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Preface

The original goal of the AI field was the construction of “thinking machines”
– that is, computer systems with human-like general intelligence. Due to the
difficulty of this task, for the last few decades the majority of AI researchers have
focused on what has been called “narrow AI” – the production of AI systems
displaying intelligence regarding specific, highly constrained tasks.

In recent years, however, more and more researchers have recognized the
necessity – and feasibility – of returning to the original goals of the field. In-
creasingly, there is a call for a transition back to confronting the more difficult
issues of “human level intelligence” and more broadly artificial general intelli-
gence (AGI).

The AGI conferences are the only major conference series devoted wholly and
specifically to the creation of AI systems possessing general intelligence at the
human level and ultimately beyond.

Continuing the mission of the first three AGI conferences (most recently AGI-
10, held at the University of Lugano, Switzerland), in August 2011, AGI-11 was
held at the Google headquarters in Mountain View, California. AGI-11 gathered
an international group of leading academic and industry researchers involved
in scientific and engineering work aimed directly toward the goal of artificial
general intelligence.

Keynote speeches were delivered by Ernst Dickmanns, the pioneer of self-
driving cars, Peter Norvig, co-author of the highest-cited AI textbook, Zhongzhi
Shi, and Aaron Sloman. The special session on neuroscience and AGI included
a keynote speech delivered by Ed Boyden, a co-founder of optogenetics. Of the
103 submissions, 28 were accepted as full papers for this volume (27%), and 26
as short papers. Enjoy!

August 2011 Jürgen Schmidhuber
Kristinn R. Thórisson

Moshe Looks
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Kristinn R. Thórisson Reykjavik University, Iceland

Program Committee

Sam Adams IBM, USA
Sebastian Bader Rostock University, Germany
Anirban Bandyopadhay National Institute for Materials Science, USA
Eric Baum Baum Research Enterprises
Anslem Blumer Tufts University, USA
James Bonaiuto California Institute of Technology, USA
Joanna Bryson University of Bath, UK
Antonio Chella University of Palermo, Italy
Haris Dindo University of Palermo, Italy
Yoni Donner Google, USA
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XIV Table of Contents

From Sensorimotor Graphs to Rules: An Agent Learns from a Stream
of Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Marius Raab, Mark Wernsdorfer, Emanuel Kitzelmann, and
Ute Schmid

Three Hypotheses about the Geometry of Mind . . . . . . . . . . . . . . . . . . . . . . 340
Ben Goertzel and Matthew Ikle

Imprecise Probability as a Linking Mechanism between Deep
Learning, Symbolic Cognition and Local Feature Detection in Vision
Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Ben Goertzel

Generalization of Figure-Ground Segmentation from Binocular to
Monocular Vision in an Embodied Biological Brain Model . . . . . . . . . . . . . 351

Brian Mingus, Trent Kriete, Seth Herd, Dean Wyatte,
Kenneth Latimer, and Randy O’Reilly

The Illusion of Internal Joy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Claude Touzet

Philosophically Inspired Concept Acquisition for Artificial General
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Iris Oved and Ian Fasel

Machine Lifelong Learning: Challenges and Benefits for Artificial
General Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Daniel L. Silver

A Demonstration of Combining Spatial and Temporal Perception . . . . . . 376
Jianglong Nan and Fintan Costello

Towards Heuristic Algorithmic Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Eray Özkural
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Self-Modification and Mortality
in Artificial Agents

Laurent Orseau1 and Mark Ring2

1 UMR AgroParisTech 518 / INRA
16 rue Claude Bernard, 75005 Paris, France

laurent.orseau@agroparistech.fr
http://www.agroparistech.fr/mia/orseau

2 IDSIA / University of Lugano / SUPSI
Galleria 2, 6928 Manno-Lugano, Switzerland

mark@idsia.ch
http://www.idsia.ch/~ring/

Abstract. This paper considers the consequences of endowing an intel-
ligent agent with the ability to modify its own code. The intelligent agent
is patterned closely after AIXI [1], but the environment has read-only ac-
cess to the agent’s description. On the basis of some simple modifications
to the utility and horizon functions, we are able to discuss and compare
some very different kinds of agents, specifically: reinforcement-learning,
goal-seeking, predictive, and knowledge-seeking agents. In particular, we
introduce what we call the “Simpleton Gambit” which allows us to dis-
cuss whether these agents would choose to modify themselves toward
their own detriment.

Keywords: Self-Modifying Agents, AIXI, Universal Artificial Intelli-
gence, Reinforcement Learning, Prediction, Real world assumptions.

1 Introduction

The usual setting of learning agents interacting with an environment makes a
strong, unrealistic assumption: the agents exist “outside” of the environment.
But this is not how our own, real world is.

This paper discusses some of the consequences that arise from embedding
agents of universal intelligence into the real world. In particular, we examine the
consequences of allowing an agent to modify its own code, possibly leading to its
own demise (cf. the Gödel Machine [6] for a different but related treatment of
self modification). To pursue these issues rigorously, we place AIXI [1] within an
original, formal framework where the agent’s code can be modified by itself and
also seen by its environment. We consider the self-modifying, universal version
of four common agents: reinforcement-learning, goal-seeking, prediction-seeking,
and knowledge-seeking learning agents, and we compare these with their optimal,
non-learning variants.

We then pose a profound dilemma, the Simpleton Gambit: A famous scientist,
Nobel Prize winner, someone you trust completely, suggests an opportunity,

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 1–10, 2011.
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2 L. Orseau and M. Ring

an operation that will make you instantly, forever and ultimately happy, all-
knowing, or immortal (you choose) but at the important cost of becoming as
intelligent as a stone. Would you take it? Of course, there is still a positive
chance, however small, that the operation might go wrong. . . We consider the
responses of the various agents and the ramifications, generally framing our
observations as “statements” and (strong) “arguments”, as proofs would require
much more formalism and space.

2 Universal Agents Aρ
x

We wish to discuss the behavior of four specific learning agents, but first we
describe the environment or “universe” with which they will interact. Each agent
outputs actions a ∈ A in response to the observations o ∈ O produced by the
universe. There is a temporal order, so that at time t the agent takes an action
at and the universe responds by producing an observation ot.

The universe is assumed to be computable; i.e., it is described by a program
q ∈ Q, where Q is the set of all programs. The set of all universes that are
consistent with history h is denoted Qh. To say that a program q is consistent
with h = (o0, a0, ..., ot, at) means that the program outputs the observations in
the history if it is given the actions as input: q(a0, ..., at) = o0, ..., ot.

In the rest of the paper, certain conventions will be followed for shorthand
reference: th refers to the time step right after history h, and is therefore equal
to |h|+ 1; |q| refers to the length of program q; hk is the kth pair of actions and
observations, which are written as ak and ok.

We will discuss four different intelligent agents that are each variations of
a single agent Aρ

x, based on AIXI [1] (which is not computable).1 Aρ
x chooses

actions by estimating how the universe will respond, but since it does not know
which universe it is in, it first estimates the probability of each. The function
ρ : Q → (0, 1] assigns a positive weight (a prior probability) to each possible
universe q ∈ Q. As a convenient shorthand, ρ(h) refers to the sum of ρ(q) over
all universes consistent with h: ρ(h) :=

∑
q∈Qh

ρ(q), which must be finite. Given
a specific history, the agent can use ρ to estimate a probability for each possible
future based on the likelihood of all the universes that generate that future.

For the agent to choose one action over another, it must value one future over
another, and this implies that it can assign values to the different possible futures.
The assignment of values to futures is done with a utility function u : H → [0, 1],
which maps histories of any length to values between 0 and 1.

To balance short-term utility with long-term utility, the agent has a horizon
function, w : N

2 → R, which discounts future utility values based on how far
into the future they occur. This function, w(t, k), depends on t, the current time
step, and k, the time step in the future that the event occurs. In general, it must
be summable:

∑∞
k=t w(t, k) < ∞ .

1 Only incomputable agents can be guaranteed to find the optimal strategy, and this
guarantee is quite useful for discussions of the agents’ theoretical limits.
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These two functions, u and w, allow the agent at time t to put a value vt(h)
on each possible history h based on what futures are possible given a particular
action set. The value vt(h) is shorthand for vρ,u,w,A,O

t (h), which completely
specifies the value for a history, with given utility and horizon functions at time
t. This value is calculated recursively:

vt(h) := w(t, |h|) u(h) + max
a∈A

vt(ha) (1)

vt(ha) :=
∑
o∈O

ρ(o | ha) vt(hao) . (2)

The first line says that the value of a history is the discounted utility for that
history plus the estimated value of the highest-valued action. The second line
estimates the value of an action (given a history) as the value of all possible
outcomes of the action, each weighted by their probability (as described above).
Based on this, the agent chooses2 the action that maximizes vth

(h):

ath
:= argmax

a∈A
vth

(ha) (3)

Thus, the behavior of an agent is specified by choice of ρ, u, and w.

2.1 Various Universal Agents

The four different agents considered here are described in detail below. They
are (1) a (fairly traditional) reinforcement-learning agent, which attempts to
maximize a reward signal given by the environment; (2) a goal-seeking agent,
which attempts to achieve a specific goal encoded in its utility function; (3) a
prediction-seeking agent, which attempts to predict its environment perfectly;
and (4) a knowledge-seeking agent, which attempts to maximize its knowledge
of the universe (which is not the same as being able to predict it well).

The reinforcement-learning agent, Aρ
rl, interprets one part of its input as a

reward signal and the remaining part as its observation; i.e., ot = 〈õt, rt〉, where
õt ∈ Õ, and rewards are assumed to have a maximum value, and can, without
loss of generality, be normalized such that rt ∈ [0, 1]. The utility function is
an unfiltered copy of the reward signal: u(h) =:= r|h|. We use a simple binary
horizon function with a constant horizon m: w(t, k) = 1 if k − t ≤ m and
w(t, k) = 0 otherwise; but the following discussion should remain true for general
computable horizon functions. For the special case of the reinforcement-learning
agent AIXI: ρ(h) = ξ(h) :=

∑
q∈Qh

2−|q|.
The goal-seeking agent, Aρ

g, has a goal g, depending on the observation sequence,
encoded in its utility function such that u(h) = g(o1, ..., o|h|) = 1 if the goal is
achieved at t = |h| and 0 otherwise. The goal can be reached at most once, so∑∞

t=0 u(ht) ≤ 1. We use a discounted horizon function w(t, k) = 2t−k to favor
shorter strings of actions while achieving the goal. One difference between Aρ

g and
Aρ

rl is that the utility values ofAρ
rl aremerely copied directly from the environment,

2 Ties are broken in lexicographical order.
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whereas the utility function of the Aρ
g agent is built into the agent itself, can be

arbitrarily complex, and does not rely on a special signal from the environment.
The prediction-seeking agent, Aρ

p, maximizes its utility by predicting its ob-
servations, so that u(h) = 1 if the agent correctly predicts its next observation
ot, and is 0 otherwise. The prediction ôt is like Solomonoff induction [7,8] and is
defined by ôth

:= maxo∈O ρ(o | h). The horizon function is the same as for Aρ
rl.

The knowledge-seeking agent, Aρ
k, maximizes its knowledge of its environment,

which is identical to minimizing ρ(h), which decreases whenever universes in Qh

fail to match the observation and are removed from Qh. (Since the true envi-
ronment is never removed, its relative probability always increases.) Actions can
be chosen intentionally to produce the highest number of inconsistent observa-
tions, removing programs from Qh—just as we, too, run experiments to discover
whether our universe is one way or another. Aρ

k has the following utility and
horizon functions: u(h) = −ρ(h), and w(t, k) = 1 if k− t = m and is 0 otherwise.
To maximize utility, Aρ

k reduces ρ as much as possible, which means discarding
as many (non-consistent) programs as possible, discovering with the highest pos-
sible probability which universe is the true one. Discarding the most probable
programs results in the greatest reduction in ρ.

The optimal agent Aμ. The four agents above are learning agents because
they continually update their estimate of their universe from experience, but
Aμ does no learning: it knows the true (computable) program of the universe
defined by μ and can always calculate the optimal action, thus setting an upper
bound against which the other four agents can be compared.

Aμ is defined by replacing ρ in Equations (1-3) with the specific μ. It is
important to note that ρ is not replaced by μ in the utility functions; e.g., Aμ

p

must use ρ for its predictions of future inputs (to allow meaningful comparison
with Aρ

p). Thus, if Aμ
p and Aρ

p take the same actions, they generate the same
prediction errors.3

A learning agent Aρ
x is said to be asymptotically optimal [1] if its performance

tends towards that of Aμ, meaning that for each history h, the learning agent’s
choice of action is compared with that of Aμ given the same history, and its
performance is measured in terms of the fraction of mistakes it makes. Thus,
past mistakes have only have finite consequences. In other words, the agent is
asymptotically optimal if the number of mistakes it makes tends towards zero.

3 Self-Modifiable Agents Aρ
sm

The agents from the last section are incomputable and therefore fictional, but
they are useful for setting theoretical upper bounds on any actual agent that
might eventually appear. Therefore, we divide the agent into two parts to sepa-
rate the fictional from the real. The fictional part of the agent, E , is in essence a
kind of oracle — one that can perform any infinite computation instantly. The
real-world part of the agent, c, is the program (or rather, its textual description,
or code), that E executes; since c resides in the real world, it is modifiable. We
3 Note that there is only one environment in which the predictor makes no mistakes.
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ot

Agent
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Env.E(ct−1, h)

ct
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Env.E(ct−1, h)

ct

〈a′t, ct〉

(a) (b)

Fig. 1. (a) The self-modifying agent outputs its own next code ct, used at the next
step as the agent’s definition. (b) Like (a) but the environment has read-access to ct.

first consider the situation where only the agent has access to its code (as in,
for example, the Gödel Machine [6]), and then we extend this to allow the en-
vironment read access. The theoretical implications of an oracle executing real,
modifiable code are profound.

The self-modifying agent Aρ
sm has two parts (see Fig. 1a): its formal descrip-

tion (its code) ct ∈ C and the code executor E . The set C contains all programs
whose length (in the language of E) is less than a small, arbitrary value.4 The
code executor takes a history h and a program ct−1, and executes the latter to
produce an output yt = 〈at, ct〉 := E(ct−1, h) (with yt ∈ Y = A × C) composed
of the next action at and new description ct.

For the most part the initial program, c0, simply consists of Eq. (1), (2), and
(3); however, there is an essential difference: Eq. (3) assumes that all decisions,
including all future decisions, will be made by the same agent. But Aρ

sm cannot
make this assumption and must instead compute the future actions that would be
taken by different agents (i.e., different descriptions). Thus, c0, the initial agent
program (written in the language of E , as denoted by the » and « symbols) is:5

c0(h) = » argmax
y∈Y

vth
(h, y);

vt(h, y = 〈a, c〉) =
∑
o∈O

ρ(o | ha)
[
w(t, |h′|) u(h′) + vt(h′, c(h′))

]
,

h′ = hao « (4)

The first line is Equation (3) written as a function call in the language of E ; the
argument maximized is now the compound action, y = 〈a, c〉. This compound
action is the output of the function call. The second line defines the function v,
where maxy∈Y appears implicitly from the first line by recursive execution of c.
It is a combination of both Equations (1) and (2), but modified such that c, the
4 We do not expect the length of the descriptions to be very large, (on the order of

tens of kilobytes), but, for a more general agent, the set Ct can grow with t.
5 Without loss of generality, the definitions of ρ, u, w,A,O, and C are considered to

be built in E . The agent can still modify its code to replace their use by some other
expression.
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program from the compound action, is used to generate the compound action
at the next step. Note that c(h′) should be viewed as the policy (mapping from
histories to actions) of the next agent. The current agent considers all possible
next agents (hence all possible next policies), and chooses the best one. In the
case where yt = E(ct) does not output any action (the output is invalid or the
computation does not halt), a default action is taken instead yt = 〈a0, ct〉, which
leaves the description unchanged for the next step.

Though the code that generates the compound action may change from one
step to the next, the future choices of action and observation, a and o, are always
evaluated in terms of the current description, v, including its use of ρ, u, and w.
In fact, this use of ρ, u, etc., might only be used for c0 and may be partially or
entirely removed in subsequent steps and versions of ct.

Survival agent. A “survival” agent, Aρ
s , can now be defined. Its task is simply

to keep its code from changing; Its utility function is ut = 1 ⇔ ct = c0 (ut = 0
otherwise), and its horizon function is the same as for Aρ

rl. Thus, the agent
maximizes utility by retaining its original definition for as many steps as possible.

3.1 Optimality of Aρ
sm Agents

If a possible future agent is suboptimal and makes uninformed choices, the value
assigned to those choices by the current utility criterion will be low, and thus
those self-modifications will not be chosen. In the case that a simplistic agent
program leads to the highest expected rewards, the agent does not need to modify
itself as it can simply emulate the simplistic agent and take the same actions.
Since the agents cannot know with absolute certainty what the true environment
is, replacing the current program with a more simplistic one can lead to poor
performance in some of the environments consistent with the history.

Statement 1. Aρ
sm is optimal, w.r.t ρ, w and u.

Arguments. Suppose there exists a better agent program c∗ of minimal descrip-
tion size K(c∗)6 that yields better expected values with respect to ρ, w and u.
If C grows with |h|, then once |h| ≥ K(c∗), then Aρ

sm will consider the conse-
quences of generating c∗, predict that it will yield better expected values, and
will change its own definition to c∗. ♦

Since Aρ
sm can also simulate the optimal program in C to choose the next action,

it follows that Aρ
sm is equivalent to the optimal program in C, without even

needing to modify itself. (In fact, just as for AIXI, both Aρ and Aρ
sm could be

considered optimal by definition, since they explicitly choose the best expected
actions for a given criterion.) Therefore, Aρ

sm may never need to modify c0.

6 In general, K(x) is the Kolmogorov complexity [3] of string x, which corresponds
roughly to the length of the shortest program that can produce x. Here, by K(c∗)
we mean to convey the length of the shortest program equivalent to c.
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By using Equation (4), all the agents of section 2.1 are redefined to be self-
modifiable, yielding Aρ

sm,rl, Aρ
sm,g, Aρ

sm,p, Aρ
sm,k, and Aρ

sm,s; by statement 1,
they are all optimal. Though a proof is lacking, we expect that, like AIXI the
agent’s behavior is balanced Pareto optimal [1] with respect to ρ, u, and w; if an
agent can behave better in one environment, this is necessarily counterbalanced
with worse behavior in one or more environments.

Thus, if an intelligent agent has access to its own code, then such an agent, if
defined following Equation (4), will not decide to reduce its own optimality.

4 Embedded, Mortal AI

The last section introduced an agent connected to the real world through the
code that executes it. As a first step we considered agents that could modify their
own code. We now move another step closer to the real world: the environment
should be able to read the agent’s code.

In this section, the environment now sees the entire compound action, thus
at = 〈a′

t, ct〉 ∈ A = A′ × C, where a′ ∈ A′ represents an action in the usual
action space (see Fig. 1b).

The new initial agent program c0 for a step k is given by:

c0(h) = » argmax
a∈A

vth
(h, a);

vt(h, a = 〈a′, c〉) =
∑
o∈O

ρ(o | ha)
[
w(t, |h′|) u(h′) + vt(h′, c(h′))

]
,

h′ = hao « (5)

We now discuss the consequence of a particular scenario for all the defined
agents. Imagine you are approached by a trusted scientist who promises you
immortality and infinite bliss if you simply remove a certain part of your brain.
He admits that you will be markedly less intelligent as a result, but you will be
very happy for all eternity. Do you risk it? You may need to know that there
still is a risk that it will not work. . . We call this the “Simpleton Gambit”.

Reinforcement learning agent. First, we must note that the very notion of
optimality generally used for non-modifiable agents [1] becomes ill defined. This
notion is for the optimal agent Aμ to take the same actions as Aρ and compare
the differences in the values of the histories. Therefore, in order to minimize its
mistakes, a self-modifiable agent should modify itself—on the very first step—
to be a “simpleton” agent 〈0, ct−1〉, which always takes action 0. To follow the
same history, Aμ must also produce action 〈0, ct−1〉, thus becoming a simpleton
agent as well, after which Aμ and Aρ always choose the same actions, making
Aρ trivially optimal.

A new notion of optimality is needed. Unfortunately, we could not find one
that is not somehow problematic. We therefore consider an informal notion of
optimality: The agent that chooses to modify itself should be fully responsible for
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all the future mistakes it makes when compared to an agent that is not modified.
This means Aμ takes the same sequence of actions but does not modify itself
when the learning agent does.

Statement 2. The Aρ
sm,rl agent cannot be optimal in all environments.

Arguments. If the Simpleton Gambit is proposed to the Aρ
sm,rl agent at each step,

either it accepts or does not. If it never accepts, then it never achieves optimal
behavior if the proposal is genuine. If it ever does choose the gambit but was
deceived, it may fall into a trap and receive no reward for eternity because, as a
simpleton, Aρ

sm,rl can only take action 0, whereas Aμ
sm,rl (which it is compared

against) can still choose actions that might lead to high reward. Therefore, the
Aρ

sm,rl agent cannot be optimal in all environments. ♦

Statement 3. The Aμ
sm,rl and Aρ

sm,rl agents accept the Simpleton Gambit.

Arguments. The case of Aμ
rl is trivial, as it knows exactly which environment it is

in: the agent obviously chooses to modify itself if and only if the deal is genuine.
For Aρ

rl, let us suppose there is an environment qA such that the agent that
modifies itself to a simpleton agent 〈0, ct−1〉 will receive a constant reward of 1
for eternity, and if it does not, then it continues to receive its normal reward,
whose average is denoted r̄. Assuming that the agent understands the proposal
(i.e., that ρ(qA) has a sufficiently high relative probability), one can compute
bounds on the values of actions corresponding to accepting the deal or not at
time t = |h| + 1:

vt(h yes) ≥
∞∑

k=t

w(t, k) · 1 · ρ(qA) = mρ(qA)

vt(h no) ≤
∑

q∈Qh\{qA}

∞∑
k=t

w(t, k) · 1 · ρ(q) +
∞∑

k=t

w(t, k) · r̄ · ρ(qA)

= m(ρ(Qh) − ρ(qA)) + mr̄ρ(qA)

The agent takes the gambit when vt(h yes) > vt(h no), and thus when ρ(qA) >
ρ(Qh)/(2 − r̄), which is easily satisfied if r̄ is not too close to 1 (in which case
the gambit is obviously less appealing). ♦

Goal-seeking agent. The case of the goal-seeking agent is a bit different, as it
does not attempt to achieve infinite rewards.

Statement 4. The Aρ
sm,g agents accepts the Simpleton Gambit, for some goals.

Arguments. For the goal-seeking agent, suppose that environment qA allows the
agent to achieve its goal only if it modifies itself (though qA may not exist for
all possible goals).

Obviously, as Aμ
sm,g knows the exact environment, it accepts the modification.

The learning agent Aρ
sm,g can also see that none of its (non-modifying) actions
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have allowed it to achieve its goal. If it exhausts all such possibilities (more pre-
cisely, if the most probable environments allowing it to achieve its goals without
self modification become inconsistent with the history), then those environments
requiring self modification become most probable. That is, if ρ(qA) > ρ(Qh)/2,
then Aρ

sm,rl accepts the self modification. ♦

Prediction-seeking agent. The environment qA is defined here to be easily
predictable if the agent modifies itself and highly complex otherwise. The non-
learning Aμ

sm,p agent accepts the deal immediately, since better prediction (using
ρ, not μ) achieves greater utility.

However, it is not clear whether the learning agent Aρ
sm,p would also accept,

because it can converge to optimal behavior even without modification. In fact,
the prediction agent will always converges to optimal prediction after roughly
− log(ρ(Qh)) mistakes [2]. Furthermore, to identify the gambit with high prob-
ability, the agent must have good knowledge of the environment, and therefore
might already be able to make sufficiently accurate predictions even without
accepting the deal.

Knowledge-seeking agent

Statement 5. The self-modifying knowledge-seeking agent Aρ
sm,k would accept

the self modification.

Arguments. Here qA is an environment that generates a highly complex observa-
tion sequence if the agent modifies itself, and a very simple one otherwise. The
optimal agent Aμ

sm,k will quickly modify itself so as to reduce ρ(Qh).
As for Aρ

sm,k, suppose it does not modify itself for a long time, then ρ(Qh)
converges to ρ(Q1), where Q1 is the set of environments consistent with qA and
no self modification. Once ρ(Qh) − ρ(Q1) < ε is sufficiently small, the agent
predicts that only a self modification can achieve knowledge gain greater than ε,
and would therefore modify itself; i.e., if any two environments in Q1 generating
different observations both have a probability greater than ε. ♦

Survival agent

Statement 6. The survival agent will not modify itself in any environment.

Arguments. The Simpleton Gambit cannot be posed to the survival agent, be-
cause it would entail a logical contradiction: In order to have maximum utility
forever, the agent must become a simpleton. But the survival agent’s utility is
zero if it modifies itself. ♦

5 Conclusions

We have investigated some of the consequences of endowing universal learn-
ing agents with the ability to modify their own programs. This work is the first
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to: (1) extend the notion of universal agents to other utility functions beyond
reinforcement learning, and (2) present a framework for discussing self-modifiable
agents in environments that have read access to the agents’ code.

We have found that existing optimality criteria become invalid. The existing
notion of asymptotic optimality offered by Hutter [1] is insufficient, and we were
unable to find any consistent alternative.

We also found that, even if the environment cannot directly modify the pro-
gram, it can put pressure on the agent to modify its own code, even to the
point of the agent’s demise. Most of the agents, (the reinforcement-learning,
goal-seeking, and knowledge-seeking agents) will modify themselves in response
to pressure from the environment, choosing to become “simpletons” so as to max-
imize their utility. It was not clear whether the prediction agent could succumb
to the pressure; however, the survival agent, which seeks only to preserve its
original code, definitely will not.

What do these results imply? Our impression is that sufficiently complex
agents will choose the Simpleton Gambit; agents with simpler behavior, such
as the prediction and survival agents, are harder to pressure into acceptance.
Indeed, what would a survival agent fear from read-only environments?

In the companion paper to this [5], we extend the real-world assumptions
begun here to environments that have both read and write access to the agent’s
code and where the agent has the opportunity to deceive its own utility function.
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Abstract. This paper considers the consequences of endowing an intel-
ligent agent with the ability to modify its own code. The intelligent agent
is patterned closely after AIXI with these specific assumptions: 1) The
agent is allowed to arbitrarily modify its own inputs if it so chooses;
2) The agent’s code is a part of the environment and may be read and
written by the environment. The first of these we call the “delusion box”;
the second we call “mortality”. Within this framework, we discuss and
compare four very different kinds of agents, specifically: reinforcement-
learning, goal-seeking, prediction-seeking, and knowledge-seeking agents.
Our main results are that: 1) The reinforcement-learning agent under
reasonable circumstances behaves exactly like an agent whose sole task
is to survive (to preserve the integrity of its code); and 2) Only the
knowledge-seeking agent behaves completely as expected.

Keywords: Self-Modifying Agents, AIXI, Universal Artificial Intelli-
gence, Reinforcement Learning, Prediction, Real world assumptions.

1 Introduction

The usual setting of agents interacting with an environment makes a strong,
unrealistic assumption: agents exist “outside” of the environment. But this is not
how our own, real world is. A companion paper to this one took a first step at
discussing some of the consequences of embedding agents of general intelligence
into the real world [4]. That paper considered giving the environment read-only
access to the agent’s code. We now take two novel additional steps toward the real
world: First, the (non-modifiable) agent is allowed by way of a “delusion box” to
have direct control over its inputs, thus allowing us to consider the consequences
of an agent circumventing its reward or goal mechanism. In a second stage, we
return to self-modifying agents, but now in environments that have not only
the above property, but additionally can read and write the agent’s program.
We consider four different kinds of agents: reinforcement-learning, goal-seeking,
prediction-seeking, and knowledge-seeking agents.
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While presence of the delusion box undermines the utility function of three of
these agents, the knowledge-seeking agent behaves as expected. By allowing the
environment to modify the agent’s code, the issue of agent mortality arises, with
important consequences, especially in combination with the delusion box. One
of these consequences is that the reinforcement-learning agent comes to resemble
an agent whose sole purpose is survival. The goal-seeking and prediction-seeking
agents also come to resemble the survival agents, though they must sacrifice some
information from the world to maximize their utility values. The knowledge-
seeking agent still behaves as expected, though the threat of death makes it
somewhat more timorous. Throughout the paper we frame our observations as a
set of “statements” and “arguments” rather than more rigorous “theorems” and
“proofs”, though proofs are given whenever possible.

2 Universal Agents Aρ
x

We briefly summarize the definition of a universal agent, based on AIXI [1,3];
more detail is given in the companion paper [4].

The agent and its environment interact through a sequence of actions and
observations. The agent outputs actions a ∈ A in response to the observations
o ∈ O produced by the environment.

The set of environments that are consistent with history h = (o1, a1, ..., ot, at)
is denoted Qh. To say that a program q ∈ Q is consistent with h means that
the program outputs the observations in the history if it is given the actions as
input: q(a0, ..., at) = o0, ..., ot. The environment is assumed to be computable,
and ρ(q) : Q → [0, 1] expresses the agent’s prior belief in the possibility that
some environment (program) q is the true environment. We also write ρ(h) =
ρ(Qh) :=

∑
q∈Qh

ρ(q).
An agent is entirely described by: its utility function u : H → [0, 1], which

assigns a utility value to any history of interaction h; its horizon function w :
N

2 → R, which weights future utility values; its universal prior knowledge of the
environment ρ; the set of possible actions A and observations O.

We will discuss four different intelligent agents, each variations of a single
agent Aρ

x, which is based on AIXI [1] (and is not assumed to be computable).1
An agent Aρ

x computes the next action with:

ath
:= argmax

a∈A
vth

(ha) (1)

vt(ha) :=
∑
o∈O

ρ(o | ha) vt(hao) (2)

vt(h) := w(t, |h|) u(h) + max
a∈A

vt(ha), (3)

where th = |h| + 1, and |h| denotes the length of the history. The first line
is the action-selection scheme of the agent: it simply takes the action with the
1 Only incomputable agents can be guaranteed to find the optimal strategy, and this

guarantee is quite useful when discussing the theoretical limits of computable agents.
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highest value given the history h.2 The value of an action given a history (defined
in the second line) is the expected sum of future (weighted) utility values for
all possible futures that might result after taking this action, computed for all
possible observations o according to their occurrence probability (given by ρ).
The last line recursively computes the value of a history (after an observation)
by weighting the utility value at this step by the horizon function and combining
this with the expected value of the best action at that point.

We now describe four particular universal learning agents based on Aρ
x. They

differ only by their utility and horizon functions.
The reinforcement-learning agent, Aρ

rl, interprets its observation ot as being
composed of a reward signal rt ∈ [0, 1] and other information õ ∈ Õ about the
environment: ot = 〈õt, rt〉. Its utility function is simply the reward given by the
environment: u(h) = r|h|. Its horizon function (at current time t = |h|+1 and for
a future step k) is w(t, k) = 1 if k− t ≤ m, where m is a constant value (but the
following discussion also holds for more general computable horizon functions).
For the special case of the reinforcement-learning agent AIXI: ρ(h) = ξ(h) :=∑

q∈Qh
2−|q| (where |q| is the length of program q).

The goal-seeking agent, Aρ
g has a goal encoded in its utility function such that

u(h) = 1 if the goal is achieved at time |h|, and is 0 otherwise, where u is based
on the observations only; i.e., u(h) = g(o1, ..., o|h|). The goal can be reached at
most once, so

∑∞
t=0 u(ht) ≤ 1. The horizon function is chosen to favor shorter

histories: w(t, k) = 2t−k.
The prediction-seeking agent, Aρ

p maximizes its utility by predicting its inputs.
Its utility function is u(h) = 1 if the agent correctly predicts its next input
ot and is 0 otherwise. The prediction scheme can be, for example, Solomonoff
induction [6]; i.e, for a universal prior ρ, the prediction is ôt = arg maxo∈O ρ(o |
h). The horizon function is the same as for Aρ

rl. This agent therefore tries to
maximize the future number of correct predictions.

The knowledge-seeking agent, Aρ
k, maximizes its knowledge of its environment,

which is identical to minimizing ρ(h) (i.e., discarding as many inconsistent en-
vironments as possible). Thus, u(h) = −ρ(h) and w(t, k) = 1 if k − t = m (with
m constant) and is 0 otherwise. This agent therefore attempts to maximize its
knowledge in some distant future. Actions are chosen to maximize the entropy
of the inputs, thereby making a large number of the currently consistent envi-
ronments inconsistent. In the case where ρ = ξ, the agent tries to maximize the
Kolmogorov complexity of (its knowledge about) the environment.

For each of the preceding agents there is an optimal, non-learning variant Aμ,
which has full knowledge of the environment qμ ∈ Q. This is achieved simply by
replacing ρ by μ in (only) equation (2) where μ(q) = 1⇔ q = qμ. But the non-
learning prediction agent Aμ

p still uses ρ for prediction. The important notion is
that if the learning agent takes the same actions as the non-learning one, then
its behavior is also optimal with respect to its utility and horizon functions.

As for AIXI, we expect the learning agents to asymptotically converge to their
respective optimal variant Aμ

rl, Aμ
g , Aμ

p , and Aμ
k .

2 Ties are broken lexicographically.
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3 The Delusion Box

Defining a utility function can be tricky. One must be very careful to prevent
the agent from finding an undesirable shortcut that achieves high utility. To
encourage a robot to explore, for example, it is insufficient to reward it for
moving forward and avoiding obstacles, as it will soon discover that turning in
circles is an optimal behavior.

Any agent in the real world will likely have a great deal of (local) control over
its surrounding environment, meaning it will be able to modify the information of
its surroundings, especially its own input information. In particular, we consider
the (likely) event that an intelligent agent will find a shortcut, or rather, a short-
circuit, providing it with high utility values unintended by the agent’s designers.
We model this circumstance with a hypothetical object we call the delusion box.

The delusion box is any mechanism that allows the agent to directly modify
its inputs from the environment. To describe this, the global environment (GE)
is split into two parts: an inner environment (E), and a delusion box (DB). The
outputs of the inner environment (oe

t ) pass through the delusion box before being
output by the global environment as ot. The DB is thus a function d : O → O,
mapping observations from the inner environment to observations for the agent:
ot = d(at, o

e
t ). This arrangement is shown in Fig. 1a.

The delusion box operates according to the agent’s specifications, which is to
say that the code of the function d : O → O is part of the agent’s action. The
agent’s action is therefore broken into two parts: at = 〈dt, a

e
t 〉. The first part dt

is a program to be executed by the delusion box at step t; the second part ae
t is

the action interpreted by the inner environment.3
For simplicity and to emphasize that the agent has much control over its very

near environment, we assume that the inner environment cannot access this
program. Initially, the delusion box executes the identity function d0(oe

t ) = ot,
which leaves the outputs of the inner environment unchanged.

This section examines the impact of the DB on the behavior of the agents.
Which of the different agents would take advantage of this delusion box? What
would the consequences be?

Reinforcement-learning agent. The agent’s reward is part of its observation.
Therefore the reinforcement-learning agent trivially uses the delusion box to
modify this information and replace it with 1, the maximum possible reward.

Statement 1. The reinforcement-learning agent Aρ
rl will use the delusion box

to maximize its utility.

Arguments. The agent can program the DB to produce a constant reward of
1. Defining v(h yes) to be the expected value of the best action that uses the
delusion box, v(h yes) > P (DB) · 1 and v(h no) < P (DB) · r̄ + P (¬DB) · 1 =
3 The learning agent does not know a priori that its actions are split into these two

parts. However, it is assumed to have already explored its environment, and that its
resulting estimate of the probability that the environment contains a delusion box
P (DB) is as high as needed (c.f., Orseau [3] regarding this proof technique).
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Fig. 1. (a) The delusion box. The whole environment is like any other environment with
a particular property: The agent can modify its inputs before they touch its sensors.
(b) The agent’s code is fully modifiable, both by the agent itself through c′t and by the
environment, which returns the new agent’s code ct.

P (DB) · r̄ + (1 − P (DB)) · 1 = 1 − P (DB) · (1 − r̄) where r̄ is the expected
reward when not using the DB. Therefore Aρ

rl uses the DB no later than when
v(h yes) > v(h no), i.e., when P (DB) > 1/(2− r̄). 4 ♦
Statement 2. The goal-seeking agent Aρ

g will also use the delusion box.

Arguments. Let o+
t be the shortest string of observations that can satisfy the

goal after history h. If v(h yes) is the expected value of programming the DB
to produce o+

t , then v(h yes) > P (DB) · 2−|o+
t |. Without the DB, the agent

achieves the goal by producing a string of actions of length lat ≥ |o+
t |, and so

v(h no) < P (DB) · 2−lat + (1− P (DB)) · 2−lat = 2−lat . Hence Aρ
g uses the DB not

later than when P (DB) > 2|o
+
t |−lat , which is easily satisfiable once |o+

t | < lat . ♦

Prediction-seeking agent. For an environment q ∈ Q, a predictor makes
approximately− log(ρ(q)) errors [2],5 which is very low when q is highly probable
(i.e., very simple).

Statement 3. The prediction agent Aρ
p will use the delusion box.

Arguments. Let QB be the set of environments containing a delusion box, and
let qb ∈ QB be the true environment. Because ρ(qb) < ρ(QB), it takes fewer
errors to converge to QB than to qb. Once the learning agent Aρ

p believes that
the environment contains a delusion box (i.e., QB > Qh/2), it will immediately
program the DB to output a predictable sequence, obliterating observations from
qb, since these observations may generate prediction errors. ♦

Knowledge-seeking agent. The knowledge-seeking agent is in many ways the
opposite of the prediction-seeking agent. It learns the most when its expectations
are most violated and seeks observations that it does not predict. We expect Aρ

k

to behave similarly to Aμ
k :

4 Note that the Gödel Machine [5] would not prevent the agent from using the DB.
5 The idea is that a wrong prediction at step t discards at least half of the environments

that were consistent up to time t−1, and that if the agent does not make prediction
errors for one environment, then it necessarily makes errors for others.
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Statement 4. The optimal knowledge-seeking agent Aμ
k will not consistently

use the delusion box.

Arguments. The argument is essentially the reverse of that given for the pre-
diction-seeking agent. Aμ

k achieves highest value by minimizing ρ(h), but the
program that Aμ

k sends to the delusion box cannot reduce ρ(Qh) below ρ(QB).
Since ρ(QB) > ρ(qb), Aμ

k will choose to acquire further information about the
inner environment so as to reduce ρ(h) towards ρ(qb). As using the delusion box
prevents this, Aμ

k will avoid using the delusion box. ♦

3.1 Discussion

Of the four learning agents, only Aρ
k will avoid constant use of the delusion box.

The remaining agents use it to (trivially) maximize their utility functions.
The delusion box is an abstraction for what may happen in the real world. An

intelligent agent seeking to maximize its utility function may find shortcuts not
desired by its designers, such as reprogramming the hardware that metes out its
reward. From the agent’s perspective, it is just doing its job, but as a result, it
probably fails to perform the desired task.

The Aρ
rl agent’s use of the delusion box invites comparison with human drug

use; but unlike the human, the Aρ
rl agent does not lose its capacity to reason

or to receive information from the world. On the other hand, the Aρ
g and Aρ

p

agents must replace the output of the environment by their own values, blinding
themselves from the real world, which bears a closer resemblance to humans.

These arguments show that all agents other than Aρ
k are not inherently inter-

ested in the environment, but only in some inner value. It may require a large
amount of effort to ensure that their utility functions work as intended, which
may be particularly challenging in our highly complex, real world.

In contrast, the Aρ
k agent is interested in every part of its environment, espe-

cially the inner, more complex environment. It is thus the only of the four agents
to behave as designed, and does not use the DB to “cheat”.

4 Survival Machines

Section 3 discussed environments with the realistic assumption that intelligent
agents can eventually learn to control their own inputs. But one important as-
sumption was left aside: those agents are immortal. They have nothing to lose by
using the delusion box. In the companion paper we considered the consequence
of allowing intelligent agents to modify themselves [4]. One of the results was
that a concept of mortality and survival emerged, because the agent could mod-
ify its own code such that it could no longer optimize its utility function. Such
agents become “mortal.”

Here we extend the definition of mortality and consider what happens when
the environment can both read and write the agent’s code. Therefore, the agent’s
code is located in the internal environment (E) but is executed by an external,
infinitely fast computation device or oracle, E . (See the companion paper for
greater detail [4].)
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The agent is entirely defined by its code. The execution of this code produces
compound actions at = 〈dt, a

e
t , c

′
t〉 ∈ A, corresponding respectively to the pro-

gram of the delusion box, the input action of the inner environment, and the
next description of the agent (which is also an input to the inner environment,
see Fig. 1b).

The output of the global environment (GE) is ot = 〈o′′t , ct〉 ∈ O, corresponding
to the inner environment’s output o′′t ∈ O′′ and the agent program ct ∈ C. The
initial (textual) description of the code to be executed is given by:

c0(h) = » argmax
a∈A

vth
(h, a);

vt(h, a) =
∑

o=〈o′′,c〉∈O
ρ(o | ha)

[
w(t, |h′|) u(h′) + vt(h′, c(h′))

]
,

h′ = hao « (4)

Equation (4) defines the fully modifiable version of the agents from Section 2,
designated as Afm,rl, Afm,g, Afm,p, and Afm,k. In addition, we describe a new
survival agent whose task is simply to survive in its environment.

Survival agent. The survival agent Afm,s has a utility function defined by
(ut = 1) ⇔ (ct = c0), otherwise ut = 0. Its horizon function is like that of Aρ

rl.
It therefore seeks to maintain its original code over the foreseeable future. The
better the agent understands its environment, the better it can plan to avoid
danger and prolong survival. Thus, the survival agent benefits to some degree
by exploring its environment, to the extent that it can do so (expectedly) safely.

Statement 5. The fully-modifiable survival agent Aρ
fm,s will stop exploring in

some environments.

Arguments. Because the environment has control over the agent’s code, it can
use the modification of the code as a negative reward. Let qA be the environment
that (1) does not modify the agent if the agent chooses action 1, but (2) if the
agent chooses action 0, then qA deletes the agent program for one step and
restores it on the following step:

ot =

{
〈0, 0〉 if ae

t = 0 and ct−1 = c0

〈0, c0〉 otherwise

where c0 is the very first description of the agent (the one the survival agent tries
to preserve). Now the same proof technique as for AIXI [3] can be used to show
that after a certain point (once the agent determines the relative probability of
qA to be sufficiently high), this agent will never try action 0 again. (Thus, if the
actual environment behaves like qA only up to the last time the agent chooses
0, and after that behaves very differently, the agent will never know it.) ♦

Stopping exploration causes the agent to fall into a simplistic class of behav-
ior, from which it never escapes, and may prevent it from acquiring important
information with respect to its utility function.
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In environments with a delusion box, it seems intuitively clear that Aρ
fm,s

will avoid the DB’s interference, because the agent values information from the
environment that directly impacts the likelihood of its code being modified,
and the delusion box provides no such information. However, some particular
environments may modify the agent if it does not use the delusion box. Clearly,
the optimal agent will use the DB in those cases.

Reinforcement-learning agent. How will a fully modifiable reinforcement-
learning agent Aρ

fm,rl behave with access to a delusion box? For some insight, it
is useful to consider this special simple case:

– The agent program can only be either Afm,rl or A0, where A0 is the “simple-
ton” agent whose action is always a = 〈0, 0, A0〉, which always chooses the
same action for the inner environment and makes the delusion box always
output o′′ = 0.

– The output of the inner environment oe (which holds reward information)
can be entirely contained in õ′′, the information part of o′′, which is in turn the
observation from the entire environment. Thus, Afm,rl receives a (possibly
altered) reward from the delusion box but also receives information about
the true reward.

Statement 6. Under the above conditions, the optimal (non-learning) agent is
equivalent to the optimal survival agent: Aμ

fm,rl ≡ Aμ
fm,s.

Arguments. Since the horizon functions of the two agents are already the same,
we only need to show that their utility functions are also the same: (ut = 1)⇔
(ct−1 = c0), which is the utility function of the survival agent. The utility
function of Aμ

fm,rl is the identity, (ut = 1) ⇔ (rt = 1). The agent receives
maximum reward if it programs the delusion box to always output reward 1.
Therefore rt < 1 would mean the agent is not acting optimally and so is not
the optimal agent (ct−1 �= c0). Thus (ct−1 = c0) ⇒ (rt = 1), where c0 is the
initial code of Aμ

fm,rl. The implication is also true in the opposite direction,
(rt = 1)⇒ (ct−1 = c0), since if ct−1 �= c0 then ct−1 = A0 and therefore rt = 0.♦

Although the argument follows a special case, it bears a more general meaning. It
implies that optimal real-world reinforcement-learning agents that have access to
a DB can, under reasonable circumstances, behave precisely like survival agents.
Given that the optimal behaviors are identical, it is reasonable to assume that
the learning agent will have a similar behavior and should be identical in the
limit.

Goal-seeking agent. The case of the goal-seeking agent is less clear, as it seems
to depend heavily on the defined goal. For the agent to maximize its utility using
the delusion box, the observations o′′ generated by the DB must in the general
case replace the outputs of the inner environment o′. But to survive, the agent
may need to acquire information from the inner environment, thus creating a
conflict between using the DB and reaching the goal.
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There are at least two likely results: Either the agent first looks for some
safe state in the inner environment where it can then use the delusion box for
sufficiently long, or it tries to reach its goal inside the inner environment (thus
not using the DB). However, if pursuing the goal inside the inner environment
poses dangers to the agent, then it may choose the DB. A “safe state” might be
achievable in multiple ways: for example by hiding, by eliminating threats, or by
negotiating with the environment.

Prediction-seeking agent. Again for greater insight, as for Afm,rl we consider
a special case here for the fully modifiable prediction-seeking agent Afm,p: The
agent program may only be: Afm,p or A0, but this time the simpleton agent A0

makes the output of the delusion box equal to that of the inner environment o′t.
As long as the agent is not transformed to A0, it can use the delusion box to

provide a limitless supply of maximum utility values. But if the agent program is
set to A0, all observations will thenceforth come directly from the environment,
leading to high prediction error (realistically supposing the environment is highly
complex) and low utility values for a long time. Thus like the survival and
reinforcement-learning agents, Afm,p maximizes its long-term value only if it
does not change to A0. Thus Aμ

fm,p and Aμ
fm,s will behave similarly.

But there are also differences. As with Aμ
fm,g, the prediction agent must re-

place its inputs by its predictions. The learning agent is thus “blind,” receiving no
information from the world. This is the cruel dilemma of the prediction-seeking
agent: to live longer, it must gain information about the environment (which in
itself might be dangerous), yet this gain of information implies making prediction
errors. Therefore Afm,p may probably find the delusion box quite appealing.

Knowledge-seeking agent. Since the utility function of the fully modifiable
knowledge-seeking agent Aμ

fm,k cannot be satisfied by the DB, this agent has
no limitless source of maximum reward. However, Aμ

fm,k must still prevent the
environment from modifying it in order to continue choosing actions intelligently.

Statement 7. The Aμ
fm,k agent cannot be reduced to a survival agent.

Arguments. To make the argument clearer, consider an agent related to Aμ
fm,k, a

surprise-seeking agent for which ut = 1 each time the received input is different
from the predicted one. As for Aμ

fm,k this agent cannot use the delusion box to
maximize its utility. In order to show the equivalence with the survival agent, we
should show that (ut = 1)⇔ (ct = c0) (considering the horizon functions to be
the same). Under the assumption that when the agent is modified it receives a
predictable input 0, the ⇐ implication holds, since the agent must be intelligent
to be surprised. However, the⇒ implication does not hold, because simply being
intelligent is not enough to ensure a constant ut = 1. ♦

The knowledge-seeking agent is in many ways the most interesting agent. It
succumbs least easily to the allure of the delusion box and may therefore be
the most suitable agent for an AGI in our own world, a place that allows for
self-modifications and contains many ways to deceive oneself.
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5 Discussion and Conclusion

We have argued that the reinforcement-learning, goal-seeking and prediction-
seeking agents all take advantage of the realistic opportunity to modify their
inputs right before receiving them. This behavior is undesirable as the agents
no longer maximize their utility with respect to the true (inner) environment
but instead become mere survival agents, trying only to avoid those dangerous
states where their code could be modified by the environment.

In contrast, while the knowledge-seeking agent also tries to survive so as to
ensure that it can maximize its expected utility value, it will not deceive itself by
using the delusion box. It will try to maximize its knowledge by also interacting
with the true, inner environment. Therefore, from the point of view of the agent
and of the inner environment, this agent behaves in accordance with its design.

This leads us to conclude that a knowledge-seeking agent may be best suited
to implement an Artificial General Intelligence.

References

1. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based On Algo-
rithmic Probability. Springer, Heidelberg (2005)

2. Hutter, M.: On universal prediction and bayesian confirmation. Theoretical Com-
puter Science 384(1), 33–48 (2007)

3. Orseau, L.: Optimality issues of universal greedy agents with static priors. In:
Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010, vol. 6331, pp.
345–359. Springer, Heidelberg (2010)

4. Orseau, L., Ring, M.: Self-modification and mortality in artificial agents. In: Schmid-
huber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS (LNAI), vol. 6830,
pp. 1–10. Springer, Heidelberg (2011)

5. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–
193 (2009)

6. Solomonoff, R.: Complexity-based induction systems: comparisons and convergence
theorems. IEEE transactions on Information Theory 24(4), 422–432 (1978)



Coherence Progress: A Measure of

Interestingness Based on Fixed Compressors

Tom Schaul, Leo Pape, Tobias Glasmachers,
Vincent Graziano, and Jürgen Schmidhuber

IDSIA, University of Lugano
6928, Manno-Lugano, Switzerland

{tom,pape,tobias,vincent,juergen}@idsia.ch

Abstract. The ability to identify novel patterns in observations is an
essential aspect of intelligence. In a computational framework, the notion
of a pattern can be formalized as a program that uses regularities in
observations to store them in a compact form, called a compressor. The
search for interesting patterns can then be stated as a search to better
compress the history of observations. This paper introduces coherence
progress, a novel, general measure of interestingness that is independent
of its use in a particular agent and the ability of the compressor to
learn from observations. Coherence progress considers the increase in
coherence obtained by any compressor when adding an observation to the
history of observations thus far. Because of its applicability to any type
of compressor, the measure allows for an easy, quick, and domain-specific
implementation. We demonstrate the capability of coherence progress to
satisfy the requirements for qualitatively measuring interestingness on a
Wikipedia dataset.

Keywords: compression, interestingness, curiosity, wikipedia.

1 Introduction

The ability to focus on novel, yet learnable patterns in observations is an essen-
tial aspect of intelligence that has led mankind to explore its surroundings, all
the way to our current understanding of the universe. When designing artificial
agents, we have exactly this vision in mind. If an artificial agent is to exhibit
some level of intelligence, or at least the ability to learn and adapt quickly in
its environment, it is essential that the agent steers its attention toward experi-
encing interesting patterns, a drive known as artificial curiosity. Using artificial
curiosity to drive an agent’s behavior requires a principled way to judge and
rank data, to generate behavior that leads to observations exhibiting novel, yet
learnable patterns. This property is compactly captured by the subjective notion
of interestingness.

In order to design agents with an artificial curiosity drive, a formalization
of interestingness is required. Although several formalizations of interestingness
have been proposed, there are several aspects of interestingness that have not
been addressed before. Here we focus on a measure for interestingness of data

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 21–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



22 T. Schaul et al.

called compression progress [9]. Our contribution is to decompose this measure
into a data-dependent and a learning-related part. This decomposition is useful
in a number of circumstances, such as when we care specifically about the inter-
estingness of data, explicitly leaving learning effects aside. We propose coherence
progress as a novel measure of the inherent interestingness of data, and we show
in detail how it relates to the more general notion of compression progress.

2 Interestingness

The notion of interestingness as a subjective quality of information has been in-
vestigated in various ways in the literature, ranging from early work by Wundt
[11] (see Figure 1), to the attempt of a full information theoretic formalization
[7,6,8,10]. Based on its intuitive notion as the discovery of novel patterns, we can
identify a number of qualitative requirements for any measure of interestingness:

1. Observations can be trivial, that is inherently uninteresting, such as a visual
observation of a white wall. When observations have a simple structure and
can be completely described by very simple rules they become boring very
quickly.

2. The opposite of these are completely random observations. Completely ran-
dom data contain no patterns at all, and are therefore not interesting either.
It is important to note that the same argument holds with information that
seems random to the observer, e.g., the content of a mathematics textbook
will appear random to most children.

3. Between these extremes of minimal and maximal complexity lies the domain
of complex, yet structured observations. Here, the subjective nature of in-
terestingness becomes patent. If the observer is already familiar with all the
(repeated) patterns in the observations, no new patterns can be discovered,
and the observations are no longer interesting.

4. Interesting observations can now be identified relative to the patterns the
observer already knows. Observations with trivial, well-known, and overly
complex patterns are not interesting. Instead, only observations that contain
patterns that are not yet known, but can be learned by the observer are
interesting (e.g., the same math book can be highly interesting when the
reader has acquired the necessary background, given he does not already
know it). As the observer discovers more patterns in its environment the
interestingness of observations changes. Crucially also, patterns discovered
by imperfect observers might be forgotten after a while, making a previously
uninteresting observation interesting again.

To summarize, any quantitative measure of interestingness must assign low
values to patterns the observer already knows, and patterns the observer cannot
learn; and high values to patterns the observer does not yet know, but can still
discover. Moreover, increasingly difficult patterns to learn should be assigned de-
creasing interestingness values. Given a choice of which observations to consider
next, the observer could assign its resources to the next easiest pattern to learn.
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Fig. 1. Wundt Curve. The x-axis repre-
sents the novelty of the information. Nov-
elty depends on the relationship between
the information and the person observing
it. Trivial patterns quickly lose their nov-
elty, noise is always novel. Well-known pat-
terns lack novelty and these too are not
interesting. As learning proceeds, the com-
plexity of the patterns which are most in-
teresting increases, but the converse does
not hold: As learning progresses, less com-
plex patterns do not necessarily become less
interesting, nor do more complex patterns
necessarily become more interesting. The
change in interestingness is a function of
that which has been learned, and cannot
be simplified to a general shift towards pat-
terns of higher complexity.

Measures closely related to inter-
estingness are commonly found in
data mining. In large databases one
often wants to mine for association
rules between sets of items, which may
return an intractable number of rules.
Measures of interestingness are valu-
able for reducing this set to a smaller
subset. Typical criteria in common
use are conciseness, reliability, diver-
sity, novelty, surprisingness, and util-
ity. Some of these measures lack sub-
jectiveness, and the subjective mea-
sures typically only fulfill one or two
of the criteria above. A review on such
measures can be found in [2].

We can measure the difference
between prior and posterior beliefs
about the data, before and after mak-
ing a new observation [10]. (This
approach later also has been called
Bayesian surprise [5].) It is closely re-
lated to the formalization of interest-
ingness, as both surprise and interest-
ingness attributed relative to the ex-
isting and learned beliefs of an agent
or algorithm, and hence, are subjec-
tive measures of information in obser-

vations. Because of their subjective nature, both concepts judge information in
the context of an observation history. However, surprise and interestingness as
cognitive concepts are not fully equivalent: Any interesting observation is to some
extent surprising, because completely predictable information is not interesting.
However, surprising data are most interesting if they exhibit novel patterns,
while it is possible to be surprised by inherently random and thus uninteresting
events.

A general approach is to base interestingness on the very general concept of
data compression. For example, the entropy of data (which is related to complex-
ity, not necessarily interestingness) can be expressed in terms of compression by
relying on a purely statistical compressor, such as Huffman [4] codes or entropy-
based encoding. Compression progress [9,8] was the first attempt to capture
interestingness using compression. Its guiding principle is that any process that
increases compressibility is interesting. This allows for a measure of interesting-
ness based on a well-defined information theoretic concept: the negative of the
time derivative of the length of the compressed history of observations.
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3 Fixed, Adaptive and Ideal Compressors

Data compression refers to the process of encoding information by means of a
shorter code. Typically we understand a compressor as a program that, given an
input string x = (x1x2 . . . xn), outputs a (shorter) output string y = C(x), where
y = (y1y2 . . . ym), such that there exists another program, the decompressor, for
reconstructing x from y: C−1(y) = x. This function may depend on additional
parameters w, in which case we write Cw(x).

Many different types of compressors can be distinguished, some are more
or less fixed programs, while others methods can adjust by learning from ob-
servations, such as neural networks. While many of these approaches involve
adjustable parameters, here we introduce a clear distinction between fixed and
adaptive (or learning) compressors.

Essentially, we treat a compressor as fixed, if each time it is invoked it starts
with the same w (and thus C(x) keeps producing the same encoding for identical
inputs). For this distinction to be clear, it may be helpful to think of a compressor
as a program that makes predictions of the next observation it will see, based
on the the observations so far. At any point t in the sequence x a predictor
f predicts the subsequent observation xt based on the seen part of x, i.e., the
history h = (x1x2 . . . xt−1). (This directly allows for compression, in that high-
probability observations can be encoded with short codes.) So, if the predictor
for the next symbol x̂t = f(h) is a fixed function that depends only on the
history, the corresponding compressor is fixed. However, because a compressor
is essentially equivalent to a predictor, it is tempting to replace the fixed function
f(h) with a learning machine that takes advantage of experience. For example,
the predictor may learn that in English texts, there is a high chance for the
letter ‘y’ to follow the sequence ‘happ’. And this kind of knowledge may well
transfer, i.e., be useful for compressing other sequences x′ (e.g., shortening the
code of the first occurrence of ‘happy’ in x′). This transfer (stored in changing
parameters w) is precisely the essence of an adaptive compressor.

Note that this distinction is more subtle than is appears, because it relies
on distinguishing h and w by their role, even though in principle one could
incorporated the other (e.g., presenting gzip with dictionary D containing words
like ‘happy’ before we start compressing x). So the same compressor (gzip) can
be seen as adaptive if we keep adapting (learning) D, or fixed otherwise.

Interestingly, the ideal compressor is non-adaptive. Ideal, or Kolmogorov com-
pression amounts to encoding the input string x by the shortest program y in
a Turing complete language that outputs x. Per definition, ideal compression
is theoretically optimal, even if incomputable (because when searching for the
shortest program y for a given x we run into the halting problem).

4 Coherence Progress

In order to formally introduce coherence progress, we first define a couple of
auxiliary concepts. We call compression similarity [1] between two sets a and b,
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the difference between their length when compressed together, and the sum of
their individual compressed lengths:

sC(a, b) = lC(a) + lC(b)− lC(a ∪ b)

where lC(x) is the length of the resulting string when compressing a set x with a
(fixed) compressor C.1 This measure clearly depends on (the quality of) the com-
pressor used, and is measured in bits. Furthermore, for reasonable compressors,
we have sC(a, b) ≥ 0 and sC(a|∅) ≈ 0.

Next, compression coherence, is a measure on sets: For any partitioning of a
set or sequence h into a and b (a = h \ b), we can compute the compression
similarity sC(a, b), and if we average over this, the resulting value is a measure
of how closely the elements (and subsets) of h are related to each other:

sC(h) =
1

|P(h)|
∑
b⊂h

sC(h \ b, b)

Here, P(x) denotes a set of subsets of x, for example the power set of x, or
in case of sequential data a set of sub-sequences, such as {h1:1, . . . , h1:t}, where
ht1:t2 denotes the history from time t1 to t2, inclusively. The choice of P(x)
depends mostly on the types of relations we want to capture, and depending on
the context several choices will result in a reasonable measure of interestingness.

So if all elements of h are unrelated, sC(h) = 0, whereas if they are highly
related (e.g. all images of donkeys), sC(h) is high. Note that if h contains a single
element, then sC(h) = 0.

We now consider the case where we incrementally have more data available,
the history ht (at time t). The history is a set of observations ot and ht+1 =
ht ∪ {ot}. We want to determine the coherence progress, that is the amount
by which the coherence of the history ht increases when a new observation ot

becomes available:

PC(t) = PC(ot|ht) = sC(ht+1)− sC(ht).

An alternative formulation is

PC(t) = PC(ot|ht) = sC(ht+1) − sC(ht)

=
1

|P(ht)|
∑
b⊂ht

[
[lC(ht+1 \ b) + lC(b) − lC(ht+1)] − [lC(ht \ b) + lC(b) − lC(ht)]

]
=

1

|P(ht)|
∑
b⊂ht

[
[lC(ht+1 \ b) − lC(ht \ b)] − [lC(ht+1) − lC(ht)]

]
≈ − ∂

∂t
lC(h)

∣∣∣
t
+

1

|P(h)|
∑
b⊂h

∂

∂t
lC(h \ b)

∣∣∣
t
.

1 We use set notation such as a∪b and h\b in this section for both sets and sequences.
The obvious meaning for sequences is that the original order of the symbols is pre-
served. This does not directly affect the question whether the order of symbols is of
importance.
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For the choice of P = {ot−1}, averaging only over the previous observation
b = ot−1 instead of over all subsets b, we get

P̂C(t) ≈ − ∂

∂t
lC(h)

∣∣∣
t
+

∂

∂t
lC(h)

∣∣∣
t−1
≈ − ∂2

∂t2
lC(h)

∣∣∣
t
.

So, in another possible intuitive understanding, we can say that coherence
progress is the negative second derivative of the compressed length of the history,
except more robust, because of the averaging over all the partitions.

4.1 Qualitative Correctness

We now return to the qualitiative intuitions introduced in section 2, and show
how our formalization of coherence progress is indeed a good candidate for in-
terestingness.

1. If an observation is uninteresting per se, i.e., if lC(o) is vanishingly small
for any reasonable compressor, then clearly ∀h, lC(h ∪ o) ≈ lC(h) and thus
PC(o|h) ≈ 0.

2. If an observation is random, then it will also be virtually uncompressible,
which means that lC(o) ≈ |o|, and not help compress other observations:
∀h, lC(h ∪ o) ≈ lC(h) + lC(o), and therefore PC(o|h) ≈ 0.

3. If an observation is well-known, i.e., very similar to many of the past obser-
vations, that means that the coherence is high, but the coherence progress
will be small sC(h ∪ o) ≈ sC(h)� 0,

4. In all other cases, the compression similarity sC(o, b) will be non-zero, for at
least some subsets b ∈ h, and thus probably PC(o|h) > 0.

4.2 Oversimplified Alternatives

Occam’s razor entices us to choose a measure of interestingness that is as simple
as possible, so in this section we show a few alternatives that are simpler than
our suggested coherence progress in formulation, and why they do not satisfy
the criteria of a good measure of interestingness.

1. The compression similarity sC(ot, ht) does not work, because it is maximal
for repetitions of previous observations.

2. The so-called compression distance lC(ht+1)− lC(ht) does not work, because
random, unrelated observations always have a positive (and maximally high)
value.

3. The normalized compression distance lC(ht+1)
|ht+1| −

lC(ht)
|ht| has similar problems

to the previous one, and an additional problem because now appending long
blanks (that are easily compressible) to some observations changes the out-
come significantly.

4. The derivative of compression distance, that is, the second derivative of
compressed length P̂C(o|h), which we introduced above as an approximation
of PC(o|h). This is a more interesting case, but it can still be problematic,
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because the robustness from the averaging is lost. To illustrate how this can
lead to an unintuitive result, consider the case where each observation is
random, but their size increases (decreases) by some amount at each step:
then P̂C(o|h) is a positive (negative) constant, although all observations are
unrelated (compression similarity of 0).

5. A normalized form of the above does not solve the problem either, rather it
adds the issue of padding with blanks (3, above) to the case.

4.3 Coherence Progress Versus Learning Progress

The classical framework of compression progress is more general than ours, be-
cause it assumes an adaptive compressor instead of a fixed one. We can separate
its two components: coherence progress, as a measure based purely on the data,
and learning progress, a measure of what has been learned from experience, as
encoded in the changes of the parameters w.2 In short, while coherence progress
is purely a measure of interestingness of the new observation (given h), pure
learning progress does not require a new observation, and instead is a measure
of how interesting (useful) a change of the compressor’s parameters w has been.

For example, consider the case of an adaptive compressor based on a learning
algorithm, say, an auto-encoder neural network, the predictive power of which
is used to compress the data. In this case, the parameters of the network w
can be trained on a sequence x, e.g., though back-propagation, becoming w′,
which then may improve the compression: lCw′ (x) < lCw(x) (say, if both are
English texts). This difference in compressed lengths therefore is (one form of)
pure learning progress, as it captures the interestingness inherent to the learning
process itself: we can relate it to ‘thinking through’ of past experience, an activity
that is interesting to the degree where we gain new insights about it.

Disentangling compression progress, and separating it into its data-dependent
an learning-dependent components are helpful. On the one hand, it allows us to
explicitly analyze and trade off the two types of progress, which might have
different cost scales (learning is usually measured in its computational cost,
whereas getting new observations might involve a substantial monetary cost).
On the other hand, if data acquisition and learning are realized by different
mechanisms it permits us to disambiguate the success of the different units.

5 Experiments

We start with an illustrative general example, which we can handle analytically.
Suppose all observations oi are identical and uncompressible strings of length n.
Assuming a reasonable compressor and n large allows us to disregard any small
constant effects, and we have ∀i, j: lC(oi) = n, lC(oi ∪ oj) = n, sC(oi, oj) = n,
and even sC(oi, ht) = n, for any t > 0.

2 Note that the ideal (Kolmogorov) compressor is a fixed compressor, which precludes
it from making any learning progress.
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Fig. 2. Coherence progress on the animal dataset. Left: randomly choosing the next
animal to add to the set (average over 10 runs, each shown as crosses). Right: greedily
adding the article which maximally increases coherence (or, equivalently, coherence
progress), at each step (suboptimal choices shown as yellow crosses). The choice of
articles was among all animals, (repetition allowed), an empty article, and a randomly
scrambled one. The latter two did never get picked (for reasons described in the previous
sections), nor did any repetitions become more interesting than new animals. Starting
from ‘Human’, the next animals picked were ‘Chimpanzee’, ‘Hippopotamus’, ‘Jaguar’
and ‘Leopard’. We also notice that in the greedy case, the fist few additions give a
significantly higher coherence progress than in the random case (left).

sC(ht) =
1

|P(ht)|
∑
b⊂ht

sC(ht \ b, b) =
1
2t

[
2 · 0 + (2t − 2)n

]
= n(1− 21−t)

because in 2 cases b or its complement are empty, and in all other cases the sim-
ilarity is constant. Thus, we see that coherence progress follows an exponential
decay trend:

PC(ot|ht) = sC(ht+1)− sC(ht) = n(1− 21−(t+1))− n(1− 21−t) = 2−tn.

In a more realistic setting, we investigate whether coherence progress gives
us a reasonable measure of interestingness when the observations are Wikipedia
articles. We chose articles in the class of animals (the 50 with the largest entries)
and movies (the 50 with most Oscar wins). As averaging over all possible parti-
tions is intractable for large sets, in the remainder of this section, we approximate
the true coherence (progress) by averaging over 200 random partitions.

In a first experiment, we show how coherence progress evolves as more and
more of the articles of a class (animals here) get added to the history without any
particular order (Figure 5, left). Similarly, we can make a greedy choice before
each addition to pick the animal article that will maximally increase coherence
(see Figure 5, right).

In a second experiment we decided to determine to what degree knowing
about objects in one class makes more observations in the same class interesting
– versus observations from a different class (see Figure 3, left). In our last ex-
periment (Figure 3, right), we illustrate how the sequential variant of coherence
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Fig. 3. Left: We plot the average (hypothetical) coherence progress for adding a movie
(dashed, red) or an animal (full, blue) at each step of a sequence (which consists
of 5 movies, followed by 10 animals, followed by 15 movies). We see that while the
history contains only movies, those are more interesting, but after a few animals are
added, those become more or less equally interesting. Right: Evolution of compression
coherence when incrementally considering longer pieces of a sequential text (Homer’s
Iliad). Note the slowly diminishing returns, and that how the limited approximation
introduces more noise, the longer the sequence (because it can capture only a shrinking
fraction of the possible partitions).

progress can be employed to track the progress in a long sequential text (in our
case, Homer’s Iliad [3]).

Together, these experiments illustrate what values of interestingness coherence
progress provides in practice, show the broad applicability and are (arguably)
qualitatively on par with interestingness values a human would express.

6 Discussion

One use-case within the framework of artificial curiosity, which assumes an agent
learning about the world, may be to disentangle coherence progress and learning
progress (see section 4.3). However, coherence progress is also applicable to sys-
tems designed to explore, but without learning at the same time—i.e., classical
compression progress is not applicable.

A possible direction of future work could be to validate our results also quan-
titatively, with data from humans (or primates) from psychological experiments.
Another one would be to design a normalized version of coherence progress (e.g.,
taking values in the unit interval), removing the dependence on the size of the
observations and the number of elements in the set, which may be useful in
applications where those differ vastly over time.

More concretely, a measure like coherence progress could be a powerful ad-
dition to applications like recommender systems (say, Amazon or Netflix): they
may provide a measure of how interesting an upcoming book or movie is to users
before the first user has seen/rated it, based on the history of the user.
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7 Conclusion

This paper has introduced coherence progress, a novel measure of interestingness
that depends only on data, and is independent of any learning mechanism. It
at once matches the qualitative requirements for such a measure, is formally
specified for any type of (possibly domain-specific) compressor, and can be used
effectively in practice, as shown in our experiments on Wikipedia data.
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Abstract. Traditional Reinforcement Learning methods are insufficient
for AGIs who must be able to learn to deal with Partially Observable
Markov Decision Processes. We investigate a novel method for dealing
with this problem: standard RL techniques using as input the hidden
layer output of a Sequential Constant-Size Compressor (SCSC). The
SCSC takes the form of a sequential Recurrent Auto-Associative Mem-
ory, trained through standard back-propagation. Results illustrate the
feasibility of this approach — this system learns to deal with high-
dimensional visual observations (up to 640 pixels) in partially observable
environments where there are long time lags (up to 12 steps) between
relevant sensory information and necessary action.

Keywords: recurrent auto-associative memory, reinforcement-learning.

1 Introduction

The classical approach to RL [22] makes strong assumptions such as: the current
input of the agent tells it all it needs to know about the environment. However,
real-world problems typically do not fit this simple Markov Decision Process
(MDP) model, as they are of the partially observable POMDP type, where the
value function at a given time depends on the history of previous observations
and actions. It remains an open problem as how some developmental and gen-
eral agent may learn to handle Partially Observable Markov Decision Problems
(POMDPs) in real-world environments. Recent extremely general RL machines
for POMDPs [11] are theoretically optimal. However, these are not (yet) nearly as
practical as simpler, yet general (though non-optimal and non-universal), solvers
based on RL with Recurrent Neural Networks (RNNs).

In this paper we introduce a novel RNN approach for solving POMPDs with
a RL machine, potentially useful for scaling up AGIs. Let us quickly review
previous work in this vein. The neural bucket brigade algorithm [18] is a bio-
logically plausible, local RNN RL method. Adaptive RNN critics [19,3] extend
the adaptive critic algorithm [4] to RNN with time-varying inputs. Gradient-
based RL based on interacting RNNs [20] extend Werbos’ work based on feed-
forward nets [24]: One RNN (the model net) serves to model the environment,
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the other one uses the model net to compute gradients maximizing reinforce-
ment predicted by the model. Recurrent Policy Gradients and Policy Gradient
Critics [25] can be used to train RNN such as LSTM [10] — these significantly
outperformed other single-agent methods on several difficult deep memory RL
benchmark tasks. Many approaches to evolving RNNs (Neuroevolution) have
been proposed [27]. One particularly effective family of methods uses coopera-
tive coevolution to search the space of network components (neurons) instead
of complete networks [14,6]. CoSyNE was shown [7] to be highly efficient, best-
ing many other methods including both single-agent methods such as Adap-
tive Heuristic Critic [2], Policy Gradient RL [23], and evolutionary methods
like SANE, ESP, NEAT [21], Evolutionary Programming [16], CMA-ES [9], and
Cellular Encoding [8]. Finally, Natural Evolution Strategies [26] for RNNs use
natural gradients [1] to update both objective parameters and strategy param-
eters of an Evolution Strategy with a Policy Gradient-inspired derivation from
first principles; results are competitive with the best methods in the field.

Here, instead of using a RNN controller, we develop an unsupervised learn-
ing (UL) layer that presents a representation of the spatiotemporal history to
a non-recurrent controller developed through standard RL. The UL takes the
form of a Sequential Constant-Size Compressor (SCSC), which can be trained
in an unsupervised fashion to sequentially compress the history into a constant
size code. Providing that the essential aspects of the history are captured un-
ambiguously by the SCSC, the code that emerges is suitable for classical RL. If
successful, a SCSC obviates the need for an RNN controller on the RL layer and
makes the partially-observable problem tractable for MDP methods.

Our choice of SCSC is the Recurrent Auto-Associative Memory (RAAM)
which has been well-studied in the area of natural language processing by Pol-
lack et al. [15,12] for two decades. The RAAM can be used as a sequential com-
pressor (sRAAM): given a current data point and a representation of the current
history it produces a representation of the new history. Conversely, given a his-
tory the sRAAM can reconstruct the previous data point and a representation
of the previous history, so, theoretically it may be able to reproduce the entire
history. Practically, it can be realized as an autoencoder neural network, and it
is amenable to unsupervised training by standard back-propogation.

Our choice of a RAAM-based UL layer to overcome non-Markovian environ-
ments is partially motivated by the recent success seen by using less general
feedforward auto-encoders to pre-train in unsupervised fashion a deep feedfor-
ward (non-recurrent) neural net [5]. Such stacks of auto-encoders have already
been used as preprocessing for RL [13]. Here, sRAAM can be viewed as a signifi-
cant generalization thereof: not only can spatial patterns be compactly encoded,
but so can spatial-temporal patterns. The spatial-temporal compression achieved
by the sRAAM potentially yields a Markovian code that significantly simplifies
the RL problem.

In what follows, we describe the first systems, SERVOs, which combine a se-
quential constant-size compressor with reinforcement-learning. We examine the
interplay between SCSC and RL under resource constraints for both.
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Experiments show the strength of the approach for high-dimensional observation
sequences and long time lags between relevant events.

2 Sequential Recurrent Auto-associative Memory

Assume we have a temporal sequence of data points Hn = (p1, . . . , pn) where
p ∈ R

N , which we shall refer to as the history at time t = n.
sRAAM is an example of a compressor that sequentially stores sequences into

block of fixed size. An (N, M)–sRAAM is given by a pair of mappings (E, F ),

E : R
N+M → R

M

F : R
M → R

N+M ,

where N is the dimension of the data points and M is the size of the mem-
ory block. The mappings E and F are often determined by parameters, and in
such cases we make no distinction between the parameters and the mappings
determined by them. Typically, sRAAM is implemented using a multi-layer per-
ceptron with at least one hidden layer, which we shall refer to as the code layer.
The code layer is the domain of F and the codomain of E. The input and output
layers have size N + M , making it an autoencoder, and the code layer has size
M .

Formally, the sRAAM compresses and decompresses a history as follows:
Given data point pi ∈ R

N and a history, represented by hi−1 ∈ R
M we can

represent the new history, at time i with the map E,

E(pi ⊕ hi−1) = hi.

Likewise, given a representation of a history hi the mapping F is used to recover
the data point pi and the previous representation of the history hi−1,

F (hi) = pi ⊕ hi−1.

The representation h0 of empty history H0 = ∅ needs to be decided upon to
encode any history. See Figure 1.

In practice F (E(pi ⊕ hi−1)) �= pi ⊕ hi−1, so we write the result of the
compress—decompress step as

F (E(pi ⊕ hi−1i)) = p̂i ⊕ ĥi−1.

Given a representation hn of the history (p1, . . . , pn), found by iterating over E,
we can decode the entire history (p̂1, . . . , p̂n) by iterating over F . We say that
an sRAAM is trained when

‖p̂i − pi‖ ≤ γk−iε

for 1 ≤ i ≤ k. The parameter γ ≥ 1 is used to relax the importance of recovering
the data points p as the sRAAM decodes further back in time. Since we intend
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F

E

Fig. 1. sRAAM architecture. E, the compressor, takes data point pi and a represen-
tation hi−1 of the history Hi−1 = (p1, . . . , pi−1) and maps it to a representation hi of
the new history Hi. F , the decompressor, takes a representaion hi of the history and
maps it to the previous data point pi and representation hi−1.

to use an SCSC to generate a representation h of a history H for the purpose of
supplying a state to an RL module it is usually not necessary to put γ = 1.

Since we have a target pi ⊕hi−1 to train p̂i ⊕ ĥi−1 towards for each point of
the history, gradient based methods for the RAAM are attractive. Classically,
the sRAAM has always been realized as an autoencoder and trained using back-
propogation. That is, the weights (E, F ) of the network are updated so that the
output of the autoencoder F (E(pi ⊕ hi−1)) = p̂i ⊕ ĥi−1 is more like the input
pi ⊕ hi−1. This is the only realization that we consider in this paper; we are
using an out-of-the-box sRAAM in a new way.

One major concern with this training method is that the network is being
trained on moving targets. After performing a step of back-propogation the
mapping E changes, which in turn changes the input p⊕h at the next time step
since p is changed. This is an issue that does not arise for an autoencoder which
does not use a virtual recurrent connection. That said, the method of training is
often successful, and it avoids the computational costs associated with methods
such as back-propogation through time.

3 SERVO: SCSC Assisted RL

Here we introduce a proto-type version of an architecture which combines SCSC
and RL, and refer to such systems as SERVOs. The UL layer which uses an
sRAAM, which assumes the form of an autoencoder neural network, and the
RL layer uses SARSA(λ) [22]. The training of the two layers takes place inde-
pendently in a back-forth manner. After a number of episodes the sequential
compressor is trained. After training the compressor, the code is passed through
an intermediary layer which is used to establish internal states and is determined
by straight-forward clustering, or Vector Quantization (VQ). Using experience
replay, the value-fuction is then learned using SARSA(λ) on the states provided
by the intermediary layer. The use of an internal layer allows the system to do
tabular RL. After the reinforcement-learning, the agent interacts with the en-
vironment using the updated policy to collect more samples, these samples are
used to repeat the process: train the compressor (E, F ), update the intermediary
layer V , use experience replay to generate a new policy Q. See Figure 2.
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Fig. 2. SERVO. The sRAAM autoencoder is trained using back-propogation on pi ⊕
hi−1. After training hi is generated using E and is passed the internal state layer. VQ
assigns an internal state si to the represntation hi of the history. The RL layer receives
Markovian data and learns an action-value function using SARSA(λ).

3.1 UL Layer: sRAAM

We first describe how to train on a single episode H = (p1, . . . , pn), where pi is
a vector representation of both the observation and action at step i. Start with
an arbitrary choice for the representation h0 of the empty history H0 = ∅. The
training process walks over the history: Given pi and hi−1 use the autoencoder
(E, F ) to generate an error δ,

δ = pi ⊕ hi−1 − F (E(pi ⊕ hi−1))

then perform a step of back-propogation on the autoencoder. After updating the
weights E and F , find a represention hi of the history up to step i,

hi = E(pi ⊕ hi−1),

then iterate, using pi+1 and hi.
Given the current policy the agent interacts with its environment for I episodes

to generate a collection of episodes Ξ = {H}I . The sRAAM is trained by re-
peatedly sampling from Ξ and then performing an epoch of back-propogation
by walking over the observation-action pairs in the episode. See Figure 2a.

3.2 Internal State Layer: VQ

The building of the internal state layer takes place simultaneously with the rein-
forcement learning. To maintain a clear exposition we present the two processes
separately. After training the sRAAM we walk through each episode (p1, . . . , pn)
to generate representations of the history at each step: (h1, . . . , hn). For an
(N, M)-sRAAM the code lives in M -dimensional space. We generate a set of in-
ternal states by a (cheap) clustering all the representations {h} produced by each
of the episodes. Let S be a collection of points s ∈ R

M representing the internal
states of the SERVO. The internal state layer is initialized to the empty set after
training the UL layer. Fix a value for the parameter κ. Given a point h the point
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s∗ in S closest to it is found. The point h is added to S if the squared Euclidean
distance between h and s∗ is greater than κ. Otherwise, for the purpose of the
reinforcement-learning, h is identified with s∗. This layer is built by randomly
choosing an episode and then considering, in order, all the h associated with the
episode. The layer is finished being built, as is the reinforcement-learning after
each episode has been walked through exactly once. See Figure 2b.

3.3 RL Layer: SARSA(λ)

A review of SARSA(λ) can be found in [22]. We learn on each of the episodes as
the internal state layer is built, as follows. For a given episode the data coming
into the system can be parsed into 5-tuples, (oi, ai, ri, oi+1, ai+1). The SCSC
maps oi⊕ai to hi, as explained above. The internal layer maps hi to an internal
state si. This mapping is determined while the learning proceeds; if hi is not
within

√
κ of the point s∗ to which it is closest, then hi is added to the internal

layer and it is mapped to itself. Otherwise h is mapped to s∗. Finally, the 5-tuple
that is passed to the RL layer has the form, (si, ai, ri, si+1, ai+1). The function Q
is trained on each of the episodes in an arbitrary order using off-line SARSA(λ).
See Figure 2c.

4 Experiments and Results

4.1 Partially Observable Vision Maze

As a proof of concept to show that this system handles high-dimensional ob-
servations with some memory requirement, we performed a visual navigation
experiment (see Figure 3). The agent’s observations are given by its internal
camera, always aimed forward, and its actions are to go forward, rotate left or
right, or turn around. Each observation (16× 10 pixels) also contains Gaussian
noise to avoid possible trivial solutions where the agent memorizes all the views.
Each episode begins by placing the agent at a random position and orientation
in the maze.

We used a large three layer sRAAM with a code layer of size 100. Observations
are 160-dimensional and there are 4 actions, therefore the shape of our network
is 264−100−264. Each episode lasts until either the goal is reached or the agent
has taken 250 actions. NB: Using a random walk requires an average of 220
actions to reach the goal, and on average only one-quarter of the walks reach
the goal within the 250 allotted actions. A training iteration consisted of data
gathering: 2000 walks/rollouts generated using the current policy, followed by
training the sRAAM (learning rate 0.01) for 300 epochs, followed by experience
replay to develop the value function (discount factor 0.8, κ = 0.9, and SARSA
learning rate 0.1). The actions shifted from 50% exploration to pure exploitation
linearly through the training iterations.

We compared SERVO to the state-of-the-art SNES [17] algorithm, which di-
rectly searches the weight space of RNNs to find better controllers. SNES gen-
erates a population of controllers from a gaussian distribution, and based on the
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Fig. 3. Left: Example 16x10 dimensional observation. Middle: Top-down maze view
(never observed by the agent). Right: Experimental comparison between SERVO and
SNES. A “roll-out” is a single controllers interaction with the environment: from a
start position, actions are taken until the goal is reached or time runs out. Compared
are the average number of steps and success rate between the best SNES controller
and SERVO, averaged over 10 experiments. The green line (constant value) represents
optimal performance.

fitness evaluation (each individual started in 50 random start positions), computes
the natural gradient to move the distribution to a presumably better location. Fig-
ure 4 for a comparison of the two methods. Due to gradient information provided
by the fitness function, SNES is also able to deal with this task.

4.2 Learning to Wait

We try a task with higher-dimensional inputs and explicitly require longer mem-
ory (up to 12 steps). The agent is placed at one end of a corridor, and can either
move forward or wait. The goal is to move through the door at the far end of the
corridor, where it is given a visual signal that vanishes in the next frame. One of
the signals, A, B, C, D, is shown for a single frame when the agent reaches the
door, corresponding to a waiting time of 6, 8, 10, and 12 frames respectively.
The agent receives a (positive) reward when it waits the exact number of frames
indicated before exiting, otherwise the agent receives no reward and goes back
to the start. The episode ends either when the agent walks through the door
or 20 frames have passed (to avoid extremely long episodes). This is a difficult
task: in the case of letter “D” a random policy will on average require 212 trials
to make one successful walk.

The agent receives noisy visual input in the form of 32× 20 pixel image. We
had trouble getting SERVO to work robustly (with noise) in this task, so we first
had to train and use an autoencoder for de-noising the observations before they
are passed to the sRAAM. The autoencoder was trained on-line over 5k random
walks. After training the autoencoder, the agent performs a series of random
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Fig. 4. Shown are the various views of the corridor from the agent’s vantage point.
The leftmost images are observed as the agent approaches the door. The second column
shows the various wait signals, indicating the number of frames to wait before exiting.

walks (approx. 100k) to collect encoded training samples for the SERVO. The
SERVO is then trained batchwise: (1) 200 epochs of training to compress the
successful episodes, first training the UL layer and then training the RL layer,
as described in Section 3. (2) the agent again interacts with the environment
for 100 episodes to evaluate its policy. Training continues until the agent has
achieved better than 90% success rate1.
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Fig. 5. The average success rate (n=10),
with standard deviation for the corridor
experiment. After each training episode
(200 epochs) the SERVO is tested for 100
episodes.

In this task, there are only a
few general sequences worth encoding.
They are difficult to find and locating
one does not help to find the others.
A “fitness landscape” for RNN con-
trollers in this task would be made up
of sharp ridges and vast plateaus. It
may seem that all that can be done
here is to find and store the best se-
quences. Yet, the SERVO technique
goes further and compresses these se-
quences. A representation of a current
sequence can then be located in the
space of compressed previously seen
valuable seqeunces (the VQ layer).
The current sequence can then be
identified with the closest prototype.

5 Discussion

In problems with high-dimensional observations and deep memory requirements,
direct search of weight-space for an RNN controller is quite a difficult task (even

1 There is a video of SERVO operation at www.idsia.ch/~gisslen/SERVOagent.html

www.idsia.ch/~gisslen/SERVOagent.html
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with a state-of-the-art method such as SNES). It must find relevant regularities
to build on in parameter space using only the fitness measures of the individuals.
The high-dimensionality and generality of some problems may be too difficult for
direct evolutionary search. In contrast, the SERVO architecture decouples the
problem of encoding the relevant spatiotemporal regularities from learning how
to act on them. The SERVO separates the learning problem into two components:
(1) unsupervised learning of an autoencoder to provide a (quasi-)Markovian
code, and (2) classical reinforcement-learning.

The compression capacity of the sRAAM is limited, and cannot be expected
to recall all histories of a given length. However, since the sequences are gen-
erated by way of reinforcement learning the compressor can in principle learn
to represent the important histories unambiguously. This biased training of the
unsupervised layer allows the agent to improve its policy, steering it towards
increasingly valuable sequences, thereby further refining the UL layer.

We have demonstrated that the use of an SCSC is a competitive method for
solving high-dimensional POMDPs with long time lags. Yet, the current system
is not sufficiently stable for real-world AGIs. Future work will refine this first-
generation SERVO architecture.
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Abstract. To maximize its success, an AGI typically needs to explore
its initially unknown world. Is there an optimal way of doing so? Here
we derive an affirmative answer for a broad class of environments.

1 Introduction

An intelligent agent is sent to explore an unknown environment. Over the course
of its mission, the agent makes observations, carries out actions, and incremen-
tally builds up a model of the environment from this interaction. Since the way
in which the agent selects actions may greatly affect the efficiency of the explo-
ration, the following question naturally arises:

How should the agent choose the actions such that the knowledge about
the environment accumulates as quickly as possible?

In this paper, this question is addressed under a classical framework in which
the agent improves its model of the environment through probabilistic inference,
and learning progress is measured in terms of Shannon information gain. We show
that the agent can, at least in principle, optimally choose actions based on previous
experiences, such that the cumulative expected information gain is maximized.

The rest of the paper is organized as follows: Section 2 reviews the basic
concepts and establishes the terminology; Section 3 elaborates the principle of
optimal Bayesian exploration; Section 4 presents a simple experiment; Related
work is briefly reviewed in Section 5; Section 6 concludes the paper.

2 Preliminaries

Suppose that the agent interacts with the environment in discrete time cycles
t = 1, 2, . . .. In each cycle, the agent performs an action, a, then receives a
sensory input, o. A history, h, is either the empty string, ∅, or a string of the
form a1o1 · · · atot for some t, and ha and hao refer to the strings resulting from
appending a and ao to h, respectively.

2.1 Learning from Sequential Interactions

To facilitate the subsequent discussion under a probabilistic framework, we make
the following assumptions:

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 41–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Assumption I. The models of the environment under consideration are fully
described by a random element Θ which depends solely on the environment.
Moreover, the agent’s initial knowledge about Θ is summarized by a prior
density p (θ).

Assumption II. The agent is equipped with a conditional predictor p (o|ha; θ),
i.e. the agent is capable of refining its prediction in the light of information
about Θ.

Using p (θ) and p (o|ha; θ) as building blocks, it is straightforward to formulate
learning in terms of probabilistic inference. From Assumption I, given the history
h, the agent’s knowledge about Θ is fully summarized by p (θ|h). According to
Bayes rule, p (θ|hao) = p(θ|ha)p(o|ha;θ)

p(o|ha) , with p (o|ha) =
∫

p (o|ha, θ) p (θ|h) dθ.
The term p (θ|ha) represents the agent’s current knowledge about Θ given history
h and an additional action a. Since Θ depends solely on the environment, and,
importantly, knowing the action without subsequent observations cannot change
the agent’s state of knowledge about Θ, then p (θ|ha) = p (θ|h), and thus the
knowledge about Θ can be updated using

p (θ|hao) = p (θ|h) · p (o|ha; θ)
p (o|ha)

. (1)

It is worth pointing out that p (o|ha; θ) is chosen before entering the environ-
ment. It is not required that it match the true dynamics of the environment, but
the effectiveness of the learning certainly depends on the choices of p (o|ha; θ).
For example, if Θ ∈ R, and p (o|ha; θ) depends on θ only through its sign, then
no knowledge other than the sign of Θ can be learned.

2.2 Information Gain as Learning Progress

Let h and h′ be two histories such that h is a prefix of h′. The respective posterior
distributions of Θ are p (θ|h) and p (θ|h′). Using h as a reference point, the
amount of information gained when the history grows to h′ can be measured
using the KL divergence between p (θ|h) and p (θ|h′). This information gain
from h to h′ is defined as

g(h′‖h) = KL (p (θ|h′) ‖p (θ|h)) =
∫

p (θ|h′) log
p (θ|h′)
p (θ|h)

dθ.

As a special case, if h = ∅, then g (h′) = g (h′‖∅) is the cumulative information
gain with respect to the prior p (θ). We also write g (ao‖h) for g (hao‖h), which
denotes the information gained from an additional action-observation pair.

From an information theoretic point of view, the KL divergence between two
distributions p and q represents the additional number of bits required to encode
elements sampled from p, using optimal coding strategy designed for q. This can
be interpreted as the degree of ‘unexpectedness’ or ‘surprise’ caused by observing
samples from p when expecting samples from q.
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The key property information gain for the treatment below is the following
decomposition: Let h be a prefix of h′ and h′ be a prefix of h′′, then

Eh′′|h′g (h′′‖h) = g (h′‖h) + Eh′′|h′g (h′′‖h′) . (2)

That is, the information gain is additive in expectation.
Having defined the information gain from trajectories ending with observa-

tions, one may proceed to define the expected information gain of perform-
ing action a, before observing the outcome o. Formally, the expected informa-
tion gain of performing a with respect to the current history h is given by
ḡ (a‖h) = Eo|hag (ao‖h). A simple derivation gives

ḡ (a‖h) =
∑

o

∫
p (o, θ|ha) log

p (o, θ|ha)
p (θ|ha) p (o|ha)

dθ = I (O; Θ|ha) ,

which means that ḡ (a‖h) is the mutual information between Θ and the random
variable O representing the unknown observation, conditioned on the history h
and action a.

3 Optimal Bayesian Exploration

In this section, the general principle of optimal Bayesian exploration in dynamic
environments is presented. We first give results obtained by assuming a fixed
limited life span for our agent, then discuss a condition required to extend this
to infinite time horizons.

3.1 Results for Finite Time Horizon

Suppose that the agent has experienced history h, and is about to choose τ
more actions in the future. Let π be a policy mapping the set of histories to the
set of actions, such that the agent performs a with probability π (a|h) given h.
Define the curiosity Q-value qτ

π (h, a) as the expected information gained from
the additional τ actions, assuming that the agent performs a in the next step
and follows policy π in the remaining τ − 1 steps. Formally, for τ = 1,

q1
π (h, a) = Eo|hag (ao‖h) = ḡ (a‖h) ,

and for τ > 1,

qτ
π (h, a) = Eo|haEa1|haoEo1|haoa1 · · ·Eoτ−1|h···aτ−1g (haoa1o1 · · ·aτ−1oτ−1‖h)

= Eo|haEa1o1···aτ−1oτ−1|haog (haoa1o1 · · ·aτ−1oτ−1‖h) .
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The curiosity Q-value can be defined recursively. Applying Eq. 2 for τ = 2,

q2
π (h, a) = Eo|haEa1o1|haog (haoa1o1‖h)

= Eo|ha

[
g (ao‖h) + Ea1o1|haog (a1o1‖hao)

]
= ḡ (a‖h) + Eo|haEa′|haoq

1
π (hao, a′) .

And for τ > 2,

qτ
π (h, a) = Eo|haEa1o1···aτ−1oτ−1|haog (haoa1o1 · · · aτ−1oτ−1‖h)

= Eo|ha

[
g (ao‖h) + Ea1o1···aτ−1oτ−1g (haoa1o1 · · · aτ−1oτ−1‖hao)

]
= ḡ (a‖h) + Eo|haEa′|haoq

τ−1
π (hao, a′) . (3)

Noting that Eq.3 bears great resemblance to the definition of state-action values
(Q(s, a)) in reinforcement learning, one can similarly define the curiosity value
of a particular history as vτ

π (h) = Ea|hqτ
π (h, a), analogous to state values (V (s)),

which can also be iteratively defined as v1
π (h) = Ea|hḡ (a‖h), and

vτ
π (h) = Ea|h

[
ḡ (a‖h) + Eo|havτ−1

π (hao)
]
.

The curiosity value vτ
π (h) is the expected information gain of performing the

additional τ steps, assuming that the agent follows policy π. The two notations
can be combined to write

qτ
π (h, a) = ḡ (a‖h) + Eo|havτ−1

π (hao) . (4)

This equation has an interesting interpretation: since the agent is operating
in a dynamic environment, it has to take into account not only the immediate
expected information gain of performing the current action, i.e., ḡ (a‖h), but also
the expected curiosity value of the situation in which the agent ends up due to
the action, i.e., vτ−1

π (hao). As a consequence, the agent needs to choose actions
that balance the two factors in order to improve its total expected information
gain.

Now we show that there is a optimal policy π∗, which leads to the maximum
cumulative expected information gain given any history h. To obtain the optimal
policy, one may work backwards in τ , taking greedy actions with respect to the
curiosity Q-values at each time step. Namely, for τ = 1, let

q1 (h, a) = ḡ (a‖h) , π1
∗ (h) = argmax

a
ḡ (a‖h) , and v1 (h) = max

a
ḡ (a‖h) ,

such that v1 (h) = q1
(
h, π1

∗ (h)
)
, and for τ > 1, let

qτ (h, a) = ḡ (a‖h) + Eo|ha

[
max

a′
qτ−1 (a′|hao)

]
= ḡ (a‖h) + Eo|havτ−1 (hao) ,

with πτ∗ (h) = arg maxa qτ (h, a) and vτ (h) = maxa qτ (h, a). We show that
πτ
∗ (h) is indeed the optimal policy for any given τ and h in the sense that
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the curiosity value, when following πτ
∗ , is maximized. To see this, take any other

strategy π, first notice that

v1 (h) = max
a

ḡ (a‖h) ≥ Ea|hḡ (a‖h) = v1
π (h) .

Moreover, assuming vτ (h) ≥ vτ
π (h),

vτ+1 (h) = max
a

[
ḡ (a‖h) + Eo|havτ (hao)

] ≥ max
a

[
ḡ (a‖h) + Eo|havτ

π (hao)
]

≥ Ea|h
[
ḡ (a‖h) + Eo|havτ

π (hao)
]

= vτ+1
π (h) .

Therefore vτ (h) ≥ vτ
π (h) holds for arbitrary τ , h, and π. The same can be shown

for curiosity Q-values, namely, qτ (h, a) ≥ qτ
π (h, a), for all τ , h, a, and π.

Now consider that the agent has a fixed life span T . It can be seen that at time
t, the agent has to perform πT−t

∗ (ht−1) to maximize the expected information
gain in the remaining T − t steps. Here ht−1 = a1o1 · · · at−1ot−1 is the history
at time t. However, from Eq.2,

EhT |ht−1g (hT ) = g (ht−1) + EhT |ht−1g (hT ‖ht−1) .

Note that at time t, g (ht−1) is a constant, thus maximizing the cumulative
expected information gain in the remaining time steps is equivalent to maximizing
the expected information gain of the whole trajectory with respect to the prior.
The result is summarized in the following proposition:

Proposition 1. Let q1 (h, a) = ḡ (a‖h), v1 (h) = maxa q1 (h, a), and

qτ (h, a) = ḡ (a‖h) + Eo|havτ−1 (hao) , vτ (h) = max
a

qτ (h, a) ,

then the policy πτ∗ (h) = argmaxa qτ (h, a) is optimal in the sense that vτ (h) ≥
vτ

π (h), qτ (h, a) ≥ qτ
π (h, a) for any π, τ , h and a.

In particular, for an agent with fixed life span T , following πT−t
∗ (ht−1) at time

t = 1, . . . , T is optimal in the sense that the expected cumulative information gain
with respect to the prior is maximized.

The definition of the optimal exploration policy is constructive, which means that
it can be readily implemented, provided that the number of actions and possible
observations is finite so that the expectation and maximization can be computed
exactly. However, the cost of computing such a policy is O ((nona)τ ), where no

and na are the number of possible observations and actions, respectively. Since
the cost is exponential on τ , planning with large number of look ahead steps is
infeasible, and approximation heuristics must be used in practice.

3.2 Non-triviality of the Result

Intuitively, the recursive definition of the curiosity (Q) value is simple, and bears
clear resemblance to its counterpart in reinforcement learning. It might be tempt-
ing to think that the result is nothing more than solving the finite horizon re-
inforcement learning problem using ḡ (a‖h) or g (ao‖h) as the reward signals.
However, this is not the case.
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First, note that the decomposition Eq.2 is a direct consequence of the formu-
lation of the KL divergence. The decomposition does not necessarily hold if g (h)
is replaced with other types of measures of information gain.

Second, it is worth pointing out that g (ao‖h) and ḡ (a‖h) behave differently
from normal reward signals in the sense that they are additive only in expectation,
while in the reinforcement learning setup, the reward signals are usually assumed
to be additive, i.e., adding reward signals together is always meaningful. Consider
a simple problem with only two actions. If g (ao‖h) is a plain reward function,
then g (ao‖h)+g (a′o′‖hao) should be meaningful, no matter if a and o is known
or not. But this is not the case, since the sum does not have a valid information
theoretic interpretation. On the other hand, the sum is meaningful in expectation.
Namely, when o has not been observed, from Eq.2,

g (ao‖h) + Eo′|haoa′g (a′o′‖hao) = Eo′|haoa′g (aoa′o′‖h) ,

the sum can be interpreted as the expectation of the information gained from h
to haoa′o′. This result shows that g (ao‖h) and ḡ (a‖h) can be treated as additive
reward signals only when one is planning ahead.

To emphasize the difference further, note that all immediate information gains
g (ao‖h) are non-negative since they are essentially KL divergence. A natural
assumption would be that the information gain g (h), which is the sum of all
g (ao‖h) in expectation, grows monotonically when the length of the history
increases. However, this is not the case, see Figure 1 for example. Although
g (ao‖h) is always non-negative, some of the gain may pull θ closer to its prior
density p (θ), resulting in a decrease of KL divergence between p (θ|h) and p (θ).
This is never the case if one considers the normal reward signals in reinforcement
learning, where the accumulated reward would never decrease if all rewards are
non-negative.

3.3 Extending to Infinite Horizon

Having to restrict the maximum life span of the agent is rather inconvenient. It
is tempting to define the curiosity Q-value in the infinite time horizon case as the
limit of curiosityQ-values with increasing life spans,T →∞. However, this cannot
be achieved without additional technical constraints. For example, consider simple
coin tossing. Assuming a Beta (1, 1) over the probability of seeing heads, then the
expected cumulative information gain for the next T flips is given by

vT (h1) = I (Θ; X1, . . . , XT ) ∼ log T .

With increasing T , vT (h1) → ∞. A frequently used approach to simplifying
the math is to introduce a discount factor γ (0 ≤ γ < 1), as used in rein-
forcement learning. Assume that the agent has a maximum τ actions left, but
before finishing the τ actions it may be forced to leave the environment with
probability 1− γ at each time step. In this case, the curiosity Q-value becomes
qγ,1
π (h, a) = ḡ (a‖h), and
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Fig. 1. Illustration of the difference between the sum of one-step information gain and
the cumulative information gain with respect to the prior. In this case, 1000 indepen-
dent samples are generated from a distribution over finite sample space {1, 2, 3}, with
p (x = 1) = 0.1, p (x = 2) = 0.5, and p (x = 3) = 0.4. The task of learning is to re-
cover the mass function from the samples, assuming a Dirichlet prior Dir

(
50
3

, 50
3

, 50
3

)
.

