
On the Generation of Positivstellensatz

Witnesses in Degenerate Cases�

David Monniaux1 and Pierre Corbineau2

1 CNRS, VERIMAG
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Abstract. One can reduce the problem of proving that a polynomial is
nonnegative, or more generally of proving that a system of polynomial
inequalities has no solutions, to finding polynomials that are sums of
squares of polynomials and satisfy some linear equality (Positivstellen-
satz). This produces a witness for the desired property, from which it is
reasonably easy to obtain a formal proof of the property suitable for a
proof assistant such as Coq.

The problem of finding a witness reduces to a feasibility problem
in semidefinite programming, for which there exist numerical solvers.
Unfortunately, this problem is in general not strictly feasible, meaning
the solution can be a convex set with empty interior, in which case the
numerical optimization method fails. Previously published methods thus
assumed strict feasibility; we propose a workaround for this difficulty.

We implemented our method and illustrate its use with examples,
including extractions of proofs to Coq.

1 Introduction

Consider the following problem: given a conjunction of polynomial equalities, and
(wide and strict) polynomial inequalities, with integer or rational coefficients,
decide whether this conjunction is satisfiable over R; that is, whether one can
assign real values to the variables so that the conjunction holds. A particular
case is showing that a given polynomial is nonnegative.

The decision problem for real polynomial inequalities can be reduced to quan-
tifier elimination: given a formula F , whose atomic formulas are polynomial
(in)equalities, containing quantifiers, provide another, equivalent, formula F ′,
whose atomic formulas are still polynomial (in)equalities, containing no quanti-
fier. An algorithm for quantifier elimination over the theory of real closed fields
(roughly speaking, (R, 0, 1, +,×,≤) was first proposed by Tarski [27,30], but this
algorithm had non-elementary complexity and thus was impractical. Later, the
cylindrical algebraic decomposition (CAD) algorithm was proposed [7], with a
doubly exponential complexity, but despite improvements [8] CAD is still slow
in practice and there are few implementations available.

Quantifier elimination is not the only decisionmethod.Basu et al. [2,Theorem3]
proposed a satisfiability testing algorithm with complexity sk+1dO(k), where s is
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the number of distinct polynomials appearing in the formula, d is their maximal
degree, and k is the number of variables. We know of no implementation of that
algorithm. Tiwari [31] proposed an algorithm based on rewriting systems that is
supposed to answer in reasonable time when a conjunction of polynomial inequal-
ities has no solution.

Many of the algebraic algorithms are complex, which leads to complex imple-
mentations. This poses a methodology problem: can one trust their results? The
use of computer programs for proving lemmas used in mathematical theorems
was criticized in the case of Thomas Hales’ proof of the Kepler conjecture. Sim-
ilarly, the use of complex decision procedures (as in the proof assistant PVS1)
or program analyzers (as, for instance, Astrée2) in order to prove the correct-
ness of critical computer programs is criticized on grounds that these verification
systems could themselves contain bugs.

One could formally prove correct the implementation of the decision procedure
using a proof assistant such as Coq [12, 20]; but this is likely to be long and
difficult. An alternative is to arrange for the procedure to provide a witness of
its result. The answer of the procedure is correct if the witness is correct, and
correctness of the witness can be checked by a much simpler procedure, which
can be proved correct much more easily.

Unsatisfiability witnesses for systems of complex equalities or linear rational
inequalities are already used within DPLL(T ) satisfiability modulo theory deci-
sion procedures [17, ch. 11] [10]. It is therefore tempting to seek unsatisfiability
witnesses for systems of polynomial inequalities.

In recent years, it was suggested [21] to use numerical semidefinite program-
ming to look for proof witnesses whose existence is guaranteed by a Positivstel-
lensatz [16,26,29]. The original problem of proving that a system of polynomial
inequalities has no solution is reduced to: given polynomials Pi and R, derived
from those in the original inequalities, find polynomials Qi that are sums of
squares such that

∑
i PiQi = R. Assuming some bounds on the degrees of Qi,

this problem is in turn reduced to a semidefinite programming pure feasibility
problem [6,32], a form of convex optimization. The polynomials Qi then form a
witness, from which a machine-checkable formal proof, suitable for tools such as
Coq [12] or Isabelle [11], may be constructed.

Unfortunately, this method suffers from a caveat: it applies only under a
strict feasibility condition [22]: a certain convex geometrical object should not
be degenerate, that is, it should have nonempty interior. Unfortunately it is
very easy to obtain problems where this condition is not true. Equivalently, the
method of rationalization of certificates [13] has a limiting requirement that the
rationalized moment matrix remains positive semidefinite.

In this article, we explain how to work around the degeneracy problem: we
propose a method to look for rational solutions to a general SDP feasibility
problem. We have implemented our method and applied it to some examples

1 http://pvs.csl.sri.com/
2 http://www.astree.ens.fr/

http://pvs.csl.sri.com/
http://www.astree.ens.fr/
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from the literature on positive polynomials, and to examples that previously
published techniques failed to process.

2 Witnesses

For many interesting theories, it is trivial to check that a given valuation of the
variables satisfies a quantifier-free formula. A satisfiability decision procedure
will in this case tend to seek a satisfiability witness and provide it to the user
when giving a positive answer.

