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Preface

This volume contains the papers presented at ITP 2011: the Second International
Conference on Interactive Theorem Proving. It was held during August 22–25,
2011 in Berg en Dal, The Netherlands.

ITP brings together researchers working in all areas of interactive theorem
proving. ITP is the evolution of the TPHOLs conference series to the broad
field of interactive theorem proving. The inaugural meeting of ITP was held
during July 11–14, 2010 in Edinburgh, Scotland, as part of the Federated Logic
Conference (FLoC, July 9–21, 2010). TPHOLs meetings took place every year
from 1988 until 2009.

There were 50 submissions to ITP 2011, each of which was reviewed by at
least four Program Committee members. Out of the 50 submissions, 42 were
regular papers and 8 were rough diamonds. The Program Committee accepted
21 regular papers, including one proof pearl and four rough diamonds. All 25
papers are included in the proceedings. The Program Committee also invited
two leading researchers from Industry, Georges Gonthier (Microsoft Research)
and Mike Kishinevsky (Intel Corporation), and two leading researchers from
academia, Don Batory (University of Texas at Austing) and Bart Jacobs (Rad-
boud University Nijmegen), to present invited lectures.

Two system demos were given at ITP 2011. Each demo consisted in an in-
depth presentation of 90 minutes about the application of an ITP system on a
real example. Details about the practical use of ACL2 and KeY were presented.

ITP 2011 featured seven associated workshops that took place on August
26 and August 27. The workshops were the following: The Third Coq Work-
shop, the Third Workshop on Dependently Typed Programming, the 10th KeY
Symposium, the 6th International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, the ITP 2011 Workshop on Mathematical
Wikis, the Third Workshop on Modules and Libraries for Proof Assistants, the
6th International Workshop on Systems Software Verification.

We would like to thank our Local Chair Nicole Messink for the valuable and
efficient support in planning and running ITP. We would like to thank all the
local organizers for their help during the event.

The work of the Program Committe and the editorial process were facilitated
by the EasyChair conference management system. We are grateful to Springer
for publishing these proceedings, as they have done for ITP 2010 and TPHOLs
and its predecessors since 1993.
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Finally, we would like to thank our sponsors: The Netherlands Organisation
for Scientific Research (NWO) and The Royal Netherlands Academy of Arts and
Sciences (KNAW).

June 2011 Herman Geuvers
Freek Wiedijk

Marko Van Eekelen
Julien Schmaltz
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Towards Verification of Product Lines�

(Abstract)

Don Batory

Department of Computer Science
The University of Texas at Austin

Austin, Texas, USA
batory@cs.utexas.edu

Abstract. Although mechanized proof assistants are powerful verification tools, proof develop-
ment can still be difficult and time-consuming. It becomes even more challenging when proofs
are needed for product lines. A product line is a family of similar programs. Each program is
constructed by a distinct (linear) combination of features, where a feature or feature module
encapsulates program fragments that are added to a program to introduce a new capability or
functionality to that program.

The first part of my presentation reviews basic concepts on product lines and how programs are
synthesized using feature modules. The second part addresses product line verification. I explain
how proofs for product lines can be engineered using feature modules. Each module contains
proof fragments which are composed to build a complete proof of correctness for each product.
A product line of programming languages is considered, where each variant includes metatheory
proofs verifying the correctness of its syntax and semantic definitions. The approach has been
realized in the Coq proof assistant, where the proofs of each feature are independently certifiable
by Coq. Proofs are composed for each language variant, where Coq mechanically verifies that
the composite proofs are correct. As validation, a core calculus for Java in Coq was formalized
which can be extended with any combination of casts, interfaces, or generics.

Acknowledgements. Delaware, Cook and Batory are supported by the NSF’s Science
of Design Project CCF 0724979.

Reference

1. Delaware, B., Cook, W.R., Batory, D.: Theorem Proving for Product Lines. Tech. Rep. TR-
11-25, University of Texas at Austin, Dept. of CS (May 2011)

� This is joint work with Benjamin Delaware and William Cook [1].

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Advances in the Formalization of the Odd Order
Theorem

Georges Gonthier

Microsoft Research Cambridge
gonthier@microsoft.com

Abstract. We present some of the proof techniques and library designs
we used to formalize a large part of the proof of the Odd Order theorem.

Keywords: Formalization of Mathematics, Group Theory, Algebra, proof
library, Coq, ssreflect.

The Odd Order theorem states that all finite groups of odd order are solvable.
Due to Feit and Thompson, this very important and useful result in Group
Theory is also historically significant because it initiated the large collective
effort that lead to the full classification of finite simple groups twenty years later.
It is also one of the first proofs to be questioned by prominent mathematicians
because of its sheer length (255 pages) and complexity. These qualities make
the Odd Order theorem a prime example for demonstrating the applicability of
computer theorem proving to graduate and research-level mathematics.

As the Feit-Thompson proof draws on an extensive set of results spanning
most of undergraduate algebra and graduate finite group theory, we would have
to develop a substantial library of mathematical results to cover the prerequi-
sites. We hoped that this library, its architecture, and the techniques supporting
it, would provide practical outputs. Our starting point was the combinatorics
library of the four-color theorem proof, and the small-scale reflection technique
and the structured proof scripting language it used — these became the ssreflect
extension to Coq.

Small-scale reflection consists in using the algorithmic fragment of the proof
system logic (i.e., CiC for Coq) to capture more of the operational content of
a mathematical theory (its “exercises”). Although reflection could not be used
directly as often for general algebra than for combinatorics, we found that in asso-
ciation with extended type inference (supporting type classes) reflection could be
used to create generic or“overloaded”theorems and theories. We used this every-
where, to create a variety of useful components, for, e.g., summations, algebraic
structures, linear spaces, groups, group morphisms, characteristic subgroups...

This groundwork was tested in 2010, as we formalized more than half of the
proof (the local analysis part). The smoothness of the process validated the
library design: we could formalize nearly two pages a day when we had the right
prerequisites. The proof language handled gracefully two unexpected difficulties
in the graduate material: large lemmas (proving over 20 assertions under more
than four separate assumptions), and non-structural proof steps (casual use of
induction, abduction and symmetry), neither of which appeared in more basic
material.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Logical Formalisation and Analysis

of the Mifare Classic Card in PVS

Bart Jacobs and Ronny Wichers Schreur

Institute for Computing and Information Sciences, Radboud University Nijmegen
Heijendaalseweg 135, 6525AJ Nijmegen, The Netherlands

{bart,ronny}@cs.ru.nl

Abstract. The way that Mifare Classic smart cards work has been
uncovered recently [6,8] and several vulnerabilities and exploits have
emerged. This paper gives a precise logical formalisation of the essentials
of the Mifare Classic card, in the language of a theorem prover (PVS).
The formalisation covers the LFSR, the filter function and (parts of) the
authentication protocol, thus serving as precise documentation of the
card’s ingredients and their properties. Additionally, the mathematics is
described that makes two key-retrieval attacks from [6] work.

1 Introduction

Computer security is hard. Any small oversight during the design and implemen-
tation of a system can render it insecure. A determined attacker can, and will,
use any weakness in the system to get access. Formal methods can be a great
help for designers and implementers to obtain precise descriptions of systems
and rigorous proofs of their security properties.

The benefits of formal methods already become apparent in making a precise
mathematical description of the system. Experience shows that many errors are
found during this description phase, even before any verification is attempted.

In the area of protocol analysis, formal methods have become an important
tool. Here the proofs are normally symbolic: the cryptographic primitives such as
encryption and decryption functions are assumed to be sound and the analysis
focuses on security properties of the protocol itself. The tools for symbolic pro-
tocol analysis are typically automated. Examples include ProVerif [1], based on
the pi calculus, and other tools based on model checking (see [5] for a survey).
Paulson [10] is a prominent example of interactive symbolic verification, using
Isabelle.

Apart from the symbolic approach, assuming perfect cryptography, there is
the computational one, which is more realistic but makes verification more diffi-
cult. In this approach cryptographic primitives act on strings of bits and security
is defined in terms of low probability of success for an attacker. Both protocols
and attackers are modelled as probabilistic polynomial-time Turing machines.

More recently cryptographic schemes are verified via a formalisation of game-
based probabilistic programs with an associated logic, so that standard patterns

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 3–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



4 B. Jacobs and R. Wichers Schreur

in provable security can be captured. This approach is well-developed in the
CertiCrypt tool, integrated with the theorem prover Coq, see e.g. [3,2] (or [16]
for an overview).

The security of a software system also depends on the correctness of its imple-
mentation. This analysis is part of the well-established field of program correct-
ness. Many programming errors do not only limit the functionality of the system,
but also lead to exploits. So, all the advances that have been made in the area
of program verification are also relevant for security. Here both automated and
interactive proof tools are employed.

It is important to realise the limitations of formal methods in the area of
computer security. By nature, a formal system describes an abstraction of the
actual system and the environment in which it operates. For example, there may
be a formal proof of the correctness of a program, but an attacker can try to
randomly flip bits by shooting a laser at the chip that runs the program. This
will result in behaviour that the formal model does not capture, but that may
allow the attacker to break the system.

Another disadvantage of applying formal methods are the costs. It is labour
intensive and thus expensive to formalise a system and to prove its correct-
ness. This is why formal verification is only required at the highest Evaluation
Assurance Level (EAL7) in the Common Criteria certification1.

The current paper gives another twist to the use of formal methods in com-
puter security. Rather than proving a system secure, we describe and analyse
attacks on an insecure system. To describe these attacks we give a formalisation
of the system under attack. The formalisation of the attacks gives a direct con-
nection between the attacks and properties of the system that enables them. In
doing so, it clearly demonstrates the system’s design failures. The formalisation
also gives precise boundaries for the conditions under which the attacks apply.

The flawed system that we consider is the Mifare Classic. This is a contactless
(RFID) smart card, sold by NXP (formerly Philips Semiconductors), that is
heavily used in access control and public transport (like in London’s Oyster
card, Boston’s Charlie card, and the Dutch OV-chipkaart). It is estimated that
over 1 billion copies have been sold worldwide. The design goes back to the
early nineties, predating Common Criteria evaluation practices in the smart-card
area. The card (and Mifare readers) contains a proprietary encryption algorithm,
called Crypto1. It uses a 48-bit linear feedback shift register (LFSR), a device
that is well-studied in the literature (see e.g., [13,15]), together with a special
filter function that produces the keystream bits.

The security of the card relies partly on the secrecy of this algorithm. Details
of Crypto1 have emerged, first after hardware analysis [8]2, and a bit later after
a cryptanalysis [6]. The latter reference presents a mathematical model of the
card, together with several attack scenarios for key retrieval. The current paper
builds on [6] and elaborates certain mathematical (logical) details of this model
and these attacks. It does not add new (cryptographic) results, but provides

1 See commoncriteriaportal.org
2 Made public in a presentation at the Chaos Computer Club, Berlin, 27/12/07.

commoncriteriaportal.org


Logical Formalisation and Analysis of the Mifare Classic Card in PVS 5

further clarity about the card. In doing so it points out where design flaws reside
and how they can be exploited.

In general, theorem provers provide machine support for the formalisation and
verification of systems and their properties. They are used both for hardware
and for software. A theorem prover may be seen as a sceptical colleague that
checks and documents all individual proof steps and helps with tedious details.
There are several sophisticated interactive theorem provers around, such as Is-
abelle [7,12], Coq [11], NQTHM [4] and PVS [9,14]. In this paper we (happen to)
use PVS. But we do not rely on any special property or power of PVS. We shall
try to abstract away from the specifics of PVS, and formulate results in the lan-
guage of (dependently) typed higher-order logic, using a certain level of pretty
printing. The point we wish to make is that using a theorem prover is useful
(also) in the area of computer security, for a precise description and analysis of
one’s system. As such it may be used as part of precise documentation, or even
as part of a certification procedure. As will be illustrated, this works well for
relatively unsophisticated systems, like smart cards with low-level operations.
The PVS formalisation is available on the web3.

The formalisation presented in this paper is specific to the Mifare Classic card
and so it does not carry over to other systems. There is little or no uniformity
in (proprietary) cryptographic systems, and hence there can be no uniformity
in their formalisations. In a broader context this paper sets out to show that
formalisations contribute to the documentation and analysis of low-level security
protocols. The method as such does apply to other systems.

The paper is organised as follows. It first describes some general properties of
LFSRs and filter functions, focusing on what is relevant here, and not developing
much meta-theory. Subsequently, Section 3 gives the crucial ingredients that
model the stream cipher Crypto1 of the Mifare Classic card, and Section 4
shows how these operations can be rolled back. Section 5 illustrates how the
definitions and results from Section 3 establish (part of) the correctness of the
mutual authentication protocol between a card and a reader. Finally, Section 6
elaborates the mathematical properties underlying two attacks from [6], namely
the “two-table” and “odd-from-even” attacks.

2 Shift Registers, Generally

This section describes the formalisation of shift registers in PVS, together with
some basic properties. The feedback function will at this stage be a parameter.
A concrete version will be provided in Section 3.

The formalisation uses the PVS type bvec [N ] of bit vectors of length N:nat.
The natural number N is thus a parameter. The type may be instantiated con-
cretely as bvec[10], which yields the type of bit vectors of length 10. The type
bvec [N ] is defined as the type of functions from natural numbers below N to
the type bit = bool, with TRUE and FALSE as (only) inhabitants. One writes

3 http://www.cs.ru.nl/~ronny/mifare-pvs

http://www.cs.ru.nl/~ronny/mifare-pvs


6 B. Jacobs and R. Wichers Schreur

fill [N ] (b):bvec [N ] for the constant bit vector filled with b:bit at every posi-
tion.

The logical description of LFSRs at this stage contains two parameters, namely
their length LfsrSize:posnat (a positive natural number) and a feedback func-
tion feedback:[bvec [LfsrSize]→bit ] that maps a bit vector of length LfsrSize
to a bit. For convenience we abbreviate this type of bit vectors as ‘state’ in a
PVS type definition:

state : TYPE = bvec [LfsrSize]

Then we can define the basic “left shift” function that captures the operation
of an LFSR. It is called shift1in because it takes one bit and puts it into the
LFSR on the right, while shifting the whole LFSR one position to the left.

shift1in : [state, bit → state ] =
λ(r:state, b:bit) : λ(i:below(LfsrSize)) :

IF i < LfsrSize - 1
THEN r(i+1) % shift left
ELSE b XOR feedback(r) % put new value at i = LfsrSize - 1
ENDIF

A picture of a concrete LFSR appears in Figure 1 in Section 3. Notice that
the leftmost bit at position 0 is dropped, and that a new bit is inserted at the
rightmost position LfsrSize-1. Via recursion an “N-ary” version is defined in a
straightforward manner:

shiftNin : [state, N:nat, bv:bvec[N ] → state] = ...

One can then prove basic properties, like:

shiftNin(r , N , bv)(i) = r(i+N)
shiftNin(shiftNin(r , N1 , bv1) , N2 , bv2) = shiftNin(r , N1+N2 , bv1 o bv2)

where i < LfsrSize-N and o is concatenation of bit vectors.
During initialisation a Mifare card and reader each feed certain (nonce) data

into their LFSRs, see Section 5; afterwards they use their LFSR to produce a
keystream by feeding it with 0s. This is captured by a special ‘advance’ function
in PVS that has the number n:nat of inserted zeros as argument:

advance : [state, nat → state] =
λ(r:state, n:nat) : shiftNin(r , n , fill [n ] (FALSE))

It forms an action with respect to the monoid of natural numbers since it satisfies:

advance(r , 0) = r advance(r , n+m) = advance(advance(r ,n) , m)

2.1 Adding a Filter Function Parameter

We remain a bit longer within the generic setting of LFSRs. We now add another
parameter, namely a function filfun:[state→bit ] that produces an output
bit for an arbitrary state. A basic (single) step in the Mifare initialisation phase
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of card and reader involves processing one input bit while producing one (en-
crypted) output bit that is sent to the other side. There it is processed in a dual
way, as described by the following two functions.

shiftinsend1 : [ [state, bit ] → [state,bit ] ] =
λ(r:state, b:bit) : (shift1in(r ,b) , b XOR filfun(r))

receiveshiftin1 : [ [state, bit ] → state] =
λ(r:state, b:bit) : shift1in(r , b XOR filfun(r))

These two functions satisfy the following “correctness” result.

∀(r:state, b:bit) :
LET (r1,b1) = shiftinsend1(r ,b) % b1 is transmitted, encrypted
IN receiveshiftin1(r ,b1) = r1

This basic result requires some explanation: assume the two sides (card and
reader) are in the same state r before performing these operations. Assume:

– one side (actually the reader) performs shiftinsend1 and shifts one bit b
into its state (leading to successor state r1), while transferring the encrypted
version b1 = b XOR filfun(r) of b to the other side;

– the other side (the card) performs receiveshiftin1 and receives this en-
crypted bit b1, decrypts it via b1 XOR filfun(r) and shifts it into its own
state (which we assume to be equal r).

Then: both sides are again in the same post state, namely r1. Hence by per-
forming these operations card and reader transfer data and remain in sync. In
this way they communicate like via one-time pads, except that the keystream
has cycles.

Also N-ary versions of the functions shiftinsend1 and receiveshiftin1 are
defined, with appropriate properties. They are used in the following two functions

load_and_send_reader_nonce : [ [state, nonce] → [state, nonce ] ] =
λ(r:state, plain:nonce) : shiftinsendN(r , NonceSize, plain)

receive_reader_nonce : [state, nonce → state] =
λ(r:state, cipher:nonce) : receiveshiftinN(r , NonceSize, cipher)

which will be used in the explanation of the Mifare authentication protocol in
Section 5.

Of course, many more definitions and properties may be introduced for such
abstract LFSRs. We confine ourselves to what is needed in our logical theory
of the Mifare Classic. It includes a function to generate keystream bits, in the
following way.

stream : [state, n:nat → bit ] =
λ(r:state, n:nat) : filfun(advance(r ,n))

It is used in a similar function cipher that not only produces keystream, but
also the resulting state. It is defined with a dependent product type in:

cipher : [state, n:nat → [state, bvec [n ] ] ] =
λ(r:state, n:nat) : ( advance(r ,n) , λ(i:below(n)) : stream(r ,i) )
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It is well behaved, in the sense that it satisfies:

cipher(r , n+m) =
LET (r1 ,c1) = cipher(r ,n) , (r2,c2) = cipher(r1 ,m) IN (r2 , c2 o c1)

3 The Mifare LFSR and Filter Function

The parameters (like LfsrSize, feedback and filfun) that were used in the
previous section are now turned into the specific values that they have in the
Mifare Classic.

The sizes are easy:

LfsrSize : nat = 48 NonceSize : nat = 32

The Mifare feedback function, described as a generating polynomial, like
in [8,6], is

g(x) = x48 + x43 + x39 + x38 + x36 + x34 + x33 + x31 + x29 + x24

+ x23 + x21 + x19 + x13 + x9 + x7 + x6 + x5 + 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

��

⊗����

input

��

Fig. 1. Mifare Classic LFSR

In PVS this becomes, due to a reverse listing of entries:

MfCfeedback : [bvec [LfsrSize] → bit ] =
λ(r:bvec[LfsrSize] ) :
r(0) XOR r(5) XOR r(9) XOR r(10) XOR r(12) XOR r(14) XOR

r(15) XOR r(17) XOR r(19) XOR r(24) XOR r(25) XOR r(27) XOR

r(29) XOR r(35) XOR r(39) XOR r(41) XOR r(42) XOR r(43)

Notice that xi corresponds to r[48-i] . The representation that we have chosen
is the one that is most convenient in formulating definitions and properties. Now
we can properly instantiate the theory of the previous section and obtain the
type for “Mifare Classic LFSR” as:

MfClfsr : TYPE = state[LfsrSize, MfCfeedback]

We turn to the filter function for the Mifare Classic. It is constructed in
several steps, via two auxiliary functions MfCfilfunA and MfCfilfunB that each
produce one bit out of a 4-bit input. Such functions are usually described by 4
hexadecimal digits, capturing the conjunctive normal form. In this case we have
MfCfilfunA = 0x26C7 and MfCfilfunB = 0x0DD3, which can be simplified to a
disjunctive normal form:
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MfCfilfunA(b3 , b2, b1, b0:bit) : bit =
( (¬b3∧¬b2∧¬b1) ∨ (b3∧¬b1∧b0) ∨ (¬b2∧b1∧¬b0) ∨ (¬b3∧b2∧b1) )

MfCfilfunB(b3 , b2, b1, b0:bit) : bit =
( (b3∧¬b2∧¬b0) ∨ (¬b3∧b2∧¬b0) ∨ (b3∧¬b2∧b1)

∨ (¬b3∧b2∧b1) ∨ (¬b3∧¬b2∧¬b1) )

The LFSR and filter function of the Mifare Classic can now be depicted in
Figure 2.

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

��

⊗����

input

��
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

fa = 0x0dd3 fb = 0x26c7 fb = 0x26c7 fa = 0x0dd3 fb = 0x26c7

�� �� �� �� ��
fc = 0x4457c3b3

keystream
��

Fig. 2. Crypto1

One can then prove in PVS that these descriptions correspond to the conjunc-
tive normal form given by the hexadecimal descriptions, but also to a “shift”
description with the above values 0x26C7 and 0x0DD3: for a bit vector b of
length 4,

MfCfilfunA(b(3) , b(2) , b(1) , b(0))
= right_shift(bv2nat(b) , h2 o h6 o hC o h7)(0)

MfCfilfunB(b(3) , b(2) , b(1) , b(0))
= right_shift(bv2nat(b) , h0 o hD o hD o h3)(0)

where bv2nat(b) gives the numerical value of the bit vector b, right_shift
performs a number of shifts, as described by its first argument, and h2 etc. is the
hexadecimal number 2, as bit vector of length 4 (with o describing concatenation,
as before).

Two of these “A” and three “B” functions are combined into a new function
that takes 20 bits input:

MfCfilfun20(b:bvec[20]) : bit =
MfCfilfunC( MfCfilfunA(b(0) , b(1) , b(2) , b(3)) ,

MfCfilfunB(b(4) , b(5) , b(6) , b(7)) ,
MfCfilfunB(b(8) , b(9) , b(10) , b(11)) ,
MfCfilfunA(b(12) , b(13) , b(14) , b(15)) ,
MfCfilfunB(b(16) , b(17) , b(18) , b(19)) )

where MfCfilfunC = 0x4457C3B3. Finally, the Mifare Classic filter function is
described, following [6], as:

MfCfilfun(r:MfClfsr) : bit = MfCfilfun20(λ(i:below(20)) : r(9+2*i))
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Important to note is the regularity of its application: on all odd positions 9, 11,
13, . . . , 47. This regularity is one of the weaknesses of the Mifare Classic, which
can be exploited in various ways as we shall see in Section 6.

Finally, here are some test results that are proven in PVS simply by a single
proof command “grind”.

MfCfilfun(hA o hE o hA o h6 o h1 o hC o h9 o hC o h1 o hB o hF o h0) = 1
MfCfilfun(h7 o hD o hA o h8 o h8 o h0 o h1 o h8 o h8 o h6 o h1 o h5) = 0

4 Rollback Results

In this section we explore the structure described in the previous section, where
we focus on the possibility of rolling back left shifts of the Mifare Classic register.

A first step is that we can recover the leftmost bit that is dropped in a single
left shift step, if we know what the input bit is, via the following function.

leftmost : [MfClfsr, bit → bit ] = λ(r:MfClfsr, b:bit) :
r(47) XOR b XOR % plus previous XORs, shifted one position
r(4) XOR r(8) XOR r(9) XOR r(11) XOR r(13) XOR r(14) XOR

r(16) XOR r(18) XOR r(23) XOR r(24) XOR r(26) XOR r(28) XOR

r(34) XOR r(38) XOR r(40) XOR r(41) XOR r(42)

so that we can define an inverse of the shift1in function from Section 2 as:

shift1out : [MfClfsr, bit → MfClfsr] =
λ(r:MfClfsr, b:bit) : λ(i:below(LfsrSize)) :

IF i > 0
THEN r(i-1)
ELSE leftmost(r ,b) % at position i = 0
ENDIF

and prove that they are indeed each other’s inverses:

shift1out(shift1in(r , b) , b) = r shift1in(shift1out(r , b) , b) = r

This shifting-out extends to an N-ary version, which is then inverse to N-ary
shifting-in. Interestingly, the earlier advance function can now be extended from
natural numbers to integers as:

Advance : [MfClfsr, int → MfClfsr] = λ(r:MfClfsr, n:int) :
IF n ≥ 0
THEN advance(r , n)
ELSE shiftNout(r , -n, fill[-n ] (FALSE))
ENDIF

We now get an action with respect to the monoid of integers:

Advance(r , 0) = r Advance(r , i+j) = Advance(Advance(r ,i) , j)

where i ,j:int. This allows us to smoothly compute a keystream not only in
forward but also in backward direction.
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4.1 Rolling Back Communication

So far we have concentrated on rolling back the LFSR. Since the Mifare Classic
filter function MfCfilfun does not use the bit at position 0 it can also be recon-
structed after a shift-left. This is another design error. We proceed as follows.

shiftout_MfCfilfun(r:MfClfsr) : bit =
MfCfilfun20(λ(i:below(20)) : r(8+2*i))

shiftoutsend1 : [ [MfClfsr, bit ] → [MfClfsr,bit ] ] =
λ(r1:MfClfsr, b1:bit) : LET b = b1 XOR shiftout_MfCfilfun(r1)

IN (shift1out(r1,b) , b)

Then we obtain an inverse to the basic step of the card from Subsection 2.1:

shiftoutsend1(shiftinsend1(r , b)) = (r , b)
shiftinsend1(shiftoutsend1(r , b)) = (r , b)

This can be done multiple times.

5 The Mifare Classic Authentication Protocol

When a card reader wants to access the information on a Mifare Card it must
prove that it is allowed to do so. Conversely the card must prove that is a
authentic card. Both security goals are accomplished by a mutual-authentication
mechanism based on a symmetric-key cipher. Figure 3 pictures in detail how an
authentication proceeds.

Card Reader
0 anti-c(uid)

−−−−−−−−−−−−−→
1 auth(block)

←−−−−−−−−−−−−−
2S1 ← Kblock S1 ← Kblock

3picks nC

4S2 ← shiftinN(S1, uid⊕nC)
5 nC−−−−−−−−−−−−−→
6 S2 ← shiftinN(S1 uid⊕nC)
7 picks nR

8 (S3, {nR})← send reader nonce(S2, nR)
9 {nR}

←−−−−−−−−−−−−−
10S3 ← receive reader nonce(S2, {nR})
11 (S4, ks2) ← cipher(S3)
12 suc2(nC) ⊕ ks2←−−−−−−−−−−−−−
13 (S4, ks2) ← cipher(S3)
14verify suc2(nC)
15 (S5, ks3) ← cipher(S4)
16 suc3(nC) ⊕ ks3−−−−−−−−−−−−−→
17 (S5, ks3) ← cipher(S4)
18 verify suc3(nC)

Fig. 3. Mifare Classic Authentication Protocol
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Because Mifare Classic cards operate through radio waves, it is possible that
more than one card is within range of a reader. To distinguish different cards,
each card has a unique id that is send to the reader (step 0). This 32-bit uid also
plays a role in the cipher.

The information on the Mifare Classic is divided into blocks. The reader starts
an authentication session for a specific memory block (step 1). Each block is pro-
tected by a different 48-bit key that is known by both the card and the reader.
Card and reader initialise their shift registers with this key Kblock (step 2).

The card subsequently chooses a 32-bit challenge or card nonce (nC). This
card nonce is added (⊕) to the uid and the result is fed into the LFSR. Also the
card nonce is send to the reader in the clear, which then also feeds nC ⊕ uid into
its LFSR.

Then it is up to the reader to pick a 32-bit reader nonce nR. This nonce is also
fed into the LFSR. After each bit the output of the filter function is collected in
the encrypted reader nonce {nR} (send reader nonce in step 8).

Upon reception of the encrypted reader nonce {nR} the card performs the
inverse operation of send reader nonce, that is receive reader nonce.

At this moment (after step 10) the cipher is initialised. The keystream now
consists of the output of the filter function after each shift of the LFSR. All
further communication is encrypted by adding the keystream to the clear text.
Decryption is simply adding the keystream to the cipher text.

The reader responds to the card’s challenge by sending the encrypted card
nonce nC , or rather the encryption of the expression suc2(nC). The function suc
is actually computed by another 16-bit LFSR that is used to generate the card
nonces. The card can decrypt the reader’s response and verify that it corresponds
to the expected result. This establishes that the reader can correctly encrypt the
challenge, which presumably means that the reader has knowledge of Kblock and
thus is allowed to access that block.

To complete the mutual authentication, the card returns the encryption of
suc3(nC). The reader can verify that the card’s response is properly encrypted,
which implicitly established the authenticity of the card.

To show that a reader and a card can perform a successful mutual authen-
tication, we can show that after each step they are both in the same state. In
Figure 3 this means that every Sn on the card side is equal to the Sn on the
reader side. For most steps this is easy, since the card and the reader perform
identical operations. Only when the reader nonce is processed, do the card and
reader operate differently. The following PVS theorem states the correctness
property of this step.
∀(s2 : state, plain_reader_nonce : nonce) :

LET

(rs3, encrypted_reader_nonce)
= load_and_send_reader_nonce(s2 , plain_reader_nonce) ,

cs3
= receive_reader_nonce(s2, encrypted_reader_nonce)

IN

cs3 = rs3
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6 Formalising Attacks

This section formalises the essentials of two attacks from [6]. They form a post
hoc justification of the (C-code) implementation that underlies [6]. One can
justifiably ask: what is the point of such a formalisation? After all, the attack in
C can be executed and thus shows if it works or not. It does not need to work
all the time, under all circumstances and only needs to work as a prototype4, to
show the feasibility of exploiting certain card vulnerabilities.

Our answer is that the formalisation explains the details—including assump-
tions and side-conditions—of the attacks and thus clearly demonstrates the pre-
cise vulnerabilities on which the attacks are built. This clarity may help to
prevent or counter such vulnerabilities in similar situations.

6.1 The Two-Table Attack

The first attack that will be formalised comes from [6, §§6.3]. It exploits the fact
that the filter function MfCfilfun acts on only twenty LFSR positions, which
are all at regular, odd positions (9, 11, . . . , 47). Hence after shifting the LFSR
two positions the filter functions gets very similar input.

This attack proceeds as follows. Assume we have a certain amount of keystream
(at least 12 bits long). The aim is to find “solutions”, namely LFSR states that
produces this keystream, via the filter function. The first step is to define ap-
propriate types for this setting:

keystream : TYPE =
[# len : {n:posnat | even?(n) ∧n ≥ 12}, bits : bvec [len ] # ]

solutions(ks : keystream) : PRED[MfClfsr] =
{ r : MfClfsr | ∀(i:below(len(ks))) : stream(r ,i) = bits(ks)(i) }

The notation [# .. # ] is used for labelled-product types. The length len(ks)
of a keystream ks:keystream is thus even and bigger than 12, with a bit vector
bits(ks) of this length.

For both the evenly and oddly numbered bits of keystream, we can look at
the 20 bits of filter-function input that produce them. These will be described
as even or odd “subsolutions”, like in:

subsolutions_even(ks) : PRED[bvec [len(ks)/2 + 19]] =
{ s : bvec [len(ks)/2 + 19] | ∀(shiftnr:below(len(ks)/2)) :

MfCfilfun20(λ(i:below(20)) : s(shiftnr + i))
= bits(ks)(2*shiftnr) }

subsolutions_odd(ks) : PRED[bvec[len(ks)/2 + 19]] =
{ t : bvec [len(ks)/2 + 19] | ∀(shiftnr:below(len(ks)/2)) :

MfCfilfun20(λ(i:below(20)) : t(shiftnr + i))
= bits(ks)(2*shiftnr + 1) }

One sees that this formalisation makes the boundaries involved clearly visible.

4 Unless one has malicious intentions.
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In a next step we use the feedback function of the Mifare Classic LFSR to
relate these two subsolutions. In order to do so we need to split the original
feedback function, described in Section 3 as MfCfeedback, into two parts:

feedback_even(bv:bvec[24]) : bit =
bv(0) XOR bv(5) XOR bv(6) XOR bv(7) XOR bv(12) XOR bv(21)

feedback_odd(bv:bvec[24]) : bit =
bv(2) XOR bv(4) XOR bv(7) XOR bv(8) XOR bv(9) XOR bv(12) XOR

bv(13) XOR bv(14) XOR bv(17) XOR bv(19) XOR bv(20) XOR bv(21)

in such a way that the original feedback is obtained as:

MfCfeedback(r) = (feedback_even(λ(i:below(24)) : r(2*i))
XOR feedback_odd(λ(i:below(24)) : r(2*i+1)))

The match that we seek between even and odd subsolutions is expressed by the
following relation between two bit vectors.

shift2match?(ebv:bvec[25] , obv:bvec[25]) : bool =
feedback_even(λ(i:below(24)) : ebv(i))

= (ebv(24) XOR feedback_odd(λ(i:below(24)) : obv(i)))
∧feedback_even(λ(i:below(24)) : obv(i))

= (obv(24) XOR feedback_odd(λ(i:below(24)) : ebv(i+1)))

It is used to define matching subsolutions for a given keystream:

subsolutions(ks) =
{ (s : (subsolutions_even(ks)) , t : (subsolutions_odd(ks))) |

∀(shiftnr:below(len(ks)/2 - 5)) :
shift2match?(λ(i:below(25)) : s(i+shiftnr) ,

λ(i:below(25)) : t(i+shiftnr)) }
The main result then says:

∀(st : (subsolutions(ks)) , shiftnr:below(len(ks))) :
MfCfilfun(Advance(merge(ks)(st) , shiftnr-9)) = bits(ks)(shiftnr)

where the merge function yields an LFSR state:

merge(ks)(st) : MfClfsr = λ(i:below(LfsrSize)) :
IF even?(i) THEN proj_1(st)(i/2) ELSE proj_2(st)(i/2 - 1) ENDIF

The main result expresses a correctness property: the bits of a keystream can
be obtained by applying the filter function to a merge of matching (even and
odd) subsolutions. As sketched in [6, §§6.3], the set of such subsolutions can
be calculated efficiently, from which a merged LFSR state results. The above
correctness result shows that this process can be seen as an inverse to the filter
function of the Mifare Classic card.

6.2 The Odd-from-Even Attack

It is possible to improve upon the two-table attack when sufficiently many bits
of the keystream are known. In the previous section we saw that subsolutions
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of even bits of the LFSR can be computed from the even bits of the keystream.
Suppose we have an even subsolution of 48 bits. The following property specifies
that a subsolution of 48 even bits corresponds to a given LFSR state.

StateAndEvens(r:MfClfsr , e:bvec [LfsrSize ] ) : bool

= ∀(i:below(HalfLfsrSize )) :

e(i) = r(2*i) ∧ e(HalfLfsrSize + i) = advance(r , LfsrSize)(2*i)

Given such a even subsolution, we can algebraically obtain the odd bits of the
LFSR.

Consider as illustration the 4-bits LFSR with generating polynomial x4+x1+
1. If the bits of advance(r , LfsrSize) are named r4..r7, we can express these
in terms of initial LFSR bits r0..r3:

r4 = r0 ⊕ r3;
r5 = r1 ⊕ r4 = r0 ⊕ r1 ⊕ r3;
r6 = r2 ⊕ r5 = r0 ⊕ r1 ⊕ r2 ⊕ r3;
r7 = r3 ⊕ r6 = r0 ⊕ r1 ⊕ r2.

For an even subsolution the even variables r0, r2, r4 and r6 are known. This
leaves us with a system of four linear equations in four unknowns (the odd
variables r1, r3, r5 and r7 ). Solving the system gives

r1 = r2 ⊕ r4 ⊕ r6;
r3 = r0 ⊕ r4;
r5 = r2 ⊕ r6;
r7 = r0 ⊕ r4 ⊕ r6.

In particular, we now have expressed the missing odd bits of the initial LFSR
(r1 and r3) in terms of the bits of the even subsolution.

This computation can also be performed for the Mifare Classic LFSR. For
example the first odd bit equals e1 ⊕ e2 ⊕ e6 ⊕ e11 ⊕ e13 ⊕ e19 ⊕ e21 ⊕ e22 ⊕ e23 ⊕
e25⊕e28⊕e30⊕e32⊕e34⊕e36⊕e37⊕e38⊕e39⊕e41⊕e42. The equations for the
value of the odd bits in terms of the even bits were obtained with an external
program, but their correctness can readily be verified within PVS.

∀(r:MfClfsr, e:bvec[LfsrSize] ) :
StateAndEvens(r ,e) IMPLIES (

(r(1) = (e(1) XOR e(2) XOR e(6) XOR e(11) XOR e(13) XOR

e(19) XOR e(21) XOR e(22) XOR e(23) XOR e(25) XOR

e(28) XOR e(30) XOR e(32) XOR e(34) XOR e(36) XOR

e(37) XOR e(38) XOR e(39) XOR e(41) XOR e(42)))
AND

% similarly for r(3), r(5) .. r(47)

These observations lead to the following efficient attack. Suppose we have
58 bits of keystream, that is we have 29 bits of even and odd keystream each.
Using the 29 bits of even keystream we do a depth-first search to find the even



16 B. Jacobs and R. Wichers Schreur

subsolutions of 48 bits using the extension method of Section 6.1. For each even
subsolution we can compute the odd bits of the LFSR. These in turn determine
the odd bits of the keystream, which can be matched against the observed odd
keystream.

This attack is more efficient, because the odd subsolution is obtained directly
from the even subsolutions (an O(1) operation) whereas in the two-table attack
each even subsolution has to be matched against each odd subsolution (O(n2)
when done naively, O(n log(n)) using a sorting operation on the feedback values).

7 Conclusions

We have described the basic logical details of the Mifare Classic card, focussing
on its vulnerabilities and on two exploits. In the theorem prover PVS we have
proved essential correctness results, while abstracting away from for instance
matters of efficiency.

Many of the details of the formalisation are inherently specific to the Mifare
Classic card and its weaknesses. However, this work does show that formalisa-
tions are relatively easy to do and can be both precise and readable. This makes
them a solid base for the documentation and analysis of cryptographic systems.
Thus, this paper suggests to card producers that they do such formalisations
themselves, before bringing a card onto the market.
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Abstract. Functional and performance correctness of on-die communi-
cation fabrics is critical for the design of modern computer systems. In
this talk we will examine some challenges and open problems in func-
tional verification communication fabrics and in their quality of service
analysis and optimization. We will also review some progress that has
been done in liveness verification of communication fabrics.

Keywords: liveness, deadlocks, communication fabrics, networks-on-
chip, microarchitecture, high-level models, formal verification.

1 Communication Fabrics

Communication fabrics (a.k.a. interconnect fabrics or networks-on-chip) are
critical for the quality (correctness, performance, energy, reliability) and fast in-
tegration of modern and future computer industry products. Examples of com-
munication fabrics range from high-end regular rings and meshes in high-end
servers, graphics and high-performance computing to SOC system agents han-
dling coherent memory traffic, and to IO interconnect fabric.

Designing communication fabrics is one of the greatest challenges faced by
designers of digital systems due a tricky distributed nature of communication
and intricate nature of interaction between the micro-architecture of the fabric
and higher-level protocols used by the fabric agents that need to be mapped
over the fabric in correct and efficient manner. This challenge holds regardless
of whether fabrics are regular or irregular in structure.

Due to the need to be compatible with existing protocols and design prac-
tices, early definition and exploration of interconnect fabrics are often based on
previous designs. The detailed area and floorplan estimates done at the design
phase require significant effort making these detailed estimates impractical at
the architectural exploration stage where a designer needs to quickly evaluate
and compare many architectures.

Existing verification techniques are insufficient to meet the validation chal-
lenges of demonstrating correctness of modern fabrics, such as deadlocks and
livelocks in presence of message dependencies. Quality of service analysis, which
is commonly done based on design review and performance modeling, can miss
important corner cases.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 18–21, 2011.
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Designing communication fabrics is a multidimensional challenge that involves
complex functional and performance validation, cost analysis (area, power, de-
sign cost), and multilayered optimization (logical performance of interconnect
vs. physical design aspects of the chip).

In this talk we will focus on challenges of formal verification of communication
fabrics, i.e., proving their functional and performance correctness.

2 Verification Challenges

Time-to-market is one of the major constraints of system-on-chip (SoC) designs.
Project teams usually rely on standard IPs re-used across multiple products to
achieve quick turnaround time. Therefore, efficient system-level interconnect so-
lutions that can seamlessly glue different IPs together become an integral part
of designs. This design methodology trickles up to high-end server and high-
performance computing systems where demand in reuse of standardized compo-
nents (especially, the interconnect solutions) across multiple product segments
and design generations is growing.

If not designed carefully, deadlocks and livelocks in system-level interconnect
may present significant challenges to quick SoC integration. The distributed
nature of the system-level interconnect and the complex interaction between
many IPs make this problem hard to understand and debug.

Furthermore, deadlock problems at the system level are hard to fix or fix opti-
mally after they are found. For example, optimal solutions may require altering
many blocks, while simple solutions often sacrifice performance by limiting con-
currency.

Recently, there has been significant progress in formal deadlock verification
based on modeling systems using a well-defined set of functional primitives [6]
and generating inductive invariants [5] and deadlock conditions statically cap-
turing all possible system deadlocks [7]. A different promising technique uses
embedding of generic verification conditions into a theorem prover [9].

However, there is a need to significantly extend verification methods to cover
broader classes of design patterns, other liveness and safety properties such as
cache coherency, producer-consumer relation, and memory consistency proofs
taking into account micro-architectural details (unlike current state-of-the-art
techniques for cache coherency verification).

In addition, new methods are needed for connecting high-level models to RTL
either through optimizing fabric compilers or through generation of RTL valida-
tion observers.

3 xMAS Approach to Modeling and Verification

Our microarchitectural models are described by instantiating and connecting
components from a library of primitives. We refer to these models as xmas

networks (xmas stands for eXecutable MicroArchitectural Specification). The
properties to be verified are specified on these networks. The semantics of xmas
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networks are specified using synchronous equations for each primitive. Thus
every xmas network has an associated synchronous system which we call the
synchronous model.1 For verification, an xmas network is compiled down into a
synchronous model (single clock, edge-triggered Verilog to be precise) which is
then verified.

We use the high-level structure of the xmas primitives and models to discover
system invariants which are then included into the synchronous model to ease
the verification. The modeling methodology is described in more detail in [6] and
its use in safety verification is described in [5].

In this talk we will review a lightweight, automatic approach that allows us
to prove liveness on a large class of real examples drawn from the domain of
communication fabrics. The definition of deadlock in xmas models is local, i.e.
it permits part of the model to be forever blocked while the rest continues pro-
cessing packets. Such local deadlocks are also called livelocks.

The main idea behind our method is to exploit the high-level structure of the
model in order to reason about liveness. We show that all non-live behaviors of
xmas network, or structural deadlocks, can be characterized by pure structural
reasoning. Unreachable structural deadlocks are ruled out using safety invariants
which are also obtained through automatic analysis of the model [7].

4 Quality of Service Analysis and Optimization

Current design practices in Quality of Service (QoS) analysis are predominantly
restricted to two forms: informal design reviews and detailed performance mod-
els. The former is highly inaccurate and error prone, and the latter happens
too late in the design since many of the important architectural decisions are
locked-in by the time the performance model is completed. Moreover, neither of
these methods can answer the system-level starvation problem nor compute the
upper bound latencies for latency critical classes of traffic.

While similar problems have been in the past considered in network calcu-
lus [1], application of abstract interpretation to timing analysis of embedded
systems [10], and analysis of event separation in asynchronous specifications and
interfaces [4], neither of the above techniques appear to be directly applicable to
modern on-die interconnects or they produce too loose bounds on performance
guarantees.

Modern interconnect fabrics are parameterized (sizes of the queues, arbitra-
tion functions, channel widths, number of virtual classes). Quick selection of the
parameters optimizing quality of service metrics is an open problem addressed in
practice by design reviews and performance validation. Buffer optimization have
been successfully considered for asynchronous [8] and synchronous elastic [2,3]
specifications, however this only covers a small sub-class of design structures
used in modern fabrics.

1 If there is a combinational cycle in the synchronous model, the corresponding xMAS
network is ill-formed.
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Abstract. We present a shallow Coq embedding of a higher-order sepa-
ration logic with nested triples for an object-oriented programming lan-
guage. Moreover, we develop novel specification and proof patterns for
reasoning in higher-order separation logic with nested triples about pro-
grams that use interfaces and interface inheritance. In particular, we
show how to use the higher-order features of the Coq formalisation to
specify and reason modularly about programs that (1) depend on some
unknown code satisfying a specification or that (2) return objects con-
forming to a certain specification. All of our results have been formally
verified in the interactive theorem prover Coq.

1 Introduction

Separation Logic [12,16] is a Hoare-style program logic for modular reasoning
about programs that use shared mutable data structures. Higher-order sep-
aration logic [3] (HOSL) is an extension of separation logic that allows for
quantification over predicates in both the assertion logic (the logic of pre- and
post-conditions) and the specification logic (the logic of Hoare triples). HOSL
was proposed with the purposes of (1) reasoning about data abstraction via
quantification over resource invariants, and (2) making formalisations of separa-
tion logic easier by having one general expressive logic in which it is possible to
define predicates, etc., needed for applications. In this article we explore these
two purposes further; we discuss each in turn.

The first purpose (data abstraction) has been explored for a first-order lan-
guage [4], for higher-order languages [9,11], and for reasoning about generics
and delegates in object-oriented languages (without interfaces and without in-
heritance) [18]. In this article we show how HOSL can be used for modular
reasoning about interfaces and interface-based inheritance in an object-oriented
language like Java or C �. Our current work is part of a research project in
which we aim to formally specify and verify the C5 generic collection library [8],
which is an extensive collection library that is used widely in practice and whose
implementation makes extensive use of shared mutable data structures. A first
case-study of one of the C5 data structures is described in [7]. C5 is written in
C � and is designed mainly using interface inheritance, rather than class-to-class
inheritance; different collection modules are related via an inheritance hierarchy
among interfaces. For this reason we focus on verifying object-oriented programs
that use interfaces and interface-based inheritance.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 22–38, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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We explore the second purpose (formalisation) by developing a Coq formal-
isation of HOSL for an object-oriented class-based language and show through
verified examples how it can be used to reason about interfaces and inheritance.

Our formalisation makes use of ideas from abstract separation logic [6] and
thus consists of a general treatment of the assertion logic that works for many
models and for a general operationally-inspired notion of semantic command.
Our general treatment of the logic is also rich enough to cover so-called nested
triples [17], which are useful for reasoning about unknown code, either in the
form of closures or delegates [18] or, as we show here, in the form of code match-
ing an interface. To reason about object-oriented programs, we instantiate the
general development with the heap model for our object-oriented language and
derive suitable proof rules for the language. This approach makes it easier in the
future to experiment with other storage models and languages, e.g., variants of
separation logic with fractional permissions.

Summary of contributions. We formalize a shallow Coq embedding of a higher-
order separation logic for an object-oriented programming language. We have
designed a system that allows us to write programs together with their spec-
ifications, and then prove that each program conforms to its specification. All
meta-theoretical results have been verified in Coq1.

We introduce a pattern for interface specifications that allows for a modular
design. An interface specification is parametrised in such a way that any class
implementing the interface can be given a suitably expressive specification by
a simple instantiation of the interface specification. Moreover, we show how to
use nested triples to, e.g., write postconditions in the assertion logic that require
a returned object to match a certain specification. Our approach enables us to
verify dynamically dispatched method calls, where the dynamic types of the
objects are unknown.

Outline. The rest of this article is structured as follows. In Section 2 we demon-
strate the patterns we use for writing interfaces by providing a small example
program that uses interface inheritance and proving that it conforms to its spec-
ification. In Section 3 we cover the language and memory-model independent
kernel of our Coq formalisation. In Section 4 we specialise our system to handle
Java-like programs by providing constructs and a suitable memory model for a
subset of Java. Section 5 covers related work, and Section 6 concludes.

2 Reasoning with Interfaces

To demonstrate how our logic is applied, we will use the example of a class
Cell that stores a single value and which is extended by a subclass Recell that
maintains a backup of the last overwritten value and has an undo operation. This
example is originally due to Abadi and Cardelli [1]; a variant of it was also used
1 The Coq development accompanying this article can be found at
http://itu.dk/people/birkedal/papers/hosl_coq-201105.tar.gz

http://itu.dk/people/birkedal/papers/hosl_coq-201105.tar.gz
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interface ICell {
int get();
void set(int v);

}

class ProxySet {
static void proxySet(ICell c, int v) {

c.set(v);
}

}

class Cell implements ICell {
int value;

Cell() { }
int get() {

return this.value;
}
void set(int v) {

this.value = v;
}

}

interface IRecell extends ICell {
void undo();

}

class Recell implements IRecell {
Cell cell;
int bak;

Recell() {
this.cell = new Cell();

}
int get() {

return this.cell.get();
}
void set(int v) {

this.bak = this.cell.get();
this.cell.set(v);

}
void undo() {

this.cell.set(this.bak);
}

}

Fig. 1. Java code for the Cell-Recell example with interface inheritance

by Parkinson and Bierman [14] to show how their logic deals with class-to-class
inheritance.

We add to this example a method proxySet, which calls the set method of
a given object reference. It is a challenge to give a single specification to this
method that is powerful enough to expose any additional side effects the set
method might have in arbitrary subclasses. We will see in this section how our
specification style achieves this, and it is sketched in Section 5 how this compares
to related work.

Our model programming language is a subset of both Java and C �. It leaves
out class-to-class inheritance and focuses on interface inheritance. This mode of
inheritance captures the essential object-oriented aspect of dynamic dispatch,
while the code-reuse aspect has to be explicitly encoded with class composition.
A Java implementation of the Cell-Recell example can be found in in Figure 1.

2.1 Interface ICell

Interface ICell from Figure 1 is modelled as a parametrised specification that
states conditions for whether a class C behaves “Cell-like”. In the following, val
denotes the type of program values, in our case the union of integers, Booleans
and object references. Also, UPred(heap) is the type of logical propositions over
heaps, i.e., the spatial component of the assertion logic (see Section 3.1 for the



Verifying Object-Oriented Programs with HOSL in Coq 25

precise definition).

ICell � λC : classname. λT : Type. λR : val → T → UPred(heap).
λg : T → val . λs : T → val → T.

(∀t : T. C::get(this) 	→ {R̂ this t} {r. R̂ this t ∧ r = g t}) ∧ (1)
(∀t : T. C::set(this, x) 	→ {R̂ this t} {R̂ this (ŝ t x)}) ∧ (2)
(∀t, v. g (s t v) = v) (3)

There is some notation to explain here. ICell is a function that takes five argu-
ments and returns a result of type spec, which is the type of specifications. The
logical connectives at the outer level (∧ and ∀) thus belong to the specification
logic. The parameter R is the representation predicate of class C, so R c t intu-
itively means that c is a reference to an object that is mathematically modelled
by the value t of type T . The parameters g and s are functions that describe how
get and set inspect and transform this mathematical value. They are constrained
by (3) to ensure that get will actually return the value set with set.

The notation C::m(p̄) 	→ {P} {r. Q} from (1) and (2) specifies that method
m of class C has precondition P and postcondition Q. The arguments in a call
will be bound to the names p̄ in P and Q, and the return value will be bound to
r in Q. We support both static and dynamic methods, where dynamic methods
have an additional first argument, as seen in (1) and (2). The precise definition
is given in Section 4.2.

The notation f̂ from (1) and (2) lifts a function f such that it operates on
expressions, including program variables, rather than operating directly on val . It
is a technical point that can be ignored for a first understanding of this example,
but it is crucial for making HOSL work in a stack-based language. Details are
in Section 3.2.

The type of T refers to the Type universe hierarchy in Coq.

2.2 Method Proxyset

Consider method proxySet from Figure 1. Operationally, calling proxySet(c, v)
does the same as calling c.set(v), and we seek a specification that reflects this.
It is crucial for modularity that proxySet can be specified and verified only once
and then used with any implementation of ICell that may be defined later. We
give it the following specification.

ProxySet spec � ∀C, T, R, g, s. ICell C T R g s →
∀t : T. ProxySet::proxySet(c, x) 	→ {c : C ∧ R̂ c t} {R̂ c (ŝ t x)}

The assertion c : C means that the object referenced by c is of class C. Thus,
the caller of proxySet can pass in an object reference of any class C as long as C
can be shown to satisfy ICell .

This specification is as powerful as that of set in ICell since it essentially for-
wards it. Any class that behaves Cell-like should be able to encode the behaviour
of its set method by a suitable choice of R and s. We will see in Section 2.6 that
it, for instance, is possible to pass in a Recell and deduce how proxySet affects
its backup value.
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2.3 Class Cell

A Java implementation of Cell can be found in Figure 1. We model constructors
as static methods that allocate the object before running the initialisation code
and return the allocated object, which is what happens in the absence of class-
to-class inheritance.

We give class Cell the following specification, which is a conjunction of what
we will call an interface specification and a class specification. These correspond
respectively to the dynamic and static specifications in [14].

Cell spec � ∃RCell. ICell Cell val RCell (λv. v) (λ , v. v) ∧ Cell class RCell

where
Cell class � λRCell : val → val → UPred(heap).

Cell::new() 	→ {true} {∃v. R̂Cell this v} ∧
(∀v. Cell::get(this) 	→ {R̂Cell this v} {r. R̂Cell this v ∧ r = v}) ∧
(∀v. Cell::set(this, x) 	→ {R̂Cell this v} {R̂Cell this x})

The representation predicate RCell is quantified such that its definition is visible
only while proving the specifications of Cell, thus hiding the internal representa-
tion of the class from clients [4,13].

It is crucial that RCell is quantified outside both the class and the interface
specification such that the representation predicate is the same in the two. In
practice, a client will allocate a Cell by calling new, which establishes RCell; later,
to model casting the object reference to its interface type, the client knows that
ICell holds for this same RCell.

The specifications of get and set in Cell class are identical to their counter-
parts in ICell when C, T, R, g, and s, are instantiated as in Cell spec. In general,
the class specification can be more precise than the interface specification, sim-
ilarly to the dynamic and static specifications of [14].

To prove Cell spec, the existential RCell is chosen as λc, v. c.value 	→ v. We
can then show that Cell class RCell holds by verifying the method bodies of get,
set and init, and the correctness of get and set can be used as a lemma in proving
the interface specification. In this way, each method body is verified only once.

2.4 Interface IRecell

To show the analogy to interface inheritance at the specification level, we ex-
amine an interface for classes that behave Recell-like. The Java code for that is
IRecell in Figure 1. The specification corresponding to this interface follows the
same pattern as ICell :

IRecell � λC : classname . λT : Type. λR : val → T → UPred(heap).
λg : T → val . λs : T → val → T. λu : T → T.

ICell C T R g s ∧ (4)
(∀t : T. C::undo(this) 	→ {R̂ this t} {R̂ this (u t)}) ∧ (5)
(∀t, v. g (u (s t v)) = g t) (6)



Verifying Object-Oriented Programs with HOSL in Coq 27

Notice that interface extension is modelled by referring to ICell in (4). We
do not have to respecify get and set since they were already general enough in
ICell due to it being parametric in g and s. Note how equation (6) specifies the
abstract behaviour of undo via g and s.

There is a pattern to how we construct a specification-logic interface predicate
from a Java interface declaration. For each method m(x1, . . . , xn), we add a
parameter fm : T → valn → (val × T ). The product (val × T ) can be replaced
with just val or T if the method should have no side effects or no return value,
respectively. We then add a method specification of the form:

∀t : T. C::m(p̄) 	→ {R̂ this t} {r. R̂ this (π2 (f̂m p̄ t)) ∧ r = π1 (f̂m p̄ t)}.

2.5 Class Recell

The specification of class Recell follows the same pattern as with Cell:

Recell spec � ∃RRecell : val → val → val → UPred(heap).
IRecell Recell (val × val) R g s u ∧ Recell class RRecell

where R = λthis , (v, b). RRecell this v b, g = λ(v, b). v,
s = λ(v, b), v′. (v′, v), u = λ(v, b). (b, b),

and Recell class is defined analogously to Cell class .

2.6 Class World

The correctness of the above specifications only matters if it enables client code
to instantiate and use the classes. The client code in World demonstrates this:

class World {
static ICell make() {

Recell r = new Recell();
r.set(5);
ProxySet::proxySet(r, 3);
r.undo();
return r;

}

static void main() {
ICell c = World::make();
assert c.get() == 5;

}
}

The body of make demonstrates the use of proxySet. Operationally, it should
be clear that r has the value 3 and the backup value 5 after the call to proxySet.
This can also be proved in our logic despite using a specification of proxySet that
was verified without knowledge of Recell and its backup field.

Upon returning from make, we choose to forget that the returned object is
really a Recell, upcasting it to ICell. Its precise class is not needed by the caller,
main, which only needs to know that the returned object will return 5 from get.

We capture the interaction between these two methods with the following
specification, in which FunI : spec → UPred(heap) injects the specification logic
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into the logic of propositions over heaps, thus generalising the concept of nested
triples. Section 3.5 describes FunI in more detail.

World spec �World::main() 	→ {true} {true} ∧

World::make() 	→ {true}
{

r. ∃C, T, R, g, s. F̂unI (ICell C T R g s) ∧
∃t. R̂ r t ∧ g t = 5 ∧ r : C

}

The make method is specified to return an object whose class C is unknown,
but we know that C satisfies ICell .

This pattern of returning an object of an unknown type that satisfies a par-
ticular specification often comes up in object-oriented programming: think of
the method on a collection that returns an iterator, for example. The essence
of this pattern is to have a parametrised specification S : classname → spec
and a method specified as D::m() 	→ {true} {r. ∃C. r : C ∧ F̂unI (S C)}. A
more straightforward alternative to such a specification – one that does not re-
quire an embedding of the specification logic in the assertion logic – would be
∃C. S C ∧ D::m() 	→ {true} {r. r : C}. However, this restricts the body of m
to only being able to return objects of one class. The method body cannot, for
example, choose at run time to return either a C1 or a C2, where both C1 and
C2 satisfy S. We find that the most elegant way to allow the method body to
make such a choice is to embed the specification in the postcondition.

Using the notion of validity from Definition 5 in Section 3.4 we can now prove
that the whole program will behave according to specification:

Theorem 1. (ProxySet spec ∧ Cell spec ∧ Recell spec ∧ World spec) is valid.

3 Abstract Representation

The core of our system is designed to be language independent. To allow for dif-
ferent memory models, we adopt the notion of separation algebras from Calcagno
et al. [6]; we can then instantiate an assertion logic with any separation algebra
suitable for the problem at hand. Commands are modelled as relations on the
program state, which in turn consists of a mutable stack and a heap. Finally, we
define an expressive specification logic that can be used to reason about semantic
commands.

We use set-theoretic notation to describe our formalisation as this makes the
theories easier to read; in Coq we model these sets as functions into Prop, which
is the sort of propositions in Coq.

3.1 Uniform Predicates

Definition 1 (Separation algebra). A separation algebra is a partial, can-
cellative, commutative monoid (Σ, ◦, 1) where Σ is the carrier, ◦ is the monoid
operator, and 1 is the unit element.
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Intuitively, Σ can be thought of as a type of heaps, and the ◦-operator as com-
position of disjoint heaps. Hence we refer to the elements of Σ as heaps. Two
heaps are compatible, written h1 # h2 if h1 ◦ h2 is defined. A heap h1 is a sub-
heap of a h2, written h1 � h2, if there exists an h3 such that h2 = h1 ◦ h3. We
will commonly refer to a separation algebra by its carrier Σ.

A uniform predicate [5] over a separation algebra is a predicate on heaps and
natural numbers; it is upwards closed in the heaps and downwards closed in the
natural numbers.

UPred(Σ) � {p ⊆ Σ × N | ∀g, m. ∀h � g. ∀n ≤ m. (g, m) ∈ p → (h, n) ∈ p)}

The upward closure in heaps ensures that we have an intuitionistic separation
logic as is desirable for garbage-collected languages.

The natural numbers are used to connect the uniform predicates with the
step-indexed specification logic – this connection will be covered in Section 3.5.

We define the standard connectives for the uniform predicates as in [5]:

true � Σ × N false � ∅
p ∧ q � p ∩ q p ∨ q � p ∪ q

∀x : U. f �
⋂

x:U f x ∃x : U. f �
⋃

x:U f x

p → q � {(h, n) | ∀g � h. ∀m ≤ n. (g, m) ∈ p → (g, m) ∈ q}
p ∗ q � {(h1 ◦ h2, n) | h1 # h2 ∧ (h1, n) ∈ p ∧ (h2, n) ∈ q}

p −∗ q � {(h, n) | ∀m ≤ n. ∀h1#h. (h1, m) ∈ p → (h ◦ h1, m) ∈ q}

For the quantifiers, U is of type Type, i.e. the sort of types in Coq, and f is any
Coq function from U to UPred(Σ). This allows us to quantify over any member
of Type in Coq.

3.2 Stacks

Stacks are functions from variable names to values: stack � var → val .
Two stacks are said to agree on a set V of variables if they assign the same

value to all members of V : s �V s′ � ∀x ∈ V. s x = s′ x. In order to define
operators that take values from the stack as arguments we introduce the notion
of a stack monad. This approach is similar to that of Varming and Birkedal [20].

sm T � {(f : stack → T, V : P(var)) | ∀s, s′. s �V s′ → f s = f s′}

Intuitively, V is an over-approximation of the free program variables in f . For
any m = (f, V ) ∈ sm T , we write m s to mean f s and fv m to mean V .

Theorem 2. sm is a monad with return operation λx : T. ((λ . x), ∅) and bind
operation λm : sm T. λf : T → sm U. ((λs. f (m s) s), fv m ∪

⋃
t∈T fv (f t)).

We use the stack monad to model expressions (which can be evaluated to values
using data from the stack), pure assertions (that represent logical propositions
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that are evaluated without using the heap), and assertions (that represent logical
propositions that are evaluated using both the heap and the stack).

expr � sm val pure � sm Prop asn(Σ) � sm UPred(Σ)

We create an assertion logic by lifting all connectives from UPred(Σ) into
asn(Σ). The definitions and properties of the liftings follow from the fact that
sm is a monad (Theorem 2).We prove that both the uniform predicates and the
assertions model separation logic [3].

Theorem 3. For any separation algebra Σ, UPred(Σ) and asn(Σ) are complete
BI-algebras.

The stack monad is also used for the lifting operator f̂ that was introduced in
Section 2.1. The operator takes a function f , and returns a function f̂ where any
argument type T that is passed to f is replaced with sm T , and any return type
U with sm U . As an example, the representation predicate R in the specification
for ICell , which has type val → T → UPred(heap), is lifted to R̂ in the assertion-
logic formulas of the specification. The resulting type for R̂ is sm val → sm T →
sm UPred(heap), i.e. expr → sm T → asn(heap).

We have to make this lifting explicit in specifications because it restricts
how program variables behave under substitution. We have that (f̂ e)[e′/x] =
f̂ (e[e′/x]) for any f : val → UPred(Σ), but it is not the case that (g e)[e′/x] =
g (e[e′/x]) for any g : expr → asn(Σ) because g e may have more free program
variables than those appearing in e, whereas f̂ e cannot, by construction. To
make HOSL useful in a stack-based language, where such substitutions are com-
monplace, we therefore typically quantify over functions into UPred(Σ) that we
then lift to asn(Σ) where needed.

3.3 Semantic Commands

To obtain a language-independent core, we model commands as indexed relations
on program states (each consisting of a stack and a heap) – a semantic command
will relate, in a certain number of steps, a state either to another state or to an
error. The only requirements we impose on these commands are that they do
not relate to anything in zero steps, and that they satisfy a frame property
that will allow us to infer a frame-rule for all semantic commands. Intuitively,
the semantic commands can be seen as abstractions of rules of a step-indexed
big-step operational semantics. More formally, we have the following definitions.

Definition 2 (pre-command). A pre-command c̃ relates an initial state to
either a terminal state or the special err state:

precmd � P(stack × Σ × ((stack × Σ) � {err}) × N)

We write (s, h, c̃)�n x to mean that (s, h, x, n) ∈ c̃.



Verifying Object-Oriented Programs with HOSL in Coq 31

Definition 3 (Frame property). A pre-command c̃ has the frame property in
case the following holds. If (s, h1, c̃) ��n err and (s, h1 ◦ h2, c̃)�n (s′, h′) then
there exists h′

1 such that h′ = h′
1 ◦ h2 and (s, h1, c̃)�n (s′, h′

1).

Definition 4 (Semantic command). A semantic command satisfies the frame
property and does not evaluate to anything in zero steps.

semcmd � {ĉ ∈ precmd | ĉ has the frame property ∧ ∀s, h, x. (s, h, ĉ) ��0 x}

To facilitate the encoding of imperative programming languages in our frame-
work, we create the following semantic commands that can be used as building
blocks for that purpose. These commands are similar to the ones found in [6].

id seq ĉ1 ĉ2 ĉ1 + ĉ2 ĉ∗ assume P check P

Intuitively, these semantic commands are defined as follows: The id-command
is the identity command – it does nothing; the seq-command executes two com-
mands in sequence; the +-operator nondeterministically executes one of two
commands; the ∗-command executes a command an arbitrary amount of times;
the assume-command assumes a pure assertion that can be used to prove cor-
rectness of future commands; the check-command works like the id-command
as long as a pure assertion can be inferred. Recall that pure assertions are logical
formulas that are evaluated without using the heap.

Theorem 4. id, seq, +, ∗, assume, and check are semantic commands.

3.4 Specification Logic

With the assertion logic and the semantic commands in place, we can define
the specification logic. Semantically, a specification is a downwards-closed set of
natural numbers; this allows us to reason about (mutually) recursive programs
via step-indexing.

spec � {S ⊆ N | ∀m, n. m ≤ n ∧ n ∈ S → m ∈ S}

The set spec is a complete Heyting algebra under the subset ordering, i.e.,
logical entailment (|=) is modelled as subset inclusion. Hence a specification S
is valid if S = N.

Given assertions P and Q, and semantic command ĉ, we define a Hoare triple
specification:

{P}ĉ{Q} � {n | ∀m ≤ n. ∀k ≤ m. ∀s, h. (h, m) ∈ P s → (s, h, ĉ) ��k err ∧
∀h′, s′. (s, h, ĉ)�k (s′, h′) → (h′, m − k) ∈ Q s′}

A program is proved correct by proving that its specification is valid:

Definition 5. A specification is valid, written |= S, when true |= S.
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3.5 Connecting the Assertion Logic with the Specification Logic

We define an embedding of the specification logic into the assertion logic as
follows:

FunI : spec → UPred(Σ) � λS. Σ × S.

Lemma 1. FunI is monotone, preserves implication, and has a left and a right
adjoint, when spec and UPred(Σ) are treated as poset categories.

From the second part of this lemma it follows that FunI preserves both finite
and infinite conjunctions and disjunctions, which entails that all specification
logic connectives are preserved by the translation.

3.6 Recursion

The specification connectives defined in the previous section are not enough for
our purposes. When proving a program correct (by proving a formula of the
form |= S), it is commonplace that the proof of one part of specification in S
requires other parts of S – a typical example is recursive method calls, where
the specification of the method called must be available in the context during
its own verification. To accomplish this, we borrow the later operator (�) from
Gödel-Löb logic (see [2]).

�S � {n + 1 | n ∈ S} ∪ {0}

This operator can be used via the Löb rule, which allows us to do induction
on the step-indexes of the semantic commands.

Γ ∧ �S |= S 0 ∈ Γ → 0 ∈ S

Γ |= S
Löb

In the inductive case �S is found on the left hand side of the turnstile and can
hence be used to prove S.

4 Instantiation to an Object-Oriented Language

We define a Java-like language with syntax of programs P shown below. The
language is untyped and does not need syntax for interfaces; these exist in the
specification logic only.

We use a shallow embedding for expressions, which we denote with e, as shown
in Section 3.2.

P ::= C∗ f ∈ (field names)
C ::= class C f∗ (m(x̄){c; return e})∗

c ::= x := alloc C | x := e | x := y.f | x.f := e | x := y.m(ē)
| x := C::m(ē) | skip | c1; c2 | if e then c1 else c2

| while e do c | assert e
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skip ∼sem id
Skip-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

c1; c2 ∼sem seq ĉ1 ĉ2

Seq-Sem

c ∼sem ĉ

while e do c ∼sem seq (seq (assume e) ĉ)∗ (assume ¬e)
While-Sem

c1 ∼sem ĉ1 c2 ∼sem ĉ2

if e then c1 else c2 ∼sem (seq (assume e) ĉ1) + (seq (assume ¬e) ĉ2)
If-Sem

Fig. 2. The skip, sequential composition, conditional and loop cases of the semantics
relation

In order to provide a concrete instance of the assertion logic, we construct a sep-
aration algebra of concrete heaps. The carrier set is heap � (ptr × field)

fin
⇀ val ,

with the values defined as the union of integers, Booleans and object references.
The partial composition h1 ◦ h2 is defined as h1 ∪ h2 if dom h1 ∩ dom h2 = ∅;
otherwise the result is undefined. The unit of the algebra is the empty map,
emp. We denote this separation algebra (heap, ◦, emp) with heap. The points-to
predicate is defined as v.f 	→v′ � {(h, n) | h � [(v, f) 	→ v′]}.

4.1 Semantics of the Programming Language

We define the semantics of the programming language commands by relating
them to semantic commands instantiated with heap as the separation algebra.
We write c ∼sem ĉ to denote that the syntactic command c is related to the
semantic command ĉ. The ∼sem relation can be thought of as a function; it is
defined as a relation only because this was more straightforward in Coq.

The commands skip, ;, if , and while can be related directly to composites of
the general semantic commands, defined in Section 3.3. The definition of ∼sem

for these commands can be found in Figure 2. For the remaining commands,
new semantic commands must be created.

In particular, for method calls, we define a semantic command

call x C::m(ē) with c ĉ

that, intuitively, calls method m of class C with arguments ē and assigns the
return value to x; the command c is the method body, and ĉ is its corresponding
semantic command. This semantic command works uniformly for both static and
dynamic methods, since in the dynamic case we can pass the object reference as
an additional argument. The definition of this semantic command is shown in
Figure 3. The definition makes use of a predicate

C::m(p̄){c; return r} ∈ P

which holds in case method m in class C has parameters p̄ and method body
c in program P . The program parameter P has been left implicit in the other
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([p̄ �→ (ē s)], h, ĉ)�n (s′, h′) C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ)�n+1 (s[x �→ (r s′)], h′)

Call

C::m(p̄){c; return r} /∈ P
(s, h, call x C::m(ē) with c ĉ)�1 err

Call-Fail1

C::m(p̄){c; return r} ∈ P |p̄| �= |ē|
(s, h, call x C::m(ē) with c ĉ)�1 err

Call-Fail2

([p̄ �→ (ē s)], h, ĉ)�n err C::m(p̄){c; return r} ∈ P |p̄| = |ē|
(s, h, call x C::m(ē) with c ĉ)�n+1 err

Call-Fail3

Fig. 3. Semantic call commands

rules. The notation [p̄ 	→ (ē s)] denotes a finite map that associates each p in p̄
with the e at the corresponding position in ē evaluated in stack s.

The requirement that the method body is related to the semantic command
is not enforced by the construction of the semantic command, but rather by the
definition of ∼sem for respectively static and dynamic method calls:

c ∼sem ĉ

x := C::m(ē) ∼sem call x C::m(ē) with c ĉ
SCall-Sem

c ∼sem ĉ y : C

x := y.m(ē) ∼sem call x C::m(y, ē) with c ĉ
DCall-Sem

4.2 Syntactic Hoare Triples and the Concrete Assertion Logic

Hoare triples for syntactic commands are defined in the following manner:

{P}c{Q} � ∀ĉ. c ∼sem ĉ → {P}ĉ{Q}.

From this definition we infer and prove sound Hoare rules for all commands of
our language. To define the rule for method calls we first define the predicate
that asserts the specification of methods, introduced in Section 2.1.

C::m(p̄) 	→ {P} {r. Q} � ∃c, e. wf (p̄, r, P, Q, c) ∧ C::m(p̄){c; return e} ∈ P
∧ {P}c{Q[e/r]},

where wf is a predicate to assert the following static properties: the method
parameter names do not clash; the pre- and postcondition do not use any stack
variables other than the method parameters and this (the postcondition may
also use the return variable); the method body does not modify the values of
the method parameters or this.
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|= {P}skip{P} Skip {P}c1{Q} ∧ {Q}c2{R} |= {P}c1; c2{R} Seq

{P ∧ e}c1{Q} ∧ {P ∧ ¬e}c2{Q} |= {P}if e then c1 else c2{Q} If

{P ∧ e}c{P} |= {P}while e do c{P ∧ ¬e} While

P � e

|= {P}assert e{P} Assert

|= {true}x := alloc C{∀∗f ∈ fields(C). x.f �→null} Alloc

|= {P}x := e{∃v. P [v/x] ∧ x = e[v/x]} Assign |= {x.f �→ }x.f := e{x.f �→e} Write

P � y.f �→e

|= {P}x := y.f{∃v. P [v/x] ∧ x = e[v/x]} Read

Γ |= �C::m(p̄) �→ {P} {r. Q} |p̄| = |y, ē|
Γ |= {y : C ∧ P [y, ē/p̄]}x := y.m(ē){∃v. Q[x, y[v/x], ē[v/x]/r, p̄]} DCall

Γ |= �C::m(p̄) �→ {P} {r. Q} |p̄| = |ē|
Γ |= {P [ē/p̄]}x := C::m(ē){∃v. Q[x, ē[v/x]/r, p̄]} SCall

P � P ′ Q′ � Q

{P ′}c{Q′} |= {P}c{Q} Consequence

∀x ∈ fv R. c does not modify x

{P}c{Q} |= {P ∗ R}c{Q ∗R} Frame

P � P ′ Q′ � Q fv P ⊆ fv P ′ fv Q ⊆ fv Q′

C::m(p̄) �→ {P ′} {r. Q′} |= C::m(p̄) �→ {P} {r. Q} Consequence-MSpec

fv R ⊆ {this} ∪ p̄

C::m(p̄) �→ {P} {r. Q} |= C::m(p̄) �→ {P ∗ R} {r. Q ∗R} Frame-MSpec

Fig. 4. Specification logic rules for syntactic Hoare triples

Selected proof rules for syntactic commands are shown in Figure 4. Note the
use of the later operator (�) in the method call rule; this means that this method
call rule will often be used in connection with the Löb rule.

Theorem 5. The rules in Figure 4 are sound with respect to the operational
semantics.

5 Related Work

Formalisations of higher-order separation logic have been proposed before, e.g.
by Varming and Birkedal [20], who developed an Isabelle/HOL formalisation of
HOSL for partial correctness for a simple imperative language with first-order
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mutually recursive procedures, using a denotational semantics of the program-
ming language, and by Preoteasa [15], who developed a PVS formalisation for
total correctness using a predicate-transformer semantics for a similar program-
ming language.

Parkinson and Bierman treated an extended version of the Cell-Recell example
in [14], improving upon their earlier work in [13]. Their approach is to tailor the
specification logic to build in a form of quantification over families of represen-
tation predicates following a fixed pattern determined by the inheritance tree of
the program. This construction is known as abstract predicate families (APFs).

Where our logic allows quantification over a representation type T , as used in
Section 2.1, APFs have a built-in notion of variable-arity predicates to achieve
same effect: representation predicates of a subclass can add parameters to the
representation predicate they inherit. Class Cell defines a two-parameter repre-
sentation predicate family Val , which is extended to three arguments in Recell.
A Recell r having value 2 and backup field 1 would be asserted as Val(r, 2, 1).
This assertion implies Val(r, 2), which in turn implies ∃b.Val(r, 2, b) if it is known
that r is a Recell. Thus, casting to the two-argument representation predicate
that would be necessary for calling {∃v.Val(c, v)} proxySet(c, x) {Val(c, x)} will
lose any information about the backup field.

The logic of Parkinson and Bierman was extended by van Staden and Calcagno
[19] to handle multiple inheritance, abstract classes and controlled leaking of
facts about the abstract representation of either a single class or a class hierarchy.
Using the latter feature, we observe that their logic can also be used to reason
about the example in Section 2, by using parameters g and s to give a precise
specification of proxySet. Instead of being functions, g and s would be abstract
predicate families whose first argument would be an object reference used only
for selecting the correct member of the APF.

Compared to the logics based on abstract predicate families, our logic allows
families of not just predicates but also types, functions, class names or any other
type that can be quantified over in Coq. This gives us strong typing of logical
variables, and all this works without building it into the logic and requiring that
quantifications and proofs follow the shape of the inheritance tree.

6 Conclusion and Future Work

We have presented a Coq implementation of a generic framework for higher-order
separation logic. In this framework, instantiated with a simple object-oriented
language, we have shown how HOSL can be used to reason about interfaces and
interface inheritance.

Future work includes developing better support for automation via better
use of tactics. Our Coq proofs of example programs are cluttered with manual
reordering of the context because we do not yet have tactics to automate this. We
also plan to integrate the current tool with an Eclipse front-end that is currently
being researched within our project [10]. Moreover, we plan to use the tool for
formal verification of interesting data structures from the C5 collection library.
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Although it is not necessary for the code we mostly want to verify, proper
support for class-to-class inheritance in both the logic and the design pattern
would enable more direct comparison with related work. It would also make our
Java subset more similar to actual Java.
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Abstract. We introduce relational decomposition, a technique for formally re-
ducing termination-insensitive relational program logics to unary logics, that is
program logics for one-execution properties. Generalizing the approach of self-
composition, we develop a notion of interpolants that decompose along the phrase
structure, and relate these interpolants to unary and relational predicate trans-
formers. In contrast to previous formalisms, relational decomposition is applica-
ble across heterogeneous pairs of transition systems. We apply our approach to
justify variants of Benton’s Relational Hoare Logic (RHL) for a language with
objects, and present novel rules for relating loops that fail to proceed in lockstep.
We also outline applications to noninterference and separation logic.

1 Introduction

Verification formalisms and tools based on Hoare logics are typically designed with
one-execution properties in mind: their partial or total correctness interpretation in-

volves a single operational judgement s
P−→ t.

φ

R

P’

’t
S

P

s’s

t

Fig. 1. Relational de-
composition of simula-
tion using witness φ

However, many program properties are relational: they are

naturally phrased as statements over pairs of executions s
P−→ t

and s′
P ′
−→ t′, stipulating that the terminal states are in relation

S whenever the initial states are in relation R. Examples in-
clude “obviously relational” properties such as program trans-
formations or noninterference [35], but also extensional inter-
pretations of type systems and program analyses [13].

In this article, we present relational decomposition, a tech-
nique for reducing the verification of relational properties to
that of unary ones. We demonstrate our technique by deriv-
ing a variant of Benton’s Relational Hoare Logic (RHL, [13])
from a unary program logic, demonstrating that efforts invested
into the construction of semantic models for unary logics can
be harnessed for the justification of relational formalisms. We
thus open an avenue for integrating relational logics into foun-
dational stacks of verification formalisms [6,4].
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Relational decomposition reduces the validation of a simulation to the separate ver-

ification of unary specifications for the executions s
P−→ t and s′

P ′
−→ t′. These unary

specifications are determined by shared relations φ that relate terminal states of (non-
primed) executions to the left with initial states of (primed) executions to the right, in
effect witnessing the simulation as indicated in Figure 1. The specification for P then
arises from the upper left decomposition triangle (with corners s, s′, and t), and the
specification for P ′ arises from the lower right triangle (with corners s′, t′, and t). Each
unary specification universally quantifies over states from the opposite execution.

The present article makes two contributions. First, we present fundamental properties
of relational decomposition, in a setting in which the two transition systems involved
in a simulation are not necessarily identical. We exploit this flexibility when extending
relational decomposition to parametrized simulations, i.e. situations where the relations
R and S are parametric over values of some type Z . Second, we present specific re-
lational decompositions of relational program logics, for a concrete language of com-
mands, objects, and loops, thus demonstrating how witness relations may be obtained
in a concrete setting. More specifically, we

1. establish soundness of decomposition: any witness φ yields unary specifications for
the left and right executions that together imply the simulation property (Section 2);

2. establish the formal completeness of decomposition: witnesses exist whenever the
simulation property semantically holds. The space of witnesses is characterized by
an inclusion property between relational predicate transformers. We present laws
that relate these transformers to their unary counterparts (Section 2);

3. derive a termination-insensitive variant of RHL in decomposed style, including
novel rules for dissonant loops, i.e. loops that do not proceed in lock-step; in par-
ticular, proof rules synthesize witnesses in a compositional fashion (Section 3);

4. outline an extension of relational decomposition that deals with parametrized sim-
ulations. The resulting logic can be used to justify type systems for noninterfer-
ence [7] and variants of relational separation logics [40] (Section 4).

All results have been verified using the theorem prover Isabelle/HOL, and the source
files are available online [14]. As a consequence, details of most proofs are omitted.

1.1 Related Work

Relational decomposition extends the idea of self-composition [11]. For the special case
of (termination-insensitive) noninterference [35], self-composition establishes the se-
curity of a command1 C by verifying the one-execution property {∼L} C; C′{∼L}
where C′ arises from C by replacing all program variables x in C by fresh copies x′,
and the predicate ∼L is defined as {s | ∀x ∈ L. s x = s x′} for some fixed (“low”)
subset L of (nonprimed) variables. Self-composition thus reduces relational to unary
verification using syntactic operations on programs: variable renaming, code duplica-
tion, and (sequential) composition. Relational decomposition reveals that the essence

1 Anticipating the concrete programming language used later in the paper, we let C range over
some concrete category of commands, in contrast to the generic labels P .
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of self-composition lies neither in the “self” nor in the “composition” aspect, but in the
dual use of auxiliary state: related programs do not have to be copies of each other (in
fact they need not be syntactically similar at all and may stem from different languages),
and no syntactic composition operator is required at their point of interaction. Indeed,
the witness relations φ can be interpreted as specifications applicable at the point of
program composition in a self-composed program, mediating between pre- and postre-
lations in a style reminiscent of interpolants [17].

Terauchi and Aiken [37] observe that the efficiency of self-composition is improved
if phrase-duplication is applied only to small program fragments, but limit their atten-
tion largely to noninterference. They demonstrate that type systems for noninterference
yield transformation rules that push self-composition towards the leaves of the syntax
tree so that the symmetry between C and C′ can be better exploited. Our application
of relational decomposition is phrased in the opposite direction: we derive a relational
logic from a unary one rather than aiming to obtain unary specifications from a given
relational specification. The language considered by Terauchi and Aiken [37] is that of
simple assignments and while-loops. In particular, heap structures – whose treatment
presents a particular challenge due to the fact that differences in location chosen by the
allocator in different runs are generally considered unobservable – are not considered.

Naumann [31] extends Terauchi and Aiken’s work to a language with objects, for
general relational pre- and postconditions. Indistinguishability of locations is treated
using the well-known technique of partial bijections [12,7]. Naumann’s encoding of re-
lational into unary specifications employs ghost fields: each object contains a boolean
ghost field indicating whether the object should be interpreted w.r.t. the left or the right
execution, and a further ghost field that (if nonnull) refers to the object’s “mate” in the
opposite execution. From a semantic point of view this encoding is slightly unsatisfac-
tory, as the soundness result is contingent on the condition that None of the considered
relations or programs should depend on these fields except through explicit use in the
encoding ([31], page 9). Arguably, this condition represents an external assumption
whose impact on the end-to-end guarantee is not formally modeled, requiring the end-
user to trust some additional tool validating (possibly a syntactic approximation of) this
condition. In fact, independence is itself a relational concept – and so is arguably the
concept of ghost variables: the rules governing their use are virtually identical to those
for a high-security variable in noninterference. A practical drawback of Naumann’s en-
coding is that the explicit declaration of ghost fields permeates all classes, potentially
limiting the scalability of the approach ([31], page 16).

Beringer-Hofmann [15] and Darvas-Hähnle-Sands [18] formulate self-composition
in terms of program logics, but again focus on noninterference. In particular, Beringer
and Hofmann [15] show how standard type systems [38,24] can be formally interpreted
in a unary logic, using a type-directed rule-by-rule construction of intermediate formu-
lae φ. The witness relations employed in the present paper extend this construction to
arbitrary relational simulation properties over possibly distinct transition systems. The
present paper highlights that the synthesis of the witnesses proceeds along the phrase
structure or the structure of the RHL proof rules, independent of the type structure.

The logics of Benton [13] and Yang [40] provide a blueprint for our relational
Hoare logic, but do not support verification across different languages. These logics are
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justified by direct recourse to operational semantics rather than being derived from an
intermediate unary verification formalism. A further difference consists in our use of
a termination-insensitive interpretation of relational judgements: simulations are vacu-
ously fulfilled if either execution fails to terminate. This design decision is motivated
by the fact that already in the unary setting, proof techniques for termination (appropri-
ate measures, i.e. variants) are significantly different from those for partial-correctness
properties (invariants). A second reason is that applications such as compiler verifica-
tion often actually relax termination-sensitivity to at least an asymmetric form [28].
Thus, termination appears sufficiently orthogonal to the functional aspects of relational
behaviour to be treated separately. Nevertheless, we acknowledge that (and point out
where) our design decision has repercussions on the proof rules we are able to derive.

In the area of translation validation, a number of verification approaches have been
proposed, some of which include rules for relating loops that fail to proceed in lock-
step [32,20,39]. In contrast to our proof system, these approaches are typically justified
with the help of auxiliary constructs such as program labels and paths, in conflict with
the extensional view taken in the present paper and also emphasized by Benton.

2 The Principle of Decomposition

2.1 Introducing Interpolating Witnesses

For the purpose of this paper, a transition system T over state space S and labels P
is a ternary relation T ⊆ S × P × S. Contrary to other uses of transition systems,
we employ a big-step reading where labels may represent compound program phrases
whose cumulative effect is captured in a single transition.