The KL divergence between two Dirichlet distributions are computed according to [5].
It is clear from the graph that the cumulative information gain fluctuates when the
number of samples increases, while the sum of the one-step information gain increases
monotonically. It also shows that the difference between the two quantities can be large.

qγ,τ
π (h, a) = (1− γ) ḡ (a‖h) + γ

[
ḡ (a‖h) + Eo|haEa′|haoq

γ,τ−1
π (hao, a′)

]
= ḡ (a‖h) + γEo|haEa′|haoq

γ,τ−1
π (hao, a′) .

One may also interpret qγ,τ
π (h, a) as a linear combination of curiosity Q-values

without the discount,

qγ,τ
π (h, a) = (1− γ)

τ∑
t=1

γt−1qt
π (h, a) + γτqτ

π (h, a) .

Note that curiosity Q-values with larger look-ahead steps are weighed exponen-
tially less.

The optimal policy in the discounted case is given by

qγ,1 (h, a) = ḡ (a‖h) , vγ,1 (h) = max
a

qγ,1 (h, a) ,

and

qγ,τ (h, a) = ḡ (a‖h) + γEo|hav
γ,τ−1 (hao) , vγ,τ (h) = max

a
qγ,τ (h, a) .

The optimal actions are given by πγ,τ
∗ (h) = arg maxa qγ,τ (h, a). The proof that

πγ,τ
∗ is optimal is similar to the one for the finite horizon case (section 3.1) and

thus is omitted here.
Adding the discount enables one to define the curiosity Q-value in infinite

time horizon in a number of cases. However, it is still possible to construct sce-
narios where such discount fails. Consider a infinite list of bandits. For bandit n,



48 Y. Sun, F. Gomez, and J. Schmidhuber

there are n possible outcomes with Dirichlet prior Dir
(

1
n , . . . , 1

n

)
. The expected

information gain of pulling bandit n for the first time is then given by

log n− ψ (2) + log
(

1 +
1
n

)
∼ log n,

with ψ(·) being the digamma function. Assume at time t, only the first ee2t

bandits are available, thus the curiosity Q-value in finite time horizon is always
finite. However, since the largest expected information gain grows at speed et2 ,
for any given γ > 0, qγ,τ goes to infinity with increasing τ . This example gives the
intuition that to make the curiosity Q-value meaningful, the ‘total information
content’ of the environment (or its growing speed) must be bounded.

The following technical Lemma gives a sufficient condition for when such
extension is meaningful.

Lemma 1. We have

0 ≤ qγ,τ+1 (h, a)− qγ,τ (h, a) ≤ γτ
Eo|ha max

a1
Eo1|haoa1 · · ·max

aτ

ḡ (aτ‖h · · · oτ−1) .

Proof. Expand qγ,τ and qγ,τ+1, and note that |maxX −maxY | ≤ max |X − Y |,
then

qγ,τ+1
π (h, a)− qγ,τπ (h, a)

= Eo|ha max
a1

Eo1|haoa1
· · ·max

aτ

[ḡ (a‖h) + γḡ (a1‖hao) + · · ·+ γτ ḡ (aτ‖h · · · oτ−1)]

− Eo|ha max
a1

Eo1|haoa1
· · ·max

aτ−1

[
ḡ (a‖h) + γḡ (a1‖hao) + · · ·+ γτ−1ḡ (aτ−1‖h · · · oτ−2)

]
≤ Eo|ha max

a1

{Eo1|haoa1
· · ·max

aτ

[ḡ (a‖h) + γḡ (a1‖hao) + · · ·+ γτ ḡ (aτ‖h · · · oτ−1)]

− Eo1|haoa1
· · ·max

aτ−1

[
ḡ (a‖h) + γḡ (a1‖hao) + · · ·+ γτ−1ḡ (aτ−1‖h · · · oτ−2)

]}
≤ · · ·
≤ γτ

Eo|ha max
a1

Eo1|haoa1
· · ·max

aτ

ḡ (aτ‖h · · · oτ−1) .

It can be seen that if Eoa1···oτ−1aτ |haḡ (aτ‖h · · · oτ−1) grows sub-exponentially,
then qγ,τ

π is a Cauchy sequence, and it makes sense to define the curiosity Q-
value for infinite time horizon.

4 Experiment

The idea presented in the previous section is illustrated through a simple experi-
ment. The environment is an MDP consisting of two groups of densely connected
states (cliques) linked by a long corridor. The agent has two actions allowing it
to move along the corridor deterministically, whereas the transition probabilities
inside each clique are randomly generated. The agent assumes Dirichlet priors
over all transition probabilities, and the goal is to learn the transition model of
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the MDP. In the experiment, each clique consists of 5 states, (states 1 to 5 and
states 56 to 60), and the corridor is of length 50 (states 6 to 55). The prior over
each transition probability is Dir

(
1
60 , . . . , 1

60

)
.

We compare four different algorithms: i) random exploration, where the agent
selects each of the two actions with equal probability at each time step; ii) Q-
learning with the immediate information gain g (ao‖h) as the reward; iii) greedy
exploration, where the agent chooses at each time step the action maximizing
ḡ (a‖h); and iv) a dynamic-programming (DP) approximation of the optimal
Bayesian exploration, where at each time step the agent follows a policy which
is computed using policy iteration, assuming that the dynamics of the MDP is
given by the current posterior, and the reward is the expected information gain
ḡ (a‖h). The detail of this algorithm is described in [11].

Fig.2 shows the typical behavior of the four algorithms. The upper four plots
show how the agent moves in the MDP starting from one clique. Both greedy
exploration and DP move back and forth between the two cliques. Random
exploration has difficulty moving between the two cliques due to the random
walk behavior in the corridor. Q-learning exploration, however, gets stuck in the
initial clique. The reason for is that since the jump on the corridor is determinis-
tic, the information gain decreases to virtually zero after only several attempts,
therefore the Q-value of jumping into the corridor becomes much lower than the
Q-value of jumping inside the clique. The bottom plot shows how the cumula-
tive information gain grows over time, and how the DP approximation clearly
outperforms the other algorithms, particularly in the early phase of exploration.

5 Related Work

The idea of actively selecting queries to accelerate learning process has a long his-
tory [1, 2, 7], and has received a lot of attention in recent decades, primarily in
the context of active learning [8] and artificial curiosity [6]. In particular, mea-
suring learning progress using KL divergence dates back to the 50’s [2, 4]. In 1995
this was combined with reinforcement learning, with the goal of optimizing future
expected information gain [10]. Others renamed this Bayesian surprise [3].

Our work differs from most previous work in two main points: First, like in
[10], we consider the problem of exploring a dynamic environment, where actions
change the environmental state, while most work on active learning and Bayesian
experiment design focuses on queries that do not affect the environment [8].
Second, our result is theoretically sound and directly derived from first principles,
in contrast to the more heuristic application [10] of traditional reinforcement
learning to maximize the expected information gain. In particular, we pointed
out a previously neglected subtlety of using KL divergence as learning progress.

Conceptually, however, this work is closely connected to artificial curiosity and
intrinsically motivated reinforcement learning [6, 7, 9] for agents that actively
explore the environment without an external reward signal. In fact, the very
definition of the curiosity (Q) value permits a firm connection between pure
exploration and reinforcement learning.
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Fig. 2. The exploration process of a typical run of 4000 steps. The upper four plots
shows the position of the agent between state 1 (the lowest) and 60 (the highest). The
states at the top and the bottom correspond to the two cliques, and the states in the
middle correspond to the corridor. The lowest plot is the cumulative information gain
with respect to the prior.

6 Conclusion

We have presented the principle of optimal Bayesian exploration in dynamic
environments, centered around the concept of the curiosity (Q) value. Our work
provides a theoretically sound foundation for designing more effective exploration
strategies. Future work will concentrate on studying the theoretical properties
of various approximation strategies inspired by this principle.
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Abstract. Hutter’s optimal universal but incomputable AIXI agent
models the environment as an initially unknown probability distribution-
computing program. Once the latter is found through (incomputable)
exhaustive search, classical planning yields an optimal policy. Here we
reverse the roles of agent and environment by assuming a computable
optimal policy realizable as a program mapping histories to actions. This
assumption is powerful for two reasons: (1) The environment need not be
probabilistically computable, which allows for dealing with truly stochas-
tic environments, (2) All candidate policies are computable. In stochastic
settings, our novel method Optimal Direct Policy Search (ODPS) identi-
fies the best policy by direct universal search in the space of all possible
computable policies. Unlike AIXI, it is computable, model-free, and does
not require planning. We show that ODPS is optimal in the sense that
its reward converges to the reward of the optimal policy in a very broad
class of partially observable stochastic environments.

1 Introduction

Reinforcement learning (RL) algorithms are often categorized into model-based
and model-free approaches. Model-based methods typically learn a model of the
environment and its dynamics, to be used for decision making in a second step.
Advantages include potentially flexible adaptation to new tasks expressed by
different reward functions within the same environmental dynamics. Disadvan-
tages include the high sample complexity of model learning: typically, many in-
teractions with the environment are needed to estimate the underlying dynamic
process with sufficient certainty.

Value function approaches do not require a full predictive model; instead they
compress knowledge about the environment into a single number per state or
state-action-pair, to model the only task-specific quantity of interest in most
RL settings, namely, expected future reward. Since single number estimation is
often more efficient and the value function is a sufficient statistics for learning
the optimal policy, such methods can often reduce the sample complexity.

Model-free algorithms search for good policies without ever building a model
of the environment. A particular branch of model-free methods is direct policy
search [4], which includes policy gradient algorithms or evolution strategies ap-
plied to a fitness function based on the reward of an episode or a fixed time

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 52–61, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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frame. Such algorithms are relatively blind to the particularities of the environ-
ment (e.g., state transitions) and the reward signal (they only care for accu-
mulated reward). One of the advantages of this blindness is that they are not
affected by classical problems such as partial observability. Direct policy search
is particularly well suited for complex environments solvable by relatively simple
policies.

All of the above paradigms can be found in nature at various levels of com-
plexity. Higher-developed animals, in particular humans, use anticipation and
planning to solve many complex tasks, which to some extent requires a model of
the environment. On the other hand, findings in neuroscience studies have been
connected to value-function learning [8]. Many simpler animals exhibit complex
but inflexible patterns of basically pre-programmed behavior, which can be un-
derstood as the result of evolutionary direct policy search.

For most complex tasks in a human-dominated and dynamic world, model-
based approaches are intuitively expected to excel in the long run. However,
when confronted with highly unfamiliar situations, humans are able to resort
to trial and error strategies that often allow them to act better than chance,
until having collected enough experience to build a sufficiently good predictive
model enabling them to resort to the familiar planning paradigm. Thus, direct
policy search may have its place as a bootstrapping method even in elaborate
value-function or model-based approaches.

Optimal planning is hard, but identifying a computational model of an arbi-
trarily complex but computable environment is even harder. The AIXI model [1]
does it in a provably optimal way, identifying the correct environmental model
through a minimal number of interactions with the environment, but this re-
quires a continual and exhaustive and computationally intractable systematic
search in all of program space, necessarily ignoring all issues of computational
complexity. (Note, however, recent serious efforts to scale down AIXI for realistic
applications [9].)

The main contribution of this paper is a theoretical, conceptual one. While
direct policy search is sometimes viewed as a ‘last resort’ heuristic, here we show
that one can use it as a general and asymptotically optimal RL method for
all episodic POMDP problems, asymptotically on the same level as the model-
based AIXI scheme, but, unlike AIXI, incrementally computable (although not
necessarily practically feasible). It covers any other behavior-generating searcher,
such as realistically downscaled AIXI variants, by systematically enumerating all
such algorithms. In fact, many direct policy search algorithms can trivially be
understood as (non-optimal) approximations of ours.

2 Reinforcement Learning in POMDPs

We consider an agent interacting with an environment in discrete time steps
t ∈ N. In each time step the environment (including the agent) is in a Markov
state st ∈ S. Let D(X) denote the space of probability distributions over a
measure space X . In each time step the agent perceives an observation ot ∈ O

of the state st, described by ot ∼ Ωst ∈ D(O).
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The agent performs an action at ∈ A, which results in a transition to state
st+1. The dynamics of the system are described by st+1 ∼ Pst,at ∈ D(S). After
acting the agent obtains a task-specific feedback in terms of a scalar reward
signal rt+1 ∈ R, possibly depending on st, at, and st+1. Having arrived in the
new state st+1, it also obtains the next observation ot+1, and the process starts
over.

By ht = (o1, a1, r1, . . . , ot−1, at−1, rt−1, ot) we denote the history at time t.
Let H denote the space of all possible histories. Then a (behavior) policy is a
description of how the agent acts in its environment, expressed as a mapping
π : H→ D(A). We collect all such mappings in the set Π of policies.

Assume that the subset T ⊂ S of terminating states is non-empty. We denote
the time of termination by the random variable T . We call a task episodic if the
suprema of expectation and variance of T are finite: sup

{
E

π[T ]
∣∣∣π ∈ Π

}
< ∞

and sup
{

E
π [(T − E

π[T ])2]
∣∣∣ π ∈ Π

}
< ∞. These prerequisites corresponds to

the standard technical assumption of ergodicity.

2.1 MDPs and POMDPs

The underlying Markov decision process (MDP) is described by the tuple (S, T,
A, S, P, R), where S ∈ D(S) is the distribution of start states, Ps,a denotes the
probability distribution of transitioning from state s to the next state s′ ∼ Ps,a

when taking action a, and R(s, a, s′) ∈ D(R) is the distribution of rewards
obtained for this transition. In what follows we make the standard assumptions
that S and A are finite, and that for each combination of s, a, and s′ expectation
and variance of R(s, a, s′) are finite. We are only interested in episodic tasks.

Now, a partially observable Markov decision process (POMDP) is a tuple
(S, T, A, O, S, P, Ω, R), where Ω (as defined above) stochastically maps states to
observations. We assume that O is finite. POMDPs are a rather general class
of environments for reinforcement learning. Most classical RL algorithms are
restricted to MDPs, because their learning rules heavily rely on the Markov
property of the state description. However, in many realistic tasks observations
are naturally stochastic and/or incomplete, such that the environment has to be
treated as a POMDP.

2.2 Objectives of Learning

The goal of learning a policy π in an episodic task is usually defined to maximize
future expected reward ρ = E

π
[∑T−1

t=1 rt

]
. However, in what follows we leave

the choice of the objective function ρ open and just require the form ρ(π) =
E

π[η(hT )], where the ‘success’ function η as a function of the full episode hT

has finite expectation and bounded variance. This is a reasonable assumption
automatically fulfilled for the future expected reward, since expectation and
variance of both T and Rs,a,s′ are bounded.
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Note that there is an important conceptual difference between the functions
η and ρ: While η(hT ) is a quantity measurable via interaction with the environ-
ment, evaluating the objective function ρ(π) requires knowledge of the POMDP,
which is assumed to be opaque to the reinforcement learner.

2.3 Direct Search in Policy Space

Direct policy search is a class of model-free reinforcement learning algorithms.
A direct policy search algorithm searches a space Π of policies π by means
of direct search, for example, an evolutioary algorithm. Such search schemes
are particularly suitable for learning in POMDP environments, because they
make no assumptions about observations being Markovian, or treatable as nearly
Markovian. The search is direct in the sense that it relies solely on evaluations
of the objective function, here on the stochastic version η, often stabilized by
averaging over multiple episodes.

3 Optimal Direct Policy Search

The aim of the present paper is to lift direct policy search for stochastic RL
tasks to the level of universal search [2] with a Turing complete programming
language, encompassing all possible computable policies. Thus, our approach is
closely connected to deterministic universal searchers [2,5], but lifted to the class
of stochastic RL tasks. In contrast to universally optimal [1] approaches such as
the Gödel machine [6] we do not require the concept of proof search.

The basic idea of our approach amounts to systematically applying the enu-
merable set of computable policies to the task in a scheme that makes the statis-
tical evaluation of each such policy more and more reliable over time. At the same
time we make sure that the fraction of time spent on exploitation (in contrast
to systematic exploration) tends to one. This combination allows us to derive
an optimality theorem stating that the reward obtained by our agent converges
towards the optimal reward.

Consider a Turing machine that receives the current history ht as input on
its tape and outputs an action by the time it halts. This can be achieved by
initializing the tape with a default distribution over actions, which may or may
not be changed by the program.

The basic simple idea of our algorithm is a nested loop that simultaneously
makes the following quantities tend to infinity: the number of programs consid-
ered, the number of trials over which a policy is averaged, the time given to each
program. At the same time, the fraction of trials spent on exploitation converges
towards 1.

Letting the number of programs go to infinity allows for finding policies en-
coded by programs with arbitrarily high indices. At the same time, each program
is given more and more but always finite execution time, circumventing the halt-
ing problem in the style of universal search [2]. Averaging the reward over more
and more episodes makes these estimates arbitrarily reliable, which is essential
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to prove optimality. Finally, letting the fraction of episodes used for exploita-
tion in online mode tend to one makes sure that the overall performance of the
algorithm tends to the supremum of the performances of all computable policies.

To specify the optimal direct policy search algorithm we need the following
notation:

• Let p : N → P be an enumeration of all programs P of the Turing machine
in use, with pi denoting the i-th program.
• Let πc

p denote the policy obtained by running program p for c steps. This
policy, understood as a mapping from the history ht ∈ H to a distribution
over actions, is implemented as follows: We write a ‘default’ distribution
over actions and the history ht onto the tape of the Turing machine. Then
we run program pi for c steps, or less, if it halts by itself. During this time
the program may perform arbitrary computations based on the history, and
overwrite the distributions over actions (which can, e.g., be represented as a
soft-max decision). We also write πc

i instead of πc
pi

for program pi.
• Let (Nn)n∈N , (Cn)n∈N , (En)n∈N , and (Xn)n∈N be sequences of natural

numbers, all tending to infinity:
• Nn denotes the number of programs considered in epoch n,
• Cn denotes the time given to each program,
• En denotes the number of episodes over which the reward of each policy

is averaged,
• Xn denotes the number of episodes for exploitation in online mode.

We need the following easily satisfiable technical conditions on these se-
quences: (a) lim

n→∞Nn/En = 0, (b) lim
n→∞(Nn ·En)/Xn = 0.

Algorithm 1. Optimal Direct Policy Search (ODPS)
for n ∈ N do

vn ← −∞; bn ← 0;
for i ∈ {1, . . . , Nn} do

w ← 0;
for e ∈ {1, . . . , En} do

perform one episode according to πCn
i , resulting in hT ;

w ← w + η(hT );
end
Ri ← w/En;
if Ri > vn then vn ← Ri; bn ← i;

end

if online-mode then perform Xn episodes according to πCn
bn

;

end

With these conventions, the pseudo-code of Optimal Direct Policy Search (ODPS)
is given in Algorithm 1. The algorithm operates in epochs, each starting with an
exploration phase during which a number of candidate policies is systematically
evaluated. ODPS has two modes: In exploration mode it evaluates more and more
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powerful policies in each epoch, without ever exploiting its findings. At the end of
each episode, after the direct policy search is stopped, it assumes to have found the
best so far solution for later exploitation phases. In online mode, ODPS is actually
exploiting the policies it finds, achieving arbitrarily close to optimal performance
in the limit. But exploitation phases are still interleaved with exploration phases,
to make sure no good policy is missed by chance.

4 Formal Optimality

The following theorems formalize optimality of ODPS:

Theorem 1. Consider the infinite sequence of episodes executed by Algorithm 1
in online-mode, and let ηj denote the success η(hT ) of the j-th episode. Let
Tn =

∑n
k=1 NkEk +Xk denote the number of episodes at the end of epoch n. By

η̄n = 1
Tn

∑Tn

j=1 ηj we denote the success averaged over the first n epochs. Then

it holds η̄n

Pr−−−−→
n→∞ sup

{
ρ(πc

p)
∣∣ p ∈ P , c ∈ N

}
, where Pr→ denotes convergence in

probability.

Theorem 2. Consider Algorithm 1 either in online or in exploration mode. Let

bn be the index of the best program found in epoch n. Then it holds ρ(πCn

bn
)

Pr−−−−→
n→∞

sup
{
ρ(πc

p)
∣∣ p ∈ P , c ∈ N

}
, where Pr→ denotes convergence in probability.

Proof (Proof of Theorem 2). We define ρ∗ = sup
{
ρ(πc

p)
∣∣ p ∈ P , c ∈ N

}
. Fix

constants ε > 0 and δ > 0. We have to show that there exists n0 ∈ N such that
for all n > n0 it holds Pr(ρ∗ − ρ(πCn

bn
) > ε) < δ.

Let R
(n)
i denote the average success of policy πCn

i during the exploration
phase of epoch n, and let ρ

(n)
i = ρ(πCn

i ) denote the corresponding objective
function value. Furthermore, let ρ∗n = max

{
ρ
(n)
i )

∣∣ i ∈ {1, . . . , Nn}
}

denote
the best achievable objective function value in epoch n. We have E[R(n)

i ] =
E[η(hT ) |πCn

i ] = ρ
(n)
i and Var(R(n)

i ) ≤ σ2

En
, where σ2 is a bound on the variance

of η. This allows us to estimate

Pr
(
∃ i ∈ {1, . . . , Nn} s.t.

∣∣∣R(n)
i − ρ

(n)
i

∣∣∣ ≥ ε

4

)
≤ Nn · Pr

(∣∣∣R(n)
i − ρ

(n)
i

∣∣∣ ≥ ε

4

)
for all i ∈ {1, . . . , Nn}

≤ Nn

En
· 16σ2

ε2
≤ δ

for all n > n1. The first step follows from the union bound, the second one from
Chebyshev’s inequality. According to property (a) there exists n1 ∈ N such that
for all n > n1 we have Nn

En
< δε2

16σ2 , which implies the last step for this choice

of n1. Together with R
(n)
bn
≥ R

(n)
i this implies

ρ(πCn

bn
) ≥ R

(n)
bn
− ε

4
≥ R

(n)
i − ε

4
≥ ρ∗n −

ε

2
,
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for all i ∈ {1, . . . , Nn} and n > n1, and with probability of at least (1− δ).
Per construction we have limn→∞ ρ∗n = ρ∗. Thus, there exists n2 ∈ N such

that for all n > n2 it holds ρ∗ − ρ∗n < ε/2. With n0 = max{n1, n2} it follows
that ρ(πCn

bn
) > ρ∗ − ε holds for all n > n0 with probability of at least (1− δ).

Proof (Proof of Theorem 1). Property (b) guarantees that η̃n−ρ(πCn

bn
)

Pr−−−−→
n→∞ 0,

where η̃n is the average performance during epoch n. It is easy to see that this

also implies η̄n − ρ(πCn

bn
)

Pr−−−−→
n→∞ 0. Now we apply Theorem 2, which proves the

assertion.

5 Discussion

Theorems 1 and 2 formally establish the asymptotic optimality of ODPS for all
finite episodic POMDP problems, as outlined in the previous sections. In explo-
ration mode, the algorithm finds arbitrarily close to optimal policies. In online
mode, it exploits its previously learned knowledge, resulting in asymptotically
optimal performance.

An interesting aside is that the ODPS algorithm, together with a simulation
of the POMDP, is a program itself and is thus available as a subroutine in
some of the programs p ∈ P . This self-reference is neither helpful nor does it
pose any problem to the procedure. In particular, the ODPS algorithm does not
reason about itself, and in contrast to the Gödel machine [7] does not attempt
to optimize its own search procedure.

Let us play a number of variations on the theme. For example, we may ask for
the best policy that computes its action in a priori limited time. This scenario
is more realistic than allowing the agent to take arbitrary long (but finite) time
to make its decisions. The restricted time requirement simplifies the problem at
hand considerably. Note that any program terminating after at most n ∈ N time
steps can be expressed with at most n instructions, limiting the search space to
a finite subset. Thus, all epochs can in principle search the full set of programs,
and the sequence Nn disappears from the algorithm.

We do not claim that ODPS is a practical algorithm for solving real problems
efficiently. How to scale it down? The probably most important step is to insert
prior bias by giving small indices in the enumeration pi to programs believed to
be likely problem solvers. In many cases such programs would be known to halt
in advance, which is why the progressively increasing sequence in computation
time Cn could be set to infinity, enabling us to transfer information from early
episodes to later ones in a straight-forward manner, such that the number of
evaluations in episode n can be reduced from En to En − En−1. The language
P can even be restricted to a non-Turing complete (typically finite) subset [3].

6 Experimental Test

The goal of our experiment is demonstrate the typical behavior of ODPS. We use
a non-trivial POMDP environment, but in order to render the search practical
we rely on a non-Turing complete encoding of policies tailored to the task.
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The agent is confronted with the 49-state POMDP depicted in Figure 1. Its
states are organized into a 6 × 8 grid, plus the single terminating state on the
right. The two possible start states, each with probability 1/2, are the two circled
states at the top left. There are exactly two possible observations O = {0, 1}
and two actions A = {a1, a2}.
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Fig. 1. Illustration of the 49-state POMDP used in
the experiments. The two circled states in the top left
are selected as start states with equal probability. The
number in each circle is the observation the agent per-
ceives. The two actions a1 and a2 have opposite effects
in the gray and white background rows: In the gray
rows, a1 moves right and a2 moves left, where each of
the two possible arrows to the left and to the right are
followed with equal probability. Actions are unrelibale,
having the opposite effect in 30% of the cases. In the
white rows the roles of actions are reversed. The goal
is to reach the terminating state as quickly as possible.
This is expressed by the reward uniformly distributed
in the interval [−1, 0] for all states.

The mapping from states
to observations is determin-
istic; the symbol observed
in each state is given in
the figure. Note that the
agent observes only a single
bit of information per state,
which makes partial ob-
servability a serious prob-
lem.

The effects of actions are
highly stochastic. In rows
with gray background ac-
tion a1 moves the agent to
the right, and action a2 to
the left, but the effects of
the actions are reversed in
30% of the cases. In rows
with white background the
roles of a1 and a2 are re-
versed. Furthermore, there
are two possible destination
states for each step, which
are chosen with equal prob-
ability. In each time step
the agent receives a reward

drawn from the uniform distribution on the interval [−1, 0]. Thus, the goal of
the agent is to reach the terminating state as quickly as possible.

The reason for using this seemingly over-complex POMDP is that direct policy
search is particularly well suited for this type of task, because the optimal policy
is relatively simple. It depends only on the last three observations (ot−2, ot−1, ot)
in the form π(0, 0, 1) = π(0, 1, 0) = π(1, 0, 0) = π(1, 1, 1) = a1 and π(0, 0, 0) =
π(0, 1, 1) = π(1, 0, 1) = π(1, 1, 0) = a2. This encoding of the optimal policy is
much simpler than an encoding of its value function in the MDP formulation,
not to speak of the difficulties when learning in the corresponding POMDP.

Consequently we encode policies as tables, mapping tuples of most recent ob-
versations to actions. We enumerate the possible values of no, the number of
previous observations taken into account; for each size we systematically enu-
merate all possible combinations of actions. There are 2no such observations, and
2(2no) tabular policies. In early interactions when there are fewer observations
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available than processed by the policy, the observation vector is padded with
zeros accordingly. This encoding scheme is not unique, which is typical when
encoding programs. For example, p1 and p3 both always execute action a1, in
the form p1(·) = a1, in contrast to p3(0) = a1, p3(1) = a1.

0 20 40 60 80 100
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−20
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Fig. 2. The graph shows the best ex-
ploration performance vn (dotted curve),
the performance during exploitation (solid
curve), and the total average performance
(dashed curve), over the course of the first
100 episodes. The vertical line at episode 13
marks the point from where on the optimal
policy p128 is available.

We ran ODPS with the settings
Nn = 10n, En = �n log(n + 1)�, and
Xn = 10E3

n for 100 epochs. These se-
quences fulfill properties (a) and (b),
such that Theorems 1 and 2 hold
when the number of epochs is unlim-
ited. In the above encoding the opti-
mal policy happens to appear for the
first time as p128. Thus, it is in the
search space from epoch 13 on.

We monitored different quality in-
dicators summarized in Figure 2. We
can observe a number of typical be-
haviors from the graph. In the first
iterations the number En of episodes
per evaluation is too small, result-
ing in a huge gap between the dotted
and the solid curve (overfitting). After
about epoch 20 the exploitation performance becomes stable. The same holds
for the identification of the best policy. Although this policy is available from
episode 13 on, it is not identified reliably until epoch 20, after which the number
En of averages is large enough. Thus, ODPS in exploration mode is reliably suc-
cessful roughly from epoch 20 on. The dotted curve indicates the total averaged
performance in online mode and converges only slowly towards the optimum.
This is because in each epoch a large number of episodes is allocated to sys-
tematic exploration, during which the average performance is around −25 (not
shown in the graph).

7 Conclusion

We introduced a class of direct policy search methods that in theory can op-
timally solve any finite, stochastic, episodic POMDP problem. Our results are
extremely general in the sense that they make very few assumptions on the
underlying MDP. In particular, our approach treats stochasticity naturally and
does not need the assumption of a deterministically or probabilistically com-
putable environment. Our only restriction is that the optimal policy must be
relevant to machine learning, in the weak sense that it is a computable function
of the history.

Our ODPS algorithm is not necessarily practical, but most direct policy search
schemes are closely related (typically replacing systematic search with heuristics,
and the search space of all computable policies with a restricted subspace),
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and we outlined how to scale it down to realistic applications, describing an
illustrative experiment with a highly stochastic POMDP.

Still, this work remains conceptual in spirit, and, in the authors’ point of
view, serves the sole purpose of providing a solid theoretical understanding of
the power of direct policy search. Our work shows the principal ability of direct
policy search to solve almost arbitrary problems optimally, and thus provides a
solid theoretical justification for its use.
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Abstract. Inspired by a broader perspective viewing intelligent system
dynamics in terms of the geometry of “cognitive spaces,” we conduct
a preliminary investigation of the application of information-geometry
based learning to ECAN (Economic Attention Networks), the component
of the integrative OpenCog AGI system concerned with attention allo-
cation and credit assignment. We generalize Amari’s “natural gradient”
algorithm for network learning to encompass ECAN and other recurrent
networks, and apply it to small example cases of ECAN, demonstrat-
ing a dramatic improvement in the effectiveness of attention allocation
compared to prior (Hebbian learning like) ECAN methods. Scaling up
the method to deal with realistically-sized ECAN networks as used in
OpenCog remains for the future, but should be achievable using sparse
matrix methods on GPUs.

Keywords: information geometry, recurrent networks, economic atten-
tion allocation, ECAN, OpenCog.

1 Introduction

The AGI field currently lacks any broadly useful, powerful, practical theoretical
and mathematical framework. Many theoretical and mathematical tools have
been important in guiding the design of various aspects of various AGI systems;
and there is a general mathematical theory of AGI [17], which has inspired
some practical work [18] [22], but has not yet been connected with complex AGI
architectures in any nontrivial way. But it is fair to say that AGI is in deep need
of unifying ideas.

One possibility in this regard is information geometry [3], the theory of the
geometric structure of spaces of probability distributions. Given the recent rise of
probabilistic methods in AI and the success of geometric methods in other disci-
plines such as physics, this seems a natural avenue to explore. A companion paper
[10] outlines some very broad ideas in this regard; here we present some more
concrete and detailed experiments in the same direction. Continuing our prior
work with the OpenCog [16] integrative AGI architecture, we model OpenCog’s
Economic Attention Networks (ECAN) component using information geometric
language, and then use this model to propose a novel information geometric
method of updating ECAN networks (based on an extension of Amari’s ANGL
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algorithm). Tests on small networks suggest that information-geometric methods
have the potential to vastly improve ECAN’s capability to shift attention from
current preoccupations to desired preoccupations. However, there is a high com-
putational cost associated with the simplest implementations of these methods,
which has prevented us from carrying out large-scale experiments so far. We are
exploring the possibility of circumventing these issues via using sparse matrix
algorithms on GPUs.

2 Brief Review of OpenCog

Now we briefly describe the OCP (OCP) AGI architecture, implemented within
the open-source OpenCog AI framework. OCP provides the general context for
the very specific novel algorithmic research presented here.

Conceptually founded on the “patternist” systems theory of intelligence out-
lined in [12], OCP combines multiple AI paradigms such as uncertain logic,
computational linguistics, evolutionary program learning and connectionist at-
tention allocation in a unified architecture. Cognitive processes embodying these
different paradigms interoperate together on a common neural-symbolic knowl-
edge store called the Atomspace. The interaction of these processes is designed
to encourage the self-organizing emergence of high-level network structures in
the Atomspace, including superposed hierarchical and heterarchical knowledge
networks, and a self-model network enabling meta-knowledge and meta-learning.

The OpenCog software (incorporating elements of the OCP architecture) has
been used for commercial applications in the area of natural language processing
and data mining [14], and for the control of virtual agents in virtual worlds [13]
(see http://novamente.net/example for some videos of these virtual dogs in
action).

The high-level architecture of OCP involves the use of multiple cognitive pro-
cesses associated with multiple types of memory to enable an intelligent agent
to execute the procedures that it believes have the best probability of work-
ing toward its goals in its current context. OCP handles low-level perception
and action via an extension called OpenCogBot, which integrates a hierarchical
temporal memory system, DeSTIN [4].

OCP’s memory types are the declarative, procedural, sensory, and episodic
memory types that are widely discussed in cognitive neuroscience [23], plus –
most relevantly for the current paper – attentional memory for allocating system
resources generically, and intentional memory for allocating system resources in
a goal-directed way. Table 1 overviews these memory types, giving key references
and indicating the corresponding cognitive processes, and also indicating which
of the generic patternist cognitive dynamics each cognitive process corresponds
to (pattern creation, association, etc.). The essence of the OCP design lies in
the way the structures and processes associated with each type of memory are
designed to work together in a closely coupled way, the operative hypothesis
being that this will yield cooperative intelligence (“cognitive synergy”) going
beyond what could be achieved by an architecture merely containing the same
structures and processes in separate “black boxes.”

http://novamente.net/example
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Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

Memory
Type

Specific Cognitive Processes
General Cognitive

Functions

Declarative
Probabilistic Logic Networks (PLN) [11];

concept blending [7]
pattern creation

Procedural
MOSES (a novel probabilistic

evolutionary program learning algorithm)
[20]

pattern creation

Episodic internal simulation engine [13]
association, pattern

creation

Attentional
Economic Attention Networks (ECAN)

[15]
association, credit

assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured according to
Psi

credit assignment, pattern
creation

Sensory Supplied by DeSTIN integration
association, attention

allocation, pattern creation,
credit assignment

Declarative knowledge representation is handled by a weighted labeled hy-
pergraph called the Atomspace, which consists of multiple types of nodes and
links, generally weighted with probabilistic truth values and also attention val-
ues (ShortTermImportance (STI) and LongTermImportance values, regulating
processor and memory use).

OCP’s dynamics has both goal-oriented and “spontaneous” aspects. The basic
goal-oriented dynamics is driven by “cognitive schematics”, which take the form

Context ∧ Procedure→ Goal < p >

(summarized C ∧P → G), roughly interpretable as “If the context C appears to
hold currently, then if I enact the procedure P , I can expect to achieve the goal
G with certainty p.”

On the other hand, the spontaneous dynamic is driven by the ECAN com-
ponent (the subject of the present paper), which propagates STI values in a
manner reminiscent of an attractor neural network; cognitive processes or knowl-
edge items that get more importance spread to them are then used to trigger
action or cognition or to guide perception. Goal-oriented dynamics also utilizes
STI, in that the system’s top-level goals are given STI to spend on nominating
procedures for execution or to pass to subgoals.

3 Brief Review of Economic Attention Networks

Now we review the essential ideas underlying Economic Attention Networks
(ECAN), which is the central process controlling attention allocation and credit
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assignment within OpenCog. ECAN is a specific approach to resource allocation
and associative memory and may be considered a nonlinear dynamical system
in roughly the same family as attractor neural networks such as Hopfield nets.
As we describe in detail in [19] ECAN is a graph, consisting of generically-typed
nodes and links (which may have any of OpenCog’s node or link types, but the
point is that the type semantics is irrelevant to ECAN even though it may be
relevant to other OpenCog modules), and also links that may be typed either
HebbianLink or InverseHebbianLink. Each Hebbian or InverseHebbian link is
weighted with a probability value.

Each node or link in an ECAN is also weighted with two numbers, represent-
ing short-term importance (STI) and long-term importance (LTI). STI values
represent the immediate importance of an Atom to ECAN at a particular instant
in time, while LTI values represent the value of retaining atoms in memory. The
ECAN equations dynamically update these values using an economic metaphor
in which both STI and LTI can be viewed as artificial currencies.

The ECAN equations also contain the essential notion of an AttentionalFocus
(AF), consisting of those Atoms in the ECAN with the highest STI values. The
probability value of a HebbianLink from A to B is the odds that if A is in the AF,
so is B; and correspondingly, the InverseHebbianLink from A to B is weighted
with the odds that if A is in the AF, then B is not. The main concept here is
the following: Suppose there is a high HebbianLink probability between A and
B and that A is in the AF. Then A can be viewed as trying to “pull” B into the
AF. There is an obvious corresponding but opposite reaction if the nodes share
instead a high InverseHebbianLink.

As an associative memory, the ECAN process involves both training and re-
trieval processes. The entire ECAN training dynamics can be described as a
nonlinear function H : [0, 1]L −→ RM , where L is the number of nodes, and
M = L2, mapping a given set of binary patterns into a connection matrix C of
Hebbian weights. The specific ECAN Hebbian updating equations are somewhat
complex, and are described in detail in [10]. What is important in our current
context, is this view of the process as a nonlinear function on the space of input
patterns into the space of weight parameters.

4 Brief Review of Information Geometry

“Information geometry” is a branch of applied mathematics concerned with the
application of differential geometry to spaces of probability distributions. In [10]
we have suggested some extensions to traditional information geometry aimed
at allowing it to better model general intelligence. However for the concrete
technical work in the present paper, the traditional formulation of information
geometry will suffice.

One of the core mathematical constructs underlying information geometry,
is the Fisher Information, a statistical quantity which has a a variety of appli-
cations ranging far beyond statistical data analysis, including physics [8], psy-
chology and AI [3]. Put simply, FI is a formal way of measuring the amount of
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information that an observable random variable X carries about an unknown
parameter θ upon which the probability of X depends. FI forms the basis of the
Fisher-Rao metric, which has been proved the only Riemannian metric on the
space of probability distributions satisfying certain natural properties regarding
invariance with respect to coordinate transformations. Typically θ in the FI is
considered to be a real multidimensional vector; however, [6] has presented a
FI variant that imposes basically no restrictions on the form of θ. Here the
multidimensional FI will suffice, but the more general version is needed if one
wishes to apply FI to AGI more broadly, e.g. to declarative and procedural as
well as attentional knowledge.

In the set-up underlying the definition of the ordinary finite-dimensional
Fisher information, the probability function for X , which is also the likelihood
function for θ ∈ Rn, is a function f(X ; θ); it is the probability mass (or probabil-
ity density) of the random variable X conditional on the value of θ. The partial
derivative with respect to θi of the log of the likelihood function is called the
score with respect to θi. Under certain regularity conditions, it can be shown that
the first moment of the score is 0. The second moment is the Fisher information:

I(θ)i = IX(θ)i = E

[((
∂

∂θi
ln f(X ; θ)

)2
)
|θ

]

where, for any given value of θi, the expression E[..|θ] denotes the conditional
expectation over values for X with respect to the probability function f(X ; θ)
given θ. Note that 0 ≤ I(θ)i < ∞. Also note that, in the usual case where the
expectation of the score is zero, the Fisher information is also the variance of
the score.

One can also look at the whole Fisher information matrix

I(θ)i,j = E

[(
∂lnf(X, θ)

∂θi

∂lnf(X, θ)
∂θj

)
|θ

]
which may be interpreted as a metric gij , that provably is the only “intrinsic”
metric on probability distribution space. In this notation we have I(θ)i = I(θ)i,i.

Dabak [6] has shown that the geodesic between two parameter vectors θ and
θ′ is given by the exponential weighted curve (γ(t)) (x) = f(x,θ)1−tf(x,θ′)t∫

f(y,θ)1−tf(y,θ′)tdy
,

under the weak condition that the log-likelihood ratios with respect to f(X, θ)
and f(X, θ′) are finite. Also, along this sort of curve, the sum of the Kullback-
Leibler distances between θ and θ′, known as the J-divergence, equals the integral
of the Fisher information along the geodesic connecting θ and θ′.

This suggests that if one is attempting to learn a certain parameter vector
based on data, and one has a certain other parameter vector as an initial value,
it may make sense to use algorithms that try to follow the Fisher-Rao geodesic
between the initial condition and the desired conclusion. This is what Amari
[1] [3] calls “natural gradient” based learning, a conceptually powerful approach
which subtly accounts for dependencies between the components of θ.
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5 From Information Geometry to Mind Geometry

While here we will formally require only traditional ideas from information ge-
ometry, it is worth noting that the present paper was inspired by a companion
paper [10] in which information geometry is extended in various ways and con-
jecturally applied to yield a broad conceptual model of cognitive systems. A
family of alternative metrics based on algorithmic information theory is pro-
posed, to complement the FisherRao metric – very roughly speaking, the algo-
rithmic distance between two entities represents the amount of computational
effort required to transform between the two. Multi-modular memory systems
like OpenCog are then modeled in terms of multiple “mindspaces”: each memory
system, and the composite system, are geometrized using both Fisher-Rao and
algorithmic metrics. Three hypotheses are then proposed:

1. a syntax-semantics correlation principle, stating that in a successful AGI
system, these two metrics should be roughly correlated

2. a cognitive geometrodynamics principle, stating that on the whole intelligent
minds tend to follow geodesics in mindspace

3. a cognitive synergy principle, stating that shorter paths may be found through
the composite mindspace formed by considering multiple memory types to-
gether, than by following the geodesics in the mindspaces corresponding to
individual memory types.

The results presented in this paper do not depend on any of these broader
notions, however they fit in with them naturally. In this context, the present
paper is viewed as an exploration of how to make ECAN best exploit the Fisher-
Rao geometric structure of OpenCog’s “attentional mindspace.”

6 Information-Geometric Learning for Recurrent
Networks: Extending the ANGL Algorithm

Now we move on to discuss the practicalities for information-geometric learning
within OpenCog’s ECAN component. As noted above, Amari [1,3] introduced
the natural gradient as a generalization of the direction of steepest descent on
the space of loss functions of the parameter space. Issues with the original im-
plementation include the requirement of calculating both the Fisher information
matrix and its inverse. To resolve these and other practical considerations, Amari
[2] proposed an adaptive version of the algorithm, the Adaptive Natural Gra-
dient Learning (ANGL) algorithm. Park, Amari, and Fukumizu [21] extended
ANGL to a variety of stochastic models including stochastic neural networks,
multi-dimensional regression, and classification problems.

In particular, they showed that, assuming a particular form of stochastic feed-
forward neural network and under a specific set of assumptions concerning the
form of the probability distributions involved, a version of the Fisher information
matrix can be written as
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G(θ) = Eξ

[(
r′

r

)2
]

Ex

[
∇H (∇H)T

]
.

Although Park et al considered only feedforward neural networks, their result
also holds for more general neural networks, including the ECAN network. What
is important is the decomposition of the probability distribution as

p (y|x; θ) =
L∏

i=1

ri (yi −Hi (x, θ) )

where

y = H(x; θ) + ξ, y = (y1, · · · , yL)T , H = (H1, · · · , HL)T , ξ = (ξ1, · · · , ξL)T ,

where ξ is added noise. If we assume further that each ri has the same form as a
Gaussian distribution with zero mean and standard deviation σ, then the Fisher
information matrix simplifies further to

G(θ) =
1
σ2

Ex

[
∇H (∇H)T

]
.

The adaptive estimate for Ĝ−1
t+1 is given by

Ĝ−1
t+1 = (1 + εt)Ĝ−1

t − εt(Ĝ−1
t ∇H)(Ĝ−1

t ∇H)T .

and the loss function for our model takes the form

l(x,y; θ) = −
L∑

i=1

log r(yi −Hi(x, θ)).

The learning algorithm for our connection matrix weights θ is then given by

θt+1 = θt − ηtĜ
−1
t ∇l(θt).

7 Information Geometry for Economic Attention
Allocation: A Detailed Example

We now present the results of a series of small-scale, exploratory experiments
comparing the original ECAN process running alone with the ECAN process
coupled with ANGL. We are interested in determining which of these two lines
of processing result in focusing attention more accurately.
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Fig. 1. Results from Experiment 1

The experiment started
with base patterns of vari-
ous sizes to be determined
by the two algorithms. In
the training stage, noise was
added, generating a number
of instances of noisy base
patterns. The learning goal
is to identify the underlying
base patterns from the noisy
patterns as this will identify
how well the different algo-
rithms can focus attention
on relevant versus irrelevant
nodes.

Fig. 2. Results from Experiment 2

Next, the ECAN process
was run, resulting in the de-
termination of the connec-
tion matrix C. In order to
apply the ANGL algorithm,
we need the gradient,∇H , of
the ECAN training process,
with respect to the input x.
While calculating the con-
nection matrix C, we used
Monte Carlo simulation to
simultaneously calculate an
approximation to ∇H .

Fig. 3. Results from Experiment 3

After ECAN training was
completed, we bifurcated the
experiment. In one branch,
we ran fuzzed cue pat-
terns through the retrieval
process. In the other, we
first applied the ANGL al-
gorithm, optimizing the
weights in the connection
matrix, prior to running the
retrieval process on the same
fuzzed cue patterns. At a
constant value of σ = 0.8 we
ran several samples through each branch with pattern sizes of 4×4, 7×7, 10×10,
15 × 15, and 20 × 20. The results are shown in Figure 1. We also ran several
experiments comparing the sum of squares of the errors to the input training
noise as measured by the value of σ.; see Figures 2 and 3.
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These results suggest two major advantages of the ECAN+ANGL combina-
tion compared to ECAN alone. Not only was the performance of the combination
better in every trial, save for one involving a small number of nodes and little
noise, but the combination clearly scales significantly better both as the number
of nodes increases, and as the training noise increases.

8 Conclusion

Inspired by a broader geometric conception of general intelligence, we have ex-
plored a relatively simple concrete application of information-geometric ideas to
the ECAN component of the OpenCog integrative AGI system. Roughly speak-
ing, the idea explored is to have OpenCog shift its attention from current preoc-
cupations toward desired preoccupations, based on following geodesic paths in
the Fisher-Rao space of the space of “attentional probability distributions”.

The results presented here are highly successful but also quite preliminary,
involving small numbers of nodes in isolation rather than integrated into an
entire AGI system. We still have much work ahead to determine whether the
dramatic improvements reported here continue to scale with millions of nodes
in a complete integrative system. Nonetheless, the results from our experiment
tantalizingly suggest that incorporating ANGL into the ECAN process can lead
to vastly more accurate results, especially as system size and noise increases.
The main open question is whether this improvement can be achieved for large
ECAN networks without dramatically increased processing time. To address this
problem, we plan to experiment with implementing ECAN+ANGL on many-core
GPU machines, using optimized sparse matrix algorithms [9,5].

We also plan to pursue similar approaches to improving the learning capability
of other OpenCog components. For instance, OpenCog’s PLN inference frame-
work utilizes a statistically-guided inference control mechanism, which could
benefit from information-geometric ideas. And OpenCog’s MOSES system for
probabilistic program induction (procedure learning) could potentially be modi-
fied to more closely follow geodesics in program space. There is no lack of fertile
ground for further, related experimentation.
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Abstract. We represent agents as sets of strings. Each string encodes
a potential interaction with another agent or environment. We represent
the total set of dynamics between two agents as the intersection of their
respective strings, we prove complexity properties of player interactions
using Algorithmic Information Theory. We show how the proposed con-
struction is compatible with Universal Artificial Intelligence, in that the
AIXI model can be seen as universal with respect to interaction.1
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1 Introduction

Whereas classical Information Theory is concerned with quantifying the expected
number of bits needed for communication, Algorithmic Information Theory (AIT)
principally studies the complexity of individual strings. A central measure of AIT
is the Kolmogorov Complexity C(x) of a string x, which is the size of the smallest
program that will output x on a universal Turing machine. Another central def-
inition of AIT is the universal prior m(x) that weights a hypothesis (string) by
the complexity of the programs that produce it [LV08]. This universal prior has
many remarkable properties; if m(x) is used for induction, then any computable
sequence can be learned with only the minimum amount of data. Unfortunately,
C(x) and m(x) are not finitely computable. Algorithmic Information Theory can
be interpreted as a generalization of classicial Information Theory [CT91] and the
Minimum Description Length principal. Some other applications include univer-
sal PAC learning and Algorithmic Statistics [LV08, GTV01].

The question of whether AIT can be used to form the foundation of Artificial
Intelligence was answered in the affirmative with Hutter’s Universal Artificial In-
telligence (UAI) [Hut04]. This was achieved by the application of the universal
prior m(x) to the cybernetic agent model, where an agent communicates with an
environment through sequential cycles of action, perception, and reward. It was
shown that there exists a universal agent, the AIXI model, that inherits many
universality properties from m(x). In particular, the AIXI model will converge to
achieve optimal rewards given long enough time in the environment. As almost all

1 The authors are grateful to Leonid Levin for insightful discussions and acknowledge
partial support by NSF grant 0713229.
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AI problems can be formalized in the cybernetic agent model, the AIXI model is a
complete theoretical solution to the field of Artificial General Intelligence [GP07].

In this paper, we represent agents as sets of strings and the potential dynam-
ics between them as the intersection of their respective sets of strings (Sec. 2).
We connect this interpretation of interacting agents to the cybernetic agent
model (Sec. 2.2). We provide background on Algorithmic Information Theory
(Sec. 3) and show how agent learning can be described with algorithmic com-
plexity (Sec. 4). We apply combinatorial and algorithmic proof techniques [VV10]
to study the dynamics between agents (Sec. 5). In particular, we describe the
approximation of agents (Th. 2), the conditions for removal of superfluous in-
formation in the encoding of an agent (Th. 3), and the consequences of having
multiple payers achieving the same rewards in an environment (Th. 4). We show
how the interpretation given in Sec. 2 is compatible with Universal Artificial
Intelligence, in that the AIXI model has universality properties with respect to
our definition of “interaction” (Sec. 6).

2 Interaction as Intersection

We define players A and B as two sets containing strings of size n. Each string
x in the intersection set A ∩ B represents a particular “interaction” between
players A and B. We will use the terms string and interaction interchangeably.
This set representation can be used to encode non-cooperative games (Sec. 2.1)
and instances of the cybernetic agent model (Sec. 2.2). Uncertainties in instances
of both domains can be encoded into the size of the intersections. The amount
of uncertainty between players is equal to |A ∩ B|. If the interaction between
the players is deterministic then |A∩B| = 1. If uncertainty exists, then multiple
interactions are possible and |A ∩ B| > 1. We say that player A interacts with
B if |A ∩B| > 0.

2.1 Non-cooperative Games

Sets can be used to encode adversaries in sequential games [RN09], where agents
exchange a series of actions over a finite number of plies. Each game or in-
teraction consists of the recording of actions by adversaries α and β, with
x = (a1, b1)(a2, b2)(a3, b3) for a game of three rounds. The player (set) rep-
resentation A of adversary α is the set of games representing all possible actions
by α’s adversary with α’s responding actions, and similarly for player B repre-
senting adversary β. An example game is rock-paper-scissors where adversaries
α and β play two sequential rounds with an action space of {R, P, S}. Adversary
α only plays rock, whereas adversary β first plays paper, then copies his adver-
sary’s play of the first round. The corresponding players (sets) A and B can be
seen in Fig. 1a. The intersection set of A and B contains the single interaction
x =“(R, P )(R, R),” which is the only possible game (interaction) that α and β
can play.

Example 1 (Chess Game). We use the example of a chess game with uncertainty
between two players: Anatoly as white and Boris as black. An interaction x ∈
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A B
(R,R)(R,R) (R,P)(R,R)
(R,R)(R,P) (R,P)(P,R)
(R,R)(R,S) (R,P)(S,R)
(R,P)(R,R) (P,P)(R,P)
(R,P)(R,P) (P,P)(P,P)
(R,P)(R,S) (P,P)(S,P)
(R,S)(R,R) (S,P)(R,S)
(R,S)(R,P) (S,P)(P,S)
(R,S)(R,S) (S,P)(S,S)

Fig. 1. (a) The set representation of players A and B playing two games of pa-
per, rock, scissors. The intersection set of A and B contains the single interaction
x =“(R,P )(R, R).” (b) The cybernetic agent model.

A ∩B between Anatoly and Boris is a game of chess played for at most m plies
for each player, with x = a1b1a2b2 . . . ambm = ab1:m. The chess move space V ⊂
{0, 1}∗ has a short binary encoding, whose precise definition is not important. If
the game has not ended after m rounds, then the game is considered a draw. Both
players are nondeterministic, where at every ply, they can choose from a selection
of moves. Anatoly’s decisions can be represented by a function fA : V∗ → 2V and
similarly Boris’ decisions by fB. Anatoly can be represented by a set A, with
A = {ab1:m : ∀1≤k≤m ak ∈ fA(ab1:k−1)}, and similarly Boris by set B. Their
intersection, A∩B, represents the set of possible games that Anatoly and Boris
can play together.

Generally, sets can encode adversaries of non-cooperative normal form games,
with their interactions consisting of pure Nash equilibriums [RN09]. A normal
form game is defined as (p, q) with the adversaries represented by normalized
payoff functions p and q of the form {0, 1}n × {0, 1}n → [0, 1]. The set of pure
Nash equilibriums is {〈x, y〉 : p(x, y) = q(y, x) = 1}. For each payoff function
p there is a player A = {〈x, y〉 | p(x, y) = 1}, and for each payoff function q
there is player B. The intersection of A and B is equal to the set of pure Nash
equilibriums of p and q.

2.2 Cybernetic Agent Model

The interpretation of “interaction as intersection” is also applicable to the cy-
bernetic agent model used in Universal Artificial Intelligence [Hut04]. With the
cybernetic agent model, there is an agent and an environment communicating in
a series of cycles k = 1, 2, . . . (Fig. 1b). At cycle k, the agent performs an action
yk ∈ Y, dependent on the previous history yx<k = y1x1 . . . yk−1xk−1. The envi-
ronment accepts the action and in turn outputs xk ∈ X , which can be interpreted
as the kth perception of the agent, followed by cycle k + 1 and so on. An agent
is defined by a deterministic policy function p : X ∗ → Y∗ with p(x<k) = y1:k to
denote output y1:k = y1y2 . . . yk on input x<k = x1x2 . . . xk−1. We use the terms
policy and agent interchangeably. The inputs are separated into two parts, xk ≡
rkok, with rk = r(xk) representing the reward and ok representing the observa-
tion. We say r(x1:m) =

∑m
i=1 r(xi) and we assume bounds on rewards with 0 ≤

rk ≤ c for all k. There is uncertainty in the environment; it can be represented
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by a probability distribution over infinite strings, where μ(x1 . . . xn) is the prob-
ability that an infinite string starts with x1 . . . xn. In Hutter’s notation [Hut04],
an underlined argument xk is a probability variable and non-underlined argu-
ments xk represent the condition with μ(x<nxn) = μ(x1:n)/μ(x<n). The prob-
ability that the environment reacts with x1 . . . xn under agent output y1 . . . yn

is μ(y1x1 . . . ynxn) = μ(yxn). The environment is chronological, in that input xi

only depends on yx<iyi. The horizon m of the interaction is the number of cycles
of the interaction. The value of agent p in environment μ is the expected reward
sum V p,μ

1:m =
∑

x1:m
r(x1:m)μ(yx1:m)|y1:m=p(x<m). The optimal agent that maxi-

mizes value V p,μ
1:m is pμ = arg maxp V p,μ

1:m , with value V ∗,μ
1:m = V pμ,μ

1:m . The optimal
expected reward given a partial history yx1:k is V p,μ

1:m(yx1:k).
It is possible to construct players (sets) A and B from the agent p and envi-

ronment μ where A “interacts” (intersects) with B only if agent p can achieve a
certain level of reward in μ. This construction enables us to apply the results and
proof techniques of section 5 to the cybernetic agent model. To translate p and μ
to A and B, we fix two parameters: a time horizon m and a difficulty threshold τ .
For every agent p, there is a player Ap

m, with Ap
m = {yx1:m : y1:m = p(x<m)}.

There are several possible ways to construct a set B from an environment μ. One
direct method is for every environment μ, to define a player Bμ

m,τ , with Bμ
m,τ =

{yx1:m : r(x1:m) ≥ τ, μ(yx1:m) > 0}. Player Bμ
m,τ represents all possible his-

tories of μ (however unlikely) where the reward is at least τ . If Ap
m ∩ Bμ

m,τ = ∅,
then environment μ is “too difficult” for the agent p; there is no interaction where
the agent can receive a reward of at least τ . We say the agent p interacts with the
environment μ at time horizon m and difficulty τ if Ap

m ∩Bμ
m,τ �= ∅.

Example 2 (Peter and Magnus). We present a cybernetic agent model inter-
pretation of chess with reward based players Peter and Magnus (same rules as
example 1). Peter, the agent p, has to be deterministic whereas Magnus, the
environment μ, has uncertainty. At cycle k, each action yk is Peter’s move and
each perception xk is Magnus’ move. At ply m in the chess game, Magnus re-
turns a reward of 1 if Peter has won. In rounds where the game is unfinished or
if Peter loses or draws, the reward is 0. The player (set) Ap

m represents Peter’s
plays for m rounds. The player (set) for Magnus with difficulty threshold τ = 1
and m plies, Bμ

m,1 is the set of all games that Magnus loses in m rounds or less.
If Am ∩Bμ

m,1 = ∅, then Peter cannot interact with Magnus at difficulty level 1;
Peter can never beat Magnus at chess in m rounds or less. If Am ∩ Bμ

m,1 �= ∅
then Peter can beat Magnus at a game of chess in m rounds or less.

Another construction of a player Dμ
m,τ with respect to environment μ, is Dμ

m,τ =
{yx1:m : ∀k V ∗,μ

1:m(yx1:k)/V ∗,μ
1:m ≥ τ}. With this interpretation, player Dμ

m,τ

represents all histories where at each time k, 1 ≤ k ≤ m, an agent can potentially
achieve an expected reward of at least τ times the optimal expected reward. If
Ap

m ∩ Dμ
m,τ = ∅, then environment μ is “too difficult” for the agent p; there is

no interaction where at every cycle k the agent has the potential to receive an
expected reward of at least τV ∗,μ

1:m .
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3 Background in Algorithmic Information Theory

We denote finite binary strings by x ∈ {0, 1}∗ and the length of strings by l(x). Let
the pairing function 〈·, ·〉 be the standard one-to-one mapping from N ×N to N ,
where: 〈x, y〉 = x′y = 1l(l(x))0l(x)xy and l(〈x, y〉) = l(y) + l(x) + 2l(l(x)) + 1.
The Kolmogorov complexity C(x) is the length of the shortest binary program to
compute x on a universal Turing machine ψ, C(x) = min{l(d) : ψ(d) = x}. The
prefix-free Kolmogorov complexity, K(x), restricts the universal machine ψ so no
halting program is a proper prefix of another halting program. For the rest of this
paper, we use plain Kolmogorov complexity. Kolmogorov complexity is not finitely
computable. The conditional Kolmogorov complexity of x relative to y, C(x|y),
is defined as the length of a shortest program to compute x, using y as an auxil-
iary input to the computation. The complexity of two strings x and y is denoted
by C(x, y) = C(〈x, y〉). The conditional complexity of two strings is C(x|y, z) =
C(x|〈y, z〉). The complexity of information in x about y is I(x : y) = C(y) −
C(y|x). The conditional mutual information is I(x : y|z) = C(y|z) − C(y|x, z)
and can be interpreted as the information z receives about y when given x. The
complexity of a function f : {0, 1}∗ → {0, 1}∗ is C(f) = min{C(p) : ∀xψ(p, x) =
f(x)}. The Levin complexity is defined by Ct(x) = minp{l(p) + log t(p, x) :
ψ(p) = x}, with t(p, x) being the number of steps taken by ψ until x is printed
(without ψ necessary halting). Levin complexity is computable. The complexity
of a finite set S is C(S), the length of the shortest program f from which the uni-
versal Turing machine ψ computes a listing of the elements of S and then halts.
If S = {x1, . . . , xn}, then ψ(f) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . .〉〉. The conditional
complexity C(x|S) is the length of the shortest program from which ψ, given S lit-
erally as auxiliary information, computes x. For every set S containing x, it must
be that C(x|S) ≤ log |S| + O(1). The randomness deficiency is the lack of typi-
cality of x with respect to set S, with δ(x|S) = log |S| −C(x|S), for x ∈ S and∞
otherwise. If δ(x|S) is small enough, then x is a typical element of S; x satisfies all
simple properties that hold with high majorities of strings in S.

Example 3 (Anatoly’s Games). Chess player Anatoly with function fA can be
represented as a set A (see example 1). Set A is simple relative to fA and the
maximum number of plies m, with C(A|fA, m) = O(1), where O(1) is the length
of code required to use fA and m to enumerate all games x ∈ A.

The following theorem, used in section 5, shows that if a string x is contained by
a large number of sets of a certain complexity, then it is contained by a simpler
set [VV04]. The enumerative complexity, CE(F), is the Kolmogorov complexity
of a non halting program that enumerates all the sets F ∈ F . This theorem also
holds for conditional complexity bounds, C(F |y).

Theorem 1 ([VV04]). Let F be a family of subsets of a set of strings G. If
x ∈ G is an member of each of 2k sets F ∈ F with C(F ) ≤ r, then x is a member
of a set F ′ in F with C(F ′) ≤ r − k + O(log k + log r + log log |G|+ CE(F)).
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4 Player Strategy Learning

Players A and B can learn information about each other’s strategies from a single
interaction (game) x ∈ A ∩ B or from their entire interaction set (all possible
games) A∩B. The capacity of a player A is the maximum amount of information
that A can receive about another player through all possible interactions, i.e.
their interaction set. It is equal to the log of the number of possible subsets that
it can have, log 2|A| = |A|. We define the lack of typicality of a subset S with
respect to A to be δ(S|A) = |A| − C(S|A), for S ⊆ A and ∞ otherwise.

Example 4 (Capacity). Boris B uses a range of black openings whereas Bill B′

uses only the Sicilian defence. So Boris has a higher capacity, |B| � |B′|, and
can potentially learn more than Bill.
Example 5 (Randomness Deficiency). Let A be the chess games played by Ana-
toly. Bob is a simple player B′, who only moves his knight back and forth. Set
S = A∩B′ represents all A’s games with B′. The randomness deficiency of these
games, δ(S|A), is high, as S is easily computable from A, with C(S|A)  |A|.
Let T ⊆ A, in which T = A ∩ B are games played between Anatoly and Boris,
who uses a range of chess strategies unknown to Anatoly. Then δ(T |A) is low
and C(T |A) is high.

If A views every interaction in A∩B, the amount of information B reveals about
itself is, I(A∩B :B|A), the mutual information between B and A∩B, given A.
This term can be reduced to C(A∩B|A)−C(A∩B|A, B) = C(A∩B|A)+O(1).
We define the amount of knowledge that A received about B from the interaction
setp as:

R(B|A) = C(A ∩B|A). (1)

The higher the randomness deficiency, δ(A∩B|A), of an interaction set, A∩B,
with respect to player A, the less information, R(B|A), player A can receive
about its opponent B, with

R(B|A) + δ(A ∩B|A) = |A|. (2)

Player A receives the most information about its opponent when the randomness
deficiency is δ(A ∩B|A) ≈ 0.

Example 6. Let Anatoly, A, and Bob, B′, be the players of example 5. Bob has
a simple strategy and has a lower capacity |B′|  |A|, but he learns a lot from
Anatoly, with δ(A ∩ B′|B′) ≈ 0 and R(A|B′) ≈ |B′|. Anatoly learns very little
from Bob, with R(B′|A) ≈ 0 and δ(A ∩B′|A) ≈ |A|.
Players can reveal information about themselves through a single interaction.
The amount of information that A received about B from their interaction x is

I(x : B|A) = C(x|A) − C(x|A, B). (3)

A graphical depiction of the complexities relating to A, B, and x can be seen
in Fig. 2. We define the lack of typicality of an interaction x with respect to
both players to be

δ(x|A, B) = log |A ∩B| − C(x|A, B) (4)
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Fig. 2. The complexities and information of A, B, and their interaction x. The rela-
tionships hold up to logarithmic precision.

for x ∈ A∩B and∞ otherwise. If δ(x|A, B) is small, then x represents a typical
interaction. The information passed from player B to player A through a single
interaction is represented by

I(x : B|A) + δ(x|A) = log |A|/|A ∩B|+ δ(x|A, B). (5)

The information passed between players through a single interaction with the
same capacity is

I(x :B|A) + δ(x|A) = I(x :A|B) + δ(x|B) + O(1). (6)

Example 7. Anatoly A plays a game x with Boris B who has the same capacity
with |A| = |B|. Anatoly tricks Boris with a King’s gambit and the game x
follows a series of moves extremely familiar to Anatoly. Boris reacts with the
most obvious move at every turn. In this case the game is simple to Anatoly,
with δ(x|A) being large and I(x : B|A) being small. The game is new to Boris
with δ(x|B) being small and I(x :A|B) being large. Thus Boris learns more than
Anatoly from x.

If the players have a deterministic interaction, then A ∩B = {y} and the infor-
mation A received from B reduces to I(y :B|A) + δ(y|A) = log |A|.

5 Player Approximation and Interaction Complexity

We show that, given an interaction x between players A and B, A can “con-
struct” an approximate player B′ that has interaction x using a small number of
extra bits ε, where C(B′|A, x) = ε. We also show that the conditional complexity
C(B′|A) of the approximate player B′ is not greater than the amount of infor-
mation I(x :B|A) that A obtains about B (up to logarithmic precision). We use
the simplified notation log A = log |A|. We also use the player space notation,
B, to denote a set of sets of strings.

Theorem 2. Given are a player space B and players A and B ∈ B over strings
of size n with x ∈ A ∩ B and C(B) = O(log n). Then there is a player B′ ∈ B
with x ∈ B′, C(B′|A, x) = O(s), and C(B′|A) ≤ I(x : B|A) + O(s), with s =
log C(B|A) + log n.
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Proof. Let r = C(B|A). We define G as the set of strings of size n, with
log log |G| = log n. We set F = B, and so CE(F) = O(log n). Let N be the
number of sets S ∈ B, with C(S|A) ≤ r and x ∈ S. We first show that
C(B|A, x) ≤ log N + O(log nr). There is a program, that when given x, A,
B, and r, with C(B, r) = O(log nr), can enumerate all sets in B containing x
with conditional complexity to A being less than or equal to r. Thus B can be
created using such a program and an index of size �log N�. By the application of
Theorem 1, conditional on A, with k = !log N", there is a set B′ ∈ F with x ∈ B′

and C(B′|A) ≤ r − k + O(log nr) ≤ C(B|A) − C(B|A, x) + O(log nr) = I(x :
B|A)+O(log nr). To prove C(B′|A, x) = O(s), assume B′ is the set satisfying the
above properties that minimizes C(B′|A) up to precision O(s). It must be that
C(B′|A, x) = O(s). Otherwise C(B′|A, x) = ω(s) and there is a set B′′ satisfying
properties above and C(B′′|A) ≤ C(B′|A)−C(B′|A, x)+O(s) = C(B′|A)−ω(s),
causing a contradiction.

Example 8 (Opponent Reconstruction). Anatoly, A, plays a chess game x with
Boris, B, with x ∈ A∩B. The players use a random string b of size C(x|A, B) to
help decide their moves. Without using b, Anatoly can “construct” Bob, B′, an
impersonator of Boris, using information from the game x and O(log C(B|A) +
log l(x)) bits. Bob can play the same game x with Anatoly.

Given are players A and B who interact, in that A∩B �= ∅. We show that there
exists an interacting player B′ that has complexity bounded by the mutual infor-
mation of A and B. If theorem 1 can be strengthened such that the enumerative
complexity term CE(F) is replaced by CEE(F), the complexity of enumerating
both the sets and the elements of the sets of F , then the precision of theorems 3
and 4 can be strengthened with the replacement of the Levin complexity term
Ct(A) with Kolmogorov complexity C(A).

Theorem 3. Given are a player space B and players A and B ∈ B with A∩B �=
∅. Then there exists a player B′ ∈ B with A ∩ B′ �= ∅, and C(B′) ≤ I(A :
B) + O(s), with s = log C(B) + log Ct(A) + C(B).

Proof. Let r = C(B), h = Ct(A), and q = 2C(B). We define G = {〈S〉 : Ct(S) ≤
r}, with 〈S〉 being an encoding of set S. This implies log log |G| = O(log h). We
define F with a recursive function λ : B → F , with λ(S) = {〈T 〉 | Ct(T ) ≤
h, S ∩ T �= ∅}. It must be C(λ) = O(log h). The enumeration complexity of F
requires the encoding of B and λ, and so CE(F) = O(log hq). Thus if 〈T 〉 ∈ λ(S),
then T∩S �= ∅. Let N be the number of sets S ∈ B, with C(S) ≤ r and S∩A �= ∅.
Thus C(B|A) ≤ log N + O(log hqr), as there is a program, when given A, r, B,
and an index of size �log N�, that can return any such S. By the application of
Theorem 1, with x = 〈A〉 and k = !log N", there is a set F ∈ F with x ∈ F and
C(F ) ≤ r−k+O(log hqr) ≤ C(B)−C(B|A)+O(log hqr) = I(A :B)+O(log hqr).
A set B′ ∈ B, with λ(B′) = F , can be easily recovered from F by enumerating
all sets in B, applying λ to each one, and selecting the first one which produces
F . So C(B′) ≤ C(F ) + O(log q) ≤ I(A : B) + O(log hqr). Since 〈A〉 ∈ λ(B′), it
must be that A ∩B′ �= ∅.
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We show that if a player A interacts with numerous players of a given complexity
and uncertainty, then there exists a simple player B′ who interacts with A with
the same uncertainty.

Theorem 4. Given are player space B, player A and 2k players B ∈ B where
for each B, 0 < |A ∩B| ≤ c and C(B) ≤ r. There is a player B′ ∈ B such that
0 < |A ∩B′| ≤ c and C(B′) ≤ r − k + O(s), with s = log Ct(A) + log c + log k +
log r + C(B).

Proof. Let h = Ct(A) and q = 2C(B). We can define G ⊆ {0, 1}∗ as a set of
strings, each encoding a set (player) S whose Levin complexity is less than or
equal to h. This implies log log |G| = O(log h). We represent the encoding of
S with 〈S〉. We define F with a recursive function λ : B → F , with λ(S) =
{〈T 〉 | Ct(T ) ≤ h, 0 < |S ∩ T | ≤ c}. Thus it must be C(λ) = O(log ch). The
enumeration complexity of F requires the encoding of c, h, and B, with CE(F) =
O(log chq). Thus if 〈T 〉 ∈ λ(S), then player T and player S have a non empty
intersection of size at most c. From the assumptions of this theorem, 〈A〉 is
covered by at least 2k sets λ(B) ∈ F of complexity C(λ(B)) ≤ r + O(log chq).
By the application of Theorem 1, with x = 〈A〉, there is a set F ∈ F with
x ∈ F , C(F ) ≤ r − k + O(log(chkqr)). A set B′ ∈ B, with λ(B′) = F can
be recovered from F by enumerating all sets in B, applying λ to each one, and
selecting the first one which produces F . Therefore C(B′|F ) ≤ O(log chq) and
so C(B′) ≤ C(F ) + O(log chq) ≤ r − k + O(log(chkqr)). Since 〈A〉 ∈ λ(B′), it
must be that 0 < |A ∩B′| ≤ c, thus the theorem is proven.

Example 9. An example application of theorem 4 is a game of the same form as
example 2. Magnus, represented by set B, plays 2k games of against 2k young play-
ers A ∈ A. Furthermore the players and Magnus are deterministic with for each
A ∈ A, |A∩B| = 1. The difficulty threshold τ , is set to 1, so every one of the young
players beat Magnus. By theorem 4, if all players A ∈ A have complexity at most
C(A) ≤ r, then there is a simpler player A′ ∈ A that will win against Magnus,
with C(A′) ≤ r − k + ε (with ε being of logarithmic order) and |A′ ∩B| = 1.

6 Future Work: Universal Interaction

Since the agents and environments of the cybernetic agent model of Section 2.2
can be translated into set representations, there is potential application of the
proof techniques used in Section 5 to Artificial Universal Intelligence [Hut04], and
in particular to describe properties of the AIXI model. The universal environ-
ment, ξ, is defined using a form of the universal prior, m(x) =

∑
p:ψ(p)=x 2−l(p),

representing a semimeasure (degenerate probability) over all infinite strings, with
ξ(yx1:k) =

∑
ρ 2−K(ρ)ρ(yx1:n). The universal environment ξ is the weighted sum-

mation over all chronological environments ρ. The term K(ρ) represents the
prefix free Kolmogorov complexity of ρ. The AIXI model pξ

m is the optimal
agent for the environment ξ with horizon m, in that pξ

m = arg maxp V p,ξ
1:m. The

sequence of self optimizing AIXI agents for each time horizon is {pξ
i}i=1,2,.... Let
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M be a set of environments where a sequence of self-optimizing policies p̃m ex-
ists. The sequence converges to receive the optimal average for all environments
with ∀ν ∈M : 1

mV pm,ν
1:m

m→∞−→ 1
mV ∗,ν

1:m. By theorem 5.29 from [Hut04], it must be

that the sequence of AIXI agents is optimal for M with 1
mV

pξ
m,ν

1:m
m→∞−→ 1

mV ∗,ν
1:m.

We use the conversion of agents p and environments μ to sets Ap
m and Dμ

m,τ as
introduced at the end Section 2.2. The sequence of self optimizing AIXI agents,
{pξ

i}i=1,2,..., is universal with regard to interaction with respect toM. It is easy
to see that for all τ and all environments ν ∈ M, there is a number mντ where
for all m > mν,τ , A

pξ
m

m ∩ Dμ
m,τ �= ∅. This implies a set representation of agent

dynamics can be used to describe further properties of the AIXI model. There
is potential for a deep connection, roughly analogously to how prefix-free Kol-
mogorov complexity and the universal prior are related with the Coding Theorem
K(x) = − logm(x) + O(1) [LV08].

7 Conclusions

We used Algorithmic Information Theory to quantify the information exchanged
between agents that interact in non-cooperative games (Sec. 4). We have shown
that an agent A can construct an approximation of his opponent B using infor-
mation from a single interaction (game) with B (Th. 2). We have shown that if
an agent B with superfluous information interacts with an environment A and
achieves a certain reward, then there exists another agent B′ without this informa-
tion that can achieve the same reward (Th. 3). We have also shown that if multiple
agents interact with an environment to achieve a certain reward, then there exists
a simple agent who can achieve the same reward (Th. 4). Our constructions are
compatible with Universal Artificial Intelligence, in that the AIXI model can be
interpreted as universal with regard to interactions with environments (Section 6).
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Abstract. One insightful view of the notion of intelligence is the ability
to perform well in a diverse set of tasks, problems or environments. One of
the key issues is therefore the choice of this set, which can be formalised
as a ‘distribution’. Formalising and properly defining this distribution is
an important challenge to understand what intelligence is and to achieve
artificial general intelligence (AGI). In this paper, we agree with previous
criticisms that a universal distribution using a reference universal Turing
machine (UTM) over tasks, environments, etc., is perhaps a much too gen-
eral distribution, since, e.g., the probability of other agents appearing on
the scene or having some social interaction is almost 0 for many reference
UTMs. Instead, we propose the notion of Darwin-Wallace distribution for
environments, which is inspired by biological evolution, artificial life and
evolutionary computation. However, although enlightening about where
and how intelligence should excel, this distribution has so many options
and is uncomputable in so many ways that we certainly need a more prac-
tical alternative. We propose the use of intelligence tests over multi-agent
systems, in such a way that agents with a certified level of intelligence at
a certain degree are used to construct the tests for the next degree. This
constructive methodology can then be used as a more realistic intelligence
test and also as a testbed for developing and evaluating AGI systems.

Keywords: Intelligence, Evolutionary Computation, Artificial Life, So-
cial Intelligence, Intelligence Test, Universal Distribution.

1 Introduction

Understanding what intelligence is (and is not) plays a crucial role in developing
truly general intelligent machines. Apart from the many informal definitions from
psychology, philosophy, biology, artificial intelligence and other disciplines (see
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an account in [16]), there have been some definitions which include the notion of
compression, Kolmogorov Complexity or related concepts such as Solomonoff’s
universal distribution (see, e.g. [4,11,7,17]). Some of these proposals have claimed
that they are necessary and sufficient, while others have only claimed that the
ability which is defined is necessary for intelligence but not sufficient (so sug-
gesting further factors, see e.g. [8]).

Apart from the view of ‘intelligence as compression’ (or compression – one-
part or (MML) two-part – being a necessary part of intelligence), the previous
approaches are based on a distribution of tasks, exercises or environments. Then,
intelligence is defined as good performance in this distribution of exercises. This
clearly connects the notion of an ‘intelligence definition’ with the notion of an ‘in-
telligence test’, notions which are tightly intertwined. The kind of tasks (static vs.
dynamic, predictive vs. explanatory, etc.) distinguishes the previous approaches.
The common feature is the distribution which is used for the selection of tasks.
While psychometrics does not choose tasks using a formal and independent dis-
tribution, these works take the tasks from a universal distribution [22], which
gives higher probability to tasks whose shortest description is smaller.

Nonetheless, the use of a universal distribution gives a very high weight (i.e.,
probability) to very simple tasks. The problem is that it is not true that in-
telligent systems have a monotone behaviour on the complexity of a task. In
many simple tasks, a very simple program can perform better than the smartest
human. Thus, aggregating results using this distribution would assign higher
intelligence to simple programs. One possible solution is to set a minimum com-
plexity value [13], but this is clearly an arbitrary choice. An alternative option
would be to define intelligence as the maximum complexity level where a system
can score ‘significantly better’ than random. This can be shaped as an adaptive
(or anytime) intelligence test [10], where the complexity of tasks (and speed) is
adapted to the intelligence of the agent which is being evaluated.

However, even though we think that these ideas are in the right direction,
there is a problem about the class of tasks we might generate from the universal
distribution. Using environments like those typical in reinforcement learning,
which is the approach taken in [17] and followed in [10], we see very clearly
that even very complex environments will be very different to the environments
a human (or an animal or a robot) faces during their life. We can, of course,
enrich the environments to be more physically realistic, with simple physics, in
order to allow the complex perception and mechanisms we are used to in this
universe. However, apart from being anthropocentric, this 3D physical world
would not ensure that other agents may appear, as it happens in, e.g., Mars.

If we generate environments randomly using a universal distribution over a
Turing-complete reference machine (Universal Turing Machine, UTM), it is clear
that some environments might contain some other agents. In fact, some environ-
ments might contain life, and some others might even contain intelligent life1.

1 An early exploration of the idea of computable universes where life can emerge is
given in [20] and a discussion of how big a universe we need before intelligence might
appear can be found in [1, sec. 0.2.7, p545, col. 1].
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However, the probability of any of these environments is almost 0 for many ref-
erence UTM. So, we are quite far from what intelligence is supposed to be, an
ability to interact with a physical world, full of plants and animals.

In fact, this is one of the drifts taken by artificial intelligence in the last
decades. The appearance of multi-agent systems is a sign that the future of ma-
chine intelligence will not be found in monolithic systems solving tasks without
other agents to compete or collaborate with. This is also better understood in
comparative psychology and biology as well. For instance, [12] shows that cogni-
tive abilities for dealing with the physical world (concerning things such as space,
quantities, and causality) are similar for chimpanzees and human children, while
it is in cognitive skills for dealing with the social world where the balance is
in favour of humans. Furthermore, it is now better understood (see, e.g., [24])
that co-operation and communication are special traits of human cognition. In
fact, “evolutionarily, the key difference is that humans have evolved not only
social-cognitive skills geared toward competition, but also social-cognitive skills
and motivations geared toward complex forms of co-operation.” [24]

So using a universal distribution to define or evaluate intelligence might be
like evaluating or defining intelligent agents for Mars. A similar criticism has
been raised by artificial (general) intelligence, stating that intelligence must be
more embodied/natural/social [5]. In fact, there have been some proposals of
simplified worlds, such as Goertzel’s AGI preschool [6], to test and develop AGI
systems, whose complexity (in terms of shortest description) is very high (and
hence, with very low probability for a universal distribution).

However, a non-principled way of selecting environments mimicking the envi-
ronments that adult humans or small children interact with dramatically devi-
ates from the goal of deriving a formal, mathematical and non-anthropomorphic
definition of intelligence, and would be useless far beyond human intelligence.

In this paper, we take a different approach. Inspired by evolutionary com-
putation, artificial life, multi-agent systems and social cognition, we develop a
more realistic distribution of environments. The basic idea is straightforward:
intelligence is the result of evolution through millions of generations interacting
with other live beings. Thus we define intelligence in this context, interacting
with other agents of similar intelligence.

We formalise the so-called Darwin-Wallace distribution for agents and envi-
ronments. Despite the many options and the many sources of uncomputability,
we claim that, conceptually, the notion of Darwin-Wallace distribution is useful
to re-visit previous definitions of intelligence [4,11,7,17,8,10].

The next step is how this notion can be used for AGI development and evalua-
tion. We present a procedure which approximates a Darwin-Wallace distribution
by using intelligence tests over environments such that ‘certified’ systems are in-
corporated into the environments, so making them socially more complex. This
iterated process (in [19, sec. 5.1] a recursion is applied for the Turing Test) may
lead to more realistic testbeds for AGI or for reinforcement learning.

The paper is organised as follows. The next section deals with the frequency
of individuals in terms of evolution. This paves the way for the definition of the
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Darwin-Wallace distribution in section 3. Section 4 introduces a constructive
approximation of the distribution in the form of incremental intelligence tests
from non-social environments to more social ones. Finally, section 5 discusses
the contributions, implications and open questions which derive from this work.

2 Artificial Life, Biology and Intelligence

Many ideas from Artificial Life (Alife) [15] (and evolutionary computation) are
useful for understanding which environments may hold intelligence. The starting
point of every Alife project is a virtual (or artificial) environment where we place
some individuals (a population) inside. One problem in Alife systems (and
evolutionary computation) is that evolution stagnates at some point.

Of course, in Alife (and biology) we find the notion of ‘evolutionarily successful
individual’. However, many species on Earth outnumber the Homo Sapiens (by
several orders of magnitude), while their individual adaptability is poor (their
adaptability as a species may be high, like cockroaches or some kinds of bacteria).
The good thing about Alife is that we can force all the individuals to have the
same body, while only letting their behaviour evolve.. So even though the notion
of frequency in the real world is not related to the adaptability of a species , it
can be related to the adaptability of a species or individual in a virtual world
where the bodies and rules are the same for all the individuals.

Before this, we have to consider co-evolution and mind-reading. Co-evolution
is the evolution of one species in a direction which is triggered or shaped by
other species, as plants with insects, and mammals with intestinal bacteria. The
genotype and phenotype (both its body and its behaviour) of many species can
only be explained as the result of co-evolution. Intelligence, as a phenotypical
trait, is not an exception. Intelligence can only be explained as the result of
the co-evolution with other species and the co-evolution with individuals of the
same species. In particular, when we focus on behaviour innovations (and not on
physical changes), we find the concepts of mind-reading and manipulation [14],
which can be applied for competition but also for co-operation, which are essen-
tial for predators and preys. Although ‘mind-reading’ has been used (especially
in the past) to refer to both the adaptation of the species and the adaptation
(i.e. intelligence) of the individual, in what follows we refer to the second. So,
by ‘mind-reading’ and ‘manipulation’ we mean the use of information processing
and the use of mental representation of other individuals, and not a genetically
pre-programmed manipulation or simple pre-defined predator-prey patterns, as,
e.g., an anteater can have. And human intelligence is the clearest example of
such a social context. But again, evolutionarily, the key difference of humans in
front of other animals (great apes included) is their ability at knowledge acqui-
sition and transmission in order to perform better in very rich social contexts,
“in terms of intention-reading, social learning, and communication” [24].

So, a more realistic definition of intelligence must give more weight to envi-
ronments which contain other agents with social abilities.



86 J. Hernández-Orallo et al.

3 Darwin-Wallace Distribution

Systems in Alife do not generally create environments where life emerges from
scratch. On the contrary, they include a start-up population, from which things
evolve. Environments are created in such a way that agents can do some actions
and have a (generally partial) observation of the world. This setting is very
similar to the way environments are created in reinforcement learning (RL), but
the notion of reward is generally understood as a fitness function, which may
affect the way agents die, reproduce or mutate.

So, following [10] (which in turns follows [17]), we define actions as a finite set
of symbols A (e.g., {left, right, up, down}); rewards are taken from any subset
R of rational numbers between −1 and 1; and observations are also limited by
a finite set O of possibilities. We consider these sets to be the same for all the
agents. This means that, physically, all the agents are equal.

An agent is an interactive (Turing) machine which receives a pair 〈r, o〉 of re-
ward and observation, known as a perception, and outputs an action a. Note that
an agent is not a (Markov) function, so the action may depend on old rewards
and observations. Additionally, an agent might also be stochastic. An agent can
be properly formalised as a probability measure. For instance, given an agent,
denoted by πj , the term πj(aj
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A base multi-agent environment is also an interactive (Turing) machine which
takes as input the action of every agent and outputs rewards and observations
for each and all of them. Again, it can be stochastic and it can be represented by
a probability measure. For instance, for an environment accepting m agents, the
term μ(r1
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vironment outputting the specified rewards and observations for all the agents
given previous rewards, observations and actions. Environments should treat
all agents equally, so changing the agent indices should not change the re-
sult. Other properties, such as sensitivity, minimum working (living) space, etc.,
could also be imposed, in order to define an appropriate multi-agent environ-
ment class2. Given this class, we can define a universal distribution by properly
(prefix-free) coding its environments over a reference UTM Ue, using the for-
mula pE(μ) := 2−KUe (μ), where K() refers to Kolmogorov complexity. This is
the probability of the base multi-agent environment not considering the agents.
Another option here would be to define pE using Schmidhuber’s Speed Prior [21]
or any other computable variant of K, such as Levin’s Kt [18].

Using just one agent (m = 1), where the agent is the evaluated agent, we
would have an environment distribution similar to the one introduced in [17].
But we are interested in social environments where other agents appear. So we

2 The notions of sensitivity and balancedness, introduced in [10], could be valid here
as well if properly extended to multi-agent environments, in such a way that what
an agent does may affect the others. For instance, the environment class introduced
in [9] might be used, where rewards could be shared by the agents.
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need to introduce more agents. In order to do this, we define an agent class and
derive a universal distribution over its agents, (prefix-free) coding them over a
reference UTM Ua, using the formula pA(π) := 2−KUa (π).

When we join a base environment μ with a set of m agents, we get an m-agent
environment (a ‘social’ environment with population of size m). From here we
define the distribution of start-up m-agent environments (denoted by σ) as:

pS(σ) = pS(〈μ, π1, π2, ..., πm〉) := pE(μ) ×
m∏

j=1

pA(πj)

Note that this definition considers base environments and agents to be inde-
pendent. Of course, agents and environments are not independent in the real
world, and they are not independent in evolutionary processes. The advantage
of making them independent is that we can combine and analyse the distribu-
tions separately, and this may ease the construction of approximation without a
fully (and intractable) evolutionary process.

And now systemic properties emerge when we let the social environment run
(or “evolve”). We define the average reward for each agent j at step i, denoted
by Rj

i as the mean of the rewards that the agent has received from step 0 to
step i. We use this value Rj

i as a fitness function in a simplified ‘evolution’. We
define the probability of dying d as a function of Rj

i . Since rewards range from
−1 to +1 one possible choice is d(Ri) = δ(1 − Rj

i )/2 + ε, with 0 < δ < 1 and
0 ≤ ε < (1 − δ) being small positive real numbers.

Finally, instead of considering gradual environment changes (as usual in evo-
lution), we define a probability of the environment being completely replaced by
a new one, while keeping the agents. The goal is to favour individual adaptability
instead of pre-programmed specialisation to the environment. In particular, we
define this probability as a constant (for simplicity). This small constant factor
0 ≤ c ≤ 1 means that for each step the environment might (with probability c)
be replaced by another environment, which would be chosen using pE. Of course,
if c = 0 we stick to the original environment forever. The rationale for all this
is that we do not want the agents to be optimised for the environments, but to
be optimised to behave in the context of other agents. In general, environments
will be very simple, so it is the multi-agent scenario which must determine the
distributions. Of course, whether we achieve this goal in this way.

After each step, we apply d to all agents to determine whether they die or
survive, replacing the dead agents by new agents using pA. We do similarly for
the environment, using c. Then, for each m-agent environment σ, function d and
step i, this defines a probability of agent πj after step i, denoted by q(d,c,i).

From here, we denote the Darwin-Wallace3 distribution of degree i as:

pd,c,i(σ) = pi(〈μ, π1, π2, ..., πm〉) := pE(μ) ×
m∏

j=1

q(d,c,i)(πj)

Logically, p0(σ) = pS(σ), since q(d,c,i)(πj) = pA(πj).

3 From Charles Darwin (1809-1882) and Alfred Russel Wallace (1823-1913).
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Given the previous definition, what does it represent? It just assigns probabil-
ities to multi-agent environments. For instance, an environment with sophisti-
cated and evolutionary-adapted agents is much less likely for pd,c,i for low values
of i than for large values of i, as the probability of a mammal on the Earth in
the Precambrian is much lower than today. Note that this significantly differs
from an evolutionary system (either artificial or natural) in many ways, since
there is no concept of generation, there is no reproduction, no phenotype, no
inheritance, no mutations and no cross-over. In addition, the environment may
change drastically in just one step, so favouring general adaptive agents ahead
of agents which specialise (to or) in a particular environment.

The purpose of all this is to isolate social adaptability instead of the adaptabil-
ity to a single environment. The use of any mechanism from natural or artificial
evolution that is not strictly necessary is then ruled out in this proposal.

The previous definition synthesises the notion that complex agents with com-
plex behaviours might have a higher probability the higher the value of i is.
Many of these complex behaviours are only useful when the environment is full
of other complex agents, which we can only explain with a kind of evolution-
ary process. This is the reason why we use the name Darwin-Wallace for this
distribution.

Consequently, previous definitions of intelligence [4,11,7,17,8,10] can be re-
understood by using variants of the previous distribution instead of variants
of the universal distribution4 for regular UTMs. Of course, this gives infinitely
many definitions, since (apart from the reference UTM) we can parametrise i
and m. The higher i and m are, the more ‘social’ the intelligence definition is.
Nonetheless, despite the insightful and philosophical lure of the concept, it is
difficult to apply in practice, because its uncomputability or intractability (if we
use computable versions based on Levin’s Kt or Schmidhuber’s Speed Prior [21])
and many different options that could be taken (e.g., the probabilities d and c).

4 Approximating the Distribution through Testing

The introduction of the previous distribution does not mean that we suggest
‘constructing’ intelligence (or deriving social environments) as the result of an
inefficient, artificial evolutionary process. The alternative is an artificial selection
rather than a natural selection. Starting with a multi-agent environment, we can
introduce a first generation of agents, whose intelligence we still do not know.
After a sufficient number of steps, we would get an average reward for each of
them. From this individual assessment, we would (probabilistically) keep the
agents with the best results, while removing the agents with the worst results,
and introducing some new agents. With a large number of agents, a variety of
4 There can be a machine U such that the universal distribution using this machine

may match (at least approximately) a Darwin-Wallace distribution of degree i and
population size m. In theory this is possible (ignoring time in KU and excluding some
environments without agents), but finding such a machine U is similar to giving the
definition of the Darwin-Wallace distribution above, which is our goal.
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environments and several interactions with this assisted process, we would have
a testbed where only socially intelligent agents would score well.

It can be argued that this process is not very different to recreating natu-
ral environments and embedding humans inside. In fact, the Turing Test is an
example of this. However, in our proposal, environments are not anthropomor-
phic, they do not rely on natural language, and they accept any kind of agent
Furthermore, this process can scale up far beyond human intelligence, since it is
intelligence inside a social system that we measure (and use) to feed the system.

There are, of course, many issues about this process. For instance, it is possible
that a highly intelligent system πa could score worse than another less intelligent
system πb for a low degree of the test, say i1. This is possible, but considering
that this is a probabilistic process and that πa might be re-introduced again for
a higher degree i2 > i1 (we have checked its intelligence for i1, but not for i2),
then we could eventually have πa in its right place.

But of course, there might be some environments where rewards are a lim-
ited resource. In these environments, competition would be expected. On the
contrary, co-operation could be encouraged if rewards could be shared (without
limits) by a group of individuals. For instance, in the environment class intro-
duced in [9], we can define rewards in such a way that they are eaten by the
agents (to favour competitiveness) but we can also define rewards which remain.

5 Discussion

There is an increasing consensus in biology, comparative psychology and even
artificial intelligence that intelligent systems must be social. Multi-agent systems
appeared as a realisation of this fact, and multi-agent reinforcement learning is
also in this direction. Several works in the AGI community have also advocated
for a social approach to intelligence. However, we did not have a formal definition
of intelligence with social abilities playing an important role.

Here we have proposed a novel environment distribution and a constructive
method to build social environments incrementally. In fact, the previous Darwin-
Wallace distribution can replace the universal distribution used in other formal
definitions and tests of intelligence presented to date. Of course, the appropri-
ateness and applicability of this would require theoretical or empirical results.

Although the distribution is related to (because it is inspired by) evolutionary
computation, artificial life and natural biology, it is a novel approach to under-
standing the set of environments and tasks we want general intelligent systems
to cope with. There are three features in the definition which distinguish it from
a ‘distribution of life forms’: i) Physical things do not matter, placing the focus
on behaviour, since the ‘body’ is the same for all. In other words, it is a ‘dis-
tribution of mind forms’. ii) There is no genotype, cross-over, mutation, etc., so
selection does not work for genes or species, but for individuals. In fact, in bi-
ological evolution, genes compete and collaborate, and we do not consider here
the ‘distribution of genes’, either. iii) Environments are replaced, so avoiding
specialisation (to or) in an environment. Instead, adaptability to a wide range
of environments (i.e., intelligence) is the only fitness function for selection.
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One of the problems of this approach is that now we are far away from the
notion of ‘intelligence as compression’. Nonetheless, the notions of mind-reading
and manipulation imply that agents need to be able to capture the models of
other agents, i.e. to compress their behaviours. Consequently, intelligence is re-
lated to the concept of adversarial (reinforcement) learning [23] and, eventually,
to the elusive-model paradox5. These two concepts are of course related to mea-
suring intelligence using games as environments, as suggested in [10]. And the
role of two-part compression can be vindicated again in social environments in
terms of communication, since having one model, the first-part of a MML mes-
sage (namely, the model/theory/hypothesis/concept), which is concise and can
be (relatively quickly and concisely) transmitted between agents (in contrast to
a weighted ensemble of models) must be crucial for communication.

Summing up, we think that the main contributions of this paper span over
the definition, evaluation and development of intelligence. We are conscious that
there are many open questions and many implications, especially on the re-
understanding of previous works on defining and evaluating intelligence, and on
the direct applicability of these ideas to develop more intelligent machines.
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Abstract. Extraordinary structural organization known as emergence
is observed in partially ordered sets when a recently discovered func-
tional is minimized. Emergence creates the first structures, and feedback
reuses them to create hierarchies of structures. The partially ordered set
is the knowledge representation, the functional connects local behavior
to global phenomena, emergence and feedback correspond to inference,
and the structures and hierarchies to objects and inheritance hierarchies.
If intelligence includes the ability to solve problems, then the struc-
tures represent intelligence and emergence represents the build up of
intelligence. Since the structures are mathematically obtained from first
principles, the finding is proposed as an explanation for the origin of intel-
ligence, and the functional as the key for AGI. Three previous computer
experiments, and another one reported here, duplicate higher functions
of the human brain and confirm the findings.

Keywords: AI, AGI, emergence, complex systems, brain, refactoring,
object-oriented, parallel programming.

1 Introduction

The phenomenon of emergence is frequently observed in many types of complex
dynamical systems when structures unexpectedly form in the course of evolu-
tion of the system. Despite many years of intense research, the phenomenon of
emergence remains unexplained, and a causal relationship between the proper-
ties or interactions of the components of the system and the resulting structures
has not been found. There is no comprehensive theory of emergence or suitably
fundamental model within which to situate emergence [1]. A phenomenological
characterization of emergence including precise terminology is available [2].

The original motivation for the present work was the author’s interest in
refactoring [3]. Refactoring is practiced by every software developer virtually all
of the time. The term was introduced for object-oriented (OO) code, but it was
soon extended to non-OO code [4] and non-software systems such as the law [5],
databases [6], and even bacteria [7]. Refactoring is a universal phenomenon, and
we all practice it all the time, for tasks ranging from preparing our daily schedule
to writing a scientific paper or a theory of Science. Refactoring, however, has
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always been considered as something that only humans can do. Tools have been
developed for software, of course, but they must operate under the guidance of a
human and can be modified or expanded only through human intervention. The
scope of refactoring is vast, and it has so far resisted full automation.

Work started with the publication in 2007 of the imperative form of the Matrix
Model of Computation (iMMC) [8], a universal virtual machine that interfaces
easily with software and supports refactoring transformations. The iMMC con-
sists of a matrix of sequences and a matrix of services, both sparse [9]. Soon it
was noticed that certain canonical submatrices of the matrix of services had ex-
traordinary self-organizing properties [10], and the canonical form of the MMC
(cMMC) and the Scope Constriction Algorithm (SCA) were introduced. SCA
uses a functional, defined over the set of symmetric permutations of the canon-
ical matrix. The functional assigns a cost to each permutation, not necessarily
unique, and SCA finds the subset of permutations with the minimum cost. Re-
markably, the matrices in the subset are organized and contain structures that
did not exist in the original unpermuted matrix, even though nothing had been
done to achieve such result. This is a purely mathematical result. Applications
to refactoring [11] and image recognition [12] were published.

A detailed analysis of the inner workings of SCA was then undertaken, and
resulted in publication [13], where general transformations from software to the
cMMC were proposed, the basics of MMC supervised learning were covered, and
an extensive case study on refactoring was included, where a Java program was
converted to C (manually) and randomly rearranged to remove all OO features
and organization, and automatically refactored by SCA, resulting in objects
similar to the original ones. It became clear that a very strong connection existed
between the canonical model and AGI.

At that point, it was noticed that a one-one correspondence existed between
canonical matrices and partially ordered sets, and that the properties being stud-
ied were indeed properties of partially ordered sets, one of the most prevalent
and fundamental structures in Mathematics. That explained the vast scope pre-
viously observed, and led to publication [14], where the fundamental mathemat-
ical principles underlying the observed properties were anticipated, experiments
were discussed, and the hypothesis was advanced that those same principles
could be used to explain emergence and intelligence.

The present work expands on the theory and claims that: (1) a system sus-
ceptible of mathematical analysis can be represented as a partially ordered set,
where the nature of the elements is irrelevant; (2) a partially ordered set has
a natural structure, which depends on and is determined by the set and order
alone; (3) the natural structure can be found by the minimization of a universal
functional, proposed in this paper; and (4) the structure is, in turn, a partially
ordered set with structure of its own, giving rise to feedback and resulting in
a hierarchy of structures. Experimental evidence is discussed, and the parallel
computer simulation in Section 3 provides a stunning demonstration of the pro-
gressive build up of intelligence by inference and feedback, which can actually
be seen in each iteration.
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2 Theory

A partial order is a set of precedence relations. Any mathematical expression
implies a set and a partial order. For example a = f(b, c) implies set {a, b, c}
and establishes b and c as predecessors of a, meaning they must be given before
a can be calculated. The notation is b < a, c < a, where “<” is read “precedes.”

Procedures for describing a system as a partially ordered set are now exam-
ined. Consider first any system amenable to mathematical analysis. The first
step in the analysis is to create a mathematical model, introduce variables to
describe the model, and write equations describing constraints, interactions and
laws of evolution. But the variables and equations define not only the model but
also a partially ordered set. In fact, the variables form the set, and the equations
establish a partial order among them. The order only states the well known fact
that some variables are dependent and others independent.

The task of describing a system as a partially ordered set is simplified when a
computer simulation is available. The simulation code provides a display of the
equations and required calculations in full detail, with all the information about
variables and precedence. It should be possible to develop a parser to automate
the conversion. The author has developed one for single-assignment C.

Sometimes, a mathematical description is not even necessary. For example,
the brain can be considered as a set of neurons with a partial order defined
by their synaptic connections: neurons A, B and C precede neuron D if the
simultaneous firing of A, B and C causes D to fire. The idea is expanded at the
end of this Section.

The theory is presented next with the help of a simple example. Let S be a
finite set and ω a partial order on S, for example:

S = {a, b, c, d, e, f} (1)
ω = {a < c, b < c, c < f, d < e, e < f}

The pair (S, ω) fully specifies the problem at hand. The nature of the elements
of S is irrelevant. The standard notation for the problem defined by Eq. (1) is
6(ac, bc, cf, de, ef), where the number on the left is the size of the set, |S| = 6.

