution

Another benefit of the framework is that learned models exhibit low variance in
query execution times. Figure 6.3 plots histograms of query execution for QL, SD,
and ESD on the WT10g collection. The ESD model was trained using the step +
exponential (fast decay) efficiency function. Distributions for the other conditions
look similar, and therefore we omit in the interest of space.

We can see that most queries with baseline QL are evaluated in a short amount of
time, with a small number of outliers. The sequential dependence model has a heav-
ier tail distribution with increased variance in query execution times: most queries
still finish relatively quickly, but a significant minority of the queries take much
longer to evaluate. The ESD model reduces the number of long-running queries so
that the histogram is less tail heavy, which greatly improves the observed variance
of query execution times. This improved behavior is due to the fact that the model
considers efficiency as well as effectiveness, hence penalizes long-running queries,
even if they are more effective. Note that although query likelihood has the most de-
sirable query execution profile, it comes at the cost of effectiveness. Experiments in
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Table 6.4 Comparison of SD and ESD under constant efficiency (i.e., only effectiveness is ac-
counted for in the tradeoff metric)

WT10g GOV2 ClueWeb09

Time MAP MEET Time MAP MEET Time MAP MEET

SD 0.401 0.2243 0.2244 7.09 0.3357 0.3327 13.46 0.2168 0.2142

ESD 0.425 0.2411† 0.2334† 7.13 0.3435† 0.3408† 13.87 0.2243 0.2226

the previous section showed that ESD is at least as effective as SD, but much more
efficient. The distribution of query execution times further supports this conclusion.

Why is reduced variance in query execution time important? For real-world
search engines, it is important to ensure that a user, on average, gets good results
quickly. However, it is equally important to ensure that no user waits too long, since
these represent potentially dissatisfied users who never come back. A basic principle
in human–computer interactions is that the user should never be surprised, and that
system behavior falls in line with user expectations. Reducing the variance of query
execution times helps us accomplish this goal.

Furthermore, from a systems engineering point of view, lower variance in query
execution time improves load balancing across multiple servers. In real-world sys-
tems, high query throughput is achieved by replicated services across which load
is distributed. If variance of query execution times is high, simple approaches (e.g.,
round-robin) can result in uneven loads (consider, for example, that in SD one query
can take an order of magnitude longer than another to execute). Therefore, the re-
duced variance exhibited by the learned models is a desirable property.

3.5.3 Relationships to Other Retrieval Models

Finally, we demonstrate that previous ranking models that consider effectiveness
only can be viewed as a special case of the family of ranking functions that ac-
count for both effectiveness and efficiency. More specifically, the flexible choices
for efficiency functions used in the general framework described here can capture a
wide range of tradeoff scenarios for different effectiveness/efficiency requirements.
For instance, if we care more about efficiency than effectiveness, then we can set
the time threshold in the efficiency function to be low, which forces us to learn a
ranking function with high efficiency. On the other hand, if the focus is to learn the
most effective ranking function possible (disregarding efficiency), then we can use
a constant efficiency value. We would expect that in the first case, the learned model
would look very similar to baseline query likelihood (efficient but not effective).
Correspondingly, we would expect that in the latter case, the learned model would
look very similar to the sequential dependence model (effective but not efficient).
For particular choices of the efficiency function, the learned models should converge
to (i.e., acquire similar parameter settings as) existing models that encode a specific
effectiveness/efficiency tradeoff.
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Table 6.5 Comparison of QL and ESD under step efficiency functions. A step function with t =
3 s is used for ClueWeb09 and GOV2, and a step function with t = 100 ms is used for WT10g

WT10g GOV2 ClueWeb09

Time MAP MEET Time MAP MEET Time MAP MEET

QL 0.168 0.2151 0.1337 1.97 0.3194 0.2582 4.08 0.2075 0.1602

ESD 0.145 0.2150 0.1350 1.93 0.3163 0.2539 3.68 0.2070 0.1602

Table 6.4 compares ESD to the SD model with a constant efficiency function. The
model described here, when trained with constant efficiency values, is equivalent to
the WSD model (Bendersky et al. 2010). The ESD model in this case significantly
outperforms SD in MAP and MEET scores; the differences are significant in two of
the three collections.