Each transition system T gives rise to a one-execution specification system where
assertions are (curried) binary predicates A over S that relate initial and final states,
similar to postconditions in VDM [25]. We interpret specifications as partial-correctness
statements, by writing |=T P : A whenever (s, P, t) ∈ T implies A s t for all s, t ∈ S.

The formal notion of simulation employs pre- and postconditions that relate states
across two transition systems. In order to clearly distinguish between one- and two-
execution specifications we write relational assertions in uncurried, often infix style.

Definition 1. For T ⊆ S×P×S and T ′ ⊆ S′×P ′×S′, let R, S ⊆ S×S′. Programs
P ∈ P and P ′ ∈ P ′ are R =⇒ S-similar, notation |=T ′

T P ∼ P ′ : R =⇒ S, if for all
s, s′, t, and t′ with (s, P, t) ∈ T and (s′, P ′, t′) ∈ T ′, sRs′ implies tSt′.

Unless explicitly remarked otherwise, we follow the convention that nonprimed entities
(states, phrases,. . . ) refer to T and primed entities to T ′.

Properties of this shape for S = S′ include determinism (choose R and S to be
equality), liveness of variables (choose R and S to be equality on live-in variables) and
slicing, intra-language transformations, and termination-insensitive versions of proper-
ties considered by [13]. Further instances arise when the condition S = S′ is dropped,
including variations of compiler correctness, refinement, and abstract interpretation.

The core of relational decomposition consists of the operators DecL and DecR

DecL R φ s t = ∀s′. sRs′ → tφs′ and DecR S φ s′ t′ = ∀t. tφs′ → tSt′. (1)
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Given φ ⊆ S×S′, operator DecL constructs a unary assertion for the left decomposition
triangle from Figure 1, i.e. for the execution of P . In fact, the construction uniformly
applies for all types S′ subject to R ⊆ S×S′. Similarly, DecR constructs a unary asser-
tion for the right decomposition triangle from Figure 1, the execution of P ′, uniformly
for types S with S ⊆ S × S′. The operators are motivated by the following result.

Lemma 1. (Soundness) Suppose |=T P : DecL R φ and |=T ′
P ′ : DecR S φ. Then

|=T ′
T P ∼ P ′ : R =⇒ S.

Thus, the task of verifying |=T ′
T P ∼ P ′ : R =⇒ S is reduced to the task of exhibiting

an arbitrary φ that satisfies the two one-execution properties. Each suitable witness φ
is a (relational) interpolant between the relational precondition R and the relational
postcondition S, by virtue of constraints (1). Before deriving concrete interpolants that
justify RHL in Section 3, we discuss further formal properties of decomposition.

2.2 Properties of Decomposition Operators

We first observe that DecL is covariant in φ and contravariant in R, i.e. for φ ⊆ ψ
and Q ⊆ R, DecL R φ s t implies DecL Q ψ s t, while DecR is covariant in S and
contravariant in φ, i.e. for ψ ⊆ φ and S ⊆ T , DecR S φ s′ t′ implies DecR T ψ s′ t′. We
also note the identity DecR S φ = DecL φ−1 S−1. Next, we characterize the witnesses
suitable for establishing Lemma 1. To this end, consider the operators

φT
L P R = {(t, s′) | ∃s. (s, P, t) ∈ T ∧ sRs′}

φT ′
R P ′ S = {(t, s′) | ∀t′. (s′, P ′, t′) ∈ T ′ → tSt′}

The former constructs a candidate for φ according to the upper left triangle in the dia-
gram, given R and P . The latter constructs a (in general different) candidate φ according
to the lower right triangle in the diagram, given S and P ′. In point-free notation [22],
φT ′

R P ′ S can be written as P̂ ′\S where P̂ ′ denotes the uncurried form of the transition

relation for P ′ and the weakest prespecification X\Y is defined as Y ; X−1.
By construction, these operators are covariant in their second argument and yield

valid specifications for their defining triangles:

Lemma 2. We have |=T P : DecL R (φT
L P R) and |=T ′

P ′ : DecR S (φT ′
R P ′ S).

They also satisfy φT
L P (φT ′

R P ′ T ) ⊆ φT ′
R P ′ (φT

L P T ) and set-theoretic laws such as
φT

L P (R ∩ T ) ⊆ φT
L P R∩φT

L P T . In particular, φT
L P R is the least relation obeying

the left triangle, and φT ′
R P ′ S is the greatest relation obeying the right triangle:

Lemma 3. If |=T P : DecL R φ then φT
L P R ⊆ φ. If |=T ′

P ′ : DecR S φ then
φ ⊆ φT ′

R P ′ S.

Thus, any witness φ from Lemma 1 is sandwiched between the two operators, i.e. sat-
isfies φT

L P R ⊆ φ ⊆ φT ′
R P ′ S. Conversely, either operator is suitable as a witness:
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Lemma 4. (Completeness) Suppose |=T ′
T P ∼ P ′ : R =⇒ S. Then

1. |=T P : DecL R (φT
L P R) and |=T ′

P ′ : DecR S (φT
L P R)

2. |=T P : DecL R (φT ′
R P ′ S) and |=T ′

P ′ : DecR S (φT ′
R P ′ S).

Combining the above lemmas, we obtain the following.

Theorem 1. |=T ′
T P ∼ P ′ : R =⇒ S iff φT

L P R ⊆ φT ′
R P ′ S.

Proof. For the implication from left to right, we apply Lemma 4(1) to obtain |=T ′
P ′ :

DecR S (φT
L P R). Then, Lemma 3 (part 2) yields φT

L P R ⊆ φT ′
R P ′ S. For the

opposite implication, we have |=T P : DecL R (φT
L P R) by Lemma 2, so |=T P :

DecL R (φT ′
R P ′ S) by covariance. We also have |=T ′

P ′ : DecR S (φT ′
R P ′ S) (again

by Lemma 2), hence the result follows by applying Lemma 1 to φ := φT ′
R P ′ S.

The operators are defined from the relational perspective, but are also intimately con-
nected with the unary transformers

Strongest postcondition : SPT
P (X) = {t | ∃ s ∈ X. (s, P, t) ∈ T }

Weakest lib. precondition : WLPT ′
P ′ (Y ′) = {s′ | ∀ t′. (s′, P ′, t′) ∈ T ′ → t′ ∈ Y ′}

where X and Y ′ are state sets from T and T ′, respectively. Indeed, we have

φT
L P R = {(t, s′) | t ∈ SPT

P ({s | sRs′})}
φT ′

R P ′ S = {(t, s′) | s′ ∈ WLPT ′
P ′ ({t′ | tSt′)})}

(2)

Substituting these equalities into Theorem 1, we have that R =⇒ S-similarity is soundly
and completely characterized by the inclusion of the left SP in the right WLP:

{(t, s′) | t ∈ SPT
P ({s | sRs′})} ⊆ {(t, s′) | s′ ∈ WLPT ′

P ′ ({t′ | tSt′})}. (3)

We may also define the relational transformers

Strongest postrelation :
SRT ,T ′

P,P ′ (R) = {(t, t′) | ∃ s s′. (s, P, t) ∈ T ∧ (s′, P ′, t′) ∈ T ′ ∧ sRs′}
Weakest lib. prerelation :

WLRT ,T ′
P,P ′ (S) = {(s, s′) | ∀ t t′. (s, P, t) ∈ T → (s′, P ′, t′) ∈ T ′ → tSt′}.

These satisfy the following properties.

Lemma 5. We have

1. φT
L P (WLRT ,T ′

P,P ′ (S)) ⊆ φT ′
R P ′ S

2. φT
L P R ⊆ φT ′

R P ′ (SRT ,T ′
P,P ′ (S))

3. WLRT ,T ′
P,P ′ (S) = {(s, s′) | s′ ∈ WLPT ′

P ′ ({t′ | s ∈ WLPT
P ({t | tSt′})})}

= {(s, s′) | s ∈ WLPT
P ({t | s′ ∈ WLPT ′

P ′ ({t′ | tSt′})})}
4. SRT ,T ′

P,P ′ (R) = {(t, t′) | t′ ∈ SPT ′
P ′ ({s′ | t ∈ SPT

P ({s | sRs′})})}
= {(t, t′) | t ∈ SPT

P ({s | t′ ∈ SPT ′
P ′ ({s′ | sRs′})})}.
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The latter two equations show that R =⇒ S-similarity can also be verified by sequen-
tially applying the respective unary liberal precondition operators (item 3) and verify-
ing R ⊆ WLRT ,T ′

P,P ′ (S), or by applying the respective unary strongest postcondition

operators (item 4) and verifying SRT ,T ′
P,P ′ (R) ⊆ S. The mixed positive and negative oc-

currences of interpolants in the definition of DecL and DecR highlight that interpolants
capture the property applicable at the “point of composition” in self-composition, i.e. at
the state where P has executed but P ′ has not started yet, as captured by equation (3).

3 Application: Decomposed Justification of Relational Hoare
Logic

We now instantiate the generic development to the situation where T and T ′ coincide
and are equal to the operational judgement of an imperative language with objects.

3.1 Language Definition and Unary Program Logic

We assume infinite and distinct categories of variables x, y ∈ X , field identifiers f ∈ F ,
class identifiers c ∈ C, and locations � ∈ L. The space of finite partial functions from
A to B is denoted by A ⇀ B, and the space of total functions by A ⇒ B. Operations
and constructions such as update, domain, and range, are defined and denoted in the
standard fashion. A value v ∈ V is either an integer value i, a location �, or Null. Value
expressions e ∈ E are value constants, variables, or binary operators, while boolean
expressions b are binary predicates over values. The syntax of commands is

C ∈ P ::= Skip | x:=e | x := new c ι | x:=y.f | x.f :=e |
C;D | While b do C | If b then C else D

where ι ∈ F ⇀ E specifies the initialization of fields in the absence of a formalized
class system.

The operational semantics is defined over objects, heaps, stores, and states

o ∈ O ≡ C × (F ⇀ V)
h ∈ H ≡ L ⇀ O

s ∈ R ≡ X ⇒ V
σ ∈ Σ ≡ R×H

2We write �e�s and �b�s for the (heap-independent) evaluation of value and boolean
expressions, respectively, and map the former operation over initialization maps in the
expected manner.

The transition system TObj ⊆ Σ × P × Σ, with pretty-printed judgements σ
C−→ τ ,

is defined as a big-step relation, with nondeterministic allocation

OPNEW
� /∈ locs (s, h)

(s, h) x:=new c ι−−−−−−−→ (s[x 	→ �], h[� 	→ (c, �ι�s)])

2 The use of s, t, . . . for concrete stores as well as for states of abstract transition systems should
not lead to confusion, as instantiations to the concrete language are always discussed separately
from the abstract treatment.
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(locs σ denotes the set of all locations � occurring in σ) and field modification rule

OPPUT
s x = � h � = (c, F )

(s, h)
x.f :=e−−−−→ (s, h[� 	→ (c, F [f 	→ �e�s])])

.

The semantics does not model error states or stuck executions explicitly: attempts to
access dangling pointers, Null, or undefined fields of allocated objects result in the
absence of a formal derivation.

In accordance with the setup of Section 2.1, we have derived a unary logic with
judgements of the form� C : A where A are curried relations over Σ. The proof rules
are essentially those given in [15], plus rules for object allocation

� x := new c ι : λ (s, h) τ. ∃ � /∈ locs (s, h). τ = (s[x 	→ �], h[� 	→ (c, �ι�s)])

and for the field accessing instructions (omitted). Using standard techniques [26,33],
we have proven the logic sound and complete, relative to the ambient logic HOL:

Theorem 2. � C : A holds if and only if |=TObj C : A.

3.2 Derivation of Relational Proof Rules

Instantiating T = TObj and/or T ′ = TObj yields laws that decompose the operators

φ
TObj

L C R and φ
TObj

R C′ S along the phrase structure, in accordance with the character-
izing equations (2). Examples for such laws are

φ
TObj

L C;D R = φ
TObj

L D (φTObj

L C R)

φ
TObj

R C′;D′ S = φ
TObj

R C′ (φTObj

R D′ S)

WLRTObj,TObj

C;D,C′;D′(S) = WLRTObj,TObj

C,C′ (WLRTObj,TObj

D,D′ (S))

where in the first two cases, the type of the opposite transition system is only constrained
by the type of the relations R and S.

Instantiating both transition systems with TObj, we now derive proof rules for judge-
ments C ∼ C′ : R =⇒ S. In contrast to Benton [13], but in accordance with Def-
inition 1, we interpret these in the termination-insensitive style. By virtue of the pre-
vious section, several formal interpretations of these judgements are compatible with
this reading. The derivability from the unary program logic is most explicit if we define
C ∼ C′ : R =⇒ S to be a shorthand for

∃φ. � C : DecL R φ ∧� C′ : DecR S φ (4)

and then establish the proof rules as derived lemmas. Figure 2 shows selected proof
rules for pairs of structurally identical phrases, namely the rule for related object allo-
cations (representative of all rules for relating pairs of atomic instructions) and rules for
compound phrases. These rules are similar to the rules given (for the heap-free fragment
of the language) by Benton [13]. As is the case in loc. cit., the loop rule is restricted to
situations where both iterations proceed in lock-step. Our rule for conditionals allows
the executions to proceed along different control paths and consequently has hypotheses
for all four possible combinations of branch outcomes.



Relational Decomposition 47

RHLNEW
R = WLR

TObj,TObj

x:=new c ι,x′:=new c′ ι′(S)

x := new c ι ∼ x′ := new c′ ι′ : R =⇒ S

RHLCOMP
C ∼ C′ : R =⇒ T D ∼ D′ : T =⇒ S

C;D ∼ C′;D′ : R =⇒ S

RHLIFF

C ∼ C′ : R ∩ {((s, h), (s′, h′)) | �b�s ∧ �b′�s′} =⇒ S
D ∼ D′ : R ∩ {((s, h), (s′, h′)) | ¬�b�s ∧ ¬�b′�s′} =⇒ S
C ∼ D′ : R ∩ {((s, h), (s′, h′)) | �b�s ∧ ¬�b′�s′} =⇒ S
D ∼ C′ : R ∩ {((s, h), (s′, h′)) | ¬�b�s ∧ �b′�s′} =⇒ S

If b then C else D ∼ If b′ then C′ else D′ : R =⇒ S

RHLWHL

C ∼ C′ : U =⇒ R R = T ∩ {((s, h), (s′, h′)). �b�s = �b′�s′}
U = R ∩ {((s, h), (s′, h′)). �b�s} S = R ∩ {((s, h), (s′, h′)). ¬�b�s}

While b do C ∼While b′ do C′ : R =⇒ S

Fig. 2. RHL rules for identically shaped phrases (excerpt)

T
φ

R

C C’ζ

S

D D’π

ρ

τ ’

’σσ

ρ ’

τ

The derivation of the rules exhibits witnesses as mandated
by equation (4). By the results of the previous section, wit-
nesses for the atomic instruction forms may be chosen as
φ
TObj

L C R or φ
TObj

R C′ S, or any relation sandwiched be-
tween the two. Witnesses for compound phrases are synthe-
sized from the witnesses of the constituents, generalizing the
noninterference-specific construction from [15]. For example,
the witness for the conclusion of rule RHLCOMP is given by
φ = {(τ, σ′). ∃ ρ. ρζσ′ ∧ (∀ ρ′. ρTρ′ → τπρ′)} where ζ and
π denote the witnesses of the hypotheses, as illustrated on the
right. The witness for while rule, ΦWhile

(b′,R,φ), is constructed as
the least fixed point of the functional

ψ 	→
{

(τ, (t′, k′))
∣∣∣∣ (�b′�t′ → (∃ σ. σφ(t′, k′) ∧ (∀ σ′. σRσ′ → τψσ′)))
∧ (¬�b′�t′ → τR(t′, k′))

}

(which is monotone in φ and ψ), where φ is the witness of C ∼ C′ : U =⇒ R. As a by-
product of our generalization, the proofs for the compound phrases reveal a discipline
that is not apparent in our earlier noninterference-specific formulation [15]: proofs of
the DecL . .-conjuncts only use DecL . .-clauses of the hypotheses, and proofs of the
DecR . .-conjuncts only use DecR . .-clauses. Thus, the proof system separates into
subsystems with specifications DecL . . and DecR . ..

In addition to the rules in Figure 2, we have derived rules where the two phrases
may be of different shape, including Benton’s rules of falsity, consequence, common
branch elimination, and dead code elimination – see Figure 3. Carrying a unary judge-
ment in the hypothesis, the dead-code rule applies to arbitrary phrases C whereas
Benton only considers the specializations for assignment and while. Conclusions of
DEADL may be promoted to phrase compositions using COMPSKIP. We omit the sim-
ilar rules for handling dead code and common branches in phrases to the right of ∼.
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Rule UNARY injects a pair of unary judgements into the relational world. This rule is
unsound in the termination-sensitive setting. On the other hand, Benton’s rule of transi-

tivity
C ∼ C′ : R =⇒ S C′ ∼ C′′ : R =⇒ S PER(R ⇒ S)

C ∼ C′′ : R =⇒ S
where PER(R ⇒

S) indicates that the function space R ⇒ S is a partial equivalence relation3, is un-
sound in the termination-insensitive setting: the hypotheses are vacuously satisfied if
C′ diverges but C and C′′ converge. As decomposition witnesses orientate the simu-

lation relation, Benton’s rule of symmetry
C ∼ C′ : R =⇒ S PER(R ⇒ S)

C′ ∼ C : R−1 =⇒ S−1
can

be derived if we exploit the semantic symmetry of the simulation relation and use the
formal completeness of the program logic, i.e. the reverse direction of Theorem 2. An
alternative is to modify the interpretation of judgements, by conjoining (4) with

∃ψ. � C′ : DecL R−1 ψ ∧� C : DecR S−1 ψ. (5)

The resulting interpretation is immediately symmetric and also allows the derivation of
the rules above, except for transitivity.

COMBRL

C ∼ C′ : U =⇒ S U = R ∩ {((s, h), (s′, h′)). �b�s}
D ∼ C′ : T =⇒ S T = R ∩ {((s, , h), (s′, h′)). ¬�b�s}

If b then C else D ∼ C′ : R =⇒ S

DEADL
� C : DecL R S

C ∼ Skip : R =⇒ S
COMPSKIP

C ∼ Skip : R =⇒ T D ∼ D′ : T =⇒ S

C;D ∼ D′ : R =⇒ S

FALSE
C ∼ C′ : ∅ =⇒ S

UNARY

� C : A � C′ : A′

R = {(σ, σ′). ∀ τ τ ′. A σ τ → A′ σ′ τ ′ → τSτ ′}
C ∼ C′ : R =⇒ S

SUB

C ∼ C′ : R =⇒ S
R′ ⊆ R S ⊆ S′

C ∼ C′ : R′ =⇒ S′ SETOP

C ∼ C′ : R =⇒ S R′ = R� T
C ∼ C′ : T =⇒ U S′ = S � U � ∈ {∪,∩}

C ∼ C′ : R′ =⇒ S′

Fig. 3. Nonsynchronous RHL rules (excerpt)

Completeness is also used when deriving rules that contain conclusions with phrases
that are subphrases of phrases in hypotheses, thus reversing the standard subphrase
orientation that is obeyed by our unary logic. For example, the proof of the Skip-

elimination rule
Skip;C ∼ C′ : R =⇒ S

C ∼ C′ : R =⇒ S
employs completeness to deduce � C :

DecL R φ from � Skip;C : DecL R φ. An alternative to the use of the formal com-
pleteness result would be to work directly at the level of semantic validity, i.e. replace
all judgements of the form � C : A in (4) or (5) by |=TObj C : A.

Theorem 3. The rules in Figures 2 and 3 are derivable as discussed and thus sound
with respect to Definition 1.

3 In Benton’s setting R ⇒ S and R =⇒ S coincide.
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3.3 New Rules for Dissonant Loops

Like the rules of Benton [13] and Yang [40], rule RHLWHL from Figure 2 requires
the iterations to proceed in lock-step. We have derived two novel rules that overcome
this limitation. Our first rule requires both bodies to preserve the invariant individually,
decoupling the loops based on a similar motivation as the dead code rules:

C ∼ Skip : (R ∩ {((s, h), (s′, h′)). �b�s}) =⇒ R
Skip ∼ C′ : (R ∩ {((s, h), (s′, h′)). �b′�s′}) =⇒ R

S = R ∩ {((s, h), (s′, h′)). ¬�b�s ∧ ¬�b′�s′}
While b do C ∼ While b′ do C′ : R =⇒ S

The second rule splits the invariant into preconditions appropriate for synchronized
iterations and autonomous iterations.

C ∼ C′ : U =⇒ R U ⊆ R ∩ {((s, h), (s′, h′)). �b�s ∧ �b′�s′}
C ∼ Skip : V =⇒ R V ⊆ R ∩ {((s, h), (s′, h′)). �b�s}
Skip ∼ C′ : W =⇒ R W ⊆ R ∩ {((s, h), (s′, h′)). �b′�s′}
R ⊆ U ∪ V ∪W ∪ S S = R ∩ {((s, h), (s′, h′)). ¬�b�s ∧ ¬�b′�s′}
W ∩ {((s, h), (s′, h′)). �b�s} ⊆ U V ∩ {((s, h), (s′, h′)). �b′�s′} ⊆ U

While b do C ∼ While b′ do C′ : R =⇒ S

This rule is interderivable with the variant where the last two side-conditions (the inclu-
sions . . . ⊆ U ) are omitted, for the price of replacing U ⊆ . . . by U = . . . in the fist side
condition. The earlier rule RHLWHL arises from this variant by setting V = W = ∅.

The decomposed derivation of the new loop rules employs fixed-point-interpolants
similar to ΦWhile

(b′,R,φ) above. For the details, see [14].
As an example for the application of these rules, consider the programs

C ≡ r:=0;i:=0;While i < n do (r:=r + i;i:=i + 1)
C′ ≡ r:=0;i:=0;While i < n do (r:=r + i;i:=i + 1;r:=r + i;i:=i + 1).

The equivalence between the C and its unrolling C′ for even n may be formulated as
the relational specification C ∼ C′ : TN =⇒ SN for any N ≥ 0 and

TN ≡ {((s, h), (s′, h′)). �n�s = �n�s′ = 2N}
SN ≡ {((s, h), (s′, h′)). �n�s = �n�s′ = �i�s = �i�s′ = 2N ∧ �r�s = �r�s′ = 2N2 −N}.
A proof for this specification using the rule for independent loops instantiates R to

TN ∩
{
((s, h), (s′, h′))

∣∣∣∣ ∃ I I ′ k. �i�s = I ∧ �i�s′ = I ′ ∧ 0 ≤ I ≤ 2N ∧ 0 ≤ I ′ ≤ 2N
∧ 2�r�s = I(I − 1) ∧ 2�r�s′ = I ′(I ′ − 1) ∧ I ′ = 2k

}

where each conjunct applies to either the primed or the non-primed state.
Alternatively, the same specification may be proven using the rule for partially syn-

chronized loops, using the instantiation W = ∅,

R ≡ TN ∩
⎧⎨
⎩((s, h), (s′, h′))

∣∣∣∣∣∣
∃ I I ′. �i�s = I ∧ �i�s′ = I ′ ∧ 0 ≤ I, I ′ ≤ 2N

∧ 2�r�s = I(I − 1) ∧ 2�r�s′ = I ′(I ′ − 1)
∧ ((I < N ∧ I ′ = 2I) ∨ (N ≤ I ∧ I ′ = 2N))

⎫⎬
⎭

U ≡ R ∩ {((s, h), (s′, h′)). �i�s < 2N ∧ �i�s′ < 2N}
V ≡ R ∩ {((s, h), (s′, h′)). N ≤ �i�s < 2N},



50 L. Beringer

based on the intuition that the first N iterations proceed synchronously, followed by
N additional unilateral iterations of the left loop. The entanglement surfaces in the
disjunctive final clause in the definition of R.

The above specifications universally quantify over the meta-variable N at Isabelle-
level. Using the parametrization mechanism below, we have also performed verifica-
tions where N is part of the specification, and shared between pre- and postconditions.

4 Extensions and Applications

We briefly sketch some extensions of our formal framework, and motivating applica-
tions. Details of the development are available in [14].

Parametrized simulations. Often, simulations are of interest where the pre- and post-
relations employ auxiliary state. We model this situation by endowing the relations with
additional arguments, similar to Kleymann’s [26] treatment for unary logics.

Definition 2. For transition systems T and T ′ as before, type Z of auxiliary states, and
parametrized relations R : Z ⇒ (S × S′), we write |=T ′

T P ∼ P ′ : R =⇒Z S if for
all z, s, s′, t, and t′ with (s, P, t) ∈ T and (s′, P ′, t′) : T ′, sRzs

′ implies tSzt
′, where

Rz denotes the application of R to parameter z.

Parametrized simulation can be reduced to nonparametrized simulation using two con-
structions on transition systems, as follows. The first construction, the product

T × T ′ ≡ {((s, s′), (P, P ′), (t, t′)) | (s, P, t) ∈ T ∧ (s′, P ′, t′) ∈ T ′}

internalizes the two-execution nature of simulations. Second, we define the identity
transition system for parameters Z , denoted by IZ , by {(z, ∗, z) | z ∈ Z} where ∗ is
the unique value of some singleton set of labels.

The following lemma justifies these constructions by relating Z-parametrized be-
haviour over T × T ′ to nonparametrized behaviour over T × (T ′ × IZ), where

−→
R

denotes the relation {(s, (s′, z)). (s, s′) ∈ R z} for any R : Z ⇒ (S × S′).

Lemma 6. For R, S : Z ⇒ (S × S′) we have |=T ′
T P ∼ P ′ : R =⇒Z S exactly iff

|=(T ′×IZ)
T P ∼ (P ′, ∗) :

−→
R =⇒ −→

S .

Instantiating the parametrization mechanism to our language with objects, we may de-
rive proof rules for judgements �Par C ∼ C′ : R =⇒Z S formally defined as

∃ φ.� C : DecL
−→
R φ ∧� C′ : DecR (

−→
S )

�
φ�.

Here, the operation ψ� ≡ {((x, z), x′) | (x, (x′, z)) ∈ ψ} shifts the auxiliary value z to
the left component, so that it is not affected by the execution of C′. By construction,
�Par C ∼ C′ : R =⇒Z S implies |=TObj

TObj
C ∼ C′ : R =⇒Z S. The proof rules for

the system �Par C ∼ C′ : R =⇒Z S are essentially the same as in Section 3, and are

derived by incorporating the operators (.)� and
−→
(.) into the construction of witnesses.
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Noninterference for objects. A typical use case for the parametrization mechanism
consists of noninterference. Following Banerjee-Naumann [7], we consider a notion of
indistinguishability that prevents an attacker from observing the precise location chosen
during an allocation, and also allow each execution to allocate objects that have no
counterpart in the opposite execution. Formally, this is modeled by parametrizing the
relation ∼ by partial bijections over locations, i.e. sets β ⊆ L2 satisfying (� = �1) ⇔
(�′ = �′1) for any (�, �′) ∈ β and (�1, �

′
1) ∈ β.

Naturally, the bijections evolve throughout program execution according to the allo-
cation of fresh objects, but in a conservative manner: the partial bijection relating the
final states should be an extension of the one relating the initial states. We therefore
parametrize the simulations by bijections, communicating the initial bijection to the
postrelation. Indeed, for

RNI = λ β. {(σ, σ′). σ ∼β σ′} SNI = λ β. {(σ, σ′). ∃ γ ⊇ β. σ ∼γ σ′}

noninterference coincides with |=TObj

TObj
C ∼ C : RNI =⇒L2 SNI and, in fact, also with

|=TObj

TObj
C ∼ C : SNI =⇒L2 SNI. This motivates the definition of the derived forms

LOW (C) ≡ �Par C ∼ C : SNI =⇒L2 SNI

HIGH (C) ≡ �Par C ∼ Skip : RNI =⇒L2 RNI,

that interpret, respectively, the judgements for noninterferent and publically unobserv-
able code fragments. As the semantic interpretations SNI and RNI are transparent, the
derived rules can be combined with direct uses of the underlying rules for �Par C ∼
C′ : R =⇒Z S to integrate type-based with logical reasoning.

Error behaviour and separation logic. We have also derived proof rules of unary and
relational separation logic, including the appropriate frame rules. The derivations make
crucial use of the parametrization mechanism, by instantiating Z to the type of (rela-
tional) assertions. This allows frame assertions to be joined onto the pre- and postcon-
ditions in a style reminiscent of Birkedal et al.’s Kripke resource extension [16]. Our
encoding is derived from a variant of �Par C ∼ C′ : R =⇒Z S for a language where
null dereferences and attempts to access undefined fields result in a fault/error state. The
faultiness of states is exposed in the specifications of the unary and derived relational
logics, enabling the interpretation of separation logic judgements to specify equi-fault-
avoidance of the two phrases. We include the Isabelle-files of this development in [14]
but are prevented from a detailed exposition by page limitations.

5 Discussion

Relational decomposition is a technique for integrating relational logics into stacks of
unary verification frameworks [6,4]. We established soundness and completeness of de-
composition for general simulations, introduced relational variants of predicate trans-
formers, and studied their relationship to unary transformers. We applied our findings
to derive relational program logics, and sketched applications to noninterference and
separation logics. Our development is backed up by a formalization in Isabelle/HOL.
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The formulation across different transition systems was crucial for our derivation
of parametrized simulations. Future work will seek to exploit this flexibility for the
verification of refinement and compiler correctness. Work on a relational logic for a
bytecode-like language is under way, with a system for formally relating the two lan-
guage levels as an intended subsequent step. Later, one might aim to support features
such as arrays, exceptions, and methods. Our treatment of noninterference in [15] al-
ready supports parameterless but possibly recursive procedures, but transferring this
development to virtual methods and non-lockstep method invocations is future work.

Concrete relational verification might benefit from formulating relational decompo-
sition more algorithmically, so that the traversal of a program pair emits unary verifi-
cation tasks, along the line of Terauchi and Aiken’s work. Hints for the discovery of
relational invariants may potentially arise from Amtoft et al.’s preconditions for con-
ditional information flow [2], Barthe et al.’s product programs [10], from Rhodium’s
transformation rules [27], or from Tate et al.’s program equivalence graphs [36]. It
would also be interesting to compare the expressiveness and usability of our rules for
dissonant loops with the rules from translation validation [20], and to investigate how
the latter can be justified in a more semantics-oriented fashion.

Natural extensions of noninterference include extensional notions of declassifica-
tion [8], conditional information flow [3], and the explicit integration of noninterfer-
ence and separation disciplines, following the work of Amtoft et al. [1]. Magill et al.’s
two-step abstractions for reasoning about data structures may provide orientation how
ghost variables and program instrumentation interact with separation aspects [29].

A more abstract treatment of our operators can be obtained using relational alge-
bra. As pointed out by a referee, uncurrying DecL R φ yields (R\φ)−1 while uncur-

rying DecR S φ yields the weakest postspecification S/φ given by φ−1; S. Extending
the work of [22,23], Gardiner [19] explores connections between these operators and
predicate transformers to study a variation of bisimulation called power simulation. In
contrast to our work, predicates and relations are formulated over a single universe.

Barthe et al.’s article [11] includes a self-composed treatment of separation, but re-
stricted to a (termination- and) error-insensitive case and without a fine-grained object
control via partial bijections. Reducing error-avoidance of self-composed programs to
equi-error-avoidance of C and C′ appears difficult as the execution of C′ is conditional
on the nonfaultiness of C’s final state.

Saabas and Uustalu show how type derivations yield semantics-preserving proof
transformations between pairs of judgements of unary Hoare logics [34].

A long-term goal is the integration of our techniques into verification infrastructures
for mainstream languages such as the Verified Software Toolchain for C [5]. As a step-
ping stone towards this goal, fragments of C such as Spark/Ada [9] may represent a
realistic testbed that is both industrially relevant and formally tractable.
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Abstract. This paper proposes a novel application of Interactive Proof
Assistants for studying the formal properties of Narratives, building on
recent work demonstrating the suitability of Intuitionistic Linear Logic
as a conceptual model. More specifically, we describe a method for mod-
elling narrative resources and actions, together with constraints on the
story endings in the form of an ILL sequent. We describe how well-formed
narratives can be interpreted from cut-free proof trees of the sequent ob-
tained using Coq. We finally describe how to reason about narratives at
the structural level using Coq: by allowing one to prove 2nd order prop-
erties on the set of all the proofs generated by a sequent, Coq assists
the verification of structural narrative properties traversing all possible
variants of a given plot.

Keywords: Applications of Theorem Provers, Linear Logic, Formal
Models of Narratives.

1 Introduction

The formalisation of narratives has attracted interest from researchers from
many disciplines, not solely for their role as knowledge structures [24], but also
for the challenges that their structural properties pose to logical representa-
tions [15, 17]. Narratives extend the logic of actions to provide a framework
in which causal, temporal and resource consumption aspects are intertwined.
Whilst the logical formalisation of actions has become a standard topic in philo-
sophical logic and formal semantics, comparatively little work has addressed the
structure of narratives. Initial hopes of developing computational narratology on
the same basis as computational linguistics using narrative models developed in
the field of humanities [2, 13] have failed due to narratology’s formalisms being
mostly content ontologies rather than logical or computational formalisms [3].

Addressing this problem from a new perspective, we have recently described
in [1] how Linear Logic (LL) [10], and in particular Intuitionistic Linear Logic
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(ILL) [11] can provide a suitable conceptual model for Narratives on a structural
basis. Narratives are modelled as proofs of a sequent written in Linear Logic
which describes initial resources and possible narrative actions. This allows one
to naturally express key properties for Narratives (generation of a variety of sto-
ries, variability in an open-world assumption, and narrative drive with regards
to goals and actions execution) while supporting a return to first principles of
narrative action representation (causality and competition for resources). This
was not merely an attempt at logically encoding a given narrative: on the con-
trary the logical formulation supports the description of possible variants of the
narrative, including alternative endings, which would be logically consistent. In
other words, the ILL formalisation captures the essence of the narrative logic,
not simply the accidentality of a given story. Since the manual exploration of
proofs to discover story variants can be both tedious and error prone, we decided
to support this exploration with proof assistants.

Expanding these early results, we propose here a first step towards the au-
tomation of the structural analysis of narratives using the Coq Proof Assistant.
We describe how to specify narratives on a structural basis only (causality and
resource consumption) in the form of an ILL sequent, and a dedicated ILL en-
coding into Coq1, with tactics allowing the discovery of proofs of such a sequent.
We also describe how such proofs are interpreted as well-formed narratives. Our
encoding of ILL into Coq supports, as has previous work, the assisted generation
of ILL proofs, but also assists reasoning about the properties of proofs and on
all the possible proofs of an ILL sequent. This allows us to explore second order
structural properties, traversing all the narratives which can be generated from
a description of initial and atomic narrative actions and resources.

2 Related Works

2.1 Logical Approaches to Narratology

While most of the research in computational narratology has developed empiri-
cally, there have been a few logical and formal approaches to narratology, some
of which are reviewed here.

A formal grammar for describing narratives has been proposed by [17], sup-
porting the implementation of a system generating linear narratives and relying
on temporal logic. While such generated narratives are not able to support an
open-world assumption or to take into account the point of view of more than one
protagonist, the approach shares with ours the emphasis on narrative causality
description which is here embedded in the heart of the formalism.

Grasbon and Braun [12] have used standard logic programming to support the
generation of narratives. However their system still relied on a narrative ontology
(inspired from Vladimir Propp’s narrative functions [23]), rather than on logical
properties as first principles. Logic Programming has also been used in [26] for

1 Source available:
http://cedric.cnam.fr/~courtiep/downloads/ill_narrative_coq.tgz

http://cedric.cnam.fr/~courtiep/downloads/ill_narrative_coq.tgz
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the generation of logically consistent stories. This character-based approach relies
on argumentation models developed for autonomous agent systems for resolving
the conflicts experienced by protagonists. Our more generic approach relies only
on the description of narratives on the structural fundamentals which are action
representation and competition for resources.

The concept of narrative action and its impact on the narrative environment
is generally considered by narrative theories as the fundamental building block.
Therefore AI formalisms dedicated to action semantic representation have been
used previously for narrative action description, such as the situation calcu-
lus [21]. Linear Logic provides a very elegant solution to the frame problem by
allowing the description of narrative actions using an action-reaction paradigm,
avoiding the need to specify additional frame axioms for representing actions’
non-effects.

The only previous use of LL in a closely related application has first been
reported by [4], where the multiplicative fragment of LL is used for scenario
validation. Their approach aims at a priori game/scenario design validation,
through compilation into Petri Nets, with an emphasis on evidencing reachable
states and dead-ends. While providing a relatively friendly computational model,
such a fragment is not expressive enough for our purpose.

2.2 Related Applications of Linear Logic

Recent research in computational models of narratives has converged on the use
of planning systems: typically, a planner is used to generate a sequence of actions
which will constitute the backbone of the narrative [27]. On the other hand,
Linear Logic has typically been used for action representation, and Masseron et
al. [19, 20] have established how LL formalisation could support planning and
how the fundamental properties of LL allows a proof in LL to be equated to a
plan. While the Intuitionistic fragment of Linear Logic is undecidable, Dixon et
al. [8,9] use proof-assistant technologies to build and validate plans for dialogues
between agents in a Multi-Agents System. The approach we propose here goes,
however, beyond the generation of a course of actions as we are interested in
studying and verifying second order structural properties, transcending all the
narratives which can be generated from a given specification relying on ILL.

While the computational properties of the fragment of Linear Logic we con-
sider are an obstacle for the automation or semi-automation of proof-search
(see [18] for a survey of decidability and complexity results for various frag-
ments), the subset-language we use provides some restrictions and additional
properties. This is similar to previous use of LL in the field of computational
linguistics: [14] identifies usage patterns of LL in meaning assembly analysis [7]
ensuring better complexity results than the full considered fragment.

2.3 Proof Assistants Support for LL

Previous work has proposed various encodings of fragments and variants of Lin-
ear Logic for proof assistants. In [22], the authors present a shallow embedding
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of ILL in Coq and perform some simple generic proofs using induction. In [25],
the authors present a shallow embedding of the sequent calculus of classical
modal linear logic and perform some epistemic proofs. In [16] an efficient and
easy to use implementation of ILL rules in the Isabelle framework is presented.
However our development focuses on properties of proofs (interpreted as narra-
tives) themselves, not just on provability of sequents. As in these previous works
we provide some (limited) automation for proving closed sequents, but we also
provide reasoning lemmas and tactics for reasoning on properties of proofs and
even on all possible proofs of a sequent.

More recently, Dixon et al. [8] have proposed a formalisation of ILL in Isabelle
focusing on the generation of verified plans. This is certainly the approach that is
closest to ours, as it allows reasoning on plans themselves. A notable difference,
due to the use of Isabelle, is that plans appear explicitly in the judgments as
“extracted proof terms”. We do not need this artefact in our formalisation:
narratives are pure ILL proof-terms. The relation between the shape of a proof
and the properties of the corresponding narrative is, to our knowledge an original
use of the proof-as-term paradigm.

3 ILL as a Representational Theory for Narratology

Our approach is based on a formal specification of narrative resources (including
narrative actions), initial conditions, and possible ending states in the form of
an ILL sequent. We then interpret a given proof of such a sequent as a narrative
taking place in an open-world assumption. A sequent may have multiple proofs.
It may therefore specify multiple narratives sharing the same initial resources
and narrative actions. When interpreting the proof as a narrative, we look for a
trace of the use of the� left rule. This rule is interpreted as the execution of a
narrative action. Other rules have an interpretation reflecting the structure of the
narrative, such as an external branching choice in an open-world assumption (for
instance, end-user interaction), or a concurrency relationship between different
subsets of the narrative with independent resource requirements.

3.1 Modelling of Narratives Specification through an ILL Sequent

The subset language of ILL we use for this paper allows the description of the
initial resources of the narrative, the available narrative actions, and constraints
on the possible ending states of the narrative. Key to our interpretation, narrative
actions are modelled using� which allows a precise description of their impact
on the narrative environment. As we work in an open world assumption, external
impact on the narrative (for instance user interaction) is modelled by using the
⊕ connector for describing choices between possible narrative actions, and by
using & for describing a choice between two possible ending states.

Such a specification of narratives encompasses the description of the available
resources and states of the narratives, the description of the semantics of narra-
tive actions through their impact on the context of execution, and the possible
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ending states of the narrative. The initial sequent, which models this specifi-
cation, thus takes the form R,A � Goal, where R is a multiset representing
resources and initial conditions, A is a multiset representing the possible nar-
rative actions, and Goal a formula representing the possible ending state of the
narrative. A sequent thus provides the knowledge representation base of a set of
narratives.

We refer the reader to [11] for a description of ILL sequent calculus and to [1]
for a more detailed description of the use of ILL operators for our purpose, which
served as a base for the subset narrative specification language defined in this
paper (Figure 1). These restrictions on the structure of the initial sequent will
enforce properties on the possible proofs, which can be verified using Coq.

We use here an extract of Flaubert’s classical Madame Bovary novel2 as a
running example: facing public humiliation, Emma is unsucessfully looking for
the help of Guillaumin, Binet and Rodolphe, before ingesting the poison she has
previously located. We start from an identification of atomic resources and simple
narrative actions: we add alternatives to some of the narrative actions occurring
in the novel, inspired by each of the character’s possible choices and introduce
the possibility of two different endings (in one of those Emma survives). Based
on this identification, we model narrative context and goals as an ILL sequent.

Res ::= 1 | atom | Res & Res | Res ⊗ Res | ! Res
Act ::= 1 | CRes � Context | Act ⊕ Act | Act & Act | ! Act
Goal ::= 1 | atom | Goal ⊗ Goal | Goal ⊕ Goal | Goal & Goal

CRes ::= 1 | atom | CRes ⊗ CRes

Context ::= Res | Act | Context ⊗ Context

Fig. 1. Syntactic categories for narrative sequents

Resources of a Narrative. Res specifies the syntactic category for R. The
formula Res1 & Res2, expresses the availability of one of the resources. One only
of Resi will be used and the choice depends on the proof found, and can vary
depending on the branches of the proof. This allows us to describe how the
initial conditions can adapt to a given unfolding of the story. The formula Res1⊗
Res2 allows one to express the availability of both resources. The formula ! Res
allows one to express the unbounded availability of the resource Res. The atomic
resources in our example are P for poison, R for a discussion with Rodolphe, B
for a discussion with Binet, and G for a discussion with Guillaumin. We chose
to not enforce the consumption of the resources P and B in our example, and
therefore model R = P &1, R, G, B &1.

Narrative Actions Representation. Act specifies the syntactic category
forA. A simple narrative action is of the form CRes � Context, where CRes
is a finite resource description and Context a multiplicative conjunction of re-
sources and actions. Its semantics is thus precisely defined in terms of how it
2 The plot of Madame Bovary is one naturally inclined to contain key decisions and
prone to suggest what-if analyses.



60 A.-G. Bosser et al.

affects the execution environment: to the execution of a narrative action in the
narrative corresponds the application of the� left rule in the proof, consuming
the finite amount of resources modelled by CRes (in the subset-language we use
for this paper, actions only consume resources) and introducing in the sequent
context the formula Context which models resources and actions made available
by this execution.

For our example, we model the following simple narrative actions:

S�A Emma sells herself which saves her life.
E�A Emma escapes with Rodolphe (which saves her life).
P�D Emma ingests poison and dies.
R�1 Emma has a conversation with Rodolphe. This does not alter her situation

(non productive).
R�E Emma talks to Rodolphe. They agree to escape together.
G�1 Emma has a conversation with Guillaumin. This does not alter her situ-

ation (non productive).
G�S Emma discusses her situation with Guillaumin. As a result, Emma accepts

to sell herself in exchange for Guillaumin’s help.
B�1 Emma has a conversation with Binet. This does not alter her situation

(non productive).
B�S Emma discusses her situation with Binet. As a result, Emma accepts to

sell herself in exchange for Binet’s help.

Narrative actions can be composed. In particular, they can be combined for
offering two types of choices. A composed action Act1 ⊕ Act2 corresponds to
a choice between two possible actions, with both possibilities leading to well-
formed alternative narratives. This is used for modelling the impact of events
external to the narrative in an open-world assumption (for instance, user interac-
tion). When such a formula is decomposed using the ⊕ rule, the two sub-proofs,
which require proving the sequent with each of the sub-formula replacing the
composed action, are interpreted as the two possible unfoldings of the story.
The proof thus ensures that each possible subsequent narrative is well-formed.
A composed action Act1 & Act2 corresponds to a choice depending on the proof
found. If both choices successfully produce a different proof of the sequent, this
will be interpreted as two different narratives.

In our example, we model:
A =! (S � A), (E � A)& 1, (P � D)& 1, (R � 1)& (R � E), (G � 1) ⊕
(G� S), 1 ⊕ ((B� S)& (B� 1))

The composed action (G� 1)⊕ (G� S) reflects branching narrative possi-
bilities depending on the impact of external events in an open-world assumption,
while (E � A)&1 can potentially generate a narrative where the narrative ac-
tion corresponding to E � A occurs, or not.

Narrative Ending States. Goal specifies the syntactic category for ending
state. Goal1 ⊗ Goal2 expresses that both Goali states are accessible at the end
of the narrative. Goal1 ⊕ Goal2 expresses that either Goali state is accessible,
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and the choice depends on the proof found and might differ depending on the un-
folding branch of the narrative. Goal1 & Goal2 expresses that either state should
be accessible, and this choice depends on an event external to the narrative, such
as user interaction for instance.

In our example, we model that a given narrative could possibly provide two
different endings: from the atomic goals A (for Emma is alive) and D (for Emma
is dead), we specify the right-hand side formula A ⊕ D. This concludes the
specification of our example of narrative into an ILL sequent.

Stability of the Representation. Given an ILL sequent respecting the gram-
mar described in Figure 1, all the sequents appearing in the proof will be of the
form Γ � G, where ∀F ∈ Γ , F is a Context formula and G is a Goal formula.
In other words all the sequents appearing in such a proof will be composed of a
context describing resources and actions of a narrative, and of a right-hand side
formula representing constraints on the ending state of the narrative.

More formally, we define the following properties on sequents and proofs:

Definition 1. Let s be a sequent of the form Γ � G, we say that s is well formed
if G ∈ Goal and ∀F ∈ Γ, f ∈ Context. We shall write WF(s).

Definition 2. A property P on sequents is said to hold for a proof h of a sequent
s if it holds for all sequents of the proof h above s. We shall note WF(h).

Lemma 1. WF is stable for ILL, that is for any sequent s such that WF(s) and
any proof h of s, WF(h).

The proof of this property in Coq is described later in section 4.4.

3.2 Interpreting a Proof as a Narrative

Narratives are interpreted from proofs, from a structured trace of execution of the
� left rule. Other ILL rules of particular significance for this interpretation are
the ⊕ left, and ⊗ and & right rules (we refer the reader to [11] for a description of
ILL sequent calculus). Narratives are obtained from proofs using the ν function
described in Figure 2. Narrative are thus described using simple narrative actions
(modelled in the initial sequent using the � connector), and the following list
of operators:

� is a precedence relationship, defining a partial order on the execution of
narrative actions: ν = ν1 � νaction � ν2 is a narrative where the narrative
ν1 precedes the narrative action νaction which precedes the narrative ν2.

� is a branching of the narrative in an open-world assumption: ν = ν1�ν2 is
a narrative where both sub-narratives ν1 and ν2 are possible, but only one
will actually be unfolded, depending on an external event in an open-world
assumption (such as user interaction for instance).

‖ represents a concurrency relationship between two narratives: ν = ν1‖ν2 is
a narrative consisting of both ν1 and ν2 where the two sub-narratives will
be unfolded concurrently and independently.
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Γ � A : ν1 Δ, B � C : ν2
(�left)

Γ, Δ, A� B � C : ν1 � νA�B � ν2

(Leaf rules)
Γ � A : ∅

Γ � A : ν1 Δ � B : ν2 (⊗right)
Γ, Δ � A⊗B : ν1‖ν2

Γ � A : ν (Unary rules)
Γ ′ � A′ : ν

Γ, A � C : ν1 Γ, B � C : ν2
(⊕left)

Γ, A⊕B � C : ν1�ν2

Γ � A : ν1 Γ � B : ν2 (& right)
Γ � A&B : ν1�ν2

Fig. 2. Proof to Narrative Interpretation Function ν: the function is defined recursively
on sub-proofs from the last applied ILL rule. νA�B is the narrative action initially
specified using the formula A� B.

Using Coq with simple tactics, we can generate a proof of the sequent R,A �
A ⊕ D specified in Section 3.1. Such a proof can then be interpreted as a given
narrative (Figure 3): depending on the impact of an external event (for instance,
end-user interaction), the story can first take two different paths. In one of them
(right sub-proof tree), the discussion with Guillaumin leads to an offer to help
Emma, and to two different paths both ending with Emma’s survival. In the
second one (left sub-proof tree), the discussion leads to another two paths, one
of which ending with Emma’s suicide depending on the impact of an external
event on the choice of course of action corresponding to the discussion with
Rodolphe.

4 Using the Coq Proof Assistant for Narrative Properties
Analysis

In this section, we will first describe how, based on our interpretation of proofs
as narratives and our ILL encoding into Coq, a proof assistant supports the
building of coherent narratives from initial specifications.

This naturally leads one to wonder, given an initial specification, what are
the characteristics of a well-formed narrative. In order to answer this, we need
to be able to express properties regarding the set of all possible proofs of a given
sequent, and to formally evidence structural properties which are verified by all
the narratives generated by a given specification: we need to be able to express
and prove properties by reasoning about proofs and sets of proofs.

We thus discuss in this section how we have been taking advantage of this
proof-as-term paradigm in order to verify properties regarding all the proofs
corresponding to narrative specifications as defined in Figure 1, and to verify an
example of structural property on the set of all the narratives generated by a
given sequent specification.

4.1 ILL Encoding into Coq

Formulae, proofs and corresponding convenient (Unicode) notations are defined
as follows. Type env is an instance of multisets equipped with an (setoid) equality
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1. Sequent Description
Initial Resources R P &1, R, G, B &1

Narrative actions A ! (S � A), (E � A)&1, (P � D)&1, (R� 1)& (R� E),
(G� 1) ⊕ (G� S), 1⊕ ((B � S)& (B � 1))

2. Sketch of the proof:

�left: P � D

�left: R� 1

�left: B � 1

�left: E � A

�left: R� E

⊕left : 1⊕ ((B � S)& (B � 1))

�left: G� 1

�left: S � A

�left: S � A

�left: B � 1

⊕left : 1⊕ ((B � S)& (B � 1))

�left: R� 1

�left: G� S

⊕left : (G� 1)⊕ (G� S)

R,A � A⊕D

3. Interpreted narrative:
(νG�1 � ((νB�1 � νR�1 � νP�D)�(νR�E � νE�A)))�
(νG�S � νR�1 � (νS�A�(νB�1 � ν�A))

Fig. 3. ILL specification of the end of Emma Bovary

relation == and Vars.t (type of atomic propositions) is implemented3 as N in the
following:
��������	 formula : 
��	 :=

| Proposition : Vars.t→ formula | Implies : formula→ formula→ formula

| Otimes : formula→ formula→ formula | One : formula

| Oplus : formula→ formula→ formula | Zero : formula | Top : formula

| Bang : formula→ formula | And : formula→ formula → formula.

������� "A � B" := (Implies A B).

(* ...Other connectives... *)

������� "x :: Γ" := (add x G). (* Environment operation *)

������� "x \ Γ" := (remove x G). (* Environment operation *)

������� "x ∈ Γ" := (mem x G). (* Environment operation *)

��������	 ILL_proof: env→ formula→ Prop:=

|Id: ∀ Γ p, Γ== {p}→Γ� p
|Impl_R: ∀ Γ p q, p::Γ� q → Γ� p� q

|Impl_L: ∀ Γ ΔΔ� p q r, (p� q)∈Γ → (Γ\(p� q)) ==Δ ∪ Δ� → Δ� p
→ q:: Δ�� r → Γ� r

|Times_R: ∀ Γ ΔΔ’ p q, Γ==Δ ∪Δ’ → Δ� p → Δ’� q → Γ� p ⊗ q

|Times_L: ∀ Γ p q r, (p ⊗ q)∈Γ → q::p::(Γ\(p ⊗ q))� r → Γ� r
|One_R: ∀ Γ, Γ== ∅ → Γ� 1
|One_L: ∀ Γ p, 1∈Γ → (Γ\1)� p → Γ� p
|And_R: ∀ Γ p q, Γ� p → Γ� q → Γ� (p & q)

|And_L1: ∀ Γ p q r, (p & q)∈Γ → p::(Γ\(p&q))� r → Γ� r
|And_L2: ∀ Γ p q r, (p & q)∈Γ → q::(Γ\(p&q))� r → Γ� r
3 By functorial application.
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|Oplus_L: ∀ Γ p q r, (p ⊕ q)∈Γ → p::(Γ\(p ⊕ q))� r → q::(Γ\(p ⊕ q))� r
→ Γ� r

|Oplus_R1: ∀ Γ p q, Γ� p → Γ� p ⊕ q

|Oplus_R2: ∀ Γ p q, Γ� q → Γ� p ⊕ q

|T_: ∀ Γ, Γ��
|Zero_: ∀ Γ p, 0∈Γ → Γ� p
|Bang_D: ∀ Γ p q, !p∈Γ → p::(Γ\(!p))� q → Γ� q
|Bang_C: ∀ Γ p q, !p∈Γ → !p::Γ� q → Γ� q
|Bang_W: ∀ Γ p q, !p∈Γ → Γ\(!p)� q → Γ� q
where " x� y ":= (ILL_proof x y).

Notice the use of the form “φ ∈ Γ → Γ � . . . ” instead of “φ, Γ � . . . ”. This
formulation avoids tedious manipulations on the environment to match rules.
Simple tactics allow one to apply rules and premisses of the form φ ∈ Γ are dis-
charged automatically (on closed environments) by reduction. As we are looking
for a trace of the execution of the narrative actions through the application of
the� left rule, we are only searching for cut-free proofs and thus do not provide
the Cut rule.

The Coq command Program Fixpoint allows one to define rather easily de-
pendently typed fixpoints and pattern matchings on terms of type x � y. For
instance one can define the ν function described in section 3.2 as follows:
Program �������� ν Γ φ (h: Γ � φ) {struct h}: narrative :=

����� h ����

|Id _ _ p⇒∅
|Impl_L Γ ΔΔ� p q r _ _ x x0⇒ (ν Δ p x) � [Implies p q] � (ν (q::Δ�) r x0)

|And_R Γ p q x x0⇒ (ν _ _ x) � (ν _ _ x0)

|Times_R Γ ΔΔ� p q heq x x0⇒ (ν Δ p x) || (ν Δ� q x0)

...

	��.

4.2 Well-Formed Narrative Generation: Proving an ILL Sequent In
Coq

Our encoding of ILL into Coq can be used simply with the aim of generating
a well-formed story, from a sequent specification. We provide a set of simple
tactics assisting the user in unfolding a proof, thus constructing a proof-term
which will subsequently be interpreted as a narrative.

As an example, let us consider the sequent given below presented in Figure 3,
corresponding to the end of Emma Bovary.
���� Emma: {P&1, R, G, B&1, !(S� A), (E� A)&1, (P� D)&1,

(R� 1)&(R� E), (G� 1) ⊕ (G� S), 1⊕(B� S)&(B� 1)} � A ⊕ D.

One can, for example, apply the ⊕L rule to consider the alternative offered by
external choice (G� 1) ⊕(G� S). This is achieved by tactic: oplus_l (G� 1)

(G� S) that leaves with two subgoals. The first one is {G� 1, P&1, R, G, ... }

� A ⊕D and allows for rule�left rule to perform a narrative action consuming
G using tactic: impl_l G 1.

The succesful proof of this sequent unravels the narrative structure by only pro-
ducing the set of alternative actions consistent with the baseline plot description.
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4.3 Stability of an ILL Narrative Sequent: Well-Formed Sequents

As we have briefly mentioned in section 3.1, the subset of ILL (Figure 1) we
consider is stable.This is an important property as it allows one to disregard the
use of certain ILL rules (for instance�right). It can thus simplify the verification
of narrative properties.

In order to use this fact, we provide a proof of stability of WF for ILL (prop-
erty 1). To this end, we prove the stability of WF for each rule as follows: first the
grammar of Figure 1 is defined by the following (mutual) inductive properties:
��������	 Act : formula→ Prop := (* Act *)

| A1: Act 1

| A2:∀ φ1 φ2, CRes φ1→ Context φ2→ Act (φ1 � φ2)

| A3: ∀ φ1 φ2, Act φ1→ Act φ2→ Act (φ1 ⊕ φ2)

| A4: ∀ φ1 φ2, Act φ1→ Act φ2→ Act (φ1 & φ2)

| A5: ∀ φ, Act φ→ Act (!φ)
���� CRes: formula→ Prop:= (* CRes *)

| CRes1: CRes 1

| CRes2: ∀ n, CRes (Proposition n)

| CRes3: ∀ φ1 φ2, CRes φ1→ CRes φ2→ CRes (φ1 ⊗ φ2)

���� Context: formula→ Prop:= (* Context *)

| Context1:∀ φ, Act φ→ Context φ
| Context2:∀ φ, Res φ→ Context φ
| Context3: ∀ φ1 φ2, Context φ1→ Context φ2→ Context (φ1 ⊗ φ2)

���� Res: formula→ Prop:= (* Res *)

R1: Res 1

| R2: ∀ n, Res (Proposition n)

| R3: ∀ φ, Res φ→ Res (!φ)
| R4: ∀ φ1 φ2, Res φ1→ Res φ2→ Res (φ1 ⊗ φ2)

| R5: ∀ φ1 φ2, Res φ1→ Res φ2→ Res (φ1 & φ2).

��������	 ���� : formula→ Prop :=

| G1: ���� 1

| G2: ∀ n, ���� (Proposition n)

| G3: ∀ φ1 φ2, ���� φ1→ ���� φ2→ ���� (φ1 ⊗ φ2)

| G4: ∀ φ1 φ2, ���� φ1→ ���� φ2→ ���� (φ1 ⊕ φ2)

| G5: ∀ φ1 φ2, ���� φ1→ ���� φ2→ ���� (φ1 & φ2).

�	�������� WF Γ f (h:Γ� f):= ���� f∧∀ g:formula, g∈Γ→ Context g.

Notice that well-formedness (WF) of a sequent (Γ�f) is stated as a property of a
proof h of such a sequent (see lemma Grammar_Stable below). Then the stability
for each rule is given by an inductive property Istable mirroring the type of
proofs, stating that a property pred holds for all premisses sequents of all rules.

Istable e f h is true when pred holds for all nodes above the root of h (it does
not have to hold for the root itself). Notice that e and f are declared implicit
(using {.}) and can therefore sometimes be omitted.
��������	 Istable: ∀ {e} {f} (h: e � f) , Prop :=

| IId: ∀ Γ p heq, Istable (Id Γ p heq)

| IImpl_R: ∀ Γ p q h, pred h → Istable h → Istable (Impl_R Γ p q h)
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| IImpl_L: ∀ Γ ΔΔ� p q r hin heq h h’, pred h → pred h’

→ Istable h → Istable h’ → Istable (Impl_L Γ ΔΔ� p q r hin heq h h’)

| ...

The stability of the grammar is proved by the following lemma, stating that any
proof h of a well-formed sequent is necessarily well-formed itself:
�	��� Grammar_Stable: ∀ Γ φ (h:Γ � φ), WF h → Istable WF h.

It is proved by induction on h.

4.4 Second Order Analysis of Narratives Specification

We consider in this section the reachability of a given ending state regardless of
the impact of external events in an open-world assumption, as an example of an
interesting structural property. When considering a given proof (and narrative),
this property is not difficult to check. We build a (dependently typed) function
(check) which decides this property for a closed proof. That is, it returns trueP
if at least one branch contains an application of the ⊕R1 rule with φl � φr on
the right premise. We then test it on the proof we found of lemma Emma above
and the sequent A � D. boolP stands for Prop-sorted booleans and ?= is the
equality decision over formulae.
Program �������� check φl φr {e} {f} (h: e � f) {struct h}: boolP :=

����� h ����

| One_R _ _⇒ falseP

| One_L Γ p _ x⇒ check φl φr x

| Oplus_R1 Γ p q x⇒
�� andP (p ?= φl) (q ?= φr) ��	� trueP 	��	 check φl φr x ...

	��.

Eval vm_compute in check A D Emma. (* true *)

What would be much more interesting from a structural analysis point of view
would be to prove that this property is valid regardless of the proof of the se-
quent (check should return trueP for any proof of Emma). In our interpretation,
this would mean that for every narrative possibly generated by the initial specifi-
cation, a given end state is reachable. This is much more difficult to prove using
Coq as there is a potentially infinite set of such proofs. We tackle this prob-
lem using a variety of means. First, we define a notion of equivalence between
proofs. Second, we define an incremental method to avoid proving several times
the same property. A description of these two techniques follows.

Identify Proofs Corresponding to the Same Tree. We identify proofs that
differ only by the way side premisses (like p ∈ Γ or Γ ∈ Δ ∪Δ�) are proven. We
then prove that check and other definitions are compatible with this equivalence.
��������	 eq: ∀ Γ Γ’ f, (Γ � f)→ (Γ’ � f)→ Prop :=

| EQId: ∀ Γ1 Γ2 f heq heq’, eq (Id Γ1 f heq) (Id Γ2 f heq’)

| EQImpl_R:∀ Γ1 Γ2 p q h h’, eq h h’ → eq (Impl_R Γ1 p q h) (Impl_R Γ2

p q h’)

| EQTimes_R: ∀ Γ1 Δ1 Δ3 Γ2 Δ2 Δ4 p q heq heq’ h1 h3 h2 h4,

eq h1 h3 → eq h2 h4
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→ eq (Times_R Γ1 Δ1 Δ3 p q heq h1 h2) (Times_R Γ2 Δ2 Δ4 p q heq’ h3 h4)

| ...

�	��� eq_compat_check : ∀ f1 f2 Γ Γ’ φ (h1:Γ�φ) (h2:Γ’�φ),
eq h1 h2 → check f1 f2 h1 = check f1 f2 h2.

An interesting consequence is that one can substitute an environment with a
provably equal one in our proofs:
�	��� eq_env_compat_check : ∀ f1 f2 Γ Γ’ φ (h1:Γ�φ) (h2:Γ’�φ),

eq Γ Γ’ → check f1 f2 h1 = check f1 f2 h2.

This lemma is heavily used in our automated tactics described in the next sec-
tion.

Property Validation on All the Proofs of a Sequent. We can also prove
that some property holds for all proofs of a given closed sequent. We developed
a method for this kind of proofs which can be automated using an external tool.
This method should work for properties than one can define as a boolean func-
tion over ILL proofs (i.e. of type ∀Γφ, Γ � φ → boolP). This method involves
intricate lemmas and tactics allowing one to explore all possible proofs of a se-
quent. This amounts in particular to detect unprovable goals as soon as possible.
This is made possible in some cases by generic lemmas about the unprovability
of a sequent Γ � φ. For instance the following (meta) unprovability result is
proved and used:

Lemma 2. If a variable v ∈ Γ does not appear in the left-hand side of a � in
any (sub-)formula of Γ and do not appear in φ, then Γ � φ has no proof.

Our tactics detect such patterns in the hypothesis of a goal g and discharge g by
absurdity. The proof strategy applies to a goal G of the form: ∀h :Γ � φ,f h =
trueP and proceeds by building a database of previously proved lemmas as
described in algorithm 1.

The use of the lemmas database prevents proving the same lemma twice.
The application of previous lemmas is eased by the use of eq_env_compat_check
(described in previous section). Using this method we manage to prove several
non-trivial properties, including the reachability property mentioned earlier.

We have modelled the following simple narrative actions, which give another
perspective on the end of Madame Bovary:
B�S A discussion with Binet: Emma accepts the idea of selling herself
B�R A discussion with Binet: Emma decides to go and see Rodolphe
G�B A discussion with Guillaumin: Emma decides to go and see Binet
G�S A discussion with Guillaumin: Emma accepts the idea of selling herself

These actions, together with initial resources, can be used to model the fol-
lowing narrative specification: the outcome of the discussion with Binet will be
determined by the proof found, while an external event (in an open-world as-
sumption) which decides between the two possible outcomes of the discussion
with Guillaumin.

Two possible ending states are specified for this narrative: Emma is ready
to sell herself to improve her situation (S) or prepared to have a discussion
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with Rodolphe. We want to prove that whatever the narrative generated by
this specification, there is always a possible sub-narrative in the open-world
assumption which allows for the ending state S to be reached. The corresponding
sequent modelled in Coq is:

M(Γ � φ):
foreach rule r applicable to Γ � φ do

foreach sequent Δ � ψ of the premisses of r do
if f h = trueP then OK;
else if Δ � ψ ∈DB then apply DB(Δ � ψ) and OK;
else if unprovability tactics applies on Δ � ψ then OK by absurdity;
else

prove new lemma l : ∀h :Δ � ψ,f h = trueP using M(Δ � ψ);
store l in DB; apply l;

end

end

end
Algorithm 1: Proof method for properties of the form: ∀h :Γ � φ,f h = trueP.

s ={G,((B�S)&(B�R))&1,(G�B)⊕(G�S)�S⊕R}
We have proved that this sequent is such that ∀ (h:s), check _ _ h = trueP.
This proof uses 47 auxiliary lemmas, while the sequent only offers a low-level
of generativity. Each lemma is proved automatically but currently the lemmas
are stated by hand. We discuss briefly how we plan to automate the lemmas
generation in the conclusion of this paper.

In order to show that provided adequate automation our technique can scale
on sequents offering a high level of generativity, we proved a similar reachabil-
ity property on the following sequent which uses narrative actions described in
Figure 3:

s1 ={P&1,(S�A)&1,(E�A)&1,(P�D)&1,S}) � (A⊕D)
As the sequent is more generative, this proof uses 283 auxiliary lemmas.

5 Conclusion

In this paper, we have shown that the Coq proof assistant is a powerful tool
for studying and verifying structural properties of narratives modelled using
Intuitionistic Linear Logic.

We have provided a method for encoding narratives specifications into an ILL
sequent, encompassing narrative actions and initial resources description, and
described an encoding of ILL into Coq which allows one to build well-formed
narratives from proofs of such a sequent.

The encoding we have proposed makes use of the proof-as-term paradigm and
allows one to verify structural properties of narratives transcending all narratives
generated by such a specification. This allows one to study resource-sensitive and
causality relationships emerging from the initial specification. From a low-level
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description of the semantics of narrative actions, we are thus able to obtain
high-level semantics properties regarding the narrative.

Now that we have shown that our encoding and our proof method allows for
automated heuristics, we plan to implement certifying external procedures in a
similar fashion than previous work of authors [5,6]. More precisely we plan to 1)
implement a Coq script generator that will generate the lemmas statements and
proof following ideas of section 4.4 and 2) prove more unprovability results, like
lemma 2, in order to tame a bit more the combinatorial explosion of ILL proofs.
The need to prove properties on proofs themselves forces the use of dependently
typed programming style, which happens to be uncommon, especially on sort
Prop on which elimination is limited. The experience was however successful.

This work therefore opens new perspectives on the design and understanding
of computational models of narratives. A particularly interesting avenue to ex-
plore concerns the search for normalised forms of narratives, for instance offering
the highest possible degree of sub-narratives parallelism relying on resource in-
dependence. Such normalisation procedures can rely on dedicated proof-search
algorithms, complementing our existing encoding. This work is also a first step
towards the assessment of story variance on a structural and formal basis: based
on the definition of equivalence relationships between proofs, and further, be-
tween their narrative interpretations, we plan to investigate formally what makes
stories differ and propose metrics which would allow one to evaluate narrative
specifications.

Acknowledgments. This work has been partly funded by the European Comis-
sion under grant agreement IRIS (FP7-ICT-231824).
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Abstract. This work targets the use of formal methods for enhancing
dependability analysis of sequential circuits described at the Register
Transfer (RT) level. We consider solutions oriented towards theorem-
proving techniques as an alternative to classical fault-injection tech-
niques, for analyzing the consequences of errors caused by transient
faults. A preliminary study was conducted to evaluate the advantages
of a highly automated tool like ACL2 in that context. However, this
study showed that, in spite of its numerous advantages, the ACL2 logic
is not always expressive enough to deal with the properties under consid-
eration here. In this paper, we briefly explain the shortcomings of ACL2
relatively to our problem, and we investigate the application of PVS,
thus enabling to improve our simple and multiple faults models and the
associated verification methodology1.

1 Introduction

The dependability analysis of modern embedded systems is becoming a major
concern for designers. Particle strikes, electromagnetic interferences or other sig-
nal integrity problems result in soft errors i.e., logic errors in some registers while
no damage exists in the circuit. Soft errors can be due to spurious commutations
in flip-flops (SEUs - Single Event Upsets - are a well-known example and cor-
respond to single bit-flips) or to erroneous signals latched after propagation in
the combinatorial parts (SETs - Single Event Transients). In the following, we
focus on soft errors in random logic parts i.e., in flip-flops (soft errors in memory
blocks are often easier to mitigate). Only synchronous digital circuits subject to
transient faults, resulting in single or multiple erroneous bits, are considered. No
assumption is made on the functionality of the circuit.

The overall goal is to ensure a given level of robustness with respect to faults
i.e., either to guarantee that no error (in a specified set of potential errors derived
from the selected fault model) can lead to the unwanted events, identified as crit-
ical from the application point of view, or to limit the probability of such events
to an acceptable value. In order to achieve this goal, designers must analyze at
design time the potential consequences of errors, and add additional protections
in the circuit when required. Such an analysis is usually based on so-called fault
1 This work has been supported by the French National Research Agency ANR in the
framework of the “FME3” project (ANR-07-SESU-006).

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 71–86, 2011.
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injection techniques, classically using either simulation or emulation [10]. How-
ever such techniques require very long experiment durations, that are often not
acceptable in particular in the case of complex circuits and multiple-bit errors.
In consequence, current practice is based on partial analyses, injecting only a
subset of all possible errors. Furthermore, the number of injected errors is often
limited to a very small percentage. Such an approach can be sufficient in some
cases to be reasonably confident in the efficiency of some protection mechanisms.
However, this cannot be considered as a guarantee that a given dependability
property holds for all possible errors in the specified set. Also, it is not possible
with such an approach to precisely quantify the probability of a given event; only
estimations can be obtained unless exhaustive fault injections are performed. We
thus target the development of new methodologies helping the designer in better
ensuring that the achieved level of robustness is actually sufficient with respect
to the application constraints. Through the use of formal techniques, our ob-
jective is a more thorough dependability characterization compared with fault
injections using classical approaches.

In the framework of the French FME3 project [1], a proposed methodology
is as follows: deductive proofs (efficient at abstract levels, and also on param-
eterized systems) can evaluate robustness properties, in particular whether the
circuit is fault-tolerant or not, using a meta-model for representing faults. Model-
checking based techniques may deliver more information [2]:

– if it is not robust, the computation of the ratios of either potentially or sys-
tematically repairing states may give some indications about the robustness
of the circuit and may guide the search of the minimal subset of registers to
be protected in order to achieve the required robustness,

– if it is robust, the computation of the length of repairing sequences may
characterize the repairing speed of the circuit.

Here we describe our early results towards the characterization of fault effects us-
ing deductive techniques. We propose to formally prove that some dependability
properties always hold for a given set of potential errors due to transient faults.

2 Previous Results

2.1 Related Works

Theorem provers provide less automation than algorithmic tools (equivalence
checkers, model checkers), but support more powerful logics. Thus they enable
the specification of more comprehensive properties, the possibility to reason on
complex data types, the ability to consider parameterized devices and proper-
ties, while reasoning at various abstraction levels. Surprisingly, to the best of
our knowledge, very few actual solutions based on deduction-oriented approaches
have been proposed in the context of robustness analysis for sequential circuits.
Most recent results to apply formal verification to dependability evaluation make
use of model checking tools or of symbolic simulation techniques associated with
BDD-based or SAT-based solutions.
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The approach of [9] focuses on measuring the quality of fault-tolerant designs,
and works by comparing fault-injected models with a golden model. The BDD’s
that correspond to the fault-injected and golden models are built by symbolic
simulation for a given number of cycles. Properties that characterize correction
capabilities are checked on these models.

The model checker SMV is used in [14] to identify latches that must be pro-
tected in an arbitrary circuit. Formal models for all the fault-injected circuits
are built (fault injection is performed in one latch for each one of them) and
SMV checks whether the formal specification of the original circuit still holds in
each case, thus indicating whether the corresponding latch must be protected
or not.

The goal of [4] is to analyze the effects of transient faults, using both sym-
bolic simulation and model checking. Injected faults are pictured by modifying
the premises of the properties that should be satisfied without faults. Counter
examples generated by the model checker are used to interpret the effects of the
injected faults.

A definition of the robustness of a circuit in terms of its input/output be-
haviour is given in [5]. Several fault models are considered, and an algorithm to
compute a measure of the robustness is given: it builds a fault-injected model,
“unrolls” the circuit and its fault-injected counterpart, and estimates a measure
of robustness by SAT-solving equivalence properties.

In [6], the authors propose a HOL formalization of some reliability theory con-
cepts, in which reliability is defined as the probability that the system performs
its intended function until some time t (this time to failure is expressed in terms
of the failure rate of the system). They focus on the analysis of reconfigurable
memory arrays in the presence of fabrication faults such as stuck-at and coupling
faults. Our approach concentrates on models for transient faults due for example
to particle strikes, and proposes to overcome the limitations of model checkers
by means of theorem proving techniques.

2.2 First Solution Using ACL2

In our approach, we make use of a specialized tool called VSYML [11] to get an
XML representation of the transition and output functions of a device initially
given in VHDL:

δ : I × S → S
λ : I × S → O

where I, O and S refer to the sets of input values, output values, and state values
(memory elements).

In a first solution [13], we intended to take advantage of the high level of au-
tomation of the ACL2 theorem prover [7]. The XML representation was trans-
formed into the appropriate format using a specialized translator. We defined
and then formalized in ACL2 the fault model that corresponds to the presence
of a single or multiple-bit error in a single register of the circuit. This model
characterizes the fault-injection function inject as a function that satisfies the
following conjunction of properties:



74 R. Clavel, L. Pierre, and R. Leveugle

– it takes as parameter a state s ∈ S and returns a state inject(s) ∈ S
– inject(s) is different from s
– only one memorizing element (n-bit register) differs from s to inject(s).

In other words, the injection function belongs to the following set:

E = {inject : S → S | ∀s ∈ S, ∃ ! i, (inject(s))i �= si}

Encoding such a formulation in a theorem prover would require the presence of
quantifiers and the possibility of specifying functions by characteristic properties
instead of using a function definition. Despite the fact that ACL2 is first-order
and does not support the explicit use of quantifiers, there are solutions to mimic
certain kinds of originally higher-order or quantified statements. For instance,
the encapsulation mechanism allows to introduce new function symbols that are
constrained to satisfy certain axioms, without providing function definitions that
uniquely determine the functions’s behavior [8]. To guarantee the consistency of
the constraints, and thus the soundness of the logical system, a “witness” must
be supplied for each constrained function (this witness is a function that can be
proven to have the required properties).

Using this principle, it was possible to encode the model above in ACL2 [13].
However the main problem with this implementation is not the use of the “en-
capsulate” construct, but the fact that the implementation of the third property
(“only one state component differs from s to inject(s)”) in the error model had
to be expressed by a theorem of the form:

∨
k

(inject(s) = injectk(s)) where each

injectk translates an injection in the kth state component.
The drawback of this solution is that the theorem explicitly enumerates every

possible error location, thus leading ACL2 to enumerate all the corresponding
subgoals. For the small example given as illustration in [13], CPU times remained
moderate but they could become prohibitive with more realistic systems.

The conclusion was that it is possible to find a way of encoding our models
and associated robustness properties in ACL2, but that it may result in a lack
of efficiency for performing proofs.

We thus decided to adopt a less automated proof tool, that provides a more
powerful logic. One of the candidates was the PVS proof assistant [12] [3]: its
logic and inference mechanisms are powerful enough, without requiring too much
effort for realizing proofs; it also supports the definition of strategies that favor
proof automation.

3 Fault Models in PVS

We come back to the formalization of fault models. We can take advantage of
several PVS features:

– the possibility to parameterize PVS theories,
– the possibility to define predicate functions that make use of ∀ and ∃ quan-

tifiers,
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– the possibility to override a function definition, by means of the WITH con-
struct. The result of an overriden function is exactly the same as the original,
except that at the specified arguments it takes the new values.

3.1 Single Faults

The first idea was to characterize the definition of section 2.2 as follows:

∀s, ∃ i and x such that x �= s(i) and inject(s) = (s WITH [i → x])

but we preferred a definition of the form:

∀s, ∃ i and f such that inject(s) = (s WITH [i → f(s(i))])

thus making explicit the fault function f , and enabling the characterization of a
parameterized set of injection functions:

E(F ) = {inject : S → S | ∀s ∈ S, ∃ i, ∃ f ∈ F, (inject(s))i = f(si)}

where F is a set of fault functions. As shown thereafter, choosing different in-
stances for this parameter F easily allows considering the same circuit with
several fault models for its registers.

This is translated as the following (excerpt of) PVS formalization for faults
in a FSM. The last parameter of this theory, FaultDef, corresponds to the set
denoted F above. In order to distinguish between the symbolic state (in which
we assume that there is no injection) and the synthesizable state, we partition
the set of states into two components, q and s.

FAULT_IN_FSM

[RegType : TYPE, % Possible register types

RegList : TYPE, % Synthesizable state

SymbList : TYPE, % Symbolic state

SelectR : [RegList -> [RegType -> bool]],

% Types for the registers of the synthesizable state

SelectS : [SymbList -> [RegType -> bool]],

% Type for the symbolic state

FaultDef : [i : RegList -> [[(SelectR(i)) -> (SelectR(i))] -> bool]]

% Fault model for each state component

]

: THEORY BEGIN

SynthState : TYPE = [i : RegList -> (SelectR(i))] % Each state component

SymbState : TYPE = [i : SymbList -> (SelectS(i))] % has a type.

State : TYPE = [# q : SymbState, s : SynthState #]

% q is the symbolic state and s is the synthesizable state

% Predicate for single faults:

inject_single? (error : [SynthState -> SynthState]) : bool =

FORALL (s : SynthState):

EXISTS (i : RegList, f : (FaultDef(i))): error(s) = s with [(i) := f(s(i))]

% inject_single is the set of functions that satisfy the

% inject_single? predicate:

inject_single : TYPE = (inject_single?)

END FAULT_IN_FSM
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By convention, the transition function δ of each FSM will be referred to as
next in the PVS code. The theory below specifies the nextn function: for an
input sequence ι of length n (i.e., an element of traces(n)), a symbolic state q
and a synthesizable state s, nextn is defined as follows

nextn(ι[0..n−1], q, s) = next(ιn−1, nextn−1(ι[0..n−2], q, s))

and the theorem REC thm can be used to consider nextn in its tail-recursive
form when necessary. It states that:

nextn(ι[0..n−1], q, s) = nextn−1(ι[1..n−1], next(ι0, < q, s >))

The corresponding source code is as follows:

NEXT_N

[SymbState : type,

SynthState : type,

input : type,

next : [input, SymbState, SynthState -> [# q : SymbState, s : SynthState #]]

]

: THEORY BEGIN

traces(n : nat) : type = [subrange(0,n-1) -> input] % input traces of length n

rec_next(n : nat, i : traces(n), q : SymbState, s : SynthState) :

RECURSIVE [# q : SymbState, s : SynthState #] =

if n = 0

then (# q := q, s := s #)

else let prev_state = rec_next(n-1, LAMBDA(k:subrange(0,n-2)):i(k), q, s)

in

next(i(n-1),prev_state‘q,prev_state‘s)

endif

MEASURE LAMBDA(n : nat, i : traces(n), q : SymbState, s : SynthState): n

REC_thm: THEOREM

FORALL (n:nat, i:traces(n), q : SymbState, s : SynthState) :

n /= 0 IMPLIES

rec_next(n, i, q, s) =

let first_state = next(i(0) ,q ,s) in

rec_next(n - 1, LAMBDA (k:subrange(0,n-2)): i(k+1),

first_state‘q, first_state‘s)

END NEXT_N

3.2 Spatial Multiplicity

An extension of this model to characterize the presence of a single or multiple-
bit error in several registers of the circuit is characterized by the following set
E′(k, F ) of injection functions, where k �= 0 is the number of faulty registers:

E′(k, F ) = {inject : S → S | ∀s ∈ S, ∃ inject0 ∈ E(F ),
∃ inject′ ∈ E′(k − 1, F ), inject(s) = inject0(inject′(s))}

That leads to adding the following piece of code to theory FAULT IN FSM :
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% Predicate for possibly multiple faults:

inject_multiple? (k : nat)

(error : [SynthState -> SynthState]) : RECURSIVE bool =

if (k = 0)

then FORALL (s : SynthState): error(s) = s

else FORALL (s : SynthState):

EXISTS (f1 : (inject_single?), f2 : (inject_multiple?(k-1))):

error(s) = f1(f2(s))

endif

MEASURE LAMBDA(k : nat): k

% inject_multiple is the set of functions that satisfy the

% inject_multiple? predicate:

inject_multiple(k : nat) : TYPE = (inject_multiple?(k))

3.3 Temporal Multiplicity

As far as the temporal multiplicity of faults is concerned, we define a set E′′(k, p,
F ) to characterize the set of functions that can inject k faults during p cycles:

– E′′(k, 0, F ) = E′(k, F )
– E′′(0, p, F ) = {δp} where δ is the transition function
– E′′(k + 1, p + 1, F ) takes into account both a recursion on E to allow spatial

multiplicity, and the use of δ to make time elapse.

4 From VHDL to PVS

4.1 Translation

A toolchain has been created to automatically generate the PVS source code
from the original VHDL RTL description (see Fig. 1).

Using our tool VSYML [11], we parse the original VHDL RTL code, perform
symbolic execution, and we get an XML representation of the transition and
output functions. Templates of robustness theorems (see section 4.2) have been
encoded in a library, xml2pvs. The intermediate format produced by VSYML
is processed, together with the properties to be verified and the patterns of
xml2pvs, by the tools xsltproc2 and html2text3 in order to produce a PVS file
that contains both the design description and the theorems to be proven in
the presence of faults characterized according to the models of section 3. Proof
strategies dedicated to the various types of robustness properties have been
defined. They enable the automatization of the proof process.

4.2 Proof Process

Following [1], we consider the notion of “repairing sequences” that are starting
from a faulty state and ending in a repairing state, provided no new fault oc-
curs. The predicate Seq rep(s0, ι) characterizes the fact that (s0, ι) is a repairing
sequence, for a state s0 and an input sequence ι of length n + 1:
2 http://xmlsoft.org/XSLT/xsltproc2.html
3 http://www.aaronsw.com/2002/html2text/
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Fig. 1. Toolchain for PVS

Seq rep(s0, ι) = ∀ ι′ ∈ traces(j), ∀ e ∈ E,
δj(δ(e(δn(s0, ι[0..n−1])), ιn), ι′) ∈ Ref(s0, ι, ι

′)

where traces(j) is the set of traces of length j, E is one of the sets of injec-
tion functions of section 3, and Ref(s0, ι, ι

′) is a reference function. Among the
possible reference functions, the most commonly used will be:

Refgolden(s0, ι, ι
′) = λx.δn+j+1(s0, ι.ι

′)Requivx

where Requiv is an equivalence relation. In particular, we can consider the equal-
ity Requal and the observational equivalence Robs:

Requal = λs.λs′.(s = s′)
Robs = λs.λs′.∀m ∈ N, ∀I ∈ traces(m), λ(δm(s, I)) = λ(δm(s′, I))

In the definition of Seq rep(s0, ι) above, the term δj(δ(e(δn(s0, ι[0..n−1])),
ιn), ι′) is the result of injecting an error in the state obtained after n applica-
tions of the transition function from s0, and then applying again the transition
function j + 1 times. In other words, it corresponds to the state that can be
reached j + 1 cycles after error injection. If this result belongs to the reference
Ref(s0, ι, ι

′), then (s0, ι) is said to be a repairing sequence.
The PVS robustness theorems will be of the form:

∀n ∈ N, ∀ ι ∈ traces(n + 1), ζ(ι) implies (s0, ι) is a repairing sequence
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where ζ(ι) is used, if necessary, to specify hypotheses on the input trace. To-
gether with the notions of repairing sequence and reference function, robustness
classes have been defined. The first one (also called strict robustness) states that
fault injection does not disturb the circuit behaviour. In that case, j = 0 and
Ref(s0, ι, ι

′) is Refgolden(s0, ι, ι
′). Depending on the equivalence relation Requiv ,

the corresponding theorems are thus:

(1) ∀n ∈ N, ∀ι ∈ traces(n + 1), ∀e ∈ E,
ζ(ι) ⇒ δ(e(δn(s0, ι[0..n−1])), ιn) = δn+1(s0, ι)

(2) ∀n ∈ N, ∀ι ∈ traces(n + 1), ∀e ∈ E,
ζ(ι) ⇒ ∀m ∈ N, ∀I ∈ traces(m),

λ(δm(δ(e(δn(s0, ι[0..n−1])), ιn), I)) = λ(δm+n+1(s0, ι.I))

Another robustness class corresponds to the case where the circuit comes
back to a nominal behaviour after a bounded number of cycles k. This gives the
following theorems:

(1) ∀n ∈ N, ∀ι ∈ traces(n + 1), ∀ι′ ∈ traces(k), ∀e ∈ E,
ζ(ι) ⇒ δk(δ(e(δn(s0, ι[0..n−1])), ιn), ι′) = δn+k+1(s0, ι.ι

′)

(2) ∀n ∈ N, ∀ι ∈ traces(n + 1), ∀ι′ ∈ traces(k), ∀e ∈ E,
ζ(ι) ⇒ ∀m ∈ N, ∀I ∈ traces(m),

λ(δm(δk(δ(e(δn(s0, ι[0..n−1])), ιn), ι′), I)) = λ(δm+n+k+1(s0, ι.ι
′.I))

PVS proof strategies have been defined for the different types of robustness
theorems. On top of them, a strategy auto-choose enables the automatization of
the proof process, by allowing PVS to automatically choose the adequate proof
strategy for the theorem under consideration, based on its identifier. For in-
stance, if the name of the (automatically generated) theorem contains the string
“multihardened”, the theorem is about the restoration of a nominal behaviour
after multiple faults, and the associated strategy is used. The idea of this strategy
is just to split and simplify the goals. If the current goal considers the possibility
of having an error in a register R, PVS does not enumerate all the possible states
for the other registers. It simply assumes a faulty value in R (according to the
fault model), and considers the rest of the registers as a whole.