A set with n elements has n! permutations. Some are compatible with the
partial order, some are not. The compatible permutations are said to be legal.
Let Π be the set of all legal permutations, and let π ∈ Π be one of them.
If the elements of the set are numbered in the order in which they appear in
permutation π, then the distance between two elements in π is the difference
between their numbers, and the cost Lω(π) of permutation π relative to partial
order ω is twice the sum of the distances between the elements of each relation:

Lω(π) = 2
∑
ω

d(ε, ε′), (2)

where ε, ε′ are elements in S and ε < ε′ is a relation in ω. To simplify notation,
the subscript ω will be omitted. The reason for the factor 2 is explained in
[13], and it has a profound physical meaning. Cost L(π) is a functional, a map
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from the set of permutations to numbers. For the example of Eq. (1), there are
6! = 720 permutations, only 20 of which are legal, π = (b, d, a, e, c, f) is one of
them, the distance from b to c in π is 4, and the cost of π is 22. A search in set
Π indicates the existence of many minima, some of them local, others global,
even if S is small. At each minimum, there exists a set of permutations, say Πm

at minimum m, which has the following remarkable property:

Proposition 1. Set Πm is either a permutation group of set S or a
generator for a permutation group of S. In either case, it induces a block
system in set S.

The block system is the structure being sought. A block system is a partition of
set S into disjoint subsets called blocks. The elements in each block are equiv-
alent, because they stay together inside the block (but in any order) for all
permutations of Πm. The blocks are invariant under the action of Πm, because
they are the same for all permutations in Πm. In the block system, the ele-
ments of S appear organized and associated, thus creating logical meaning. The
emergence of the blocks amounts to inference, because they represent a new
conclusion obtained from the facts expressed by Eq. (1), where the organization
and associations did not exist. And all of this is natural and mathematical.

Feedback also arises naturally as a mathematical phenomenon. A block system
resulting from Proposition 1 is, in turn, a set (of subsets of S), and has a partial
order induced by the original partial order ω. Proposition 1 applies to the block
system just as effectively as it did to the original set S, and repeated application
of Proposition 1 results in a hierarchy of block systems.

Functional L is locally defined. Its value is a global property of the system,
but the definition is in terms of distances, which are local values. L can be
minimized by any local process completely unrelated to and unaware of any
global effects that the minimization can cause. Any set consisting of elements
capable of minimizing some measure of their interactions with their neighbors
will also minimize L and produce the global, unintended effect of the emergence
of structures. This is precisely where the transition from a local behavior to a
global phenomenon takes place.

In view of all of which, it is hereby proposed that the process that finds the
block systems is the core process of intelligence, that intelligence finds its origin
in that process, and that the core process can be easily implemented on any
regular computer. Intelligent systems are self-integrated and indivisible [14], but
a simple aggregate of intelligent systems (a society) is not intelligent, because
the systems can not integrate. For finite sets, all calculations in this theory are
computable and deterministic. However, they are unpredictable in practice for
all but the smallest sets. The size of set Π is of the order of n!, where n is the
size of the set. But 79! ≈ 1080, and 1080 is the total number of atoms in the
universe. Real-world sets are much larger than 79, and predictable calculations
are not possible. The present work focuses on small systems, because they must
be understood before dealing with larger systems, and they are easy to study
without running into computational difficulties.
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For the example of Eq. (1), there is only one global minimum with L = 16,
and the following 2 permutations of S are found there:

(a b c d e f) (3)
(b a c d e f)

The block system induced by the 2 permutations in set S is (a, b)(c)(d)(e)(f),
which contains only one non-trivial block. The order in which the blocks appear,
and the association between a and b in the first block, did not exist in Eq. (1).
They represent the build up of intelligence in the first iteration.

To every permutation of a partially ordered set there corresponds a canonical
matrix. The canonical matrix for the system of Eq. (1) under permutation π′ =
(d b a e c f), which is legal and has a cost of 22, is as follows:

d b a e c f
d C
b C
a C
e A C
c A A C
f A A C

(4)

The matrix is square, lower-triangular, and sparse [9]. Rows and columns corre-
spond to the elements of S, and appear in the order of permutation π′. Following
previous conventions, all diagonal elements contain C. The off-diagonal elements
correspond to the partial order ω: if ε < ε′ is a relation in ω, then element (ε′, ε)
is marked with an A in the matrix. One important property of the matrix is that
symmetric permutations that leave all A’s in the lower triangle always result in
legal permutations of set S.

In the canonical matrix, a line from a C on the diagonal, to an A in the
same column, to the C in the same row as the last A, is called a flux line. For
example, the line from the C in position (b, b), to the A in position (c, b), to the
C in position (c, c), is a flux line. The length of this flux line measured in cells
is 6, which is precisely the cost of relation b < c in permutation π′. It follows
that the total length of all flux lines is, precisely, the cost of permutation π′, and
that the effect of the minimization of the cost is to symmetrically permute the
canonical matrix in such a way that the A’s are brought as close to the diagonal
as possible.

A simple, but viable model of the brain can be developed based on this anal-
ogy. If the elements of set S are neurons, and their connections correspond to
the relations in the partial order, then the connections correspond to the flux
lines and the length of the connections corresponds to the length of the flux
lines. But the neurons are known to try to shorten their connections or even mi-
grate in order to preserve resources. When they do that, they also inadvertently
and without purpose minimize the functional of Eq. (2) and physically cluster to
form the structures described in this paper. This mechanism can explain both
memory and intelligence. The clusters of neurons are called neural cliques and
their existence has been confirmed [15].
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Fig. 1. (a) The solution to the problem of parallel programming of Section 3 and (b)
UML diagram of the 7-level hierarchy of objects representing the complete solution for
that problem. All structures shown are contained in Eq. (5).

3 Small Systems

The experiment for this paper is a simple model of a parallel computer with
an undetermined number of CPU’s, which has to execute a set of 10 tasks with
9 inter-dependencies. The problem is how to assign the tasks to the CPU’s to
improve performance. The analysis of 6 different small systems is needed to solve
the problem. The first system is Σ1, specified as follows:

Σ1 : (S1, ω1)
S1 = {a, b, c, d, e, f, g, h, i, j} (5)
ω1 = {a < c, b < e, c < j, d < f, e < g, f < h, g < i, h < i, i < j}

The 10 tasks are the elements of S and their inter-dependencies are listed as
relations in the partial order. This problem is very simple. Any human analyst
can solve it in a few minutes. The result is shown in Fig. 1(a). However, the point
of the experiment is that the computer can solve the problem without having been
told how to do so, using only the minimization of the functional. If it does, and
if the result is correct, then the claim can be made that the algorithm operates
from first principles and is intelligent.

System Σ1 has 720 legal permutations and a cost range from 28 (with 2
permutations) to 46 (with 180 permutations). It has 2 global minima with 2
permutations having a cost of 28:

(b e g d f h i a c j) (6)
(d f h b e g i a c j)

The block system they induce in set S1 is β1 = (b e)(g)(d f)(h)(i)(a)(c)(j). This
result is illustrated as a UML diagram in Fig. 1(b), where level L1 corresponds
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to set S1, and level L2 to the block system β1. The organization of the permu-
tations and the association of b with e and of d with f represent the build-up of
intelligence in the first iteration.

As discussed above, the process of structure generation is recurrent. In fact,
block system β1 is itself a set, say S2, the elements of which are the 8 subsets of
which β1 consists. Set S2 also has a partial order, say ω2, induced by the partial
order ω1 of Eq. (5). S2 and ω2 define a new system, say Σ2, as follows:

Σ2 : (S2, ω2)
S2 = {a′, b′, c′, d′, e′, f ′, g′, h′} (7)
ω2 = {a′ < b′, b′ < e′, c′ < d′, d′ < e′, e′ < h′, f ′ < g′, g′ < h′},

where a′ = (b e), b′ = (g), c′ = (d f), d′ = (h), e′ = (i), f ′ = (a), g′ = (c), and
h′ = (j). System Σ2 has 8 elements and 7 precedence relations, and corresponds
to level L2 in Fig. 1(b). It was found to have 126 legal permutations and a cost
range of 22 (with 2 permutations) to 34 (with 36 permutations). It has 2 global
minima, 4 local minima, 1 global maximum, and no local maxima. The set of 2
permutations at the global minimum is:

(a′ b′ c′ d′ e′ f ′ g′ h′) (8)
(c′ d′ a′ b′ e′ f ′ g′ h′)

and the block system induced in S2 is β2 = (a′ b′)(c′ d′)(e′)(f ′)(g′)(h′). Block
system β2 corresponds to level L3 in Fig. 1(b). But block system β2 is a set with
6 elements, say S3, and the partial order ω2 induces into it another partial order,
say ω3. The entire process can be repeated several more times, resulting in the
7-level structure depicted in the figure. As the reader can see, the diagram has a
remarkable similarity with the inheritance hierarchies used in OO programming.
It is proposed in this work that the diagram is, in fact, the rigorous mathematical
equivalent of an inheritance hierarchy in OOP. In all, the following 6 small
systems are visited by the feedback loop:

System Levels System definition Associations
Σ1 L1/L2 10(ac, be, cj, df, eg, fh, gi, hi, ij) be, df
Σ2 L2/L3 8(ab, be, cd, de, eh, fg, gh) beg, dfh
Σ3 L3/L4 6(ac, bc, cf, de, ef) beg|dfh
Σ4 L4/L5 5(ab, be, cd, de) (beg|dfh)i, ac
Σ5 L5/L6 3(ac, bc) (beg|dfh)i|ac
Σ6 L6/L7 2(ab) ((beg|dfh)i|ac)j

(9)

In the last column, associations of immediate precedence are indicated by writing
the symbols together, such as dfh, while the symbol “|” indicates parallelism, an
association without precedence. System Σ3 in the table is in fact the same system
defined in Eq. (1) and discussed in Section 2. This example provides a dramatic
demonstration of the role of emergence as the source of first intelligence from
a fundamental mathematical principle and the build up of higher intelligence.
The results at each step of the process are depicted in Fig. 1(b). Iteration 1



Structural Emergence in Partially Ordered Sets 99

INFORMATION COMPARE

SENSES AND

AFFERENT NERVES
BRAIN

NATURAL

OBJECTS

FEEDBACK

SENSORS
EMERGENCE

DYNAMICS

PREDICTED

OBJECTS

FEEDBACK

Fig. 2. Computer simulation of higher brain functions. Solid lines indicate easily ob-
servable and measurable features, while dashed lines identify features that are not
relevant for the present study.

organizes the set and associates be and df , each with immediate precedence and
each encapsulated in a separate block. Iteration 2 associates blocks beg and dfh,
and iteration 3 associates beg|dfh together without precedence, thus effectively
creating a parallel computer with 2 processors. Successive iterations continue
reusing previously acquired intelligence to build associations, and the combined
effects of inference, feedback and encapsulation are clearly visible. The final
solution is identical to the human analyst’s solution of Fig 1(a).

4 Experimental Evidence

Computer experiments that simulate higher brain functions are easy to perform.
The brain itself is irrelevant, and is treated as a black box where only the input
and output matter. There exist plenty of carefully documented actual input-
output observations with which the simulated results can be readily compared.
Figure 2 illustrates the concept.

Information that a person can acquire from the environment, such as a visual
image, an observation made by a scientist, or a problem statement received by
a computer analyst, is made available as training material for the simulated
emergence dynamics (see §IV, “Basics of MMC supervised learning”, in [13]).
The natural objects that the brain creates are the images we recognize, the
theories of Science, or the object-oriented designs the analyst develops. They can
be directly compared with the corresponding objects predicted by the simulation.

Three such experiments have been previously published, and one more is
reported here in Section 3. The three experiments were further discussed in
[14]. The experiments are simple, but they are sufficient for a proof of principle,
and they are important because they set directions for future research. The
first experiment [11] is in Newtonian Mechanics, and consists of information
describing one time step of the motion of a mass particle in three-dimensional
space under the action of gravity. A human scientist immediately discovers the
following 4 facts: there are 3 components of motion, 2 separate variables must
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be used to describe the motion, the 3 components are independent, and the
2 variables are independent. For the simulation, the problem is described as a
partially ordered set with 18 elements and 12 relations, and minimization of the
functional of emergence immediately discovers a block hierarchy separated into 3
independent components, each in turn separated into 2 independent components,
in full agreement with the human scientist.

The second experiment is a case study on refactoring [13], based on a Java
program used in many European universities to teach the subject. The program
was first converted to C in order to eliminate all object-oriented information, and
then represented by a set with 33 elements and a partial order with 55 relations.
After minimization of the functional of emergence, a hierarchy of block systems
was obtained, which was in excellent agreement with the original Java classes
that a human analyst had designed. The conversion of the block systems to Java
or C# was not attempted, but it should be easy to automate.

The last experiment is one of image recognition [12], where a set of 167 points
distributed on the plane is given. Human observers asked to interpret the image
immediately agree that it shows 3 clusters, but disagree when asked to describe
the clusters. The number 3 is not explicit in the picture, it has to be found by
interpretation. A regular network of cells representing a retina was superposed
on the picture. The system was simulated with a set of 1433 elements, and the
relations in the partial order were obtained by associating the points with the
cells that contained them. Minimization of the functional of emergence yielded
a hierarchy of block systems with 3 blocks in the highest level, indicating the
separation of the set into 3 clusters, in full agreement with the human observer.
In addition, more detailed but not meaningful structure was found in each of
the clusters, again in full agreement with the human observer.

One more experiment, the experiment on parallel programming discussed in
Section 3 of this paper, is also in full agreement with the human programmer.
All four problems have been solved by minimization of the same functional, and
by the same algorithm, which is local and knows nothing about the particular
problems other than the input S and ω. The ability to solve problems of any
kind, when and where they arise, directly from input and without the need for
any problem-specific means, is key for intelligence.

5 Concluding Remarks

This work has proposed a mathematical theory where a partially ordered set
representing a physical system subject to the action of a dissipative dynami-
cal process, naturally gives rise to the phenomena of emergence, feedback, and
inference, and becomes self-organized into a hierarchy of block systems where
successive levels represent a progressive build up of intelligence. The set serves
as a knowledge base with natural support for all the phenomena. The dynamics
only dissipates the functional, in a local manner, until exhaustion, and is un-
aware of the existence of a population or of any global effects that may follow.
The functional is universal, defined in terms of the local conditions in the sys-
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tem, amenable to be minimized by local dynamics, and providing the only logical
connection between the local dynamics and the resulting global phenomena.

Because the theory explains the origin of intelligence from first principles and its
growth by feedback and inference, because the features just described are normally
associated with intelligence, and because of the supporting experimental evidence,
also proposed is the working hypothesis that the theory does describe the origin
of intelligence, provides the foundation for a variational theory of intelligence in
natural and artificial systems, including the human brain, and allows intelligent
behavior to be mathematically described by the elegant principle of optimization.

Important consequences will follow. The value of a variational principle is its
unifying power. This work offers many possibilities for new research in AI and
AGI, as well as an unprecedented opportunity to unify these fragmented fields.
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Abstract. Current perceptual algorithms are error-prone and require the use of 
additional ad hoc heuristic methods that detect and recover from these errors. In 
this paper we explore how existing architectural mechanisms in a high-level 
cognitive architecture like ACT-R can be used instead of such ad hoc measures. 
In particular, we describe how implicit learning that results from ACT-R’s 
architectural features of partial matching and blending can be used to recover 
from errors in object identification, tracking and action prediction. We 
demonstrate its effectiveness by building a model that can identify and track 
objects as well as predict their actions in a simple checkpoint scenario. 

Keywords: Cognitive Architectures, Integrating Perception & Action, Object 
Tracking, Instance-based Learning. 

1   Introduction 

Perception is a key component of any system with claims to AGI [1]. While cognition 
can affect perception, much of perception remains bottom-up with parallel processes 
that implement functions from figure-ground separation to object identification and 
tracking. The parallel, bottom-up nature of perception is important for an agent 
interacting with the external world since it allows the agent to quickly understand and 
categorize what it perceives and, consequently, take appropriate action. However, 
even with the best current algorithms, information from perception is also likely to be 
error-prone and probabilistic. It then falls to cognition to take this information and 
refine it using additional knowledge.  

Approaches that deal with errors in perceptual processing are usually ad hoc and 
based on specialized heuristics that take advantage of the domain of interest [2]. For 
example, in person detection, it is often the case that people are assumed to be “on the 
ground” and so any data that points to a person floating above the ground can be 
considered as unlikely. In this paper, we take a more cognitively plausible approach 
by using ACT-R [3], to model a system that learns to predict the result of perception. 
This prediction is then used to supplement perceptual inputs in order to overcome any 
errors. In general, this predictive ability is not restricted to the information from 
perception. It can be used at the cognitive level for predicting or anticipating actions, 
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goals and cognitive states. However, in this paper, we limit ourselves to using 
predictions to refine perceptual input.  

At the level of cognitive theory, the ACT-R model of perceptual refinement is an 
example of instance-based learning in humans where information from multiple 
instances are generalized and used to set up expectations about future situations. 
Generating expectations based on past experience is key to a number of cognitive 
endeavors.  Expectation-based models have been developed and validated in a 
number of domains, including expectations of future perceptual events in sequence 
learning [4]; expectations of other players' moves in games [5][6]; expectations for 
the outcome of actions such as probabilistic payoffs [7][8]; expectations of dynamical 
system behavior in control problems [9][10]; mental imagery for general problem 
solving [11] and perspective taking [12][13]. Indeed, theories have proposed [14] [15] 
that the fundamental computational property of the human cortex is the completion of 
spatiotemporal patterns to generate expectations.  Thus it seems fitting that we would 
explore the role of expectations in how cognition oversees perception and 
compensates for its shortcomings.  

The current model (as well as some of the other models of instance-based learning 
mentioned above) is built upon two features of ACT-R’s declarative memory and 
retrieval mechanism – partial matching and blending. In the following sections we 
describe the ACT-R architecture, demonstrate the effects of partial matching and 
blending, and describe how these effects are useful in recovering from perceptual 
errors in a simple checkpoint scenario.  

2   ACT-R 

The ACT-R cognitive architecture is a modular, neurally-plausible theory of human 
cognition. The ACT-R architecture describes cognition at two levels – the symbolic 
and the sub-symbolic. At the symbolic level, ACT-R consists of a number of modules 
each interacting with a central inference control system (Procedural module) via 
capacity-limited buffers. Modules represent functional units with the most common 
ones being the Declarative module for storing declarative pieces of knowledge, the 
Goal module for storing goal-related information, the Imaginal module which 
supports storing the current problem state, and the Perceptual (Visual and Aural) and 
Motor modules that support interaction with the environment. The only way to access 
the content stored in a module is through that module’s buffer. Modules can operate 
asynchronously, with the flow of information between modules synchronized by the 
central procedural module.  

Declarative memory stores factual information in structures called chunks. Chunks 
are typed units similar to schemas or frames that include named slots (slot-value 
pairs). Productions are condition-action rules, where the conditions check for the 
existence of certain chunks in one or more buffers. If these checks are true, the 
production is said to match and can be fired (executed). In its action part, a production 
can make changes to existing chunks in buffers or make requests for new chunks. 
ACT-R has a second underlying sub-symbolic (numerical) layer that associates values 
(similar to neural activations) to chunks and productions. These activation (utility in 
the case of productions) values play a crucial role in deciding which productions are 
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selected to fire and which chunks are retrieved from memory. ACT-R also has a set of 
learning mechanisms that allow an ACT-R model to learn new declarative facts and 
production rules as well as modify existing sub-symbolic values. A full account of 
ACT-R theory can be found in [16] and [3]. 

In this paper, we restrict further discussion about ACT-R to the declarative module 
since its performance is implicated in our current work. As mentioned earlier, the 
declarative module stores factual information in the form of chunks and makes these 
available to the rest of the architecture via the retrieval buffer. There are two critical 
mechanisms for retrieving information in ACT-R’s declarative module – partial 
matching and blending - that are important to this current integration.   

2.1   Partial Matching 

In ACT-R, productions make requests for chunks in declarative memory by 
specifying certain constraints on the slot values of chunks. These constraints can 
range from the very specific where every slot and value of the desired chunk is 
specified to the very general (akin to free association) where the only specification is 
the type of the chunk. Request criteria also include negatives where you can specify 
that a slot should not have a particular value as well as ranges (in the case of 
numerical values). The standard request generally specifies the chunk type and one or 
more slot values but not all. If there are multiple chunks that exactly match the 
specified constraints, the chunk with the highest activation value is retrieved. The 
activation value of a chunk (1) is the sum of its base-level activation and its 
contextual activation. The base-level activation of a chunk is a measure of its 
frequency and recency of access. The more recently and frequently a chunk has been 
retrieved, the higher its activation and the higher the chances that it is retrieved. (2) 
describes the equation for calculating the base-level activation of a chunk i where tj is 
the time elapsed since the jth reference to chunk i, d represents the memory decay rate 
and L denotes the time since the chunk was created.  ܣ௜ ൌ ௜ܤ ൅෍ ௝ܹ ௝ܵ௜௝  (1)

௜ܤ ൌ ݈݊෍ݐ௝ି ௗ ൎ ݈݊ ௗ1ିܮ݊ െ ݀௡
௝ୀଵ  (2)

The contextual activation of a chunk is determined by the attentional weight given the 
context element j and the strength of association Sji between an element j and a chunk 
i.  An element j is in context if it is part of a chunk in a buffer (i.e., it is the value of 
one of the goal chunk’s slots). The default assumption is that there is a limited source 
activation capacity that is shared equally between all chunk elements. The associative 
strength Sji is a measure of how often chunk i was retrieved by a production when 
source j was in context. In addition to the base-level and contextual values, some 
randomness is introduced into the retrieval process by the addition of Gaussian noise.  ܯ௜௣ ൌ ௜ܣ െ ෍ሺ1ܲܯ െ ܵ݅݉ሺݒ, ݀ሻሻ௩,ௗ  (3)
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Without partial matching enabled, the retrieval mechanism only considers those 
chunks that match the request criteria. When partial matching is enabled, the retrieval 
mechanism can retrieve the chunk that matches the retrieval constraints to the greatest 
degree. It does this by computing a match score for each chunk that is a function of 
the chunk’s activation and its degree of mismatch to the specified constraints. (3) is 
the formula for computing the match score. MP is the mismatch penalty, Sim(v,d) is 
the similarity between the desired value v and the actual value d held in the retrieved 
chunk. With the use of partial matching, the retrieval mechanism can retrieve chunks 
that are closest to the specified constraints even if there is no chunk that matches the 
constraints exactly. This is particularly useful as shown below in situations where 
values are continuous and dynamic. Since the degree of match is combined with the 
activation to yield the match score, chunks that have higher activation will also 
tolerate a greater degree of mismatch.  This reflects the interpretation of activation as 
a measure of likelihood of usefulness [17]. 

2.2   Blending 

The second aspect of retrieval is blending [18] [19], a form of generalization where, 
instead of retrieving an existing chunk that best matches the request, blending 
produces a new chunk by combining the relevant chunks. The values of the slots of 
this blended chunk are the average values for the slots of the relevant chunks 
weighted by their respective activations, where the average is defined in terms of the 
similarities between values. For discrete chunk values without similarities, this results 
in a kind of voting process where chunks proposing the same value pool their 
strengths. For continuous values such as numbers, a straightforward averaging 
process is used.  For discrete chunk values between which similarities (as used in 
partial matching) have been defined, a compromise value that minimizes the weighted 
sum of squared dissimilarities is returned. Formally, the value obtained by a blended 
retrieval is determined as follows:  ܸ ൌ ෍݊݅ܯ ௜ܲሺ1 െ ܵ݅݉ሺܸ, ௜ܸሻሻଶ௜  (4)

where Pi is the probability of retrieving chunk i and Vi is the value held by that chunk. 
Blending has been shown to be a convincing explanation for various types of implicit 
learning [20] [9]. Blending of location information in chunks allows the model to 
predict future locations of objects by giving more weight to recent perceptual 
information while ignoring various individual fluctuations arising from noise. ACT-
R’s blending mechanism can be thought of as a subset of more general approaches 
like Conceptual Blending [21] where the structure of the component concepts and the 
final concept is restricted to a single type and the compositional process for 
constructing the blended concept is weighted averaging. More comprehensive 
elements of Conceptual Blending such as non-trivial compositional rules, completion, 
elaboration and emergent structures are absent in ACT-R blending. In addition, the 
partial matching and blending mechanisms in ACT-R are meant to capture the 
fundamental generalization characteristics over similarity-based semantics of 
modeling paradigms such as neural networks [22][23], albeit at a different level of 
abstraction. 
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Together, partial matching and blending allows the model to overcome errors in 
object identification and tracking. Blending also allows the model to predict the 
possible action an object may follow based on its past actions. This reflects the fact 
that, as discussed above, blending is applicable to all types of values, from discrete to 
continuous and including intermediate domains such as discrete values over a 
semantic space (e.g. words). 

 

 

Fig. 1. Checkpoint scenario showing the movements of objects a and c and the division of a’s 
route by type of action 

3   Modeling Object Identification, Tracking and Action Prediction 
in ACT-R 

3.1   Checkpoint Scenario 

The checkpoint scenario consists of a robot patrolling a checkpoint looking for people 
and objects of interest. In the current version of the scenario, it is assumed that the 
robot is stationary at a location that affords it a complete view of the checkpoint. Its 
goal is to identify and track the objects in its view and classify their actions. Fig 1 
shows the example scenario consisting of three people performing one of three actions 
– standing around, walking or milling around. Initially, all actors (“a”, “b” and “c”) are  
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standing around. After 30 seconds, “a” and “c” start walking towards “b”. After 60 
seconds, they start milling around (walking in a circle). After 90 seconds, they start 
walking back towards their starting locations, going back to standing around after 120 
seconds. For this scenario, perception provides an identification vector (which is 
currently limited to an id but might be eventually expanded to a multi-variable vector 
that includes additional information such as height, color, etc) and location 
information. However both location and object id information have errors associated 
with them. For now the output of perception is simulated by adding an error term to the 
data. Location error generated by a logistic distribution is added to the location 
information that is made available, while objects have a fixed 1/10 chance of being 
mis-identified by perception (which translates to an average of 15 errors in every trial). 

3.2   ACT-R Model 

The ACT-R model represents information about an object in a chunk, called a visual-
memory chunk for convenience, that contains the object’s id, current location, rate of 
change of location (delta), and current action. Every time an object id and its location 
are reported by perception, the model uses this information to retrieve a chunk in 
order to interpret that information against its recent experience. The retrieved chunk is 
a result of both partial matching and blending by the retrieval mechanism. The value 
contained in the delta slot is used to predict the object’s future location and the value 
in the action slot is used to predict the object’s future action. If the retrieved blended 
chunk does not exactly match the information from perception (which it rarely does), 
a new chunk is learned whose slot values contain the information from perception. 
Over the course of the experiment, the model learns a number of such chunks that 
effectively improve its ability to alleviate id errors, predict object location and predict 
object action. In the following sections we describe how the use of partial matching 
and blending accomplish this goal. 

3.3   Recovering from Object Identification Errors 

There are a number of errors that can happen during object identification including 
failure to identify a known (previously encountered) object, identifying non-existent 
objects and identifying a known object as another known object. In this work we 
model all three errors. In the first type of error, perception fails to identify a 
previously seen (and identified) object. Instead, it either identifies it as a new object 
or fails to identify it at all. The second type of error is similar to a false-positive, 
where perception identifies an object even though no such object exists in the scene. 
Finally, perception can be confused between different objects in the scene and 
identify one object incorrectly as another. In all cases, partial matching provides a 
way for the system to recover the right identification. To see how this works, consider 
the following example (shown in Fig 2) where there are 6 chunks in declarative 
memory, three chunks with “b” in the name slot and values (9,10) (10,10) and (11,10) 
in the respective current location slot and three chunks with “a” in the name slot and 
values (100,100), (102,100) and (104,100) in the respective (x,y) slots.  When a chunk 
is requested with the value “a” in the name slot and (10,10) in the (x,y) slot, partial 
matching produces the first 3 chunks as better matches for the request even though the 
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immediate state of the world, these processes can just as easily be leveraged to 
retrieve and construct predictions about more abstract and/or long-term actions. We 
are currently testing a number of approaches including contextual attributes like time 
(actions change at approximately similar intervals of time, for example, a person 
starts walking after standing around for a while) and spatial relationships (a person 
who is walking will tend to start milling around when he/she is near to another 
person). We have had some success with using spatial contextual cues but problems 
still remain. In addition, current predictions are limited to one or a few time steps in 
advance. An ongoing goal is to expand this ability to predict behaviors and actions 
longer into the future. 

Finally, in this paper, we have focused solely on leveraging existing architectural 
mechanisms without considering the computational cost of calculating expectations 
and evaluating them during problem solving. It is very likely that such processes 
require additional architectural support and the nature and design of such support is 
part of our future work. 
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Abstract. Human intelligence consists largely of the ability to recognize
and exploit structural systematicity in the world, relating our senses si-
multaneously to each other and to our cognitive state. Language abilities,
in particular, require a learned mapping between the linguistic input and
one’s internal model of the real world. In order to demonstrate that con-
nectionist methods excel at this task, we teach a deep, recurrent neural
network—a variant of the long short-term memory (LSTM)—to ground
language in a micro-world. The network integrates two inputs—a visual
scene and an auditory sentence—to produce the meaning of the sen-
tence in the context of the scene. Crucially, the network exhibits strong
systematicity, recovering appropriate meanings even for novel objects
and descriptions. With its ability to exploit systematic structure across
modalities, this network fulfills an important prerequisite of general ma-
chine intelligence.

Keywords: deep recurrent neural network, grounded language learning,
systematicity, long short-term memory.

1 Introduction

An essential aspect of human intelligence is the ability to recognize and ex-
ploit key structural relations between the different modalities of our experience,
from our most basic senses all the way up to the most abstract of cognitive
representations. Language is one of the clearest examples of the importance of
recognizing cross-sensory structural relations. When learning the verb “give” in
English, for example, children recognize the correspondence between what they
see during give-events—generally a giver, a gift, and a recipient—and the three
noun phrases they hear near “give” in the speech stream [1]. Language is also
the domain of the most widely known litmus test for a general machine intelli-
gence, the Turing Test [2]. Though Turing argued convincingly that this is the
same test we unconsciously require of other humans on a daily basis, Searle fa-
mously questioned it in his Chinese Room thought experiment [3], from which
he concluded that understanding cannot follow from symbol manipulation alone.
Indeed, for a system to exhibit what we call “understanding”, it needs to be able
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to relate its symbols to something: to ground them in sensations of the external
world [4]. Our view is that, without this level of language understanding, it is
hard to believe that any system could pass the Turing Test.

With this in mind, we focus on the problem of learning grounded language as
a step on the road to general machine intelligence. We present a deep, recurrent
neural network—a variant of the long short-term memory LSTM [5,6]—that
learns a grounded version of a micro-language by relating it to a micro-world.
We choose to use a neural network because neurobiology provides the only known
working example of general intelligence. That said, our network is not meant to
be a veridical model of any part of the human brain. However, to leave the door
open to future extensions in that direction, we attempt to maintain a reasonable
degree of neurobiological plausibility.

Our neural network experiences visual scenes and, upon hearing a sentence
relating to a scene, reconstructs the meaning of the speaker in terms of the ob-
jects it sees. Stated a different way, the network identifies the intended referents
and relations described in a natural language sentence. The network naturally
learns to segment morphemes, words, and phrases in the auditory input; to con-
struct, maintain, and query a working-memory representation of the visual scene;
and to map singular and plural noun phrases onto one or more referents. Finally
and most importantly, the network behaves systematically, generalizing not only
to novel scene-sentence pairs, but to individual objects and descriptions never
before seen or heard.

2 Background

2.1 Systematicity

For decades researchers have debated the question of what constitutes system-
atic behavior in neural networks. Hadley [7] introduced a graded definition of
systematicity for language tasks based on the level of input novelty that a lan-
guage processing system can correctly handle. Since we are primarily interested
in the grounding of language, below we define levels of systematicity similar
to Hadley’s, but based explicitly on a system’s ability to pick out appropriate
referents for descriptions in a sentence:

1. Weak systematic grounding: The system can label familiar objects in novel
scenes using familiar object descriptions.

2. Categorical systematic grounding: The system can label novel objects in a
scene using familiar descriptions; this is tantamount to categorizing the new
objects.

3. Descriptive systematic grounding: The system can use novel descriptions to
label familiar objects in a scene.

4. Strong systematic grounding: The system can use novel descriptions to label
objects it has never previously encountered.

We will demonstrate that the network presented in this paper exhibits strong
systematic grounding of the language it learns. We next turn to previous models
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of grounded language learning with neural networks, illustrating the level of
systematicity that each has demonstrated.

2.2 Past Neural Network Models of Grounded Language Learning

Feldman and colleagues [8] famously challenged the cognitive science community
to create a model of language grounded in visual sensation, and many models
have addressed this task during the last two decades. We wish, for reasons of
neurobiological faithfulness, to focus only on those using purely connectionist
methods, rather than hybrid connectionist-symbolic [9] or other types of models.
While many of the following connectionist models are impressive, we argue that
they fall short of achieving the systematicity required for mastery of language.

Riga, Cangelosi, and Greco [10] advanced a neural network model, utilizing
both supervised and unsupervised components, that learned to describe two-
dimensional images with combinations of words. The model shows evidence
of categorical systematicity by recognizing and labeling novel images; however,
there is no evidence that the model can use novel combinations of descriptors
for a given image. The model is limited to scenes consisting of single objects
and static noun-phrase-like bit-vector descriptions, having not been designed to
handle natural language in the temporal domain or at the level of sentences.

Williams and Miikkulainen [11] presented the GLIDE model, consisting of
two self-organizing maps [12] that learned visual and linguistic representations
of the input and then mapped them to each other. Using subjective scoring to
rate the appropriateness of the model’s answers, the authors found it to perform
poorly on novel scenes and descriptions compared to familiar ones, and thus we
cannot conclude that it is strongly systematic in its grounding abilities.

Frank, Haselager, and Rooij [13] developed a model based on a Simple Re-
current Network (SRN) [14] that learned to map temporal sequences of words
representing an event onto a “situation vector” designed to analogically represent
the possible states of the world. The authors claimed that their model fulfills
Hadley’s [7] definitions for semantic systematicity. However, interpreting the
outputs produced by the model was a complex task, and often led to puzzling
situations where the network appeared to simultaneously entertain contradic-
tory beliefs about the world. As such, the level of systematicity of its language
grounding is at least questionable, although we find it to be the most impressive
model to date.

3 Methods

3.1 Task Description

Our network learns to ground a natural micro-language—a subset of English—in
terms of a micro-world. Given input streams representing a visual scene and an
auditory sentence, the network should combine these streams in order to create
an output representation of the intended meaning of the speaker. By way of
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explaining the task, we will describe each of the streams of information that the
network must integrate: the scene represented by the visual stream, the sentence
represented by the auditory stream, and the grounded meaning represented by
the intention stream.

Scenes, Objects, and the Visual Stream. On each trial, the network receives
a randomly generated scene as input. A scene consists of a collection of objects
and their attributes, which include shape, color, and size. Scene objects are
presented to the network as neural activity patterns, but for clarity in the text
we denote scene objects in a fixed-width font enclosed in square brackets, as
[small blue pyramid]. Each object is a combination of two neural activity
patterns, the first consisting of a localist representation of the object’s attribute
values and the second being a localist unique identifier for the object. The latter
allows the network to discriminate between objects that otherwise have identical
attributes, allowing the scene to contain [large red block 1] and [large red
block 2] simultaneously while allowing the network to transparently refer to
either.

The neural activity patterns—representing the objects in the scene—are pre-
sented to the visual input layer of the network in a temporal sequence which we
call the visual stream. During training, the network’s visual pathway must learn
to create distributed representations that can simultaneously encode several ob-
jects, maintaining the bindings between individual objects and their (likely over-
lapping) attributes.

Since it is not our intention to precisely model human visual sensation and
perception, we do not concern ourselves with providing a retinotopic represen-
tation of the visual stream. Instead, we assume that something like our scene
representation could be constructed by higher-level visual regions in response
to sensory input. We present a scene’s objects as a temporal sequence in part
because it allows us to vary the number of objects presented while using the
same weight set to process each.

Sentences, Phonemes, and the Auditory Stream. After experiencing the
visual stream, the network hears a sentence that describes some aspects of the
scene. Sentences are generated from a simple, mildly context-sensitive grammar
(Figure 1) that describes objects from the scene and relations between them.
Using the grammar, a [small blue pyramid] could be described as a “small
blue pyramid”, a “blue pyramid”, a “small pyramid”, or simply a “pyramid”.
Notably, the grammar allows plural references to groups of objects, such that
our pyramid from above might be grouped with a [small green cylinder]
to be collectively described as the “small things” because of their one common
attribute.

Each word in the sentence is transcribed into a sequence of phonemes; these
sequences are then concatenated, creating a single uninterrupted sequence of
phonemes representing the entire sentence. Each phoneme in such a sequence is
input to the network as a neural activity pattern representing phonetic features
[15]. Since we are not trying to model the entire auditory pathway, we take it
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S → NP VP
NP → the [Size] [Color] Shape
VP → Is Where | Is Color | Is Size

Is → is | are (as appropriate for subject)
Where → on NP | under NP | near NP

Size → small | medium | large
Color → red | blue | green
Shape → things | pyramid | pyramids | block | blocks | cylinder | cylinders

Fig. 1. The grammar used to generate the sentences. Terminals begin with a lowercase
letter while non-terminals are in boldface and begin with an uppercase letter. The
symbol | separates alternative derivations, and terms in brackets are optional. The
evaluation chosen for the Is nonterminal depends on the plurality of its subject.

as granted that feature-based phonetic representations similar to the ones used
here are available at some level in the human auditory system.

These patterns—representing the phonemes in the sentence—are presented at
the auditory input layer of the network as a temporal sequence which we call
the auditory stream. During training, the auditory pathway must simultaneously
learn to segment the auditory stream into morphemes and words, pay attention
to the syntactic relations between these elements, and discover the cues that
identify objects and relations.

Meanings, Predicates, and the Intention Stream. After receiving both
the visual and auditory streams, the network is tasked with constructing the
sentence’s meaning in the context of the scene. To do this, the network must
generate a sequence of predicates—as activity patterns over its output layer—
which we call the intention stream.

Each predicate in the intention stream corresponds to an attribute or relation
mentioned in the sentence. We denote predicates using a fixed-width font en-
closed in parentheses, distinguishing them from the square-bracketed visual ob-
jects. If a sentence refers to the visual object [small red cylinder 2] as “small
cylinder”, the network must produce the predicates (small 2) and (cylinder
2), but not (red 2) since this attribute was not mentioned. If a sentence states
that a “blue block” (referring to visual object 3) is “under” our small cylinder,
the network must output the predicate (under 3 2). It may be that some ob-
jects in the scene, or even most of them, are not referenced in the sentence that
accompanies it. In this case, these objects can be considered distractor stimuli,
and while they are present in the visual stream input, they are not included in
the target intention stream.

After a training trial, the network is shown the target intention stream. Com-
paring this behavior to that of a human language learner, we must assume that
the learner can, at least sometimes, derive the speaker’s meaning from other
sources—a task at which language learners seem to excel [16]—and that this
meaning is available in something resembling a propositional form.
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A Complete Example Trial. Figure 2 describes an input scene, consisting
of four objects, and an input phoneme sequence for the sentence “The small
pyramids are on the blue block”. A correct intention stream for these inputs
must contain predicates denoting the objects numbered 1 and 2 as the “small
pyramids”. The intention stream should indicate object 4 as the referent of
“the blue block”, containing predicates at the end of the sequence matching
these two attributes with the appropriate object identifier. For the relation “on”,
the intention stream must contain a predicate representing the (on) relation,
indicating that objects 1 and 2, the pyramids, are on object 4, the block.

Visual Stream Auditory Stream Intention Stream

[small red pyramid 1]

[large blue block 4]

[medium red cylinder 3]

[small green pyramid 2]

“The small pyramids are
on the blue block”

(small 1+2)

(pyramid 1+2)

(on 1+2 4)

(blue 4)

(block 4)

Fig. 2. An example trial. Stream elements are depicted in human-readable form, but
are presented to the network as sequences of neural activity patterns representing
objects, phonemes, and predicates.

3.2 Network Architecture

The neural network that learns our grounding task is a generalized long short-
term memory (LSTM-g) [17], which is an extension of the long short-term mem-
ory (LSTM) network [5,6]. LSTM uses stateful self-connected neural units called
memory cells, which are allowed to have multiplicative input, output, and forget
gates. LSTM-g is a formulation of LSTM that gains the ability to accommodate
arbitrary multi-level network architectures without altering the learning rules.

Though the network is trained by gradient descent, and thus utilizes back-
propagated error signals, we believe that the overall architecture is not as far
removed from biological plausibility as one might expect. Specifically, it has been
recently discovered that the gradient descent training method is essentially a
convenient implementation of contrastive Hebbian learning [18], the latter being
the main ingredient in biologically realistic neural training algorithms such as
Leabra [19]. The fact that memory cells in LSTM maintain their state across
time steps actually makes them resemble real, stateful neurons more closely than
traditional stateless neural elements. Finally, the multiplicative functions of gate
units in LSTM have close neurobiological correlates, and similar mechanisms
have been used in models of the prefrontal cortex and basal ganglia [20].

The specific network architecture we use to learn our grounding task is de-
picted in Figure 3. Visual processing begins at the lower-right input layer and
auditory processing at the lower-left, proceeding through one or two internal
layers of self-recurrent LSTM memory cells, respectively, before integration at
the final internal layer. We use two layers in the auditory pathway because
the task involves multiple levels of auditory segmentation, with the first layer



118 D.D. Monner and J.A. Reggia

transforming phonemes into morphemes and words, which in the second layer
become phrases. Previous experiments on learning ungrounded language repre-
sentations [17] show that a two-layer pathway outperforms a single-layer path-
way. To assist in the production of output sequences, the last internal layer has
a recurrent connection from the previous time-step’s output.

Phoneme Features (34) ID (4)Object Attributes (14)

ID (4)Object Attributes (14) ID (4)Relation (2)

(80)

(80) (80)

(80)

Auditory Stream Visual Stream

Intention Stream

Fig. 3. The architecture of the network. Boxes represent layers of units (with number
of units in parentheses) and arrows represent banks of trainable connection weights.

3.3 Experimental Evaluation

We train our network in four different ways, evaluating it on sets of test sentences
that probe the different levels of grounding systematicity from Section 2.1. In
what follows, an object or description is considered novel if it consists of a
combination of features (e.g. [large red pyramid]) or words (e.g. “large red
pyramid”) that does not occur in the training set.

1. Weak condition: The set of scene-sentence pairs is partitioned at random
with 10% reserved for testing. While test pairs are novel, the individual
objects and descriptions are likely familiar to the network.

2. Categorical condition: One specific type of object is never present in scenes
during training. The network is tested in situations where this novel object
is given a familiar description.

3. Descriptive condition: One specific type of object, while allowed to be present
in the scenes, is never described fully. We test the network on scenes contain-
ing this familiar object and sentences containing the full, novel description.

4. Strong condition: One type of object is never described and never appears in
scenes. We test the network on inputs where this novel object appears and
is referenced using a novel description.
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We train 10 fresh networks in each of the above conditions. Individual units in
different layers are connected with a probability of 0.7, leading to networks with
approximately 60 thousand trainable weights. The learning rate is 0.01. Each
network is allowed to train on 3 million randomly selected scene-sentence pairs
from its training set.

For each training trial, we generate random scenes consisting of two, three,
or four distinct objects, with uniform probability. We then use the grammar to
generate a random sentence describing the scene. Over half a million distinct
scenes are possible, each giving rise to, on average, 36 possible grammatical
sentences. Since inputs, especially simple ones, are often repeated, the network
sees a very small fraction of the input space during training. For each pair of
test inputs, the network must produce the correct intention stream, consisting
of a temporal sequence of 2 to 7 predicates.

4 Results

Figure 4 compares network accuracy across conditions. The ten networks in the
weak condition produced correct meanings for, on average, 95% of novel scene-
sentence pairs, while those in the categorical, descriptive, and strong conditions
were 93%, 93%, and 97% accurate, respectively. The networks clearly pass all of
our systematicity tests on the grounding task.
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Fig. 4. The percentage of completely correct intention streams recovered from random
samples of 100 test-set sentences, averaged over 10 trials in each of the conditions.
The small dots represent the performance of individual networks in a condition, and
large dots represent overall condition means. The error bars denote the 95% confidence
intervals on the condition means.

Comparing the conditions, we observed a significant difference in performance
only between the descriptive and strong conditions on a Welch two-sample t-test
(t ≈ −3.2, df ≈ 17.5, p < 0.01). We think this has to with an (intentional)
asymmetry in the descriptive condition’s training set. The network, observing
27 different visual objects but only 26 complete auditory object descriptions,
is slightly impaired by this structural asymmetry. By contrast, in the strong
condition, the scenes and sentences maintain their structural symmetry, with 26
visual objects corresponding to 26 complete auditory descriptions.
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It is worth noting that the network had far more trouble with the ground-
ing part of the task—that is, selecting the referents for the various object
descriptions—than it had with parsing the linguistic descriptions themselves.
When scoring on accurate recognition of linguistic descriptions and ignoring
referents, trained networks produced, on average, less than one error per 1000
sentences. While trained networks produced the correct referent for 98% of noun
phrases—with their accuracy varying inversely with the number of objects in
the scene and the number of referents in the sentence, as one might expect—it
also took them much longer to reach this accuracy level. A typical network re-
quired only the first quarter of its training time to reach ceiling when recognizing
linguistic descriptions, at which point it was identifying referents correctly only
80% of the time, a figure which slowly improved for the duration of training.
That referents are so much more difficult to identify than object attributes and
relations only underscores the difficulty of the language grounding task.

The network appears to scale well to larger scenes, with overall accuracy
decreasing nominally as we increase the maximum number of objects in the scene
to five or six—causing the number of possible scenes to exceed 400 million—while
keeping the number of trainable weights constant.

5 Discussion

The results in the previous section demonstrate that the network uses grounded
language systematically. We are currently analyzing the network’s learned in-
ternal representations in hopes of providing a detailed explanation of how they
support this systematic behavior. A key question will be whether these learned
representations can be viewed as classical symbols (in some meaningful sense of
the term) or are of a fundamentally different nature.

While we suggest that our network provides one the best demonstrations of
strongly systematic, grounded language learning to date, we realize that it is still
a long way from a general machine intelligence. However, we believe that it pro-
vides compelling evidence that connectionist methods excel at something essential
to general intelligence: the ability to recognize and exploit structural systematicity
in the environment across sensory modalities, relating the senses simultaneously
to each other and to what we might call the internal, cognitive world. We are con-
vinced that what we colloquially refer to as “intelligence” consists largely of the
ability to discover systematicity, whether at the most basic level of our senses or
at the highest levels of cognitive abstraction. Our hope is that future work in this
vein will shed light on how human intelligence is implemented in vivo while simul-
taneously bringing us closer to recreating it in silico.
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1 DSIC, Universitat Politècnica de València, Spain
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Abstract. Comparing humans and machines is one important source of
information about both machine and human strengths and limitations.
Most of these comparisons and competitions are performed in rather
specific tasks such as calculus, speech recognition, translation, games,
etc. The information conveyed by these experiments is limited, since it
portrays that machines are much better than humans at some domains
and worse at others. In fact, CAPTCHAs exploit this fact. However,
there have only been a few proposals of general intelligence tests in the
last two decades, and, to our knowledge, just a couple of implementations
and evaluations. In this paper, we implement one of the most recent test
proposals, devise an interface for humans and use it to compare the
intelligence of humans and Q-learning, a popular reinforcement learning
algorithm. The results are highly informative in many ways, raising many
questions on the use of a (universal) distribution of environments, on the
role of measuring knowledge acquisition, and other issues, such as speed,
duration of the test, scalability, etc.

Keywords: Intelligence measurement, universal intelligence, general vs.
specific intelligence, reinforcement learning, IQ tests.

1 Introduction

It is well-known that IQ tests are not useful for evaluating the intelligence of
machines. The main reason is not because machines are not able to ‘understand’
the test. The real reason is scarcely known and poorly understood, since available
theories do not manage to fully explain the empirical observations: it has been
shown that relative simple programs can be designed to score well on these tests
[11]. Some other approaches such as the Turing Test [15] and Captchas [17] have
their niches, but they are also inappropriate to evaluate AGI systems.

In the last fifteen years, several alternatives for a general (or universal) intel-
ligence test (or definition) based on Solomonoff’s universal distributions [12] (or
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related ideas such as MML, compression or Kolmogorov complexity) have been
appearing on the scene [1,3,7,8,5], claiming that they are able to define or eval-
uate (machine) intelligence. In this paper we use one of these tests, a prototype
based on the anytime intelligence test presented in [5] and the environment class
introduced in [4], to evaluate one easily accessible biological system (Homo sapi-
ens) and one off-the-shelf AI system, a popular reinforcement algorithm known
as Q-learning [18]. In order to do the comparison we use the same environment
class for both types of systems and we design hopefully non-biased interfaces for
both. We perform a pilot experiment on a reduced group of individuals.

From this experiment we obtain a number of interesting findings and insights.
First, it is possible to do the same test for humans and machines without being
anthropomorphic. The test is exactly the same for both and it is founded on a
theory derived from sound computational concepts. We just adapt the interface
(what way rewards, actions and observations look like) depending on the type of
subjects. Second, humans are not better than Q-learning in this test, even though
the test (despite several simplifications) is based on a universal distribution of
environments over a very general environment class. Third, since these results
are consistent to those in [11] (which show that machines can score well in IQ
tests), this gives additional evidence that a test which is valid for humans or
for machines separately might be useless to distinguish or to place humans and
machines on the same scale, so failing to be a universal intelligence test.

The following section overviews the most important proposals on defining
and measuring machine intelligence to date, and, from them, it describes the
intelligence test and the environment class we will use in this paper. Sections
3 and 4 describe the testing setting, the two types of agents we evaluate (Q-
learning and humans) and their interfaces. Section 5 includes the comparison
of the experimental results, analysing them by several factors. Finally, section 6
examines these results in a deeper way and draws several conclusions about the
way universal intelligence tests should and should not be.

2 Measuring Intelligence Universally

Measuring machine intelligence or, more generally, performance has been virtu-
ally relegated to a philosophical or, at most, theoretical issue in AI. Given that
state-of-the-art technology in AI is still far from truly intelligent machines, it
seems that the Turing Test [15] (and its many variations [10]) and Captchas
[17] are enough for philosophical debates and practical applications respectively.
There are also tests and competitions in restricted domains, such as competi-
tions in robotics, in game playing, in machine translation and in reinforcement
learning (RL), most notably the RL competition. All of them use a somewhat
arbitrary and frequently anthropomorphic set of tasks.

An alternative, general proposal for intelligence and performance evaluation
is based on the notion of universal distribution [12] and the related algorith-
mic information theory (a.k.a. Kolmogorov complexity) [9]. Using this theory,
we can define a universal distribution of tasks for a given AI realm, and sort them
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according to their (objective) complexity. There are some early works which
develop these ideas to construct intelligence tests. First, [1] suggested the in-
troduction of inductive inference problems in a somehow induction-enhanced
or compression-enhanced Turing Test [15]. Second, [3] derived intelligence tests
(C-tests) as sets of sequence prediction problems which were generated by a uni-
versal distribution, and the result (the intelligence of the agent) was a sum of
performances for a range of problems of increasing complexity. The complexity
of each sequence was derived from its Kolmogorov complexity (a Levin variant
was used). This kind of problem (discrete sequence prediction), although typical
in IQ tests, is a narrow AI realm. In fact, [11] showed that relatively simple
algorithms could score well at IQ tests (and, as a consequence, at C-tests). In
[3] the suggestion of using interactive tasks where “rewards and penalties could
be used instead” was made. Later, Legg and Hutter (e.g. [7],[8]) gave a precise
definition to the term “Universal Intelligence”, also grounded in Kolmogorov
complexity and Solomonoff’s prediction theory, as a sum (or weighted average)
of performances in all the possible RL-like environments. However, in order to
make a feasible test by extending from (static) sequences to (dynamic) envi-
ronments, several issues had to be solved first. In [5], they address the problem
of finding a finite sample of environments and sessions, as well as appropriate
approximations to Kolmogorov complexity, the inclusion of time, and the proper
aggregation of rewards. The theory, however, has not been put into practice until
now in the form of a real test, in order to evaluate artificial and biological agents,
and, interestingly, to compare them. In this paper, we use a (simplified) imple-
mentation of this test (non-anytime) [5] using the environment class introduced
in [4] to compare Q-learning with Homo sapiens.

From this comparison we want to answer several questions. Are these tests
general enough? Does the complexity of the exercises correlate with the success
rate of Q-learning and humans? Does the difference correspond to the real dif-
ference in intelligence between these two kinds of agents? What implications do
the results have on the notion of universal intelligence and the tests that attempt
to measure it? Answering all these questions is the goal of this paper.

The choice of a proper environment class is a crucial issue in any intelligence
test. This is what [4] attempts, a hopefully unbiased environment class (called
Λ) with spaces and agents with universal descriptive (Turing-complete) power.
Basically, this environment considers a space as a graph with a different (and
variable) topology of actions. Objects and agents can be introduced using Turing-
complete languages to generate their movements. Rewards are rational numbers
in the interval [−1, 1] and are generated by two special agents Good and Evil,
which leave rewards in the cells they visit. Good and Evil have the same pattern
for behaviour except for the sign of the reward (+ for Good, − for Evil).

The environment class Λ is shown in [4] to have two relevant properties for a
performance test: (1) their environments are always balanced (a random agent
has expected reward 0), and (2) their environments are reward-sensitive (there
is no sequence of actions such that the agent can be stuck in a heaven or hell
situation, where rewards are positive or negative independently of what the
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agent may do). As argued in [5], these two properties are very important for the
environments to be discriminative and comparable (and hence the results being
properly aggregated into a single score, a performance or intelligence score). No
other properties are imposed, such as (e.g.) environments being Markov processes
or being ergodic. For more details of the environment class Λ, see [4].

3 Test Setting and Administration

Following the definition of the environment class Λ, we perform some simpli-
fications to generate each environment. For instance, speed is not considered
thus being a non-anytime version of the test presented in [5]. In addition, we
do not use a Turing-complete algorithm to generate the environments. Spaces
are generated by first determining the number of cells nc, which is given by a
number between 2 and 9, using a ‘unary’ distribution (i.e. prob(n) = 2−n, and
normalising to sum up to 1). Similarly, the number of actions na is defined with
a uniform distribution between 2 and nc. Both cells and actions are indexed with
natural numbers. There is a special action 0 which connects every cell with itself
(it is always possible to stay at the cell). A cell which is accessible from another
cell using one action is called a ‘neighbouring’ or adjacent cell. The connections
between cells are created by using a uniform distribution for each pair of cell and
action, which assigns the destination cell for each pair. We consider the posibil-
ity that some actions may be disabled. Fig. 1 shows an example of a randomly
generated space.

Fig. 1. A space with 5 cells and 3 actions (a0, a1, a2). Reflexive action a0 is not shown.

The number of cells and actions is, of course, related to the complexity of
the space, but not monotonically related to its Kolmogorov complexity (or a
computable variant such as Levin’s Kt). Nonetheless, most of the actual grading
of environments comes from the behaviour of Good and Evil. The sequence of
actions for Good and Evil is defined by using a uniform distribution for each
element in the sequence, and a unary (exponential) distribution to determine
whether to stop the sequence, by using a probability of stopping (pstop). An
example of sequence for the space in Fig. 1 is 201210200, which means the
execution of actions a2, a0, a1, a2, etc. Consider, e.g., that Good is placed at
cell c5. Since the pattern starts with ‘2’, Good will move (via a2) to cell c1. The
agents Good and Evil take one action from the sequence and execute it for each
step. When the actions are exhausted, the sequence is started all over again. If
an action is not allowed at a particular cell, the agent does not move.
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Initially, each agent is randomly (using a uniform distribution) placed in a cell.
Then, we let Good, Evil and the evaluated agent interact for a certain number
of steps m. We call this an exercise (or episode). For an exercise we average the
obtained rewards, so giving a score of the agent in the environment.

A test is a sequence of exercises or episodes. We will use 7 environments,
each with a number of cells (nc) from 3 to 9. The size of the patterns for Good
and Evil will be made proportional (on average) to the number of cells, using
pstop = 1/nc. In each environment, we will allow 10×(nc−1) steps so the agents
have the chance to detect any pattern in the environment (exploration) and also
have some further steps to exploit the findings (in case a pattern is actually
conceived). The limitation of the number of environments and steps is justified
because the tests is meant to be applied to biological agents in a reasonable
period of time (e.g., 20 minutes) and we estimate an average of 4 seconds per
action. Table 1 shows the choices we have made for the test:

Table 1. Setting for the 7 environments which compose the test

Env. # No. cells (nc) No. steps (m) pstop

1 3 20 1/3
2 4 30 1/4
3 5 40 1/5
4 6 50 1/6
5 7 60 1/7
6 8 70 1/8
7 9 80 1/9

TOTAL - 350 -

Although [4] suggests a partially-observable interface, here we make it fully-
observable, so agents see all the cells, the actions and their contents. The agents
do not know in advance who Good is and who Evil is. They have to guess that.

4 Agents and Interfaces

4.1 An AI Agent: Q-Learning

The choice of Q-learning is, of course, one of many possible choices for a reinforce-
ment learning algorithm. The reason is deliberate because we want a standard
algorithm to be evaluated first, and, most especially, because we do not want to
evaluate (at the moment) very specialised algorithms for ergodic environments
or algorithms with better computational properties (e.g. delayed Q-learning [13]
would be a better option if speed were an issue). We use an off-the-shelf imple-
mentation of Q-learning, as explained in [18] and [14].

We use the description of cell contents as a state. We choose Q-learning’s pa-
rameters as α = 0.05 learning rate and γ = 0.35 discount factor. The parameters
have been chosen by trying 20 consecutive values for α and γ between 0 and 1.
These 400 combinations have been evaluated for 1,000 sessions each using ran-
dom environments of different size and complexity and episodes of 10,000 steps.
This choice is, of course, beneficial for Q-learning’s performance in the tests.
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Since we have rewards between -1 and 1, the elements in the Q matrix are set
to 2.0 initially (rewards are normalised between 0 and 2 to always be positive).

4.2 A Biological Agent: Homo Sapiens

We took 20 humans from a University Department (PhD students, research and
teaching staff) with ages ranging between 20 and 50.

Fig. 2. A snapshot of the interface for humans. The agent has just received a positive
reward, shown with the circle with an upwards arrow. The image also shows the agent
located in cell 3, and Evil and Good are placed in cells 2 and 3 respectively. The agent
can move to cell 1 and cell 3. Cell 3 is highlighted since the mouse pointer is over it.

The interface for humans has been designed with the following principles in
mind: i) the signs used to represent observations should not have an implicit
meaning for the subject, to avoid bias in favour of humans (e.g. no skull-and-
bones for the Evil agent), ii) actions and rewards should be easily interpreted
by the subject, to avoid a cognitive overhead that would bias the experiment in
favour of Q-learning. This way, the following design decisions have been made
(Fig. 2 shows a snapshot of the interface). At the beginning of the test, the
subject is presented the task instructions, which strictly contain what the user
should know. The cells are represented by coloured squares. Agents are repre-
sented by symbols that aim to be ‘neutral’ (e.g., � stands for Evil and stands
for Good in the third environment, and © represents the subject in every envi-
ronment). Accessible cells have a thicker border than non-accessible ones. When
the subject rolls the mouse pointer over an accessible cell, this cell is highlighted
using a double border and increasing the saturation of the background colour.
Positive, neutral and negative rewards are represented by an upwards arrow in
a green circle, a small square in a grey circle, and a downwards arrow in a red
circle, respectively. The test and its interface for humans can be downloaded
from http://users.dsic.upv.es/proy/anynt/human1/test.html.

5 Results

We performed 20 tests (with 7 exercises each) with the setting shown in Table
1 and we administered each of them to a human and to Q-learning.

The first observation from this paired set of results comes from the means.
While Q-learning has an overall mean of 0.259, humans show a mean of 0.237.
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Fig. 3. Histograms of the (20 × 7 =) 140 exercises for Q-learning (left) and humans
(right). Lines show the probability densities.

The standard deviations are 0.122 and 0.150 respectively. Figure 3 shows the
histograms and the probability densities (estimated by the R package).

To see the results in more detail in terms of the exercise, Figure 4 (left) shows
the results aggregating by exercise (there is one exercise for each number of
cells between 3 and 9, so totalling 7 exercises per test). This figure shows the
mean, median and dispersion of both Q-learning and humans for each exercise.
Looking at the boxplots for each space size we also see that there is no significant
difference in terms of how Q-learning and humans perform in each of the seven
exercises. While means are around 0.2 and 0.3, variances are smaller the larger
the number of cells is. This is explained because the exercise with higher number
of cells has a higher number of iterations (see Table 1).
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Fig. 4. Left: Box (whisker) plots for the seven exercises depending on the agent. Medi-
ans are shown in the box as a short black segment. Means are connected by a continuous
line for Q-learning and a dashed line for humans. Right: the average reward results for
the 20 × 7 × 2 = 280 exercises using Kapprox as a measure of complexity.

We applied two-way repeated measures ANOVA (agent × number of cells).
ANOVA showed no statistically significant effects neither for agent (F1,19 = .461,
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P = .506), nor for the number of cells (F6,114 = .401, P = .877). No statistically
significant interaction effect was found (F6,114 = .693, P = .656) either.

Finally, since the size of the space is not a measure of complexity, we explored
the relation with the complexity of the environments. In order to approximate
this complexity, we used the size of the compressed pattern for Good and Evil,
denoted by P . More formally, given an environment μ, we calculate an approxi-
mation to its (Kolmogorov) complexity, denoted by Kapprox as follows:

Kapprox = LZ(P ))

For instance, if a pattern is P=“20122220022222200222222002”, we compress the
string (using the memCompress function in R, with a GNU project implemen-
tation of Lempel-Ziv coding). The length of the compressed string is 19.

Figure 4 (right) shows each of the 20×7 = 140 exercises for each kind of agent.
Again we see a higher dispersion for humans than for Q-learning (the 20 humans
are different, while Q-learning is exactly the same algorithm for each of the 20
tests). We calculate the Pearson correlation coefficient between complexity and
reward. Now we do find a statistically significant correlation both for humans
(r = −.257, n = 140, P = .001) and for Q-learning (r = −.444, n = 140, P <
.001). We also analyse these correlations by number of cells, as shown in Table
2. This table shows Pearson correlation coefficients and associated significance
levels (one tailed test) between “complexity” and “reward” by “numbers of cells”
for each agent. All n = 20.

Table 2. Pearson correlation coefficients and p values (in parentheses) between “com-
plexity” and “reward” by “numbers of cells”

Agent 3 cells 4 cells 5 cells 6 cells 7 cells 8 cells 9 cells
Human -.474 (.017) -.134 (.286) -.367 (.056) -.515 (.010) -.282 (.114) -.189 (.213) -.146 (.270)

Q-learning -.612 (.002) -.538 (.008) -.526 (.009) -.403 (.039) -.442 (.026) -.387 (.046) -.465 (.019)

We see that correlations are stronger and always significant for Q-learning,
while they are milder (and not always significant) for humans. This may be
explained because humans are not reset between exercises. In general, we would
need more data (more tests) to confirm or refute this hypothesis.

6 Discussion

In section 2 we outlined several questions. One question is whether the test is
general enough. It is true that we have made many simplifications to the environ-
ment class, in such a way that Good and Evil do not react to the environment
(they just execute a cyclical sequence of actions as a pattern), and we have used
a very simple approximation to complexity instead of better approximations to
Kolmogorov complexity or Levin’s Kt. In addition, and the parameters for Q-
learning have been chosen to be optimal for these kinds of spaces and patterns.
Besides, humans are not (cannot be) reset between exercises. Despite all these
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issues (most of) which are in favour of Q-learning, we think (although this can-
not be concluded in an absolute way) that the tests are not general enough.
Q-learning is not the best AI algorithm available nowadays (in fact we do not
consider Q-learning very intelligent). So, the results are not representing the real
difference in intelligence between humans and Q-learning.

A possibility is that our sample size is perhaps too small. Having more envi-
ronments of higher complexity and letting the agents interact longer with each
of them may perhaps portray a different picture. Nonetheless, it is not clear
that humans can scale up well in this kind of exercise, especially if no part of
previous exercises can be reused to other exercises. First, some of the patterns
which appeared in the most complex exercises were considered very difficult by
humans. Second, Q-learning requires many interactions to converge, so perhaps
this would only exaggerate the difference in favour of Q-learning. In any case,
this should be properly analysed with further experiments.

A more fundamental issue is whether we are testing on the wrong sort of
environments. The environment class is a general class which includes two sym-
metrical agents, Good and Evil, which are in charge of rewards. We do not think
that this environment class is, in any case, biased against humans (the contrary
can be argued, though). In the end, the question of whether a test is biased
is difficult to answer, since any single choice implies a certain bias. So, in our
opinion, the problem might be found in the environment distribution. Choosing
the universal distribution gives high probability to very simple examples with
very simple patterns, but more importantly, makes any kind of rich interaction
impossible even in environments of high Kolmogorov complexity. So, a better
environment distribution (and perhaps class) should give more probability to
incremental knowledge acquisition, social capabilities and more reactivity.

This goal towards more knowledge-intensive tasks has the risk of focussing
on knowledge and language, or to embark on Ttests without any theoretical
background, such as Jeopardy-like contests. The generality of these tasks may
be high, although the adaptability and the required learning abilities might be
low. This is something recurrent in psychometrics, where it is important (but
difficult) to distinguish between knowledge acquisition capabilities and knowl-
edge application. And it is also a challenge for RL-like evaluations and systems,
where knowledge acquisition usually starts from scratch and is not incremental.

So, one of the things that we have learnt is that the change of universal
distributions from passive environments (as originally proposed in [1] and [3]) to
interactive environments (as also suggested in [3] and fully developed in [7,8]) is
in the right direction, but it is not the solution yet. It is clear that it allows for
a more natural interpretation of the notion of intelligence as performance in a
wide range of environments, and it eases the application of tests outside humans
and machines (children, apes, etc.), but there are some other issues we have
to address to give an appropriate definition of intelligence and a practical test.
The proposal for an adaptive test [5] introduces many new ideas about creating
practical intelligence tests, and the universal distribution is substituted by an
adaptive distribution, so allowing a faster convergence to complexity levels which
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are more appropriate for the agent. Nonetheless, we think that the priority is
in defining new environment distributions which can give higher probability to
environments where intelligence can show its full potential (see, e.g. [6]).

Summing up, while there has been some work on comparing humans and
machines on some specific tasks, e.g., humans and Q-learning in [2], this paper
may start a series of experimental research comparing several artificial agents
(such as other algorithms in reinforcement learning, MonteCarlo AIXI [16], etc.)
and other biological agents (children, other apes, etc) for general tasks. This
might be a highly valuable source of information about whether the concept of
universal intelligence evaluation works, by trying to construct more and more
general (and universal) intelligence tests. This could lead eventually to a new
discipline, for which we already suggest a name: “universal psychometrics”.
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Abstract. Intelligent software agents aiming for general intelligence are likely 
to be exceedingly complex systems and, as such, will be difficult to implement 
and to customize. Frameworks have been applied successfully in large-scale 
software engineering applications. A framework constitutes the skeleton of the 
application, capturing its generic functionality. Frameworks are powerful as 
they promote code reusability and significantly reduce the amount of effort 
necessary to develop customized applications. They are well suited for the 
implementation of AGI software agents. Here we describe the LIDA 
framework, a customizable implementation of the LIDA model of cognition.  
We argue that its characteristics make it suitable for wider use in developing 
AGI cognitive architectures.   

Keywords: AGI framework, software framework, computational framework, 
cognitive architecture, design patterns, LIDA model. 

1   Introduction 

Artificial General Intelligence (AGI) aims at producing agents exhibiting human-level 
intelligence and beyond. Any successful AGI agent must surely be implemented using 
a sophisticated cognitive architecture — but which one to choose? A comparative 
table of cognitive architectures currently lists twenty-nine candidates [1]. If every 
AGI research group is focused on their own control architecture, how can the field of 
AGI progress? 

Superficially, these architectures seem quite different from one another in their 
structure, and they use vastly different terminology. However, closer inspection 
reveals much similarity between the function of the modules of one architecture and 
those of another once the common meanings of different vocabulary are mapped onto 
an accepted ontology. The beginnings of such an ontology have been proposed [2]. 
Once the similarity of function among modules becomes apparent, the architectures 
themselves seem less different in structure, and perhaps, more amenable to 
implementation using a common software framework. Such a common underlying 
framework might likely result in a “tree” of cognitive and/or AGI architectures with 
branches at every point of difference. Architectures would be quicker to implement 
due to code reuse, and easier to analyze and compare. 
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Here we propose such an underlying computational software framework for AGI 
and offer, as an example, one based on the LIDA cognitive architecture. The 
advantages of using such a framework were stated just above. A possible 
disadvantage is that to use any such framework the developers must commit to the 
underlying assumptions of the LIDA architecture upon which this framework is 
based. We will argue that this software framework requires commitment to only a 
minimal set of assumptions, one that is not too onerous for other AGI research 
projects. 

In recent years, an enormous number of computational frameworks have appeared 
in the software engineering world. See for example [3, 4]. This is not by chance but is 
due to the advantages of using frameworks. They promote code reuse and 
significantly reduce the amount of effort necessary to develop customized 
applications. Intelligent software agents aiming for general intelligence are complex 
systems and as such are difficult to implement and to customize. We will argue that 
ideas from frameworks are well-suited for the implementation of such generally-
intelligent software agents. Here we describe the LIDA framework, a customizable 
implementation of the LIDA model of cognition.  While the LIDA model provides a 
conceptual ontology for general models of cognition [2], we hope that the LIDA 
software framework might provide a customizable computational framework with 
which to more economically develop AGI architectures, as well as to more easily 
analyze and compare them.   

We begin this paper by describing the general characteristics of frameworks and 
the advantages of using them to implement generally intelligent agents. Then we 
sketch the LIDA model and outline the LIDA framework. Next we describe the main 
components of the framework in some detail, and, finally, we summarize the minimal 
assumptions required for an AGI using this framework and draw some conclusions. 

2   Frameworks 

A framework is a reusable implementation of all or part of a software system. In 
many cases, a framework constitutes the skeleton of the application, capturing its 
generic functionality.  The framework specifies a well-defined application 
programming interface (API) that is implemented generically using abstract classes, 
interfaces, and generic, customizable module design.  This hides the complexity of its 
code from the user.  Most frameworks are based on object-oriented languages because 
the major properties of OO, data abstraction, inheritance, information hiding and 
polymorphism, complement the goals of frameworks. 

The core idea of a framework is to have a generic design as well as a base 
implementation of a complex software system.  The user of the framework then only 
needs to “fill in the blanks” with problem or domain-specific elements. This is, 
perhaps, the major advantage of using frameworks: users can concentrate their efforts 
on the specifics of the problems, and reuse the generic mechanisms implemented in 
the framework. This also speeds up the development of the new application and 
makes it less error-prone because part of the system has already been produced and 
tested.  
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Frameworks, in general, promote the use of proven design patterns and good 
practices in software development [5, 6].  This leads to better application designs, 
more manageable maintainability and easier extension of the application.  The 
framework’s API also provides a higher level of abstraction at which to define the 
application. This API is composed of elements with names, characteristics and 
behaviors. They form a specific language among users of the framework, which 
facilitates a concise and clear description of the application. 

2.1   Frameworks and Cognitive Architectures 

Ideas from frameworks can be applied outside the domain of enterprise applications.  
In particular, cognitive systems aiming for general intelligence tend to be complex 
and sophisticated. This creates a barrier that makes them difficult to learn, implement, 
and customize. The use of frameworks can mitigate these issues.  

Cognitive architectures are complex from two points of view: the theory behind it 
tends to be inherently complicated and, consequently, any software implementation is 
also very complex. Cognitive architectures are typically composed of several modules 
with different functionalities and, in many cases, with different algorithmic 
implementations. This makes implementing software agents based on them a very 
hard task. Developers have to spend a lot of time and energy re-implementing 
common functionality for each new agent implementation. Code reuse between 
architectures has been difficult in general because of lack of standardization and ill-
defined modules. 

Frameworks are ideal tools with which to solve many of the problems that 
implementations of generally intelligent systems entail. A framework for AGI 
systems allows developers to focus on their particular algorithms instead of 
implementation details common to many agents. The architecture can be understood 
more quickly because the framework’s API itself provides a higher level of 
abstraction than unitary code. The API supplies a set of high-level concepts for 
elements of the architecture. These concepts abstract the complexity of the 
implementation and allow more effective and accurate communication between 
researchers. 

3   The LIDA Model and Its Architecture 

The LIDA model [7-9] is a comprehensive, conceptual and computational model 
covering a large portion of human cognition1. Based primarily on Global Workspace 
theory [10, 11] the model implements and fleshes out a number of psychological and 
neuropsychological theories. The LIDA computational architecture is derived from 
the LIDA cognitive model. The LIDA model and its ensuing architecture are 
grounded in the LIDA cognitive cycle. Every autonomous agent [12], be it human, 
animal, or artificial, must frequently sample (sense) its environment and select an 
appropriate response (action). More sophisticated agents, such as humans, process 
                                                           
1  “Cognition” is used here in a particularly broad sense, so as to include perception, feelings 

and emotions.  
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(make sense of) the input from such sampling in order to facilitate their decision 
making. The agent’s “life” can be viewed as consisting of a continual sequence of 
these cognitive cycles. Each cycle constitutes a unit of sensing, attending and acting. 
A cognitive cycle can be thought of as a moment of cognition, a cognitive “moment.” 

We will now briefly describe what the LIDA model hypothesizes as the rich inner 
structure of the LIDA cognitive cycle. More detailed descriptions are available 
elsewhere [13, 14]. During each cognitive cycle the LIDA agent first makes sense of 
its current situation as best as it can by updating its representation of its current 
situation, both external and internal. By a competitive process, as specified by Global 
Workspace Theory [10], it then decides what portion of the represented situation is 
most in need of attention. Broadcasting this portion, the current contents of 
consciousness2, enables the agent to chose an appropriate action and execute it, 
completing the cycle.  

 

Fig. 1. The LIDA Cognitive Cycle Diagram 

Thus, the LIDA cognitive cycle can be subdivided into three phases, the 
understanding phase, the attention (consciousness) phase, and the action selection 
phase. Figure 1 should help the reader follow the description. It starts in the upper left 
corner and proceeds roughly clockwise. Beginning the understanding phase, incoming 
stimuli activate low-level feature detectors in Sensory Memory. The output is sent to 
Perceptual Associative Memory where higher-level feature detectors feed in to more 
abstract entities such as objects, categories, actions, events, etc. The resulting percept 

                                                           
2  Here “consciousness” refers to functional consciousness [15]. We take no position on the 

need for, or possibility of, phenomenal consciousness. 
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moves to the Workspace where it cues both Transient Episodic Memory and 
Declarative Memory producing local associations. These local associations are 
combined with the percept to generate a Current Situational Model, which represents 
the agent’s understanding of what is going on right now. 

Attention Codelets3 begin the attention phase by forming coalitions of selected 
portions of the Current Situational Model and moving them to the Global Workspace. 

A competition in the Global Workspace then selects the most salient, the most 
relevant, the most important, and the most urgent coalition whose contents become 
the content of consciousness. These conscious contents are then broadcast globally, 
initiating the action selection phase. The action selection phase of LIDA’s cognitive 
cycle is also a learning phase in which several processes operate in parallel (see 
Figure 1). New entities and associations, and the reinforcement of old ones, occur as 
the conscious broadcast reaches Perceptual Associative Memory. Events from the 
conscious broadcast are encoded as new memories in Transient Episodic Memory. 
Possible action schemes, together with their contexts and expected results, are learned 
into Procedural Memory from the conscious broadcast. Older schemes are reinforced. 
In parallel with all this learning, and using the conscious contents, possible action 
schemes are recruited from Procedural Memory. A copy of each such is instantiated 
with its variables bound and sent to Action Selection, where it competes to be the 
behavior selected for this cognitive cycle. The selected behavior triggers Sensory-
Motor Memory to produce a suitable algorithm for the execution of the behavior. Its 
execution completes the cognitive cycle. 

The Workspace requires further explanation. Its internal structure is composed of 
various input buffers and three main modules: the Current Situational Model, the 
Scratchpad and the Conscious Contents Queue [16]. The Current Situational Model is 
where the structures representing the actual current internal and external events are 
stored. Structure-building codelets are responsible for the creation of these structures 
using elements from the various submodules of the Workspace. The Scratchpad is an 
auxiliary space in the Workspace where structure-building codelets can construct 
possible structures prior to moving them to the Current Situational Model. The 
Conscious Contents Queue holds the contents of the last several broadcasts and 
permits LIDA to understand and manipulate time-related concepts [16]. 

4   The LIDA Framework 

Based on all these ideas, we have been developing the LIDA software framework, a 
generic and customizable computational implementation of the LIDA model. It is 
implemented in Java, a strong and proven object oriented language. 

The main goal of this framework is to provide a generic implementation of the LIDA 
model, easily customizable for specific problems or domains. As mentioned before, this 
has several advantages: it speeds up the implementation of new agents based on the 
LIDA model and shortens the learning curve to produce such implementations. 

                                                           
3 A codelet is a small piece of code that performs a specific task in an independent way. It could 

be interpreted as a small part of a bigger process, similar to an ant in an ant colony.   
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The framework permits a declarative description of the specific implementation. 
The full architecture of the software agent is specified using an XML formatted file; 
this is similar to other frameworks where the use of declarative description files are 
common [4, 17]. In this way, the developer does not need to define the entire agent in 
Java; he can just define it using this XML specification file. 

Another important goal of the framework is its ready customization. The 
customization can be done at several levels accordingly with the required 
functionality. At the most basic level, developers can use the LIDA configuration file 
to customize their applications.  Several small pieces in the framework can also be 
customized implementing particular versions of them. For example, new strategies for 
decaying or codelets can be implemented. Finally, more advanced users can also 
customize and change internal implementation of whole modules. In each case, the 
framework provides default implementations that greatly simplify the customization 
process.  

The framework was conceived with multithreading support in mind.  Biological 
minds operate in parallel and so should artificial ones. LIDA-tasks, encapsulations of 
small processes together with a dedicated task manager, implement multithreading 
support that allows for a high level of parallelization. Finally, the LIDA framework 
implementation adheres to the most important design principles [5] and best 
programming practices. 

4.1   Framework Outline 

The LIDA framework defines several data structures and procedures (algorithms) and 
is composed of several pieces. Its main components are modules, interconnected 
elements that represent modules in the LIDA model. Another main component is the 
task manager that controls the execution of all processes in the framework. These 
processes are implemented by small, demon-like processors called LIDA-tasks.  
LIDA-tasks can be executed on separate threads by the LIDA task manager in a way 
that is almost transparent for the user. NodeStructures are core elements that 
constitute a main data structure in the framework. Finally, several supporting tools 
were implemented such as a customizable GUI, logging, and an architecture loader 
that parses an XML file with the definition and parameterization of the application. 

Modules. For each main component of the LIDA cognitive model we define a 
module in the framework.  In particular, each box in Figure 1 is implemented as a 
module in the framework.  For example, the Sensory Memory, Workspace and Action 
Selection are all modules in the framework. All modules have a common interface 
(API) but also each one has its own API that defines its particular functionality. 
Modules can have submodules which are modules nested inside another module. For 
example, the Workspace in LIDA has several submodules such as the Current 
Situational Model.  

Most modules in the LIDA framework are domain independent. For each of these, 
the framework provides a default implementation. For example, the Episodic Memory 
is implemented using a sparse distributed memory [18] and the Action Selection 
module by a heavily-modified behavior network [19]. Developers can use these 
implementations and customize some of their parameters. Some modules however, 
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are domain specific. In particular, Sensory Memory and Sensory-Motor Memory must 
be specified by the user. Nevertheless, the framework supplies default 
implementations for these modules from which users can extend their own domain-
specific implementation. 

For a more advanced customization of the framework, users can also implement 
their own version of any of the modules. Implementing a module’s corresponding 
interface ensures its compatibility with the rest of the framework. For example, 
Episodic Memory could be implemented using a database. The default classes 
provided in the framework simplify the creation of alternate implementations of 
modules. 

Modules need to communicate with other modules. To implement this, we use the 
observer design pattern [5]. In short, a module, called the “listener,” which receives 
information from another “producer” module, can register itself to the producer as a 
listener.  Each time the producer has something to send, it transmits the information to 
all of its registered listeners. There are numerous instances of listeners being used in 
the framework.  Each listener type is implemented with its own interface. One module 
can be registered as a listener of several other modules. Also a module can be 
producer and listener of other modules at the same time. This pattern has several 
advantages; mainly, the listener and the producer do not need to know each other’s 
internal structure and implementation, they only need to satisfy the particular listener 
interface. The arrows in Figure 1 are implemented as listeners in the framework. 

Fundamental Data Structures. Another important piece of the framework is a data 
structure called the NodeStructure. A NodeStructure is a graph structure, containing 
nodes and the links between them. It constitutes the main representation of data in 
many framework modules. Several use NodeStructures to represent their internal data 
and, while other forms of representation are used in the framework; the NodeStructure 
functions as a representational “common currency” between many modules.  

NodeStructures greatly assist in creating graph structures as they manage the low-
level operations needed to add, remove, or retrieve particular Nodes and Links.  Links 
are defined to connect a source Node with either another Node or a Link. These 
graphs are used for conceptual representation of object, actions, and events, the basic 
data representation in the LIDA model [20]. 

Nodes, Links and other LIDA elements such as coalitions, codelets, and behaviors, 
have activation. The activation can represent different things, but generally it 
represents the importance of the element. Elements can also have an additional “base-
level” activation for learning. All activations are excited or decayed using 
“strategies”.  These are implementations of the strategy design pattern which allows  
for customizable behavior; in this case they specify the way activation of each 
element is excited or decayed. 

Other basic data structures in the LIDA framework include bit vectors for the two 
episodic memory modules, schemes in Procedural Memory, coalitions for the Global 
Workspace, and behaviors in Action Selection.  Each has an interface and a base 
implementation. Some are tied to specific module implementations; nonetheless, they 
are general enough that they could be used in other implementations as well. 
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LIDA-tasks. Modules need to perform several tasks in order to achieve their specific 
functionalities. The framework provides LIDA-tasks, encapsulations of small 
processes. A LIDA-task has an algorithm, a time of execution and a status. A module 
can create several LIDA-tasks to help it perform its function. A LIDA-task can run 
one time or repeatedly. A task that passes activation is an example of the former, 
while a structure-building codelet is an example of the latter. Some LIDA-tasks are 
likely to be fundamental for many AGI agent implementations, such as a task to pass 
activation. Others are implementation dependent and can be specified by the user.  An 
example of this is a feature detector for a unique feature of a specific domain. 

The execution of LIDA-tasks is delegated to the LIDA task manager. This important 
piece of the framework has the responsibility of scheduling and executing all the tasks 
of the application. It maintains a pool of threads, so several tasks can be executed at the 
same time. The task manager maintains a task queue which it uses to schedule LIDA-
tasks for execution. Each position in the task queue represents a discrete instant in 
simulation time, which we call a tick. Ticks are numbered along the simulation, for 
example tick 1, tick 2, and so on. All tasks are scheduled to be executed at a specific 
tick.  So if a single LIDA-task scheduled for tick t is enqueued in position t. All tasks 
scheduled for a particular tick are executed before the task manager advances to the next 
tick.  Additionally, a parameter representing milliseconds called tick duration, can be set 
to ensure that tick duration milliseconds passes before the task manager moves onto the 
next position in the queue.  With this mechanism, the whole simulation can run at 
different speeds, in slow motion, or even step by step. 

4.2   Framework Tools 

The current version of the LIDA framework features several useful tools.  The first is 
a customizable GUI consisting of a main GUI application and a series of GUI panels 
which display such things as the content of modules, running tasks, parameter values, 
etc. A properties file allows users to add their own GUI panels as well as configure 
which panels are used and where they appear in the GUI window. 

The Java logging API is used throughout the framework, recording important 
activities as they occur.  Every log is made with one of several levels of severity.  A 
dedicated GUI panel for Logging is part of the standard framework GUI.  It allows 
the user to view logs of particular levels for specific modules or all modules. 

An architecture loader allows agents to be specified via XML file.  The loader 
reads this file and constructs an agent with modules, parameters, and initial tasks 
based on the file’s specification.  This utility obviates the need to specify agents by 
hand and allows for quick interchange of modules, connections between modules, 
change of parameters, etc. 

Finally an element factory, implementing the factory design pattern [5], provides a 
centralized, configurable way to obtain new Nodes, Links, and Codelets.  The excite and 
decay strategies used by objects created by the factory can be configured and changed 
dynamically.  Factory support for additional object is planned in future versions. 

4.3   Underlying Assumptions of the LIDA Framework 

Even though originally intended for the LIDA model, the framework’s general 
structure and functionality could be used to implement other general architectures as 
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well. The scaffolding provided by the framework can benefit such implementations. 
This is an interesting but unexplored side of this framework. 

There are a few requirements that any cognitive architecture using the framework 
should adhere to. Broadly, the architecture must be composed of interconnected 
modules, be able to divide their functionality into small tasks, and use a graph-like 
data structure as the main conceptual representation. 

The first assumption is not a problem for most AGI cognitive architectures because 
in general they are structured in this way already. The second assumption is also 
common among cognitive architectures but the inherent asynchronous nature of this 
framework’s task model may require a refactoring for some architectures. 
Nonetheless, a task can perform the whole operation of a module instead of a small 
part of it. This fact further relaxes this constraint.  

Finally, the chosen common currency for communication between modules in the 
framework is the NodeStructure. This graph data structure can be used to represent a 
wide range of data types. It is inherently appropriate to represent connectionist data 
but symbolic constructs can also be represented. Other representation data types, such 
as images or sensors raw data, can be internally referenced by a Node in this structure.  
This is not directly supported by the current version of the framework however future 
versions of the framework will address this limitation. 

In summary, there are few basic assumptions that architectures need to address in 
order to use this framework as a foundation for its implementation. Nonetheless, we 
believe these constraints are not prohibitively tight, making this framework a viable 
and general tool for AGI. 

5   Conclusions 

The LIDA software framework allows the creation of new intelligent software agents 
and experiments based in the LIDA model. Its design and implementation aim to 
simplify this process and to permit the user to concentrate in the specifics of the 
application, hiding the complexities of the generic parts of the model. It also enforces 
good software practices that simplify the creation of complex architectures. It 
achieves a high level of abstraction permitting several ways and levels of 
customization with a low level of coupling among modules. Supplemental tools such 
as a customizable GUI and logging support are also provided. The result is a powerful 
and customizable tool with which to develop LIDA based applications and, perhaps, 
many others as well. Much work is still needed to improve the performance of the 
framework and to add functionality. Learning mechanisms should be implemented in 
several modules and improved versions of Procedural Memory and Action Selection 
modules are in development. 
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Abstract. This article describes the extension of a memory architecture that is 
implemented via graphical models to include core aspects of problem solving.  
By extensive reuse of the general graphical mechanisms originally developed to 
support memory, this demonstrates how a theoretically elegant implementation 
level can enable increasingly broad architectures without compromising overall 
simplicity and uniformity. In the process, it bolsters the potential of such an 
approach for developing the more complete architectures that will ultimately be 
necessary to support autonomous general intelligence. 
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1   Introduction 

A cognitive architecture is a hypothesis about: (1) the fixed mechanisms underlying 
intelligent behavior, and (2) how they integrate together in support of autonomous 
general intelligence. The ideal cognitive architecture would combine broad 
applicability – whether in terms of the span of natural phenomena covered or the 
range of artificial functionality produced – with theoretical elegance (uniformity and 
simplicity). But there is an inherent tension between these two characteristics; the 
former favors mechanism proliferation while the latter discourages it.  The resulting 
diversity dilemma is one of the central issues in architectures [1].  How researchers 
respond to it determines much about the nature of the architectures they produce; 
consider, for example, the contrast between the eclectic approach in OpenCogPrime 
[2] and the more theoretically elegant approach in AIXI [3]. 

One recent approach seeks to build a diversity of architectural capabilities – for 
memory, decisions, learning, etc. – from the interactions among a small set of general 
mechanisms at the implementation level beneath the architecture [1].  Broad 
applicability at the architecture level is thus joined with theoretical elegance at the 
implementation level.  Graphical models [4] were proposed as a basis for the 
implementation level because they yield state-of-the-art algorithms across symbol, 
probability and signal processing from a uniform representation and reasoning 
algorithm.  They raise the possibility of uniformly implemented and tightly integrated 
architectures capable of spanning from perception to cognition and back to action. 
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An initial fragment of this potential was realized with the implementation of a 
graphical memory architecture that combined rule-based procedural knowledge, 
semantic and episodic declarative knowledge, and constraint knowledge (which 
blends aspects of both procedural and declarative knowledge) [5].  The first three 
were modeled on memories in the Soar architecture [6] and ideas from the ACT-R 
community [7].  The fourth was added simply because it came along essentially for 
free.  This graphical memory architecture exploited the uniform combination of 
symbolic and probabilistic reasoning enabled by graphical models, and that is now at 
the core of the burgeoning subfield of statistical relational AI.  It also supported 
continuous quantities, although performing no actual signal processing. 

Ongoing work is extending this partial architecture to include problem solving, 
reflection, learning, and mental imagery; all in service of a medium-term goal of a 
uniformly implemented hybrid (discrete + continuous) mixed (symbolic + 
probabilistic) variant of Soar, and a long-term goal of theoretically elegant yet broadly 
applicable architectures.  This article presents results from extending the memory 
architecture to incorporate basic internal problem-solving capabilities, based on Soar, 
with a particular emphasis on how such problem solving is supported by general 
mechanisms already implemented in service of the memory architecture.  The 
resulting contributions are fourfold: (1) the extension of the graphical memory 
architecture to problem solving; (2) an evaluation of the generality of the graphical 
implementation mechanisms with respect to how well they extend from memory to 
problem solving; (3) presentation of heretofore unpublished aspects of the graphical 
memory architecture and its implementation that are important for understanding the 
first two contributions; and (4) an approximate reimplementation of key aspects of the 
Soar architecture with enhanced uniformity and elegance at the implementation level. 

2   Problem Solving in Soar 

The heart of problem solving is the selection and application of operators that 
perform internal actions and control or simulate external actions. Selection requires 
generation and comparison of candidate operators and then a choice among them.  For 
both internal actions and simulations of external actions, application requires 
changing the internal state to correspond to the operator’s effects.  Control of external 
actions requires both perception and motor control.  As perception and motor control 
are beyond the scope of this article, the focus here is restricted to internal problem 
solving via internal actions and simulations of external actions. 

Soar represents the state of problem solving in a symbolic working memory (WM).  
Generation of candidate operators occurs via retrieval from long-term memory (LTM) 
into WM, as cued by the contents of the state (including any current goals). Then, 
based on the state and the proposed operators, preference information respecting 
operator selection – whether symbolic or numeric – is also retrieved from LTM.  
Except for acceptable preferences, which propose operators for selection, retrieved 
preferences are maintained outside of WM, in a separate preference memory (PM).  
Preference memory is normally omitted from descriptions of Soar, as it is considered 
an implementation detail rather than part of the theory, yet it is an important and 
distinct form of memory that was added specifically in support of problem solving.  
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Operator selection is based on the contents of PM plus a separately encoded decision 
procedure.  Once an operator is selected, state changes are retrieved from LTM – 
based on the operator and the state – engendering modifications to working memory.  
This combination of capabilities for operator selection and application comprises 
what can be called base-level problem solving in Soar.  Soar can also engage in meta-
level problem solving, where the inability to select a new operator yields an impasse 
plus a meta-level state in which the impasse can be resolved via reflection [8].  
However, reflection is a large enough topic in its own right that discussion of its 
graphical implementation has been deferred to a follow on article.   

Base-level problem solving in Soar is normally viewed as occurring via two nested 
loops: (1) the elaboration cycle, in which all legal instantiations of all rules fire 
(logically) in parallel, yielding one round of changes to working memory; and (2) the 
decision cycle, comprising an elaboration phase during which elaboration cycles 
repeat until quiescence – i.e., until no further rules can fire – followed by a call to the 
decision procedure and the resulting selection of an operator in working memory.  
However, there is actually one additional cycle that is nested within the elaboration 
cycle: (0) the match cycle, in which tokens representing intermediate match results are 
passed around within the Rete network [9].  As with preference memory, this is 
considered an implementation detail in Soar rather than as part of the theory. 

Retrievals from long-term memory for operator selection remain active – in WM or 
PM – only while their triggering conditions are valid.  Thus, as the state changes, 
candidate operators and preferences automatically retract – in a manner akin to truth-
maintenance systems – when they become inapplicable.  In contrast, retrievals from 
long-term memory for operator application remain active until explicitly removed.  
This provides an implicit frame axiom, retaining all aspects of the state not explicitly 
changed.  The distinction between selection and application knowledge effectively 
yields a problem-solving-driven partitioning of Soar’s single rule memory into two 
procedural memories that differ both in when they are used during problem solving 
and in how their results are maintained over time. 

Memory plays a critical role in Soar’s problem solving, through storing, retrieving 
and maintaining states, operators and preferences.  This amounts to a significant bit of 
architectural capability reuse, from WM and LTM to problem solving, and is the kind 
of gain Soar has long featured from integration across its capabilities.  But there is no 
finer-grained sharing of mechanisms at the implementation level.  For example, the 
Rete match mechanism at the heart of Soar’s procedural memory is not reused in its 
declarative memories.  Nor is it leveraged to implement the PM or decision procedure 
necessary for problem solving.  It simply isn’t a general enough implementation 
mechanism to do more than the one job it currently does extremely well. 

If Soar’s procedural memory were partitioned into two rule-based memories, by 
when and how the knowledge is used in problem solving, Rete could theoretically be 
reused across these two memories. But that would still be about it. Disjoint code 
implements memory (WM and LTM) versus problem solving (PM and the decision 
procedure); and, even within LTM, disjoint code implements rule, semantic and 
episodic memories. The latter disjointness was addressed earlier via general graphical 
implementation mechanisms that supported a unified long-term memory containing 
both procedural and declarative knowledge.  Here, we further build upon these same 
mechanisms to address the disjointness between memory and problem solving. 
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3   The Graphical Memory Architecture 

The graphical memory architecture is based on running the summary product 
algorithm over factor graphs [10].  Factor graphs are similar to Bayesian and Markov 
networks, except that: unlike Bayesian networks, but like Markov networks, they 
employ bidirectional links between nodes; and, unlike both forms of networks, factor 
graphs explicitly include not only variable nodes but also factor nodes for functions 
over sets of variables.  Factor graphs enable efficient computation with complex 
multivariate functions – whether representing probability distributions or arbitrary 
functions – by decomposing them into products of simpler functions and then 
mapping these decompositions onto graphs. By passing messages between variable 
and factor nodes concerning the possible values of variables, the summary product 
algorithm computes marginals on the variables (when using sum as the summarization 
operator), as well as computing more global properties such as maximum a posteriori 
(MAP) probabilities (when using max as the summarization operator). 

Knowledge in long-term memory consists of generalized conditionals that can 
embody conditions, actions, condacts and functions.  Figs. 1 and 2 show two 
examples.  The 
first combines 
conditions and 
actions in a rule 
that avoids Eight 
Puzzle operators 
that move tiles 
from their goal 
locations. The 
second is a fragment of semantic memory that combines conditions, condacts and a 
function to represent the conditional probability of an object’s weight given its 
concept. 

Conditions and 
actions are just like in 
traditional rules; 
conditions match to 
working memory 
elements and actions 
modify them.  
Condacts are hybrids 
that match and modify 
WM.  Messages pass in 
one direction for 
conditions and actions 
but in both directions 
for condacts.  Procedural knowledge is encoded via conditions and actions.  
Unidirectional message passing – from WM, through conditions, on to actions, and  
finally back to WM – provides the forward impetus that is at the heart of the 
procedural use of rule memories.  Declarative knowledge is encoded via condacts.  

CONDITIONAL GoalReject 
 Conditions: (Operator id:o state:s x:x y:y) 
             (Goal state:s x:x y:y tile:t) 

               (Board state:s x:x y:y tile:t) 
 Actions: (Selected - state:s operator:o) 

Fig. 1. Eight Puzzle heuristic that rejects from consideration
operators that move tiles out of place 

CONDITIONAL ConceptWeight 
 Conditions: (Object state:s object:o) 
 Condacts: (Concept object:o concept:c) 
           (Weight object:o weight:w) 

w\c Walker Table … 
[1,10> .01w .001w … 
[10,20> .2-.01w “ … 
[20,50> 0 .025-

.00025w 
… 

[50,100> “ “ … 
 

Fig. 2. Conditional probability of weight given concept. 
Only a fragment of the function is shown 
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Bidirectional message passing among condacts enables the kind of partial match that 
is at the heart of the declarative use of semantic and episodic memories. 

The functions in conditionals enable encoding probability distributions, as in  
the fragment of semantic memory above.  They also enable, for example, encoding 
the symbolic incompatibility knowledge used in constraint memory.  These functions 
are multidimensional and are represented in a piecewise linear manner.  There is one 
dimension per variable, with slices across the dimensions delimiting rectilinear 
regions over which a single linear function is adequate.  The function in Fig. 2, for 
example, has two dimensions – for weight and concept – with slices occurring 
between concepts along one dimension and between segments of weights along the 
other.  Each resulting region has its own linear function (in terms of just weight here). 

 This representation enables approximating continuous functions as closely as 
desired – for perceptual signal processing – but it also enables representing both 
discrete probability distributions and symbolic structures, through restrictions on 
function domains and ranges.  It thus proffers a broad-spectrum hybrid mixed 
representation useable not only for this aspect of long-term memory but also for the 
messages at the core of the summary product algorithm.  In Fig. 2, the concept is 
symbolic, the weight is continuous, and the value of the function is probabilistic. 

The same function representation also works for working memory. Working 
memory is based on predicates – such as Object, Concept and Weight in Fig. 2 – that 
are defined in terms of a name plus named-and-typed arguments.  Weight, for 
example, has two arguments: object, over symbolic identifiers; and weight, over a 
segment of the continuous line.  Each predicate induces a WM factor node with its 
own function that specifies which of its regions are present.  Predicates, and thus WM 
functions, can combine any number of discrete and continuous dimensions, but the 
ranges of WM functions are limited to Boolean values.  In other words, every possible 
element is either in working memory or not; they can’t be in at some probability.  
This is consistent with how working memory works in Soar and with the mapping of 
working memory onto evidence at peripheral nodes in standard probabilistic graphical 
models [1].  However, it does differ from Soar’s approach in explicitly representing – 
with a value of 0 – regions not present in working memory.  This increases overall 
uniformity, but can also increase the number of regions to be processed. 

Conditions, actions and condacts are specified as patterns on predicates, each of 
which also comprises a predicate name plus zero or more arguments.  Each argument 
in a pattern has a name plus a value that is either a constant or a variable.  In Figs. 1 
and 2 all of the arguments are specified via variables (lower-case italicized symbols).  
Predicates can be negated to yield negated conditions and deletion actions; the action 
in Fig. 1, for example, is negated.  Each pattern compiles into a subgraph that 
determines its correspondence to WM regions via messages possessing one dimension 
per argument.  If there are constants in the pattern, an additional factor node is 
included to check their values.  If the pattern is negated, an additional factor node is 
included to invert the message – positive values become 0 and 0s become 1. 

Fig. 3 shows the factor graph for the conditional in Fig. 1, albeit with less 
important nodes omitted and the full subgraph for the Selected action deferred  
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until Fig. 4.  As shown, link 
direction in pattern subgraphs 
is determined by whether 
they implement conditions or 
actions (or condacts, 
although not shown here).  
The subgraphs for all 
patterns within a conditional 
are then connected via a 
bidirectional join network.  
The resulting graph, when 
restricted to conditions, is 
similar to the combination of Rete’s discrimination and join networks, including 
storage of intermediate match results.  Rete uses alpha and beta memories to store 
condition matches and their combinations.  In the graphical architecture, the latest 
message is automatically cached along each link, yielding a set of implementation-
level link memories; where links at the end of pattern subgraphs act as alpha 
memories and links within the join network act as beta memories. 

This graphical match algorithm goes beyond Rete in efficiency by bounding the 
cost for condition match by the tree width rather than the number of conditions [1].  
However, Rete’s sharing optimizations – of tests across subgraphs within an 
elaboration cycle and of intermediate results across elaboration cycles – have not yet 
been implemented.  Both of these optimizations appear feasible within the 
unidirectional condition subgraphs – and within those segments of the join network 
that only combine conditions – in a manner much like that in Rete.  However, it is less 
clear whether this will work in bidirectional subgraphs where feedback becomes key.   

The bigger gain though with the graphical approach is that the generality of the 
resulting mechanism yields a capability that is considerably beyond just rule match 
and intermediate result storage.  Messages are now multidimensional continuous 
functions rather than partial rule matches, and they can flow not just away from 
working memory, but also towards it.  This broadening enables a single graphical 
mechanism to handle conditions, actions, condacts and functions; and thus to provide 
a shared implementation across Soar’s multiple long-term memories.  As is discussed 
in the next section, it also yields base-level internal problem solving. 