In contrast, if the answer is that the problem is not satisfiable, the user has
to trust the output of the satisfiability testing algorithm, the informal meaning
of which is “I looked carefully everywhere and did not find a solution.” In some
cases, it is possible to provide unsatisfiability witnesses : solutions to some form
of dual or auxiliary problem that show that the original problem had no solution.

2.1 Nonnegativity Witnesses

To prove that a polynomial P is nonnegative, one simple method is to express
it as a sum of squares of polynomials. One good point is that the degree of the
polynomials involved in this sum of squares can be bounded, and even that the
choice of possible monomials is constrained by the Newton polytope of P , as
seen in §3.

Yet, there exist nonnegative polynomials that cannot be expressed as sums of
squares, for instance this example due to Motzkin [24]:

M = x6
1 + x4

2x
2
3 + x2

2x
4
3 − 3x2

1x
2
2x

2
3 (1)

However, Artin’s answer to Hilbert’s seventeenth problem is that any nonneg-
ative polynomial can be expressed as a sum of squares of rational functions.3

It follows that such a polynomial can always be expressed as the quotient
Q2/Q1 of two sums of squares of polynomials, which forms the nonnegativity
witness, and can be obtained by solving P.Q1 − Q2 = 0 for Q1 �= 0 (this result
is also a corollary of Th. 1).

2.2 Unsatisfiability Witnesses for Polynomial Inequalities

For the sake of simplicity, we shall restrict ourselves to wide inequalities (the
extension to mixed wide/strict inequalities is possible). Let us first remark that
the problem of testing whether a set of wide inequalities with coefficients in a
subfield K of the real numbers is satisfiable over the real numbers is equivalent to
the problem of testing whether a set of equalities with coefficients K is satisfiable
over the real numbers: for each inequality P (x1, . . . , xm) ≥ 0, replace it by

3 There exists a theoretical exact algorithm for computing such a decomposition for
homogeneous polynomials of at most 3 variables [15]; we know of no implementation
of it and no result about its practical usability.
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P (x1, . . . , xm) − μ2 = 0, where μ is a new variable. Strict inequalities can also
be simulated as follows: Pi(x1, . . . , xm) �= 0 is replaced by Pi(x1, . . . , xm).μ = 1
where μ is a new variable. One therefore does not gain theoretical simplicity by
restricting oneself to equalities.

Stengle [29] proved two theorems regarding the solution sets of systems of
polynomial equalities and inequalities over the reals (or, more generally, over
real closed fields): a Nullstellensatz and a Positivstellensatz ; a similar result was
proved by Krivine [16]. Without going into overly complex notations, let us state
consequences of these theorems.

Let K be an ordered field (such as Q) and K ′ be a real closed field containing
K (such as the real field R), and let X be a list of variables X1, . . . , Xn. A∗2

denotes the squares of elements of A. The multiplicative monoid generated by A
is the set of products of zero of more elements from A. The ideal generated by
A is the set of sums of products of the form PQ where Q ∈ K[X] and P ∈ A.
The positive cone generated by A is the set of sums of products of the form
p.P.Q2 where p ∈ K, p > 0, P is in the multiplicative monoid generated by A,
and Q ∈ K[X]. Remark that we can restrict P to be in the set of products of
elements of A where no element is taken twice, with no loss of generality.

The result [9, 18, 19] of interest to us is:

Theorem 1. Let F>, F≥, F=, F�= be sets of polynomials in K[X], to which we
impose respective sign conditions > 0, ≥ 0, = 0, �= 0. The resulting system is
unsatisfiable over K ′n if and only if there exist an equality in K[X] of the type
S + P + Z = 0, with S in the multiplicative monoid generated by F> ∪ F ∗2

�= , P
belongs to the positive cone generated by F≥ ∪ F>, and Z belongs to the ideal
generated by F=.

(S, P, Z) then constitute a witness of the unsatisfiability of the system.4

For a simple example, consider the following system, which obviously has no
solution: {−2 + y2 ≥ 0

1 − y4 ≥ 0 (2)

A Positivstellensatz witness is y2(−2 + y2) + 1(1 − y4) + 2y2 + 1 = 0. Another
is

(
2
3 + y2

3

)
(−2 + y2) + 1

3 (1 − y4) + 1 = 0.
Consider the conjunction C: P1 ≥ 0∧· · ·∧Pn ≥ 0 where Pi ∈ Q[X1, . . . , Xm].

Consider the set Π of products of the form
∏

i Pwi

i for w ∈ {0, 1}n — that is,
the set of all products of the Pi where each Pi appears at most once. Obviously,
if one can exhibit nonnegative functions Qj such that

∑
Tj∈Π QjTj +1 = 0, then

C does not have solutions. Theorem 1 guarantees that if C has no solutions,
then such functions Qj exist as sum of squares of polynomials (we simply apply
the theorem with F> = F�= = ∅ and thus S = {1}). We have again reduced
our problem to the following problem: given polynomials Tj and R, find sums-
of-squares polynomials Qj such that

∑
j QjTj = R. Because of the high cost of

4 Another result, due to Schmüdgen [26], gives simpler witnesses for P1 ≥ 0∧· · ·∧Pn ≥
0 ⇒ C in the case where P1 ≥ 0 ∧ · · · ∧ Pn ≥ 0 defines a compact set.
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enumerating all products of the form
∏

i Pwi

i , we have first looked for witnesses
of the form

∑
Tj∈S QjPj + 1 = 0.