5 Experiments

We describe here three experiments performed using the approach described
above: the cash withdrawal system (ATM) already used as example in [13] [1],
a FIR filter, and a CAN interface.

5.1 Cash Withdrawal System

The simple cash withdrawal system (ATM) of Fig. 2 has three synthesized reg-
isters that store: the code that is entered through the keyboard (code), the valid
code (ok), and the current number of attempts for entering the code (n).
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Fig. 2. FSM of the cash withdrawal system

For these 3 registers, through different VHDL configurations, we can choose
any register architecture: simple flip-flop, register that detects errors, TMR
(triple modular redundancy). In the following, we consider that 3 TMR are
used (which means that 3 sub-registers appear for each actual register code, ok
and n) and that error injection can occur in any of the synthesized registers.

Here is an excerpt of the PVS source code that corresponds to the ATM and
its fault model:

ATM_DEF : THEORY BEGIN

tt_localtype_fsmstate : TYPE =

{ init, card_in, test_code, code_error, code_ok, card_out } % FSM states

RegType : DATATYPE BEGIN

...

END RegType

RegList : TYPE = { myatm_codereg_mem01, myatm_codereg_mem02,

myatm_codereg_mem03, myatm_okreg_mem01, myatm_okreg_mem02,

myatm_okreg_mem03, myatm_nreg_mem01, myatm_nreg_mem02, myatm_nreg_mem03}

SymbList : TYPE = { myatm_atmcontrol_currentstate }

SelectR : [RegList -> [RegType -> bool]] = % Registers

LAMBDA(i:RegList) : COND

i = myatm_codereg_mem01 -> NatReg?,

i = myatm_codereg_mem02 -> NatReg?,

i = myatm_codereg_mem03 -> NatReg?,

% and similarly for the other ones...

ENDCOND



Towards Robustness Analysis Using PVS 81

SelectS : [SymbList -> [RegType -> bool]] = % Symbolic state

LAMBDA(i:SymbList) : COND

i = myatm_atmcontrol_currentstate -> localtype_fsmstateReg?

ENDCOND

% Fault model for each register:

FaultDef : [i : RegList -> [[(SelectR(i)) -> (SelectR(i))] -> bool]] =

LAMBDA(i:RegList) : LAMBDA(f : [(SelectR(i)) -> (SelectR(i))]) : COND

i = myatm_codereg_mem01 -> Natural.inject?( LAMBDA( s : Natural.state ) :

NatVal(f(NatReg(s)))) ,

i = myatm_codereg_mem02 -> Natural.inject?( LAMBDA( s : Natural.state ) :

NatVal(f(NatReg(s)))) ,

% and similarly for the other ones...

ENDCOND

% Importation of FAULT_IN_FSM with actual parameters:

IMPORTING FAULT_IN_FSM[RegType,RegList,SymbList,SelectR,SelectS,FaultDef] as fsm

input_type : TYPE = [# reset : bool, inc : bool, cc : nat, codin : nat ,

val : bool, doneop : bool, take : bool #]

% Transition function:

next(i : input_type, q : fsm.SymbState, s : fsm.SynthState) : fsm.State = ...

% Output function:

out(i : input_type, q : fsm.SymbState, s : fsm.SynthState) :

[# outc : bool , keep : bool , start_op : bool , e_detect : bool #] = ...

END ATM_DEF

With this configuration, we have the following simple theorem for this ATM
example: if the system is in a nominal state and a fault occurs in any of the
registers, then the fault is repaired one cycle later. Which is expressed as follows:

ATM_Hardened_1 : THEOREM

FORALL (i : input_type, q : fsm.SymbState, s : fsm.SynthState) :

FORALL (f : fsm.inject_single):

((NatVal(s(myatm_codereg_mem01)) = NatVal(s(myatm_codereg_mem02))))

and ((NatVal(s(myatm_codereg_mem01)) = NatVal(s(myatm_codereg_mem03))))

and ((NatVal(s(myatm_okreg_mem01)) = NatVal(s(myatm_okreg_mem02))))

and ((NatVal(s(myatm_okreg_mem01)) = NatVal(s(myatm_okreg_mem03))))

and ((NatVal(s(myatm_nreg_mem01)) = NatVal(s(myatm_nreg_mem02))))

and ((NatVal(s(myatm_nreg_mem01)) = NatVal(s(myatm_nreg_mem03))))

IMPLIES next(i,q,f(s)) = next(i,q,s)

The proof of this theorem, on an Intel Core2 Duo, takes 43.26 seconds. This
is due to the fact that this representation does not take the design hierarchy
into account. Therefore we have improved the FSM and fault models to take
advantage of hierarchy. For this example, we first prove characteristic properties
of the TMR, which takes 1.53 s, then the theorem above is adapted to reflect
the presence of this subcomponent, and its proof takes only 12.52 s.
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5.2 FIR Filter

A FIR (finite impulse response) filter is a classical function, which behavior is
based on a 3-phase computation loop: sample acquisition (e.g., from an ADC
converter), computation of the response and result emission on one output. The
computation successively adds partial products of n samples with n coefficients.
The circuit is made of six sub-blocks: a finite state machine (FSM) for the control
of the computation and input/output transfers, a n-position delay line imple-
mented as a FIFO memory (DEC) for storing the last n samples of the signal,
a combinatorial multiplier (MULT), a read-only memory storing the coefficients
(ROM), an adder with a register for partial product accumulation (ACC) and
an output buffer (BUF). More precisely, this FIR filter computes

St =
n∑

k=0

It−k ∗ Ck

where the Ck coefficients are stored in the ROM, and the successive inputs It−k

are put into the delay line. We give below an excerpt of the PVS source code for
this FIR filter and its fault model. This theory imports the theories related to
the sub-components (delay line, ROM, Accu, Buffer, and multiplier).

FILTER_DEF [n : {x : nat | x > 1}, k : nat]

: THEORY BEGIN

tt_localtype_fsmstate : TYPE = { S0, S1, S2, S3 }

IMPORTING DEC[nat, n, 0] as dec1

IMPORTING ROM[nat, n] as rom1

IMPORTING ACCU[nat, 0, LAMBDA(x:nat,y:nat):x+y] as accu1

IMPORTING BUFF[nat, 0] as buff1

IMPORTING MULT as mult1

RegType : DATATYPE BEGIN

...

END RegType

RegList : TYPE = { filter1_mydec, filter1_myrom, filter1_myaccu, filter1_mybuff,

filter1_mymult}

SymbList : TYPE = { filter1_tapnumber, filter1_cstate}

SelectR : [RegList -> [RegType -> bool]] = % Registers

LAMBDA(i:RegList) : COND

i = filter1_mydec -> DecReg?,

i = filter1_myrom -> RomReg?,

i = filter1_myaccu -> AccuReg?,

i = filter1_mybuff -> BuffReg?,

i = filter1_mymult -> MultReg?

ENDCOND

SelectS : [SymbList -> [RegType -> bool]] = % Symbolic state

LAMBDA(i:SymbList) : COND

i = filter1_tapnumber -> IntReg?,

i = filter1_cstate -> localtype_fsmstateReg?

ENDCOND
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% Fault model for each register:

FaultDef : [i : RegList -> [[(SelectR(i)) -> (SelectR(i))] -> bool]] =

LAMBDA(i:RegList) : LAMBDA(f : [(SelectR(i)) -> (SelectR(i))]) : COND

i = filter1_mydec -> dec1.inject_single?

(LAMBDA(s:dec1.state): DecValue(f(DecReg(s)))),

i = filter1_myrom -> FALSE, % No injection in ROM

i = filter1_myaccu -> accu1.inject_single?

(LAMBDA(s:acu1.state): AccuValue(f(AccuReg(s)))),

i = filter1_mybuff -> buff1.inject_single?

(LAMBDA(s:buff1.state) : BuffValue(f(BuffReg(s)))),

i = filter1_mymult -> FALSE % No injection in MULT

ENDCOND

...

END FILTER_DEF

An interesting auto-correcting property of the delay line is that there is no
more error in its register if its shift control input has been activated (n+1) times
after the occurrence of an error. To get the proof of this property, we demonstrate
various intermediate lemmas about the control part (for the sake of conciseness,
these lemmas are not given here), in particular the one that states that (n + 2)
cycles are needed between two successive activations of the shift control input
of the delay line. More precisely, (n + 2) cycles are needed between leaving the
initial state to start the computation of a term and coming back to this initial
state. The shift control input can only be activated when the FSM is in the initial
state, provided that the primary input ADC Busy is ’0’. In the case where we
assume that this last condition holds immediately, the theorem above is stated
as follows:

FILTER_prop_DEC: THEOREM

FORALL (l : nat) : l >= ((n+2)*(n+1)) IMPLIES

FORALL (t : traces(l), q : fsm.SymbState, s : fsm.SynthState) :

FORALL (f : fsm.inject_single) :

(FORALL (x : subrange(0,l-1)): t(x)‘adc_busy=FALSE)

IMPLIES rec_next(l, t, q, f(s)) = rec_next(l, t, q, s)

This theorem states that the global state of the FIR filter is sound again after
at least (n + 1) ∗ (n + 2) cycles if a fault has been injected in the delay line.
It is worth noticing that the proof is parameterized by n, and is performed by
induction. It is also independent of the vector sizes. To reduce memory usage,
this proof has to be hierarchical: we first prove intermediate lemmas about the
DEC (which takes 1.76 s), then the theorem above is proven in 36.13 s.

A generalized version of this theorem can also be obtained. It assumes that
at most k cycles are necessary for the environment to put the value ’0’ on the
primary input ADC Busy when the FSM is in its initial state. Then the global
state of the FIR filter is sound again after at least (n+1) ∗max(n+2, k) cycles.
In that case, k is another parameter of the inductive proof.
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5.3 CAN Interface

The CAN (Controller Area Network) bus protocol is an ISO standard mainly
used for automotive applications, but also in industrial automation. The protocol
transmits serial frames between several emitters and receivers. The interface used
in this study is made of two main modular components: one emitter reading data
on a parallel input port, and outputting a serial CAN-frame, and one receiver
doing the inverse transform when an incoming frame is identified.

The interest of this example is to demonstrate an appealing usage of the
FaultDef parameter that easily enables the use of various fault models for the
different registers. Here we will concentrate on a simple theorem that states that,
if only the registers of the emitter part can be perturbed (we assume that the other
registers are protected), then the behaviour of the receiver will not be disturbed
(for instance it will not accept an erroneous message). The proof of this theorem
demonstrates in this case that no shared logic can create common mode failures
in the two sub-blocks. We recall that, using FaultDef, any injection predicate
can be used for each register. Here we use the constant function FALSE for the
registers of the receiver part, to indicate that they are protected (thus injection
is impossible), and injection functions for integers or bit-vectors for the registers
of the transmitter part:

FaultDef : [i : RegList -> [[(SelectR(i)) -> (SelectR(i))] -> bool]] =

LAMBDA(i:RegList) : LAMBDA(f : [(SelectR(i)) -> (SelectR(i))]) :

COND

i = general1_send1_gencrc1_crcreg -> boolVect0_14.inject?(LAMBDA(s :

boolVect0_14.state) : boolVect0_14Value(f(boolVect0_14Reg(s)))),

i = general1_send1_sendframe1_bitstuffprec -> Integer.inject?(LAMBDA(s :

Integer.state) : IntValue(f(IntReg(s)))),

% and similarly for the other registers of the emitter part...

i = general1_rec1_rcptframe1_curdata -> FALSE ,

i = general1_rec1_rcptframe1_curmsg -> FALSE ,

% and similarly for the other registers of the receiver part...

ENDCOND

We are interested in proving that if only the registers of the emitter part
can be fault-injected, then the behaviour of the receiver will not be disturbed.
It means that the local state of the receiver part is unaffected and will remain
unaffected in the next cycles. First, we prove that each register of the receiver
part is unaffected, then we prove the following global theorems that state that
the global state of the CAN interface may be affected, but by a function g that
satisfies the current fault model (i.e., injection is not effective in the receiver),
and similarly k cycles later:

CAN_MultiPropa : THEOREM

FORALL (i : input_type, q : fsm.SymbState, s : fsm.SynthState) :

FORALL (n : nat, f : fsm.inject_multiple(n)):

EXISTS (m : nat, g : fsm.inject_multiple(m)):

next(i,q,f(s))‘s = g(next(i,q,s)‘s)
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CAN_RecMultiPropa : THEOREM

FORALL (k : nat, i : traces(k)):

FORALL (q : fsm.SymbState, s : fsm.SynthState):

FORALL (n : nat, f : fsm.inject_multiple(n)):

EXISTS (m : nat, g : fsm.inject_multiple(m)):

rec_next(k,t,q,f(s))‘s = g(rec_next(k,t,q,s)‘s)

Here too, the proofs have to be hierarchical: we first prove intermediate lem-
mas about the subcomponents (which takes 35.55 s), then the theorems above
are proven in 13.26 s and 0.21 s respectively (the proof of the latter uses the
former).

6 Conclusion

The main strength of a theorem prover oriented technique is its ability to con-
duct sophisticated proofs, to reason on various data types and on parametric
models. These features are particularly useful in our context of dependability
analysis. Moreover, due to the characteristics of the models to be encoded here,
choosing a tool like PVS actually brings a solution to our faults and reparation
modeling, as illustrated by our experimental results. Future works include im-
proving the automation of the hierarchical decomposition of the translation and
proof processes, in order to analyze more complex designs.
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Abstract. Knowledge-based programs (KBPs) are a formalism for di-
rectly relating agents’ knowledge and behaviour. Here we present a gen-
eral scheme for compiling KBPs to executable automata with a proof of
correctness in Isabelle/HOL. We develop the algorithm top-down, using
Isabelle’s locale mechanism to structure these proofs, and show that two
classic examples can be synthesised using Isabelle’s code generator.

1 Introduction

Imagine a robot stranded at zero on a discrete number line, hoping to reach and
remain in the goal region {2, 3, 4}. The environment helpfully pushes the robot
to the right, zero or one steps per unit time, and the robot can sense the current
position with an error of plus or minus one. If the only action the robot can take
is to halt at its current position, what program should it execute?

. . .
0 1 2 3 4 5 6

goal

An intuitive way to specify the robot’s behaviour is with this knowledge-based
program (KBP), using the syntax of Dijkstra’s guarded commands:

do
[] Krobot goal → Halt
[] ¬Krobot goal → Nothing

od

where “Krobot goal” intuitively denotes “the robot knows it is in the goal region”
[8, Example 7.2.2]. We will make this precise in §2, but for now note that what
the robot knows depends on the rest of the scenario, which in general may involve
other agents also running KBPs. In this sense a KBP is a very literal rendition of
a venerable artificial intelligence trope, that what an agent does should depend
on its knowledge, and what an agent knows depends on what it does. It has
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been argued elsewhere [4,7,8] that this is a useful level of abstraction at which to
reason about distributed systems, and some kinds of multi-agent systems [21].
The downside is that these specifications are not directly executable, and it may
take significant effort to find a concrete program that has the required behaviour.

The robot does have a simple implementation however: it should halt iff the
sensor reads at least 3. That this is correct can be shown by an epistemic model
checker such as MCK [10] or pencil-and-paper refinement [7]. In contrast the
goal of this work is to algorithmically discover such implementations, which is a
step towards making the work of van der Meyden [18] practical.

The contributions of this work are as follows: §2 develops enough of the the-
ory of KBPs in Isabelle/HOL [19] to support a formal proof of the possibility
of their implementation by finite-state automata (§3). The later sections extend
this development with a full top-down derivation of an original algorithm that
constructs these implementations (§4) and two instances of it (§5 and §6), culmi-
nating in the mechanical synthesis of two standard examples from the literature:
the aforementioned robot (§5.1) and the muddy children (§6.1).

We make judicious use of parametric polymorphism and Isabelle’s locale mech-
anism [2] to establish and instantiate this theory in a top-down style. Isabelle’s
code generator [12] allows the algorithm developed here to be directly executed
on the two examples. The complete development, available from the Archive of
Formal Proofs [9], includes the full formal details of all claims made here.

In the following we adopt the Isabelle convention of prefixing fixed but arbi-
trary types with an apostrophe, such as ′a, and suffixing type constructors as in
′a list. Other non-standard syntax will be explained as it arises.

2 Semantics of Knowledge-Based Programs

We use what is now a standard account of the multi-agent (multi-modal) propo-
sitional logic of knowledge [5,8]. The language of the guards is propositional,
augmented by one knowledge modality per agent and parameterised by a type
′p of propositions and ′a of agents:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ka ϕ

Formulas are interpreted with respect to a Kripke structure, which consists of
a set of worlds of type ′w, an equivalence relation ∼a for each agent a over these
worlds, and a way of evaluating propositions at each world; these are collected in
a record of type ( ′a, ′p, ′w) KripkeStructure. We define satisfaction of a formula
ϕ at a world w in structure M as follows:

M , w |= p iff p is true at w in M
M , w |= ¬ϕ iff M , w |= ϕ is false
M , w |= ϕ ∧ ψ iff M , w |= ϕ and M , w |= ψ
M , w |= Ka ϕ iff M , w ′ |= ϕ for all worlds w ′ where w ∼a w ′ in M

Intuitively w ∼a w ′ if a cannot distinguish between worlds w and w ′; the final
clause expresses the idea that an agent knows ψ iff ψ is true at all worlds she
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considers possible (relative to world w)1. This semantics supports nested modal
operators, so, for example, “the sender does not know that the receiver knows
the bit that was sent” can be expressed.

We represent a knowledge-based program (KBP) of type ( ′a, ′p, ′aAct) KBP
as a list of records with fields guard and action, where the guards are knowledge
formulas and the actions elements of the ′aAct type, and expect there to be one
per agent. Lists are used here and elsewhere to ease the generation of code (see
§5 and §7). The function set maps a list to the set of its elements.

Note that the robot of §1 cannot directly determine its exact position because
of the noise in its sensor, which means that we cannot allow arbitrary formulas as
guards. However an agent a can evaluate formulas of the form Kaψ that depend
only on the equivalence class of worlds a considers possible. That ϕ is a boolean
combination of such formulas is denoted by subjective a ϕ.

We model the agents’ interactions using a finite environment, following van
der Meyden [18], which consist of a finite type ′s of states, a set envInit of initial
states, a function envVal that evaluates propositions at each state, and a projec-
tion envObs that captures how each agent instantaneously observes these states.
The system evolves using the transition function envTrans, which incorporates
the environment’s non-deterministic choice of action envAction and those of the
agents’ KBPs into a global state change. We collect these into an Isabelle locale:

locale Environment =
fixes jkbp :: ′a ⇒ ( ′a, ′p, ′aAct) KBP
and envInit :: ( ′s :: finite) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

assumes subj : ∀ a gc. gc ∈ set (jkbp a) −→ subjective a (guard gc)

A locale defines a scope where the desired types, variables and assumptions
are fixed and can be freely appealed to. Later we can instantiate these in various
ways (see §4) and also extend the locale (see §3.1).

In the Environment locale we compute the actions enabled at world w in an
arbitrary Kripke structure M for each agent using a list comprehension:

definition jAction :: ( ′a, ′p, ′w) KripkeStructure ⇒ ′w ⇒ ′a ⇒ ′aAct list where
jAction M w a ≡ [ action gc. gc ← jkbp a, (M , w |= guard gc) ]

This function composes with envTrans provided we can find a suitable Kripke
structure and world. With the notional mutual dependency between knowledge
and action of §1 in mind, this structure should be based on the set of traces
generated by jkbp in this particular environment, i.e., the very thing we are in
the process of defining. As with all fixpoints there may be zero, one or many

1 As one would expect there has been extensive debate over the properties of knowl-
edge; the reader is encouraged to consult [8, Chapter 2]. Also their Chapter 7 presents
a more general (but non-algorithmic) account of KBPs at a less harried pace.
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solutions; the following construction considers a broadly-applicable special case
for which unique solutions exist.

We represent the possible evolutions of the system as finite sequences of states,
represented by a left-recursive type ′s Trace with constructors tInit s and t � s,
equipped with tFirst, tLast, tLength and tMap functions.

Our construction begins by deriving a Kripke structure from an arbitrary set
of traces T. The equivalence relation on these traces can be defined in a variety
of ways [8,18]; here we derive the relation from the synchronous perfect-recall
(SPR) view, which records all observations made by an agent:

definition spr-jview :: ′a ⇒ ′s Trace ⇒ ′obs Trace where
spr-jview a ≡ tMap (envObs a)

The Kripke structure mkM T relates all traces that have the same SPR view,
and evaluates propositions at the final state of the trace, i.e., envVal ◦ tLast. In
general we apply the adjective “synchronous” to relations that “tell the time”
by distinguishing all traces of distinct lengths.

Using this structure we construct the sequence of temporal slices that arises
from interpreting jkbp with respect to T by recursion over the time:

fun jkbpTn :: nat ⇒ ′s Trace set ⇒ ′s Trace set where
jkbpT0 T = { tInit s |s. s ∈ set envInit }
| jkbpTSuc n T = { t � envTrans eact aact (tLast t) |t eact aact .

t ∈ jkbpTn T ∧ eact ∈ set (envAction (tLast t))
∧ (∀ a. aact a ∈ set (jAction (mkM T ) t a)) }

We define jkbpT T to be
⋃

n jkbpTn T. This gives us a closure condition
on sets of traces T : we say that T represents jkbp if it is equal to jkbpT T.
Exploiting the synchrony of the SPR view, we can inductively construct traces
of length n + 1 by interpreting jkbp with respect to all those of length n:

fun jkbpCn :: nat ⇒ ′s Trace set where
jkbpC0 = { tInit s |s. s ∈ set envInit }
| jkbpCSuc n = { t � envTrans eact aact (tLast t) |t eact aact .

t ∈ jkbpCn ∧ eact ∈ set (envAction (tLast t))
∧ (∀ a. aact a ∈ set (jAction (mkM jkbpCn) t a)) }

We define mkMCn to be mkM jkbpCn, and jkbpC to be
⋃

n. jkbpCn with
corresponding Kripke structure mkMC.

We show that jAction mkMC t = jAction mkMCn t for t ∈ jkbpCn, i.e., that the
relevant temporal slice suffices for computing jAction, by appealing to a multi-
modal generalisation of the generated model property [5, §3.4]. This asserts that
the truth of a formula at a world w depends only on the worlds reachable from
w in zero or more steps, using any of the agents’ accessibility relations at each
step. We then establish that jkbpTn jkbpC = jkbpCn by induction on n, implying
that jkbpC represents jkbp in the environment of interest. Uniqueness follows by
a similar argument, and so:

Theorem 1. The set jkbpC canonically represents jkbp.

This is a specialisation of [8, Theorem 7.2.4].
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3 Automata for KBPs

We now shift our attention to the problem of synthesising standard finite-state
automata that implement jkbp. This section summarises the work of van der
Meyden [18]. In §4 we will see how these are computed.

The essence of these constructions is to represent an agent’s state of knowledge
by the state of an automaton (of type ′ps), also termed a protocol. This state
evolves in response to the agent’s observations of the system using envObs, and
is deterministic as it must encompass the maximal uncertainty she has about
the system. Our implementations take the form of Moore machines, which we
represent using a record:

record ( ′obs, ′aAct , ′ps) Protocol =
pInit :: ′obs ⇒ ′ps pTrans :: ′obs ⇒ ′ps ⇒ ′ps pAct :: ′ps ⇒ ′aAct list

Transitions are labelled by observations, and states with the set of actions
enabled by jkbp. The initialising function pInit maps an initial observation to an
initial protocol state. A joint protocol jp is a mapping from agents to protocols.
The term runJP jp t runs jp on a trace t in the standard manner, yielding a
function from agents to protocol states. Similarly actJP jp t denotes the joint
action of jp on trace t, i.e., λa. pAct (jp a) (runJP jp t a).

That a joint protocol jp implements jkbp is to say that jp and jkbp yield
identical joint actions when run on any canonical trace t ∈ jkbpC. To garner
some intuition about the structure of such implementations, our first automata
construction explicitly represents the partition of jkbpC induced by spr-jview,
yielding an infinite-state joint protocol:

definition mkAuto :: ′a ⇒ ( ′obs, ′aAct , ′s Trace set) Protocol where
mkAuto a ≡ (| pInit = λobs. { t ∈ jkbpC . spr-jview a t = tInit obs },

pTrans = λobs ps. { t |t t ′. t ∈ jkbpC ∧ t ′ ∈ ps
∧ spr-jview a t = spr-jview a t ′ � obs },

pAct = λps. jAction mkMC (SOME t . t ∈ ps) a |)

abbreviation equiv-class a tobs ≡ { t ∈ jkbpC . spr-jview a t = tobs }
The function SOME is Hilbert’s indefinite description operator ε, used here

to choose an arbitrary trace from the protocol state.
Running mkAuto on a trace t ∈ jkbpC yields the equivalence class of t for

agent a, equiv-class a (spr-jview a t), and as pAct clearly prescribes the expected
actions for subjective formulas, we have:

Theorem 2. mkAuto implements jkbp in the given environment.

3.1 A Sufficient Condition for Finite-State Implementations

van der Meyden showed that the existence of a simulation from mkMC to a
finite structure is sufficient for there to be a finite-state implementation of jkbp
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[18, Theorem 2]. We say that a function f, mapping the worlds of Kripke structure
M to those of M ′ is a simulation if it has the following properties:

– Propositions evaluate identically at u ∈ worlds M and f u ∈ worlds M ′;
– If two worlds u and v are related in M for agent a, then f u and f v are also

related in M ′ for agent a; and
– If two worlds f u and v ′ are related in M ′ for agent a, then there exists a

world v ∈ worlds M such that f v = v ′ and u and v are related in M for a.

From these we have M , u |= ϕ iff M ′, f u |= ϕ by straightforward structural
induction on ϕ [5, §3.4, Ex. 3.60]. This result lifts through jAction and hence
jkbpCn. The promised finite-state protocol simulates the states of mkAuto.

4 An Effective Construction

The remaining algorithmic obstruction in mkAuto is the appeal to the infinite set
of canonical traces jkbpC. While we could incrementally maintain the temporal
slices of traces jkbpCn, ideally the simulated equivalence classes would directly
support the necessary operations. We therefore optimistically extend van der
Meyden’s construction by axiomatising these functions in the SimEnvironment
locale of Figure 1, and making the following definition:

definition mkAutoSim :: ′a ⇒ ( ′obs, ′aAct , ′rep) Protocol where
mkAutoSim a ≡

(| pInit = simInit a,
pTrans = λobs ec. (SOME ec ′. ec ′ ∈ set (simTrans a ec) ∧ simObs a ec ′ = obs),
pAct = λec. simAction ec a |)

The specification of these functions is complicated by the use of simAbs to in-
corporate some data refinement [20], which allows the type ′rep of representations
of simulated equivalence classes (with type ′ss set) to depend on the entire con-
text. This is necessary because finite-state implementations do not always exist
with respect to the SPR view [18, Theorem 5], and so we must treat special cases
that may use quite different representations. If we want a once-and-for-all-time
proof of correctness for the algorithm, we need to make this allowance here.

A routine induction on t ∈ jkbpC shows that mkAutoSim faithfully maintains
a representation of the simulated equivalence class of t, which in combination
with the locale assumption simAction gives us:

Theorem 3. mkAutoSim implements jkbp in the given environment.

Note that we are effectively asking simTrans to compute the actions of jkbp
for all agents using only a representation of a simulated equivalence class for the
particular agent a. This contrasts with our initial automata construction mkAuto
(§3) that appealed to jkbpC for this purpose. We will see in §5 and §6 that our
concrete simulations do retain sufficient information.
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locale SimEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs

for jkbp :: ′a ⇒ ( ′a, ′p, ′aAct) KBP
and envInit :: ( ′s :: finite) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

— Simulation operations
+ fixes simf :: ′s Trace ⇒ ′ss :: finite

and simRels :: ′a ⇒ ( ′ss × ′ss) set
and simVal :: ′ss ⇒ ′p ⇒ bool

— Adequacy of representations
and simAbs :: ′rep ⇒ ′ss set

— Algorithmic operations
and simObs :: ′a ⇒ ′rep ⇒ ′obs
and simInit :: ′a ⇒ ′obs ⇒ ′rep
and simTrans :: ′a ⇒ ′rep ⇒ ′rep list
and simAction :: ′rep ⇒ ′a ⇒ ′aAct list

assumes simf : sim mkMC (mkKripke (simf ‘ jkbpC) simRels simVal) simf
and simInit :

∀ a obs. obs ∈ envObs a ‘ set envInit
−→ simAbs (simInit a obs) = simf ‘ equiv-class a (tInit obs)

and simObs:
∀ a ec t . t ∈ jkbpC ∧ simAbs ec = simf ‘ equiv-class a (spr-jview a t)

−→ simObs a ec = envObs a (tLast t)
and simAction:

∀ a ec t . t ∈ jkbpC ∧ simAbs ec = simf ‘ equiv-class a (spr-jview a t)
−→ set (simAction ec a) = set (jAction mkMC t a)

and simTrans:
∀ a ec t . t ∈ jkbpC ∧ simAbs ec = simf ‘ equiv-class a (spr-jview a t)

−→ simAbs ‘ set (simTrans a ec)
= { simf ‘ equiv-class a (spr-jview a (t ′ � s)) |t ′ s.

t ′ � s ∈ jkbpC ∧ spr-jview a t ′ = spr-jview a t}

Fig. 1. The SimEnvironment locale extends the Environment locale with simulation
and algorithmic operations. The backtick ‘ is Isabelle/HOL’s image-of-a-set-under-a-
function operator. The function mkKripke constructs a Kripke structure from its three
components. By sim M M ′ f we assert that f is a simulation from M to M ′.
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4.1 A Synthesis Algorithm

We now show how automata that implement jkbp can be constructed using the
operations specified in SimEnvironment. Taking care with the definitions allows
us to extract an executable version via Isabelle/HOL’s code generator [12].

We represent the automaton under construction by a pair of maps, one for
actions, mapping representations to lists of agent actions, and the other for
the transition function, mapping representations and observations to represen-
tations. These maps are represented by the types ′ma and ′mt respectively, with
operations collected in aOps and tOps. These MapOps records contain empty,
lookup and update functions, specified in the standard way with the extra con-
dition that they respect simAbs on the domains of interest.

abbreviation jkbpSEC ≡ ⋃
a. { simf ‘ equiv-class a (spr-jview a t) |t . t ∈ jkbpC }

locale Algorithm =
SimEnvironment jkbp envInit envAction envTrans envVal envObs

simf simRels simVal simAbs simObs simInit simTrans simAction
for jkbp :: ′a ⇒ ( ′a, ′p, ′aAct) KBP

— ... as for SimEnvironment ...

+ fixes aOps :: ( ′ma, ′rep, ′aAct list) MapOps
and tOps :: ( ′mt , ′rep × ′obs, ′rep) MapOps

assumes aOps: MapOps simAbs jkbpSEC aOps
and tOps: MapOps (λk . (simAbs (fst k), snd k)) (jkbpSEC × UNIV) tOps

UNIV is the set of all elements of a type. The repetition of type signatures in
these extended locales is tiresome but necessary to bring the type variables into
scope. As we construct one automaton per agent, we introduce another locale:

locale AlgorithmForAgent = Algorithm — ... + fixes a :: ′a

The algorithm traverses the representations of simulated equivalence classes
of jkbpC reachable via simTrans. We use the executable depth-first search (DFS)
theory due to Berghofer and Krauss [3], mildly generalised to support data re-
finement. The DFS locale requires the following definitions, shown in Figure 2:

– an initial automaton k-empt ;
– the initial frontier frontier-init is the partition of the set of initial states

under envObs a;
– the successor function k-succs is exactly simTrans a;
– for each reachable state the action and transition maps are updated with

k-ins ; and
– the visited predicate k-memb uses the domain of the aOps map.

Instantiating the DFS locale is straightforward:

sublocale AlgorithmForAgent
< KBPAlg!: DFS k-succs k-is-node k-invariant k-ins k-memb k-empt simAbs

This conditional interpretation is a common pattern in these proofs: it says
that we can discharge the requirements of the DFS locale while appealing to
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partial-function (tailrec) gen-dfs where
gen-dfs succs ins memb S wl = (case wl of

[] ⇒ S
| (x ·xs) ⇒ if memb x S then gen-dfs succs ins memb S xs

else gen-dfs succs ins memb (ins x S) (succs x @ xs))

definition alg-dfs aOps tOps frontier-init simObs simTrans simAction ≡
let k-empt = (empty aOps, empty tOps);

k-memb = (λs A. isSome (lookup aOps (fst A) s));
k-succs = simTrans;
acts-update = (λec A. update aOps ec (simAction ec) (fst A));
trans-update = (λec ec ′ at . update tOps (ec, simObs ec ′) ec ′ at);
k-ins = (λec A. (acts-update ec A, foldr (trans-update ec) (k-succs ec) (snd A)))

in gen-dfs k-succs k-ins k-memb k-empt frontier-init

Fig. 2. The algorithm. The symbol @ denotes list concatenation.

the AlgorithmForAgent context, i.e., the constraints in the SimEnvironment locale
and those for our two maps. The resulting definitions and lemmas appear in the
AlgorithmForAgent context with prefix KBPAlg.

Our invariant over the reachable state space is that the automaton under con-
struction is well-defined with respect to the simAction and simTrans functions.
The DFS theory shows that the traversal visits all states reachable from the initial
frontier, and we show that the set of reachable equivalence classes coincides with
the partition of jkbpC under spr-jview a, modulo simulation and representation.
Thus the algorithm produces an implementation of jkbp for agent a.

We trivially generalise the fixed-agent lemmas to the multi-agent locale:

sublocale Algorithm < KBP!: AlgorithmForAgent — ... a for a

The output of the DFS is converted into a protocol using simInit and lookup on
the maps; call this mkAutoAlg. We show in the Algorithm context that mkAutoAlg
prescribes the same actions as mkAutoSim for all t ∈ jkbpC, and therefore:

Theorem 4. mkAutoAlg is a finite-state implementation of jkbp in the given
environment.

The following sections show that this theory is sound and effective by fulfilling
the promises made in the SimEnvironment locale of Figure 1: §5 demonstrates a
simulation and representation for the single-agent case, which suffices for finding
an implementation of the robot’s KBP from §1; §6 treats a multi-agent scenario
general enough to handle the classic muddy children puzzle.

5 Perfect Recall for a Single Agent

Our first simulation treats the simple case of a single agent executing an arbi-
trary KBP in an arbitrary environment, such as the robot of §1. We work in the
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SingleAgentEnvironment locale, which is the Environment locale augmented with
a variable agent denoting the element of the ′a type. We seek a finite space that
simulates mkMC; as we later show, satisfaction at t ∈ jkbpC is a function of the
set of final states of the traces that agent considers possible, i.e., of:

definition spr-jview-abs :: ′s Trace ⇒ ′s set where
spr-jview-abs t ≡ tLast ‘ equiv-class agent (spr-jview agent t)

To evaluate propositions we include the final state of t in our simulation:

definition spr-sim-single :: ′s Trace ⇒ ′s set × ′s where
spr-sim-single t ≡ (spr-jview-abs t , tLast t)

In the structure mkMCS, (U , u) ∼a (V , v) iff U = V and envObs agent u =
envObs agent v, and propositions are evaluated with envVal ◦ snd. Then:

Theorem 5. mkMCS simulates mkMC.

An optimisation is to identify related worlds, recognising that the agent behaves
the same at all of these. This quotient is isomorphic to spr-jview-abs ‘ jkbpC,
and so the algorithm effectively simplifies to the familiar subset construction for
determinising finite-state automata.

We now address algorithmic issues. As the representations of equivalence
classes are used as map keys, it is easiest to represent them canonically. A simple
approach is to use ordered distinct lists of type ′a odlist for the sets and tries for
the maps. Therefore environment states ′s must belong to the class linorder of
linearly-ordered types.

For a set of states X, we define a function eval X ϕ that computes the subset
of X where ϕ holds. The only interesting case is that for knowledge: eval X
(Ka ψ) evaluates to X if eval X ψ = X, and ∅ otherwise. This corresponds to
standard satisfaction when X represents spr-jview-abs t for some t ∈ jkbpC. The
requisite simObs, simInit, simAction and simTrans functions are routine, as is
instantiating the Algorithm locale. Thus we have an algorithm for all single-agent
scenarios that satisfy the Environment locale.

A similar simulation can be used to show that there always exist implemen-
tations with respect to the multi-agent clock view [18, Theorem 4], the weakest
synchronous view that considers only the time and most-recent observation.

5.1 The Robot

We now feed the algorithm, the simulated operations of the previous section and
a model of the autonomous robot of §1 to the Isabelle/HOL code generator. To
obtain a finite environment we truncate the number line at 5. This is intuitively
sound for the purposes of determinining the robot’s behaviour due to the syn-
chronous view and the observation that if it reaches this rightmost position then
it can never satisfy its objective. Running the resulting Haskell code yields this
automaton, which we have minimised using Hopcroft’s algorithm [11]:
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The inessential labels on the states indicate the robot’s knowledge about its
position, and those on the transitions are the observations yielded by the sensor.
Double-circled states are those in which the robot performs the Halt action, the
others Nothing. We can see that if the robot learns that it is in the goal region
then it halts for all time, and that it never overshoots the goal region. We can
also see that traditional minimisation does not yield the smallest automaton we
could hope for. This is because the algorithm does not specify what happens on
invalid observations, which are modelled as errors instead of don’t-cares.

6 Perfect Recall in Broadcast Environments with
Deterministic Protocols

We now consider a more involved multi-agent case, where deterministic JKBPs
operate in non-deterministic environments and communicate via broadcast. It is
well known [8, Chapter 6] that simultaneous broadcast has the effect of making
information common knowledge; roughly put, the agents all learn the same things
at the same time as the system evolves, so the relation amongst the agents’ states
of knowledge never becomes more complex than it is in the initial state.

The broadcast is modelled as a common observation of the environment’s
state that is included in all agents’ observations. We also allow the agents to
maintain entirely disjoint private states of type ′as. This is expressed in the
locale in Figure 3, where the constraints on envTrans and envObs enforce the
disjointness.

Similarly to §5, we seek a suitable simulation space by considering what de-
termines an agent’s knowledge. Intuitively any set of traces that is relevant to
the agents’ states of knowledge with respect to t ∈ jkbpC need include only those
with the same common observation as t :
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record ( ′a, ′es, ′as) BEState =
es :: ′es
ps :: ( ′a × ′as) odlist — Associates an agent with her private state.

locale DetBroadcastEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs
for jkbp :: ′a ⇒ ( ′a :: {finite, linorder}, ′p, ′aAct) KBP
and envInit :: ( ′a, ′es :: {finite, linorder}, ′as :: {finite, linorder}) BEState list
and envAction :: ( ′a, ′es, ′as) BEState ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct)

⇒ ( ′a, ′es, ′as) BEState ⇒ ( ′a, ′es, ′as) BEState
and envVal :: ( ′a, ′es, ′as) BEState ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ( ′cobs × ′as option)

+ fixes agents :: ′a odlist
and envObsC :: ′es ⇒ ′cobs

defines envObs a s ≡ (envObsC (es s), ODList.lookup (ps s) a)
assumes agents: ODList.toSet agents = UNIV

and envTrans: ∀ s s ′ a eact eact ′ aact aact ′.
ODList.lookup (ps s) a = ODList.lookup (ps s ′) a ∧ aact a = aact ′ a
−→ ODList.lookup (ps (envTrans eact aact s)) a
= ODList.lookup (ps (envTrans eact ′ aact ′ s ′)) a

and jkbpDet : ∀ a. ∀ t ∈ jkbpC . length (jAction mkMC t a) ≤ 1

Fig. 3. The DetBroadcastEnvironment locale

definition tObsC :: ( ′a, ′es, ′as) BEState Trace ⇒ ′cobs Trace where
tObsC ≡ tMap (envObsC ◦ es)

Unlike the single-agent case of §5, it is not sufficient for a simulation to record
only the final states; we need to relate the initial private states of the agents with
the final states they consider possible, as the initial states may contain informa-
tion that is not common knowledge. This motivates the following abstraction:

definition tObsC-abs t ≡ {(tFirst t ′, tLast t ′) |t ′. t ′ ∈ jkbpC ∧ tObsC t ′ = tObsC t}
We can predict an agent’s final private state on t ′ ∈ jkbpC where tObsC t ′ =

tObsC t from the agent’s private state in tFirst t ′ and tObsC-abs t due to the
determinacy requirement jkbpDet and the constraint envTrans. Thus the agent’s
state of knowledge on t is captured by the following simulation:

record ( ′a, ′es, ′as) SPRstate =
sprFst :: ( ′a, ′es, ′as) BEState
sprLst :: ( ′a, ′es, ′as) BEState
sprCRel :: (( ′a, ′es, ′as) BEState × ( ′a, ′es, ′as) BEState) set

definition spr-sim :: ( ′a, ′es, ′as) BEState Trace ⇒ ( ′a, ′es, ′as) SPRstate where
spr-sim t ≡ (| sprFst = tFirst t , sprLst = tLast t , sprCRel = tObsC-abs t |)
We build a Kripke structure mkMCS of simulated traces by relating worlds U

and V for agent a where envObs a (sprFst U ) = envObs a (sprFst V ) and envObs
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a (sprLst U ) = envObs a (sprLst V ), and sprCRel U = sprCRel V. Propositions
are evaluated by envVal ◦ sprLst. We have:

Theorem 6. mkMCS simulates mkMC.

Establishing this is routine, where the final simulation property follows from our
ability to predict agents’ private states on canonical traces as mentioned above.

As in §5, we can factor out the common parts of these equivalence classes to
yield a denser representation that uses a pair of relations and thus a four-level
trie. We omit the tedious details of placating the SimEnvironment locale.

van der Meyden [18, §7] used this simulation to obtain finite-state implemen-
tations for non-deterministic KBPs under the extra assumptions that the parts
of the agents’ actions that influence envAction are broadcast and recorded in
the system states, and that envAction be oblivious to the agents’ private states.
Therefore those results do not subsume the ones presented here, just as those of
this section do not subsume those of §5.

6.1 The Muddy Children

The classic muddy children puzzle [8, §1.1, Example 7.2.5] is an example of
a multi-agent broadcast scenario that exemplifies non-obvious reasoning about
mutual states of knowledge. Briefly, there are N > 2 children playing together,
some of whom get mud on their foreheads. Each can see the others’ foreheads but
not their own. A mother observes the situation and either says that everyone is
clean, or says that someone is dirty. She then asks “Do any of you know whether
you have mud on your own forehead?” over and over. Assuming the children
are perceptive, intelligent, truthful and they answer simultaneously, what will
happen?

Each agent childi reasons with the following KBP:

do
[] K̂childi

muddyi → Say “I know if my forehead is muddy”
[] ¬K̂childi

muddyi → Say nothing
od

where K̂aϕ abbreviates Kaϕ ∨ Ka¬ϕ. As the mother has complete knowledge
of the situation, we integrate her behaviour into the environment.

In general the determinism of a KBP is a function of the environment, and
may be difficult to establish. In this case and many others, however, determinism
is syntactically manifest as the guards are logically disjoint, independently of the
knowledge subformulas.

The model records a child’s initial observation of the mother’s pronouncement
and the muddiness of the other children in her initial private state, and these
states are preserved by envTrans. The recurring common observation is all of the
children’s public responses to the mother’s questions. Being able to distinguish
these types of observations is crucial to making this a broadcast scenario.
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Fig. 4. The protocol of child0

Running the algorithm for three
children and minimising yields the au-
tomaton in Figure 4 for child0. The
initial transitions are labelled with the
initial observation, i.e., the cleanli-
ness “C” or muddiness “M” of the
other two children. The dashed ini-
tial transition covers the case where
everyone is clean; in the others the
mother has announced that some-
one is dirty. Later transitions simply
record the actions performed by each
of the agents, where “K” is the first
action in the above KBP, and “N”
the second. Double-circled states are
those in which child0 knows whether she is muddy, and single-circled where she
does not.

To the best of our knowledge this is the first time that an implementation of
the muddy children has been automatically synthesised.

7 Perspective and Related Work

The most challenging and time-consuming aspect of mechanising this theory was
making definitions suitable for the code generator. For example, we could have
used a locale to model the interface to the maps in §4, but as as the code gen-
erator presently does not cope with functions arising from locale interpretation,
we are forced to say things at least twice if we try to use both features, as we
implicitly did in Figure 2. Whether it is more convenient or even necessary to
use a record and predicate or a locale presently requires experimentation and
perhaps guidance from experienced users.

As reflected by the traffic on the Isabelle mailing list, a common stumbling
block when using the code generator is the treatment of sets. The existing li-
braries are insufficiently general: Florian Haftmann’s Cset theory2 does not read-
ily support a choice operator, such as the one we used in §3. Even the heroics
of the Isabelle Collections Framework [15] are insufficient as there equality on
keys is structural (i.e., HOL equality), forcing us to either use a canonical repre-
sentation (such as ordered distinct lists) or redo the relevant proofs with reified
operations (equality, orderings, etc.). Neither of these is satisfying from the per-
spective of reuse.

Working with suitably general theories, e.g., using data refinement, is difficult
as the simplifier is significantly less helpful for reasoning under abstract quo-
tients, such as those in Figure 1; what could typically be shown by equational
rewriting now involves reasoning about existentials. For this reason we have only

2 The theory Cset accompanies the Isabelle/HOL distribution.
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allowed some types to be refined; the representations of observations and system
states are constant throughout our development, which may preclude some op-
timisations. The recent work of Kaliszyk and Urban [14] addresses these issues
for concrete quotients, but not for the abstract ones that arise in this kind of
top-down development.

As for the use of knowledge in formally reasoning about systems, this and sim-
ilar semantics are under increasing scrutiny due to their relation to security prop-
erties. Despite the explosion in number of epistemic model checkers [6,10,13,16],
finding implementations of knowledge-based programs remains a substantially
manual affair [1]. van der Meyden also proposed a complete semi-algorithm for
KBP synthesis [17]. A refinement framework has been developed [4,7].

The theory presented here supports a more efficient implementation using
symbolic techniques, ala MCK; recasting the operations of the SimEnvironment
locale into boolean decision diagrams is straightforward. It is readily generalised
to other synchronous views, as alluded to in §5, and adding a common knowledge
modality, useful for talking about consensus [8, Chapter 6], is routine. We hope
that such an implementation will lead to more exploration of the KBP formalism.
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Abstract. Abstract linear algebra lets us reason and compute with col-
lections rather than individual vectors, for example by considering entire
subspaces. Its classical presentation involves a menagerie of different set-
theoretic objects (spaces, families, mappings), whose use often involves
tedious and non-constructive pointwise reasoning; this is in stark con-
trast with the regularity and effectiveness of the matrix computations
hiding beneath abstract linear algebra. In this paper we show how a
simple variant of Gaussian elimination can be used to model abstract
linear algebra directly, using matrices only to represent all categories of
objects, with operations such as subspace intersection and sum. We can
even provide effective support for direct sums and subalgebras. We have
formalized this work in Coq, and used it to develop all of the group
representation theory required for the proof of the Odd Order Theorem,
including results such as the Jacobson Density Theorem, Clifford’s Theo-
rem, the Jordan-Holder Theorem for modules, the Wedderburn Structure
Theorem for semisimple rings (the basis for character theory).

Keywords: Formalization of Mathematics, Linear Algebra, Module
Theory, Algebra, Type inference, Coq, SSReflect.

1 Introduction

General linear algebra[1] is amongst the most ubiquitous and useful basic non-
trivial mathematical theory, probably because it mediates calculations and com-
binatorial deductive reasoning, linking computations in cartesian coordinates to
abstract geometric arguments, or purely combinatorial properties of finite groups
with algebraic properties of their linear representations. Developing a good lin-
ear algebra library was one of the important side goals of our Feit-Thompson
Theorem proof project[2,3,4,5,6,7].

Naturally, most computer proof systems supply one (or more!) linear alge-
bra libraries[8,9,10,11,12,13]. However most are limited to the algebra of vectors
and/or matrices and do not support point-free reasoning using whole subspaces.
The rare exceptions[10,12,14] use classical sets to represent subspaces. This ba-
sically combinatorial account fails to capture some specifics of linear subsets, in
particular their algebraic properties under sum, intersection and linear image.

Note however that all objects used in linear algebra can be represented as
matrices: endomorphisms by their matrix, (row) vectors by 1× n matrices, lists

� This work has been partially funded by the FORMATH project, nr. 243847, of the
FET program within the 7th Framework program of the European Commission.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 103–118, 2011.
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of vectors and bases by rectangular matrices, and subspaces by a basis. Under this
identification the same matrix multiplication operation AF can mean composing
A and F , applying F to A, mapping F over A or taking the image of A under F .
The (unique) matrix product associativity and distributivity laws are consistent
with all those interpretations — a major simplification of the theory.

We came to this observation by accident. Because we wanted a constructive
formalization of linear algebra, we had to define an effective membership test for
linear sets. After working out a suitable generalization of Gaussian elimination
we realized it actually provided all the set theoretic subspace constructions, so
we could do away with the entire set-theoretic boilerplate and use matrices only.

We then applied the resulting library to one of the then outstanding prereq-
uisites of the Feit-Thompson Theorem — an extensive development of group
module and representation theory. This worked out remarkably well, and was
also invaluable in shaping the details and ironing out all the kinks of the core
linear algebra formalization, for instance prompting the development of indexed
subspace sums and directed sums.

It is our experience that such large scale use is essential for obtaining a usable
formalization. With an appropriate framework, all basic linear algebra proofs
are trivial (2-5 lines) and hence provide no useful feedback on the library design
choices. Linear subspace theory is in the 10-line range and similarly offers little
guidance. It is only with representation theory, with proofs in the 30-50 line
range, that we started to identify substantial issues, and the hardest issues, such
as the need to support complex direct sums and non-constructive results, only
appeared in the Feit-Thompson Theorem proof itself, with proofs in the 200+
line range.

The contributions of this paper are thus: a practical matrix encoding of linear
subspaces and their operations (section 3), an innovative use of type inference
and dependent types to formalize general direct sums of subspaces (section 4),
and a large-scale validation of the resulting library with an extensive library on
finite group representations and its application to the Local Analysis part of the
Feit-Thompson Theorem proof[3] (section 5).

This work was done using the SSReflect extension of the Coq system[15,16].
We review the basic SSReflect matrix algebra library [16,6] in section 2, and
use mathematical notation as much as possible in section 3, but due to lack of
space we assume some familiarity with our prior work[7,6] in the more technical
sections 3.4 and 4.

The libraries described here can be viewed at http://coqfinitgroup.
gforge.inria.fr/; they will be distributed as part of the next SSReflect

release, early during the review period.

2 Matrix Operations

2.1 A Combinatorial and Algebraic Hierarchy

Matrices are a typical container type. The properties of a given matrix type
will typically be a function of the properties of the type of its coefficients: while
all matrices will share some structural properties such as shape, only matrices
with comparable elements can be compared, only matrices over a ring can be
multiplied, etc.

http://coqfinitgroup.gforge.inria.fr/
http://coqfinitgroup.gforge.inria.fr/
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In the SSReflect library this notion of “type with properties” is captured
with Structures, which are just (higher-kinded) record types with two fields,
a sort, or carrier type, and a class, itself a record providing various operations
over the sort along with some of their properties. For example, a “comparable”
type, or eqType, could be described as follows:

Module Equality.
Record class_of (T : Type) : Type :=
Mixin {op : T -> T -> bool; _ : forall x y, x = y <-> op x y}.

Structure type : Type := Pack {sort; class : class_of sort}.
End Equality.
Notation eqType := Equality.type.
Coercion Equality.sort : eqType >-> Sortclass.
Definition eq_op T := Equality.op (Equality.class T).
Notation "x == y" := (@eq_op _ x y).

The Coercion line lets us use an eqType as a type, as in

Let swap {T : eqType} (x y z : T) := if z == x then y else z.

Note that this is very similar to the Haskell type class mechanism, except for
the extra layer of packaging introduced by the type Structure, which is made
possible by Coq’s higher-kinded types. This extra packaging has important conse-
quences on the feasibility of type checking, especially in the presence of container
types such as matrices[7].

Similarly to the type class Instance declaration, the Canonical Structure
declaration lets us tie specific structures to existing types, e.g., allowing us to
equip bool and nat with definitions for _ == _.

The SSReflect library defines many such structures (97 at last count), which
provide many standard sets of operations, from basic combinatorial fare such
as eqType above to standard algebraic objects such as rings and fields, and
combinations thereof such as finite fields. Here are a few of the less common
ones
– finType a finite, explicitly enumerable type; any subset A of a finType can

be enumerated (enum A) and counted (#|A|).
– choiceType a type with a choice operator choose P x0 that picks a canonical

x such that Px holds, given x0 such that Px0.
– zmodType a type with an addition operation, and therefore integer scaling.
– lmodType R a type with both an addition operation and a scaling operation

(denoted α*:v in Coq) with coefficients α in R (which must be a ringType).
– unitRingType a ring with an effective test for unit (invertible) elements, and

a partial inverse function for its units.

These Structures are arranged in a (multiple) inheritance hierarchy in the obvi-
ous way[7]. It is important to note that zmodType, the smallest algebraic struc-
ture, inherits from both eqType and choiceType.

Let us finally point out that unlike Haskell type classes (but similarly to their
Coq reinterpretation[17], Structure keys are not limited to types. The “big
operator” library[6] uses these to recognize AC operators, and we will be using
below similar structures to quantify over linear functions (between lmodTypes)
and ring morphisms.
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2.2 Basic Algebra

Matrices are basically tabulations of functions with a finite rectangular domain
of the form [0, m) × [0, n). The SSReflect library defines both finite index
types (ordinal n, denoted ’I_n), and a generic tabulation type constructor
{ffun ..} for functions with a finType domain, which we simply combine:

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

Note that matrix R m n is a dependent type that is specialized to the m × n
shape. This is required to develop an algebraic theory, because too many laws
do not generalize to “matrices of unknown shape”. The usual Coq notation for
this type is ’M_(m, n) as R can usually be inferred from context.

The finfun library provides us with a one-to-one correspondence between
{ffun A -> R} and A -> R, which we only need to curry to get a

Coercion fun_of_matrix : matrix >-> Funclass.

that lets us write A i j in Coq for the Aij coefficient of A. We provide a dual
notation for defining matrices, which we use for all matrix arithmetic operators:

Definition addmx A B := \matrix_(i, j) (A i j + B i j).
Definition mulmx A B := \matrix_(i, k) \sum_j (A i j * B j k).

(We have omitted some type declarations.) While they may not use the most
efficient algorithms, these definitions have the advantage of actually being useful
for proving algebraic identities. Indeed most algebraic identities can be proved
in one or two lines.

We then declare Canonical z/lmodType Structures so that addition and
scaling can be denoted with the generic + and *: operators, and all lemmas of
the generic algebra package become available. However, we still require a separate
operator (denoted *m) for multiplication, because only nontrivial square matrix
types are proper ringTypes.

This is about the point where most matrix libraries end, but we can eas-
ily carry on and define the unitRingType structure, along with determinants,
cofactors, and adjugate matrices, by leveraging the SSReflect permutation
library[5]:

Definition determinant n (A : ’M_n) : R :=
\sum_(s : ’S_n) (-1) ^+ s * \prod_i A i (s i).

Definition cofactor n A (i j : ’I_n) : R :=
(-1) ^+ (i + j) * determinant (row’ i (col’ j A)).

Definition adjugate n (A : ’M_n) := \matrix_(i, j) cofactor A j i.

Even these proofs remain relatively easy: it takes about 20 lines to show the
Cauchy determinant product formula |AB| = |A|.|B| and the Laplace expansion
formula for cofactors, and then 9 lines to derive the Cramer rule A.(adj A) =
|A|.1, from which we can prove the Cayley-Hamilton theorem in three lines[6].

2.3 Block and Reshaping Operations

Matrices are also combinatorial objects, and the SSReflect matrix library
supplies some 26 operations for rearranging the contents of matrices over any
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type. This includes transposition and extraction, permutation and suppression of
row and columns (the row’ and col’ functions above perform the latter). Most
importantly, this also includes operations for cutting and pasting block matrices,
e.g.,

Definition row_mx (A : ’M_(m, n)) (B : ’M_(m, p)) : ’M_(m, n + p)
:= \matrix_(i, j)

match split j with inl k => A i k | inr l => B i l end.

computes the block row matrix (A B), using the function

split : ’I_(n + p) -> ’I_n + ’I_p

from the fintype library to map column indices to the appropriate submatrix.
A set of lemmas extends the usual matrix computation rules to 1 × 2, 2 × 1
and 2 × 2 block matrices, which let us prove many identities without having to
consider individual coefficients.

As with the call to split above, it is usually not necessary how a block matrix
is subdivided — the syntactic shape of the dimensions supplies that information
via type inference. There is a downside: we may end up with matrices that have
extensionally, but not syntactically the correct shape, for instance when stating
block matrix associativity. We use a cast operation to mitigate this:

castmx : (m = m’) * (n = n’) -> ’M_(m, n) -> ’M_(m’, n’).
Lemma row_mxA : forall m n1 n2 n3 A B C,
let cast := (erefl m, esym (addnA n1 n2 n3)) in
row_mx A (row_mx B C) = castmx cast (row_mx (row_mx A B) C).

Note that castmx is bidimensional; its first argument is proof-irrelevant (because
nat is an eqType) so we can prove rewrite rules that make it easy to move, collect
and eliminate casts. We also provide a prototype-based cast: conform_mx A B
returns a matrix that has syntactically the same shape as A, but is equal to B
if B has extensionally the same shape as A (and A otherwise).

Finally we define reshaping operations mxvec and vec_mx that turn a rectan-
gular m × n matrix into linear 1 × mn row vector and conversely.

3 Gaussian Elimination and Row Spaces

Here we show how to develop an algorithmic theory of linear algebra on the
basis of a single Gaussian elimination procedure. We shall assume that all our
matrices are over a fixed field.

3.1 Extended Gaussian Elimination

All that is needed to extend Gaussian elimination gracefully to singular matrices
is to perform double pivoting, i.e., to search for a non-zero pivot in all the matrix
and then swap both rows and columns to bring it to the top left corner. This
gives an exact value for the rank of the matrix, as the decomposition stops
exactly when it reaches a null matrix. This is our Coq code for this algorithm,
which can also be viewed as a degenerate, easy case of the Smith normal form
computation[1].
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1 Fixpoint gaussian_elimination {m n} :=
2 match m, n return ’M_(m, n) -> ’M_m * ’M_n * nat with
3 | _.+1, _.+1 => fun A : ’M_(1 + _, 1 + _) =>
4 if [pick ij | A ij.1 ij.2 != 0] is Some (i, j) then
5 let a := A i j in let A1 := xrow i 0 (xcol j 0 A) in
6 let u := ursubmx A1 in let v := a^-1 *: dlsubmx A1 in
7 let: (L, U, r) := gaussian_elimination (drsubmx A1 - v *m u)
8 in (xrow i 0 (block_mx 1 0 v L),
9 xcol j 0 (block_mx a%:M u 0 U),

10 r.+1)
11 else (1%:M, 1%:M, 0%N)
12 | _, _ => fun _ => (1%:M, 1%:M, 0%N)
13 end.

This is virtually identical to the LUP decomposition procedure described in
[7], and its correctness is easily established in a similar manner. Besides the
double pivoting, the only differences are that row and column permutations are
combined with the lower and upper triangular factors of the decomposition, and
that the decomposition of a null matrix is a pair of identity matrices (1%:M is
our Coq notation for a scalar matrix with 1s on the diagonal). If we denote by 1r

a (not necessarily square) matrix that has 1s in r first coefficients on the main
diagonal and 0 elsewhere

1r =

⎛
⎝ 1 .. .

1
0

0 0

⎞
⎠

and set gaussian_eliminationA = (AĈ , AR̂, r(A)), then the correctness of the
above function is expressed by the five conditions

r(A) ≤ m, n AĈ , AR̂ invertible AĈ 1r(A) AR̂ = A

We call AĈ and AR̂ the extended column and row bases of A, respectively. The
column (resp. row) basis AC (resp. AR) of A consists or the r(A) first columns
(resp. rows) of AĈ (resp. AR̂). Since 1r(A)1r(A) = 1r(A) we have

AC = AĈ 1r(A) AR = 1r(A) AR̂ AC AR = A

3.2 Rank Theory

The fact that r(A) has indeed the properties of the matrix rank follows directly
from the correctness conditions above and from the following two basic facts
about matrices over a commutative ring:

Lemma 1. If A and B are respectively m × n and n × m matrices such that
AB = 1, then m ≤ n, and if m = n then BA = 1.

We prove the second assertion first. Consider A′ = |B|.(adj A); then

A′A = |B|.(adj A)A = |B|.|A|.1 = (|A||B|).1 = |AB|.1 = 1
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so BA = A′ABA = A′A = 1. For the first assertion, assume n < m, and let
A = (Al Ar) where Al is a square n × n matrix, and similarly B =

(
Bu

Bd

)
with

Bu square. Block product now gives

AB = (Al Ar)
(

Bu

Bd

)
=

(
AlBu ArBu

AlBd ArBd

)
=

(
1 0
0 1

)

so AlBu = 1, whence BuAl = 1 by the second part, and so 1 = ArBd =
ArBuAlBd = 0, a contradiction since this is a nontrivial (m − n) × (m − n)
matrix.

This yields both upper and lower bounds on the rank function:

Lemma 2. If M and N are respectively m×r and r×n matrices, then r(MN) ≤
r, and any A such that NAM = 1 must have r(A) ≥ r.

For the first assertion, let L = 1r(MN)(MN)−1

Ĉ
and U = (MN)−1

R̂
1r(MN) be

respectively r(MN)×m and n× r(MN) matrices, and apply the first lemma to

(LM)(NU) = L(MN)Ĉ1r(MN)(MN)R̂U = 1r(MN)11r(MN)11r(MN) = 1

For the second assertion, apply the lemma to (NAC)(ARM) = NAM = 1.
It then follows immediately that r(AB) = r(ACARBCBR) ≤ r(A), r(B) and

r(A + B) = r(ACAR + BCBR) = r

(
(AC BC)

(
AR

BR

))
≤ r(A) + r(B)

3.3 Set Operations

The extended row and column bases provide everything we need to implement
set-theoretic operations on matrices. We define

kerA = (1 − 1r(A))A−1

Ĉ

cokerA = A−1

R̂
(1 − 1r(A))

A ≤ B ⇔ A(cokerB) = 0
A ≡ B ⇔ A ≤ B ≤ A

A∼1 = A−1

R̂
1r(A)A

−1

Ĉ

A +s B =
(

A
B

)
A ∩s B = [ker (A +s B)]lA

A = (1 − 1r(A))AR̂

We can see that kerA is the kernel of A viewed as a linear function since
(kerA)A = (1 − 1r(A))1r(A)AR̂ = 0, and likewise that cokerA is the coker-
nel of A. It follows that A ≤ B tests whether the row space of A is included in
that of B, i.e., whether A (considered as a subspace) is included in B, and that
A ≡ B tests whether A and B represent the same subspace. B∼1 is a partial
inverse to B, since, if A ≤ B we have

A − AB∼1B = AB−1

R̂
BR̂ − AB−1

R̂
1r(B)BR̂ = A(coker B)BR̂ = 0

Thus A ≤ B if and only if A = DB for some matrix D. Note finally that if v is
a row vector, then v ≤ B tests whether v is in the row space of B.

Obviously the row space of A +s B is the sum of the row spaces of A and B.
In the definition of A∩s B, K = ker (A+s B) is a square block matrix which we
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divide vertically; Kl designates the left (rectangular) block. To see that A ∩s B
is indeed the intersection of A and B observe that

0 = K

(
A

B

)
= KlA + KrB

so indeed KlA = −KrB ≤ A, B. Conversely if C = A′A = B′B, then (A′ −
B′)(A +s B) = 0 so (A′ − B′) ≤ K and C = A′A = DKlA for some D, hence
C ≤ A ∩s B.

All of the usual results on linear spaces and bases easily follow from these
definitions, as well as some more advanced ones like the Frobenius rank inequality

r(AB) + r(BC) ≤ r(B) + r(ABC)

all with proofs under twelve lines (most are under two) and no induction. The
reason for this is that all the induction we need is neatly encapsulated inside
the Gaussian elimination procedure. Indeed it is instructive to consider why A,
defined above as AR̂ with the top r(A) rows zeroed out, is indeed a complement
to the row space of A. The nonzero rows of A are the rows of the identity matrix
returned by the base case of gaussian_elimination, permuted by the pivot
column transpositions during the unwinding of the recursion. Thus these are
vectors of the standard basis that complete the row base of A: our seemingly
trivial changes to the LUP decomposition algorithms are in fact a proof of the
incomplete basis theorem.

3.4 Algebras and Subrings

The next structure up from linear spaces are F-algebras, which add a multi-
plicative ring structure. A finite dimensional F-algebra can always be embedded
in its algebra of endomorphisms, which is a matrix algebra, so we ought to be
able to extend our program of “doing it all with matrices” to F-algebras as well.
However, there is a catch. To enjoy the natural ring structure of matrices, alge-
bra elements should be square matrices; but to be considered as points in our
encoding of subspaces, they should be flat row vectors.

Our solution is to stick to square matrices, but to use the reshaping function
vecmx of section 2.3 when we need to test for membership in a subalgebra:

(f ∈ R) ⇔ (mxvec f ∈ R)

Note that if f is an n×n matrix, then R will have to be an m×n2 matrix (whose
type will be denoted ’A_(m,n)). The pointwise product of two subalgebras can be
defined using the iterated sums of normalized spaces we will define in section 4.2

Definition mulsmx m1 m2 n (R1 : ’A_(m1, n)) (R2 : ’A_(m2, n)) :=
(\sum_i <<R1 *m lin_mx (mulmxr (vec_mx (row i R2)))>>)%MS.

We used the lin_mx function to tabulate a linear matrix-to-matrix function:

Definition lin_mx (f : ’M[R]_(m1, n1) -> ’M[R]_(m2, n2)) :=
\matrix_(i, j) mxvec (f (vec_mx (delta_mx 0 i))) 0 j.
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Further, by combining lin_mx with our set-like linear functions we can define
ideals, subrings, centralisers and centers of algebras, as we can program effective
tests for just about any linear condition. For example we can test whether a
subalgebra R has an identity element (an e �= 0 such that ef = fe = f for all
f ∈ R) with the following predicate

Definition has_mxring_id m n (R : ’A_(m , n)) :=
(R != 0) &&
(row_mx 0 (row_mx (mxvec R) (mxvec R))
<= row_mx (cokermx R)
(row_mx (lin_mx (mulmx R \o lin_mulmx))

(lin_mx (mulmx R \o lin_mulmxr))))%MS.

The lower inclusion is satisfied iff there is an e such that the left-hand side is equal
to the product of v = mxvec e by the right-hand side, i.e., that u(coker R) = 0
and R = R(lin_mx (mulmx e)) = R(lin_mx (mulmxr e)), that is, e ∈ R and
ef = fe = f for all the f = vec_mx (row i R), which generate R.

4 General Direct Sums

The concept of direct sum is one of the more powerful tools for reasoning about
collections of subspaces, because it links a strong combinatorial property (unique
decomposition) to a simple arithmetic (in)equality of ranks. This correspondence
is especially useful when applied to general iterated sums, but there are some
intricate technical issues that must be addressed to formalize it in Coq.

4.1 On Subspace Equality

While the theory exposed in Section 3 lets us compute and reason with subspaces
represented as matrix row spaces, it does not provide a unique representation
for subspaces. Indeed, for any given A, there are many B ≡ A, and this remains
true even if we restrict ourselves to square matrices.

In addition, the “setoid” framework that implements relational congruence in
Coq[18,15] is incapable of dealing with the multiply dependent, polymorphic
relation A ≡ B. We must resort to a proxy relation A :=: B that lets us replace
A by B directly in expressions of the form r(A), A ≤ C and C ≤ A; these
three cases cover most of the contexts in which we need to substitute equivalent
subspace expressions.

For other contexts, we can either compose context lemmas directly or use the
choiceType structure to obtain a standard representation:

〈A〉 = choose (λB : Mn. A ≡ B) (1r(A)AR̂)

This defines 〈A〉 (Coq notation: <<A>>) as a square matrix with the same row
space as A, such that 〈A〉 = 〈B〉 iff A ≡ B.

4.2 Monoidal Set Operations

While the SSReflect bigop library[6] will let us turn the binary subspace
operators +s and ∩s into n-ary ones, most of its facilities would be unusable
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because they require strictly monoidal operators (e.g., we need A +s 0 = A, not
A +s 0 ≡ A). Fortunately, it turns out we can use 〈A〉 to fix this, by setting:

A +ss B =

⎧⎨
⎩

A if B = 0 and A is square
B if A = 0 and B is square

〈A +s B〉 otherwise

We use the conform_mx function of section 2.3 to code the first two cases in Coq.
It is easy to show that +ss is strictly monoidal as its identity element 0 is only
equivalent to one square matrix — itself. Thus, this definition lets us use generic
bigop sums for subspace sums (Coq notation (\sum_ ...)%MS).

Obtaining a strictly monoidal intersection is similar but more delicate because
although we can choose the identity matrix 1 as the identity element, it is by
no means unique. We need to ensure that our normalization operation does not
return 1 by accident; we thus write A � 1 when A ≡ 1 and A = 1 if A is square,
and let 〈A〉1 be a canonical square matrix B ≡ A such that B = 1 iff A � 1.
Then we can take A ∩ss B to be B if A � 1 and B is square, A if B � 1 and A
is square, else 〈A〉1 if B ≡ 1, and 〈A ∩s B〉1 otherwise.

4.3 A Direct Sum Package

A binary sum A +s B is direct iff A ∩s B = 0, or, equivalently iff r(A +s B) =
r(A) + r(B). Both characterizations are useful, but the latter one generalizes
best to arbitrary sums, by which we mean arbitrary combinations of binary and
n-ary sums, as ∑

A direct iff r
(∑

A
)

=
∑

r(A)

To formalize this definition it would appear we need to describe arbitrary general
sum expressions

∑
A, which would require some sort of reflexion or quotation.

On closer examination, however, note that we do not actually care about the
exact makeup of a sum: we only need its value (a subspace), and the sum of the
ranks of the summands (an integer), so we can use the type

Structure proper_mxsum_expr n := ProperMxsumExpr {
proper_mxsum_val : ’M_n; proper_mxsum_rank : nat;
_ : mxsum_spec proper_mxsum_val proper_mxsum_rank }.

where the inductive predicate mxsum_spec A s states that s is the sum of the
ranks of a finite collection of matrices, whose row space sum is A. Thus, A is
direct iff r(A) = s.

As hinted by the Structure keyword, we wish to declare Canonical instances
of proper_mxsum_expr so that we can infer these structures from either of their
two projections. This poses no problem for the proper binary and n-ary sums;
however for trivial (unary) sums we would need to declare

Canonical Structure trivial_mxsum n A :=
@ProperMxsum n A (\rank A) (TrivialMxsum A).

whose proper_mxsum_valprojection is an arbitrary matrix A. This is interpreted
by Coq as a default projection, which will be used eagerly for any matrix expres-
sion that is not immediately a binary or n-ary sum (the Canonical Structure
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selection process is determinate and driven by the head symbol of the projec-
tion value). This is undesirable because in actual use n-ary sums are often rather
large expressions that need abbreviations, and we expect these to be transparent
to the direct sum predicate.

Getting the right unification behavior requires a few helper structures:

Structure wrapped T := Wrap {unwrap : T}.
Canonical Structure wrap T x := @Wrap T x.

is a generic wrapper with a default instance. A unification problem unwrap w ∼ t
will immediately be turned into w ∼ wrap t, unless t is of the form unwrap u.

We then define the mxsum_expr structure as a“wrapped”proper_mxsum_expr

Structure mxsum_expr m n := Mxsum {
mxsum_val : wrapped ’M_(m, n); mxsum_rank : wrapped nat;
_ : mxsum_spec (unwrap mxsum_val) (unwrap mxsum_rank)

}.
Canonical Structure sum_mxsum n (S : proper_mxsum_expr n) :=
Mxsum (wrap (proper_mxsum_val S)) (wrap (proper_mxsum_rank S))

...
Canonical Structure trivial_mxsum m n A :=
Mxsum (Wrap A) (Wrap (\rank A)) (TrivialMxsum A).

Since wrap is “self-inserting”, matching unwrap (mxsum_val ?) to some ar-
bitrary matrix expression E will first try to use sum_mxsum, matching T to
proper_mxsum_val ?. This will succeed if E is a proper binary or n-ary sum;
otherwise, Coq will expand wrap E into Wrap E and use trivial_mxsum. In ef-
fect we use the wrapped structure to explicitly introduce limited nondeterminism
in the otherwise determinate Canonical Structure inference process.

With these structures we can now put

Definition mxdirect_def m n T
of phantom ’M_(m, n) (unwrap (mxsum_val T)) :=

\rank (unwrap (mxsum_val T)) == unwrap (mxsum_rank T).
Notation mxdirect A := (mxdirect_def (Phantom ’M_(_,_) A%MS)).

where Inductive phantom T (x : T):= Phantom is the generic tagged unit
type. These definitions let us write mxdirect S for an arbitrary subspace sum S,
and have Coq infer the corresponding mxsum_expr that actually defines the
meaning of this expression. We also use the mxsum_expr structure to define
generic lemmas about direct sum, such as

Lemma mxrank_sum_leqif : forall m n (S : mxsum_expr m n),
\rank (unwrap S) <= unwrap (mxsum_rank S) ?= iff mxdirect (

unwrap S).

which gives the conditionally strict rank inequality. The leqif predicate de-
noted m <= n ?= iff C reads m ≤ n, with m = n iff C. The ssrnat library
defines several combinators for leqif, and when applying such combinators to
mxrank_sum_leqif the unknown S can be inferred from any one of the three ar-
guments of leqif, thanks to the dual set of canonical projections of mxsum_expr.
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5 Module and Representation Theory

Giving a full account of our development of representation theory, or of its use
in the proof of the Feit-Thompson Theorem, is clearly beyond the scope of this
paper. This section therefore only samples the two subjects, to illustrate how
the design choices of our matrix linear algebra library fare in practice.

5.1 Group Representation

Group representations are basically morphisms from a given finite group G to
some general linear group, so we adopt the design pattern introduced in [5] and
define representations as a structure that can be inferred for specific group-to-
matrices functions.

Definition mx_repr (G : {set gT}) n (r : gT -> ’M[R]_n) :=
r 1%g = 1%:M

/\ {in G &, {morph r : x y / (x * y)%g >-> x *m y}}.
Structure mx_representation G n :=
MxRepresentation {repr_mx :> gT -> ’M_n; _ : mx_repr G repr_mx}.

Recall that the %g is the Coq overloading disambiguation operator. Note that
the structure encapsulates both the morphism property, and a specific subgroup
on which it holds.

Given rG : mx_representation G n we can define the global stabilizer of a
row space U , and therefore test whether U is a G-module (i.e., stable under the
action of G).

Definition rstabs U := [set x \in G | U *m rG x <= U]%MS.
Definition mxmodule U := G \subset rstabs U.

Given a G-module U , we can use the matrix bases of U to define a new represen-
tation that is the corestriction of rG to U , by composing rG with the following
injection and projection:

Definition val_submod m : ’M_(m, \rank U) -> ’M_(m, n) :=
mulmxr (row_base U).

Definition in_submod m : ’M_(m, n) -> ’M_(m, \rank U) :=
mulmxr (invmx (row_ebase U) *m pid_mx (\rank U)).

Here mulmxr A is the function B 	→ BA, and row_base U , row_ebase U , and
pid_mx r are the Coq lingo for what was denoted UR, UR̂ and 1r in section 3.1.
We also give a complementary construction for the factor representation rG/U .

Results in representation theory are alternatively formulated in terms of the
representation (rarely), of modules (frequently), and sometimes of algebras. For
the latter we use the encoding of section 3.4:

Definition enveloping_algebra_mx :=
\matrix_(i < #|G|) mxvec (rG (enum_val i)).

defines the enveloping algebra of rG. Note how we use the enum_val function
provided by the fintype library to effectively index the matrix rows by elements
of G.
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Results on modules and algebra often refer to module homomorphisms. Rather
than defining a predicate testing whether a linear function f (given as a matrix)
is a G-homomorphism on a given submodule U , we find it more convenient to
define the largest domain on which f is a G-homomorphism:

Definition dom_hom_mx f : ’M_n :=
let commGf := cent_mx_fun (enveloping_algebra_mx rG) f in
kermx (lin1_mx (mxvec \o mulmx commGf \o lin_mul_row)).

and then test whether U is included in dom_hom_mx f , as in this definition of
module isomorphism

CoInductive mx_iso (U V : ’M_n) : Prop := MxIso f of
f \in unitmx & (U <= dom_hom_mx f)%MS & (U *m f :=: V)%MS.

Note that this definition concerns modules over the same representation; we need
another predicate mx_rsim to state that different representations are similar.

5.2 Simple Modules

Many results in group module theory depend on breaking down modules into
minimal or simple submodules. For example, Schur’s lemma states that a non-
trivial homomorphism between simple modules yields an isomorphism:

Lemma mx_Schur_iso : forall U V f,
mxsimple U -> mxsimple V -> (U <= dom_hom_mx f)%MS ->

(U *m f <= V)%MS -> U *m f != 0 -> mx_iso U V.

Unlike the mxmodule predicate, mxsimple is non-effective. To test whether mod-
ules are simple we need a means of testing whether polynomials are reducible,
which we have not assumed. As a consequence we cannot prove constructively
within Coq some obvious classical properties, such as the fact that any non-
trivial module contains a simple submodule. This turns out to be only a minor
nuisance, because we can still prove such facts classically:

Lemma mxsimple_exists m (U : ’M_(m, n)) : mxmodule U -> U != 0 ->
classically (exists2 V, mxsimple V & V <= U)%MS.

where classically is a simple variation on double negation

Definition classically P := forall b : bool, (P -> b) -> b.

Whenever we are trying to prove an effective property (in bool), the SSReflect

without loss tactic lets us conveniently use such results in a declarative style:

without loss [V simV sVU]: / exists2 V, mxsimple V & V <= U.
exact: mxsimple_exists.

We prove classically the existence of module decomposition series, of splitting
and closure fields, and of socles.

The socle of a representation is the sum of all its simple modules. Within the
socle simplicity and isomorphism become decidable, so once a socle is known
most constructivity issues vanish. A socle can alternatively be described as the
direct sum of the components of the representation – the sums of isomorphic
simple modules. We define a socleType “quasi-structure” that contains enough
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data to compute components, and coerces uniformly to a type that contains
exactly the components.

Record socleType := EnumSocle {
socle_base_enum : seq ’M[F]_n;
_ : forall M, M \in socle_base_enum -> mxsimple M;
_ : forall M, mxsimple M -> has (mxsimple_iso M) socle_base_enum
}.

Definition socle_enum sG := map component_mx (socle_base_enum sG).
Inductive socle_sort sG := PackSocle W of W \in socle_enum sG.
Coercion socle_sort : socleType >-> sortClass.

5.3 Some Classic Results

The framework we have briefly surveyed allows us to formulate and prove all of
the basic results in representation theory, including:

Lemma mx_Maschke :
[char F]^’.-group G -> mx_completely_reducible 1%:M.

Theorem Clifford_component_basis : forall M, mxsimple rH M ->
{t : nat & {x_ : sH -> ’I_t -> gT |
forall W, let sW := (\sum_j M *m rG (x_ W j))%MS in
[/\ forall j, x_ W j \in G, (sW :=: W)%MS & mxdirect sW]}}.

Theorem mx_JordanHolder : forall U V compU compV (m := size U),
(last 0 U :=: last 0 V)%MS ->

m = size V /\ (exists p : ’S_m, forall i : ’I_m,
mx_rsim (@series_repr U i compU) (@series_repr V (p i) compV))

Lemma mx_Jacobson_density :
mx_irreducible rG -> let E_G := enveloping_algebra_mx rG in

(’C(’C(E_G)) <= E_G)%MS.

Maeshke’s theorem asserts that representations in coprime characteristic are
completely reducible; this is classically equivalent but constructively slightly
weaker than “semi-reducible”. Clifford’s theorem explains how an irreducible
(i.e., simple) representation of G decomposes into a sum of components when
restricted to some H �G. The Jordan-Hölder theorem asserts the equivalence up
to permutation of module composition series U and V (implemented as matrix
sequences). In finite dimension, the Jacobson density theorem asserts that the
enveloping algebra of an irreducible (i.e., simple) representation is equal to its
double centraliser (in infinite dimension equality is replaced by density, hence the
name). It combines with Schur’s lemma to yield the definition and construction
of splitting and closure fields for groups.

The regular representation of a group G interprets G as the basis of a module
on which G acts by right translation. If the scalar field of the representation is
a splitting field whose characteristic does not divide the order of G, then the
Wedderburn structure theorem asserts that the algebra of the regular represen-
tation RG (known as the group ring) decomposes into a direct sum of simple
subrings Ri isomorphic to matrix rings. The Ri correspond to the components
of the regular representations, so we formalize this result by giving an explicit
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construction for the Ri given a socleType sG, and then establishing all key
properties of the construction.

Definition Wedderburn_subring (i : sG) := <<i *m R_G>>%MS.
Lemma Wedderburn_sum : (\sum_i R_ i :=: R_G)%MS.
Lemma Wedderburn_direct : mxdirect (\sum_i R_ i)%MS.
Lemma Wedderburn_is_ring : forall i, mxring (R_ i).
Lemma Wedderburn_subring_center i : (’Z(R_ i) :=: mxvec (e_ i))%MS
Lemma rank_Wedderburn_subring i : \rank (R_ i) = (n_ i ^ 2)%N.
Lemma sum_irr_degree : (\sum_i n_ i ^ 2 = nG)%N.

We are now using this part of the theory as the basis for the formalization
of character theory needed for the second part of the Feit-Thompson Theorem
proof[4].

5.4 P -Stability and Extraspecial Representations

One of the early driving applications for our work on matrix linear algebra and
representations was the study of p-stability, an important technical property of
groups of odd order that underpins the proof of the two “deep” results on which
the first part of the Feit-Thompson Theorem proof is based, the Thompson Tran-
sitivity and Uniqueness theorems[3]. The variant of p-stability we are interested
in is an extension to groups G with a non-trivial p-core Op(G) of the property of
“no p-element of G has a quadratic minimal polynomial in a faithful representa-
tion with a characteristic p field”, whose rather technical formulation translates
in Coq as

Definition p_stable p G :=
forall P A : {group gT},

p.-group P -> ’O_p^’(G) * P <| G ->
p.-subgroup(’N_G(P)) A -> [~: P, A, A] = 1 ->

A / ’C_G(P) \subset ’O_p(’N_G(P) / ’C_G(P)).
Theorem odd_p_stable : forall gT p G, odd #|G| -> p_stable p G.

The proof of this theorem is about 300 lines long, and summarizes about 6 pages
of the textbook it is drawn from[2], with some improvements (like eliminating
“proof by ellipsis”).

The most challenging representation theory result in [3] was Theorem 2.5,
whose 240-line proof uses representation theory to derive numerical properties
of the orders of a specific class of groups (semidirect products of a cyclic group
acting in a prime manner on an extraspecial p-group).

Theorem repr_extraspecial_prime_sdprod_cycle :
forall p n gT (G P H : {group gT}),
p.-group P -> extraspecial P -> P ><| H = G -> cyclic H ->
let h := #|H| in #|P| = (p ^ n.*2.+1)%N -> coprime p h ->
{in H^#, forall x, ’C_P[x] = ’Z(P)} ->

[/\ (h %| p ^ n + 1) || (h %| p ^ n - 1)
& (h != p ^ n + 1)%N ->

forall F q (rG : mx_representation F G q),
[char F]^’.-group G -> mx_faithful rG -> rfix_mx rG H != 0)].
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Abstract. We present a deep embedding of Bellantoni and Cook’s syn-
tactic characterization of polytime functions. We prove formally that it
is correct and complete with respect to the original characterization by
Cobham that required a bound to be proved manually. Compared to the
paper proof by Bellantoni and Cook, we have been careful in making our
proof fully contructive so that we obtain more precise bounding polyno-
mials and more efficient translations between the two characterizations.
Another difference is that we consider functions on bitstrings instead of
functions on positive integers. This latter change is motivated by the
application of our formalization in the context of formal security proofs
in cryptography. Based on our core formalization, we have started devel-
oping a library of polytime functions that can be reused to build more
complex ones.

Keywords: implicit computational complexity, cryptography.

1 Introduction

When formally verifying algorithms, one often proves their correctness and ter-
mination, but complexity is rarely considered. However proving correctness or
termination of an algorithm that is not executable in polynomial time is of lit-
tle practical use. Even at a theoretical level, it might not make much sense.
For instance, in the context of security proofs one has to restrict the computa-
tional power of the adversary in the model. Indeed, an adversary with unlimited
computational power could break most cryptographic schemes without actually
making them insecure.