Similarly, Table 6.5 illustrates the relationship of ESD to QL under a step effi-
ciency function with low time targets (t = 100 ms is used for WT10g and t = 3 s
is used for ClueWeb09 and GOV2). Step efficiency functions heavily penalize long
query execution times, so the model essentially converges to simple bag of words.
An interesting observation is that while retaining similar effectiveness as the QL
model, the ESD model achieves a better time efficiency than QL due to its joint op-
timization of effectiveness and efficiency (allowing the model to prune query terms
that have little impact on effectiveness, but nevertheless have an efficiency cost).



Appendix A
Data Sets

In order to properly analyze the various dimensions of retrieval effectiveness, it is
important to evaluate new models and techniques against a diverse set of data sets.
We make use of TREC collections in all of the experiments. Therefore, we begin
this Appendix by describing the anatomy of a TREC data set. We then provide the
specific details of the data sets used in the experiments throughout this work.

1 Anatomy of a TREC Data Set

Every TREC data set consists of a set of documents, topics, and relevance judg-
ments. We now provide an overview of each.

TREC documents, which are in SGML format, contain a number of metadata
fields, as well as content. See Fig. A.1 for an example TREC document. Exam-
ples of metadata fields include DOCNO, which is a unique document identifier and
HEAD, which is the headline of the news article. The document’s textual content
is contained within the TEXT field. In the experiments, we throw away all of the
metadata, except for the document identifier, and index the content contained in the
TEXT field1.

A TREC topic typically consists of a title, description, and a narra-
tive, although some topics may contain other fields. See Fig. A.2 for an example
TREC topic. It is important to note that a topic represents an information need and
is not a query itself. Instead, researchers must distill a query from a topic. There
are a number of ways of doing this, but the most common way is to use one of the
fields as the query. In most of the experiments done throughout this work, we distill
a query by using only the text that appears in the title field.

Finally, relevance judgments are provided. For each topic, a set of documents are
manually judged for relevance. Different definitions and scales of relevance are used

1TREC web documents do not have a TEXT field. For these document, we index all of the text,
except that contained in the DOCHDR field.
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<DOC>
<DOCNO> AP890101-0010 </DOCNO>
<FILEID>AP-NR-01-01-89 1123EST</FILEID>
<FIRST>r i AM-Thatcher-Women 01-01 0287</FIRST>
<SECOND>AM-Thatcher-Women,0295</SECOND>
<HEAD>Thatcher Says Male Prime Ministers May Eventually Be Fashionable
Again</HEAD>
<DATELINE>LONDON (AP) </DATELINE>
<TEXT>
Prime Minister Margaret Thatcher, who made history
in 1979 when she became Europe’s first woman prime minister, noted
Sunday she is not alone and joked that male politicians may one day
come back into fashion.
“We’re getting more women prime ministers,” she said in a
television interview, referring to the recent election of Benazir
Bhutto as prime minister of Pakistan.
“And don’t forget . . . Mrs. Gandhi was a very able, charming,
formidable prime minister of India.”
Mrs. Thatcher now is the longest serving leader in the West.
Before she came to power, women had governed in Sri Lanka and
Israel. Part of the British leader’s tenure in office coincided with
that of Mrs. Gandhi, who was assassinated in 1984.
“I think male prime ministers one day will come back into
fashion,” she joked with interviewer David Frost on Britain’s
commercial TV-am channel.
Asked about combining her job and her domestic life with her
husband, Denis, a retired oil executive, she said “women have run
both the home and work for a very long time.”
“I mean, every working wife knows that if you decide to have
steak and kidney pie for supper, it’s no better if you took 20
minutes thinking about it than if you took 20 seconds.”
Frost recalled Mrs. Thatcher’s comment “I never did understand
men,” during an acrimonious meeting last year with fellow leaders
of the European Economic Community. Asked if she understood men
better now, Mrs. Thatcher replied:
“It may not be understanding of the deepest kind, but I do know
what they’re likely to do and say. So, one has a certain
predictability about it.”
</TEXT>
</DOC>

Fig. A.1 Example TREC document
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<top>
<num> Number: 763

<title> Hunting deaths

<desc> Description:
Give information on human deaths associated with hunting for game.