3 Solving the Sums-of-Squares Problem

In §2.1 and §2.2, we have reduced our problems to: given polynomials (Pj)1≤j≤n

and R in Q[X1, . . . , Xm], find polynomials that are sums of squares Qj such that
∑

j

PjQj = R (3)

We wish to output the Qj as Qj =
∑nj

i=1 αjiL
2
ji where αji ∈ Q

+ and Lji are
polynomials over Q. We now show how to solve this equation.

3.1 Reduction to Semidefinite Programming

Lemma 1. Let P ∈ K[X, Y, . . . ] be a sum of squares of polynomials
∑

i P 2
i .

Let M = {m1, . . . , m|M|} be a set such that each Pi can be written as a linear
combination of elements of M (M can be for instance the set of monomials in
the Pi). Then there exists a |M |× |M | symmetric positive semidefinite matrix Q
with coefficients in K such that P (X, Y, . . . ) = [m1, . . . , m|M|]Q[m1, . . . , m|M|]T ,
noting vT the transpose of v.

Assume that we know the Mj , but we do not know the matrices Q̂j . The equality
∑

j Pj(MjQ̂j(Mj)T ) = R directly translates into a system (S) of affine linear
equalities over the coefficients of the Q̂j :

∑
j(MjQ̂j(Mj)T )Pj − R is the zero

polynomial, so its coefficients, which are affine linear combinations of the coeffi-
cients of the Q̂j matrices, should be zero; each of these combinations thus yields
an affine linear equation. The additional requirement is that the Q̂j are positive
semidefinite.

One can equivalently express the problem by grouping these matrices into a
block diagonal matrix Q̂ and express the system (S) of affine linear equations
over the coefficients of Q̂. By exact rational linear arithmetic, we can obtain a
system of generators for the solution set of (S): Q̂ ∈ −F0+vect(F1, . . . , Fm). The
problem is then to find a positive semidefinite matrix within this search space;
that is, find α1, . . . , αm such that −F0 +

∑
i αiFi 	 0. This is the problem of

semidefinite programming: finding a positive semidefinite matrix within an affine
linear variety of symmetric matrices, optionally optimizing a linear form [6, 32].

For instance, the second unsatisfiability witness we gave for constraint sys-
tem 2 is defined, using monomials {1, y}, 1 and {1, y}, by:

⎛

⎜
⎜
⎜
⎜
⎝

2
3 0
0 1

3
1
3

0 0
0 0

⎞

⎟
⎟
⎟
⎟
⎠



254 D. Monniaux and P. Corbineau

It looks like finding a solution to Equ. 3 just amounts to a SDP problem.
There are, however, several problems to this approach:

1. For the general Positivstellensatz witness problem, the set of polynomials to
consider is exponential in the number of inequalities.

2. Except for the simple problem of proving that a given polynomial is a sum
of squares, we do not know the degree of the Qj in advance, so we cannot5

choose finite sets of monomials Mj . The dimension of the vector space for
Qj grows quadratically in |Mj|.

3. Some SDP algorithms can fail to converge if the problem is not strictly
feasible — that is, the solution set has empty interior, or, equivalently, is not
full dimensional (that is, it is included within a strict subspace of the search
space).

4. SDP algorithms are implemented in floating-point. If the solution space is
not full dimensional, they tend to provide solutions Q̂ that are “almost”
positive semidefinite (all eigenvalues greater than −ε for some small positive
ε), but not positive semidefinite.

Regarding problem 1, bounds on degrees only matter for the completeness of the
refutation method: we are guaranteed to find the certificate if we look in a large
enough space. They are not needed for soundness : if we find a correct certificate
by looking in a portion of the huge search space, then that certificate is correct
regardless. This means that we can limit the choice of monomials in Mj and
hope for the best.

Regarding the second and third problems : what is needed is a way to reduce
the dimension of the search space, ideally up to the point that the solution set
is full dimensional. As recalled by [22], in a sum-of-square decomposition of a
polynomial P , only monomials xα1

1 . . . xαn
n such that 2(α1, . . . , αn) lies within the

Newton polytope6 of P can appear [23, Th. 1]. This helps reduce the dimension if
P is known in advance (as in a sum-of-squares decomposition to prove positivity)
but does not help for more general equations.

Kaltofen et al. [14] suggest solving the SDP problem numerically and looking
for rows with very small values, which indicate useless monomials that can be
safely removed from the basis; in other words, they detect “approximate kernel
vectors” from the canonical basis. Our method is somehow a generalization of
theirs: we detect kernel vectors whether or not they are from the canonical basis.

In the next section, we shall investigate the fourth problem: how to deal with
solution sets with empty interior.