One way to take into account complexity in formal verification would be to
formalize a precise execution model (e.g., Turing machines) and to explicitly
count the number of steps necessary for the execution of the algorithm. Such
approach would be for the least tedious and would give results depending on
the particular execution model that is used whereas one is mainly interested
in the complexity class independently of a particular execution model. A more
convenient approach is implicit computational complexity that relates program-
ming languages with complexity classes without relying on a particular execution
model nor counting explicitly execution steps.
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The main motivation behind our work presented in this paper is its applica-
tion in the context of security proofs in cryptography for restricting the com-
putational power of the adversary so that it is feasible. Cobham’s thesis asserts
that being feasible is the same as being computable in polynomial time [8]. Cryp-
tographers follow Cobham’s thesis in their security proofs by assuming that the
adversary is computable in probabilistic polynomial time (PPT), i.e., executable
on a Turing machine extended with a read-only random tape that has been filled
with random bits, and working in (worst-case) polynomial time. Moreover the
class of functions computable in polynomial time (a.k.a. polytime functions) has
several natural closure properties that are convenient for programming. It is in
particular closed under composition and a limited kind of recursion. Cobham
uses those closure properties to characterize the polytime functions indepen-
dently of any particular execution model. Indeed, although in his proof he uses
a particular model of Turing machine, he claims that it is quite incidental, i.e.,
the particularities such as the number of tapes or the chosen instruction set have
no significant effect on the proof. Even adding an instruction to erase a tape or
put back the head in its initial position in a single step would not break the
proof [8].

Unfortunately, the characterization of Cobham is not fully syntactic: a size
bound has to be proved on the semantics of recursive functions. This thus does
not allow for an automatic procedure to check whether a program satisfies or
not the conditions to be in Cobham’s class. About 30 years later, Bellantoni
and Cook have proposed a syntactic mechanism to control the growth rate of
functions and thus eliminate the need for an explicit size bound [6]. Being a
fully syntactic characterization, membership in the Bellantoni-Cook’s class can
be checked automatically. They show that the existence of an algorithm in Cob-
ham’s class is equivalent to the existence of an algorithm in Bellantoni-Cook’s
class that computes the same function. This makes their class a sound and com-
plete characterization of polytime functions: any function definable in Bellantoni-
Cook’s (or Cobham’s) class is computable in polynomial time, and any function
computable in polynomial time is definable in Bellantoni-Cook’s (and Cobham’s)
class.

Related Work. It is not uncommon that a few months or a few years after a so-
called security proof for a cryptographic scheme is published (e.g., in a top-level
conference in cryptography), an attack on this same scheme is published. This
shows that there is a need for formal verification in cryptography. This need is
well-known among and acknowledged by cryptographers [11]. As a matter of fact,
these last few years, several frameworks for machine-checking security proofs in
cryptography have been proposed [3,4,15]. However, these frameworks either
ignore complexity-theoretic issues or postulate the complexity of the involved
functions.

Zhang has proposed a probabilistic programming language with a type system
to ensure computation in probabilistic polynomial time and an equational logic
to reason about those programs [22]. In [16], it has been applied to security
proofs in cryptography. Zhang rely on Hofmann’s SLR [12] and its extension
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to the probabilistic case by Mitchell et al. [14]. Those latter work are about
functions on positive integers. Like us in this paper, Zhang made the move to
bitstrings in order to be applicable in the context of cryptography where, for
example, the bitstrings 0 and 00 are considered different although they would
be identified if they were interpreted as positive integers.

In [19], it is acknowledged the need for a “polytime checker”, possibly based
on Bellantoni and Cook’s work, and to be used to check automatically that a
reduction between two NP-complete problems is computable in polynomial time.
In this paper, we provide such polytime checker.

There are many other criteria to ensure that functions, defined using various
programming paradigms, are in particular complexity classes. To cite only a few,
some propose logical characterizations of polytime functions [13,20] or charac-
terizations in terms of rewrite system [1]. Others deal with different complexity
classes [2]. To the best of our knowledge, none of those criteria have been applied
to cryptography.

Contributions. In the proof assistant Coq, we have deep embedded the bit-
string versions of Cobham and Bellantoni-Cook’s classes and their relation. Ini-
tially, those classes were about functions on positive integers. But in the context
of cryptography we must deal with bitstrings. The reformulation of Cobham’s
class with bitstrings and the proof that it contains exactly the function com-
putable in polynomial time was done in [21]. In a similar way, we have reformu-
lated the definition of Bellantoni-Cook’s class.

We have also extended Bellantoni and Cook’s proof that their class is equiv-
alent to Cobham’s one by making it fully constructive, i.e., we provide explicit
algorithms to perform translations between the two classes. Those algorithms
can be executed in Coq and extracted automatically into a certified translator
in an ML dialect supported by Coq. We also make more precise the bound-
ing polynomials thus obtaining better bounds and a more efficient translation,
whereas Bellantoni and Cook overapproximate them since they are only inter-
ested in their existence and do not try to optimize the translations.

We have started to implement libraries of functions in Cobham’s and Bellan-
toni-Cook’s classes that can be used to build more complex functions.

In the context of security proofs in cryptography, we have shown how to
apply our work with the second author’s toolbox for certifying cryptographic
primitives [15]. We have also extended Certicrypt [4] with support to define
in Bellantoni-Cook’s class the mathematical functions used by adversaries: The
benefit is that one gets for free polynomials that had to be postulated before our
extension, thus bringing more confidence in the security proof.

We have proved a new result on Bellantoni-Cook’s class: we give explicitly
a polynomial that bounds the running time of a function in Bellantoni-Cook’s
class. Such explicit polynomial was necessary to interface our library with Cer-
ticrypt.

Outline. We start by some preliminaries in Section 2. In Section 3, we for-
malize Cobham’s and Bellantoni-Cook’s classes that characterize polytime func-
tions. Then in Sections 4 and 5 we respectively formalize the translation from
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Bellantoni-Cook’s class to Cobham’s class and vice versa. Finally in Section 6 we
show how our formalization can be used for the purpose of formalizing security
proofs in cryptography.

2 Preliminaries

In this section, we introduce our formalization of multivariate polynomials and
various notations that will be used in the rest of this paper.

2.1 Multivariate Polynomials

We have implemented a library of positive multivariate polynomials. A shallow
embedding of polynomials might consist in representing them as a particular
class of functions on positive integers. However, since we need in Section 4 to
translate polynomials into expressions in Cobham’s class, we have opted for a
deep embedding. A polynomial is represented as a pair of the number of distinct
variables and a list of monomials. A monomial is represented as a pair of a
constant positive integer and a list of variables and their powers. A variable
is represented as an integer. For example, the polynomial 3y3 + 5x2y + 16 is
represented by (2, [(3, [(1, 3)]); (5, [(0, 2); (1, 1)]); (16, [])]) where the leftmost 2 is
the number of variables, and variables x and y are respectively represented by
0 and 1. We chose to put the number of variables in the representation of a
polynomial so as to easily inject a polynomial using m variables into the class
of polynomials with n variables when n > m. Otherwise we would have to add
artificial occurrences of variables with coefficient 0. In the library we provide
utility functions in Coq to create and combine polynomials (constant, variables,
addition, multiplication, composition. . . ). We use those functions when building
a polynomial. Those functions are parameterized by the number of variables,
but we will omit this parameter in the rest of the paper since it will be clear
from context. We write x0, . . . , xn−1 for the variables of a polynomial with n
variables. If P is a polynomial with m variables and Q = 〈Q0, . . . , Qm−1〉 is a
vector of polynomials with n variables, we write P (Q) for the polynomial with
n variables defined by substituting each variable xi in P by the polynomial Qi

and by applying distributivity of multiplication over addition and associativity
of addition.

In [10], multivariate polynomials are represented in sparse Horner form and
thus allow for a more efficient numerical evaluation of polynomials. Since we
do not intend to numerically evaluate polynomials, we have opted for a more
direct approach. This will moreover facilitate the connection with univariate
polynomials in Certicrypt (cf. Section 6.2).

2.2 Notations

We list some notations that will be useful to present the results and their proofs
in a concise manner. However, the meaning of those notations should be clear
from the context. We write:
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– xb for the concatenation of the bitstring x with a bit b in the least significant
position.

– x for a vector 〈x0, . . . , xn−1〉 (for some n).
– x, y for the concatenation of vectors x and y.
– |x| for the length of a vector x;
– |x| for the size of a bitstring x;
– |x| for the vector of sizes of the components of the vector x, i.e., if x =
〈x0, . . . , xn−1〉 then |x| = 〈|x0|, . . . , |xn−1|〉;

– f(x) for the vector of applications of f to each component of the vector x,
i.e., if x = 〈x0, . . . , xn−1〉 then f(x) = 〈f(x0), . . . , f(xn−1)〉.

– f(x) for the vector of applications of each component of the vector f to x,
i.e., if f = 〈f0, . . . , fn−1〉 then f(x) = 〈f0(x), . . . , fn−1(x)〉.

3 Characterizing Polytime Functions

In this section, we explain our deep embedding of the bitstring versions of
Cobham’s and Bellantoni-Cook’s classes, and state some of their bounding
properties.

3.1 Cobham’s Class

In a seminal paper [8], Cobham characterized polytime functions as the least class
of functions containing certain initial functions and closed under composition and
a certain kind of recursion. However this characterization is not fully syntactic
as it requires a size bound to be proved on the semantics of recursive functions.

We use the reformulation of Cobham’s class taken from [21] and that deals
with bitstrings instead of positive integers as it was the case in [8].

The syntax of Cobham’s class C is given by:

C ::= O constant zero
| Πn

i projection (i < n)
| Sb successor
| # smash
| Compn h g composition
| Rec g h0 h1 j recursion

where i and n are positive integers, b is a bit, g, h, h0, h1 and j are expressions
in C, and g is a vector of expressions in C. Well-formed expressions e in C have
a well defined arity A(e) given by:

A(O) = 0 A(Πn
i ) = n A(Sb) = 1 A(#) = 2

A(h) = ah |g| = ah ∀g ∈ g,A(g) = n

A(Compn h g) = n

A(g) = ag A(h0) = A(h1) = ah A(j) = aj ah = ag + 2 = aj + 1
A(Rec g h0 h1 j) = aj
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In our implementation, A is a Coq function that computes the arity of a Cob-
ham’s expression if it is well formed, or returns an error message otherwise. It
is helpful when programming and debugging polytime functions in Cobham’s
class.

The semantics is given by:

– O denotes the constant function that always returns the empty bitstring ε.
– Πn

i (x0, . . . , xn−1) is equal to xi.
– Sb(x) is equal to xb.
– #(x, y) is equal to 10 . . . . . . 0︸ ︷︷ ︸

|x|.|y| times

.

– Compn h g is equal to the function f such that f(x) = h(g(x)).
– Rec g h0 h1 j is equal to the function f such that:

f(ε, x) = g(x)
f(yi, x) = hi(y, f(y, x), x)
|f(y, x)| ≤ |j(y, x)| (RecBounded)

We illustrate Cobham’s class by implementing the binary successor function:

Rec
Succ(ε) = 1 (Comp0 S1 O)
Succ(x0) = x1 (Comp0 S1 Π2

0 )
Succ(x1) = Succ(x)0 (Comp0 S0 Π2

1 )
Succ(x) ≤ x1 (Comp0 S1 Π1

0 )

We prove in the following proposition that the output of a Cobham’s function
is bounded by a polynomial in the lengths of its inputs.

Proposition 1. For all f in C with a well-defined arity A(f) and semantics
(i.e., satisfying the condition RecBounded), there exists a length-bounding mono-
tone polynomial PolC(f) such that |f(x)| ≤ (PolC(f))(|x|).

Proof. By induction on the syntax of f . Our proof is fully constructive in the
sense that we define explicitly PolC . For any f in C with arity A(f) = n, PolC(f)
is the monotone polynomial with n variables x0, . . . , xn−1 defined by:

PolC(O) = 0
PolC(Πn

i ) = xi

PolC(Sb) = x0 + 1
PolC(#) = x0.x1 + 1
PolC(Compn h g) = (PolC(h))(PolC(g))
PolC(Rec g h0 h1 j) = PolC(j) ��

We define a translation Poly→C from polynomials into Cobham’s expressions.
It is such that, for any polynomial P , Poly→C(P ) is a unary encoding of P in
Cobham’s class, i.e., |Poly→C(P )(x)| = P (|x|).



A Formalization of Polytime Functions 125

3.2 Bellantoni-Cook’s Class

Bellantoni and Cook have given a fully syntactic characterization of polytime
functions that does not require any explicit mechanism to count the number of
computation steps [6]. The control of the growth rate of functions is achieved
by distinguishing two kinds of variables: the “normal” and “safe” ones written
respectively on the left and right side of a semicolon such as:

f(x0, . . . , xn−1︸ ︷︷ ︸
normal

; xn, . . . , xn+s−1︸ ︷︷ ︸
safe

)

The syntax of Bellantoni-Cook’s class B is given by:

B ::= 0 constant zero
| πn,s

i projection (i < n + s)
| sb successor
| pred predecessor
| cond conditional
| compn,s h gN gS composition
| rec g h0 h1 recursion

where i, n and s are positive integers, b is a bit, g, h, h0 and h1 are expressions
in B, and gN and gS are vectors of expressions in B. Note that, contrary to
Cobham’s class, a bounding function j is not needed for recursion. Well-formed
expressions e in B have well defined aritiesA(e) (counting separately the numbers
of normal and safe variables) given by:

A(0) = (0, 0) A(πn,s
i ) = (n, s) A(sb) = (0, 1)

A(pred) = (0, 1) A(cond) = (0, 4)

A(h) = (nh, sh) |gN | = nh |gS| = sh

∀g ∈ gN ,A(g) = (n, 0) ∀g ∈ gS ,A(g) = (n, s)
A(compn,s h gN gS) = (n, s)

A(g) = (ng, sg) A(h0) = A(h1) = (nh, sh) nh = ng + 1 sh = sg + 1
A(rec g h0 h1) = (nh, sg)

This function A is implemented like the one for Cobham’s class.
The semantics is given by:

– 0 denotes the constant function that always returns the empty bitstring ε.
– πn,s

i (x0, . . . , xn−1; xn, . . . , xn+s−1) is equal to xi.
– sb(; x) is equal to xb.
– pred(; ε) = ε and pred(; xi) = x.
– cond(; ε, x, y, z) = x, cond(; w0, x, y, z) = y and cond(; w1, x, y, z) = z.
– compn,s h gN gS is equal to the function f such that:

f(x; y) = h(gN (x; ); gS(x; y))
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Note here that the functions in gN only have access to normal variables.
– rec g h0 h1 is equal to the function f such that:

f(ε, x; y) = g(x; y)
f(zi, x; y) = hi(z, x; f(z, x; y), y)

Note here that the result of the recursive call f(z, x; y) is passed at a safe
position. This prevents it to be used as the recursion argument in a nested
recursion.

One can see that, contrary to Cobham’s class C, there is no size bound to be
proved on recursive functions: Bellantoni-Cook’s class B is syntactically defined.

Reader may have noticed that our definition of Bellantoni-Cook’s class is
slightly different from the one in [6]. First, here the conditional cond distinguishes
between three cases (empty, even or odd bitstrings), whereas in [6] the empty
bitstring is treated as an even one. Second, here the base case for recursion
is the empty bitstring, whereas in [6] it is any bitstring whose interpretation
as a positive integer is 0, i.e., the empty bitstring or any bitstring made of any
number of bits 0 only. We made those changes because in cryptography one wants
to distinguish, for example, bitstrings 0 and 00 although they would have the
same interpretation in terms of positive integers. These changes are validated by
the results we proved in the rest of the paper where we translate our Bellantoni-
Cook’s expressions to/from the bitstring version of Cobham’s expressions [21].

The following examples illustrate how one can program addition and multi-
plication in Bellantoni-Cook’s class and their respective arity:

plus := rec

(π0,1
0 )

(comp1,2 S1 〈〉 〈π1,2
1 〉)

(comp1,2 S1 〈〉 〈π1,2
1 〉)

A(plus) = (1, 1)

mult := rec
(comp1,0 O 〈〉 〈〉)
(comp1,2 plus 〈π2,0

1 〉 〈π2,1
2 〉)

(comp1,2 plus 〈π2,0
1 〉 〈π2,1

2 〉)

A(mult) = (2, 0)

We prove in the following proposition that the output of a Bellantoni-Cook’s
function is bounded by the sum of a polynomial in the lengths of its normal
inputs and the size of its longest safe input. This is so because syntactic restric-
tions ensure that we cannot increase the lengths of safe inputs by more than an
additive constant that will be taken into account in the polynomial part.

Proposition 2 (Polymax Bounding). For all f in B with well-defined arities
A(f), there exists a length-bounding monotone polynomial PolB(f) such that, for
all x and y, |f(x; y)| ≤ (PolB(f))(|x|) + maxi|yi|.

Proof. By induction on the syntax of f . Our proof is fully constructive in the
sense that we define explicitly PolB. For any f in B with arity A(f) = (n, s),
PolB(f) is the monotone polynomial with n variables x0, . . . , xn−1 defined by:
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PolB(0) = 0
PolB(πn,s

i ) = xi if i < n
0 otherwise

PolB(sb) = 1
PolB(pred) = 0
PolB(cond) = 0
PolB(compn,s h gN gS) = PolB(h)(PolB(gN )) +

∑
(PolB(gS))

PolB(rec g h0 h1) = shift(PolB(g)) + x0.(PolB(h0) + PolB(h1))

where shift(P ) is the polynomial P with each variable xi replaced by xi+1. ��
We define a translation Poly→B from polynomials into Bellantoni-Cook’s ex-
pressions. It is such that, for any polynomial P , Poly→B(P ) is a unary encoding
of P in Bellantoni-Cook’s class, i.e., |Poly→B(P )(x)| = P (|x|).

In order to ease further development of functions in Bellantoni-Cook’s class,
we provide a mechanism to infer automatically the optimal values for the pa-
rameters n and s appearing in πn,s

i and compn,s thus obtaining more elegant
code. This is implemented with a new syntax Binf for Bellantoni-Cook’s class
where arities do not appear in the syntax. We have validated this new syntax by
providing certified translations between Binf and B. When translating from Binf

to B, we can force arities to be larger that the minimal ones that are inferred.

4 Compiling Bellantoni-Cook into Cobham

In this section, we provide our formalization of the translation of expressions in
Bellantoni-Cook’s class into expressions in Cobham’s class. The main result is
stated in the following theorem.

Theorem 1. For all f in B with well defined arities A(f), there exists f ′ in C
such that for all vectors of bitstrings x and y, f(x; y) = f ′(x, y).

Proof. The proof is split into two inductions on the syntax of f : The first one to
prove the equality and the second one to prove that the condition RecBounded
is satisfied. Our proof is fully constructive in the sense that we define explicitly
the translation B → C from B to C and define f ′ as B→C(f). The difficulty of
the proof is in the generation of a Cobham expression that satisfies the condition
RecBounded , and to build the polynomial j that bounds the recursive calls.

– The first cases are immediate: B→C(0) = O
B→C(πn,s

i ) = Πn+s
i

B→C(sb) = Sb

– pred and cond are translated by using Rec:

B→C(pred) = Rec O Π2
0 Π2

0 Π1
0

B→C(cond) = Rec Π3
0 Π5

4 Π5
3

Comp4 # 〈
Comp4 S1 〈Π4

1 〉;
Comp4 # 〈 Comp4 S1 〈Π4

2 〉; Comp4 S1 〈Π4
3 〉 〉〉
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– For compn,s h gN gS we need to add dummy variables, since the functions
in gN do not take the safe arguments as parameters. We need to transform
these functions in gN into functions with arity n + s. dummiess (written in
C) add s dummy variables that are ignored:

B→C(compn,s h gN gS) = Compn+s B→C(h)(
dummiess (B→C(gN )),B→C(gS)

)
– For rec g h0 h1 we need to change the order of the arguments passed to

the translations of h0 and h1. Indeed, while in B the recursive argument
is put after the normal ones, in C it should be the second argument. This
reordering is done by the function move arg2,n (written in C). Moreover,
we need to derive a suitable bound for the fourth argument of Rec. By
Proposition 2 and the fact that the sum |xn|+ · · ·+ |xn+s−1| of the sizes of
the safe arguments is greater than or equal to the maximum size of the safe
arguments, we can take the polynomial PolB(rec g h0 h1)+xn + · · ·+xn+s−1

for the bound. We then use Poly→C to encode it in C:

B→C(rec g h0 h1) = Rec
B→C(g)
move arg2,n (B→C(h0))
move arg2,n (B→C(h1))

Poly→C
(

PolB(rec g h0 h1) +
xn + · · · + xn+s−1

)
��

5 Compiling Cobham into Bellantoni-Cook

Contrary to Bellantoni-Cook’s class B, one does not distinguish between nor-
mal and safe variables in Cobham’s class C. In C it is possible to recur on any
argument, whereas in B one can only recur on normal arguments. Thus, when
translating from C to B, we must introduce a distinction and deal appropriately
with recursion. In our formalization, we follow Bellantoni and Cook’s transla-
tion scheme by assuming that all the arguments are safe and adding an artificial
normal argument w whose length is large enough to ensure enough recursion
steps. This gives us the lemma below. After that, we will get rid of w thus
obtaining Theorem 2.

Lemma 1 (Recursion Simulation). For all function f in C with well-defined
arity A(f) = n and semantics (i.e., satisfying the condition RecBounded), there
exists an f ′ in B and a monotone polynomial PolC→B(f) such that for all vector
of bitstrings x and bistring w such that PolC→B(f)(|x|) ≤ |w|, f(x) = f ′(w; x).

Proof. By induction on the syntax of f . Our proof is fully constructive in the
sense that we define explicitly the polynomial PolC→B(f) and the translation
C→B, and define f ′ as C→B(f). Our translation is such that if A(f) = n then
A(f ′) = (1, n), i.e., f ′ takes one normal argument and n safe arguments.
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– The first cases for C→B(f) are immediate. We just have to make sure that
the arities are right:

C→B(O) = comp1,n O 〈〉 〈〉
C→B(Πn

i ) = π1,n
i+1

C→B(Sb) = comp1,n sb 〈〉 〈π1,n
1 〉

C→B(Compn h g) = comp1,n (C→B(h)) 〈π1,0
1 〉 C→B(g)

PolC→B(f)(|x|) is also immediate for these first cases:

PolC→B(O) = 0
PolC→B(Πn

i ) = 0
PolC→B(Sb) = 0
PolC→B(Compn h g) = PolC→B(h)(PolC(g)) +

∑
g∈g

PolC→B(g)

The rightness of the case for Comp follows by induction hypothesis and
Proposition 1.

– For the case of Rec g h0 h1 j, we follow [6] in defining intermediate functions
in B. However we need less of them since our definition of f̂ below is simpler.
We define P in B such that P (a; b) removes the |a| least significant bits of
b, i.e., P (ε; b) = b and P (ai; b) = pred(; P (a; b)). We define Y in B such that
Y (z, w; y) removes the |w| − |z| least significant bits of y, i.e., Y (z, w; y) =
P (P ′(z, w); y) where P ′(a, b; ) = P (a; b). P and Y are then used to define f̂
in B:

f̂(ε, w; y, x) = g(w; x)

f̂(zj, w; y, x) =

⎧⎨
⎩

g′(w; x) if Y (S1z, w; y) is ε

h′
0(w, Y (z, w; y), f̂(z, w; y, x), x) if Y (S1z, w; y) is even

h′
1(w; Y (z, w; y), f̂(z, w; y, x), x) if Y (S1z, w; y) is odd

where g′, h′
0 and h′

1 are respectively C→B(g), C→B(h0) and C→B(h1). Our
definition of f̂ is simpler than in [6] because we do not need, like in [6], an
additional intermediate function to check whether y is an encoding of the
positive integer 0. In our case, we stop the recursion when y is equal to ε,
since the cond can check whether the first safe argument is ε.

We then define f ′(w; y, x) in B such that it is equal to f̂(w, w; y, x), and
finally:

C→B(Rec g h0 h1 j) = f ′ (C→B(g)) (C→B(h0)) (C→B(h1))

For the polynomial, we have:

PolC→B(Rec g h0 h1 j)(|y|, |x|)=(PolC→B(h0)+PolC→B(h1))(|y|, PolC(f), |x|)+
shift(PolC→B(g)(|x|)) + |y|+ 2
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– We can define the smash function # from C in B by a double recursion:

#′(ε, y) = y
#′(xi, y) = #′(x, y) 0 (concatenation with a bit 0)
#(ε, y) = 1
#(xi, y) = #′(y, #(x, y))

In order to implement in B those two recursive functions we apply the same
technique as in the case of Rec above. We first obtain a #′ in B by con-
structing f ′ with g = π1,1

1 and h0 = h1 = comp1,3 S0 〈〉 〈π1,3
2 〉. We then

obtain # in B by applying the same construction of f ′ with g = one1,1 and
h0 = h1 = dummies0,1(comp1,2 #′ 〈π1,0

0 〉 〈π1,2
2 ; π1,2

1 〉).
For the polynomial, we obtain (after simplification):

PolC→B(#) = x0 + 2x1 + 18 ��

Finally, the main result of this section is stated in the following theorem.

Theorem 2. For all f in C with well-defined arity A(f) and semantics (i.e.,
satisfying the condition RecBounded), there exists f ′ in B such that, for all
vectors of bitstrings x, f(x) = f ′(x; ).

Proof. We define the expression bf in B by Poly→B(PolC→B(f)). By definition
of Poly→B, for all vector of bistrings x, |bf (x; )| = PolC→B(f)(|x|). We can thus
apply Lemma 1 which gives f ′(x; ) = (C → B(f))(bf (x; ); x). ��

Our translation gives a more efficient code than the one in [6] since our defini-
tion of bf is more precise: the number of recursive calls will be no more than
what is strictly necessary. Indeed, authors of [6] use general properties of multi-
variate polynomials to first prove the existence of positive integers a and c such
that PolC→B(f)(|x|) ≤ (

∑
j |xj |)a + c and then use a and c to build a bf that

satisfies the condition of Lemma 1, i.e., PolC→B(f)(|x|) ≤ |b(x; )|. Their bf is an
overapproximation of PolC→B(f) while our bf is an exact encoding.

6 Applications

Security properties in cryptography are often modeled as games, and then secu-
rity proofs consist in showing that no adversary can win the game [7,18]. Most of
those proofs are based on computational assumptions that state that an effective
adversary cannot solve a particular mathematical problem, e.g., Diffie-Hellman
problems [9]. Effective adversaries are modeled as strict probabilistic polynomial-
time functions, i.e., independently of the random choices, the execution time is
bounded by a polynomial in a security parameter (typically the length of the
inputs). This means that an adversary can be modeled as a polytime function
with, as an additional parameter, a long enough bitstring that will be used by
the adversary as its source of random bits.
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6.1 Application to the Second Author’s Toolbox

The second author’s toolbox is a collection of definitions and lemmas to be used
for verifying game transformations in security proofs [15]. With this toolbox,
our library can be used as such when applying a computational hypothesis. The
computational hypotheses can indeed be restricted to adversaries defined in Cob-
ham’s or Bellantoni-Cook’s class (it is not too restrictive since those classes are
complete) and adversaries appearing in proofs must then be defined in one of
those classes. For example, when applying the Decisional Diffie-Hellman assump-
tion (DDH) in the security proof for Hashed ElGamal in [15], a new adversary
ϕ is built from two adversaries A1 and A2:

ϕ(X, Y, Z) =def A2(r, (X, k), (Y, Hk(Z)⊕ πb(A1(r, (X, k))))) ?= b

where b, k and r are fixed, ⊕ is a the bitwise exclusive or (xor), πb is the bth

projection (b is equal to 1 or 2), and ?= is the equality test. That A1 and A2

are polytime is given by hypothesis. We can also assume that the hash func-
tion Hk is polytime. Being polytime, they are definable in Bellantoni-Cook’s
class. Moreover, projections, exclusive or and equality test are easily defined in
Bellantoni-Cook’s class. Therefore ϕ is easily definable in Bellantoni-Cook’s class
and thus it is polytime.

6.2 Application to Certicrypt

The application of our library to Certicrypt requires more work but brings no-
ticeable benefits.

In Certicrypt, a game is a probabilistic imperative program that transforms a
distribution of input states into a distribution of output states. A state includes
a time index. A distribution of states is polynomially bounded if there are two
(univariate) polynomials p and q respectively bounding the size of the data and
the time index of each state in the distribution. A program is strict proba-
bilistic polynomial time (PPT) iff: it always terminates; and, there exists two
(univariate) polynomial transformers F and G such that, for every polynomially
bounded (by p and q) distribution of input states, the distribution of output
states is bounded by F (p) (bounding the output size) and q + G(p) (bounding
the execution time). Interested reader should refer to [4] for further explanation
about this way to formalize PPT.

We have built an interface with Certicrypt made of the following components:

– The core language of Certicrypt can be extended with user-defined types
and functions. But the time cost of each function has to be axiomatized in
the current implementation of Certicrypt. We have added the possibility to
include functions that have been defined in our implementation of Bellantoni-
Cook’s class and that are thus automatically proved executable in polynomial
time, thus removing the need for postulates.
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– We have added a conversion from any multivariate polynomial P given by
our library into a univariate one �P � in Certicrypt that overapproximates P
when applied to the maximal argument: This is easily done by substituting
all variables x0, . . . , xn−1 in P by a single variable x: �P � =def P [x0 →
x; . . . ; xn−1 → x].

– In the case of a program c defined in Bellantoni-Cook’s class, we can take
F (p) to be equal to 1 + 2 �PolB(c)�(p). This is justified by Proposition 2.
The multiplication by 2 and and addition of 1 are here because of technical
reasons coming from Certicrypt. For example, the multiplication by 2 comes
from the fact that the size of a boolean in Certicrypt is 2.

– In order to obtain G(p), we need to consider the obvious implementation
of Bellantoni-Cook’s class on a stack machine as described in Section 3.4.2
of [5]. We have equipped the semantics of Bellantoni-Cook’s class with a
time index that keeps track of the running time. We can then prove that
the multivariate polynomial Poltime below is an upper bound of the running
time, and use it to define G(p).

Poltime(0) = Poltime(π
n,s
i ) = Poltime(sb) = Poltime(pred) = Poltime(cond) = 1

Poltime(compn,s h gN gS) = Poltime(h)(PolB(gN ))+∑
(Poltime(gN )) +

∑
(Poltime(gS))

Poltime(rec g h0 h1) = shift(Poltime(g))+
x0.(Poltime(h0) + Poltime(h1))

where shift(P ) is the polynomial P with each variable xi replaced by xi+1.
An interesting thing about Poltime is that, in the case of compn,s h gN gS, it
is necessary to consider the size PolB(gN ) of the outputs of the functions in
gN for the running time of h, but not the size of the outputs of the functions
in gS . This is so because syntactic restrictions ensure that we cannot increase
the lengths of safe inputs by more than an additive constant. Finally, for a
program c defined in Bellantoni-Cook’s class, we take G(p) to be equal to:

�Poltime(c)�(p)

The reader might be surprised that in this section we consider a particular
implementation of Bellantoni-Cook’s class while in introduction we said that we
are interested in complexity independently of any execution model. The reason
is that, although being in Cobham’s or Bellantoni-Cook’s class guarantees that
there exists a polynomial bounding the execution time, it does not give any
clue on the actual value of this polynomial. However Certicrypt requires that
we explicitly give such a polynomial. This is why we consider here a particular
execution model: to be able to compute a polynomial.

7 Conclusions and Future Work

We have formalized Cobham’s and Bellantoni-Cook’s classes and their relations
in the proof assistant Coq. Usage of proof assistant led us to formalize parts of the
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proofs that were only informal in Bellantoni and Cook’s paper. Our formalization
allows to use those classes as programming languages to define any function that
is computable in polynomial time. We have shown in particular that it can be
used to build adversaries in security proofs in cryptography.

Future Work. In order to facilitate the use of our formalization, an important
future work is to carry on developing a convenient library of polytime functions
on bitstrings that can be reused in the construction of more advanced polytime
functions. It is easy to implement bitwise operations such as bitwise XOR, NOT,
AND, etc. However, when implementing numerical operations such as bitwise ad-
dition, dealing with the carry bit does not fit immediately in Bellantoni-Cook’s
recursion scheme. One possible solution is to implement binary addition, multi-
plication and other numerical functions in Cobham’s class such as in [17], and
use our automatic translation C→B (defined in Section 5) to derive their imple-
mentations in Bellantoni-Cook’s class. Also, our approach can be extended with
higher order so as to formalize a more powerful programming language such as
CSLR [22].
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Abstract. Currently published HOL formalizations of measure theory
concentrate on the Lebesgue integral and they are restricted to real-
valued measures. We lift this restriction by introducing the extended
real numbers. We define the Borel σ-algebra for an arbitrary type forming
a topological space. Then, we introduce measure spaces with extended
real numbers as measure values. After defining the Lebesgue integral and
verifying its linearity and monotone convergence property, we prove the
Radon-Nikodým theorem (which shows the maturity of our framework).
Moreover, we formalize product measures and prove Fubini’s theorem.
We define the Lebesgue measure using the gauge integral available in Is-
abelle’s multivariate analysis. Finally, we relate both integrals and equate
the integral on Euclidean spaces with iterated integrals. This work covers
most of the first three chapters of Bauer’s measure theory textbook.

1 Introduction

Measure theory plays an important role in modeling the physical world, and in
particular is the foundation of probability theory. Current HOL formalizations
of measure theory mostly concentrate on the Lebesgue integral [2, 10, 11]. We
extend this by a number of fundamental concepts:

Lebesgue measure. To use the Lebesgue integral for functions on a real do-
main we need to introduce a measure on R. The Lebesgue measure λλ assigns
the length b− a to every interval [a, b], and is closed under countable union
and difference. The Lebesgue integral on λλ is an extension of the Riemann
integral.

Product measure. Defines a measure on the product of two or more measure
spaces. We can also represent Euclidean spaces as products of the Lebesgue
measure on R. This is also necessary to prove Fubini’s theorem, i.e., the
commutativity of integrals.

Extended real numbers. The introduction of Lebesgue measure requires in-
finite measure values, hence we introduce the extended real numbers and use
them as measure values.

� Supported by the DFG Graduiertenkolleg 1480 (PUMA).

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 135–151, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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Radon-Nikodým derivative. Given two measures ν and μ, we can represent
ν with density f with respect to μ, under certain assumptions.

ν A =
∫

A

f dμ

This density f is called the Radon-Nikodým derivative. The existence of such
a density is used in information theory to define mutual information and in
probability theory to define conditional expectation.

Restricted forms of these concepts where already formalized in HOL theorem
provers [6, 2, 11, 10, 8, 5]. By formalizing these concepts in a more generic way,
it is now possible to combine the results of these works. With the Lebesgue
measure, the Radon-Nikodým theorem and the product measure we formalize
most of the first three chapters (∼ 70 pages) of Bauer’s textbook about measure
theory [1]. We only show the theorem statements, but the full proofs are publicly
available in the current development version of Isabelle.1

2 Preliminaries

We use the following concepts and notations: We write the power set as P(A) =
{B | B ⊆ A}, the universe for type α as U :: α set, ⊥:: α is an arbitrary
element of type α, the image of A under f is f [A] = {f x|x ∈ A}, the range of
f is rng f = f [U ], the preimage of B under f is f−1[B] = {x| f x ∈ B}, the
cartesian product is A×B = {(a, b) | a ∈ A, b ∈ B}, and the dependent product is
Πx∈A. B x = {f | ∀x ∈ A. f x ∈ B x} and A → B = Πx∈A. B. The indicator
function χA x = 1 if x ∈ A otherwise χA x = 0. With f ↑ x we state that f
converges monotonically from below to x, this is defined for functions with range
R and sets. Hilbert choice is SOME x. P x, i.e. (∃x.Px) −→ P (SOME x.P x)
holds. For the product spaces we also use the extensional dependent product

ΠEx ∈ A. B x = {f | (∀x ∈ A. f x ∈ B x) ∧ (∀x /∈ A. f x =⊥)}

We need to enforce having exactly one value outside of the domain, otherwise
there is more than one function with the same values on A. We use t :: α to
annotate types and α ⇒ β for function types. These should not be confused
with set membership x ∈ A or the dependent function space A → B, which are
predicates and not type annotations. We use t :: (α :: type class) to annotate
type classes.

The locale-command introduces a new locale [4]. We use it to define the
concept of algebras, σ-algebras, measure spaces etc.

locale l = bs + fixes x ::α assumes P1 x and . . . and Pn x

This introduces the locale l with a variable x and the assumptions P1, . . . , Pn.
It inherits the context like variables and assumptions, but also theorems, abbre-
viations, definitions, setup for the proof methods and more from bs. We get the
1 http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Probability

http://isabelle.in.tum.de/repos/isabelle/file/tip/src/HOL/Probability
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theorems about a specific instantiation l x by proving P1 x ∧ · · · ∧ Pn x. When
we prove a theorem in a locale we have access to the theorems of bs, i.e. a lemma
in algebra is immediately available in the sigma algebra locale.

3 Extended Reals

The Lebesgue measure λλ takes infinite values, as there is no real number we can
reasonably assign to λλ(R). So we need a type containing the real numbers and a
distinct value for infinity. We introduce the type R as the reals extended with a
positive and a negative infinite element.

Definition 1 (Extended reals R )

datatype R = ∞ | (R)∞ | −∞ real :: R ⇒R

real (r∞) = r real ∞ = 0 real (−∞) = 0

The conversion function real restricts the extended reals to the real numbers and
maps ±∞ to 0. For the sake of readability we hide this conversion function.

Definition 2 (Order and arithmetic operations on R )

r∞ ≤ p∞ ←→ r ≤ p x ≤ ∞ −∞ ≤ x
−(r∞) = (−r)∞ −(−∞) = ∞

r∞ + p∞ = (r + p)∞ ∞+ x = ∞ x +∞ = ∞

r∞ · p∞ = (r · p)∞ x · ±∞ = ±∞ · x =

{
0 if x = 0
sgn x · ±∞ otherwise

For measure theory it is suitable to define ∞·0 = 0. Using min and max as join
and meet, we get that R is a complete lattice where bot is −∞ and top is ∞.

Our next step is to define the topological structure on R . This is an extension
of the topological structure on real numbers. However we need to take care of
what happens when ±∞ is in the set.

Definition 3. open A ←→ open {r| r∞ ∈ A} ∧
(∞ ∈ A −→ ∃x.∀y > x. y∞ ∈ A) ∧ (−∞ ∈ A −→ ∃x.∀y < x. y∞ ∈ A)

From this definition the continuity of ·∞ follows directly. The definition of limits
of sequences in Isabelle/HOL is based on topological spaces. This allows us to
reuse these definitions and also some of the proofs such as uniqueness of limits.
We also verify that the limits and infinite sums on real numbers are the same as
the limits and sums on extended reals:

Lemma 1. (λn. (f n)∞) −−−−−→
n→∞

r∞ ←→ (λn. f n) −−−−−→
n→∞

r

Corollary 1. If f is summable, then
∑

n (f n)∞ = (
∑

n f n)∞ .

Hurd [7] formalizes similar positive extended reals and also defines a complete
lattice on them. Our R includes negative numbers and we not only show that it
forms a complete lattice but also that it forms a topological space. The complete
lattice is used for monotone convergence and the topological space is used to
define a Borel σ-algebra on R .
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4 Measure Theory

We largely follow Bauer’s textbook [1] for our formalization of measure theory.
An exception is the definition of the Lebesgue integral which is taken from
Schilling [12].

4.1 The σ-Algebra

We use records to represent (σ-)algebras and measure spaces. We define measure
spaces as extensions to algebras, hence we can use measure spaces as algebras.

record α algebra = space :: α set
sets :: α set set

To represent the algebra M = (Ω,A) we write M = �space = Ω, sets = A�. We
use this type to introduce the concept of (σ-)algebras. The set Ω is typically but
not necessarily the universe U . For probability theory in particular, it is often
[0, 1] instead of R. The sets in A are the measurable sets.

Definition 4 (σ-algebra)

locale algebra =
fixes M ::α algebra

assumes sets M ⊆ P(space M)
and ∅ ∈ sets M
and ∀a ∈ sets M. space M − a ∈ sets M
and ∀a, b ∈ sets M. a ∪ b ∈ sets M

locale sigma algebra = algebra +
assumes ∀F ::nat⇒α set. rng F ⊆ sets M −→ (

⋃
i F i) ∈ sets M

The easiest way to define a σ-algebra (other than the power set) is to give a
generator G and use the smallest σ-algebra containing G (called its σ-closure).

Definition 5 (σ-closure). sigma sets G Ω denotes the smallest superset of G
containing ∅ and is closed under Ω-complement and countable union.

inductive sigma sets for G and Ω where
a ∈ G −→ a ∈ sigma sets Ω G
∅ ∈ sigma sets Ω G
a ∈ sigma sets Ω G −→ Ω − a ∈ sigma sets Ω G
rng (F ::nat⇒α set) ⊆ sigma sets Ω G −→ (

⋃
i F i) ∈ sigma sets Ω G

sigma M = �space = space M, sets = sigma sets (space M) (sets M)�

We define the σ-closure inductively to get a nice induction rule. Then we show
that it actually is the smallest σ-algebra containing G.

Lemma 2. The sigma operator generates a σ-algebra.
sets M ⊆ P(space M) −→ sigma algebra (sigma M)

Lemma 3. If G ⊆ P(Ω) then
sigma sets Ω G =

⋂{
B ⊇ G| sigma algebra �space = Ω, sets = B�

}
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Measurable Functions. When preimages of measurable sets in M2 under f are
measurable sets in M1 we say f is M1-M2-measurable. We use the function-type
to represent them, but restrict it to the functions from space M1 to space M2.
We also need to intersect the preimage under f with space M1.

Definition 6 (Measurable). measurable M1 M2 =
{f ∈ space M1 → space M2| ∀A ∈ sets M2. f−1[A] ∩ space M1 ∈ sets M1}

When M2 is generated by a σ-closure it is enough to show that it is measurable
on the generator:

Lemma 4. If sets G ⊆ P(space G) and f ∈ measurable M1 G then
f ∈ measurable M1 (sigma G).

Borel σ-Algebra. The σ-algebra generated by the open sets of a topological
space is called a Borel σ-algebra. In Isabelle/HOL topological spaces form a type
class defining the open sets. Instances are Euclidean spaces (hence R) and R .

Definition 7 (Borel sets)
borel = sigma �space = U :: (α :: topological space) set, sets = {S| open S}�

As a first step we show that the Borel sets on real numbers are not only gen-
erated by all the open sets, but also by all the intervals ]−∞, a[. Then we
show the Borel measurability of arithmetic operations, min, max, etc. To show
the measurability of these operations on R we first show that ·∞ and real are
Borel-Borel-measurable (which follows from their continuity). The operations
on R are compositions of ·∞ and real with operations on real numbers. We use
“M -measurable” as abbreviation for “M -Borel-measurable.”

Dynkin Systems. We use Dynkin systems to prove the uniqueness of measures.
Compared with σ-algebras, they are only closed under countable unions if the
sets are disjoint.

Definition 8. disjoint F ←→ (∀i, j. i �= j −→ F i ∩ F j = ∅)
Definition 9 (Dynkin system)

locale dynkin system =
fixes D ::α algebra

assumes sets D ⊆ P(space D)
and ∅ ∈ sets D
and ∀a ∈ sets D. space D − a ∈ sets D
and ∀F. disjoint F ∧ rng F ⊆ sets D −→ (

⋃
i F i) ∈ sets D

Definition 10 (Closed under intersection)
∩-stable G ←→ (∀A, B ∈ sets G. A ∩B ∈ sets G)

Dynkin systems are now used to prove Dynkin’s lemma, which helps to generalize
statements about all sets of a ∩-stable set to the σ-closure of that set. We use
Dynkin’s lemma to prove the uniqueness of measures.

Theorem 1 (Dynkin’s lemma). For any Dynkin system D and ∩-stable sys-
tem G, if sets G ⊆ sets D ⊆ sets (sigma G), then sigma G = D.
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4.2 Measure Spaces

A measure space is a σ-algebra extended with a measure which maps measurable
sets to nonnegative, possibly infinite measure values. We introduce a new type
measure space which extends the algebra record. We represent measure values
with R , and abbreviate Ω = space M , A = sets M , and μ = measure M .

Definition 11 (Measure space)

record measure space = α algebra + measure :: (α set)⇒R
locale measure space = sigma algebra M for M :: αmeasure space +

assumes μ ∅ = 0
and ∀A ∈ A. 0 ≤ μ A
and ∀F. disjoint F ∧ rng F ⊆ A −→ μ

(⋃
i F i

)
=
∑

i μ (F i)

In the remaining sections we fix the measure space M . We prove the additivity,
monotonicity, and continuity from above and below for measures. For proving
the existence of a measure we provide Caratheodory’s theorem, which was ported
from Hurd [6] and Coble [2].

Theorem 2 (Caratheodory). Assume G is an algebra, and let be f a function
such that f is nonnegative on A, f ∅ = 0, and is f countably additive, i.e.,

∀F. disjoint F ∧ rng F ⊆ sets G −→ f
(⋃

i F i
)

=
∑

i f (F i)

then there exists a ν s.t. ∀A ∈ sets G. ν A = f A and sigma G�measure := ν�
is a measure space.

For our purposes to formalize product measures and to equate the products of
the Lebesgue measure, we prove the uniqueness of measures.

Theorem 3 (Uniqueness of measures). Assume

– μ and ν are two measures on sigma G
– G is ∩-stable
– C is a σ-finite cover of G: rng C ⊆ sets G, C ↑ space G, and ∀i. μ(C i) < ∞
– μ and ν are equal on G: ∀X ∈ sets G. μ X = ν X

then μ and ν are equal on sigma G.

An important class of measure spaces are σ-finite measure spaces. It requires a
sequence of finitely measurable sets which cover the entire space. The product
measure and the Radon-Nikodým theorem assume a σ-finite measure.

Definition 12 (σ-finite measure space)

locale sigma finite measure = measure space +
assumes ∃F. rng F ⊆ A ∧ F ↑ Ω ∧ ∀i. μ (F i) < ∞
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Almost Everywhere. Often predicates on measure spaces do not hold for all
elements in a measure space, but the elements where they do not hold form
a subset of a null set. In textbooks this is often written without an explicitly
quantified variable but rather with an appended “a.e.” (standing for “almost
everywhere”). We use a syntax with an explicit binder.

Definition 13 (Almost everywhere)
(AE x. P x) ←→ ∃N ∈ A. {x ∈ Ω| ¬ P x} ⊆ N ∧ μ N = 0

The definition of almost everywhere in [6] and [10] assumes that {x ∈ Ω| ¬ P x}
is a null set, i.e. it is also measurable.

Theorem 4 (AE modus ponens)
(AE x. P x) −→ (AE x. P x −→ Q x) −→ (AE x. Q x)

Our relaxed definition requires no measurability of Q in the modus ponens rule
of almost everywhere.

Theorem 5. (∀x ∈ Ω. P x) −→ (AE x. P x)

Let us take a look at the statement (AE x. f x < g x) −→ (AE x. f x ≤ g x).
This can be directly solved by AE modus ponens and theorem 5. The measura-
bility of f and g is not required.

4.3 Lebesgue Integral

The definition of the Lebesgue integral requires the concept of simple functions.
A simple function is a Borel-measurable step function (i.e. its range is a finite
set), or equivalently a step function where the preimage of every singleton set
containing an element of the range is measurable. The second formulation has the
advantage that the definition does not require the notion of Borel σ-algebras and
is thus more general, as it allows arbitrary ranges. The predicate simple function
is defined as follows:

Definition 14 (Simple function)

simple function f ←→ finite f [Ω] ∧ ∀x ∈ f [Ω]. f−1[{x}] ∩Ω ∈ A

While we use this definition only for functions f :: α⇒R , this is a nice char-
acterisation for finite random variables in probability theory. When the range of
f is R it is also representable as sum:

Lemma 5
∀x ∈ Ω. f x =

∑
y∈f [Ω]

y · χf−1[{y}]∩Ω x

This already suggests the definition of the integral
∫ S of a simple function f

with respect to the measure space M :



142 J. Hölzl and A. Heller

Definition 15 (Simple integral). Let f be a simple function.∫ S
f dM =

∑
y∈f [Ω] y · μ(f−1[{y}] ∩Ω)

To state the definition of the integral of functions f :: α⇒R , simple functions
have to be used as approximations from below of f . Then the integral is defined
as the supremum of all the simple integrals of the approximations.

Definition 16 (Positive integral)

∫ +
f dM = sup

{∫ S
g dM

∣∣∣ g ≤ f+ ∧ simple function g
}

The function f+ is the nonnegative part of f , i.e. f+ is zero when f is negative,
otherwise it is equal to f . Hence the positive integral is equal when the integrat-
ing functions are almost everywhere equal. Finally integration can be defined for
functions f :: α⇒R as usual.

Definition 17 (Lebesgue Integrability and Integral)

integrable M f ←→ f ∈ measurable M borel ∧(∫ +
x. (f x)∞ dM

)
< ∞∧

(∫ +
x. (−f x)∞ dM

)
< ∞∫

f dM =
(∫ +

x. (f x)∞ dM
)
−
(∫ +

x. (−f x)∞ dM
)

(Note that explicit type conversions from R to R have been omitted in this defi-
nition for the sake of readability.)

Remark: Textbooks usually write
∫

fdμ(x), where we instead specify the entire
measure space M and optionally bind the variable x directly after the integral
symbol,

∫
x. f x dM . If no variable is needed we write

∫
f dM , and a restricted

integral is abbreviated as
∫

x ∈ A.f x dM =
∫

x.f x · χA x dM .
Many proofs of properties about the integral follow the scheme of the defini-

tions and first establish the desired property for
∫ S , then for

∫ +, and eventually
for
∫
. The monotonicity of the integral is proven this way, for example.

Lemma 6 (Monotonicity). If f and g are measurable functions, then

(AE x. f x ≤ g x) −→
∫

f dM ≤
∫

g dM

Another way of constructing proofs about Borel-measurable functions u :: α⇒R
is: first, prove the desired property about finite simple functions, then, prove that
the property is preserved under the pointwise monotone limit of functions. For
this to work, we need a lemma stating that every Borel-measurable function
u :: α ⇒ R can be seen as the limit of a monotone sequence of finite simple
functions.

Lemma 7. Let u be a nonnegative and measurable function.

∃f. (∀i. simple function (f i) ∧ (∀x ∈ Ω. 0 ≤ f i x �= ∞)) ∧ f ↑ u
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To use this with the Lebesgue integral, there is a compatibility theorem, called
the monotone convergence theorem, which allows switching the supremum op-
erator and the positive integral.
Lemma 8 (Monotone convergence theorem). Let f :: N ⇒ α ⇒ R be a
sequence of nonnegative Borel-measurable functions, such that
∀i.∀x ∈ Ω. f i x ≤ f (i + 1) x. Then it holds that:

sup i.
∫ +

f i dM =
∫ +(sup i. f i) dM

The Monotone convergence theorem is used in the proof of Fubini’s theorem.
Another useful convergence theorem is the dominated convergence theorem. It
can be used when the monotonicity of the function sequence does not hold.
Lemma 9 (Dominated convergence theorem). Let u :: N ⇒ α ⇒ R be
a sequence of integrable functions, w :: α ⇒ R be an integrable function, and
v :: α⇒R be a function. If (∀i. |u i x| ≤ w x) and (λi. u i x) −→∞ v x for all
x ∈ Ω then integrable M v and

(
λi.
∫

u i dM
)
−→∞

∫
v dM .

To transfer results about integrals from one measure space to another one, the
following transformation lemma can be used.

Lemma 10. If T is M -M ′-measurable and measure M ′ A equals μ (T−1[A]∩Ω)
for all A ∈ sets M ′ and f is M ′-integrable, then f ◦ T is M ′-integrable and∫

f dM ′ =
∫

f ◦ T dM

4.4 Radon-Nikodým Derivative

The Radon-Nikodým theorem states that for each measure ν that is absolutely
continuous on M there exists an a.e.-unique density function to represent ν on
M . This is needed to define conditional expectation in probability theory and
mutual information in information theory. In this section we assume that M is
σ-finite.
Definition 18 (Radon-Nikodým derivative)

RN deriv M ν = SOME f ∈ measurable M borel.
(∀x ∈ Ω. 0 ≤ f x) ∧

(
∀X ∈ A. ν X =

(∫ +
x ∈ X. f x dM

))
To work with this definition we need to prove the existence of such a function.
Theorem 6 (Radon-Nikodým). If ν is a measure on M and ν is absolutely
continuous w.r.t. M , i.e., ∀A ∈ A. μ A = 0 −→ ν A = 0 then

RN deriv M ν ∈ measurable M borel

∧ ∀X ∈ A. ν X =
(∫ +

x ∈ X. RN deriv M ν x dM
)

The next theorem shows that two functions are a.e.-equal when they are equal
on all measurable sets, hence follows the uniqueness of RN deriv.

Theorem 7. If f and g are nonnegative and M -measurable and
∀A ∈ A.

(∫ +
x ∈ A. f x dM

)
=
(∫ +

x ∈ A. g x dM
)

then (AE x. f x = g x)
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4.5 Product Measure and Fubini’s Theorem

We first introduce the binary product of measure spaces, and later extend this
to arbitrary, finite products of measure spaces.

Binary Product Measure. The definition of a measure on a binary prod-
uct σ-algebra is straightforward. All we need to do is compose the integrals of
both measure spaces. With Fubini’s theorems we later show that the result is
independent of the order of integration.

Definition 19

bin algebraG :: αmeasure space⇒β measure space
⇒(α× β)measure space

bin algebraG M1 M2 = �space = space M1 × space M2,
sets = {A×B|A ∈ sets M1, B ∈ sets M2},
measure =

∫ +
x.
(∫ +

y. χA×B (x, y) dM2

)
dM1�

M1

⊗
m M2 = sigma(bin algebraG M1 M2)

In this section we assume that M1 and M2 are σ-finite measure spaces. We
verify the definition of the binary product measure by applying the measure to
an element A×B from the generating set of M1

⊗
m M2.

Lemma 11. If A ∈ sets M1 and B ∈ sets M2 then
measure (M1

⊗
m M2) (A×B) = measure M1 A ·measure M2 B .

Lemma 12. Show the measurability of the cut {y|(x, y) ∈ Q}
for all Q ∈ sets (M1

⊗
m M2) and all x.

{y|(x, y) ∈ Q} ∈ sets M2 (1)
(λx. measure M2 {y|(x, y) ∈ Q}) ∈ measurable M1 borel (2)

measure (M1

⊗
m M2) Q =

∫ +
x. measure M2 {y|(x, y) ∈ Q} dM1 (3)

Theorem 8. sigma finite measure (M1

⊗
m M2)

Fubini’s Theorem. From the product measure we get directly to the fact that
integrals on σ-finite measure spaces are commutative.

Lemma 13. If f is M1

⊗
m M2-measurable then(

λx.
∫ +

y. f (x, y) dM2

)
∈ measurable M1 borel and

∫ +
x.
(∫ +

y. f (x, y) dM1

)
dM2 =

∫ +
f d (M1

⊗
m M2) .

With theorem 3 we show that the pair swap function (λ(x, y).(y, x)) is measure
preserving between M1

⊗
m M2 and M2

⊗
m M1. This allows us to get symmetric

variants of (1), (2), and (3) without reproducing a symmetric proof.
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Corollary 2 (Fubini’s theorem on R ). If f is M1

⊗
m M2-measurable then

∫ +
x.
(∫ +

y. f (x, y) dM2

)
dM1 =

∫ +
y.
(∫ +

x. f (x, y) dM1

)
dM2

Lemma 13 can be extended to integrability on real numbers.

Lemma 14. If f is M1

⊗
m M2-integrable then

M1-AE x. integrable M2 (λy. f (x, y)) and∫
x.
(∫

y. f(x, y) dM2

)
dM1 =

∫
f d(M1

⊗
m M2) .

Finally, we prove Fubini’s theorem by this lemma and its symmetric variant.

Corollary 3 (Fubini’s theorem). If f is M1

⊗
m M2-integrable then∫

x.
(∫

y. f (x, y) dM2

)
dM1 =

∫
y.
(∫

x. f (x, y) dM1

)
dM2 .

Product Measures. Product spaces are modeled as function space, i.e. the
space of dependent products. In this section we assume M i is a σ-finite measure
space for all i. Product spaces can also be defined on arbitrary index sets I,
however this holds only on probability spaces. We assume a finite index set I.

Definition 20

prod algebraG :: ι set⇒(ι⇒α algebra)⇒(ι⇒α) algebra
prod algebraG I M = �space = (Π

E
i ∈ I. space (M i)) ,

sets =
{
(Π

E
i ∈ I. E i)

∣∣∣E. ∀i ∈ I. E i ∈ sets (M i)
}
�

Πm i ∈ I. M i = sigma (prod algebraG I M)�measure := SOME ν.
sigma finite measure (sigma (prod algebraG I M)�measure := ν�) ∧
∀E. (∀i ∈ I. E i ∈ sets (M i))

−→ ν (Π
E
i ∈ I. E i) =

∏
i∈I measure (M i) (E i)�

We abbreviate PI = (Πm i ∈ I. M i) and πI = measure PI . The defini-
tion of PI takes sigma (prod algebraG I M) and extends it with some mea-
sure ν which forms a σ-finite measure space and which is uniquely defined on
prod algebraG I M , i.e., the generating set. These properties only holds for PI

when such a measure function exists, we prove the existence by induction over
the finite set I.

Theorem 9. If I is a finite set then sigma finite measure PI and
∀E. (∀i. E i ∈ sets (M i)) −→ πI (Π

E
i ∈ I. E i) =

∏
i∈I measure (M i) (E i)

We use merge I J = (λ(x, y) i. if i ∈ I then x i else if i ∈ J then y i else ⊥) as
measure preserving function from PI

⊗
m PJ to PI∪J .

Lemma 15. If I and J are two disjoint finite sets and A ∈ sets PI∪J then

πI∪J A = measure (PI

⊗
m PJ ) ((merge I J)−1[A] ∪ space (PI

⊗
m PJ ))
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A finite index set I ′ is either represented as I ′ = I ∪ J , wih I and J finite, or
I ′ = {i}. We give rules how to handle integrals in both cases, this allows us to
iterate the Lebesgue integral on nonnegative functions in an inductive proof.

Lemma 16. If I and J are disjoint finite sets and f is PI∪J -measurable then∫ +
f dPI∪J =

∫ +
x.
(∫ +

y. f (merge I J (x, y)) dPJ

)
dPI

Lemma 17. If f is M i-measurable then∫ +
x. f (x i) dP{i} =

∫ +
f d(M i)

We extend these two lemmas to Lebesgue integrable functions. This helps us to
prove the distributivity of multiplication and integration by induction on I.

Corollary 4. If I �= ∅ is finite and f i is M i-integrable for all i ∈ I then∫
x.
(∏

i∈I f i (x i)
)
dPI =

∏
i∈I

(∫
(f i) d(M i)

)
.

4.6 Lebesgue Measure

We have now formalized the concepts of measure spaces, Lebesgue integration
and product spaces. An important measure space is the one on R, where each
interval [a, b] has as measure value the length of the interval, b − a. The Borel
σ-algebra is generated by these intervals. The corresponding measure is called
the Lebesgue-Borel measure, its completion is the Lebesgue measure.

Instead of following the usual construction of the Lebesgue measure as the
σ-extension of an interval measure we use the gauge integral2 available in the
multivariate analysis in Isabelle/HOL.3 The gauge integral is an extension of
the Riemann and also of the Lebesgue integral on Euclidean vector spaces. In
Isabelle/HOL the predicate integrable on A f states that the function f is gauge
integrable on the set A, in which case the gauge integral of f on the set A has
the real value integral A f . The gauge measure of a set A is the gauge integral
of the constant 1 function on A.

Since the gauge measure is restricted to finitely measurable sets, it cannot
be used directly as Lebesgue measure. However we can measure the indicator
function χA on the intervals [−n, n] for all natural numbers n. When χA is mea-
surable on all intervals, we define it as Lebesgue measurable and the Lebesgue
measure is the supremum of the gauge measures for all intervals [−n, n]. To define
the Lebesgue measure on multidimensional Euclidean spaces we use hypercubes
{x|∀i. |xi| ≤ n}. The σ-algebra of the Lebesgue measure on a Euclidean space α
consists of all A::α set which are gauge measurable on all intervals.

Definition 21 (Lebesgue measure)
lebesgueα = � space = U ,

sets = {A|∀n. integrable on {x|∀ i. |xi| ≤ n} (χA)}
measure = sup n. integral {x|∀ i. |xi| ≤ n} (χA)�

2 The gauge integral is also called the Henstock-Kurzweil integral.
3 The multivariate analysis in Isabelle/HOL is ported from a later version of [5].
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Theorem 10. The Lebesgue measure forms a σ-finite measure space.
sigma finite measure lebesgueα

From the definition of the Lebesgue measure it is easy to see that all Lebesgue
measurable simple functions whose integral is finite are also gauge integrable.
With the monotone convergence of the gauge integral we show that all nonneg-
ative Lebesgue measurable functions with a finite integral are gauge integrable.
And finally we show that all Lebesgue integrable functions are gauge integrable.

Theorem 11. If f is Lebesgue integrable then integrable on U f and
integral Uf =

∫
f d(lebesgueα) .

We know that lebesgueα is a σ-algebra, and since all intervals [a, b] are Lebesgue
measurable all Borel sets are Lebesgue measurable.

Lemma 18. A ∈ sets borel −→ A ∈ sets lebesgueα

We introduce the Lebesgue-Borel measure by changing the measurable sets from
the Lebesgue sets to the Borel sets.

Definition 22 (Lebesgue-Borel measure). λλα=lebesgueα�sets := sets borel �

Theorem 12. sigma finite measure λλα

With theorem 3 we know that λλα is equal to other measures introduced on
the Borel sets and based on the interval length. The Lebesgue-Borel measure
is defined as a sub-σ-algebra of the Lebesgue measure, hence Lebesgue-Borel
integrability induces gauge integrability.

Theorem 13. If f is λλα-integrable then integrable on Uf and
integral Uf =

∫
fdλλα.

Euclidean Vector Spaces and Product Measures. We relate the Euclidean
space α with the n-dimensional Lebesgue measure λλn = (Πm i ∈ {1, . . . , n}. λλR).
The function p2e :: (N⇒R)⇒α maps functions to vectors with (p2e f)i = f i.
Theorem 3 helps us to show that it is measure preserving between λλD(α) and α.4

Lemma 19. Any λλα-measurable set A satisfies

measure λλα A = measure λλD(α) (p2e−1[A] ∩ space λλD(α)).

From this follows the equivalence of integrals.

Theorem 14. If f is λλα-measurable then∫ +
f dλλα =

∫ +
x. f (p2e x) dλλD(α)

integrable λλα f ←→ integrable λλD(α) (f ◦ p2e)∫
f dλλα =

∫
x. f (p2e x) dλλD(α)

The Euclidean vector space formalizations in Isabelle/HOL include the dimen-
sionality in the vector type. Here it is not possible to use induction over the
dimensionality of the Euclidean space. With theorems 13 and 14 we equate the
gauge integral to the Lebesgue integral over λλn, we then use induction over n.

4 D(α) is the dimension of the euclidean space α.
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Table 1. Overview of the current formalizations of measure theory

Hurd Richter Coble Mhamdi Lester PVS Mizar HOL-Light Isabelle

R � � � �
Borel (open) � � � �
Integral � � � � � � � �
λλ [0, 1] � � � �
Products � RD(α+β) �
Dynkin � �

5 Discussion

Most measure theory textbooks assume that product spaces are built by iterating
binary products and that the Euclidean space is equivalent to the product of the
Lebesgue measure. In our case these are three different types, which we need
to relate. Using theorem 3 we show the equivalence of measure spaces of theses
types. This not only helps us to transfer between different types but also to avoid
repeated proofs. For example Fubini’s theorem needs the symmetric variant of
some theorems. Instead of repeating these proofs as the text books suggest we
show that the measure is equal under the pair swap function.

We also diverge from text books by directly constructing the binary product
measure and the Lebesgue measure. Usually text books show the existence of
a measure and then choose one meeting the specification. This is difficult in
theorem provers as the definition is not usable until the existence is proven.
Otherwise, we prefer to stay close to the standard formalizations of measure
theory concepts. Sometimes this requires more work if we only want to prove one
specific lemma, but it is easier to find textbook proofs usable for formalization.

Locales as mechanism for theory interpretation are convenient when proving
the Radon-Nikodým theorem and product measures. We instantiate measure
spaces restricted to sets obtained in the proof. By interpretation inside the proof
we have full access to the automation and lemmas provided by the locale.

Type classes simplify the introduction of R as it allows us to reuse syntax and
some theorems about lattices, arithmetic operations, topological spaces, limits,
and infinite series. We use the topological space type class to define the Borel
σ-algebra. This allows us to state theorems about Borel sets for R and R .

6 Related Work

Our work started as an Isabelle/HOL port of the HOL4 formalization done by
Coble [2]. We later reworked most of it to use the extended reals as measure
values and open sets as generator for the Borel σ-algebra. We also changed the
definition of the Lebesgue integral to the one found in Schilling’s textbook [12].
We define the integral of f as the supremum of all simple functions bounded
by f . Coble used the limit of the simple functions converging to f .
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Table 1 gives an overview of the current formalizations of measure theory
we are aware of. The columns list first the work of Hurd [6], Richter [11],
Coble [2], Mhamdi et al. [10], and Lester [8]. The second part of the columns
list theorem provers or libraries formalizing measure theory. Beginning with the
PVS-NASA library,5 the Mizar Mathematical Library (MML), the multivari-
ate analysis found in HOL Light and finally the work presented in this paper.
Mhamdi et al. represents the current state of HOL4, hence HOL4 is not listed.
The rows correspond to different measure theoretic concepts and features.

Hurd [6] formalizes a measure space on infinite boolean streams isomorphic
to the Lebesgue measure on the unit interval [0, 1]. His positive extended re-
als [7] are unrelated to this. Richter [11] formalizes the Lebesgue integral in
Isabelle/HOL and uses it together with Hurd’s bitstream measure. Richter in-
troduces the Borel σ-algebra, but only on right-bounded intervals in R.

Coble [2] uses product spaces and the Radon-Nikodým derivative on finite
sets to define mutual information for his formalization of information theory. He
ports Richter’s formalization of the Lebesgue integral to HOL4 and generalizes
the definition of σ-algebras to be defined on arbitrary spaces Ω �= U . While his
formalizations of the Lebesgue integral is on arbitrary measure spaces, he states
the Radon-Nikodým theorem and the product measure for finite sets only.

The work by Mhamdi et. al [10] extends Coble’s [2]. Their definitions of the
Lebesgue integral and Borel σ-algebra are comparable to the ones in this paper.
However, they do not formalize measure values as extended real numbers, but
only as plain reals. They define a more restricted version of the almost every-
where predicate, and do not give rules for the interaction with logical connectives.
They prove Markov’s inequality and the weak law of large numbers.

There is also the PVS formalization of topology by Lester [8]. He gives a
short overview of the formalized measure theory, which includes measures using
extended real numbers, a definition of almost everywhere, Borel σ-algebras on
topological spaces, and the Lebesgue integral. In recent developments the PVS-
NASA library contains binary product spaces and the proof that the Lebesgue
integral extends the Riemann integral. In PVS, abstract reasoning is performed
using parametrized theories, similar to our usage of locales.

Endou et. al. [3] proves monotone convergence of the Lebesgue integral in
the MML. It also contains measure spaces with extended real numbers, and the
Lebesgue measure. Merkl [9] formalized Dynkin systems and Dynkin’s lemma in
MML, however without a concrete application.

In HOL Light an extended version of Harrison’s work [5] introduces gauge in-
tegration on finitely-dimensional Euclidean spaces which is similar to the product
space of Lebesgue measures. This is then used to define a subset of the Lebesgue
measure, missing infinite measure values. The definition of Euclidean spaces
RD(α) and RD(α) allows to create the product RD(α+β). His theories are now
available in Isabelle/HOL and we use them to introduce the Lebesgue measure
and to show that Lebesgue integrability implies gauge integrability and that in
this case both integrals are equal.

5 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
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7 Conclusion

The formalizations presented in this paper form the foundations of measure
theory. Looking at the table of contents of Bauer’s textbook [1] we formalized
almost all of the first three chapters. What is missing are the function spaces
Lp, stochastic convergence, and the convolution of finite Borel measures. Isabelle
supported us with its type classes allowing to reuse definitions and theorems for
limits and arithmetic operations on R . We used Isabelle’s locales to introduce
the concepts of the different set systems and spaces used in measure theory.

With product spaces and the Radon-Nikodým derivative it is possible to com-
bine the concepts introduced by Hurd [6] and Coble [2]. We can now verify
information theoretic properties of probabilistic programs.

This paper is the first to derive the Radon-Nikodým theorem and the multi-
dimensional version of Fubini’s theorem. Our next step concerns the development
of probability theory. We already formalized conditional expectation, Kullback-
Leibler divergence, mutual information, and infinite products measure using the
measure theory presented in this paper. The details are available at the URL
given on page 2. The future goals concern the formalization of infinite sequences
of independent random variables and the central limit theorem as well as Markov
chains and Markov decision processes.

Acknowledgments. We would like to thank Lawrence C. Paulson for porting
Coble’s measure space formalization from HOL4 to Isabelle/HOL and to Robert
Himmelmann for formalizing the first iteration of the Lebesgue measure.
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Abstract. We show how to automate termination proofs for recursive
functions in (a first-order subset of) Isabelle/HOL by encoding them as
term rewrite systems and invoking an external termination prover. Our
link to the external prover includes full proof reconstruction, where all
necessary properties are derived inside Isabelle/HOL without oracles.
Apart from the certification of the imported proof, the main challenge is
the formal reduction of the proof obligation produced by Isabelle/HOL to
the termination of the corresponding term rewrite system. We automate
this reduction via suitable tactics which we added to the IsaFoR library.

1 Introduction

In a proof assistant based on higher-order logic (HOL), such as Isabelle/HOL
[15], recursive function definitions typically require a termination proof. To re-
lease the user from finding suitable termination arguments manually, it is desir-
able to automate these termination proofs as much as possible.

There have already been successful approaches to port and adapt existing
termination techniques from term rewriting and other areas to Isabelle [5,12].
They indeed increase the degree of automation for termination proofs of HOL
functions. However, these approaches do not cover all powerful techniques that
have been developed in term rewriting, e.g., [7,20]. These techniques are imple-
mented in a number of termination tools (e.g., AProVE [9], TTT2 [11] and many
others) that can show termination of (first-order) term rewrite systems (TRSs)
automatically. (In the remainder we use ‘termination tool’ exclusively to refer
to such fully automatic and external provers.) Instead of porting further proof
techniques to Isabelle, we prefer to use the existing termination tools, giving
direct access to an abundance of methods and their efficient implementations.

Using termination tools inside proof assistants has been an open problem for
some time and is often mentioned as future work when discussing certification of
termination proofs [3,6]. However, this requires more than a communication in-
terface between two programs. In LCF-style proof assistants [10] such as Isabelle,
all proofs must be checked by a small trusted kernel. Thus, integrating external
tools as unverified oracles is unsatisfactory: any error in the external tool or in
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the integration code would compromise the overall soundness. Instead, the ex-
ternal tool must provide a certificate that can be checked by the proof assistant.

Our approach involves the following steps.

1. Generate the definition of a TRS Rf which corresponds to the function f .
2. Prove that termination of Rf indeed implies the termination goal for f .
3. Run the termination tool on Rf and obtain a certificate.
4. Replay the certificate using a formally verified checker.

While steps 1 and 3 are not hard, and the ground work for step 4 is already
available in the IsaFoR library [17,19], which formalizes term rewriting and sev-
eral termination techniques,1 this paper is concerned with the missing piece, the
reduction of termination proof obligations for HOL functions to the termination
of a TRS. This is non-trivial, as the languages differ considerably. Termination
of a TRS expresses the well-foundedness of a relation over terms, i.e., of type
(term × term) set, where terms are first-order terms. In contrast, the termina-
tion proof obligation for a HOL function states the well-foundedness of its call
relation, which has the type (α × α) set , where α is the argument type of the
function. In essence, we must move from a shallow embedding (the functional
programming fragment of Isabelle/HOL) to a deep embedding (the formalization
of term rewriting in IsaFoR).

The goal of this paper is to provide this formal relationship between termi-
nation of first-order HOL functions and termination of TRSs. More precisely,
we develop a tactic that automatically reduces the termination proof obligation
of a HOL function to the termination problem of a TRS. This allows us to use
arbitrary termination tools for fully automated termination proofs inside Isa-
belle. Thus, powerful termination tools become available to the Isabelle user,
while retaining the strong soundness guarantees of an LCF-style proof assistant.
Since our approach is generic, it automatically benefits from future improve-
ments to termination tools and the termination techniques within IsaFoR. Our
implementation is available as part of IsaFoR.

Outline of this paper. We give a short introduction on term rewriting, HOL and
HOL functions in §2. Then we show our main result in §3 on how to systemati-
cally discharge the termination proof obligation of a HOL function via proving
termination of a TRS. In §4 we present some examples which show the strengths
and limitations of our technique. How to extend our approach to support more
HOL functions is discussed in §5. We conclude in §6.

2 Preliminaries

2.1 Higher-Order Logic

We consider classical HOL, which is based on simply-typed lambda-calculus,
enriched with a simple form of ML-like polymorphism. Among its basic types
are a type bool of truth values and a function space type constructor ⇒ (where
α ⇒ β denotes the type of total functions mapping values of type α to values of
1 See http://cl-informatik.uibk.ac.at/software/ceta for a list of supported techniques.

http://cl-informatik.uibk.ac.at/software/ceta
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type β). Sets are modeled by a type α set, which just abbreviates α ⇒ bool.
By an add-on tool, HOL supports algebraic datatypes, which includes the

types nat (with constructors 0 and Suc) and list (with constructors [ ] and #).
Another add-on tool, the function package [13], completes the functional pro-

gramming layer by allowing recursive function definitions, which are not covered
by the primitives of the logic. Since it internally employs a well-founded recur-
sion principle, it requires the user to prove well-foundedness of a certain relation,
extracted automatically from the function definition (cf. §2.3). This proof obliga-
tion, by its construction, directly corresponds to the termination of the function
being defined. It is the proof of this goal that we want to automate.

As opposed to functional programming languages, there is no operational
semantics for HOL; the meaning of its expressions is instead given by a set-
theoretic denotational semantics. As a consequence, there is no direct notion of
evaluation or termination of an expression. Thus, when we informally say that
we prove “termination of a HOL function,” this simply means that we discharge
the proof obligation produced by the function package.

2.2 Supported Fragment

Isabelle supports a wide spectrum of specifications, using various forms of induc-
tive, coinductive and recursive definitions, as well as quantifiers and Hilbert’s
choice operator. Clearly, not all of them can be easily expressed using TRSs.
Thus, we must limit ourselves to a subset which is sufficiently close to rewriting,
and consider only algebraic datatypes, given by a set of constructors together
with their types, and recursive functions, given by their defining equations with
pattern matching. Additionally, we impose the following restrictions:

1. Functions and constructors must be first-order (no functions as arguments).
2. Patterns are constructor terms and must be linear and non-overlapping.
3. Patterns must be complete.
4. Expressions consist of variables, function applications, and case-expressions

only. In particular, partial applications and λ-abstractions are excluded.

Linearity is always satisfied by function definitions that are accepted by Isabelle’s
function package, and pattern overlaps are eliminated automatically. For ease of
presentation, we assume that there is no mutual recursion (f calls g and g calls
f) and no nested recursion (arguments of a recursive call contain other recursive
calls; they may of course contain calls to other defined functions).

Most of the above restrictions are not fundamental, and we discuss in §5 how
some of them can be removed. Our chosen fragment of HOL rather represents a
compromise between expressive power and a reasonably simple presentation and
implementation of our reduction technique. Note that case-expressions encom-
pass the simpler if-expressions, which can be seen as case-expressions on type
bool. Isabelle’s (non-recursive and monomorphic) let-expressions can simply be
inlined or replaced by case-expressions if patterns are involved.

The functions half and log below (log computes the logarithm) illustrate our
supported fragment and will be used as running examples throughout this paper.
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half 0 = 0
half (Suc 0) = 0
half (Suc (Suc n)) = Suc (half n)
log n = (case half n of 0 ⇒ 0 | Suc m ⇒ Suc (log (Suc m)))

2.3 Function Definitions By Well-Founded Recursion

When the user writes a recursive definition, the function package analyzes the
equations and extracts the recursive calls. This information is then used to syn-
thesize the termination proof obligation.

Formally, we define the operation callsf that computes the set of calls to f
inside an expression, each together with a condition under which it occurs.

• callsf (g e1 . . . ek) ≡ callsf (e1)∪ . . .∪callsf (ek) if g is a constructor or
a defined function other than f ,

• callsf (f e1 . . . en) ≡ callsf (e1)∪ . . .∪callsf (en)∪{(e1, . . . , en,True)},
• callsf (x) ≡ ∅ for all variables x, and
• callsf (case e of p1 ⇒ e1 | . . . | pk ⇒ ek) ≡ callsf (e) ∪ (callsf (e1) ∧ e =

p1)∪ . . .∪(callsf (ek)∧e = pk) where callsf (ei)∧e = pi is like callsf (ei),
but every (t1, . . . , tm, ϕ) ∈ callsf (ei) is replaced by (t1, . . . , tm, ϕ∧ e = pi).

The termination proof obligation requires us to exhibit a strongly normaliz-
ing relation � such that for each defining equation f p1 . . . pn = e and each
(r1, . . . , rn, φ) ∈ callsf (e) we can prove φ =⇒ (p1, . . . , pn) � (r1, . . . , rn).

Consider for example the definition of half, where we have callshalf(0) ≡ ∅
and callshalf(Suc (half n)) ≡ {(n,True)}. We obtain the following obligation.

1. SN ?R
2. ∀n. (Suc (Suc n), n) ∈ ?R

The variable ?R :: (nat × nat) set is a schematic variable, which can be instan-
tiated during the proof, i.e., it can be seen as existentially quantified.

For log, we have callslog(case half n of 0 ⇒ 0 | Suc m ⇒ Suc (log (Suc m))) ≡
{(Suc m, half n = Suc m)}, and the following proof obligation is produced.

1. SN ?R
2. ∀n m. half n = Suc m =⇒ (n, Suc m) ∈ ?R

Two things should be noted here. First, the fact that the recursive call is guarded
by a case-expression is reflected by a condition in the corresponding subgoal.
Without this condition, which models the usual evaluation behavior of case,
the goal would be unprovable. Second, the goal may refer to previously defined
functions. To prove it, we must refer to properties of these functions, either
through their definitions, or through other lemmas about them.

When the proof obligation is discharged, the function package can use the
result to derive the recursive equations as theorems (previously, they were just
conjectures—consider the recursive equation f x = Suc (f x), which is incon-
sistent). Additionally, an induction rule is provided, which expresses “induction
along the computation.” The induction rules for half and log are shown below.
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P 0 =⇒ P (Suc 0) =⇒ (∀n. P n =⇒ P (Suc (Suc n))) =⇒ ∀n. P n
(∀n. (∀m. half n = Suc m =⇒ P (Suc m)) =⇒ P n) =⇒ ∀n. P n

2.4 IsaFoR - Term Rewriting Formalized in Isabelle/HOL

In the following, we assume that the reader is familiar with the basics of term
rewriting [1]. Many notions and facts from rewriting have been formalized in the
Isabelle library IsaFoR [19]. Before we can give the reduction from termination of
HOL functions to termination of corresponding TRSs in §3, we need some more
details on IsaFoR. Terms are represented straightforwardly by the datatype:

datatype (α, β) term = Var β | Fun α ((α, β) term list)

The type variables α and β, which represent function and variable symbols,
respectively, are always instantiated with the type string in our setting. Hence,
we abbreviate (string, string) term by term in the following. For example, the
term f(x, y) is represented by Fun “f” [Var “x”,Var “y”]. A TRS is represented
by a value of type (term× term) set.

The semantics of a TRS is given by its rewrite relation →R, defined by closing
R under contexts and substitutions. Termination ofR is formalized as SN (→R).

IsaFoR formalizes many criteria commonly used in automated termination
proofs. Ultimately, it contains an executable and terminating function

check-proof :: (term× term) list ⇒ proof ⇒ bool

and a proof of the following soundness theorem:

Theorem 1 (Soundness of Check). check-proof R prf =⇒ SN (→R)

Here, prf is a certificate (i.e., a termination proof of R) from some external
source, encoded as a value of a suitable datatype, and R is the TRS under
consideration.2 Whenever check-proof returns True for some given TRS R and
certificate prf, we have established (inside Isabelle) that prf is a valid termination
proof for R. Thus, we can prove termination of concrete TRSs inside Isabelle.

The technical details on the supported termination techniques and the struc-
ture of the certificate (i.e., the type proof ) are orthogonal to our use of the check
function, which only relies on Theorem 1.

2.5 Terminology and Notation

The layered nature of our setting requires that we carefully distinguish three
levels of discourse. Primarily, there is higher-order logic (implemented in Isa-
belle/HOL), in which all mechanized reasoning takes place. The termination
goals we ultimately want to solve are formulated on this level. Of course, the
syntax of HOL consists of terms, but to distinguish them from the embedded
2 To be executable, check-proof demands that R is given as a list of rules and not as

a set. We ignore this difference, since it is irrelevant for this paper.
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term language of term rewriting, we refer to them as expressions. They are uni-
formly written in italics and follow the conventions of the lambda-calculus (in
particular, function application is denoted by juxtaposition). HOL equality is
denoted by =. For example, the definition of half above is a HOL expression.

The second level is the “sub-language” of first-order terms, which is deeply
embedded into HOL by the datatype term. When we speak of a term, we al-
ways refer to a value of that type, not an arbitrary HOL expression. While this
embedding is simple and adequate, the concrete syntax with the Fun and Var
constructors and string literals is rather unwieldy. Hence, for readability, we use
sans-serif font to abbreviate the constructors and the quotes: Instead of Var “v”
we write v, and instead of Fun “f” [. . .] we write f(. . .), omitting the parentheses
() for nullary functions. This recovers the well-known concrete syntax of term
rewriting, but we must keep in mind that the constructors and strings are still
present, although they are not written as such.

Finally, we must relate the two languages with each other, and describe the
proof procedures that derive the relevant properties. While the properties them-
selves can be stated in HOL for each concrete instance, the general schema can-
not, as it must talk about “all HOL expressions.” Thus, we use a meta-language
as another level above HOL, in which we express the transformations and tac-
tics. This level corresponds to our implementation (in ML). Functions of the
meta-language are written in small capitals (e.g., callsf ), and variables of
the meta-language, which typically range over arbitrary HOL expressions or pat-
terns, are written e or p, possibly with annotations. For HOL expressions that
are arguments of recursive calls we also use r. Equality of the meta-language
is written ≡ and denotes syntactic equality of HOL expressions. In particular,
e ≡ e′ implies e = e′, since HOL’s equality is reflexive.

Both embeddings are deep, that is, each level can talk about the syntax of the
lower levels. As a simple example, the concept of a ground term can be defined
as a recursive HOL function ground :: term ⇒ bool:

ground (Var x ) = False
ground (Fun f ts) = (∀t∈set(ts). ground t)

Then we can immediately deduce that ground (f(x)) = False, due to the presence
of x. Note however that the similar-looking statement ground (f(x)) = False is
not uniformly true. More precisely, its universal closure ∀x. ground (f(x)) = False
does not hold, since we could instantiate x with the term c (i.e., Fun “c” [ ]).
Thus, we must not confuse variables of the different levels. Obviously, we cannot
quantify over a variable x, which is just the Var constructor applied to a string.

Similarly, the meta-language can talk about the syntax of HOL, as in the
definition of callsf , which is recursive over the structure of HOL expressions.

3 The Reduction to Rewriting

3.1 Encoding Expressions and Defining Equations

We define a straightforward encoding of HOL expressions as terms, denoted by
the meta-level operation enc. For case-free expressions, we turn variables into
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term variables and (curried) applications into applications on the term level:

enc(x ) ≡ x

enc(f e1 . . . en) ≡ f(enc(e1), . . . ,enc(en))

Each case-expression is replaced by a new function symbol, for which we will
include additional rules below. To simplify bookkeeping, we assume that each
occurrence of a case-expression is annotated with a unique integer j.

enc(casej e of p1 ⇒ e1 | . . . | pk ⇒ ek)
≡ casej(enc(e), enc(y1), . . . ,enc(ym))

where y1, . . . , ym are all variables that occur free in some ei but not in pi.
The operation rules yields the rewrite rules for a function or case-expression.

For a function f with defining equations �1 = r1, . . . , �k = rk, they are

rules(f) ≡ { enc(�1) → enc(r1), . . . , enc(�k) → enc(rk) } .

For the case-expression casej e of p1 ⇒ e1 | . . . | pk ⇒ ek we have

rules(casej) ≡ { casej(enc(p1), enc(y1), . . . ,enc(ym)) → enc(e1),
. . . ,

casej(enc(pk)), enc(y1), . . . ,enc(ym)) → enc(ek) } .

We define the TRS for f as Rf = rules(f)∪
⋃

g∈Sf
rules(g) where Sf is the

set of all functions that are used (directly or indirectly) by f . Our encoding is
similar to the well known technique of unraveling which transforms conditional
into unconditional TRSs [14,16].3

For example, Rlog is defined as follows and completely contains Rhalf.

half(0) → 0 log(n) → case0(half(n))
half(Suc(0)) → 0 case0(0) → 0

half(Suc(Suc(n))) → Suc(half(n)) case0(Suc(m)) → Suc(log(Suc(m)))

3.2 Embedding Functions

At this point, we have defined a translation, but we cannot reason about it in
Isabelle, since enc is only an extra-logical concept, defined on the meta-level. In
fact, it is easy to see that it cannot be defined in HOL: If we had a HOL function
enc satisfying enc 0 = 0 and enc (half 0) = half(0), we would immediately have
a contradiction, since half 0 = 0, and half(0) �= 0, but a function must always
yield the same result on the same input.