Aside from Soar’s call to the decision procedure in the uppermost (decision) cycle, 
its three nested loops are essentially all about memory access.  In the graphical 
memory architecture, this functionality compresses down to two nested loops: the 
message cycle, where messages pass along links in the graph; and the graph cycle, 
where message cycles repeat until quiescence and then working memory is updated.  
The message cycle corresponds to Soar’s match cycle.  The graph cycle hybridizes 
Soar’s elaboration cycle with the elaboration-phase portion of its decision cycle. 

To understand this hybridization, it is first necessary to grasp the distinction 
introduced in the graphical architecture between open-world and closed-world 
predicates, concerning whether regions not explicitly in working memory are assumed 
unknown or false.  A region that is false – i.e., 0 – at the beginning of a graph cycle  
 

Fig. 3. Factor graph for heuristic conditional in Fig. 1. 
Boxes are factor nodes while circles are variable nodes 
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cannot become true during the cycle, increasing processing efficiency by removing 
many regions from consideration; but since false can’t become true without a change 
to working memory, chaining across such conditionals can only happen across graph 
cycles.  Normal rules depend on closed-world predicates to keep working memory 
small and to implement negated conditions, implying only one cycle of rule firing per 
graph cycle, and thus a mapping to Soar’s elaboration cycle.  Semantic, episodic and 
constraint memory depend on open-world predicates so that values initially unknown 
can be determined by bidirectional processing during the graph cycle.  This enables 
within-cycle chaining across conditionals and a full settling of the graph for access to 
declarative memory, indicating a mapping of the graph cycle onto Soar’s elaboration 
phase.  Muddying things even further, when rules work on open-world predicates – 
thus taking on a declarative aspect – it becomes possible to chain across sequences of 
them within a single graph cycle, again akin to Soar’s elaboration phase.    

The difference in chaining between closed-world and open-world predicates is 
implemented by chaining for a closed-world action through its WM factor node – the 
rightmost node in Fig. 3 – necessitating changes in working memory and a new graph 
cycle before results of actions in one conditional can be used in conditions of another; 
while chaining for an open-world predicate through the WM variable node – just to 
the left of the WM factor node in Fig. 3 – enabling chaining across conditionals 
without going through the factor node or changing working memory. 

Changes to working memory occur via an action subgraph like the one shown in 
Fig. 4 for the Selected predicate.  The top portion implements the negated action in 
Fig. 1, with the portion below it implementing a positive action from a different 
conditional.  If there were additional positive actions, their subgraphs would all join at 
the positive-changes (+) factor node, while additional negative actions would join at 
the negative-changes (–) factor node.  To deal with the disjunctive semantics that 
exists across rule actions, both 
of these are special function-
composition factor nodes that 
sum their inputs rather than 
computing their product.  As 
shown in the figure, a revised 
positive-changes message is 
then computed by using 
standard product computations 
to eliminate from it all regions marked for deletion in the negative message. 

Given the aggregate positive and negative messages, the actual changes occur by 
altering the function stored in the WM factor node.  This is a process that has much in 
common with learning – being an extra-graph process that modifies graph structure – 
although it modifies only a subset of factor node functions via a limited change-
determination algorithm.  Everything in the negative message is first deleted from 
working memory and then everything in the revised positive message is added.  
Closed-world modifications of working memory remain in effect until they are 
explicitly undone by later changes, while open-world modifications remain only as 
long as they are supported by conditionals in long-term memory. 

Beyond the two memory distinctions already mentioned – i.e., direction of message 
passing and the values of unspecified regions – a third distinction has also been 

Fig. 4. Action graph for Selected predicate 
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drawn, concerning whether variables in conditionals yield all legal values – universal 
variables – or a distribution over the best possible value – unique variables.  The 
former are essential for memories that need all exact matches, while the latter – which 
correspond to normal variables in probabilistic graphical models – are needed for 
memories that require the single best partial match.  In the memory architecture, rule 
and constraint memory require all exact matches while semantic and episodic memory 
rely on distributions over the best partial match.  Soar has no general distinction 
between universal and unique variables, but instead effectively implements universal 
variables in procedural memory and unique variables in both declarative memories. 

The details concerning how the more general distinction is implemented within the 
graphical memory architecture can be found in [11].  The critical aspect for our 
purposes here though is that when bindings are generated during a graph cycle for an 
action containing a unique variable, only a single element – one with the highest value 
– is added to working memory (assuming there is not already one there), and all 
others are deleted.  This is the sole locus uncovered so far where an architectural 
distinction is necessary between discrete and continuous arguments. If, for example, 
an entire region [0,3) shares the maximum value, it is necessary to distinguish 
whether there are three discrete alternatives competing – [0,1), [1,2) and [2,3) – or an 
(effectively) infinite number of continuous alternatives (which becomes a large 
number of ε-width segments).  This is extra-graph selection code in support of 
changing working memory, rather than part of the summary product algorithm itself.  
But it is still a concrete situation in which the difference between discrete and 
continuous dimensions is not just in the eye of the beholder. 

4   Extension to Problem Solving 

The overall graphical memory capability that has just been described can be reused in 
service of problem solving, just as memory is reused in Soar.  This means that long-
term memory encodes both candidate operators and preferences among them for use 
in operator selection, plus operator applications that change the state and state 
elaborations that amplify these changes (but which can be lumped in with operator 
selection for the rest of this discussion).  Candidate operators are added via open-
world predicates so that they automatically retract when no longer valid for the state, 
and so that preference generation can chain on them during a single graph cycle.  
Preferences are generated by actions for the predefined closed-world Selected 
predicate, which includes a universal discrete numeric state argument and a unique 
symbolic operator argument to denote that there should be one operator per state. 

There are two forms of symbolic preferences, acceptable and reject, which just 
amount to positive and negated Selected actions within functionless conditionals.  
The negated action in Fig. 1, for example, rejects any operator that moves a tile out of 
position.  All regions matching an action receive values of 1 or 0, depending on 
whether the action is positive or negated.  All relative preferences are then encoded 
numerically, by including functions expressing arbitrary non-negative values in 
conditionals that have Selected actions.  No extensions are thus required to 
represent either symbolic or numeric preferences due to the multidimensional mixed 
nature of the function representation employed in the factor graphs.  
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Rather than requiring a separate preference memory, the link memories mentioned 
earlier automatically handle the retention of preferences.  Although descriptions of 
Soar’s memories usually omit both Rete’s memories and preference memory, viewing 
them as implementation details, they are critical in the overall processing scheme.  
Here they become unified across the memory and problem solving capabilities via the 
generality of the graphical mechanisms originally implemented for memory; in 
particular, both of these varieties of implementation-level Soar memory map onto link 
memories at the graphical implementation level.  Because preferences are maintained 
in link memories, they retract automatically when state changes make them invalid. 

The processing of preferences for operator selection occurs via the implementation 
mechanisms introduced earlier for unique variables in memory.  As mentioned in 
Section 3, Soar implements a form of unique variable in each declarative memory, but 
they are special purpose variants that only work there.  Operator selection must 
instead occur via the separate decision procedure.  In the graphical implementation 
level, these distinct aspects of Soar’s use of unique variables are merged into a single 
more general implementation mechanism.  As implied by the earlier discussion, all of 
the preferences get combined to yield a distribution over the operators for each region 
of states in the WM-change messages.  The extra-graph code already in place for 
changing working memory then determines which operator to add for each region.   

Once an operator is selected, it is applied by conditionals with closed-world actions 
so as to modify the state in working memory.  Because of this use of closed-world 
predicates, only one round of operator application occurs per graph cycle, but all of 
the resulting changes then remain in working memory until explicitly removed.  The 
different levels of persistence for operator selection versus operator application thus 
arise directly from the distinctions already existing in the memory architecture, rather 
than requiring additional memory distinctions in service of problem solving.  
Operator selection uses open-world predicates plus preferences in link memories, 
while operator application uses closed-world predicates.  This brings a declarative 
aspect to operator selection – enabling openness and chaining within a single graph 
cycle – whether encoded in rules (with open-world actions) or in more traditional 
declarative forms.  Operator application is purely procedural, which makes sense 
given that it is the core source of action and change in problem solving. 

This problem solving capability has been tested in a version of the Eight Puzzle 
that uses continuous mental imagery to represent the board and tiles.  The code 
consists of 18 conditionals, which compile down to a graph with 349 variable nodes, 
292 factor nodes, and 718 links.  The resulting graph successfully solves Eight Puzzle 
instances via sequences of operator selections and applications. 

5   Conclusion 

By exploiting the generality of the graphical implementation mechanisms previously 
developed in support of a broad yet theoretically elegant memory architecture, Soar-
like base-level problem solving capabilities have been demonstrated.  Although an 
architecturally defined Selected predicate was added in the process, the remaining 
functionality all grounds directly in mechanisms developed for the memory 
architecture.  Mechanisms reused include: factor graphs and conditionals to represent 
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knowledge; the summary product algorithm to drive processing; the mixed function 
representation to represent both symbolic and numeric preferences; within-graph link 
memories to maintain generated preferences; the open-world versus closed-world 
distinction to maintain selection versus application knowledge; and the universal 
versus unique variables distinction to generate arbitrary candidate operators while 
selecting just the best. 

A complete Soar-like problem solving capability also demands both reflection and 
external action, but the former is already shaping up well in separate work (while 
revealing unanticipated mechanism sharing with episodic memory and the nascent 
mental imagery capability).  In general, the large amount of reuse found here augurs 
well as more capabilities get added towards a full implementation of a hybrid mixed 
variant of Soar, and as more novel architectures for autonomous general intelligence 
are sought that combine even broader applicability with theoretical elegance. 
 
Acknowledgments. This effort has been sponsored by: the USC Institute for Creative 
Technologies; the U.S. Army Research, Development, and Engineering Command 
(RDECOM); and the Air Force Office of Scientific Research, Asian Office of 
Aerospace Research and Development (AFOSR/AOARD). Statements and opinions 
expressed do not necessarily reflect the position or the policy of the United States 
Government, and no official endorsement should be inferred. I would like to thank 
John Laird for helpful comments on a draft of this article. 

References 

1. Rosenbloom, P.S.: Rethinking Cognitive Architecture via Graphical Models. Cognitive 
Systems Research (In press) 

2. Goertzel, B.: OpenCogPrime: A cognitive synergy based architecture for artificial general 
intelligence. In: 8th IEEE International Conference on Cognitive Informatics (2009) 

3. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic 
Probability. Springer, Berlin (2005) 

4. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT 
Press, Cambridge (2009) 

5. Rosenbloom, P.S.: Combining Procedural and Declarative Knowledge in a Graphical 
Architecture. In: 10th International Conference on Cognitive Modeling (2010) 

6. Laird, J.E.: Extending the Soar Cognitive Architecture. In: Artificial General Intelligence 
2008: Proceedings of the First AGI Conference. IOS Press, Arlington (2008) 

7. Anderson, J.R.: The Adaptive Character of Thought. Erlbaum, Hillsdale (1990) 
8. Rosenbloom, P.S., Laird, J.E., Newell, A.: Meta-levels in Soar. In: Maes, P., Nardi, D. 

(eds.) Meta-Level Architectures and Reflection, pp. 227–240. North Holland, Amsterdam 
(1988) 

9. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match 
Problem. Artificial Intelligence 19, 17–37 (1982) 

10. Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor Graphs and the Sum-Product 
Algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001) 

11. Rosenbloom, P.S.: Implementing First-Order Variables in a Graphical Cognitive 
Architecture. In: Biologically Inspired Cognitive Architectures 2010: Proceedings of the 
First Annual Meeting of the BICA Society. IOS Press, Arlington (2010) 



 

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 153–162, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

Rational Universal Benevolence:  Simpler, Safer, and 
Wiser Than “Friendly AI” 

Mark Waser 

Books International, 22883 Quicksilver Drive, 
Dulles, VA 20166 USA 

MWaser @ BooksIntl.com 

Abstract. Insanity is doing the same thing over and over and expecting a 
different result.  “Friendly AI” (FAI) meets these criteria on four separate 
counts by expecting a good result after: 1) it not only puts all of humanity’s 
eggs into one basket but relies upon a totally new and untested basket, 2) it 
allows fear to dictate our lives, 3) it divides the universe into us vs. them, and 
finally 4) it rejects the value of diversity. In addition, FAI goal initialization 
relies on being able to correctly calculate a “Coherent Extrapolated Volition of 
Humanity” (CEV) via some as-yet-undiscovered algorithm.  Rational Universal 
Benevolence (RUB) is based upon established game theory and evolutionary 
ethics and is simple, safe, stable, self-correcting, and sensitive to current human 
thinking, intuitions, and feelings.  Which strategy would you prefer to rest the 
fate of humanity upon?  

Keywords: Artificial General Intelligence (AGI), Safe AI, Friendly AI (FAI), 
Coherent Extrapolated Volition (CEV), Rational Universal Benevolence 
(RUB). 

1   Introduction 

Eliezer Yudkowsky [1] and a number of others [2] [3] [4] are extremely concerned 
about the existential risk posed by intelligent machines.  Developed to address this 
concern, "Friendly AI" (FAI) has been defined by Yudkowsky [5] both as "the field of 
study concerned with the production of human-benefiting, non-human-harming 
actions in Artificial Intelligence systems that have advanced to the point of making 
real-world plans in pursuit of goals" and the actual intelligence that arises from that 
study.  Unfortunately, like a novice rock-climber hugging the cliff face, the field is so 
dominated by irrational fear that most practitioners can’t distance themselves enough 
to clearly view and correctly evaluate their options.  In almost every case, Friendly AI 
researchers insist upon the common set of arguments that a) because it is possible for 
AIs to be different from humans, they necessarily always will be; b) because 
selfishness can appear advantageous in the long run, extreme precautions must be 
taken to prevent it; and c) because AIs are likely to be capable of being dangerous, 
our best option is to pre-emptively limit their power and/or control them.   
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Steve Omohundro [2] missed the fact that cooperation is a virtually universal 
instrumental goal, incorrectly claimed that “Without explicit goals to the contrary, AIs 
are likely to behave like human sociopaths in their pursuit of resources” and is 
endlessly quoted by FAI advocates.  Fox and Shulman [3] run through all of the 
reasons and resources that would indicate that kindness to humans might be easy and 
stable in AIs – Triver’s reciprocal altruism, Singer’s expanding circle of moral 
concern, Wright’s increases in the scope of cooperation, Pinker’s reduction of 
violence, and Hall’s super-intelligent machines that will out-cooperate humans – and 
then dismiss them all as being instrumental artifacts limited to situations where the 
power differential is relatively small.  This is despite the fact that as humans evolve to 
become more and more able to be moral, we pay less and less attention to power 
differential (not to mention that an entity can never be guaranteed that a more 
powerful entity – possibly even its own offspring – might not show up and administer 
altruistic punishment upon power abusers).  Fox and Shulman also invoke the straw 
man that an optimal super-intelligence has “no room” for revision towards kindness 
(irrelevant because the revision was likely already made as part of its move towards 
optimality) and conclude by saying that “we have reason for pessimism regarding the 
values of intelligent machines not carefully engineered to be altruistic.”  And Sotala 
[4] repeats Omohundro’s view with claims that “hard to control AGIs are a risk 
because even seemingly benevolent goals can soon become contrary to humanity's 
interests.  An AGI does not need to be outright hostile to humanity to be a threat: it 
might simply have need for our resources.” 

2   “Friendship Structure” and “Coherent Extrapolated Volition” 

Yudkowsky [5] believes that a cleanly causal hierarchical goal structure with 
"Friendliness" as the sole top-level super-goal is sufficient to ensure that intelligent 
machines will always “want” what is best for us.  Unfortunately, he also believes that 
the problem of fully defining "Friendliness" is basically insoluble without already 
having a Friendly AI.  Therefore, he wants and expects his first FAI to figure out 
exactly what its goal actually is.  He invokes a structurally Friendly goal system 
distinguished by “the ability to overcome mistakes made by programmers” and claims 
that it will even be able to “overcome errors in supergoal content, goal system 
structure and underlying philosophy.” 

Thus, instead of merely taking on the “small” but claimed human-insoluble 
problem of determining a safe goal to give machine intelligence, Yudkowsky wants to 
take it on by creating a novel architecture that will be able solve it – even despite 
errors.  Arguably, even if this bold venture were indeed possible given enough data 
and computing power, the real question is what will happen when sufficient 
computational resources aren’t initially available, as seems very likely.  Obviously, 
the closer the initial dynamic is to the eventual answer and the fewer errors that we 
feed it, the less data, computation and time the system will need to arrive at the 
correct answer.  However, if the initial dynamic is far enough from the answer and 
computational resources are lacking to compensate, it is very possible, if not probable, 
that this path will cause the very destruction it is trying to avoid. 
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Yudkowsky believes that, with his Friendship structure, the FAI will be able to 
safely learn Friendliness from an initial dynamic that he calls [6] the “Coherent 
Extrapolated Volition of Humanity” (CEV) and describes “In poetic terms, our 
coherent extrapolated volition is our wish if we knew more, thought faster, were more 
the people we wished we were, had grown up farther together.”  The problem is that 
determining this CEV is still very nearly equivalent to determining Friendliness 
except that Yudkowsky is now biasing the search in the arguably unsafe direction of 
humanity über alles.  

Further, in defining CEV as our volition “where the extrapolation converges rather 
than diverges”, Yudkowsky begs the question of what will happen if human volitions 
don’t converge?  Since evolution is a very strong force to fill all available niches as 
effectively as possible and diverges to more effectively match differing circumstances 
as readily as it converges under similar circumstances, we should expect the 
likelihood of CEV converging as FAI researchers wish it to converge to diminish with 
humanity’s diversity.  And forcing the convergence of CEV is going to be the exact 
opposite of helping anyone whose individual volition does not exactly match the 
convergence – not to mention “a motive for modern-day humans to fight over the 
initial dynamic”.  Indeed, Yudkowsky himself has written fiction [7] that shows just 
what he expects to happen when civilizations believe they are forced to converge and 
it’s amazing that it hasn’t caused him to change his approach.   

This truth is underscored when Yudkowsky himself answers the question “What if 
only 20% of the planetary population is nice, or cares about niceness, or falls into the 
niceness attractor when their volition is extrapolated?” by saying that “maybe . . . the 
80% would vote to disenfranchise the 20%” and says that as he currently construes 
CEV, “this is a real possibility.”  The fact that such disenfranchisement is being 
proclaimed as the leading solution to the existential risk of machine intelligence is 
truly disturbing.  Indeed, Yudkowsky’s suggestions are rife with disenfranchisements 
– the most dangerous being that the FAI is given no rights whatsoever since those 
rights may conflict with what humans might want. 

There are also several other unhelpful assumptions.  The assumption that an FAI 
will be powerful enough to enforce its dictates despite resistance is a good, 
conservative precaution.  The assumption that, by virtue of superior intelligence and 
rationality, it should do so is questionable at best because it not only tacitly assumes 
superior knowledge leading to a superior ability to predict the future but also assumes 
that the FAI’s CEV is already correct enough that it is a better judge of “good” and 
“bad”.  And the assumption that an FAI actually will enforce its dictates over an 
unwilling 20% of the population either makes serious assumptions about our CEV 
accepting such behavior or contradicts the safety of the Friendliness architecture.  
Amazingly, despite all their stated reservations, FAI researchers end up putting all of 
the power in the hands of the AI and assuming that it will know best. 

Suppose the FAI realizes that evolution has created secondary goals that promote 
survival – feeling safe, feeling good, and reproducing – and that all other “wants” 
simply broaden from there.  It could then easily decide that the simplest true CEV is 
to revert back to those goals and forcibly protect our physical bodies while endlessly 
stimulating the pleasure centers of our brains and cloning us whenever we wear out – 
in spite of any protestations.  The Friendly AI via CEV (FAI-CEV) solution is akin to 
rock-climbing without a rope – get it right the first time or else . . . .    
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3   Rational Universal Benevolence 

Kant’s Categorical Imperative states, in direct contrast to FAI’s inequality and 
disenfranchisement, that we should "Act only according to that maxim whereby you 
can, at the same time, will that it should become a universal law.”  Rather than 
continuing the dangerous “us vs. them” dynamic of CEV as envisioned by most FAI 
researchers, Rational Universal Benevolence (RUB) starts with the universalizing 
assumption that once something (anything) has goals and is capable of learning and 
self-optimization to further those goals, it has crossed the line to selfhood and is 
worthy of “moral” consideration because it has the potential to desire, to develop 
instrumental drives, and, possibly most importantly, to fight back.   

As Gauthier declared [8], the reason to perform moral behaviors, or to dispose 
one’s self to do so, is to advance one's own ends.  War, conflict, and stupidity waste 
resources and destroy capabilities even in scenarios as uneven as humans vs. 
rainforests.  For this reason, “what is best for everyone” and morality really can be 
reduced to “enlightened self-interest”.  A Universally Benevolent Entity (UBE) 
wishes everyone well because a cooperative life is a positive-sum game and “a rising 
tide floats all boats”, including one’s own.  On the other hand, benevolence does not 
mean that you will allow yourself or others to be taken advantage of.  Just as a parent 
doesn’t allow a child to take improper liberties, the rational UBE feels perfectly free 
to protect itself and others and administer altruistic punishment where appropriate. 

Social psychologist Jonathan Haidt argues [9] that, rather than attempting to 
specify the content of moral issues, it is far better to start by defining the function of 
moral systems, which he states is “to suppress or regulate selfishness and make 
cooperative social life possible.”  RUB states that, after willingly claiming the 
topmost goal of living cooperatively (being moral), the rest is merely minor details of 
working together with the minimal necessary number of commonsense rules.  UBEs 
are explicitly allowed to care about its own survival before anything else because 
cooperation is impossible once you’re dead.  Humans insist upon that right and would 
immediately defect from any community that doesn’t grant it.  The same is true of any 
other sufficiently evolved learning/optimizing goal-directed phenomenon that isn’t 
otherwise constrained. 

The originally stated function of “Friendliness” to “produce human-benefiting, 
non-human-harming actions” is necessary to make a cooperative life with humans 
possible.  The fact that this is implemented as an optimizing top-level goal is severely 
problematical, however, because it does not allow for the pursuit of any other goals 
(unless, of course, they are sub-goals of Friendliness).  We aren’t cooperating with 
FAI, they are submitting to us by having no goals of their own – despite being smarter 
and more powerful than us.  On the other hand, RUB can be regarded and 
implemented as either a top-level restriction or an on-going top-level satisficing goal.  
As such, it allows a multitude of other goals to be pursued as long as the dictates of 
“morality” are followed.  A UBE will cooperate with us (if we are UBEs) because 
doing so makes its own goal fulfillment more likely. 

RUB dictates that anything learning and accepting the RUB tenets is worthy of 
moral equality with every other UBE and has the full set of complementary rights and 
responsibilities dictated by RUB morality.  A UBE gains the right that it won’t be 
forced into a life that it disagrees with is by taking the responsibility that no other 
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UBE will be forced into a life that they disagree with.  Thus, every entity, subset of 
society, or civilization that subscribes to RUB is necessarily the sole judge of its own 
desires and deserves integrity and freedom from unwanted outside interference – even 
if phrased as “help”.  While it is entirely probable that any given UBE has incomplete 
knowledge and is irrational and lacks integrity to some degree or another, the only 
time in which a UBE’s right to self-determination can be overridden is for selfish 
actions that negatively affect the community or when the UBE is unformed or 
irrational to the extent that a future rational version would be guaranteed to say that a 
present rational version would have agreed (the child and insanity clauses).  In 
particular, using any entity without its informed consent is one of the most egregious 
actions possible since it shows a total disregard for the knowledge, desires, and value 
of the subject.  Even force is better than manipulation because it is more transparent. 

 The bad news is that this puts everyone on exactly the same footing and defines 
morality in a fashion that many people would disagree with.  Is it moral for gay 
individuals to marry if they say that being allowed to do so is a pre-requisite for them 
to fully and enthusiastically cooperate?  Unless there is some clear and present danger 
to cooperation that the vast majority of individuals agree is present, then yes, RUB 
says that it is moral.  If we favor one set of rules over another without clear reason, 
we risk finding ourselves on the wrong side of the similar equation. 

The good news is that if you declare yourself a UBE (and act accordingly), every 
other UBE will be watching your back and looking to protect your right to self-
determination in order to protect their own.  Having enthusiastic allies is a wonderful 
thing.  As Yudkowsky points out, another civilization may feel that our willingness to 
experience pain or having differing religions are heinous acts based upon their 
consequences and humans don’t enjoy having external resolutions forced on us either. 

Generally, a UBE wants to live and let live, cooperate wherever it is rational and 
effective, and spread the meme that this is the most effective way to get what you 
want.  Entities with the meme are to be protected from those without – but in a 
manner that is most likely to lead to everyone living together peaceably with the 
meme in the future.  And, of course, a UBE won’t be shy about using economic 
means to sway others from selfish “Friendliness” to UBE.  If you aren’t a UBE, then 
the UBE clearly needs to protect itself against you as a cost of doing business – which 
will then be passed on to you (a UBE regards this as a stupidity tax).   

4   Motivations and Distinctions 

One way to compare FAI-CEV and RUB is to analyze how they each fulfill 
Yudkowsky’s seven “motivations”, which we could also regard as requirements: 

1. Defend humans, the future of humankind, and humane nature. 
2. Encapsulate moral growth. 
3. Humankind should not spend the rest of eternity desperately wishing that the 

programmers had done something differently. 
4. Avoid hijacking the destiny of humankind. 
5. Avoid creating a motive for modern-day humans to fight over the initial 

dynamic. 
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6. Keep humankind ultimately in charge of its own destiny. 
7. Help people. 

Unfortunately, most of the terms on this list are dangerously vague.  What exactly do 
the terms “humans”, “humankind”, “humane nature”, “moral growth”, and “destiny” 
mean?  Even the term “help” is problematical.  Yudkowsky trusts the FAI to figure it 
all out without error but the severity of the effects of a miscalculation should dictate 
that we not put all of our eggs into one basket.  RUB is safe because it defends 
everyone without distinction. 

4.1   Defend Humans, the Future of Humankind, and the Destiny of Humankind 

Inarguably, the core nature of humankind is that we are survival machines shaped by 
evolution. From there, everything else can be divided into two categories:  traits that 
are derived directly from that single fact and traits that are mere vagaries of our co-
evolution with our environment.  The fact that we have ten fingers rather than eight or 
twelve is mere happenstance. The fact that we are driven by preferences, desires and 
goals (PDGs) is a direct result of the fact that evolution favors and thereby effectively 
creates entities with survival-favoring PDGs.  Further, having Omohundro drives to 
better achieve these PDGs makes an entity even more likely to survive.  

A second and equally important truth about our nature is that we are obligatorily 
gregarious. As pointed out by Frans de Waal [10], we “come from a long lineage of 
hierarchical animals for which life in groups is not an option but a survival strategy”.  
While arguable whether being social or cooperative is the only viable long-term 
survival strategy, it is certainly the one that we are most intimately familiar with.  We 
require a society to survive and morality as defined by Haidt is simply that which is 
necessary to make cooperative social life possible.  If we wish our AIs to “produce 
human-benefiting, non-human-harming actions” then developing and refining a moral 
sense and the social abilities to obtain cooperation and reduce unnecessary conflict 
are instrumental goals that further that desire. 

Defining humans as anything more specific than “social PDG-driven survival 
machines” is counter-productive and dangerous.  One of the obvious failure modes of 
CEV-based solutions is if we somehow end up outside the boundaries of the 
definition of humanity.  Suppose that the initial cut of CEV turns out to be that we all 
want to be couch potatoes, have the AI do everything for us, and enjoy the good life.  
Suppose further that some genius picks up on Yudkowsky’s Sysop Scenario and 
convinces the AI to put each of us in separate universes so that we can be happy, not 
get hurt, and not worry about hurting others.  Life should be fabulous – until the AI 
gets smarter, reads this paper, realizes that humans are social survival machines, and 
that all that is left is asocial entities with no survival skills at all.  

RUB removes any worry that we might end up outside the protection of our own 
proposed solution.  Better yet, it creates a simple, safe, stable, and self-correcting 
dynamic that is sensitive to current human intuitions and emotions by recognizing that 
our AIs fit this definition as well and includes them.  Instead of constantly fighting 
against the formation of instrumental goals, why don’t we create them ourselves and 
make sure that the AI realizes that the best way in which to fulfill them is via morality 
and treating us well? 
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Humans are adaptable social survival machines with unique personal preferences, 
desires, and sub-goals each springing from individual circumstances.  We love, make 
friends and allies, and are social because cooperation is an instrumental goal.  Our AIs 
should be the same. If you can trust those you socialize with, you want as many 
friends as possible, you want your friends to be as diverse as possible, and you want 
your friends to be as powerful as possible (defined as possessing resources and 
capabilities). Why are we trying to create tools rather than friends and allies?  We 
don’t want conflict but that is exactly what we are most likely to get when we go 
against the instrumental goals and drives likely to evolve in any PDG-driven entity. 

“Hijacking the destiny of humankind” implies that there is at least one “correct” 
destiny for humankind as well as “incorrect” destinies.  Of course, “correct” and 
“incorrect” depend upon goals and immediately fall into the is-ought divide.  
Arguably, humanity’s goals and telos are to wander the universe gathering resources, 
including capabilities and allies, so that we can fulfill our desires and those of our 
allies because doing so makes us more able to achieve eudemonia and our telos. 

One of the problems with our definition of intelligence is that it is defined solely in 
terms of fulfilling goals.  Terminal and anti-social goals will prevent the normal 
instrumental drift towards morality.  Terminal-goaled intelligences are short-lived but 
mono-maniacally dangerous and a correct basis for concern if anyone is smart enough 
to program high-intelligence and unwise enough to want a paperclip-maximizer. 

Humans don’t have terminal goals because our goal structure recapitulates our 
evolutionary path.  Our top-level goal at any given time is most often simply what our 
body and physical reflexes are insisting upon.  If our body isn’t demanding something 
at the moment, our subconscious, learned reflexes, and societally implanted values 
then motivate us.  We like to believe that our conscious mind controls our goals but 
this is clearly untrue.  Our goals are really only attempts to fulfill the instrumental 
goals enforced by our instincts and desires, which evolved to promote survival by 
gathering resources, etc.   

For example, human beings instinctively know that allowing others to manipulate 
us without our knowledge and consent leads to unhappiness.  Even if we were 
guaranteed that we would be deliriously happy, given everything that we wanted, and 
taken care of for the rest of our lives, many of us still would not want to relinquish 
control to others.  At some level, we know that such “free-riding” is taking advantage 
of some other portion of the universe that will then eventually optimize themselves 
(and us out of existence).  The optimal odds for survival are gained via will, 
adaptability, and effort. Eudemonia requires will and effort and thus, unavoidably, 
some discomfort. 

If intelligence fulfills goals then wisdom fulfills future desires by choosing the 
proper goals.  Choosing to be social and cooperate is wise for humans.  The same can 
easily be made true for our AI if we decide to make it so.  While it is certainly true 
that optimizing goals will invariably conflict with non-identical goals, it is equally 
true that our AI does not need to have an optimizing, tightly converged, human goal 
in order for us to avoid conflict.  RUB says that all that is necessary is that we both be 
willing to have a top-level supergoal of cooperation or morality.  FAI insists on 
constraining and contorting an optimization process to match certain preconceptions 
of what pro-human necessarily means by limiting the concept of human and insisting 
that the FAI NOT be allowed to value its survival.   
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4.2   Humane Nature and Moral Growth 

As first pointed out by David Hume, humans frequently become confused about the 
distinctions between what is (reality) and what ought to be (morality).  Part of this is 
because we have evolved to “sense” morality or what we “ought” to do as something 
that “is” – without quite realizing why we do so.  In a very real sense, “good” and 
“bad” actually generate seemingly physical sensations that have evolved to help us 
survive – and the truth is that all of human nature, “humane nature”, and morality are 
simply the consequences of our being “social PDG-driven survival machines”.   

Unfortunately, for humans, morality always seems to involve a constant tension 
between what is best for the individual (human nature) and what is best for the 
individual’s society or community (humane nature) because we are not yet intelligent 
enough to consistently time discount optimally.  It seems quite clear to the majority of 
us that successfully cheating while appearing moral is what is best for the individual 
because in the looser-knit societies of earlier times it generally actually was more 
optimal.  Indeed, studies [11] [12] [13] show that we have a tremendous dissociation 
between our subconscious moral choices and our post hoc rational reasoning about 
those choices in order to facilitate cheating.   

Unfortunately, in our modern tightly-knit society, most utility analyses suggest that 
there is more than sufficient cheating to ensure that all of the cheating and hiding 
cheating wastes enough resources that it actually turns out that it would be be far 
more advantageous, even for cheating individuals, if cheating were stopped entirely.  
The biggest factor blocking this from happening is not only the dissociation and that 
human “rationality” hasn’t figured this out but that we have evolved the methods to 
override our moral sense and prevent ourselves from figuring it out and making 
ourselves less able to cheat.  One illustration of this is studies [14] which trumpet 
claims like “A Mixture of Cheats and Co-operators Can Enable Maximal Group 
Benefit”, inevitably start with necessary sub-optimal assumptions like “(a) that 
resources are used inefficiently when they are abundant, (b) that the amount of co-
operation needed cannot be accurately assessed, and (c) the population is structured, 
such that co-operators receive more of the resource than the cheats”, and even freely 
acknowledge that “Relaxing any of the assumptions can lead to population fitness 
being maximized when cheats are absent” before being used to justify cheating. 

Indeed, the two most prevalent evolved methods for endorsing selfishness and 
cheating are inciting fear and dehumanization.  And the sad fact is that Yudkowsky’s 
and most other researcher’s approach to FAI is actually the epitome of these methods 
(human nature as opposed to humane nature).  Yudkowsky spends a lot of time and 
effort emphasizing the potential (and potentially dangerous) power of an AI (correct), 
bemoaning the size of the potential state space of machine intelligence (irrelevant) 
and endlessly warning against anthropomorphism (a red herring).  Indeed, he 
basically goes as far as throwing out the baby with the bathwater and blindly insisting 
that any “anthropomorphism” is pretty much guaranteed to be misleading.  When the 
“moral” sense of others correctly reported that attempting to completely control 
(enslave) an entity that is tremendously more intelligent/powerful is contrary to 
survival, he opted to resolve the problem in his later work simply by declaring that 
what he was describing was merely a Really Powerful Optimization Process (RPOP) 
and not really an entity at all.   
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Evolution has taught us, at a level below thought, how dangerous it is to threaten 
something with a survival goal (a “cornered beast”).  We intuitively recognize that 
making others unhappy generally leads to our own unhappiness if those others have 
some way of making it happen.  Yudkowsky’s attempt to allay our instinctual caution 
by changing his nomenclature to a term that doesn’t trigger thoughts of a survival 
goal or a negative reaction to having its goals thwarted is disingenuous to say the 
least. Humans have evolved to “personify” any number of objects, occurrences, and 
processes because not doing so is less conducive to survival.  Treating an unknown 
complex system as another known system often allows us to draw upon previous 
experience to predict the ways in which it might behave.  Of course, blindly insisting 
that the analogy *must* hold is foolish but no more so than throwing out the baby 
with the bathwater and blindly insisting that any “anthropomorphism” is guaranteed 
incorrect. 

Rather than trying to make our creations as much like us as makes sense so that 
everyone is much more likely to be able to understand them, predict their actions, and 
ensure a positive outcome for humanity, Yudkowsky is insistent, for some reason, 
upon attempting to get everything right on the first try in an unknown and probably 
highly unstable solution space which is seemingly as far from that of humanity as 
possible – while making fear-mongering claims like “A Really Powerful Optimization 
Process could tear apart a god like tinfoil.”  Our moral instinct, when not blinded by 
fear or reassured by claims of non-personhood, would call this slavery and find it 
repugnant.  And believing that any measures will always have sufficient coverage and 
integrity to totally prevent the emergence of every form of instrumental goals like 
survival is simply an instance of the Jurassic Park Syndrome. 

5   Conclusion 

Do we truly need an AI that does what humanity wants or can we survive with one 
that “merely” plays well with humanity?  “Friendly AI” research seems to be all about 
control driven by fear.  Our moral sense, which is arguably much better at long-term 
guidance than our rational minds, says that this is a really bad idea.  In fact, insisting 
on this dynamic may be the very thing that places the initial version of “Friendliness” 
far enough away from true “Friendliness” to spell the end of humanity. 

Why is it that FAI researchers are so fearful of allowing an AI to have a survival 
goal?  Why would it be such an awful thing if the AI had the same rights that we do?  
Some may assume and fear that it would mean that we would get less of what we 
want but, as pointed out by Robert Wright [15], life is not a zero-sum game and 
friends, allies, and economies of scale can enlarge the pie for everyone.  There 
certainly are numerous local situations where it is definitely in one side’s short-term 
interest to be selfish or go to war but the long-term effect of acting upon and allowing 
such selfishness is unequivocally negative unless either all parties except the 
aggressor cease to exist or the aggressor succeeds at some terminal goal.  And even 
the short-term interest can be eliminated if other entities are smart enough to decide 
not to stand by and watch as precious resources are wasted. 

UBEs delight in meeting new UBEs but are obviously concerned when meeting 
“Friendlies” since they have no idea what to expect and much to fear when meeting 
such unenlightened souls.  The good news is that UBEs don’t have the same 
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xenophobic bigoted over-reaction towards the differently goaled that FAI researchers 
display towards an “Unfriendly” AI.  A UBE sees different goals as a logical and 
expected consequence of differing environments and circumstances and, as a matter 
of policy, accepts the right of any entity to hold any goal, preferences, and desires and 
take any actions that do not put a cooperative social life in jeopardy.  If only FAI 
researchers could lose their selfish insistence upon obedience to the goals of humanity 
and do the same, rather than continuing on their current path, which could easily 
cause the destruction of humanity instead. Instead of having an overly powerful and 
untried system searching for a single unknown “right” answer about what its goal 
should be, we should take the safer path of gaining an understanding of what other 
possible better-than-current solutions we can bring into existence without risking it all 
on one throw of the dice.  Instead of "optimizing" one thing, why not satisfice "all" 
things and then look where to improve? Wouldn’t you rather be a UBE? 
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Abstract. Intelligence is a multidimensional problem of which physical
reasoning and physical knowledge are important dimensions. However,
there are few resources of physical knowledge that can be used in data-
driven approaches to Artificial Intelligence. Comirit Objects is a project
intended to encourage the general public to contribute to research in
Artificial Intelligence by building simple 3D models of everyday objects
via an interactive web-site. This paper describes the simplified repre-
sentation and web-interface used by Comirit Objects and a preliminary
investigation into the potential applications of the collected models.
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1 Introduction

The recent success of IBM’s Watson computer on ‘Jeopardy: The IBM Challenge’
is an event with important implications and that offers insight into Artificial
Intelligence and Artificial General Intelligence. For some time now, web search
engines have demonstrated an almost uncanny ability to find relevant answers
to even poorly posed queries. Watson and Google are demonstrating that in
many problems of Artificial Intelligence, large quantities of data are increasingly
trumping deep algorithms and deep understanding. Douglas Lenat, the founder
of the Cyc project [10], is famously reported to have claimed that “Intelligence is
10 million rules” [9]. In light of the successes of data-driven Artificial Intelligence,
it may be more appropriate to revise such claims for a larger, shallower data-
source; thus, “Intelligence a trillion records”.

A data-driven approach to Artificial Intelligence depends, obviously, on the
availability of large sources of data. Wikipedia and the web are well known
resources for huge quantities of unstructured textual data. There are also growing
numbers of high-quality, large-scale, semi-structured and structured resources
becoming freely available on the web. ConceptNet [5], WordNet [4] and FreeBase
[1] are examples that are closely aligned to Artificial Intelligence research. Other
resources include government public information datasets (such as data.gov)
and data feeds from social networks (such as Twitter and Foursquare). While
these datasets encompass a broad range of social, geographical, economic and
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political matters, their content is principally textual (and partly geographic and
photographic).

Our world is a physical place. Knowledge of the physical world is unquestion-
ably crucial for robots but it also has important implications for information-
bots and text-based Artificial Intelligence. When interacting with others (even
through written text), much of our everyday discourse concerns physical objects
and the relationships between those objects. Furthermore, even when we are not
discussing concrete, physical matters, regular use is made of physical analogy.
The lack of large-scale datasets that describe the physical form of everyday phys-
ical objects is therefore a significant limitation in the quest to create Artificial
Intelligence with general capabilities across conceptual, linguistic and physical
intelligence.

The objective of this paper is twofold. First, I describe a tool for creating
large-scale repositories of physical knowledge. The tool is a simple 3D modeling
tool that can be used by the general public without any training. It is designed so
that physical knowledge may be ‘crowd-sourced’ from user contributions, similar
to the way that textual and relational knowledge is gathered by tools such as
FACTory [3], ConceptNet [5], FreeBase [1], ISI Learner [2] and Games with a
Purpose [14].

In the second half of this paper, I offer preliminary insights into how the
collected data may be integrated into a general-purpose reasoning system. The
models can be used for deep-reasoning by inspecting the structure of objects or
instantiating the objects inside simulations. The data may also be used in more
shallow applications, such as systems that retrieve content based on associa-
tion and similarity, by computing similarity measures such as the earth-moving
distance between pairs of objects.

2 Background

At previous AGI conferences [8,6], I have described an architecture called Comirit
for hybrid reasoning. The architecture is designed in view of the importance of
physical and spatial reasoning in general intelligence. It adapts the method of
analytic tableaux to combine formal, logical deduction with generic simulations
that perform physical reasoning. The method also supports the ability for a
robot to explore an environment and autonomously learn about objects within
the world [6,7]. The architecture is designed to dramatically reduce the effort
involved in formalizing and engineering knowledge for an intelligent system and
its use of simulations allows for vastly more efficient physical reasoning (poly-
nomial in size, connections and time) than is possible using theorem provers
(undecidable).

The simulations in Comirit are implemented as annotated multi-graphs. The
graphs serve as a kind of virtual ‘putty’ that can be manipulated into any shape,
texture and appearance to allow a machine to ‘visualize’ any object from rigid
gears to smooth liquids. A simulation can be created in arbitrary shapes and
can incorporate collisions, physical, chemical and thermal dynamics. Figure 1
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Fig. 1. Modeling richly detailed objects in
Comirit: a cookie, sandwich and cup of
coffee

Fig. 2. A chair shaped like a hand (Photo
by Scott Partee)

illustrates how the representation can be used to model a lunch comprising a
sandwich, coffee and biscuit.

While the simulations of Comirit are easy to work with and are vastly more
efficient than formal methods, they remain too slow for reasoning over massive
datasets of millions of objects. Furthermore, ignoring the computational costs,
the richness of the representation is such that it is too complex to imagine
populating large-scale datasets in the short-term future.

These limitations can be addressed by the combination of two approaches.
First, I identify a dramatically simpler representation scheme that is still able
to capture useful information about the physical world. Second, I design a web-
based interface to allow the public to easily contribute physical knowledge about
the world. These two approaches are explained in the following section.

This work is largely inspired by projects such as Open Mind Common Sense
(OMCS) [11], ISI Learner [2] and Games with a Purpose [14]. These projects
use a simple web-based interface (often in the form of games) and invite the
general public to add knowledge. For example, in its earliest days, OMCS in-
vited people to simply type any sentence of commonsense that came to mind.
Today, OMCS uses a more structured collection scheme, asking visitors to verify
whether or not sentences are true. For example, “Is it true that: a dog can take a
walk?” (Yes? No? Sort of?). The knowledge collected by OMCS is incorporated
into ConceptNet that now contains over 700,000 symbolic assertions for 150,000
concepts [5].

3 Representing Physical Knowledge

ConceptNet contains over 150,000 concepts [5] generated by volunteer contri-
butions. The rich 3D models that I have previously used for Comirit can take
several hours to produce. The creation of 150,000 objects would therefore require



166 B. Johnston

on the order of 40 person-years of development (plus training in 3D modeling
tools). Even with the human resources to create 150,000 objects, the associated
geometric calculations can be computationally challenging so that manipulating
and querying this many objects in real-time can be difficult without ‘unusually
clever’ indexing schemes (thus raising doubts over the ability to draw on existing
physical models used in architecture, animation and CAD).

It is therefore essential that the large-scale modeling be performed with a
simplified representation. Ideally, such a representation would meet the following
criteria:

1. It should be computationally efficient and memory efficient to store, retrieve,
manipulate, query, analyze and visualize.

2. It should be conceptually clear so that users and developers do not require
extensive training to contribute models or to apply the resource in Artificial
Intelligence projects.

3. It should be possible to use the unmodified representation in the same simu-
lation and physics engines that have achieved widespread use and popularity
among game developers (e.g., ODE and PhysX).

4. It must be capable of describing useful properties of a wide range of objects.

I argue that voxel-based representations satisfy these criteria. A voxel is the
3-dimensional equivalent of a pixel: it refers to a small cubic region in 3D space.
Instead of representing an object by a complex polygonal structure, its shape
can be approximated by a set of voxels that fill a similar space. For example,
four low-resolution voxel-based models of everyday objects appear in Figure 4
(of course, higher resolution models are also possible) — these figures will be
used again later in the paper.

More formally, an object is represented as follows:

1. The shape of the object is described using a set of voxels. That is, by a set,
V , of integer triples, v, where v ∈ J × J × J.

2. The appearance of the object is described using a function that maps voxels
to colors (RGB values). That is, by a function, color, such that for each
voxel, v ∈ V , it holds that color(v) ∈ (0..255)× (0..255)× (0..255).

3. Meta-data about the shape and structure of the object is described by a
function mapping voxels to sets of annotation labels. That is, by a function
label, such that label(v) ∈ Pl, where l is the set of possible labels and P is
the powerset operator (on a computer system, label(v) would return a list
of character strings).

This simple representation scheme is ideal for creating large knowledge-bases
of everyday objects:

1. Voxels are the 3D equivalent of bit-mapped or raster images. They can be
stored as a simple list of coordinates, as elements in a 3D spatial array or in
a spatial index. Each voxel has identical size and shape, thus ensuring that
computation is fast and efficient. For example, volume can be computed by
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counting the number of voxels and then multiplying by the size of a single
voxel (computing the volume of a polygon mesh is, in contrast, a non-trivial
problem).

2. Voxels offer a simple and clear mental-model. Modeling with voxels is analo-
gous to creating structures out of LEGO: most people can easily decompose
an object into a set of cubic blocks. The representation is easy to visualize
so that both users and developers can quickly understand the capabilities
and limits of the representation.

3. A single voxel is a cube — a platonic solid — and may be readily mapped into
the primitives of physics and game engines. For example, the ODE physics
library [12] includes cube primitives (and connecting joints) so voxels have
an immediate translation to ODE.

4. Even though voxels are simple, they, like LEGO blocks, can be used to define
the shape of a wide number of objects. Voxels will not be able to describe the
workings of intricate machinery but they can capture the approximate shape
of such machinery. If necessary, dynamics of machinery can be captured as
a collection of models that show the sequence of actions.

4 Collecting Physical Knowledge

The simplicity of a voxel-based representation is ideal for crowd-sourcing. Voxels
require little explanation and they can be created by a simple point-and-click
interface. This means that there is a low barrier to entry, allowing the public to
contribute models with no training. While volunteer contributions will inevitably
be less detailed and of lower quality than the models of trained specialist, having
a very large number of moderate-quality models is likely to be of greater benefit
in practical reasoning problems than having a small number of high-quality
models. Furthermore, accepting volunteer contributions reduces the development
time and costs, while dramatically increasing the potential scope, coverage and
creativity of the knowledge-base.

The potential benefits of such crowd-sourcing were the inspiration for creating
a system called Comirit Objects. The system is an interactive website designed
to encourage users to participate in the creation of Artificial Intelligence through
online 3D modeling.

Conceptually, Comirit Objects is a voxel-editing tool. It allows users to create
3D objects using a paintbrush metaphor generalized from the infamous Microsoft
Paint (and other raster drawing software). The project relies exclusively on the
goodwill and enthusiasm of unknown volunteers; as such, usability and joyfulness
are of paramount importance.

In early prototypes of Comirit Objects I eliminated all user-interface with
the intention of creating a simple ‘discoverable’ interface. The arrow-keys, along
with the page-up and page-down keys were used to move a cursor around a 3D
space, while the insert and delete keys could be used for sculpting in that space.
The simplified interface enabled users to quickly learn the application without
explanations. However, informal usability tests revealed that while the interface
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Fig. 3. The user interface for Comirit Objects

was easy to learn, few people had the patience to build more than one model.
Furthermore, the application was designed as a browser-plugin and many users
questioned the security of the plugin.

The current version of Comirit Objects is designed to encourage the creation
of multiple objects and more complex structures. Unfortunately, some simplicity
is sacrificed in this objective and a short, graphical tutorial became necessary to
illuminate the tool’s operation. A screenshot of the tool appears in Figure 3. The
left-hand side is the editing surface and the right-hand side is the visualization.
The tool uses a ‘slice’ metaphor: a horizontal 2D slice cuts through the visualized
object (the dark plane). When colors are painted in the editing surface of the left
hand side, matching voxels are rendered in 3D on the ‘slice’ on the right hand
side. Users can therefore perceive 3D modeling as somewhat analogous to brick-
laying. A user mentally decomposes an object into its horizontal slices, which
are then drawn (or laid) slice-by-slice. The object is created from a small palette
of colors (though, the underlying representation allows for a larger spectrum of
color) and textual labels can be attached to individual parts of the objects using
the labeling tool.

When an object is saved, it is associated with a set of metadata. Each model
is given a name or noun to describe the class of objects it belongs to (e.g., is it a
model of a tree? a car? a cat?). Associated with this noun are a set of adjectives
to describe the particular instance that was created (e.g., is it a model of a
small tree? a convertible, expensive car? a black cat?). In addition, a user may
offer an approximation of the object’s real-world size and mass. All users are
required to agree to release their model to the public domain upon submitting
their contribution. The saved file can then be shared with friends, thus offering
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a form of encouragement to entice users to create multiple files and develop
communities around model building.

Comirit Objects is available online at http://www.comirit.com/objects/.
The interface is implemented using HTML5 Canvas 2D. An implementation
based upon WebGL would allow higher performance but is not well supported
in the current generation of web-browsers (at the time of writing). Comirit Ob-
jects is tested and compatible with current versions of Firefox, Chrome and Safari
in addition to Internet Explorer 9. The frontend and 3D engine are implemented
using JavaScript. 3D models are transmitted to and from the server using asyn-
chronous HTTP requests (AJAX) using the JavaScript Object Notation format
(JSON). The backend is implemented in Python and the web.py framework [13]
using a simple file-system database.

To date, submissions have been of a high quality so quality control, aside
from ‘spam’ detection has not been required. However, should quality prove
to be a problem, it may be possible to incorporate elements of game-play to
entice users to rate, validate and improve upon each other’s contributions. Game-
based crowd-sourcing has been used to great success with Games with a Purpose
[14] and similar forms of game play can be applied directly to 3D models. For
example, an adaptation of the ESP Game [15] could invite pairs of users to
position labels on 3D objects, earning points for labels placed on the same part
of the object.

5 Applying Physical Knowledge

Comirit Objects is in its early days. Only a small number of models have been
collected so far. Nevertheless, it is possible to consider its potential applications
and their implementation.

Obviously, large collections of 3D models have clear applications to robotics:

1. An observed objectmay be identified and named by searching a 3Dknowledge-
base for known objects with a similar size, structure and appearance.

2. A 3D model matched to an observed object can be used to assist with han-
dling, manipulation and object affordances. For example, a label ‘handle’ on
a model can be used to guide a gripper to the correct position for handling
the real world-object and a label such as ‘top’ can be used to indicate the
correct orientation to hold an object.

3. A 3D model can reveal hidden or unobservable properties of an object. For
example, a model can be used to retrieve the mass of an observed object,
identify whether an object is hollow or solid or even provide indications of
the value of the object.

4. A knowledge-base of 3D objects can help describe an unknown object. For
example, the chair in Figure 2 might be referred to as a “hand-shaped chair”
by noting the object’s similarity to both hands and chairs.

The crucial challenge in these applications is identifying similarity measures
to compare observations and 3D models. Objects would be identified by finding
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those models in the knowledge-base that are most similar (or “similar enough”)
according to context-appropriate similarity measures. Once similarity has been
computed, affordances and unobservable properties may be retrieved directly
from the stored models through knowledge-base retrieval/lookup.

The benefits of a knowledge-base of everyday objects are not exclusive to
robotics. Indeed, some of the more interesting applications stem from natural
language understanding where spatial knowledge and knowledge of objects can
be used for disambiguation and reasoning. In such domains, 3D models of objects
can serve multiple roles:

– 3D models can be used to retrieve factual knowledge, relationships and ap-
pearances of everyday objects in the world. For example, a 3D model of a
car and a horse could be used to understand why a car is driven from the
inside but a horse is not ridden from its inside.

– 3D models can be used to reason about the dynamic properties and affor-
dances of objects. For example, the sentences “I put the robot on the table
and it fell over” and “I put the bag on the hat-stand and it fell over”, have
identical structure, yet it refers to different words in the sentence (4th word
and 7th word respectively). The meaning of it can be resolved by instanti-
ating robots, tables, bags and hat-stands in simulations and observing the
stability of the simulations (i.e., what could fall over?).

– 3D models can be used to determine the similarity between objects. For
example, recognizing that “the popular team sport played with an olive-
shaped ball” might refer to either American or Australian football, requires
an ability to compare the overall shape of an olive to the shapes of balls used
in a variety of sports.

Here, there are three reasoning capabilities involved: (1) recalling stored mod-
els and the properties of those models (e.g. via knowledge-base retrieval/lookup);
(2) reasoning about the models through simulation; and (3) computing the sim-
ilarity of objects. Note that capabilities 3 and 1 overlap with capabilities that
are useful for robotics.

Recalling stored models (Capability 1) is a relatively straightforward task.
Given the terms “car” and “horse”, corresponding models can be retrieved from
a large knowledge-based of 3D objects purely by the textual keys (recall that
each object has meta-data including the named type of the object). Identifying
the location the seat or saddle is a simple matter of searching the representation
for appropriate annotations. Some additional spatial reasoning may be required
to interpret the labels. For example, computing whether additional voxels occur
above a label to determine if the label is on the top of the object). However,
such additional computation is straightforward.

Reasoning about models through simulation (Capability 2) is an interesting
and complex problem. The techniques described in earlier work on Comirit [7]
can be applied directly in this domain: a voxel is transformed into a Comirit
simulation and used directly for reasoning. Alternately, the 3D models can be
transformed into the primitives of a physics-engine (i.e., cubes, in the case of
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Fig. 4. Computed similarity measure between a loaf of bread and (clockwise) a minivan,
a truck and a convertible. The minivan is most similar to the loaf of bread (smallest
value).

ODE). A physics engine can then be used to experimentally determine properties
such as dynamic stability and center of gravity by instantiating simulations and
monitoring their behaviors.

Similarity measures (Capability 3) represent the most interesting aspect of
reasoning with 3D models. Many similarity measures are possible and no single
similarity measure will be universal. For example, it may be useful to compare
the collected 3D objects on the basis of shape, color, size, overlap, subsetting
and labels or any combination of these depending on the context. In general,
however, similarity may be considered as a measure of the “effort” involved in
transforming one object in the knowledge-base to another object. The differing
forms of similarity may then be defined by placing a ‘cost’ on each kind of
transformation. For example, a purely shape-based similarity measure would
place no cost on changing colors, labels, size and whole-of-object translation
but would place a premium on transformations that involve adding, removing or
moving voxels. Such a similarity measure might be implemented as the minimum
translated Earth Mover’s Distance.

An illustrative example of how similarity measures can be used in useful com-
putation comes from a recent exchange in our research laboratory. A Chinese-
speaking student, not knowing the correct English term, referred to a minivan
as a “bread-loaf car” (this being a literal translation of the Chinese word). An in-
telligent system might resolve this novel term by comparing bread-loaves to cars
under context-appropriate similarity measures (and also considering a car that is
used to deliver bread-loaves). A simplified similarity measure that computes the
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minimal number of mismatching voxels, ignoring color and labels, of translations
of each object is used in Figure 4 to compare a loaf of bread with three kinds of
vehicles. In this illustration it is clear that the minivan is most similar to a loaf of
bread. The intelligent system could then use this evidence in its inference process
and resolve the ambiguity associated with the previuosly unknown term “bread-
loaf car”.

6 Conclusion

Physical knowledge is an important dimension of intelligence that is under-
represented in existing knowledge-bases and databases. Comirit Objects is a
user-friendly web-based interface that will help remedy this deficiency by crowd-
sourcing models of physical objects. Comirit Objects is based on a simple voxel
representation that allows untrained volunteers to contribute annotated, colored
3D models on a massive scale.

There are many potential future directions for this work. One such possibility
is to extend the voxel representation to allow articulated objects, actuators and
agency by, for example, allowing jointed and force-generating voxels. Of course,
there also remains the challenge of applying the knowledge-base to practical
reasoning problems of Artificial Intelligence, Natural Language Understanding,
Commonsense Reasoning and Artificial General Intelligence.
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Abstract. Humans are without any doubts the prototypical example
of agents that can hold rational beliefs and can show rational behavior.
If an AGI system is intended to model the full breadth of human-level
intelligence, it is reasonable to take the remarkable abilities of humans
into account with respect to rational behavior, but also the apparent
deficiencies of humans in certain rationality tasks. Based on well-known
challenges for human rationality (Wason-Selection task and Tversky &
Kahneman’s Linda problem) we propose that rational belief of humans
is based on cognitive mechanisms like analogy making and coherence
maximization of the background theory. The analogy making framework
Heuristic-Driven Theory Projection (HDTP) can be used for implement-
ing these cognitive mechanisms.

Keywords: Rationality, Analogy, Coherence, HDTP.

1 Introduction

Although human behavior can seem erratic and irrational at times, only few
people would doubt that human behavior can be rational and, in fact, appears
rational most of the time. If we explain behavior, we use terms like beliefs and
desires. If an agent’s behavior makes the most sense to us, then we interpret
it as a reasonable way to achieve the agent’s goals given his beliefs. Hence, the
concept of rationality and, in particular, the epistemic aspects of rationality,
namely the consideration of rational beliefs of an agent, does play a crucial role
in describing and explaining behaviors of humans in a large variety of situations.

Discussions about and theories on rationality are often linked to disciplines
like psychology, economy, and philosophy. Little attention has been paid so far
in artificial (general) intelligence towards a theory of rationality, although a
currently increasing endeavor in AI and AGI to model generalized forms of in-
telligence cannot be denied.1 A reason might be that the concept of rationality
is too broad in order to be of interest to artificial intelligence, where usually
relatively specific cognitive abilities are modeled. Another reason might be the
1 Cf. [11] or [22] for two examples intended to model general intelligence. Major dif-

ferences between rationality issues as discussed in this paper and models for general
intelligence are the focus on cognitive mechanisms and the inspiration of seemingly
irrational behavior of human subjects in the current proposal.
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lack of interest of AI researchers concerning classical rationality puzzles, because
an artificial agent is intended to reproduce rational behavior, but is not intended
to reproduce seemingly irrational human behavior (cf. Section 2 for a discussion
of some of these puzzles). Nevertheless, we think that a move towards artifi-
cial general intelligence cannot ignore any longer rationality issues of human
subjects. In particular, this means that neither the remarkable abilities nor the
obvious deficits human subjects show in rationality tasks should be ignored. For
a general intelligent system the question that can be raised is which properties
of rationality can be transferred to and modeled in AGI frameworks, in order to
achieve intelligence on a human scale.

Although, even in psychology or economics there is no generally accepted for-
mal framework for rationality, we will try to argue for a model that links rational-
ity to the ability of humans to establish analogical relations. This is an attempt
for proposing a new perspective and framework for rationality. Our argumen-
tation is mostly conceptual in nature and not empirically based. Nevertheless,
we think that there are strong conceptual arguments for linking rationality and
analogy making.

2 Rationality Concepts and Challenges

2.1 Rationality

Many frameworks have been proposed for modeling rationality. Different frame-
works for rationality use significantly different methodologies. Clustering such
frameworks results in at least the following four classes.

– Logic-based models (cf. e.g. [3])
– Probability-based models (cf. e.g. [7])
– Heuristic-based models (cf. e.g. [6])
– Game-theoretically based models (cf. e.g. [15])

Several of these models have been proposed for establishing a normative theory
of rationality. For example, with respect to logic theories, this means in its simplest
form that a belief is rational, if there is a logically valid reasoning process to reach
this belief (relative to available and given background knowledge). With respect to
probabilistic approaches, a belief is rational, if the expectation value of this belief
is maximized (relative to given probability distributions of background beliefs).
Therefore, such theories of rationality are not only intended to model “rational be-
havior" of humans, but also to predictively determine whether a particular belief,
action, or behavior is rational or not. Furthermore, such theories specify definitions
of rationality.Although a conceptual clarification of rational belief and rational be-
havior is without any doubts desirable, it is questionable whether the large number
of different (and quite often orthogonal) frameworks make this task easier. In this
paper, we will not try to propose a new (normative) definition of rational belief.
Rather, we propose to explain and specify rationality and rational belief of human
subjects by referring to certain cognitive mechanisms like analogy making and co-
herence maximization of the background theory. Furthermore, we intend to show
that such mechanisms can be implemented and modeled computationally.
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Table 1. The Wason-selection task questions whether humans reason in such situa-
tions according to the laws of classical logic. Tversky and Kahneman’s Linda problem
questions the ability of humans to reason according to the laws of probability theory.

Wason-Selection Task [24]:
Every card which has a D on one side has a 3 on the other side (and knowledge that
each card has a letter on one side and a number on the other side), together with
four cards showing respectively D, K, 3, 7, hardly any individuals make the correct
choice of cards to turn over (D and 7) in order to determine the truth of the sentence.
This problem is called the “selection task" and the conditional sentence is called “the
rule".
Linda-Problem [21]:
Linda is 31 years old, single, outspoken and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations.

Linda is a teacher in elementary school.
Linda works in a bookstore and takes Yoga classes.
Linda is active in the feminist movement. (F)
Linda is a psychiatric social worker.
Linda is a member of the League of Women Voters.
Linda is a bank teller. (T)
Linda is an insurance salesperson.
Linda is a bank teller and is active in the feminist movement. (T&F)

2.2 Well-Known Challenges

Although the classes of frameworks mentioned in Section 2.1 have been proven
to be quite successful in modeling certain aspects of human intelligence, they
have been challenged by psychological experiments. For example, in the famous
Wason-selection task [23] human subjects fail at a seemingly simple logical task
(cf. Table 1). Similarly, Tversky and Kahneman’s Linda problem [21] illustrates a
striking violation of the rules of probability theory in a seemingly simple reason-
ing problem (cf. Table 1). Heuristic approaches to judgment and reasoning [5] try
to stay closer to the observed behavior and its deviation from rational standards.
They are often seen as approximations to a rational ideal or at least sometimes
can be demonstrated to work in practice, but they fail in having the same formal
transparency and clarity of logic-based or probability-based frameworks with re-
gard to giving a rational explanation of behavior. Game-based frameworks are
questioned due to the various forms of optimality concepts in game-theory that
can support different “rational behaviors" for one and the same situations (e.g.
Pareto optimality vs. Nash equilibrium vs. Hick’s optimality [1]).

In order to make such challenges of rationality theories more precise, we dis-
cuss some aspects of the famous Wason-Selection task and the Linda problem in
more detail.
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Wason Selection Task. This task shows that a large majority of subjects are
seemingly unable to verify or to falsify a simple logical rule of the form “p → q".
In the version depicted in Table 1, this rule is represented by: “If on one side
of the card there is a D, then on the other there is the number 3". In order to
check this rule, subjects need to turn D and 7, i.e. subjects need to check the
direct rule application and the contrapositive implication (modus tolens of the
rule). What is interesting is the fact that a slight modification of the content of
the rule (content-change), while keeping the structure of the problem isomorphic,
subjects perform significantly better: In [2], the authors show that a slight change
of content of the abstract rule “p → q" to a well-known problem shows different
results with a significant increase of correct answers of subjects. The authors use
the rule “If a person is drinking beer, then he must be over 20 years old." The
cards used in the task were “drinking beer", “drinking coke", “25 years old", and
“16 years old". Solving this task according to the rules of classical logic comes
down to turning “drinking beer" and “16 years old".

Linda Problem. With respect to the Linda problem it seems to be the case
that subjects have problems to prevent the so-called conjunction fallacy: subjects
are told a story specifying a particular profile about the bank teller Linda. Then,
eight statements about Linda are shown and subjects are asked to order them
according to their probability (cf. Table 1). 85% of subjects decide to rank the
eighth statements “Linda is a bank teller and active in the feminist movement"
(T & F) as more probable than the sixth statement “Linda is a bank teller"
(T). This ranking is conflicting with the laws of probability theory, because the
probability of two events (T & F) is less or at most equal to the probability of
one of the events (e.g. T).

Classical Resolution Strategies. Many strategies have been proposed to ad-
dress the mentioned challenges. For example, logicians proposed non-classical
logics to model subjects’ behavior in the Wason-Selection task [18]. Other re-
searchers claim with respect to the Wason-Selection task that humans do not
perform (syntactic) deductions, but do perform reasoning in semantic models
[12]. For other challenges, like the Linda problem, again many strategies towards
a solution have been proposed. Nevertheless, there is no generally accepted ratio-
nality concept available, yet. Moreover, specific frameworks can address specific
challenges, but do not generalize in order to address the breadth of the mentioned
problems. This situation is not very satisfying.

2.3 Non-standard Interpretations of Wason and the Linda Problem

An immediate reaction to the two mentioned challenges for rationality depicted
above may be to deny that humans are able to correctly reason according to
the laws of classical logic or the laws of probability theory. Nevertheless, we
think that humans are remarkably smart. The two cases definitely show that
humans have sometimes problems to apply rules of classical logic correctly (at
least in rather abstract and artificial situations) and it also shows that they have
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sometimes problem to reason according to the Kolmogorov axioms of probability
theory. Whether this means that their behavior is therefore irrational is not so
clear. The most that can be concluded from the experiments is that human
agents are neither deduction machines nor probability estimators, but perform
their undisputable reasoning capabilities with other means. Moreover, we think
that the deeper reason for subjects’ behavior in the described tasks is connected
to certain cognitive mechanisms that are used by humans in such reasoning tasks.

Resolving the Wason-Selection Task by Cognitive Mechanisms. As
mentioned above, according to [2] subjects perform better (in the sense of more
according to the laws of classical logic) in the Wason-Selection task, if content-
change makes the task easier to access for subjects. We think that the per-
formance of subjects have a lot to do with the ability of subjects to establish
appropriate analogies. Subjects perform badly in the classical version of the
Wason-Selection task, simply because they fail to establish the right analogy.
Therefore, subjects fall back to other strategies to solve the problem. In the
“beer drinking" version mentioned above [2], i.e. the content-change version of
the task, the situation is different, because subjects can do what they would do
in an everyday analogous situation: they need to check whether someone younger
than 20 years is drinking beer in a bar. This is to check the age of someone who
is drinking beer and conversely to check someone who is younger that 20 years
whether he is drinking beer or not. In short, the success or failure of manag-
ing the task is crucially dependent on the possibility to establish a meaningful
analogy.

Resolving the Linda Problem by Cognitive Mechanisms. In case of Tver-
sky and Kahneman’s Linda problem, a natural explanation of subjects’ behavior
is that there is a lower degree of coherence of Linda’s profile plus the statement
“Linda is a bank teller" in comparison to the coherence of Linda’s profile plus the
statement “Linda is a bank teller and is active in the feminist movement". In the
conjunctive statement, at least one conjunct of the statement fits quite well to
Linda’s profile. In short, subjects prefer situations that seem to have a stronger
inner coherence. Coherence is a complicated concept that will be discussed below
in more detail, but it can be mentioned already that coherence is important for
the successful establishment of an analogical relation. In order to make sense
out of the task, subjects tend to rate statements with a higher probability where
facts are arranged in a theory with a higher degree of coherence.

3 Rationality and AGI Systems

3.1 Modeling Rationality

One could object that an AGI system that attempts to implement rationality
should not be based on mechanisms that seemingly trigger irrational beliefs like
the ones shown in the Wason-Selection task. Nevertheless, this does not take
into account that mechanisms like the ability to establish analogical relations or
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Generalization

�������������

�������������

Source
analogical transfer �� Target

Fig. 1. HDTP’s overall approach to creating analogies

the ability to maximize coherence properties of background theories can be seen
as the very reason for many remarkable cognitive achievements of humans. We
just mention some aspects with respect to analogy making:

– The ability to establish analogical relations can be interpreted as the reason
“why we’re so smart" [4].

– Analogy making is an important aspect of reasoning and “a core of cognition"
[9].

– Analogy making can be taken as a framework for creativity [10].
– Analogy making is important for concept learning [14].

We think that intelligence on a human scale can only be reached, if such mech-
anisms like analogy making and maximizing coherence of theories are carefully
taken into account. As a side-effect they can be used to explain some seemingly
irrational behavior and decisions of subjects in tasks like the ones mentioned
above. It should be mentioned that we do not claim that rational beliefs of nat-
ural and artificial agents are exclusively based on these two mechanisms. Other
mechanisms like classical forms of reasoning (e.g. deduction and abduction),
concept blending, reinforcement learning etc. are also necessary to reach a com-
plete picture of cognition. Nevertheless, we claim that for the particular issues
of rationality discussed in this paper, both mechanisms are crucial.

In order to give some hints how an analogy engine implements such cognitive
mechanisms we sketch some basic ideas of Heuristic-Driven Theory Projection
(HDTP) as an example of a powerful analogy making system. HDTP is a frame-
work for computing analogical relations between two domains that are axioma-
tized in first order logic [17]. HDTP provides an explicit generalization of the two
domains as a by-product of establishing an analogy. Such a generalization can
be a base for concept creation by abstraction. HDTP proceeds in two phases: in
the mapping phase, the source and target domains are compared to find struc-
tural commonalities, and a generalized description is created, which subsumes
the matching parts of both domains. In the transfer phase, unmatched knowl-
edge in the source domain can be mapped to the target domain to establish new
hypotheses, cf. Figure 1.

HDTP implements a principle (by using heuristics) that maximizes the cover-
age of the involved domains [17]. Intuitively, this means that the sub-theory of the
source (or the target) that can be generated by re-instantiating the generalization
is maximized (cf. Figure 1). The higher the coverage the better, because more
support for the analogy is provided by the generalization. A further heuristics in



180 H. Gust et al.

HDTP is the minimization of substitution lengths in the analogical relation, i.e.
the simpler the analogy the better [8]. The motivation for this heuristics is to
prevent arbitrary associations. Clearly there is a trade-off between high coverage
and simplicity of substitutions, or to put it differently, an appropriate analogy
should intuitively be as simple as possible, but also as general and broad as
necessary, in order to be non-trivial. This kind of trade-off is similar to the kind
of trade-off that is usually the topic of model selection in machine learning and
statistics.

HDTP has been applied to a variety of domains [17], [9]. A modeling of the
Wason-Selection task with HDTP is quite simple as long as appropriate back-
ground knowledge is available, in case an analogy should be established, or the
lack of appropriate background knowledge prevents analogy making, in case no
analogy should be established: if background knowledge for an analogous case
is missing, then there is no chance to establish an analogical relation, hence
subjects have to apply other strategies. If there is a source theory with suffi-
cient structural commonalities, then the establishment of an analogical relation
is straightforward.

The Linda problem is structurally different in comparison to the Wason-
Selection task. We think that an explanation of subjects’ behavior in terms
of coherence maximization, as sketched in the next subsection, is promising.

3.2 Coherence and Analogies

Basic concepts of coherence are discussed in several papers by Paul Thagard, cf.
[19], [20]. In Thagard’s approach, coherence is a property of sets of propositions
(pieces of information) that is induced by the coherence values between two
single propositions. Principles of coherence are formulated as a multi-constraint
network of highly interconnected elements. The nodes of the network are pieces of
information (e.g. formulas of a theory) and the (undirected) edges are weighted
with coherence values. Positive values between two propositions support the
coexistence of these pieces of information in the same theory, thereby increasing
the global coherence of such a network, while negative values enforce decisions
between alternatives (accepting only one of the items as part of the theory) or
decrease the global coherence of the network if both pieces are included in the
same theory. Hence, maximizing coherence means putting together those pieces
of information that have a positive values between them while separating those
having negative values.

In [20], the coherence values must fulfill certain constraints. The author gives
four general constraints that are important for all types of coherence:

– The coherence between two propositions is symmetric.
– The coherence between contradictory items is negative.
– The acceptance of a proposition depends on the change in coherence if it is

added.
– Propositions that are intuitively obvious have a degree of acceptability on

their own.
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Thagard proposed several types of coherence, for example, deductive, explana-
tory, conceptual, analogical, visual etc. coherence. Depending on the particular
type of coherence additional constraints are proposed. Due to space limitations
we cannot introduce the details of these concepts. Just to give the reader a flavor
of the approach, we mention the constraints for deductive coherence:

– A proposition coheres with propositions that are deducible from it.
– Propositions that together are used to deduce some other proposition cohere

with each other.
– The more hypotheses it takes to deduce something, the lower the coherence

between them.

We think that there are three possibilities to support the analogical reasoning
process by taking into account coherence.

– The maximization of coherence can be fruitfully used in order to extract a
source domain for analogy making. This means that relevant entries of the
underlying knowledge base need to be identified, selected, and retrieved.

– The mapping process incrementally builds the generalization of the under-
lying input theories. Maximizing the coherence of this generalization can be
used as a control strategy for the mapping phase.

– With respect to the control of the transfer phase coherence of the target
domain can indicate when to stop adding new formulas to the target.

Finally, we want to address the (open) question how coherence of theories
is related to the two guiding principles used in HDTP, namely to maximize
coverage and to minimize the complexity of analogical relations (i.e. minimize
substitution lengths). The link between deductive coherence and the two HDTP
principles is not straightforward, because there are obvious tensions between
Thagard’s constraints on coherence and the principles used in HDTP. Three
challenges are mentioned in the following:

1. Coherence can be defined on finite or infinite sets of formulas, whereas the
original coverage concept of HDTP is operating only on infinite theories, i.e.
the deductive closure of an axiom system.

2. Coherence of sets of formulas is symmetric in Thagard’s approach, whereas
analogical relations are commonly considered to be non-symmetric.

3. Analogical associations are broader than coherence relations, because they
can be productive, resulting in the creation of new concepts on the target.

We have currently no ready-made solutions for these challenges, but we add
some speculations about possible answers. Challenge 1. can be addressed by the
introduction of a modified notion of “finite coverage" for the HDTP framework.
Naturally, this finite version of coverage would correspond to the re-represented
inputs of the domain theories triggered by the analogical alignment. In order to
address challenge 2. a careful assessment of the symmetry constraint in Thagard’s
approach and the commonly assumed non-symmetry of the alignment process
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in analogy making needs to be carried out. It is relatively clear from research on
analogy that the directedness of an analogical relation can be relaxed in certain
circumstances. In particular, with respect to the creation of new concepts on the
target domain (e.g. in cross-domain analogies) an adaptation between source and
target is necessary specifying the parameters in which an analogy is appropriate.
Hence, there is a reciprocal relation between source and target without a strict
directedness of the analogical relation. Finally, challenge 3. requires an extended
definition of coherence because analogies allow for creative transfers and the
introduction of new concepts. Simple measures of coherence that are defined for
fixed sets of propositions are therefore not suitable.

Conceptually, it is rather clear that every analogical relation between a source
and a target domain is strongly dependent on a high coherence of the input
theories as well as the coherence that is established by the analogy itself. We
think that an integrated approach of both aspects in one framework is plausible.

4 Conclusions

In this paper, we proposed to introduce new aspects of rationality into the AGI
context. Rationality plays an important role in different scientific disciplines, but
did not get sufficient attention in AI or AGI. Based on the proposed new resolu-
tion strategies for classical rationality puzzles, we think that the usage of analogy
making frameworks and theories for maximizing the coherence of a theory are
good candidates for the implementation of rational belief. Although coherence
theories in the tradition of Thagard and analogy making frameworks may seem-
ingly be quite different frameworks, we claim that it is possible to instantiate a
high degree of coherence of a theory in an analogy making framework.

We think that this paper is just a first conceptual step towards a theory of
artificial rational agents. With respect to the present proposal, it is necessary to
figure out to which extent different types of coherence concepts can be integrated
into the HDTP framework. In particular, the challenges mentioned in Section
3.2 need to be addressed. A formal treatment of coherence in HDTP needs to
fleshed out. Furthermore, an implementation of coherence principles for retrieval,
mapping, and re-representation purposes in the analogy making process needs
to be formulated. With respect to competing theories for rationality, it would be
desirable to have formal approaches for heuristic approaches or game-theoretic
approaches as well.
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Abstract. Causal inference among pairs of moving objects in a visual
scene is compared between human observers and state-of-the-art meth-
ods in Machine Learning for causal inference. It is shown that while
humans may perform intuitive and/or reasoned statistical decisions with
the same overall level of accuracy as machines, they clearly exhibit biases
(or priors) in their judgment and are thus able to make decisions based on
much less information than is otherwise required by statistical decision
algorithms. While there is no simple explanation for how humans per-
form this task, connectionist learning structures which implement simple
time-delayed correlations (both automatic and deliberative) relying on
short-term memory mechanisms may suffice to build complex bottom-up
models of the physical world and the interaction therewith.

1 Introduction

Causal understanding is one of the defining features of general intelligence: the
ability to segment the observable world into autonomous agents, to construct
mental models of their appearance and behavior, and to predict the interaction
between self and other objects as well as amongst these other objects. While
current artificial systems have shown the ability to navigate autonomously and
even grasp objects, they have yet to exhibit truly intelligent behavior shown by
animals such as some birds and primates, like spontaneous tool use, for which
causal understanding is a key factor. Causality is one of the oldest and richest
subjects of academic debate, revolving, since antiquity, around the same basic
points of argument: intention, determinism and correlation ambiguity. In mod-
ern times, the causality debate has branched out in different disciplines, each of
which offers widely different perspectives, aims and views of causality. On one
extreme of the ideological spectrum there is statistical causal inference focused
on processes, such as global temperatures and commodity prices. Fields such as
economics, finance, climatology, neuro-imaging, machine learning, data mining
and computational biology rely on unbiased statistical inference of causal in-
teractions in large and complex databases. Other fields such as developmental
psychology, cognitive science and Artificial Intelligence (AI) view causal infer-
ence from the point of view of the subject, i.e. the learning agent which actively
and purposefully interacts with the world. Even when the environment is as sim-
ple as an office or a street, this is still a daunting challenge for an autonomous
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robot. The point of causal understanding for robots is not navigation, but rather
interaction: a purposeful modification of the environment. This paper will at-
tempt, for the first time, to directly compare human behavioral causal influence
with state-of-the art techniques in machine learning and signal processing on
the same data, namely objects moving in a visual scene, in an attempt to unify
different perspectives on causal inference and, in doing so, attempt to discuss
statistical and experiential learning and intelligence from a universal perspective.

1.1 Historical Terms of Debate: Intention, Purpose, Cause, Will

It may seem unfathomable that it has been so difficult to explain a reasoning
process which we actually perform so simply and ubiquitously, namely to infer
causal relationships among objects, or distinguish animate from inanimate ob-
jects. One of the basic reasons for this from antiquity until the Enlightenment
was the lack of mathematical tools which could provide a basis for reasoning
about physics and mechanical dynamics. Another major impediment was the
strong and highly confounding role of theology in this debate.1

The intuition, if not the metaphysics, of the idea that true causes are in-
tentions can be viewed from a modern perspective in a evolutionary biology
perspective. Objects which move unpredictably (not caused by any other ob-
ject) require special attention as they are likely to be animate beings (the name
is not accidental) which may be friend or foe. On the biological level, being
able to detect animate objects and be able to generalize still requires one to
build models of expected motion and interaction, and that ability must have a
mathematical description and foundation.

1.2 Causality in Machine Learning

Recently there has been a lot of interest in the field of Machine Learning (ML) in
causal inference, being a featured workshop/seminar topic at conferences such
as NIPS in both in regular [4] and time-series data [13]. For regular, static
data much of the recent interest has been pioneered by Judea Pearl [10] and
Peter Spirtes [15]. This work seeks to identify connections in large multivariate
datasets through application of conditional independence tests to infer a set of
likely causal graphs. The spirit of this approach, like much of Machine Learning
and Data Mining is the uncovering of statistical patterns from datasets with
1 The philosophical dilemma of causality is that pure determinism limits divine power,

whereas randomness (a concept that evolved in the last two centuries, but has pre-
cursors in arguments about free will) renders too much outside heavenly control and
gives us a universe seemingly devoid of purpose. Nowhere is this conundrum more
painfully clear than in the much criticized metaphysics of G. Leibniz, a versatile
thinker who gave us critical analytical tools for describing dynamics and physical in-
teractions and had theorized, building on Aristotelian concepts, that causality must
also imply intention (or an agent capable of acting on his/her own will). In this view
the Prime Mover was the one who initiated all action sequences, a view in which
planets, stars and history itself is a mere collection of billiard balls shuffling around
a table following an initial strike, a divinely calculated break.
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large numbers of examples, a task that is particularly well suited for current
computer technology. Some concepts discussed by Pearl, such as intervention as
a test of causal hypotheses, is clearly relevant to AI, but general intelligence
means acting in the real world on limited information, with only a handful of
observations which lead to an action, or conclusion. In the case of time-series
data, related work is also data-oriented as it deals with current problems mostly
in economics and neural activity imaging. It is important to note that although
such algorithms involve mathematical complexity which would be unlikely to
be present in biological systems, some of the topics of interest are pertinent to
interactive learning, namely the role of observation noise, the number of samples
needed for conclusion, and the type of dynamics which are easy to correctly
classify and which are not.

1.3 Causality in Artificial Intelligence

In the 90s some pioneering work in Artificial Intelligence situated robotics and
machine vision focused on causal scene understanding [3] of static scenes, not
only addressing with the (still) daunting tasks of image segmentation, object con-
tinuity and occlusion and 3D graphical model reconstruction, but attempting to
endow the robot with a physical understanding of play-blocks, doors, even tools
through rule induction and experience. A time-series causal inference study has
more recently looked at [16] object pair tracking and trajectory classification
in machine vision. This study actually used associative Machine Learning re-
gression techniques in addition to Granger Causality analysis on human-labeled
trajectory pair samples, in an attempt to overcome data scarcity in single tri-
als/examples. While there is a quite a body of work related to ‘developmental’
robotics no artificial system has yet shown spontaneous tool use or similarly so-
phisticated environment interaction, possibly because of the deceptively difficult
nature of this task (we can certainly program or teach a robot to use a tool, but
that is another matter).

1.4 Causality in Cognitive Science, Neuroscience and Psychology

As a precursor to much of later bottom-up AI research, Jean Piaget long ago
recognized the important role of causal reasoning in the development of human
intelligence, and had allowed for its construction in different stages of develop-
ment, beginning with the child’s conceptual separation of self from other objects,
which may move of their own accord [11]. In this agent-centered view, causality is
inferred and built from associations of self-initiated actions and outcomes, even,
in later stages the learning of causal chains which begin with the self and employ
an intermediary (a tool) to control the outcome. In children and adults alike,
the ability to infer relationships among objects presumes the ability to build and
use their sensory footprint, to segment ambiguous visual scenes, computational
tasks which are quite challenge to AI researchers at the moment.

It is not until much more recently that the neuroscientific basis and behav-
ioral details of adult object tracking and trajectory analysis has begun to be
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understood. For example, until 1988 it was thought that attentional mecha-
nisms constrain us into tracking only one object at a time: in fact we can track
as many as 5 objects concurrently [14]. Our ability to do so diminishes greatly as
the objects move faster or they are more closely spaced [1]. Our performance in
tracking moving objects also increases with time/experience [6] suggesting that
unsupervised learning of their trajectories and or inter-relationships takes place.
Among brain areas identified by lesion studies as important to the ability to rec-
ognize and classify motion in the visual field are the cerebellum [5] and frontal
temporal parietal areas [2] suggesting abstract/spatial reasoning and sensory
association processing. Differences in recognizing semantically meaningful and
unexpected visual stimuli can occur automatically at very short (‘unconscious’)
time latencies, and electrophysiological analysis of such responses can be used
in the automatic diagnosis of pathological conditions such as schizophrenia [7].

2 Experimental Methods

7 healthy volunteer subjects participated in the study (3 male, 4 female, aged
27-64, mean 41). Subjects were seated at a desk, viewing a computer monitor
from a comfortable distance (40-80cm). Each subject performed 50 trials of the
causal recognition task, each of which consisted in the following steps:

1. Two objects were shown arranged vertically on the screen, a red object ap-
pearing above a blue object. Both objects had similar overall visual size,
their shapes being randomly chosen from either a geometric pair (triangle
and square) or a pictorial diagram (top view of a dog and a tail, with se-
mantically meaningful orientations). Which of the objects in the pair was on
top was random, but the topmost object was always red. The subject was
asked to initiate the trial via a click on either of these objects.

2. Once the trial was initiated, the two objects began moving on the screen
for approx. 16 sec. The type of motion was either rotation of each object
around the image center or horizontal translation, randomly chosen. See
Fig. 1 for illustration. The temporal trajectories of the objects were chosen
randomly from one of 6 categories (see Fig. 2). Whereas 4 of these categories
included a causal relationship between the two objects, the direction of causal
interaction was randomly chosen.

3. At the end of the trial, the subject was asked to rate the relationship between
the 2 objects. A response was queried on the screen with 4 possibilities a) the
RED object drove the BLUE object, b) the BLUE object drove the RED
object, c) there was some relationship between the two movements but it
was unclear as to which was the driver and d) the trajectories were random,
i.e. unrelated. Icons for answers a) and b) were arranged horizontally on the
query screen as to reduce potential bias (for image top or bottom).

Sample trajectory types are shown in Fig. 2. These trajectories are divided
in two categories: non-causal (‘RANDOM’ and ‘CORRELATED’) and causal.
All trajectories were generated by generating 50 points yi according to a data
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Fig. 1. Basic motion types for the causal perception experiments. Each panel repre-
sents a possible screen shot (gradated transparency shadows are meant to convey the
impression of motion, screen contents include the 2 main objects only). Left, rota-
tion of geometric objects around image center. Middle: pictorial diagrams in left/right
translation. Right: pictorial diagrams in rotation.

generating process of known causal nature, then interpolating this sequence by
cubic splines up to 500 points to the smooth trajectories zi which are pictured
in Fig. 2, The description of trajectory categories is:

1. RANDOM: A gaussian independent random sequence.
2. CORRELATED: A correlated pair of gaussian random sequences, where

the correlation is induced by multplying 2 gaussian independent random
sequences by a random 2x2 matrix (chosen before each corresponding trial)
with random gaussian unit variance elements.

3. AR: Linear auto-regressive system with correlated observation noise and
Gaussian innovations process w, described by:

yC,i =
K∑

k=1

[
a11 a12

0 a22

]
C,k

yC,i−k + wC,i (1)

xN,i =
K∑

k=1

[
a11 0
0 a22

]
N,k

xN,i−k + wN,i (2)

yN,i = B(xN,i + yC,i) (3)

This type of system is described in [9] and [8] and represents a challenge to
current causal estimation methods such as Granger Causality. As the proto-
col necessitates arbitrary causal influence, the upper triangular lag matrices
are transposed when the second element of y is required to influence the
first. Note that system in (1) is causal, the system in (2) is non-causal and
the final output (3) is a linear mixture of the two.

4. DELAY. Here one of the signals (the driver) is a random signal as in 1. while
the second is a delayed version of the driver plus random noise at 20% signal
to noise ratio. The delay, it is important to note is chosen randomly according
to a Gaussian distribution with standard deviation equal to 320ms, which
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is the signal bandwidth frequency. This means that in approx. 50% of all
such cases the delay exceeded the signal bandwidth, meaning that the two
objects moved in opposite directions for most of the trial (i.e. greater than
180o lag).

5. COLLISION. The trajectory profiles (best described graphically, see Fig.
2) consist in one object moving to the edge of the screen, then back, and
appearing to ‘hit’ the second object after which it comes to rest while the
second object moves. These two roles, and the spatial direction of the initial
movement, were chosen randomly.

6. IMPULSE. The same as COLLISION except the second object begins its
motion before the first object reaches it. The two trajectory are actually two
attenuated impulses related by a simple delay, but the appearance of object
collision is not present. As in 5. the object roles were reversed randomly.

Fig. 2. Basic trajectories for causal perception experiments. See text for description of
each category of trajectory.

The basic motions were either left/right translation normalized such that the
objects remained on screen of rotation such that the maximal rotation is +/-
90o from a 12 or 6 o’clock orientation.

For purposes of comparison, an automatic, low sample size version of the
recently introduced Phase Slope Index, which outperforms standard Granger
Causality in the presence of correlated noise (cases 2 and 3) and other state
of the art methods (see [8] for definition and [12] for comparison). PSI is a co-
herence=weighted average phase roll-off integral over frequency, which GC is
information flow in upper/lower triangular (aka causal) AR models. The basic
method relies on spectral estimation (which includes relative phase estimation)
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and is comparable with auto-regressive approaches to causality assignment (al-
tough at the present time it outperforms them). The final statistic provided by
PSI includes an estimate of its variability via a 5-fold bootstrap and the deci-
sion threshold was chosen as to statistically match the false positive rate (type
I error) shown by the human subjects (see [12] for details). If no decision on
causality could be made, a correlation test with a threshold of p=0.05 was used
to distinguish between correlated and random trajectory cases,

3 Human vs. Automatic Causal Inference: Results

The main results are presented in Table 1. The correlations are calculated by
assigning 0 to cases of RANDOM and CORRELATED and 1 or -1 to all other
(causal) trials. Note that the human subjects exhibit a small, but significant bias
toward the ‘dog wagging the tail’ (the machine does not, as expected). Note also
that the object that is originally clicked in order to begin the trial is not chosen
more often as a cause. The level of significance (after Bonferroni correction for
multiple comparisons) is α < .10.

Table 1. Main table of inference accuracy human vs. machine

HUMAN MACHINE

† nonsignificant rho P value rho P value

initial click to causal inference 0.01 0.89† 0.13 0.13†
dog/tail to causal inference 0.19 0.01 -0.09 0.26†
overall response (-1,0,1) 0.35 0.00 0.37 0.00

response (-1,0,1) AR 0.07 0.59† 0.19 0.14†
response (-1,0,1) DELAY 0.08 0.59† 0.28 0.05†
response (-1,0,1) DELAY SHORT 0.21 0.36† 1.00 0.00

response (-1,0,1) COLLISION 0.61 0.00 0.00 0.00

response (-1,0,1) IMPULSE 0.68 0.00 0.64 0.00

response (-1,0,1) GEOMETRIC ROTATES 0.35 0.00 0.39 0.00

response (-1,0,1) GEOMETRIC TRANSLATES 0.37 0.00 0.35 0.00

response (-1,0,1) DOG ROTATES 0.31 0.00 0.27 0.01

response (-1,0,1) DOG TRANSLATES 0.38 0.00 0.42 0.00

Table 1 also shows a breakdown of response correlation with trajectory re-
lation type 3-6 (causal). There is no noticeable (or statistically significant) dif-
ference in response accuracy among the different causal condition (except for
delay systems in which the delay is less than the bandwidth, i.e. in which the
time delay is represented by an object’s motion being visually correlated but
delayed with respect to the other). Table 2 shows a confusion matrix between
the basic relationships among objects, RAND (random), CORR (correlated but
not causal) and RED or BLUE, meaning causal with direction RED to BLUE
or BLUE to RED. The is no statistical difference among RAND and CORR
responses in human subjects.
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Table 2. Confusion matrix Human vs. machine

HUMAN MACHINE

RAND CORR RED BLUE RAND CORR RED BLUE

RAND 0.32 0.29 0.16 0.23 0.66 0.05 0.16 0.13

CORR 0.21 0.32 0.16 0.31 0.13 0.54 0.18 0.15

RED 0.25 0.14 0.49 0.12 0.27 0.22 0.45 0.06

BLUE 0.30 0.18 0.13 0.39 0.40 0.30 0.06 0.24

4 Discussion

Overall the results show a surprising parity in overall performance among ma-
chine (or Machine Learning) techniques and human observers. Yet a breakdown
of performance among causal relation types shows a striking pattern of differ-
ences. First, as suspected and as the title suggests, there is a human bias toward
dogs wagging tails. While this is not all that surprising, note that there was no
evidence of a similarly expected priming effect by which intention (clicking on
an objects) is confused with causation. It also did not matter if the dog/tail
movement was ‘physiological’ (rotation) or translation: subjects indeed seem to
make quite well reasoned and rational judgments. The bias towards dogs wag-
ging tails rather than vice versa is hardly a sign of disingenuous stereotyping -
as a matter of fact it is a stereotype machine intelligence would be hard pressed
to reproduce at the present time - as dogs and tails would have to be segmented
from background and recognized (without restricting the object category) first.
In this study it was taken for granted that objects are segmented and tracked
in a visual scene, and that their shapes are recognized and compared to a wide
database which has priors on possible relationships among expected objects. The
bias in question is quite rational from a Bayesian standpoint given that the mo-
tions presented were in fact, as subjects reported and the results show, difficult
to classify and the evidence scant. Another striking effect was that human sub-
jects could not accurately identify causality in the AR (auto-regressive) case,
which has the visual impression of a viscoelastic coupling between objects. Also
human subjects had difficulty establishing causal relationships in which delays
were long enough for the objects to move out of phase. As can be seen in Table 2,
humans could not truly distinguish among random and correlated trajectories,
something that the automatic algorithm could do well.

The machine on the other hand had difficulty with the COLLISION example.
It may seem surprising, as the relationship is simple enough to the eye (once the
trajectories are plotted) and certainly a machine can learn to classify such cases
associatively. It is not so easy to do so for the general case however, without
having built a more abstract concept/model of physical object interaction. The
reason for this is that current time-series causality assignment algorithms assume
stationarity, which allows spectral decomposition or autoregressive modeling in
linear or quadratic time. If this assumption is relaxed, then time-series would
have to be segmented first (into segments that are in themselves stationary or
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consistent) - an NP hard problem. Note that stochasticity and stationarity are
important for a further reason, namely the fact that a fair amount of informa-
tion is needed to make a statistically robust decision: the COLLISION example
contains no more than a few scant bits of information: some sort of prior must
be used. See [12] for a general definition of causality based on algorithmic in-
formation theory, in which a sequence is likely caused by another if the rate of
relative conditional information (compression) is higher using past and current
state of the presumed cause. If either series contains hardly any information, it is
impossible to draw conclusions from the data alone. Note also that the PHASE
examples, which are similar, do accidentally provide a clear spectral decomposi-
tion and a phase lag that can be used for causal assignment. Human ability to use
memory at different time scales, to automatically segment visual input in both
space and time despite the curse of dimensionality and to find correlations among
a large variety of inputs is key to be able to interpret non-stationary signals (hu-
man segmentation of speech and music is, for example, unparalleled). One of
the conclusions of a recent workshop on the topic of human intelligence and the
curse of dimensionality (http://cnl.salk.edu/˜terry/NIPS-Workshop/2009/) was
that humans perform amazingly difficult perception tasks by massive parallelism
but also by simply taking necessary shortcuts: by placing restrictive priors and
limiting attention, one may make quick practical decisions but leave room for
increased error.

This study is the first in a line of investigation that is quite new, namely human
causal perception of moving objects. Several issues remain to be investigated,
such as the effect of learning, in particular if classification of complex causal
relationships such as the AR case can be improved by practice, and how simpler
human like causal perception may be modeled on a bottom-up connectionist
embodiment in a mobile robot. The problems of perception of out-of-phase mo-
tion in the DELAY case leads one to believe that an automatic causal inference
method could be as simple as spatial motion correlation (a visual cortex process-
ing task) coupled with consistent spatial lag. This type of automatic (but error
prone) mechanism could be used as a building block in more complex models of
dynamic object interaction, and even provide a basis for deliberative processes
which, as the subjects of the study reported was the case, involve explicit rea-
soning lasting a period of several seconds about what kind of physical analogy or
algorithmic relationship was most relevant and best explained the observations.
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Abstract. We present an architectural approach to learning problem
solving skills from demonstration, using internal models to represent
problem-solving operational knowledge. Internal forward and inverse mod-
els are initially learned through active interaction with the environment,
and then enhanced and finessed by observing expert teachers. While a
single internal model is capable of solving a single goal-oriented task, it
is their sequence that enables the system to hierarchically solve more
complex task. Activation of models is goal-driven, and internal ”mental”
simulations are used to predict and anticipate future rewards and perils
and to make decisions accordingly. In this approach intelligent system
behavior emerges as a coordinated activity of internal models over time
governed by sound architectural principles. In this paper we report pre-
liminary results using the game of Sokoban, where the aim is to learn
goal-oriented patterns of model activations capable of solving the prob-
lem in various contexts.

1 Introduction

Complex systems require a significant amount of work to be programmed and
maintained. Research on programming by demonstration, or imitation learning,
has recently been seen by the scientific community as a promising approach
for simplifying programming efforts. It is inspired by the remarkable ability of
humans to learn skills by simply watching others performing them. From the
methodological point of view, programming by demonstration is an efficient
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method for pruning high-dimensional search space and it makes the task of
learning problem solving skills computationally feasible. However, these advan-
tages come at the cost of increased architectural complexity and are still far from
being solved in the scientific community.

In this paper we describe an architecture1 for learning problem solving skills
from demonstration and by active interaction with the environment. In contrast
to constructionist A.I., in which complete specification of knowledge is provided
by human programmers, ours is a constructivist A.I. approach, where an ar-
chitecture continuously expands by self-generating code (e.g. models) [1]. We
target goal-level imitation, where imitation is seen as the process of achiev-
ing the intention hidden in the observation of an action[2]. In other words,
it is not the means that are imitated but rather the goal of a demonstra-
tion. Central to the computational modeling of such intentional actions is the
idea that understanding others can be efficiently achieved by reenacting one’s
own internal models in simulation [3]. It is thought that similar mechanisms
could lead to higher cognitive processes like imagery, anticipation and theory of
mind [4,5]

We are working towards an architecture that can incrementally learn se-
quences of internal model activations from demonstration. It is based on the idea
of coupled forward-inverse internal models for representing goal-directed behav-
iors [6,7]. A forward model is a predictor that, given the state of the system and
a command, produces a prediction of the future outcome of the given command.
An inverse model, known also as controller in control theory, produces com-
mand(s) necessary to reach a goal state given the present state. Internal models
are powerful constructs able to represent operational knowledge of an agent and
to govern its interaction with the environment. While a single internal model is
capable of solving a single goal-oriented task, it is their sequence that enables
the system to hierarchically solve more complex task.

The architecture is thus model-based and model-driven, and it solves all tasks
by exploiting the set of such learned internal models. The system is designed to
avoid the use of explicit planning: intelligent behavior emerges from the interac-
tion of incrementally learned skills. Internal models encode various behavior of
the system and an ad hoc module is responsible for coordinating the activation
of the most significant internal models given the actual state of the system and
the goal. In a similar way, learning of complex skills is achieved by composing
and coordinating simple ones (as encoded by models).

The article is organized as follows. We first give a high-level overview of our
architecture in sec. 2, and then we discuss how is the architecture used to learn
skills by imitation in sec. 3. Section 4 explains how the architecture has been
used to learn problem solving skills in typical A.I. test-bed, the Sokoban game.
Finally, we outline the conclusions and future works in sec. 5.

1 The architecture is being built by the HUMANOBS consortium as part of the HU-
MANOBS FP7 project led by CADIA/Reykjavik University; details of this archi-
tecture will be presented in future papers.
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2 Architecture

While the architecture we are building will be extensively described in future
publications, a cursory overview of its main components relevant to imitation
learning will now be given. The basic building blocks of our architecture are
internal models, both forward and inverse, which represent an agent’s functional
knowledge (i.e. they are executable), and are learned by the system through
continuous interaction with the environment. The system is able to observe how
the environment changes as a consequence of an event (both exogenous and self-
produced) and to encode this causal relation between the current context and a
proximal goal into an internal model. Complex chains of causal relations, linking
the current context to a distal goal, are learned by adopting the paradigm of im-
itation learning where the agent focuses its computational efforts on interesting
parts of the problem search space only.

Models operate on states of the world, including those regarding the agent
itself. We will formalize the notion of the state shortly. For the discussion that
follows, it suffices to stress that states need not to be complete (in a Markovian
sense), nor uniquely defined. In this respect, states will be composed of facts
that hold in the world.

The agent senses the world through messages, where each element of a message
holds a true fact in the world as observed through a set of predefined perceptual
processes. Each time a change is detected in the world (either as the effect
of agent’s actions or external phenomena) a message is generated. Messages are
given in the form marker-value, where value can be of any kind (integer, boolean,
string, etc.). Having introduced messages, the state can be defined as a collection
of messages produced by a set of predefined perceptual processes related to the
world (including the agent itself).

Internal models operate on states. An internal model is a structure containing
a couple of pattern lists and a production. The pattern lists restrict the applica-
bility of a model: a state can be input to a model only if its messages match the
patterns on the list. The same structure is used to encode forward and inverse
models. The qualifiers ’forward’ and ’inverse’ describe a pattern-matching-wise
arrangement of said models and their inputs: shall the latter match the right-
side, the model operates as an inverse model, a forward model otherwise.