3.2 How to Deal with Degenerate Cases

In the preceding section, we have shown how to reduce the problem of find-
ing unsatisfiability witnesses to a SDP feasibility problem, but pointed out one
5 There exist non-elementary bounds on the degree of the monomials needed [19]. In

the case of Schmüdgen’s result on compact sets, there are better bounds [26].
6 The Newton polytope of a polynomial P , or in Reznick’s terminology, its cage, is the

convex hull of the vertices (α1, . . . , αn) such that xα1
1 . . . xαn

n is a monomial of P .
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crucial difficulty: the possible degeneracy of the solution set. In this section, we
explain more about this difficulty and how to work around it.

Let K be the cone of positive semidefinite matrices. We denote by M 	 0 a
positive semidefinite matrix M , by M 
 0 a positive definite matrix M . The
vector y is decomposed into its coordinates yi. x̃ denotes a floating-point value
close to an ideal real value x.

We consider a SDP feasibility problem: given a family of symmetric matrices
F0, Fi, . . . , Fm, find (yi)1≤i≤m such that

F (y) = −F0 +
m∑

i=1

yiFi 	 0. (4)

The Fi have rational coefficients, and we suppose that there is at least one
rational solution for y such that F (y) 	 0. The problem is how to find such a
solution.

If nonempty, the solution set S ⊆ R
m for the y, also known as the spectra-

hedron, is semialgebraic, convex and closed; its boundary consists in y defining
singular positive semidefinite matrices, its interior are positive definite matrices.
We say that the problem is strictly feasible if the solution set has nonempty
interior. Equivalently, this means that the convex S has dimension m.

Interior point methods used for semidefinite feasibility, when the solution set
has nonempty interior, tend to find a solution ỹ in the interior away from the
boundary. Mathematically speaking, if ỹ is a numerical solution in the interior
of the solution set, then there is ε > 0 such that for any y such that ‖y− ỹ‖ ≤ ε,
y is also a solution. Choose a very close rational approximation y of ỹ, then
unless we are unlucky (the problem is almost degenerate and all any suitable ε
is extremely small), then y is also in the interior of S. Thus, F (y) is a solution
of problem 4.

This is why earlier works on sums-of-square methods [22] have proposed find-
ing rational solutions only when the SDP problem is strictly feasible. In this
article, we explain how to do away with the strict feasibility clause.

Some problems are not strictly feasible. Geometrically, this means that the
linear affine space {−F0 +

∑m
i=1 yiFi | (y1, . . . , ym) ∈ R

m} is tangent to the
semidefinite positive cone K. Alternatively, this means that the solution set is
included in a strict linear affine subspace of R

m. Intuitively, this means that we
are searching for the solution in “too large a space”; for instance, if m = 2 and
y lies in a plane, this happens if the solution set is a point or a segment of a
line. In this case, some SDP algorithms may fail to converge if the problem is
not strictly feasible, and those that converge, in general, will find a point slightly
outside the solution set. The main contribution of this article is a workaround
for this problem.

3.3 Simplified Algorithm

We shall thus now suppose the problem has empty interior.
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The following result is crucial but easily proved:

Lemma 2. Let E be a linear affine subspace of the n × n symmetric matrices
such that E ∩ K �= ∅. F in the relative interior I of E ∩ K. Then it follows:

1. For all F ′ ∈ E ∩ K, kerF ⊆ kerF ′.
2. The least affine space containing E ∩ K is H = {M ∈ E | kerM ⊇ kerF}.

Suppose we have found a numerical solution ỹ, but it is nearly singular —
meaning that it has some negative eigenvalues extremely close to zero. This
means there is v �= 0 such that |v.F (ỹ)| ≤ ε‖v‖. Suppose that ỹ is very close to a
rational solution y and, that v.F (y) = 0, and also that y is in the relative interior
of S — that is, the interior of that set relative to the least linear affine space
containing S. Then, by lemma 2, all solutions F (y′) also satisfy v.F (y′) = 0.
Remark that the same lemma implies that either there is no rational solution in
the relative interior, or that rational solutions are dense in S.

How can finding such a v help us? Obviously, if v ∈ ⋂m
i=0 kerFi, its discovery

does not provide any more information than already present in the linear affine
system −F0 + Vect (F1, . . . , Fm). We thus need to look for a vector outside that
intersection of kernels; then, knowing such a vector will enable us to reduce the
dimension of the search space from m to m′ < m.

Thus, we look for such a vector in the orthogonal complement of
⋂m

i=0 kerFi,
which is the vector space generated by the rows of the symmetric matrices
F0, . . . , Fm. We therefore compute a full rank matrix B whose rows span the
exact same space; this can be achieved by echelonizing a matrix obtained by
stacking F0, . . . , Fm. Then, v = wB for some vector w. We thus look for w such
that G(y).w = 0, with G(y) = BF (y)BT .

The question is how to find such a w with rational or, equivalently, inte-
ger coefficients. Another issue is that this vector should be “reasonable” — it
should not involve extremely large coefficients, which would basically amplify
the floating-point inaccuracies.