In a typical reflection scenario, we would proceed by defining an interpretation
for term. For example, if we were modeling the syntax of integer arithmetic
expressions, then we could define a function eval :: term ⇒ int (possibly also
depending on a variable assignment) which interprets terms as integers. However,
3 It would be possible to directly generate dependency pair problems. However, tech-

niques like [18] and several termination tools rely on the notion of “minimal chains,”
which is not ensured by our approach.
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in our setting, the result type of such a function is not fixed, as our terms
represent HOL expressions of arbitrary types. Thus, the result type of eval would
depend on the actual term it is applied to. This cannot be expressed in a logic
without dependent types, which means we cannot use this approach here.

Instead, we take the opposite route: For all relevant types σ, we define a
function embσ :: σ ⇒ term, mapping values of type σ to their canonical term
representation.

Using Isabelle’s type classes, we use a single overloaded function emb, which
belongs to a type class embeddable. Concrete datatypes can be declared to be
instances of this class by defining emb, usually by structural recursion w.r.t. the
datatype. For example, here are the definitions for the types nat and list :

emb 0 = 0 emb [ ] = Nil
emb (Suc n) = Suc(emb n) emb (x # xs) = Cons(emb x , emb xs)

This form of definition is canonical for all algebraic datatypes, and suitable
definitions of emb can be automatically generated for all user-defined datatypes,
turning them into instances of the class embeddable. This is analogous to the
instances generated automatically by Haskell’s “deriving” statement. It is also
possible to manually provide the definition of emb for other types if they behave
like datatypes like the predefined type bool for the Booleans.

Note that by construction, the result of emb is always a constructor ground
term. For a HOL expression e that consists only of datatype constructors, (e.g.,
Suc (Suc 0)), we have emb e = enc(e). For other expressions this is not the case,
e.g., emb (half 0) = emb 0 = 0, but enc(half 0) ≡ half(0).

To formulate our proofs, we need another encoding of expressions as terms:
The operation genc is a slight variant of enc, which treats variables differently,
mapping them to their embeddings instead of term variables.

genc(x ) ≡ emb x
genc(f e1 . . . en) ≡ f(genc(e1), . . . ,genc(en))
genc(casej e of p1 ⇒ e1 | . . . | pk ⇒ ek)

≡ casej(genc(e),genc(y1), . . . ,genc(ym))

where y1, . . . , ym are all variables that occur free in some ei but not in pi.
Hence, genc(e) never contains term variables. However, it contains the same

HOL variables as e. For example, genc(half (Suc n)) ≡ half(Suc(emb n)).

3.3 Rewrite Lemmas

The definitions of Rhalf and Rlog above are straightforward, but reasoning with
them is clumsy and low-level: To establish a single rewrite step, we must extract
the correct rule (that is, prove that it is in the set Rhalf or Rlog), invoke closure
under substitution, and construct the correct substitution explicitly as a function
of type string ⇒ term.

To avoid such repetitive reasoning, we automatically derive an individual
lemma for each rewrite rule. From the definition of Rhalf, we obtain the fol-
lowing rules, which we call rewrite lemmas:
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half(0) →Rhalf 0 half(Suc(0)) →Rhalf 0
∀t . half(Suc(Suc(t))) →Rhalf Suc(half(t))

Note that the term variable n in the last rule has been turned into a universally-
quantified HOL variable by applying the “generic substitution” {n → t}. The
advantage of this format is that applying a rewrite rule merely involves instan-
tiating a universal quantifier, for which we can use the matching facilities of
Isabelle. In particular, we can instantiate t with emb n, which in general results
in a rewrite lemma of the form genc(f p1 . . . pn) →R genc(e) for a defining
equation f p1 . . . pn = e.

3.4 The Simulation Property

The following property connects our generated TRSs with HOL expressions.

Definition 2 (Simulation Property). For every expression e and R =
⋃
{Rf

| f occurs in e}, the simulation property for e is the statement

genc(e) →∗
R emb e.

As we cannot quantify over all HOL expressions within HOL itself, we cannot
formalize that the simulation property holds for all e.

However, we will devise a tactic that derives this property for any given con-
crete expression. The basic building blocks of such proofs are lemmas of the
following form, which are derived for each function symbol and can be com-
posed to show the simulation property for a given expression.

Definition 3 (Simulation Lemma). The simulation lemma for a function f
of arity n is the statement

∀x1 . . . xn. f(emb x1, . . . , emb xn) →∗
Rf emb (f x1 . . . xn) .

E.g., the simulation lemma for half is ∀n. half(emb n) →∗
Rhalf emb (half n).

The lemma claims that the rules that we produced for f can indeed be used to
reduce a function application to the (embedding of) the value of the function. Of
course, this way of saying “Rf computes f” admits the possibility that there are
otherRf -reductions that lead to different normal forms or that do not terminate,
since we are not requiring confluence or strong normalization. But this form of
simulation lemma is sufficient for our purpose.

We show in §3.6 how simulation lemmas are proved automatically.

3.5 Reduction of Termination Goals

After having proved termination of Rf using a termination tool in combination
with IsaFoR and Theorem 1, we now show how to use this result to solve the
termination goal for the HOL function f . Recall from §2.3 that we must exhibit
a strongly normalizing relation � such that φ =⇒ (p1, . . . , pn) � (r1, . . . , rn)
for all (r1, . . . , rn, φ) ∈ callsf (e) for each defining equation f p1 . . . pn = e.
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To this end, we first define � as →Rf ∪ � where � is the strict subterm
relation. The addition of � is required to strip off constructors and non-recursive
function applications that are wrapped around recursive calls in right-hand sides
of Rf . Since →Rf is strongly normalizing and closed under contexts, also � is
strongly normalizing. This allows us to finally choose � as the following relation.

(x1, . . . , xn) � (y1, . . . , yn) iff f(emb x1, . . . , emb xn)�+ f(emb y1, . . . , emb yn)

It remains to show that the arguments of recursive calls decrease w.r.t. �.
That is, for each recursive call we have a goal of the form

φ =⇒ f(emb p1, . . . , emb pn)�+ f(emb r1, . . . , emb rn)

where f p1 . . . pn = e is a defining equation of f and (r1, . . . , rn, φ) ∈ callsf (e).
In the following, we illustrate the automated proof of this goal.

Note that since the pi’s are patterns, we have emb pi = genc(pi), and hence

f(emb p1, . . . , emb pn)
= f(genc(p1), . . . ,genc(pn)) (pi are patterns)
≡ genc(f p1 . . . pn) (definition of genc)

→Rf genc(e) (rewrite lemma)

Thus, it remains to construct a sequence genc(e)�∗ f(emb r1, . . . , emb rn),
which reduces the right-hand side of the definition to a particular recursive call,
eliminating any surrounding context. We proceed recursively over e.

• If e ≡ g e1 . . . em for a constructor g or a defined function symbol g �≡ f ,
then (r1, . . . , rn, φ) ∈ calls(ei) for some particular i. Hence, we have

genc(e)
≡ g(genc(e1), . . . ,genc(em)) (definition of genc)
� genc(ei) (definition of �)
�∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

• If e ≡ f e1 . . . en then (since we excluded nested recursion) we have ei = ri

for all i. Hence, we have

genc(e)
≡ f(genc(r1), . . . ,genc(rn)) (definition of genc)

→∗
Rf f(emb r1, . . . , emb rn) (simulation property)

• If e ≡ casej e0 of p1 ⇒ e1 | . . . | pk ⇒ ek then we distinguish where the
recursive call is located. If (r1, . . . , rn, φ) ∈ callsf (e0), then we have

genc(e)
≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)
� genc(e0) (definition of �)
�∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

Otherwise, φ ≡ (χ∧ e0 = pi) for some χ and 1 � i � k, and (r1, . . . , rn, χ) ∈
calls(ei). We may therefore use the assumption e0 = pi and proceed with
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genc(e)
≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

→∗
Rf casej(emb e0,genc(y1), . . . ,genc(ym)) (simulation property)
= casej(emb pi,genc(y1), . . . ,genc(ym)) (assumption e0 = pi)
= casej(genc(pi),genc(y1), . . . ,genc(ym)) (since pi is a pattern)

→Rf genc(ei) (rewrite lemma)
�∗ f(emb r1, . . . , emb rn) (apply tactic recursively)

3.6 Proof of the Simulation Property

We have seen that for the reduction of termination goals it is essential to use
the simulation property genc(e) →∗

Rf emb e for expressions e that occur below
recursive calls or within conditions that guard a recursive call. Below, we show
how this property is derived for an individual expression, assuming that we
already have simulation lemmas for all functions that occur in it. We again
proceed recursively over e.

• If e is a HOL variable x then genc(e) ≡ genc(x) ≡ emb x ≡ emb e and
thus, the result follows by reflexivity of →∗

Rf .
• If e ≡ g e1 . . . ek for a function symbol g then

genc(e)
≡ g(genc(e1), . . . ,genc(ek)) (definition of genc)

→∗
Rf g(emb e1, . . . , emb ek) (apply tactic recursively)

→∗
Rf emb (g e1 . . . ek) (simulation lemma for g)
≡ emb e

• If e ≡ casej e0 of p1 ⇒ e1 | . . . | pk ⇒ ek then we construct the following
rewrite sequence:

genc(e)
≡ casej(genc(e0),genc(y1), . . . ,genc(ym)) (definition of genc)

→∗
Rf casej(emb e0,genc(y1), . . . ,genc(ym)) (apply tactic recursively)

Now we apply a case analysis on e0, which must be equal (in HOL, not
syntactically) to one of the patterns. In each particular case we may assume
e0 = pi. Then we continue:

casej(emb e0,genc(y1), . . . ,genc(ym))
= casej(emb pi,genc(y1), . . . ,genc(ym)) (assumption e0 = pi)
= casej(genc(pi),genc(y1), . . . ,genc(ym)) (since pi is a pattern)

→Rf genc(ei) (rewrite lemma)
→∗

Rf emb ei (apply tactic recursively)
= emb e (assumption e0 = pi)
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The tactic above assumes that simulation lemmas for all functions in e are al-
ready present. Note the simulation lemma is trivial to prove if f is a constructor,
since f(emb x1, . . . , emb xn) = emb (f x1 . . . xn) by definition of emb.

For defined symbols of non-recursive functions the simulation lemmas are de-
rived by unfolding the definition of the function and applying the tactic above.
Thus, simulation lemmas are proved bottom-up in the order of function depen-
dencies. When a function is recursive, the proof of its simulation lemma proceeds
by induction using the induction principle from the function definition.

Example 4. We show how the simulation lemma for log is proved, assuming that
the simulation lemmas for 0, Suc, and half are already available.

So our goal is to show log(emb n) →∗
Rlog emb (log n) for any n :: nat. We apply

the induction rule of log and obtain the following induction hypothesis.

∀m. half n = Suc m =⇒ log(emb (Suc m)) →∗
Rlog emb (log (Suc m))

Let c abbreviate case half n of 0 ⇒ 0 | Suc m ⇒ Suc (log (Suc m)). Then

log(emb n)
→Rlog case0(half(emb n)) (rewrite lemma)
→∗

Rlog case0(emb (half n)) (simulation lemma of half )

We continue by case analysis on half n. We only present the more interesting
case half n = Suc m (the other case half n = 0 is similar):

case0(emb (half n))
= case0(emb (Suc m)) (assumption half n = Suc m)
= case0(Suc(emb m)) (def. of emb)

→Rlog Suc(log(Suc(emb m))) (rewrite lemma)
→∗

Rlog Suc(log(emb (Suc m))) (simulation lemma of Suc)
→∗

Rlog Suc(emb (log (Suc m))) (induction hypothesis)
→∗

Rlog emb (Suc (log (Suc m))) (simulation lemma of Suc)
= emb c (assumption half n = Suc m)
= emb (log n) (def. of log)

4 Examples

We show some characteristic examples that illustrate the strengths and weak-
nesses of our approach. Each example is representative for several similar ones
that occur in the Isabelle distribution.

Example 5. Consider binary trees defined by the type

datatype tree = E | N tree nat tree
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and a function remdups that removes duplicates from a tree. The function is
defined by the following equations (the auxiliary function del removes all occur-
rences of an element from a tree; we omit its straightforward definition here):

remdups E = E
remdups (N l x r) = N (remdups (del x l)) x (remdups (del x r))

The termination argument for remdups relies on a property of del : the result of
del is smaller than its argument. In Isabelle, the user must manually state and
prove (by induction) the lemma size (del x t) ≤ size t, before termination can
be shown. Here, size is an overloaded function generated automatically for every
algebraic datatype.

For a termination tool, termination of the related TRS is easily proved using
standard techniques, eliminating the need for finding and proving the lemma.

Example 6. The following function (originally due to Boyer and Moore [4]) nor-
malizes conditional expressions consisting of atoms (AT ) and if-expressions (IF ).

norm (AT a) = AT a
norm (IF (AT a) y z ) = IF (AT a) (norm y) (norm z )
norm (IF (IF u v w) y z ) = norm (IF u (IF v y z ) (IF w y z ))

Isabelle’s standard size measure is not sufficient to prove termination of norm,
and a custom measure function must be specified by the user. Using a termina-
tion tool, the proof is fully automatic and no measure function is required.

Example 7. The Isabelle distribution contains the following implementation of
the merge sort algorithm (transformed into non-overlapping rules internally):

msort [ ] = [ ]
msort [x ] = [x ]
msort xs = merge (msort (take (length xs div 2) xs)) (msort (drop
(length xs div 2) xs))

The situation is similar to Example 5, as we must know how take and drop affect
the length of the list. However, in this case, Isabelle’s list theory already provides
the necessary lemmas, e.g., length (take n xs) = min n (length xs). Together with
the built-in arithmetic decision procedures (which know about div and min),
the termination proof works fully automatically.

For termination tools, the proof is a bit more challenging and requires tech-
niques that are not yet formalized in IsaFoR (in particular, the technique of
rewriting dependency pairs [8]). Thus, our connection to termination tools can-
not handle msort yet. However, when this technique is added to IsaFoR in the
future, no change will be required in our implementation to benefit from it.

These examples show the main strength of our reduction to rewriting: absolutely
no user input in the form of lemmas or measure functions is required. On the
other hand, Isabelle’s ability to pick up previously established results can make
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the built-in termination prover surprisingly strong in the presence of a good li-
brary, as the msort example shows. Even though that example can be solved
by termination tools (and only the formalization lags behind), it shows an in-
trinsic weakness of the approach, since existing facts are not used and must be
rediscovered by the termination tool if necessary.

5 Extensions

In this section, we reconsider the restrictions imposed in §2.2.

Nested Recursion. So far, we excluded nested recursion like f (Suc n) = f (f n).
The problem is that to prove termination of f we need its simulation lemma to
reduce the inner call in the proof of the outer call, cf. §3.5. But proving the sim-
ulation lemma uses the induction rule of f , which in turn requires termination.

To solve this problem, we can use the partial induction rule that is gener-
ated by the function package even before a termination proof [13]. This rule,
which is similar to the one used previously, contains extra domain conditions
of the form domf x. It allows us to derive the restricted simulation lemma
domf n =⇒ f(emb n) →∗

Rf emb (f n). In the termination proof obligation for
the outer recursive call, we may assume this domain condition for the inner call
(a convenience provided by the function package), so that this restricted form of
simulation lemma suffices. Hence, dealing with nested recursion simply requires
a certain amount of additional bookkeeping.

Underspecification. So far, we require functions to be completely defined, i.e., no
cases are missing in left-hand sides or case-expressions. However, head (x# xs) =
x is a common definition. It is internally completed by head [ ] = undefined in
Isabelle, where undefined :: α is an arbitrary but unknown value of type α.

For such functions, we cannot derive the simulation lemma, since this would
require head(Nil) to be equal to emb undefined, which is an unknown term of the
form Suck(0). The obvious idea of adding the rule head(Nil) → undefined to the
TRS does not work, since undefined cannot be equal to emb undefined.

We can solve the problem by using fresh variables for unspecified cases, e.g.,
by adding the rule head(Nil) → x. Then, the simulation lemma holds. However,
the resulting TRS is no longer terminating. This new problem can be solved by
using a variant of innermost rewriting, which would require support by IsaFoR
as well as the termination tool.

Non-Representable Types and Polymorphism. Clearly, our embedding is limited
to types that admit a term representation. This excludes uncountable types such
as real numbers and most function types. However, even if such types occur in
HOL functions, they may not be relevant for termination. Then, we can simply
map all such values to a fixed constant by defining, e.g., emb (r :: real) = real.
Hence, the simulation lemmas for functions returning real numbers are trivial
to prove. Furthermore, a termination proof that does not rely on these values
works without problems. Like for underspecified functions, the generated TRS
no longer models the original function completely, but is only an abstraction
that is sufficient to prove termination.
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A similar issue arises with polymorphic functions: To handle a function of
type α list ⇒ α list we need a definition of emb on type α. Mapping values
of type α to a constant is unproblematic, since the definition is irrelevant for
the proof. However, a class instance α :: embeddable would violate the type
class discipline. This can be solved by either replacing the use of type classes
by explicit dictionary constructions (where emblist would take the embedding
function to use for the list elements as an argument), or by restricting α to class
embeddable. Since the type class does not carry any axioms, the system allows
us to remove the class constraint from the final theorem, so no generality is lost.

Higher-Order Functions. Higher-order functions pose new difficulties. First, we
cannot hope to define emb on function types. In particular, this means that
we cannot even state the simulation lemma for a function like map. Second,
the termination conditions for functions with higher-order recursion depend on
user-provided congruence rules of a certain format [13]. These congruence rules
then influence the form of the premise φ in the termination condition.

A partial solution could be to create a first-order function mapf for each
invocation of map on a concrete function f . Commonly used combinators like
map, filter and fold could be supported in this way.

6 Conclusion

We have presented a generic approach to discharge termination goals of HOL
functions by proving termination of a corresponding generated TRS. Hence,
where before a manual termination proof might have been required, now external
termination tools can be used. Since our approach is not tied to any particular
termination proof technique, its power scales up as the capabilities of termination
tools increase and more techniques are formalized in IsaFoR.

A complete prototype of our implementation is available in the IsaFoR/CeTA
distribution (version 1.18, http://cl-informatik.uibk.ac.at/software/ceta), which
also includes usage examples. It remains as future work to extend our approach
to a larger class of HOL functions. Moreover, the implementation has to be more
smoothly embedded into the Isabelle system such that a user can easily access
the provided functionality. The general approach is not limited to Isabelle, and
could be ported to other theorem provers like Coq, which has similar recursive
definition facilities (e.g., [2]) and rewriting libraries similar to IsaFoR [3,6].

Acknowledgment. Jasmin Blanchette gave helpful feedback on a draft of this
paper.
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Abstract. The Quantified Boolean Formulae (QBF) solver Squolem can
generate certificates of validity, based on Skolem functions. We present
independent checking of these certificates in the HOL4 theorem prover.
This enables HOL4 users to benefit from Squolem’s automation for valid
QBF problems. Detailed performance data shows that LCF-style check-
ing of validity certificates is often (but not always) feasible even for large
QBF instances. Additionally, our work provides high correctness assur-
ances for Squolem’s claims of validity and uncovered a soundness bug in
a previous version of its certificate validator QBV.

1 Introduction

Quantified Boolean Formulae (QBF) extend propositional logic with universal
and existential quantification over Boolean variables. QBF have numerous ap-
plications in adversarial planning and formal verification [1,2,3]; for instance,
they enable succinct encodings of bounded and unbounded model checking prob-
lems [4]. As a simple example, consider the formula

∀x∃y ∃z. (x∨y∨¬z)∧ (x∨¬y∨z)∧ (¬x∨y∨z)∧ (¬x∨¬y∨¬z)∧ (¬y∨z), (1)

which says for all x there is a y that implies x⊕ y.
Deciding the validity of QBF is an extension of the well-known Boolean satis-

fiability problem (SAT). A propositional formula φ in Boolean variables x1, . . . ,
xn is satisfiable if and only if the QBF ∃x1 . . . ∃xn. φ is valid. However, SAT is
merely NP-complete, while QBF is the canonical PSPACE-complete problem [5].
Satisfiable propositional formulae have short certificates—namely, their satisfy-
ing assignments—that can be validated in polynomial time. For valid QBF, there
is no known way to even specify a solution succinctly.

Nevertheless, certain QBF solvers can produce certificates for their answers
that can be checked independently [6]. Squolem is a state-of-the-art QBF solver
that generates certificates for valid formulae in a unified format based on finitary
Boolean Skolem functions [7].

In this paper, we present independent checking of these certificates in the
HOL4 [8] theorem prover. HOL4 is a popular interactive theorem prover for
higher-order logic [9]. It is based on a small LCF-style [10,11] kernel that pro-
vides an abstract data type of theorems, equipped with a fixed set of construc-
tor functions. Each function corresponds to an axiom schema or inference rule
� This work was supported by the British EPSRC under grant EP/F067909/1.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 168–183, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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of higher-order logic. Derived rules that are not provided by this kernel must
be implemented by composing existing rules. This provides high correctness as-
surances: derived rules cannot produce inconsistent theorems, as long as the
theorem data type itself is implemented correctly. On the other hand, it makes
an efficient implementation of derived rules challenging.

Our work is motivated primarily by a desire for increased automation in
interactive theorem proving. Systems like Coq [12], HOL4, Isabelle [13] and
PVS [14] can greatly benefit from the reasoning power of automated tools. This
has been demonstrated numerous times, e.g., by integrations of SAT [15] and
SMT solvers [16,17] as well as automated first-order provers [18,19,20]. We en-
vision that HOL4 users might invoke Squolem directly to solve suitable proof
obligations, but also that our integration might serve as a foundation, on top
of which decision procedures for richer logics can be implemented through QBF
encodings. Since the results are checked by HOL4’s inference kernel, no trust
needs to be put in the QBF solver.

An additional motivation arises from the fact that correctness of QBF solvers
is hard to establish. QBF solvers are complex software tools that employ so-
phisticated heuristics and optimizations [21,22]. Different solvers may disagree
on the status of individual benchmarks. QBF-Eval competitions until 2006 re-
solved disagreements by majority vote [23]. This rather unsatisfactory approach
(which has been replaced by certificate checking in recent years) confirms the
importance of QBF benchmark certification. HOL4’s inference kernel has been
scrutinized by dozens of researchers for over two decades. By using HOL4 as
an independent checker, we obtain high correctness assurances for Squolem’s
results.

We review related work in Section 2, before introducing relevant background
material in Section 3. Our main contribution, an efficient LCF-style implementa-
tion of certificate checking for valid QBF, is presented in Section 4. We evaluate
our implementation in Section 5, and conclude in Section 6.

2 Related Work

This paper complements previous work on LCF-style checking for QBF cer-
tificates of invalidity. In [24], an algorithm was presented that, given a QBF φ,
obtains a HOL4 theorem  ¬φ from a Squolem-generated certificate of invalidity.
Here we present an algorithm to obtain a HOL4 theorem  φ from a certificate
of validity. Certificates of validity and invalidity for QBF are quite different. The
latter employ Q-resolution [25], a refutation-complete inference rule that extends
propositional resolution to quantified Boolean logic. The former (as considered
here) are based on Skolem functions (see Section 3). In principle, one could estab-
lish validity of φ from invalidity of ¬φ. However, this approach is not feasible in
practice: current QBF solvers usually find inverted valid instances considerably
harder and often time out [7]. Therefore, it is a practical necessity to support
certificates of validity directly. We do not know whether inverted invalid in-
stances become easier to solve as validity problems. It would be interesting to
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understand when one approach is superior to the other, based on the shape of a
formula.

Other related work concerns the integration of automated solvers with LCF-
style theorem provers, and certificate checking for QBF solvers. Integrations have
been proposed, e.g., for first-order provers [18,19,20], for model checkers [26], for
computer algebra systems [27,28,29], and more recently for SMT solvers [16,17].
We use a HOL4 integration of SAT solvers [15] in this work.

Narizzano et al. [6] give an overview of certificate checking for QBF solvers.
Squolem’s certificates show competitive performance, and they are relatively
simple. Unsurprisingly, stand-alone proof checkers for QBF are typically much
more efficient than the LCF-style proof checker presented here. However, they
arguably do not provide the same degree of trustworthiness as the HOL4 kernel.

3 Background and Theory

We now introduce relevant terminology and describe the QBF certificate format
(Section 3.3) as well as HOL4’s inference calculus (Section 3.4). Propositional
logic is presupposed.

3.1 Quantified Boolean Formulae

We assume an infinite set of Boolean variables. A literal is a possibly negated
Boolean variable. When l is a literal, we write l to denote its variable. A clause
is a disjunction of literals. We say that a propositional formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses.

Definition 1 (Quantified Boolean Formula). A Quantified Boolean For-
mula (QBF) is of the form

Q1x1 . . . Qnxn. φ,

where n ≥ 0, each xi is a Boolean variable, each Qi is either ∀ or ∃, and φ is a
propositional formula in CNF.

Q1x1 . . . Qnxn is called the quantifier prefix, and φ is called the matrix. Without
loss of generality, we consider QBF in this prenex form only. Any formula involv-
ing only propositional connectives and quantifiers over Boolean variables can be
transformed into prenex form through straightforward syntactic manipulations.
(We have not yet implemented such a transformation in HOL4.) The innermost
variable of the above QBF is xn.

The QDIMACS format [30] is the standard input format of QBF solvers. It
provides a textual means of encoding QBF in prenex form. It is a backward-
compatible extension of the DIMACS format [31], the standard input format
of SAT solvers. We have implemented a translation from (the QBF subset of)
HOL4 terms to QDIMACS, and a simple recursive-descent parser for QDIMACS
files that returns the corresponding QBF as a HOL4 term (see Section 3.4).
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The QDIMACS format imposes further restrictions: all variables xi must be
distinct, all variables must appear in the matrix, and the innermost quantifier
must be existential (i.e., Qn = ∃). We further require all variables that appear
in the matrix to be bound by some quantifier, i.e., we consider closed QBF only.
This is to avoid confusion: in the QDIMACS format, free variables have existen-
tial semantics (to retain backward compatibility with DIMACS), while in HOL4,
free variables in theorems have universal semantics (to permit instantiation). If
a QBF has free variables, we consider its existential closure instead.

B = {",⊥} denotes the set of truth values. The semantics of closed QBF
is defined recursively: [[∀x. φ]] = [[φ[x → "] ∧ φ[x → ⊥]]], and similarly [[∃x. φ]] =
[[φ[x → "] ∨ φ[x → ⊥]]]. (Here φ[x → y] denotes substitution of y for all free
occurrences of x in φ.) A QBF is called valid if its semantics is " (i.e., true).

3.2 Skolem Functions and Models

QBF of interest typically contain several dozen or even hundreds of quantifiers.
A naive recursive computation of their semantics, which would be exponential
in the number of quantifiers, is not feasible. Therefore, QBF solvers implement
different algorithms. The certificates of validity that we consider here are based
on finitary Boolean Skolem functions [7].

Definition 2 (Model). A model of the QBF Q1x1 . . . Qnxn. φ maps each ex-
istentially quantified variable xk to a function fk : Bk−1 → B.

A model provides a witness function for every existentially quantified variable.
We identify each witness function fk with a propositional formula in k− 1 vari-
ables. Because Skolemization preserves satisfiability, we have

Theorem 1. A QBF Q1x1 . . . Qnxn. φ with existentially quantified variables
xe1 , . . . , xem (where e1 < · · · < em) is valid if and only if there is a model
{xek

→ fek
}m

k=1 such that the propositional formula
φ[xem → fem(x1, . . . , xem−1)] · · · [xe1 → fe1(x1, . . . , xe1−1)]

obtained by replacing existential variables with their witness functions in φ is
valid.

Thus, every valid QBF has a model that witnesses its validity, and conversely, a
model that produces a valid propositional formula proves validity of the original
QBF. This is the theoretical foundation for the certificate format that we describe
in Section 3.3.

As a simple example, consider (1). A model is given by fy(x) = ⊥ and
fz(x, y) = x. From this model, we obtain the propositional formula (x ∨ ⊥ ∨
¬x)∧ (x∨"∨x)∧ (¬x∨⊥∨x)∧ (¬x∨"∨¬x)∧ ("∨x). This formula is easily
seen to be valid: each of its clauses is valid, containing either " or both x and
¬x. Hence (1) is valid by Theorem 1.

3.3 Certificates of Validity

Squolem generates certificates in a unified format that is described in detail
in [32]. The format is ASCII-based. Clauses and variables are indexed by posi-
tive integers. Negative values stand for negated variables, i.e., integer negation
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denotes propositional negation. Indices do not necessarily correspond to variable
positions in the quantifier prefix.

A certificate of validity encodes a model of a QBF, as defined in Section 3.2.
Certificates introduce fresh extension variables as abbreviations for witness func-
tions and other (sub-)formulae. For each extension variable, the certificate con-
tains a line that defines the extension as either

– a conjunction of literals (with the empty conjunction denoting "), or
– a formula if x then y else z, where x, y, z are literals.

All variables that occur in the definiens must be extension variables that have
been defined previously, or must come from the original QBF. From these two
simple building blocks, extension variables can be defined for arbitrary propo-
sitional formulae (and hence, for arbitrary witness functions). The certificate’s
final line contains a list of (xk, fk) pairs that establishes the map from existen-
tial variables to witness functions, each function denoted by a (possibly negated)
extension variable.

For instance, mapping x, y and z to variable indices 1, 2 and 3, respectively,
Squolem generates the following certificate for (1):

QBCertificate // explanatory comments:
E 4 A 2 0 // v4 = v2 (0 ends the line)
E 5 A 1 -2 0 // v5 = v1 ∧ ¬v2

E 6 I 4 4 5 // v6 = if v4 then v4 else v5

E 7 A 0 // v7 = " (empty conjunction)
CONCLUDE VALID 2 -7 3 6 // v2 = ¬v7, v3 = v6

There are four extension variables v4 through v7, defined as v4 = y, v5 = x∧¬y,
v6 = if v4 then v4 else v5, and v7 = ". The witness for y is declared to be ¬v7,
i.e., ⊥. The witness for z is declared to be v6, which simplifies to x given that
v4 = y = ⊥. The certificate thus encodes the model given in Section 3.2.

We have written a simple recursive-descent parser for this certificate format
that returns the encoded information as a value in Standard ML.

3.4 Higher-Order Logic

HOL4 is a popular LCF-style [10,11] theorem prover for polymorphic higher-
order logic [9]. It is based on Church’s simple type theory [33] extended with
Hindley-Milner style polymorphism [34]. Higher-order logic (HOL) contains a
type of Booleans, propositional connectives, and quantifiers over arbitrary types.
Hence, quantified propositional logic embeds straightforwardly into HOL.

HOL4 implements a natural-deduction calculus. Theorems represent sequents
Γ  φ, where Γ is a finite set of hypotheses, and φ is the sequent’s conclusion.
Instead of ∅  φ, we simply write  φ. Internally, the set of hypotheses is given by
a red-black tree (for efficient search, insertion and deletion), with terms treated
modulo α-equivalence.

Like other LCF-style provers, HOL4 has a small inference kernel. Theorems
are implemented as an abstract data type, and new theorems can be constructed
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only through a fixed set of functions provided by this data type. These functions
directly correspond to the axiom schemata and inference rules of higher-order
logic. Figure 1 shows the rules of HOL that we use to validate certificates of
QBF validity (our call to MiniSat [35], described in the next section, may use
additional primitive rules involving negation).

Assumeφ{φ} � φ
Γ � φ

Instθ
Γ θ � φ θ

Reflt� t = t

Γ � ψ
Dischφ

Γ \ {φ} � φ =⇒ ψ

Γ � φ =⇒ ψ Δ � φ
MP

Γ ∪Δ � ψ

Γ � φ
Genx (x not free in Γ )

Γ � ∀x.φ

Γ � φ[t]
Exists(∃x. φ[x],t)

Γ � ∃x.φ[x]

Fig. 1. Selected HOL inference rules

The LCF-style architecture greatly reduces the trusted code base. Proof pro-
cedures, although they may implement arbitrarily complex algorithms, cannot
produce unsound theorems, as long as the implementation of the theorem data
type is correct. HOL4 is written in Standard ML [36], a type-safe functional
language (with impure features, e.g., references) that has an advanced module
system. To benefit from HOL4’s LCF-style architecture, we must implement
proof reconstruction in this language.

On top of its LCF-style inference kernel, HOL4 offers various automated proof
procedures: e.g., a simplifier, which performs term rewriting, and various first-
order provers. The performance of these procedures is hard to control, so we
mostly avoid them by combining primitive inference rules directly. A major ex-
ception is our use of an existing HOL4 integration [15] of the SAT solver Min-
iSat to prove the propositional conjecture obtained from a QBF and its validity
certificate. We now describe our certificate checking method, with this use of
MiniSat, in more detail.

4 Checking Validity Certificates in HOL4

4.1 Overview

Given a QBF ψ = Q1x1 . . . Qnxn. φ and a certificate of its validity, our goal is
to derive  ψ as a HOL4 theorem.

The certificate provides witnesses for the QBF’s existential variables. However,
unfolding the definition of witness functions in the QBF’s matrix φ, as suggested
by Theorem 1, could lead to an exponential blowup of the formula. Instead, we
observe that we can use these definitions as hypotheses.

More specifically, the certificate gives a definition 〈ti〉 for each extension vari-
able vi, and a witness literal fek

(where fek
= vi for some i) for each existential
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variable xek
.1 We convert definitions 〈ti〉 to HOL4 terms ti, and replace exis-

tential variables with their witnesses to ensure each ti contains only universal
and extension variables. We then prove the theorem {xe1 ⇔ fe1 , . . . , xem ⇔
fem , v1 ⇔ t1, . . . , vp ⇔ tp}  φ, where m and p are the number of existential
and extension variables, respectively. To prove validity of the QBF from this
theorem, we reintroduce quantifiers in order, from Qn up to Q1, and prove the
hypotheses. We eliminate hypotheses eagerly, while ensuring we do not unfold
the definition of any variable that occurs more than once in the sequent.

In the certificate, variables are indexed by positive integers. Our implementa-
tion maintains a one-to-one correspondence between variables and indices. For
conceptual clarity, we describe the algorithm entirely in terms of variables. The
implementation uses indices where possible to achieve better performance.

We maintain two maps keyed on variables. The first map, V , gives the vari-
able’s kind—universal, existential, or extension—along with a HOL4 term for its
definition, if applicable: fek

for existential, and ti for extension variables. The
second map, D, maps each variable to a list of variables that it depends on.
Dependency between variables is characterized as follows.

(D1) xk depends on xk+1, for all 1 ≤ k < n;
(D2) fek

depends on xek
, for all 1 ≤ k ≤ m; and

(D3) each variable in ti depends on vi, for all 1 ≤ i ≤ p.

We explain in Section 4.3 how dependencies are used for hypothesis elimination.
Our algorithm for checking validity certificates has four main steps.

1. Construct the formula φ′ = (xe1 ⇔ fe1) ⇒ · · · ⇒ (xem ⇔ fem) ⇒ φ and
partially construct the maps V and D, omitting extension variables;

2. Add extension variable definitions, obtaining the formula φ′′ = (v1 ⇔ t1) ⇒
· · · ⇒ (vp ⇔ tp) ⇒ φ′, and finish constructing the maps V and D;

3. Prove the (purely propositional) theorem  φ′′ using the MiniSat integra-
tion, then turn its antecedents into hypotheses to obtain {xe1 ⇔ fe1 , . . . ,
xem ⇔ fem , v1 ⇔ t1, . . . , vp ⇔ tp}  φ; and finally,

4. Topologically sort the variables according to D, then eliminate hypotheses
and reintroduce quantifiers to obtain  ψ.

4.2 Preparing the Formula for MiniSat

We first process the quantifier prefix of ψ, stripping off one quantifier at a time
until we obtain φ. For each quantifier, we add xk → [xk+1] to D (or xn → [ ] for
the innermost variable). For each universal quantifier, we add xk → ∀ to V . For
each existential quantifier, we add xek

→ (∃, fek
) to V and fek

→ [xek
] to D.

When all the quantifiers have been stripped, V maps every quantified variable,
and D accurately represents the first two dependency conditions. Iterating over
V , we add each existential variable’s definition, xek

⇔ fek
, as an antecedent to

φ to complete the algorithm’s first main step, obtaining φ′.
1 Squolem may omit witnesses for variables whose value does not affect the QBF’s

validity. For these variables we use a dummy extension variable with definition �.
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Next, we process the certificate’s definitions of extension variables. For each
definition (vi, 〈ti〉), we construct a term ti by creating a HOL4 conjunction or if-
then-else term, replacing references to existential variables with their witnesses.
For each variable x that occurs in ti (after replacing existential variables), we
add vi to the list associated with x in D. Thus, when all definitions have been
processed, D accurately represents all three dependency conditions. We also add
vi → (ext, ti) to V , and vi ⇔ ti as an antecedent to φ′, in the end obtaining φ′′.
This completes the second main step.

We now invoke MiniSat to prove φ′′, which is a purely propositional formula
with antecedents defining all existential and extension variables and the origi-
nal matrix as consequent. MiniSat is an independent SAT solver that has been
integrated into HOL4 just as we are now integrating Squolem. In particular,
MiniSat logs proofs, and each proof is replayed via HOL4 inferences to produce
a theorem that depends only on the trusted kernel [15]. When MiniSat returns a
theorem  φ′′, we turn all antecedents into hypotheses using Assume and MP.

4.3 Hypothesis Elimination

Given the theorem {xe1 ⇔ fe1 , . . . , xem ⇔ fem , v1 ⇔ t1, . . . , vp ⇔ tp}  φ
obtained from the previous step, our goal is to introduce quantifiers and eliminate
hypotheses to obtain  ψ. To introduce a universal (existential) quantifier, we
use Gen (Exists, respectively). To eliminate a hypothesis of the form x ⇔ t,
we use Inst with a substitution mapping x to t. The hypothesis thus becomes
t ⇔ t. We prove  t ⇔ t with Refl, then use Disch and MP (see Figure 1).

However, care must be taken to introduce quantifiers and eliminate hypothe-
ses in the correct order. The Inst rule instantiates all free occurrences of a
variable in a sequent. When eliminating a hypothesis, we want the variable on
its left-hand side to occur only there, both to avoid changing the conclusion of
the theorem, whose matrix should always be φ, and to prevent terms in the
hypothesis set from growing too large. Therefore, before eliminating x ⇔ t, we
ensure both that x is quantified in the conclusion (or is an extension variable),
and that x does not appear on the right-hand side of any hypothesis. It is enough
to consider right-hand sides, since the left-hand sides are all distinct.

A variable x has been eliminated if it has been quantified, if necessary, and
the hypothesis with x on the left, if any, has been eliminated. Only existen-
tial variables require both treatments; for them, we quantify before eliminating
the hypothesis. A variable x depends on another variable y if y must be elimi-
nated before x can be eliminated. The last two dependency conditions defined
in Section 4.1 effectively say that the left-hand side of a hypothesis must be
eliminated before any variable on its right-hand side, which agrees with our
observations about Inst. Dependency condition D1 simply ensures that we in-
troduce quantifiers in the correct order. To complete the algorithm’s final main
step, we topologically sort all variables according to their dependencies in D,
then eliminate each variable in the order obtained.

The Genx rule has a side condition: x must not occur free in the hypotheses.
We rely on the fact that if we eliminate hypotheses eagerly, i.e., as soon as their
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left-hand side is a lone occurrence, then the side condition holds as long as each
witness function fej represented by the certificate depends only on variables
x1, . . . , xej−1. In fact, Squolem may re-order existential variables, i.e., define a
witness fej in terms of xek

for some ek > ej , provided there is no interven-
ing universal quantifier. However, only acyclic dependencies between existential
variables are allowed; cycles are detected as failure of the topological sort.2

4.4 Example

Consider (1) again, where we have

ψ = ∀x∃y ∃z. (x∨y∨¬z)∧ (x∨¬y ∨z)∧ (¬x∨y ∨z)∧ (¬x∨¬y ∨¬z)∧ (¬y∨z).

Assume x, y, and z have variable indices 1, 2, and 3, respectively. Squolem
provides the certificate of validity given in Section 3.3. Let v1 through v4 be
extension variables with indices 4 through 7. Witnesses are given as (y,¬v4) and
(z, v3). Definitions are given as (v1, A y 0), (v2, A x −y 0), (v3, I v1 v1 v2), and
(v4, A 0). After processing the quantifier prefix, we have

φ = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (¬y ∨ z),
V = {x → ∀, y → (∃,¬v4), z → (∃, v3)},
D = {x → [y], y → [z], z → [ ], v3 → [z], v4 → [y]},
φ′ = (y ⇔ ¬v4) ⇒ (z ⇔ v3) ⇒ φ.

We process the definitions of extension variables (as described in Section 4.2)
to obtain t1 = ¬v4, t2 = x ∧ v4, t3 = if v1 then v1 else v2, t4 = ", and

V = {x → ∀, y → (∃,¬v4), z → (∃, v3),
v1 → (ext, t1), v2 → (ext, t2), v3 → (ext, t3), v4 → (ext, t4)},

D = {x → [y, v2], y → [z], z → [ ], v1 → [v3], v2 → [v3], v3 → [z], v4 → [y, v1, v2]},
φ′′ = (v1 ⇔ t1) ⇒ (v2 ⇔ t2) ⇒ (v3 ⇔ t3) ⇒ (v4 ⇔ t4) ⇒ φ′.

After passing φ′′ to MiniSat and stripping all antecedents from the resulting
theorem, we have

{y ⇔ ¬v4, z ⇔ v3, v1 ⇔ t1, v2 ⇔ t2, v3 ⇔ t3, v4 ⇔ t4}  φ

We now eliminate variables in a topological order according to D, say z <
v3 < v1 < v2 < y < x < v4. After eliminating z, v3, and v1, we have

{y ⇔ ¬v4, v2 ⇔ t2, v4 ⇔ t4}  ∃z. φ

2 Squolem’s own certificate validator, QBV, did not implement this acyclicity check
correctly in version 1.03. It would therefore accept certain invalid certificates. This
bug has been fixed in the latest version (2.0) of QBV.
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We show the remainder in more detail. To eliminate v2, we instantiate v2 to
t2, then prove the hypothesis with a theorem  t2 ⇔ t2:

{y ⇔ ¬v4, t2 ⇔ t2, v4 ⇔ t4}  ∃z. φ

{y ⇔ ¬v4, v4 ⇔ t4}  ∃z. φ

To eliminate y, we first quantify. Then we can instantiate without affecting the
sequent’s conclusion, before proving the hypothesis:

{y ⇔ ¬v4, v4 ⇔ t4}  ∃y. ∃z. φ

{¬v4 ⇔ ¬v4, v4 ⇔ t4}  ∃y. ∃z. φ

{v4 ⇔ t4}  ∃y. ∃z. φ

To eliminate x, we simply quantify, which is possible since all hypotheses men-
tioning x have been eliminated. And to eliminate v4, we instantiate again before
proving the hypothesis as before.

{v4 ⇔ t4}  ∀x. ∃y. ∃z. φ

{t4 ⇔ t4}  ∀x. ∃y. ∃z. φ

∅  ∀x. ∃y. ∃z. φ

This sequent is now  ψ as required.

5 Experimental Results

We have evaluated our implementation on a set of 100 valid QBF problems
that resulted from applying Squolem 2.02 to all 445 problems in the 2005 fixed
instance and 2006 preliminary QBF-Eval data sets. With a time limit of 600
seconds per problem, Squolem solved 217 of these problems; 100 were deter-
mined to be valid.3 (We did not consider inverting invalid problems.) The same
set of problems was previously used (by the Squolem authors) to evaluate the
performance of Squolem’s certificate generation [7].

All experiments were conducted on a 64-bit Linux system with an Intel Core
i7-920XM processor at 2.0 GHz clock speed. Memory usage was restricted to
4 GB. HOL4 was running on top of Poly/ML 5.4.1.

5.1 Run-Times

Table 1 shows our experimental results for the first 50 of the 100 valid QBF prob-
lems. Our full results are available at http://www.cl.cam.ac.uk/~tw333/qbf/.
The remainder of this section comprehensively covers all 100 problems.

The first column in Table 1 gives the name of the benchmark. The next
three columns provide information about the size of the benchmark, giving the

3 In comparison, Squolem 1.03 only solved 142 problems, among them 73 valid ones.

http://www.cl.cam.ac.uk/~tw333/qbf/
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number of alternating quantifiers,4 variables, and clauses, respectively. Column
five shows the run-time of Squolem 2.02 (with certificate generation enabled) to
solve the benchmark. Column six shows the number of extension variables in the
resulting certificate.

The last two columns finally show the run-time of certificate validation in
HOL4. The HOL4 system comes with two different implementations of its infer-
ence kernel: one uses de Bruijn indices (and explicit substitutions) to represent λ-
terms [37], the other (by M. Norrish) uses a name-carrying implementation [38].
These implementations differ in the performance (and even complexity) of prim-
itive operations. We present run-times for both implementations.

All run-times are given in seconds (rounded to the nearest tenth of a second).
Timeouts are indicated by T. For comparison, we have also measured run-times
of QBV [7], a stand-alone checker for Squolem’s certificates that was developed
by the authors of Squolem. QBV is written in C++ and uses MiniSat for tau-
tology checking. Its run-times are given in column seven.

We observe that even for Squolem’s stand-alone checker QBV, certificate val-
idation is considerably harder than certificate generation on selected problems
(e.g., adder-6-sat, qshifter 7, qshifter 8). This is in line with earlier results [7]
and reflects the fact that certificate validation for valid QBF instances is, in
general, co-NP-complete [39].

However, QBV times out on one problem only, while HOL4 times out on 13
problems (de Bruijn kernel) or 15 problems (name-carrying kernel). This corre-
sponds to success rates of 87% and 85%, respectively. These rates are largely due
to a number of relatively easy problems. The largest certificates that are vali-
dated successfully in HOL4 (k d4 n-20, toilet c 08 10.2) define just over 15000
extension variables each; QBV validates them in about a second. Figure 2 shows
run-times for the de Bruijn kernel as a function of the number of extension
variables. The dotted trend line (R2 = 0.96) is given by f(x) = 1.09 ·10−5 ·x1.85.

If we count each timeout as 600 seconds, average run-times are 7.5 seconds
for Squolem, 8.4 seconds for QBV, 134.1 seconds for the de Bruijn kernel, and
163.1 seconds for the name-carrying kernel. (Considering successfully validated
problems only, average run-times are 2.4 seconds for QBV, 64.5 seconds for the
de Bruijn kernel, and 86.1 seconds for the name-carrying kernel.) The de Bruijn
kernel thus takes 16 times longer on average than QBV (and 18 times longer
than Squolem’s proof search), but is almost 18% faster than the name-carrying
kernel.

Interestingly, the picture is very different for invalid QBF [24]. For LCF-style
validation of invalidity certificates, the name-carrying kernel is 75 times faster
on average than the de Bruijn kernel, and 25 times faster than proof search
with Squolem. This shows that LCF-style validation of QBF invalidity is not
only easier in general, but also exercises different primitive inference rules of the
HOL4 kernel.

4 Counting successive quantifiers of the same kind, as in ∀x∀y ∀z . . ., as one quantifier
only. The total number of quantifiers in each benchmark is typically identical to the
number of variables.
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Fig. 2. Run-times/extension variables
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5.2 Profiling and Future Improvements

To gain deeper insight into these results, we present profiling data for the
de Bruijn kernel (Figure 3) and the name-carrying kernel (Figure 4).

For each kernel, we show the share of total run-time (dark bars) and relative
number of function calls (light bars) for the following functions: elimination of
extension variable definitions (ext), introduction of existential quantifiers into
the conclusion (exists), and propositional tautology proving (SAT). Time spent
on other aspects of certificate validation, e.g., parsing and pre-processing the
certificate, is shown as well (other). The relative number of function calls (light
bars) is similar for each kernel; small differences are caused by timeouts.

We observe that the bulk of run-time (52% for the de Bruijn kernel, 69%
for the name-carrying kernel) is spent on eliminating extension variables. There
are about four extension variables on average for every existential quantifier.
Introducing the latter takes 11% (name-carrying kernel) to 14% (de Bruijn ker-
nel) of total run-time. With either kernel, about 20% of run-time is spent on
propositional tautology proving, i.e., on the call to MiniSat with pre-processing
and proof checking in HOL4. Other inferences, e.g., introduction of universal
quantifiers via Gen, take a much greater share of run-time in the de Bruijn ker-
nel (14%) than in the name-carrying kernel (0%). As indicated by the run-times
in Section 5.1, however, this effect is more than outweighed by the name-carrying
kernel’s slightly inferior performance on ext.

At present, we convert the negation of the QBF’s matrix φ into CNF. This
is costly, despite the fact that HOL4 uses a Tseitin-style transformation [15].
It would be more apt to call MiniSat several times, to prove each clause of φ
separately from the certificate’s definitions. However, the overhead associated
with calling MiniSat from HOL4 currently renders this approach infeasible: no
incremental interface to MiniSat is available in HOL4.

More substantial improvements might be gained from a modified term data
structure. The kernel could compute the set of a term’s free variables when the
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Table 1. Experimental results

Squolem Ext. QBV de Bruijn name-

Benchmark name Quant. Vars. Clauses (s) vars. (s) (s) carry. (s)

Adder2-2-s 6 236 292 0.0 352 0.0 0.7 1.0

Adder2-4-s 6 1117 1405 1.3 5685 0.4 73.6 88.3

adder-2-sat 4 51 109 0.0 179 0.0 0.2 0.3

adder-4-sat 4 226 530 0.1 4422 0.2 49.1 56.8

adder-6-sat 4 525 1259 7.8 104897 83.2 T T

CHAIN12v.13 3 925 4582 0.1 896 0.0 9.0 13.8

CHAIN13v.14 3 1080 5458 0.1 1023 0.0 12.1 19.2

CHAIN14v.15 3 1247 6424 0.1 1157 0.0 15.7 25.2

CHAIN15v.16 3 1426 7483 0.1 3221 0.1 46.3 86.5

CHAIN16v.17 3 1617 8638 0.2 3664 0.1 60.4 113.3

CHAIN17v.18 3 1820 9892 0.3 4136 0.1 80.7 145.4

CHAIN18v.19 3 2035 11248 0.3 4649 0.1 101.1 192.6

CHAIN19v.20 3 2262 12709 0.4 5178 0.1 125.7 247.2

CHAIN20v.21 3 2501 14278 0.5 5748 0.1 153.9 311.4

CHAIN21v.22 3 2752 15958 0.5 6358 0.1 192.3 381.0

CHAIN22v.23 3 3015 17752 0.7 6985 0.1 232.5 467.4

CHAIN23v.24 3 3290 19663 0.9 7628 0.1 283.9 567.8

comp.blif 0.10 0.20 0 1 inp exact 7 311 833 1.3 9231 0.5 173.5 169.4

comp.blif 0.10 1.00 0 1 inp exact 3 307 844 0.1 4667 0.2 41.8 46.8

counter 2 5 42 103 0.0 322 0.0 0.2 0.3

counter 4 9 130 333 0.4 7737 0.2 105.1 104.6

counter e 2 5 50 123 0.0 692 0.0 0.8 1.0

counter e 4 9 144 373 136.4 69771 7.3 T T

counter r 2 5 50 121 0.0 360 0.0 0.3 0.4

counter r 4 9 144 369 0.8 10415 0.4 200.0 226.0

counter re 2 5 58 141 0.0 583 0.0 0.6 0.9

counter re 4 9 158 409 38.8 40716 3.4 T T

impl02 5 10 18 0.0 14 0.0 0.0 0.0

impl04 9 18 34 0.0 28 0.0 0.0 0.0

impl06 13 26 50 0.0 42 0.0 0.0 0.0

impl08 17 34 66 0.0 56 0.0 0.0 0.0

impl10 21 42 82 0.0 70 0.0 0.0 0.1

impl12 25 50 98 0.0 84 0.0 0.0 0.1

impl14 29 58 114 0.0 98 0.0 0.1 0.1

impl16 33 66 130 0.0 112 0.0 0.1 0.1

impl18 37 74 146 0.0 126 0.0 0.1 0.1

impl20 41 82 162 0.0 140 0.0 0.1 0.2

k branch n-4 13 803 2565 33.7 8118 0.5 165.2 235.3

k d4 n-16 41 1437 5140 0.9 11985 0.8 348.2 561.2

k d4 n-20 49 1785 6416 1.3 15069 1.1 574.4 T

k d4 n-21 51 1872 6735 1.4 15840 1.1 T T

k d4 n-4 17 393 1312 0.1 2733 0.1 16.6 28.3

k d4 n-8 25 741 2588 0.3 5817 0.2 76.5 126.9

k dum n-12 35 620 1594 0.1 2315 0.1 15.1 25.0

k dum n-16 43 796 2062 0.1 3035 0.2 25.2 46.2

k dum n-20 51 972 2530 0.1 3755 0.2 38.7 70.0

k dum n-21 53 1016 2647 0.2 3945 0.2 45.1 79.1

k dum n-4 19 262 649 0.0 902 0.0 2.2 3.8

k dum n-8 27 444 1126 0.0 1599 0.0 6.7 12.6

k grz n-12 17 557 2003 7.5 4510 0.2 45.3 77.9
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term is built, and store it in memory along with the term itself. This would
permit more efficient implementations of instantiation and generalization (see
Figure 1). However, it is difficult to predict the effect that such a major change
in fundamental kernel data structures would have on other HOL4 applications.

As Figure 2 shows, eliminating extension variables is essentially quadratic.
Harrison [40] presents an ingenious solution to this kind of problem using pro-
forma theorems to reduce the complexity. Adapting his approach would require
some effort, but could yield significant performance improvements.

6 Conclusions

We have presented LCF-style checking for certificates of QBF validity in HOL4.
Detailed performance data shows that LCF-style certificate checking is often
feasible even for large valid QBF instances: up to 87% of our benchmark certifi-
cates were checked successfully. With a time limit of 600 seconds, the algorithm
succeeds on certificates that have at most some 15000 extension variables. Our
implementation is freely available from the HOL4 repository [38].

Our work complements earlier work on LCF-style checking for certificates of
QBF invalidity [24]. It has two main applications. First, it enables HOL4 users to
benefit from Squolem’s automation. QBF can simply be passed from the HOL4
system to Squolem. If Squolem proves that the QBF is valid, our method then
derives it as a theorem in HOL4. Second, our work provides high correctness
assurances for Squolem’s results; in fact, we uncovered a soundness bug in an
earlier version of Squolem’s certificate validator QBV. Due to HOL4’s LCF-
style architecture, our proof checker cannot draw unsound inferences (provided
HOL4’s kernel is correct). Thus, it can be used for QBF benchmark certification.

One could extend this work to other QBF solvers (see [23] for an overview),
and to other interactive theorem provers, e.g., Isabelle or Coq. Because seemingly
minor differences in kernel data structures can have significant effects, it is not
clear whether similar performance can be achieved in these systems.

An alternative approach that might yield better performance than the LCF-
style implementation presented in this paper is the use of reflection [41], i.e.,
implementing and proving correct a checker for Squolem’s certificates in the
prover’s logic, and then executing the verified checker without producing proofs.
While this approach still provides relatively high correctness assurances, obtain-
ing a theorem in HOL4 would require enhancing the inference kernel with a
reflection rule that allows us to trust the result of such a verified computation.

Acknowledgments. The authors would like to thank Christoph Wintersteiger
for assistance with Squolem and QBV.

References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)



182 R. Kumar and T. Weber

2. Gopalakrishnan, G.C., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution
verification tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

3. Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer,
Heidelberg (2005)

4. Benedetti, M., Mangassarian, H.: QBF-based formal verification: Experience and
perspectives. JSAT 5(1-4), 133–191 (2008)

5. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proc. 5th Annual ACM Symp. on Theory of Computing, pp. 1–9 (1973)

6. Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying
QBFs: A comparison of state-of-the-art tools. AI Communications 22(4), 191–210
(2009)
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Charles University in Prague
Faculty of Mathematics and Physics

Automated Reasoning Group
ondrej.kuncar@mff.cuni.cz

Abstract. This paper describes the integration of Squolem, Quantified
Boolean Formulas (QBF) solver, with the interactive theorem prover
HOL Light. Squolem generates certificates of validity which are based
on witness functions. The certificates are checked in HOL Light by con-
structing proofs based on these certificates. The presented approach al-
lows HOL Light users to prove larger valid QBF problems than before
and provides correctness checking of Squolem’s outputs based on the LCF
approach. An error in Squolem was discovered thanks to the integration.
Experiments show that the feasibility of the integration is very sensitive
to implementation of HOL Light and used inferences. This resulted in
improvements in HOL Light’s inference system.

1 Introduction

Deciding whether Quantifier Boolean Formula (QBF) evaluates to true is the
canonical PSPACE-complete problem [20]. This problem can be seen as a gen-
eralization of the well-known Boolean satisfiability problem (SAT). QBF can
contain universal and existential quantifiers over Boolean variables. Let us in-
troduce a simple example, which is nothing else than a definition of the XOR
function:

∀v1 ∀v2 ∃v3. v3 ⇔ ((v1 ∧ ¬v2) ∨ (¬v1 ∧ v2)) . (1)

Whether the problem of true QBFs is harder than SAT is an open problem.
Many problems can be succinctly formulated in QBF – every finite two-player
game, many types of planning [7,22], model checking for finite systems and other
formal verification problems [2,3,6].

Because we work only with closed formulas, validity and invalidity is the
same concept as satisfiability and unsatisfiability respectively. QBF solvers are
nowadays powerful tools, which are able to decide validity or invalidity of QBFs
automatically. Some of them can generate a certificate that witnesses their out-
put. Squolem [17] is a state-of-the-art QBF solver which is able to generate
certificates for valid formulas. These certificates are based on witness functions
for existential quantifiers.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 184–199, 2011.
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In this paper we present how to prove QBF validity in the HOL Light interac-
tive theorem prover [11,12] using Squolem’s certificates of validity. HOL Light,
made by John Harrison, is a contemporary interactive theorem prover belonging
to the broader family of higher-order logic theorem provers. HOL Light has a
very small LCF-style kernel [8] and, moreover, a simplified version of the kernel
was proved to be correct [10].

The motivation for our work is twofold. First, interactive theorem provers are
nowadays becoming increasingly important thanks to their wide use in areas
such as formal specification and verification of complex systems or formaliza-
tion and verification of mathematics. While these systems often contain a very
powerful formalism, their main weakness is that the construction of the proof is
often lengthy and requires a considerable human effort. As described in Section
2, many integrations of external tools have been done to increase the amount of
automation of interactive theorem provers and to decrease the need for human
resources. Each of these integrations resulted in increased strength of the inter-
active theorem prover – we are talking about situations where formulas that were
infeasible to prove using the built-in tactics are proved within a few seconds.

Second, our construction of a proof in HOL Light can serve as another inde-
pendent check of correctness of Squolem. QBF solvers are generally complex tools
with nontrivial implementation in some fast imperative programming language
(for example C). This fact causes natural concern about correctness of Squolem.
Moreover, it is quite common that QBF solvers disagree on the same inputs.
Because HOL Light has a LCF-style kernel, validation of Squolem’s certificate
in HOL Light lowers significantly the probability that the Squolem’s answer was
incorrect. We really found a small bug in Squolem due to our system. If a input
of Squolem contains tautological clauses, then Squolem 1.0 gives an incorrect
answer (and of course an incorrect certificate). Squolem 2.0 gives a correct an-
swer, but still an incorrect certificate. This bug was resolved in the version 2.01
after we pointed out the problem to Christoph Wintersteiger.

Related work is discussed in the next section. In Section 3 we provide nec-
essary definitions and background. We present the main part of our work, how
to construct a proof of a valid QBF in HOL Light from Squolem’s certificate
of validity, in Section 4. We provide experimental results and technical aspects
concerning the implementation including optimizations in Section 5. Section 6
concludes this paper and suggests directions for future work.

2 Related Work

The most related work is the paper by Weber [24]. In that paper the author
implemented validation of Squolem’s certificates of invalidity in another LCF
interactive prover HOL4, i.e., it is possible to prove that the given QBF is not
valid in HOL4. Squolem’s certificates of invalidity are based on a Q-resolution
proof of ⊥. By replaying the resolution proof, a proof of invalidity in HOL4
is established. In principle, it would be possible to prove validity of QBF by
using the system by Weber. The method is simple: negate the original formula
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(valid) and then prove that the negated formula is invalid. But Jussila et al. [17]
demonstrated that QBF solvers often perform significantly worse on negated
problems. Thus we are going to use directly Squolem’s certificates of validity.
In the conclusion section of [24] there is a note that LCF-style checking for
certificates of validity remains future work. To our knowledge, our work is the
first work concerning this task, i.e., proving valid QBFs in an interactive theorem
prover using an external QBF solver.

Other related work comes from the research area of automation of interactive
theorem provers. One of the first integration of an external tool in a trusted
theorem prover was the work by Harrison and Thery [13]. It is important to
mention earlier but the essential result of John Harrison, who tried to integrate
binary decision diagrams (BDD) directly into the HOL Light system [9]. Harrison
found out that performing the BDD operations directly by the LCF kernel is
about 100 times slower (after optimization) rather than a direct implementation
in C. This observation was probably the main reason why most of the further
integrations of decision-making procedures use an external solver (to solve the
task), which generates a certificate/witness of its output, and a respective proof
is generated from such a certificate in the interactive theorem prover.

Let us name just a few recent papers concerning integration of external tools
into interactive theorem provers to increase their automation. For first-order
theorem provers it is work done by Hurd [15,16] and the Sledgehammer system
[19,23]. Weber and Amjad [25] integrated SAT solvers with HOL4, Böhme and
Weber integrated the SMT solver Z3 with Isabelle/HOL [4].

Certificates for Squolem were described by Jussila et al. [17]. Other certificates
formats were proposed too, an overview can be found in [21]. Authors of Squolem
developed a stand-alone checker QBV for Squolem’s certificates [17]. It is not
surprising that QBV is much more efficient than our approach. On the other
hand, QBV would have to become part of the trusted code if users of HOL Light
wanted to use it to prove QBFs in HOL Light. Moreover, our system provides a
check with much higher assurance than QBV thanks to the LCF-kernel.

3 Theory

3.1 Quantified Boolean Formulas

As usual, we assume that we have an infinite set of Boolean variables. The
set of literals consists of all variables and their negations. We also extend the
notion of negation to literals and identify ¬¬v with v. A clause is a disjunction
of literals. A propositional formula is in conjunctive normal form (CNF) if it
is a conjunction of clauses. We say that QBF is in prenex normal form if the
formula is concatenation of a quantifier part and a quantifier-free part. Without
loss of generality, we consider only closed QBF in prenex normal form with a
propositional core in CNF – the formal definition is as follows:

Definition 1 (Quantified Boolean Formula). A Quantified Boolean For-
mula (QBF) is a formula of the following form

Q1x1 . . . Qnxn. φ ,
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where n ≥ 0, each xi is a Boolean variable, each Qi is the universal ∀ or the
existential ∃ quantifier, and φ is a propositional formula in CNF and all of its
variables are among x1, . . . , xn.

Q1x1 . . . Qnxn is called a quantifier prefix and φ is called a matrix. We define
an order < over variables such that x1 < x2 if x2 is in the scope of x1. We call
a variable the intermost or the outermost variable if it is maximal or minimal
among all variables of formula (with respect to the order <) respectively. We
say that x has a quantification level i if it is on the i-th position in the quantifier
prefix.

If we consider a quantifier prefix as a finite sequence of quantifiers, we can
define two relations on quantifier prefixes ⊆ and $. We define Q1 ⊆ Q2 if the
quantifier prefix Q1 is a subsequence of the quantifier prefix Q2, and Q1 $ Q2

if the sequence of the variables in Q1 is a subsequence of the sequence of the
variables in Q2. In other words, Q1 $ Q2 if we omit symbols for quantifiers (only
variables left) in Q1 and Q2, and then we ask if the former is a subsequence of
the latter.

The semantics �f� of closed QBF f is defined recursively by expanding the
outermost variable x: �∀x. φ� = �φ[x → 1] ∧ φ[x → 0]�, and similarly �∃x. φ� =
�φ[x → 1]∨φ[x → 0]�. Where φ[x → c] denotes φ in which every free occurrence
of x is replaced by the constant c. We call QBF valid or invalid if its semantics
is 1 or 0 respectively.

3.2 QBF Models

Squolem’s certificate of validity contains a model of the given QBF. The following
general definition of a QBF model is a slightly improved definition used in [5,17].

Definition 2 (Model). Let Φ = Q1x1 . . .Qnxn. φ be a valid closed QBF in
prenex normal form. Let Vi be the set of variables of Φ that have their quantifi-
cation level less than or equal to i and let Ei and Ai be the sets of the existentially
and universally quantified variables in Vi respectively, i.e., Ei ∪Ai = Vi. Let M
be the set of functions

M := {fvk
: {0, 1}k−1 → {0, 1} | vk ∈ En},

where each fvk
depends exactly on the k − 1 variables from Vk−1. M is said to

be a model of Φ if

�∀xi1 . . .∀xik
. φ [xj1 → fxj1

(x1, . . . , xj1−1), . . . , xjl
→ fxjl

(x1, . . . , xjl−1)]� = 1,

where {xi1 , . . . , xik
} = An and {xj1 , . . . , xjl

} = En.

Functions fv in the definition are nothing else than witness functions, which give
witnesses based on (potentially) all preceding variables. As is noted in [17], it
is also possible to let functions fvk

only depend on the universally quantified
variables of Vk−1 but the authors of [17] claim that the stated definition may
result in more compact representations of the functions fvk

. In practice these
functions are represented by propositional formulas.
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3.3 Squolem’s Certificates of Validity

Squolem’s certificate format is described in detail in [18], we describe only the
relevant part – certificates for valid formulas. The format is text based, vari-
ables are represented by positive integers and negated variables are denoted by
negative integers, i.e., integer negation expresses propositional negation. The cer-
tificate describes a model of a given valid QBF by providing witness functions
for existentially quantified variables.

The functions are defined gradually by extensions : definitions that introduce
new Boolean functions defined by propositional formulas. Each new extension
introduces a fresh variable which can be later used for referring to the newly
defined Boolean function. It is a reasonable requirement not to allow an arbitrary
propositional formula in the definition (which would be too hard to verify),
therefore in [18] the authors allow just two special types:

If-Then-Else A new function

f(x, y, z) = if l1 then l2 else l3

is defined as If-Then-Else of three existing variables, where l1, l2 and l3 are
literals in variables x, y and z. This function is not actually denoted in the
certificate by f(x, y, z), but by a newly introduced fresh variable, let us say
w. Then this type of Boolean functions can be represented by the following
propositional formula: w ⇔ (l1 ∧ l2) ∨ (¬l1 ∧ l3).

And A new function

f(x1, . . . , xn) =
n∧

i=1

li

is defined as a conjunction of the n literals li, which use the variables xi.
The number of conjuncts, n, can be an arbitrary non-negative integer. In
the case when n = 0 the defined function is the Boolean constant 1. The
newly defined function is also actually denoted by a fresh variable and its
representation by a Boolean formula is straightforward in this case.

After definitions of all extensions there is a final line containing a list of pairs
(v, lv) for all existentially quantified variables in the given formula. We call the
pairs as witness assignments. Here v is the existentially quantified variable and
lv is a literal representing an already defined extension, i.e., a possibly negated
variable denoting an extension. The corresponding Boolean formula is obvious
v ⇔ lv. This list of witness assignments represents a model in the sense of
Definition 2.

Let us conclude this section by an example of Squolem’s certificate of validity
for formula (1), which is translated into CNF as follows

∀v1 ∀v2 ∃v3. (v3∨v1∨¬v2)∧(v3∨v2∨¬v1)∧(v1∨v2∨¬v3)∧(¬v3∨¬v1∨¬v2) . (2)

Squolem then generates the following certificate:
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QBCertificate
E 4 A 1 -2 0
E 5 A -1 2 0
E 6 I 4 4 5
CONCLUDE VALID 3 6

Lines beginning with E represent extensions. These three lines represent three
extensions, the first two lines define And extensions and the third line is the
If-Then-Else extension. The corresponding Boolean formulas are as follows:

v4 ⇔ v1 ∧ ¬v2

v5 ⇔ ¬v1 ∧ v2

v6 ⇔ (v4 ∧ v4) ∨ (¬v4 ∧ v5)

The last line of the certificate says that the witness function for the existen-
tially quantified variable v3 is the extension v6. It is not difficult to see that the
extension v6 together with extensions v4 and v5 defines the Boolean function
XOR.

4 System Description

The overall structure of our system is as follows: first of all, we preprocess the
given formula and serialize it into Squolem’s input format. We run Squolem,
which generates the corresponding certificate of validity. Then we parse this
certificate and finally we construct a proof in HOL Light from information gained
during the parsing. In this section we describe preprocessing of the given formula
and especially construction of the proof. Other parts of our system contain non-
interesting software engineering.

4.1 Preprocessing

As our system supports general closed QBFs and Squolem only works with for-
mulas in CNF and prenex normal form, we had to incorporate a preprocessing
phase. We implemented a näıve version of the transformation using conversions
already available in HOL Light – NNFC CONV, CNF CONV and PRENEX CONV. The
transformation may cause an exponential blowup of the formula. More sophisti-
cated conversions could be implemented as well, but because the main focus of
this paper is on proof reconstruction (and our benchmark problems are already
in prenex CNF), such techniques are beyond the scope of this paper.

The second preprocessing step that was incorporated is renaming of all vari-
ables according to the same scheme. We use the scheme v i where i is a number
representing quantification level of the variable. The scheme provides a uniform
way of mapping variables to integers and vice versa, which is useful for text based
communication with Squolem (i.e., serializing input and parsing certificates) and
in data structures involving variables.

Thus our preprocessing makes the theorem  Φ∗ ⇔ Φ where Φ is the original
formula and Φ∗ is the preprocessed one, which is in the form Q1v1 . . . Qnvn. φ.
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Our goal is to prove  Φ∗ as a HOL Light theorem given a Squolem’s certificate of
its validity. The original formula is then trivially inferred by the EQ MP inference.

4.2 Validating Squolem’s Model

The question is how to represent the model contained in the given Squolem
certificate. We represent a model as the conjunction of the corresponding Boolean
formulas of all extensions and witness assignments. Let us denote this term by
M, and call it a model term.

For the certificate of formula (1) the model term is defined as follows

M = (v4 ⇔ v1∧¬v2)∧(v5 ⇔ ¬v1∧v2)∧(v6 ⇔ (v4∧v4)∨(¬v4∧v5))∧(v3 ⇔ v6) .

Now we can show how to verify the given model. Let us consider the following
formula

M ⇒ φ . (3)

We claim that the given model is really a model of Φ∗ if and only if (3) is a
propositional tautology. It is an easy observation that the value of each variable
that represents a witness function is uniquely determined in every satisfying as-
signments of variables on which the function depends. Let us suppose that (3) is
not a propositional tautology then the negation of (3) M ∧ ¬φ has a satisfying
assignment. This assignment uniquely determines values of existentially quanti-
fied variables in φ, but does not satisfy φ. Thus we find a counterexample that
witnesses that the given model is not actually a model of Φ∗. On the other hand,
if (3) is a propositional tautology then every satisfying assignment of M has to
satisfy φ.

We prove (3) by calling an external SAT solver. For this we followed Weber
and Amjad [25], who integrated external SAT solvers zChaff and MiniSat with
HOL theorem provers including HOL Light. In order to prove a formula to be
a propositional tautology they negate it and run a SAT solver. If the formula is
really a tautology then there is no satisfying assignment of the negated formula
and the SAT solver produces a resolution proof of ⊥. If we replay the resolution
proof in the interactive theorem prover, we get our formula as HOL Light’s
theorem:

 M ⇒ φ . (4)

4.3 Adding Quantifiers

Let us denote the quantifier prefix of the formula Φ∗ as Q, thus we have the
following equation: Q = Q1v1 . . .Qnvn. As was described in 3.3, each And and
If-Then-Else extension defines a new fresh variable. We want to define extended
quantifier prefix Qe that correctly incorporates these new fresh variables into Q.
We follow [17] and quantify new variables existentially. An important question
is how to order the new variables with respect to the variables in the original
quantifier prefix – it is clear that they have to be put after the variables on which
their extension function depends. But they can’t be put too deep because then
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the corresponding function could depend on variables for which it should serve
as a model. Therefore we put each new variable right after the variable with the
highest quantification level in the extension function.

This method, however, still doesn’t yield a fully correct quantifier prefix. There
is a problem with witness assignments. If we have for example a pair (vi, vj), the
value of vi depends on vj . But vi is not a new fresh variable, it is an existentially
quantified variable from the original quantifier prefix Q. Therefore it generally
doesn’t have to be after the variable vj . Let us consider an example where
Q = ∀v1 ∃v2 ∃v3, and there are the extension v4 = v1 ∧ v3 and the witness
assignment v2 = v4. After we incorporate v4, we have Qe = ∀v1 ∃v2 ∃v3 ∃v4.
But a value of v2 depends on a value of v4, therefore v2 has to be after v4.
Fortunately, it is logically correct to reorder quantifiers in the block of the same
quantifiers, thus we can move v2 after v4 in our example. In general, we need to
topologically sort each block of existential quantifiers according to their extension
dependencies.1

Our next step is to prove the formula QeM ⇒ Qφ. We prove it from (3)
by sequential addition of quantifiers by the following three inferences, which we
designed and implemented (see 5.1):

 A ⇒ B
 (∀x. A) ⇒ ∀x. B

 A ⇒ B (x not free in B)
 (∃x. A) ⇒ B

 A ⇒ B
 A ⇒ ∃x. B

We go simultaneously through Qe and Q, in a bottom-up fashion, and in each
step we use the first rule from the following list that matches:

– Q = . . . ∃vi – The whole existential block in Q will be sequentially added by
the third inference. Because Qe was made from Q, there has to be the cor-
responding block in Qe. It contains the same variables as the corresponding
block in Q plus potentially some fresh variables from extensions. We add
this block of Qe sequentially by the second inference. The condition ’x not
free in B’ is satisfied because all common variables from the added blocks of
Q and Qe are bounded in B from the first step of this rule.

– Qe = . . . ∃vi – There is an existential block in Qe that contains only fresh
variables from extensions, therefore we can add this block in Qe by the
second inference. If the block contained a non-fresh variable, the first rule
from this list would match.

– Qe = . . . ∀vi and Q = . . . ∀vi – Let us note that the universally quantified
variables in Qe and Q have to be the same because we didn’t change order of
variables in the universally quantified blocks. Thus we add both quantifiers
at once by the first inference.

After this juggling with quantifiers we have the following theorem:

 QeM ⇒ Qφ . (5)

1 This is possible because Squolem never generates circular dependency between ex-
tensions and witness assignments.
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4.4 Proving the Quantified Model Term

If we were able to prove QeM, we would accomplish our goal because we can
derive  Qφ from (5) by a call of MP. And because Qφ = Φ∗, we would be done.

We start with the proof of each extension and witness assignment Boolean
formula. For each such a Boolean formula vk = ϑ(vi1 , . . . , vil

) we prove the
following theorem

 ∀vi1 . . . ∀vil
∃vk. vk = ϑ(vi1 , . . . , vil

) (6)

by the following derivation
REFLϑ(vi1 ,...,vil

) ϑ(vi1 , . . . , vil
) = ϑ(vi1 , . . . , vil

) CHOOSE∃vk. vk=ϑ(vi1 ,...,vil
), ϑ(vi1 ,...,vil

) ∃vk. vk = ϑ(vi1 , . . . , vil
)) GENvil ∀vil

∃vk. vk = ϑ(vi1 , . . . , vil
)

... GENvi1
.

 ∀vi1 . . . ∀vil
∃vk. vk = ϑ(vi1 , . . . , vil

)

It is very important to note that we ordered the variables vi1 , . . . , vil
according

to their quantification levels in Qe. Let E1, . . . , EN be all extension and witness
assignment Boolean functions and let Q1, . . . ,QN be the quantifier prefixes that
we get in expressions (6) for each Boolean function. Because we made Qe in 4.3
so that each existential variable goes after the variables on which it depends and
because we ordered the variables vi1 , . . . , vil

in the same order as they appear in
Qe, we get for all i that Qi $ Qe.

We can rewrite expressions (6) as QiEi for each extension. Let us consider the
following formula (Q1E1) ∧ · · · ∧ (QNEN ). We show in the rest of this section
that we are able to “lift” each Qi in front of the big conjunction of Ei’s in such
a way that we get the following theorem

 Qe(E1 ∧ · · · ∧ EN ) , (7)

which is nothing else than  QeM.
We designed and implemented the following inference

Q′A Q′′B
LIFT,

Q′′′(A ∧B)
which has the following property: if Q′ $ Qe and Q′′ $ Qe, then Q′′′ $ Qe.
In addition, these two relations hold unconditionally: Q′ $ Q′′′ and Q′′ $ Q′′′.
With LIFT it is almost possible (we derive Q∗ instead of Qe) to derive (7) by
N − 1 calls of LIFT:

 Q1E1

 QN−2EN−2

 QN−1EN−1  QNEN
LIFT Q′(EN−1 ∧EN )

LIFT Q′′(EN−2 ∧ EN−1 ∧ EN )

. . .
... LIFT

 Q
′...′(E2 ∧ · · · ∧EN−2 ∧ EN−1 ∧EN )

LIFT Q∗(E1 ∧ E2 ∧ · · · ∧ EN−2 ∧EN−1 ∧ EN )
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Now we finish a proof of (7). From the above written properties of LIFT
it follows that Q∗ $ Qe. Because we have for every existentially quantified
variable the corresponding extension2, and because LIFT prefers existentially
quantified variables during lifting (see next section), each Qi contributes by
exactly one existentially quantified variable into Q∗. Therefore Q∗ contains the
same existentially quantified variables as Qe. From that follows that Q∗ ⊆ Qe.
This generally does not have to be equality because some universally quantified
variables from Qe can be missing in Q∗. Those are exactly the variables that
weren’t present in any extension, i.e., they are not free in M, and therefore they
can be quite easily added in Q∗. Our rule ADD MISSING UNIVERSALS does
this job – it is a simple use of HOL Light’s rewriting conversions:

 Q∗(E1 ∧ · · · ∧ EN )
ADD MISSING UNIVERSALS Qe(E1 ∧ · · · ∧ EN )

4.5 LIFT

The main goal of LIFT is to prove the following implication

 (Q′A ∧Q′′B) ⇒ Q′′′(A ∧B) . (8)

If we have (8), it is straightforward to derive the conclusion of LIFT by a call of
CONJ and MP.

Because Q′ $ Qe and Q′′ $ Qe, all we need to do is to merge Q′ and
Q′′ together according to quantification levels. If we find items of Q′ and Q′′

that have different quantifiers, we prefer existential quantifier. We start with
 A ∧B ⇒ A ∧B, which we derive by ASSUMEA∧B and DISCH ALL.

Then we go simultaneously through Q′ and Q′′, in a bottom-up fashion, and
perform merging using the following inferences, which we implemented:

 (A ∧B) ⇒ C

 ((∀x. A) ∧ ∀x. B) ⇒ ∀x. C

 (A ∧B) ⇒ C

 ((∃x. A) ∧ ∀x. B) ⇒ ∃x. C

 (A ∧B) ⇒ C

 ((∀x. A) ∧ ∃x. B) ⇒ ∃x. C

 (A ∧B) ⇒ C
x /∈ B ((∀x. A) ∧B) ⇒ ∀x. C

 (A ∧B) ⇒ C
x /∈ B ((∃x. A) ∧B) ⇒ ∃x. C

 (A ∧B) ⇒ C
x /∈ A (A ∧ ∀x. B) ⇒ ∀x. C

 (A ∧B) ⇒ C
x /∈ A (A ∧ ∃x. B) ⇒ ∃x. C

The notation ’x /∈ B’ means ’x is not free in B’. For example, if we encounter
two universal quantifiers with the same variables, we use the first rule. On the
2 If Squolem doesn’t generate a witness function for some existentially quantified vari-

able vi, we add the following artificial extension vi ⇔ 1.
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other hand, if we need to merge two universal quantifiers with different variables
and the first variable has higher quantification level than the second, we use the
fourth rule and so on.

It is an important observation that we cannot encounter two existential quan-
tifiers with the same variable. As was discussed in 4.4, each Qi contributes by
exactly one existentially quantified variable and all these variables are different.
If we encountered this two-existentials situation, it would be a problem because
it generally doesn’t hold that ((∃x. A) ∧ ∃x. B) ⇒ ∃x. A ∧B.

5 Implementation and Evaluation

5.1 Implementation of Rules

HOL Light has a very simple kernel especially in comparison with HOL4 or
Isabelle/HOL. Many rules are not included in HOL Light’s kernel and they are
derived from primitive rules, including for example the rule MP – modus ponens.
It turns out to be one of the sources of inefficiency. We discussed three rules for
adding quantifiers into (3) in 4.3. It is natural to implement the second rule
by HOL Light’s CHOOSE and the third rule by EXISTS.3 We tried it but this
approach turned out to be significantly slower than the following approach: We
prove the following schematic theorems

 (∀x. A ⇒ B) ⇒ ((∀x. A) ⇒ ∀x. B)  (A ⇒ B) ⇒ (A ⇒ ∃x. B)

 (∀x. A ⇒ B) ⇒ (∃x. A ⇒ B), x not free in B,

and in every call of the corresponding rules from 4.3, we instantiate them prop-
erly and by MP derive the consequent. We used similar approach in the imple-
mentation of rules used in LIFT.

5.2 Alpha-Equivalence Optimization

After we implemented optimizations described in 5.1, performance was still poor.
We did some profiling to gain a deeper insight into this problem, and made a
quite surprising discovery. Our system spent 99.4 % of the time in HOL Light’s
kernel function alphaorder. This function implements the order of HOL Light’s
terms with the property that alpha-equivalent terms are equal according to this
order. This order is among others used to implement the simple test that two
terms are alpha-equivalent. The test for alpha-equivalence is a common test in
HOL Light’s rules; for example, it is used in the MP rule.

The implementation of alphaorder t1 t2 is as follows: go simultaneously
through (up to bottom) the structure of t1 and t2 and compare recursively
smaller parts. A list of pairs of alpha-equivalent bound variables is maintained
during the traversal. This traversal is implemented in the function orda. If λx. s1

and λy. s2 are compared, then a new pair of alpha-equivalent variables (x, y) is

3 Both of rules are for example implemented directly in the HOL4 kernel [14].
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Table 1. Profiling results

non-optimized optimized

function relative time (%) number of calls relative time (%) number of calls

orda 99.4 668974 16.63 668974
ordav 97.84 19786610 2.59 125146
compare and == 92.33 1225276114 13.67 951183

added to the front of the list. If we need to compare two variables, we have to
check the list of alpha-equivalent variables first, which is done in linear time.
The comparison of variables is implemented in the function ordav.

This linear-time implementation is ineffective for formulas with many abstrac-
tions. Because the test for alpha-equivalence of two variables is linear, the test
for the whole formula is quadratic. It seems that this is not a problem in normal
use of HOL Light (i.e., if common formulas are used). But we work with for-
mulas which have thousands of variables, and because we work only with closed
formulas and each quantifier is encoded by a particular type of abstraction, our
formulas have thousands of abstractions.

Our optimization is based on the observation of the problem that alpha-
equivalence of two identical terms is still possibly quadratic because the pair
(x, y) is added to the list even if x and y are identical variables. Thus our opti-
mization is as follows: we detect if the list of alpha-equivalent variables contains
pairs of identical variables. If so, we do not use this list. Thus comparison of
two identical formulas is linear and not quadratic because all pairs of variables
are only compared, and there is no need to go through the list in linear time.
The complexity can be actually improved even more because if we do not take
the list of alpha-equivalent variables into consideration, we can compare shared
subterms only by comparing two pointers pointing to this shared subterm. And
this pointer comparison is a constant time operation.

Thanks to this optimization we get a speed-up factor of 321.0 (see 5.3). De-
tailed profiling data can be seen in Table 1.

5.3 Run-Times

We performed a set of benchmarks to show performance of our implementation
and feasibility of validation of Squolem’s certificates in HOL Light. We used a
similar methodology as in [17,24]. The authors of Squolem conducted experi-
ments on the 2005 fixed instance and the 2006 preliminary QBF-Eval data sets,
in total 445 instances of QBFs [17]. We ran Squolem with the time limit of
600 seconds and the memory limit of 1 GB. Squolem solved 100 valid problems
within the given limits. We ran our system on these 100 valid QBF problems.