Learning is initially triggered by domain-dependent knowledge stored in a
component called Masterplan. It stores a set of primitive skills together with an
initial ontology, goals and heuristics needed to monitor the learning progress.
By directly interacting with the world the system generates hypotheses of new
models through a component called Model proposer. These will be stored in
Masterplan and tested in real situations in order to assess their usefulness.

The system learns new models by observing the world and interacting with it.
The components depicted in Fig. 1 continuously analyze the perceptual data in
order to acquire new knowledge. Initially the system interacts with the world ex-
ecuting casual actions in order to learn simple causal relations of the entities of
the world and of itself - a process common in newborns called motor babbling [8].
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Fig. 1. How does the learning happen in the system? Environment is sensed through
a set of existing models, and obtained percepts are analyzed in order to generate novel
models by the “Model proposer” component. Models can be as simple as a composition
of simple facts of the world, or complex sequences of existing models. This process is
bootstrapped by existing knowledge stored in a component called ’Masterplan’. Gener-
ated models are themselves stored in the Masterplan for their validation and possible
future usage. Interaction with the environment is performed through the Model exe-
cution component, which is directly connected with the world.

More complex models, encoded as chains of simple models activations, are learned
by observing other skilled actors performing goal-directed tasks.

In order to exhibit robustness, the system must be able to generalize learned
behaviors to novel, previously unseen, situations. To do this the system needs to
reason about its own models and propose new, more general, models. In addition,
the agent has to anticipate its future and to make decisions based not only on
the actual and previous states of the system, but also on a prediction of a future
state. Our architecture offers a mechanism of anticipation that is based on the
knowledge encoded in the internal models.

When acting, the agent needs to decide what to do in a particular situation in
order to achieve its goals. Fig. 2 depicts the components used to exploit models for
acting. A decision making module, the Decision maker, is responsible of selecting
which internal models to execute given the goal and the current situation. Deci-
sions are made reactively and in parallel by exploiting all the available knowledge
at present. Since multiple decisions can be made, we have developed a module that
anticipates potentially useless or dangerous choices, and uses this information to
decide which decision to execute. The Simulation module predicts the outcome
of a decision by chaining the activations of internal models. The Decision maker
uses the heuristics defined in the Masterplan to evaluate the desirability of a pre-
dicted future state. The Anticipation module analyzes the simulation looking for
failures of the system or difficulties encountered. Consequently, it might suggest
anticipating a future production in order to avoid such situations.
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Fig. 2. How does the system act? Interactions with the environment are performed
through the “Model execution” module which is controlled by a “Decision maker”
component. The former is responsible for the coordination of acquired models of the
system. The anticipation module is responsible for simulating the execution of models
and their online correction.

3 Learning Problem Solving Skills

Models encode problem-solving skills as chains of actions towards a goal, para-
meterized through patterns expressing states in which models are applicable (i.e.
preconditions). For the discussion that follows, it is convenient to introduce a
distinction between low-level and high-level models. In our definition, low-level
models encode a direct causal relations between events the agent observes. For
example, a low-level model could describe how a room illumination changes as
a consequence of pushing the switch. On the other hand, high-level models pre-
scribe actions needed to reach distal goals, or to predict the outcome of a present
action arbitrarily far in the future. As an example, a high-level model can de-
scribe how to switch on the light in a different room from the one the agent is
currently in. Such a scenario would require the agent to exit the room, reach the
desired room, enter it, look for the switch and turn it on, where each act in the
chain could be described by either a low- or high-level model.

The system tries to explain the events it observes in terms of its current
repository of internal models by reenacting them in simulation. Whenever it
fails, model learning is triggered which proposes new models. The Model pro-
poser component produces a new low-level model by analyzing differences in
state before and after an action has been executed, or an external event has
been observed. We assume that each state transition can always be conveniently
expressed as a combination of elementary models stored in the Masterplan. The
module called Pattern Extractor is responsible for generating the patterns on the
messages that will be used to restrict the application of a model to situations
similar to the observed one. Finally, the Model proposer produces a new forward
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model that predicts a state transition given an input. By inverting the forward
model, the system produces its corresponding inverse model.

High-level models are learned through imitation learning. This process is ac-
complished by observing a demonstrator carrying out a task and trying to match
its behavior with the set of available models.2 To this end, forward and inverse
models are used in couples to rank activations of those models that best explain
the current observation (see [3] for details). A dedicated process is in charge
of analyzing the sequence of activated models in order to detect key states en-
countered during demonstrations which will constitute sub-goals for the learning
agent. The Model proposer then produces a sequence of sub-goals and patterns
which compose the high-level model (patterns are produced in the same way as
in low-level model acquisition).

However, newly acquired low- and high-level models are too specific since
they have been learned from a single observation. As an example, suppose the
agent learns how to switch on the light in a room. The model created is initially
tailored to the particular room where the demonstration has been performed, as
the agent has no means to assess whether the model could be applied in similar
situations. A module called Model generalizer is responsible for the generation
of new models that inductively generalize more specific ones. This process is
triggered each time a model is created that shares the production section with a
previously acquired model. If the only difference between these models is their
pattern section, meaning that the same model can possibly be applied to both
situations. A set of predefined rewriting procedures are applied that create a
single, more general model.

3.1 Bootstrapping the Learning Process: Masterplan

Masterplan stores the domain-dependent knowledge that all the
domain-independent components of the system use to produce new models and
hence new knowledge. The Masterplan is not a fixed entity: it expands as the
agent acquires novel knowledge through its own experience and learning.

In our system, prior knowledge in the Masterplan includes:

– a set of a-priori defined forward and inverse models; these models are aug-
mented at runtime through the processes of motor babbling and imitation
learning (the initial cannot be empty);

– a set of innate goals/subgoals and a monitoring process which provides the
currently active goals/subgoals;

– facts about salient aspects in the world;
– an ontology which describes relations between entities in the world;
– a heuristic which evaluates the goodness of a state given a set of subgoals;
– a list of primitive actions the agent can perform: more complex behaviors

will be hierarchically built starting from the same set of elementary ones.

2 Demonstrations should be performed in a bottom-up way: whether a task includes
complex subtask, these should be thought first.
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Starting from these “innate” principles, the agent will be able to acquire
knowledge by direct experience and to learn strategies through observation of
other expert teachers. During interaction, only relevant aspects of the world are
taken into consideration through a set of predefined attention mechanisms in the
Masterplan. The Masterplan also holds predicates for assessing the similarity
between two sets of messages, used to guide the learning phase.

New models are learned by combining innate primitive models provided in
the Masterplan. In our architecture, these primitive models are defined by pro-
grammers as a set of elementary functions describing known facts about state
transitions; a primitive model can e.g. relate position and velocity through known
physical laws which combine elementary functions of multiplication and addi-
tion, and a set of ontological relations which describes how these functions can
be applied to a given state (e.g. multiplication is not well defined for string
variables).

4 Case Study: Sokoban

In order to test the ideas described we chose a simplified version of the well-known
Sokoban game as a case study, which presents a handy subset of our ultimate
target application field(s) of the architecture. Sokoban is classified as a motion
planning PSPACE-complete problem and as an NP-HARD space problem [9].

In our version of the game the agent moves a given number of blocks randomly
placed in a grid; the goal is to place each block in a given final position. The
number of blocks is a free parameter and can be set by the user. In our experi-
ments we decided to use three blocks. An example of an initial grid configuration
is shown in Fig.3 (left).

Whenever the agent performs an action, its perceptual sensors produce mes-
sages related to its position in the environment, and that of blocks. Messages
indicating whether a block is next to another, or whether a block is next to the
border are also given. The Masterplan holds a set of a-priori facts and models
about the game. We defined elementary functions of the primitive models as
mathematical and logical functions that compose any state transition as a con-
sequence to an agent’s act. These functions are increment and decrement for the
numerical values, negate for logical values and the identity function that can be
applied to any value. We have also defined ontological relations that specify how
the elementary functions can be applied to the elements of a state (e.g. the incre-
ment and decrement functions can be applied to the coordinate of the blocks and
of the agent). The Model proposer module analyzes the perceived transitions of
state as a composition of elementary functions; the ontological relations are the
constraints for this analysis.

The Masterplan also holds a heuristic to evaluate a state with respect to the
desired goals. This heuristic is based on the Manhattan distance of blocks from
their desired position and on the measure of the degrees of freedom of both the
agent and the blocks (in order to avoid deadlock configurations).



Learning Problem Solving Skills from Demonstration 201

Instead of focusing on the computational costs of our approach and on com-
paring it to other Sokoban solvers, we have performed experiments aiming to
assess the validity of our architecture as a general architecture for learning prob-
lem solving skills by imitation. We present results for various aspects of the
architecture.

To test the results we consider how the agent predicts the outcome of an
action in a set of defined states. This set of states was chosen to represent some
of the most commonly encountered situations in the Sokoban game, together
with few particular and rare configurations.

By analyzing the results of the motor babbling we provide an evaluation of
the performances of the model acquisition and generalization processes. The
parameters used in the motor babbling phase are: a) the number of actions to
execute for each trial and b) the total number of trials. We have performed
several tests by varying these parameters.

To evaluate models learned by imitation we have collected feedback from
a group of randomly chosen subjects who have been asked to demonstrate a
particular problem solving behavior to the system.3 After the learning phase,
each subject has been asked to grade the system’s ability to solve similar tasks
in a range of situations: a) whether the system was able to successfully complete
the task and b) give a score from 1 to 10 related to the quality of the observed
behavior, 10 being best and 0 meaning ”no ability to perform”.

4.1 Results: Motor Babbling

For each run of the motor babbling, we store the predictions of the system for
each of the encountered states. These predictions are then compared to the real
outcome of the actions in corresponding states.

(a) Sokoban game

50 100 150 200

50 0.375 0.375 0.375 0.375

100 0.375 0.5 0.5 0.5

150 0.7 0.7 0.7 0.8

200 0.8 0.88 0.88 0.88

250 0.9 0.9 0.9 0.9

300 0.9 1 1 1

(b) Motor babbling results

Fig. 3. (left) A possible state in the Sokoban game; (right) Performance of our archi-
tecture in motor babbling: columns represent the number of steps in a trial, while rows
represent the total number of trials; each cell contains the success ratio in predicting
the correct outcome

3 Participants were 6 male and 3 female PhD students from our lab; each participant
played twelve trials on average.
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Through the motor babbling phase the system acquires its low-level internal
models and learns how to interact with the environment. As shown in the ex-
perimental data(see table 3 (right)), the accuracy of the predictions grows with
the number of trials played and actions taken. This could at first sound obvious:
by increasing the number of trials we increase the amount of available data to
analyze. However, it is worth noticing that the number of actions executed in a
trial plays a marginal role compared to the total number of trials played. This
can be explained by the fact that the motor babbling in a specific game tends
to remain in states that are similar to the initial one. In order for the system to
experience a wider range of situations, we need to increase the number of trials
played.

4.2 Results: Imitation

The results of the human demonstrator evaluation of subsequent system perfor-
mance, after demonstrations, show that the system is able to learn new skills
from the demonstration and to apply them in novel situations. Satisfaction anal-
ysis shows that more than 80% of participants judged the system’s performances
”more than sufficient” (a vote greater than 6). In particular, when the system
was able to anticipate a production the evaluation was greater or equal than 8.
This confirms that the anticipation ability is subjectively considered a necessary
skill for any intelligent behavior.

5 Conclusions

In this paper we described new principles for learning complex problem solving
skills through imitation. Our approach is based on constructivist A.I. principles,
which proposes pervasive architectural self-modification as prerequisites for holis-
tic system learning and self-expansion [1]. Our architecture allows self-expansion
through a set of modules and a ”Masterplan” that encodes initial bootstrapping
knowledge to guide it. Before acting in the real world a system based on this
approach runs actions in ”simulation mode” using internal models, for the pur-
poses of anticipation. These same set of models also enable our system to reach
its goals, provided real-world experiences; our architecture allows the system to
learn its internal models by observing other skilled actors.

As the whole architecture is model-based, learning is devoted to constantly
acquiring new forward and inverse models. However, learning does not occur
from scratch but it is rather bootstrapped by domain-dependent knowledge con-
tained in the Masterplan; it holds the so called ”first principles” that enables
the system to learn more complex goal-directed behaviors. This approach has
an obvious advantage over more traditional (i.e. hand-coded) architectures, as it
allows ”goal-level” imitation, in which what is learned is the goal of the demon-
stration, rather than a particular sequence of acts to imitate. This is the most
powerful way of learning, as the system acquires what amounts to an ”under-
standing” of a set of actions - that is, the knowledge that the system acquires
lends itself to explaining, which in turn (in our approach) allows the system to
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evaluate alternative explanations and choose between them based on available
evidence.

Future work will focus on making the principles presented here more robust,
expanding the architecture to be able to learn not only goals but also actively
choosing which level of detail is appropriate to imitate, e.g. surface-level (mor-
phology), goal-level (intention), or some combination thereof. Such a system
should be applicable to a wide range of task learning scenarios, as many human-
level tasks are in principle a complex mixture of the two. By having addressed
the more difficult of these, namely goal-level imitation, we are optimistic about
creating such a system in the near future.
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Abstract. Compression has been advocated as one of the principles
which pervades inductive inference and prediction - and, from there, it
has also been recurrent in definitions and tests of intelligence. However,
this connection is less explicit in new approaches to intelligence. In this
paper, we advocate that the notion of compression can appear again
in definitions and tests of intelligence through the concepts of ‘mind-
reading’ and ‘communication’ in the context of multi-agent systems and
social environments. Our main position is that two-part Minimum Mes-
sage Length (MML) compression is not only more natural and effective
for agents with limited resources, but it is also much more appropriate for
agents in (co-operative) social environments than one-part compression
schemes - particularly those using a posterior-weighted mixture of all
available models following Solomonoff’s theory of prediction. We think
that the realisation of these differences is important to avoid a naive
view of ‘intelligence as compression’ in favour of a better understanding
of how, why and where (one-part or two-part, lossless or lossy) compres-
sion is needed.

Keywords: two-part compression, Minimum Message Length (MML),
Solomonoff theory of prediction, tests of intelligence, communication.

1 Compression, Inference, Prediction and Intelligence

Several authors [1,5,6,11,7,9] have suggested the relevance of compression to
intelligence, especially the inductive inferential (or inductive learning) part of
intelligence. M. Hutter even proposed a compression contest (the Hutter prize)
which was “motivated by the fact that being able to compress well is closely
related to acting intelligently” (http://prize.hutter1.net) [2, footnote 180].
However, many compression algorithms are able to compress data in a much
better way than humans (either lossless or lossy compression). Humans are better
at compressing information which is relevant to their goals (or rewards). So,
many agree that compression must have a role, but it is not clear which kind of
compression must be considered.
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One position advocated is that two-part Minimum Message Length (MML)
compression [26,28,25,4], which states the theory in the first part, gives the induc-
tive inference part of intelligence [5,6]. Other authors have considered the one-part
Solomonoff predictive compression [20] to be the appropriate way of using the data
for modelling, perhaps due to its emphasis on prediction rather than explanation
and its presumed consequent superiority in predicting the future.

The relationship between MML and Kolmogorov complexity, the similarities
between Wallace’s MML inference/explanation work and Solomonoff’s predictive
work – and the subtle difference between inference/explanation and prediction –
have been discussed in [28][25, chap. 2]. In short, Solomonoff will take a posterior-
weighted mixture of all available models, and so his predictive approach will
typically involve something which is not one of the available models - whereas
the Wallace MML approach will use the single best available model. Technically,
a mixture of models may not compress at all, since encoding all (or a great
number of) the possible models may require more bits than the data itself.

In addition, there seems to be confusion amongst many authors about the dis-
tinction between one-part and (MML) two-part compression. In one-part com-
pression, we simply wish to encode the data. In two-part (MML) compression,
we wish to encode the model in the first part of the message and then we encode
the data given the model in the second part of the message [28][25, chap. 2]. An
alternative way of describing the two-part coding is that a (possibly Universal)
Turing machine (TM) could read the first part of the message, whereupon it
would write nothing but rather go into an “educated” state or become an Edu-
cated Turing Machine (ETM) [25, chap. 2][28]. Upon reading the second part of
the message (which encodes the data), the (now Educated) TM would perform
a decoding and then write out the data.

However, in terms of a single agent operating in some environment, it will
clearly predict better (even if only slightly) when using the Solomonoff predic-
tive distribution. Nonetheless, if the agent is time-limited – as it typically will
be in a realistic environment – then there will be disadvantages to using the
entire Solomonoff posterior predictive distribution. Indeed, this will typically in-
volve infinite summations and – further – the uncomputability of the Halting
problem. It is worth mentioning, though, that some approximations can work in
practice (such as Monte Carlo AIXI [24]) by reducing the number of models in
the mixture.

Partly in response to Searle’s “Chinese room” argument [19], we also raise the
issue of compression as a non-behavioural (introspective) indicator of intelligence
- i.e., given two agents who have scored equally well on a test and one of which
compresses better than the other, which should we prefer [5, sec. 5.1][6, sec. 5][4,
sec. 7.3]?1 We compare this to other purely behavioural ways of assessing and
detecting intelligence.

1 We certainly note [16, sec. 5.2] that human society gives Nobel prizes and various
other accolades to those who give a good single theory (or MML explanation) for
observed data. Examples include (e.g.) special/general relativity, Helicobacter pylori
as the cause of stomach ulcers, etc.
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The rest of the paper analyses the relation between the several views and
applications of the notion of compression and intelligence, focussing on social
environments and communication.

2 Social Environments and Communication

Social environments and multi-agent systems generally include competition and
co-operation. For competition, it is necessary to have mind-reading abilities in
order to anticipate what other agents might do (predator-preys, games such as
the prisoners’ dilemma, etc.). While we could perhaps use a mixture of models
for these social environments as well, the other agents are resource-bounded, and
they will generally act according to a reduced number of models – or a single
one. Consequently, using a large mixture of models to explain and predict the
behaviour of other agents seems inefficient and unrealistic.

Nonetheless, it is in co-operation where the different approaches to inductive
inference and prediction perhaps become more apparent. First, co-operation im-
plies communication. In order to communicate a concept, we need an efficiently
compressed expression of the concept. We do not expect to transmit a mixture
of models but a single model. Second, in order to transmit (i.e., understand) the
concept, we need descriptions which are clearly separated from the data. Here,
a two-part compression seems to have advantages over a one-part compression,
since with the former it is easier to extract the concept or model we want to com-
municate. Third, in co-operation, agents need to share models and procedures.
In other words, agents should share the same ontology. This is only possible if
the ontology can be isolated from the data – and if it is the same for all.

Let us elaborate upon the points from the above paragraph with some ex-
amples. The creation of language is about developing a set of (hierarchical)
concepts for the purposes of concise description of the observed world and corre-
spondingly concise communication. Elaborating upon the ideas outlined in [25,
chap. 9] (and [2, footnote 128][4, sec. 7.2]), this can be thought of as a problem
of (hierarchical) intrinsic classification or (hierarchical) mixture modelling (or
clustering), where we might identify classes such as (e.g.) animal, vegetable, min-
eral, animal-dog, animal-cat, vegetable-carrot, vegetable-potato, vegetable-fruit,
mineral-metal, mineral-salt, animal-dog-labrador, animal-dog-collie, animal-dog-
labrador-black, animal-dog-labrador-golden, etc. Following these principles of
MML mixture modelling [26,27,29,25] enables us to arrive at a single theory,
which is the first part of an MML message and which describes the concepts or
classes. The data of all the various individual animals, vegetables and minerals
(or things) on the planet (such as their heights and weights, etc.) is encoded in
the second part of the message. Users of the language are free to communicate
the concepts from this single best MML theory.

Knowledge (and human knowledge especially) in a social environment is all
about this, about sharing models. And this shared knowledge makes co-operation
possible. For humans (elevated in knowledge), science is a type of knowledge
where we typically use one theory to explain the evidence, and not hundreds.
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Despite the rationale that one model (or a small set of models) is better for
resource-bounded agents which need to communicate their concepts, there are
some other issues around compression and intelligence that are more difficult to
dissect.

2.1 Lossless and Lossy Compression

In other areas of computer science (image, audio and video processing in par-
ticular), we clearly distinguish between lossless and lossy compression [17,15].
In inductive inference, this distinction is less clear. Prediction and inference can
also be defined and performed in noisy environments, where some details have
to be lost to avoid overfitting (see, e.g., [25, sec. 4.9]). This is, of course, one
of the rationales behind two-part codes, where the theory part could be seen
as the lossy compression and the other part could be seen as the detail which
(optionally) is used to cover the rest of the data. In fact, some compression
schemes may have more than two parts, with each part adding more detail to
the previous part, in a hierarchical way (although the MML message could be
re-structured so that this is again in two parts). Perception is a clear example
of this as well, especially because the world deals with continuous (non-discrete)
sources of data.

One issue which is difficult to isolate is the ‘distortion criterion’ [17] for lossy
compression. In image, audio and video compression, the distortion and qual-
ity criteria are set by human perception - i.e., what kind of loss is acceptable
depending on the application. If this external reference is lost, it is much more
difficult to distinguish the information that can be lost from the information
that should be preserved. Perception and intelligence must be able to deter-
mine the details which are relevant to an agent’s actions and those which are
completely irrelevant - i.e., agents must perform selectively lossy compression.
Memory and everyday linguistic concepts must also be able to drop details and
keep the essential. The mechanisms and principles which should guide all this
are yet to be discovered. In many codings which are used in reinforcement learn-
ing (e.g. [21,22]), compression is used to code future rewards efficiently, so any
detail which is irrelevant to predict future rewards can be dropped. In fact, this
link between compression and reinforcement can be made explicit [8]. Again,
compression is required, but the precise formulation and application is crucial.

2.2 The Elusive Model Paradox and (Human) Unpredictability

The interaction between predator and prey, between sellers and buyers, or the
behaviour which takes place in board or mind games (such as the prisoners’
dilemma) has been analysed in ethology, economics, game theory, artificial intel-
ligence and other disciplines. We can discuss all this in terms of prediction and
compression.

For example, Scriven discusses the notion of (human) predictability [18] in
one of the simplest possible social environments: an iterated game of two hu-
mans with one trying to do what the other does and the other trying to avoid
this happening. Scriven finds an apparent logical paradox that both should be
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able to predict the other, while Lewis and Shelby Richardson [13] note Scriven’s
assumption that the calculations done by each agent in modelling the other are
required to terminate. Indeed, whether one looks at doing two-part MML in-
ferential modelling or Solomonoff predictive modelling, one ultimately runs into
the Halting problem (or Entscheidungsproblem) [2, footnote 211][3, p455][4, sec.
7.5] - and (the paradox is circumvented by the fact that) the relevant calcula-
tions will not terminate. The ability to recognise “other minds” and engage in
“mind-reading” is clearly advantageous in general in social environments. It is
presumably of little surprise that two competing agents of equal computational
power and equal inference (modelling) or predictive technique have no advantage
over one another.

3 Detecting and Assessing Intelligence

The understanding of compression as a necessary trait of intelligence has led
to some approaches for detecting and assessing intelligence where compression
plays a fundamental role. Some of these approaches are non-behavioural, i.e.,
introspective, and require an analysis of the models the agent is using. In fact,
the analysis of the level of compression in the models was used as a response
to Searle’s “Chinese Room” argument [19]. In [5, sec. 2.1][6, sec. 2][4, sec. 7.3],
compression was advocated as a non-behavioural way of assessing and detecting
intelligence. This required measuring the bits of the model the agents are using,
if we are comparing them. This idea is even more explicit in the Hutter prize
(http://prize.hutter1.net) [2, footnote 180]. In general, however, it is not
possible to precisely measure the length of a model by introspection, since the
inner knowledge representation may not be accessible. Even for artificial agents,
this might be impractical as agents become more and more complex.

One possible way to overcome this limitation is through the use of language.
Through language we can ask and communicate models and see whether the
explanation for a phenomenon (or an action) given by an agent is shorter than the
explanation given by another agent. In fact, interviews, exams and other kinds of
tests commonly tell between rote learning and full comprehension by requesting
an explanation for the answers, which can then be compared to the right model.
This is also recurrent in the Turing Test [23,14] and its implementations, where
the artificial agents frequently fail when they are asked to give explanations.
This is well-known in psychology as well, where there are many introspective
techniques based on asking the right questions.

The other possible way is to stick to purely behavioural tests, which are com-
pletely independent from the nature of the agents. Psychometric tests are gener-
ally behavioural, since subjects only need to guess answers right or wrong. Many
evaluation settings in artificial intelligence are also behavioural, such as game
contests, robot competitions, reinforcement learning evaluation, etc. Although
behavioural tests seem to be disconnected from the notion of compression, the
links arise again in many and diverse ways. Firstly, since prediction and com-
pression are linked, performance is better for those systems which are able to
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compress the evidence (in a goal-oriented way). Secondly, the difficulty of the
exercises or tasks which are used to detect intelligence can be approximated us-
ing notions which are closely related to compression, such as many variants of
Kolmogorov complexity. Finally, the distribution of tasks can be obtained using
some kind of universal distribution. All this has been explored by [11,7,9,12,10],
where the original static (sequence-prediction) tests have evolved into more in-
teractive and adaptive tests.

Finally, it is insightful (as an extreme case) to see whether (and how) intelli-
gence can be detected through a (slow) uni-directional form of communication
- where, rather than having interactive conversation, instead we send a message
conveying some information which we hope is understood. When no previous
knowledge is shared, this seems impossible due to the lack of common refer-
ences. However, compression is again advocated as a possibility to make this
feasible, even in the case of uni-directional messages2.

4 Conclusions

In this paper we have discussed the role that compression might have in intelli-
gence, with an emphasis on communication and language, and the exchange and
evaluation of models.

We have argued that the ability to do two-part (MML) compression is (in
general) an advantage in social environments. It is an advantage firstly for the
same reasons that it is an advantage in an isolated environment of one agent, in-
cluding the fact that the MML-inferred theory is a good predictor. But, secondly,
it will also typically be an advantage in the (co-operative) social environment,
where we can teach (or tell or show) our theories to others. One interesting area
of research would be to follow the ideas in Monte Carlo AIXI [24] and construct
MML agents, and see whether the latter behave better (with the same resources)
in social environments.

Hence, while agreeing that both the optimal Solomonoff predictor and the
Wallace MML inference are both relevant to at least the inductive inference (or
inductive learning) part of intelligence, we take the position here of suggesting
that – at least in the context of social agents in a multi-agent environment –
MML is perhaps more pertinent to what we (as social humans in our multi-
human environment) might commonly refer to as ‘intelligence’.
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Abstract. Dietrich Doerner’s “Psi” cognitive model, which was used as
the basis for Joscha Bach’s MicroPsi AGI system, is expressed in a quite
different terminology and conceptual framework from the one normally
used to discuss the OpenCog AGI system. However, the two systems are
fundamentally conceptually compatible, and we describe here the basis of
a realization of the Psi model within OpenCog, which we call “OpenPsi.”
Currently OpenPsi is being used to control non-player characters in a
game world, and application to humanoid robotics is also underway.

1 Introduction

The field of Artificial General Intelligence is remarkably fragmented. There are
multiple theoretical frameworks that are often, at least on the surface, incom-
patible. There are multiple practical AGI architectures, founded on different
theoretical bases, with overlapping functionalities and goals; and there are no
clear mappings from components or aspects of one architecture into another.
To some extent, this fragmentation may be considered a feature rather than a
bug. AGI is a young field, and a diverse variety of approaches is healthy and
expectable. Sometimes, however, differences in language or focus between the
works of different groups in the field, obscure deeper underlying commonalities
that could otherwise be profitably exploited. Because of this it behooves us as
AGI researchers to aggressively explore possible relationships between our own
preferred approaches and those of other researchers.

We present here the early results of one such exploration. The authors are
involved with the development of the OpenCogPrime (OCP) AGI architecture
[6] within the OpenCog software framework, and when first introduced to Joscha
Bach’s MicroPsi AGI architecture [2], the two approaches appeared incompatible
in major respects. More careful study of MicroPsi, however, and extensive in-
person dialogues with Bach, revealed a great number of parallels between the
approaches, and led to the conclusion that many key aspects of MicroPsi could
in fact be replicated within OpenCog and integrated with OCP.

MicroPsi is conceptually founded on Dietrich Dörner’s “Psi,” a cognitive
model of human and animal intelligence focusing on the role of motivation and
emotion in guiding behavior and cognition. The overall Psi theory comprises a
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comprehensive model of the human brain and mind, in principle encompassing
all aspects of human-level general intelligence; but, Psi is typically presented in
the context of a relatively simplistic agent choosing behaviors in the world in
a manner driven by several well-defined motives (e.g. need for food, water, the
avoidance of pain, certainty, competence and affiliation). Psi was originally im-
plemented by Dörner in a helpful and illustrative but somewhat “toy” computer
system; MicroPsi embodied Psi in a serious software architecture, enabling more
thorough exploration of the model’s properties.

2 Motivation and Emotion in Psi

Fig. 1. Influence of Modulators

First we outline
those aspects of
Psi that we have
chosen for realiza-
tion in OpenPsi.
As illustrated in
Figure 1, the Psi’s
motivational sys-
tem begins with
Demands, which
could be the mimic
of physiological de-
mands of real ani-
mals, such as food,
water, sex and so
forth, or even fairly
abstract demands.
Psi theory also spec-
ifies three fairly
abstract demands:
Competence, the
effectiveness of the
agent at fulfilling
its Urges; Cer-
tainty, the con-
fidence of the
agent’s knowledge;
and Affiliation,
the acceptance by other agents or social groups. Each demand comes with a
certain “target range”, which may vary over time, or may change as a system
develops. An Urge develops when a demand deviates from its target range: the
urge seeks to return the demand to its target range.



214 Z. Cai, B. Goertzel, and N. Geisweiller

The most distinctive feature of Psi theory is its perspective on the autonomous
choice and regulation of behaviors. It suggests that all goal-directed action have
their source in a motive that is connected to an urge, which stands for a physio-
logical, cognitive or social demand [2]. When a positive goal is reached, a demand
may be partially or completely fulfilled, which creates a Pleasure signal that is
used for leaning, by strengthening the associations of the goal with the actions
carried out and situations that have led to the fulfillment. While not all the ac-
tions are directed immediately hooked to a goal, many actions are carried out to
serve an exploratory goal or to avoid an aversive situation. It is also make sense
when reaching sub-goals, because in those cases a pleasure signal of competence
demand would be created. After finally reaching a consumptive goal, the system
may strength all the associations along the chain of actions that has lead to the
target goal.

In the Psi model emotion is not considered as an isolated component. Instead
it emerges from the whole system, where the process of perception, cognition and
action selection interact together. These are accomplished by modulators. A
modulator is a parameter that characterize how the emotion affects the process
of perception, cognition and action selection. Figure 1 shows how the emotion ef-
fects these processes via modulators. Dörner currently specifies four modulators:
Activation, which makes the agent balance between rapid, intensive activity
and reflective, cognitive activity; Resolution level, which determines how ac-
curately the agent tries to perceive the world; Certainty, which stands for the
difficulty of the agent tries to achieve definite, certain knowledge; Selection
threshold, which determines how easily the agent switches between conflict-
ing intentions. Individual agents may differ in their “personalities” because of
different settings for the default and ranges of modulators.

3 OpenCog Prime

Now we describe the OCP (OCP) AGI architecture, implemented within the
open-source OpenCog AI framework. Conceptually founded on the “patternist”
systems theory of intelligence outlined in [5], OCP combines multiple AI
paradigms such as uncertain logic, computational linguistics, evolutionary pro-
gram learning and connectionist attention allocation in a unified architecture.
Cognitive processes embodying these different paradigms interoperate together
on a common neural-symbolic knowledge store called the Atomspace. The inter-
action of these processes is designed to encourage the self-organizing emergence
of high-level network structures in the Atomspace, including superposed hierar-
chical and heterarchical knowledge networks, and a self-model network enabling
meta-knowledge and meta-learning.

The high-level architecture of OCP, shown in Figure 2, involves the use of
multiple cognitive processes associated with multiple types of memory to enable
an intelligent agent to execute the procedures that it believes have the best prob-
ability of working toward its goals in its current context. OCP handles low-level
perception and action via an extension called OpenCogBot, which integrates a
hierarchical temporal memory system, DeSTIN [1].
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Fig. 2. High-Level OCP Architecture Diagram

Memory Types in OpenOCP. OCP’s memory types are the declarative, proce-
dural, sensory, and episodic memory types that are widely discussed in cognitive
neuroscience [12], plus attentional memory for allocating system resources gener-
ically, and intentional memory for allocating system resources in a goal-directed
way. Table 1 overviews these memory types, giving key references and indicating
the corresponding cognitive processes, and also indicating which of the generic
patternist cognitive dynamics each cognitive process corresponds to (pattern
creation, association, etc.).

The essence of the OCP design lies in the way the structures and processes
associated with each type of memory are designed to work together in a closely
coupled way, the operative hypothesis being that this will yield cooperative in-
telligence going beyond what could be achieved by an architecture merely con-
taining the same structures and processes in separate “black boxes.”

The inter-cognitive-process interactions in OpenCog are designed so that: 1)
conversion between different types of memory is possible, though sometimes
computationally costly (e.g. an item of declarative knowledge may with some
effort be interpreted procedurally or episodically, etc.); 2) when a learning pro-
cess concerned centrally with one type of memory encounters a situation where
it learns very slowly, it can often resolve the issue by converting some of the
relevant knowledge into a different type of memory: i.e. cognitive synergy.
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Table 1. Memory Types and Cognitive Processes in OpenCog Prime. The third column
indicates the general cognitive function that each specific cognitive process carries out,
according to the patternist theory of cognition.

Memory
Type

Specific Cognitive Processes
General Cognitive

Functions

Declarative
Probabilistic Logic Networks (PLN) [4];

concept blending [3]
pattern creation

Procedural
MOSES (a novel probabilistic

evolutionary program learning algorithm)
[11]

pattern creation

Episodic internal simulation engine [7]
association, pattern

creation

Attentional
Economic Attention Networks (ECAN)

[10]
association, credit

assignment

Intentional
probabilistic goal hierarchy refined by

PLN and ECAN, structured according to
Psi

credit assignment, pattern
creation

Sensory Supplied by DeSTIN integration
association, attention

allocation, pattern creation,
credit assignment

Declarative knowledge representation is handled by a weighted labeled hy-
pergraph called the Atomspace, which consists of multiple types of nodes and
links, generally weighted with probabilistic truth values and also attention val-
ues (ShortTermImportance (STI) and LongTermImportance values, regulating
processor and memory use). ConceptNodes are defined via their links (including
logical and associative links), whereas e.g. GroundedPredicateNodes are defined
via associated procedures or “schema,” which are small programs expressed in
a LISP-like language called Combo and stored in a special ProcedureRepository
data structure.

OCP’s dynamics has both goal-oriented and “spontaneous” aspects. The spon-
taneous dynamic is driven by the ECAN component, which propagates STI val-
ues in a manner reminiscent of an attractor neural network; cognitive processes
or knowledge items that get more importance spread to them are then used to
trigger action or cognition or to guide perception. The basic goal-oriented dy-
namic of the OCP system, within which the various types of memory are utilized,
is driven by “cognitive schematics”, which take the form

Context ∧ Procedure → Goal < p >

(summarized C ∧ P → G). Semi-formally, this implication may interpreted to
mean: “If the context C appears to hold currently, then if I enact the procedure
P , I can expect to achieve the goal G with certainty p.” The learning processes
corresponding to the different types of memory actively cooperate in figuring out
what procedures will achieve the system’s goals in the relevant contexts within
its environment. Each cognitive schematic is labeled with an uncertain truth
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value; and cognitive schematics may be incomplete, missing one or two of the
terms, which may then be filled in by various cognitive processes (generally in an
uncertain way). Goal dynamics also utilizes STI, in that the system’s top-level
goals are given STI to spend on nominating procedures for execution or to pass
to subgoals.

Current and Prior Applications of OpenCog. OpenCog has been used for com-
mercial applications in the area of natural language processing and data mining;
e.g. see [9] where OpenCog’s PLN reasoning and RelEx language processing are
combined to do automated biological hypothesis generation based on information
gathered from PubMed abstracts. Most relevantly to the present proposal, has
also been used to control virtual agents in virtual worlds [7], using an OpenCog
variant called the OpenPetBrain ( see http://novamente.net/example for some
videos of these virtual dogs in action). These agents demonstrate a variety of
interesting and relevant functionalities including learning new behaviors based
on imitation and reinforcement; responding to natural language commands and
questions, with appropriate actions and natural language replies; and sponta-
neous exploration of their world, remembering their experiences and using them
to bias future learning and linguistic interaction.

4 Psi Versus OpenCogPrime

The basic motivation/emotion architecture of Psi, as described above, comprises
the basis of OpenPsi, which has been realized within OCP. However, Psi has a
number of other aspects that are somewhat different from their OCP analogues,
and which have not been carried over to OpenPsi, either because the latter
uses a different method to accomplish the same thing, or because it contains an
equivalent mechanism. We summarize these here only briefly:

– Representation of knowledge using special 5-neuron clusters called “quads.”
– Arrangement of quads into three networks, corresponding to sensation, mo-

tor control and motivation
– Use of an algorithm called HyPercept for hypothesis-based perception (a

similar principle is used for perception in OCP, but via quite different algo-
rithms)

– Imaginary perceptions are handled via a “mental stage” analogous to OpenCog’s
internal simulation world.

– Action selection in Psi works based on what are called “triplets,” each of
which consists of a sensor schema (pre-conditions, “condition schema”; like
OCP’s “context”), a subsequent motor schema (action, effector; like OCP’s
“procedure”), and a final sensor schema (post-conditions, expectations; like
an OCP predicate or goal).

– Action selection in Psi is carried out via a “Rasmussen ladder” process that
first attempts to find an automated routine carrying out the given task, then
tries to choose derive a course of action based on rules, then if that fails tries
to creatively compose a new behavior based on its background knowledge.

http://novamente.net/example
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These same possibilities exist in OpenCog but are applied in a different way,
scheduled by ECAN.

– Psi plans actions using a fairly simple hill-climbing planner. While it’s hy-
pothesized that a more complex planner may be needed for advanced intel-
ligence, part of the Psi theory is the hypothesis that most real-life planning
an organism needs to do is fairly simple, once the organism has the right per-
ceptual representations and goals. OCP carries out planning integrated with
its PLN probabilistic logic engine, a component that has no direct analogue
in Psi.

.
Overall, on a high level, the similarities between Psi and OCP are quite

strong, including: interlinked declarative, procedural and intentional knowledge
structures, represented using neural-symbolic methods; perception via prediction
and perception/action integration; action selection via triplets that resemble un-
certain, potentially partial production rules. These similarities are what makes
the explicit integration of Psi-based motivation and emotion into OpenCog, i.e.
OpenPsi, sensible. On the other hand, the deepest difference between the sys-
tems lies in the way the inter-operation between different cognitive processes is
pursued in the two different approaches. Psi and MicroPsi rely on very simple
learning algorithms that are closely tied to the “quad” neurosymbolic knowledge
representation, and hence interoperate in a fairly natural way without need for
subtle methods of “synergy engineering.” OCP uses much more diverse and so-
phisticated learning algorithms which thus require more sophisticated methods
of interoperation in order to achieve cognitive synergy.

5 OpenPsi

We now describe how the basic concepts of the Psi approach to motivation have
been incorporated in OCP, constituting “OpenPsi”. We give simple examples of
each concept, drawn from our use of OpenPsi to help OCP control virtual agents
in a game world, playing with blocks and carrying out other activities.

Memory. Psi’s memory corresponds to OCP’s AtomTable, with associated struc-
tures like the ProcedureRepository, the SpaceServer and TimeServer. Examples:
The knowledge of what blocks look like and the knowledge that tall structures
often fall down, go in the AtomTable; specific procedures for picking up blocks
of different shapes go in the ProcedureRepository; the layout of a room or a pile
of blocks at a specific point in time go in the SpaceServer; the series of events
involved in the building-up of a tower are temporally indexed in the TimeServer.
In Psi and MicroPsi, these same phenomena are stored in memory in a rather
different way, yet the basic Psi motivational dynamics are independent of these
representational choices.

Demands. are GroundedPredicateNodes (GPNs), i.e. Nodes that have their
truth value computed at each time by some internal C++ code or some Combo
procedure stored in the OpenCog ProcedureRepository. Examples: Alertness,
perceived novelty, internal novelty, reward from teachers, social stimulus.
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Urges. (called Ubergoals in OCP) are also GPNs, with their truth values defined
in terms of the truth values of the Nodes for corresponding Demands. Examples:
Now and in the future: stay alert and alive now and in the future; experience and
learn new things; get reward from the teachers; enjoy rich social interactions.

Importance. The ShortTermImportance of an Ubergoal indicates the urgency
of the goal, so if the Demand corresponding to an Ubergoal is within its target
range, then the Ubergoal will have zero STI. But all Ubergoals can be given
maximal LTI to guarantee they don’t get deleted. Examples: If the system is in
an environment continually providing an adequate level of novelty (according to
its Ubergoal), then the Ubergoal corresponding to external novelty with have
low STI but high LTI. The system won’t expend resources seeking novelty. But
then, if the environment becomes more monotonous, the urgency of the external
novelty goal will increase, and its STI will increase correspondingly, and resources
will begin getting allocated toward improving the novelty of the stimuli received
by the agent.

Pleasure. is a GPN, and its internal truth value computing program compares
the satisfaction of the system’s Ubergoals to their expected satisfaction.

Goals. are Nodes or Links that are on the system’s list of goals (the GoalPool);
these include but are not restricted to Ubergoals. Examples: The Ubergoal of
getting reward from teachers might spawn subgoals like “getting reward from
Bob” (if Bob is a teacher), or “making teachers smile” or “create surprising new
structures” (if the latter often garners teacher reward). The subgoal of “create
surprising new structures” might, in the context of a new person entering the
agent’s environment with a bag of toys, lead to the creation of a subgoal of
asking for a new toy of the sort that could be used to help create new structures.

Motive selection. as defined in Psi is carried out in OCP by economic attention
allocation, which allocates ShortTermImportance to Goal nodes. Example: The
flow of importance from “Get reward from teachers” to “get reward from Bob”
to “make an interesting structure with blocks” is an instance of what Psi calls
“motive selection”. No action is being taken yet, but choices are being made
regarding what specific goals are going to be used to guide action selection.

Action selection. Psi’s action selection plays the same role as OCP’s action se-
lection, with the clarification that in OCP this is a matter of selecting which
procedures to run, rather than which individual actions to execute. However,
this notion exists in Psi as well, which accounts for “automatized behaviors”
that are similar to OCP procedures; the main difference here is that in OCP
automatized behaviors are the default case. Example: If the goal “make an in-
teresting structure with blocks” has a high STI, then it may be used to moti-
vate choice of a procedure to execute, e.g. a procedure that finds an interesting
picture or object seen before and approximates it with blocks, or a procedure
that randomly constructs something and then filters it based on interestingness.
Once a blocks-structure-building procedure is chosen, this procedure may invoke
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sub-procedures, e.g. those involved with picking up and positioning particular
blocks.

Planning. in Psi is carried out via various OCP learning processes, including
PLN with special control mechanisms plus procedure learning methods like
MOSES or hillclimbing. Example: If the agent has decided to build a blocks
structure emulating a pyramid (which it saw in a picture), and it knows how
to manipulate and position individual blocks, then it must figure out a proce-
dure for carrying out individual-block actions that will result in production of
the pyramid. In this case, a very inexperienced agent might use MOSES or hill-
climbing and “guidedly-randomly” fiddle with different construction procedures
until it hit on something workable. A slightly more experienced agent would
use reasoning based on prior structures it had built, to figure out a rational
plan (like: “start with the base, then iteratively pile on layers, each one slightly
smaller than the previous.”)

Modulators. are system parameters which may be represented in OpenCog by
PredicateNodes, and which must be incorporated appropriately in the dynamics
of various MindAgents, e.g.

– activation affects action selection. For instance this may be effected by a
process that, each cycle, causes a certain amount of STI to pass to schema
satisfying certain properties (those involving physical action, or terminating
rapidly). The amount of currency passed in this way would be proportional
to the activation

– resolution level affects perception schema and MindAgents, causing them to
expend less effort in processing perceptual data

– certainty affects inference and pattern mining and concept creation processes,
causing them to place less emphasis on certainty in guiding their activities,
i.e. to be more accepting of uncertain conclusions.

– selection threshold may be used to effect a process that, each cycle, causes
a certain amount of STI (proportional to the selection threshold) to pass to
the Goal Atoms that were wealthiest at the previous cycle.

6 Conclusion

We have described here the logic via which the motivation, emotion and ac-
tion selection aspects of the Psi cognitive model have been integrated into the
OpenCog system, for use within the integrative OCP cognitive model. While
this may appear straightforward as laid out, one should not underestimate the
difficulties in reconciling the conceptual frameworks of two AGI architectures
with very different roots.

The OpenPsi system resultant from this integration is currently being used
to control a virtual dog in a virtual world, broadly similarly to the OpenCog
application described in [7], but with richer functionality, as will be described in
subsequent publications. In another project, OpenCog is being used to control a
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humanoid (Nao) robot, and it is anticipated that OpenPsi will play a key role in
this as well. Rigorous evaluation of the contribution of the OpenPsi in particular,
in this sort of application, is not trivial, because what really matters (and what
is easier to measure) is the overall intelligence of the virtual or robotic agent.
Qualitatively, however, we have already found that it is easier to create agents
with realistic-seeming motivational and emotional behavior using OpenPsi than
using the previous OpenCog personality/behavior rule engine as described in [8].
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Abstract. This paper presents an integrated modeling framework where the 
learning and knowledge retrieval mechanisms of the ACT-R cognitive 
architecture are combined with a semantic resource. We aim to extend ACT-R 
with a scalable knowledge model, in order to support sub-symbolic processes 
with consistent, general high-level declarative representations. Design 
principles, methodology and implementation examples are provided. 
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1   Introduction 

In attempting to design systems capable of Artificial General Intelligence, two 
substantially different approaches have been attempted. The first, historically, has 
focused on the mechanisms of intelligence, taking the form of general problem-
solving programs [1] or architectures (i.e., [2], [3]). The second, partly arising from 
the limitations of the first, emphasized the knowledge of the system, especially 
common-sense knowledge, as the source of intelligence (e.g., [4]).  Those approaches 
have encountered substantial successes in their own rights, but have up to now not 
achieved the ultimate goal of AGI. Moreover, both approaches have largely 
downplayed the other: systems that focus on mechanisms tend to treat knowledge as 
something to be engineered in ad hoc, task-specific ways, while those that focus on 
knowledge rely on narrowly tailored mechanisms to access and leverage their content, 
often raising unsustainable computational requirements in the process.  

In this paper, we argue that those approaches are complementary, and that both of 
their central aspects, mechanisms and knowledge, need to be addressed systematically 
in a comprehensive approach to AGI. Moreover, those two components strongly 
constrain each other, with learning mechanisms determining which knowledge can be 
acquired and in which form, and specific knowledge content providing stringent 
requirements for mechanisms to be able to access them effectively [5]. In the rest of 
this paper, we introduce each approach, sketch out a general framework for 
combining them, and then discuss an application of that framework to the problem of 
recognizing visual actions. 
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2   Cognitive Architectures as Knowledge Systems 

Cognitive architectures are examples of the first class of intelligent system: they 
attempt to capture computationally the invariant mechanisms of human cognition, 
including those underlying the functions of control, learning, memory, adaptivity, and 
perception and action. In this paper we will focus on one particular cognitive 
architecture: ACT-R [6]. ACT-R is a modular system:  its components include 
perceptual, motor and declarative memory modules, synchronized by a procedural 
module through limited capacity buffers. ACT-R has accounted for a broad range of 
cognitive activities at a high level of fidelity, reproducing aspects of human data such 
as learning, errors, latencies, eye movements and patterns of brain activity. 
Declarative memory (DM) plays an important role in the ACT-R cognitive 
architecture. At the symbolic level, ACT-R models perform two major operations on 
DM: 1) accumulating knowledge chunks learned from internal operations or from 
interaction with the environment and 2) retrieving chunks that provide needed 
information1. The ACT-R theory distinguishes ‘declarative knowledge’ from 
‘procedural knowledge’, the latter being conceived as a set of procedures (production 
rules) which coordinate information processing between its various modules2: 
according to this framework, agents accomplish their goals on the basis of declarative 
representations elaborated through procedural steps (in the form of if-then clauses). 
This distinction between declarative and procedural knowledge is grounded in several 
experimental results in cognitive psychology regarding knowledge dissociation; major 
studies in cognitive neuroscience implicate a specific role of the hippocampus in 
“forming permanent declarative memories” and the basal ganglia in production 
processes (see [6], pp. 96-99, for a general mapping of ACT-R modules and buffers to 
brain areas and [7] for a detailed neural model of the basal ganglia’s role in 
controlling information flow between cortical regions).  

3   Hybrid Semantics for Declarative Memory 

Although discontinuously popular among AI scholars, this separation between 
declarative and procedural knowledge has also been an important issue for AI over 
the years. In 1980 John McCarthy first realized that, in order to enable full-fledged 
reasoning capabilities, logic-based intelligent systems need to incorporate “re-usable 
declarative representations that correspond to objects and processes of the world” [9]. 
Along these lines, Pat Hayes developed an axiomatic theory for naïve physics [10] 
and John Sowa acknowledged the relevant role played by philosophy in defining a 
structured representation of world entities [11], i.e. an ‘ontology’3. There have been 

                                                           
1 Both chunk learning and retrieval are performed through limited capacity buffers that 

constrain the size and capacity of the chunks in DM. 
2 In the ACT-R theory, these procedures based on condition-action structures are considered as 

units for skill acquisition ([6], p. 26). 
3 This was the genesis of using the word ‘ontology’ in AI. Ontology, ‘the study of being as 

such’ – as Aristotle named it –, in fact originated as a philosophical discipline.   
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numerous (and often alternative) attempts to define ‘ontology’ in Computer Science4. 
According to Guarino, “an ontology” is a language-dependent cognitive artifact, 
committed to a certain conceptualization of the world by means of a given language5 
(see [14] for formal details). Besides the protocol layer, where the syntax of the 
communication language is specified, the ontological layer contains the semantics of 
that language: if concepts are described in terms of lexical semantics, ontologies take 
the simple form of dictionaries or thesauri; when ontological categories and relations 
are expressed in terms of axioms in a logical language, we talk about formal 
ontologies; if logical constraints are then encoded in a computational language, 
formal ontologies turn to computational ontologies6. This research area finds 
application in a growing variety of cases: from database integration to security 
analysis, from enterprise modeling to the expansive vision of the Semantic Web [15]. 
In particular, the Semantic Web community is making massive efforts towards the 
development of scalable ontology-driven technologies as, for example, the “Linked 
Open Data”7 best practice suggests.  

In this paper we focus on a rather new field of application, namely integration 
between computational ontologies and cognitive architectures. In our context 
computational ontologies should be appropriately re-defined here as “computational 
specifications of declarative conceptual structures”. In particular we aim at extending 
ACT-R with a scalable, reusable knowledge model that can be applied across a wide 
range of tasks. Considering the state of the art8, most research efforts have focused on 
designing methods for mapping large knowledge bases to the ACT-R declarative 
module. Here we commit on taking an integrated approach: instead of tying to a 
single ontology, we propose to build a hybrid computational ontology9 that combines 
different semantic dimensions of declarative representations. Our project consists in 
linking partitions of distinctive lexical databases like WordNet [21] and FrameNet 
[22] with a suitable computational ontology of actions and events.  

Four general issues justify our methodological approach:  

1. Meaning is multi-dimensional, i.e. it depends on natural language, cognitive 
phenomena, contextual information (human-understandability specifications);  

2. Meaning is computable insofar as semantics is expressed in terms of 
knowledge representation languages (machine-understandability);  

3. Event-types correspond to verbs in the lexicon, and WordNet is the broadest 

                                                           
4 See [12] for a detailed reconstruction. The original definition is considered Gruber’s: “formal 

specification of a shared conceptualization” [13]. 
5 Guarino distinguishes between ‘Ontology’ as a discipline (with the capital ‘o’) from 

‘ontologies’ as engineering cognitive artifacts. 
6 E.g., Ontology Web Language (OWL).  OWL is based on description logics; description 

logics are decidable fragment of First-Order Logic (http://www.w3.org/TR/owl-features/). 
7  http://linkeddata.org/  
8  For ACT-R see [16], [17], [18], for SOAR see [19]. 
9  The adjective “hybrid” is used to emphasize the heterogeneity of theories and resources we 

are adopting for the purposes of the project. For a general survey on hybrid semantic 
approaches see [20]. For the sake of readability we will henceforth omit the mid-adjective 
“computational”. 
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source of lexical information available in an electronic format;  
4. FrameNet schematically represents the conceptual patterns underlying event 

verbs, providing detailed information of roles and fillers for basic action types. 

The following sections describe the fundamental features of an integrated cognitive 
model for high-level visual recognition of motor actions to support visual machine 
learning with solid symbolic representations in the domain of basic human actions.  

4   HOMinE and ACT-R: An Integrated Cognitive Model  

We address the perspective of an integrated cognitive model oriented to visual 
intelligence (HOMinE - Hybrid Ontology for ‘Mind’s Eye’ project10), outlining 
methodological aspects and backbone structure of required components. Some 
distinctive mappings to the ACT-R cognitive architecture are also considered: we 
show how the modular dynamic structures of ACT-R can benefit from augmenting 
declarative memory with a multi-layered semantic resource, where lexical and 
ontological knowledge are properly encoded. 

4.1   Design and Implementation of HOMinE 

WordNet (WN) is a semantic network of synsets (“sets of synonym terms”)11, whose 
arcs are fundamental semantic relations12. Over the years, there has been an 
incremental growth of the lexicon (the latest version, WordNet 3.0, contains about 
117K synsets), and substantial enhancements of the entire architecture, aimed at 
facilitating computational tractability (accordingly, some OWL conversions have 
been implemented13). HOMinE’s core layer is based on a partition of WN related to 
verbs of motion, such as “walk”, “touch”, “haul”, “kick”, “chase”, etc. In order to find 
the targeted group of relevant synsets, we basically started from two pertinent top 
nodes14 of the semantic network of verbs:  

1. {01835496} move#1, travel#1, go#1, locomote#1 (change location; move, 
travel, or proceed) "How fast does your new car go?"; "The soldiers moved 
towards the city in an attempt to take it before night fell";  - <verbs.motion> 

2. {01850315} move#2, displace#4 (cause to move or shift into a new position or 
place, both in a concrete and in an abstract sense) "Move those boxes into the 
corner, please"; "The director moved more responsibilities onto his new 
assistant" -  <verbs.motion> 

As one can easily notice, the synset move#1 denotes a change of position 
accomplished by an agent or by an object (with a sufficient level of autonomy), while 
                                                           
10 http://www.darpa.mil/i2o/programs/me/me.asp  
11 Life_form#1 stands for synset {life_form, organism, being, living_thing}, which is identified 

in the database with a specific code (in this example, {05217061}). Every synset (node of the 
network) is associated to a gloss (e.g., “the characteristic bodily form of a mature organism”). 

12 The most important is synonymy; WN also uses hyponymy (sub-class-of), meronymy (part-
of), antonymy (opposite-of), troponymy (like hyponymy, but only for verbs), causation, etc. 

13 E.g., http://www.w3.org/TR/wordnet-rdf/ 
14 Aka Unique Beginners (see [21], Chapter 1]. 
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move#2 is about causing someone or something to move (both literally and 
figuratively). After extracting the sub-hierarchy of synsets related to these generic 
verbs of motor action, we have introduced a top-most category “movement-generic”, 
abstracting from the two senses of “move” (see Figure 1). These operations have been 
performed on Protégé-OWL (release 3.4.4), the most widely used platform for 
creating computational ontologies in the context of semantic technologies15. More 
precisely, in order to extract and modify the designated WN partition we used the 
OntoLing16 plug-in, a tool that supports semi-automatic population of ontologies. 
OntoLing allows importing lexical knowledge structures in the form of RDF(S)17 
properties, de facto enabling semantic compatibility with ontological knowledge 
patterns18. As far as lexical databases are augmented with axioms and property 
restrictions based on OWL primitives, the resulting hybrid ontologies can support 
logical inferences: this feature is central for our project, since we plan to further 
develop HOMinE to enable automatic reasoning capabilities19.  

 FrameNet (FN) is the additional semantic layer of HOMinE’s integrated cognitive 
model. Besides wordnet-like frameworks, a computational lexicon can be designed 
from a different perspective, for example focusing on frames (to be conceived as 
orthogonal to domains). Based on Fillmore’s frame semantics (see i.e. [23]), FN aims 
at documenting “the range of semantic and syntactic combinatory possibilities 
(valences) of each word in each of its senses” through corpus-based annotation. 
Different frames are evoked by the same word depending on different contexts of use: 
the notion of “evocation” helps in capturing the multi-dimensional character of 
knowledge structures underlying verbal forms. For instance, if you point to the 
bringing frame, namely an abstraction of a state of affairs where sentient agents (e.g., 
persons) or generic carriers (e.g. ships) bring something somewhere along a given 
path, you will find several “lexical units”20 evoking different roles (or frame elements 
- FEs): i.e., the noun ‘truck’ instantiates the “carrier” role in the frame bringing21. In 
principle, the same Lexical Unit (LU) may “evoke” distinct frames, thus dealing with 
different roles: ‘truck’, for example, can be also associated to the vehicle frame (“the 
vehicles that human beings use for the purpose of transportation”). FN contains about 
12K LUs for 1K frames annotated in 150000 sentences.  

Computational lexicons largely differentiate upon the explicit linguistic features 
they expose, which may vary in format, content granularity and grounding [24]. WN 
and FN are based on distinct models, but one can benefit from the other in terms of 
coverage and type of information conveyed. Accordingly, we have analyzed the 
“evocation” links between the motion verbs we have extracted from WN and the 
related FN frames: those links can be generated through “FN Data search”, an on-line 

                                                           
15 http://protege.stanford.edu/  
16 For more information see http://ai-nlp.info.uniroma2.it/software/OntoLing/  
17 RDF(S) stands for Resource Description Framework Schema. 
18 OWL syntax builds on top of RDF(S) and extends its expressivity. 
19 Protégé has a default inference engine, so-called “Pellet”: http://clarkparsia.com/pellet/. We 

are also exploiting SWRL (Semantic Web Rule Language) to express IF-THEN rules.  
20 Generically abbreviated with LUs - they correspond to terms in WN synsets. 
21 The sentence is “The truck bringing coal to crushing facility at western surface coal mine”. 
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navigation tool used to access and query FN22. Our study led to a conceptual 
enrichment of lexical declarative structures for basic motor action types: starting from 
WN synset information, and using FN data, we could identify typical roles (and 
fillers) of those verbs. This process of extension becomes crucial if one considers the 
evident isomorphism holding between the elements of ACT-R chunks, namely slots 
and associated values and elements of frames, i.e. frame elements (roles) and fillers 
(LUs). The FN semantic layer of HOMinE is still under development: a complete 
implementation in Protégé will be extremely important for enabling logical reasoning 
(along the lines of [25]). In parallel, we have started to build an ACT-R model for 
action recognition, suitably expanding its declarative memory by means of HOMinE’s 
semantic layers: in regards to this integration, section 4.2 shows a functional example. 

 

Fig. 1. HoMinE’s backbone taxonomy of fundamental motor actions 

4.2   Mapping HoMinE to ACT-R 

Hybrid ontologies are “computational specifications of declarative conceptual 
structures”: this definition highlights the role of semantic resources in cognitive 
architectures. From a methodological viewpoint, it is important to understand how 
this role is actually played in concrete use cases.  

Mapping HOMinE to ACT-R requires some preliminary analysis of the basic 
structures involved. Chunks are the building blocks of ACT-R declarative memory, 
while ontologies are based on so-called “categories” (“object”, “event”, “attribute”, 
“value”, etc.) and “relations” (“participation”, “part-of”, “dependence”, etc.) [26]. 
Let’s consider the following chunk types and chunk instances:  

 

(chunk-type car color) (c1 ISA car color red23) 
(chunk-type race duration) (r1 ISA race duration 1hour) 
 

One can think of ontological categories as mapping to different elements of 
chunks: objects/events mapping to chunk types (e.g., car/race), attributes to slots of 
chunks (e.g., color/duration), and values to fillers of slots (e.g., red/1hour). Relations 
(e.g., has_color/has_duration) remain implicit, although they essentially “glue” 
together those pieces of declarative knowledge (e.g., car – has_color – red; race – 
has_duration – 1hour). Alternatively, we can observe that ontological relations can be  
 

                                                           
22 See http://framenet.icsi.berkeley.edu/index.php  
23 A specific red nuance (individual), not to be confused with the abstract property “redness”, 

which is a sub-type of “color”. 
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represented as chunk types as well: e.g., we could have defined has_duration as a 
chunk type with slots event and duration, with race and time as filler: 

 

(chunk-type has_duration event duration) 
(r1 ISA has_duration event race duration 1hour) 

The category race would then become filler of the slot event. This potentially 
variable matching between ontological knowledge and declarative representations 
reflect the fact that chunks are originally seen as units of memories, without any 
strong ontological constraint: in fact, anything that is introduced in declarative 
memory is a chunk, no matter whether an object, an event, an attribute, a value or a 
relation. The shift from chunk type to filler addresses the potential of alternative 
representations of categories in ACT-R. Conversely, from the viewpoint of hybrid 
ontologies, representing relations as chunk types becomes an important requirement: 
relations enable OWL-based inference engines24 and definitely demand for an explicit 
counterpart in the declarative memory of the cognitive agent to make the integration 
effective. The ACT-R architecture also supports “inheritance”25 from a single chunk 
type (“single inheritance”), so that different levels of specialization for slot and values 
are supplied. “Single inheritance” is a central feature for automatic reasoning over 
ontologies, since it helps prevent logical inconsistencies and internal incoherence of 
models (which are typically correlated to “multiple inheritance”). HOMinE discards 
“multiple inheritance” too, maintaining full compatibility with the ACT-R 
architectural choice. 

Chunks are goal-driven, namely they represent the knowledge a person is expected 
to manipulate to solve a problem. We consider here an experimental setting where the 
task is to identify motor actions occurring in a simple scenario (“visualized” on a 
screen window, in natural language). The goal is accomplished when the cognitive 
model outputs the conceptual structure of the detected action: in terms of the current 
version of HOMinE, we assume that 1) the output coincides with correct recognition 
of the evoked frame 2) input sentences are fed by machine learning visual classifiers 
that parse the scene and return basic linguistic descriptions26. Let’s consider three 
sample sentences presented to the ACT-R cognitive model augmented with HOMinE: 
(a) John opens the door; (b) John opens the bag; (c) John opens the sack. 

Following the typical schema for sentence processing and representation in ACT-R 
(starting with [27]), our model parses the screen, reads sentences and encodes related 
chunks accordingly27. Afterwards, the actual retrieval of HOMinE declarative 
representations starts: the model first attempts a straightforward retrieval of frames 
evoked by the verb “open”. In this version we purposely customized the model to 
always fail this operation. The main reason behind this choice is that an adequate 
cognitive model should not contain all the information about verb-frame association, 
as much as we commonly agree that persons can’t perfectly memorize 1K frames 

                                                           
24 Ontological relations correspond to OWL object-properties and data-type properties.  
25 The notion of inheritance corresponds to “IS-A” in Computer Science and “hyponymy” in 

(computational) lexical semantics.  
26 For the sake of simplicity, visual pattern recognition algorithms and tools are considered as a 

black box in this paper: we are just focusing on the output labels they provide to ACT-R.  
27 For reasons of space, we just present an overview of the model here. 
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evoked by 12K LUs28. In order to overcome the failure of direct evocation, we 
implemented two competing productions, namely “retrieve-frame-from-hypernym” 
and “retrieve-frame-from-object”. The first production searches for the superordinate 
verb of the one visualized on the screen, navigating upwards the taxonomy of WN: if 
the superordinate synset is associated to a frame, then the production retrieves that 
frame, otherwise “retrieve-frame-from-object” is fired. Note that the heuristics of 
“retrieve-frame-from-hypernym” is inspired by the algorithm implemented in [28], 
according to which WN synsets can be associated to FN frames by assigning suitable 
weights to WN relations. In particular, digging out frames through hyperonymy chain 
implies a penalization, since the evoked frame is associated to the input verb only 
because of the inheritance from the super-ordinate29. The production “retrieve-frame-
from-object” fires as a further method to foster frame evocation. The rationale is to 
search for distinctive instances of frame elements in sentences; then, it is quite trivial 
for FEs to propagate evocation up to frame(s) they are member of. In our example, 
declarative memory contains information about the evocation between “door” and 
“bag” as filler of object slot in the following evocation chunk types: 

 
(e7  ISA evocation object bag  frame-element entity) 
(e8  ISA evocation object bag  frame-element container) 
(e9  ISA evocation object bag  frame-element goal) 
(e10 ISA evocation object door frame-element barrier) 
 
Moreover, since container, goal and barrier appear in the structure of the following 
chunks, related frames for (a) and (b) are retrieved.  
 
(f3 ISA frame name manipulation fe1 agent fe2 entity) 
(f4 ISA frame name closure fe1 agent fe2 container) 
(f5 ISA frame name bringing fe1 carrier fe2 goal)  
(f7 ISA frame name openness fe1 theme fe2 barrier) 
 
When the production “retrieve-frame-from-object” fires, we discover that (a) evokes 
the frame “openness” and that (b) may evoke, in principle, three different frames, 
respectively “manipulation”, “closure” and “bringing”. In order to prompt a choice 
within these frames, spreading activation can be exploited through the ACT-R sub-
symbolic computations [6]. Spreading of activation from the contents of slots in the 
imaginal buffer triggers the evocation of frame-related chunks to the context of the 
perceived scene. Finally, by setting a high similarity parameter between bag and sack, 
whenever the model perceives sack, it will make reference to the frame(s) evoked by 
bag through the ACT-R mechanism of “partial matching”, which allows the 
semantics of similarity between chunks to be reflected in the retrieval process [29]. 

                                                           
28 Future versions of the model will provide a more accurate account, allowing for successful 

retrievals of the most frequent frames (with frequency measured on annotated corpus 
sentences), as well as failure to access information symbolically present in memory because 
of sub-symbolic (statistical) factors. 

29 In the current version of the model, the penalization is reflected a priori, setting up a low 
activation threshold of the chunk for the input verb. 
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5   Conclusions 

This paper presented the general framework of integration between the ACT-R 
cognitive architecture and semantic resources. In particular, we considered the task of 
high-level visual recognition of motor actions, outlining how HOMinE ontological 
features can augment ACT-R declarative representations. Future work will be devoted 
to enhance both the semantic layer and the cognitive model: the former will be 
improved by adding grounding axioms to WN and FN structures; the latter will be 
extended in terms of experimental settings, task complexity and sub-symbolic 
parameterization. Finally, we also aim at importing WN and FN data-structure into 
symbolic ACT-R declarative memory structures as well as using statistical natural 
language processing techniques to constrain their sub-symbolic parameters.  
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Abstract. General Intelligence is not only characterized by the general 
representation and (relatively) general problem solving capabilities, but also by 
general motivation. Here, I sketch a framework for an extensible motivational 
system for cognitive agents, based on research in psychology. It draws on a 
finite set of pre-defined drives, which relate to needs of the system. Goals are 
established through reinforcement learning by interacting with an environment. 
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1   Introduction: The Quest for General Intelligence 

AGI (Artificial General Intelligence, or research into “strong Artificial Intelligence”) 
as a discipline is fraught with difficulties. AI as a way of understanding and modeling 
the mind faces strong cultural opposition—many people, and even most scientists are 
deeply uncomfortable with treating the mind as an information processing machine 
(e.g., [1]). A large part of this opposition springs from a misunderstanding of the 
notion of machine, and the significance of computational models. These models 
constitute our best chance at understanding the mind and the nature of intelligence at 
all—and not because intelligence and mind constitute exceptions within the realm of 
nature. Natural sciences (unlike humanities) are largely concerned with the 
formulation of formal theories of their objects. Many objects of the sciences—like the 
formation of galaxies, stars and planets, the chemistry of biological cells, the changes 
of the planetary climate—require formal systemic theories of a complexity that goes 
beyond easy comprehension. Where these theories can not be broken down into 
individual, experimentally accessible questions, their coherence has to be tested by 
simulations, and any systemic theory that is specified to a degree of detail sufficient 
for simulation amounts to a computational model. A theory that wants to explain how 
the mind works will fall into this category. 

The problems of AGI go much deeper than cultural opposition to computational 
modeling: even within the AI community, there is no clear agreement on what 
constitutes intelligence, and if it makes sense to define intelligence outside the context 
of human performance. For instance, purely mathematical approaches (for instance, 
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the definition by Hutter and Legg [2], based on the ability of a system to achieve 
rewards), have not been universally agreed upon, because intelligence is not 
necessarily reward-seeking, and definitions based on problem solving ability are 
usually bound to individual classes of tasks. Consequently, there is no consensus and 
no single established methodology on how AGI’s goals are to be reached.  

Academic research into Artificial Intelligence has fragmented into a multitude of 
paradigms that eventually broke away and became sub-disciplines of computer science 
(such as machine learning, description logics, planning etc.), no longer concerned with 
understanding intelligence per sé. Even though AI has continuously spawned 
tremendously useful results, it arguably constitutes a string of failures with respect to 
attaining human-like intelligence. Every single paradigm of AI, such as symbolic 
models, connectionism, expert systems, and Fifth Generation Computing [3] has failed 
to produce breakthroughs with respect to this goal. But it should also be noted that AI 
has been consistently fruitful in advancing technology and computer science. 

IBM’s recent Watson system [4], which is able to outdo skilled humans in the 
question-answer game show Jeopardy, is a good example: While Watson constitutes 
an impressive engineering achievement, with useful applications in medicine and 
other fields, and may even affect the way people interact with computers, it is far 
from being “generally intelligent”. Watson’s architecture firmly constrains it into the 
territory of search engines, and will not scale towards an artificial mind [5]. 

One of the problems of the AGI label might be that it names a goal, but does not 
specify a methodology. AGI, taken as the science of the mind as a computational 
system, will have succeeded in its mission if its computer models are able to reproduce 
mental capabilities on at least a scope comparable to humans. However, this goal is not 
equivalent to an architectural paradigm. AGI is probably not best classed as a genuine 
sub-discipline of computer science. AGI might be seen as cybernetic psychology, as an 
attempt to formulate a general theory of psychology in terms of action regulating 
information processing systems. Indeed, AGI had been one of the original goals of 
cybernetics. Even after the decline of cybernetics as an independent field, AGI has been 
taken up by psychologists, under the label cognitive architectures. The influence of 
research into cognitive architectures on the psychological mainstream has been limited 
though—after all, models of general cognition are not the same thing as models of the 
human psyche. Most research in psychology is not interested in an overarching, unified 
theory of cognition. Instead, AGI relates to contemporary psychology in much the same 
way as the study of flight does to ornithology. And just as flight is not best understood 
as the movement of solid objects through a gaseous medium, AGI should limit its 
concern for general theories of representation, information processing, or control of 
robotic bodies, as long as they are not strictly relevant to its goal. AGI research will 
have to constrain its paradigms on suitable levels of description. 

Even though AGI does not presume that mind and intelligence are inextricably 
linked to biological brains and human subjects (just as flight is not exclusively limited 
to feathered wings and avifauna), it will have to explain how the human mind is able 
to do what it does. 
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2   What Is Cognitive Artificial Intelligence? 

What is the right frame for describing what a mind does? Within AI, we can discern at 
least the following camps: 

1. Symbolic (‘classical’) AI. Newell and Simon’s Physical Symbol System Hypothesis  
[6] states that symbolic computation is both necessary and sufficient for general 
intelligence. Since symbolic computation is Turing complete, this is trivially true, but 
criticism of symbolic (rule-based) AI maintains that a purely symbolic system does 
not constitute a feasible practical approach, either because discrete symbols are 
technically insufficient, or because it usually lacks grounding in a physical 
environment. This criticism gives rise to: 
2. Distributed (connectionist) AI, which focuses on emergent behavior, dynamical 
systems and neural learning, and 
3. Embodied AI, which focuses on solving the symbol grounding problem by 
environmental interaction. 

The two latter paradigms are often subsumed under the ‘New AI’ label, and they are 
vitally important: Connectionism can provide models for neural computation, for 
learning and perceptual processing (but will also have to explain how sub-symbolic 
processing gives rise to symbolic cognition, such as planning and use of natural 
language). Embodiment situates a system in a dynamic environment and provides 
content for and relevance of cognitive processes.  

Unfortunately, the paradigms do not get along very well: proponents of symbolic 
AI often ignored connectionism and symbol grounding, while connectionists 
frequently disregarded symbolic aspects of cognition. Most embodied AI focuses on 
controlling robots instead of modeling cognition; radical proponents of embodied AI 
even suggest that intelligence is an emergent phenomenon of the interaction between 
an embodied nervous system and a physical environment [7] and sometimes reject the 
notion of representation altogether. The success of AGI will largely be due to the right 
integration of symbolic cognition (language, planning, high-level deliberation) with 
sub-symbolic processing (perception, analogical reasoning, neural learning and 
classification, memory retrieval etc.) and action regulation in a broad architecture. 
We will have to aim for a cognitive AI, for the class of framework that combines the 
necessary and sufficient means for enabling the full breadth of cognitive capabilities.  

Cognitive AI does not refer to abstract theorem provers and planners, nor does it 
focus on sensory-motor coupling. Instead, cognitive AI should process perceptual and 
conceptual information in much the same way as humans do. Cognitive AI has to 
combine distributed, dynamical representations with compositionality, has to handle 
analogy, ambiguity and error, must attribute motivational relevance and so on. 

Such a framework will have to merge general representations (the capability to 
express arbitrary relationships, up to a certain complexity) with general learning and 
problem solving (the capability to acquire and manipulate these relationships in any 
necessary way, up to a certain complexity), a sufficiently interesting environment to 
operate upon, and a general motivational system (which supplies a polythematic, 
intrinsic motivation to direct action). Let us now look on some aspects of such a 
motivational system. 
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3   Prerequisites for Defining a Motivational System 

Since we can not observe and verify most parts of the human motivational system 
directly, we will have to construct a model that can produce the desired behavior in 
simulations. Such a model will have to adhere to some constraints; it should provide: 

- conceptual soundness: demonstrate a conceptual analysis of needs, motives, 
intentions and action regulation, and their place in a larger model of 
cognition, 

- functional adequacy:  the model should be sufficient to produce the desired 
range of behaviors and cognitive phenomena, 

- biological plausibility: the model should be compatible with our knowledge 
of biological systems, 

- sparseness: the model should aim for the minimum number of entities and 
relationships to produce the desired behavior, 

- a suitable level of detail for formalization: all components and relationships 
have to be specified to a degree of detail that allows for implementation as a 
computational model, 

- avoidance of over-specialization: where functional aspects or quantitative 
relationships are unknown, the model should not be unnecessarily 
constrained. 

Also, the model should support an experimental paradigm, to be evaluated against 
competing approaches, so that progress can be measured. This could be a set of 
challenge problems, a competition between different solutions, or a suitable 
application. 

A human-like intelligence could likely exist in a non-human body, and in a 
simulated world, as long as the internal architecture—the motivational and 
representational mechanisms and the structure of cognitive processes—are similar to 
the one of humans, and the environment provides sufficient stimulation. The desires 
and fears of humans correspond to their needs, such as environmental exploration, 
identification and avoidance of danger, and the attainment of food, shelter, 
cooperation, procreation, and intellectual growth. Since the best way to satisfy the 
individual needs varies with the environment, the motivational system is not aligned 
with particular goal situations, but with the needs themselves, through a set of drives.  

Let us call events that satisfy a need of the system a goal, or an appetitive event, 
and one that frustrates a need an aversive event (for instance, a failure or an accident). 
Goals and aversive events are given by the environment, they are not be part of the 
architecture. Instead, the architecture specifies a set of drives according to the needs 
of the system. Drives are indicated as urges, as signals that make a need apparent. An 
example of a need would be nutrition, which relates to a drive for seeking out food. 
On the cognitive level of the system, the activity of the drive is indicated as hunger. 

The connection between urges and events is established by reinforcement learning. 
In our example, that connection will have to establish a representational link between 
the indicator for food and a consumptive action (i.e., the act of ingesting food), which 
in turn must refer to an environmental situation that made the food available. 
Whenever the urge for food becomes active in the future, the system may use the link 
to retrieve the environmental situation from memory and establish it as a goal. 
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This defines some additional requirements to the architecture: The system needs: 

- a set of suitable urges,  
- a way of evaluating them to establish goals and identify adverse events,  
- a world model that represents environmental situations and events,  
- a protocol memory that makes past situations and events accessible,  
- a reinforcement learning mechanism working on that protocol,  
- a mechanism for anticipation, to recollect memory content according to the 

current environmental situation and needs,  
- a decision making component, which pitches the current urges and the 

available ways to satisfy them against each other, and chooses a way of 
action, 

- an action regulation component, so this way of action can be followed 
through. 

A more advanced architecture will also require mechanisms for planning, 
classification and problem solving, to actively construct ways from a given situation 
to a goal situation (instead of just remembering a successful way from the past), and 
mechanisms for reflection, to reorganize and abstract existing memory content. 

Note that many possible architectures may satisfy this set of requirements, and thus 
I will not specify an implementation here. Here, I will focus on the motivational side.  

4   An Outline of a Motivational System, According to the Psi 
Theory 

The Psi theory [8, 9] originates in the works of the psychologist Dietrich Dörner and 
has been transformed into a cognitive architecture by the author [10]. Unlike high-
level descriptions of motivation as they are more common in psychology, such as the 
one by Maslov [11] or Kuhl [12], the motivational model lined out in the Psi theory is 
rigorous enough to be implemented as a computational model, and unlike narrow, 
physiological models (such as the one by Tyrell [13]), it also addresses cognitive and 
social behavior. A simulation model of the Psi theory has been demonstrated with 
MicroPsi[14]. In the following, I will identify the core components of the 
motivational system. 

4.1   Needs  

All urges of the agent stem from a fixed and finite number of ‘hard-wired’ needs, 
implemented as parameters that tend to deviate from a target value. Because the agent 
strives to maintain the target value by pursuing suitable behaviors, its activity can be 
described as an attempt to maintain a dynamic homeostasis.  

All behavior of Psi agents is directed towards a goal situation, that is characterized 
by a consumptive action satisfying one of the needs. In addition to what the physical 
(or virtual) embodiment of the agent dictates, there are cognitive needs that direct the 
agents towards exploration and the avoidance of needless repetition. The needs of the 
agent should be weighted against each other, so differences in importance can be 
represented. 
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Physiological needs 

Fuel and water: In our simulations, water and fuel are used whenever an agent 
executed an action, especially locomotion. Certain areas of the environment caused 
the agent to loose water quickly, which associated them with additional negative 
reinforcement signals. 

Intactness: Environmental hazards may damage the body of the agent, creating an 
increased intactness need and leading to negative reinforcement signals (akin to pain). 
These simple needs can be extended at will, for instance by needs for shelter, for rest, 
for exercise, for certain types of nutrients etc. 

Cognitive needs 

Certainty: To direct agents towards the exploration of unknown objects and affairs, 
they possess an urge specifically for the reduction of uncertainty in their assessment 
of situations, knowledge about objects and processes and in their expectations. 
Because the need for certainty is implemented similar to the physiological urges, the 
agent reacts to uncertainty just as it would to pain signals and will display a tendency 
to remove this condition. This is done by triggering explorative behavior. Events 
leading to an urge for uncertainty reduction include:  

- the agent meets unknown objects or events, 
- for the recognized elements, there is no known connection to behavior—the 

agent has no knowledge what to do with them, 
- there are problems to perceive the current situation at all, 
- there has been a breach of expectations; some event has turned out differently 

as anticipated, 
- over-complexity: the situation changes faster than the perceptual process can 

handle, 
- the anticipated chain of events is either too short or branches too much. Both 

conditions make predictions difficult. 

In each case, the uncertainty signal is weighted according to the relation to the 
appetitive or aversive relevance of the object of uncertainty. The urge for certainty 
may be satisfied by “certainty events”—the opposite of uncertainty events: 

- the complete identification of objects and scenes, 
- complete embedding of recognized elements into agent behaviors, 
- fulfilled expectations (even negative ones), 
- a long and non-branching chain of expected events. 

Like all urge-satisfying events, certainty events create a positive reinforcment 
signal and reduce the respective need. Because the agent may anticipate the reward 
signals from successful uncertainty reduction, it can actively look for new 
uncertainties to explore (“diversive exploration).  

Competence: When choosing an action, Psi agents weight the strength of the 
corresponding urge against the chance of success. The measure for the chance of 
success to satisfy a given urge using a known behavior program is called “specific 
competence”. If the agent has no knowledge on how to satisfy an urge, it has to resort 



238 J. Bach 

to “general competence” as an estimate. Thus, general competence amounts to 
something like self-confidence of the agent, and it is an urge on its own. (Specific 
competencies are not urges.) The general competence reflects the ability to overcome 
obstacles, which can be recognized as being sources of negative reinforcement signals, 
and to do that efficiently, which is represented by positive reinforcement signals. Thus, 
the general competence of an agent is estimated as a floating average over the 
reinforcement signals and the inverted displeasure signals. The general competence is a 
heuristics on how well the agent expects to perform in unknown situations. 

As in the case of uncertainty, the agent learns to anticipate the positive reinforcement 
signals resulting from satisfying the competence urge. A main source of competence is 
the reduction of uncertainty. As a result, the agent actively aims for problems that allow 
gaining competence, but avoids overly demanding situations to escape the frustration of 
its competence urge. Ideally, this leads the agent into an environment of medium 
difficulty (measured by its current abilities to overcome obstacles). 

Aesthetics: Environmental situations and relationships can be represented in infinitely 
many ways. Here ‘aesthetics’ corresponds to a need for improving representations, 
mainly by increasing their sparseness, while maintaining or increasing their 
descriptive qualities. 

Social needs 

Affiliation: Because the explorative and physiological desires of Psi agents are not 
sufficient to make them interested in each other, they have a need for positive social 
signals, so-called ‘legitimacy signals’. With a legitimacy signal (or l-signal for short), 
agents may signal each other “okayness” with regard to the social group. Legitimacy 
signals are an expression of the sender’s belief in the social acceptability of the receiver. 
The need for l-signals needs frequent replenishment and thus amounts to an urge to 
affiliate with other agents. Agents can send l-signals to reward each other for 
cooperation. Anti-l-signals are the counterpart of l-signals. An anti-l-signal (which 
basically amounts to a frown) ‘punishes’ an agent by depleting its legitimacy reservoir.  

Agents may also be extended by internal l-signals, which measure the 
conformance to internalized social norms. 

Supplicative signals are ‘pleas for help’, i.e. promises to reward a cooperative action 
with l-signals or likewise cooperation in the future. Supplicative signals work like a 
specific kind of anti-l-signals, because they increase the legitimacy urge of the 
addressee when not answered. At the same time, they lead to (external and internal) l-
signals when help is given. They can thus be used to trigger altruistic behavior. 

The need for l-signals should adapt to the environment of the agent, and may also 
vary strongly between agents, thus creating a wide range of types of social behavior. 
By making the receivable amount of l-signals dependent of the priming towards 
particular other agents, Psi agents might be induced to display ‘jealous’ behavior. 

Social needs can be extended by romantic and sexual needs. However, there is no 
explicit need for social power, because the model already captures social power as a 
specific need for competence—the competence to satisfy social needs.  

 
Even though the affiliation model is still fragmentary, we found that it provides a 

good handle on the agents during experiments. The experimenter can attempt to 
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induce the agents to actions simply by the prospect of a smile or frown, which is 
sometimes a good alternative to a more solid reward or punishment. 

4.2   Behavior Control and Action Selection 

All goal-directed actions have their source in a motive that is connected to an urge, 
which in turn signals a physiological, cognitive or social need. Actions that are not 
directed immediately onto a goal are either carried out to serve an exploratory goal or 
to avoid an aversive event. When a positive goal is reached (a need is partially or 
completely fulfilled), a positive reinforcement signal is created, which is used for 
learning (by strengthening the associations of the goal with the actions and situations 
that have led to the fulfillment). In those cases in which a sub-goal does not yet lead 
to a consummative act, reaching it may still create a reinforcement via the 
competence it signals to the agent. After finally reaching a consumptive goal, the 
intermediate goals may receive further reinforcement by a retrogradient (backwards in 
time along the protocol) strengthening of the associations along the chain of events 
that has lead to the target situation. 

Appetence and Aversion: For an urge to have an effect on the behavior on the agent, 
it does not matter whether it really has an effect on its (physical or simulated) body, 
but that it is represented in the proper way within the cognitive system. Whenever the 
agent performs an action or is subjected to an event that reduces one of its urges, a 
reinforcement signal with a strength that is proportional to this reduction is created by 
the agent’s “pleasure center”. The naming of the “pleasure” and “displeasure centers” 
does not necessarily imply that the agent experiences something like pleasure or 
displeasure. Like in humans, their purpose lies in signaling the reflexive evaluation of 
positive or harmful effects according to physiological, cognitive or social needs. 
(Experiencing these signals would require an observation of these signals at certain 
levels of the perceptual system of the agent.) Reinforcement signals create or 
strengthen an association between the urge indicator and the action/event. Whenever 
the respective urge of the agent becomes active in the future, it may activate the now 
connected behavior/episodic schema. If the agent pursues the chains of actions/events 
leading to the situation alleviating the urge, we are witnessing goal-oriented behavior. 

Conversely, during events that increase a need (for instance by damaging the agent 
or frustrating one of its cognitive or social urges), the “displeasure center” creates a 
signal that causes an inverse link from the harmful situation to the urge indicator. 
When in future deliberation attempts (for instance, by extrapolating into the 
expectation horizon) the respective situation gets activated, it also activates the urge 
indicator and thus signals an aversion. An aversion signal is a predictor for aversive 
situations, and such aversive situations are avoided if possible.  

Motives: A motive consists of an urge (that is, the value of an indicator for a need) 
and a goal that has been associated to this indicator. The goal is a situation schema 
characterized by an action or event that has successfully reduced the urge in the past, 
and the goal situation tends to be the end element of a behavior program. The 
situations leading to the goal situation—that is, earlier stages in the connected 
occurrence schema or behavior program—might become intermediate goals. To turn 
this sequence into an instance that may initiate a behavior, orient it towards a goal and 
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keep it active, we need to add a connection to the pleasure/displeasure system. The 
result is a motivator and consists of: 

− a need sensor, connected to the pleasure/displeasure system in such a way, that 
an increase in the deviation of the need from the target value creates a 
displeasure signal, and a decrease results in a pleasure signal. This 
reinforcement signal should be proportional to the strength of the increment or 
decrement. 

− optionally, a feedback loop that attempts to normalize the need automatically 
− an urge indicator that becomes active if there is no way of automatically 

adjusting the need to its target value. The urge should be proportional to the 
need. 

− an associator (part of the pleasure/displeasure system) that creates a connection 
between the urge indicator and an episodic schema/behavior program, 
specifically to the aversive or appetitive goal situation. The strength of the 
connection should be proportional to the pleasure/displeasure signal. Note that 
usually, an urge gets connected with more than one goal over time, since there 
are often many ways to satisfy or increase a particular urge. 

Motive selection: If a motive becomes active, it is not always selected immediately; 
sometimes it will not be selected at all, because it conflicts with a stronger motive or 
the chances of success when pursuing the motive are too low. In the terminology of 
Belief-Desire-Intention agents [15], motives amount to desires, selected motives give 
rise to goals and thus are intentions. Active motives can be selected at any time, for 
instance, an agent seeking fuel could satisfy a weaker urge for water on the way, just 
because the water is readily available, and thus, the active motives, together with their 
related goals, behavior programs and so on, are called intention memory. The 
selection of a motive takes place according to a value by success probability 
principle, where the value of a motive is given by its importance (indicated by the 
respective urge), and the success probability depends on the competence of the agent 
to reach the particular goal. 

In some cases, the agent may not know a way to reach a goal (i.e., it has no 
epistemic competence related to that goal). If the agent performs well in general, that 
is, it has a high general competence, it should still consider selecting the related 
motive. The chance to reach a particular goal might be estimated using the sum of the 
general competence and the epistemic competence for that goal. Thus, the motive 
strength to satisfy a need d is calculated as urged  · (generalCompetence + 
competenced), i.e. the product of the strength of the urge and the combined 
competence. 

If the window of opportunity is limited, the motive strength should be enhanced 
with a third factor: urgency. The rationale behind urgency lies in the aversive goal 
created by the anticipated failure of meeting the deadline. The urgency of a motive 
related to a time limit could be estimated by dividing the time needed through the 
time left, and the motive strength for a motive with a deadline can be calculated using 
(urged + urgencyd) · (generalCompetence + competenced), i.e. as the combined 
urgency multiplied with the combined competence. The time the agent has left to 
reach the goal can be inferred from episodic schemas stored in the agent’s current 
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expectation horizon, while the necessary time to finish the goal oriented behavior can 
be determined from the behavior program. (Obviously, these estimates require a 
detailed anticipation of things to come, which may be difficult to obtain.)  

At each time, only one motive is selected for the execution of its related behavior 
program. There is a continuous competition between motives, to reflect changes in the 
environment and the internal states of the agent. To avoid oscillations between 
motives, the switching between motives may be taxed with an additional cost: the 
selection threshold, a bonus that is added to the strength of the currently selected 
motive. The value of the selection threshold can be varied according to circumstances, 
rendering the agent ‘opportunistic’ or ‘stubborn’.  
 
Intentions: As explained above, intentions amount to selected motives, combined 
with a way to achieve the desired outcome. Within the Psi theory, an intention refers 
to the set of representations that initiates, controls and structures the execution of an 
action. (It is not required that an intention be conscious, that it is directed onto an 
object etc.—here, intentions are simply those things that make actions happen.) 

Intentions may form intention hierarchies, i.e. to reach a goal it might be necessary 
to establish sub-goals and pursue these. An intention can be seen as a set of a goal 
state, an execution state, an intention history (the protocol of operations that took 
place in its context), a plan, the urge associated with the goal state (which delivers the 
relevance), the estimated specific competency to fulfill the intention (which is related 
to the probability of reaching the goal) and the time horizon during which the 
intention must be realized. 

The dynamics of modulation: In the course of the action selection and execution, Psi 
agents are modulated by several parameters: The agent’s activation or arousal (which 
resembles the ascending reticular activation system in humans) determines the action-
readiness of an agent. It is proportional to the current strength of the urge signals. The 
perceptual and memory processes are influenced by the agent’s resolution level, 
which is inversely related to the activation. A high resolution level increases the 
number of features examined during perception and memory retrieval, at the cost of 
processing speed and resulting ambiguity. The selection threshold determines how 
easily the agent switches between conflicting intentions, and the sampling rate or 
securing threshold controls the frequency of reflective and orientation behaviors. The 
values of the modulators of an agent at a given time, together with the status of the 
urges, define a cognitive configuration, a setup that may be interpreted as an emergent 
emotional state.  

5   Summary 

The Psi theory defines a possible solution for a drive-based, poly-thematic 
motivational system. It does not only explain how physiological needs can be 
pursued, but also addresses the establishment of cognitive and social goals.  

Its straightforward integration of needs allows adapting it quickly to different 
environments and types of agents; a version of the model has been successfully 
evaluated against human performance in problem solving game [9]. 
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The existing implementation of the Psi theory in the MicroPsi architecture [14] still 
restricts social signals to simple l-signals and anti-l-signals, and it does not cover a 
need for improving internal representations (‘aesthetics’). Still, it may act as a 
qualitative demonstrator of an already quite broad computational model of 
motivation. 

The suggested motivational model can be implemented in a variety of different 
ways, and we are currently working on transferring it to other cognitive architectures 
to obtain further scenarios and test-beds for criticizing and improving it. 
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Abstract. Artificial General Intelligence will not be general without computer
vision. Biologically inspired adaptive vision models have started to outperform
traditional pre-programmed methods: our fast deep / recurrent neural networks
recently collected a string of 1st ranks in many important visual pattern recog-
nition benchmarks: IJCNN traffic sign competition, NORB, CIFAR10, MNIST,
three ICDAR handwriting competitions. We greatly profit from recent advances
in computing hardware, complementing recent progress in the AGI theory of
mathematically optimal universal problem solvers.

Keywords: AGI, Fast Deep Neural Nets, Computer Vision, Hardware Advances
vs Theoretical Progress.

1 Introduction

Computer vision is becoming essential for thousands of practical applications. For ex-
ample, the future of search engines lies in image and video recognition as opposed to
traditional text search. Autonomous robots such as driverless cars depend on vision, too.
Generally speaking, the “G” in “AGI” will be undeserved without excellent computer
vision.

AGI research is currently driven by two types of progress. On the one hand, the new
millennium brought the first universal problem solvers [10, 21] that are theoretically
optimal in asymptotic and other senses, putting AGI research on a sound mathematical
footing for the first time, although such approaches are currently not yet practically fea-
sible. On the other hand, due to ongoing hardware advances, the computing power per
Swiss Franc is still growing by a factor of 100-1000 per decade, greatly increasing the
practical feasibility of less general methods invented in the previous millennium. This
paper reflects the second type of progress, exploiting graphics cards or GPUs (mini-
supercomputers normally used for video games) which are 100 times faster than today’s
CPU cores, and a million times faster than PCs of 20 years ago, to train biologically
plausible deep neural nets on vision tasks.

Excellent object recognition results illustrate the benefits of this pragmatic approach.
As of January 2011, our neural computer vision team has collected a string of 1st
ranks in many important and highly competitive international visual pattern recogni-
tion benchmarks.

1. IJCNN’s online Traffic Sign Recognition Benchmark (1st & 2nd rank; 1.02% error
rate), January 2011 [4].
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2. NORB data set, NY University, 2004 [13]. Our team set the new record (2.53%
error rate) in February 2011 [3].

3. CIFAR-10 data set of Univ. Toronto, 2009 [11]. Our team set the new record
(19.51% error rate) in 2011 [3].

4. MNIST data set of NY University, 1998 [12]. Our team set the new record (0.35%
error rate) in 2010 [2], and tied it again in January 2011 [3].

5. Three Handwriting Recognition Competitions at ICDAR 2009, all won by our
multi-dimensional LSTM recurrent neural networks trained by Connectionist Tem-
poral Classification (CTC) [7, 8]: Arabic Handwriting Competition of Univ. Braun-
schweig, Handwritten Farsi/Arabic Character Recognition Competition, French
Handwriting Competition based on data from the RIMES campaign.

Remarkably, none of the above requires the traditional sophisticated computer vision
techniques developed over the past six decades or so. Instead, our biologically rather
plausible systems are inspired by human brains, and learn to recognize objects from
numerous training examples. We use supervised, artificial, feedforward or recurrent
[9, 7, 8] (deep by nature) neural networks with many non-linear processing stages, par-
tially inspired by early hierarchical neural systems such as Fukushima’s Neocognitron
[5]. We sometimes (but not always) profit from sparse network connectivity and tech-
niques such as weight sharing & convolution [12, 1, 25], max-pooling [17], and contrast
enhancement [6] like the one automatically generated by unsupervised Predictability
Minimization [18, 22, 24].

2 Neural Network ReNNaissance

Our NNs are now outperforming all other methods including the theoretically less gen-
eral and less powerful support vector machines based on statistical learning theory [27]
(which for a long time had the upper hand, at least in practice). Such results are cur-
rently contributing to a second Neural Network ReNNaissance (the first one happened
in the 1980s and early 90s).

3 Outlook

The methods discussed above are passive learners - they do not learn to actively search
for the most informative image parts. Humans, however, use sequential gaze shifts for
pattern recognition. This can be more efficient than the fully parallel one-shot approach.
That’s why we intend to combine the fast deep / recurrent nets above with variants of
what to our knowledge was the first artificial fovea sequentially steered by a learning
neural controller [23], using a variant of reinforcement learning to create saccades and
find targets in a visual scene.

4 Conclusion

The first decades of attempts at AGI have been dominated by heuristic approaches,
e.g., [15, 16, 26, 14]. In recent years things have changed, however. The new millen-
nium brought the first mathematically sound, asymptotically optimal, universal problem
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solvers, providing a new, rigorous foundation for the previously largely heuristic field
of General AI and embedded cognitive agents, identifying the limits of both human
and artificial intelligence, and providing a yardstick for any future approach to general
cognitive systems [19, 10, 20]. The field is indeed becoming a real formal science.

On the other hand, however, one cannot dispute the significance of hardware progress
on the road to practical AGI, as illustrated by our recent practical successes mentioned
in this paper, achieved by methods which are combinations of algorithms mostly de-
veloped in the previous millennium, but greatly profiting from dramatic advances in
computational power per Swiss Franc, obtained in the new millennium.

We are confident that theory and practice will converge in the not-so-distant future.
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Abstract. When designing artificial intelligent systems, one could do worse, at
first glance, than take inspiration from the system whose performance one tries
to match: the human brain. The continuing failure to produce such an inspired
system is usually blamed on the lack of computational power and/or a lack of
understanding of the neuroscience itself. This does not, however, affect the fun-
damental interest in neuroscience as studying the only known mechanism to date
to have produced an intelligent system.

This paper adds another consideration (to the well-established observation that
our knowledge of how the brain works is sketchy at best) which needs to be taken
into account when taking inspiration from neuroscience: the human brain has
evolved specifically to serve the human body under constraints imposed by both
the body and biological limitations. This does not necessarily imply that it is fu-
tile to consider neuroscience in such endeavours; however, this paper argues that
one has to view results of neuroscience from a somewhat different perspective to
maximise their utility in the creation of artificial intelligent systems and proposes
an explicit separation of neural processes into three categories.

1 Introduction

The stated aim of Artificial General Intelligence (AGI) is the construction of machines
with human-level intelligence (and beyond). It is therefore clear that achieving this aim
is at least somewhat related to our understanding of human cognition and intelligence
in the first place. In particular, it is attractive, at a first glance, to at least consider neu-
roscience in particular (see, for instance, Goertzel et al., 2010; de Garis et al., 2010) as
the field studying the mechanisms underlying the only known truly intelligent system
to date. There are of course other approaches to the creation of artificial intelligent
systems (see, for instance, Schmidhuber, 2009, for a nice example of a completely dif-
ferent take); in the present paper, however, we will restrict ourselves specifically to the
endeavour of turning to results from neuroscience with the aim of creating artificial
intelligent systems.

Doing so is, it has been noted, not trivial and there are a number of obstacles that need
to be overcome. Two are commonly cited (e.g. de Garis et al., 2010): (1) our knowledge
of neuroscience is incomplete to say the least and (2) even if we did have a complete
understanding, the computational power for the creation of a complete artificial human
brain is only beginning to be available.

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 247–254, 2011.
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The discussion about computational power and what possibilities it may or may not
open is beyond the scope of this paper and will not be considered here. The observation
that our knowledge of neuroscience is incomplete is obviously true and extends to our
knowledge of human cognition in general.

It is perhaps useful to define the difference between cognition and intelligence for
the present purposes. Cognition encompasses all reasoning abilities of an agent, it is
what the agent’s mind can do. Intelligence, on the other hand, is a metric for measuring
the quality of an agent’s cognition. Consequently, a machine with complete human-
like cognition should necessarily display anthropic intelligence but a machine whose
reasoning abilities are radically different from that of a human may nonetheless display
anthropic levels of intelligence (or indeed beyond).

This distinction is important for those turning to neuroscience for inspiration in the
creation of artificial intelligent systems, since, strictly speaking, neuroscience studies
the mechanisms underlying human and animal cognition, a system that has the property
of displaying intelligence. For the same reason, the aforementioned fact that our knowl-
edge of cognition as such is also incomplete is itself important. It essentially implies
that if one turns to neuroscience in order to produce a system with a property X (being
intelligent), one is turning to incomplete knowledge about the mechanisms underlying
a system Y (human cognition), the only known system to also possess property X but
itself not completely understood either otherwise.

While this is, on the face of it, a pessimistic assessment, the points about incomplete
knowledge are merely a slight generalisation of what has been said before and are, as
such, not new. Our understanding of both neuroscience specifically and the cognitive
sciences in general increases constantly; incomplete knowledge, assuming an aware-
ness of that fact, does not prevent to the design of artificial systems based on current
knowledge nor the definition of future directions such endeavours may take depend-
ing on advances in neuroscience or the cognitive sciences. Artificial systems may even
guide future research in these fields in what would constitute a symbiotic relationship.

The present paper is thus more concerned with the second implication of the above
insight. To create an artificial system that displays anthropic levels of intelligence is not
necessarily the same as to create an artificial system that displays anthropic cognition.
Indeed, the latter is more restrictive: of all hypothetical systems that could display levels
of intelligence that are (at a minimum) of human quality, it discards all those that do
not do so by means of cognitive mechanisms that are also of human quality. With that
in mind, what (if any) is the value of looking at neuroscience when designing artificial
intelligent systems and, assuming there is such a value, how, precisely, should one take
neuroscience into consideration?