<narr> Narrative:
Accidental deaths, murders, and suicides are relevant. Deaths can be
from any cause. Fatalities of people not in the hunting party are
relevant, but the deaths must be connected with hunting. Relevant
hunting must be for live prey. Deaths related to submarine hunting
are not relevant.

</top>

Fig. A.2 Example TREC topic

Fig. A.3 Portion of a TREC
relevance judgment file. The
format of each line is
query-id 0 doc-id
judgment. Judgments of 0,
1, and 2 refer to non-relevant,
relevant, and highly relevant,
respectively

763 0 GX018-79-11508357 2
763 0 GX018-79-15198972 0
763 0 GX019-18-8997173 0
763 0 GX019-40-2241667 0
763 0 GX019-56-11902532 1
763 0 GX019-97-10746106 0
763 0 GX020-45-4344240 0
763 0 GX020-99-3364231 0
763 0 GX021-19-6737921 0
763 0 GX021-41-4253461 0

for different tasks. Please refer to Sects. 6 and 7 for examples. Furthermore, due to
limited resources, not all documents are judged for every topic. Instead, TREC uses
a number of techniques, including document pooling, in order to reduce the number
of documents judged, while ensuring the test collection is reusable (Harman 1993;
Spärck Jones and van Rijsbergen 1976). Figure A.3 shows an excerpt from a TREC
relevance judgment file. These judgments are used as the “ground truth” for the
purposes of evaluation, which we cover in Appendix B.

2 Summary of Data Sets

Now that we have explained the composition of a TREC data set, we summarize the
details of the data sets considered in this work. First, Table A.1 gives an overview
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Table A.1 Overview of TREC collections and topics used in most of the experiments

Name Description # Docs Train Topics Test Topics

WSJ Wall St. Journal ’87–’92 173,252 51–150 151–200

AP Associated Press ’88–’90 242,918 51–150 151–200

ROBUST04 Newswire articles 528,155 301–450 601–700

WT10g Small web crawl 1,692,096 451–500 501–550

GOV2 2004 crawl of .gov domain 25,205,179 701–750 751–800

Table A.2 TREC data sets used throughout the book. The disk numbers refer to the TREC vol-
umes used to construct the index

Disks 1, 2 Disk 3 Disks 4, 5

Num. Docs 741,856 336,310 556,077

Training topics 101–150 51–100 301–350

Test topics 151–200 101–150 401–450

of five primary data sets used in the experiments. The table includes the data set
name, a short description, the number of documents in the data set, the topics used
for training and the topics used for testing. As we see, these data sets vary in size,
homogeneity, and noisiness. The AP and WSJ data sets are small collections of
newswire articles from a single source. Therefore, they are homogeneous and con-
tain very little noise. The ROBUST04 data set is medium sized and consists of news
stories from a number of sources, thus making it less homogeneous, and not very
noisy. Finally, the WT10g and GOV2 data sets are (very) large web crawls, thus
making them both heterogeneous and noisy. Hence, the data sets are diverse across
a number of characteristics, making this a suitable evaluation testbed. Nearly all of
the experiments done throughout this work use the data sets listed in this table.

Another set of data sets is also considered, but only used for one experiment. The
data sets shown in Table A.2 are used in the experiments throughout the book. All
of these data sets consist primarily of news articles, are somewhat heterogeneous,
and contain very little noise. The collections are also relatively small, as well. The
table also lists the TREC topics used for training and testing purposes.
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Evaluation Metrics

This appendix provides a brief summary of metrics that are commonly used to evalu-
ate the effectiveness of information retrieval systems. Each of these evaluation mea-
sures are rank-based. That is, they depend exclusively on the ranking of documents
produced by a system. The scores of the documents do not influence the metrics in
any way. In addition, a binary model of relevance is assumed, which states that an
item is either relevant to a request or it is not relevant.