All benchmarks were run on a Linux system with four AMD Phenom II X4
955 processors (3.2 GHz) and with 8 GB RAM. We set time limits to 5, 60, 600
and 3000 seconds and the memory limit to 1.5 GB RAM. We present our results
for these time limits in Table 3. One can see in the table that we are able to
solve more than half of our instances within the time limit of 60 seconds and the
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Table 2. Detailed evaluation results for the time limit of 60 seconds

exten- non.
instance name qntfs. vars. clauses sions opt. (s) SAT (s) model (s) total (s)
Adder2-2-s 6 249 292 580 179.7 0.3 0.3 1.3
adder-2-sat 4 64 109 206 16.5 0.3 0.1 0.5
CHAIN12v.13 3 925 4582 1809 ∞ 3.6 2.0 30.7
CHAIN13v.14 3 1080 5458 2090 ∞ 4.6 2.6 45.6
comp.blif 0.10 1.00 0 1 inp exact 3 307 844 4973 ∞ 4.9 30.6 59.1
counter 2 5 42 103 362 40.3 0.2 0.2 0.5
counter e 2 5 50 123 740 395.1 0.3 0.5 1.3
counter r 2 5 50 121 408 56.6 0.2 0.2 0.6
counter re 2 5 58 141 639 228.6 0.3 0.4 1.1
impl02 5 10 18 22 0.0 0.0 0.0 0.0
impl04 9 18 34 42 0.1 0.0 0.0 0.0
impl06 13 26 50 62 0.4 0.0 0.0 0.1
impl08 17 34 66 82 0.7 0.1 0.0 0.1
impl10 21 42 82 102 1.1 0.1 0.0 0.2
impl12 25 50 98 122 1.9 0.1 0.0 0.2
impl14 29 58 114 142 3.0 0.1 0.0 0.2
impl16 33 66 130 162 4.0 0.1 0.1 0.3
impl18 37 74 146 182 6.6 0.1 0.1 0.4
impl20 41 82 162 202 7.5 0.2 0.1 0.5
k d4 n-4 17 393 1312 3105 ∞ 4.9 7.2 26.7
k dum n-12 35 620 1594 2911 ∞ 3.9 5.7 30.1
k dum n-16 43 796 2062 3799 ∞ 9.1 9.5 50.5
k dum n-4 19 262 649 1152 1400.7 0.8 1.0 4.6
k dum n-8 27 444 1126 2023 ∞ 1.7 2.7 13.2
k grz n-4 17 317 902 1767 ∞ 1.9 2.3 10.5
k grz n-8 17 433 1413 3050 ∞ 3.9 7.6 29.4
k path n-12 29 876 2440 4235 ∞ 4.3 12.2 58.2
k path n-4 13 324 888 1464 2839.2 1.2 1.5 7.1
k path n-8 21 600 1664 2846 ∞ 2.4 5.4 26.6
k ph n-4 5 141 411 726 328.7 0.5 0.6 2.1
k poly n-4 29 330 743 1513 2956.5 1.4 1.6 7.3
k poly n-8 53 654 1475 3097 ∞ 4.4 6.5 31.1
k t4p n-4 27 624 1895 4058 ∞ 10.3 12.5 55.1
mutex-16-s 2 1378 1779 3523 ∞ 2.4 7.5 32.1
mutex-2-s 2 104 127 214 10.8 0.1 0.1 0.3
mutex-4-s 2 286 363 612 223.5 0.4 0.4 1.6
mutex-8-s 2 650 835 1652 ∞ 0.9 1.9 7.3
qshifter 3 2 19 128 128 4.2 0.2 0.1 0.3
qshifter 4 2 36 512 512 194.0 1.3 0.4 2.6
qshifter 5 2 69 2048 2048 ∞ 8.8 4.1 30.8
s27 d2 s 3 65 142 166 4.7 0.1 0.1 0.2
s298 d2 s 3 699 1895 1469 2526.8 1.5 1.2 12.6
s499 d2 s 3 950 2665 2093 ∞ 2.9 3.5 27.0
TOILET2.1.iv.4 3 37 99 89 0.8 0.1 0.0 0.1
tree-exa10-10 2 20 18 19 0.0 0.0 0.0 0.0
tree-exa10-15 2 30 28 29 0.1 0.0 0.0 0.0
tree-exa10-20 2 40 38 39 0.2 0.0 0.0 0.1
tree-exa10-25 2 50 48 49 0.3 0.0 0.0 0.1
tree-exa10-30 2 60 58 59 0.5 0.0 0.0 0.1
z4ml.blif 0.10 0.20 0 1 inp exact 5 65 193 1087 1759.2 0.7 1.3 2.9
z4ml.blif 0.10 0.20 0 1 out exact 3 61 185 1221 2480.7 0.8 1.5 3.3
z4ml.blif 0.10 1.00 0 1 inp exact 3 66 200 546 155.1 0.3 0.3 0.9
z4ml.blif 0.10 1.00 0 1 out exact 3 64 196 1219 2411.1 0.8 1.5 3.3

Table 3. Evaluation results for various time limits

time limit (s) success rate (%) average time (s) quantifier blocks variables clauses

5 33 0.9 41 286 649

60 53 12 53 1378 5458

600 81 73 133 3015 17752

3000 94 248 133 11570 19663
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success rate is 94 percents for the time limit of 3000 seconds. Also one can see
that we are able to solve instances with thousands of variables.

We have decided to show detailed evaluation results for the time limit of 60
seconds. We present our data in the same format as Weber [24] to allow easy
comparison of the results. The data can be found in Table 2. The first column
contains the name of a benchmark; the next three columns give a characterization
of a formula by providing three size parameters of the formula – the number of
the quantifier blocks, variables and clauses. The fifth column gives the size of
Squolem’s certificate measured by the number of the generated extensions. The
next column contains the run-time of our system without the alpha-equivalence
optimization. The symbol∞ denotes the case when the time limit of 3600 seconds
was exceeded.

The last three columns contain run-times for validation of Squolem’s certifi-
cates in HOL Light. The SAT column tells how much time we spent by con-
structing the proof of (3) using the external SAT solver, i.e., by validating the
model (see 4.2). The model column shows the run-time of proving the quantified
model term (see 4.4). The last column finally contains the total run-time of our
system for the given problem. All run-time columns are given in seconds and
rounded to one decimal place. If we consider only instances for which we have
data for non-optimized implementation, we get a speed-up factor of 321.0 for
non-optimized vs. optimized implementation.

6 Conclusions and Future Work

We have developed and implemented a system that constructs proofs of valid
QBFs from Squolem’s certificates of validity. Our evaluation showed that this
task is feasible – more than half of our benchmarks were solved within the
time limit of 60 seconds. We had a similar experience with implementation as in
[24,25], namely that performance is very sensitive to used inferences and to imple-
mentation details of the inference kernel. We proposed an optimization in HOL
Light’s kernel concerning computation of alpha-equivalence of terms, and got a
speed-up factor of 321.0. Our implementation is freely available from the follow-
ing web address: http://ktiml.mff.cuni.cz/~kuncar/squolem2hollight.

As was discussed in detail in Section 1, our system has two main applications.
First, our system increases the amount of automation of HOL Light, and al-
lows HOL Light’s users to prove QBFs that are beyond the scope of the built-in
tactics of HOL Light. Proving these formulas without our work would demand
considerable human effort. Second, our approach can be used for validating cor-
rectness of Squolem’s results because of HOL Light’s small LCF-style kernel. A
small bug was found and resolved in Squolem due to our work.

An alternative approach to using the LCF-style kernel directly is the use
of reflection. This alternative approach requires implementation and a proof of
correctness of a checker for Squolem’s certificates in the prover’s logic. Then
this checker is run without producing any proof. In general, reflection provides
better performance and still relatively high correctness assurances. To our best
knowledge, there has not been done any work on reflectively verifying QBF

http://ktiml.mff.cuni.cz/~kuncar/squolem2hollight
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solvers. There is also no support for reflection in HOL Light, namely one would
have to integrate a reflection rule into HOL Light’s kernel allowing it to trust
the results of such a verified checker.

Some possible directions for future work are as follows: (i) There is still small
room for further optimization, but probably not so radical as we presented. (ii)
It is possible to implement our approach in other LCF-style interactive theorem
provers, namely HOL4 and Isabelle/HOL. One can expect that implementation
can differ because of variations in their kernels. (iii) Another direction is to
continue in the general research of automation of interactive theorem provers,
and integrate other systems. Integration of the system MetiTarski [1] seems to
be the next challenging research task.

Acknowledgments. The author would like to thank John Harrison for propos-
ing various optimizations in the code. This research was partially supported by
SVV project number 263 314.
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E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

{fjesus,jruiz}@us.es

Abstract. In this paper we present a complete formalization, using the
ACL2 theorem prover, of the Normalization Theorem, a result in Alge-
braic Simplicial Topology stating that there exists a homotopy equiva-
lence between the chain complex of a simplicial set, and a smaller chain
complex for the same simplicial set, called the normalized chain complex.
The interest of this work stems from three sources. First, the normaliza-
tion theorem is the basis for some design decisions in the Kenzo com-
puter algebra system, a program for computing in Algebraic Topology.
Second, our proof of the theorem is new and shows the correctness of
some formulas found experimentally, giving explicit expressions for the
above-mentioned homotopy equivalence. And third, it demonstrates that
the ACL2 theorem prover can be effectively used to formalize mathemat-
ics, even in areas where higher-order tools could be thought to be more
appropriate.

1 Introduction

The origin of this work is a Computer Algebra system called Kenzo [2]. It is
a Common Lisp program created by F. Sergeraert around 1990 and devoted to
computing homology groups of topological spaces. In other words, Kenzo is a
system devoted to Algebraic Topology. The goal of Algebraic Topology is to clas-
sify or to distinguish topological spaces by observing some algebraic structures
associated with them.

Kenzo has been able to compute relevant results in the field, which have not
been confirmed or refuted by any other means (see [11]). This is the reason why it
makes sense to apply formal methods to study Kenzo and its correctness as a soft-
ware system. And when talking about mechanized theorem proving and Kenzo,
it is natural to think about ACL2 [4], a first-order theorem prover for reason-
ing about programs written in an extension of an applicative subset of Common
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Lisp. Although Kenzo is not programmed in such an applicative subset, we could
increase our confidence in some fragments of the Kenzo code, by formally verify-
ing applicative (and executable) versions very closely related to the original code.
Some preliminary results following this line have already been obtained [7,3].

In this paper, instead of verifying a fragment of the Kenzo code, we study a
different aspect of the problem: since the underlying mathematical theory in the
algorithms implemented in Kenzo is Algebraic Topology, we will have to formal-
ize in ACL2 the main theorems on which Kenzo is based. Here we present a first
step in this task: we show the ACL2 proof of a fundamental result in Algebraic
Topology, the so-called Normalization Theorem [5]. As we will explain, this the-
orem is like a precondition for Kenzo, allowing it to deal with simpler structures.

It turns out that the ACL2 first-order logic is enough to prove this theorem.
A symbolic setting is introduced in which the theorem can be proved by using
only simplification and induction on lists, the kind of proofs ACL2 was designed
for. Thus, this work could be considered a first milestone to formalize algebraic
topology in a first order framework.

The organization of the paper is as follows. In Section 2 we introduce the mini-
mal mathematical machinery needed to state and understand the main theorem
proved. In Section 3, we present the ACL2 definitions and theorems formally
establishing the result. In Section 4, we describe the symbolic framework of sim-
plicial polynomials, a fundamental tool for the development of the proof. The
paper ends with a section of conclusions and further work.

In our description of the formalization, we will necessarily skip many details
and some of the function definitions will be omitted. The complete source files
containing the ACL2 formalization and proof of the Normalization Theorem are
accessible at http://www.glc.us.es/fmartin/acl2/wfoe.

2 Algebraic Simplicial Topology

In this section the most important concepts needed to state the main theorem
are presented. More details can be found, for instance, in [8].

Definition 1. A simplicial set K is a graded set {Kn}n∈N together with func-
tions:

∂n
i : Kn → Kn−1, n > 0, i = 0, . . . , n,

ηn
i : Kn → Kn+1, n ≥ 0, i = 0, . . . , n,

subject to the following equations (called simplicial identities):

(1) ∂n−1
i ∂n

j = ∂n−1
j ∂n

i+1 if i ≥ j,

(2) ηn+1
i ηn

j = ηn+1
j+1 ηn

i if i ≤ j,

(3) ∂n+1
i ηn

j = ηn−1
j−1 ∂n

i if i < j,

(4) ∂n+1
i ηn

j = ηn−1
j ∂n

i−1 if i > j + 1,

(5) ∂n+1
i ηn

i = ∂n+1
i+1 ηn

i = idn,

where idn denotes the identity function on Kn.
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The functions ∂n
i and ηn

i are called face and degeneracy maps, respectively.
The elements of Kn are called n-simplexes (or simplexes of dimension n).

A simplicial set is a combinatorial model of a topological space and n-simplexes
can be seen as an abstraction (and a generalization to dimension n) of the notion
of triangle, given by its vertices. Although we have do not have enough room
here to illustrate the notion of simplicial set, we get some intuition if we give
one concrete simplicial set: think of n-simplexes as non-decreasing integer lists
of length n + 1 and interpret ∂n

i and ηn
i as the functions that respectively delete

and duplicate the i-th element of a list. This simplicial set is a particular case
of a simplicial complex [1]. The notion of simplicial set is an abstraction of a
simplicial complex, where simplexes are no longer lists, but whatever elements,
where the simplicial identities hold.

If no confusion can arise, usually we remove the superindex in the face and
degeneracy maps, writing simply ∂i and ηi, respectively.

Algebraic Topology associates algebraic objects to topological spaces, and in
particular to simplicial sets. To understand this precisely, we need some algebraic
notions. A chain complex C is a sequence of pairs {Cn, dn}n∈N, where each Cn

is an abelian group and each dn is a homomorphism dn : Cn → Cn−1 (called
boundary map or differential) such that dn◦dn+1 = 0. This last property is called
the boundary property, and can be restated as Im(dn+1) ⊆ Ker(dn). Therefore,
it is possible to consider the quotient group Ker(dn)/Im(dn+1), which is called
the n-th homology group of the chain complex C, denoted Hn(C).

Given a simplicial set K, we can associate to it some homology groups in the
following way. For each n ∈ N, let us consider the free abelian group generated
by the n-simplexes Kn, group denoted by Cn(K). That is, the elements of such a
group are formal linear combinations

∑r
j=1 λjxj , where λj ∈ Z and xj ∈ Kn.

These linear combinations are called chains of simplexes or, in short, chains.
We define the homomorphisms dn : Cn(K) → Cn−1(K) first defining them over
each generator: for each x ∈ Kn, define dn(x) =

∑n
i=0(−1)i∂i(x); we then extend

them to chains by linearity. It can be proved, using the simplicial identity (1),
that these homomorphisms have the boundary property, and thus we say that
the family of pairs {(Cn(K), dn)}n∈N is the chain complex associated to the sim-
plicial set K, denoted by C(K). Its homology groups are denoted by Hn(K).
Much effort is devoted in Algebraic Topology to studying and determining such
homology groups, since it can be proved that they provide topological infor-
mation that aids in the classification of spaces. Homology groups are the main
objects to be computed by Kenzo.

There is an alternative way to associate a chain complex to a simplicial set
K, taking into account only non-degenerate simplexes. We say that a n-simplex
is degenerate if it is the result of applying a degeneracy map to a n− 1 simplex;
otherwise, it is non-degenerate. Let us denote by KND

n the set of non-degenerate
n-simplexes of K, and CN

n (K) the free abelian group Z[KND
n ] generated by non-

degenerate simplexes. To get an actual chain complex, we introduce a differential
map dN

n which is defined as applying dn and then erasing, in its image, the
generators which are degenerate.
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We define a family f of canonical epimorhisms fn : Cn(K) → CN
n (K) such

that fn(
∑r

j=1 λjxj) consists simply of eliminating all the addends λjxj such
that xj is a degenerate simplex. Note that the map f is compatible with respect
to the differentials; that is to say, fn−1 ◦ dn = dN

n ◦ fn. A function with this
property is called a chain morphism.

The main property of the above canonical chain morphism f is that it pre-
serves the homological information associated to a simplicial set, and this is
established by the Normalization Theorem:

Theorem 1 (Normalization Theorem). Let K be a simplicial set. Then the
canonical homomorphism f : C(K) → CN (K) induces group isomorphisms
Hn(C(K)) ∼= Hn(CN (K)), ∀n ∈ N.

The theorem explains that, from the computational point of view, it is the same
to work with C(K) as with CN (K). This justifies a fundamental implementation
decision in the Kenzo system: work only with the smaller chain complex CN (K)
to compute homology groups of a simplicial set K.

A proof of the Normalization Theorem can be found, for example, in [5] (pages
236-237). Nevertheless, we will prove the result trying a stronger and more direct
approach, more suitable for the ACL2 logic. This approach is based on the
notions of strong homotopy equivalence and reduction:

Definition 2. A strong homotopy equivalence is a 5-tuple (C, C′, f, g, h)

C

f
��

h �� C′
g

��

where C = (M, d) and C′ = (M ′, d′) are chain complexes, f : C → C′ and
g : C′ → C are chain morphisms, h = (hi : Mi → Mi+1)i∈N is a family of
homomorphisms (called a homotopy operator), which satisfy the following three
properties for all i ∈ N:

(1) fi ◦ gi = idM ′
i

(2) di+2 ◦ hi+1 + hi ◦ di+1 + gi+1 ◦ fi+1 = idMi+1

(3) fi+1 ◦ hi = 0

If, in addition the 5-tuple satisfies the following two properties:

(4) hi ◦ gi = 0
(5) hi+1 ◦ hi = 0

then we say that it is a reduction.

This concept precisely describes a situation where the homological information
is preserved. More concretely, if (C, C′, f, g, h) is a reduction, then fn induces an
isomorphism of groups (with gn defining the corresponding inverse) between
Hn(C) and Hn(C′), ∀n > 0. Therefore the following statement describes a
stronger version of the Normalization Theorem:
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Theorem 2 (Normalization Theorem, reduction version). For every simplicial
set K, there exists a reduction (C(K), CN (K), f, g, h) where f is the canonical
chain epimorphism.

An explicit definition of a possible reduction for this theorem was presented in
[10] as an experimental result. There, after running several examples, it was
conjectured (but not proved) that some possible formulas for the functions g
and h could be:

• gm =
∑

(−1)
∑p

i=1 ai+bi ηap . . . ηa1∂b1 . . . ∂bp , where the indexes range over
0 ≤ a1 < b1 < . . . < ap < bp ≤ m, with 0 ≤ p ≤ (m + 1)/2.

• hm =
∑

(−1)ap+1+
∑p

i=1 ai+bi ηap+1ηap . . . ηa1∂b1 . . . ∂bp , where the indexes
range over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ m, with 0 ≤ p ≤ (m+1)/2.

We have proved in ACL2 that, with these formulas for g and h, we have a strong
homotopy equivalence. That was the most difficult part of all our formalization
(note the complexity of the definitions above, which are very combinatorial).
After proving that, we applied some general transformations to the function h,
in such a way that we get properties (4) and (5), while preserving properties (1),
(2) and (3). That is, we proved Theorem 2 in ACL2.

3 The Normalization Theorem in ACL2

In this section, we show the main definitions and theorems formalizing the Nor-
malization Theorem in ACL2. We will leave for the next section a description of
the main aspects of the proof.

Although the syntax of ACL2 terms and formulas is that of Common Lisp,
and thus they are written using prefix notation, for the sake of readability they
will be presented using a notation closer to the usual mathematical notation
than its original Common Lisp syntax. For example, some of the functions will
be presented in infix notation. When needed, we will show the correspondence
between the ACL2 functions and the mathematical notation used instead.

3.1 Simplicial Sets and Chain Complexes

The first step in our formalization is the definition of the notion of simplicial set,
as presented in Definition 1. Since the theorem we want to prove is a result on
any simplicial set, we introduce a generic simplicial set using the encapsulation
principle. In ACL2, encapsulate allows us to introduce functions in a consistent
way, without giving a complete definition and only assuming certain properties
about them.

A simplicial set can be defined by means of three functions K, d and n. The
function K is a predicate with two arguments, such that K(m,x) is intended to
mean x ∈ Km. The functions d and n both have three arguments and they
represent the face and degeneracy maps, respectively. The intended meanings
for d(m,i,x) and n(m,i,x) are respectively ∂m

i (x) and ηm
i (x). To be generic, we
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introduce them using the encapsulation principle: the only assumed properties
about K, d and n are those stating well-definedness of d and n and the five
simplicial identities. We do not list here all those properties, but for example
these are the assumptions about the well-definedness of the face map, and the
first simplicial identity:

Assumption: d-well-defined
(x ∈ Km ∧ m ∈ N+ ∧ i ∈ N ∧ i ≤ m) → ∂m

i (x) ∈ Km−1

Assumption: simplicial-id1
(x ∈ Km ∧ m ∈ N ∧ i ∈ N ∧ j ∈ N ∧ j ≤ i ∧ i < m ∧ 1 < m)
→ ∂m−1

i (∂m
j (x)) = ∂m−1

j (∂m
i+1(x))

The next step is to define chain complexes. Since chains are linear combinations
of simplexes of a given dimension, it is natural to represent them as lists whose
elements are (dotted) pairs formed by an integer and a simplex. We will consider
only chains in canonical form: their elements must have non-null coefficients and
have to be strictly increasingly ordered with respect to a total order (given by
the function ss-<, which is based on the ACL2 primitive function lexorder).
The main advantage of this is that the equality between chains will simply be
the ACL2 syntactical equality (equal).

The following function sc-p defines chains in a given dimension (the auxiliary
function ss-p defines the dotted pairs formed by a non-null integer and a simplex
of a given dimension):

Definition:

sc-p(m,c) :=
if endp(c) then c = nil
elseif endp(cdr(c)) then ss-p(m,first(c)) ∧ rest(c) = nil
else ss-p(m,first(c)) ∧ ss-<(m,first(c),second(c)) ∧

sc-p(m,rest(c))

The main operations we define on chains are addition and scalar product by
an integer, for each dimension m. The ACL2 functions for these operations are
add-sc-sc(m,c1,c2) and scl-prd-sc(m,k,c), whose definition we omit here. Re-
call that we have to take care of returning their result in canonical form. From
now on, we will respectively denote them as c1 + c2 and k · c (note that, for the
sake of readability, we omit the dimension).

The set of chains of a given dimension is an abelian group with respect to
addition, where the identity in this group is the zero chain (represented as nil
and denoted here as 0). It is worth mentioning that we automatically obtained
all the definitions and theorems proving the group structure of chains, as an
instance of a more generic theory about the free abelian group generated by a
generic basis. For that automatic generation we used the generic instantiation
tool described in [6].
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Simplicial maps can be linearly extended on chains. For example, this is the
definition of c-d, the face map extended to chains1:

Definition: [∂m
i (c)]

c-d(m,i,c) :=
if endp(c) then c
else cons(car(first(c)),∂m

i (cdr(first(c)))) + c-d(m,i,rest(c)))

Note that this function is not a simple “mapcar” on the simplexes of a chain,
since its result is returned in canonical form. In a similar way, we define c-n,
the extension of the degeneracy map to chains. We will use the same notation
(∂m

i (c) and ηm
i (c)) to denote these maps both on simplexes and on chains.

Let us now define the differential on chains. Recall that its precise definition
is dm(c) =

∑m
i=0(−1)i∂m

i (c). The following function diff implements the corre-
sponding ACL2 recursive definition (the auxiliary function diff-aux is needed
to introduce an extra argument n for the dimension on where the function is
defined, which remains unchanged during the recursion):

Definition:

diff-aux(n,m,c) :=
if m �∈ N+ then ∂n

0 (c)
else (−1)m · ∂n

m(c) + diff-aux(n,m− 1,c))
Definition: [dm(c)]

diff(m,c) := diff-aux(m,m,c)

The following theorem states that the above function satisfies the boundary
property, and thus we have a chain complex:

Theorem: diff-diff=0
(m ∈ N+ ∧ c ∈ Cm+1(K)) → dm(dm+1(c)) = 0

3.2 The Normalized Chain Complex

We now describe the formalization of the normalized chain complex CN (K).
First of all we define degenerate simplexes (those that can be obtained ap-
plying a degeneracy map to another simplex) and the complementary set of
non-degenerate simplexes:

Definition: [x ∈ KD
m ]

Kd(m,x) := ∃y,i (i ∈ N ∧ i < m ∧ y ∈ Km−1 ∧ ηm−1
i (y) = x)

Definition: [x ∈ KND
m ]

Kn(m,x) := x ∈ Km ∧ x �∈ KD
m

1 Note the expression between square brackets in the first line of the definition of the
function. In general, this is the way we will present the notation subsequently used
in the paper for a defined function, when it is different from the actual ACL2 prefix
notation in the sources.
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The existential quantifier in the definition of KD
m is introduced by defun-sk,

which is the way ACL2 provides support for first-order quantification.
Since normalized chains are linear combinations of non-degenerate simplexes

of a given dimension, we represent them in the same way as we represent general
chains, but in this case requiring non-degenerate generators. As with general
chains, the definitions and theorems corresponding to the group properties (w.r.t.
addition) of the set of normalized chains CN

m (K), are obtained automatically as
an instance of the generic theory of freely generated groups (again using the
generic instantiation tool [6]).

We also proved that it is a subgroup of Cm(K) so it makes sense to denote
c1 +c2 and k ·c the addition and scalar product of normalized chains. In general,
any function on chains can be also applied to normalized chains.

We define the canonical epimorphism f : C(K) → CN (K) simply as the func-
tion that, given an element of Cm(K), returns the normalized chain obtained by
eliminating its degenerate addends. In our formalization, the following function
F-norm defines f (here ssn-p checks the property of being a non-degenerate
addend, and it uses the function Kn above):

Definition: [fm(c)]
F-norm(m,c) :=

if endp(c) then 0
elseif ssn-p(m,first(c))

then first(c) + F-norm(m,rest(c)))
else F-norm(m,rest(c))

A key property relating the canonical chain epimorphism f and the differential on
C(K) is the following: if we apply normalization on the result of the differential
of a chain, we obtain the same result as if we apply the same operation previously
normalizing the chain. This is a consequence of the simplicial identities and it is
established by the following theorem:

Theorem: diff-n-F-norm
(m ∈ N+ ∧ c ∈ Cm(K)) → fm−1(dm(fm(c))) = fm−1(dm(c))

The differential operation of the normalized chain complex CN (K), denoted as
dN

m(c), is defined as the result of applying the differential dm, and after that,
normalizing with fm−1:

Definition: [dN
m(c)]

diff-n(m,c) := fm−1(dm(c))

The differential property for d in C(K) (theorem diff-diff=0 in the previous
subsection), together with the property diff-n-F-norm, allows us to prove the
differential property for dN in CN (K), since for all c ∈ CN

m (K), dN
m(dN

m+1(c)) =
fm−1(dm(fm(dm+1(c)))) = fm−1(dm(dm+1(c))) = fm−1(0) = 0. The following
theorem establishes it:

Theorem: diff-n-diff-n=0
(m ∈ N+ ∧ c ∈ CN

m+1(K)) → dN
m(dN

m+1(c)) = 0
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3.3 Defining the Reduction

Once f is defined, it remains to define the functions g and h needed for the
reduction version of the Normalization Theorem. As we have said, our definitions
are based on the formulas experimentally conjectured in [10], presented at the
end of Section 2. The following function G is a recursive version of the formula for
gm (again we need an auxiliary function for dealing properly with the dimension):

Definition:

G-aux(n,m,c) :=
if m �∈ N+ then c
else G-aux(n,m− 1,c− ηn−1

m−1(∂
n
m(c)))

Definition: [gm(c)]
G(m,c) := G-aux(m,m,c)

Some explanation is needed, to give an intuitive idea of why this recursive version
implements the explicit formula for gm of Section 2. Note that the terms in that
explicit formula are of two types: those not containing ∂m, which are precisely
the terms of gm−1, and those containing ∂m, which can be obtained composing
gm−1 with ηm−1∂m, and then applying the simplicial identities.

Now we define the function H0, the recursive version of the formula for hm

conjectured in [10] (the reason why we call it H0 instead of H will be clear soon).
For this definition, we need to define auxiliaries functions A-aux and H0-aux:

Definition:

A-aux(n,m,c) :=
if m �∈ N+ then 0
else −A-aux(n,m− 1,ηn−1

m−1(∂
n
m(c))) +

(−1)m−1 · ηn
m(G-aux(n,m− 1,ηn−1

m−1(∂
n
m(c))))

Definition:

H0-aux(n,m,c) :=
if m �∈ N+ then ηn

0 (c)
else H0-aux(n,m− 1,c) + (−1)m · ηn

m(c) + A-aux(n,m,c)
Definition: [h0

m(c)]
H0(m,c) := H0-aux(m,m,c)

An intuitive idea of why this recursive definition is equivalent to the explicit
definition for hm given in Section 2, is the following. Again, the terms in that
explicit definition are of two types, depending on whether they contain ∂m or
not. Those not containing ∂m are precisely the terms in hm−1+(−1)m ·ηm. Now,
the idea introducing am (i.e., A-aux) is to generate all the terms of hm containing
∂m. To see this, note that these terms can be, in turn, of two types, depending
on whether they do not contain ηm or they do. In the first case, these terms can
be obtained composing −am−1 and ηm−1∂m. In the second case, these terms can
be obtained composing ηm with every term in gm containing ∂m. And the terms
in gm containing ∂m are obtained composing gm−1 and ηm−1∂m. Note again that
we need to apply the simplicial identities to get the face and degeneracy maps
composed in the same order as they are in the explicit formula.
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We realized, in the course of our proof attempt, that with this definition for h0,
we only have a strong homotopy equivalence. Fortunately, it is possible to obtain,
with a two-step transformation, a function hm from h0

m, having properties (4)
and (5) and still preserving the homotopy equivalence properties. The following
defines H by a two-step transformation from H0 (it turns out that with the first
transformation, we get (4) and with the second we get (5)):

Definition: [h1
m(c)]

H1(m,c) := h0
m(c)− h0

m(gm(fm(c)))
Definition: [hm(c)]

H(m,c) := h1
m(dm+1(h1

m(c)))

3.4 The Main Theorems

Now that we have defined the 5-tuple (C(K), CN (K), f, g, h), we present here
the main theorems proved, showing that it is a reduction:

Theorem: F-chain-morphism
(m ∈ N+ ∧ c ∈ Cm(K)) → dN

m(fm(c)) = fm−1(dm(c))
Theorem: G-chain-morphism

(m ∈ N+ ∧ c ∈ CN
m (K)) → gm−1(dN

m(c)) = dm(gm(c))
Theorem: F-G-H-property-1

(m ∈ N ∧ c ∈ CN
m (K)) → fm(gm(c)) = c

Theorem: F-G-H-property-2
(m ∈ N+ ∧ c ∈ Cm(K)) → dm+1(hm(c)) + hm−1(dm(c)) = c− gm(fm(c))

Theorem: F-G-H-property-3
(m ∈ N ∧ c ∈ Cm(K)) → fm+1(hm(c)) = 0

Theorem: F-G-H-property-4
(m ∈ N ∧ c ∈ CN

m (K)) → hm(gm(c)) = 0
Theorem: F-G-H-property-5

(m ∈ N ∧ c ∈ Cm(K)) → hm+1(hm(c)) = 0

These properties establish in ACL2 the Normalization Theorem in its reduction
version. In the following section, we describe the main aspects of the proof of
these theorems. In particular, we present a framework where most of the reason-
ing was carried out: what we call the simplicial polynomial framework.

4 Simplicial Polynomials

Our ACL2 proof of the Normalization Theorem was developed following the
usual interaction with the system. Based on a hand proof, we guided the prover,
by means of a number of definitions and lemmas, suggested at a high level from
the hand proof, and at a lower level from inspection of failed proof attempts. In
this case, we also needed to do the hand proof on our own.

Roughly speaking, most of the proofs of the theorems of the previous section
can be carried out by manipulating symbolic expressions that represent sums
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of compositions of face and degeneracy maps in a certain canonical way. These
expressions are what we call simplicial polynomials. Moreover, most of the lem-
mas and theorems can be proved applying induction and equational reasoning
on functions that return simplicial polynomials.

So our approach to get the proof of the Normalization Theorem was to de-
fine simplicial polynomials in ACL2 (using lists and numbers) and operations
on them resembling addition and composition of functions. We then proved the
properties showing that with respect to these operations, simplicial polynomi-
als are a ring. Guided by our hand proofs, most of the results needed for the
Normalization Theorem can be proved conveniently in the ring of simplicial poly-
nomials. Finally, we “lifted” the theorems proved in the simplicial polynomial
framework to the formalization presented in the previous section (which from
now on will be referred to as the standard formalization).

Due to the lack of space, we prefer to concentrate on the description of the
simplicial polynomial framework and how we used it as a convenient tool to get
the mechanical proof of the Normalization Theorem. For details on the mathe-
matical contents of the proof, we refer the reader to the sources.

4.1 The Ring of Simplicial Polynomials

Before describing simplicial polynomials, let us illustrate how we can represent
any composition of face and degeneracy maps using only lists and numbers. Let
∂5
5η4

3∂
5
1∂6

2η5
4 be a composition of maps defined to act on chains of dimension 5.

The first observation is that we can drop the superindexes, because once we know
on which dimension the composition is defined, then the superindex of each map
can be determined2. The second observation is that we can apply the simplicial
identities as rewrite rules to transform the composition to an equivalent canonical
form in which, from left to right, and with respect to their subindexes, there is a
strictly decreasing sequence of degeneracy maps followed by an strictly increas-
ing sequence of face maps. In our example, this equivalent canonical form is
η3η2∂1∂2∂5, which can be represented by the two-element list ((3 2) (1 2 5)).

A simplicial term is a list containing two lists of natural numbers, representing
canonical compositions. The first list (representing the degeneracies) is strictly
decreasing and the second (representing the faces) is strictly increasing. Since
simplicial terms represent functions that are applied to chains, we also have
to consider in our representation “sums” of simplicial terms, possibly with an
integer coefficient. In this context, a monomial is defined to be a (dotted) pair
of an integer and a simplicial term, and a simplicial polynomial is simply a list
of monomials. For example, the expressions p1 = 3 · η4η1∂3∂6∂7 − 2 · η1∂3∂4 and
p2 = η3∂4∂6 + 2 · η1∂3∂4 are both simplicial polynomials (for the sake of clarity
we maintain the +, η and ∂ symbols in the examples, but it has to be clear that
simplicial polynomials are represented using only lists and numbers).
2 Note that we cannot ignore the superindexes in the standard formalization of the

theorem, since our goal is to do a precise formalization of the mathematical theory.
What we will do now is to formally justify that we can prove most of the properties
without explicitly including the superindexes.
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As with chains, in our ACL2 representation we will only consider simplicial
polynomials in canonical form: a true list of monomials, with non-null coeffi-
cients, and strictly increasingly ordered with respect to a fixed total order on
simplicial terms. This allows us to check the equality of two simplicial polynomi-
als by simply using the ACL2 syntactic equality equal. Thus, functional equality
is reduced to syntactic equality of first-order objects.

We can define operations on simplicial polynomials corresponding to the addi-
tion and composition of the functions they represent. For example, the addition
of p1 and p2 above is the polynomial η3∂4∂6 +3 · η4η1∂3∂6∂7 and their composi-
tion is −2 ·η1∂3∂4∂6−4 ·η2η1∂2∂3∂4∂5 +3 ·η4η1∂4∂6∂7∂8 +6 ·η4η2η1∂2∂3∂4∂7∂8.
Of course, there is trade-off with the clean treatment of the equality: it makes
the definitions of operations between polynomials (and the proof of their pro-
perties) more difficult, since we have to return the results also in canonical form.
For example, the definition of the composition of simplicial terms and the proof
of its associativity turned out to be particularly difficult.

In our formalization, sp-p, denoted here as p ∈ P , recognizes those ACL2
objects that represent simplicial polynomials (in the following we will use bold-
face to denote polynomials). The functions add-sp-sp and cmp-sp-sp, whose
definition we omit here, respectively implement addition and composition (or
product) of simplicial polynomials, denoted respectively as p1 +p2

3, and p1 ·p2.
An interesting by-product of using simplicial polynomials, unlike the standard
formalization, is that operations are executable (particularly interesting for us,
since our long-term goal is the verification of a symbolic computation system).

We proved the properties showing that with respect to these two operations,
simplicial polynomials have a ring structure. For example, the following esta-
blishes right distributivity of composition with respect to addition:

Theorem: cmp-sp-sp-add-sp-sp-distributive-r
(p1 ∈ P ∧ p2 ∈ P ∧ p3 ∈ P) → p1 · (p2 + p3) = (p1 · p2) + (p1 · p3)

We do not list here all the ring properties proved, and we refer the reader to
the sources for a detailed description. All those properties are essential in our
formalization, and extensively used in the proofs.

It is worth pointing out that we proved all the ring properties as (functional)
instances of a more generic formalization. In the sources, the reader will find
the development of a general theory about the ring of linear combinations (with
integer coefficients) of elements of a generic monoid (a set with an associative
operation with identity). The ring of simplicial polynomials is just a particular
instance of this generic theory (a related ACL2 development for polynomials in
commutative algebra can be found in [9]). Specifically, we first proved that the
set of simplicial terms is a monoid with respect to composition, and then the
definitions of the operations on simplicial polynomials and their ring properties
were automatically generated using the generic instantiation tool [6].

3 For clarity, we are using the same symbol + that we used in the previous section for
chain addition, but they are different operations.
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4.2 Formal Proofs in the Polynomial Framework

Unfortunately, there is not a direct translation of the Normalization Theorem in
the polynomial framework. The main reason is that the canonical epimorphism f
(which we recall is defined deleting the degenerate simplexes of a chain), cannot
be expressed as a simplicial polynomial. But fortunately, we can do most of the
work (or at least, the hard part) at the polynomial level. The idea is to define
polynomial versions for the differential d and for g and h, and prove, in the
simplicial polynomial ring, their main properties.

For example, this is the definition of the polynomial that represents the func-
tion gm introduced in Section 2. Here id is the ring identity with respect to
composition (i.e., the polynomial representation of the identity function):

Definition: [gm]
G-pol(m) :=

if m �∈ N+ then id
else G-pol(m− 1) · (id− ηm−1∂m)

Note that this definition mimics, at a symbolic level, the recursive definition of
gm, but without the burden of dealing with superindexes and without explicitly
giving the chain on which it is applied. In a similar way, we can define dm and
hm, the polynomial counterparts of the functions dm and hm.

Once defined these functions, we prove a number of lemmas about them,
polynomial versions of the results we need to prove Theorem 2. For example,
this is the polynomial version of the theorem stating that gm is a chain morphism:

Theorem: G-pol-and-diff-pol-commute
m ∈ N → dm · gm = gm−1 · dm

All these properties, although with substantial differences in its difficulty, have
been proved in a similar way: applying induction suggested by the recursive
definitions and using the properties of the simplicial polynomial ring and the
simplicial identities, to prove the inductive case. Again, we refer the reader to
the source code, for details on the proofs.

4.3 Lifting Proofs from the Polynomial Framework

We now describe how we can translate the properties on polynomials, to the co-
rresponding properties in the standard framework presented in Section 3. Roughly
speaking, we can say that the “essence” of the property is already captured in
the polynomial version, but some technical details have still to be solved when
translating it: for example, the reintroduction of the superindexes or also how to
incorporate the canonical epimorphism f in results that mention it.

The key (and natural) idea is to define the functional behavior of a simplicial
polynomial by means of a function that receives a polynomial and a chain as
input, and evaluates the polynomial on the chain by applying the maps and sums
that it encodes. This function will also receive as input the expected dimension
of the chain (this will allow us to properly reintroduce the superindexes).
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To illustrate how we define this evaluation function, this is the definition of
the auxiliary function used to evaluate a list of faces ld (the second element of
a simplicial term) on a chain c of dimension m:

Definition:

eval-ld(ld,m,c) :=
if endp(ld) then c
else c-d(m-len(rest(ld)),first(ld),eval-ld(rest(ld),m,c)))

Recall that c-d (presented in Subsection 3.1) is the face map, linearly extended
to chains; note also how the dimension is properly managed in the recursive call.
In a similar way, we can define the evaluation of a list of degeneracies. Extending
these, we define the evaluation of simplicial terms (eval-st), the evaluation of
monomials (eval-sm) and finally the evaluation of a polynomial p on a chain c
of dimension m, the function eval-sp(p,m,c).

Not every simplicial polynomial can be interpreted consistently as a function
on chains. Think for example in the simplicial term η5η2η1∂1∂3. It cannot be
evaluated on chains of dimension less than 5, since otherwise in the last step we
will be applying η5 to a chain of dimension less than 5. In general, in the case
that the simplicial term may be interpreted as a function on dimension m, we
say that the simplicial term is valid for m. For example, the simplicial term of
the example is valid for every dimension m > 4.

The degree of a simplicial term is an integer giving the “dimension jump”
of every function it may represent (or equivalently, it is the difference between
the number of degeneracies and the number of faces). It is clear that another
restriction we must impose on a simplicial polynomial, in order to being able to
evaluate it on chains, is that it has to be uniform (that is, all its terms have the
same degree).

We have formalized those restrictions in ACL2 by means of three functions
valid-sp, uniform-sp and degree-sp, whose definitions we omit here: valid-sp
(p,m) checks whether all the simplicial terms in p are valid for dimension m,
uniform-sp(p) checks if all the terms in p have the same degree and degree-sp(p)
is the common degree of the terms of a uniform polynomial (or 0 if it is the zero
polynomial).

Now the fundamental properties of the evaluation function eval-sp are that
for a given dimension, it behaves consistently with respect to the operations of
the ring of simplicial polynomials, whenever the input polynomials are valid for
that dimension and uniform. Note that these properties are not trivial, because
again we have to deal with the canonical form.

Theorem: eval-sp-add-sp-sp
(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ valid-sp(p1,m) ∧
valid-sp(p2,m) ∧ uniform-sp(p1) ∧ uniform-sp(p2) ∧
(endp(p1) ∨ endp(p2) ∨ degree-sp(p1) = degree-sp(p2)))
→ eval-sp(p1 + p2,m,c) = eval-sp(p1,m,c) + eval-sp(p2,m,c))
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Theorem: eval-sp-cmp-sp-sp
(p1 ∈ P ∧ p2 ∈ P ∧ m ∈ N ∧ c ∈ Cm(K) ∧ valid-sp(p2,m) ∧
valid-sp(p1,m+degree-sp(p2)) ∧ uniform-sp(p1) ∧ uniform-sp(p2))
→ eval-sp(p1 · p2,m,c) =

eval-sp(p1,m+degree-sp(p2),eval-sp(p2,m,c))

Now we can prove equivalences of the polynomial versions of the functions with
their standard versions (since they are valid and uniform polynomials). For ex-
ample, this is the result relating gm and gm (analogous theorems are proved for
dm and dm, and for hm and hm):

Theorem: G-eval-sp-G-pol
(m ∈ N ∧ c ∈ CN

m (K)) → eval-sp(gm,m,c) = gm(c)

These properties allow us to directly translate the properties proved in the poly-
nomial framework to the corresponding properties in the standard formaliza-
tion. Let us illustrate this, for example, with the case of proving that g is chain
morphism. From the property G-pol-and-diff-pol-commute at the end of the
previous subsection, and using the equivalences proved, we obtain:

Theorem: G-and-diff-commute
(m ∈ N+ ∧ c ∈ Cm(K)) → gm−1(dm(c)) = dm(gm(c))

This property is almost the property G-chain-morphism, one of the reduction
properties needed for the Normalization Theorem. One last detail is missing,
since in that property we mention the normalized differential dN

m in the left hand
side, instead of dm. That is, we have to “incorporate” the canonical epimorphism
to the theorem. But it is easy to prove that gm applied to any degenerate sim-
plex is 0, and therefore gm(fm(c)) = gm(c) for every chain c. This means that
gm−1(dN

m(c)) = gm−1(fm−1(dm(c))) = gm−1(dm(c)) and thus we finally obtain
the theorem G-chain-morphism.

This example illustrate a typical situation in our formal proof. The main
“combinatorial” property is proved at polynomial level (usually by induction),
and then we use the equivalences and possibly some final easy simplifications to
obtain the property in the standard framework.

5 Conclusions and Further Work

The work reported in this paper shows that the ACL2 theorem prover can be ef-
fectively used to mechanize non-trivial mathematics, in fields (like Algebraic To-
pology) where higher-order tools could be thought as more appropriate. Our case
study is the Normalization Theorem, an important result in simplicial topology
establishing a link between the two chain complexes that can be naturally asso-
ciated to a simplicial set. As a by-product, our proof has been used to formally
prove the correctness of some explicit formula experimentally found in [10].
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To quantify the proof effort, the complete formalization contains 99 defini-
tions and 565 lemmas and theorems (with 158 non-trivial proof hints explicitly
given), which gives an idea of the degree of automation of the proof. It is worth
pointing out that the whole development has benefited from the use of our in-
stantiation tool for generic theories described in [6]. That allowed us to obtain
in an automated way, the definitions and theorems proving the ring of simplicial
polynomials and the abelian group of chains and normalized chains, as instances
of generic theories (we have not included these automatically generated defini-
tions and lemmas in the statistics).

Simplicial polynomials turned out to be a convenient tool for the proof of the
Normalization Theorem, so our future work is to extend this technique to other
problems in algebraic topology. Our next goal is the Eilenberg-Zilber Theorem
[8]. It is a very important result giving a reduction between the chain complex
of the cartesian product of simplicial sets, CN (A × B), and the tensor product
of the corresponding chain complexes of the factors, CN (A) ⊗ CN (B). The as-
sociated algorithm is very important in Kenzo, being responsible for most of the
(exponential) complexity of many Kenzo programs. Thus the task of formalizing
it can be considered a good next step. The challenge is that in the Eilenberg-
Zilber Theorem there are two simplicial sets involved, and therefore the scope
of our techniques should be significantly extended to be applied in that case.
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Abstract. Considerable effort has gone into the techniques of extract-
ing executable code from formal specifications and animating them. We
show how to apply these techniques to the large JinjaThreads formali-
sation. It models a substantial subset of multithreaded Java source and
bytecode in Isabelle/HOL and focuses on proofs and modularity whereas
code generation was of little concern in its design. Employing Isabelle’s
code generation facilities, we obtain a verified Java interpreter that is
sufficiently efficient for running small Java programs. To this end, we
present refined implementations for common notions such as the reflex-
ive transitive closure and Russell’s definite description operator. From
our experience, we distill simple guidelines on how to develop future
formalisations with executability in mind.

1 Introduction

In the last few years, substantial work has been devoted to the techniques and
tools for executing formal specifications from Isabelle/HOL, on the levels of both
prover infrastructure [5,8,9] and formalisations of foundational notions and con-
cepts [6,11,18]. But so far, applications (e.g. [4,19,20]) have been designed for
executability and restricted to purely functional specifications. A benchmark to
test whether the aforementioned techniques mix well and scale to large formali-
sations has been missing.

In this work, we study how to apply code generation techniques to the Jinja-
Threads project [15,16,17], which formalises a substantial subset of multithreaded
Java source and bytecode. JinjaThreads constitutes a good benchmark for three
reasons: (i) It is a large formalisation (70k lines of definitions and proofs) that
involves a broad range of advanced Isabelle features. (ii) As a programming lan-
guage, type system, and semantics, it has a built-in notion of execution. This
sets the goal for what should be executable. (iii) It focuses on proofs and modu-
larity rather than code generation, i.e. complications in specifications and proofs
for the sake of direct code generation were out of the question. Hence, it tests if
code generation works “in the wild” and not only for specialised developments.

Our main contribution here is to discuss what was needed to automatically
generate a well-formedness checker and an interpreter for JinjaThreads programs

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 216–232, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Animating the Formalised Semantics of a Java-Like Language 217

from the Isabelle formalisation, and what the pitfalls were. Thereby, we demon-
strate how to combine the different techniques and tools such that changes to
the existing formalisation stay minimal. Our contributions fall into two parts.

On the system’s side, we enhanced Isabelle’s code generator for inductive
predicates (§2.1) to obtain a mature tool for our needs. It now compiles inductive
definitions and first-order predicates, interpreted as logic programs, to functional
implementations. Furthermore, we present a practical method to overcome the
poor integratability of Isabelle’s code generator into Isabelle’s module system
(§2.2). Finally, we describe a tabled implementation of the reflexive transitive
closure (§2.3) and an executable version of Russell’s definite description operator
(§2.4), which are now part of the Isabelle/HOL library.

On JinjaThreads’ side, we animated the formalisation (see §3.1 for an over-
view) through code generation: Many of its inductive definitions, we had to refine
for compilation or, if this was impossible, implement manually (§3.2 and §3.3).
To obtain execution traces of JinjaThreads programs, we adapted the state rep-
resentation and formalised two schedulers (§3.4). In §3.5, we explain how to add
memoisation to avoid frequently recomputing common functions, e.g. lookup
functions, without polluting the existing formalisation. Clearly, as the generated
code naively interprets source code programs, we cannot expect it to be as effi-
cient as an optimising Java virutal machine (JVM). Nevertheless, we evaluated
the performance of the generated interpreter (§3.6). Simple optimisations that
we describe there speed up the interpreter by three orders of magnitude. Hence,
it is sufficiently efficient to handle Java programs of a few hundred lines of code.

We conclude our contributions by distilling our experience into a few guide-
lines on how to develop formalisations to be executable ones. Rather than im-
posing drastic changes on the formalisation, they pinpoint common pitfalls. §4
explains why and how to avoid them.

The interpreter and the full formalisation is available online in the Archive
of Formal Proofs [17]. To make the vast supply of Java programs available for
experimenting and testing with the semantics, we have written the (unverified)
conversion tool Java2Jinja as a plug-in to the Eclipse IDE. It converts Java class
declarations into JinjaThreads abstract syntax. The latest development version
is available at http://pp.info.uni-karlsruhe.de/git/Java2Jinja/.

1.1 Related Work

Code generation (of functional implementations) from Isabelle/HOL is a well-
established business. Marić [19] presents a formally verified implementation of
a SAT solver. In the CeTA project, Thiemann and Sternagel [20] generate a
self-contained executable termination checker for term rewriting systems. The
Flyspeck project uses code generation to compute the set of tame graphs [4]. All
these formalisations were developed with executability in mind. Complications
in proofs to obtain an efficiently executable implementation were willingly taken
and handling them are large contributions of these projects.

Code generation in Coq [13] has been used in various developments, notably
the CompCert compiler [12] and the certificate checkers in the MOBIUS project

http://pp.info.uni-karlsruhe.de/git/Java2Jinja/
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[3]. Like in Isabelle, functional specifications pose no intrinsic problems. Al-
though code extraction is in principle possible for any Coq specification, math-
ematical theories can lead to “a nightmare in term of extracted code efficiency
and readability” [13]. Hence, Coq’s users, too, are facing the problem of how to
extract (roughly) efficient code from specifications not aimed towards executabil-
ity. ACL2 and PVS translate only functional implementations to Common Lisp.

In [5], we have reported on generating code from non-functional specifications.
Recently, Nipkow applied code generation for inductive predicates to animate the
semantics and various program analyses of an educational imperative language
(personal communication). All these applications were tiny formalisations com-
pared to JinjaThreads.

Some formalisations of the JVM in theorem provers are directly executable.
The most complete is the M6 model of a JVM by Lui and Moore [14] in ACL2,
which covers the CLDC specification. Farzan et al. [7] report on a JVM for-
malisation in Maude’s rewriting logic. ACL2’s and Maude’s logics are directly
executable, i.e., they force the user to write only executable formalisations. While
JinjaThreads studies meta-language properties like type safety for a unified
model of Java and Java bytecode, these JVM formalisations aim at verifying
properties of individual programs. Atkey [1] presents an executable JVM model
in Coq. He concentrates on encoding defensive type checks as dependent types,
but does not provide any data on the efficiency.

1.2 Background: The Code Generator Framework and Refinement

Isabelle’s code generator [9] turns a set of equational theorems into a functional
program with the same equational rewrite system. As it builds on equational
logic, the translation guarantees partial correctness by construction and the user
may easily refine programs and data without affecting her formalisation globally.
Program refinement can separate code generation issues from the rest of the for-
malisation. As any (executable) equational theorem suffices for code generation,
the user may locally derive new (code) equations to use upon code generation.
Hence, existing definitions and proofs remain unaffected, which has been crucial
for JinjaThreads.

For data refinement, the user may replace constructors of a datatype by other
constants and derive equations that pattern-match on these new (pseudo-)con-
structors. Neither need the new constructors be injective and pairwise disjoint,
nor exhaust the type. Again, this is local as it affects only code generation, but
not the logical properties of the refined type. Conversely, one cannot exploit
the type’s new structure inside the logic. Only type constructors can be refined;
some special types (such as ′a ⇒ ′b option for maps) must first be wrapped in
an (isomorphic) type of their own (e.g. (′a,′ b) mapping).

Isabelle’s standard library defines such special-purpose types for sets and maps
with standard operations. Associative lists and red-black trees implement them
via data refinement. FinFuns [18] are almost-everywhere constant functions; they
provide an executable universal quantifier thanks to data refinement to asso-
ciative lists. The Isabelle Collections Framework (ICF) [11] advocates dealing
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with refinement in the logic instead of hiding it in the code generator. Locales,
i.e. Isabelle modules, specify the abstract operations, concrete implementations
interpret them. This allows for executing truly underspecified functions.

2 Code Generation in Isabelle

In this section, we present our contributions that JinjaThreads has motivated,
but that are generally applicable. Consequently, they have been integrated into
Isabelle’s main system and library. First, we present the code generator for in-
ductive predicates and our improvements to it (§2.1). Then, we describe our
approach to overcome the problematic situation with code generation and lo-
cales (§2.2). Finally, we sketch formalisations for enhanced implementations for
the reflexive transitive closure (§2.3) and the definite description operator (§2.4),
which are employed in JinjaThreads’ type system, for example.

2.1 The Predicate Compiler

The predicate compiler [5] translates specifications of inductive predicates, i.e.
the introduction rules, into executable equational theorems for Isabelle’s code
generator. The translation is based on the notion of modes. A mode partitions the
arguments into input and output. For a given predicate, the predicate compiler
infers the set of possible modes such that all terms are ground during execution.
Lazy sequences handle the non-determinism of inductive predicates. By default,
the equations implement a Prolog-style depth-first execution strategy. Since its
initial description [5], we improved the predicate compiler in four aspects:

First, mode annotations restrict the generation of code equations to modes of
interest. This is necessary because the set of modes is exponential in the number
of arguments of a predicate. Therefore, the space and time consumption of the
underlying mode inference algorithm grows exponentially in that number; for all
applications prior to JinjaThreads, this has never posed a problem. In case of
many arguments (up to 15 in JinjaThreads), the plain construction of this set
of modes burns up any available hardware resource. To sidestep this limitation,
modes can now be declared and hence they are not inferred, but only checked
to be consistent.

Second, we also improved the compilation scheme: The previous one sequen-
tially checked which of the introduction rules were applicable. Hence, the input
values were repeatedly compared to the terms in the conclusion of each intro-
duction rule by pattern matching. For large specifications, such as JinjaThreads’
semantics (contains 88 rules), this naive compilation made execution virtually
impossible due to the large number of rules. To obtain an efficient code expres-
sion, we modified the compilation scheme to partition the rules by patterns of the
input values first and then only compose the matching rules – this resembles sim-
ilar techniques in Prolog compilers, such as clause indexing and switch detection.
We report on the performance improvements due to this modification in §3.6.

Third, the predicate compiler now offers non-intrusive program refinement,
i.e., the user can declare alternative introduction rules. For an example, see §3.3.



220 A. Lochbihler and L. Bulwahn

Fourth, the predicate compiler was originally limited to the restricted syn-
tactic form of introduction rules. We added some preprocessing that transforms
definitions in predicate logic to a set of introduction rules. Type-safe method
overriding (§3.2) gives an example.

2.2 Isabelle Locales and Code Generation

Locales [2] in Isabelle allow parametrised theory and proof development. In other
words, locales allow to prove theorems abstractly, relative to a set of fixed param-
eters and assumptions. Interpretation of locales transfers theorems from their
abstract context to other (concrete) contexts by instantiating the parameters
and proving the assumptions. JinjaThreads uses locales to abstract over differ-
ent memory consistency models (§3.3) and schedulers (§3.4), and to underspecify
operations on abstract data structures.

As code generation requires equational theorems in the (foundational) theory
context, theorems that reside in the context of a locale cannot serve as code equa-
tions directly, but must be transferred into the theory context. For example, con-
sider a locale L with one parameter p, one assumption A p and one definition f =
. . . that depends on p. Let g be a function in the theory context for which A (g z)
holds for all z. We want to generate code for f where p is instantiated to g z.

The Isabelle code generator tutorial proposes interpretation and definition:
One instantiates p by g z and discharges the assumption with A (g z), for
arbitrary z. This yields the code equation f (g z) = . . . which is ill-formed
because the left-hand side applies f to the non-constructor constant g. For code
generation, one must manually define a new function f’ by f’ z = f (g z) and
derive f’ z = . . . as code equation. This approach is unsatisfactory for two
reasons: It requires to manually re-define all dependent locale definitions in the
theory context (and for each interpretation), and the interpretation must be
unconditional, i.e., A (g z) must hold for all z. In JinjaThreads, the latter is
often violated, e.g. g z satisfies A only if z is well-formed.

To overcome these deficiencies, our new approach splits the locale L into two:
L0 and L1. L0 fixes the parameter p and defines f; L1 inherits from L0, assumes
A p, and contains the proofs from L. Since L0 makes no assumptions on p, the
locale implementation exports the equation f = . . . in L0 as an unconditional
equation L0.f p = . . . in the theory context which directly serves as code equa-
tion. For execution, we merely pass g z to L0.f. We use this scalable approach
throughout JinjaThreads. Its drawback is that the existence of a model for f, as
required for its definition, must not depend on L’s assumptions; e.g. the termina-
tion argument of a general recursive function must not require L’s assumptions.
Many typical definitions (all in JinjaThreads) satisfy this restriction.

2.3 Tabling the Reflexive Transitive Closure

The reflexive transitive closure (RTC) is commonly used in formalisations, also
in JinjaThreads’ subtyping relation. Here, we present how a simple refinement
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implements a tabling depth-first execution of the RTC. By default, the predicate
compiler uses the two introduction rules below for code generation.

rtc r x x

r x y rtc r y z

rtc r x z

Compiling them in a Prolog-style depth-first fashion leads to non-termination
when the underlying relation r has reachable cycles. Hence, Berghofer
implemented a tabled version of RTC that detects cycles and short-circuits the
search in that case (cf. acknowledgements). The predicate rtc-tab r xs x z ex-
presses that z is reachable in r from x without visiting any node in xs:

rtc-tab r xs x x

x /∈ set xs r x y rtc-tab r (x · xs) y z

rtc-tab r xs x z

For execution, the terminating rtc-tab implements RTC via program refinement
with the equality rtc r = rtc-tab r [].

2.4 An Executable Definite Description Operator

Russell’s definite description operator ι and Hilbert’s choice ε extract a deter-
ministic function from a relational formulation. Like any underspecified function,
they pose a challenge for code generation [8], because their axiomatisations are
not unconditional equations. Hence, we can only execute them via program re-
finement, i.e., we must derive such an equation from the axiomatisation. This is
only possible for inputs for which the specification fixes a unique return value,
e.g. singleton sets for ι and ε, as any implementation returns a fully specified
value. Now, we construct an executable implementation for ι using the predicate
compiler. Our execution strategy is as follows: We enumerate all values satisfying
the predicate. If there is exactly one such value, we return it; otherwise, we throw
a exception. To enumerate values efficiently, we rely on the predicate compiler.

For technical reasons, it works in terms of the type ′a pred [5], which is isomor-
phic to ′a ⇒ bool. The Pred constructor and the eval selector allow to convert
between ′a pred and ′a ⇒ bool. Then, the type of sequences ′a seq implements
′a pred via data refinement with the lazy constructor Seq :: (unit ⇒ ′a seq) ⇒
′a pred. The type ′a seq has a richer structure with the constructors Empty,
Insert, and Join. Empty and Insert are self-explanatory; Join P xq represents
the union of the enumeration P and the values in the sequence xq.

First, we lift ι to ′a pred by defining the A = (ιx. eval A x). Then, we
define by (1) the operation singleton :: (unit ⇒ ′a) ⇒ ′a pred ⇒ ′a that returns
for a singleton enumeration the contained element and a (lazy) default value
otherwise. We prove (2) to implement the via singleton, which exploits reflexivity
of HOL’s equality for non-singleton enumerations.

singleton default A = (if ∃!x. eval A x then ιx. eval A x else default ()) (1)
the A = singleton (λ . the A) A (2)
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Having refined ′a pred to ′a seq, we prove (3) as code equation for singleton:

singleton default (Seq f) = (case f () of
Empty ⇒ throw default

| Insert x P ⇒ if is-empty P then x
else let y = singleton default P in if x = y then x else throw default

| Join P xq ⇒ if is-empty P then the-only default xq
else if null xq then singleton default P

else let x = singleton default P ; y = the-only default xq in
if x = y then x else throw default)

(3)

The predicate is-empty (null) tests if the enumeration (the sequence) contains no
element. The operation the-only is singleton’s analogon for ′a seq with a similar
code equation. In HOL, throw, defined by throw f = f (), just applies the unit
value. The generated code for throw raises an exception without evaluating its
argument, a unit closure. This ensures partial correctness for singleton and the,
i.e., if the code terminates normally, the computed value is correct.

To execute definitions with Russell’s ι operator, one proceeds as follows: Given
a definition c = (ιx. P x), one runs the predicate compiler on P to obtain the
function that enumerates x, i.e., the mode assigns the argument to be output.
This yields an executable function P -o with P = eval P -o. Unfolding definitions,
one obtains the code equation c = the P -o.

Note that the test x = y in (3) requires that equality on the predicate’s ele-
ments is executable. If this is not the case (e.g. functions as elements), we provide
an altered equation where throw default replaces if x = y then x else throw default
in (3). Then, the computation also fails when the enumeration is actually a sin-
gleton, but contains the same element multiple times.

3 JinjaThreads: Well-Formedness Checker and
Interpreter

In this section, we first give an overview of JinjaThreads (§3.1). Then, we present
how to obtain an executable well-formedness checker and interpreter for Jinja-
Threads, and what the pitfalls are (§3.2 to §3.4). We employ program and data
refinement such that lookup functions are precomputed rather than recomputed
whenever needed (§3.5). In §3.6, we evaluate the efficiency of the interpreter on
a standard producer-consumer program.

3.1 Overview of JinjaThreads

Building on Jinja [10] by Klein and Nipkow, JinjaThreads models a substantial
subset of multithreaded Java source and bytecode. Figure 1 shows the overall
structure: The three major parts are the source and bytecode formalisations and
a compiler between them. Source and bytecode share declarations of classes,
fields and methods, the subtyping relation, and standard well-formedness con-
straints. The source code part defines the source code syntax, a single-threaded
small-step semantics, and additional well-formedness constraints (such as a static
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declarations, subtyping, lookup functions, global well-formedness

source code

well-formedness

small-step semantics

type safety

bytecode

bytecode verifier

virtual machine

type safety
verified compiler

stage 1 stage 2

concurrent semantics

interleaving scheduler Java memory model

Fig. 1. Structure of JinjaThreads

type system and definite assignment). It contains a type safety proof via progress
and preservation. The bytecode part formalises bytecode instructions, a virtual
machine (VM) for individual threads, and a bytecode verifier. The type safety
proof shows that verified bytecode cannot violate type checks in the defensive
VM. For both parts, JinjaThreads defines two concurrent semantics: (i) inter-
leaving semantics for the individual threads, which provides sequential consis-
tency (SC) as memory consistency model (MCM) – schedulers allow to generate
specific interleavings; (ii) the Java memory model (JMM) as an axiomatic spec-
ification of legal executions. Finally, the compiler translates source code into
bytecode in two stages and is verified with respect to the concurrent semantics.

For all definitions in shaded boxes, we have generated code via Isabelle’s code
generator. We highlight the necessary steps using examples from well-formedness
(§3.2), the small-step semantics (§3.3), and the scheduler (§3.4). The compiler’s
definition, a functional implementation, is directly executable. The bytecode
verifier requires adaptations similar to well-formedness. For the VM, we had to
manually transform its functional specification to use Isabelle’s special-purpose
type for sets (c.f. §1.2). The JMM is purely axiomatic, finding an operational
model would be a complicated task that we have not attempted.

3.2 The Type System and Well-Formedness Conditions

A JinjaThreads program is given as a list of class declarations. Among others,
well-formedness requires that its class hierarchy is acyclic with Object at the
top, method overriding is type safe, and the program obeys the rules of the type
system. Thus, a well-formedness checker must include a type checker. The type
system relies on the subclass and subtype relation, least upper bounds (lub)
w.r.t. the subtype relation, and lookup functions for fields and methods. To turn
these into executable equations, we do the following:

The subclass relation $∗ is the RTC of the direct subclass relation, which is
defined inductively. As the standard execution mechanism for the RTC leads to
non-termination in case of cyclic class hierarchies, we use the tabled RTC as
described in §2.3. This ensures that querying $∗ always terminates, i.e., we can
reliably detect cyclic class hierarchies when checking well-formedness.
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P, t � 〈null.M(map Val vs), s〉 ε−→ 〈THROW NullPointer, s〉 CallNull

is-Vals es

P, t � 〈null.M(es), s〉 ε−→ 〈THROW NullPointer, s〉 CallNull2

Fig. 2. Original and alternative introduction rule of the small-step semantics

The subtype relation :≤, another inductive predicate, extends $∗ to arrays and
primitive types. Checking whether one type is a subtype of another is executable.
For acyclic class hierarchies with Object at the top, non-primitive types form an
upper semi-lattice w.r.t. :≤, i.e. unique lubs exist for existing types. However,
compiling the declarative definition of lub to an executable function with the
predicate compiler fails, because it would require to enumerate all supertypes of a
given type. Therefore, we provide a functional implementation, join, to compute
lubs for acyclic class hierarchies with Object at the top. For cyclic ones, lubs
need not be unique, so the functional implementation’s behaviour is undefined.

Field and method lookup recurse over the class hierarchy. To avoid definitional
problems in case of cyclic class hierarchies, JinjaThreads defines them relation-
ally as inductive predicates and the lookup functions using the definite descrip-
tion operator ι. We refine them to use the executable operator the following §2.4.

The type system E  e :: T for source code statements is defined inductively,
too. Even type checking requires type inference. Consider, e.g. the rule below for
assignments to a local variable V whose type T is given by the environment E:

E V = &T ' E  e :: U U :≤ T V �= this

E  V := e :: Void

When the predicate compiler compiles  :: , it must choose either to enu-
merate all subtypes of T and type-check e against each, or to infer e’s type and
check for U :≤ T . Note that in case V := e is type-incorrect, the former approach
might not terminate as e.g. Object has infinitely many subtypes. To force the
predicate compiler to choose the latter, we disallow enumeration of subtypes via
mode annotations.

For type inference, the rule for the conditional operator ? : in Java
requires to compute the lub of types of the second and third argument. As the
declarative definition of the type system uses the declarative lub definition, type
inference (and thus type checking) is not executable. For code generation, we
therefore copy the definition for  :: , replacing lub with the executable join
function. Then, we prove that both versions agree on acyclic class hierarchies
with Object at the top, but we cannot refine the declarative definition because
equality only holds under acyclicity.

Overriding method M with parameter types Ts and return type T in class C
with direct superclass D is type-safe if

∀Ts′ T ′ m.  D sees M : Ts′ → T ′ = m =⇒ Ts′ [:≤] Ts ∧ T :≤ T ′
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where  D sees M : Ts′ → T ′ = m denotes that D sees M with parameter types
Ts′, return type T ′ and body m. The predicate compiler preprocesses the condi-
tion to an inductive predicate and compiles it to an executable equation (cf. §2.1).

After these preparations, well-formedness no longer poses any difficulties for
code generation. Note that all the setup relies on program refinement only, the
existing formalisation remains untouched. Stating and proving alternative equa-
tions requires between 5 lines for :≤ and 220 lines for the type system.

3.3 The Semantics

The small-step semantics is parametric in the MCM. Thus, we model shared
memory abstractly in terms of read and write functions for values and type
information as locale parameters, following the splitting principle from §2.2.

The small-step semantics for source code is another inductive predicate. The
predicate compiler processes 84 of 88 introduction rules automatically. For the
others, we must provide alternative introduction rules via program refinement.
Fig. 2 shows the rule CallNull, which is representative for the four, for thread
t invoking the method M with parameter values vs on the null pointer in the
state s, which raises a NullPointer exception. Mapping the injection Val of values
into expressions over the list of values vs expresses that all parameters have
already evaluated to values. This rule violates the desired mode for executing
the semantics because its execution would require pattern-matching against the
term map Val vs. The remedy is to declare the alternative introduction rule
CallNull2: We replace map Val vs by es and instead use the guard is-Vals es
that predicates that all elements in es are of the form Val v for some v. To access
vs in other parts of the rule (as is necessary in one of the others), we replace vs
with map the-Val es where the-Val is the destructor for the constructor Val.

Mode annotations for executing the small-step semantics are crucial. The
abstraction of the MCM in a locale adds 6 parameters to the small-step semantics
in the theory context, which consequently allows a monstrous number of modes.

For code generation, we only use SC as MCM, because the JMM is axiomatic
and thus not executable. SC models the shared heap as a function from addresses
(natural numbers) to objects and arrays. Allocation must find a fresh address,
i.e. one not in the heap’s domain. Originally, this was defined via Hilbert’s un-
derspecified (and thus not executable) ε operator (4). For code generation, we
had to change new-Addr’s specification to the least fresh address, replacing ε
with LEAST. Then, we proved (5) and (6) to search for the least fresh address.

new-Addr h = if (∃a. h a = None) then &εa. h a = None' else None (4)
new-Addr h = gen-new-Addr h 0 (5)

gen-new-Addr h n = if (h n = None) then &n' else gen-new-Addr h (n+1) (6)

3.4 The Scheduler

Executing the interleaving semantics poses three problems:
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1. The multithreaded state consists of functions of type ⇒ option for locks,
thread-local states and the monitor’s wait sets. Neither quantifying over
these maps’ domains (e.g. to decide whether all threads have terminated)
nor picking one of its elements (e.g. to remove an arbitrary thread from a
wait set upon notification) are executable.

2. The state space of all possible interleavings is usually too large to be effec-
tively enumerable. Therefore, one wants to pick one typical interleaving.

3. JinjaThreads programs that might not terminate should at least produce a
prefix of the observable operations of such an infinite run.

To address the first, we previously [18] proposed to replace these maps with Fin-
Funs, a generalisation of finite maps. Although quantification over the domain
then becomes executable, it turned out that choosing an underspecified element
remains unexecutable. We therefore only use them for lock management. For
the pool of thread-local states and the wait set, we instead follow the ICF ap-
proach [11]. We replace the functions with abstract operations whose signatures
and properties we specify in two locales. Picking an arbitrary element remains
underspecified, but this is now explicit inside the logic, not HOL’s metalogic.
Before code generation, we instantiate the locales with concrete data structure
implementations like red-black trees and thus resolve the underspecification.

As to the second problem, we do not use the predicate compiler, as it would
produce a depth-first search that enumerates all possible interleavings. The first
few interleavings would be such that one thread executes completely (or until it
blocks), then the next thread executes completely, etc. Interesting interleavings
would occur only very much later – or never at all, if one of the preceding ones
did not terminate. Instead, we let a scheduler pick the next thread at each step.

Formally, a scheduler consists of two operations (that we specify abstractly
in two locales again): The function schedule takes the scheduler’s state and the
multithreaded state, and returns either a thread together with its next transition
and the updated scheduler state, or None to denote that the interleaving has fin-
ished or is deadlocked. The other function wakeup chooses from a monitor’s wait
set the thread to be notified. In terms of these two functions, we define a deter-
ministic, executable step function that updates the multithreaded state just like
the non-deterministic interleaving semantics does. To obtain a complete inter-
leaving as a potentially infinite trace, we corecursively unfold this step function.
Then, we formally prove that this in fact yields a possible interleaving.

We have instantiated this specification with two concrete schedulers: a round-
robin scheduler and a random scheduler based on a pseudo-random number gen-
erator. The most intricate problem is how to obtain (as a function) the thread’s
step from the (relational) small-step semantics, once the scheduler has decided
which thread to execute. Fortunately, the semantics under SC is deterministic, if
we purge transitions whose preconditions are not met by the current state. Thus,
we use the the operator again, but without equality checks (§2.4), as the result
states contain functions (the heap) for which checking equality is not executable.
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1 datatype ′m prog = Program ′m cdecl list
2 definition prog-impl-invar P ′ c s f m = (c = Mapping (class (Program P ′))∧ . . .)
3 typedef ′m prog-impl = {(P ′, c, s, f, m) | prog-impl-invar P ′ c s f m}

morphisms impl-of Abs-prog
4 definition ProgDecl = Program ◦ fst ◦ impl-of
5 code datatype ProgDecl
6 lemma [code] : class (ProgDecl P ) = lookup (fst (snd (impl-of P )))
7 definition tabulate P ′ = Abs-prog (P ′, tabulate-class P ′, tabulate-subcls P ′, . . .)
8 lemma [code] : Program = ProgDecl ◦ tabulate

Fig. 3. Tabulation for lookup functions and the subclass relation

Corecursive traces also solve the third problem. We instruct the code genera-
tor to implement possibly infinite lists lazily. For Haskell, this is the default; for
the other target languages, data and program refinement provide an easy setup.

Formalising the scheduler did not affect the rest of the formalisation. It re-
quired 2357 lines of definitions and proofs, 20% of which only declare locales.

3.5 Tabulation

An execution of a JinjaThreads (or, similarly, Java) program frequently checks
type casts and performs method lookups. However, with the above setup, the
semantics recomputes the subtype relation and lookup functions at every type
cast and method call from scratch. Here, we show how to leverage program and
data refinement to avoid such recomputations with only minimal changes to
the formalisation itself. We precompute the subclass relation, field and method
lookup (a standard technique for VMs) and store them in mappings (cf. §1.2).
Fig. 3 sketches the necessary steps.

In JinjaThreads, a program declaration used to be a list of class declarations,
i.e. of type ′m cdecl list, abbreviated as ′m prog. For data refinement (cf. §1.2), we
turn the abbreviation into a type of its own, wrapping the old type (l. 1 in Fig. 3).

Next, we define the type ′m prog-impl (l. 3). Apart from the original program
declaration (as a list P ′), its elements (P ′, c, s, f, m) consist of mappings from
class names to (i) the class declaration (c), (ii) the set of its superclasses (s), and
(iii) two mappings for field and method lookup with field and method names as
keys (f and m). The invariant prog-impl-invar (l. 2) states that the mappings
correctly tabulate the lookup functions and subclass relation. Then, we define
(l. 4) and declare (l. 5) the new constructor ProgDecl :: ′m prog-impl ⇒ ′m prog
for data refinement, which (in the logic) only extracts the program declaration.

For the lookup functions, the subclass relation, and the associated constants
that the predicate compiler has introduced, we next prove code equations that
implement them via lookup in the respective mapping – see l. 6 for class dec-
laration lookup. This program refinement suffices to avoid recomputing lookup
functions and the subclass relation during execution.

However, the generated code now expects the input program to come with
the correctly precomputed mappings. Thus, we define tabulate (l. 7) and auxil-
iary functions that tabulate the lookup functions and subclass relation in these
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Table 1. Timing (in seconds) for running the producer-consumer example on n objects
for different adjustments to the interpreter; — denotes timeout after 1h

without with almost heap as with
n adjustments indexing strict red-black tree tabulation

10 229.9 1.9 .1 <.1 <.1
100 2, 240.3 14.1 1.7 .7 .6

1,000 — 625.6 492.3 7.2 6.2
10,000 — — — 71.8 62.6

mappings for a given list P ′ of class declarations. Finally, we implement the
former constructor Program (l. 8) in terms of tabulate and ProgDecl.

As most of JinjaThreads treats a program declaration opaquely, introducing
′m prog as a type of its own was painless; we edited just 143 lines out of 70k,
i.e. .2%. The remaining program and data refinement took about 600 lines.

3.6 Efficiency of the Interpreter

Although we cannot expect the generated interpreter to be as efficient as an
optimising JVM, to see whether it is suited to run small programs, we have eval-
uated it on a standard producer-buffer-consumer example. The producer thread
allocates n objects and enqueues them in the buffer, which can store 10 elements
at the same time. Concurrently, the consumer thread dequeues n objects from
the buffer. Table 1 lists the running times for different code generator setups. All
tests ran on a Pentium DualCore E5300 2.6GHz with 2GB RAM using Poly/ML
5.4.1 and Ubuntu GNU/Linux 9.10.

With the adaptations from §3.2 to §3.4 only, the code is unbearably slow
(column 1). For n = 100, interpreting the program takes 37min, i.e. 2,240.3 s.
As the main bottleneck, we identified the naive compilation scheme for the small-
step semantics. By switching to the improved compilation scheme (column 2)
in the predicate compiler (§2.1), we sped up the interpreter by two orders of
magnitude. The definite descriptor the that extracts the result configuration
from the enumerations, strictly evaluates all branches. Hence, explicit laziness
in the generated code is unnecessary. If we remove the most obvious constructions
due to laziness from the code equations that we compiled under the improved
scheme, a program run with n = 100 takes only 1.7 s (column 3).

As n increases, another bottleneck shows up: memory allocation (cf. §3.3).
Since the heap is modelled as a function and writes as function updates, i.e. clo-
sures, finding the next fresh address takes time quadratic in the number of
previous allocations. Thus, interpreting the example program is quadratic in
n although the program itself only requires linearly many steps. To speed up
allocation and read access, we replaced the function by a red-black tree with
addresses as keys. Combined with the other improvements, this already provides
a decent interpreter (column 4): Run times grow linearly in n as expected.

Finally, we also added tabulation (cf. §3.5), where the mappings are for sim-
plicity implemented as associative lists. Surprisingly, the speed-up (less than
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15%) is modest. The reason might be the tiny class hierarchy of the example
program for which lookups functions terminate quickly.

We also ran the tests with the code generated in Haskell (compiled with
Glasgow Haskell Compiler 6.10.4) and OCaml (compiled to native code with
OCaml 3.11.1). The Haskell code is about 60% slower than the ML and the
OCaml code takes between 2 to 5 times as much time as ML. Still, the different
adjustments to the interpreter affect the run times similarly to ML.

As JinjaThreads also has a verified compiler and a virtual machine, we also
ran the virtual machine on the compiled code. The virtual machine is 6 to 7
times faster than the source code interpreter with red-black trees for the heap:
Pushing 10,000 objects through the buffer takes 9.6 s with tabulation and 11.9 s
without. Clearly, rewriting expressions in the small-step semantics is slower than
pattern-matching on instructions. Still, our interpreter and VM are still far from
a commercial VM: The Java HotSpot VM takes only 30ms for 10,000 objects.

In [14], Lui and Moore test their JVM formalisation M6 in ACL2 on a sim-
ple parallel factorial algorithm. To compare our interpreter with theirs, we have
converted the Java program to JinjaThreads with our Java2Jinja tool. For com-
puting 10! with five threads in parallel, our source code semantics takes 26.7 s
and the VM just 0.2 s. The M6 takes 6.2 s when run in the ACL2 interpreter,
version 2.7 with GNU CLISP 2.42.

4 Guidelines for Executable Formalisations

From our experience with JinjaThreads, we have distilled the following guidelines
to easily obtain executable formalisations in Isabelle.

Avoid Hilbert’s ε operator! Hilbert’s choice cannot express underspecifica-
tion adequately as, in HOL’s model, its interpretation is fully specified. Partial
correctness of the code generator guarantees that all evaluations in the functional
language hold in every model. Thus, one cannot replace it by any implementing
function that chooses one suitable value consistently and fixes the underspecified
function to one concrete model. Instead, use one of the following alternatives:

1. Change the definition to make the choice deterministic and implementable,
e.g. always pick the least element.

2. Use locales for intra-logical underspecification and instantiate the choice op-
erator to a concrete implementation by locale interpretation.

3. Switch to a relational description and prove the correctness for all values.

The first is least intrusive to the formalisation, but requires changes to the
original specification. To execute the deterministic choice, one needs to run the
predicate compiler on the choice property and use the executable definite descrip-
tor for predicates (§2.4), or implement a suitable search algorithm via program
refinement, as we did for memory allocation (§3.3).

The second is the most flexible, but also tedious as the locale does not au-
tomatically setup proof automation and lacks true polymorphism. We use this
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approach e.g. to specify schedulers §3.4. Care must be taken in combination with
data refinement via the code generator, as the choice must not depend on the
additional structure that the interpretation introduces.

The last option completely avoids underspecification, but relinquishes the
functional implementation. For code generation, one should either (i) apply the
predicate compiler to obtain code that computes all possible implementations
for the specification, or (ii) provide a functional implementation and show cor-
rectness (cf. §3.4). For this, one must typically replace the involved types with
others that have additional structure.

Structure locales wisely! Modular specifications, i.e. locales, and code gener-
ation do not (yet) go well together (cf. §2.2). To combine them, one best adheres
to the following discipline: One locale Sig fixes the parameters’ signatures and
contains all definitions that depend on the parameters. Another locale Spec
extends Sig and states the assumptions about the parameters; all proofs that
depend on the properties go into Spec. For functions and inductive predicates
of Sig, one feeds the equational theorems and introduction rules exported into
the theory context to the code generator or predicate compiler, resp. To obtain
the (correctness) theorems, instantiate Spec and prove the assumptions.

Annotate predicates with modes! Mode annotations for predicates instruct
the predicate compiler to generate only modes of interest, not all modes that
its mode analysis can infer. They provide three benefits. First, if the predicate
has many parameters, analysing all modes can quickly become computationally
intractable (cf. §3.3) – in this case, they are necessary. Second, they ease main-
tenance and debugging as they fail immediately after adjustments: If changes
in the development disable a mode of interest, an error message indicates which
clauses are to blame. Without annotations, the missing mode might remain
undiscovered until much later, which then complicates correcting errors. Third,
some not annotated, but inferable modes might lead to generation of slow or
non-terminating functions. By disallowing them, the predicate compiler cannot
accidentally pick one of them when it compiles a subsequent predicate.

5 Conclusion and Future Work

Originally, the JinjaThreads formalisation aimed to investigate semantics prop-
erties of concurrent Java; executability was of little concern throughout its de-
velopment. At the start, subtleties in the formalisation inhibited executing the
specifications. After we had substantially improved the code generation of in-
ductive predicates and manually adapted and extended the formalisation, we
obtained a Java interpreter with decent performance. We found solutions on how
to marry code generation with locales and how to adequately handle underspeci-
fication and the definite description operator. From our experience, we extracted
guidelines on how to develop future formalisations with executability in mind.

JinjaThreads’ predecessor Jinja [10] has been developed eight years ago. Com-
paring the efforts and results to obtain executability, we note the following im-
provements: First, Jinja’s code generator setup relied on manual and unsound
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translations, e.g. sets as raw lists and ad hoc implementations for Hilbert’s
ε operator. In contrast, we adapted the formalisation such that the unsound
translations are no longer necessary. Instead, we use safe implementations for
sets from Isabelle’s library and model underspecification explicitly inside the
logic. Second, the Jinja interpreter can loop infinitely when it executes ill-formed
programs, but Jinja lacks a well-formedness checker. Employing our new imple-
mentations (cf. §2.3), JinjaThreads now offers a decision procedure for checking
well-formedness. Third, the (now outdated) predicate compiler, which Jinja uses,
generates code directly in the functional target language. Thus, interweaving
purely functional and logical computations as, e.g. in the JinjaThreads sched-
uler would have been impossible within the logic, but required editing the gen-
erated code. Exploiting program and data refinement, we obtained a sound and
executable definite description operator (§2.4) to link both worlds.

Thanks to these increased efforts, we reach a new level of confidence in the
generated code, which would have been impossible with the tools eight years ago.
Still, this extensive case study revealed some pressing issues for code generation:

To execute JinjaThreads’ virtual machine specification we employ implemen-
tations for common set operations. The necessary refinement is conceptionally
straightforward, but requires a tremendous effort if done manually. This step
should be automated.

The lack of integration between locales and code generation requires all users
to follow a rather strict discipline (cf. §2.2). A solution on Isabelle’s side that
integrates locales and code generation needs to be addressed in the future.
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3. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS proof
carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg
(2008)

4. Bauer, G., Nipkow, T.: Flyspeck I: Tame graphs. In: Klein, G., Nipkow, T., Paulson,
L. (eds.) The Archive of Formal Proofs (2006),
http://afp.sourceforge.net/entries/Flyspeck-Tame.shtml, Formal proof de-
velopment

http://afp.sourceforge.net/entries/Flyspeck-Tame.shtml


232 A. Lochbihler and L. Bulwahn

5. Berghofer, S., Bulwahn, L., Haftmann, F.: Turning inductive into equational spec-
ifications. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 131–146. Springer, Heidelberg (2009)

6. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
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Abstract. Information theory is widely used in a very broad class of
scientific and engineering problems, including cryptography, neurobiol-
ogy, quantum computing, plagiarism detection and other forms of data
analysis. Despite the safety-critical nature of some of these applications,
most of the information theoretic analysis is done using informal tech-
niques and thus cannot be completely relied upon. To facilitate the for-
mal reasoning about information theoretic aspects, this paper presents
a rigorous higher-order logic formalization of some of the most widely
used information theoretic principles. Building on fundamental formal-
izations of measure and Lebesgue integration theories for extended reals,
we formalize the Radon-Nikodym derivative and prove some of its prop-
erties using the HOL theorem prover. This infrastructure is then used
to formalize information theoretic fundamentals like Shannon entropy
and relative entropy. We discuss potential applications of the proposed
formalization for the analysis of data compression and security protocols.

1 Introduction

Information theory [19] was developed as a mathematical theory for communi-
cation by Claude E. Shannon to define the theoretical limits on the achievable
performance of data compression and transmission rate of communication. The
limits, being the entropy and the channel capacity, respectively, are given in
terms of coding theorems for information sources and noisy channels. Informa-
tion theory has since been used in analyzing the correctness and performance of
a broad range of scientific and engineering systems, e.g., [18,5,12].

Traditionally, paper-and-pencil based analytical techniques have been used
for information theoretic analysis but these methods do not scale very well to
most real-world systems. Therefore, computer simulations are predominantly
used for information theoretic analysis these days. However, due to its inherent
nature, computer simulation can never ascertain 100% accuracy. This fact is
extremely undesirable due to the ever increasing usage of information theoretic
analysis in the design of safety and mission critical systems. Formal methods
tend to overcome such inaccuracy limitations and therefore a higher-order-logic
formalization of information theory has recently been proposed [3]. However,
the underlying theories of this development have certain constraints and lack
important properties of the quantities formalized, which are necessary for any
information theoretic analysis. For example, the theories do not support infinite
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values for functions or integrals, which limits the scope of applications and most
importantly prevents the proof of important and necessary theorems, like the
Radon Nikodym theorem [7].

This paper is primarily focused towards overcoming these shortcomings as we
attempt to raise the state-of-the-art in higher-order-logic theorem proving based
information theoretic analysis technique from the existing level, where it is appli-
cable only to isolated facets, to a level allowing formal analysis of contemporary
engineering and scientific problems. In this regard, we propose to first develop a
rigorous higher-order-logic formalization of measure, probability, Lebesgue inte-
gration theories over extended real numbers, which are real numbers extended
with positive and negative infinity.