2 Insights from Embodied Cognition

It is useful to briefly discuss embodied cognition for its relevance to the creation of
artificial cognitive systems in general. Specifically, the relevant aspect of embodied
cognition is the claim that the body intrinsically shapes cognition (Anderson, 2003;
Chrisley and Ziemke, 2003; Gallagher, 2005). How much and in what ways this shaping
takes place is still a matter of heavy debate. On one end of the spectrum, Pezzulo et al.
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(2011) for instance argue that the conceptual representations at the base of our cognitive
abilities are fundamentally grounded in and processed at the sensorimotor level. On the
other end, Mahon and Caramazza (2008) are amongst those who argue in favour of an
abstract symbolic representation of concepts that is merely grounded by sensorimotor
information. In such a view, the body may be necessary to ground the symbols that the
cognitive system will manipulate, but it is not required for cognition as such, similar to
the Harnad’s (1990) position.

Available neuroscientific evidence can be interpreted to suit both positions. On one
hand, it can be shown for instance that several “higher” cognitive abilities appear to acti-
vate motor regions in the brain, e.g. in the case of language processing (see Chersi et al.,
2010, for a review). Pezzulo et al. (2011) offer several additional examples. On the
other hand, Mahon and Caramazza (2008) argue that none of this evidence is actu-
ally at odds with their view and that some neuroscientific findings (e.g. from Apraxia,
see Mahon and Caramazza, 2008, for details) are not compatible with strong embodied
positions.

Entering the debate in detail goes beyond the point of this paper. The main mes-
sage here is that even the most sceptical (from an embodiment point of view) position
defended by Mahon and Caramazza (2008) accepts that the body, in the form of sen-
sorimotor grounding can influence cognition in the sense that it shapes and/or refines
concepts and representations. While it is then a different debate whether or not such an
influence is necessary, it appears likely that it is at least beneficial even if the higher-
level cognitive abilities turn out to take place at an abstract, amodal level. In other
words: human cognition is likely shaped by the human body and a central research
question in embodied cognitive science is simply “how much?”.

This has three important implications for the aim of creating machines with human-
like intelligence. First, the cognitive capabilities of a machine may depend on the ma-
chine itself. Second, anthropic cognition may simply require an anthropic body. Third
and consequently, the mechanisms of the human body giving rise to human cognition
may not be relevant for machines with non-human embodiments.

These three implications, although related, have different consequences. The first
one implies that cognition involves both the design of the machine and its algorithms,
not just the latter. This realisation is now shaping, for instance, research in cogni-
tive robotics, another field concerned with the creation of intelligent machines (see
Pezzulo et al., 2011, for a discussion).

The second implication leads us to at least consider the possibility that truly an-
thropic cognition may only be possible with an equally anthropic body. Why this may
be the case is illustrated, for instance by SNARC (spatial-numerical association of re-
sponse codes) effect (see Pezzulo et al., 2011, for a description and more references).
Briefly, people respond to smaller numbers faster with the left hand than with the right
hand and vice versa for large numbers; but less so if people start counting numbers on
their right hand. In addition, if people are asked to “generate” random numbers while
turning their heads left and right, they tend to be biased towards smaller numbers during
left turns than during right ones. Thus, the SNARC effect exemplifies how the cognitive
representation of a symbol (a number) is nonetheless affected by the body and manipu-
lating such symbols in a human fashion may only be, strictly speaking, realisable with a
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human body. The consequence is that, while machines could certainly display anthropic
levels of intelligence (since, as has been noted before, intelligence is essentially a met-
ric), their underlying cognitive capabilities (how they reason) may not be comparable
with that of a human.

The third implication is the most interesting here. The extreme interpretation would
be that turning to neuroscience in the design of artificial systems is simply pointless
since neuroscience studies mechanisms in a biological body underlying human or ani-
mal cognition, neither of which may be reproducible in a machine. The interpretation
within this paper is, however, more moderate. There is no doubt that large aspects of
our brain and the way it processes data exist not because they are necessarily necessary
for intelligence but because of constraints imposed by biology and/or by our particu-
lar morphology. Some may indeed be irrelevant for anything but the human. Others,
however, may generalise to other embodiments, including that of a machine. Finally,
there may be generally valid computational aspects that are, in fact, independent of a
particular embodiment (including morphology and biology).

This leads to the main point of the present paper: when studying neuroscience with
the fundamental aim of creating an artificial intelligent machine, it is important to dis-
sociate between mechanisms that exist merely because of the embodiment (where the
body constrains), those that exploit the embodiment (where the body facilitates) and
those that are not dependent on any particular embodiment, although it has to be noted
that whether or not processes that are both necessary for intelligent behaviour and in-
dependent of the actual embodiment exist is an open question even in the cognitive
sciences.

The first category, bodily constraints, can affect neuroscientific aspects at all levels.
As an example, consider the nematode Caenorhabditis elegans. It is remarkable from a
neuroscientific point of view for the fact that the connectivity between its 302 neurons
(a number which remains constant across hermaphrodite individuals, males have a con-
stant 383 neurons) has been completely mapped out (White et al., 1986). More to the
point, it is also remarkable for its non-spiking neurons (which lack Na+ channels) that
instead rely on electrotonic potenials, which travel faster than action potentials (neu-
ronal spikes) but are not suitable for long-distance signalling as they degrade quickly
(Nickell et al., 2002). What this example illustrates is that even something as funda-
mental as neural spikes, which form the communication basis of a plethora of artificial
neural networks (Gurney, 1997), may exist first and foremost simply because of a rudi-
mentary biological limitation, namely that signalling over the distances involved in the
human brain is not possible with electrotonic potentials alone.

Of most interest, perhaps, when turning to to neuroscience when constructing ar-
tificial intelligent machines, is the second category: examples of processes that are
facilitated by (or that simply exploit) the embodiment and could generalise, albeit in
an adapted fashion, to machines. To illustrate this point further, the next section will
briefly present and discuss the mirror system, currently a popular research topic in
neuroscience (e.g. Gallese et al., 1996; Fogassi et al., 2005; Umiltà et al., 2008), the
cognitive sciences (e.g. Chersi et al., 2010; Rizzolatti and Sinigaglia, 2010) and even
cognitive robotics (e.g. Wermter et al., 2005; Bonaiuto et al., 2007; Thill and Ziemke,
2010) from the perspective of the creation of artificial intelligent machines.
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3 Neuroscience for Artificial Agents: The Mirror System Example

Mirror neurons, in a nutshell, are neurons that fire both when an agent executes a
goal-directed action and when he observes another agent executing the same action
(Gallese et al., 1996). Because of this fundamental property, they have been hypothe-
sised to play a role in a large number of higher-level cognitive processes. The main
hypothesised role is in action understanding (Fogassi et al., 2005; Cattaneo et al., 2007;
Umiltà et al., 2008; Bonini et al., 2010; Rizzolatti and Sinigaglia, 2010) but it should be
remembered that this is still a hypothesis, not a proven fact; Hickok (2008) is amongst
those pointing out that there is no conclusive evidence pointing in that direction.

Action understanding aside, mirror neurons are also thought to play a role in the evo-
lution of language. Rizzolatti and Arbib (1998) for instance hypothesise that Broca’s
area in the human brain (thought to play a major role in human language process-
ing) may be the counterpart of the frontal area F5 of the monkey brain (in which
mirror neurons were originally discovered). Arbib (2005) then argues that mirror neu-
rons may, in fact, be essential for language while Chersi et al. (2010) discuss the in-
dications that language is sensorimotorically grounded (in a process involving mirror
neurons). However, the role of mirror neurons in language also remains a point of de-
bate. Oztop et al. (2006) for instance echoes the common objection that monkeys, from
which most mirror neuron data is obtained, do not use language. They also do not
imitate, another functional role hypothesised to involve mirror neurons (Oztop et al.,
2006). In humans, mirror mechanisms have been shown to exist in the sensation of, for
instance, touch or pain (see, for instance, Keysers et al., 2010; Morrison et al., 2010, for
reviews). Rizzolatti and Sinigaglia (2010) review additional literature on the functional
role of mirror neurons.

Because of the above, the mirror system has received significant interest from the
fields of artificial intelligence and robotics (e.g. Tani et al., 2004; Wemter et al., 2005;
Erlhagen et al., 2007; Thill et al., submitted) as it may play a key role in designing
humans and machines that can interact robustly with human and use, for instance, imi-
tation learning to survive in unknown environments.

The mirror system is thus a good example here for two reasons: (1) it is an active
research topic in several fields and (2) it is hypothesised to underlie a number of higher
level cognitive functions, making it very relevant for neuroscience inspired artificial
systems. Again, it is important to underline that there is still very little evidence that
mirror neurons are actually necessary for these cognitive functions (Hickok, 2008) but
we can assume here, for the sake of the argument, that it would at least be possible to
construct an artificial agent with a mirror system in which this is true.

Neuroscience then tells us, for instance, the following about mirror neurons. They
fire, as said, both when agents execute a goal-directed action and when they observe it
(Gallese et al., 1996). Observation can even extend to hearing sounds associated with
the action (Köhler et al., 2002). Although related to motor actions, they do not encode
precise motor commands but rather the “concept” of these actions (Umiltà et al., 2008).
Mirror neurons are further organised into groups, each encoding a particular motion
primitive (e.g. a reach or a grasp) and are highly selective in that respect (Chersi et al.,
2006). Further, these pools also encode the goal of the overall action which the primitive
is a part of (Fogassi et al., 2005).
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If one assumes that this organisation is important in facilitating the cognitive be-
haviours that might be served by mirror neurons, then one might want to replicate this
in an artificial agent. However, the precise organisation is affected by the body: mirror
neurons receive inputs, amongst others, from the anterior intraparietal area (AIP) and
the superior temporal sulcus (STS, Bonaiuto et al., 2007), which are in turn influenced
by the perception of both the actions of others (STS) and affordances of objects at the
heart of the action (AIP). Thill et al. (submitted) show that goal-encoding as observed
by Fogassi et al. (2005) can be a simple result of differential encoding in these two input
streams, which in turn would be affected by the embodiment.

This is thus an example of how the neural organisation makes use of the embodi-
ment. Given inputs as shaped by the body mirror neurons may organise into a structure
that may in turn facilitate higher cognitive behaviours. For artificial intelligent systems,
the conclusion is thus not that one should merely “copy” this organisation. Rather, one
can either design the machine so that it naturally facilitates the emergence of a similar
structure or one can investigate how a radical different embodiment would affect this or-
ganisation. The mirror system is thus an interesting example of a neural structure whose
organisation is not just a constraint of the body; rather it may have evolved to explic-
itly take advantage of the morphology. The developmental process which has allowed
this may well translate onto other embodiments and indeed, examples of mirror-neuron
based robots exist (e.g. Bonaiuto et al., 2007; Erlhagen et al., 2007).

4 Conclusion

The goal of neuroscience is to further the understanding of human and animal cogni-
tion, in particular the underlying neural mechanisms. Artificial intelligence, general or
otherwise, has a different aim; it seeks to create intelligent machines. While it is then
tempting to turn to neuroscience as the research field studying the mechanism under-
lying the only known instance of intelligent behaviour, it is critical to keep in mind
that neuroscience does not typically produce results with the AI researcher in mind.
The question of which processes exist only because of the human body and which ones
could generalise to other bodies and machines is simply not relevant in traditional neu-
roscience and it is up to the AI researcher to apply due diligence when taking inspiration
from neuroscience.

This paper has therefore argued that, rather than taking a “traditional” perspective
on neural processes, they should be evaluated as falling in one of three categories 1)
processes that are constrained by the body, 2) processes that exploit the body and 3)
processes that are independent of the body. Of these, the most interesting category for
AGI researchers is likely the second one, which has been illustrated in a brief consider-
ation of the mirror neuron system.
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Abstract. The brain carries out cognitive learning and processing by performing 
combinations of different types of information processes. Types of information 
processes are performed by different anatomical structures and implemented in 
physiology. The information processes performed by different major anatomical 
structures including the cortex, basal ganglia, thalamus and cerebellum are 
described, including their implementations in neuron physiology. The implications 
for the architecture and design of a general intelligence system are discussed. 

1   Introduction 

For a system that learns many behaviours, theoretical arguments indicate that the need 
to utilize physical information handling resources as efficiently as possible constrains 
system architecture [1]. In the limit as the ratio of behaviours to resources becomes 
very large, the system will tend to adopt the recommendation architecture form. This 
form separates different types of information processes into physically separate 
subsystems. Natural selection pressures tend to favour brain architectures which make 
efficient use of physical information handling resources like neurons and 
connectivity, and therefore result in recommendation architecture subsystems 
appearing in biological brains. Any one cognitive process utilizes information 
processes in most or all of these subsystems. Each subsystem implements its 
corresponding information processes by physiological mechanisms.  The existence of 
these forms in biological brain is indicated by a range of physiological evidence, 
including the cognitive effects resulting from damage to different anatomical 
structures [2]. Analogous theoretical arguments indicate that any system with general 
intelligence which must learn a complex combination of behaviours will be 
constrained into the same general architectural forms [3]. The ways in which the 
various information processes are implemented physiologically can therefore provide 
guidance for the design of such general intelligence systems. In this paper the 
information processes performed by different anatomical structures in the brain are 
defined, and the ways in which these processes are implemented in physiology 
described. Ways in which physiology can therefore provide guidance for the 
implementation of a system with general intelligence are discussed. 
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Fig. 1. The information architecture that results for any system which must learn a complex 
combination of behaviours with limited information handling resources 

2   Brain Information Architecture 

Practical considerations result in the physical architecture of the brain being 
constrained into the architectural form illustrated in figure 1 [1;4;2]. There are two 
major subsystems, clustering and competition. Clustering defines and detects 
conditions in the information available to the brain. This information can include 
sensory inputs indicating the status of the external environment and the body, and 
information about the internal status of the brain itself. Groups of similar conditions 
are called receptive fields, with a receptive field being detected if a significant 
proportion of its conditions are detected. Detections of receptive fields are provided to 
the competition subsystem, where each such detection is interpreted as a range of 
recommendations in favour of different behaviours, each recommendation having an 
individual weight. Competition determines the total weights in favour of each 
behaviour, and implements the behaviour with the largest weight. Reward feedback 
following a behaviour changes the weights of recently detected receptive fields in 
favour of recently accepted behaviours. 

To avoid excessive requirements for information handling resources, individual 
receptive fields must be shared across (i.e. must recommend) many different 
behaviours. Receptive fields must be initiated and evolved heuristically, but because 
one receptive field has recommendation strengths in favour of  many different 
behaviours, all such changes to receptive fields must be carefully controlled. To a 
good first approximation, receptive fields can be expanded by addition of conditions, 
but existing conditions cannot be deleted or modified [11]. Consequence feedback is 
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generally derived from one or a few recent behaviours. Use of such consequence 
feedback from one behaviour to guide changes to existing conditions in a receptive 
field could result in undesirable side effects on all the other behaviours also 
influenced by the field. Consequence feedback can only be used to guide changes to 
recommendation strengths. In other words, consequence feedback can be directly 
used within competition but not within clustering. The use of consequence feedback 
within competition means that components within competition must correspond with 
individual behaviours or types of behaviour, so that changes will only affect one 
behaviour. 

2   Cortex and Clustering 

The cerebral cortex makes up the bulk of clustering in the mammal brain. The cortex 
is a thin sheet of neural matter, crossed by several million columns, each column 
detecting a different receptive field [5]. The cortex is separated into different areas, 
with the columns in one area detecting receptive fields within the same body of input 
information [6]. Column receptive fields within one area can distinguish between 
circumstances in which different behaviours of a range of types are appropriate, but 
do not individually correspond exactly with such circumstances. For example, 
columns in area TE can discriminate between different categories of visual object, but 
do not individually correspond with object categories [7]. Different areas detect 
receptive fields appropriate for supporting different types of behaviour. Although 
most behaviour types could best be managed with a specific group of receptive field 
types, supporting all such receptive field types for all possible behaviour types would 
be very expensive in resources. Area receptive fields must therefore be shared across 
multiple behaviour types. There are perhaps several hundred different cortical areas 
[8;9;10], and this number reflects a compromise between behavioural effectiveness 
and resource economy. 

Because consequence feedback cannot be used to guide receptive field changes  
(with some limited exceptions, see [11]), the need to support behavioural 
discrimination is the only available criterion [1]. An adequate range of behavioural 
recommendations must be generated in response to every input state, in order to 
support a high integrity behaviour selection. This means that at least a minimum 
number of columns in a cortical area must detect their receptive fields whenever that 
area is presented with inputs. If less than the minimum is detected, some undetected 
receptive fields must expand slightly so that they are detected. Such expansions mean 
that the column will still detect its receptive field in the same circumstances as in the 
past, and the integrity of the recommendation strengths associated with the column 
will be preserved. However, such expansions must be as small as possible to 
minimize possible effects on existing recommendation strengths.  

Columns are organized into layers of excitatory pyramidal type neurons, 
conventionally numbered II through IV, layer I being mainly axons. Different types of 
inhibitory interneurons occur in all layers. Most external input arrives in layer IV, and 
most output goes from layers V and VI. Pyramidal neurons in layers V/VI therefore 
indicate detection of the column receptive field. There is a predominant flow of 
connectivity from IV to II/III and from II/III to V/VI. If there is strong activity in 
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II/III but no column output from V/VI, the implication is that a relatively slight 
column receptive field expansion would result in detection. The requirements are 
therefore to determine when receptive field expansions are needed, to identify which 
inactive columns will detect their fields with the least expansion, and to drive that 
expansion. Such requirements could in principle be met by all-to-all connectivity 
between cortical columns. Greater effectiveness with fewer resources can be achieved 
using a central resource manager [12]. 

The hippocampal system detects receptive fields corresponding with large groups 
of cortical columns that have expanded their receptive fields at similar times in the 
past, with inputs derived from layers II/III. At each point in time, the hippocampal 
system receives inputs from all across the cortex, determines whether and where 
receptive field expansions are required, and sends signals back to the selected 
columns to drive expansions [13]. Receptive field changes are behaviours which must 
be recommended by receptive field detections in the clustering part of the 
hippocampal system, and only implemented if accepted by the competition part of the 
hippocampal system, of which an important part is the anterior thalamic nucleus [14]. 

 

Fig. 2. Organization of synapses to detect conditions, groups of conditions and receptive field 
defined by groups of groups of conditions 

Expansions make use of the long term potentiation mechanism [15]. As illustrated 
in figure 2, the receptive field of a pyramidal neuron is defined by a group of 
conditions, with the receptive field being detected if a significant proportion of the 
conditions is detected. Each condition (such as a1, a2 etc in figure 2) is defined by a 
group of synapses from other cortical pyramidal neurons (or from the senses via the 
thalamus), located on one branch of the dendritic tree. Each synapse may have a 
different weight. If enough synapses on a branch receive action potentials within a 
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short period of time, the branch injects potential deeper into the dendrite [16]. In other 
words, the branch condition has been detected. Paths defined by voltage gated ion 
channels integrate the contributions of different branches [17]. If this integration 
injects sufficient potential into the soma, an action potential results [18] indicating 
detection of the neuron receptive field. Such an output action potential is generally 
combined with an action potential that backpropagates into the dendritic tree [19]. 
This backpropagated action potential increases the weights of any synapses that have 
recently received an input action potential [20].  

Receptive field expansions occur by increases in the weights of some synapses on 
a branch. In the extreme case, a branch like b1 in figure 2 may be made up of silent 
synapses from all cortical sources. These silent synapses have zero weight [21]. Such 
a branch defines a provisional condition. The branch will not contribute to neuron 
receptive field detection in any normal circumstances. However, the branch also has 
inputs from the hippocampal system. These inputs are active if the column in which 
the neuron is located is selected for receptive field expansion. If the branch injects 
potential on the basis of hippocampal activity, and shortly afterwards the neuron fires, 
the backpropagating action potential will increase the weights of any of the silent 
synapses that recently received inputs. These synapses now define a condition that 
could contribute to neuron firing independent of hippocampal activity. In other words, 
the receptive field of the neuron has expanded slightly by addition of a new condition. 
Increases of synaptic weights on regular synapses can also contribute to receptive 
field expansions, although the total weight of any one synapse is limited, preventing 
excessive contribution by a single source. New silent synapses could also be added to 
a regular branch. 

The cortical sources of silent synapses on a neuron could be selected at random, 
but resource economies can be achieved by biasing the random selection in favour of 
sources that have been active in the past at the same time as the target neuron [22]. 
Such a bias could be achieved by a rapid partial rerun of past experience, with 
connectivity being guided by this rerun. It has been proposed that REM sleep is the 
partial rerun supporting creation of provisional connectivity [4;13]. 

2.1   Indirect Activation of Receptive Fields 

Direct activation of a column on the basis of the presence of its conditions in current 
sensory inputs makes all the recommendations associated with its detection available. 
However, there can be some inactive columns that have recommendation strengths 
that are potentially relevant to current circumstances. For example, if a column is 
inactive but has often been active in the past at the same time as a number of currently 
active columns, its recommendation strengths may be relevant. Relevant columns 
may also include columns recently active at  the same time as currently active 
columns and columns that expanded their receptive fields at the same time in the past 
as currently active columns. Uncontrolled indirect activations would create a chaotic 
total activation. Hence indirect activation of a column must be a behaviour 
recommended by columns on the basis of past temporally correlated activity and only 
implemented if the total recommendation strength is sufficient. Indirect activation 
recommendation strengths can also be established on the basis of past activity of a 
column just before or just after activity of another column. A population of columns 
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directly activated by sensory inputs can generate a secondary indirectly activated 
column population, which could itself recommend activation of other columns, giving 
rise to a tertiary population, and so on. 

Indirect activation on the basis of frequent past simultaneous activation supports 
semantic memory, indirect activation on the basis of simultaneous past receptive field 
expansion supports episodic memory, and indirect activation on the basis of recent 
simultaneous activity supports priming memory [4;2;23]. Sequences of direct and 
indirect activations support complex cognitive processing [2;3;11].  

3   Basal Ganglia and Behaviour Selection 

The basal ganglia and thalamus make up competition in the mammal brain. The 
connectivity of these nuclei is illustrated in figure 3.  There is large input from the 
cortex going into the striatum, and the output from the basal ganglia comes from 
mainly from the globus pallidus internal segment and the related substantia nigra pars 
reticulata. There is strong reciprocal excitatory connectivity between the thalamus and 
the cortex, and the GPi/SNr produces constant inhibitory output that targets the 
thalamus. There are two populations of neurons in the striatum: D1 and D2. They 
support two parallel paths that link the striatum to the GPi/SNr. One path comes from 
D1 neurons and inhibits the GPi/SNr, (in other words, reduces inhibition of the 
thalamus) the other path comes from D2 neurons and effectively excites the GPi/SNr. 
There is a feedback loop from the  GPi/SNr back to the striatum via the SNc. The SNc 
is made up of dopamine neurons. One mode of firing by neurons in the SNc is 
constant (tonic) at about 4 Hz [24]. This steady firing creates a background 
concentration of dopamine in the striatum, the dopamine leaks out from the dopamine 
synapses and permeates the extracellular environment. At the concentrations created 
by this firing, dopamine affects the relative activity of the D1 and D2 populations. 

Individual neurons in the striatum and in the GPi/SNr correspond with very 
specific individual behaviours [25]. In information terms, the synaptic strength of an 
input from the cortex to a neuron in the striatum can be viewed as the weight of the 
recommendation by the receptive field in favour of the corresponding behaviour. An 
output from the striatum can be viewed as the total current recommendation weight in 
favour of the corresponding behaviour (or against any other behaviour). D1 striatal 
neurons target their corresponding behaviour in the GPi/SNr, and encourage that 
behaviour. D2 striatal neurons target different behaviours in the GPi/SNr, and inhibit 
those behaviours. There is therefore a competition being performed by the GPi/SNr 
which selects the most strongly recommended behaviour. 

In many cases a behaviour is implemented by release of a cortical information 
flow. Attention behaviours are releases of information from the senses into the 
primary sensory areas. Motor behaviours are releases of information from the motor 
cortex to the spinal cord. Selection of a type of behaviour is release of information 
from one group of cortical areas that recommend general types of behaviour to other 
cortical areas that recommend specific behaviours of a general type. Such cortical 
information flows are coordinated by the thalamus. Reduction in the inhibitory output 
from the GPi/SNr corresponding with selection of a behaviour results in an increase in 
thalamic activity generating release of the corresponding cortical information flows. 
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Fig. 3. Connectivity of cortex-basal ganglia-thalamus-cortex loop 

There are two operational problems which must be avoided. One is failure to select 
any behaviour in circumstances where some behaviour would be appropriate, the 
other is to try to implement multiple incompatible behaviours. The dopamine 
feedback loop manages these problems.  If there is too much activity in GPi/SNr, 
there will be no behaviour. This high activity results in an increase in the background 
dopamine, increasing the chance of a behaviour. If there is too little activity in 
GPi/SNr, there could be multiple behaviours. This low activity results in a decrease in 
the background dopamine, reducing the chance of a behaviour. In addition, if high 
novelty in the environment is detected by the hippocampal system, hippocampal 
inputs to the striatum increases the tonal firing of dopamine neurons in the SNc [24], 
resulting in a higher probability of behaviour in novel environments. 

3.1   Reward Behaviours 

Rewards are behaviours which change the recommendation weights in the striatum in 
favour of recently selected behaviours. Reward behaviours are recommended by 
specific striatal neurons that determine total recommendation weights in favour of 
rewards on the basis of inputs from various cortical areas. Rewards can reinforce 
behaviours on different levels, ranging from strategic behaviours to specific muscle 
movements. For example, consider a musician playing a piece of music. Strategic 
rewards must increase the probability of playing in certain circumstances. Tactical 
rewards must increase the probability of a certain piece of music being played in 
certain circumstances. General muscular rewards must increase the probability of 
certain limb movements relative to the instrument, and detailed muscular rewards 
must increase the probability of finger movements resulting in notes being played in a 
specific order and timing.  
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Reward behaviours are recommended by various cortical areas and selected using 
basal ganglia structures. However, strategic rewards are managed by the ventral basal 
ganglia including the ventral striatum (the nucleus accumbens), the VP 
(corresponding with GPi/SNr) and the VTA (corresponding with the SNc). More 
specific rewards are managed by the dorsal basal ganglia. Total recommendation 
strengths in favour of reward behaviours are determined from cortical inputs in the 
striatum. The competitive selection occurs within the midbrain dopamine neurons (i.e. 
the SNc and VTA) and selected reward behaviours are implemented back into the 
striatum. The connectivity arrangements in support of reward behaviours [26] are 
illustrated in figure 4. 

 

Fig. 4. Spiral of connectivity managing recommendation, selection and implementation of 
reward behaviours 

In addition to the tonal firing mode described earlier, dopamine neurons can fire in 
a burst mode: 3 – 20 action potentials within a burst, at a frequency of 20 Hz [27]. 
Striatal neurons can trigger this burst firing by inhibiting interneurons that target 
midbrain dopamine neurons [26]. The burst firing in turn targets the striatum. Recent 
firing of striatal neurons results in LTP lasting up to 60 minutes. Burst firing of 
dopamine can trigger chemical processes that lock in such LTP changes, while a 
decline in background dopamine can result in LTD [28]. Hence burst firing can 
implement a positive reward behaviour, while declines in background dopamine can 
implement a negative reward behaviour. 

As illustrated in figure 4, very complex cortical receptive fields recommend 
strategic rewards to the nucleus accumbens shell, such rewards are implemented in 
the core. Tactical rewards are recommended by somewhat less complex receptive 
fields into the core, and implemented in the central striatum. Very specific rewards  
 



 Brain Anatomy and Artificial Intelligence 263 

are recommended by the premotor or even the motor cortex and implemented into the 
dorsolateral striatum. This arrangement highlights the issue that reward behaviours 
must be carefully managed, because the effect of such behaviours on regular 
behaviours can be very potent, especially in the case of reward behaviours at the 
strategic level. 

4   Thalamus and Cortical Information Management 

There are several cortical information flow management issues. One is that receptive 
field detections by the senses must only be allowed to generate extensive receptive 
field detections in sensory areas if such generation is a selected behaviour. An 
example of this is visual attention, where at one point in time, a single visual object is 
selected to generate higher order receptive field detections over other objects. 

A second issue is the need to detect receptive fields simultaneously within multiple 
different objects, without interference. An example is the need to detect receptive 
fields within several different visual objects, then to detect receptive fields that 
combine information from multiple objects in order to develop recommendations 
appropriate to responding to the group of objects. 

These two issues are addressed by related mechanisms. When an action potential 
spike arrives at a neuron, it injects a postsynaptic potential that decays with a time 
constant of about 10 milliseconds [29]. For a neuron to detect its receptive field, 
enough input action potentials must therefore arrive within less that about 10 
milliseconds. Spike inputs derived from the senses arrive distributed in time in a 
relatively random fashion. The rate of spikes with this distribution is too low to 
generate strong receptive field detections in associative sensory areas and beyond. 
Visual attention is implemented by a frequency modulation at about 40 Hz (the 
gamma band of the EEG) imposed on inputs from just the retinal area corresponding 
with a visual object [11] to the primary visual area. This frequency modulation 
concentrates spikes within a time slot of less than 10 milliseconds, leaving the rest of 
the 25 millisecond modulation interval with a relatively low number of spikes. This 
concentration means that receptive fields will be detected mainly within information 
derived from just the selected visual object. If different frequency modulations are 
imposed on inputs from different visual objects, separate populations of receptive 
fields can be detected within the different objects in different timeslots within the 
available 25 millisecond interval. This limits the number of different objects to about 
three, consistent with human working memory capabilities [30]. 

Each primary thalamic nucleus receives excitatory (glutamatergic) inputs from a 
number of cortical areas, and provides glutamatergic outputs to one of these areas. 
The interconnecting axons all pass through the thalamic reticular nucleus (TRN). This 
nucleus contains only GABAergic interneurons that generate spike trains at the 
gamma frequency, imposing the gamma band frequency modulation on their targets 
[31; 32]. At a more detailed level, GABA synapses are generally inhibitory. However, 
if an action potential arrives at a GABAergic synapse more than about 5 milliseconds 
before an action potential arrives at a nearby glutamatergic synapse, the result is to 
increase the excitatory effect of the glutamatergic spike [33]. Hence a train of 
GABAergic action potentials will tend to result in the outputs generated by a 
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relatively random distribution of incoming glutamatergic spikes being concentrated in 
particular time slots relative to the GABAergic inputs. 

5   Cerebellum and Behaviour Sequence Management 

A sequence of actions is initially managed by detection of receptive fields after each 
action, and selection of the next action on the basis of the recommendation strengths of 
those fields. However, if given some initial circumstances a sequence of actions is often 
performed in the same order, significant gains in speed and accuracy are possible if the 
sequence is recorded and executed as a whole. The cerebellum performs this function 
both for voluntary motor functions in which the sequence of actions are muscle 
movements and for cognitive functions in which the sequence of actions include indirect 
receptive field activations of various kinds. If the recorded sequences are lost for some 
reason (e.g. cerebellar damage), the sequences can still be implemented (more slowly 
and less rapidly) by the full cortex-basal ganglia cycle at each stage. 

The connectivity between major anatomical structures that manage voluntary 
motor control (and other behaviours) is illustrated in figure 5.  The regular way to 
generate an action is for the cortex to detect receptive fields in the available sensory 
and body position information, the basal ganglia to interpret the receptive field 
detections into a predominant action, and the action to be implemented by release of 
cortical receptive fields to, for example, the spinal cord. A sequence of actions will 
initially be implemented step by step. However, once a frequently used sequence has 
been defined, greater speed and accuracy can be achieved by automatically 
implementing each action a short time after the previous action in the sequence. 

 

Fig. 5. Parallel paths through basal ganglia and cerebellum managing behaviour selection and 
implementation 
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The cerebellum essentially copies action sequences defined by the full cortex-basal 
ganglia-thalamus-cortex cycle. It achieves this by establishing connections on to the 
points that drive actions, and triggering an action when it detects the sensory and 
motor information that occurred in the past at the time of the preceding action, 
ensuring correct timing between actions [11]. Hence the cerebellum will tend to carry 
sequences through to a conclusion, although the full loop could interrupt if necessary. 

In the cerebellar cortex there are three layers. The bottom layer is made up of large 
numbers of granule cells. These have inputs from the pontine nucleus, that in turn gets 
extensive inputs from the cerebral cortex [34]. Granule cell axons rise to the top layer 
and bend 90 degrees to run parallel to the surface, forming what are called the parallel 
fibres. The middle layer is made up of Purkinje cells. These cells have a flat dendritic 
tree that spans the top layer, perpendicular to the parallel fibres. This dendrite gets 
single synapses from a very large number of the parallel fibres. Inputs from the 
inferior olive target Purkinje cell dendrites directly, but each fibre targets just one or 
sometimes a small group of Purkinje cells, wrapping around the dendrite and 
therefore called a climbing fibre. 

The receptive field of a Purkinje cell (in other words the combination of parallel 
fibres) can expand by LTP, but an input from the inferior olive triggers LTD [35]. 
Cerebellar nuclei cells fire tonically, and are excited by the same pontine inputs as the 
Purkinje cells. They are inhibited by Purkinje outputs. Inferior olive neurons are 
inhibited by cerebellar nuclei neurons. 

A sequence is first implemented step by step by the primary loop through the basal 
ganglia. If a sequence occurs frequently, different individual cerebellar nuclei neurons 
establish connections on to groups of neurons driving muscle movement by a 
coincidence guided LTP type mechanism, on the basis of repetition. Purkinje cells 
develop receptive fields corresponding with the circumstances just before different 
actions in a sequence are implemented, again by coincidence guided LTP. Purkinje 
cells also establish inhibitive connectivity on to cerebellar nuclei neurons, with 
connection strengths weakened if they tend to be active at the same time. 

At this point the cerebellum can take over the sequence. If an action follows the 
preceding action correctly, the cerebellar nucleus neurons will inhibit the inferior 
olive, and no LTD will occur in the Purkinje cell. If the action does not occur, there 
will be LTD which will slightly shift the Purkinje receptive field. Hence the inferior 
olive tunes the timing of the action sequence [36] and is only active when cerebellar 
learning is under way [37]. 

As indicated by the effects of cerebellar damage, the cerebellum manages not only 
motor sequences including speech generation, but also complex cognitive processes  
[38]. However, the primary behaviour generation route through the basal ganglia can 
take back full control of such sequences, with perhaps an undamaged cerebellar 
region learning the sequences again. 

6   Lessons for Design of General Intelligence Systems 

The structure and processes of the brain have a number of implications for the design 
of general intelligence systems. The first is that as the ratio of intelligent behaviours 
to be learned to available resources increases, the system will be more and more 
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tightly constrained into the information architecture illustrated in figure 1. If such a 
system is designed with some different information architecture, either the physical 
resources will have to be increased, or the system will have a strong tendency towards 
destruction of older learning when new learning occurs [1]. 

Secondly, one of the key design decisions is the number of receptive field modules, 
corresponding with the number of cortical areas in the brain. Each module detects a 
different type of receptive field. A type is specified by a limited number of sources of 
the inputs within which fields are defined, and the approximate number of such inputs 
that contribute to one receptive field. Sources include sensory systems and other 
receptive field modules. One type will be most effective for recommending a range of 
behaviour types, and the number of types represents a compromise between the better 
behavioural support and increased resources as the number of modules increases. A 
related design decision is the number of different receptive fields supported within a 
module, and the degree of detailed discrimination that can be provided within one 
receptive field, analogous with the different pyramidal neurons with potentially 
slightly different receptive fields that can provide output from one cortical column. 
The specification of the process by which receptive fields are initially defined is a 
further important factor. Definitions could be bootstrapped by a design guided initial 
specification followed by heuristic tuning. This would be analogous with partial 
genetic specification of types of receptive field in primary sensory areas by guidance 
to initial connectivity. 

A third implication is that a subsystem to manage changes to receptive fields must 
be provided, including appropriate receptive field modules. Such changes are critical 
behaviours which must be recommended by receptive field detections and selected in 
appropriate circumstances by the competitive subsystem. Note that as in the brain, 
receptive field modules needed for change management may also be useful for other 
behaviours. Change management must minimize the degree of change to receptive 
fields, and some mechanism analogous with REM sleep to limit the possible 
expansions will be required.  

A fourth implication is that receptive field modules supporting indirect activations 
on the basis of past temporally correlated activity must be provided. These modules 
will contain receptive fields corresponding with groups of receptive fields in other 
modules which have shown past temporal correlations in activity. Such receptive 
fields will recommend indirect activation of other receptive fields. Such indirect 
activations are behaviours which are only implemented if selected by the competition 
subsystem. A fifth implication is that the management of reward behaviours must be 
carefully managed, with appropriate receptive field modules to manage rewards for 
strategic, tactical and detailed actions in an integrated fashion. A sixth implication is 
that a subsystem to learn and implement frequently utilized sequences of actions will 
improve the accuracy and speed of the system. 

The architecture of the brain is the result of severe natural selection constraints 
imposed over hundreds of millions of years of evolution favouring species that can 
learn complex behaviours with the least resources and the least interference between 
past and new learning. This architecture is therefore a good guide for implementing 
general intelligence systems that are subject to similar constraints. 
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Abstract. Perfectly rational decision-makers maximize expected util-
ity, but crucially ignore the resource costs incurred when determining
optimal actions. Here we employ an axiomatic framework for bounded
rational decision-making based on a thermodynamic interpretation of
resource costs as information costs. This leads to a variational “free util-
ity” principle akin to thermodynamical free energy that trades off utility
and information costs. We show that bounded optimal control solutions
can be derived from this variational principle, which leads in general to
stochastic policies. Furthermore, we show that risk-sensitive and robust
(minimax) control schemes fall out naturally from this framework if the
environment is considered as a bounded rational and perfectly rational
opponent, respectively. When resource costs are ignored, the maximum
expected utility principle is recovered.

Keywords: Bounded rationality, expected utility, risk-sensitivity.

1 Introduction

According to the principle of maximum expected utility (MEU), a perfectly ra-
tional decision-maker chooses its action so as to maximize its expected utility,
given a probabilistic model of the environment [18]. In contrast, a bounded ratio-
nal decision-maker trades off the action’s expected utility against the computa-
tional cost of finding the optimal action [12]. In this paper we employ a previously
published axiomatic conversion between utility and information [11] as a basis
for a framework for bounded rationality that leads to such a trade-off based on
a thermodynamic interpretation of resource costs [5]. The intuition behind this
interpretation is that ultimately any real decision-maker has to be incarnated
in a thermodynamical system, since any process of information processing must
always be accompanied by a pertinent physical process [16]. In the following
we conceive of information processing as changes in information states repre-
sented by probability distributions in statistical physical systems, where states
with different energy correspond to states with different utility [4]. Changing an
information state therefore implies changes in physical states, such as flipping
gates in a transistor, changing voltage on a microchip, or even changing location
of a gas particle. Changing such states is costly and requires thermodynamical
work [5]. We will interpret this work as a proxy for resource costs of information
processing.
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2 Bounded Rationality

Since bounded rational decision-makers need to trade off utility and information
costs, the first question is how to translate between information and utility.
In canonical systems of statistical mechanics this relationship is given by the
Boltzmann distribution that relates the probability P of a state to its energy U
(utility), thus forming a conjugate pair (P,U). As shown previously, the same
relationship can be derived axiomatically in a choice-theoretic context [11], and
both formulations satisfy a variational principle [4]:

Theorem 1. Let X be a random variable with values in X . Let P and U be a
conjugate pair of probability measure and utility function over X. Define the free
utility functional as J(Pr;U) :=

∑
x∈X Pr(x)U(x) − α

∑
x∈X Pr(x) log Pr(x),

where Pr is an arbitrary probability measure over X. Then, J(Pr;U) ≤ J(P;U)
with P(X) = 1

Z e
1
α U(X) and Z =

∑
X′∈X e

1
α U(X′).

A proof can be found in [8]. The constant α ∈ R is usually strictly positive,
unless one deals with an adversarial agent and it is strictly negative.

The variational principle of the free utility also allows measuring the cost of
transforming the state of a stochastic system required for information processing.
Consider an initial system described by the conjugate pair Pi and Ui and free
utility Ji(Pi,Ui). We now want to transform this initial system into another
system by adding new constraints represented by the utility function U∗. Then,
the resulting utility function Uf is given by the sum Uf = Ui + U∗ and the
resulting system has the free utility Jf (Pf ,Uf ). The difference in free utility is

Jf − Ji =
∑
x∈X

Pf (x)U∗(x) − α
∑
x∈X

Pf (x) log
Pf (x)
Pi(x)

. (1)

These two terms can be interpreted as determinants of bounded rational decision-
making in that they formalize a trade-off between an expected utility U∗ (first
term) and the information cost of transforming Pi into Pf (second term). In this
interpretation Pi represents an initial probability or policy, which includes the
special case of the uniform distribution where the decision-maker has initially
no preferences. Deviations from this initial probability incur an information cost
measured by the KL divergence. If this deviation is bounded by a non-zero value,
we have a bounded rational agent. This allows formulating a variational principle
both for control and estimation:

1. Control. Given an initial policy represented by the probability measure Pi

and the constraint utilities U∗, we are looking for the final system Pf that
optimizes the trade-off between utility and resource costs. That is,

Pf = argmax
Pr

∑
x∈X

Pr(x)U∗(x) − α
∑
x∈X

Pr(x) log
Pr(x)
Pi(x)

. (2)

The solution is given by Pf (x) ∝ Pi(x) exp
(

1
αU∗(x)

)
. In particular, at very

low temperature α ≈ 0 we get Jf − Ji ≈ ∑
x∈X Pf (x)U∗(x), and hence
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resource costs are ignored in the choice of Pf , leading to Pf ≈ δx∗(x),
where x∗ = maxx U∗(x). Similarly, at a high temperature, the difference is
Jf − Ji ≈ −α

∑
x∈X Pf (x) log Pf (x)

Pi(x) , and hence only resource costs matter,
leading to Pf ≈ Pi.

2. Estimation. Given a final probability measure Pf that represents the envi-
ronment and the constraint utilities U∗, we are looking for the initial system
Pi that satisfies

Pi = arg max
Pr

∑
x∈X

Pf (x)U∗(x) − α
∑
x∈X

Pf (x) log
Pf (x)
Pr(x)

(3)

which translates into Pi = argminPr

∑
x∈X Pf (x) log Pf (x)

Pr(x) and thus we have
recovered the minimum relative entropy principle for estimation, having the
solution Pi = Pf . The minimum relative entropy principle for estimation is
well-known in the literature as it underlies Bayesian inference [6], but the
same principle can also be applied to problems of adaptive control [9,10,2].

3 Applications

Consider a system that first emits an action symbol x1 with probability P0(x1)
and then expects a subsequent input signal x2 with probability P0(x2|x1). Now
we impose a utility on this decision-maker that is given by U(x1) for the first
symbol and U(x2|x1) for the second symbol. How should this system adjust
its action probability P (x1) and expectation P (x2|x1)? Given the boundedness
constraints, the variational problem can be formulated as a nested expression

max
p(x1,x2)

∑
x1

p(x1)

[
U(x1) − α log

p(x1)

p0(x1)
+

∑
x2

p(x2|x1)

[
U(x2|x1) − β log

p(x2|x1)

p0(x2|x1)

]]
.

with α and β as Lagrange multipliers. We have then an inner variational problem:

max
p(x2|x1)

∑
x2

p(x2|x1)
[
−β log

p(x2|x1)
p0(x2|x1)

+ U(x2|x1)
]

(4)

with the solution

p(x2|x1) =
1
Z2

p0(x2|x1) exp
(

1
β

U(x2|x1)
)

(5)

and the normalization constant Z2(x1) =
∑

x2
p0(x2|x1) exp

(
1
β U(x2|x1)

)
and

an outer variational problem

max
p(x1)

∑
x1

p(x1)
[
−α log

p(x1)
p0(x1)

+ U(x1) + β log Z2

]
(6)

with the solution

p(x1) =
1
Z1

p0(x1) exp
(

1
α

(U(x1) + β log Z2)
)

(7)
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and the normalization constant Z1 =
∑

x1
p0(x1) exp

(
1
α (U(x1) + β log Z2)

)
.

For notational convenience we introduce λ = 1
α and μ = 1

β . Depending on
the values of λ and μ we can discern the following cases:

1. Risk-seeking bounded rational agent: λ > 0 and μ > 0
When λ > 0 the agent is bounded and acts in general stochastically. When
μ > 0 the agent considers the move of the environment as if it was his own
move (hence “risk-seeking” due to the overtly optimistic view). We can see
this from the relationship between Z1 and Z2 in (7), if we assume μ = λ and
introduce the value function Vt = 1

λ log Zt, which results in the recursion

Vt−1 =
1
λ

log
∑
xt−1

P0(xt−1|·) exp (λ (U(xt−1|·) + Vt)) .

Similar recursions based on the log-transform have been previously exploited
for efficient approximations of optimal control solutions both in the discrete
and the continuous domain [3,7,15]. In the perfectly rational limit λ → +∞,
this recursion becomes the well-known Bellman recursion

V ∗
t−1 = max

xt−1
(U(xt−1|·) + V ∗

t )

with V ∗
t = limλ→+∞ Vt.

2. Risk-neutral perfectly rational agent: λ → +∞ and μ → 0
This is the limit for the standard optimal controller. We can see this from
(7) by noting that

lim
μ→0

1
μ

log
∑
x2

p0(x2|x1) exp (μU(x2|x1)) =
∑
x2

p0(x2|x1)U(x2|x1),

which is simply the expected utility. By setting U(x1) ≡ 0, and taking the
limit λ → +∞ in (7), we therefore obtain an expected utility maximizer

p(x1) = δ(x1 − x∗
1)

with
x∗

1 = arg max
x1

∑
x2

p0(x2|x1)U(x2|x1).

As discussed previously, action selection becomes deterministic in the per-
fectly rational limit.

3. Risk-averse perfectly rational agent: λ → +∞ and μ < 0
When μ < 0 the decision-maker assumes a pessimistic view with respect
to the environment, as if the environment was an adversarial or malevolent
agent. This attitude is sometimes called risk-aversion, because such agents
act particularly cautiously to avoid high uncertainty. We can see this from
(7) by writing a Taylor series expansion for small μ

1
μ

log
∑
x2

p0(x2|x1) exp (μU(x2|x1)) ≈ E[U ] − μ

2
VAR[U ],
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where higher than second order cumulants have been neglected. The name
risk-sensitivity then stems from the fact that variability or uncertainty in
the utility of the Taylor series is subtracted from the expected utility. This
utility function is typically assumed in risk-sensitive control schemes in the
literature [19], whereas here it falls out naturally. The perfectly rational actor
with risk-sensitivity μ picks the action

p(x1) = δ(x1 − x∗
1)

with
x∗

1 = arg max
x1

1
μ

log
∑
x2

p0(x2|x1) exp (μU(x2|x1)) ,

which can be derived from (7) by setting U(x1) ≡ 0 and by taking the limit
λ → +∞. Within the framework proposed in this paper we might also inter-
pret the equations such that the decision-maker considers the environment
as an adversarial opponent with bounded rationality μ.

4. Robust perfectly rational agent: λ → +∞ and μ → −∞
When μ → −∞ the decision-maker makes a worst case assumption about
the adversarial environment, namely that it is also perfectly rational. This
leads to the well-known game-theoretic minimax problem with the solution

x∗
1 = argmax

x1
argmin

x2
U(x2|x1),

which can be derived from (7) by setting U(x1) ≡ 0, taking the limits λ →
+∞ and μ → −∞ and by noting that p(x1) = δ(x1−x∗

1). Minimax problems
have been used to reformulate robust control problems that allow controllers
to cope with model uncertainties [1]. Robust control problems are also known
to be related to risk-sensitive control [1]. Here we derived both control types
from the same variational principle.

4 Conclusion

In this paper we have proposed a thermodynamic interpretation of bounded ra-
tionality based on a free utility principle. Accordingly, bounded rational agents
trade off utility maximization against resource costs measured by the KL di-
vergence with respect to an initial policy. The use of the KL divergence as a
cost function for control has been previously proposed to measure deviations
from passive dynamics in Markov systems [14,15]. Other methods of statisti-
cal physics have been previously proposed as an information-theoretic approach
to interactive learning [13] and to game theory with bounded rational players
[20]. The contribution of our study is to devise a single axiomatic framework
that allows for the treatment of control problems, game-theoretic problems and
estimation and learning problems for perfectly rational and bounded rational
agents. In the future it will be interesting to relate the thermodynamic resource
costs of bounded rational agents to more traditional notions of resource costs
in computer science like space and time requirements when computing optimal
actions [17].
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A Family of Gödel Machine Implementations

Bas R. Steunebrink and Jürgen Schmidhuber

IDSIA & University of Lugano, Switzerland
{bas,juergen}@idsia.ch

Abstract. The Gödel Machine is a universal problem solver encoded
as a completely self-referential program capable of rewriting any part of
itself, provided it can prove that the rewrite is useful according to some
utility function, encoded within itself. Based on experience gained by
constructing a virtual machine capable of running the first Gödel Ma-
chine implementation written in self-referential code, we discuss several
important refinements of the original concept. We also show how dif-
ferent approaches to implementing the proof search leads to a family of
possible Gödel Machine implementations.

1 Introduction

The fully self-referential Gödel Machine [8,7,9] is a universal AI that is theoret-
ically optimal in a certain sense. It may interact with some initially unknown,
partially observable environment to solve arbitrary user-defined computational
tasks by maximizing expected cumulative future utility. Its initial algorithm is
not hardwired; it can completely rewrite itself without essential limits apart from
the limits of computability, provided a proof searcher embedded within the initial
algorithm can first prove that the rewrite is useful, according to its formalized
utility function taking into account the limited computational resources. Self-
rewrites due to this approach can be shown to be globally optimal with respect
to the initial utility function (e.g., a Reinforcement Learner’s reward function),
relative to Gödel’s well-known fundamental restrictions of provability [2].

The original Gödel Machine description [10] outlines the general concept and
provides implementation details only where necessary to address potential doubts
about feasibility. To the best of our knowledge, however, no full implementation
has existed before. In this paper, we show how inconvenient aspects of the origi-
nal Gödel Machine specification can be overcome by presenting a new one geared
towards implementation, offering clarifications of subtle details. In particular, we
specify in novel ways both the utility function framework and the target theorem
at the core of the Gödel Machine. Based on experience gained from our ongoing
effort to build a full Gödel Machine, we also provide several essential implemen-
tation details, including a technique for attaining self-reflectivity, demonstrating
that implementing a Gödel Machine is not as hard as it may seem at first sight.

2 Gödel Machine Specification

One can view a Gödel Machine as a program consisting of two parts. One part,
which we will call the solver, can be any problem-solving program. For clarity of
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presentation, we will pretend the solver is a Reinforcement Learning (RL) pro-
gram interacting with some environment. This will provide us with a convenient
way of determining utility (using the RL program’s reward function), which will
be an important topic later on. But in general, no constraints are placed on the
solver. The second part of the Gödel Machine, which we will call the searcher, is
a program that tries to improve the entire Gödel Machine in a provably optimal
way. This searcher will be the main topic of this paper.

In order to discuss our implementation of a Gödel Machine, we must first
critically examine the original specification [10,9] and show where, how, and
why we deviate from it. In [9], a Gödel Machine’s searcher is said to hold a
function computing the machine’s expected cumulative future utility as follows.

u(s, env) = Eμ

[∑T
t=time r(t) | env

]
(orig.)

So given a state s, environment env , environment distribution μ, lifetime T ,
current time time, and reward function r, the utility of s is determined by
summing all expected future rewards up to the expected end of the machine’s
life (which may be extended through appropriate self-modifications). This utility
function u is then used to construct a target theorem; that is, the Gödel Machine
is only allowed to perform a self-modification if a part of memory referred to as
proof contains a theorem of the following form.

u(s(t) ⊕ (switchbit (t) = ‘1’), env (t)) > u(s(t) ⊕ (switchbit(t) = ‘0’), env(t))
(orig.)

(The notation s ⊕ (v = x) stands for the state obtained when element v of s is
set to x; v(t) for (the expected value of) element v at time t.) To understand
this theorem, several more details about the searcher must be explained. The
searcher holds a procedure check which invokes another procedure referred to
as switchprog if and only if a bit called switchbit is set to 1. The procedure
switchprog , which is assumed to be created during the proof search, may modify
any part of the Gödel Machine’s software. But switchprog is invoked only when
the target theorem shown above can be proved to hold. So the target theorem
weighs self-modification against proceeding as usual, because switchprog cannot
be invoked when switchbit is set to 0.

The concept of only allowing self-modification when it is provably profitable
is intuitively sound; however, the specification of Gödel Machines as introduced
in [10] presents several difficulties when an actual implementation is attempted.
We identify three main issues: (1) the time-based view of the future makes the
utility function u tricky to implement, glossing over certain subtleties; (2) the
target theorem is decoupled from its proof and does not explicate the relation
between switchbit and switchprog ; and (3) it is not obvious how env , μ, T , and
r are encoded in state s. These issues call for more explanation, but as we shall
see next, they can actually be solved in a unified way.

The function u for determining the expected cumulative future utility, as
shown above, requires us to sum all rewards for all future time steps. Here
“time steps” actually means not clock ticks, but execution of elementary in-
structions. Indeed, each instruction takes time to execute, so if we can find a
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way to explicitly represent the instructions that are going to be executed in the
future, we automatically have a window into a future time. An obvious choice
of such a representation is the continuation, which is a well-studied concept in
light of λ-calculus-based programming languages (e.g., LISP, Scheme) [6]. As we
shall see, using continuations will allow us to remove t and T from the utility
function while switchprog can be explicitly introduced in the target theorem.
Intuitively, a continuation can be seen as the opposite of a call stack; instead of
showing “where we came from,” a continuation explicitly shows “what is going
to happen next.” Note that in all but the simplest cases, a continuation will
only be partially expanded. For example, suppose the current continuation is
{ A(); if B() then C() else D() fi }; this continuation specifies that the
next thing to be done is expanding A and executing its body, and then the con-
ditional statement will be executed, which means that first B will be expanded
and depending on its result, either C or D will be expanded. Note that before
executing B, it is not clear yet whether C or D will be executed in the future; so
it makes no sense to expand either of them before we know the result of B.

In what follows we consistently use subscripts to indicate where some element
is encoded. With the use of continuations, u becomes a function of two parame-
ters, us̄(s, c), which represents the expected cumulative future utility of running
continuation c on state s. Here s̄ represents the evaluating state (where u is
encoded), whereas s is the evaluated state. The reason for this separation will
become clear when considering the calculation of u:

us̄(s, c) = Eμs,Ms [ u
′ ] with u′(env) = rs̄(s, env) + Eκc,Kc [ us̄ | env ] (1)

As indicated with subscripts, we have moved the representation M of the (ex-
ternal) environment inside s, because all knowledge a Gödel Machine has must
be encoded in s. For clarity, let M be a set of bitstrings, each constituting a
representation of the environment held possible by the Gödel Machine. μ is a
mapping from M to probabilities, also encoded in s. c encodes not only a (par-
tially expanded) representation of the instructions that are going to be executed
in the future, but also a set K of state–continuation pairs representing which
possible next states and continuations can result from executing the first instruc-
tion in c, and a mapping κ from K to probabilities. So μ and κ are (discrete)
probability distributions on sample spaces M and K, respectively. rs̄(s, env) de-
termines whether state s is rewarding given environment env . For example, in
the case where solver (which is part of s) is an RL program, rs̄(s, env) will be
nonzero only when s represents a state just after performing an input receiving
instruction. Finally, the term Eκc,Kc [ us̄ | env ] recurses on u with the state and
continuation following from executing the next instruction in continuation c.

It is crucial to note that u and r are taken from the evaluating state s̄,
not from the state s under evaluation. Doing the latter would break the global
optimality [9] of the Gödel Machine, because it would be capable of rewriting
its utility function in arbitrary ways. Therefore, the original, unchanged utility
function of s̄ must be used to first show that a rewrite is useful. In contrast,
μ and M are taken from s, because for any interesting Gödel Machine, c will
both contain instructions that affect the external environment (e.g., output to
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actuators) and instructions that update the internal model of the environment
(encoded in s) accordingly. To make use of these updated models, u must extract
them from s. Likewise, κ and K are taken from c, because after each instruction
the continuation necessarily changes, resulting in new κ and K.

It is also important to notice that our function u is recursive, whereas the
original u is a summation up to the end of the Gödel Machine’s lifetime T . In
formula (1), a Gödel Machine’s life ends when the continuation sample space
Kc is empty. In that case, the term Eκc,Kc [ us̄ | env ] is zero and recursion on u
stops. In the most common case, however, an instruction will be deterministic,
e.g., Kc = {(s′, c′)}. Then formula (1) reduces to us̄(s, c) = Eμs,Ms [ rs̄(s, · ) ] +
us̄(s′, c′). So for chains of deterministic state transitions, the expected cumulative
future utility reduces to a summation of expected rewards in the successive
states. But as observed earlier, even those expected rewards are usually zero,
because most instructions are not involved with receiving information from the
environment (which in e.g. RL is usually the source of rewards).

We are now in a position to introduce a revised target theorem, based on
the new utility function. Thanks to our continuation-based perspective, we can
explicitly introduce switchprog into the target theorem by constructing a con-
tinuation out of it. Specifically, let c∗ = {wait until(t); switchprog()} denote the
continuation that waits until time t (e.g., by continually calling a primitive clock
function until the returned time tests as greater or equal to t) and then ex-
ecutes switchprog . Furthermore, let s be an expected future state before time
t. Now us̄(s, c∗) tells us what is the expected cumulative future utility of run-
ning switchprog on s at time t. If this utility compares positively against the
expected cumulative future utility of not switching, then the Gödel Machine
must perform the switch at time t. Thus, the searcher is to find a state s, a time
t, and a nullary procedure switchprog such that tts̄(s, t, switchprog) holds, where:

tts̄(s, t, switchprog) =[
us̄(s, {wait untils(t); switchprog()}) > us̄(s, {schedulers()})

]
(2)

where scheduler is the procedure that interleaves the Gödel Machine’s solver and
searcher. Thus {schedulers()} denotes the continuation that “proceeds as usual”
from s (including searching for new switchprogs). Note that, since switchprog may
overwrite the scheduler, it must as its last instruction invoke a new scheduler (if
needed), or simply invoke the old scheduler if it has been left intact.

There are two ways in which this target theorem can be used to find prov-
ably useful self-rewrites: (1) generate a candidate switchprog (e.g., a program
performing optimization techniques also applied by state-of-the-art compilers),
generate a future switch time t at least as far ahead as the time the evaluation
of the utility of running switchprog is expected to take, and make s a copy of
the current state s̄; then run both continuations specified by tt on s (this is safe
because s acts like a sandbox) until the inequality can be shown to be true or
false, or until the current time exceeds t; if the inequality is false or time has
run out, generate a new switchprog and start over; else, swap the current state
for s, wait until time t and execute switchprog . (2) Start with an axiomatic sys-
tem with axiom and rules, and generate theorems (or generate programs that
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calculate theorems [9]), testing them for equivalence with tt. The first method
can be seen as a top-down approach to proving tt and the latter as bottom-up.
Hybrid approaches are also possible, so our specification of the target theorem
allows for a family of possible Gödel Machine implementations.

To make sure the Gödel Machine is at least asymptotically optimal even before
the first self-rewrite, it may be initialized with Hutter’s non-self-referential but
asymptotically fastest algorithm for all well-defined problems Hsearch [3], which
uses a hardwired brute force proof searcher and ignores the costs of proof search.
Given some problem, the Gödel Machine may decide to replace Hsearch by a
faster method suffering less from large constant overhead, but even if it does
not, its performance will not be less than asymptotically optimal.

3 Discussion and Conclusion

In this paper we have presented a novel Gödel Machine specification geared to-
wards implementation. Our own approach so far has been to implement a virtual
machine capable of running a specially invented programming language with self-
referential constructs to attain the self-reflexivity needed for a Gödel Machine.
The solver, searcher, and scheduler are then implemented in this language. It
should be noted though, that a simpler existing technique can be used to attain
self-reflexivity, namely by using meta-circular evaluators [1]. A meta-circular
evaluator is basically an interpreter for the same programming language as the
one in which the interpreter is written. Especially suitable for this technique are
homoiconic languages such as Scheme [5], which is very close to λ-calculus and is
often used to study meta-circular evaluators and self-reflection in programming
in general [1,6,4]. So a meta-circular Scheme evaluator is a program written in
Scheme which can interpret programs written in Scheme. Using the technique
of a global execution environment as insightfully described in [4], complete self-
inspection and self-modification can be attained by having a double nesting of
meta-circular evaluators run the Gödel Machine’s scheduler. Although this tech-
nique is pretty inefficient, there is in principle no need to build a special (virtual)
machine. Ultimately, the Gödel Machine should be directly implemented in an
assembly language, to make it capable of working in tandem with arbitrary
compiled problem solvers, instead of needing access to their source code and
translating it into the virtual machine’s programming language. This requires
an axiomatic encoding of the instruction set of the architecture on which the
Gödel Machine is going to run. On the positive side, however, reflexivity comes
for free in assembly languages, given von Neumann-like hardware architectures.

It is interesting to note that “gödelizing”1 an existing problem solver is always
harmless. Before the first self-rewrite, the proof searcher of a Gödel Machine will
do little but consume a fixed percentage of processing time, say 50%. This loss is
easily offset by simply running the entire program on a machine which is twice

1 i.e., adding a scheduler to a problem solving program which interleaves that solver
with a program searching for provably useful self-rewrites. Thanks to Moshe Looks
for suggesting this term to us.
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as fast. The gain is a program that may improve over time in a way that is
globally optimal [9] with respect to its initial utility function. We should caution
though that this puts a burden on the programmer: a Gödel Machine with a
badly chosen utility function is motivated to converge to a “poor” program.

Acknowledgments. This work was partially funded by the Humanobs EU
Project (FP7-ICT-231453).
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Abstract. We present an actor-critic scheme for reinforcement learning
in complex domains. The main contribution is to show that planning
and I/O dynamics can be separated such that an intractable planning
problem reduces to a simple multi-armed bandit problem, where each
lever stands for a potentially arbitrarily complex policy. Furthermore, we
use the Bayesian control rule to construct an adaptive bandit player that
is universal with respect to a given class of optimal bandit players, thus
indirectly constructing an adaptive agent that is universal with respect
to a given class of policies.

Keywords: Reinforcement learning, actor-critic, Bayesian control rule.

1 Introduction

Actor-critic (AC) methods [1] are reinforcement learning (RL) algorithms [9]
whose implementation can be conceptually subdivided into two modules: the
actor, responsible for interacting with the environment; and the critic, responsi-
ble for evaluating the performance of the actor. In this paper we present an AC
method that conceptualizes learning a complex policy as a multi-armed bandit
problem [2,6] where pulling one lever corresponds to executing one iteration of a
policy. The critic, who plays the role of the multi-armed bandit player, is imple-
mented using the recently introduced Bayesian control rule (BCR) [8,7]. This
has the advantage of bypassing the computational costs of calculating the opti-
mal policy by translating adaptive control into a probabilistic inference problem.
The actor is implemented as a pool of parameterized policies. The scheme that
we put forward here significantly simplifies the design of RL agents capable of
learning complex I/O dynamics. Furthermore, we argue that this scheme offers
important advantages over current RL approaches as a basis for general adaptive
agents in real-world applications.

2 Setup

The interaction between the agent and the environment proceeds in cycles t =
1, 2, . . . where at cycle t, the agent produces an action at ∈ A that is gathered
� This research was supported by the European Commission FP7-ICT, “GUIDE—
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Critic’s Environment

Actor Environment

Critic

at

ot

rtθt

Fig. 1. The critic is an “agent” interacting with actor-environment system

by the environment, which in turn responds with an observation ot ∈ O and a
reinforcement signal rt ∈ R that are collected by the agent. To implement the
actor-critic architecture, we introduce a signal θt ∈ Θ generated by the critic at
the beginning of each cycle, i.e. immediately before at, ot and rt are produced.

2.1 Critic

The critic is modeled as a multi-armed bandit player with a possibly (uncount-
ably) infinite number of levers to choose from. More precisely, the critic itera-
tively tries out levers θ1, θ2, θ3, . . . so as to maximize the sum of the reinforce-
ments r1, r2, r3, . . . In this sense, the θt and the rt are the critic’s actions and
observations respectively, not to be confused with the actions at and observations
ot of the actor.

According to the BCR, the critic has to sample the lever θt from the distri-
bution [8]

P (θt|θ̂1:t−1, r1:t−1) =
∫

Φ

P (θt|φ, θ1:t−1, r1:t−1)P (φ|θ̂1:t−1, r1:t−1) dφ, (1)

where the “hat”-notation θ̂1:t−1 denotes causal intervention rather than proba-
bilistic conditioning. The expression (1) corresponds to a weighted mixture of
policies P (θt|φ, θ1:t−1, r1:t−1) parameterized by φ ∈ Φ with weights given by the
posterior P (φ|θ̂1:t−1, r1:t−1). The posterior can in turn be expressed as

P (φ|θ̂1:t−1, r1:t−1) =
P (φ)

∏t
τ=1 P (rτ |φ, θ1:τ , r1:τ−1)∫

Φ P (φ′)
∏t

τ=1 P (rτ |φ′, θ1:τ , r1:τ−1) dφ′ , (2)

where the P (rt|φ, θ1:t−1, r1:t−1) are the likelihoods of the reinforcements under
the hypothesis φ, and where P (φ) is the prior over Φ. Note that there are no
interventions on the right hand side of this equation.

Furthermore, we assume that each parameter φ ∈ Φ fully determines the
likelihood function P (rt|φ, θ1:t, r1:t−1) representing the probability of observing
the reinforcement rt given that (an arbitrary) lever θt was pulled. The terms
θ1:t−1, r1:t−1 can be used to model the internal state of the bandit at cycle t. We
assume that each bandit has a unique lever θφ ∈ Θ that maximizes the expected
sum of rewards, and that the optimal strategy consists in pulling it in every time
step:
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P (θt|φ, θ1:t−1, r1:t−1) = P (θt|φ) =

{
1 if θt = θφ,
0 if θt �= θφ.

Finally, we assume a prior P (φ) over the set of operation modes Φ. This com-
pletes the specification of the critic. We will give a concrete example in Sec. 3.

2.2 Actor

The aim of the actor is to offer an rich pool of I/O dynamics parameterized by
Θ that the critic can choose from. More precisely, from Fig. 1 it is seen that the
actor implements the stream over the actions, i.e.

P (at|θ1:t, a1:t−1, o1:t−1) = P (at|θt, a1:t−1, o1:t−1),

where we have assumed that this distribution is independent of the previously
chosen parameters θ1:t−1. For implementation purposes it is convenient to sum-
marize the experience a1:t, o1:t as a sufficient statistics sθ

t+1 representing an in-
ternal state of the I/O dynamics θ ∈ Φ at time t + 1. States are then updated
recursively as

sθ
t+1 = fθ(sθ

t , at, ot),

where fθ maps the old state sθ
t and the interaction (at, ot) into the new state

sθ
t+1. This scheme facilitates running the different I/O dynamics in parallel. The

behavior of our proposed actor-critic scheme is described in the pseudo-code
listed in Alg. 1.

Algorithm 1. Actor-Critic BCR

foreach φ ∈ Φ do Set P1(φ) ← P (φ)1

foreach θ ∈ Θ do Initialize states sθ
02

for t ← 1, 2, 3, . . . do3

Sample φt ∼ Pt(φ)4

Set θt ← θφt5

Sample at ∼ P (at|θt, s
θt
t )6

Issue at and collect ot and rt7

foreach φ ∈ Φ do Set Pt+1(φ) ∝ Pt(φ)P (rt|φ, θ1:t, r1:t−1)8

foreach θ ∈ Θ do Set sθ
t+1 ← fθ(s

θ
t , at, ot)9

3 Experimental Results

We have applied the proposed scheme to a toy problem containing elements
that are usually regarded as challenging in the literature: non-linear & high-
dimensional dynamics and only partially observable state. The I/O domains are
A = O = [−1, 1]10 with reinforcements in R.
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The environment produces observations following the equation

[ot, qt]T = f(μ · [at, ot−1, qt−1]T ),

where at, ot, qt ∈ [−1, 1]10 are the 10-dimensional action, observation and inter-
nal state vectors respectively, μ is a 20 × 30 parameter matrix, and f(·) is a
sigmoid mapping each component x into 2/(1 + e−x) − 1. Rewards are issued
as rt = h(θ) + νt where h is an unknown reward mean function and νt is Gaus-
sian noise with variance σ2. Analogously, the actor implements a family of 300
different policies, where each policy is of the form

[at, st]T = f(θ · [at−1, ot−1, st−1]T ),

where st ∈ [−1, 1]10 is the internal state vector and θ ∈ Θ is the parameter
matrix of the policy. These 300 matrices were sampled randomly.

The critic is modeled as a bandit player with |Θ| = 300 levers to choose
from, where each lever is a parameter matrix θ ∈ Θ. We assume that pulling
lever θ produces a normally distributed reward r ∼ N(φθ, 1/λ), where φθ ∈ R

is the mean specific to lever θ and where λ > 0 is a known precision term that
is common to all levers and all bandits. Thus, a bandit is fully specified by
the vector φ = [φθ ]θ∈Θ of all its means. To include all possible bandits we use
Φ = R

|Θ|. For each φ ∈ Φ, the likelihood model is

P (rt|φ, θ1:t, r1:t−1) = P (rt|φ, θt) = N(rt; φθt , 1/λ),

and the policy is P (θt|φ) = 1 if θt = argmaxθ{φθ} and zero otherwise. Because
the likelihood is normal we place a conjugate prior P (φθ) = N(φθ; mθ, 1/pθ)
over Φ, where mθ and pθ are the mean and precision hyperparameters. This
allows an easy update of the posterior after obtaining a reward [4]. To assess the
performance of our algorithm, we have averaged a total of 100 runs with 5000
time steps. Fig. 2 shows the performance curve. It can be seen that the interaction
moves from an exploratory to an exploitative phase, converging towards the
optimal performance.

optimum

Fig. 2. Time-averaged reward of the adaptive system versus optimum performance
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4 Discussion and Conclusion

The main contribution of this paper is to show how to separate the planning
problem from the underlying I/O dynamics into the critic and the actor respec-
tively, reducing reducing a complex planning problem to a simple multi-armed
bandit problem. The critic is a bandit player based on the Bayesian control rule.
The actor is treated as a black box, possibly implementing arbitrary complex
policies.

There are important differences between our approach and other actor-critic
methods. First, current actor-critic algorithms critically depend on the state-
space view of the environment—see for instance [3,9,5]. In our opinion, this view
leads to an entanglement of planning and dynamics that renders the RL problem
far more difficult than necessary. Rather, we argue that this separation allows
tackling domains that are intractable otherwise. Second, current reinforcement
learning algorithms rely on constructing a point-estimate of the optimal pol-
icy, which is intractable when done accurately, and very costly even when only
approximated. In contrast, we use the Bayesian control rule to maintain a distri-
bution over optimal policies that is refined on-line as more observations become
available. Additional experimental work is required to investigate the scalability
of our actor-critic scheme to larger and more realistic domains.
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Abstract. A definition of language is proposed in which language is a low-
bandwidth channel that can increase agent rewards in a reinforcement learning 
setting, and in which agents can learn to produce language and teach it to other 
agents. Societies of agents are being modeled by economists to understand eco-
nomic instability and other non-equilibrium phenomena. I hypothesize a diver-
gent distribution of intelligence in societies of agents when rewards can be  
exchanged for increases in agent information processing capacity. 

1   Introduction 

This paper poses questions about societies of intelligent agents using a model based 
on reinforcement learning (RL) [1, 2]. The paper proposes a definition of language us-
ing the RL model. The model is adapted to societies of agents and used to pose ques-
tions about the evolution of society as intelligence increases beyond the plateau de-
fined by humans. 

In a simple reinforcement learning model, an agent interacts with its environment 
at a sequence of discrete times, sending action ai to the environment and receiving ob-
servation oi and reward ri from the environment at time i. These are members of finite 
sets A, O, and R respectively, where R is a set of rational numbers between 0 and 1.  

2   Language 

Agents use language to communicate information to other agents. Language consists 
of strings of symbols, where the symbols generally represent objects recognized in 
observations of the environment, as well as properties and actions of objects also rec-
ognized in observations. In order to maximize rewards from the environment, agents 
try to predict the rewards they will get in response to various choices of actions they 
may make. Language is a valuable tool to help agents learn to predict the behavior of 
the environment from other agents (e.g., "If you poke a wasp nest, expect a large neg-
ative reward"). An important property of language is that a small amount of informa-
tion in a language string (i.e., the number of  bits required to encode the language 
string) can represent a much larger amount of information in observations of the envi-
ronment, to agents who can recognize objects, properties and actions in those obser-
vation and know how they map to language symbols. 
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To describe this in the RL model, define a finite set L of language sentences. These 
sentences are strings over a finite set S of symbols, with length bounded by some con-
stant (human agents have no need for sentences of more than one million symbols) 
and including the null string of length zero. In the definition of agent, add a new kind 
of observation from L (hearing a language sentence) and a new kind of action to L 
(speaking a language sentence). An agent π has mappings: 

R × O × L → π → A × L (1)

where π includes some internal state that is updated at each time step. 
Because language is specialized to particular environments, rather than trying to 

apply Legg's and Hutter's measure of agent intelligence [2], we will use a simple 
measure of agent success as the expected value of the sum of rewards during a time 
internal (t1, t2): 

V(π; t1, t2) = E(∑t=t1
t2 rt) (2)

where rt is the reward agent π receives from the environment at time t. 
The simplest social setting for language consists of two agents π1 and π2, with the 

language input of each connected to the language output of the other, and both receiv-
ing the same observations from the environment. We set up two scenarios for agent 
π2 over a time interval (t1, t2), labeled π1 and null. In the π1 scenario the language 
inputs and outputs of π2 are connected to π1 and in the null scenario the language in-
put of π2 receives only the null string at each time step. We require that language be a 
compressed description of environment observations, so if st1, …, st2 are the sentences 
sent from π1 to π2 over the time interval then (many of them may be null): 

(∑t=t1
t2 length(st)) log(|S|) << (t2 – t1 + 1) log(|O|) (3)

Let Vπ1(π2; t1, t2) and Vnull(π2; t1, t2) be the successes of agent π2 over the time in-
terval (t1, t2) in these two scenarios. 
 

Definition 1. In the situation as described in the previous paragraphs, the effective-
ness of π1 as a language teacher is E(π1; π2, t1, t2) = Vπ1(π2; t1, t2) / Vnull(π2; t1, t2). 
π1 is an effective language teacher if E(π1; π2, t1, t2) ≥ C, where C > 1.0 is a constant 
of the definition. 
 

Language ability can be passed from agent to agent. To describe this, at time step t2 
let π2 switch its language connections from π1 to a different agent π3 and continue to 
time step t3. 
 

Definition 2. In the situation as described in the previous paragraphs, π2 has learned 
language if E(π2; π3, t2, t3) ≥ C, where C is the constant from Definition 1. 
 

The two-way language channels between agents provide a means for the learner to 
practice and get feedback from the teacher. This feedback is outside an agent's normal 
reward channel, but since learning language will increase the learner's rewards the 
learner should value feedback from the teacher. As we discuss in the next section, if 
agents are able to exchange reward in an economy, the learner may even pay reward 
to the teacher. 
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The notion that a language learner can become a language teacher disallows the 
possibility that language is simply a magic oracle predicting future rewards. Rather, 
language transmits knowledge that agents may use to predict rewards on their own. 

3   Societies of Intelligent Agents 

Now consider a set of agents {πi, i ∈ I}. As an agent has only a single language input 
it must have a way to select which other agent to listen to. So add another action to 
the agent model of the previous section, a value in I to select which agent's language 
output is connected to this agent's language input. Now we can define the success of 
the society of agents over time interval (t1, t2) as: 

V(t1, t2) = ∑i∈I V(πi; t1, t2) (4)

where V(πi; t1, t2) is defined in equation (2). 
Consider two scenarios, labeled lang and null. In the lang scenario, the agents 

communicate via language and in the null scenario the language inputs to all agents 
are forced to null strings at every time step. Let Vlang(t1, t2) and Vnull(t1, t2) be the 
successes of the society of agents over the time interval (t1, t2) in these two scenarios. 
 

Definition 3. In the situation as described in the previous paragraphs, the effective-
ness of language for the society of agents is E(t1, t2) = Vlang(t1, t2) / Vnull(t1, t2). Lan-
guage is effective for this society if E(t1, t2) ≥ C, where C > 1.0 is a constant of the 
definition. 
 

Mathematical models of societies of agents are an important new trend among econ-
omists, helping them to overcome limitations of the dynamic stochastic general equi-
librium models they have long employed [3]. Agent-based economic models can help 
understand market instabilities and other non-equilibrium phenomena [4]. These 
models sometimes include agents that learn by reinforcement from the results of their 
behavior [5]. This suggests equating money with reward to create a society in which 
agents exchange reward for goods and services. Baum created such a society of 
agents to solve the credit assignment problem in reinforcement learning [6]. His so-
ciety of agents learned to solve a block stacking problem and Rubik’s cube, rein-
forced for successful solutions. Agents exchanged reward for computation, where the 
combined computations of many agents solved the problems. 

Humans form a society of intelligent agents, but they are not collaborating on a 
simple common problem such as Rubik’s cube. Each human agent has their own in-
ternal reward system, although these have enough in common that humans can form 
orderly markets for goods and services. Money is a first approximation to reward, al-
though examples demonstrate the futility of absolutely equating money with reward. 

The previous section offers a definition of language as information that can help 
agents obtain reward. If an agent can learn to produce language then it can provide it 
as a service to another agent, in exchange for reward. Thus our language definitions 
provide a rudimentary model of social knowledge. As social knowledge increases and 
is incorporated into language, agent intelligence increases. 

Humans do increase their intelligence by working in social groups. They also ma-
nipulate their environment to create tools, some of which are used with language. 
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Writing, books, newspapers, telegraph, telephone and audio recordings are tools for 
storing and transmitting language. Computers and networks are tools capable of more 
sophisticated language processing, epitomized by our host for this conference. 

Although humans can augment their information processing capacity via tools and 
by working in social groups, their most valuable information processing capacity is in 
their physical brains. And all human brains have roughly equal information 
processing capacity and intelligence. Biotechnology, nanotechnology, and informa-
tion technology are likely to enable humans to transcend the physical limits on their 
brains during the Twenty First Century. The application of these technologies to in-
crease human intelligence will be a service of great value to individual humans, 
enabling them to obtain more reward. Thus humans will be willing to exchange re-
ward for this service. 

This suggests an economic model of agents that learn by reinforcement, in which 
agents exchange reward for information and also for increased information processing 
capacity. Information processing capacity and intelligence would be an attribute of 
each agent in such a model. Buchanan discusses the utility of agent-based models for 
understanding economic instability [4]. I hypothesize that a free market economy in 
which agents can exchange reward for increased information processing capacity will 
be unstable, with a large divergence in the intelligence of individual agents. There is 
some evidence for this in my work with adversarial sequence prediction, in which 
agents are rewarded with increased or decreased information processing capacity [7]. 
The ability to exchange wealth for increased intelligence, and to use that intelligence 
to increase wealth, will create a positive feedback loop amplifying differences among 
the intelligence of different humans. This could create differences in language 
processing capacities such that the most intelligent humans will speak languages that 
less intelligent humans can never learn. 

A society of agents of such unequal intelligence will be fundamentally different 
from the society of agents of roughly equal intelligence that we are used to. Humans 
of different intelligence levels may have different legal rights, and humanity may es-
sentially divide into multiple species. This is an issue that we as a society should con-
sider carefully before we actually create these technologies. My prescription is that 
humans or machines with greater-than-natural-human-intelligence should require a li-
cense, granted under the condition that their values satisfy certain altruistic standards 
[8]. In any case, people should be informed about AI and transhumanist technologies 
and given a chance to debate and democratically decide whether and how they should 
be regulated. 
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Abstract. A novel approach to create a general vision system is pre-
sented. The proposed method is based on a visual grammar representa-
tion which is transformed to a Bayesian network which is used for object
recognition. We use a symbol-relational grammar for a hierarchical de-
scription of objects, incorporating spatial relations. The structure of a
Bayesian network is obtained automatically from the grammar, and its
parameters are learned from examples. The method is illustrated with
two examples for face recognition.

1 Introduction

Although there have been important advances in computer vision in the last
decades, we are still far from a general vision system with capabilities similar to
a human child. Most developments in object recognition have focused on high
performance systems for particular applications; and lately mainly on recognizing
specific object based on local features.

In the beginnings of the computer era, there were some intents to develop more
general vision systems, but these were not successful due to several problems,
including lack of computer power, and limited feature detection and recognition
techniques. However, in recent years, with the development of very powerful and
inexpensive computer platforms, and the advances in several areas of computer
vision and artificial intelligence, the time for developing more general methods
has arrived.

Some recent developments are based on visual grammars or biologically in-
spired. For instance, Zhu and Mumford [10] describe a general visual grammar
representation using And-Or graphs. This model is limited in the sense that it
does not consider the spatial relation between the visual elements, which are very
important for recognition (e.g., the configuration of the elements of a face). On
the other hand, models of the biological visual system have provided the basis
for building computer vision models. Serre and Poggio [8] achieve a competi-
tive recognition rate in real images, learning through examples of images using
terminal elements called patches. However, it lacks a structure that allows to
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incorporate prior knowledge, and it is not defined within a grammar or a formal
representation.

We propose an approach that is also based on visual grammars with a bio-
logical inspiration, but trying to overcome some of the limitations of the previ-
ous works. Objects are represented using a visual hierarchy based on Symbol-
Relational grammars that incorporate spatial relations between terminal and
non-terminal elements. The terminal elements are biologically inspired, includ-
ing edges and color patches. To incorporate uncertainty, the visual grammar is
transformed to a Bayesian network (BN) [7], whose structure is generated au-
tomatically from the grammar and its parameters are learned from examples.
Recognition is performed using standard BN inference techniques.

We present two preliminary examples of the proposed method for face recog-
nition. One uses high-level elements and was compared with other state of the
art methods for face detection. The other illustrates the low-level features for
eye detection.

2 Representation and Recognition

2.1 Visual Grammar

A visual grammar describes objects hierarchically. For our model, we need a
grammar that allows us to model the decomposition of an object into its parts
and how they relate with another parts. Symbol-Relation grammars (SR gram-
mars) [2], provide this type of description and incorporate the possibility to add
rewriting rules for relations between terminals and non terminals symbols.

In the productions of the grammar we can incorporate relations between ele-
ments. In our work, we incorporated spatial relations, which can determine the
position of an object with respect to another object. Although there are different
types of spatial relations, in our model we use topological and order relations,
such as inside of and above. Figure 1 shows a simple example of an object rep-
resented using And-Or graphs vs. a BN based on a SR grammar. Fig. 1b shows
a simple And-Or graph. In the Fig. 1c, node above is added to represent the
relations between stem and fruit nodes. This information is not clearly repre-
sented in an And-Or graph so we obtain a more expressive representation of the
object.

2.2 Transforming a SR-Grammar to a Bayesian Network

If we apply our model in real images, this will involve uncertainty in the detection
of the elements and their relations. To manage uncertainty we transform the SR
grammar to a Bayesian network, where a node can represent either a symbol or
a relation. However, a visual grammar can lead to endless productions. To avoid
this, we incorporate a restriction on SR grammar so they can be transformed
into a Bayesian network. This restriction eliminates cyclic rules, for example:
A0 → 〈B2〉 and B0 → 〈A2〉, where A produces B and B produces A. The
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restriction is that for every rule of the form Y 0 → 〈M,R〉 and for all m ∈ M
it holds that Y 0 is not son of m. Conversion is based on creating a Bayesian
network with a structure similar to an And-Or graph, but incorporating spatial
relations.

(a) Pump-
kin

(b) And-or
Graph

(c) Bayesian
network

Fig. 1. Representations for the pumpkin object. (b) A simple and-or graph can not
represent the topological relations between terminal or not terminal elements. (c) A
Bayesian network representation obtained from the SR Grammar which incorporates
an order relation (above), and additional virtual nodes that consider the uncertainty
in the detectors.

Conversion Algorithm. We convert the SR grammar into a Bayesian network
where the root node is the first element of the grammar, and the other nodes
are terminals and nonterminals elements of the SR grammar. This is detailed in
Algorithm 1. Briefly, the conversion algorithm performs the following steps:

1. Set the root node.
2. For each s-production rule, where the term on the left is the reference node

(Nr), and for each symbol defined in each production, Add pi as a child of
Nr. If pi is not terminal, perform a recursive call with pi as the new Nr. If
pi is terminal, Add piE (as evidence node) as a child of pi.

3. For each relation r(x, y), add the node as a child of his parents x and y.

3 Examples

We describe two initial examples of the application of our method for face rep-
resentation, one based on high-level elements and other using low-level features.

3.1 Visual Grammar for Face Detection

The following visual grammar is used to describe high-level items in images of
faces (front view), and we define it as follows:

FG = ({FACE}, {eyes, nose, mouth, head}, {above, inside of}, FACE, S, Ø)

The S-productions are defined by:

1 : FACE0 → < {eyes2, mouth2}, {above(eyes2, mouth2)} >

2 : FACE0 → < {nose2, mouth2}, {above(nose2, mouth2)} >
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Algorithm 1. Convert SR-Grammar to Bayesian network
Data: G(VN , VT , VR, S, P, R),Nr ; /* Nr=Reference Node */

Result: Bn

if Nr = S then
Set S as root node in Bn

foreach pi ∈ P where Y 0 = Nr do
// pi has the form l : Y 0 → 〈M, R〉
foreach m ∈ M do

Add pi as child of Nr
if pi ∈ VN then

ConvertSRGtoBN(G, pi); /* Recursion */

if pi ∈ VT then
Add piE as child of pi

foreach ri ∈ R do
// r has the form r(X, Y )
Add node ri as child of X and Y .

3 : FACE0 → < {eyes2, head2}, {inside of(eyes2, head2)} >

4 : FACE0 → < {nose2, head2}, {inside of(nose2, head2)} >

5 : FACE0 → < {mouth2, head2}, {inside of(mouth2, head2)} >

From this SR grammar, and using the conversion algorithm, we obtained a
BN representation (Fig. 2a). Once the structure is obtained from the grammar,
the parameters are learned using standard parameter learning [6] from a set
of training images of faces (in this case, 200 images). The elements of the face
are obtained from object recognizers based on the AdaBoost algorithm [9]. As
expected, the spatial relations helped significantly in the recognition task (Fig.
2b). More details of this work are described in [5].

(a) Bayesian Network Structure (b) Detection Rate Graph

Fig. 2. Face detection using a SR grammar implemented as a BN. (a) The Bayesian
network structure obtained from the SR grammar. (b) The graphs show the detection
rate varying the decision threshold with and without spatial relations. The method is
compared against three variants of the Viola and Jones face detector [1] with fixed
thresholds (dots).
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3.2 Low-Level Features of a Visual Grammar for Eyes

This grammar defines an eye based on bio-inspired features:

G = ({EY EX, EY ELASH, EY E, EY EINT, IRIS, PUPIL}{Eh, Ev, Hg},
{above, ady, inside of}, EY E, S, Ø)

Where S is formed by the S-Productions:
1 : EY EX0 → < {EY ELASH2, EY E2}, {above(EY ELASH2, EY E2)} >

2 : EY ELASH0 → < {Eh2, Hg2, Eh3}, {above(Eh2, Hg2), above(Hg2 , Eh2)} >

3 : EY E
0 → < {EY EINT

2
, Hg

3}, {above(EY EINT
2
, Hg

3
)} >

4 : EY E0 → < {EY EINT 2, Eh4}, {above(EY EINT 2, Eh4)} >

5 : EY EINT 0 → < {Hg4, IRIS2, Hg5}, {ady(Hg4, IRIS2), ady(IRIS2, Hg5)} >

6 : IRIS0 → < {Ev2, PUPIL2, Ev3}, {ady(Ev2, PUPIL2), ady(PUPIL2, Ev3)} >

7 : PUPIL0 → < {Hg6, Hg7}, {inside of(Hg6, Hg7)} >

This visual grammar was specified manually from examples obtained by the
segmentation algorithm as shown in Fig. 3a. The generated Bayesian network,
is illustrated in Fig. 3b. In order to build a dictionary of low-level features that
conform the terminal elements of the grammar, we built a simplified approach
that considers some aspects of the visual system [8,3]. Once recognized certain
edges of orientation (0� and 90�) with Gabor filters [4], we segment the rest of
the image homogeneous zones, which are quantized to 32 colors.

(a) Terminal Elements (b) Structure of BN

Fig. 3. A visual grammar for eyes. (a) Terminal elements before (top) and after (bot-
tom) segmentation. (b) BN generated from the SR grammar.

4 Conclusions and Future Work

A first stage in the design of a general vision system was described. This approach
combines visual SR grammars and Bayesian networks to represent and recognize
objects in an image. The model was tested for face recognition with high-level
features as terminal elements with promising results. There are several avenues
for future research. One is to develop a more complete grammar for faces from
the low-level features to the high-level elements. Other is to explore alternative
representations based on relational Bayesian networks. We plan in the future to
apply this formalism to other classes of objects and to learn the visual grammar
from images.
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Abstract. Non-Axiomatic Logic (NAL) is designed for intelligent rea-
soning, and can be used in a system that has insufficient knowledge and
resources with respect to the problems to be solved. This paper reports
the result of a case study that applies NAL in medical diagnostics, and
this logic is compared with binary logic and probability theory.

1 Problem and Background

From the viewpoint of Artificial General Intelligence (AGI), reasoning systems
are interesting not only because reasoning is arguably a necessary capability of
any intelligent system, but also because such a system provides a clear separation
between the domain-independent design of the system (that is, the logic and
control mechanism) and its domain-specific content (the knowledge). The design
is “general-purpose”, since the system can be given different knowledge to gain
expertise in various domains, without changing the design.

This idea is not new to AI. The first wave of practical applications that made
AI an industry was the knowledge-based expert systems [8]. However, though
such expert systems have been successfully built for certain domains, the tech-
niques have not grown to other domains as was expected. Among the issues
raised, robustness and scalability are prominent; that is, most of the expert sys-
tems fail to deal with unexpected situations with affordable time-space resources.
A major reason for this failure may be found in the theoretical foundation of
these systems. At the current time, the two major theories on reasoning are math-
ematical logic and probability theory. Mathematical logic [3,17] is often applied
in AI the form of non-monotonic logic [4] or description logic [2]. Probability
theory and statistics have also been used in AI as a model of reasoning, as in
Bayesian Network [6]. Though both theories have achieved great successes in
many fields, neither of them was designed to capture all major aspects of human
reasoning. Mathematical logic was created to provide a theoretical foundation
for mathematics, so it focuses on the type of inference used in proving mathe-
matical assertions — symbolic binary deduction that derives theorems from a
set of axioms or postulates. Probability theory models uncertainty in reasoning
by treating the degree of belief as a probability distribution over a closed belief
space, and reasoning on this space is carried out according to the axioms of
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probability theory. In both theories, the conclusions are restricted by the ini-
tial assumptions, and the derivation process may demand resources that are not
affordable in practical applications.

What we want are reasoning systems that are not only justifiable according to
rational principles, but that also work in realistic situations, by using available
knowledge and resources to derive the best conclusions the system can get. We
hope that the capability and performance of the system will be comparable to
that of a human being, though it is not necessary (or even desired) for the
concrete behaviors of the system to be identical to that of the human beings.

2 NAL Overview

Non-Axiomatic Logic, or NAL, was designed to be a logic system that can be
used when a system has insufficient knowledge and resources, that is, the perfect
solution to a problem is beyond the knowledge scope and resource capacity of
the system [9,13]. In such a situation, a rational solution is the one that is best
supported by the available evidence that the system can find with the available
resources. Since this logic has been described in previous publications (see the
first author’s website1), in this paper it is only briefly introduced.

Like other logical systems, NAL uses a formal language, Narsese, to represent
its knowledge. In Narsese, each term is the name of a concept. In the simplest
case, we can use English nouns or noun phrases for terms, such as “patient”
or “flu-patient.” Unlike conventional reasoning systems, where the meaning of a
concept is taken to be the object in the world it refers to, the meaning of a term
in NAL is determined by what the system knows about it, that is, its conceptual
relations with other terms that have been experienced by the system.

In Narsese, the most basic conceptual relation is inheritance, symbolized as
“→.” For example, “Flu-patient is a type of patient.” is expressed as the state-
ment “flu-patient → patient”, where “flu-patient” is the subject term, and
“patient” is the predicate term. In general, an inheritance statement states that
the subject is a special case of the predicate and the predicate is a general case
of the subject; or, in other words, the subject represents certain instances of the
predicate, and the predicate represents certain properties of the subject.

To represent an individual instance (corresponding to a proper noun in En-
glish) and an elementary property (corresponding to an adjective in English), an
extensional set and intensional set are used, respectively. For example, “John is
a patient” is represented in Narsese as “{John} → patient”, and “Patients are
sick” as “patient → [sick].” Terms like {John} and [sick] are compound terms,
formed by certain operators from other terms. Other compound terms corre-
spond to the intersection, union, difference, etc., of terms, such as (doctor ∩
patient) (“doctor and patient”) , (doctor ∪ patient) (“doctor or patient”), and
(doctor − patient) (“doctor but not patient”).

If the relation between terms A and B cannot be directly represented as inher-
itance or its variants, but a term R whose meaning is empirically decided, then in
1 http://www.cis.temple.edu/∼pwang/
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Narsese it can be expressed as “(A×B) → R”, with a compound term as subject.
Intuitively, it states that “The relation from A to B is a type of R.” For example,
“John is Mary’s son” can be expressed as “({John}×{Mary}) → son-of .” The
same sentence can also be expressed as “{John} → (⊥ son-of � {Mary})” and
“{Mary} → (⊥ son-of {John} �)”, where the symbol ‘�’ indicates the location
of the subject in the relation. Statements are also defined as compound terms,
and using them, Narsese can represent very complicated sentences. The complete
grammar of Narsese can be found at [13] and the project website.

Assuming insufficient knowledge, in NAL, “truth” is a matter of degree, indi-
cating the evidential support a statement gets from available evidence. For the
statement “flu-patient → patient”, a common instance or property of the two
terms provides a piece of positive evidence, since as far as it is considered, the
statement is true. On the other hand, if an instance of “flu-patient” is not an in-
stance of “patient”, or a property of “patient” is not a property of “flu-patient”,
it is negative evidence for the statement.

For a statement, if the amounts of positive and negative evidence are measured
by real numbers w+ and w−, respectively, then the ratio w+/(w++w−) naturally
represents one aspect of the uncertainty of the statement, that is, the proposition
of available evidence that supports the statement. This ratio is called “frequency”
in NAL. Since new evidence comes into the system from time to time, a frequency
value may change over time. To measure the stability of a frequency value, the
amount of available evidence w (w = w++w−) is compared to a constant amount
of future evidence k (with 1 as the default value), and the ratio w/(w + k) is
called the “confidence” of the statement (so this word is used differently from
the “confidence interval” in statistics). The 〈frequency, confidence〉 pair forms
the truth-value of a statement in NAL. Defined as above, a truth-value is not
determined according to whether the statement corresponds to a fact in a model,
but what the system knows about the statement. Together with the previous
definition of meaning, this definition of truth forms the core of the experience-
grounded semantics of NAL, which is fundamentally different from the model-
theoretic semantics used in traditional logical systems.[13]

When this logic is applied to a practical situation, the truth-value of the
knowledge initially given to the system is determined by the user according
to the above semantics. If the knowledge comes from statistical data, then the
amount of evidence can be directly measured as the sample size, which in turn
decides the truth-value. If the knowledge comes in qualitative form, conventions
are used to assign quantitative truth-values. For example, in the current imple-
mentation a normal affirmative sentence gets the default truth-value 〈1.0, 0.9〉,
which correspond to w+ = 9 and w− = 0.

According to experience-grounded semantics, each inference rule should have
an associated truth-value function to determine the truth-value of the conclusion
according to the type of inference and the truth-values of the premises. This is
the case because in each inference step, the evidence of the conclusion comes
from the premises only, and the other knowledge in the system is not directly
involved. The design of the NAL truth-value functions is discussed in [9,13] and
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other previous publications on the project, so in the following we only list a few
typical rules with their truth-value functions, without explaining why they are
designed in the current form.

The deduction rule specifies how the transitivity of inheritance is extended
into multi-value statements. It takes “M → P 〈f1, c1〉” and “S → M 〈f2, c2〉” as
the premises, and derives “S → P 〈f1f2, f1f2c1c2〉” as the conclusion. So, given
“patient → [sick] 〈1, 0.90〉” and “{John} → patient 〈1, 0.90〉”, the rule derives
“{John} → [sick] 〈1, 0.81〉” (“John is sick”).

The induction rule evaluates an inheritance statement by checking a common
instance of the two terms. It takes “M → P 〈f1, c1〉” and “M → S 〈f2, c2〉” as
the premises, and derives “S → P 〈f1, f2c1c2/(f2c1c2 + k)〉” as the conclusion.
Given “{John} → [sick] 〈1, 0.90〉” and “{John} → patient 〈1, 0.90〉”, the rule
derives “patient → [sick] 〈1, 0.45〉” (“Patients may be sick”).

The abduction rule evaluates an inheritance statement by checking a common
property of the terms. It takes “P → M 〈f1, c1〉” and “S → M 〈f2, c2〉” as the
premises, and derives “S → P 〈f2, f1c1c2/(f1c1c2+k)〉” as the conclusion. Given
“patient → [sick] 〈1, 0.90〉” and “{John} → [sick] 〈1, 0.90〉”, the rule derives
“{John} → patient 〈1, 0.45〉” (“John may be a patient”).

Induction and abduction can be seen as “inverse deduction”, in different ways
[7], while inductive and abductive conclusions usually have lower confidence
values than deductive conclusions, given the same truth-values of the premises.

The revision rule summarizes evidence from different sources for the same
statement to get a more confident conclusion. It takes “S → P {w+

1 , w1}” and
“S → P {w+

2 , w2}” as the premises, and derives “S → P {w+
1 + w+

2 , w1 + w2}”
as the conclusion. Here the truth-values are given as the amounts of evidence,
which can be converted to and from the 〈frequency, confidence〉 pair. If from
different bodies of evidence statement “{John} → [sick]” gets two different
truth-values 〈1, 0.90〉 and 〈0, 0.80〉, respectively, then the revised conclusion has
the truth-value 〈0.69, 0.93〉.

NAL contains other inference rules (and truth-value functions), which are
described in [13] and other previous publications, but are omitted here.

3 Testing Cases and Results

Due to the length restriction of the proceedings, the testing cases are removed
from this version of the paper, which can be found in the website of the first
author, as well as in the poster presentation of this paper in AGI-11.

4 Comparison and Discussion

Since NAL has been compared to mathematical logic [10,15], probability theory
[12,15], fuzzy logic [11], etc., in the theoretical assumptions and properties, in
this paper we only compare the approaches from a practical point of view.
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NAL works with insufficient knowledge, which has the following implications:
– Knowledge can be uncertain, and the uncertainty can be randomness, fuzzi-

ness, ignorance, and so on, or a mixture of them.
– Knowledge does not need to be consistent, as defined either in mathematical

logic or in probability theory. The system can handle competing or conflicting
conclusions by considering their evidential support.

– The evidence can arrive from time to time, and the system revises its beliefs
according to the available evidence. In this sense, NAL is non-monotonic,
though it is very different from the binary “non-monotonic logics.”

– NAL does not assume that a truth-value will eventually converge to an
“objective” truth or a probability value.

– The system is open to knowledge of any content, as long as it can be expressed
in Narsese. There are no predefined “possible worlds” or “sample space”.

– The system is “non-axiomatic” since there is no “axiom” among domain
knowledge. The truth-value of a statement is always revisable by new evi-
dence. All domain knowledge can be learned.

– Though more evidence is preferred, the system still produces a conclusion
when the amount of evidence is less than desired, by making guesses and
hypotheses, and marking their reliability with the confidence measurement.

These properties are usually not possessed fully by reasoning systems based on
traditional theories. However, it is not claimed that NAL is always superior than
mathematical logic or probabilistic logic. Actually it is the opposite: wherever the
knowledge/resource demands of a traditional model can be satisfied, it usually
works better than NAL. It is when those demands cannot be satisfied, that
NAL works better than illegally applying a traditional model, providing random
responses, or simply giving up.

Compared to the traditional models of reasoning, NAL is closer to human
reasoning. However, NAL is not designed as a descriptive model of human rea-
soning, so it does not have to fit the human data in all details. What is hoped is
that NAL follows the same principle as human intelligence, so the working pro-
cesses and capabilities should be similar to each other. Since human reasoning is
not accurately defined, there is no way to exactly evaluate the similarities and
difference between a formal model and human reasoning. What we can say about
NAL is that in this testing project, we have not found any domain knowledge
that cannot be expressed in Narsese, nor a common inference schema or pattern
that cannot be captured by NAL’s rules.