We can reformulate the problem as: find w ∈ Z
m \ {0} such that both w

and G(ỹ).w are “small”, two constraints which can be combined into a single
objective to be minimized α2‖G(ỹ).w‖2

2 + ‖w‖2
2, where α > 0 is a coefficient

for tuning how much we penalize large values of ‖G(ỹ).w‖2 in comparison to
large values of ‖w‖2. If α is large enough, the difference between αG(ỹ) and its
integer rounding M is small. We currently choose α = α0/‖G(ỹ)‖, with ‖M‖ the
Frobenius norm of M (the Euclidean norm for n × n matrices being considered
as vectors in R

n2
), and α0 = 1015.

We therefore try searching for a small (with respect to the Euclidean norm)
nonzero vector that is an integer linear combination of the li = (0, . . . , 1, . . . , 0, mi)
where mi is the i-th row of M and the 1 is at the i-th position. Note that, because
of the diagonal of ones, the li form a free family.

This problem is known as finding a short vector in an integer lattice, and
can be solved by the Lenstra-Lenstra-Lovász (LLL) algorithm. This algorithm
outputs a free family of vectors si such that s1 is very short. Other vectors in
the family may also be very short.
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Once we have such a small vector w, using exact rational linear algebra, we
can compute F ′

0, . . . , F
′
m′ such that

⎧
⎨

⎩
−F ′

0 +
m′
∑

i=1

y′
iF

′
i | (y1, . . . , ym′) ∈ R

m′

⎫
⎬

⎭
=

{

−F0 +
m∑

i=1

yiFi | (y1, . . . , ym) ∈ R
m

}

∩ {F | F.v = 0} (5)

The resulting system has lower search space dimension m′ < m, yet the same
solution set dimension. By iterating the method, we eventually reach a search
space dimension equal to the dimension of the solution set.

If we find no solution F ′
0, then it means that the original problem had no

solution (the Positivstellensatz problem has no solution, or the monomial bases
were too small), or that a bad vector v was chosen due to lack of numerical
precision. This is the only bad possible outcome of our algorithm: it may fail
to find a solution that actually exists; in our experience, this happens only on
larger problems (search space of dimension 3000 and more), where the result is
sensitive to numerical roundoff. In contrast, our algorithm may never provide a
wrong result, since it checks for correctness in a final phase.

3.4 More Efficient Algorithm

In lieu of performing numerical SDP solving on F = −F0 +
∑

yiFi 	 0, we
can perform it in lower dimension on −(BF0B

T ) +
∑

yi(BFiB
T ) 	 0. Recall

that the rows of B span the orthogonal complement of
⋂m

i=0 kerFi, which is
necessarily included in kerF ; we are therefore just leaving out dimensions that
always provide null eigenvalues.

The reduction of the sums-of-squares problem (Eq. 3) provides matrices with
a fixed block structure, one block for each Pj : for a given problem all matrices
F0, F1, . . . , Fm are block diagonal with respect to that structure. We therefore
perform the test for positive semidefiniteness of the proposed F (y) solution
block-wise (see Sec. 3.6 for algorithms). For the blocks not found to be positive
semidefinite, the corresponding blocks of the matrices B and F (ỹ) are computed,
and LLL is performed.

As described so far, only a single v kernel vector would be supplied by LLL
for each block not found to be positive semidefinite. In practice, this tends to
lead to too many iterations of the main loop: the dimension of the search space
does not decrease quickly enough. We instead always take the first vector v(1) of
the LLL-reduced basis, then accept following vectors v(i) if ‖v(i)‖1 ≤ β.‖v(1)‖1

and ‖G(ỹ).v(i)‖2 ≤ γ.‖G(ỹ).v(1)‖2. For practical uses, we took β = γ = 10.
When looking for the next iteration ỹ′, we use the ỹ from the previous iter-

ation as a hint: instead of starting the SDP search from an arbitrary point, we
start it near the solution found by the previous iteration. We perform least-
square minimization so that −F ′

0 +
∑m′

i=1 y′
iF

′
i is the best approximation of

−F0 +
∑m

i=1 yiFi | (y1, . . . , ym).
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3.5 Extensions and Alternative Implementation

As seen in §4, our algorithm tends to produce solutions with large numerators
and denominators in the sum-of-square decomposition. We experimented with
methods to get F (y′) ≈ F (y) such that F (y′) has a smaller common denomi-
nator. This reduces to the following problem: given v ∈ f0 + vect(f1, . . . , fn) a
real (floating-point) vector and f0, . . . , fn rational vectors, find y′

1, . . . ,yn such
that v′ = f0 +

∑
i y′

ifi ≈ v and the numerators of v′ have a tunable magnitude
(parameter μ). One can obtain such a result by LLL reduction of the rows of:

M =

⎛

⎜
⎜
⎜
⎝

Z(βμ(f0 − v)) Z(βf0) 1 0 . . . 0
Z(βμf1) Z(βf1) 0 1 . . .