Using extended reals to define the measure theory allows us to work with reg-
ular finite non-negative measures, infinite measures as well as signed measures.
Working with functions or random variables that can take infinite values, allows
us to prove important limiting theorems that are not possible to prove when we
do not consider infinite values. In fact, in that case, the limit of a sequence is
undefined when the sequence is not convergent. However, in the extended reals
case, a limit is always defined and can be infinite. Finally, working with infi-
nite Lebesgue integrals allows us to prove various convergence theorems without
requiring the sequences to be convergent.

Building on top of this framework, we formalize Shannon’s entropy and the
relative entropy, which are most widely used information theoretic principles, and
verify their classical properties. In the definition of relative entropy, we need to
define the Radon Nikodym derivative and prove its properties. The existence of
this derivative for absolutely continuous measures is guaranteed by the so called
Radon Nikodym theorem. The proof of this theorem was the main motivation
to use the extended reals in the formalization.

All of the above mentioned formalization is done using the HOL theorem
prover [8] and the paper provides the associated formalization and verification
details. This infrastructure paves the path to the formal information theoretic
analysis of many engineering systems and we highlight some of these potential
applications of our work in this paper as well.

2 Related Work

Based on the work of Hurd [10] on measure theory, Coble [3] formalized the
main concepts of Lebesgue integration and probability and used them in the for-
malization of information theory in HOL. Coble used this framework to verify
anonymity properties of the dining cryptographers protocol. This formalization,
however, does not include important convergence theorems and properties of
the Lebesgue integral and measurable functions, limiting the scope of its appli-
cations. We provided a generalization of this work [13], based on Borel spaces,
allowing us to verify those properties and theorems. Both formalizations, how-
ever, only consider finite-valued measures, functions and integrals. In this paper,
we propose to define a new type for extended reals and use it to formalize
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measure, Lebesgue integration, probability and main concepts of information
theory. Using extended reals in the formalization has many advantages. It al-
lows us to define sigma-finite and other infinite measures as well as signed mea-
sures. Properties of the Lebesgue integral like the monotonicity can be proven
even for non-integrable functions, but most importantly, it allows us to prove
convergence theorems that are valid even for non convergent sequences. The lat-
ter was the main reason to define extended-real-valued integrals, to be able to
prove the important Radon Nikodym theorem. This theorem, and consequently
some of the properties of the Radon Nikodym derivative, could not be proven
using the formalizations in [3,13]. The Radon Nikodym derivative is needed in
the definition of the relative entropy. To the best our knowledge, this is the first
higher-order-logic formalization of these information theoretic notions which also
includes their properties.

A formalization of the positive extended reals in HOL was proposed by
Hurd [11] and has been imported to the Isabelle theorem prover [16]. We pro-
pose a formalization that includes all real numbers as well as the positive infinity
+∞ and negative infinity −∞. This has, obviously, the advantage of working
with negative extended real numbers, for example for signed measures. A for-
malization of measure theory defined on the positive extended reals has been
developed in Isabelle [9], based on the work of Coble [3]. This has been used to
prove the Radon Nikodym theorem. The main difference with our work is the use
of extended reals, which allows us to define signed measures as well as have the
integral defined on the extended reals for arbitrary functions. Most importantly,
in our work, we focus on defining the main concepts of information theory as
well as prove their properties. We prove the properties of the Radon Nikodym
derivative and use it to define and prove the properties of the relative entropy.

A formalization of the Lebesgue integral on the extended reals has been pro-
posed in Mizar [20]. We provide a more general formalization that allowed us to
formalize the Radon Nikodym derivative and prove its properties. To the best
of our knowledge, neither the Radon Nikodym derivative and its properties nor
the relative entropy have been formalized in Mizar.

3 Extended Real Numbers

The set of extended real numbers R is the set of real numbers R extended with
two additional elements, namely, the positive infinity +∞ and negative infinity
−∞. R is useful to describe various limiting behaviors in many mathematical
fields. For instance, it is necessary to use the extended reals system to define the
integration theory, otherwise the convergence theorems such as the monotone
convergence and dominated convergence theorems would be less useful. Using
the extended reals to define the measure theory makes it possible to define sigma
finite measures and other infinite measures. With extended reals, the limit of a
monotonic sequence is always defined, infinite when the sequence is divergent,
but still defined and properties can be proven on it. The price to pay for these
advantages is an increased level of difficulty in the analysis and the need to prove
a large body of theorems on the extended reals and operators on them.
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An extended real is either a normal real number, positive infinity or negative
infinity. we use Hol_datatype to define the new type extreal as follows,

val _ = Hol_datatype‘extreal = NegInf | PosInf | Normal of real‘;

The arithmetic operations of R are extended to R with partial functions. For
example the addition is extended as follow.

∀a. a �= −∞ ⇒ a + (+∞) = +∞+ a = +∞
∀a. a �= +∞ ⇒ a + (−∞) = −∞+ a = −∞

This is formalized in higher-order logic as

val extreal_add_def = Define‘
(extreal_add (Normal x) (Normal y) = (Normal (x + y))) ∧
(extreal_add (Normal _) a = a) ∧
(extreal_add b (Normal _) = b) ∧
(extreal_add NegInf NegInf = NegInf) ∧
(extreal_add PosInf PosInf = PosInf)‘

The function is left undefined when one of the operands is PosInf and the other
is NegInf. Similarly, we extend the other arithmetic operators and prove their
properties.

The set of extended real numbers is a totally ordered set such that for all
a ∈ R, −∞ ≤ a ≤ +∞. With this order, R is a complete lattice where every
subset has a supremum and an infimum. The supremum is formalized in HOL
as:

val extreal_sup_def = Define
‘extreal_sup p =
if ∀x. (∀y. p y ⇒ y ≤ x) ⇒ (x = PosInf) then PosInf
else (if ∀x. p x ⇒ (x = NegInf) then NegInf

else Normal (sup (λr. p (Normal r))))’;

In this definition, sup refers to the supremum over a set of real numbers. Next, we
tackle the following theorem, which we will use in the Radon Nikodym theorem
proof in Section 5

Theorem 1. For any non-empty, upper bounded (by a finite number) set P
of extended real numbers, there exists a monotonically increasing sequence of
elements of P that converges to the supremum of P .

For the case where the supremum is an element of the set, we simply consider
the sequence ∀n, xp(n) = supP . Otherwise, we prove that xp(n), defined below,
is one such sequence.

xp(0) = @r. r ∈ P ∧ (sup P − 1) < r and
xp(n + 1) = @r. r ∈ P ∧ max(xp(n), sup P − 1

2n+1 ) < r < sup P

where @ represents the Hilbert choice operator.
We then define the sum of extended real numbers over a finite set and prove its
properties whenever the sum is defined. The obvious way to define the sum is
the following
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val SIGMA_DEF = new_definition("SIGMA_DEF",
‘‘SIGMA f s = ITSET (λe acc. f e + acc) s (0:extreal)’’)

However, using this definition, we are not able to prove the recursive form with-
out requiring that all the elements we are adding are finite. In fact, to be able
to prove the recursive form, we need to use the theorem

∀f e s b.
(∀x y z. f x (f y z) = f y (f x z)) ∧ FINITE s ⇒
(ITSET f (e INSERT s) b = f e (ITSET f (s DELETE e) b))

This requires that the addition is associative and commutative for all the ele-
ments considered, which is not the case unless we restrict our definition to finite
values. This is, obviously, undesirable when working with extended real numbers.
Instead, we propose the following definition for the sum.

val SIGMA_def = let open TotalDefn
in tDefine "SIGMA"

‘SIGMA (f:’a -> extreal) (s: ’a -> bool) =
if FINITE s then

if s= then 0:extreal
else f (CHOICE s) + SIGMA f (REST s)

else ARB‘
(WF_REL_TAC ‘measure (CARD o SND)‘ THEN
METIS_TAC [CARD_PSUBSET, REST_PSUBSET])

end;

We use WF_REL_TAC to initiate the termination proof of the definition with the
measure function measure (CARD o SND). From this definition, we prove the
recursive form, which will be used in proving the main properties of the sum.

∀f s. FINITE s ⇒
∀e. (∀x. x ∈ e INSERT s ⇒ f x �= NegInf) ∨

(∀x. x ∈ e INSERT s ⇒ f x �= PosInf) ⇒
(SIGMA f (e INSERT s) = f e + SIGMA f (s DELETE e))

Notice that we can have infinite values as long as the sum in defined. The prop-
erties that we proved include the linearity, monotonicity, and the summation
over disjoint sets and products of sets.

Finally, we define the infinite sum of extended real numbers
∑

n∈N
xn using

the SIGMA and sup operators and prove its properties.

val ext_suminf_def = Define
‘ext_suminf f = sup (IMAGE (λn. SIGMA f (count n)) UNIV)’

We provide an extensive formalization of the extended real numbers, which
consists of more than 220 theorems written in around 3000 lines of code. It
contains all the necessary tools to formalize most of the concepts that we need
in measure, integration, probability and information theories. The proof script
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is available in [14] and can used in a variety of other applications as well. In
the next sections, we present the formalization of these theories based on the
extended real numbers.

4 Formalization of Measure, Integration and Probability

Using measure theory to formalize probability has the advantage of providing a
mathematically rigorous treatment of probabilities and a unified framework for
discrete and continuous probability measures. In this context, a probability mea-
sure is a measure function, an event is a measurable set and a random variable is
a measurable function. The expectation of a random variable is its integral with
respect to the probability measure. The Lebesgue integral is used because it pro-
vides a unique definition for discrete and continuous random variables, it handles
a broader class of functions than the Reimann integral, and it exhibits a better be-
havior when it comes to interchanging limits and integrals. Most of the concepts
of this section have already been formalized in HOL [13]. However, the formal-
ization of this paper is based on the extended reals. In this context, the limit of
a monotonically increasing sequence becomes the supremum and can be infinite.
This allows us to verify various limiting properties and convergence theorems.

4.1 Measure Theory

By definition, measurable functions satisfy the condition that the inverse image
of a measurable set is also measurable, which we formalize in higher-order logic
as follows

 ∀a b f. f ∈ measurable a b =
sigma_algebra a ∧ sigma_algebra b ∧
f ∈ (space a → space b) ∧
∀s. s ∈ subsets b ⇒ PREIMAGE f s ∩ space a ∈ subsets a

This definition applies to functions defined on arbitrary spaces. We are interested
in real-valued measurable functions and hence the Borel sigma algebra on the set
of extended real numbers is used. Working with the Borel sigma algebra makes
the set of measurable functions a vector space. It also allows us to formally verify
various properties of the measurable functions necessary for the formalization of
the Lebesgue integral and its properties in HOL.

We define the Borel sigma algebra on R, which we call Borel, as the smallest
sigma algebra generated by the open rays

val Borel_def = Define
‘Borel = sigma (UNIV:extreal->bool)

(IMAGE (λa. {x:extreal | x < a}) UNIV)’

where sigma is defined as

sigma sp st = (sp,
⋂

s | st ⊆ s ∧ sigma_algebra (sp,s))



Formalization of Entropy Measures in HOL 239

We also prove that the Borel sigma algebra on the extended reals is the smallest
sigma algebra generated by any of the following classes of intervals: [c, +∞],
(c, +∞], [−∞, c], (c, d), [c, d), (c, d], [c, d], where c, d ∈ R. Using the above result,
we prove that to check the measurability of extended-real-valued function, it is
sufficient to check that the inverse image of the open ray is measurable. The
same result is valid for the other classes of intervals.

Theorem 2. Let (X,A) be a measurable space. A function f : X → R is mea-
surable with respect to (A,B(R)) iff ∀c ∈ R, f−1([−∞, c[) ∈ A

We prove in HOL various properties of the extended-real-valued measurable
functions.

– Every constant real function on a space X is measurable.

– The indicator function on a set A is measurable iff A is measurable.

– Let f and g be measurable functions and c ∈ R, then the following functions
are also measurable: cf, |f |, fn, f + g, fg and max(f, g).

– If (fn) is a monotonically increasing sequence of real-valued measurable func-
tions such that ∀x, f(x) = supn∈� fn(x), then f is a measurable function.

4.2 Lebesgue Integral

The Lebesgue integral is defined using a special class of functions called positive
simple functions. They are measurable functions taking finitely many values. In
other words, a positive simple function g is represented by the triple (s, a, x) as
a finite linear combination of indicator functions of measurable sets (ai) that
form a partition of the space X .

∀t ∈ X, g(t) =
∑
i∈s

xiIai(t) ci ≥ 0 (1)

We also add the condition that positive simple functions take finite values, i.e.,
∀i ∈ s. xi < ∞. Their Lebesgue integral can however be infinite.

The Lebesgue integral is first defined for positive simple functions then ex-
tended to non-negative functions and finally to arbitrary functions. Let (X,A, μ)
be a measure space. The integral of the positive simple function g with respect
to the measure μ is given by ∫

X

g dμ =
∑
i∈s

xiμ(ai) (2)

This is formalized in HOL as

val pos_simple_fn_integral_def = Define
‘pos_simple_fn_integral m s a x =

SIGMA (λi. x i * measure m (a i)) s’
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While the choice of ((xi), (ai), s) to represent g is not unique, we prove that
the integral as defined above is independent of that choice. We also prove impor-
tant properties of the Lebesgue integral of positive simple functions such as the
linearity and monotonicity. The Lebesgue integral of non-negative measurable
functions is given by∫

X

f dμ = sup{
∫

X

g dμ | g ≤ f and g positive simple function} (3)

Its formalization in HOL is the following

val pos_fn_integral_def = Define
‘pos_fn_integral m f =

sup {r | ∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x}’
where psfis m g is used to represent the Lebesgue integral of the positive simple
function g. Finally, the integral for arbitrary measurable functions is given by∫

X

f dμ =
∫

X

f+ dμ−
∫

X

f− dμ (4)

where f+ and f− are the non-negative measurable functions defined by f+(x) =
max(f(x), 0) and f−(x) = max(−f(x), 0).

val fn_integral_def = Define
‘fn_integral m f = pos_fn_integral m (fn_plus f) -

pos_fn_integral m (fn_minus f)’

As defined above, the Lebesgue integral can be undefined when the integrals
of both f+ and f− are infinite. This requires that in most properties of the
Lebesgue integral, we assume that the functions are integrable, as defined next.

Definition 1. Let (X,A, μ) be a measure space, a measurable function f is
integrable iff

∫
Xf+ dμ < ∞ and

∫
Xf− dμ < ∞

Lebesgue Monotone Convergence. The monotone convergence is arguably
the most important theorem of the Lebesgue integration theory and it plays a
major role in the proof of the Radon Nikodym theorem [1] and the properties of
the integral. We present in the sequel a proof of the theorem in HOL.

Theorem 3. Let (fn) be a monotonically increasing sequence of non-negative
measurable functions such that ∀x, f(x) = supn∈� fn(x), then∫

X

f dμ = sup
n∈�

∫
X

fn dμ

 ∀m f fi. measure_space m ∧ ∀i x. 0 ≤ fi i x ∧
∀i. fi i ∈ measurable (m_space m, measurable_sets m) Borel ∧
∀x. mono_increasing (λi. fi i x) ∧
∀x. x ∈ m_space m ⇒ f x = sup (IMAGE (λi. fi i x) UNIV) ⇒

pos_fn_integral m f =
sup (IMAGE (λi. pos_fn_integral m (fi i)) UNIV)
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We prove the Lebesgue monotone convergence theorem by using the properties
of the supremum and by proving the lemma stating that if f is the supremum
of a monotonically increasing sequence of non-negative measurable functions fn

and g is a positive simple function such that g ≤ f , then the integral of g satisfies∫
X

g dμ ≤ sup
n∈�

∫
X

fn dμ

Lebesgue Integral Properties. Most properties of the Lebesgue integral can-
not be proved directly from the definition of the integral. We prove instead that
any measurable function is the limit of a sequence of positive simple functions.
The properties of the Lebesgue integral are then derived from the properties on
the positive simple functions.

Theorem 4. For any non-negative measurable function f there exists a
monotonically increasing sequence of positive simple functions (fn) such that
∀x, f(x) = supn∈� fn(x). Besides∫

X

f dμ = sup
n∈�

∫
X

fn dμ

The above theorem is formalized in HOL as

 ∀m f. measure_space m ∧ ∀x. 0 ≤ f x ∧
f ∈ measurable (m_space m,measurable_sets m) Borel ⇒
∃fi ri. ∀x. mono_increasing (λi. fi i x) ∧
∀x. x ∈ m_space m ⇒ sup (IMAGE (ı. fi i x) UNIV) = f x ∧
∀i. ri i ∈ psfis m (fi i) ∧
pos_fn_integral m f =

sup (IMAGE (λi. pos_fn_integral m (fi i)) UNIV)

We prove this theorem by showing that the sequence (fn), defined below, satis-
fies the conditions of the theorem and use the Lebesgue monotone convergence
theorem to conclude that

∫
Xf dμ = supn∈�

∫
Xfn dμ.

fn(x) =
4n−1∑
k=0

k

2n
I{x| k

2n ≤f(x)< k+1
2n } + 2nI{x|2n≤f(x)}

For arbitrary integrable functions, Theorem 4 is applied to f+ and f− and results
in a well-defined integral, given by∫

X

f dμ = sup
n∈�

∫
X

f+
n dμ− sup

n∈�

∫
X

f−
n dμ

Using Theorem 4, we extend the properties of the Lebesgue integral for posi-
tive simple functions to arbitrary integrable functions. The main properties we
proved are the monotonicity and linearity of the Lebesgue integral.
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4.3 Probability Theory

We formalize the Kolmogorov axiomatic definition of probability using measure
theory by defining the sample space Ω, the set F of events which are subsets of Ω
and the probability measure p. A probability measure is a measure function and
an event is a measurable set. (Ω, F, p) is a probability space iff it is a measure
space and p(Ω) = 1. A random variable is by definition a measurable function.

val random_variable_def = Define
‘random_variable X p s = prob_space p ∧

X ∈ measurable (p_space p, events p) s’

The properties we proved in the previous section for measurable functions are
obviously valid for random variables.

Theorem 5. If X and Y are random variables and c ∈ R then the following
functions are also random variables: cX, |X |, Xn, X + Y, XY and max(X, Y ).

The probability mass function (PMF) of a random variable X is defined as the
function pX assigning to a set A the probability of the event {X ∈ A}. We also
formalize the joint probability mass function of two random variables and of a
sequence of random variables.

val pmf_def = Define
‘pmf p X = (λA. prob p (PREIMAGE X A ∩ p_space p))’

Finally we use the formalization of the Lebesgue integral to define the expec-
tation of a random variable and its variance. The expectation of a random
value X is defined as the integral of X with respect to the probability mea-
sure, E[X ] =

∫
ΩX dp.

val expectation_def = Define ‘expectation = fn_integral’

The properties of the expectation are derived from the properties of the in-
tegral. The variance of a random variable is defined as E[|X −E[X ]|2]. We also
prove the properties of the variance in HOL.

5 Measures of Entropy in HOL

In this section, we make use of the formalization of measure, Lebesgue integral
and probability theory to formalize fundamental quantities of information the-
ory, namely the Shannon entropy and the relative entropy. We prove some of
their properties and present some of their applications. In the definition of rela-
tive entropy, we need to define the Radon Nikodym derivative [7] and prove its
properties. The existence of this derivative for absolutely continuous measures
is guaranteed by the so called Radon Nikodym theorem [7]. The proof of this
theorem was the main motivation to use the extended reals in the formalization.
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5.1 Shannon Entropy

The Shannon entropy [4] is a measure of the uncertainty associated with a ran-
dom variable. It is restricted to discrete random variables and its extension to
continuous random variables, known as the differential entropy, does not have
some of the desired properties. In fact, the differential entropy can be negative
and is not invariant under change of variables.

Definition 2. (Shannon Entropy) The entropy H of a discrete random variable
X with alphabet X and probability mass function p is defined by

H(X) = −
∑
x∈X

p(x)log(p(x))

We provide, by contrast, a formalization that is based on the expectation and
is valid for both discrete and continuous cases. We prove, later, the equivalence
between the two definitions.

H(X) = E[−log(p(X))]

We propose the following formalization of the entropy in higher-order logic.

 entropy b p X = expectation q (λx. - logr b (pmf p X {x}))

where, p is the probability space and b is the basis of the logarithm and q is the
probability space with respect to which the expectation is defined and is given
by

 q = (IMAGE X (p_space p), POW (IMAGE X (p_space p)), pmf p X)

We then prove the equivalence between the two definitions of entropy, i.e. the
expectation based definition and the sum based definition, for the case of a
discrete random variable.

 entropy b p X = -SIGMA (λx. pmf p X x * logr b (pmf p X {x}))
(IMAGE X (p_space p))

We prove the Asymptotic Equipartition Property (AEP) [4] which is the in-
formation theoretic analog of the Weak Law of Large Numbers (WLLN) [15]. It
states that for a stochastic source X , if its time series X1, X2, . . . is a sequence of
independent identically distributed (iid) random variables with entropy H(X),
then − 1

n log(p(X1, . . . , Xn)) converges in probability to H(X). We prove the
AEP by first proving the Chebyshev’s inequality and use it to prove the WLLN.

Theorem 6. (AEP): if X1, X2, . . . are iid then

− 1
n

log(p(X1, . . . , Xn)) −→ H(X) in probability
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A consequence of the AEP is the fact that the set of observed sequences,
(x1, . . . , xn), for which the joint probabilities p(x1, x2, . . . , xn) are close to
2−nH(X), has a total probability equal to 1. This set is called the typical set
and such sequences are called the typical sequences. In other words, out of all
possible sequences, only a small number of sequences will actually be observed
and those sequences are nearly equally probable. The AEP guarantees that any
property that holds for the typical sequences is true with high probability and
thus determines the average behavior of a large sample.

Definition 3. (Typical Set) The typical set An
ε with respect to p(x) is the set of

sequences (x1, . . . , xn) satisfying

2−n(H(X)+ε) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−ε)

We use the AEP to prove that the typical set has a total probability equal to 1
and that the total number of typical sequences is upper bounded by 2n(H(X)+ε).

5.2 Relative Entropy

The relative entropy [4] or Kullback Leibler divergence D(μ||ν) is a measure of
the distance between two distributions μ and ν. It is defined as

D(μ||ν) = −
∫

X

log
dν

dμ
dμ

where dν
dμ is the Radon Nikodym derivative of ν with respect to μ. This deriva-

tive is a non-negative measurable function that, when it exists, satisfies for any
measurable set. ∫

A

dν

dμ
dμ = ν(A)

The Radon Nikodym derivative is formalized in HOL as

val RN_deriv_def = Define
‘RN_deriv m v =
@f. f IN measurable (m_space m, measurable_sets m) Borel ∧
(∀a. a ∈ measurable_sets m ⇒
(fn_integral m (λx. f x * indicator_fn a x) = measure v a))’

The relative entropy is then formalized as

val KL_divergence_def = Define
‘KL_divergence b m v =

- fn_integral m (λx. logr b ((RN_deriv m v) x))’

The existence of the Radon Nikodym derivative is guaranteed for absolutely
continuous measures by the Radon Nikodym theorem. A measure ν is absolutely
continuous with respect to the measure μ iff for every measurable set A, μ(A) = 0
implies that ν(A) = 0. Next, we state and prove the Radon Nikodym theorem
(RNT) for finite measures. The theorem can be easily generalized to sigma finite
measures.
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Theorem 7. (RNT) If ν is absolutely continuous with respect to μ, then there
exists a non-negative μ−integrable function f such that for any measurable sets,∫

A

f dμ = ν(A)

The Radon Nikodym theorem is formalized in HOL as follows,

 ∀m v. measure_space m ∧ measure_space v ∧
(m_space v = m_space m) ∧
(measurable_sets v = measurable_sets m) ∧
(measure_absolutely_continuous m v) ∧
(measure v (m_space v) �= PosInf) ∧
(measure m (m_space m) �= PosInf) ⇒
(∃f. f ∈ measurable (m_space m,measurable_sets m) Borel ∧
(∀A. A ∈ measurable_sets m ⇒
(pos_fn_integral m (λx. f x * indicator_fn A x) = measure v A)))

To prove the theorem, we prove the following lemma, which we propose as a
generalization of Theorem 1. To the best of our knowledge, this lemma has not
been referred to in textbooks and we find that it is a useful result that can be
used in other proofs.

Lemma 1. If P is a non-empty set of extended-real valued functions closed
under the max operator, g is monotone over P and g(P ) is upper bounded, then
there exists a monotonically increasing sequence f(n) of functions, elements of
P , such that

sup
n∈N

g(f(n)) = sup
f∈P

g(f)

Proving the Radon Nikodym theorem consists in defining the set F of non-
negative measurable functions such that for any measurable set A,

∫
A
f dμ ≤

ν(A). Then we prove that this set is non-empty, upper bounded by the finite
measure of the space and is closed under the max operator. Next, using the
monotonicity of the integral and the lemma above, we prove the existence of a
monotonically increasing sequence f(n) of functions in F such that

sup
n∈N

∫
X

fn dμ = sup
f∈F

∫
X

f dμ

Finally, we prove that the function g, defined below, satisfies the conditions of
the theorem.

∀x. g(x) = sup
n∈N

fn(x)

The main reason we used the extended reals in our formalization was the in-
ability to prove the Radon Nikodym theorem without considering infinite values.
In fact, in our proof, we use the Lebesgue monotone convergence to prove that∫

X

g dμ = sup
n∈N

∫
X

fn dμ
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However, the Lebesgue monotone convergence in [13] which does not support the
extended reals, requires the sequence fn to be convergent, which is not necessarily
the case here and cannot be added as an assumption because the sequence fn is
generated inside the proof. The Lebesgue monotone convergence theorem with
the extended reals is valid even for sequences that are not convergent since it
uses the sup operator instead of the limit lim.

Next, we prove the following properties of the Radon Nikodym derivative.

– The Radon Nikodym derivative of ν with respect to μ is unique, μ almost-
everywhere, i.e., unique up to a null set with respect to μ.

– If ν1 and ν2 are absolutely continuous with respect to μ, then d(ν1+ν2)
dμ =

dν1
dμ + dν2

dμ , μ almost-everywhere.

– If ν is absolutely continuous with respect to μ and c ≥ 0, then d(c∗ν)
dμ = c∗ dν

dμ ,
μ almost-everywhere.

For finite spaces, we prove the following two results for the Radon Nikodym
derivative and the relative entropy.

∀x ∈ X, μ{x} �= 0 ⇒ dν

dμ
(x) =

ν{x}
μ{x}

∀x ∈ X, ν{x} �= 0 ⇒ D(μ||ν) =
∑
x∈X

μ{x} log
μ{x}
ν{x}

Finally, the relative entropy between the joint distribution p(x, y) of two random
variables X and Y and the product of their marginal distributions p(x) and p(y)
is equal to the mutual information I(X, Y ).

I(X, Y ) = D(p(x, y)||p(x)p(y)) =
∑

(x,y)∈X×Y
p(x, y) log

p(x, y)
p(x)p(y)

5.3 Applications

The developed formalization of entropy measures can be used in a number of
engineering applications. For instance, the formally verified AEP and the typ-
ical set, formalized in Section 5.1, can be directly applied in the proof of the
Shannon source coding theorem which establishes the fundamental limit of data
compression. It states that it is possible to compress the data at a rate that is
arbitrarily close to the Shannon entropy without significant loss of information.
In other words, n iid random variables with entropy H(X) can be expressed
on the average by nH(X) bits without significant risk of information loss, as n
tends to infinity.

One way to prove the above theorem is to propose an encoding scheme that is
based on the typical set. The average codeword length for all sequences is close
to the average codeword length considering only the typical sequences, because,
asymptotically, the total probability of the typical set is equal to 1. From the
upper bound on the number of typical sequences, we deduce that the average
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number of bits needed to encode the typical sequences can be made arbitrarily
close to nH(X).

Quantitative theories of information flow are gaining a lot of attention in a
variety of contexts, such as secure information flow, anonymity protocols, and
side-channel analysis. Various measures are being proposed to quantify the flow
of information. Serjantov [18] and Diaz et al. [6] independently proposed to use
entropy to define the quality of anonymity and to compare different anonymity
systems. In this technique, the attacker assigns probabilities to the users after
observing the system and does not make use of any apriori information he/she
might have. The attacker simply assumes a uniform distribution among the users
before observation.

Deng [5] proposed the relative entropy as a measure of the amount of infor-
mation revealed to the attacker after observing the outcomes of the protocol, to-
gether with the apriori information. We can use our formalization of the relative
entropy developed in Section 5.2 to apply this technique to verify the anonymity
properties of the Dining Cryptographers [2] and Crowds [17] protocols.

6 Conclusions

In this paper, we have presented a formalization in HOL of measure, Lebesgue
integration and probability theories defined on the extended reals. We used this
infrastructure, to formalize main concepts of information theory, namely the
Shannon entropy and relative entropy. The formalization based on the extended
reals enables us to verify important properties and convergence theorems as well
as prove the important Radon Nikodym theorem. The latter allows us to prove
the properties of the Radon Nikodym derivative, used in the definition of the
relative entropy.

The verification of properties of the Shannon entropy and relative entropy
makes it possible to perform information theoretic analysis on a wide range of
applications. Using our formalization, we proved the Asymptotic Equipartition
Property in HOL, which is used to define and verify the notion of typical sets.
This, in turn, is the basis to prove the Shannon source coding theorem, providing
the fundamental limits of data compression. The relative entropy is an important
measure of divergence between probability distributions. It is used to define other
concepts of information theory, but it is also used in several other applications
like the anonymity application in [5].

Our future work include applying the technique in [5] to verify the anonymity
properties of the Dining Cryptographers and Crowds protocols within the sound
core of a theorem prover. We also plan to work out the details of the applications
outlined in Section 5.3.

The HOL code for the formalization presented in this paper is available in [14].
It required more than 11000 lines of code and contains around 500 theorems.
Most of this formalization is very generic and thus can be utilized to formalize
more advanced mathematics or formally reason about a more wide range of
engineering applications.
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On the Generation of Positivstellensatz

Witnesses in Degenerate Cases�
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Abstract. One can reduce the problem of proving that a polynomial is
nonnegative, or more generally of proving that a system of polynomial
inequalities has no solutions, to finding polynomials that are sums of
squares of polynomials and satisfy some linear equality (Positivstellen-
satz). This produces a witness for the desired property, from which it is
reasonably easy to obtain a formal proof of the property suitable for a
proof assistant such as Coq.

The problem of finding a witness reduces to a feasibility problem
in semidefinite programming, for which there exist numerical solvers.
Unfortunately, this problem is in general not strictly feasible, meaning
the solution can be a convex set with empty interior, in which case the
numerical optimization method fails. Previously published methods thus
assumed strict feasibility; we propose a workaround for this difficulty.

We implemented our method and illustrate its use with examples,
including extractions of proofs to Coq.

1 Introduction

Consider the following problem: given a conjunction of polynomial equalities, and
(wide and strict) polynomial inequalities, with integer or rational coefficients,
decide whether this conjunction is satisfiable over R; that is, whether one can
assign real values to the variables so that the conjunction holds. A particular
case is showing that a given polynomial is nonnegative.

The decision problem for real polynomial inequalities can be reduced to quan-
tifier elimination: given a formula F , whose atomic formulas are polynomial
(in)equalities, containing quantifiers, provide another, equivalent, formula F ′,
whose atomic formulas are still polynomial (in)equalities, containing no quanti-
fier. An algorithm for quantifier elimination over the theory of real closed fields
(roughly speaking, (R, 0, 1, +,×,≤) was first proposed by Tarski [27,30], but this
algorithm had non-elementary complexity and thus was impractical. Later, the
cylindrical algebraic decomposition (CAD) algorithm was proposed [7], with a
doubly exponential complexity, but despite improvements [8] CAD is still slow
in practice and there are few implementations available.

Quantifier elimination is not the only decisionmethod.Basu et al. [2,Theorem3]
proposed a satisfiability testing algorithm with complexity sk+1dO(k), where s is
� This work was partially supported by ANR project “ASOPT”.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 249–264, 2011.
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the number of distinct polynomials appearing in the formula, d is their maximal
degree, and k is the number of variables. We know of no implementation of that
algorithm. Tiwari [31] proposed an algorithm based on rewriting systems that is
supposed to answer in reasonable time when a conjunction of polynomial inequal-
ities has no solution.

Many of the algebraic algorithms are complex, which leads to complex imple-
mentations. This poses a methodology problem: can one trust their results? The
use of computer programs for proving lemmas used in mathematical theorems
was criticized in the case of Thomas Hales’ proof of the Kepler conjecture. Sim-
ilarly, the use of complex decision procedures (as in the proof assistant PVS1)
or program analyzers (as, for instance, Astrée2) in order to prove the correct-
ness of critical computer programs is criticized on grounds that these verification
systems could themselves contain bugs.

One could formally prove correct the implementation of the decision procedure
using a proof assistant such as Coq [12, 20]; but this is likely to be long and
difficult. An alternative is to arrange for the procedure to provide a witness of
its result. The answer of the procedure is correct if the witness is correct, and
correctness of the witness can be checked by a much simpler procedure, which
can be proved correct much more easily.

Unsatisfiability witnesses for systems of complex equalities or linear rational
inequalities are already used within DPLL(T ) satisfiability modulo theory deci-
sion procedures [17, ch. 11] [10]. It is therefore tempting to seek unsatisfiability
witnesses for systems of polynomial inequalities.

In recent years, it was suggested [21] to use numerical semidefinite program-
ming to look for proof witnesses whose existence is guaranteed by a Positivstel-
lensatz [16,26,29]. The original problem of proving that a system of polynomial
inequalities has no solution is reduced to: given polynomials Pi and R, derived
from those in the original inequalities, find polynomials Qi that are sums of
squares such that

∑
i PiQi = R. Assuming some bounds on the degrees of Qi,

this problem is in turn reduced to a semidefinite programming pure feasibility
problem [6,32], a form of convex optimization. The polynomials Qi then form a
witness, from which a machine-checkable formal proof, suitable for tools such as
Coq [12] or Isabelle [11], may be constructed.

Unfortunately, this method suffers from a caveat: it applies only under a
strict feasibility condition [22]: a certain convex geometrical object should not
be degenerate, that is, it should have nonempty interior. Unfortunately it is
very easy to obtain problems where this condition is not true. Equivalently, the
method of rationalization of certificates [13] has a limiting requirement that the
rationalized moment matrix remains positive semidefinite.

In this article, we explain how to work around the degeneracy problem: we
propose a method to look for rational solutions to a general SDP feasibility
problem. We have implemented our method and applied it to some examples

1 http://pvs.csl.sri.com/
2 http://www.astree.ens.fr/

http://pvs.csl.sri.com/
http://www.astree.ens.fr/
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from the literature on positive polynomials, and to examples that previously
published techniques failed to process.

2 Witnesses

For many interesting theories, it is trivial to check that a given valuation of the
variables satisfies a quantifier-free formula. A satisfiability decision procedure
will in this case tend to seek a satisfiability witness and provide it to the user
when giving a positive answer.

In contrast, if the answer is that the problem is not satisfiable, the user has
to trust the output of the satisfiability testing algorithm, the informal meaning
of which is “I looked carefully everywhere and did not find a solution.” In some
cases, it is possible to provide unsatisfiability witnesses: solutions to some form
of dual or auxiliary problem that show that the original problem had no solution.

2.1 Nonnegativity Witnesses

To prove that a polynomial P is nonnegative, one simple method is to express
it as a sum of squares of polynomials. One good point is that the degree of the
polynomials involved in this sum of squares can be bounded, and even that the
choice of possible monomials is constrained by the Newton polytope of P , as
seen in §3.

Yet, there exist nonnegative polynomials that cannot be expressed as sums of
squares, for instance this example due to Motzkin [24]:

M = x6
1 + x4

2x
2
3 + x2

2x
4
3 − 3x2

1x
2
2x

2
3 (1)

However, Artin’s answer to Hilbert’s seventeenth problem is that any nonneg-
ative polynomial can be expressed as a sum of squares of rational functions.3

It follows that such a polynomial can always be expressed as the quotient
Q2/Q1 of two sums of squares of polynomials, which forms the nonnegativity
witness, and can be obtained by solving P.Q1 −Q2 = 0 for Q1 �= 0 (this result
is also a corollary of Th. 1).

2.2 Unsatisfiability Witnesses for Polynomial Inequalities

For the sake of simplicity, we shall restrict ourselves to wide inequalities (the
extension to mixed wide/strict inequalities is possible). Let us first remark that
the problem of testing whether a set of wide inequalities with coefficients in a
subfield K of the real numbers is satisfiable over the real numbers is equivalent to
the problem of testing whether a set of equalities with coefficients K is satisfiable
over the real numbers: for each inequality P (x1, . . . , xm) ≥ 0, replace it by

3 There exists a theoretical exact algorithm for computing such a decomposition for
homogeneous polynomials of at most 3 variables [15]; we know of no implementation
of it and no result about its practical usability.
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P (x1, . . . , xm) − μ2 = 0, where μ is a new variable. Strict inequalities can also
be simulated as follows: Pi(x1, . . . , xm) �= 0 is replaced by Pi(x1, . . . , xm).μ = 1
where μ is a new variable. One therefore does not gain theoretical simplicity by
restricting oneself to equalities.

Stengle [29] proved two theorems regarding the solution sets of systems of
polynomial equalities and inequalities over the reals (or, more generally, over
real closed fields): a Nullstellensatz and a Positivstellensatz ; a similar result was
proved by Krivine [16]. Without going into overly complex notations, let us state
consequences of these theorems.

Let K be an ordered field (such as Q) and K ′ be a real closed field containing
K (such as the real field R), and let X be a list of variables X1, . . . , Xn. A∗2

denotes the squares of elements of A. The multiplicative monoid generated by A
is the set of products of zero of more elements from A. The ideal generated by
A is the set of sums of products of the form PQ where Q ∈ K[X] and P ∈ A.
The positive cone generated by A is the set of sums of products of the form
p.P.Q2 where p ∈ K, p > 0, P is in the multiplicative monoid generated by A,
and Q ∈ K[X]. Remark that we can restrict P to be in the set of products of
elements of A where no element is taken twice, with no loss of generality.

The result [9, 18, 19] of interest to us is:

Theorem 1. Let F>, F≥, F=, F�= be sets of polynomials in K[X], to which we
impose respective sign conditions > 0, ≥ 0, = 0, �= 0. The resulting system is
unsatisfiable over K ′n if and only if there exist an equality in K[X] of the type
S + P + Z = 0, with S in the multiplicative monoid generated by F> ∪ F ∗2

�= , P
belongs to the positive cone generated by F≥ ∪ F>, and Z belongs to the ideal
generated by F=.

(S, P, Z) then constitute a witness of the unsatisfiability of the system.4

For a simple example, consider the following system, which obviously has no
solution: {

−2 + y2 ≥ 0
1− y4 ≥ 0 (2)

A Positivstellensatz witness is y2(−2 + y2) + 1(1 − y4) + 2y2 + 1 = 0. Another
is
(

2
3 + y2

3

)
(−2 + y2) + 1

3 (1 − y4) + 1 = 0.
Consider the conjunction C: P1 ≥ 0∧· · ·∧Pn ≥ 0 where Pi ∈ Q[X1, . . . , Xm].

Consider the set Π of products of the form
∏

i Pwi

i for w ∈ {0, 1}n — that is,
the set of all products of the Pi where each Pi appears at most once. Obviously,
if one can exhibit nonnegative functions Qj such that

∑
Tj∈Π QjTj +1 = 0, then

C does not have solutions. Theorem 1 guarantees that if C has no solutions,
then such functions Qj exist as sum of squares of polynomials (we simply apply
the theorem with F> = F�= = ∅ and thus S = {1}). We have again reduced
our problem to the following problem: given polynomials Tj and R, find sums-
of-squares polynomials Qj such that

∑
j QjTj = R. Because of the high cost of

4 Another result, due to Schmüdgen [26], gives simpler witnesses for P1 ≥ 0∧· · ·∧Pn ≥
0 ⇒ C in the case where P1 ≥ 0 ∧ · · · ∧ Pn ≥ 0 defines a compact set.
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enumerating all products of the form
∏

i Pwi

i , we have first looked for witnesses
of the form

∑
Tj∈S QjPj + 1 = 0.

3 Solving the Sums-of-Squares Problem

In §2.1 and §2.2, we have reduced our problems to: given polynomials (Pj)1≤j≤n

and R in Q[X1, . . . , Xm], find polynomials that are sums of squares Qj such that∑
j

PjQj = R (3)

We wish to output the Qj as Qj =
∑nj

i=1 αjiL
2
ji where αji ∈ Q+ and Lji are

polynomials over Q. We now show how to solve this equation.

3.1 Reduction to Semidefinite Programming

Lemma 1. Let P ∈ K[X, Y, . . . ] be a sum of squares of polynomials
∑

i P 2
i .

Let M = {m1, . . . , m|M|} be a set such that each Pi can be written as a linear
combination of elements of M (M can be for instance the set of monomials in
the Pi). Then there exists a |M |× |M | symmetric positive semidefinite matrix Q
with coefficients in K such that P (X, Y, . . . ) = [m1, . . . , m|M|]Q[m1, . . . , m|M|]T ,
noting vT the transpose of v.

Assume that we know the Mj , but we do not know the matrices Q̂j . The equality∑
j Pj(MjQ̂j(Mj)T ) = R directly translates into a system (S) of affine linear

equalities over the coefficients of the Q̂j :
∑

j(MjQ̂j(Mj)T )Pj − R is the zero
polynomial, so its coefficients, which are affine linear combinations of the coeffi-
cients of the Q̂j matrices, should be zero; each of these combinations thus yields
an affine linear equation. The additional requirement is that the Q̂j are positive
semidefinite.

One can equivalently express the problem by grouping these matrices into a
block diagonal matrix Q̂ and express the system (S) of affine linear equations
over the coefficients of Q̂. By exact rational linear arithmetic, we can obtain a
system of generators for the solution set of (S): Q̂ ∈ −F0+vect(F1, . . . , Fm). The
problem is then to find a positive semidefinite matrix within this search space;
that is, find α1, . . . , αm such that −F0 +

∑
i αiFi ) 0. This is the problem of

semidefinite programming: finding a positive semidefinite matrix within an affine
linear variety of symmetric matrices, optionally optimizing a linear form [6, 32].

For instance, the second unsatisfiability witness we gave for constraint sys-
tem 2 is defined, using monomials {1, y}, 1 and {1, y}, by:⎛

⎜⎜⎜⎜⎝
2
3 0
0 1

3
1
3

0 0
0 0

⎞
⎟⎟⎟⎟⎠
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It looks like finding a solution to Equ. 3 just amounts to a SDP problem.
There are, however, several problems to this approach:

1. For the general Positivstellensatz witness problem, the set of polynomials to
consider is exponential in the number of inequalities.

2. Except for the simple problem of proving that a given polynomial is a sum
of squares, we do not know the degree of the Qj in advance, so we cannot5

choose finite sets of monomials Mj . The dimension of the vector space for
Qj grows quadratically in |Mj|.

3. Some SDP algorithms can fail to converge if the problem is not strictly
feasible — that is, the solution set has empty interior, or, equivalently, is not
full dimensional (that is, it is included within a strict subspace of the search
space).

4. SDP algorithms are implemented in floating-point. If the solution space is
not full dimensional, they tend to provide solutions Q̂ that are “almost”
positive semidefinite (all eigenvalues greater than −ε for some small positive
ε), but not positive semidefinite.

Regarding problem 1, bounds on degrees only matter for the completeness of the
refutation method: we are guaranteed to find the certificate if we look in a large
enough space. They are not needed for soundness : if we find a correct certificate
by looking in a portion of the huge search space, then that certificate is correct
regardless. This means that we can limit the choice of monomials in Mj and
hope for the best.

Regarding the second and third problems : what is needed is a way to reduce
the dimension of the search space, ideally up to the point that the solution set
is full dimensional. As recalled by [22], in a sum-of-square decomposition of a
polynomial P , only monomials xα1

1 . . . xαn
n such that 2(α1, . . . , αn) lies within the

Newton polytope6 of P can appear [23, Th. 1]. This helps reduce the dimension if
P is known in advance (as in a sum-of-squares decomposition to prove positivity)
but does not help for more general equations.

Kaltofen et al. [14] suggest solving the SDP problem numerically and looking
for rows with very small values, which indicate useless monomials that can be
safely removed from the basis; in other words, they detect “approximate kernel
vectors” from the canonical basis. Our method is somehow a generalization of
theirs: we detect kernel vectors whether or not they are from the canonical basis.

In the next section, we shall investigate the fourth problem: how to deal with
solution sets with empty interior.

3.2 How to Deal with Degenerate Cases

In the preceding section, we have shown how to reduce the problem of find-
ing unsatisfiability witnesses to a SDP feasibility problem, but pointed out one
5 There exist non-elementary bounds on the degree of the monomials needed [19]. In

the case of Schmüdgen’s result on compact sets, there are better bounds [26].
6 The Newton polytope of a polynomial P , or in Reznick’s terminology, its cage, is the

convex hull of the vertices (α1, . . . , αn) such that xα1
1 . . . xαn

n is a monomial of P .
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crucial difficulty: the possible degeneracy of the solution set. In this section, we
explain more about this difficulty and how to work around it.

Let K be the cone of positive semidefinite matrices. We denote by M ) 0 a
positive semidefinite matrix M , by M � 0 a positive definite matrix M . The
vector y is decomposed into its coordinates yi. x̃ denotes a floating-point value
close to an ideal real value x.

We consider a SDP feasibility problem: given a family of symmetric matrices
F0, Fi, . . . , Fm, find (yi)1≤i≤m such that

F (y) = −F0 +
m∑

i=1

yiFi ) 0. (4)

The Fi have rational coefficients, and we suppose that there is at least one
rational solution for y such that F (y) ) 0. The problem is how to find such a
solution.

If nonempty, the solution set S ⊆ Rm for the y, also known as the spectra-
hedron, is semialgebraic, convex and closed; its boundary consists in y defining
singular positive semidefinite matrices, its interior are positive definite matrices.
We say that the problem is strictly feasible if the solution set has nonempty
interior. Equivalently, this means that the convex S has dimension m.

Interior point methods used for semidefinite feasibility, when the solution set
has nonempty interior, tend to find a solution ỹ in the interior away from the
boundary. Mathematically speaking, if ỹ is a numerical solution in the interior
of the solution set, then there is ε > 0 such that for any y such that ‖y− ỹ‖ ≤ ε,
y is also a solution. Choose a very close rational approximation y of ỹ, then
unless we are unlucky (the problem is almost degenerate and all any suitable ε
is extremely small), then y is also in the interior of S. Thus, F (y) is a solution
of problem 4.

This is why earlier works on sums-of-square methods [22] have proposed find-
ing rational solutions only when the SDP problem is strictly feasible. In this
article, we explain how to do away with the strict feasibility clause.

Some problems are not strictly feasible. Geometrically, this means that the
linear affine space {−F0 +

∑m
i=1 yiFi | (y1, . . . , ym) ∈ Rm} is tangent to the

semidefinite positive cone K. Alternatively, this means that the solution set is
included in a strict linear affine subspace of Rm. Intuitively, this means that we
are searching for the solution in “too large a space”; for instance, if m = 2 and
y lies in a plane, this happens if the solution set is a point or a segment of a
line. In this case, some SDP algorithms may fail to converge if the problem is
not strictly feasible, and those that converge, in general, will find a point slightly
outside the solution set. The main contribution of this article is a workaround
for this problem.

3.3 Simplified Algorithm

We shall thus now suppose the problem has empty interior.
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The following result is crucial but easily proved:

Lemma 2. Let E be a linear affine subspace of the n × n symmetric matrices
such that E ∩ K �= ∅. F in the relative interior I of E ∩ K. Then it follows:

1. For all F ′ ∈ E ∩ K, kerF ⊆ kerF ′.
2. The least affine space containing E ∩ K is H = {M ∈ E | kerM ⊇ kerF}.

Suppose we have found a numerical solution ỹ, but it is nearly singular —
meaning that it has some negative eigenvalues extremely close to zero. This
means there is v �= 0 such that |v.F (ỹ)| ≤ ε‖v‖. Suppose that ỹ is very close to a
rational solution y and, that v.F (y) = 0, and also that y is in the relative interior
of S — that is, the interior of that set relative to the least linear affine space
containing S. Then, by lemma 2, all solutions F (y′) also satisfy v.F (y′) = 0.
Remark that the same lemma implies that either there is no rational solution in
the relative interior, or that rational solutions are dense in S.

How can finding such a v help us? Obviously, if v ∈
⋂m

i=0 kerFi, its discovery
does not provide any more information than already present in the linear affine
system −F0 + Vect (F1, . . . , Fm). We thus need to look for a vector outside that
intersection of kernels; then, knowing such a vector will enable us to reduce the
dimension of the search space from m to m′ < m.

Thus, we look for such a vector in the orthogonal complement of
⋂m

i=0 kerFi,
which is the vector space generated by the rows of the symmetric matrices
F0, . . . , Fm. We therefore compute a full rank matrix B whose rows span the
exact same space; this can be achieved by echelonizing a matrix obtained by
stacking F0, . . . , Fm. Then, v = wB for some vector w. We thus look for w such
that G(y).w = 0, with G(y) = BF (y)BT .

The question is how to find such a w with rational or, equivalently, inte-
ger coefficients. Another issue is that this vector should be “reasonable” — it
should not involve extremely large coefficients, which would basically amplify
the floating-point inaccuracies.

We can reformulate the problem as: find w ∈ Zm \ {0} such that both w
and G(ỹ).w are “small”, two constraints which can be combined into a single
objective to be minimized α2‖G(ỹ).w‖2

2 + ‖w‖2
2, where α > 0 is a coefficient

for tuning how much we penalize large values of ‖G(ỹ).w‖2 in comparison to
large values of ‖w‖2. If α is large enough, the difference between αG(ỹ) and its
integer rounding M is small. We currently choose α = α0/‖G(ỹ)‖, with ‖M‖ the
Frobenius norm of M (the Euclidean norm for n× n matrices being considered
as vectors in Rn2

), and α0 = 1015.
We therefore try searching for a small (with respect to the Euclidean norm)

nonzero vector that is an integer linear combination of the li = (0, . . . , 1, . . . , 0, mi)
where mi is the i-th row of M and the 1 is at the i-th position. Note that, because
of the diagonal of ones, the li form a free family.

This problem is known as finding a short vector in an integer lattice, and
can be solved by the Lenstra-Lenstra-Lovász (LLL) algorithm. This algorithm
outputs a free family of vectors si such that s1 is very short. Other vectors in
the family may also be very short.
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Once we have such a small vector w, using exact rational linear algebra, we
can compute F ′

0, . . . , F
′
m′ such that

⎧⎨
⎩−F ′

0 +
m′∑
i=1

y′
iF

′
i | (y1, . . . , ym′) ∈ Rm′

⎫⎬
⎭ =

{
−F0 +

m∑
i=1

yiFi | (y1, . . . , ym) ∈ Rm

}
∩ {F | F.v = 0} (5)

The resulting system has lower search space dimension m′ < m, yet the same
solution set dimension. By iterating the method, we eventually reach a search
space dimension equal to the dimension of the solution set.

If we find no solution F ′
0, then it means that the original problem had no

solution (the Positivstellensatz problem has no solution, or the monomial bases
were too small), or that a bad vector v was chosen due to lack of numerical
precision. This is the only bad possible outcome of our algorithm: it may fail
to find a solution that actually exists; in our experience, this happens only on
larger problems (search space of dimension 3000 and more), where the result is
sensitive to numerical roundoff. In contrast, our algorithm may never provide a
wrong result, since it checks for correctness in a final phase.

3.4 More Efficient Algorithm

In lieu of performing numerical SDP solving on F = −F0 +
∑

yiFi ) 0, we
can perform it in lower dimension on −(BF0B

T ) +
∑

yi(BFiB
T ) ) 0. Recall

that the rows of B span the orthogonal complement of
⋂m

i=0 kerFi, which is
necessarily included in kerF ; we are therefore just leaving out dimensions that
always provide null eigenvalues.

The reduction of the sums-of-squares problem (Eq. 3) provides matrices with
a fixed block structure, one block for each Pj : for a given problem all matrices
F0, F1, . . . , Fm are block diagonal with respect to that structure. We therefore
perform the test for positive semidefiniteness of the proposed F (y) solution
block-wise (see Sec. 3.6 for algorithms). For the blocks not found to be positive
semidefinite, the corresponding blocks of the matrices B and F (ỹ) are computed,
and LLL is performed.

As described so far, only a single v kernel vector would be supplied by LLL
for each block not found to be positive semidefinite. In practice, this tends to
lead to too many iterations of the main loop: the dimension of the search space
does not decrease quickly enough. We instead always take the first vector v(1) of
the LLL-reduced basis, then accept following vectors v(i) if ‖v(i)‖1 ≤ β.‖v(1)‖1

and ‖G(ỹ).v(i)‖2 ≤ γ.‖G(ỹ).v(1)‖2. For practical uses, we took β = γ = 10.
When looking for the next iteration ỹ′, we use the ỹ from the previous iter-

ation as a hint: instead of starting the SDP search from an arbitrary point, we
start it near the solution found by the previous iteration. We perform least-
square minimization so that −F ′

0 +
∑m′

i=1 y′
iF

′
i is the best approximation of

−F0 +
∑m

i=1 yiFi | (y1, . . . , ym).
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3.5 Extensions and Alternative Implementation

As seen in §4, our algorithm tends to produce solutions with large numerators
and denominators in the sum-of-square decomposition. We experimented with
methods to get F (y′) ≈ F (y) such that F (y′) has a smaller common denomi-
nator. This reduces to the following problem: given v ∈ f0 + vect(f1, . . . , fn) a
real (floating-point) vector and f0, . . . , fn rational vectors, find y′

1, . . . ,yn such
that v′ = f0 +

∑
i y′

ifi ≈ v and the numerators of v′ have a tunable magnitude
(parameter μ). One can obtain such a result by LLL reduction of the rows of:

M =

⎛
⎜⎜⎜⎝

Z(βμ(f0 − v)) Z(βf0) 1 0 . . . 0
Z(βμf1) Z(βf1) 0 1 . . .

...
... 0

. . .
Z(βμfn) Z(βfn) 0 1

⎞
⎟⎟⎟⎠ (6)

where β is a large parameter (say, 1019) and Z(v) stands for the integer rounding
of v. After LLL reduction, one of the short vectors in the basis will be a com-
bination

∑n
i yili where l0, . . . , ln are the rows of M , such that y0 �= 0. Because

of the large βμ coefficient, y0(f0 − v) +
∑n

i=1 yifi should be very small, thus
f0 +

∑n
i=1 yifi ≈ v. But among those vectors, the algorithm chooses one such

that
∑n

i=0 yifi is not large — and among the suitable v′, the vector of numerators
is proportional to

∑n
i=0 yifi.

After computing such a y′, we check whether F (y′) ) 0; we try this for a
geometrically increasing sequence of μ and stop as soon as we find a solution. The
matrices Q̂j then have simpler coefficients than the original ones. Unfortunately,
it does not ensue that the sums of square decompositions of these matrices have
small coefficients.

An alternative to finding some kernel vectors of a single matrix would be to
compute several floating-point matrices, for instance obtained by SDP solving
with optimization in multiple directions, and find common kernel vectors using
LLL.

3.6 Sub-algorithms and Implementation

The reduction from the problem expressed in Eq. 3 to SDP with rational solu-
tions was implemented in Sage.7

Solving the systems of linear equations (S) (Sec. 3.1, over the coefficients
of the matrices) and 5, in order to obtain a system −F0 + vect(F1, . . . , Fm) of
generators of the solution space, is done by echelonizing the equation system (in
homogeneous form) in exact arithmetic, then reading the solution off the echelon
form. The dimension of the system is quadratic in the number of monomials (on
the problems we experimented with, dimensions up to 7900 were found); thus
efficient algorithms should be used. In particular, sparse Gaussian elimination

7 Sage is a computer algebra system implemented using the Python programming
language, available under the GNU GPL from http://www.sagemath.org

http://www.sagemath.org
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in rational arithmetic, which we initially experimented, is not efficient enough;
we thus instead use a sparse multi-modular algorithm [28, ch. 7] from LinBox8.
Multi-modular methods compute the desired result modulo some prime numbers,
and then reconstruct the exact rational values.

One can test whether a symmetric rational matrix Q is positive semidefinite
by attempting to convert it into its Gaussian decomposition, and fail once one
detects a negative diagonal element, or a nonzero row with a zero diagonal
element (Appendix. A). We however experimented with three other methods
that perform better:

– Compute the minimal polynomial of Q using a multi-modular algorithm [1].
The eigenvalues of Q are its roots; one can test for the presence of negative
roots using Descartes’ rule of signs. Our experiments seem to show this is
the fastest exact method.

– Compute the characteristic polynomial of Q using a multimodular algorithm
[1] and do as above. Somewhat slower but more efficient than Gaussian
decomposition.

– Given a basis B of the span of Q, compute the Cholesky decomposition of
BT QB by a numerical method. This decomposition fails if and only if BT QB
is not positive definite (up to numerical errors), thus succeeds if and only if
Q is positive semidefinite (up to numerical errors).

For efficiency, instead of computing the exact basis B of the span of Q,
we use B from §3.3, whose span includes the span of Q. The only risk is that
kerB � kerQ while Q is positive semidefinite, in which case BT QB will have
nontrivial nullspace and thus will be rejected by the Cholesky decomposition.
This is not a problem in our algorithm: it just means that the procedure for
finding kernel vectors by LLL will find vectors in kerQ \ kerB.

One problem could be that the Cholesky decomposition will incorrectly
conclude that BT QB is not positive definite, while it is but has very small
positive eigenvalues. In this case, our algorithm may then find kernel vectors
that are not really kernel vectors, leading to an overconstrained system and
possibly loss of completeness. We have not encountered such cases.

Another problem could be that a Cholesky decomposition is obtained from
a matrix not positive semidefinite, due to extremely bad numerical behav-
ior. At worst, this will lead to rejection of the witness when the allegedly
semidefinite positive matrices get converted to sums of squares, at the end
of the algorithm.

Numerical SDP solving is performed using DSDP9 [3, 4], communicating using
text files. LLL reduction is performed by fpLLL.10 Least square projection is
performed using Lapack’s DGELS.

8 LinBox is a library for exact linear arithmetic, used by Sage for certain operations.
http://www.linalg.org/

9 DSDP is a sdp tool available from http://www.mcs.anl.gov/DSDP/
10 fpLLL is a LLL library from Damien Stehlé et al., available from

http://perso.ens-lyon.fr/damien.stehle/

http://www.linalg.org/
http://www.mcs.anl.gov/DSDP/
http://perso.ens-lyon.fr/damien.stehle/
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The implementation is available from the first author’s Web page (http://
bit.ly/fBNLhR and http://bit.ly/gPXNF8).

3.7 Preliminary Reductions

The more coefficients to find there are, the higher the dimension is, the longer
computation times grow and the more likely numerical problems become. Thus,
any cheap technique that reduces the search space is welcome.

If one looks for witnesses for problems involving only homogeneous polynomi-
als, then one can look for witnesses built out of a homogeneous basis of mono-
mials (this technique is implemented in our positivity checker).

One could also make use of symmetries inside the problem. For instance, if
one looks for a nonnegativity witness P = N/D of a polynomial P , and P is
symmetric (that is, there exists a substitution group Σ for the variables of P such
that P.σ = P for σ ∈ Σ), then one may reduce the search to symmetric N and
D. If P = N/D is a witness, then DP = N thus for any σ, (D.σ)P = (N.σ) and
thus (

∑
σ D.σ)P = (

∑
σ N.σ), thus D′ =

∑
σ D.σ and N ′ =

∑
σ N.σ constitute

a symmetric nonnegativity witness.

4 Examples

The following system of inequalities has no solution (neither Redlog nor QepCad
nor Mathematica 5 can prove it; Mathematica 7 can):⎧⎪⎪⎨

⎪⎪⎩
P1 = x3 + xy + 3y2 + z + 1 ≥ 0
P2 = 5z3 − 2y2 + x + 2 ≥ 0 P3 = x2 + y − z ≥ 0
P4 = −5x2z3 − 50xyz3 − 125y2z3 + 2x2y2 + 20xy3 + 50y4 − 2x3

−10x2y − 25xy2 − 15z3 − 4x2 − 21xy − 47y2 − 3x− y − 8 ≥ 0

(7)

This system was concocted by choosing P1, P2, P3 somewhat haphazardly and
then P4 = −(P1 +(3+(x+5y)2)P2 +P3 +1+x2), which guaranteed the system
had no solution. The initial 130 constraints yield a search space of dimension
145, and after four round of numeric solving one gets an unsatisfiability witness
(sums of squares Qj such that

∑4
j=1 PjQj + Q5 = 0). Total computation time

was 4.4 s. Even though there existed a simple solution (note the above formula
for P4), our algorithm provided a lengthy one, with large coefficients (and thus
unfit for inclusion here).

Motzkin’s polynomial M (Eq. 1) cannot be expressed as a sum of squares, but
it can be expressed as a quotient of two sums of squares. We solved M.Q1−Q2 =
0 for sums of squares Q1 and Q2 built from homogeneous monomials of respective
total degrees 3 and 6 — lesser degrees yield no solutions (Fig. 1). The equality
relation over the polynomials yields 66 constraints over the matrix coefficients
and a search space of dimension 186. Four cycles of SDP programming and LLL
are then needed, total computation time was 4.1 s.

We exhibited witnesses that each of the 8 semidefinite positive forms listed
by [24], which are not sums of squares of polynomials, are quotients of sums of

http://bit.ly/fBNLhR
http://bit.ly/fBNLhR
http://bit.ly/gPXNF8
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Q1 = 8006878A2
1 + 29138091A2

2 + 25619868453870/4003439A2
3 + 14025608A2

4 + 14385502A2
5

+ 85108577038951965167/12809934226935A2
6

Q2 = 8006878B2
1 + 25616453B2

2 + 108749058736871/4003439B2
3 + 161490847987681

/25616453B2
4 + 7272614B2

5 + 37419351B2
6 + 13078817768190/3636307B2

7 + 71344030945385471151

/15535579819553B2
8 + 539969700325922707586/161490847987681B2

9 + 41728880843834

/12473117B2
10 + 131008857208463018914/62593321265751B112, where

A1 = −1147341/4003439x2
1x3 − 318460/4003439x2

2x3 + x3
3 A2 = x2x2

3 A3 = −4216114037644

/12809934226935x2
1x3 + x2

2x3 A4 = x1x2
3, A5 = x1x2x3, A6 = x2

1x3 and B1 = −1102857

/4003439x4
1x2x3 − 5464251/4003439x2

1x2x3
3 + 2563669/4003439x3

2x3
3 + x2x5

3, B2 = −9223081

/25616453x4
1x2

3 − 18326919/25616453x2
1x2

2x2
3 + 1933547/25616453x4

2x2
3 + x2

2x4
3,

B3 = −2617184886847/15535579819553x4
1x2x3 − 12918394932706/15535579819553x2

1x2x3
3 + x3

2x3
3,

B4 = −26028972147097/161490847987681x4
1x2

3 − 135461875840584

/161490847987681x2
1x2

2x2
3 + x4

2x2
3, B5 = −2333331/3636307x3

1x2x2
3 − 1302976

/3636307x1x3
2x2

3 + x1x2x4
3, B6 = −11582471/37419351x5
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Fig. 1. Motzkin’s polynomial M (Eq. 1) as Q2/Q1

squares (Motzkin’s M , Robinson’s R and f , Choi and Lam’s F , Q, S, H and
Schmüdgen’s q). These examples include polynomials with up to 6 variables and
search spaces up to dimension 1155. We did likewise with delzell, laxlax and
leepstarr2 from [14]. The maximal computation time was 7’.

We then converted these witnesses into Coq proofs of nonnegativity using a
simple Sage script. These proofs use the Ring tactic, which checks for polynomial
identity. Most proofs run within a few seconds, though laxlax takes 7’39” and
Robinson’s f 5’07”; the witness for leepstarr2 is too large for the parser. We also
exhibited a witness that the Vor1 polynomial cited by [25] is a sum of squares.

John Harrison kindly provided us with a collection of 14 problems that his
system [11] could not find witnesses for. These problems generally have the
form P1 ≥ 0 ∧ · · · ∧ Pn ≥ 0 ⇒ R ≥ 0. In order to prove such implication, we
looked for witnesses consisting of sums of squares (Q1, . . . , Qn, QR),such that∑

j QjPj + QRR = 0 with QR �= 0, and thus R =
∑

j QjPj

QR
. In some cases, it

was necessary to use the products
∏

i Pwi

i for w ∈ {0, 1}n instead of the Pi.
We could find witnesses for all those problems,11. though for some of them, the
witnesses are very large, taking up megabytes. Since these searches were done
without making use of symmetries in the problem, it is possible that more clever
techniques could find smaller witnesses.

5 Conclusion and Further Works

We have described a method for solving SDP problems in rational arithmetic.
This method can be used to solve sums-of-squares problems even in geometri-
cally degenerate cases. We illustrated this method with applications to proving
the nonnegativity of polynomials, or the unsatisfiability of systems of polyno-
mial (in) equalities. The method then provides easily checkable proof witnesses,

11 A 7z archive is given at http://bit.ly/hM7HW3

http://bit.ly/hM7HW3
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in the sense that checking the witness only entails performing polynomial arith-
metic and applying a few simple mathematical lemmas. We have implemented
the conversion of nonnegativeness witnesses to Coq proofs. A more ambitious
implementation, mapping Coq real arithmetic proofs goals to Positivstellensatz
problems through the Psatz tactic from the MicroMega package [5], then map-
ping Positivstellensatz witnesses back to proofs, is underway.

One weakness of the method is that it tends to provide “unnatural” witnesses
— they tend to have very large coefficients. These are machine-checkable but
provide little insights to the reader. An alternative would be to provide the
matrices and some additional data (such as their minimal polynomial) and have
the checker verify that they are semidefinite positive; but this requires formally
proving, once and for all, some non-trivial results on polynomials, symmetric
matrices and eigenvalues (e.g. the Cayley-Hamilton theorem), as well as possibly
performing costly computations, e.g. evaluating a matrix polynomial.

A more serious limitation for proofs of unsatisfiability is the very high cost of
application of the Positivstellensatz. There is the exponential number of poly-
nomials to consider, and the unknown number of monomials. It would be very
interesting if there could be some simple results, similar to the Newton poly-
tope approach, for reducing the dimension of the search space or the number
of polynomials to consider. Another question is whether it is possible to define
SDP problems from Positivstellensatz equations for which the spectrahedron has
rational points only at its relative boundary.

While our method performed well on examples, and is guaranteed to provide
a correct answer if it provides one, we have supplied no completeness proof —
that is, we have not proved that it necessarily provides a solution if there is one.
This is due to the use of floating-point computations. One appreciable result
would be that a solution should be found under the assumption that floating-
point computations are precise up to ε, for a value of ε and the various scaling
factors in the algorithm depending on the values in the problem or the solution.

It seems possible to combine our reduction method based on LLL with the
Newton iterations suggested by [13, 14], as an improvement over their strategy
for detection of useless monomials and reduction of the search space. Again,
further experiment is needed.
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A Gaussian Reduction and Positive Semidefiniteness

An algorithm for transforming a semidefinite positive matrix into a “sum of
squares” form, also known as Gaussian reduction:

f o r i :=1 to n do
begin

i f m[ i , i ] < 0 then
throw non po s i t i v e s em i d e f i n i t e

i f m[ i , i ] = 0 then
i f m. row( i ) <> 0

throw non po s i t i v e s em i d e f i n i t e
e l s e

beg in
v := m. row( i ) / m[ i , i ]
output . append (m[ i , i ] , v )
m := m − m[ i , i ] ∗ v . t r anspo s e ( ) ∗ v

end
end

Suppose that the entrance of iteration i, m[i . . . n, i . . . n] is positive semidefi-
nite. If mi,i = 0, then the ith base vector is in the isotropic cone of the matrix,
thus of its kernel, and the row i must be zero. Otherwise, mi,i > 0. By adding ε
to the diagonal of the matrix, we would have a positive definite matrix and thus
the output of the loop iteration would also be positive definite, as above. By
ε → 0 and the fact that the set of positive semidefinite matrices is topologically
closed, then the output of the loop iteration is also positive semidefinite.

The output variable is then a list of couples (ci, vi) such that ci > 0 and the
original matrix m is equal to

∑
i civ

T
i vi (with vi row vectors). Otherwise said,

for any row vector u, umuT =
∑

i ci〈u, vi〉2.

http://www.jstor.org/stable/1969640
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Abstract. Theorem provers, such as ACL2, HOL, Isabelle and Coq,
rely on the correctness of runtime systems for programming languages
like ML, OCaml or Common Lisp. These runtime systems are complex
and critical to the integrity of the theorem provers.

In this paper, we present a new Lisp runtime which has been formally
verified and can run the Milawa theorem prover. Our runtime consists of
7,500 lines of machine code and is able to complete a 4 gigabyte Milawa
proof effort. When our runtime is used to carry out Milawa proofs, less
unverified code must be trusted than with any other theorem prover.

Our runtime includes a just-in-time compiler, a copying garbage col-
lector, a parser and a printer, all of which are HOL4-verified down to the
concrete x86 code. We make heavy use of our previously developed tools
for machine-code verification. This work demonstrates that our approach
to machine-code verification scales to non-trivial applications.

1 Introduction

We can never be sure [6] a computer has executed a theorem prover (or any
other program) correctly. Even if we could prove a processor design implements
its instruction set, we have no way to ensure it will be manufactured correctly
and will not be interfered with as it runs. But can we develop a theorem prover
for which there are no other reasonable doubts?

Any theorem prover is based on a formal mathematical logic. Logical sound-
ness is well-studied. It is usually established with social proofs, but some sound-
ness proofs [20,10] have even been checked by computers. If we accept the logic
is sound, the question boils down to whether the theorem prover is faithful to
its logic: does it only claim to prove formulas that are indeed theorems?

In many theorem provers, the trusted core—the code that must be right to
ensure faithfulness—is quite small. As examples, HOL Light [12] is an LCF-style
system whose trusted core is 400 lines of Objective Caml, and Milawa [5] is a
Boyer-Moore style prover whose trusted core is 2,000 lines of Common Lisp.
These cores are so simple we may be able to prove their faithfulness socially, or
perhaps even mechanically as Harrison [11] did for HOL Light.

On the other hand, to actually use these theorem provers we need a runtime
environment that can parse source code, infer types, compile functions, collect
garbage, and so forth. These runtimes are far more complicated than simple
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theorem-prover cores. For a rough perspective, source-code distributions of Ob-
jective Caml and Common Lisp systems seem to range from 15 MB to 50 MB
on disk, and also require C compilers and various libraries.

In this paper, we present Jitawa, the first mechanically verified runtime de-
signed to run a general-purpose theorem prover.

– We target the Milawa theorem prover, so we begin with a brief description
of this system and explain how using a verified runtime increases our level
of trust in Milawa proofs. (Section 2)

– To motivate the design of our runtime, we examine Milawa’s computational
and I/O needs. To meet these needs, Jitawa features efficient parsing, just-in-
time compilation to 64-bit x86 machine code, garbage collection, expression
printing, and an “abort with error message” capability. (Section 3)

– We consider what it means for Jitawa to be correct. We develop a formal
HOL4 [21] specification (400 lines) of how the runtime should operate. This
covers expression evaluation, parsing, and printing. (Section 4)

– We explain how Jitawa is implemented and verified. We build heavily on our
previous tools for machine-code synthesis and verification, so in this paper
we focus on how our compiler is designed and specified and also on how I/O
is handled. We present the top-level correctness theorem that shows Jitawa’s
machine code implements its specification. (Section 5)

– We describe the relationship between Milawa and Jitawa. We have used
Jitawa to carry out a 4 GB proof effort in Milawa, demonstrating the good
capacity of the runtime. We explain the informal nature of this connection,
and how we hope it may be formalized in future work. (Section 6)

We still need some unverified code. We have not tried to avoid using an operating
system, and we use a C wrapper-program to interact with it. This C program
is quite modest: it uses malloc to allocate memory and invokes our runtime.
Jitawa also performs I/O by making calls to C functions for reading and writing
standard input and output (Section 5.3).

2 The Milawa System

Milawa [5] is a theorem prover styled after systems like NQTHM [1] and ACL2 [13].
The Milawa logic has three kinds of objects: natural numbers, symbols, and
conses. It also has twelve primitive functions like if, equal, cons, and +, and
eleven macros like list, and, let*, and cond. Starting from these primitives, one
may introduce the definitions of first-order, total, untyped, recursive functions
as axioms. For instance, a list-length function might be introduced as

∀x. (len x) = (if (consp x) (+ ’1 (len (cdr x))) ’0).

Almost all of Milawa’s source code is written as functions in its logic. We can
easily run these functions on a Common Lisp system.
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2.1 The Trusted Core

Milawa’s original trusted core is a 2,000 line Common Lisp program that checks
a file of events. Most commonly,

– Define events are used to introduce recursive functions, and include the
name of a file that should contain a proof of termination, and

– Verify events are used to admit formulas as theorems, and include the name
of a file that should contain a proof of the formula.

The user generates these events and proof files ahead of time, with the help of
an interactive interface that need not be trusted.

A large part of the trusted core is just a straightforward definition of formulas
and proofs in the Milawa logic. A key function is proofp (“proof predicate”),
which determines if its argument is a valid Milawa-logic proof; this function
only accepts full proofs made up of primitive inferences, and it is defined in the
Milawa logic so we can reason about provability.

When the trusted core is first started, proofp is used to check the proofs for
each event. But, eventually, the core can be reflectively extended. The steps are:

1. Define a new proof-checking function. This function is typically a proper
extension of proofp: it still accepts all the primitive proof steps, but it also
permits new, non-primitive proof steps.

2. Verify that the new function only accepts theorems. That is, whenever the
new proof checker accepts a proof of some formula φ, there must exist a
proof of φ that is accepted by proofp.

3. Use the special Switch event to instruct the trusted core to begin using the
new, now-verified function, instead of proofp, to check proofs.

After such an extension, the proofs for Define and Verify events may make
use of the new kinds of proof steps. These higher-level proofs are usually much
shorter than full proofp-style proofs, and can be checked more quickly.

2.2 The Verified Theorem Prover

Milawa’s trusted core has no automation for finding proofs. But separately from
its core, Milawa includes a Boyer-Moore style theorem prover that can carry
out a goal-directed proof search using algorithms like lemma-driven conditional
rewriting, calculation, case-splitting into subgoals, and so on.

All of these algorithms are implemented as functions in the Milawa logic.
Because of this, we can reason about their behavior using the trusted core. In
Milawa’s “self-verification” process, the trusted core is used to Define each of
the functions making up the theorem prover and Verify lemmas about their
behavior. This process culminates in the definition of a verified proof checker
that can apply any sequence of Milawa’s tactics as a single proof step. Once we
Switch to this new proof checker, the trusted core can essentially check proofs
by directly running the theorem prover.
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2.3 The Role of a Verified Runtime

Through its self-verification process, the Milawa theorem prover is mechanically
verified by its trusted core. For this verification to be believed—indeed, for any
theorems proven by Milawa to be believed—one must trust that

1. the Milawa logic is sound,
2. the trusted core of Milawa is faithful to its logic, and
3. the computing platform used to carry out the self-verification process has

correctly executed Milawa’s trusted core.

The first two points are addressed in previous work [5] in a social way. Our
verified runtime does not directly bolster these arguments, but may eventually
serve as groundwork for a mechanical proof of these claims (Section 6).

The third point requires trusting some computer hardware and a Common
Lisp implementation. Unfortunately, these runtimes are always elaborate and are
never formally verified. Using Jitawa as our runtime greatly reduces the amount
of unverified code that must be trusted.

3 Requirements and Design Decisions

On the face of it, Milawa is quite modest in what it requires of the underlying
Lisp runtime. Most of the code for its trusted core and all of the code for its
theorem prover are written as functions in the Milawa logic. These functions
operate on just a few predefined data types (natural numbers, symbols, and
conses), and involve a handful of primitive functions and macros like car, +, list,
and cond. To run these functions we just need a basic functional programming
language that implements these primitives.

Beyond this, Milawa’s original trusted core also includes some Common Lisp
code that is outside of the logic. As some examples:

– It destructively updates global variables that store its arity table, list of
axioms, list of definitions, and so forth.

– It prints some status messages and timing information so the user can eval-
uate its progress and performance.

– It can use the underlying Lisp system’s checkpointing system to save the
program’s current state as a new executable.

It was straightforward to develop a new version of the Milawa core that does away
with the features mentioned above: we avoid destructive updates by adopting
a more functional “state-tuple” style, and simply abandon checkpointing and
timing reports since, while convenient, they are not essential.

On the other hand, some other Common Lisp code is not so easy to deal with.
In particular:

– It instructs the Common Lisp system to compile user-supplied functions as
they are Defined, which is important for running new proof checkers.
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– It dynamically calls either proofp or whichever proof checker has been most
recently installed via Switch to check proofs.

– It aborts with a runtime error when invalid events or proofs are encountered,
or if an attempt is made to run a Skolem function.

We did not see a good way to avoid any of this. Accordingly, Jitawa must also
provide on-the-fly compilation of user-defined functions, dynamic function invo-
cation, and some way to cause runtime errors.

3.1 I/O Requirements

In Milawa’s original trusted core, each Define and Verify event includes the
name of a file that should contain the necessary proof, and these files are read
on demand as each event is processed. For a rough sense of scale, the proof of
self-verification is a pretty demanding effort; it includes over 15,000 proof files
with a total size of 8 GB.

The proofs in these files—especially the lowest-level proofs that proofp checks—
can be very large and repetitive. As a simple but crucial optimization, an abbre-
viation mechanism [2] lets us reuse parts of formulas and proofs. For instance,

(append (cons (cons a b) c)
(cons (cons a b) c))

could be more compactly written using an abbreviation as

(append #1=(cons (cons a b) c)
#1#).

We cannot entirely avoid file input since, at some point, we must at least tell the
program what we want it to verify. But we would prefer to minimize interaction
with the operating system. Accordingly, in our new version of the Milawa core,
we do not keep proofs in separate files. Instead, each event directly contains the
necessary proof, so we only need to read a single file. This approach exposes ad-
ditional opportunities for structure sharing. While the original, individual proof
files for the bootstrapping process are 8 GB, the new events file is only 4 GB. It
has 525 million abbreviations.

At any rate, Jitawa needs to be able to parse input files that are gigabytes in
size and involve hundreds of millions of abbreviations.

3.2 Designing for Performance and Scalability

The real challenge in constructing a practical runtime for Milawa (or any other
theorem prover) is that performance and scalability cannot be ignored. Our
previously verified Lisp interpreter [18] is hopelessly inadequate: its direct inter-
preter approach is too slow, and it also has inherent memory limitations that
prevent it from handling the large objects the theorem prover must process.

For Jitawa, we started from scratch and made sure the central design decisions
allowed our implementation to scale. For instance:



270 M.O. Myreen and J. Davis

– To improve execution times, functions are just-in-time compiled to native
x86 machine code.

– To support large computations, we target 64-bit x86. Jitawa can handle up
to 231 live cons cells, i.e., up to 16 GB of conses at 8 bytes per cons.

– Parsing and printing are carefully coded not to use excessive amounts of
memory. In particular, lexing is merged with parsing into what is called a
scanner-less parser, and abbreviations are supported efficiently.

– Since running out of heap space or stack space is a real concern, we ensure
graceful exits in all circumstances and provide helpful error messages when
limits are reached.

4 The Jitawa Specification

Jitawa implements a read-eval-print loop. Here is an example run, where lines
starting with > are user input and the others are the output.

> ’3
3
> (cons ’5 ’(6 7))
(5 6 7)
> (define ’increment ’(n) ’(+ n ’1))
NIL
> (increment ’5)
6

What does it mean for Jitawa to be correct? Intuitively, we need to show
the input characters are parsed as expected, the parsed terms are evaluated
according to our intended semantics, and the results of evaluation are printed as
the correct character sequences.

To carry out a proof of correctness, we first need to formalize how parsing,
evaluation, and printing are supposed to occur. In this section, we describe our
formal, HOL specification of how Jitawa is to operate. This involves defining a
term representation and evaluation semantics (Sections 4.1 and 4.2), and speci-
fying how parsing and printing (Section 4.3) are to be done. We combine these
pieces into a top-level specification (Section 4.4) for Jitawa.

Altogether, our specification takes 400 lines of HOL code. It is quite abstract:
it has nothing to do with the x86 model, compilation, garbage collection, and
so on. We eventually (Section 5.4) prove Jitawa’s machine code implements this
specification, and we regard this as a proof of “Jitawa is correct.”

4.1 Syntax

Milawa uses a typical s-expression [15] syntax. While Jitawa’s parser has to deal
with these expressions at the level of individual characters, it is easier to model
these expressions as a HOL datatype,

sexp ::= Val num (natural numbers)
| Sym string (symbols)
| Dot sexp sexp (cons pairs).
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We use the name Dot instead of Cons to distinguish it from the name of the
function called Cons which produces this structure; the name Dot is from the
syntax (1 . 2). As an example, the sexp representation of (+ n ’1) is

Dot (Sym "+")
(Dot (Sym "N")

(Dot (Dot (Sym "QUOTE") (Dot (Val 1) (Sym "NIL")))
(Sym "NIL"))).

Our specification also deals with well-formed s-expression, i.e. s-expressions
that can be evaluated. We represent these expressions with a separate datatype,
called term. The term representation of (+ n ’1) is

App (PrimitiveFun Add) [Var "N", Const (Val 1)].

The definition of term is shown below. Some constructors are marked as
macros, meaning they expand into other terms in our semantics and in the com-
piler, e.g., Cond expands into If (if-then-else) statements. These are the same
primitives and macros as in the Milawa theorem prover.

term ::= Const sexp
| Var string
| App func (term list)
| If term term term
| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)
| List (term list) (macro)
| Let ((string × term) list) term (macro)
| LetStar ((string × term) list) term (macro)
| Cond ((term × term) list) (macro)
| First term | Second term | Third term (macro)
| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess
| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

4.2 Evaluation Semantics

We define the semantics of expressions as a relation ev−→ that explains how
objects of type term evaluate. Following Common Lisp, we separate the store k
for functions from the environment env for local variables. We model the I/O
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streams io as a pair of strings, one for characters produced as output, and one
for characters yet to be read as input. Our evaluation relation ev−→ explains
how terms may be evaluated with respect to some particular k, env , and io to
produce a resulting sexp and an updated k′ and io ′.

As an example, the following rule shows how Var terms are evaluated. We
only permit the evaluation of bound variables, i.e. x ∈ domain env .

x ∈ domain env
(Var x, env , k, io) ev−→ (env(x), k, io)

Our evaluation relation is defined inductively with auxilliary relations evl−→ for
evaluating a list of terms and ap−→ for applying functions. For instance, the fol-
lowing rule explains how a function (i.e., something of type func) is applied: first
the arguments are evaluated using evl−→ , then the apply relation ap−→ determines
the result of the application.

(args , env , k, io) evl−→ (vals , k′, io′) ∧ (f, vals , env , k′, io′) ap−→ (ans , k′′, io′′)
(App f args , env , k, io) ev−→ (ans , k′′, io′′)

With regards to just-in-time compilation, an interesting case for the apply
relation ap−→ is the application of user-defined functions. In our semantics, a
user-defined function name can be applied when it is defined in store k with the
right number of parameters.

k(name) = (params , body) ∧ (length vals = length params) ∧
(body , [params ← vals ], k, io) ev−→ (ans , k′, io′) ∧ name �∈ reserved names

(Fun name, vals , env , k, io) ap−→ (ans , k′, io′)

Another interesting case is how user-defined functions are introduced. New
definitions can be added to k by evaluation of the Define function. We disallow
overwriting existing definitions, i.e. name �∈ domain k.

name �∈ domain k
(Define, [name, params , body ], env , k, io) ap−→ (nil, k[name → (params , body)], io)

In Jitawa’s implementation, an application of Define compiles the expression
body into machine code. Notice how nothing in the above rule requires that it
should be possible to evaluate the expression body at this stage. In particular, the
functions mentioned inside body might not even be defined yet. This means that
how we compile function calls within body depends on the compile-time state: if
the function to be called is already defined we can use a direct jump/call to its
code, but otherwise we use a slower, dynamic jump/call.

Strictly speaking, Milawa does not require that Define is to be applicable to
functions that cannot be evaluated. However, we decided to allow such definitions
to keep the semantics clean and simple. Another advantage of allowing compi-
lation of calls to not-yet-defined functions is that we can immediately support
mutually recursive definitions, e.g.:
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(define ’even ’(n) (if (equal n ’0) ’t (odd (- n ’1))))
(define ’odd ’(n) (if (equal n ’0) ’nil (even (- n ’1))))

When the expression for even is compiled, the compiler knows nothing about
the function odd and must thus insert a dynamic jump to the code for odd.
But when odd is compiled, even is already known and the compiler can insert a
direct jump to the code for even.

4.3 Parsing and Printing

Besides evaluation, our runtime must provide parsing and printing. We begin by
modeling our parsing and printing algorithms at an abstract level in HOL as two
functions, sexp2string and string2sexp, which convert s-expressions into strings
and vice versa. The printing function is trivial. Parsing is more complex, but we
can gain some assurance our specification is correct by proving it is the inverse
of the printing function, i.e.

∀s. string2sexp (sexp2string s) = s.

Unfortunately, Jitawa’s true parsing algorithm must be slightly more compli-
cated. It must handle the #1=-style abbreviations described in Section 3.1. Also,
the parser we verified in previous work [18] assumed the entire input string was
present in memory, but since Jitawa’s input may be gigabytes in size, we instead
want to read the input stream incrementally. We define a function,

next sexp : string → sexp × string,

that only parses the first s-expression from an input string and returns the unread
part of the string to be read later.