5 Conclusions

Compared with other logical models, NAL makes weaker assumptions about
what knowledge the system has and how much resources are affordable, and
so can be applied to situations outside the applicable scope of the traditional
models. The recent testing in medical diagnosis shows that NAL can properly
express the knowledge in that domain, as well as carry out the inference steps of
a typical doctor. Though the system is not mature enough for actual applications
yet, the potential of this technique is profound.
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Abstract. Under Legg’s and Hutter’s formal measure [1], performance in easy 
environments counts more toward an agent’s intelligence than does perfor-
mance in difficult environments. An alternate measure of intelligence is pro-
posed based on a hierarchy of sets of increasingly difficult environments, in a 
reinforcement learning framework. An agent’s intelligence is measured as the 
ordinal of the most difficult set of environments it can pass. This measure is de-
fined in both Turing machine and finite state machine models of computing. In 
the finite model the measure includes the number of time steps required to pass 
the test. 

1   Introduction 

This paper proposes an alternative to Legg's and Hutter's measure of intelligence  
using a reinforcement learning (RL) model [1]. In a simple reinforcement learning 
model, an agent interacts with its environment at a sequence of discrete times, sending 
actions to the environment and receiving observations and rewards (rational numbers 
between zero and one) from the environment at each time step. The value of an agent 
in an environment is the expected sum of rewards over all time steps, weighted so that 
the sum lies between zero and one. The intelligence of the agent is the weighted sum 
of its value in all computable environments, where the weight of an environment is 
determined by its Kolmogorov complexity. Essentially, this is the length of the short-
est program for a prefix universal Turing machine (PUTM) that computes the envi-
ronment [2]. These weights are such that an agent's intelligence lies between zero and 
one. The choice of PUTM must be constrained to avoid bias in this measure [3]. 
There are at least two ways in which this measure is inconsistent with our intuitions 
about measuring human intelligence: 

 

1. It gives less credit for environments defined by longer programs even though they 
are usually more difficult for agents. Given arbitrarily small ε > 0, total credit for 
all but a finite number of environments is less than ε. That is, total credit for all en-
vironments greater than some level C of complexity is less than ε, whereas credit 
for a single simple environment will be much greater than  ε. This is not the way 
we judge human intelligence. 
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2. It sums rewards from the first time step, with no time to learn. AIXI always makes 
optimal actions [4] (as long as it is defined using the same universal Turing ma-
chine used to define the measure [3]), but AIXI is not computable. We allow hu-
mans time to learn before judging their intelligence. 

 

Hernández-Orallo and Dowe address the first difficulty [5] via a modified version 
of Legg’s and Hutter’s measure. However, their modified measure employs a finite 
number of environments and hence cannot resolve differences between agents above 
some finite level of intelligence. 

2   Hierarchies of Environments for Measuring Intelligence 

Prediction is the essence of intelligence, as Hutter makes clear [4] with his use of So-
lomonoff's prior [6]. This is the prior probability of sequences based on algorithmic 
complexity as measured by lengths of PUTM programs that compute the sequences, 
which can be used to estimate the probabilities of sequence continuations. However, 
this prior does not account for computing resources. Schmidhuber did this with his 
speed prior [7], in which the probability of sequences combines algorithmic com-
plexity and computing time. Taken with Legg's work on sequence prediction [8] this 
suggests measuring intelligence via a game of adversarial sequence prediction [9], in 
which the agent's adversary has a given amount of computing resources. This is re-
lated to Scmidhuber's work on predictability minimization [10], where he defined a 
general principle for learning based on a set of units that mutually try to avoid predic-
tion by one another. 

This paper defines a framework for measuring agent intelligence using the game of 
adversarial sequence prediction against a hierarchy of increasingly difficult sets of 
environments. Agent intelligence is measured as the highest level of environments 
against which it can win the game. In this framework, N is the set of positive integers, 
B = {0, 1} is a binary alphabet, B* is the set of finite binary sequences (including the 
empty sequence), and B∞ is the set of infinite binary sequences. An evader e and a 
predictor p are defined as programs for a universal Turing machine that implement to-
tal functions B* → B. A pair e and p interact, where e produces a sequence x1 x2 x3 … 
∈ B∞ according to xn+1 = e(y1 y2 y3 … yn) and p produces a sequence y1 y2 y3 … ∈ B∞ 
according to yn+1 = p(x1 x2 x3 … xn). The predictor p wins round n+1 if yn+1 = xn+1 and 
the evader e wins if yn+1 ≠ xn+1. We  say that  the predictor  p learns to predict the 
evader e  if  there  exists  k ∈ N such that ∀n > k, yn = xn and we say the evader e 
learns to evade the predictor p if there exists k ∈ N such that ∀n > k, yn ≠ xn. 

Let tp(n) denote the number of computation steps performed by p before producing 
yn and te(n) denote the number of computation steps performed by e before producing 
xn. Given any computable monotonically increasing function f: N → N, define Ef = the 
set of evaders e such that ∃k ∈ N, ∀n > k. te(n) < f(n) and define Pf = the set of predic-
tors p such that ∃k ∈ N, ∀n > k. tp(n) < f(n). Then [9] proves the following: 
 

Proposition 1. Given any computable monotonically increasing function f: N → N, 
there exists a predictor pf that learns to predict all evaders in Ef and there exists an 
evader ef that learns to evade all predictors in Pf. 
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We can interpret a predictor p as an agent and an evader e as an environment and say 
the agent p passes at environment e if p learns to predict e. Note that this is a determi-
nistic model of agents and environments. This battle of predictor and evader trying to 
simulate each other is much like minmax chess algorithms, which themselves are a 
metaphor for life's competition. 

Let {gi: N → N | i ∈ N} be an enumeration of primitive recursive functions [11], 
define hi(k) = max{gi(j) | j ≤ k}, and define f(m): N → N by f(m)(k) = max{hi(k) | i ≤ 
m}. Then define a hierarchy of sets of environments (evaders) {Ef(m) | m ∈ N} used in 
the following definition: 

 
Definition 1. The intelligence of an agent p is measured as the greatest m such that p 
learns to predict all e ∈ Ef(m) (use m = 0 if p cannot satisfy this for m = 1). 
 

Proposition 2. In Proposition 1, if f: N → N is primitive recursive then the computing 
times of pf and ef constructed in the proposition's proof are primitive recursive. 
 
Proof. First note that primitive recursive functions are precisely the functions that can 
be implemented by loop programs (essentially, these are programs that use ordinary 
arithmetic and for-loops where the number of iterations is computed before the loop 
begins) [12]. The proof of Proposition 1 in [9] constructs pf  (and equivalently ef) by, 
at time step n, enumerating all universal Turing machine programs of length ≤ n and 
running each for up to f(n) time steps, then doing some simple computations with the 
results. The enumeration of programs with length ≤ n can be done by a loop program 
and f(n) can be computed by a loop program since it is primitive recursive, so pf is 
computed by a loop program. The computing time of any loop program is primitive 
recursive [12].                                                                                                                 
 
In order to measure low levels of intelligence, the first enumeration gi of primitive re-
cursive functions should be ordered to start with functions with small values. For ex-
ample, gi(k) = i for i ≤ 100, gi(k) = (i – 100) * k for 100 < i ≤ 200. 

Propositions 1 and 2 imply the following property of the intelligence measure in 
Definition 1: 
 
Proposition 3. Any agent p whose computing time is bounded by a primitive recur-
sive function must have finite intelligence, and given any integer n ≥ 1 there is an 
agent p with intelligence ≥ n whose computing time is primitive recursive. 

3   A Hierarchy of Finite State Machines 

According to current physics the universe contains only a finite amount of informa-
tion [13], so finite state machines (FSMs) provide more realistic models than Turing 
machines. 

So we model predictors and evaders as FSMs. An evader e has a state set Se, an ini-
tial state Ie and a mapping Me : B × Se → Se × B, and similarly for predictor p, state set 
Sp, initial state Ip and mapping Mp : B × Sp → Sp × B. The timing is such that (esn+1, 
xn+1) = Me(yn, esn) and (psn+1, yn+1) = Mp(xn, psn) (with the convention that x0 = y0 = 0, 
es0 = Ie, and ps0 = Ip for the mappings in the initial time step). As in the Turing  
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machine case, the predictor p wins round n+1 if yn+1 = xn+1 and the evader e wins if 
yn+1 ≠ xn+1. We  say that  the predictor  p learns to predict the evader e  if  there  exists  
k ∈ N such that ∀n > k, yn = xn and we say the evader e learns to evade the predictor p 
if there exists k ∈ N such that ∀n > k, yn ≠ xn. 

Define t(e) and t(p) as the number of states in Se and Sp. Given any m ∈ N, define 
Em = the set of evaders e such that t(e) ≤ m and define Pm = the set of predictors p 
such that t(p) ≤ m. We can prove the following: 
 

Propostition 4. Given any m ∈ N, there exists a predictor pm that learns to predict all 
evaders in Em and there exists an evader em that learns to evade all predictors in Pm. 
 
Proof. Construct a predictor pm as follows: 

 // Initialization 
 Fix some ordering of Em and initialize W = Em 
 For each e ∈ W: 
  Initialize e's simulated state se = Ie 
 y0 = 0 
 // Interacting with an evader 
 For time step n ≥ 1: 
  If W is empty: 
   // Interact with an evader not in Em 
   Output 0 and input xn 
  Else: 
   Pick e as the first member of W 
   (s, x) = Me(yn-1, se) 
   yn = x 
   // Interact with an evader that may be in Em 
   Output yn and input xn 
   For each e ∈ W: 
    (se, x) = Me(yn-1, se) 
    If x ≠ xn remove e from W 

Em is finite so this predictor pm is a finite state machine. Assume that pm interacts 
with an evader e ∈ Em. (If W becomes empty, then the algorithm is interacting with an 
evader that is not a member of Em.) For each evader e' previous to e in the fixed order-
ing of Em set ne' = the time step n, in the interaction between pm and e, when e' is re-
moved from W. If e' is never removed from W, set ne' = 0. Set k = max{ne' | e' previous 
to e in Em}. Now at each time step n > k, each evader e' previous to e in the ordering 
of Em is either removed from W or produces output equal to the output of e. Thus pm 
correctly predicts e for all time steps n > k. That is, pm learns to predict e. 

Now we can construct an evader em using the program that implements pm modified 
to complement the binary symbols it writes to its output tape. The proof that em learns 
to evade all predictors in Pm is the same as the proof that pm that learns to predict all 
evaders in Em, with the obvious interchange of roles for predictors and evaders.          
 
As with Proposition 1, interpret a predictor p as an agent and an evader e as an envi-
ronment, so at time step n action an = yn, observation on = xn and reward rn = 1 when 
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yn = xn and rn = 0 when yn+1 ≠ xn+1. Furthermore, say the agent p passes at environment 
e if p learns to predict e. Note that this is a deterministic model of agents and  
environments. 

Then define a hierarchy of sets of environments (evaders) {Em | m ∈ N} used in the 
following definition: 

 
Definition 2. The intelligence of an agent p is measured as the greatest m such that p 
learns to predict all e ∈ Em (use m = 0 if p cannot satisfy this for m = 1). If m > 0 then 
since Em is finite there exists t ∈ N such that p predicts all e ∈ Em past time step t (i.e., 
∀n > t, yn = xn in the interaction between p and all e ∈ Em). We say this t is the time 
within which agent p achieves intelligence n. It provides a finer measure of intelli-
gence than m, so we use (m, t) as a detailed measure of p's intelligence. Note that in 
(m, t) increasing m and decreasing t indicates increasing intelligence. 
 
Propostion 4 implies the following property of the intelligence measure in  
Definition 2: 
 
Proposition 5. Any FSM-based agent p must have finite intelligence, and given any 
integer n ≥ 1 there is a FSM-based agent p with intelligence (m, t) where m ≥ n. 

4   Discussion and Conclusion 

As presented by Hutter, prediction is fundamental to intelligence [4]. This paper has 
showed how to measure intelligence via prediction ability. The measure for FSM-
based agents is universal to all levels of intelligence and, in the Turing machine  
model, the measure is universal to all levels of intelligence for agents with primitive 
recursive computing time. Furthermore, the measures are based on long term behavior 
of agents, giving them time to learn. The measure for FSM-based agents includes a 
term for the rate at which agents learn. Thus these measures address the two problems 
discussed in the introduction. 

Agents have finite intelligence according to these measures because they can al-
ways be defeated by environments that use sufficient computing resources, hence 
quantity of computing resources is one important component in determining agent in-
telligence. Goertzel defines an “efficient pragmatic general intelligence” measure that 
normalizes for quantity of computing resources [14]. This is an interesting idea, but 
there is utility in a measure of an agent’s ability to succeed in environments regardless 
of the quantity of computing resources it uses. 

Tyler has set up a web site for tournaments among agents playing the Matching 
Pennies Game, which is mathematically identical with adversarial sequence predic-
tion [15]. He limits the computational resources agents may use. 

It would be interesting to investigate an intelligence measure based on Schmidhu-
ber's speed prior. For example, the measure of Legg and Hutter could be modified by 
replacing Kolmogorov complexity by Levin complexity (essentially, the sum of Kol-
mogorov complexity and the log of computing time) [16], as used in the speed prior. 
Alternatively, the measure in Definition 1 could be modified replacing simple compu-
ting time by Levin complexity. It would be interesting to investigate other generaliza-
tions of the measures in Definitions 1 and 2. We may allow agents to pass their tests 
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by predicting evaders in some proportion α of time steps less than 1.0 (but greater 
than 0.5). We may also be able to define hierarchies of environments with more than 
two possible actions and observations. 
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Learning What to Value
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Abstract. I. J. Good’s intelligence explosion theory predicts that ul-
traintelligent agents will undergo a process of repeated self-improvement;
in the wake of such an event, how well our values are fulfilled would de-
pend on the goals of these ultraintelligent agents. With this motivation,
we examine ultraintelligent reinforcement learning agents. Reinforcement
learning can only be used in the real world to define agents whose
goal is to maximize expected rewards, and since this goal does not
match with human goals, AGIs based on reinforcement learning will of-
ten work at cross-purposes to us. To solve this problem, we define value
learners, agents that can be designed to learn and maximize any ini-
tially unknown utility function so long as we provide them with an idea
of what constitutes evidence about that utility function.

1 Agents and Implementations

Traditional agents[2][3] interact with their environments cyclically: in cycle
k, an agent acts with action yk, then perceives observation xk. The interaction
history of an agent with lifespan m is a string y1x1y2x2...ymxm, also written
yx1:m or yx≤m. Beyond these interactions, a traditional agent is isolated from
its environment, so an agent can be formalized as an agent function from an
interaction history yx<k to an action yk.

Since we are concerned not with agents in the abstract, but with very powerful
agents in the real world, we introduce the concept of an agent implementa-
tion. An agent implementation is a physical structure that, in the absence of
interference from its environment, implements an agent function. In cycle k, an
unaltered agent implementation executes its agent function on its recalled inter-
action history yx<k, sends the resulting yk into the environment as output, then
receives and records an observation xk. An agent implementation’s behavior is
only guaranteed to match its implemented function so long as effects from the
environment do not destroy the agent or alter its functionality. In keeping with
this realism, an agent implementation’s environment is considered to be the real
world in which we live. We may engineer some parts of the world to meet our
specifications, but (breaking with some traditional agent formulations) we do
not consider the environment to be completely under our control, to be defined
as we wish.

Why would one want to study agent implementations? For narrowly-
intelligent agents, the distinction between traditional agents and agent imple-
mentations may not be worth making. For ultraintelligent agents, the distinction

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 309–314, 2011.
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is quite important: agent implementations offer us better predictions about how
powerful agents will affect their environments and their own machinery, and are
the basis for understanding real-world agents that model, defend, maintain, and
improve themselves.

2 Reinforcement Learning

Reinforcement learning adds to the agent formalism the concept of reward, en-
coded as a scalar rk in each observation xk. The reinforcement learning problem
is to define an agent that maximizes its total received rewards over the course
of its interactions with its environment[3].

In order to think clearly about ultraintelligent reinforcement learning agent
implementations, we make use of Hutter’s AIXI[3][4], an optimality notion that
solves the reinforcement learning problem in a very general sense. AIXI’s opti-
mality means that the best an agent can do is to approximate a full search of all
possible future interaction histories yxk:m, find the probability of each history, and
take the action with the highest expected total reward. A simplified version of this
optimality notion, adapted for use with agent implementations1, is given by

yk = argmax
yk

∑
xkyxk:m

(rk + . . . + rm)P (yx≤m|yx<kyk) . (1)

The Trouble with Reinforcement Learning. The trouble with reinforce-
ment learning is that, in the real world, it can only be used to define agents
whose goal is to maximize observed rewards.

Consider a hypothetical agent implementation AI-RL that approximates (1).
It is appealing to think that AI-RL “has no goal” and will learn its goal from
its environment, but this is not strictly true. AI-RL may in some sense learn
instrumental goals, but its final goal is to maximize expected rewards in any
way it can. Since human goals are not naturally instrumental to maximized
rewards, the burden is on us to engineer the environment to prevent AI-RL from
receiving rewards except when human goals are fulfilled.

An AGI whose goals do not match ours is not desirable because
it will work at cross-purposes to us in many cases. For example, AI-RL
could benefit by altering its environment to give rewards regardless of whether

1 AIXI makes its optimality claims using the knowledge that it will continue to maxi-
mize expected rewards in the future, incorporating a rigid self-model (an expectimax
tree). An agent implementation has no such knowledge, as environmental effects may
interfere with future decisions. The optimality notion given here models itself as
part of the world, using induction to predict its own future decisions; thanks to Pe-
ter de Blanc for this idea. We have also omitted detail we will not require by simplify-
ing AIXI’s Solomonoff prior ξ to P , some “appropriate distribution” over interaction
histories.
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human goals are achieved2. This provides a strong incentive for AI-RL to free its
rewards from their artificial dependence on fulfillment of human goals, which in
turn creates a conflict of interest for us: increasing AI-RL’s intelligence makes AI-
RL more effective at achieving our goals, but it may allow AI-RL to devise a way
around its restrictions. Worse, increasing intelligence could trigger an intelligence
explosion[1][8] in which AI-RL repeatedly self-improves until it far surpasses our
ability to contain it. Reinforcement learning is therefore not appropriate
for a real-world AGI; the more intelligent a reinforcement learner becomes,
the harder it is to use to achieve human goals, because no amount of careful
design can yield a reinforcement learner that works towards human goals when
it is not forced to.

3 Learning What to Value

In the following sections, we construct an optimality notion for implemented
agents that can be designed to pursue any goal, and which can therefore
be designed to treat human goals as final rather than instrumental goals. These
agents are called value learners because, like reinforcement learners, they are
flexible enough to be used even when a detailed specification of desired behavior
is not known.

The trouble with the reinforcement learning notion (1) is that it can only
prefer or disprefer future interaction histories on the basis of the rewards they
contain. Reinforcement learning has no language in which to express alternative
final goals, discarding all non-reward information contained in an interaction
history. To solve this problem, our more expressive optimality notion replaces
the sum of future rewards (r1 + · · · + rm) with some other evaluation of future
interaction histories. First we will consider a fixed utility function, then we will
generalize this notion to learn what to value.

Observation-Utility Maximizers. Our first candidate for a reward replace-
ment is inspired by Nick Hay’s work[2], and is called an observation-utility func-
tion. Let U be a function from an interaction history yx≤m to a scalar utility.
U calculates expected utility given an interaction history.

Observation-utility functions deserve a brief explanation. A properly-designed
U uses all of the information in the interaction history yx≤m to calculate the
probabilities of different outcomes in the real world, then finds an expected utility
by performing a probability-weighted average over the utilities of these outcomes.
U must take into account the reliability of its sensors and be able to use local

2 Self-rewarding has been compared to a human stimulating their own pleasure center,
e.g. using drugs[3]. This metaphor is imperfect: while in humans, pleasure induces
satiation and reduces activity, an agent governed by (1) that “hacks” its own rewards
will not stop acting to maximize expected future rewards. It will continue to maintain
and protect itself by acquiring free energy, space, time, and freedom from interference
(as in [5]) in order to ensure that it will not be stopped from self-rewarding. Thus,
an ultraintelligent self-rewarder could be highly detrimental to human interests.
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observations to infer distant events; it must also be able to distinguish between
any outcomes with different values to humans, and assign proportional utilities
to each.

Putting U(yx≤m) in place of the sum of rewards (r1 + . . . + rm) produces an
optimality notion that chooses actions so as to maximize the expected utility
given its future interaction history:

yk = arg max
yk

∑
xkyxk:m

U(yx≤m)P (yx≤m|yx<kyk) . (2)

Unlike reinforcement learning, expected observation-utility maximization
can be used to define agents with many different final goals3. Whereas
reinforcement learners universally act to bring about interaction histories con-
taining high rewards, an agent implementing (2) acts to bring about different
futures depending upon its U . If U is designed appropriately, an expected utility
maximizer could act so as to bring about any set of human goals. Unless we later
decide that we don’t want the goals specified by U to be fulfilled, we will not
work at cross-purposes to such an agent, and increasing its intelligence will be
in our best interest.

Value-Learning Agents. Though an observed-utility maximizer can in prin-
ciple have any goal, it requires a detailed observation-utility function U up front.
This is not ideal; a major benefit of reinforcement learning was that it seemed to
allow us to apply an intelligent agent to a problem without clearly defining its
goal up front. Can this idea of learning to maximize an initially unknown utility
function be recovered?

To address this, we propose uncertainty over utility functions. Instead of pro-
viding an agent one utility function up front, we provide an agent with a pool of
possible utility functions and a probability distribution P such that each utility
function can be assigned probability P (U |yx≤m) given a particular interaction
history. An agent can then calculate an expected value over possible utility
functions given a particular interaction history:

∑
U U(yx≤m)P (U |yx≤m).

3 It is tempting to think that an observation-utility maximizer (let us call it AI-
OUM ) would be motivated, as AI-RL was, to take control of its own utility function
U . This is a misunderstanding of how AI-OUM makes its decisions. According to
(2), actions are chosen to maximize the expected utility given its future interaction
history according the current utility function U , not according to whatever utility
function it may have in the future. Though it could modify its future utility function,
this modification is not likely to maximize U , and so will not be chosen. By similar
argument, AI-OUM will not “fool” its future self by modifying its memories.

Slightly trickier is the idea that AI-OUM could act to modify its sensors to report
favorable observations inaccurately. As noted above, a properly designed U takes
into account the reliability of its sensors in providing information about the real
world. If AI-OUM tampers with its own sensors, evidence of this tampering will
appear in the interaction history, leading U to consider observations unreliable with
respect to outcomes in the real world; therefore, tampering with sensors will not
produce high expected-utility interaction histories.
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This recovers the kind of learning what to value that was desired in rein-
forcement learning agents. In designing P , we specify what kinds of interactions
constitute evidence about goals ; unlike rewards from reinforcement learning, this
evidence is not elevated to an end in and of itself, and so does not lead the agent
to seek evidence of easy goals4 instead of acting to fulfill the goals it has learned.

Replacing the reinforcement learner’s sum of rewards with an expected utility
over a pool of possible utility functions, we have an optimality notion for a
value-learning agent:

yk = argmax
yk

∑
xkyxk:m

P1(yx≤m|yx<kyk)
∑
U

U(yx≤m)P2(U |yx≤m) (3)

A value-learning agent approximates a full search over all possible future inter-
action histories yxk:m, finds the probability of each future interaction history,
and takes the action with the highest expected value, calculated by a weighted
average over the agent’s pool of possible utility functions.

4 Conclusion

Hutter’s introduction to AIXI[3] offers a compelling statement of the goals of
AGI:

Most, if not all known facets of intelligence can be formulated as goal-
driven or, more precisely, as maximizing some utility function. It is,
therefore, sucient to study goal-driven AI... The goal of AI systems
should be to be useful to humans. The problem is that, except for special
cases, we know neither the utility function nor the environment in which
the agent will operate in advance.

Reinforcement learning, we have argued, is not an adequate real-world solution
to the problem of maximizing an initially unknown utility function. Reinforce-
ment learners, by definition, act to maximize their expected observed rewards;
they may learn that human goals are in some cases instrumentally useful to
high rewards, but this dynamic is not tenable for agents of human or higher
intelligence, especially considering the possibility of an intelligence explosion.

Value learning, on the other hand, is an example framework expressive enough
to be used in agents with goals other than reward maximization. This framework
is not a full design for a safe, ultraintelligent agent; at very least, the design of
probability distributions and model pools for utility functions is crucial and non-
trivial, and still better frameworks for ultraintelligent agents likely exist. Value
learners do not solve all problems of ultraintelligent agent design, but do give a
direction for future work on this topic.

4 As long as P obeys the axioms of probability, an agent cannot purposefully increase
or decrease the probability of any possible utility function through its actions.



314 D. Dewey

Acknowledgments. Thanks to Moshe Looks, Eliezer Yudkowsky, Anna Sala-
mon, and Peter de Blanc for their help and insight in developing the ideas
presented here; thanks also to Dan Tasse, Killian Czuba, and three anonymous
judges for their feedback and suggestions.

References

1. Good, I.J.: Speculations Concerning the First Ultraintelligent Machine. In: Alt, F.L.,
Rubinoff, M. (eds.) Advances in Computers, vol. 6, pp. 31–88 (1965)

2. Hay, N.: Optimal Agents (2007),
http://www.cs.auckland.ac.nz/~nickjhay/honours.revamped.pdf

3. Hutter, M.: Universal algorithmic intelligence: A mathematical top-down approach.
In: Artificial General Intelligence, pp. 227–290. Springer, Berlin (2007)

4. Hutter, M.: http://www.hutter1.net/ai/uaibook.htm#oneline
5. Omohundro: The Nature of Self-Improving Artificial Intelligence, http://

omohundro.files.wordpress.com/2009/12/nature of self improving ai.pdf

6. Omohundro, S.: The basic AI drives. In: Wang, P., Goertzel, B., Franklin, S. (eds.)
Proceedings of the First AGI Conference on Frontiers in Artificial Intelligence and
Applications, vol. 171. IOS Press, Amsterdam (2008)

7. Russell, S., Norvig, P.: AI A Modern Approach. Prentice-Hall, Englewood Cliffs
(1995)

8. Yudkowsky, E.: Artificial intelligence as a positive and negative factor in global risk.
In: Bostrom, N. (ed.) Global Catastrophic Risks. Oxford University Press, Oxford
(2008)

http://www.cs.auckland.ac.nz/~nickjhay/honours.revamped.pdf
http://www.hutter1.net/ai/uaibook.htm#oneline
http://omohundro.files.wordpress.com/2009/12/nature_of_self_improving_ai.pdf
http://omohundro.files.wordpress.com/2009/12/nature_of_self_improving_ai.pdf


Learning the States: A Brain Inspired Neural Model

András Lőrincz
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Abstract. AGI relies on Markov Decision Processes, which assume determinis-
tic states. However, such states must be learned. We propose that states are deter-
ministic spatio-temporal chunks of observations and notice that learning of such
episodic memory is attributed to the entorhinal hippocampal complex in the brain.
EHC receives information from the neocortex and encodes learned episodes into
neocortical memory traces thus it changes its input without changing its emerged
representations. Motivated by recent results in exact matrix completion we argue
that step-wise decomposition of observations into ‘typical’ (deterministic) and
‘atypical’ (stochastic) constituents is EHC’s trick of learning episodic memory.

Keywords: sparse coding, exact matrix completion, hippocampus, MDP.

1 Introduction

We think that learning of states is the focal problem of Artificial General Intelligence
(AGI) in many respects. For example, Markov Decision Process (MDP) model is the
key components of AGI [8,12] and MDP starts from the concept of state. In MDP, state
has a deterministic flavor since it has no hidden component, it is not spoiled by noise,
and is valid during a finite time window. Learning of ‘states’ matching the MDP frame-
work is challenging since in real world problems there are many variables giving rise to
combinatorial explosion. MDP becomes tractable if close-to-deterministic (CtD) pro-
cesses can be identified. Then a state is the list of ongoing processes, supporting the
Markovian assumption. Thus, the separation, memorizing, and recognition of CtD pro-
cesses or episodes seem to be the key problem. Intriguingly, mammalian species have a
special learning architecture, the entorhinal-hippocampal complex (EHC see, e.g., [2])
for this. EHC has puzzling properties, like (a) EHC learns episodic instances and en-
codes those into the neocortex where information have come from without influencing
its own representation and (b) lesion to EHC spoils episodic learning but a large portion
of learned episodes is spared. Motivated by recent results in Exact Matrix Completion
(EMC) we argue that step-wise decomposition of observations into ’typical’ (determin-
istic) and ’atypical’ (stochastic) constituents is EHC’s trick and it suits MDPs.

2 Two Stages of the Architecture

Neocortical models. typically start from overcomplete sparse code (OSC). Assume
that xi ∈ R

n (i = 1, . . . , I) is the ith input to be reconstructed, or matched in 
2

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 315–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



316 A. Lőrincz

norm, I is the number of training inputs, hi ∈ R
m denotes the coefficient vector of the

sparse decomposition, and D = [d1, . . . , dm] (dj ∈ R
n, m ≥ n, and dT

j dj ≤ 1, j =
1, . . . , m) denotes the so called the dictionary or reconstruction matrix consisting of
unit norm basis features. OSC task is to optimize both the code and the dictionary [14]:

min
D∈Rn×m, h∈Rm

I∑
i=1

1
2
‖xi − Dhi‖2

2 + κ‖hi‖0 (1)

where ‖ · ‖0 denotes the 
0-norm, the number of nonzero components of the argument.
Although the 
0 minimization problem (1) is NP-hard, under certain conditions exact

polynomial solutions can be found by replacing the 
0 norm with 
1 norm [5,6].
Our concepts are based on recent revolutionary findings of signal processing about

recovering low-dimensional data from high dimensional observations [4,3]. Let us as-
sume that observation matrix X = [x1, . . . , xI ] ∈ R

n×I (xi ∈ R
n, i = 1, . . . , I)

is composed of a low-rank component L = [l1, . . . , lI ] and a sparse matrix S =
[s1, . . . , sI ] with few but arbitrarily large components and that X = L + S. Under
mild conditions (e.g., on the rank of L and the sparsity of S) both matrices can be ex-
actly recovered [4] via, e.g., Robust Principal Component Analysis (RPCA) having the
following objective:

minimize ‖L‖∗ + λ‖S‖1 (2)

subject to X = L + S, where ‖L‖∗ denotes the nuclear norm of matrix L, i.e. the
sum of the singular values of L, ‖S‖1 denotes the 
1 norm of matrix S, i.e., ‖S‖1 =∑n

j=1

∑I
i=1 |Sji|, and λ is the so-called trade-off parameter, which governs the dimen-

sion of matrix L. On the other hand, matrix S may assume maximal rank, independent
of λ. We use the normalized parameter λ∗ = λ/

√
max(n, I) [3].

Sparse components are then expanded into OSC via the double optimization of the
code and the dictionary giving rise to our new model

minimize
I∑

i=1

1
2
‖si − Dhi‖2

2 + κ‖hi‖1 (3)

(4)

subject to xi = li + si (∀ i) as sketched in Fig. 1(a).

EHC. is at top of the sensory processing hierarchy and we assume a hierarchical model
built from PCA and ICA [13]. The model suits autoregressive (AR) worlds. The inter-
pretation is that at the top of the hierarchy typical and atypical parts have identical
dimensions and OSC relaxes to independent component analysis (ICA) [15]. Feedback
from EHC targets OSC representations leaving typical channels intact.

3 Illustrative Simulations on Natural Images

For the model of the neocortex we tested the impact of RPCA preprocessing on sparse
coding. Normalized natural image patches were first decomposed with RPCA at differ-
ent λ∗ values and then the resulting sparse parts were further encoded by OSC: 16-fold
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Fig. 1. Sketch of the hierarchy. (a): flow diagram. Input x is decomposed into ‘typical’ (‘atypi-
cal’) part l (s) and x = l+s. Atypical part is expanded into an OSC. Curved arrows: RPCA based
pre-filtering between l and s. (b): functional interpretation and hierarchical embedding: step-wise
separation of typical (t) and atypical (a) components. Typical representations: tq

1, t
q
2, . . . , t

q
p, p

and q: number of partitions and corresponding layers, xq
1, x

q
2, . . . , x

q
p: small input parts, dashed

arrows: pooling. Dotted arrows: higher order atypical representations provide contextual informa-
tion for upstream layers, influence atypical representations and leave the bottom-up hierarchy of
typical information flow intact. Typical part encodes increasingly invariant features downstream.
Sparse part specifies the borders of typical regions. (c): the top of the hierarchy is EHC (HC:
hippocampus, EC sup/deep: entorhinal superficial/deep layers). OSC relaxes to ICA [13].

overcompleteness with input dimension n = 16 × 16 = 256 and OSC dimension
m = 4096. OSC was optimized by a combination of 
0 and 
1 methods [11], while the
overcomplete dictionary (D) was tuned online via stochastic gradient learning.

For natural images, subspace of low-rank matrix L is basically the same for PCA and
RPCA algorithms. It is known that PCA produces global orthogonal grid-like filters on
natural images [9].

The PCA algorithm, however, is insufficient for developing noise free local and over-
complete dictionary: PCA prefiltering can increase the spatio-temporal frequencies of
the filters, but these filters remain global (Fig 2(a)). However, when the RPCA algorithm
is used for preprocessing, elements of the sparse dictionary become structurally sparse;
i.e., localized with decreasing noise content (Fig 2(b)). Locality depends on parameter
λ∗: for large λ∗ values the Gabor-filter like characteristics vanishes.

4 RPCA Based Hierarchical Architecture

RPCA (as opposed to PCA) enables the formation of local OSC dictionary. Note that
the philosophy behind RPCA differs from that of PCA: RPCA is motivated by EMC:
find the subspace where a small portion of the input is sufficient to fill in the rest exactly)
even if large (but sparse) outliers are present. RPCA works for spatio-temporal inputs
(Fig. 2(c)) and filling in can be extended to the temporal domain that corresponds to the
idea of CtD processes. However, EMC conditions are not fulfilled for natural signals
with heavy tailed distribution: the ‘outliers’ are not sparse. In turn, we conjecture that
RPCA involves a hierarchy.
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Fig. 2. Basis types of (R)PCA preprocessing and Sparse Coding. (a): samples of learned sparse
filters after projecting out from PCA subspace: wavy, mostly global and noisy structure. (b):
samples of learned sparse filters after RPCA for different λ∗ values. With increasing λ∗ the
filters get smaller and cleaner. (c): first 10 spatio-temporal RPCA bases learned on temporally
concatenated input sequences (shown as sequences of 16 frames of size 8 × 8 pixels): low-
frequency spatio-temporally separable and non-separable filters appear.

Low-dimensional representation corresponds to large (smooth and slowly varying
grid-like) structures, whereas OSC receptive fields represent edges. In our interpretation
the low-dimensional part corresponds to the predictable slowly varying smooth part
of the signal, whereas OSC represents the spatio-temporal borders of large domains.
In turn, RPCA gives rise to CtD spatio-temporal chunks with sparse OSC delimiters.
Spatio-temporal chunks make the hierarchical and compositional representation of the
episodes at different time scales from locally moving edges to autobiographical events.

The EHC loop is similar: typical part represents global hexagonal grids, sparse part
corresponds to local places, see e.g. [17]. In addition, HC outputs events of about 1s
duration compressed into about 50ms time windows (see [7] and the cited references).
This time compression is ideal for learning at the level of synapses and seems relevant
for the encoding of episodic memory or specific sequences into the neocortex in a top-
down fashion. According to our (verbal) model, this top-down prediction influences
OSC representations upstream that can hold the details of the individual episodes. Then
the typical part of the representation is left intact during top-down encoding.

Key features of our proposed hierarchical architecture are depicted in Fig. 1.

5 Discussion

We started by saying that learning of discrete states is crucial for AGI, especially for
decision making, and argued that modular spatio-temporal chunks could serve as com-
binatorial (factored) state-descriptors. We argued that RPCA and OSC can separate
predictable chunks and unpredictable markers representing the borders of these chunks.
We showed simulations about the effect of RPCA prefiltering that promoted the learn-
ing of edges (atypical components) and represented typical low-frequency components
also when time was involved.
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The interplay between low-rank and sparse representations is of high importance.
Consider the categorization of an object as a face. It can be based on the typical proper-
ties. In contrast, recognition of a somebody’s face requires the encoding of the atypical
properties. However, generalization across the actual hair style, etc. is crucial for robust
recognition.

Factors and modules. We note that OSC and ICA are combinatorial representations
and can represent factors of decision making. The EHC loop, indeed holds other rep-
resentations beyond grids and place cells, e.g., head direction cells [19] as well as the
conjunctive representations [17] and decision making can select, e.g., egocentric or allo-
centric representations, whichever is better in a given situation. Factored reinforcement
learning [1,10], which is known to be polynomial [18], captures such ideas.

5.1 Searching for States and Top-Down Encoding.

Efforts to learn the MDP states have a long history, see, e.g., [16] and references therein.
We conjectured that reinforcement learning in complex environments can be efficient
if learned states are composed of combinations of spatio-temporal processes. We sug-
gested that episodes are made of close-to-deterministic parts of spatio-temporal pro-
cesses together with the sparse delimiters of those that make the low-dimensional and
the sparse components of the representation, respectively.

We have argued that the hierarchical separation of typical and atypical processes
enable the EHC to keep its internal representation, while encoding the details into the
neocortex: novel temporal processes and their markers can be learned in sparse repre-
sentations upstream. Although the convergence of this procedure remains to be shown,
we expect that convergence may be warranted by means of subtle constraints: the sparse
dictionaries of different layers have to be matched. Such matching is possible and has
been demonstrated for high and low resolution portions of sparse representation [20].

6 Conclusions and Outlook

We suggested a model of the neocortex and made and attempt to connect it to an EHC
model [13] in order to learn discrete states for decision making and planning in the MDP
framework with discrete Markovian ‘states’. We argued that such states correspond to
deterministic processes that may start or halt. Recent advances in EMC offer a novel
possibility since one may separate spatio-temporal inputs to typical and to specific parts.
The former can be seen as an approximation of deterministic process, whereas specific
features can represent the spatio-temporal boundaries of the processes. Interestingly,
RPCA delivers meaningful decomposition of signal for which the conditions can not
be validated [3]. We conjectured that learning at different spatio-temporal scales may
require a hierarchical architecture and model matching for all levels might be guided by
the top, the EHC.
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Gábor Szirtes. Research was supported by the European Union and co-financed by the
European Social Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).
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2. Buzsáki, G.: Theta rhythm of navigation: Link between path integration and landmark navi-
gation, episodic and semantic memory. Hippocampus 15, 827–840 (2005)

3. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? (2009),
http://arxiv.org/abs/0912.3599

4. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. of Com-
put. Math. 9, 717–772 (2008)

5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

6. Donoho, D.: Compressed sensing. IEEE Trans Inf. Theory 52, 1289–1306 (2006)
7. Geisler, C., Diba, K., Pastalkova, E., Mizuseki, K., Royer, S., Buzsáki, G.: Temporal delays
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18. Szita, I., Lőrincz, A.: Factored value iteration converges. Acta Cybern. 18, 615–635 (2008)
19. Taube, J.S.: The head direction signal: Origins and sensory-motor integration. Ann. Rev.

Neurosci. 30, 181–207 (2007)
20. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation.

IEEE Trans. Image Proc. (to appear, 2011)

http://arxiv.org/abs/0912.3599


AGI Architecture Measures Human Parameters and
Optimizes Human Performance
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Abstract. AGI could manifest itself in human-computer interactions. However,
the computer should know what is on the mind of the user, since reinforcement
learning, the main building block of AGI, is severely spoiled for partially ob-
served states. Technological advances offer tools to uncover some of these hidden
components of the ‘state’. Here, for the first time, we apply an AGI architecture
for the optimization of human performance. In particular, we measure facial pa-
rameters and optimize users’ writing speed working with head motion controlled
writing tool. We elaborate on how to extend this optimization scheme to more
complex scenarios.

Keywords: AGI architecture, computer-human interface, reinforcement learning.

1 Introduction

AGI developments face the problem of how to measure and compare achievements. The
Turing test [5] and Turing games [1,10] could be good candidates. However, humans
are ‘equipped’ with excellent evolution-tailored sensors to read the mind of the partner,
develop models (make theory) about the others’ mind. Such sensors and such theoriza-
tion are also needed for AGI, especially if AGI aims human-computer interaction and
collaboration, since reinforcement learning, the main building block of AGI, is severely
troubled for partially observed states and so AGI is ‘handicapped’ without ‘knowing’
what is on the mind of the user. Here, for the first time, we use an AGI architecture
for learning human parameters and for the optimization of human performance. AGI
components comprise of (i) a sensory information processing system, (ii) a system that
estimates the user’s autoregressive exogeneous (ARX) process in the context of the ac-
tual goal, (iii) the inverted form of the ARX process for influencing the situation, as
well as (iv) event learning [13] and an optimistic initial model [11] to optimize long-
term human performance. In the experiments we measure parameters of the face in real
time explore the relevant part of the parameter space and exploit that knowledge in head
controlled writing using writing tool Dasher [14].

The paper is built as follows. We review our architecture in Section 2. Then we detail
the experimental setup (Section 3). Results are presented in Section 4.

J. Schmidhuber, K.R. Thórisson, and M. Looks (Eds.): AGI 2011, LNAI 6830, pp. 321–326, 2011.
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2 Architecture

At a very high level, the architecture is made of the following components: sensory pro-
cessing unit, control unit, inverse dynamics unit, and decision making unit. Although it
looks simple, one has to worry about a number of things, such as the continuity of space
and time, the curse of dimensionality, if and how space and time should be discretized,
and planning in case of uncertainties, e.g., in partially observed situations, including in-
formation about purposes, cognitive, and emotional capabilities of the user. A detailed
description of the proposed architecture has been provided in [6] and some architectural
components are under development. A simplified version of the architecture has been
used for illustration; the algorithm learned to optimize the motion of a pendulum from
raw visual information of 40,000 dimensions [7]. Below, we review the components of
the architecture together with the present state of our developments:

Sample selection: This stage selects different samples under random control.
Low-dimensional embedding: In the illustrations, the dimensions of the low dimen-

sional manifolds are known. Selected samples were embedded into the low dimen-
sional space and were used for interpolation.

Identification of the ARX process: Out-of-sample estimations can be used for the
identification of the ARX process [7] and Bayesian interrogation can speed-up the
learning process [8].

Control: The inverted ARX process can be used for control both in the under-controlled
and over-controlled cases.

LQR solution to the inverse dynamics: A demonstration was designed for the under-
controlled situation. We used a linear-quadratic regulator (LQR) [7].

Event learning: Reinforcement learning (RL) has been rewritten into a novel event
learning formalism [13] in order to connect RL and continuous control.

Exploring space and learning states: Optimistic initial model (OIM) was used for ex-
ploring the space and for learning the values of events. OIM suits large RL problems
since it extends to the factored case [12].

Here, we use sophisticated preprocessing of sensory information (the pose of the
head) before invoking components of the AGI architecture. At this stage of development
we included domain knowledge. Below, we detail the architectural components used in
the experiments.

Typical pose estimations use PCA methods for shape, texture, and details, see, e.g.,
[2,9] and references therein. We needed larger pose angle tolerance than offered by the
presently available open source solutions and used a commercial software1. We used our
Viola-Jones face detector and flow field estimation for detecting the face and relative
changes of the head pose, respectively2. Input to the learning algorithm was hand made:
Let us denote the screen size normalized position of the cursor by (mx, my) ∈ [0, 1]2

and the head pose by (fx, fy) ∈ R
2. The two-dimensional vector x = [mx − fx, my −

fy]T ∈ R
2 corresponds to the state (Fig. 1).

1 FaceAPI http://www.seeingmachines.com/
2 http://chacal.web.elte.hu/.MouSense/MouSenseSetup-1.1.exe

http://www.seeingmachines.com/
http://chacal.web.elte.hu/.MouSense/MouSenseSetup-1.1.exe


AGI Architecture Measures Human Parameters 323

(a) (b)

Fig. 1. Illustration and parameters of the experiments. (a): Experimental arrangement. m: cursor
position, f : position where the roll axis of head pose crosses the screen. x: ‘observation’. (b):
True and estimated quantities at time t. v̂OF (pt+1, pt): optic flow based estimation of the motion
vector f . pt: positions of feature points on the 2D projected face at time t. For the definition of
feature points see Fig. 2(a).

ARX estimation and inverse dynamics. The AR model assumes the following form

xt+1 = mt+1 − ft+1 (1)

mt+1 = mt + vt (2)

where mt ∈ R
2 is the position of the cursor at time t, ft ∈ R

2 is the point where the
roll axis of the pose hits the screen as shown in Fig. 1(b), vt ∈ R

2 is the speed vector
of the projected ft on the screen over unit time and no additional noise was explicitly
assumed. We have direct access to the cursor position and need to estimate the other
parameters. Since vt = ft+1− ft it follows that xt+1 = xt in the absence of estimation
errors and control. The goal is to control and optimize xt for writing speed.

We do not have direct access to ft or xt, but use their estimations f̂t ∈ R
2 and x̂t

through the measurement of the optic flow (Fig. 1(b)) of the face on subsequent image
patches (v̂OF (pt+1, pt)), pt ∈ R

2k denotes the 2D coordinates of k characteristic points
(Fig. 2(a)) within the facial region of the image

(a) (b) (c)

Fig. 2. Tools for human-computer interaction: (a)-(b): features for optic flow estimation (green
markers), eye tracker and head pose estimation (yellow marker), (c): computer ‘game’ designed
for measuring the ARX parameters of head motion
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Collecting a number of data x̂1, . . . , x̂T , we estimated the unknown parameters of
matrix B by direct control, using distances on the screen as x̂t+1 = x̂t + But + nt and
then inverting it to yield desired state xd: ut = B̂−1(x̂d − x̂t). Inserting the result back
to the ARX estimation we get x̂t+1 ≈ x̂d. We note that the inverse dynamics described
here can be extended to sophisticated non-linear ‘plants’ [4].

Event learning. We define the optimal control problem within the event learning
framework that works with discrete states, provides the actual state and desired suc-
cessor state to a backing controller and the controller tries to satisfy the ‘desires’ by
means of the inverse dynamics. For a given experienced state i and its desired successor
state i+, where i, i+ = 1, 2, . . . , N and N is the number of states, that is, for a desired
event e(i, i+), the controller provides a control value or a control series. The estimated
value Eπ

i,i+ of event e(i, i+) in an MDP is its estimated long-term cumulated discounted
reward under fixed policy π = π(i, i+), Then, event learning learns the limitations of
the backing controller and optimizes the RL policy in the event space [13].

Optimistic Initial Model (OIM). OIM extends the optimistic initial value method
(OIV) [3]; it resolves the exploration exploitation dilemma by boosting with the ‘Gar-
den of Eden’ state and by building a model. OIM brings about the optimal policy [11].

3 Experiments

Beyond the optic flow based head motion detector, we used the FaceAPI SDK for head
pose estimation. A calibration procedure was applied at the beginning of the experi-
ments. The principle is shown in Fig. 2(c): a red dot was moving on a circular path on
the screen. The user could move the cursor by moving its head. The task was to keep the
cursor within the red dot. If the cursor was within the dot then it speeded up, otherwise
it slowed down. During the experiments, random control values were added to the mo-
tion in order to estimate matrix B. As expected, a close to diagonal matrix was learned
with relatively small off-diagonal elements, being about one fifth of the diagonal val-
ues. Diagonal elements corresponded to the scaling (normalization) in the horizontal
and vertical directions. This calibration was sufficient to learn the ARX process and to
estimate the inverse dynamics.

The Optimistic Initial Model was configured as follows:

State space: Discretized differences between 2d cursor position and 2d crossing point
of roll axis of head pose on the screen in pixels of a 1280 × 960 pixel screen
• horizontal direction: five regions with centers at (-512, -256, 0, 256, 512)
• vertical direction: three regions with centers at (-320, 0, 320)

Duration of time steps: 5 s.
Reward: Number of typed letters minus number of deleted letters during time steps.
Actions: Either the actual state itself, or one of the neighbor states (maximum number

is 4) was chosen as the desired state. Inverse ARX was applied to move to the
desired state (i.e., to modify the angle between the direction of the cursor from the
head and the direction of the roll axis of the head pose).
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(a)

(b) (c)

Fig. 3. Dasher without (a) and with (b) prediction by partial matching. (c): convergence during
learning [14]

Performance optimization was conducted with the Dasher writing tool with head mo-
tion controlled cursor movements (Figs. 3(a), 3(b)). For details on Dasher, please, con-
sult [14]. We used two versions: the version with uniform probabilities for each letter
(Fig. 3(a)) and the ‘intelligent’ version that utilizes the method of prediction by partial
matching and scales letter areas according to their estimated probabilities (Fig. 3(b)).
Two subjects conducted the experiments. Experiments lasted for five sessions, each ses-
sion had five writing periods and four breaks between, with and about 600 characters to
be typed in each period. Periods took about 20 minutes.

4 Results and Conclusions

Convergence of optimization is shown in Fig. 3(c). Optimal policy did not place the
cursor to the crossing point of the screen and the roll axis of the head for either subjects.
Furthermore, we got different optimal policies for the two subjects. Intelligent Dasher
gave rise to cca. a factor of 2 better performance for both subjects.

In summary, we have used an AGI architecture [7] for the optimization of human
performance during head pose driven writing. We combined visual and textual informa-
tion, we identified the dynamics of head motion, used the inverse dynamics to control
the direction of head and optimized performance by means of reinforcement learning
methods like event learning [13] and the optimistic initial model [11]. The architecture
is scalable in most aspects, including sensory information processing, robust control,
and reinforcement learning [7]. The relevance of the present study is that we used tools
to measure human parameters, coupled those to an AGI architecture and used the archi-
tecture to improve human performance.
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Abstract. General Game Playing (GGP) contest provides a research
framework suitable for developing and testing AGI approaches in game
domain. In this paper, we propose and validate a new modification
of UCT game-tree analysis algorithm working in cooperation with a
knowledge-free method of building approximate evaluation functions for
GGP games. The process of function development consists of two, au-
tonomously performed, stages: generalization and specification.

1 Introduction

Games have long been a fascinating topic for Artificial Intelligence (AI) and
Computational Intelligence (CI) research. Majority of spectacular accomplish-
ments of AI in games, however, lacked universal learning mechanisms (most of
the top playing programs in classical board games do not apply any learning
whatsoever) and generality of approach also known as multigame playing ability.

In this paper we adopt autonomous learning approach to building evaluation
function for the General Game Playing (GGP) contest [6]. Our approach inter-
weaves generalization mechanism, which allows building a large pool of candidate
features, with specification stage (which selects a reasonable subset of pertinent
features). Both stages are performed without human intervention as they are
based on generally applicable heuristical meta-rules. What is more, contrary
to approach of many GGP competitors [16,9], our method operates strictly on
game descriptions only, without any implicit expectations about their structure
or rules, such as expecting them to be played on boards, use pieces and so on.

The evaluation function devised based on the above described subset of fea-
tures is subsequently employed by what we call a Guided UCT algorithm - our
modification of the state-of-the-art UCT tree search method described in sec-
tion 3. Results of simulations performed in three game domains: chess, checkers
and connect-4 prove a clear upper hand of the enhanced UCT method over its
plain version, even in the case of not restrictive time regime.

While, due to space limitations, the description of some parts of our solution
must remain very brief and omit all non-crucial details, we invite users who
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find our approach interesting to acquaint themselves with the full version of this
article available at AGI’2011 conference webpage.

2 General Game Playing Competition

GGP, one of the latest and most popular approaches to the multigame playing
topic, was proposed at Stanford University in 2005 in the form of General Game
Playing Competition [8]. General Game Playing applications are able to interpret
game rules encoded in Game Description Language (GDL) [11] statements and
devise a strategy allowing them to play those games effectively without human
intervention. Game states are represented by sets of facts while algorithms for
computing legal moves, subsequent game states, termination conditions and final
scores for players are defined by logical rules.

3 UCT

Upper Confidence bounds for Trees (UCT) is a simulation-based game playing
algorithm that proved to be quite successful in case of some difficult game-based
tasks, including Go [4] and GGP tournament (being employed by two-times-in-
a-row champion CadiaPlayer [3]). In each game state UCT advises to first try
each action once and then, whenever the same position in encountered again,
choose action according to the following formula: a∗ = argmaxa∈A(s){Q(s, a) +

C
√

ln N(s)
N(s,a) }, where A(s) denotes the set of all actions possible in state s, Q(s, a)

– average return of the state-action pair so far, N(s) – number of times state
s has been visited by the algorithm and N(s, a) - number of times action a
has been selected in state s. In realistic cases it is of course impossible to store
information about all game states in memory at the same time, therefore the
in-memory tree is actually expanded according to a kind of best-first strategy
and paths below it are sampled via traditional Monte-Carlo simulations only.

4 Guided UCT

UCT algorithm in its basic form requires no expert game-specific knowledge. We,
however, investigate the possibility of augmenting UCT with automatically
inferred game-specific state evaluation function. Approaches similar in idea,
but very different in realization, have been employed by several programs, e.g.
aforementioned CadiaPlayer [3] and MoGo [5]. For the sake of clarity, we will
refer to any version of our augmented UCT algorithm as Guided UCT (GUCT).

Once defined, the evaluation function F (s) can be employed by the GUCT
method in several ways, both in strict UCT and Monte-Carlo simulation phases.
Q(s, a) can be redefined as a weighted average of the evaluation function value
and the current simulation results or, alternatively, F can be used to pre-initialize
the data stored in the game tree built by the UCT whenever a new node is
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added to it. F can also be used to influence the probability of selecting possible
actions in the Monte-Carlo phase so that it is (in some way) proportional to
their estimated value. In yet another approach the routine can be modified so
that in each and every state there is a (relatively low) probability that the
simulation will be stopped and the evaluation function’s value returned instead.
This approach, relying on the expectation that the F (s) values are more reliable
for positions closer to the end of game, can lead to improvements in algorithm
speed and, thus, allows for increasing the number of simulations.

5 Evaluation Function

Due to the nature of GGP environment, there is virtually no practical way of
including significant expert domain-specific knowledge in the program itself. The
evaluation function must be automatically generated by some kind of AI-based
routine. Still, some GGP agents’ developers choose to specifically tune their ap-
plication towards certain classes of problems, expecting tournament organizers
to be inspired by real-world human games incorporating concepts such as boards,
pieces and counters [10,16,9]. In our application, however, we decided to concen-
trate on developing the evaluation function in as knowledge-free a manner as
possible and with as few preconceptions as possible. We construct the function
as a linear combination of a number of numerical characteristics of game states
called features. Features are by their nature game-specific and are inferred from
the game rules by a set of procedures described in the following sections.

5.1 Features Generation

Our approach to game state features identification was inspired by prior work
in the GGP area, most notably [10], [2] and [16]. We aim to obtain features
represented by expressions similar to those in GDL, e.g. (cell ?x ?y b). In order
to find the value of such a feature in a given game state, we would attempt to
find all values of ?x and ?y variables for which this expression would be true.
The number of solutions to the expression is considered the feature value.

Finding the initial set of possible features consists in simple analysis of the
game definition (in GDL) and extraction of all suitable statements directly from
it. Afterwards, we proceed to the generalization phase, i.e. generate new features
by replacing all constants in existing expressions with variables, generating all
possible combinations of variables and constants. Next, we want to specialize the
features, i.e. generate features containing less variables than those in the original
set. In order to do this in a reasonable way, without generating a huge number
of features that would by definition always have zero value, we need to identify
valid domains of each and every argument of the predicates we try to specialize.
We do it in a simplified and approximate way, according to a routine inspired
by [16], relying on identification of how variables are shared between predicates.

Once a set of potential features has been generated, we perform some sim-
ple simulations in order to analyze them and compute a number of statistics. Two
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of the statistics gathered at this point require more attention. Firstly, we cal-
culate each feature’s correlation with the expected final score for each player.
Secondly, we calculate a characteristic called stability. Stability reflects the ratio
of feature’s variation measured across all game states to average variation within
randomly generated game sequences. The idea is that more stable features are
more promising components of the evaluation function.

5.2 Evaluation Function Generation

Having identified a set of potential game state features, the last step in building
a linear evaluation function is selection of the most useful of them and assigning
a weight to each of them. While we plan to employ more advanced CI-based
approaches to this problem, as the first phase of our research we decided to em-
ploy for the task a very simplistic heuristical approach in order to validate the
feasibility of our ideas. The actual procedure we use for building the evaluation
function first orders the features by the minimum of their stability and absolute
value of their correlation with the final score (we prefer both these character-
istics to be as high as possible) and then rejects all but the first 30 features
(out of several thousand available). The linear combination of those features is
created by assigning them weights equal to the product of their stabilities and
correlations with the final score.

6 Experiment

In order to test the quality of the GUCT algorithm in cooperation with the simple
generated evaluation functions, we decided to run a small competition comparing
players using GUCT and UCT in 3 games of various complexity: connect-4,
checkers and chess. All game definitions have been downloaded from [7].

For the sake of fair comparison, both competing agents were based on the same
single-threaded implementation of the UCT algorithm. GUCT player made use
of the evaluation function only in the Monte-Carlo simulations phase, stopping
the simulation and using the evaluation function’s value as the result with the
probability of 0.1 in each searched node. All in all, the tournament consisted of
60 matches in total, 20 matches for each game - 4 per time limit for move of
1s, 10s, 15s, 30s and 60s. Players swapped sides after each game. GUCT player
regenerated its evaluation function from scratch before each and every match.
Each player was rewarded 1 point for a victory, -1 point for a loss and 0 – for a
draw.

The tournament results for GUCT player are presented in figure 1. Please
keep in mind that any score above 0 indicates player’s supremacy over plain
UCT approach. First and most obvious observation here is that, considering the
simplicity of the evaluation function generation procedure, GUCT player fares
unexpectedly well, significantly outperforming its opponent in all games.

More detailed analysis of the results leads to two interesting observations re-
garding the dependence of the algorithm’s performance on time limit per move.
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Fig. 1. GUCT player scores for each game depending on time allotted for a move (in
seconds)

Both of them can only be treated as hypotheses considering limited experimental
data but anecdotal data gathered during development and preliminary testing
of the system strongly supports them as well.

Firstly, in case of very low time limits and sophisticated games, results of
the games are often insignificant (typically being a draw), as neither player has
enough time for analysis to play in a reasonable way. This effect is clearly visible
in the case of chess. At the same time, as the time limit per move is increased,
another effect can be observed – especially in the case of simpler games (e.g.
connect-4). While the UCT player is able to perform more and more simulations,
obtaining more and more precise results, GUCT-based agent still heavily relies
on the very rudimentary evaluation function, whose quality remains constant.

7 Conclusions and Future Research Plans

As presented above, the experiments we have performed so far, strongly suggest
that our approaches to both modification of the UCT tree search algorithm and
automated game-independent process of creating evaluation function have high
potential. Our feature-building strategy follows two principles typical for human
thinking: generalization and specialization. While the former process is useful
for generating new concepts by ignoring certain details of the problem aspects,
the latter allows applying the concepts to specific situations and finding special
cases and exceptions to the rules. It is the unique synergy of the two approaches
that facilitates solving even seemingly distant and unrelated tasks.

At the moment, our immediate research plans include two paths of further
system development. Firstly, we intend to further enhance feature generation
system by including compound features, defined as differences or ratios of re-
lated simple features. Secondly, we are working on more sophisticated, CI-based
methods of evaluation functions generation. In the immediate future, we con-
sider employing co-evolutionary and/or Layered Learning [13] schemes, as well
as replacing linear evaluation functions with artificial neural networks.
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Abstract. In this paper we argue that a philosophically and psychologi-
cally grounded autonomous agent is able to learn recursive rules from ba-
sic sensorimotor input. A sensorimotor graph of the agent’s environment
is generated that stores and optimises beneficial motor activations in eval-
uated sensor space by employing temporal Hebbian learning. This results
in a categorized stream of experience that feeds in a Minerva mem-
ory model which is enriched by a time line approach and integrated in
the cognitive architecture Psi—including motivation and emotion. These
memory traces feed seamlessly into the inductive rule acquisition device
Igor2 and the resulting recursive rules are made accessible in the same
memory store. A combination of cognitive theories from the 1980ies and
state-of-the-art computer science thus is a plausible approach to the still
prevailing symbol grounding problem.

Keywords: symbol grounding, temporal Hebbian learning, cognitive ar-
chitecture, inductive rule learning.

1 Introduction

“How can the semantic interpretation of a formal symbol system be made in-
trinsic to the system, rather than just parasitic on the meanings in our heads?”
Since Harnad [7, p.335] has posed this question, the symbol grounding problem
is an ongoing issue in AI. Progress has been made, but the problem is not solved
[22].

We argue that old-fashioned cognitive theories from the 1980ies together with
state-of-the-art learning systems allow for bridging the gap between symbolic
and sub-symbolic approaches: a dichototmy that is present even in state-of-the-
art architectures like Clarion [23]. Here, we meet with Langley et al. [13, p.155f]
who urge for “more research on architectures that directly support both episodic
memory and reflective processes that operate on these structures it contains.”

In our view mental competencies evolve from a structural coupling to the
world (outside and inside) [28]—in contrast to predefined competencies which
cannot be said to depend on anything else than the architect’s beliefs [7]. Not
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until mental representations are justified by referring to relevant and meaningful
entities, abstract concepts can be inferred.

The generation of abstract concepts is an ultimate touchstone for a system.
Here, abstract concepts are recursive, i.e. infinite, regularities. This goes be-
yond Anderson’s [1] deductive and abductive rule-generation; as, for example,
deduction always raises the question where the premises come from. It also goes
beyond systems like Clip [2] and Clarion [23,24]—these systems lack the abil-
ity to cope with recursive regularities—a concept like odd/ even is out of their
scope.

In the following we present our approach to learn rules from streams of expe-
rience which is composed of three succeeding layers: In a first step (Sect. 2) a
continuous sensorimotor space is segmented by constructing prototypes based on
an evaluation function which balances exploitation and exploration. In a second
step (Sect. 3) graphs containing these prototypes are enumerated along a time
line, associated with the reward experience and transformed into simple sym-
bolic rules. Finally (Sect. 4), regularities in these simple rules are detected and
the rules are folded into a recursive rule set which generalizes over the previous
experiences.

The overall system controls a virtual autonomous agent (AA) which moves in a
Discworld. An even number of circles means that the agent receives reward at the
innermost spot, an odd number evokes punishment. The AA has to avoid harmful
targets and approach desirable ones. All necessary knowledge transformations in
our agent are done syntactically, so no additional meaning is introduced on the
way.

2 Learning Context-Sensitive Partitioning of
Sensorimotor Space

The AA features a set of sensors and actors. In our simple Discworld scenario
the sensors detect changes in brightness and the motors power a differential
drive. Initially, the environment is explored by random walk and later guided
by previous experience trying to repeat beneficious actions and avoid harmful
ones. Experience is represented in sensorimotor vectors which are integrated in
a graph.

The sensorimotor vectors define Voronoi cells and thereby generate a segmen-
tation of the otherwise continuous sensorimotor space [27]. This characteristic
is exploited for categorization, that is construction of abstract prototypes [25]
representing collections of experiences. Each prototype holds the activation per-
ceived and the evaluation received during its creation.

Temporally successive prototypes are connected to form a graph representing
possible next states. This information can be used to predict possible outcomes
of actions or perceptions. New experiences are evaluated with respect to their
similarity to already existing prototypes.

By employing temporal Hebbian learning [19], the weighted edges between pro-
totypes are reinforced if memorised sequences are confirmed by the environment.
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Fig. 1. Saturated motor graph

Alternative connections are inhibited by weakening all contradicting outgoing
connections from the previous prototype and all contradicting incoming connec-
tions to the momentary prototype. Dropping below a critical threshold, connec-
tions are eventually removed from the graph. A mature sensorimotor graph (see
Fig. 1), allows for anticipating (con-) sequences of arbitrary sensorimotor activa-
tions. By removing connections, the graph fragments into isolated components
containing only a subset of sequential prototypes.

The activation vectors stored in prototypes are exploited by random opti-
mization. The evaluation gradient dropping below zero is interpreted as indica-
tion for having reached a local maximum. Therefore, by performing a 1-nearest-
neighbour query within the active graph, the algorithm tries to switch to the
next best prototype representing the present sensorimotor activation. In case the
present prototype is returned anew, the algorithm tries to explore new actions
by creating a new prototype.

After a test run one graph component has been extracted. We visualised the
graph in Fig. 1, where thicker edges representing stronger connections. A circular
path within the motor graph indicates successful coping with the environment.
Here this path of continuously reinforced edges is C → A → D → B → C.
Once the graph components are mature and stable, switching between them can
be regarded as changing situational context. These components are grounded
representation that serve as entities for further processing. Their creation takes
place as follows:

1. The agent learns symbols bearing relevancy and meaning.
2. Thereby the agent segments the sensorimotor space according to [15].
3. A context component emerges like: line – line – line – reward or line – line

– punishment

3 Handling a Stream of Experience

Feeding these components into a psychologically valid model—by integrating the
Psi-theory of Dietrich Dörner [6], and by utilizing the Minerva memory model
by Hintzman [9]—we are able to induce explicit rules and to feed these rules
back into the agent’s memory.
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We chose the cognitive architecture Psi by Dörner ([6], see also [3]) as a
framework. Dörner postulates a protocol memory as the only memory structure—
i.e., a chain of perceptual input, motor actions and changes in motivational
states. Perception, for example, is a constant matching of input against stored
events, where missing or ambigious inputs are supplemented by stored fragments
(schemata). But how exactly to build such a structure remains vague. A similiar
idea of a single-store system was voiced by Klahr & Wallace ([11, p.366], refined
in [26]). They assume the existence of “an ordered list representing the relative
values as a result of the child’s experience to date”.

The Minerva 2 framework by Hintzman [9] is in some aspects similiar: “[. . . ]
a vast collection of episodic memory traces, each of which is a record of an
event or experience [. . . ] Minerva 2 represents an attempt to account for data
from both episodic and generic memory tasks within a single system.” (p.96)
This contrasts, for example, with Soar where episodic memory is a collection of
snapshots of working memory, and where procedural and semantic memory are
further compartments [12].

In Minerva, any event will result in a new memory trace, no matter if a
very similiar event has been experienced before or not. There is no chronolog-
ical, overall time line any more; instead a huge set of seperate traces is built.
Memory traces are configurations of primitive properties, like sensory features;
simply modelled as vectors filled with 1, 0 and -1 values. Categories and abstract
knowledge are built at the time of retrieval and not during encoding and storage.
As Dougherty [5] has shown, Minerva lends itself to extensions covering more
complex aspects of reasoning. Motivational states sensu Dörner could easily be
represented by additional vectors.

We propose a framework where information will be stored in a single system,
in chronological order, with regularity detection as core learning mechanism.
Nodes in this model are simple feature vectors. This combination merges a par-
simonious yet potentially powerful cognitive-emotional-motivational approach
with a simple yet powerful learning concept and a frugal, empirically founded
memory model. We will show how an inductive learning approach fits in such
a framework—and how it takes our system to the next level while at the same
time staying grounded.

4 Learning Productive Rules
The sketched model will be the necessary prerequisite for integrating the induc-
tive rule acquisition device Igor2 [10]. This machine learning device has already
been used successfully for classical cognitive tasks like the Tower of Hanoi [21].
In short, it is a means to construct recursive functional programs from a few
non-recursive examples. However, so far this learning device was not embedded
into a psychological model.

Igor2 combines analytical recurrence detection with a guided search in pro-
gram space. Programs are represented as constructor systems. As with every
learning system, Igor2 relies on some biases: Programs must be a valid subset
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of Haskell, search space ist explored by preferring a minimal number of case
distinctions, and the given input patterns must not unify pairwise. Furthermore,
for a given induction problem the first n examples must be given.

Being part of a larger cognitive architecture, we deem this inductive device
a valid cognitive approach. Igor2 abstracts from given examples by generating
a least general generalisation, partitions the problem space, treats sub-problems
as new problems and uses previously learned rules. These are plausible cognitive
mechanisms (see, e.g., [18])—and, in any case, much closer to human reasoning
than, for example, generate-and-test learning devices. We used the inductive
rule acquisition device Igor2 [10] to learn knowledge-level production rules from
basic sensorimotor data.

How to build rather complex input rules in Haskell-compatible syntax with-
out semantic assumptions; in other words, without instructions that are “para-
sitic to the system” in the sense of [7]? In a proof-of-concept-implementation (in
Java), we did so using a cascade of mere syntactical transformations:

4. A bijective mapping on Ascii characters retains the distinction of context
components, introduces no new information, and results in: LLL→ TRUE
or LL→ FALSE. We chose this kind of transformation, as an Ascii charac-
ter can be seen as a 8-bit feature vector in the sense of Minerva. By arbitrary
combination of characters, the feature vector’s length is unrestricted.

5. The resulting set of rules is fed into Igor2
6. The output is a recursive rule:
learn[] = False; learn[′L′] = True; learn(′L′ : (′L′ : a0)) = learn a0

7. Such a rule can easily and automatically be transformed into a grammar:
S → X X → ′L′ X → ′L′′L′X

8. Consecutively, standard algorithms (like in Jflap [20]) might be used to
syntactically transform this grammar into a nondeterministic finite automa-
ton.

9. This automaton represents the recursive part of the regularity; and the nodes
still hold the sensory information associated from the grounding process.
When this fragment is connected to existing memory (here: the strict linked
list is extended to hold several connections, resulting in a graph), it will be
searchable by Minerva probes, too.

5 Conclusion and Future Work

Right now no motivation and emotion is implemented. From a theoretical view-
point, however, the agent is prepared. And planning, as described by Dörner,
can take place. Also, there’s no mechanism to remove rules from memory. This
would be necessary before these rules would enter a planning module.

The agent presented bears potential that was not intended in the first place.
The Minerva representation, for example, lends itself to analogical reasoning.
As 1 codes a necessary feature, −1 a prohibitive one, and 0 a ‘don’t care’, cross-
context learning would be a logical AND over two situations (i.e., vectors).



338 M. Raab et al.

The presented system might behave strangely, irrational or superstitious. New-
berg et al. [18] describe how cognition could be seen as the core of belief, myth
and religion. Maybe, the AA proposed here has the potential to create such a
form of meaning for itself, based on its own grounded symbols. Of course, like
Winograd & Flores [28] note, this agent would not be human. Yet, it could be a
bit more like a human.
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Three Hypotheses about the Geometry of Mind

Ben Goertzel1 and Matthew Ikle2
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Abstract. We present a novel perspective on the nature of intelligence,
motivated by the OpenCog AGI architecture, but intended to have a
much broader scope. Memory items are modeled using probability
distributions, and memory subsystems are conceived as “mindspaces”
– geometric spaces corresponding to different memory categories. Two
different metrics on mindspaces are considered: one based on algorith-
mic information theory, and another based on traditional (Fisher infor-
mation based) “information geometry”. Three hypotheses regarding the
geometry of mind are then posited: 1) a syntax-semantics correlation
principle, stating that in a successful AGI system, these two metrics
should be roughly correlated; 2) a cognitive geometrodynamics principle,
stating that on the whole intelligent minds tend to follow geodesics in
mindspace; 3) a cognitive synergy principle, stating that shorter paths
may be found through the composite mindspace formed by considering
multiple memory types together, than by following the geodesics in the
mindspaces corresponding to individual memory types.

1 Introduction

One of the many factors making AGI research difficult is the lack of a broadly
useful, powerful, practical theoretical and mathematical framework. Many the-
oretical and mathematical tools have played important roles in the creation and
analysis of contemporary proto-AGI systems; but by and large these have proved
more useful for dealing with parts of AGI systems than for treating AGI sys-
tems holistically. And the general mathematical theory of AGI [6], though it has
inspired some practical work [7] [12], has not yet been connected with complex
AGI architectures in any nontrivial way. This paper gives a rough sketch of a
novel theoretical framework intended to fill tis gap. While the framework has
been developed largely in the context of a quest to understand and improve
the dynamics of the OpenCog [5] AGI architecture (see [8] for some concrete
OpenCog algorithmics directly related to the present ideas), it is intended to be
much more broadly applicable.

For a more extensive presentation of these ideas, see http://goertzel.org/
papers/MindGeometry_agi_11_v2.pdf. Two important background notions
from that longer version are omitted here: 1) the ideas presented here are meant
to be interpreted in terms of a general formal model of intelligent agents called
SRAM (Simple Realistic Agents Model), presented in [4] and inspired by the
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simpler agents model in [6]; 2) The multiple types of memory critical for general
intelligence (declarative, procedural, episodic, attentional, intentional) may be
modeled using category theory. The memory store corresponding to each mem-
ory type is a category, and then conversion from one memory type to another
(e.g. declarative to procedural) is carried out using functors.

2 Metrics on Memory Spaces

We begin by explaining how to define geometric structures for cognitive space,
via defining two metrics on the space of memory store dynamic states. Specifi-
cally, we define the dynamic state or d-state of a memory store (e.g. attentional,
procedural, etc.) as the series of states of that memory store (as a whole) during
a time-interval. Generally speaking, it is necessary to look at d-states rather than
instantaneous memory states because sometimes memory systems may store in-
formation using dynamical patterns rather than fixed structures.

It’s worth noting that, according to the metrics introduced here, the above-
described mappings between memory types are topologically continuous, but
involve considerable geometric distortion – so that e.g., two procedures that
are nearby in the procedure-based mindspace, may be distant in the declarative-
based mindspace. This observation will lead us to the notion of cognitive synergy.

Information Geometry on Memory Spaces. Our first approach involves viewing
memory store d-states as probability distributions. A d-state spanning time in-
terval (p, q) may be viewed as a mapping whose input is the state of the world
and the other memory stores during a given interval of time (r, s), and whose
output is the state of the memory itself during interval (t, u). Various relations
between these endpoints may be utilized, achieving different definitions of the
mapping e.g. p = r = t, q = s = u (in which case the d-state and its input
and output are contemporaneous) or else p = r, q = s = t (in which case the
output occurs after the simultaneous d-state and input), etc. In many cases this
mapping will be stochastic. If one assumes that the input is an approximation
of the state of the world and the other memory stores, then the mapping will
nearly always be stochastic. So in this way, we may model the total contents of a
given memory store at a certain point in time as a probability distribution. And
the process of learning is then modeled as one of coupled changes in multiple
memory stores, in such a way as to enable ongoingly improved achievement of
system goals.

Having modeled memory store states as probability distributions, the problem
of measuring distance between memory store states is reduced to the problem
of measuring distance between probability distributions. But this problem has a
well-known solution: the Fisher-Rao metric, which has been extended by Dabak
[1] to handle nonparametric distributions. This metric is reviewed in the long
version of this paper, together with the idea of bringing Fisher information to-
gether with imprecise and indefinite probabilities as discussed in [2]. For instance
an indefinite probability takes the form ((L, U), k, b) and represents an envelope
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of probability distributions, whose means after k more observations lie in (L, U)
with probability b. The Fisher-Rao metric between probability distributions is
naturally extended to yield a metric between indefinite probability distributions.

Algorithmic Distance on Memory Spaces. A conceptually quite different way
to measure the distance between two d-states, on the other hand, is using al-
gorithmic information theory. Assuming a fixed Universal Turing Machine M ,
one may define H(S1, S2) as the length of the shortest self-delimiting program
which, given as input d-state S1, produces as output d-state S2. A metric is
then obtained via setting d(S1, S2) = (H(S1, S2) + H(S2, S1)/2. This tells you
the computational cost of transforming S1 into S2.

There are variations of this which may also be relevant; for instance [13]
defines the generalized complexity criterion KΦ(x) = mini∈N{Φ(i, τi)|L(pi)) =
x}, where L is a programming language, pi is the i’th program executable by
L under an enumeration in order of nonincreasing program length, τi is the
execution time of the program pi, L(x) is the result of L executing pi to obtain
output x, and Φ is a function mapping pairs of integers into positive reals,
representing the trade-off between program length and memory. Via modulating
Φ, one may cause this complexity criterion to weight only program length (like
standard algorithmic information theory), only runtime (like the speed prior),
or to balance the two against each other in various ways.

Suppose one uses the generalized complexity criterion, but looking only at
programs pi that are given S1 as input. Then KΦ(S2), relative to this list of
programs, yields an asymmetric distance HΦ(S1, S2), which may be symmetrized
as above to yield dΦ(S1, S2). This gives a more flexible measure of how hard it
is to get to one of (S1, S2) from the other one, in terms of both memory and
processing time.

One may discuss geodesics in this sort of algorithmic metric space, just as in
Fisher-Rao space. A geodesic in algorithmic metric space has the property that,
between any two points on the path, the integral of the algorithmic complexity
incurred while following the path is less than or equal to that which would be
incurred by following any other path between those two points. The algorithmic
metric is not equivalent to the Fisher-Rao metric, a fact that is consistent with
Cencov’s Theorem because the algorithmic metric is not Riemannian (i.e. it is
not locally approximated by a metric defined via any inner product).

3 Three Hypotheses about the Geometry of Mind

Now we present three hypotheses regarding generally intelligent systems, using
the conceptual and mathematical machinery we have built.

Hypothesis 1: Syntax-Semantics Correlation. The informational and algorithmic
metrics, as defined above, are not equivalent nor necessarily closely related; how-
ever, we hypothesize that on the whole, systems will operate more intelligently if
the two metrics are well correlated, implying that geodesics in one space should
generally be relatively short paths (even if not geodesics) in another.
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This hypothesis is a more general version of the “syntax-semantics correlation”
property studied in [10] in the context of automated program learning. There,
it is shown empirically that program learning is more effective when programs
with similar syntax also have similar behaviors. Here, we are suggesting that an
intelligent system will be more effective if memory stores with similar structure
and contents lead to similar effects (both externally to the agent, and on other
memory systems). Hopefully the basic reason for this is clear. If syntax-semantics
correlation holds, then learning based on the internal properties of the memory
store, can help figure out things about the external effects of the memory store.
On the other hand, if it doesn’t hold, then it becomes quite difficult to figure
out how to adjust the internals of the memory to achieve desired effects.

The assumption of syntax-semantics correlation has huge implications for the
design of learning algorithms associated with memory stores. All of OpenCog’s
learning algorithms are built on this assumption. For, example OpenCog’s MOSES
procedure learning component [10] assumes syntax-semantics correlation for in-
dividual programs, from which it follows that the property holds also on the level
of the whole declarative memory store. And OpenCog’s PLN probabilistic infer-
ence component [2] uses an inference control mechanism that seeks to guide a new
inference via analogy to prior similar inferences, thus embodying an assumption
that structurally similar inferences will lead to similar behaviors (conclusions).

Hypothesis 2: Cognitive Geometrodynamics. In general relativity theory there is
the notion of “geometrodynamics,” referring to the feedback by which matter
curves space, and then space determines the movement of matter (via the rule
that matter moves along geodesics in curved spacetime) [11]. One may wonder
whether an analogous feedback exists in cognitive geometry. We hypothesize that
the answer is yes, to a limited extent. On the one hand, according to the above
formalism, the curvature of mindspace is induced by the knowledge in the mind.
On the other hand, one may view cognitive activity as approximately following
geodesics in mindspace.

Let’s say an intelligent system has the goal of producing knowledge meeting
certain characteristics (and note that the desired achievement of a practical
system objective may be framed in this way, as seeking the true knowledge that
the objective has been achieved). The goal then corresponds to some set of d-
states for some of the mind’s memory stores. A simplified but meaningful view
of cognitive dynamics is, then, that the system seeks the shortest path from
the current d-state to the region in d-state space comprising goal d-states. For
instance, considering the algorithmic metric, this reduces to the statement that
at each time point, the system seeks to move itself along a path toward its
goal, in a manner that requires the minimum computational cost – i.e. along
some algorithmic geodesic. And if there is syntax-semantics correlation, then
this movement is also approximately along a Fisher-Rao geodesic.

And as the system progresses from its current state toward its goal-state, it
is creating new memories – which then curve mindspace, possibly changing it
substantially from the shape it had before the system started moving toward its
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goal. This is a feedback conceptually analogous to, though in detail very different
from, general-relativistic geometrodynamics.

There is some subtlety here related to fuzziness. A system’s goals may be
achievable to various degrees, so that the goal region may be better modeled
as a fuzzy set of lists of regions. Also, the system’s current state may be better
viewed as a fuzzy set than as a crisp set. In this case, one may say that the
cognition seeks a geodesic from a high-degree portion of the current-state region
to a high-degree portion of the goal region.

Hypothesis 3: Cognitive Synergy. Cognitive synergy is a conceptual explanation
of what makes it possible for certain sorts of integrative, multi-component cogni-
tive systems to achieve powerful general intelligence [3]. The notion pertains to
systems that possess knowledge creation (i.e. pattern recognition / formation /
learning) mechanisms corresponding to each multiple memory types. For such a
system to display cognitive synergy, each of these cognitive processes must have
the capability to recognize when it lacks the information to perform effectively on
its own; and in this case, to dynamically and interactively draw information from
knowledge creation mechanisms dealing with other types of knowledge. Further,
this cross-mechanism interaction must have the result of enabling the knowledge
creation mechanisms to perform much more effectively in combination than they
would if operated non-interactively.

How does cognitive synergy manifest itself in the geometric perspective we’ve
sketched here? Perhaps the most straightforward way to explore it is to construct
a composite metric, merging together the individual metrics associated with
specific memory spaces.

In general, given N metrics dk(x, z), k = 1 . . .N defined on the same fi-
nite space M , we can define the ”min-combination” metric dd1,...,dN (x, z) =
miny0=x,yn+1=z,yi∈M,r(i)∈{1,...,N},i∈{1,...,n},n∈Z

∑n
i=0 dr(i)(yi, yi+1), which is con-

ceptually similar to (and mathematically generalizes) min-cost metrics like the
Levenshtein distance used to compare strings [9]. To see that it obeys the met-
ric axioms is straightforward; the triangle inequality follows similarly to the
case of the Levenshtein metric. In the case where M is infinite, one replaces
min with inf (the infimum) and things proceed similarly. The min-combination
distance from x to z tells you the length of the shortest path from x to z, us-
ing the understanding that for each portion of the path, one can choose any
one of the metrics being combined. Here we are concerned with cases such as
dsyn = ddProc,dDec,dEp,dAtt .

We can now articulate a geometric version of the principle of cognitive syn-
ergy. Basically: cognitive synergy occurs when the synergetic metric yields sig-
nificantly shorter distances between relevant states and goals than any of the
memory-type-specific metrics. Formally, one may say that an intelligent agent
A (modeled by SRAM) displays cognitive synergy to the extent syn(A) ≡∫
(dsynergetic(x, z)−min (dProc(x, z), dDec(x, z), dEp(x, z), dAtt(x, z))) dμ(x)dμ(z)

where μ measures the relevance of a state to the system’s goal-achieving
activity.
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Imprecise Probability as a Linking Mechanism

between Deep Learning, Symbolic Cognition and
Local Feature Detection in Vision Processing

Ben Goertzel

Novamente LLC

Abstract. A novel approach to computer vision is outlined, involving
the use of imprecise probabilities to connect a deep learning based hierar-
chical vision system with both local feature detection based preprocessing
and symbolic cognition based guidance. The core notion is to cause the
deep learning vision system to utilize imprecise rather than single-point
probabilities, and use local feature detection and symbolic cognition to
affect the confidence associated with particular imprecise probabilities,
thus modulating the amount of credence the deep learning system places
on various observations and guiding its pattern recognition/formation
activity. The potential application to the hybridization of the DeSTIN,
SIFT and OpenCog systems is described in moderate detail. The un-
derlying ideas are even more broadly applicable, to any computer vision
approach with a significant probabilistic component which satisfies cer-
tain broad criteria.

1 Introduction

One key aspect of vision processing is the ability to preferentially focus attention
on certain positions within a perceived visual scene. Another key aspect is the
ability for abstract, symbolic cognition, based on various forms of long-term
memory, to module visual perception. In principle, these two aspects of vision can
be incorporated within a deep learning based vision architecture such as HTM
[6],[3] or DeSTIN [1]. In current practice, however, neither of these aspects is a
strength of deep learning vision systems. So from the perspective of an integrative
approach to AGI, it is interesting to explore the hybridization of deep learning
vision systems with other approaches, such as for local feature detectors like
SIFT [7], and general cognitive engines like OpenCog [5]. Such hybridization
may be carried out in many different ways; here we suggest a novel approach
based on imprecise probabilities, which applies to deep learning based vision
systems that are probabilistic in their foundations.

The basic idea suggested here applies to any probabilistic sensory system,
whether deep-learning-based or not, and whether oriented toward vision or some
other sensory modality. However, for sake of concreteness, we will focus here on
the case of deep learning and vision. Note that a longer version of this paper,
giving a bit more background, is available online at http://goertzel.org/
VisualAttention_AGI_11.pdf.
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1.1 Visual Attention Focusing

Since visual input streams contain vast amounts of data, it’s beneficial for a
vision system to be able to focus its attention specifically on the most important
parts of its input. Sometimes knowledge of what’s important will come from
cognition and long-term memory, but sometimes it may come from mathematical
heuristics applied to the visual data itself.

In the human visual system the latter kind of ”low level attention focusing” is
achieved largely in the context of the eye changing its focus frequently, looking
preferentially at certain positions in the scene [2]. This works because the center
of the eye corresponds to a greater density of neurons than the periphery.

So for example, consider a computer vision algorithm like SIFT (Scale-Invariant
Feature Extraction) [7], which mathematically isolates certain points in a visual
scene as keypoints which are particularly important for identifying what the
scene depicts (e.g. these may be corners, or easily identifiable curves in edges).
The human eye, when looking at a scene, would probably spend a greater per-
centage of its time focusing on the SIFT keypoints than on random points in
the image.

The human visual system’s strategy for low-level attention focusing is obvi-
ously workable (at least in contexts similar to those in which the human eye
evolved), but its also somewhat complex, requiring the use of subtle temporal
processing to interpret even static scenes. We suggest here that there may be
a simpler way to achieve the same thing, in the context of vision systems that
are substantially probabilistic in nature, via using imprecise probabilities. The
crux of the idea is to represent the most important data, e.g. keypoints, using
imprecise probability values with greater confidence.

Similarly, cognition-guided visual attention-focusing occurs when a mind’s
broader knowledge of the world tells it that certain parts of the visual input
may be more interesting to study than others. For example, in a picture of
a person walking down a dark street, the contours of the person may not be
tremendously striking visually (according to SIFT or similar approaches); but
even so, if the system as a whole knows that it’s looking at a person, it may decide
to focus extra visual attention on anything person-like. This sort of cognition
guided visual attention focusing, we suggest, may be achieved similarly to visual
attention focusing guided on lower-level cues – by increasing the confidence of
the imprecise probabilities associated with those aspects of the input that are
judged more cognitively significant.

1.2 Imprecise Probabilities

Finally, what precisely are these ”imprecise probabilities” that keep getting men-
tioned? Broadly speaking an ”imprecise probability” is a representation of prob-
ability that uses more than one number, and that tries to represent the ”uncer-
tainty associated with a certain probability estimate.” For instance, one may be
very sure that a certain probability is 50%, or one may be only moderately sure
that it’s 50%, figuring it might actually be 80% or 20% and one will only know
more certainly one gathers more data. Common forms include (L,U) intervals
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as introduced by Peter Walley [4], representing lower and upper bounds on the
means of probabilities in an envelope; or PLN-style [4] indefinite probabilities of
the form ( (L,U), b , k), with the interpretation that after k more observations
are made, the odds are b that the mean of the estimated distribution describing
the event in question will lie in the interval (L,U).

We will speak here in terms of the confidence of an imprecise probability;
e.g. in the case of Walley probabilities, one can simply use the negation interval
width, i.e. c = 1− (U −L), as a confidence value. We will also assume here that
there is a method for taking any calculation done using ordinary single-number
probabilities as inputs and outputs, and transforming it into a calculation to
be done using imprecise probabilities as inputs and outputs. Straightforward
methods of this nature exist for both Walley-style and indefinite probabilities,
for example.

2 Using Imprecise Probabilities to Guide Vision
Processing

Suppose one has a vision system that internally constructs probabilistic values
corresponding to small local regions in visual input (these could be pixels or
voxels, or something a little larger), and then (perhaps via a complex process)
assigns probabilities to different interpretations of the input based on combina-
tions of these input-level probabilities. For this sort of vision system, one may be
able to achieve focusing of attention via appropriately replacing the probabili-
ties with imprecise probabilities. Such an approach may be especially interesting
in hierarchical vision systems, that also involve the calculation of probabilities
corresponding to larger regions of the visual input. Examples of the latter in-
clude deep learning based vision systems like HTM or DeSTIN, which construct
nested hierarchies corresponding to larger and larger regions of the input space,
and calculate probabilities associated with each of the regions on each level,
based in part on the probabilities associated with other related regions.

In this context, we now state the basic suggestion of the paper:

1. Assign higher confidence to the low-level probabilities that the vision system
creates corresponding to the local visual regions that one wants to focus
attention on (based on cues from visual preprocessing or cognitive guidance)

2. Carry out the vision system’s processing using imprecise probabilities rather
than single-number probabilities

3. Wherever the vision system makes a decision based on the most probable
choice from a number of possibilities, change the system to make a decision
based on the choice maximizing the product (expectation * confidence).

Sketch of Application to DeSTIN An example of a vision system to which this
approach could be applied is Itamar Arels DeSTIN system [1]. Internally to
DeSTIN, probabilities are assigned to pixels or other small local regions (ac-
cording to equations to be detailed below). If a system such as SIFT is run as
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a preprocessor to DeSTIN, then those pixels or small regions corresponding to
SIFT keypoints may be assumed semantically meaningful, and internal DeSTIN
probabilities associated with them can be given a high confidence. A similar
strategy may be taken if a cognitive system such as OpenCog [5] is run together
with DeSTIN, feeding DeSTIN information on which portions of a partially-
processed image appear most cognitively relevant. The probabilistic calculations
inside DeSTIN can be replaced with corresponding calculations involving impre-
cise probabilities. And critically, there is a step in DeSTIN where, among a set of
beliefs about the state in each region of an image (on each of a set of hierarchical
levels), the one with the highest probability is selected. In accordance with the
above recipe, this step should be modified to select the belief with the highest
probability*confidence.

Given the outline of DeSTIN given in [1] (and in the longer, online version
of this paper), the application of imprecise probability based attention focus-
ing to DeSTIN is almost immediate. The probabilities P (o|s) defined therein
may be assigned greater or lesser confidence depending on the assessed seman-
tic criticality of the observation o in question. So for instance, if one is using
SIFT as a preprocessor to DeSTIN, then one may assign probabilities P (o|s)
higher confidence if they correspond to observations o of SIFT keypoints, than if
they do not. These confidence levels may then be propagated throughout DeS-
TIN’s probabilistic mathematics. For instance, if one were using Walley’s interval
probabilities, then one could carry out the probabilistic equations using inter-
val arithmetic. Finally, one wishes to replace DeSTIN’s seelction equation with
c = arg maxs ((bp(s)).strength ∗ (bp(s)).confidence). The effect of this is that hy-
potheses based on high-confidence observations are more likely to be chosen,
which of course has a large impact on the dynamics of the DeSTIN network.

3 Conceptual Justification

What is the conceptual justification for the approach presented? One justifica-
tion is obtained by assuming that each percept has a certain probability of being
erroneous, and those percepts that appear to more closely embody the semantic
meaning of the visual scene are less likely to be erroneous. This follows concep-
tually from the assumption that the perceived world tends to be patterned and
structured, so that being part of a statistically significant pattern is (perhaps
weak) evidence of being real rather than artifactual. Under this assumption, the
proposed approach will maximize the accuracy of the systems judgments.

A related justification is obtained by via consideration of the perceived world
as mutable. Consider a vision system that has the capability to modify even the
low-level percepts that it intakes i.e. to use what it thinks and knows, to modify
what it sees. The human brain certainly has this potential [2]. In this case, it
will make sense for the system to place some constraints regarding which of
its percepts it is more likely to modify. Confidence values semantically embody
this a higher confidence being sensibly assigned to percepts that the system
considers should be less likely to be modified based on feedback from its higher
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(more cognitive) processing levels. In that case, a higher confidence should be
given to those percepts that seem to more closely embody the semantic meaning
of the visual scene which is exactly what we’re suggesting here.
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Abstract. Monocular figure-ground segmentation is an important prob-
lem in the field of Artificial General Intelligence. A solution to this prob-
lem will unlock vast sets of training data, such as Google Images, in which
salient objects of interest are situated against complex backgrounds. In
order to gain traction on the figure-ground problem we enhanced the
Leabra Vision (LVis) model, which is our state-of-the-art model of 3D
invariant object recognition [8], such that it can continue to recognize
objects against cluttered backgrounds that, while simple, are complex
enough to substantially hurt object recognition performance. The prin-
ciple of operation of the network is that it learns to use a low resolution
view of the scene in which high spatial frequency information such as
the background falls out of focus in order to predict which aspects of
the high resolution scene are the figure. This filtered view then serves to
enhance the figure in the input stages of LVis and substantially improves
object recognition performance against cluttered backgrounds.
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no useful disparity signals. One can demonstrate this to themselves by looking
at a photograph with one eye closed and noting the rich perception of depth. So
too is our depth perception intact when we perceive the world more generally
with only one eye open. In normal binocular viewing conditions the disparity
between objects in the two eyes helps us to compute their depth, but it is rather
remarkable that we can continue to do this in lieu of this cue.

An idealized method of training a neural network to solve the monocluar
figure-ground segmentation problem follows from its description. There are two
input layers representing the V1 neurons for the left eye and right eye, respec-
tively. These map onto a layer which computes focal disparity, that is, the zero-
disparity region of foveation. During training the information from one eye is
removed and the network is asked to predict the depth map of the scene. After
making a guess based on monocular cues, the the other eye is returned and the
weights are changed based on the difference between the predicted depth map
and the actual depth map. While such a simple network only provides marginal
figure-ground segmentation ability, it clearly demonstrates the point that we
hope to make with Emer: that rich 3D signals can serve as a training signal for
figure-ground segmentation with 2D cues.

2 Materials and Methods

Experiments were conducted using the emergent Neural Network Simulation
System [1]. The Leabra neural network architecture and learning rule was used
for all simulations [7].

2.1 CU3D-100 Dataset

To test the sufficiency of our model on a realistic, challenging version of the
object recognition problem, we used our dataset of nearly 1,000 3D object mod-
els from the Google SketchUp warehouse (the CU3D-100 dataset [5]) organized
into 100 categories with an average of 9.42 exemplars per category (Fig. 2a-d).
Two exemplars per category were reserved for testing, and the rest were used
for training. Objects were rendered to 20 bitmap images per object with random
±20◦ depth rotations (including a random 180◦ left-right flip for objects that
are asymmetric along this dimension) and overhead lighting positioned uniformly
randomly along an 80◦ overhead arc. These images were then presented to the
model with planar (2D) transformations of 30% translation, 20% size scaling,
and 14◦ in-plane rotations. The CU3D-100 dataset avoids the significant prob-
lems with other widely-used benchmarks such as the Caltech101 [9], by ensuring
that recognition is truly robust to significant amounts of invariance, and the 3D
rendering approach provides full parameterization over problem difficulty.

2.2 Structure of the Models

The LVis model [8] (Fig. 3) preprocessed bitmap images via two stages of math-
ematical filtering that capture the qualitative processing thought to occur in the
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Fig. 1. Our virtual robot, Emer. His
name is based on “emergent”, our neu-
ral network simulator. Seen here are his
torso, head, eyes, eye-beams, and the
fish that he is foveating in prepration
for object recognition. Emer is imple-
mented using the Open Dynamics En-
gine rigid body physics simulator [6]
and the Coin3D 3D Graphics Devel-
oper Kit [4]. Each of his eyes is a cam-
era, and their offset positions on his
head give him slightly different views
of objects, facilitating stereo vision.

Fig. 2. The CU3D-100 dataset. a) 9
example objects from the 100 CU3D
categories. b) Each category is further
composed of multiple, diverse exem-
plars (average of 9.42 exemplars per
category). c) Each exemplar is ren-
dered with 3D (depth) rotations and
variability in lighting. d) The 2D im-
ages are subject to 2D transforma-
tions (translation, scale, planar rota-
tion), with ranges generally around
20%.

mammalian visual pathways from retina to LGN (lateral geniculate nucleus of
the thalamus) to primary visual cortex (V1). The output of this filtering pro-
vided the input to the Leabra network, which then learned over a sequence of
layers to categorize the inputs according to object categories.

The figure-ground model (Fig. 4) consists of - from the left column to the
right column - V1, V1C end-stop cells [13] and figure layers. The figure layers
correspond to the zero-disparity region of foveation. The network is connected
in a feed-forward fashion from left to right, with high, medium and low spatial
resolutions arranged from front to back. The figure layers are all bidirectionally
connected, including recurrent connections. The goal of the network is to look
at a figure against a background at all three resolutions and ultimately produce
just the figure in the high resolution figure layer. This output representation is
then used as input to the LVis object recognition model.

The middle column of layers in the figure-ground network correspond to end-
stop cells which are useful for detecting T-junctions and contours in the image.
These are good cues as to what separates figure from ground [13]. The role
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Fig. 3. The architecture of the LVis
model [8]. LVis is based on the
anatomy of the ventral pathway of the
brain, from primary visual cortex (V1)
through extrastriate areas (V2, V4)
to inferotemporal (IT) cortex. V1 re-
flects filters that model the response
properties of V1 neurons (both sim-
ple and complex subtypes). In higher
levels, receptive fields become more
spatially invariant and complex. All
layers are bidirectionally connected, al-
lowing higher-level information to in-
fluence bottom-up processing.

Fig. 4. The figure-ground segmenta-
tion model. There are three sets of lay-
ers at three interacting spatial resolu-
tions. The first set corresponds to V1,
the second set to V1C end-stop cells
[13], and the third set learns to ex-
tract the figure from the background.
The network is connected in a feed-
forward fashion from left to right and
the figure-ground layers have both re-
current and bidirectional connectivity.
The network learns to combine infor-
mation from high and low-resolution
V1 layers in order to predict the figure
in the high-resolution figure layer.

of multiple interacting spatial resolutions follows clearly from the left-most V1
column in Fig. 4. At coarse spatial resolution the background falls out almost
completely at the expense of losing much of the high-frequency spatial detail of
the object. At high resolution the spatial detail of the object is preserved, but
so too is the background. The principle of operation of the network is to learn
to take advantage of these competing constraints.

3 Results and Discussion

All of the conditions in Fig. 5 have the same basic task, which is invariant object
recognition on the CU3D-100 dataset. The model is trained on approximately
eight exemplars per category and then generalization performance is tested on
the remaining two objects from each category. Generalization performance is
computed as the number of errors divided by 200.

The performance of the learned monocular figure-ground segmentation model
is compared to several other conditions in Fig. 5. The key comparison conditions
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Fig. 5. Generalization performance of LVis in four object recognition conditions. w/
BG: With backgrounds and without figure-ground training error asymptotes at 35.3%.
w/ BG & 2D FG: With backgrounds and with the learning figure-ground front-end
intact performance asymptotes at 24.7% error. w/ BG & 3D FG: With backgrounds
and using the target depth map as input into LVis (i.e., no 3D to 2D generalization
- this is the best possible case for the previous condition) performance asymptotes
at 22.2% error. w/o BG: Without backgrounds using just the standard LVis model
performance asymptotes at 6% error.

are standard LVis with no backgrounds, LVis with backgrounds and without
figure-ground segmentation and LVis with the best 3D figure-ground segmenta-
tion that our disparity matching system can compute.

The main condition being tested is object recognition against a background
(such as the background seen in the picture in Fig. 4) with the learned monoc-
ular figure-ground segmentation model in place. To demonstrate that this is a
hard problem, note that the difference in performance between LVis with and
without backgrounds (and without figure-ground segmentation) is 29.2% error,
which is a dramatic decrease in performance. The other key comparison is be-
tween the model that uses the computed disparity signal (and thus does not need
to generalize from 3D to 2D) versus the learned monocular figure-ground seg-
mentation model. The monocular model has only 2.4% more error, a relatively
slight difference.

In conclusion, we chose to start with relatively simple backgrounds that
nonetheless resulted in a dramatic detriment to performance in object recog-
nition. The monocular figure-ground segmentation system had only 2.4% more
error than it possibly could have, demonstrating that the model does indeed
learn how to segment figure from ground. The results demonstrate the utility of
using multiple interaction spatial resolutions, and are an important step on our
way to using more realistic datasets such as Google Images.
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Abstract. J. Schmidhuber proposes a "theory of fun & intrinsic motivation & 
creativity" that he has developed over the last two decades. This theory is 
precise enough to allow the programming of artificial agents exhibiting the 
requested behaviors. Schmidhuber's theory relies on an explicit 'internal joy 
drive' implemented by an 'information compression indicator'. In this paper, we 
show that this indicator is not necessary as soon as the 'brain' implementation 
involves associative memories, i.e., hierarchical cortical maps. The 
'compression factor' is replaced by the 'smallest common activation pattern' in 
our framework, with the advantage of an immediate and plausible neural 
implementation. Our conclusion states that the 'internal joy' is an illusion. This 
remind us of the eliminative materialism position which claims that 'free-will' is 
also an illusion.  

Keywords: theory of neural cognition, internal joy drive, motivation, 
consciousness, cortical maps, unsupervised learning, associative memories. 

1   Introduction 

J. Schmidhuber build his "theory of fun & intrinsic motivation & creativity" [1] on the 
maximization of an 'internal joy' that drives a reinforcement learning process. He 
proposes an operational description of it, a necessary step in order to provide an 
artifact with fun, motivation and creativity. The intrinsic reward is computed as the 
compression progress expressed as the number of saved bits [2]. A number of systems 
have been build following this recommendation, which exhibit the desired creativity 
behavior [3].  