Given a ranked list of documents in response to a query, we define the function
R such that R(i) = 1 if the document at rank i is relevant and R(i) = 0 if the
document at rank i is not relevant. Furthermore, as a matter of convenience, we
define the function R(1, k) that counts the number of relevant documents between
rank 1 and k (inclusive) as

R(1, k) =
k∑

i=1

R(i). (B.1)

In Table B.1 the functional forms for precision at rank k, R-Prec, success at
rank k, average precision, and reciprocal rank are given.

Precision at rank k measures the proportion of relevant documents that are ranked
in the top k, whereas success at rank k is 1 if any relevant documents appear in the
top k and 0 otherwise. Typical values of k range from 5 to 100. Precision at rank 5
or 10, for example, is typically used to evaluate a system’s ability to return relevant
documents at the top of the ranked list, which is important for many applications,
including web search.

R-prec is a special case of precision at rank k. R-Prec computes the precision at
rank |R|, where |R| is the total number of judged relevant documents. This measure
is more adaptive, as it computes precision to a different depth for every query.

Average precision can be thought of as a weighted precision measure that gives
higher weight to relevant documents that appear near the top of the ranked list.
The measure is computed by averaging the precision at k for every k such that the
document at rank k is relevant. Average precision is standardly computed to a depth
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Table B.1 Summary of
common information retrieval
evaluation metrics, where
R(1, k) is defined in Eq. B.1
and |R| is the total number of
judged relevant documents

Metric Name Functional Form

Precision at rank k P@k = R(1,k)
k

Success at rank k S@k = δ(R(1, k) ≥ 1)

R-Prec R-Prec = R(1,|R|)
|R|

Average Precision AvgP = 1
|R|
∑

i:R(i)=1
R(1,i)

i

Reciprocal Rank RR = max{ 1
i

: R(i) = 1}

of 1000 documents1. Any relevant documents that do no appear in the ranked list
are assumed to be at rank “infinity”, and therefore contribute nothing to the average.
Therefore, the measure rewards systems that rank relevant documents high in the
ranked list and those that return more relevant documents. In this way, the measure
implicitly accounts for both precision and recall (coverage of relevant documents).
Average precision is typically used to evaluate ad hoc retrieval tasks and other tasks
where both precision and recall are important factors.

The last measure, reciprocal rank, is computed according to the reciprocal of the
highest ranked relevant document. Note that the measure quickly decays as the rank
of the first relevant document increases (e.g., 1, 0.5, 0.33, 0.25, 0.2, etc.). We note
that reciprocal rank is a special case of average precision when there is only a single
relevant document for a given request. This measure is commonly used to evaluate
known-item finding queries, where it is critical to return the relevant web page very
high in the ranked list.

Each of these measures we just described are computed on a query-by-query ba-
sis. However, for the sake of comparison, we often need to compute a single measure
from a set of query-by-query measures. Given a set of queries, the arithmetic aver-
age or the geometric average are often used to combine, or aggregate, the measures

Table B.2 Overview of aggregate measures. For each aggregate measure we show how it is com-
puted. Here, N refers to the total number of queries being aggregated and qi is the ith query in the
set. Notice that GMAP is zero if any query has an average precision of zero. In order to correct
this, AvgP′(qi) is defined to be max(AvgP(qi),00001)

Name Value

Precision at rank k P@k = 1
N

∑N
i=1 P@k(qi)

Success at rank k S@k = 1
N

∑N
i=1 S@k(qi)

R-Prec R-Prec = 1
N

∑N
i=1 R-Prec(qi)

Mean Average Precision MAP = 1
N

∑N
i=1 AvgP(qi)

Geometric Mean Average Precision GMAP =∏N
i=1 AvgP′(qi)

1/N

Mean Reciprocal Rank MRR = 1
N

∑N
i=1 RR(qi)

1Throughout this work, all evaluation metrics are computed to a depth of 1000.
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computed on a query-by-query basis. Table B.2 summarizes the most common ag-
gregate measures used in information retrieval. In order to avoid confusion, the most
commonly used names of the evaluation metrics were used. This results in aggregate
measures having the same name as their non-aggregate counterparts (e.g., R-Prec is
the name of both the aggregate and non-aggregate measure). We note, however, that
throughout this work, it should be clear from the context of the discussion whether
the measure in question has been computed for a single query or if it was aggregated
over a set of queries.
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