...
... 0

. . .
Z(βμfn) Z(βfn) 0 1

⎞

⎟
⎟
⎟
⎠

(6)

where β is a large parameter (say, 1019) and Z(v) stands for the integer rounding
of v. After LLL reduction, one of the short vectors in the basis will be a com-
bination

∑n
i yili where l0, . . . , ln are the rows of M , such that y0 �= 0. Because

of the large βμ coefficient, y0(f0 − v) +
∑n

i=1 yifi should be very small, thus
f0 +

∑n
i=1 yifi ≈ v. But among those vectors, the algorithm chooses one such

that
∑n

i=0 yifi is not large — and among the suitable v′, the vector of numerators
is proportional to

∑n
i=0 yifi.

After computing such a y′, we check whether F (y′) 	 0; we try this for a
geometrically increasing sequence of μ and stop as soon as we find a solution. The
matrices Q̂j then have simpler coefficients than the original ones. Unfortunately,
it does not ensue that the sums of square decompositions of these matrices have
small coefficients.

An alternative to finding some kernel vectors of a single matrix would be to
compute several floating-point matrices, for instance obtained by SDP solving
with optimization in multiple directions, and find common kernel vectors using
LLL.

3.6 Sub-algorithms and Implementation

The reduction from the problem expressed in Eq. 3 to SDP with rational solu-
tions was implemented in Sage.7

Solving the systems of linear equations (S) (Sec. 3.1, over the coefficients
of the matrices) and 5, in order to obtain a system −F0 + vect(F1, . . . , Fm) of
generators of the solution space, is done by echelonizing the equation system (in
homogeneous form) in exact arithmetic, then reading the solution off the echelon
form. The dimension of the system is quadratic in the number of monomials (on
the problems we experimented with, dimensions up to 7900 were found); thus
efficient algorithms should be used. In particular, sparse Gaussian elimination

7 Sage is a computer algebra system implemented using the Python programming
language, available under the GNU GPL from http://www.sagemath.org

http://www.sagemath.org
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in rational arithmetic, which we initially experimented, is not efficient enough;
we thus instead use a sparse multi-modular algorithm [28, ch. 7] from LinBox8.
Multi-modular methods compute the desired result modulo some prime numbers,
and then reconstruct the exact rational values.

One can test whether a symmetric rational matrix Q is positive semidefinite
by attempting to convert it into its Gaussian decomposition, and fail once one
detects a negative diagonal element, or a nonzero row with a zero diagonal
element (Appendix. A). We however experimented with three other methods
that perform better:

– Compute the minimal polynomial of Q using a multi-modular algorithm [1].
The eigenvalues of Q are its roots; one can test for the presence of negative
roots using Descartes’ rule of signs. Our experiments seem to show this is
the fastest exact method.

– Compute the characteristic polynomial of Q using a multimodular algorithm
[1] and do as above. Somewhat slower but more efficient than Gaussian
decomposition.

– Given a basis B of the span of Q, compute the Cholesky decomposition of
BT QB by a numerical method. This decomposition fails if and only if BT QB
is not positive definite (up to numerical errors), thus succeeds if and only if
Q is positive semidefinite (up to numerical errors).

For efficiency, instead of computing the exact basis B of the span of Q,
we use B from §3.3, whose span includes the span of Q. The only risk is that
kerB � kerQ while Q is positive semidefinite, in which case BT QB will have
nontrivial nullspace and thus will be rejected by the Cholesky decomposition.
This is not a problem in our algorithm: it just means that the procedure for
finding kernel vectors by LLL will find vectors in kerQ \ kerB.

One problem could be that the Cholesky decomposition will incorrectly
conclude that BT QB is not positive definite, while it is but has very small
positive eigenvalues. In this case, our algorithm may then find kernel vectors
that are not really kernel vectors, leading to an overconstrained system and
possibly loss of completeness. We have not encountered such cases.

Another problem could be that a Cholesky decomposition is obtained from
a matrix not positive semidefinite, due to extremely bad numerical behav-
ior. At worst, this will lead to rejection of the witness when the allegedly
semidefinite positive matrices get converted to sums of squares, at the end
of the algorithm.

Numerical SDP solving is performed using DSDP9 [3, 4], communicating using
text files. LLL reduction is performed by fpLLL.10 Least square projection is
performed using Lapack’s DGELS.

8 LinBox is a library for exact linear arithmetic, used by Sage for certain operations.
http://www.linalg.org/

9 DSDP is a sdp tool available from http://www.mcs.anl.gov/DSDP/
10 fpLLL is a LLL library from Damien Stehlé et al., available from

http://perso.ens-lyon.fr/damien.stehle/

http://www.linalg.org/
http://www.mcs.anl.gov/DSDP/
http://perso.ens-lyon.fr/damien.stehle/
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The implementation is available from the first author’s Web page (http://
bit.ly/fBNLhR and http://bit.ly/gPXNF8).

3.7 Preliminary Reductions

The more coefficients to find there are, the higher the dimension is, the longer
computation times grow and the more likely numerical problems become. Thus,
any cheap technique that reduces the search space is welcome.

If one looks for witnesses for problems involving only homogeneous polynomi-
als, then one can look for witnesses built out of a homogeneous basis of mono-
mials (this technique is implemented in our positivity checker).