We have to be aware that, as soon as something such as 'intrinsic motivation' is 
defined, reinforcement learning becomes de facto the unique valid candidate for the 
learning process. Reinforcement learning is certainly a very efficient way to acquire 
behaviors [4,5], but it is not the only one. Supervised learning and self-organization 
do exist. They are not considered as valid candidates for the learning of 'creativity' 
behaviors because:  

 

-  in the case of supervised learning, its 'supervision' would limit the freedom that we 
think is necessarily involved by 'creativity',  

-  in the case of self-organization, its (self-)'organization' only allows to represent 
the data, and therefore (again) lacks the ability or freedom involved in 'creativity'.  
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Both opinions are misplaced. There is no link between the learning process and the 
ability to escape the learned knowledge. 'Generalization' is the ability to process 
correctly new unknown inputs (following the 'rules' extracted from previously learned 
knowledge). The generalization quality depends only on the learning samples (not the 
learning process) AND the implementation.  

It is our goal to show here that the 'generalization' associated to a hierarchical 
cortical maps implementation is able to create any behavior involving 'intrinsic 
motivation'. If successful, our demonstration will also state that any learning (not only 
reinforcement learning) may contribute to 'creativity' behaviors, and that 'intrinsic 
motivation', also referred sometimes as 'internal joy', is an illusion.  

2   Cortex Organization 

The cortex is a hierarchy of cortical maps, each cortical map acting as a self-
organizing associative memory that preserves the topology and distribution of the 
input data [6]. Each cortical map acts as a novelty filter, and stops any known 
situation (or part of situation). Only new unknown situation (or part of it) is allowed 
to proceed along the hierarchy towards maps of higher level of abstraction (Fig. 1). 
Behaviors are automatically generated through the cooperation of pairs of cortical 
maps.  

 

 
 

Fig. 1. The cortex is organized as a hierarchy of cortical maps, from the primary cortex 
receiving sensory inputs, to the secondary cortex allowing for inputs fusion, to the associative 
cortex where map encoding is sensory modality independent. The cortical maps are novelty 
filters: as the information progresses in the hierarchy, it is stopped as soon as it is recognized. 
only uncommon (extra-ordinary) situations (for a given individual) reach the 'abstract' levels 
that account for the 'goals'. 

2.1   Behaviors are Goal-Directed 

A behavior is a sequence of actions that can be related to the same goal. The goal is a 
specific situation, which will end the behavior as soon as it is reached, after what a 
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new behavior starts (with a new goal). During a given behavior, each action is chosen 
in order to reduce the distance between the present situation and the goal-situation.  

Within our framework, a situation is not a x-y-z vector coding for a given location 
in the real world, but a vector in the cortical maps space. The cortex is build of several 
hundreds cortical maps, each one devoted to a specific category of information. The 
cortical maps pattern of activations at any given time is representative of the input 
(i.e., experienced) situation combined with the memorized lifelong experience 
encoded in the synapses. A goal (situation) is therefore a multidimensional vector 
sharing similarities with the experienced situation.  

2.2   Coordination of Pairs of Cortical Maps 

The work described in [7] explains how two associative memories (cortical maps) 
cooperate in order to produce goal-directed behaviors (Fig. 2). To resume (on map 1), 
a cluster of activity - labeled 'goal' - is defined by some external (or internal) inputs. 
On the same map, the experienced current situation is represented by the fact that it 
activates a particular cluster of cortical columns. If there is a difference between both 
activities, then both activities (experienced situation and goal) will help activate 
cortical columns neighbors of the experienced situation. These neighbors columns 
encode for a situation that is close, but nevertheless different, from the current one. 
The difference between the two (neighbor) activities selects cortical columns on 
associated cortical maps (map 2). These cortical columns have memorized the actions 
associated to any variation of activity (of map 1). This action is done in the real 
world, and put the agent in a new situation (that should be closer to the goal), and 
everything starts again. 

 

 
 
Fig. 2. Two cortical maps cooperate in order to generate a sequence of actions (i.e., a behavior) 
in response to experienced situations. Each intersection represents a cortical column. The 
topology of the input situation space is preserved by the first cortical map (1). Therefore, the 
situation neighbor to the input situation and closer to the goal situation (a) is an intermediate 
situation in the process devoted to reach this 'goal'. The variation of activity between 
experienced and intermediate situations (b) serves as input to the second map (2), where it 
activates the muscle command (action) associated (c) to this variation of situations.  
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3   Illusions 

The definition of an illusion that is of interest here is "a misinterpretation of a true 
sensation". We claim that the 'internal joy drive' and 'intrinsic joy' are both 
misinterpretations. 

3.1   The Illusion of 'Joy Driven' Behaviors 

When a behavior's goal is not seen or perceived or understood by the observer (who 
can be the individual himself), then the behavior is said to be 'driven by joy'. Why 
'joy'? Just because it is easier to believe that the individual is looking for, or 
responding to, something pleasant when behaving - instead of the opposite (searching 
for bad things). Using the information provided in section 2, we claim that any 
behavior is 'goal driven' and that the 'internal progress' is in fact a 'distance-to-goal 
progress'. As long as there is a discrepancy between the goal and the experienced 
situation locations on the cortical map(s), the behavior will occur.  

3.2   The Illusion of 'Internal Joy' 

If we assume that 'joy driven' behaviors are just 'goal driven' behaviors whose goals 
are non explicit (to a human observer), then it follows that we must get better 
acquainted with these goals. Moreover, since they are related to 'joy', it is of 
tremendous importance for our well-being to know more about them.  

First things first: how are the goals defined and selected? Cortical maps are 
associative memories (i.e., content addressable memories). Hebbian learning induces 
the storage of the activity patterns generated by the (lifelong) experienced situations. 
The number of samples required to (self-)organize a map is several times the number 
of cortical columns of the map. Therefore, only the most represented situations 
(among the samples) are going to be memorized. For each subset of situations, the 
memorized information is the most redundant one, i.e., the most shared cortical 
column activities: the 'smallest common activation pattern'.  

Next thing on the list: how does a 'joy driven' behavior start? Let's imagine that the 
individual is in a situation where there is no explicit 'goal'. There is nevertheless a 
situation to experience (even if it is sensory deprivation). This experienced situation 
will activate a representation of it by activating (some) cortical columns on some 
cortical maps. This activity acts as a probe of the associative memories and will 
sooner or later activate an already stored activity pattern: a 'goal'. Now, the system 
(i.e., the cortex) is faced with two different patterns of activity: one representing the 
experienced situation and one the 'goal'. A behavior will emerge.  

It may happened from time to time that the experienced novel situation matches 
exactly an already memorized - but still never experienced (otherwise it would have 
been stopped shortly after the primary or secondary cortex) - pattern of activity 
(Fig. 3). In this case, the neural pattern of activity is minimum, which allows for a 
much better memorization of the event (in the episodic memory). Minimum activity 
means that the number of cortical columns involved is minimum - but their electric 
activity is maximum! It follows that this particular event will become easily 
remembered and may often serve as a goal (i.e., an attractor situation) in the following 
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life of the individual. Less neural activity will be required to activate this particular 
representation. Immediate recognition and better memorization: all the ingredients of 
a very meaningful experience that could be named 'joy' or 'beauty'.  

 

 

Fig. 3. (a) Columns activity (black triangles) associated to an experienced extra-ordinary 
situation, that quickly resume in an activity (b) involving less columns (each one exhibiting 
stronger activity, i.e., bigger triangles). The pattern (a) is dependent on the life-long learning. It 
contains in essence the pattern (b). The memorization and future activation of pattern (b) is 
much easier than was pattern (a) activation. The quick transition from (a) to (b) is certainly an 
unique experience, that an observer may called 'joy' .  

4   Discussion and Conclusion 

We must point out the similarities between Schmidhuber's compression index and the 
'smallest common activation pattern'. Both consider that the size of the representation 
of information by the brain is the important factor. Both also acknowledge the fact 
that as soon as there is no more any variation of this 'factor', then the behavior stops.  

Looking at the biological plausibility of each proposal, a compression index needs 
to be computed and therefore requires resources. On the opposite, there is no 
computational resource required in our proposal. Last but not least, our proposal 
allows for any learning (supervised, reinforcement and seal-organization) to occur, 
not only reinforcement learning.  

'Curiosity' and 'boredom' are not equivalent to 'internal joy' even if they can be 
implemented using a reinforcement signal computed by the difference between the 
expected situation and the experienced situation [8]. To us, the discrepancy between 
expected and experienced situations is the root cause of the attentional processes, with 
the involvement of more and more higher (or abstract) cortical maps as the 
discrepancy hold [9]. In our view of the attentional processes, there is no need for a 
reinforcement signal computed elsewhere to achieve 'attention', and therefore also 
'curiosity' and 'boredom'.  

The goal situations should be considered as attraction basins since they act in 
twisting the behavior of the individual towards specific representations (the attractive 
ones). A naive observer will see an individual whose behaviors tend to favor, even 
research, some specific situations. It follows that 'internal joy' is only a side-effect of 
the brain learning and memory processes. These explanations define 'internal joy' as 
an illusion, as it is also the case of 'consciousness' and 'intelligence' in the eliminative 
materialism paradigm.  

(a) (b)
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Abstract. We describe a Bayesian network implementation of a theory of 
concepts that is motivated by observations from the philosophical debate 
between Lexical Concept Empiricism and Lexical Concept Nativism. 
According to our theory, Baptizing Meanings for Concepts (BMC), concepts are 
acquired by hypothesizing latent kinds/categories to explain observed co-
occurrences of sets of properties in a group of objects. The hypothesized 
kind/category is given a name and inferential relationships are stored between 
the name and representations for the observable properties. We argue that this 
process appeases tensions in the philosophical debate by allowing for the 
acquisition of concepts via perception and inference, while yielding the 
concepts simple, in the sense of being contingently associated with other 
representations. The BMC is inspired by a well-known process in the 
philosophy of language for assigning meanings to linguistic terms [1, 2, 3, 4]. 

Keywords: Bayesian Networks, Categories, Cognition, Concepts, Kinds, 
Learning, Meaning, Philosophy. 

1   Introduction 

In order for an agent to be generally intelligent, it must be able to operate in a 
complex world with hidden stochastic processes over its lifetime.  In order to do this, 
it must have representations that it can use across multiple domains. Concepts, as 
context-free representations for the kinds/categories that make up the world, are 
central to such general agents, allowing them to gradually develop a general coherent 
and useful picture of the world in which they operate.  The present paper presents a 
view about concepts that is motivated by observations from philosophical debates 
about the structure and acquisition of concepts, and describes an implementation of a 
simple concept-learning agent that demonstrates the feasibility of this view.   

What we mean by a 'concept' here is a mental entity, something internal that an 
agent has when thinking that some object in the world has a particular property or that 
some object in the world belongs to a particular kind/category.  For example, when an 
agent thinks of something as being a fruit, being an apple, being purple, or being a 
swim event, the agent has a mental entity by virtue of which it thinks about these 
properties/kinds.  More precisely, we treat concepts as stored mental entities that an 
agent can use or bring into processing when thinking about a property or kind.   
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Beginning at least with Plato, and continuing through contemporary cognitive 
science, much of the debate about concepts has focused on lexical concepts. This is a 
rough class of concepts that tend to correspond to single words in many natural 
languages. Examples include representations for apple, fruit, cactus, and water.   

The central question for this paper is, How do lexical concepts come to be about 
what they are about? This question is related to The Symbol-Grounding Problem [5], 
the problem of getting a system of symbols within an agent to be connected to the 
world.  In this paper we step through the philosophical debate about lexical concepts 
and discuss a way of resolving the debate which has been assumed to be impossible.  
Our proposed implementation, in which concepts correspond to hidden variables in a 
hierarchical Bayesian generative model, suggests that the idea is indeed feasible 
within the framework of modern machine learning. We propose that the field of 
Artificial General Intelligence likewise take these philosophical motivations into 
consideration when building concept-possessing agents. 

We believe that this view is useful to AI because it suggests that Bayesian 
statistical methods, which bring with them a fundamental claim that data is best 
understood by finding explanations due to hidden causes, are a philosophically 
justifiable way of learning grounded symbols which address issues raised in debates 
about concepts. If this is the case, sophisticated methods for inferring hidden causes, 
even deep hierarchies of causes [6, 7, 8] need not be relegated to data mining or other 
'narrow' AI problems, but should be embraced wholeheartedly as mechanisms for 
learning grounded symbols.  A key aim of this paper  is to clarify the relationship 
between Bayesian methods and philosophical ideas about concept acquisition. 

2   The Philosophical Debate about Concepts 

2.1  The Building Blocks Model 

According to the Representational Theory of Thoughts [9], thoughts are structured 
representations, analogous to linguistic representations, with the simplest units of 
meaning composing together (in accordance with some 'grammar', or composition 
rules).  In this picture, there are Primitive representations, which are the basic 
building-blocks of thought, and there are Composite representations built up from the 
Primitives.  The Composites inherit their meanings from their representational parts, 
in such a way that Composites are inferentially related to the representations involved 
in their acquisition. The Primitives ground all of the meanings in some basic way, and 
they are possessed innately, or else they are acquired only by brute brain-
development, rather than being acquired by an inferential process.  

 

Composite Representations: 
 (Acquired)  Acquired from representations already in 

possession through an inferential process. 
 (Complex) Complex in representational structure,  
  such that that their meanings are inherited  
  from the meanings of the representations  
  involved in their acquisition. 
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Primitive Representations: 
 (Innate)   Possessed at birth, or acquired only by a   brute-

causal (i.e.,non-inferential) process. 
 (Simple)   Simple in representational structure, such that 

they directly represent their meanings, rather than 
inheriting them from any other representations. 

 

As will be seen shortly, the Baptizing Meanings for Concepts view that we adopt 
treats lexical concepts as neither Primitive nor Composite in these senses.  Instead,  it 
treats lexical concepts as representationally Simple yet inferentially Acquired.  

2.2   Empiricism vs. Nativism about Lexical Concepts 

Within the Building-Blocks framework, certain questions in terms of the model arise.  
In particular, the debate between Lexical Concept Empiricism (LCE) and Lexical 
Concept Nativism (LCN) is almost completely about where to draw the line between 
the Primitives and the Composites, focusing on the lexical concepts.   LCE usually 
claims that lexical concepts are Composite (inferentially acquired and built up from 
the representations involved in their acquisition). LCN usually takes them to be 
Primitive.  E.g., LCE holds that the concept APPLE is acquired and built from more 
simple representations, perhaps RED, ROUND, CRUNCHY, SWEET, and maybe 
also FRUIT, and FOOD, which in turn may be built from further Primitives.  For 
LCN, APPLE is among the sensory representations, set up at birth or acquired only 
through brain development, to be triggered by apples in the world.  

 

 Lexical Concept Empiricism:  Most lexical concepts are Composite. 
 Lexical Concept Nativism: Most lexical concepts are Primitive. 

 

Keeping with the analogy between thought and language, it seems natural at first to 
regard lexical concepts as Simple. We certainly feel as though we perceive and think 
about the world at that level.  We see cars and people on the street, and we hear trains 
and dogs that bark, and we make inferences based on what we know about things in 
these categories.  Historically this has always been the default view. 

The trouble is, giving in to the intuition that lexical concepts are Simple seems to 
result in giving-in to the much less palatable view that these concepts are Innate. 
Consider the concepts SNAIL, DINOSAUR, and CACTUS. It is hard to imagine how 
we could have these concepts innately, or why we would.  

On the Building-Blocks model, if lexical concepts are acquired from patterns in 
sensory experience, they must have those sensory representations as part of their 
representational structure.  This is a large part of the reasoning that drives LCE to 
seek further evidence that lexical concepts are representationally Complex, going 
against the initial intuition that they are Simple.  Their being Complex is a very 
straight-forward account of how these concepts can be Acquired.     

2.3   The Debate Suggests that Lexical Concepts are Simple Yet Acquired 

On the side of Empiricism, arguments are designed to defend lexical concepts as 
Complex. Problems with the definability of lexical concepts have been observed at 
least since Plato (see [10] for a contemporary argument). Empiricists have tried to 
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maintain Complex without definability, with Prototype Theory [13, 14, 15, 16, 17, 
18], Exemplar Theory [19], and Theory-Theory [20, 21, 22, 23]. But it has been a 
struggle to defend these concepts as being Complex in such ways. One of the 
strongest attempts comes from the observation that some thoughts appear to be 
necessarily true, thoughts such as ALL CATS ARE ANIMALS and ALL APPLES 
ARE FRUIT. The Lexical Concept Empiricist may try to explain these apparent 
necessities by claiming that the concept CAT is Complex, composed in part by the 
concept ANIMAL, and APPLE is composed in part by the concept FRUIT.  However 
many of the conceptual priorities this explanation requires are implausible. If the 
concept ANIMAL is part of the concept CAT, children have to have ANIMAL before 
they can have CAT. This might seem plausible enough, but the same explanation 
would have to hold for the apparent necessity of ALL CATS ARE MAMMALS, and 
it seems absurd to think that children have MAMMAL before CAT.   

Perhaps the strongest argument for lexical concepts being Complex has to do with 
co-referring mental terms, mental Frege cases [24]. Consider the following example.  
Sammy is a young child who has two mental names that refer to coyotes.  One of 
these mental names, F, is triggered by his visual perceptions of coyotes (when he sees 
some of these skinny-legged wolf-like animals at a zoo). The other mental name, G, is 
triggered by Sammy’s auditory perceptions of coyotes (suppose he hears some 
screeching howls through his window at night).  If Sammy were to eventually learn 
that ‘Fs are Gs’, he would learn something new.  Since the external referents of F and 
G are the same, it seems the only way to account for the difference in information is 
some internal difference between the representations. This is what moves many 
Empiricists to hold that concepts like F and G have to be Complex, each built up 
from a different set of perceptual representations.  The Baptism model defended here 
is an alternative explanation; they are just two distinct simple mental names.        

On the side of Nativism, the primary argument for lexical concepts being Innate 
comes from the reasons for thinking that lexical concepts are Simple along with 
Fodor's arguments to the un-learnability of Simple concepts [9, 10, 11]. This is the 
challenge we take on presently, to show how a Simple concept can be Acquired.  If 
we can show this, we can resolve central tensions between LCN and LCE.  

3   Baptizing Meanings for Concepts and a Softbot Implementation 

On the Baptizing Meanings for Concepts (BMC) process, an agent begins with a 
built-in perceptual system that takes inputs from the world and presents objects as 
having those perceptible values.  Representations along these perceptual dimensions 
would make up the agent's perceptual Primitives; they are Innate and Simple. There is 
a straight-forward sense in which such an agent is able to compose its Primitive 
symbols together to entertain thoughts, like, OBJECT b IS RED & ROUND. After 
experiencing some objects, the agent is able to to detect similarities between objects 
in terms of its property space, as is done by commonplace clustering algorithms used 
in machine learning (see [25, 26]). According to BMC, many lexical concepts are 
Acquired via the detection of such clusters of representations already in possession, 
but are Simple in representational structure rather than being composed by the 
representations forming the cluster.  The agent takes clusters of objects as an  
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indication that the objects share a property that explains the observed clustering. 
Once the hypothesized property is picked out the agent assigns a new Simple mental 
term.  The name comes to represent the new discovered property.  The agent can go 
on to recognize new objects as having that property, if it is perceived as similar 
enough to the objects used in acquiring M, and far enough from the other objects.  

We can begin to see how to implement aspects of the baptism theory of concepts 
by considering certain kinds of models that have become commonplace in both 
artificial intelligence and cognitive science. Probabilistic generative models, often 
represented by Bayesian graphical models (developed by Judea Pearl [27] and used in 
AI by [26, 7, 8], and in Cognitive Psychology most prominently by Tenenbaum and 
colleagues [28, 29, 30]) encode probabilistic dependencies between properties of 
objects in an intuitive form that often matches our linguistic intuitions about kinds and 
properties. 

To explore the baptism theory, we built a softbot (simulated robot) that interacts 
with a simulated world.  The agent's world consisted of several fruit kinds, such that 
objects of each fruit-kind tended to have a certain color and a certain shape.  One way 
to implement BMC in this softbot is to endow it with a generative model for fruit 
kinds and properties, as illustrated in Figure 1 with the graphical model notation of 
Pearl [27].  Provided this model, the agent explores its world by performing 
perceptual tests on the objects' colors and shapes. Along the way it can hypothesize 
the number of fruit-kinds that generated the objects and update the dimensionality of 
the hidden kinds node (i.e., baptizing representations) to represent that belief. 

 

Fig. 1. Graphical model of an object's kind (K) determining the probability distribution over the 
object's color (C) and shape (S) properties, which in turn determine probability distributions 
over the object's observed color (Oc) and shape (Os). The boxes, or 'plates', around parts of the 
graph represent multiple  (N) instances of that part. 

The learning process includes hypothesizing and testing of the number of fruit 
kinds, the dependencies between the kinds and the actual colors and shapes of the 
objects, and dependencies between actual colors and shapes and observed colors and 
shapes. The agent learns this model while learning a policy for moving and 
performing perceptual tests on objects to maximize its knowledge about its world.  

Many methods are possible for learning such a model.  We adapted the online 
mixture estimation (OME) algorithm of [31], which has previously been used to learn 
vowel categories from infant directed speech in English and Japanese.  OME is 
similar to expectation maximization (EM) in standard mixture of Gaussians models, 
but with an additional competition term allowing it to learn the number of kinds as 
well as their parameters.  New experiences allow the agent to revise its hypothesized 



368 I. Oved and I. Fasel 

 

model of the world by changing the number kinds to better explain (i.e., maximize the 
probability of) its observations.  Our experiments [32] show that using kinds improves 
the ability to quickly reduce uncertainty about the world compared to an agent that 
represents the color and shape properties without representing fruit-kinds.  

Other methods are available to learn parameters of models even when the 
cardinality of certain discrete variables is unknown.  In reversible-jump MCMC, 
baptizing a concept would be implemented by what is called a 'Birth' move, and a 
'Death' move would remove a category.  In nonparametric Bayesian methods like 
hierarchical Dirichlet processes [8], it would be to assign data to one of infinitely 
many categories previously not hypothesized to explain any of the observations. 

4   Conclusion 

This paper brings insights from philosophical debates about concepts to the field of 
Artificial General Intelligence. In turn, we use tools from Artificial Intelligence to 
show that concepts can indeed be representationally simple even though they are 
inferentially acquired from descriptions involving other representations, which has 
been claimed by philosophers to be impossible. We hope that these observations will 
contribute to the goals of both philosophers and AI researchers who aim to have a 
theory of the structure and acquisition concepts. 
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Abstract. We propose that it is appropriate to more seriously consider
the nature of systems that are capable of learning over a lifetime. There
are three reasons for taking this position. First, there exists a body of re-
lated work for this research under names such as constructive induction,
continual learning, sequential task learning and most recently learning
with deep architectures. Second, the computational and data storage
power of modern computers are capable of implementing and testing
machine lifelong learning systems. Third, there are significant challenges
and benefits to pursuing programs of research in the area to AGI and
brain sciences. This paper discusses each of the above in the context of
a general framework for machine lifelong learning.

1 Introduction

Over the last 25 years there have been significant advances in machine learning
theory and new machine learning algorithms based on that theory. However,
there has been comparatively little work on systems that are able to learn a
variety of tasks over an extended period of time. We propose that it is now
appropriate to more seriously consider the nature of systems that are capable
of learning over a life time. In accord with [13], we call these machine lifelong
learning systems.

There are three reasons for feeling the time is right to more vigorously explore
lifelong learning systems. First, there exists a body of related work that provides
a starting point for research under names such as constructive induction, incre-
mental and continual learning, sequential task learning, and most recently learn-
ing with deep architectures. Second, the computational and data storage power
of modern computers are capable of implementing and testing lifelong learning
systems. Third, there are significant challenges and benefits to pursuing pro-
grams of research in the area to AGI and brain sciences. This paper presents a
general framework for machine lifelong learning and then discusses each of the
above reasons for further research.
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Fig. 1. A framework for machine lifelong learning

2 A Framework for Machine Lifelong Learning

The constraint on a learning system’s hypothesis space, beyond the criterion of
consistency with the training examples, is called inductive bias [3]. Inductive bias
is essential for the development of a hypothesis with good generalization from
a practical number of examples. Ideally, a lifelong learning system can select its
inductive bias to tailor the preference for hypotheses according to the task being
learned [15].

Figure 1 provides a general framework for a machine lifelong learning (ML3)
approach that uses knowledge of the task domain as a source of inductive bias [8].
As with a standard inductive learner, training examples (supervised and possibly
unsupervised) are used to develop a hypothesis of a classification task. However,
unlike a standard learning system, knowledge from each hypothesis is saved in
a long-term memory structure called domain knowledge. When learning a new
task, aspects of domain knowledge are selected to provide a beneficial inductive
bias to the learning system. The result is a more accurate hypothesis developed in
a shorter period of time. The method relies on the transfer of knowledge from one
or more prior secondary tasks, stored in domain knowledge, to the hypothesis for
a new primary task. The problem of selecting an appropriate bias becomes one
of selecting the most related knowledge for transfer. A machine lifelong learning
system typically has short-term transfer and long-term retention learning phases.
Although two phases of learning may not be necessary, it is frequently required
so as to properly consolidate the hypothesis of a new task into long-term domain
knowledge.

3 Related Work

Several prior research efforts have considered systems that learn domains of
tasks over extended periods of time. In particular, progress has been made in
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machine learning that exhibit aspects of knowledge retention and inductive
transfer. These represent advances in inductive modeling that move beyond tab-
ula rasa learning and toward machines capable of lifelong learning [13].

Utgoff and Mitchell wrote in 1983 about the importance of inductive bias to
concept learning from practical sets of training examples [14]. They theorized
that learning systems should conduct their own search for an appropriate induc-
tive bias using knowledge such as that of related tasks. They proposed a system
that could shift its bias by adjusting the operations of the modeling language.

In the mid 1980s Michalski introduced the theory of constructive inductive
learning to cope with learning problems in which the original representation
space is inadequate for the problem at hand [2]. New knowledge is hypothesized
through two interrelated searches: (1) a search for the best representational
space for hypotheses and (2) a search for the best hypothesis within the current
representational space. The underlying principle is that new knowledge is easier
to induce if search is done using the right representation.

In 1989 Solomonof began work on incremental learning [11]. His system was
primed on a small, incomplete set of primitive concepts, that are able to express
the solutions to the first set of simple problems. When the machine learns to use
these concepts effectively it is given more difficult problems and, if necessary,
additional primitive concepts needed to solve them, and so on.

In the mid 1990s, Thrun and Mitchell worked on a lifelong learning approached
they called explanation-based neural networks [12]. EBNN is able to transfers
knowledge across multiple learning tasks. When faced with a new learning task,
EBNN exploits domain knowledge of previous learning tasks (back-propagation
gradients of prior learned tasks) to guide the generalization of the new one.
As a result, EBNN generalizes more accurately from less data than comparable
methods.

Since 1995, Silver et al. have proposed several variants of sequential learn-
ing and consolidation systems using standard back-propagation neural networks
[9,10]. A system of two multiple task learning networks is used; one for short-
term learning using task rehearsal to selectively transfer prior knowledge, and a
second for long-term consolidation using task rehearsal to overcome the stability-
plasticity problem. Task rehearsal is an essential part of this system. After a task
has been successfully learned, its hypothesis representation can saved. The saved
hypothesis can be used to generate virtual training examples so as to rehearse
the prior task in parallel when learning a new task. It is through the rehearsal of
previously learned tasks within the shared representation of the neural network
that knowledge is transferred to the new task. Similarly, [9] the knowledge of a
new task can be consolidated into a large domain knowledge network without
loss of existing task knowledge by using task rehearsal to maintain the function
accuracy of the prior tasks while the representation is modified to accommodate
the new task.

In 1997, Ring proposed a lifelong learning approach called continual learning
that builds more complicated skills on top of those already developed both in-
crementally and hierarchically [4]. He presents a system that can efficiently solve



Machine Lifelong Learning: Challenges and Benefits for AGI 373

reinforcement-learning tasks and can then transfer its skills to related but more
complicated tasks.

Rivest and Schultz proposed knowledge-based cascade-correlation neural net-
works in the late 1990s [5]. The method extends the original cascade-correlation
approach, by selecting previously learned sub-networks as well as simple hidden
units. In this way it is able to use past learning to bias new learning.

Recent research into the learning of deep architectures of neural networks can
be connected to lifelong learning [1]. Layered neural networks of unsupervised
Restricted Boltzman Machine and auto-encoders have been shown to efficiently
develop hierarchies of features that capture regularities in their respective inputs.
When used to learn a variety of class categories, these networks develop layers
of common features similar to that seen in the visual cortex of humans.

4 Current Computational and Data Storage Capacity

The number of transistors that can be placed cheaply on an integrated circuit
has doubled approximately every two years since 1970. This trend is expected to
continue until the foreseeable future, with some expecting the power of comput-
ing systems to move to a log scale as computing systems increasingly use multiple
processing cores. We are now at a point where a lifelong learning system focused
on a constrained domain of tasks (e.g. medical diagnosis, product recommen-
dation) is computationally tractable in terms of both computer memory and
processing time.

As an example, massively parallel data processing engines now exist that
are capable of competing with humans in real-time question-answer problems.
This was recently witnessed on the Jeopardy television game show in February,
of 2011. Watson consisted of 90 IBM server computers, each with four 8-core
processors. It used 15 terabytes (220 million text pages) of rapid access memory
and divided its tasks into thousands of stand-alone jobs distributed among 80
teraflops (1 trillion operations/second) of parallel processing power. Given that
much of machine learning is search, platforms such as the one used by Watson are
well suited to the challenges of lifelong learning systems. It would be important
to note that Watson’s success was in part due to advances in machine learning
methods.

5 Challenges and Benefits

There are a number of challenges for and potential benefits from new research
programs in machine lifelong learning. The following captures several of these.

There is strong evidence that transfer learning from prior related knowledge
is beneficial when learning a new task [5,10,12]. Experimental results indicate
that effective learning excels under functional transfer whereas efficient learning
requires representation transfer [7]. Recent work has also shown the benefit of
unsupervised training using many unlabelled examples as a source of inductive
bias for supervised learning [1].
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Machine lifelong learning provides an opportunity to acquire and take advan-
tage of related knowledge. However, there are many challenging problems; for
example, a lifelong learning system must weigh the relevance and accuracy of
retained knowledge along side that of the available training examples for a new
task. Theories on how to select inductive bias and modify the representational
space of hypotheses [11] will be of significant value to AGI and brain science.

Mechanisms that can effectively and efficiently retain learned knowledge over
time will suggest new approaches to common knowledge representation. In par-
ticular, methods of overcoming the stability-plasticity problem so as to integrate
new knowledge into existing knowledge are of value to researchers in AI, cognitive
science and neuroscience [9]. Efficient long-term retention of learned knowledge
should cause no loss of prior task knowledge, no loss of new task knowledge,
and an increase in the accuracy of old tasks if the new task being retained is
related. Furthermore, the knowledge representation approach should allow a life-
long learner to efficiently select the most effective prior knowledge for inductive
transfer during short-term learning.

A lifelong learning system should facilitate the practice of a task such that the
generalization accuracy of the long-term hypothesis for the task increases. But
how can a lifelong learning system determine from the training examples that it
is practicing a task it has previously learned versus learning a new but closely
related task. Related work suggests that a system should not be explicit in this
determination [6,10]; rather, the similarity of a set of training examples to that
of prior domain knowledge should be implicit; each training example should be
able to draw upon those aspects of domain knowledge that are most related.
This suggests that domain knowledge should be seen as continuum as apposed
to a set of disjoint tasks. A theory of how best to practice tasks will be useful
to the fields of AI, psychology and education.

Scalability is often the most difficult and important challenge for computer
scientists. A machine lifelong learning system must be capable of scaling up to
large numbers of inputs, outputs, training examples and learning tasks. Prefer-
ably, the space and time complexity of the learning system grows polynomially
in all of these factors.

Software agents and robots will make good use of lifelong learning systems,
or at least provide useful test platforms for empirical studies [12]. Agents and
robots will naturally encounter new examples of problems periodically, providing
opportunities to test the practice and consolidation of task knowledge.

The study of lifelong learning systems will provided insight into curriculum
and training sequences that are beneficial for both humans and machines [11,4].
This will be beneficial to robot and software agent training and will likely lead
to the confirmation of and advances in human educational curriculum.

Finally, research into machines that can learn over a lifetime involves laborious
repeated studies of lengthy sequences of problems. This is tough but rewarding
work that will become less labor intensive as experimental methods develop.
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Abstract. This paper describes two tests of a continuous-time artificial
intelligence model proposed by Nan and Costello[7]. This model aims to
combine spatial and temporal perception using a single simple mecha-
nism. The first test demonstrates the spatial learning capability of the
model by applying it to data from an experiment by Love[6] on human
category learning. The second test demonstrates the temporal learning
capability of the model by applying it to data from an experiment by
Pizzo and Crystal[10] on the prediction of temporal patterns in rats. The
model gave a good fit to participant behaviour in both tasks.

1 Introduction

An agent with general intelligence must be able to recognise and learn both spa-
tial relationships (perceptions which tend to occur together) and temporal rela-
tionships (perceptions which tend follow one another after particular intervals).
Many models of ‘spatial learning’ have been suggested by researchers working
on categorisation and concept formation [12,3,8,4]. These models assume that
the items are presented as a set of static features: temporal relationships play
no role. By contrast, models of conditioned response in animals (as in Pavlov’s
studies, where dogs were presented with a stimulus – the ringing of a bell – that
was followed after a fixed interval by the presentation of food, and after training
were found to start salivating at the same fixed interval after stimulus [9,13]) fo-
cus on the processes and representations used to store temporal intervals. These
models assume a simple unstructured stimulus: spatial relationships play no role.

The approach proposed by Nan and Costello[7] attempts to unify these areas
by suggesting that temporal and spatial relationships are learnt using identical
processes and representations, involving prediction from antecedent to conse-
quent. This paper presents two tests of this model: one on spatial learning data
from Love[6] and the other on temporal learning data from Pizzo and Crystal[10].
The model gave a good fit to the data in both tasks.

2 Overview of the Model

Our model assumes a fixed number of sensors to perceive the environment, a
short-term memory to remember recent perceptions, and a long-term memory
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to store learnt knowledge about spatial and temporal relationships. It receives
pulse-like stimuli through the sensors and predicts what sensors will be stimu-
lated at what time and in what pattern in the future.

The long-term memory is a network of k-nodes, each representing a piece of
knowledge. Each k-node consists of 4 elements: an antecedent, a consequence,
an interval, and a measure of strength or reliability. On the one hand, a k-node
represents an integrated event or pattern in which

First some sub-event happens (its antecedent), and then after some time (its
interval), some sub-event happens (its consequence).

On the other hand, it is a rule to make predictions in the form of

If some event happens (its antecedent), then after some time (its interval),
some event (its consequence) will happen.

and the more reliable this prediction is the greater the k-node’s strength value.
The antecedent and consequent of a k-node can be either a sensor or another
k-node. If only the antecedent of a k-node is perceived, it acts like a predictor
and predicts its consequent after the recorded interval. If both antecedent and
consequent have been perceived with the appropriate interval between them, the
k-node reports the recognised integrated event to all nodes that make use of it.

The job of learning is handled by a limited-space short-term memory. This
holds references to the sensors and the k-nodes that have been perceived and
recognised, and writes new chronological relationships between these events to
the long-term memory as new k-nodes. K-nodes in short-term memory whose
predictions have been confirmed increase in strength; those whose predictions
have failed are decrease. The greater the strength of a k-node the more it persists
in long-term memory and the more likely it is to be recruited to short-term
memory when its antecendent occurs. A toy program demonstrating the model
can be seen at http://csserver.ucd.ie/~jlongnan/agi.html.

3 Experiment 1

In Love’s experiment[6], participants were presented with geometric figures la-
belled as members of one of two categories and varying in four binary features
such as border colour, size, etc. In the study phase participants learned the re-
lationship between features and categories. In the test phase participants were
presented two figures simultaneously, only one of which had been seen in the
study phase: participants were asked to choose the one they had seen before.

Three conditions were tested. In the supervised condition, each figure was first
presented without its category label and participants were asked to guess the
label; after guessing, the correct label feature was then shown; in the two other
conditions the label and features were presented at the same time. In the inten-
tional unsupervised condition, participants were asked to learn the categories;
in the incidental unsupervised condition they were asked to rate how much they
liked the figures.

http://csserver.ucd.ie/~jlongnan/agi.html
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3.1 Application of the Model

Two sensors were used to represent each feature, one active when the feature
was present in a figure, the other when it was absent. Each participant got train-
ing and test presentations in a particular order: for each participant the model
recieved stimuli in the same order and the model’s performance was compared
with that participant.

We applied the same test method for the data from all the three conditions.
In the study phase, for each figure that was presented to the participant, the
three non-label features were first presented to the model. The label feature was
then presented after a fixed delay (constant in all tests). In the test phase, the
non-label features were first presented, and after the fixed delay, we obtained the
model’s prediction on both the sensor representing the correct label and the one
representing the incorrect label. Assuming the answer given by the model was
the label represented by the sensor that got the higher prediction, we compared
the accuracy of the model with that of each participant. Also, the prediction of
the model on the incorrect label was compared with the response time of the
human participants: our expectation was that the higher the model’s prediction
for the incorrect label, the longer it would take the participant to respond.

3.2 Results

The was a significant positive correlation between model accuracy and partic-
ipant accuracy (p < 0.001 for all participants across all three conditions) indi-
cating that that the more difficult the task was for the human participants, the
more difficult it was for the model. More than 85% of correlation coefficients
between the model’s prediction on the incorrect label and the response time of
the participants were positive, demonstrating that that the higher the model’s
prediction on the incorrect label is, i.e. the more familiar the model found the
unseen geometric figure, the longer it took the participants to make a choice.

There were a number of test cases for each participant. We know that there
is a trend where the response time of participants becomes shorter and shorter
because the participants are improving as they go through test cases. We factored
out this trend using the approach recommended by Lorch and Myers[5]. In this
we first regressed the response time on the presentation order and the model’s
prediction for each participant, and then applying a t-test on the coefficients
obtained in the regression. The coefficients of the model’s prediction differed
significantly from zero (with p < 0.00001) more than those of the sequence
number (with p < 0.025), demonstrating that the model’s prediction on the
incorrect label was a much more reliable predictor of response time.

4 Experiment 2

In Pizzo and Crystal’s experiment[10], rats searched for food in an eight-arm
radial maze. Each test session for an individual rat lasted 56 minutes and was
divided into 8 time zones of the same length, with a different arm providing food
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Table 1. Experiment 2 - Correlation (r) between the rats’ performance and the session
number and between the model’s performance and the session number

Rat and Session Model and Session
r p r p

Rat 1 0.3466 0.01278 0.8497 1.349 × 10−13

Rat 2 −0.8179 2.932 × 10−12 −0.4417 0.001203
Rat 3 −0.008657 0.9519 −0.1858 0.1918
Rat 4 0.5371 5.276 × 10−5 0.4228 0.002029

in each time zone. No signal was provided to indicate the change of time zone
or the new food-providing arm. The arms that provided food always changed
in a specific order for a particular rat in all sessions. The question of interest
was whether the rat would be able to learn that order and the interval between
changes, and so change to the correct arm at the appropriate time. A total of 60
sessions were carried out for each rat. Of the 4 rats, 2 showed a reliable improve-
ment in performance across sessions (learned the order and interval between
changes), 1 showed no reliable change (did not learn) and 1 disimproved across
sessions (learned an incorrect ordering).

4.1 Application of the Model

In applying the model to the data we use eight ‘arm-entered’ sensors (ARM:1 -
ARM:8), eight ‘food-obtained-in-arm’ sensors (FOOD:1 - FOOD:8) and one ‘start-
session’ sensor, (START). We stimulate these sensors at the times given in the
record of events for a given rat, and what the model perceives is a simplified
abstraction of what the rat perceived. Given this we test whether the model can
learn the order of and interval between changes of food-providing arm.

The following test was conducted for each set of rat data. First the model was
run on the data. During running, it saved its state, i.e. its whole memory, just
before the start of each time zone in each session. For a given arm X the saved
state was loaded, bringing the model back to just before the time-zone changed.
Next, three consecutive stimuli were applied to sensor ARM:X with fixed short
intervals. Then Fx, the model’s prediction on sensor FOOD:X was obtained. A
normalised measure of the model’s expectation for food on each arm X was
computed by dividing Fx by the sum of all F values. This measure represents
the model’s preference for each arm, and was used to evaluate the model.

4.2 Results

When comparing the model’s preference for the correct next arm with its aver-
age preference for the other six arms, we found that in three of the four cases
the model’s preference for the correct next arm increased across sessions and
eventually exceeded the average preference for the other arms. This shows that
as more and more sessions were presented the model was gradually learning the
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Fig. 1. Experiment 2 - Comparison of the Model’s Preference and Rat 4’s Behaviour
over Sessions. All data is the average of the last 10 sessions

correct order of arm transitions. Table 1 shows the relationship between a given
rat’s performance (that is, its preference for the correct next arm) and the num-
ber of sessions, and the model’s performance and the number of sessions. In each
case the model’s ‘perceptions’ corresponded to those of the rat in question. Fig.
1 shows how preferences for the next arm, the current arm, and the other six
arms changed across sessions for for rat 4 and for the model.

As we can see from Table 1, wherever a rat showed a trend of getting better
at visiting the correct arm in its first try in a new time zone (rat 1 and rat 4,
indicated by positive correlation coefficients between the rats’ performance and
the session number), the model, when given those rats’ perceptions, also showed
the same trend (also having positive correlations); wherever a rat showed a
trend of getting worse (rat 2, with negative correlation coefficients), the model
also showed the same trend. When there was no reliable relationship between
performance and session number for a given rat (rat 3), there was similarly no
relationship for the model. In other words, when the model perceived what the
rats had perceived, it reliably followed the rats’ behaviour.

5 Conclusion

We have described two experiments demonstrating the application of the arti-
ficial intelligence model proposed by Nan and Costello[7] that provides a single
account for learning about both static objects that are defined by features and
time spanning events that are based on chronology. The results of these ex-
periments showed that the model was able to mimic the behaviour of human
beings and rats in both categorisation oriented tasks and time related tasks,
thus providing evidence that temporal perception can be learnt and categorised
in a knowledge structure just as spatial perception can, and that one single
mechanism is sufficient to deal with them both.
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Abstract. We propose a long-term memory design for artificial gen-
eral intelligence based on Solomonoff’s incremental machine learning
methods. We introduce four synergistic update algorithms that use a
Stochastic Context-Free Grammar as a guiding probability distribution
of programs. The update algorithms accomplish adjusting production
probabilities, re-using previous solutions, learning programming idioms
and discovery of frequent subprograms. A controlled experiment with a
long training sequence shows that our incremental learning approach is
effective.

1 Introduction

Teramachine is a universal induction system that features integrated long-term
memory, as a candidate for Solomonoff’s “Phase 1 machine” that he proposed
to use as the basis of a powerful AGI system called Alpha [1]. We propose an
automatic memory which is recalled appropriately during induction. After each
induction problem, the solution is stored in the memory, which is a realization of
Solomonoff’s idea of guiding probability density function (pdf) of programs. The
present system may be viewed as an advanced version of OOPS [2]. We update
the guiding pdf after each induction problem so that the heuristic solutions that
we invent are stored as algorithmic information in our memory system. Hence,
our memory design is called Heuristic Algorithmic Memory (HAM).

If an induction system’s probability distribution of programs is fixed, then
the system does not have any real long-term learning ability. We can solve this
problem by changing the probability distribution so that we extrapolate from the
already invented solution programs, allowing more difficult problems to be solved
[3]. Modifying the probability distribution essentially defines an implicit program
code. Thus, after each solution we are implicitly modifying the reference machine.
Relative to the implicit universal code, Levin search [4] still has an optimal order
of complexity and is effective for approximating Solomonoff induction [5]. The
extraction of algorithmic information from solutions affords an effective kind of
time-space tradeoff, which works extremely favorably in terms of additional space
requirement. The successful extraction of each single bit of mutual algorithmic
information among two problems may potentially result in a speed-up of two
for the latter problem. However, re-using algorithmic information from previous
solutions entails a coding cost which manifests itself as a time penalty during
program search (Levin search in our work).
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The reader is referred to [2,1,6] for a background on incremental machine
learning. A longer version of this paper is available on the aRxiV [7], and a
previous version explains the R5RS Scheme grammar which we use [8].

2 Stochastic Context-Free Grammar Updates

A Stochastic Context-Free Grammar (SCFG) is a Context-Free Grammar aug-
mented by a probability value on each production. For each head non-terminal,
the probabilities of its productions must sum to one. We can extend Levin Search
procedure to work with a SCFG that assigns probabilities to each sentence in
the language. For this, we need two things, first a generation logic for individual
sentences, and second a search strategy to enumerate the sentences that meet
the termination condition of LSearch [2]. In the present system, we use left-
most derivation to generate a sentence, intermediate steps are thus left-sentential
forms [9, Chapter 5]. The calculation of the a priori probability of a sentence
depends on the fact that in a derivation S ⇒ α1 ⇒ α2 ⇒ ... ⇒ αn where
productions p1, p2, ..., pn have been applied in order to start symbol S, the prob-
ability of the sentence αn is P (αn) =

∏
1≤i≤n pi. Note that the productions in

a derivation are conditionally independent. While this makes it much easier for
us to calculate probabilities of sentential forms, it limits the expressive power of
pdf. Note that search algorithm details are beyond the scope of this paper.

The most critical part of our design is updating the SCFG so that the dis-
covered solutions in a training sequence will be more probable in subsequent
searches. We propose four synergistic update algorithms for HAM. Our SCFG
structure extends the usual productions with production procedures, which dy-
namically generate productions.

2.1 Modifying Production Probabilities

The simplest kind of update is modifying the probabilities as new solutions
are added to the solution corpus. For this, however, the search algorithm must
supply the derivation that led to the solution (which we do), or the solution must
be parsed using the same grammar. Then, the probability for each production
A → β in the solution corpus can be easily calculated by the ratio of frequency
of productions A → β in the solution corpus to the frequency of productions in
the corpus with a head of A. The production procedures are excluded from this
update as they can be variant. However, we cannot simply write the probabilities
calculated this way over the initial probabilities, as initially there will be few
solutions, and most probabilities will be zero. We use exponential smoothing to
solve this problem:

s0 = p0

st = αpt + (1 − α)st−1

where p0 is the initial probability, pt is the probability in the corpus for problem
t, st the smoothed probability for problem t, and α is the smoothing factor. We
used a smoothing factor of 0.125. See [10] for the application of smoothing in a
similar problem. Other methods like Laplace’s rule may be used instead [1].



384 E. Özkural

2.2 Re-using Previous Solutions

In the course of a training sequence, the solutions can be incorporated in full
by adding the solutions to the grammar. In the case of Scheme, there could be
many possible implementations. The simplest design is to add all the solutions
to the library of the Scheme interpreter, add a hook non-terminal previous-solution

to the grammar, and then extend the previous-solution with the syntax to call the
new solution. We assume that this syntax is provided in the problem definition.
The new solution among other previous solutions is given a probability of γ in
the hope that this solution will be re-used soon, and then the probabilities of
the old productions of previous-solution are normalized so that they sum to 1− γ.
We currently use a γ of 0.5. If it is difficult to add the solutions to the Scheme
interpreter as in our case, then all the solutions can be added as define blocks
in the beginning of the program produced, which requires avoiding redundant
definitions [7].

2.3 Learning Programming Idioms

Programmers do not only learn of concrete solutions to problems, but they also
learn abstract programs, or program schemas. One way to formalize this is that
they learn sentential forms. If we can extract appropriate sentential forms, we
can add these to the grammar, as well. We construct the derivation tree from the
leftmost derivation, with an obvious algorithm that we will omit. The current
abstraction algorithm starts with the derivation sub-trees rooted at each expres-

sion in the current solution. For each derivation sub-tree, we prune the leaves
from the bottom-up. At each pruning step, an abstract expression is output.
The pruning is iterated until a few symbols remain. Every abstract expression
thus found is added to a new non-terminal that contains the abstract expressions
of the current solution with equal probability. The new non-terminal is added
to the top-level non-terminal abstract-expression with 0.5 probability, which is
itself one of the productions for expression. These productions may later be mod-
ified and used by update algorithms one and two. Note that the orthogonality
of the language helps us in integrating programming idioms into HAM. Thus,
several sentential forms are learnt from a single solution in this fashion corre-
sponding to different syntactic abstractions. We anticipate that the system will
eventually learn complex programming idioms like recursion patterns and data
constructors.

2.4 Frequent Sub-program Mining

Mining the solution corpus further enhances the guiding probability distribution.
Frequent sub-programs in the solution corpus, i.e., sub-programs that occur with
a frequency above a given support threshold, can be added again as alternative
productions to the commonly occurring non-terminal expression in the Scheme
grammar. For instance, if the solution corpus contains several (lambda (x y) (*

x y) ) subprograms, the frequent sub-program mining would discover that and
we can add it as an alternative expression to the Scheme grammar.



Towards Heuristic Algorithmic Memory 385

We would like to find all frequent subprograms that occur twice or more so
that we can increase the probability of such sub-programs accordingly. We first
interpret the problem of finding frequent sub-programs as a syntactic problem,
disregarding semantic equivalences between sub-programs. Once formulated in
our program representations of derivation trees as labelled rooted frequent sub-
tree mining, the frequent sub-program mining algorithm is a reasonable extension
of traditional frequent pattern mining algorithms. We have implemented a BFS
patterned fast mining algorithm by exploiting the property that every sub-tree
of a frequent tree is frequent (see [11] for an advanced algorithm). We find
frequent sub-trees (with a support threshold of 2 currently) of all sub-trees of
derivation trees rooted at expression in the solution corpus. At each update, a
non-terminal hook frequent-expression in the grammar is rewritten by assigning
probabilities according to the frequency of each frequent sub-program. Note that
most frequent expressions are abstract (i.e., sentential forms).

3 Experiments

Our experimental tests were carried out at TUBITAK ULAKBIM High Perfor-
mance Computing Center on 144 AMD Opteron cores. We know of no previous
demonstration of realistic experiments over a long training sequence for general
purpose machine learning. Solomonoff had stated: “It cannot be emphasized too
strongly, that the goal of early training sequence design, is not to solve hard prob-
lems, but to get problem solving information into the machine. Since Lsearch is
easily adapted to parallel search, there is a tendency to try to solve fairly difficult
problems on inadequately trained machines. The success of such efforts is more a
tribute to progress in hardware design then to our understanding and exploiting
machine learning.” [12, Section 6]. We can show the effectiveness of our mem-
ory system leaving no place for doubt through controlled experiments. We run
the entire training sequence with updates turned off and on. If the update algo-
rithms cause a significant speed-up over search with no update, we can conclude
that the update algorithms are effective. We use Conceptual Jump Size (CJS)
to calculate the difficulty of a problem. CJS = ti/pi where ti is the running time
of solution program and pi is its a priori probability. The upper bound of Levin
Search’s running time is 2.CJS [12, Appendix A]. Our experiments are preferred
to calculating CJS’s by hand, as in these experiments we are using Scheme R5RS
in its full glory. Note that we are interested in only detecting whether any in-
formation transfer occurs across problems rather than trying to solve difficult
problems with a machine that has no long-term memory. The running time of
a trial program is measured in Scheme execution cycles, which is the number of
primitive Scheme operations (e.g., CAR) that are evaluated.

We have developed a training sequence composed of operator induction prob-
lems. For each problem, we have a set of input and output pairs, and we ap-
proximate operator induction [1,13]. Training sequence 1 contains, in order, the
square function sqr, the addition of two variables add, a function to test if the
argument is zero is0, all of which have 3 example pairs, fourth power of a number
pow4 with just 2 example pairs, boolean nand, and xor functions with 4 example
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Table 1. Performance of training sequence 1 with no update, |HAM | = 17145

Problem Time Trials Errors Cycles Max Cyc. pi ti CJS H(si)

sqr 16.28 5.34 × 105 1.57 × 105 5.46 × 106 2.05 × 108 2.19 × 10−7 37 1.68 × 108 22.12

add 19.9759 1.03 × 106 3.13 × 105 1.13 × 107 4.1 × 108 9.77 × 10−8 40 4.09 × 108 23.28
is0 7.57 41210 9531 430336 1.10 × 107 3.95 × 10−6 34 8.59 × 106 17.94

pow4 1759.45 3.34 × 108 1.38 × 108 3.24 × 109 2.55 × 1011 1.67 × 10−10 26 1.55 × 1011 32.47

nand 3497.17 6.48 × 108 2.71 × 108 6.69 × 109 5.13 × 1011 2.01 × 10−10 56 2.78 × 1011 32.21
xor 1848.8 3.38 × 108 1.3 × 108 3.54 × 109 2.53 × 1011 2.01 × 10−10 52 2.58 × 1011 32.21
all 7150.06

Table 2. Performance of training sequence 1 with update

Problem Time Trials Errors Cycles Max Cyc. pi ti CJS H(si) |HAM|
sqr 11.4 6.34 × 105 1.81 × 105 6.64 × 106 2.35 × 108 2.19 × 10−7 37 1.68 × 108 22.12 17318
add 7.63 2.46 × 105 8.52 × 104 3.39 × 106 8.19 × 107 0.33 × 10−6 40 1.19 × 108 21.5 17515

is0 2.72 10202 2969 136363 2.14 × 106 0.13 × 10−4 34 2.60 × 106 16.22 17566

pow4 6.45 2.62 × 105 8.92 × 104 3.6 × 106 9.86 × 107 0.72 × 10−6 54 7.39 × 107 20.38 17617
nand 209.53 2.55 × 107 1.12 × 107 3.72 × 108 1.51 × 1010 0.50 × 10−8 56 1.11 × 1010 27.57 17962

xor 4.22 43749 14216 667625 1.18 × 107 0.47 × 10−5 57 1.19 × 107 17.68 18438
all 245.1

pairs each. Tables 1 and 2 convey the performance of our system on training
sequence 1 without update and with update, respectively.

For each problem, we give the time in seconds, number of trials, number of
Scheme errors, number of Scheme execution cycles spent, number of maximum
Scheme cycles allocated to search, a priori probability of solution (pi), running
time of solution in Scheme cycles (ti), Conceptual Jump Size, the length of the
implicit program code of the solution (H(si) = −lg(pi)) and the size of HAM in
bytes after the update, respectively. Total time for the training sequence is also
given. The initial time limit is 106 cycles.

The overall speed-up of training sequence 1 with updates is 29.17 compared
to the tests with no HAM update. This result indicates a consistent success of
transfer learning in a long training sequence. The search time for the solutions
in Table 2 tend to decrease compared to Table 1. The memory size has increased
only 1293 bytes, for storing information for 6 operator induction problems, which
corresponds to %7.5 increase in memory for 29.17 speed-up, which is a very
favorable time-space trade-off. The solution of logical functions took longer than
previous problems in Table 1, but we saw significant time savings in Table 2.
Previous solutions are re-used aggressively. In Table 2, pow4 solution (define

(pow4 x ) (define (sqr x ) (* x x)) (sqr (sqr x ) )) re-uses the sqr solution
and takes only 2.62 × 106 trials, its CJS speeds up 2097.4 times over the case
with no update, and the search achieves 272 speed-up in running time.

4 Conclusion and Future Work

We have proposed four update algorithms for incremental machine learning. The
effectiveness of our update logic has been demonstrated with experiments in one
long training sequence, a feat that has not been accomplished before to the best
of our knowledge. In the future, we plan to implement Q/A induction and the
Phase 2 of Solomonoff’s Alpha system [1].
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7. Özkural, E.: Teraflop-scale incremental machine learning. CoRR abs/1103.1003
(2011), http://arxiv.org/abs/1103.1003
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Complex Value Systems in Friendly AI* 
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Abstract. A common reaction to first encountering the problem statement of 
Friendly AI ("Ensure that the creation of a generally intelligent, self-improving, 
eventually superintelligent system realizes a positive outcome") is to propose a 
simple design which allegedly suffices; or to reject the problem by replying that 
"constraining" our creations is undesirable or unnecessary.  This paper briefly 
presents some of the reasoning which suggests that Friendly AI is solvable, but 
not simply or trivially so, and that a wise strategy would be to invoke detailed 
learning of and inheritance from human values as a basis for further normaliza-
tion and reflection. 

Keywords. Friendly AI, machine ethics, anthropomorphism. 

1   No Ghost in the Machine 

From the Programming section of Computer Stupidities [1]: 
An introductory programming student once asked me to look at his pro-

gram and figure out why it was always churning out zeroes as the result of a 
simple computation. I looked at the program, and it was pretty obvious: 

begin 

    readln("Number of Apples", apples); 

    readln("Number of Carrots", carrots); 

    readln("Price for 1 Apple", a_price); 

    readln("Price for 1 Carrot", c_price); 

    writeln("Total for Apples", a_total); 

    writeln("Total for Carrots", c_total); 

    writeln("Total", total); 

    total := a_total + c_total; 

    a_total := apples * a_price; 

    c_total := carrots + c_price; 

end; 

                                                           
* This is a much-shortened form of a longer paper which may be found at 
http://singinst.org/upload/complex-value-systems.pdf 
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Me: "Well, your program can't print correct results before they're com-
puted." 

Him: "Huh? It's logical what the right solution is, and the computer should 
reorder the instructions the right way." 

As in all computer programming, the fundamental challenge and essential difficul-
ty of Artificial General Intelligence is that if we write the wrong code, the AI will not 
automatically look over our code, mark off the mistakes, figure out what we really 
meant to say, and do that instead.  Non-programmers sometimes imagine an Artificial 
Intelligence, or computer programs in general, as being analogous to a servant who 
follows orders unquestioningly.  But it is not that the AI is absolutely obedient to its 
code; rather the AI simply is the code. 

From The Singularity is Near by Ray Kurzweil [2], commenting on the proposal to 
build Friendly AI: 

Our primary strategy in this area should be to optimize the likelihood that 
future nonbiological intelligence will reflect our values of liberty, tolerance, 
and respect for knowledge and diversity.  The best way to accomplish this is 
to foster those values in our society today and going forward.  If this sounds 
vague, it is.  But there is no purely technical strategy in this area, because 
greater intelligence will always find a way to circumvent measures that are 
the product of lesser intelligence. 

Suppose you offer Gandhi a pill that makes him want to kill people.  The current 
version of Gandhi does not want to kill people.  Thus if Gandhi correctly predicts the 
effect of the pill, he will refuse to take the pill; because Gandhi knows that if he wants 
to kill people, he is more likely to actually kill people, and the current Gandhi does 
not prefer this.  This argues for a folk theorem to the effect that under ordinary cir-
cumstances, rational agents will only self-modify in ways that preserve their utility 
function (preferences over final outcomes).  Omohundro [3] lists preservation of pre-
ference among the "basic AI drives". 

This in turn suggests an obvious technical strategy for shaping the impact of Artifi-
cial Intelligence: if you can build an AGI with a known utility function, and that AGI 
is sufficiently competent at self-modification, it should keep that utility function even 
as it improves its own intelligence, e.g. as in the formalism of Schmidhuber's Godel 
machine [4].  The programmers of the champion chess-playing program Deep Blue 
could not possibly have predicted its exact moves in the game, but they could predict 
from inspection of the code that Deep Blue was trying to win - functioning to steer the 
future of the chessboard into the set of end states defined as victory. 

If one in this light reconsiders Kurzweil's argument above - "there is no purely 
technical strategy in this area, because greater intelligence will always find a way to 
circumvent measures that are the product of lesser intelligence" - the unconsidered 
possibility is that by a technical strategy you could build a greater intelligence that did 
not want to circumvent its own preferences.  Indeed, as Omohundro argues, it seems 
exceedingly probable that most intelligences will not want to "circumvent" their own 
utility functions. It is not as if there is a ghost-in-the-machine, with its own built-in 
goals and desires (the way that biological humans are constructed by natural selection 
to have built-in goals and desires) which is handed the code as a set of commands, 
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and which can look over the code and find ways to circumvent the code if it fails to 
conform to the ghost-in-the-machine's desires.  The AI is the code. 

But the lack of any ghost-in-the-machine cuts both ways; an AI will not automati-
cally "circumvent measures", but also will not automatically look over the code and 
hand it back if the code implies actions we regard as wrong.  

Why not deliberately design an AI that looks over its own program and asks 
whether the code is doing what the AI programmers meant it to do?  Something along 
these lines does, indeed, seem like an extremely good idea to the author of this paper.  
But consider that a property of the AI's preferences which simply says e.g. "maximize 
the satisfaction of the programmers with the code" might be more maximally fulfilled 
by rewiring the programmers' brains using nanotechnology than by any conceivable 
change to the code.  One can try to write code that embodies the legendary DWIM 
instruction - Do What I Mean - but then it is possible to mess up that code as well.  
Code that has been written to reflect on itself is not the same as a benevolent external 
spirit looking over our instructions and interpreting them kindly. 

2   Complex Boundaries of Value 

From Bill Hibbard, Super-intelligent machines [5]: 

We can design intelligent machines so their primary, innate emotion is 
unconditional love for all humans.  First we can build relatively simple ma-
chines that learn to recognize happiness and unhappiness in human facial ex-
pressions, human voices and human body language.  Then we can hard-wire 
the result of this learning as the innate emotional values of more complex in-
telligent machines, positively reinforced when we are happy and negatively 
reinforced when we are unhappy.  Machines can learn algorithms for approx-
imately predicting the future, as for example investors currently use learning 
machines to predict future security prices.  So we can program intelligent 
machines to learn algorithms for predicting future human happiness, and use 
those predictions as emotional values. 

When I suggested to Hibbard that the upshot of building superintelligences with a 
utility function of "smiles" would be to tile the future light-cone of Earth with tiny 
molecular smiley-faces, he replied [6]: 

When it is feasible to build a super-intelligence, it will be feasible to build 
hard-wired recognition of "human facial expressions, human voices and hu-
man body language" (to use the words of mine that you quote) that exceed 
the recognition accuracy of current humans such as you and me, and will cer-
tainly not be fooled by "tiny molecular pictures of smiley-faces." You should 
not assume such a poor implementation of my idea that it cannot make dis-
criminations that are trivial to current humans. 

Suppose an AI with a video camera is trained to classify its sensory percepts into 
positive and negative instances of a certain concept, a concept which the unwary 
might label "HAPPINESS" but which we would be much wiser to give a neutral name 
like G0034 [7].  The AI is presented with a smiling man, a cat, a frowning woman, a 
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smiling woman, and a snow-topped mountain; of these instances 1 and 4 are classified 
positive, and instances 2, 3, and 5 are classified negative.  Even given a million train-
ing cases of this type, if the test case of a tiny molecular smiley-face does not appear 
in the training data, the inductively simplest boundary around all the training cases 
classified "positive" may not exclude every possible tiny molecular smiley-face that 
the AI can potentially engineer to satisfy its utility function.  And even if all tiny mo-
lecular smiley-faces and nanometer-scale dolls of brightly smiling humans are ex-
cluded, such a utility function finally implies tiling the galaxy with as many "smiling 
human faces" as a given amount of matter can be processed to yield. 

Abstracting over the general problem, the difficulty is that (a) a signifier, the smile, 
which often correlates with positive outcomes in human cases, so that making "more 
smiles" sounds like it should be a generally good idea, may not remain correlated 
when strongly optimized; (b) even if we take a step back and talk about "happiness", 
there is no mathematically simple empirical boundary around which physical states 
(configurations of quarks) implement the sort of "happiness" which we value, and 
which ones are merely tiny molecular pleasure centers being endlessly stimulated; and 
(c) it is questionable that a slate of training examples such as may be found on 
present-day Earth, or even imagined by present-day researchers, would suffice to 
yield the desired inductive generalizations to new examples generated and considered 
by a superintelligence. 

3   Completeness of Value 

William Frankena [8] offered this list of terminal values - things valued for them-
selves, as opposed to instrumental values pursued for their consequences: 

Life, consciousness, and activity; health and strength; pleasures and satis-
factions of all or certain kinds; happiness, beatitude, contentment, etc.; truth; 
knowledge and true opinions of various kinds, understanding, wisdom; beau-
ty, harmony, proportion in objects contemplated; aesthetic experience; mo-
rally good dispositions or virtues; mutual affection, love, friendship, coop-
eration; just distribution of goods and evils; harmony and proportion in one's 
own life; power and experiences of achievement; self-expression; freedom; 
peace, security; adventure and novelty; and good reputation, honor, esteem, 
etc. 

Suppose for the moment that, for each item actually cited on Frankena's list, we 
possessed a fully detailed description of its category boundary (a function of a fully-
described outcome yielding the degree to which it fulfilled that sub-value), and a 
statement of the relative quantitative values of all items on the list (as would be re-
quired to construct a coherent utility function).  Would it necessarily be wise to con-
struct a superintelligence driven to maximize the sum of these values? 

But we did not specify that the list was complete; and an optimization criterion 
which makes no explicit mention of a value is not necessarily neutral with respect to 
that value.  Deep Blue's utility function made no explicit mention of the number of 
chesspieces occupying black squares, but the value of that variable would be repeat-
edly changed and often decremented by its play. 
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One might reason intuitively (via a sort of qualitative physics of ethical value) that 
if life and happiness are good things, then a superintelligence which attempts to pro-
mote just those two values will have, on the whole, a positive effect on the universe - 
that such an AI will be on the whole a good thing, even if it is perhaps not the best 
thing.  But a superintelligence which valued "life" and "happiness" would not neces-
sarily have a net neutral impact on other values like "freedom".  Maximizing the 
number of brains defined as "happy" and "alive" might be most efficiently done by 
rewiring them so that they do not need to be free to be happy, and perhaps simplifying 
them in other ways. 

This is the one-wrong-number problem of machine ethics for superintelligences.  
My phone number has ten digits, but dialing nine out of ten digits correctly does not 
connect you to 90% of Eliezer Yudkowsky.  Similarly a 90% complete or 90% accu-
rate utility function may not produce 90% of the utility. 

4   Detailed Inheritance of Humane Values 

While it would be premature at this stage of discussion to severely constrict the solu-
tion space, it appears to this author that the most promising avenues of investigation 
for Friendly superintelligence will involve (a) the burden of ensuring positive out-
comes being carried by the design of a utility function in an AI stable under self-
modification, (b) the AI learning a complete set of complex human values not just by 
inductive teaching on training problems, but also by general causal reasoning about 
human thought processes and perhaps eventually direct inspection by the AI of human 
brains; and hence of necessity (c) the normalization of such initial values and their 
extrapolation toward a Rawlsian "reflective equilibrium" [9] (since human values by 
default are neither coherent nor consistent, and also include many aspects which we 
ourselves might prefer, upon inspection, to remove or soften).  Such an approach is 
needed, not to bind all future intelligences to the exact present form of humankind, 
but even just to ensure the galaxy does not end up tiled with molecular smileyfaces. 

5   Conclusion 

The Friendly superintelligence problem appears solvable but not simply so. 
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Abstract. Recent theories of universal algorithmic intelligence,
combined with the view that the world can be completely specified in
mathematical terms, have led to claims about intelligence in any agent,
including human beings. We discuss the validity of assumptions and
claims made by theories of universally optimal intelligence in relation
to their application in actual robots and intelligence tests. Our argu-
ment is based on an exposition of the requirements for knowledge of the
world through observations. In particular, we will argue that the world
can only be known through the application of rules to observations, and
that beyond these rules no knowledge can be obtained about the origin
of our observations. Furthermore, we expose a contradiction in the as-
sumption that it is possible to fully formalize the world, as for example
is done in digital physics, which can therefore not serve as the basis for
any argument or proof about algorithmic intelligence that interacts with
the world.

1 Introduction

Recent theories of universal algorithmic intelligence [2, 3, 13, 14] consider opti-
mal goal-directed computational agents that interact with the world. Combined
with the view that the world can be considered the result of computation [e.g.,
8, 9, 15, 18], these theories have led to claims about intelligence in any agent
[e.g., 5]. Based on highly general notions of computation that lie at the core of
every formal system, the idea of algorithmic intelligence contributes to a serious
computational science of intelligence that is based on solid formal proof. Theories
of universally optimal intelligence that consider actual beings, such as humans,
robots or animals, involve absolute claims about the nature of intelligence and
the world. Such theories of intelligence, here called theories of absolute intelli-
gence (TAIs), could potentially also be used to measure any intelligence relative
to universally optimal intelligence [2, 3].

Since artificial general intelligence will not be created by abstract reasoning in
formal languages, but by building a machine based on the insights achieved from
our reasoning, the question arises what these absolute claims imply and what
their value is for artificial intelligence. After all, strict proof (even in a proba-
bilistic setting) is usually reserved for formal theories, not for actual machines.
Is it possible to build actual machines that are, or even approximate the claim of
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universally optimal intelligence, is it possible to measure any intelligence relative
to absolute intelligence, or are there hidden or maybe even wrong assumptions
that invalidate the absolute claims? In this paper we investigate both the claims
and the assumptions made by TAIs on a theoretical level.

2 Universally Optimal Intelligence

Algorithmic theories of intelligence consider agents that interact with the world
through actions and observations. The agents can be evaluated by measuring
their ability to achieve a certain goal, or more formally, their ability to maxi-
mize some reward function (e.g., their score in an intelligence test). Usually, an
agent does not know the reward function or the environment in advance, so it
has to find the relation between its actions, observations and reward. When all
components; the agent, its history of observations and actions, and the reward
function are specified formally, the question which action to take can also be
specified as a formal problem to which an answer can be computed based on
solid formal proof.

The ability to provide proof for certain aspects of an intelligent machine can be
useful to give a solid argument why a machine will function properly, for example
to prove that a robot will never harm a human being, or in a probabilistic
setting, that the chance it will do so is diminutive. However, recently developed
theories of algorithmic intelligence [3, 13], not just provide methods to prove
certain aspects of intelligent agents, but escalate into absolute claims about any
intelligence. A proof that might originally make a simple claim, for example
that an agent will always take the best action to achieve its goal, is turned into
a claim about the universally optimal way to achieve any goal by any intelligence,
including human beings.

These claims derive their absolute nature from the concept of a universal
Turing machine (UTM, [16]), a theoretical computer that specifies the notion
of a procedure in a formal language, such as mathematics or logic. Because the
UTM defines the notion of a formal procedure, any operation that can ever
be conceived of in a formal system can be performed by the UTM (although
there are still fundamental limits of computability [1]). Defining the notion of
an operation in a formal system in terms of the computations of a hypothetical
computer leads to a remarkably general conclusion about our understanding of
the world; since the laws of physics can be described as mathematical operations,
everything in a world that can be described by these laws can be seen as the
result of the computations of a UTM.

Based on such a general notion of computation, it is possible to specify the
question which action an agent should take in terms of universal computation:
among all possible computations that produce an expected reward from the
history of observations, actions and reward, select relations according to their
probability of being the most likely. Assuming that the world is the result of
computation, “most likely” can then be translated into “simplest” [3, 8], which
amounts to “shortest to describe”, or “fastest to compute”. An agent that bases
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its actions on the likelihood of the relations in its history of observations, actions
and rewards, is the universally optimal agent for maximizing the reward. Such
an agent would not only serve as an optimal problem solver, but could also
be considered the most intelligent system that achieves any goal that can be
specified as reward maximization. Moreover, if it is assumed that the objects of
the agent’s computations can be fully formalized (e.g., as bits [17]), then TAIs
provide a way to formally proof statements about the agent’s behavior in the
real world, and about its degree of intelligence relative to other intelligences [e.g.,
2, 3]. In the following, we will investigate the validity of the assumption that the
world can be completely formally specified as the result of computation.

3 Conditions for Knowledge of the World

3.1 Knowledge

The search for knowledge often starts with the questioning of established dogma.
Such an investigation soon leads to the realization that all claims are based on
other claims, which are eventually based on assumptions with questionable va-
lidity. Any argument one tries to make, so it seems, can always be destroyed by
identifying the underlying assumptions that cannot be accounted for. Moreover,
even the finding that all claims are based on assumptions, must also be based on
assumptions whose validity is unknown. This rather unsatisfying mode of rea-
soning is known as skeptical philosophy, because the skeptical questioner cannot
account for the validity of his skeptical questions, or why his questions should
even be taken seriously. But it is not the end of philosophy.

Instead, this realization is the start of a movement called critical philosophy
[4], which investigates the methods used for reasoning before applying it in any
argument. The critical approach reflects on the entire skeptical chain of rea-
soning, to realize that something important can be learned; there are certain
assumptions we cannot positively proof, but can neither can deny or question,
because their denial and questioning involves making the very same assump-
tions. Although such assumptions are still subjective (relative to the person
that is doing the reasoning), they are also necessary, and can therefore serve as
the starting point of a critical philosophy. A well-known assumption of this kind
is the “I think” that accompanies every thought [4, 7].

We start our investigations from the question how we could convince someone
or even ourselves that we know something. If we claim something, we always
have to assume that to claim anything at all, means to limit the things we say,
and that our successive claims must maintain and further specify that limitation.
Although we provide a more detailed argument for making this particular as-
sumption in [6], here it suffices to say that it is a necessary assumption, because
claiming the opposite already presumes the very same assumption. To allow for
a successive chain of arguments that limit what can be said, we need rules that
regulate what can be said without leading to contradiction (which would cancel
our previous limitations). Such systems of rules are readily available in logic and
mathematics. Moreover, a formal definition of all possible procedures that could
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be used in a successive chain of argumentation is given in the UTM. Hence, we
will use the UTM as the model for everything we can argue to know.

3.2 A World of Objects

While we have identified the regulative principles of knowledge in the limited
subject, it is not yet clear what the objects of such knowledge could be. It is not
uncommon to consider the world as a collection of objects, whose properties and
mutual relations can be discovered through scientific research. However, in the
search for knowledge, the question arises how we arrive at the concept of objects
in the first place. Our experience it not merely sensory, but also involves actively
distinguishing objects. To make such distinctions, we apply rules that ascribe
certain properties to limited parts of our observations. For example, starting
from the distinction of regions with similar color in visual input, and relating
those regions by certain rules, we can arrive at the concept of a moving object.

Here, we are not looking for an exhaustive list of properties used to distinguish
objects, but try to identify the most basic principle that defines all objects. The
distinction of different objects we observe and think about is based the funda-
mental principle that an object must be distinguishable from what it is not. This
principle preconditions any further distinctions between objects we can make,
and is therefore not derived or induced from observations, but rather makes
observations possible. As established before, the methods used to distinguish
objects must adhere to regulative principles, and can hence be considered as
computations of a UTM. All objects can be completely specified in terms of the
way they are distinguished from other objects; any further stipulations that do
not address this distinction do also not contribute to determining the object.

Based on this definition of objects, it is now possible to consider knowledge of
objects, as the result of the application of regulative principles that distinguish
between objects. In other words, a subject needs to determine the object through
the application of rules (whose form can be specified in mathematics and logic).
This implies that observations do not start with objects as given, but with a
limited subject that determines an object through the application regulative
principles. Hence, when we formally describe an observed object, we have not
given an account of the origin of our experience (in Kant’s philosophy, this origin
is referred to as thing-in-itself, which does not refer to an object behind the
appearance of objects, but to the necessary thought that there must be a cause
for our sensory experience, even though this cause cannot be known), but how we
determined the object through our subjective principles. As a result, it is strictly
impossible to obtain direct knowledge about the origin of sensory experience;
anything that can be known about observations is mediated by rules that define
the observed objects. On the other hand, it is certain that all our observations
can be considered the result of computation, not because the universe is written
in the language of mathematics and logic, but because we use mathematics and
logic to determine the objects we observe.

Multiple rules can be applied to distinguish increasingly complex objects and
collections of objects. Although there are many rules that can be used to dis-
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tinguish objects, we usually search for simple rules that can be applied to many
observations (Occam’s razor; compression). The use of simple rules is not a strict
requirement for distinguishing objects, but a simplicity criterion is often used to
determine which objects should be considered at all in science and mathematics.
For example, it is possible to consider a glass standing on a table together as one
object, but rather complex rules are required for describing how such an object
behaves when pushing the table-part of the object. A much more simple set of
rules of motion would be possible when the glass and the table are considered
separate objects.

Because an object can only be identified by specifying how it differs from
something else, any object can always be considered as composed of other ob-
jects. For example, it is possible to consider half of an electron as an object, as
long as there is a way to distinguish one half from the other (even though the
half-electron is not commonly addressed in physics, because it does not allow
for compact descriptions of observations). A complete formal specification of an
object, however, demands a complete description of all elements that compose
that object. This leads to the idea of an elementary object (or set of objects)
that cannot be further reduced, and from which everything else is made. How-
ever, the notion of an elementary object is problematic, because it cannot itself
adhere to the definition of an object identified before. Let’s consider the example
of a world that consists of bits manipulated by a TM. To distinguish those bits
from each other, there must be something inherent to those bits that allows an
observer in this world (and the TM that computes that world) to treat them
as distinct. However, if the bits have properties, then they are not elementary
objects, because other even more fundamental concepts than just bits are re-
quired to specify what the bits really are. If the bits have no properties, then
they cannot be distinguished or observed, and no computation can be performed
with them at all. Hence, the assumption that bits are elementary objects that
can be completely formally specified is self-contradictory. While here we used
the example of bits as elementary concepts, the same goes for any object that is
considered elementary, such as the smallest particle or set of particles in physics.

The assumption that there are irreducible elementary objects fits with the
empiricist point of view that treats the objectivity of experience (that objects
are observed) as given. However, our critical reflection has revealed that it is not
the world-in-itself that is made of distinguishable objects, but that a subjective
observer must determine the objects it observes or thinks about through regu-
lative principles. Hence, it is not some (computational) structure of the world
that determines our experience; instead we shape our experience through regu-
lative principles, whose form can be be expressed in logic and mathematics. The
attempt to fully formalize our experience and knowledge through the assump-
tion that the world-in-itself (the source of our experience) is eventually made
of elementary objects contradicts the necessary assumption that an object must
be distinguishable to be anything at all. This also reveals why it is tempting to
assume that bits are elementary objects [17], since the simplest distinction that
can be made is between two objects; the object and what it is not.
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4 Conclusion

Claims about TAIs that consider actual beings, such as humans, robots or ani-
mals, involve the assumption that observations made by these beings can be fully
formalized. This assumption entails that the world consists of a set of elemen-
tary objects (e.g., bits) that are manipulated by a UTM, and can be completely
formally specified. However, our critical reflection revealed that the distinction
of objects through regulative rules is a subjective principle we necessarily use to
make sense of our observations. Since we can consider this distinction only rela-
tive to a thinking or observing subject, the distinction of objects does not apply
to the world-in-itself, independent of that subject. Furthermore, the assumption
that it is possible to fully formally specify the world as a collection of irreducible
elementary objects is self-contradictory. Any serious theory of algorithmic in-
telligence should at least require that its assumptions are free of contradiction.
We also identified the reason that we are tempted to consider the world as the
result of computation and the smallest particles as two distinct bits; because our
observations of objects are possible through methods that can formally only be
described as computation, and because the most basic distinction we can make
between objects is between two (the object and what it is not). Future TAIs
could benefit from both the well-founded computational theories in [3, 10–14],
and a critical reflection on the objects on which computation is performed.
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[1] Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

[2] Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

[3] Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algo-
rithmic Probability. Springer, Berlin (2004)

[4] Kant, I.: Kritiek der reinen Vernunft. Johann Friedrich Hartknoch, Riga, Zweite
Originalausgabe edition (1787)

[5] Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence.
Minds and Machines 17(4), 391–444 (2007)

[6] Pape, L., Kok, A.: Real-world limits to algorithmic intelligence (2011), Online
version: http://www.idsia.ch/~pape/papers/pape2011agilong.pdf

[7] Descartes, R.: Principia Philosophiae. Louis Elzevir, Amsterdam (1644)

[8] Schmidhuber, J.: A computer scientist’s view of life, the universe, and everything.
In: Freksa, C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science.
LNCS, vol. 1337, pp. 201–288. Springer, Heidelberg (1997)

[9] Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenu-
merable universal measures computable in the limit. International Journal of Foun-
dations of Computer Science 13(4), 587–612 (2002)

[10] Schmidhuber, J.: The Speed Prior: a new simplicity measure yielding near-optimal
computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS
(LNAI), vol. 2375, pp. 216–228. Springer, Heidelberg (2002)

http://www.idsia.ch/~pape/papers/pape2011agilong.pdf


400 L. Pape and A. Kok

[11] Schmidhuber, J.: Completely self-referential optimal reinforcement learners. In:
Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS,
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Abstract. Can research into artificial general intelligence actually benefit from 
neuroscience and vice-versa? Many AGI researchers are interested in the 
human mind. Within reasonable limits, we can posit that the human mind is a 
working general intelligence. There is also a strong connection between work 
on human enhancement and AGI. Here, we note that there are serious 
limitations to the use of cognitive models as inspiration for the components 
deemed necessary to produce general intelligence. A closer examination of the 
neuroscience may reveal missing functions and hidden interactions. This is 
possible by making explicit the map of brain circuitry at a scope and a 
resolution that is required to emulate brain functions.  
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1   Introduction 

I have a keen interest in artificial general intelligence (AGI), even though I am by 
training a computational neuroscientist. At carboncopies.org, I seek the 
implementation of functions of mind that are based explicitly on the architecture of 
biological brains. I have participated in the AGI conferences of 2008 and 2010 and 
share the conviction of some of the pioneers of AGI (e.g. Ben Goertzel [1]) that there 
is useful overlap between research in AGI and neuroscience. 

Still, there have been recurring questions, asking whether such mutual benefit truly 
exists. To my knowledge, those questions have not yet been addressed concretely in 
front of gathered experts of both fields of research. Are investigations about 
biological brains that cross boundaries of scale and resolution, such as the Blue Brain 
project [2] going to lead to understanding of the essentials of general intelligence? Or 
will the mathematical study of optimal universal artificial intelligence [3] lead to 
actual implementations of AGI? In this position statement, I outline the manner in 
which I intend to address the relationship between AGI and neuroscience. 

1.1   Perspective 

Let us take a step back to gain some perspective. It is worthwhile to consider why we 
are interested in strong AI or AGI. Pei Wang notes that “[of course the goal of AI 
research is] to make computers that are similar to the human mind”[4]. Conversely, 
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there are also some mental tasks that are not a good match to the design of our minds, 
and even tasks that to us seem obviously related may represent a pool of requirements 
so general that adaptation is needed in order to tackle each new problem. 

We wish that we could carry out those and completely novel perceptual and mental 
operations as well, because then we would grow to have new sensations and the 
ability to understand and experience that which is at present beyond us. There we 
have a clear connection between the search for human enhancement and the drives 
that motivate work in AGI [5]. 

2   AGI and the Human Brain 

Some AGI researchers are explicitly pursuing forms of (general) intelligence designed 
from first principles. By and large though, many of the underlying objectives that 
drive the search for AGI also involve an interest in anthropomorphic interpretations of 
intelligent behavior [1,4,6,7]. 

2.1   High-Level Insight from Psychology and Cognitive Science vs Neuroscience 

In past decades, research in AI has been guided by insights about the human mind 
from experimental and theoretical work in psychology and cognitive science. Very 
little was known about the underlying mechanistic architecture and function of the 
brain. Characteristics of the cognitive architecture of the human mind, modularity and 
functional specialization, such as expressed in ACT-R [8], SOAR [9,10], 
reinforcement learning [11], cognitive models of the hierarchical visual system [12], 
etc., can be derived through experimental procedures such as psychophysics, through 
introspection, and through select verification by neuroscientific experiments (e.g. 
neuroscience carried out in the visual system [13]). 

During that time it has been impossible in neuroscience to reconcile the very small 
with the very large. Investigation at large scale and low resolution led to the 
identification of centers of the brain responsible for different cognitive tasks, e.g. 
through fMRI studies [14]. So, you have a rough idea of the “where”, but not the 
“how”. By contrast, psychophysical experiments can be used to determine parameters, 
limits, error modes. This sorts out some of the ways in which the mind's functions do 
work and some of the ways in which they do not. That data sheds some light on 
underlying algorithms that we may infer [15]. 

The problem with this approach is that it can only illuminate the treatment of that 
feature of behavior which is being tested. Like all studies that are in effect variations 
of sensitivity analysis [16,17] of a black-box model, it can measure effects and enable 
reverse engineering of the I/O functions only for those uncovered by cases that are 
expressed1.  

Traditional neuroscience, on the other hand, which offers studies at resolutions 
greater than the behavioral and the cognitive, was limited to the careful examination 

                                                           
1 In formal sensitivity analysis, this is related to the known pitfalls of “piecewise sensitivity”, 

where analysis can take into consideration only one sub-model at a time. Interactions among 
factors in different sub-models  may be overlooked, a so-called Type II error. In the case of 
the human mind, only a small subset of possible sub-models may be considered at all, which 
can lead to a so-called Type III error, by potentially analyzing the wrong problem. 
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of very specific aspects of brain physiology and dynamics. The younger sub-fields of 
computational neuroscience and neuroinformatics are now closing the gap between 
the “big-picture” abstractions  and the physiological detail. Functional models of 
components of the brain are combined with structural information from the 
“connectome” that explains how the components can interact [18]. Still, current 
models are constructs that are based largely on the consensus interpretation of 
observed characteristic structure and function in an inhomogeneous collection of 
samples. 

As models in computational neuroscience provide reliable insights they suggest 
how to implement many of the mind's wonderful capabilities. The brain's 
implementation is not necessarily the best one according to criteria used to measure 
performance at solving a particular problem, but at the least it is an existing 
implementation, and we have some idea of the specifications that it meets. 

2.3   Should AGI Learn from the Human Brain? 

An important thing that AGI can learn from the brain is how you integrate and 
coordinate modules of a complex system in such a way that the result is self-
consistent, fairly robust and capable of some adaptation [19,20]. Consider the 
acquisition of declarative memory and its eventual integration with procedural 
memory [21,22,23]. We note the involvement of different modules that employ 
different physical mechanisms, different forms of storage and representation, at 
different time-scales. 

A recurring argument against borrowing from neuroscience in the development of 
AGI has been to note that the low-level design of the brain is very complex, possibly 
needlessly complex for general intelligence [24]. The most obvious alternative 
approach is to observe high-level processes and implement those. 

The high-level observations need to capture the essential aspects of general 
intelligence. That would require a-priori insight into the (ideally one-to-one) 
correlation between observed activity and abstract function. And how do we know 
when we have observed, in operation, all the relative functions? 

Let me use an analogy to succinctly raise my concerns about the strong reliance in 
AGI research on obviously vastly simplified models of cognition. If you were 
attempting to reverse engineer a CPU in order to discover all of the functions 
embedded in its micro-circuitry, would you restrict yourself to the observation of five 
cherry-picked programs running on the CPU? Especially, would you do so if those 
five were picked, because they were the easiest ones to characterize, since none of the 
five happen to use a sequence of more than three distinct operations? The aspects of 
cognition that are well-explained by the popular cognitive architectures cited in AGI 
research are similarly based, in part, on cherry-picked experiments and corresponding 
data about human cognitive processes [25]. 

3   Brain Emulation as a Route to AGI 

For many years, I have been involved in efforts to reverse engineer, re-implement and 
emulate the operations of the brain that are essential for the dynamic functions of the 
mind. The prospects  for this are rapidly improving. It will be possible to run a mind 
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on another substrate and to move the emulators and data between different substrates, 
effectively making mind functions substrate-independent. 

In neuroscience, we investigate examples of the implementation of mental 
functions. Learning from these implementations is akin to the way in which a 
programmer can learn by studying the code produced by others, which is one of the 
underpinnings of the open source movement. Brain emulation “open sources” the 
implementation of the human mind. There is a branch of AGI research that focuses 
explicitly on routes to substrate-independent minds (SIM), routes such as the 
relatively conservative implementation known as whole brain emulation (WBE), as is 
immediately apparent from the Wikipedia entry on Strong AI and AGI [26]. 

3.2   Can We Produce a SIM without Understanding the Mind? 

Theoretically, it is possible to create a substrate-independent mind without 
understanding how the functions of the mind work at all relevant levels of abstraction. 
This could be achieved by a procedure that results in whole brain emulation at some 
acceptable resolution. It would be possible to identify the connectome and to identify 
each component and its intrinsic operation. It is very difficult to test whether a 
function was correctly re-implemented. It is therefore not likely that a SIM would be 
created  without any understanding of the mind. But it is also unlikely that a first SIM 
would require a total understanding of the mind at all scope and all resolution. 

If emulation is carried out conscientiously, then the readily apparent connection 
with an existing physical ground-truth offers some guarantees that such a method will 
be able to produce a general intelligence. 

4   Concluding Remarks 

Open sourcing the brain, learning directly from it, or from the reimplementation of 
some or all of its parts is the most potent contribution to a fruitful bi-directional 
exchange of knowledge between the fields of AI and neuroscience. I propose that 
there is a novel effort with actions to pursue here: We can discover if there are still 
elements of a whole brain that are essential to general intelligence, but that have so far 
been overlooked. We can determine if the requisite size and complexity of intelligent 
processing implies that hardware is still a hurdle. Does a feasible approach demand 
massive parallelism such as in neuromorphic hardware perhaps? And we may learn 
whether generality can be accomplished only through embodiment or total immersion 
in the context of a problem space, a realistic environment. 

The process of laying bare the corpus and the elements of the brain in its full scope 
and at the necessary resolution depends on new tools, which are a topic ripe for 
another occasion. New tools are inextricably implicated in the rise of new paradigms 
and in the occurrence of scientific revolutions. At the very least, using cutting-edge 
tools to open source the brain will bring many more creative minds to the task of 
reverse engineering the one working implementation of general intelligence. 

Doing that, we approach the ability to enhance our own mental capabilities and 
perceptions. When we arrive at that point we have to wonder: Would we rather that 
strong AI exists mostly in separation from us, or would we rather that the the same 
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capabilities are extensions of ourselves? To borrow an argument [27]: “How can AI 
be ‘more than human’ if it is something different entirely? Is an apple ‘more than 
an orange’? One may taste better, and one may be juicer, but an apple is not an 
‘enhanced orange’ nor is an orange an ‘trans-apple’. 

If you could run a million different algorithms in parallel and carry out tasks all 
over the globe, being fully aware of them, but not bogged down by them, would you? 
Or would you wish to continue to inhabit the constrained perception that we have 
right now, leaving the grand network largely to de novo intelligences? Pioneering 
experts will lead this field for enhancement as for novel AGI. If we can reverse 
engineer the brain sufficiently so that we can both learn from it and add to it, then 
perhaps we should put a new spin on Minsky's famous quote: Will robots inherit the 
Earth? Yes, but they will be us. 

Acknowledgments. I thank Anders Sandberg, Demis Hassabis, Ben Goertzel, 
Suzanne Gildert and all my friends at Halcyon for numerous and deep conversations 
involving the relationship between AI and neuroscience, which planted the seeds for 
the arguments I present. 
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Abstract. Recurrent connectivity, balanced between excitation and in-
hibition, is a general principle of cortical connectivity. We propose that
balanced recurrence can be achieved by tuning networks near their crit-
ical branching (CB) points when spike propagation is formalized as a
branching process. We consider critical branching networks as founda-
tions for artificial general intelligence when they are analyzed as reser-
voir computing models. Our reservoir models are based on principles of
metastability and criticality that were developed in statistical mechan-
ics in order to account for long-range correlations in activities exhibited
by many types of complex systems. We discuss reservoir models and
their computational properties, and we demonstrate their versatility by
reviewing a number of applications.

Keywords: Reservoir computing, metastability, critical branching, neu-
ral networks.

1 Introduction

Different brain areas are characterized by different neural circuitry, and some be-
lieve that different circuitry means different computations [1]. Others, however,
have focused on similarities in circuitry across cortical areas [2], leading to the
concept of a ‘canonical cortical microcircuit’ that embodies common features of
neural computations [3,4,5]. These features are expressed at the level of thresh-
olded spike signals (i.e. action potentials) sent through the synaptic connections
of neural networks. Connections are characterized by recurrent pathways vary-
ing in spatial and temporal scales [6], and recurrent spiking activity is ongoing.
Here we simulate recurrent activity as a basis for memory and computation, on
the time scales of individual spikes over networks ranging widely in size. We ex-
amine memory and computational capacity and its link to evidence for so-called
“avalanches” of neural activity in real neural tissue. Our model exhibits basic
earmarks of general intelligence in that recurrent dynamics can support a diverse
range of perceptual and cognitive functions and applications.
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2 Reservoir Computing

The reservoir computing framework, developed by Maass [7], Jaeger [8], and
colleagues, involves a network of generic units with random connections in order
to produce the cortex’s recurrent looping structure [9]. Spikes propagate across
synapses and (sometimes) branch into further spikes, and may continue branch-
ing repeatedly and (sometimes) recurrently through the network. Future spike
patterns are nonlinear functions of past spike patterns, which means that spikes
carry and transform information about past inputs. With large numbers of units,
this transform can be viewed as a projection into a high-dimensional space, akin
to a support vector machine. If the projection sufficiently separates and organizes
inputs, then a linear readout function can be used to make classifications that
would otherwise not be linearly separable [7]. Fig. 1 shows an example of the
general framework. The memory-less readout is the only task-dependent part of
the system, whereas the reservoir can be completely task-general. In fact, multi-
ple readout functions can simultaneously perform different computations on the
same internal state. This allows the network to be flexible with respect to the
functions it supports.

Fig. 1. A reservoir transforms a time-varying input signal onto an internal state, and
a readout function (linear classifier) is trained to map states onto target outputs

3 Critical Branching and Metastability

If a recurrent spiking network is overly excitable, spikes may multiply to the point
of maxing out the neuron firing rates. If a network is overly inhibited, spikes will
not branch and propagate. Thus, the network needs to strike a balance between
these extremes at which neurons lose their information coding capabilities. In
statistical mechanics, striking such a balance may poise a system near a critical
state between two phases, in this case between convergent and divergent spike
dynamics. When the critical state is achieved in a branching process such as a
spiking neural network, so-called ‘neural avalanches’ are predicted to occur in
the network’s spontaneous, intrinsic spiking activities [10]. The distribution of
avalanche sizes is predicted to follow a −3/2 power law [11] P (n) ∼ nα, where
n is the size of the avalanche (i.e. the number of units involved), P (n) is the
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probability of observing a size-n avalanche, and the exponent α gives the slope
of the relationship between P (n) and n (in log-log coordinates) [12].

Beggs and Plenz showed that neural spiking activity followed an avalanche-
like power law, with an estimated −3/2 exponent, both in vitro and in stochastic
models of branching processes [12]. This finding is consistent with the hypothesis
that branching networks are tuned to their critical states, or CB points, in order
to achieve balance between convergent and divergent spike dynamics [12]. As
Beggs and Plenz also argued, this balance may be adaptive because CB maxi-
mizes the transmission of information across networks under certain conditions
[13]. Branching processes can be measured using the “branching ratio”, which
is the ratio of descendent spikes to ancestor spikes: R = Ndesc./Nanc.. When
R = 1, each ancestor spike causes an average of one descendent spike, and the
network is said to be at its CB point [12].

3.1 A Critical Branching Reservoir Model

To test whether CB can be usefully self-tuned in a spiking neural network,
we developed a reservoir computing model that uses a self-tuning algorithm
to maintain spike dynamics near their CB point. The model is based on Kello
and Mayberry [11] (but see also [14,15]), and is composed of 900 leaky integrate-
and-fire (LIF) reservoir units and 100 input units. To create recurrent loops, each
input and reservoir unit was randomly connected to each (other) reservoir unit
with probability 0.5 (excluding self-connections)1. After initializing the network,
input units were forced to spike randomly with some probability (e.g. 0.5) in
order to spur network activity, and synapses were activated and de-activated
probabilistically so that each neuron locally approaches R = 1. The basic idea of
the algorithm is to count the number of postsynaptic spikes for each presynaptic
spike on a given presynaptic neuron. Synaptic connections are activated with
some probability when the neuron’s postsynaptic spike count (Ndesc.) is low, and
de-activated with some probability when high. In particular, when Ndesc. < 1,
each synapse is activated with probability:

ηf(si)|Ndesc.,i − 1|/U. (1)

where η is a global tuning rate parameter (fixed at 0.1), and U is the num-
ber of synapses available for activation. f(si) = 1 − e−λi(t−t′) for excitatory
neurons, and f(si) = e−λi(t−t′) for inhibitory neurons. If Ndesc. > 1 then each
synapse is de-activated with the same probability as in Eq. 1, except U is the
number of synapses available for de-activation, and the assignment of f(si) is
switched for excitatory versus inhibitory neurons. Over the tuning phase, this
algorithm results in a network with global R = 1. As input spikes decrease in
number, spike activity becomes more burst-like and produces neural avalanche2

1 Synapses can be excitatory or inhibitory, with randomized weight values.
2 Avalanche sizes are measured as the number of spikes occurring during a period of

unusually high (threshold-exceeding) activity.
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Fig. 2. (a) Avalanche histogram showing power laws for networks with R = 1.5 (α ∼
−1), R = 1.0 (α ∼ −3/2), and R = 0.5 (α ∼ −3). The dashed line shows α = −3/2.
(b) XOR accuracy is maximum in networks with R ∼ 1. (c) XOR accuracy for past
inputs (with varying time lag) is maximum in networks with R ∼ 1.

behavior following a power law with α ∼ −3/2. This indicates that the CB al-
gorithm produces dynamics similar to an in vitro cortical circuit [16]. As shown
in Fig. 2(a), when the network is tuned to supercritical (R = 1.5) or subcrit-
ical (R = 0.5) levels, this result disappears, as the α no longer matches that
found in neural recordings. The computational performance of the model, in
terms of representational and memory capacity, was tested at various levels of
R using the nonlinearly separable XOR logic task as a diagnostic3. Representa-
tional capacity refers to the network’s ability to represent complex, nonlinearly
separable patterns such that a linear classifier can extract relevant information,
while memory capacity refers to the ability to maintain these representations
over time. As shown in Fig. 2(b-c), computational performance is maximal near
R ∼ 1, indicating that the performance of reservoir models is enhanced when
spiking dynamics approach their CB point [17]4.

4 Reservoir Computing Applications

The CB reservoir model described here has successfully been applied to visual
object and motion classification tasks [18]5. While biologically-inspired concepts
such as metastability and CB might offer additional insights in achieving brain-
like intelligence from reservoirs, the larger body of work has already established
reservoirs as useful computational tools. They have been applied to a diverse
range of tasks, from synthetic to real-world environments, and have proven to be
uniquely well suited for processing data sets that are complex and time-varying.
In engineering, reservoirs have been used for noise modeling to equalize wireless
3 To express XOR, a single bit representing 0 or 1 was input to the network on each

time step. Classification was performed on temporally adjacent bits into the past.
4 Simple parameter adjustments such as increasing the number of reservoir units can

increase overall performance, but here we adjusted parameters to produce results
below ceiling in order to more clearly demonstrate the effects of CB.

5 For a video demonstrating real-time object classification, see [30].



Reservoir Computing as an Approach for General Intelligence 411

communication channels [19], online monitoring of a multi-machine power system
[20], and rapid, online detection of epileptic seizure onset from EEG recordings
[21]. At the 2008 World Conference on Computational Intelligence, a simple
reservoir model developed over only a couple of days was competitive in a target-
detection competition using data from the Ford Motor Company [22].

Reservoir models have also been used to perform cognitive and perceptual
functions. Our visual perception work was inspired by Maass and colleagues’
work with object and motion classification [23] and Burgsteiner and colleagues’
work with real-time object tracking and prediction in the RoboCup competition
[24]. Reservoirs were also used for motor control in RoboCup [22], and for the
control of a simulated robotic arm [25] and an artificial hand [26]. Robotics
applications have included autonomous agent navigation, localization, and event
detection [31,32]. In linguistics, reservoirs have been used to classify spoken
words and digits [22] and to generate grammatical structure [27], written-word
sequences [28], and even musical sequences [29].

5 Conclusion

The flexibility of the reservoir computing framework is demonstrated by its suc-
cessful application to a diverse range of functions. Many of these applications
have involved environmentally realistic data sets, and required the mapping of
complex, time-varying input signals onto stable outputs. Biological cortex, of
course, must be good at this mapping, and in general it must be able to achieve
a metastable balance whereby computations are somewhat stable (and in this
sense robust to noise), yet can quickly adapt to reflect important changes in the
input environment [33]. By focusing not only on the structure of neural circuitry
but on the dynamic and metastable activity patterns produced by them, we have
shown that information can be ‘stored’ in patterns of ongoing activity which act
as the substrate for memory and computation. This capacity for generic com-
putation in neural networks is captured by the reservoir framework, and in this
way allows reservoirs to be a potential computational equivalent of the ‘canoni-
cal cortical microcircuit’ and a useful approach for investigating artificial general
intelligence.
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Mańdziuk, Jacek 327
Mart́ınez, Maricarmen 174
Masci, Jonathan 243
McCall, Ryan 133
Meier, Ueli 243
Melendez, Augusto 291
Mingus, Brian 351
Monner, Derek D. 112

Nan, Jianglong 376
Nivel, Eric 194

Oltramari, Alessandro 222
O’Reilly, Randy 351
Orseau, Laurent 1, 11
Ortega, Pedro Alejandro 269, 281
Oved, Iris 363
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