One could also make use of symmetries inside the problem. For instance, if
one looks for a nonnegativity witness P = N/D of a polynomial P , and P is
symmetric (that is, there exists a substitution group Σ for the variables of P such
that P.σ = P for σ ∈ Σ), then one may reduce the search to symmetric N and
D. If P = N/D is a witness, then DP = N thus for any σ, (D.σ)P = (N.σ) and
thus (

∑
σ D.σ)P = (

∑
σ N.σ), thus D′ =

∑
σ D.σ and N ′ =

∑
σ N.σ constitute

a symmetric nonnegativity witness.

4 Examples

The following system of inequalities has no solution (neither Redlog nor QepCad
nor Mathematica 5 can prove it; Mathematica 7 can):

⎧
⎪⎪⎨

⎪⎪⎩

P1 = x3 + xy + 3y2 + z + 1 ≥ 0
P2 = 5z3 − 2y2 + x + 2 ≥ 0 P3 = x2 + y − z ≥ 0
P4 = −5x2z3 − 50xyz3 − 125y2z3 + 2x2y2 + 20xy3 + 50y4 − 2x3

−10x2y − 25xy2 − 15z3 − 4x2 − 21xy − 47y2 − 3x − y − 8 ≥ 0

(7)

This system was concocted by choosing P1, P2, P3 somewhat haphazardly and
then P4 = −(P1 +(3+(x+5y)2)P2 +P3 +1+x2), which guaranteed the system
had no solution. The initial 130 constraints yield a search space of dimension
145, and after four round of numeric solving one gets an unsatisfiability witness
(sums of squares Qj such that

∑4
j=1 PjQj + Q5 = 0). Total computation time

was 4.4 s. Even though there existed a simple solution (note the above formula
for P4), our algorithm provided a lengthy one, with large coefficients (and thus
unfit for inclusion here).

Motzkin’s polynomial M (Eq. 1) cannot be expressed as a sum of squares, but
it can be expressed as a quotient of two sums of squares. We solved M.Q1−Q2 =
0 for sums of squares Q1 and Q2 built from homogeneous monomials of respective
total degrees 3 and 6 — lesser degrees yield no solutions (Fig. 1). The equality
relation over the polynomials yields 66 constraints over the matrix coefficients
and a search space of dimension 186. Four cycles of SDP programming and LLL
are then needed, total computation time was 4.1 s.

We exhibited witnesses that each of the 8 semidefinite positive forms listed
by [24], which are not sums of squares of polynomials, are quotients of sums of

http://bit.ly/fBNLhR
http://bit.ly/fBNLhR
http://bit.ly/gPXNF8
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Q1 = 8006878A2
1 + 29138091A2

2 + 25619868453870/4003439A2
3 + 14025608A2

4 + 14385502A2
5

+ 85108577038951965167/12809934226935A2
6

Q2 = 8006878B2
1 + 25616453B2

2 + 108749058736871/4003439B2
3 + 161490847987681

/25616453B2
4 + 7272614B2

5 + 37419351B2
6 + 13078817768190/3636307B2

7 + 71344030945385471151

/15535579819553B2
8 + 539969700325922707586/161490847987681B2

9 + 41728880843834

/12473117B2
10 + 131008857208463018914/62593321265751B112, where

A1 = −1147341/4003439x2
1x3 − 318460/4003439x2

2x3 + x3
3 A2 = x2x2

3 A3 = −4216114037644

/12809934226935x2
1x3 + x2

2x3 A4 = x1x2
3, A5 = x1x2x3, A6 = x2

1x3 and B1 = −1102857

/4003439x4
1x2x3 − 5464251/4003439x2

1x2x3
3 + 2563669/4003439x3

2x3
3 + x2x5

3, B2 = −9223081

/25616453x4
1x2

3 − 18326919/25616453x2
1x2

2x2
3 + 1933547/25616453x4

2x2
3 + x2

2x4
3,

B3 = −2617184886847/15535579819553x4
1x2x3 − 12918394932706/15535579819553x2

1x2x3
3 + x3

2x3
3,

B4 = −26028972147097/161490847987681x4
1x2

3 − 135461875840584

/161490847987681x2
1x2

2x2
3 + x4

2x2
3, B5 = −2333331/3636307x3

1x2x2
3 − 1302976

/3636307x1x3
2x2

3 + x1x2x4
3, B6 = −11582471/37419351x5

1x3 − 12629854

/37419351x3
1x2

2x3 − 4402342/12473117x3
1x3

3 + x1x2
2x3

3, B7 = −x3
1x2x2

3 + x1x3
2x2

3,

B8 = −x4
1x2x3 + x2

1x2x3
3, B9 = −x4

1x2
3 + x2

1x2
2x2

3, B10 = −17362252580967/20864440421917x5
1x3

− 3502187840950/20864440421917x3
1x2

2x3 + x3
1x3

3, B11 = −x5
1x3 + x3

1x2
2x3.

Fig. 1. Motzkin’s polynomial M (Eq. 1) as Q2/Q1

squares (Motzkin’s M , Robinson’s R and f , Choi and Lam’s F , Q, S, H and
Schmüdgen’s q). These examples include polynomials with up to 6 variables and
search spaces up to dimension 1155. We did likewise with delzell, laxlax and
leepstarr2 from [14]. The maximal computation time was 7’.

We then converted these witnesses into Coq proofs of nonnegativity using a
simple Sage script. These proofs use the Ring tactic, which checks for polynomial
identity. Most proofs run within a few seconds, though laxlax takes 7’39” and
Robinson’s f 5’07”; the witness for leepstarr2 is too large for the parser. We also
exhibited a witness that the Vor1 polynomial cited by [25] is a sum of squares.

John Harrison kindly provided us with a collection of 14 problems that his
system [11] could not find witnesses for. These problems generally have the
form P1 ≥ 0 ∧ · · · ∧ Pn ≥ 0 ⇒ R ≥ 0. In order to prove such implication, we
looked for witnesses consisting of sums of squares (Q1, . . . , Qn, QR),such that
∑

j QjPj + QRR = 0 with QR �= 0, and thus R =
∑

j QjPj

QR
. In some cases, it

was necessary to use the products
∏

i Pwi

i for w ∈ {0, 1}n instead of the Pi.
We could find witnesses for all those problems,11. though for some of them, the
witnesses are very large, taking up megabytes. Since these searches were done
without making use of symmetries in the problem, it is possible that more clever
techniques could find smaller witnesses.

5 Conclusion and Further Works

We have described a method for solving SDP problems in rational arithmetic.
This method can be used to solve sums-of-squares problems even in geometri-
cally degenerate cases. We illustrated this method with applications to proving
the nonnegativity of polynomials, or the unsatisfiability of systems of polyno-
mial (in) equalities. The method then provides easily checkable proof witnesses,

11 A 7z archive is given at http://bit.ly/hM7HW3

http://bit.ly/hM7HW3


262 D. Monniaux and P. Corbineau

in the sense that checking the witness only entails performing polynomial arith-
metic and applying a few simple mathematical lemmas. We have implemented
the conversion of nonnegativeness witnesses to Coq proofs. A more ambitious
implementation, mapping Coq real arithmetic proofs goals to Positivstellensatz
problems through the Psatz tactic from the MicroMega package [5], then map-
ping Positivstellensatz witnesses back to proofs, is underway.

One weakness of the method is that it tends to provide “unnatural” witnesses
— they tend to have very large coefficients. These are machine-checkable but
provide little insights to the reader. An alternative would be to provide the
matrices and some additional data (such as their minimal polynomial) and have
the checker verify that they are semidefinite positive; but this requires formally
proving, once and for all, some non-trivial results on polynomials, symmetric
matrices and eigenvalues (e.g. the Cayley-Hamilton theorem), as well as possibly
performing costly computations, e.g. evaluating a matrix polynomial.

A more serious limitation for proofs of unsatisfiability is the very high cost of
application of the Positivstellensatz. There is the exponential number of poly-
nomials to consider, and the unknown number of monomials. It would be very
interesting if there could be some simple results, similar to the Newton poly-
tope approach, for reducing the dimension of the search space or the number
of polynomials to consider. Another question is whether it is possible to define
SDP problems from Positivstellensatz equations for which the spectrahedron has
rational points only at its relative boundary.

While our method performed well on examples, and is guaranteed to provide
a correct answer if it provides one, we have supplied no completeness proof —
that is, we have not proved that it necessarily provides a solution if there is one.
This is due to the use of floating-point computations. One appreciable result
would be that a solution should be found under the assumption that floating-
point computations are precise up to ε, for a value of ε and the various scaling
factors in the algorithm depending on the values in the problem or the solution.

It seems possible to combine our reduction method based on LLL with the
Newton iterations suggested by [13, 14], as an improvement over their strategy
for detection of useless monomials and reduction of the search space. Again,
further experiment is needed.
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A Gaussian Reduction and Positive Semidefiniteness

An algorithm for transforming a semidefinite positive matrix into a “sum of
squares” form, also known as Gaussian reduction:

f o r i :=1 to n do
begin

i f m[ i , i ] < 0 then
throw non po s i t i v e s em i d e f i n i t e

i f m[ i , i ] = 0 then
i f m. row( i ) <> 0

throw non po s i t i v e s em i d e f i n i t e
e l s e

beg in
v := m. row( i ) / m[ i , i ]
output . append (m[ i , i ] , v )
m := m − m[ i , i ] ∗ v . t r anspo s e ( ) ∗ v

end
end

Suppose that the entrance of iteration i, m[i . . . n, i . . . n] is positive semidefi-
nite. If mi,i = 0, then the ith base vector is in the isotropic cone of the matrix,
thus of its kernel, and the row i must be zero. Otherwise, mi,i > 0. By adding ε
to the diagonal of the matrix, we would have a positive definite matrix and thus
the output of the loop iteration would also be positive definite, as above. By
ε → 0 and the fact that the set of positive semidefinite matrices is topologically
closed, then the output of the loop iteration is also positive semidefinite.

The output variable is then a list of couples (ci, vi) such that ci > 0 and the
original matrix m is equal to

∑
i civ

T
i vi (with vi row vectors). Otherwise said,

for any row vector u, umuT =
∑

i ci〈u, vi〉2.

http://www.jstor.org/stable/1969640
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