We can prove a similar “inverse” theorem for next sexp via a printing function,
abbrevs2string, that prints a list of s-expressions, each using some abbreviations a.
That is, we show next sexp correctly reads the first s-expression, and leaves the
other expressions for later:

∀s a rest . next sexp (abbrevs2string ((s, a) :: rest)) = (s, abbrevs2string rest).

4.4 Top-Level Specification

We give our top-level specification of what constitutes a valid Jitawa execution
as an inductive relation, exec−→ . Each execution terminates when the input stream
ends or contains only whitespace characters.

is empty (get input io)
(k, io) exec−→ io

Otherwise, the next s-expression is read from the input stream using next sexp,
this s-expression s is then evaluated according to ev−→ , and finally the result of
evaluation, ans , is appended to the output stream before execution continues.
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¬is empty (get input io)∧
next sexp (get input io)) = (s, rest)∧
(sexp2term s, [], k, set input rest io) ev−→ (ans , k′, io′)∧
(k′, append to output (sexp2string ans) io′) exec−→ io′′

(k, io) exec−→ io′′

5 The Jitawa Implementation

The verified implementation of Jitawa is 7,500 lines of x86 machine code. Most
of this code was not written and verified by hand. Instead, we produced the
implementation using a combination of manual verification, decompilation and
proof-producing synthesis [19].

1. We started by defining a simple stack-based bytecode language into which
we can easily compile Lisp programs using a simple compilation algorithm.

2. Next, we defined a heap invariant and proved that certain machine instruc-
tion “snippets” implement basic Lisp operations and maintain this invariant.

3. These snippets of verified machine code were then given to our extensible
synthesis tool [19] which we used to synthesise verified x86 machine code for
our compilation algorithm.

4. Next, we proved the concrete byte representation of the abstract bytecode
instructions is in itself machine code which performs the bytecode instruc-
tions themselves. Thus jumping directly to the concrete representation of
the bytecode program will correctly execute it on the x86 machine.

5. Finally, we verified code for parsing and printing of s-expressions from an
input and output stream and connected these up with compilation to produce
a “parse, compile, jump to compiled code, print” loop, which we have proved
implements Jitawa’s specification.

Steps 2 and 3 correspond very closely to how we synthesised, in previous work [18],
verified machine-code for our Lisp evaluation function lisp eval.

5.1 Compilation to Bytecode

Jitawa compiles all expressions before they are executed. Our compiler targets a
simple stack-based bytecode shown in Figure 1. At present, no optimizations are
performed except for tail-call elimination and a simple optimization that speeds
up evaluation of LambdaApp, Let and LetStar.

We model our compilation algorithm as a HOL function that takes the name,
parameters, and body of the new function, and also a system state s. It returns
a new system state, s′, where the compiled code for body has been installed and
other minor updates have been made.

compile (name, params , body , s) = s′
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bytecode ::= Pop pop one stack element
| PopN num pop n stack elements below top element
| PushVal num push a constant number
| PushSym string push a constant symbol
| LookupConst num push the nth constant from system state
| Load num push the nth stack element
| Store num overwrite the nth stack element
| DataOp primitive add, subtract, car, cons, . . .
| Jump num jump to program point n
| JumpIfNil num conditionally jump to n
| DynamicJump jump to location given by stack top
| Call num static function call (faster)
| DynamicCall dynamic function call (slower)
| Return return to calling function
| Fail signal a runtime error
| Print print an object to stdout
| Compile compile a function definition

Fig. 1. Abstract syntax of our bytecode

We model the execution of bytecode using an operational semantics based on
a next-state relation next−→ . For simplicity and efficiency, we separate the value
stack xs from the return-address stack rs; the relation also updates a program
counter p and the system state s. The simplest example of next−→ is the Pop
instruction, which just pops an element off the expression stack and advances
the program counter to the next instruction.

contains bytecode (p, s, [Pop])
(top :: xs, rs , p, s) next−→ (xs, rs , p + length(Pop), s)

Call pos is not much more complicated: we change the program counter to pos
and push a return address onto the return stack.

contains bytecode (p, s, [Call pos ])
(xs, rs, p, s) next−→ (xs, (p + length(Call pos)) :: rs , pos , s)

A DynamicCall is similar, but reads the name and expected arity n of the
function to call from the stack, then searches in the current state to locate the
position pos where the compiled code for this function begins.

contains bytecode (p, s, [DynamicCall]) ∧ find func (fn , s) = some (n, pos)
(Sym fn :: Val n :: xs, rs , p, s) next−→ (xs, (p + length(DynamicCall)) :: rs , pos , s)

The Print instruction is slightly more exotic: it appends the string representa-
tion of the top stack element, given by sexp2string (Section 4.3), onto the output
stream, which is part of the system state s. It leaves the stack unchanged.
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contains bytecode (p, s, [Print]) ∧ append to output (sexp2string top, s) = s′

(top :: xs, rs , p, s) next−→ (top :: xs, rs , p + length(Print), s′)

The most interesting bytecode instruction is, of course, Compile. This instruc-
tion reads the name, parameter list, and body of the new function from the stack
and updates the system state using the compile function.

contains bytecode (p, s, [Compile]) ∧ compile (name, params , body , s) = s′

(body :: params :: name :: xs, rs , p, s) next−→ (nil :: xs, rs , p + length(Compile), s′)

At first sight, this definition might seem circular since the compile function op-
erates over bytecode instructions. It is not circular: we first define the syntax of
bytecode instructions, then the compile function which generates bytecode, and
only then define the semantics of evaluating bytecode instructions, next−→ .

Compile instructions are generated when we encounter an application of De-
fine. For instance, when the compiler sees an expression like

(define ’increment ’(n) ’(+ n ’1)),

it generates the following bytecode instructions (for some specific k):

PushSym "INCREMENT" pushes symbol increment onto the stack
LookupConst k pushes expression (n) onto the stack
LookupConst (k+1) pushes expression (+ n ’1) onto the stack
Compile compiles the above expression

5.2 From Bytecode to Machine Code

Most compilers use some intermediate language before producing concrete ma-
chine code. However, our compiler goes directly from source to concrete machine
code by representing bytecode instructions as a string of bytes that are machine
code. For example, the Compile instruction is represented by bytes

48 FF 52 88

which happens to be 64-bit x86 machine code for call [rdx-120], i.e. an in-
struction which makes a procedure call to a code pointer stored at memory
address rdx-120.

For each of these byte sequences, we prove a machine-code Hoare triple [17]
which states that it correctly implements the intended behaviour of the bytecode
instruction in question with respect to a heap invariant lisp bytecode inv.

compile (name, params , body , s) = s′ =⇒
{ lisp bytecode inv (body :: params :: name :: xs, rs , s) ∗ pc p }
p : 48 FF 52 D8

{ lisp bytecode inv (nil :: xs, rs , s′) ∗ pc (p + 4) ∨ error }



A Verified Runtime for a Verified Theorem Prover 277

At this stage you might wonder: but doesn’t that Hoare triple rely on more
code than just those four bytes? The answer is yes: it requires machine code
which implements the compile function from above. We have produced such
machine code by a method described in previous work [19]; essentially, we teach
the theorem prover about basic operations w.r.t. to a heap invariant and then
have the theorem prover synthesize machine code that implements the high-level
algorithm for compilation. The code we synthesized in this way is part of lisp
invariant lisp bytecode inv shown above. Thus when the above x86 instruction
(i.e. call [rdx-120]) is executed, control just jumps to the synthesised code
which when complete executes a return instruction that brings control back to
the end of those four bytes.

The Hoare triples used here [17] do not require code to be at the centre of the
Hoare triple as the following “code is data” theorem shows:

∀p c q. {p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

A detailed explanation of this rule, and a few others that are handy when dealing
with self-modifying code, can be found in our previous paper [17].

5.3 I/O

Jitawa calls upon the external C routines fgets and fputs to carry out I/O.
These external calls require assumptions in our proof. For instance, we assume
that calling the routine at a certain location x—which our unverified C program
initializes to the location of fgets before invoking the runtime—will:

1. produce a pointer z to a null-terminated string that contains the first n
characters of the input stream, for some n, and

2. remove these first n characters from the input stream.

We further assume that the returned string is only empty if the input stream
was empty. The machine-code Hoare triple representing this assumption is:

{ rax x ∗ rbx y ∗memory m ∗ io (x, in, out) ∗ pc p }
p : call rax

{ ∃z n. rax x ∗ rbx z ∗memory m′ ∗ io (x, drop n in, out) ∗ pc (p + 3) ∗
〈string in mem at (z, m′, take n in) ∧ (n = 0 =⇒ in = "")〉 }

The fact that Jitawa implements an interactive read-eval-print loop is not
apparent from our top-level correctness statement: it is just a consequence of
reading lazily—our next sexp style parser reads only the first s-expression, and
fgets reads through at most the first newline—and printing eagerly.

5.4 Top-Level Correctness Theorem

The top-level correctness theorem is stated as the following machine-code Hoare
triple. If the Jitawa implementation is started in a state where enough memory
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is allocated (init state) and the input stream holds s-expressions for which an
execution of Jitawa terminates, then either a final state described by exec−→ is
reached or an error message is produced.

{ init state io ∗ pc p ∗ 〈terminates for io〉 }
p : code for entire jitawa implementation

{ error message ∨ ∃io ′. 〈([], io) exec−→ io′〉 ∗ final state io′ }
This specification allows us to resort to an error message even if the evaluated

s-expressions would have a meaning in terms of the exec−→ relation. This lets us
avoid specifying at what point implementation-level resource limits are hit. The
implementation resorts to an error message when Jitawa runs into an arithmetic
overflow, attempts to parse a too long symbol (more than 254 characters long),
or runs out of room on the heap, stack, symbol table or code heap.

6 The Combination of Milawa and Jitawa

Jitawa runs fast enough and manages its memory well enough to successfully
complete the proof of self-verification for Milawa. This is a demanding proof
that many Common Lisp systems cannot successfully complete. The full input
file is 4 gigabytes and contains 520 million unique conses. On our computer,
Clozure Common Lisp—an excellent, state-of-the-art Common Lisp implemen-
tation—takes 16 hours to finish the proof; this is with all optimization enabled,
garbage collection tuning, and inlining hints that provide significant benefits.

Jitawa is currently about 8x slower for the full proof. While this is considerably
slower, it may be adequate for some proof efforts. We are also investigating how
performance may be improved. Jitawa is only 20% slower than CCL on the first
4,500 events (about 1.5 hours of computation), so it seems that competitive
performance may be possible.

Is there a formal connection between Jitawa and Milawa? We would eventually
like to mechanically prove that, when run with Jitawa, Milawa’s trusted core is
faithful to the Milawa logic. We have not yet done this, but we have at least
proved a weaker connection, viz. evaluation in Jitawa respects the 52 axioms [5,
Ch. 2] of the Milawa logic that constrain the behavior of Lisp primitives.

For instance, the Closed Universe Axiom says every object must satisfy either
natp, symbolp, or consp. In Milawa, this is written as:

(por* (pequal* (natp x) ’t)
(por* (pequal* (symbolp x) ’t)

(pequal* (consp x) ’t)))

The corresponding HOL theorem is stated as:

valid sexp ["x"] (" (por* (pequal* (natp x) ’t) " ++
" (por* (pequal* (symbolp x) ’t) " ++
" (pequal* (consp x) ’t))) ")

We are able to copy the axiom statements into HOL nearly verbatim by having
valid sexp use our parser to read the string into its datatype representation.
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7 Discussion and Related Work

Theorem provers are generally very trustworthy. The LCF [7] approach has long
been used to minimize the amount of code that must be trusted. Harrison [11]
has even formally proved—using an altered version of HOL Light—theorems
suggesting HOL Light’s LCF-style kernel is faithful to its logic. By addressing
the correctness of the runtime system used to execute the prover, we further
increase our confidence in these systems.

Runtime correctness may be particularly important for theorem provers that
employ reflective techniques. In a separate paper [9], Harrison remarks:

“ [...] the final jump from an abstract function inside the logic to a concrete
implementation in a serious programming language which appears to
correspond to it is a glaring leap of faith. ”

While we have not proven a formal connection between Milawa and Jitawa, our
work suggests it may be possible to verify a theorem prover’s soundness down to
the concrete machine code which implements it, thus reducing this “glaring leap
of faith.” We have kept Jitawa’s top-level specification (Section 4) as simple as
possible to facilitate such a proof.

Most of this paper has dealt with the question: how do we create a verified
Lisp system that is usable and scales well? The most closely related work on
this topic is the VLISP project [8], which produced a “comprehensively” (not
formally) verified Scheme implementation. The subset of Scheme which they
address is impressive: it includes strings, destructive updates and I/O. However,
their formalisation and proofs did not reach as far as machine or assembly level,
as we have done here and in previous work [18].

Recently, Leroy’s Coq-verified C compiler [14], which targets PowerPC, ARM
and 32-bit x86 assembly, has been extended with new front-ends that makes
it compile MiniML [4] and a garbage-collected source language [16]. The latter
extension has been connected to intermediate output from the Glasgow Haskell
Compiler. Our runtime uses a verified copying garbage collector similar to the
sample collector in McCreight et al. [16], but less than 10% of our proof scripts
are directly concerned with verification of our garbage collector and interfacing
with it; our approach to this is unchanged from our previous paper [18].

Unrelated to Leroy’s C compiler, Chlipala [3] has done some interesting ver-
ification work, in Coq, on compilation of a functional language: he verified a
compiler from a functional language with references and exceptions to a toy as-
sembly language. Chlipala emphasises use of adaptive programs in Coq’s tactic
language to make proofs robust.

Source code. The code for Jitawa and its 30,000-line verification proof are
available at http://www.cl.cam.ac.uk/~mom22/jitawa/. Similarly, Milawa is
available at http://www.cs.utexas.edu/~jared/milawa/Web/.
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Verified Efficient Enumeration of Plane Graphs

Modulo Isomorphism
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Abstract. Due to a recent revision of Hales’s proof of the Kepler Con-
jecture, the existing verification of the central graph enumeration proce-
dure had to be revised because it now has to cope with more than 109

graphs. This resulted in a new and modular design. This paper primarily
describes the reusable components of the new design: a while combinator
for partial functions, a theory of worklist algorithms, a stepwise imple-
mentation of a data type of sets over a quasi-order with the help of tries,
and a plane graph isomorphism checker. The verification turned out not
to be in vain as it uncovered a bug in Hales’s graph enumeration code.

1 Introduction

In 1998, Hales announced the proof of the Kepler Conjecture (about the densest
packing of congruent spheres in Euclidean space), which he published in a series
of papers, ending with [6]. In addition to the sequence of journal articles, the
proof employs three distinct large computations. To remove any doubt about the
correctness of the proof due to the unverified computations, Hales started the
Flyspeck project (http://code.google.com/p/flyspeck) to produce a formal
proof of the Kepler Conjecture. An early contribution [17] was the verification
of the enumeration of all potential counterexamples (i.e. denser packings) in
the form of plane graphs, the so-called tame graphs. We confirmed that the so-
called archive of tame graphs given by Hales is complete (in fact: too large). In
a second step, it must be shown that none of these tame graphs constitute a
counterexample. Obua [19] verified much of this part of the proof. This paper is
about what happened when the geometry underlying the tame graph abstraction
changed.

In 2009, Marchal [15] published a new and simpler approach to parts of Hales’s
proof. As a consequence Hales revised his proof. At the moment, only the on-
line HOL Light theorems and proofs (most of Flyspeck is carried out in HOL
Light [8]) reflect this revision (see the Flyspeck web page above). The complete
revised proof will appear as a book [7]. Below we call the two versions of the
proof the 1998 and the revised version.

The verified enumeration of tame graphs relies on executing functions verified
in the theorem prover. Due to the revision, tame graph enumeration ran out
of space because of the 10-fold increase in the number of tame graphs and the
100-fold increase in the overall number of graphs that need to be generated.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 281–296, 2011.
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Therefore I completely modularized that part of the proof in order to slot in
more space-efficient enumeration machinery.

The verification of tame graph enumeration for the 1998 proof [17] was a bit
of an anticlimax: at the end we could confirm that Hales’s archive of tame graphs
(which he had generated with an unverified Java program) was complete. Not
so this time: I found two graphs that were missing from Hales’s revised archive
(which he had generated with a revised version of that Java program). A few
days later Hales emailed me:

I found the bug in my code! It was in the code that uses symmetry to
reduce the search space. This is a bug that goes all the way back to the
1998 proof. It is just a happy coincidence that there were no missed cases
in the 1998 proof. This is a good example of the importance of formal
proof in computer assisted proofs.

The main contribution of this paper is an abstract description of the compu-
tational tools used in the revised proof, at a level where they can be reused in
different settings. In particular, the paper provides the following generic compo-
nents:

– A while combinator that allows to reason about terminating executions of
partial functions without the need for a termination proof.

– Combinators for and beginnings of a theory of worklist algorithms.
– A stepwise implementation of an abstract type of sets over a quasi-order.
– A general schema for stepwise implementation of abstract data types in

Isabelle’s locale system of modules.
– A simple isomorphism checker for plane graphs.

Much of this paper is not concerned with the formal proof of the Kepler Con-
jecture per se, and those parts that are, complement [17].

2 Basics

This work is carried out with the Isabelle/HOL proof assistant. HOL con-
forms largely to everyday mathematical notation. This section summarizes non-
standard notation and features.

The function space is denoted by ⇒. Type variables are denoted by ′a, ′b,
etc. The notation t :: τ means that term t has type τ . Sets over type ′a, type
′a set (which is just a synonym for ′a ⇒ bool), follow the usual mathematical
conventions. The image of a function over a set is denoted by f ‘ S. Lists over
type ′a, type ′a list, come with the empty list [], the infix constructor ·, the infix
@ that appends two lists, the length function |.| and the conversion function
set from lists to sets. Names ending in s typically refer to lists. The datatype
′a option = None | Some ′a is predefined. Implications are displayed either as
arrows or as proof rules with horizontal lines.

Locales [2] are Isabelle’s version of parameterized theories. A locale is a named
context of functions f1, . . . , fn and assumptions P1, . . . , Pm about them that is
introduced roughly like this:
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locale loc = fixes f1 . . . fn assumes P1 . . . Pm

The fi’s are the parameters of the locale. Every locale implicitly defines a pred-
icate:

loc f1 . . . fn ←→ P1 ∧ . . . ∧ Pm

Locales can be hierarchical as in locale loc’ = loc1 + loc2 + fixes . . . .
In the context of a locale, definitions can be made and theorems can be proved.

This is called the body of the locale and can be extended dynamically.
An interpretation of a locale

interpretation loc e1 . . . en

where the ei’s are expressions, generates the proof obligation loc e1 . . . en (recall
that loc is a predicate), and, if the proof obligation is discharged by the user,
one obtains all the definitions and theorems from the body of the locale, with
each fi replaced by ei. For more details see the tutorial on locales [1].

Executability of functions in Isabelle/HOL does not rely on a constructive
logic but merely on the ability of the user to phrase a function, by definition
or by lemma, as a recursion equation [5]. Additionally we make heavy use of a
preprocessor that replaces (by proof!) many kinds of bounded quantifications by
suitable list combinators.

3 Worklist Algorithms

3.1 While Combinators

Proving termination of the enumeration of tame graphs is possible but tedious
and unneccesary: after all, it does terminate eventually, which is proof enough.
But how to define a potentially partial function in HOL? Originally I had solved
that problem by brute force with bounded recursion: totalize the function with
an additional argument of type nat that is decreased with every recursive call,
return None if 0 is reached and Some r when the actual result r has been
reached, and call the function with a sufficiently large initial number. It does the
job but is inelegant because unnecessary. What are the alternatives?

Isabelle’s standard function definition facility due to Krauss [10] does not
require a termination proof, but until termination has been proved, the recursion
equations are conditional and hence not executable. This is the opposite of the
original while combinator defined in Isabelle/HOL [18]

while :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a

where ′a is the “state” of the computation, the first parameter is the loop test,
the second parameter the loop body that transforms the state, and the last
parameter is the start state. This combinator obeys the recursion equation

while b c s = (if b s then while b c (c s) else s)
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and enables the definition of executable tail-recursive partial functions. But to
prove anything useful about the result of the function, we first need to prove
termination. This is a consequence of the type of while: the result does not tell
us if it came out of a terminating computation sequence or is just some arbitrary
value forced by the totality of the logic.

Krauss’ recent work [11] theoretically provides what we need but the imple-
mentation does not yet. Hence Krauss and I defined a while combinator that
returns an option value, telling us if it terminated or not, just as in bounded
recursion outlined above, but without the need for a counter:

while-option :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a option

while-option b c s =

(if ∃ k . ¬ b (ck s) then Some (cLEAST k . ¬ b (ck s) s) else None)

It obeys a similar unfolding law as while

while-option b c s = (if b s then while-option b c (c s) else Some s)

but allows to reason about Some results in the traditional manner of Hoare logic:
invariants hold at the end if they hold at the beginning

while-option b c s = Some t ∀ s . P s ∧ b s −→ P (c s) P s
P t

and at the end the loop condition no longer holds:

while-option b c s = Some t =⇒ ¬ b t

Note that termination is built into the premise while-option b c s = Some t,
which is the proposition that we intend to prove by evaluation.

Of course, if we can prove termination by deductive means, this ensures that
Some result is returned:

wf {(t , s) | (P s ∧ b s) ∧ t = c s} ∀ s . P s ∧ b s −→ P (c s) P s
∃ t . while-option b c s = Some t

where wf R means that relation R is wellfounded, and where P is an invariant.

3.2 Worklist Algorithms

Worklist algorithms repeatedly remove an item from the worklist, replace it by
a new list of items, and process the item. They operate on pairs (ws , s) of a
worklist ws and a state s. We define

worklist-aux succs f =
while-option (λ(ws , s). ws �= [])
(λ(ws , s). case ws of x ·ws ′ ⇒ (succs s x @ ws ′, f x s))
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of type
( ′s ⇒ ′a ⇒ ′a list) ⇒ ( ′a ⇒ ′s ⇒ ′s) ⇒ ′a list × ′s ⇒ ( ′a list × ′s) option.
Type ′a is the type of items, type ′s the type of states. Functions succs and f
produce the next items and next state. If the algorithm terminates, it must have
enumerated the set of items reachable via the successor function starting from
the start items.

The successor function may depend on the state. This allows us, for example,
to detect loops in the search process by carrying already visited items around
in the state. But our application does not require this generality: its successor
relationship is a tree. Hence we specialize worklist-aux and develop a theory of
worklist algorithms on trees. A unified theory of worklist algorithms on trees and
graphs is beyond the scope of this paper. From now on succs will not depend on
the state and we define

worklist-tree-aux succs = worklist-aux (λs . succs)

Upon termination the worklist will be empty and we project on the state:

worklist-tree succs f ws s =
(case worklist-tree-aux succs f (ws , s) of None ⇒ None
| Some (ws , s) ⇒ Some s)

In order to talk about the set of items reachable via succs we introduce the
abbreviation

Rel succs ≡ {(x , y) | y ∈ set (succs x )}

that translates succs into a relation. In addition, R ‘‘ S is the image of a relation
over a set. Thus (Rel succs)∗ ‘‘ A is the set of items reachable from the set of
items A via the reflexive transitive closure of Rel succs.

The first theorem about worklist-tree expresses that it folds f over the reach-
able items in some order:

worklist-tree succs f ws s = Some s ′

∃ rs . set rs = (Rel succs)∗ ‘‘ set ws ∧ s ′ = fold f rs s

where fold f [] s = s and fold f (x ·xs) s = fold f xs (f x s).
This theorem is intentionally weak: rs is some list whose elements form the

set of reachable items, in any order and with any number of repetitions. The
order should not matter, to allow us to replace the particular depth-first traver-
sal strategy of worklist-aux by any other, for example appending the successor
items at the right end of the worklist. Of course it means that f should also be
insensitive to the order. Moreover, f should be insensitive to duplicates, i.e. it
should be idempotent. Thus this theorem is specialized for applications where
the state is effectively a set of items, which is exactly what we are aiming for in
our application, the enumeration and collection of graphs.

If we want to prove some property of the result of worklist-tree, we can do so
by obtaining rs and proving the property by induction over rs. But we can also
replace the induction by a Hoare-style invariance rule:
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worklist-tree succs f ws s = Some s ′

∀ s . R [] s s ∀ r x ws s . R ws (f x s) r −→ R (x ·ws) s r
∃ rs . set rs = (Rel succs)∗ ‘‘ set ws ∧ R rs s s ′

This rule is phrased in terms of a predicate R of type ′a list ⇒ ′s ⇒ ′s ⇒ bool,
where R rs s s ′ should express the relationship between some start configuration
(rs , s) and the corresponding final state s ′, when the worklist has been emptied.

Unfortunately, this rule is too weak in practice: both the items and the states
come with nontrivial invariants of their own, and the invariance of R can only
be shown if we may assume that the item and state invariants hold for the
arguments of R. In nice set theoretic language the extended rule looks like this:

worklist-tree succs f ws s = Some s ′ succs ∈ I → lists I
set ws ⊆ I s ∈ S f ∈ I → S → S ∀ s . R [] s s

∀ r x ws s . x ∈ I ∧ set ws ⊆ I ∧ s ∈ S ∧ R ws (f x s) r −→ R (x ·ws) s r
∃ rs . set rs = (Rel succs)∗ ‘‘ set ws ∧ R rs s s ′

Here I and S are the invariants on items and states, lists I is the set of lists
over I, and A → B is the set of functions from set A to set B.

As a simple application we obtain almost automatically that the function

colls succs P ws = worklist-tree succs (λx xs . if P x then x ·xs else xs) ws []

indeed collects all reachable items that satisfy P :

colls succs P ws = Some rs
set rs = {x ∈ (Rel succs)∗ ‘‘ set ws | P x}

3.3 Sets over a Quasi-Order

In our application we need to collect a large set of graphs and we encounter
many isomorphic copies of each graph. Storing all copies is out of the question for
reasons of space. Hence we work with sets over a quasi-order, thus generalizing
the graph isomorphism to a subsumption relation. We formulate our worklist
algorithms in the context of an abstract interface to such a set data type and
use Isabelle’s locale mechanism (see §2) for this purpose. We start with a locale
for the quasi-order, later to be interpreted by graph isomorphism:

locale quasi-order =
fixes qle :: ′a ⇒ ′a ⇒ bool (infix $ 60)
assumes x $ x
and x $ y =⇒ y $ z =⇒ x $ z

The following definitions are made in this context:

x ∈� M ≡ ∃ y∈M . x $ y
M ⊆� N ≡ ∀ x∈M . x ∈� N
M =� N ≡ M ⊆� N ∧ N ⊆� M
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The actual work will be done in the context of sets over $ in locale set-modulo,
an extension of locale quasi-order :

locale set-modulo = quasi-order +
fixes empty :: ′s
and insert-mod :: ′a ⇒ ′s ⇒ ′s
and set-of :: ′s ⇒ ′a set
and I :: ′a set
and S :: ′s set
assumes set-of empty = ∅
and x ∈ I =⇒ s ∈ S =⇒ set-of s ⊆ I =⇒

set-of (insert-mod x s) = {x} ∪ set-of s ∨
(∃ y∈set-of s. x $ y) ∧ set-of (insert-mod x s) = set-of s

and empty ∈ S
and s ∈ S =⇒ insert-mod x s ∈ S

In the body of a locale, the type variables in the types of the locale parameters
are fixed. Above, ′a stands for the fixed element type, ′s for the abstract type
of sets. The empty set is empty, elements are inserted by insert-mod. The sets I
and S are invariants on elements and sets. In our application later on, both are
needed. The behaviour of our sets is specified with the help of an abstraction
function set-of that maps them back to HOL’s mathematical sets.

The first assumption is clear, the last two assumptions state that all sets
generated by empty and insert-mod satisfy the invariant. Only the second as-
sumption needs an explanation, ignoring its self-explanatory preconditions. The
point of this assumption is to leave the implementation complete freedom what
to do when inserting a new element x. If the set already contains an element y
that subsumes x, insert-mod is allowed to ignore x. But is not forced to: it may
always insert x. This specification allows an implementation to choose how much
effort to invest to avoid subsumed elements in a set. Because this subsumption
test can be costly: in our application it involves testing for isomorphism with
tens of thousands of graphs. Our implementation later on will use a hash func-
tion to zoom in on a small subset of potentially isomorphic graphs and only
test isomorphism on those. This liberal specification of insert-mod saves us from
proving that isomorphic graphs have the same hash value.

The above sets only offer empty and insert-mod, which seems overly toy-like
or even useless. In reality there is also a function all :: ( ′a ⇒ bool) ⇒ ′s ⇒ bool
for examining sets, and many other functions could be added to set-modulo, but
this would not raise any interesting new issues.

3.4 Collecting Modulo Subsumption

This subsection takes place completely within the context of locale set-modulo.
We specialize the generic worklist combinator to fold insert-mod over the list
of reachable items. At the same time we parameterize things further: we merely
collect those items that satisfy some predicate P, and we don’t collect the items
themselves but apply some function f to them first:
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insert-mod2 P f x s = (if P x then insert-mod (f x ) s else s)

Filtering with P in a separate pass is out of the question in our application
because less than one 104th of all reachable items satisfy P ; trying to store all
reachable items would exhaust available memory. Applying f right away, rather
than in a second pass, is also done for efficiency but is less critical.

The actual collecting is done by our worklist combinators:

worklist-tree-coll-aux succs P f = worklist-tree succs (insert-mod2 P f )
worklist-tree-coll succs P f ws = worklist-tree-coll-aux succs P f ws empty

With the help of the generic theorems about worklist-tree (see §3.2) and the
assumptions of locale set-modulo we can derive two important theorems about
worklist-tree-coll. Its result is equivalent (modulo $) to the image under f of
those reachable items that satisfy P :

worklist-tree-coll succs P f ws = Some s ′

succs ∈ I 0 → lists I 0 set ws ⊆ I 0 f ∈ I 0 → I
set-of s ′ =� f ‘ {x ∈ (Rel succs)∗ ‘‘ set ws | P x}

This theorem alone leaves the possibility that set-of s ′ contains elements that
are only equivalent but not identical to the reachable items. But we can also
derive

worklist-tree-coll succs P f ws = Some t
succs ∈ I 0 → lists I 0 set ws ⊆ I 0 f ∈ I 0 → I

set-of t ⊆ f ‘ {h ∈ (Rel succs)∗ ‘‘ set ws | P h}

This is helpful because it means, for example, that the resulting items all satisfy
the invariant I.

4 Implementing Sets Modulo

We will now implement the interface set-modulo in two steps. First we implement
set-modulo abstractly by another locale, set-mod-maps, with a map-like interface,
and then we implement that by a concrete data structure, Tries. Figure 1 depicts
the implementation relationships (where A → B means that A is implemented
by B), and ⊇ is locale extension. The full meaning of the diagram will become
clear as we go along.

set-modulo → set-mod-maps ⊇ maps
↓ ↓

Graph Tries

Fig. 1. Implementation diagram
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4.1 Maps

Our maps correspond to functions of type ′a ⇒ ′b list that return [] almost
everywhere. We could implement them via ordinary maps of type ′a ⇒ ′c option
as they are provided, for example, in the Collections Framework [12]. The latter
did not exist yet when our proof was first developed, and since ′a ⇒ ′b list is
simpler than ′a ⇒ ′b list option (where None acts like []) and of interest in its
own right, this is what locale maps specifies:

locale maps =
fixes empty :: ′m
and up :: ′m ⇒ ′a ⇒ ′b list ⇒ ′m
and map-of :: ′m ⇒ ′a ⇒ ′b list
and M :: ′m set
assumes map-of empty = (λa. [])
and map-of (up m a bs) = fun-upd (map-of m) a bs
and empty ∈ M
and m ∈ M =⇒ up m a bs ∈ M

Type variable ′m represents the maps, ′a and ′b list its domain and range type.
Maps are created from empty by up (update). Function map-of serves two pur-
poses: as a lookup function and as an abstraction function from ′m to ′a ⇒ ′b
list. Function fun-upd is the predefined pointwise function update.

We extend maps with a function that produces the set of elements in the
range of a map:

set-of m = (
⋃

x set (map-of m x ))

4.2 Implementing Sets Modulo by Maps

Before we present the details, we sketch the rough idea. Sets of elements of type
′b are represented by maps from ′a to ′b list where ′a is some type of “addresses”
and there is some (hash) function key :: ′b ⇒ ′a. Operation insert-mod x m will
operate as follows: it looks up key x in m, obtains some list ys, checks if x is
subsumed (modulo $) by some element of ys, and adds it otherwise.

This abstract implementation is phrased as a locale that enriches maps with
key and some further functions, and that will implement the operations of
set-modulo with the help of those of maps and the newly added functions.

locale set-mod-maps = maps + quasi-order +
fixes subsumed :: ′b ⇒ ′b ⇒ bool
and key :: ′b ⇒ ′a
and I :: ′b set
assumes x∈I =⇒ y∈I =⇒ subsumed x y ←→ (x $ y)

The two parameters of set-mod-maps in addition to key are a predicate subsumed,
meant to represent an executable version of the mathematical$, and an invariant
I that guarantees that subsumed coincides with $ (see the assumption).
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In the body of set-mod-maps the actual implementation of insert-mod is de-
fined:

insert-mod x m =
(let k = key x ; ys = map-of m k
in if ∃ y∈set ys . subsumed x y then m else up m k (x ·ys))

Now it is time to assert and prove that set-mod-maps is an implementation of
sets-modulo, i.e. that we can interpret sets-modulo in the context of set-mod-
maps :1

interpretation (in set-mod-maps)
set-modulo (op $) empty insert-mod set-of I M

Predicate set-modulo takes six arguments. The first one is the quasi-order from
locale quasi-order that it extends. Since set-mod-maps also extends quasi-order,
we can supply that same relation $. The other five parameters are the ones
fixed in set-modulo: the empty set is interpreted by the empty map, insert-mod
is interpreted by the insert-mod defined just above, set-of is interpreted by the
set-of defined in the context of maps, the invariant on set elements is interpreted
by the parameter I, and the set invariant by the maps invariant. The proofs of
the set-modulo assumptions under this interpretation are straightforward.

Thus we have realized the horizontal arrow in Figure 1: any implementation
(i.e. interpretation) of set-mod-maps yields an implementation of set-modulo.

4.3 Implementing Maps by Tries

Tries (pronounced as in “retrieval”) are search trees indexed by lists of keys, one
element for each level of the tree. Ordinary tries are found in the Collections
Framework [12]; we provide a simple variation aimed at maps : lists rather than
single items are stored, obviating the need for options.

Tries are defined in theory Tries and we refer to many of its operations with
their qualified name, i.e. Tries.f rather than just f. The datatype itself is defined
like this, where ′a is the type of keys and ′v the type of values:

datatype ( ′a, ′v) tries = Tries ( ′v list) (( ′a × ( ′a, ′v) tries) list)

The two projection functions are values (Tries vs al) = vs and alist (Tries vs al)
= al. The name alist reflects that the second argument is an association list of
keys and subtries. The invariant Tries .inv asserts that there are no two distinct
elements with the same key in any alist in some trie. For concreteness, here is
the code for lookup and update:

Tries .lookup t [] = values t
Tries .lookup t (a·as) =
(case map-of (alist t) a of None ⇒ [] | Some at ⇒ Tries .lookup at as)

1 The actual syntax uses the keyword sublocale but we have chosen this more intuitive
variation of interpretation.
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Tries .update t [] vs = Tries vs (alist t)
Tries .update t (a·as) vs =
(let tt = case map-of (alist t) a of None ⇒ Tries [] [] | Some at ⇒ at
in Tries (values t) ((a, Tries .update tt as vs)·rem-alist a (alist t)))

Auxiliary functions are omitted and easy to reconstruct. Now it is straightfor-
ward to show

interpretation maps (Tries [] []) Tries.update Tries.lookup Tries.inv

Thus we have realized the arrow from maps to Tries in Figure 1. Once we
also implement the set-mod-map extension (in §5.2), we obtain the body of set-
modulo, in particular the collecting worklist algorithms and their correctness
theorems.

4.4 Stepwise Implementation in General

The above developments are instances of the following general schema, simplified
for the sake of presentation. We want to implement an abstract interface

locale A = fixes f assumes P

In our case A is set-modulo. We base the implementation on n interfaces

locale Bi = fixes gi assumes Qi (i = 1, . . . , n)

In our case, there are two Bi’s: maps, and the extension of set-mod-maps with
key, subsumed and I, which can be viewed as a separate locale that is added
to the import list of set-mod-maps. Now, given some schema F [g1, . . . , gn] for
defining f from the g1, . . . , gn, A can be implemented by the Bi’s:

locale A-by-Bs = B1 + . . . + Bn + definition fimpl = F [g1, . . . , gn]

The correctness of this development step corresponds to the claim that A can
be interpreted in the context of A-by-Bs, which of course needs to be proved:

interpretation (in A-by-Bs) A fimpl

Each Bi can either be implemented in the same manner as A, or it can be
implemented directly:

interpretation Bi concrete-gi

where concrete-gi in an implementation of gi on a suitable concrete type. In
the end, we obtain an overall concrete implementation of A, together with an
instance of the body of A.

It seems that this is the first time a general development scheme for abstract
data types has been formulated for locales. The general idea of stepwise devel-
opment of abstract data types via theory interpretations goes back to Maibaum
et al. [14]. Theory interpretations are also a central concept in IMPS [3], but
with a focus on mathematics. Likewise, locales have primarily been motivated
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as a device for structuring mathematics [9]. Instances of the above schema can
be found in a few large Isabelle developments, for example Lochbihler’s Java-like
language with threads [13], but even the Collections Framework by Lammich and
Lochbihler [12], which is all about abstract data type specification and imple-
mentation, does not discuss the general picture and does not contain an instance
of A-by-Bs above.

Similar specifications and developments are possible with the Coq module
system, e.g. [4]. It would be interesting to investigate the precise relationship
between locales and the Coq module system.

5 Application to Plane Graphs

As explained in the Introduction, Hales’s proof involves the enumeration of a very
large set of tame graphs, where tame graphs are by definition also plane [17].
Our representation of plane graphs follows Hales’s 1998 proof: a plane graph is
a set/list of faces, where each face is a list of vertices of type ′a:

′a Fgraph = ′a list set
′a fgraph = ′a list list

Type Fgraph involves sets and belongs to the mathematical level, type fgraph
represents sets by lists and belongs to the executable level. Below we develop a
number of notions first on the Fgraph level and transfer them easily and directly
to the fgraph level. We call graphs on both levels face graphs and frequently use
the letter F for faces.

5.1 Plane Graph Isomorphisms

This subsection describes in some detail the isomorphism test that had to be
left out of [17].

Face graphs need to be compared modulo rotation of faces and we define

F 1
∼= F 2 ≡ ∃n. F 2 = rotate n F 1

{∼=} ≡ {(F 1, F 2) | F 1
∼= F 2}

Relation {∼=} is an equivalence and we can form the quotient S // {∼=} with the
predefined quotient operator //, defining proper homomorphisms and isomor-
phisms on face graphs, where ϕ is a function on vertices:

is-pr-Hom ϕ Fs1 Fs2 ≡ map ϕ ‘ Fs1 // {∼=} = Fs2 // {∼=}
is-pr-Iso ϕ Fs1 Fs2 ≡ is-pr-Hom ϕ Fs1 Fs2 ∧ inj-on ϕ (

⋃
F∈Fs1

set F )
is-pr-iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ (set Fs1) (set Fs2)

The first two functions operate on type Fgraph, the last one on fgraph. The
attribute “proper” indicates that orientation of faces matters. The more liberal
version where the faces of one graph may have the reverse orientation of those of
the other graph, which corresponds to the standard notion of graph isomorphism,
is easily defined on top:
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is-Iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ Fs1 Fs2 ∨ is-pr-Iso ϕ Fs1 (rev ‘ Fs2)
is-iso ϕ Fs1 Fs2 ≡ is-Iso ϕ (set Fs1) (set Fs2)
g1 , g2 ≡ ∃ϕ. is-iso ϕ g1 g2

What we need is an executable isomorphism test. A simple solution would
have been to search for an isomorphism by some unverified function and check
the result with a verified checker. Although this is a perfectly reasonable solution,
we wanted to see if a verified isomorphism test that performs well in our context
is also within easy reach. It turns out it is. The verification took of the order of
600 lines of proof that rely heavily on automation of set theory.

We start with the search for a proper isomorphism. The isomorphism is rep-
resented by a list of vertex pairs I that is built up incrementally. Given two lists
of faces, repeatedly take a face F 1 from the first list, find a matching face F 2 in
the second list, and remove both faces. Matching means that F 1 and F 2 must
have the same length, and for some n < |F 2|, the bijection obtained by pairing
off F 1 and rotate n F 2 vertex by vertex is compatible with I. Then we can merge
it with I. This is the corresponding recursive function:

pr-iso-test-rec :: ( ′a × ′b)list ⇒ ′a fgraph ⇒ ′b fgraph ⇒ bool

pr-iso-test-rec I [] Fs2 ←→ Fs2 = []
pr-iso-test-rec I (F 1·Fs1) Fs2 ←→
(∃F 2∈set Fs2.

|F 1| = |F 2| ∧
(∃n<|F 2|.

let I ′ = zip F 1 (rotate n F 2)
in compat I ′ I ∧

pr-iso-test-rec (merge I ′ I ) Fs1 (remove1 F 2 Fs2)))

Function compat checks if two lists of vertex pairs are compatible

compat I I ′ ≡ ∀ (x , y)∈set I . ∀ (x ′, y ′)∈set I ′. x = x ′ ←→ y = y ′

and function merge merges them:

merge [] I = I
merge (xy·xys) I =
(let (x , y) = xy
in if ∀ (x ′, y ′)∈set I . x �= x ′ then xy·merge xys I else merge xys I )

Moving from proper isomorphism to isomorphism is easy

iso-test g1 g2 ←→ pr-iso-test g1 g2 ∨ pr-iso-test g1 (map rev g2)

where pr-iso-test Fs1 Fs2 ←→ pr-iso-test-rec [] Fs1 Fs2.
Function pr-iso-test-rec is the result of a stepwise development that we skip

in favour of the final correctness theorem:

pr-iso-test-rec [] Fs1 Fs2 ←→ (∃ϕ. is-pr-iso ϕ Fs1 Fs2)
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This theorem comes with a number of preconditions on the two face lists: in each
face, all vertices must be distinct, all faces in each list must be distinct modulo ∼=,
and the empty face is not allowed. An executable version of these preconditions,
for the case where the vertices are natural numbers, can be expressed like this:

pre-iso-test Fs ←→
[] /∈ set Fs ∧ (∀F∈set Fs . distinct F ) ∧ distinct (map rotate-min Fs)

Function rotate-min produces a unique representative of the ∼= equivalence class
of a face by rotating the minimal vertex to the head of the list.

The key theorem now states that under the executable preconditions, the
executable and the mathematical definition of isomorphism agree:

pre-iso-test Fs1 =⇒ pre-iso-test Fs2 =⇒ iso-test Fs1 Fs2 ←→ Fs1 , Fs2

5.2 Sets of Graphs Modulo Isomorphism

Now we can reap the benefits of the implementation work in §3.4. The interpre-
tation of locale quasi-order with , on type fgraph is trivial and omitted. The
interpretation of set-mod-maps is more involved:

interpretation
set-mod-maps (Tries [] []) Tries .update Tries.lookup Tries.inv

(op ,) iso-test hash pre-iso-test

The first four parameters are identical to those in the interpretation of the sublo-
cale maps in §4.2. The quasi-order is interpreted as ,. The last three parameters
interpret the subsumed, key and I parameters of set-mod-maps. Only the hash
function remains to be explained, informally. It takes an fgraph and produces a
list of natural numbers, in this order: the number of vertices, the number of faces,
the sorted list of degrees of each vertex. All of these are well-known invariants
under isomorphism, but as explained in §3.3, we have set things up such that
we do not need to prove this.

The final theorem in the previous subsection is all we need to prove the one
assumption of locale set-mod-maps in this interpretation. Now we have estab-
lished the last remaining arrow in Figure 1, the one from to set-mod-maps to
Graph (representing the plane graph theory).

5.3 Application to Hales’s Proof

During the enumeration, graphs are represented by an abstract type graph with
a successor function next :: graph ⇒ graph list, a predicate final that picks out
the tame graphs, and a projection fgraph :: graph ⇒ nat fgraph.

The interpretation of set-mod-maps above yields a function worklist-tree-coll
that we can specialize as follows to the enumeration of all tame graphs:

worklist-tree-coll next final fgraph
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of type graph list ⇒ (nat ,nat fgraph) tries option. In the end, this function
is applied to four different start graphs, runs for 11 hours, and terminates with
Some tries; the resulting tries are compared modulo isomorphism with an archive
of tame graphs, which Hales had initially supplied. The first time the verified
enumeration terminated successfully, I found that the archive lacked two graphs.
The completed archive is available online, as are all the Isabelle theories [16].

During the enumeration, a total of 1 870 507 512 graphs are generated, of which
348 231 are final tame graphs, of which 18 762 are distinct modulo isomorphism.
The final tame graphs have at most 25 faces (18.6 on average) and at most 15
vertices (13.8 on average). Our hash function works very well: on average, there
are 3.1 graphs in each entry of a trie, and in the worst case there are 97.

6 Conclusion

This work is an encouraging example of both the contribution that theorem
proving can make to extreme mathematical proofs and the contribution that
software development methods can make to theorem proving. Initially we had
hacked our way through the proof and did not describe the details in [17]. This
paper is a rational reconstruction of the underlying data structures and algo-
rithms of that hack. This exercise in modularization has given rise to a number
of interesting reusable components.

Acknowledgement. I would like to thank Tom Hales for hosting my visit to
Pitt, Jasmin Blanchette for grammatical and stylistic scrutiny, and Alex Krauss
for the subsumption relation and many other improvements.
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Abstract. This paper presents a mechanisation of some basic computability the-
ory. The mechanisation uses two models: the recursive functions and the λ-
calculus, and shows that they have equivalent computational power. Results proved
include the Recursion Theorem, an instance of the s-m-n theorem, the existence
of a universal machine, Rice’s Theorem, and closure facts about the recursive
and recursively enumerable sets. The mechanisation was performed in the HOL4
system and is available online.

1 Introduction

This paper describes mechanisation work in one of computer science’s foundational ar-
eas: computability theory. This is the theory of what can and cannot be computed by ab-
stract computing machines, using models such as Turing machines, register machines,
the λ-calculus and the recursive functions. This paper’s focus is on the last two of these
models, mainly because of their simplicity (in the case of the recursive functions), and
because an existing background theory was available (in the case of the λ-calculus).

By showing the computational equivalence of the two models, we gain additional
assurance that their mechanisations are correct. The other standard results, showing
what the models are and are not capable of, further validate the work.

Mechanisation in an area such as this is intellectually satisfying in itself. Addition-
ally, the development should provide the wherewithal to mechanise computability ar-
guments where this has not been possible before. For example, Urban, Cheney and
Berghofer’s impressive paper, Mechanising the Metatheory of LF [10] includes an ar-
gument to the effect that the algorithm they have formalised (and shown correct) is
indeed computable. In the absence of a theory of computability, the argument that the
rules of the algorithm are computable is by a combination of careful discussion, sug-
gestive theorems, and (necessarily un-formalised) human inspection.

Contributions

– The first mechanisation of the λ-calculus as a model of computation, including
standard auxiliary notions such as the Church numerals.

– A mechanised proof of computational equivalence between two different models:
the λ-calculus and the recursive functions.

– Mechanised proofs of a number of standard results from computability theory.
– Discussion of the results and theorem-proving techniques that made the above pos-

sible, including use of: the isomorphism between de Bruijn terms and quotiented
λ-terms, the standardisation theorem, simplification with pre-orders, and bracket
abstraction.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 297–311, 2011.
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HOL4 Notation and Theorems All statements appearing with a turnstile ( ), or as
natural deduction style rules, are HOL4 theorems, automatically pretty-printed to LATEX
from the relevant theory in the HOL4 development. Notation specific to this paper is
explained as it is introduced. Otherwise, HOL4 supports a notation that is a generally
pleasant combination of quantifiers (∀, ∃) and functional programming (λ for function
abstraction, juxtaposition for function application). Hilbert choice is available with the
syntax (εx. P x), meaning “the x such that P holds”. Such a term has an unspecified
value if there is no such x.

The paper also uses the polymorphic option type (α option), with possible values
SOME x and NONE. The THE function maps SOME x to x, and is unspecified on NONE.
The term OPTION_MAP f x returns SOME (f y) when x is SOME y, and NONE when x
is NONE.

Lists are constructed with the infix “cons” function ::. The length of a list � is writ-
ten |�|. Lists support other standard operations such as MAP.

Availability. The sources for the mechanisation described in this paper are available
as part of the standard HOL4 distribution (“Kananaskis-6” release), available from
hol.sourceforge.net.

2 The λ-Calculus: First Steps

This work would not have been possible without earlier mechanisation effort targetting
relevant aspects of the λ-calculus. In particular, it relies on my earlier proof of the
standardisation theorem [3], and Vestergaard’s and my proof [4] that the de Bruijn terms
and their associated notion of β-reduction are isomorphic to the λ-terms (quotiented
name-carrying syntax) with their own notion of β-reduction.

The λ-terms used in this earlier work, and thus in this paper also, are either vari-
ables (v), (left-associating) applications (M � N) or abstractions (λv. M). These are
terms of the object language: the bold lambda is a constructor (which takes a string and
a λ-term as arguments) creating a value of type term within the higher-order logic. In
contrast, the normal lambda of the meta-language creates values in the logic’s func-
tion spaces. Similarly, the variable constructor, denoted with underlining, injects values
from the HOL type of strings into the term type.

These terms are quotiented, and so have equality results such as

(λv. v) = (λu. u)

The free variable function over terms is written FV, and the substitution notation is
M[v := N], meaning the term resulting from substituting term N for the (free) variable
with name v throughout term M.

2.1 Normal Order Reduction

Definition 1. To guarantee that λ-evaluations find normal forms, we use normal order
reduction:

hol.sourceforge.net
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(λv. M) � N →n M[v := N]

M1 →n M2

(λv. M1) →n (λv. M2)

M1 →n M2 ¬is_abs M1
M1 � N →n M2 � N

where the predicate is_abs is true of a term if it is an abstraction.

We are then able to prove that if a term can β-reduce to a β-normal form, then a (nec-
essarily deterministic) normal reduction will eventually arrive at the same place:

 M →∗
β N ∧ bnf N ⇒ M →∗

n N

The proof is as per Barendregt [1, §13.2]: in essence, a standard reduction (in the sense
of the standardisation theorem) that reaches a β-normal form must also be normal-
order as such a reduction can’t have ignored a potential redex in its sweep across a
term (outermost, left-to-right). By the standardisation theorem, all β-reductions can
be emulated by a standard reduction, and so all β-reductions to normal forms can be
emulated by normal order reduction.

2.2 Rewriting with β-Equivalence; Bracket Abstraction

In developing the λ-calculus implementations of types such as numbers and de Bruijn
terms, it is critical to be able to prove facts of the form M ≡β M′, stating that M is
β-equivalent to M′. (The β-equivalence relation is the symmetric, reflexive, transitive
closure of the relation that reduces one β-redex.)

The HOL4 simplifier supports rewriting with arbitrary pre-orders, and rewriting with
an equivalence (where we additionally have symmetry) is generally quite pleasant. One
has to provide introduction rules such as

M1 ≡β M2 N1 ≡β N2

M1 ≡β N1 ⇐⇒ M2 ≡β N2

which switches the simplifier from rewriting an equality (boolean equivalence in this
case) to β-equivalence. In addition, one can use the following rewrites

 bnf N ⇒ (M →∗
n N ⇐⇒ M →∗

β N)

 bnf N ⇒ (M →∗
β N ⇐⇒ M ≡β N)

to move to rewriting with ≡β from goals mentioning →∗
n and →∗

fi.
It’s very important to be able to rewrite with theorems already proved, results such

as (see Section 2.3 below for more on Church numerals and arithmetic)

 cplus � church m � church n →∗
n church (m + n)

This theorem is a statement about normal order reduction, not β-equivalence, but the
simplifier is primed by the inclusion theorem:
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 M →∗
n N ⇒ M ≡β N

and is able to use the above as a rewrite. Because β-equivalence is a congruence, such
rewrites can be applied at any point within a term.

The basic rule governing β-redexes is present too:

(λx. M) � N ≡β M[x := N]

but use of this rule is best avoided because of the possibility that bound variables will
need to be renamed.

One might initially hope not to have to deal with variable renaming in a setting
where the terms are already quotiented with respect to α-equivalence. Indeed, there is
no semantic problem, but rather a pragmatic problem to do with making simplification
as smooth as possible. The problem stems from the abstraction clause of the substitution
rewrite:

 v �= u ∧ v /∈ FV N ⇒ (λv. M)[u := N] = (λv. M[u := N])

It is not necessarily the case that the bound v will always be fresh with respect to the
particular N. In that situation, the desired rewrite could be made to go through by first
proving

(λv. M) = (λw. M[v := w])

where w was chosen to be suitably fresh. Then this equality could be used to substitute
“equals-for-equals”, and the simplifier would end up simplifying the term

M[v := w][u := N]

before proceeding further.
Implementing this is certainly possible, but would involve writing special-purpose

code in ML that the simplifier could call out to as it traversed a term. It seems cleaner to
use a technique that can work with the simplifier “as is”. Our approach is a procedure
inspired by bracket abstraction. The core theorems are shown in Figure 1. These can
be applied automatically by the simplifier to prove β-equivalence results between terms
with abstractions and terms without.

For example, the original definition of addition on Church numerals is1

 cplus = (λ"m" "n". "m" � "n" � csuc)

but the application of the rewrites above returns the point-free characterisation:

 cplus ≡β C � (B � C � (C � B � I)) � csuc

The combinator terms B, C, I, K and S are defined as abstractions, but these definitions
are not unfolded by the simplifier. Instead, the combinatory characterisations are used
as rewrites:

1 Note how we have to pick concrete names, "x" and "y", for the variables that are “bound” at
the object-level. Though x �= y ⇒ cplus = (λx y. x � y � csuc) is true, any attempt
to define cplus this way would stumble on the requirement to keep x and y apart, and on the
fact that the definition would have (from HOL’s perspective) free variables (x and y) on its
RHS.
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 v /∈ FV M ∧ v ∈ FV N ⇒ (λv. M � N) ≡β B � M � (λv. N)
 (λv. B � v) ≡β B

 v ∈ FV M ∧ v /∈ FV N ⇒ (λv. M � N) ≡β C � (λv. M) � N
 v /∈ FV M ⇒ (λv. M) ≡β K � M
 v ∈ FV M ∧ v ∈ FV N ⇒ (λv. M � N) ≡β S � (λv. M) � (λv. N)
 (λx. x) = I

Fig. 1. β-Equivalence rewrites implementing bracket abstraction. As this is β-equivalence, rather
than βη-equivalence, we cannot η-contract freely. However, some η-contractions (as in the sec-
ond rewrite above) are β-valid because the other half of the body is really an abstraction.

 B � f � g � x ≡β f � (g � x)
 C � f � x � y ≡β f � y � x
 I � x ≡β x
 K � x � y ≡β x
 S � f � g � x ≡β f � x � (g � x)

2.3 Church Arithmetic

Definition 2. It is straightforward to encode numbers and other algebraic types within
the λ-calculus using the method due to Church. For example, the natural numbers can
be injected with the function church, of type num → term, which is defined:

 church n = (λ"z" "s". FUNPOW (APP "s") n "z")

The form APP M is a partial application of the constructor for application terms, and
FUNPOW f n x applies the function f to the x argument n times.

Thus, church 3 expands to

(λ"z" "s". "s" � ("s" � ("s" � "z")))

Definition 3. Having used the same approach to model pairs (with constructor cpair
and projections cfst and csnd), one can then define a recursion combinator:

 natrec =
(λ"z" "f" "n".
csnd

� ("n" � (cpair � church 0 � "z")
� (λ"r".

cpair � (csuc � (cfst � "r"))
� ("f" � (cfst � "r") � (csnd � "r")))))

The underlying recursion returns a pair of the original number and the actual desired
result.

The characterising theorems are quite readable:

 natrec � z � f � church 0 ≡β z
 natrec � z � f � church (SUC n) ≡β

f � church n � (natrec � z � f � church n)
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 cplus � church m � church n →∗
n church (m + n)

 cminus � church m � church n →∗
n church (m − n)

 cmult � church m � church n →∗
n church (m × n)

 0 < q ⇒ cdiv � church p � church q →∗
n church (p DIV q)

 ceqnat � church n � church m →∗
n cB (n = m)

 cless � church m � church n →∗
n cB (m < n)

 cfst � (cpair � M � N) →∗
n M

 csnd � (cpair � M � N) →∗
n N

Fig. 2. Theorems specifying the correctness of some of the various Church arithmetic and pair
operations. The cB function takes a HOL boolean and returns the corresponding λ-term (either
(λ"x" "y". "x") for true, or (λ"x" "y". "y") for false).

With a combinator of this sort, subtraction can be defined (and verified!) easily. (The
traditional Church definition, which doesn’t use pairing, is much harder to deal with.)

As well as the standard arithmetic operations (see Figure 2), we also need to define
the minimisation operator, here called cfindleast. This is the only place where un-
bounded recursion, in the form of the Y combinator, is required. The introduction rule
for a successful call is:

 (∀ n. ∃ b. P � church n ≡β cB b) ∧ P � church n ≡β cB T ⇒
cfindleast � P � k ≡β

k � church (LEAST n. P � church n ≡β cB T)

The preconditions require that

– the predicate P is total on numeric arguments, and also guaranteed to return a
boolean on all such arguments; and

– the predicate P does indeed return true for at least one number.

The LEAST binder is the HOL analogue of cfindleast.
The k parameter to cfindleast is a continuation that is handed the result of a suc-

cessful search for a number satisfying P. Using a continuation is a method for making
functions that use minimisation strict. In other words, we want to be able to construct
terms including minimisation, and to be sure that if the minimisation loops, then the
whole term will have no β-normal form. The use of a continuation is the standard way
to emulate call-by-value in a normal order setting. This insistence on strictness is con-
sistent with the way we will handle the minimisation operator for recursive functions.

There is also an elimination rule for successful (terminating) cfindleast searches:

 (∀ n. ∃ b. P � church n ≡β cB b) ∧ cfindleast � P � k ≡β r ∧
bnf r ⇒
∃m.

r ≡β k � church m ∧ P � church m ≡β cB T ∧
∀m0. m0 < m ⇒ P � church m0 ≡β cB F

The proof is by complete induction on the number of steps taken to reach the result r.
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3 Reflection and the Universal Machine in the λ-Calculus

An important precursor to our computability results is the demonstration that the λ-
calculus can implement itself.

3.1 Church de Bruijn Terms

The Church-style encoding of algebraic types is also possible for the algebraic type that
encodes the “pure” de Bruijn terms (pdb): the type with three constructors dV, dAPP
and dABS, of types num → pdb, pdb → pdb → pdb and pdb → pdb respectively.
As noted above, we already know that the de Bruijn notion of β-reduction is isomorphic
to that of the λ-calculus.

So we begin by defining an injection function from de Bruijn terms into λ-terms
(cDB), along with “constructors” cdV, cdAPP and cdABS. We derive the following char-
acterisations:

 cdV � church n →∗
n cDB (dV n)

 cdAPP � cDB M � cDB N →∗
n cDB (dAPP M N)

 cdABS � cDB M →∗
n cDB (dABS M)

It is vital to be able to interpret de Bruijn terms at this point, rather than some sort of
name-carrying syntax: with de Bruijn terms one does not have to implement variable-
renaming when performing substitutions. Given the baggage of the Church encoding,
the functions and terms developed here are already quite complicated enough without
having to worry about some sort of gensym technology.

By analogy with natrec above, it is now possible to write a termrec recursion
combinator for de Bruijn terms, with the following characterisation:

 termrec � v � c � a � cDB (dV i) ≡β v � church i
 termrec � v � c � a � cDB (dAPP t u) ≡β

c � cDB t � cDB u � (termrec � v � c � a � cDB t)
� (termrec � v � c � a � cDB u)

 termrec � v � c � a � cDB (dABS t) ≡β

a � cDB t � (termrec � v � c � a � cDB t)

With termrec defined, it is straightforward to define a function to implement normal-
order reduction, and another to perform n steps of normal order reduction. With the
minimisation operator, one can then define the function which finds the least n such
that n steps of normal order reduction results in a term in β-normal form. Thus, we
have a computable (and partial!) function for computing β-normal forms, which we
call cbnf_ofk. As with cfindleast, the cbnf_ofk function takes a continuation pa-
rameter to help with strictness. We derive the following characterising theorems:

 bnf_of M = NONE ⇒
bnf_of (cbnf_ofk � k � cDB (fromTerm M)) = NONE

 bnf_of M = SOME N ⇒
cbnf_ofk � k � cDB (fromTerm M) ≡β k � cDB (fromTerm N)
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 cbnf_ofk � k � cDB M →∗
n t′ ∧ bnf t′ ⇒

∃M′.
bnf_of (toTerm M) = SOME (toTerm M′) ∧ k � cDB M′ →∗

n t′

The bnf_of function is the (uncomputable) function in the logic which, using an option
type to encode partiality, returns a term’s β-normal form if it has one. The fromTerm
and toTerm functions are mutual inverses mapping from the λ-terms to the de Bruijn
terms and vice versa.

3.2 The Universal Machine

In order to compare the λ-calculus’s capabilities to what is done in other computational
models, we restrict our attention to functions on natural numbers only. We also index
the computable functions with natural numbers, so that we can define

Φ : num → num → num option

taking parameters specifying the computable function to run, and the argument to run it
on. The restriction to a single parameter for the given function is not significant because
of the existence of standard encodings for lists and pairs of numbers.

The first parameter to Φ requires a bijection between the natural numbers and the
de Bruijn terms. The HOL function dBnum is defined:

 dBnum (dV i) = 3 × i
 dBnum (dAPP M N) = 3 × (dBnum M ⊗ dBnum N) + 1
 dBnum (dABS M) = 3 × dBnum M + 2

(where x ⊗ y is a bijective pairing function on natural numbers). Its inverse, numdB,
is defined by recursion on N.

Definition 4. The Φ function is defined:

 Φ m n =
OPTION_MAP force_num
(bnf_of (toTerm (numdB m) � church n))

The force_num function takes a λ-term and returns n if it is an instance of church n,
and 0 otherwise.

The Φ function gives us a purely HOL-level picture of the λ-calculus’s computational
capabilities, expressed in terms of functions on natural numbers. It will be our target
when we investigate the capabilities of the recursive functions in Section 4 below.

Theorem 1. There exists a λ-term that computes Φ. It is called UM, with characterising
theorems:

 Φ m n = NONE ⇐⇒ bnf_of (UM � church (m ⊗ n)) = NONE
 Φ m n = SOME p ⇐⇒

bnf_of (UM � church (m ⊗ n)) = SOME (church p)
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primrec zerof 1 primrec succ 1

i < n
primrec (proj i) n

primrec f |gs| EVERY (λ g. primrec g m) gs

primrec (Cn f gs) m

primrec b n primrec r (n + 2)

primrec (Pr b r) (n + 1)

Fig. 3. The primitive recursive functions. The relation primrec f n is true if f is primitive recur-
sive and behaves “sensibly” on arguments of length n (because HOL functions are total, f will
have a value on lists of other lengths too). The auxiliaries are as follows: zerof is the constant
function returning 0; succ returns the successor of the head of a list; proj is the projection func-
tion on lists; Cn (composition) and Pr (primitive recursion) are described in the main text. The
EVERY auxiliary is from HOL’s theory of lists and checks a predicate holds of every element in
a list.

4 The Recursive Functions

The first issue to resolve when modelling the recursive functions is whether to treat
them “shallowly” or “deeply”. This is not an issue that arises with the λ-calculus where
it is natural to want to model the syntax of the calculus, and to then ascribe meaning
to that syntax (a deep embedding). By way of contrast, with the recursive functions it
seems equally natural to want to use the existing functions that exist in HOL, to identify
a subset of those as primitive recursive, to then extend that subset with minimisation and
thereby gain the recursive functions. Unfortunately, one then has to deal with the fact
that the recursive functions are of variable arity, which is difficult to model in HOL’s
unsophisticated type system.

Rather than force the burden onto the type system, we use the type

num list → num

for the primitive recursive functions, and add arity information to the inductive defi-
nition which identifies them. This approach doesn’t treat application of a function to
the wrong number of arguments (a list of the wrong length) as a type-error, but ex-
pects the sanity checking to be enforced through appropriate primrec assumptions
(see Figure 3). The interesting auxiliary constants from that definition are for function
composition (Cn) and primitive recursion (Pr), with characterising theorems:

 Cn f gs � = f (MAP (λ g. g �) gs)
 Pr b r (0::t) = b t
 Pr b r (SUC m::t) = r (m::Pr b r (m::t)::t)

Apart from all the standard arithmetic that can be shown to be primitive recursive, we
gain confidence in this definition by also proving the famous result about Ackermann’s
function.
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Theorem 2. For any primitive recursive function f , there is an index J such that for all
possible arguments xs, f (xs) is always less than the Ackermann function applied to J
and the sum of the values in xs:

 primrec f k ⇒
∃ J. ∀ xs. |xs| = k ⇒ f xs < Ackermann J (SUM xs)

The proof closely follows the version of this result in the Isabelle/HOL sources, which
is in turn based on Szasz [8].2

Recursive Functions. Adding minimisation to the primitive recursive functions forces
the use of the option type to correctly model partiality. Thus the recursive functions are
all of type

num list → num option

Both the minimisation operation and the composition operator for recursive functions
have rather ugly definitions (see Figure 4). The term minimise f � is NONE if there
is no value x such that f (x::�) = SOME 0, or if there is some y < x such that
f (y::�) = NONE. Function composition is strict: if any of the functions in the list
gs fails on the provided argument, so too does the composition. Similarly, primitive
recursion: if a recursive call fails on n < m, then the recursive call on m must be held
to fail as well.

The analogue of the primrec constant is recfn. It is an easy induction on the rules
governing primrec to show

 primrec f n ⇒ recfn (SOME ◦ f) n

In the proofs to come, minimisation is only used once. All the other necessary op-
erations were shown to be primitive recursive. This is implicitly a proof of Kleene’s
Normal Form theorem, stating that all recursive functions can be expressed as a compo-
sition of a primitive recursive function, minimisation and one other primitive recursive
function.

5 Computational Equivalence

The “Easy” Direction Given the existence of cfindleast, and the general machin-
ery of the Church numbers, one might imagine it straightforward to prove that the λ-
calculus can implement the recursive functions. However, the journey is beset by a
number of annoyances. First: how to represent the list of arguments the recursive func-
tions expect? Our answer is to use the nlist_of function, which bijectively encodes a
list of natural numbers as a single natural number.

Theorem 3.  recfn f n ⇒ ∃ i. ∀ �. Φ i (nlist_of �) = f �
(The fact that the theorem quantifies over all � (rather than just those of length n)

is a consequence of the fact that the definitions of the (primitive) recursive operators
(Pr, Cn etc) actually give them reasonable values on lists of the wrong size. This can be
emulated in the λ-calculus too.)

2 My original proof, in the Kananaskis-6 release, follows Taylor’s more complicated argu-
ment [9]. Thanks to the anonymous referees for the pointer to the proofs in Isabelle/HOL
and by Szasz.



Mechanised Computability Theory 307

 recCn f gs � =

(let results = MAP (λ g. g �) gs
in

if EVERY (λ r. r �= NONE) results then
f (MAP THE results)

else
NONE)

 minimise f � =

if
∃ n.

f (n::�) = SOME 0 ∧
∀ i. i < n ⇒ ∃m. 0 < m ∧ f (i::�) = SOME m

then
SOME

(εn.
f (n::�) = SOME 0 ∧
∀ i. i < n ⇒ ∃m. 0 < m ∧ f (i::�) = SOME m)

else
NONE

Fig. 4. The composition and minimisation operations for the recursive functions. As with
primrec, these definitions are used in an inductive definition that specifies valid arities.

Proof. The big issue in this proof is the accurate modelling of partiality. For example,
consider the primitive recursion case. By our inductive hypothesis, we have an i and j
which are the indexes of the 0-case function and SUC-case function respectively. If the
argument on which the function is recursing is n, it is necessary to set up a stack of n
pending computations, linked together with continuation arguments. Thus, machine i
is run first, and if it terminates, its result is passed to machine j with varying argument
0. This instance will have a continuation that passes the result onto machine j with
varying argument 1, and so on, all the way up to one final computation: machine j with
arguments n − 1, the result of the previous computation, and a continuation which is
the identity function. With this nesting structure, the constructed λ-term is guaranteed
to loop (fail) if and only if there is a failure in the calls made by the recursive function.

The Hard Direction. In the other direction, it is necessary to model the de Bruijn terms
as numbers, and to perform all of the appropriate operations (e.g., finding a redex, per-
forming a substitution) purely arithmetically. Moreover, these operations are all shown
to be primitive recursive, further increasing the complexity of the proofs and definitions.

As an example, the following theorems are the key facts about the form of substitu-
tion on de Bruijn terms (called nsub here) that simultaneously adjusts indices to reflect
the disappearance of an outer abstraction (as happens in β-reduction). The first theorem
states that the new constant pr_nsub really does the right thing with suitably encoded
terms; the second that the constant really is primitive recursive:

 pr_nsub [s; k; t] = dBnum (nsub (numdB s) k (numdB t))
 primrec pr_nsub 3
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The complexity in these proofs stem from the fact that we need to perform recursions
that are not obviously primitive recursive. Firstly, when recursing over an encoded term,
sub-terms have encodings that are numbers (much) smaller than the enclosing term, not
just one less. Secondly, one also needs to be able to vary the accompanying parameters,
as happens to k in the dABS clause of the definition of the lift function:

 lift (dABS s) k = dABS (lift s (k + 1))

It is folklore that both of these variations do not require anything more than primitive
recursion. Actually achieving them requires the use of primitive recursive functions
that return large lists (encoded as numbers!) of results rather than single numbers. At
the call-site, the calling function can then pick out the result it is really interested in,
and then calculate an even larger list to be its own result.

When all this work within the primitive recursive functions has been done, the min-
imisation operation can be used to define the recursive “β normal form of” function,
with definition:

 recbnf_of =
recCn (SOME ◦ pr_steps)
[minimise (SOME ◦ pr_steps_pred); SOME ◦ proj 0]

The (primitive recursive) pr_steps function takes parameters n and t and performs n
normal order reduction steps on t. The (primitive recursive) pr_steps_pred function
takes parameters n and t and returns 0 if n steps of normal order reduction on t produces
a term in β-normal form.

We are thus able to characterise recbnf_of:

 recfn recbnf_of 1
 recbnf_of [t] =

OPTION_MAP (dBnum ◦ fromTerm) (bnf_of (toTerm (numdB t)))

This leads to

Theorem 4. There exists a recursive function recPhi of type

num list → num option

which emulates Φ:

 recfn recPhi 2
 recPhi [i; n] = Φ i n

6 Computability Theorems

Here we list a number of standard results that can be derived on top of the framework
that has been established. The most complicated proofs are those to do with the recur-
sively enumerable sets, where care is often required to handle computations that may
not terminate.
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Definition 5. A recursive set (of natural numbers) is one that a computable function
decides:

 recursive s ⇐⇒
∃m. ∀ e. Φ m e = SOME (if e ∈ s then 1 else 0)

Theorem 5. The empty, finite and universal sets are recursive; recursive sets are closed
under union, intersection and complement.

 recursive ∅
 recursive U(:num)
 FINITE s ⇒ recursive s
 recursive s1 ∧ recursive s2 ⇒ recursive (s1 ∪ s2)
 recursive s1 ∧ recursive s2 ⇒ recursive (s1 ∩ s2)
 recursive (COMPL s) ⇐⇒ recursive s

where U(:num) denotes the universal set of natural numbers, and where COMPL s is
the complement of set s.

Definition 6. A recursively enumerable (r.e.) set is one that is the range of a computable
function

 re s ⇐⇒ ∃Mi. ∀ e. e ∈ s ⇐⇒ ∃ j. Φ Mi j = SOME e

Theorem 6. Alternatively, the r.e. sets are those that are the domains of computable
functions:

 re s ⇐⇒ ∃N. ∀ e. e ∈ s ⇐⇒ ∃m. Φ N e = SOME m

This result requires an implementation of dove-tailing, whereby the machine Mi is run
on arguments 0..n− 1 for n steps, and the results examined for β-normal forms. If the
argument e is not among them, then the process is repeated with parameter n + 1.

Theorem 7. All recursive sets are r.e. The r.e. sets are closed under union and inter-
section. If a set and its complement are r.e., then they are both recursive.

 recursive s ⇒ re s
 re s ∧ re t ⇒ re (s ∩ t)
 re s ∧ re t ⇒ re (s ∪ t)
 re s ∧ re (COMPL s) ⇒ recursive s

Theorem 8. The Halting Problem. Let K be defined as follows (“the machines that
halt on their own indices”):

 K = {Mi | ∃ z. Φ Mi Mi = SOME z}

Then K is r.e. but not recursive. Its complement is not even r.e.

 ¬recursive K
 re K
 ¬re (COMPL K)
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Theorem 9. The “s-1-1” theorem. There exists a computable function with index s11
that, when given an encoded pair x ⊗ y, returns the index of a function that computes
the function λ z. Φ x (y ⊗ z). In other words, x is the index of the function to be
partially evaluated with parameter y provided in advance.

 ∀ x y. ∃ fi. Φ s11 (x ⊗ y) = SOME fi ∧ ∀ z. Φ fi z = Φ x (y ⊗ z)

Theorem 10. The Recursion Theorem. If fi is the index of a total function (under-
stood to be computing indices of other functions), then it has a fix-point e such that the
functions with indices f (e) and e are extensionally equal.

 (∀ n. ∃ r. Φ fi n = SOME r) ⇒ ∃ e. Φ (THE (Φ fi e)) = Φ e

(With the λ-calculus to hand, directly using the Y combinator is a much more pleasant
prospect than the route via this theorem, with all its confusions of terms and indices
encoding terms.)

Theorem 11. Rice’s Theorem. Let P be a predicate on functions. The predicate P is
of type (num → num option) → bool and thus considers just the functions’ exten-
sional behaviour. Let indices P be the set of indices of computable functions satisfy-
ing P. Then, if indices P is recursive, that set is either the empty set, or the set of all
numbers.

 recursive (indices P) ⇒ indices P = ∅ ∨ indices P = U(:num)

7 Related Work

Zammit [11, §3] describes a HOL mechanisation of register machines, and shows that
they can compute the recursive functions. He does not show the converse result. He also
develops a Coq mechanisation of the recursive functions, and shows the s-m-n theorem
in that model.

Computable functions of some form are necessarily a part of formalisations of
Gödel’s incompleteness theorems, and so mechanisations of that result by Shankar [7]
and O’Connor [5] include approaches to computability. O’Connor uses the primitive
recursive functions; Shankar uses a ‘pure’ subset of Lisp. Both are concerned with
using their computational models to show that various formula manipulations are com-
putable; neither is (directly) concerned with the limits of what is generally computable.
Similarly, John Harrison’s proof of Gödel’s incompleteness theorem in the HOL Light
system [2] focuses on showing the representability of primitive recursion in the embed-
ded logic.

The Isabelle system comes with a mechanisation of the primitive recursive functions
and a proof that Ackermann’s function is not one of them. The ZF mechanisation is
described in Paulson [6], who followed Szasz [8].

8 Conclusion

There is always more to do. Clearly, it would be appealing to mechanise the more oper-
ational models of computation: Turing and register machines. For the latter, the work by
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Zammit may be a good starting point. If register machines are unappealing because of
their general fiddliness, Turing machines are an even more daunting prospect. Nonethe-
less, the completist would clearly want to include both these models.

It would also be fun to attack further results in computability theory. For example, the
theory of Turing degrees includes a number of classic results, with fascinating proofs.
Alternatively, there is always basic complexity theory. . .

We cannot yet provide an easy route to proofs of computability for complicated
systems with their own elaborate data types (as would be required for the introduction’s
motivating example). Nonetheless, the work done to date has demonstrated that the λ-
calculus provides a good environment for working with rich types (such as the de Bruijn
terms), and for manipulating them in ways known to be computable.
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Abstract. In this paper, we describe recent improvements to the the-
ory of differentiation that is formalized in ACL2(r). First, we show how
the normal rules for the differentiation of composite functions can be
introduced in ACL2(r). More important, we show how the application
of these rules can be largely automated, so that ACL2(r) can automat-
ically define the derivative of a function that is built from functions
whose derivatives are already known. Second, we show a formalization
in ACL2(r) of the derivatives of familiar functions from calculus, such as
the exponential, logarithmic, power, and trigonometric functions. These
results serve as the starting point for the automatic differentiation tool
described above. Third, we describe how users can add new functions
and their derivatives, to improve the capabilities of the automatic differ-
entiator. In particular, we show how to introduce the derivative of the
hyperbolic trigonometric functions. Finally, we give some brief highlights
concerning the implementation details of the automatic differentiator.

Keywords: ACL2, nonstandard analysis, automatic differentiation.

1 Introduction

ACL2(r) is a variant of the theorem prover ACL2 that offers support for reason-
ing about the irrational real and complex numbers via nonstandard analysis [8].
Since its logic is strictly first order and the theorem prover has only limited
support for quantifiers, ACL2 would not appear to be a good candidate for rea-
soning about real analysis. However, by introducing key concepts from nonstan-
dard analysis, such as “classical,” “standard part,” and the transfer principle,
ACL2(r) extends ACL2 just enough to take advantage of its strong support for
induction, which serves a key role in arguments using nonstandard analysis.

As a result, many theorems from real analysis have been formalized in ACL2,
including the fundamental theorem of calculus [10] and several results having to
do with differentiability [6,7]. However, much of this work is foundational in na-
ture, while the intended use of ACL2(r) is to support reasoning about real-world
software whose correctness relies on facts from basic engineering mathematics.
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In this paper, we describe recent results that greatly expand the usefulness
of ACL2(r) when reasoning about elementary functions and their derivatives. In
Sect. 3, we present a new ACL2(r) “event” that lets the user introduce a theorem
relating a function to its derivative. For example, the derivative of

√
1 + x2 can

be introduced with the definition

(defderivative sqrt-1+x**2-derivative
(acl2-sqrt (+ 1 (* x x))))

The event defderivative symbolically differentiates the given expression to ob-
tain an expression for the derivative. It also proves the theorems that assert that
the new expression is indeed the derivative of the old one. The implementation of
defderivative relies on formalizing the familiar algebraic differentiation rules,
such as (f + g)′(x) = f ′(x) + g′(x). This is similar to the approach used in [7],
but with one key difference. The proof obligations required by the metatheorems
in [7] are too unwieldy to be automated successfully. In Sect. 4, we present a
different formalization that is much easier to automate when the derivative is
known, as is the case when it is discovered using the algebraic differentiation
rules. Of course, algebraic differentiation rules are of little use without a priori
knowledge of some derivatives, i.e., a database of known derivatives. In Sect. 5,
we show how the derivatives of many useful functions from calculus are formal-
ized in ACL2(r). In particular, the exponential function had been defined in
ACL2(r) since it was first developed, but its derivative was never determined.
We report in this paper our recent formalization of this result in ACL2(r). More-
over, we use this result to find the derivatives of other functions, including the
trigonometric functions. Finally, in Sect. 6, we show how a user can extend the
database of known derivatives by proving a derivative fact, perhaps from first
principles. In particular, we show how the user can introduce the hyperbolic
trigonometric functions and their derivatives.

2 Related Work

Finding the derivative of function is a task that has many applications, such as
optimization and sensitivity analysis. Consequently, many researchers have tack-
led the problem of automatically finding the derivative of a function expressed
as a computer program. In fact, automatic differentiation (AD) is an established
research area [1,4,9,5].

The approach used in AD is to compute the derivative of a program by exam-
ining the program statically. That is, the program’s source code is transformed
so that it can compute not only the original function, but also its derivative.
This can be done either by using overloaded operators (in languages that sup-
port them), or by using preprocessing techniques to produce a new function.
Naturally, this means that most solutions are program-specific, e.g., ADIC for C
programs [3] and ADIFOR for FORTRAN programs [2], which use similar ideas
but with different implementations.

Our interest is in finding the derivatives of functions expressed as programs
in Common LISP. To that extent, our work is related to that in [11]. However,



314 P. Reid and R. Gamboa

our primary interest is in automatically finding the proof that the derivative is
correct, not just in finding the derivative. The techniques described in [11] go
far beyond the work described in this paper as far as automatic differentiation,
e.g., handing general derivatives of multivariate functions f : Rn → Rm. But
the emphasis there is in programming, not proving formal correctness using an
automated theorem prover.

In spirit, our work has more in common with [12]. There, the concept of
proof-carrying codes is applied to the AD transformations. The result is that
the AD tool can produce a certificate that can be verified by a formal tool, thus
establishing that the transformed function correctly computes the derivative of
the input function. Our approach is quite different from that in [12] in that
we are working with functional programs written in Common LISP, instead of
abstract programs in a Hoare-style WHILE language.

3 Introducing the Defderivative Event

We begin our presentation by showing how defderivative looks to the end user.
Consider the expression

√
1 + x2, and suppose that the user wants to introduce

its derivative in ACL2(r). This is trivial to do with defderivative:

(defderivative sqrt-1+x**2-derivative
(acl2-sqrt (+ 1 (* x x))))

Defderivative computes an expression for the derivative that is, of course,
equivalent to x/

√
1 + x2. This expression is computed automatically using sym-

bolic differentiation. Defderivative then introduces the theorem sqrt-1+x**2-
derivative that shows that this expression is, in fact, the derivative of

√
1 + x2.

This theorem is equivalent to the following ACL2(r) statement:

(defthm sqrt-1+x**2-derivative
(implies (and (acl2-numberp x)

(realp (+ 1 (* x x)))
(< 0 (+ 1 (* x x)))
(acl2-numberp y)
(realp (+ 1 (* y y)))
(< 0 (+ 1 (* y y)))
(standardp x)
(i-close x y)
(not (equal x y)))

(i-close (/ (- (acl2-sqrt (+ 1 (* x x)))
(acl2-sqrt (+ 1 (* y y))))

(- x y))
(* (/ 1/2 (acl2-sqrt (+ 1 (* x x))))

(+ 0 (+ (* x 1) (* x 1)))))))

This theorem states that, for suitable and close-together x and y, the differ-
ential between x and y is close to the derivative at x. This notion of “closeness”
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comes from nonstandard analysis. A thorough description is provided in [8], but
for the purposes of this work it suffices to understand that it means there is only
an infinitesimal difference between the two terms.

The hypotheses in the theorem are formed by combining the hypotheses re-
quired by each of the various rules applied during symbolic differentiation. It is
evident that this combination is “blind,” as many of the hypotheses are trivially
true. The expression that defines the derivative is also raw. I.e., it is formed
by blindly following of the composition rules. We have experimented with us-
ing ACL2’s rewriter to simplify the body of the derivative, but we have found
that the simplified (according to ACL2) form rarely corresponds to the user’s
expectation. For example, ACL2(r) simplifies the term above to the following:

(+ (* 1/2 x (/ (acl2-sqrt (+ 1 (* x x)))))
(* 1/2 x (/ (acl2-sqrt (+ 1 (* x x))))))

So we have found it better in practice to leave the formula discovered by auto-
matic differentiation as is, and let the user provide a simpler definition, if she
wishes. Typically, ACL2(r) can prove that these definitions are equivalent, so
the function defined by the user is also shown to be the derivative of the origi-
nal function. In this way, the user can choose the definition used, but avoid the
tedious steps required to prove that it is the actual derivative. It is important to
note that it is usually much easier to prove that these two functions are equal
than to show that they are the derivative of the original function! For example,
ACL2(r) can prove the following completely automatically:

(equal (* (/ 1/2 (acl2-sqrt (+ 1 (* x x))))
(+ 0 (+ (* x 1) (* x 1))))

(/ x (acl2-sqrt (+ 1 (* x x)))))

In turn, that makes it trivial to simplify the derivative of
√

1 + x2, so that it
matches the user’s expectations:

(defthm sqrt-1+x**2-derivative-clean
(implies (and (realp x)

(realp y)
(standardp x)
(i-close x y)
(not (equal x y)))

(i-close (/ (- (acl2-sqrt (+ 1 (* x x)))
(acl2-sqrt (+ 1 (* y y))))

(- x y))
(/ x (acl2-sqrt (+ 1 (* x x))))))

:hints (("Goal" :use (:instance
sqrt-1+x**2-derivative))))

Notice that we have simplified not only the formula for the derivative, but also
the hypotheses.

This example demonstrates something fundamental about defderivative’s
operation. We have not formally verified that defderivative produces correct
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derivatives in general, and ACL2’s soundness does not rely on it doing so. In-
stead, defderivative makes a proof for ACL2 about a specific derivative when
it is asked to. ACL2 verifies that this particular proof is correct, and the deriva-
tive is accepted. If defderivative had computed an incorrect derivative, ACL2
would have found the proof unconvincing and the whole operation would have
had no effect, leaving the system’s soundness intact. We chose this approach
because it is more compatible with ACL2 as a first-order logic. Reasoning about
defderivative’s operation as it is processing functions cannot be done simply
in a first-order logic, since functions are not first-order objects.

4 The Implementation of Defderivative

4.1 Finding the Derivative

Defderivative can differentiate a function that is defined according to the fol-
lowing forms, where the derivative is taken with respect to the variable x:

– The identity function, i.e., x.
– A constant. This can be a literal number, a variable other than x, or a

function of zero arguments.
– Addition, i.e., f(x) + g(x).
– Multiplication, i.e., f(x)× g(x).
– Composition, i.e., f(g(x)).

In these forms, f and g are either functions whose derivatives have been previ-
ously determined and verified, or formulas that defderivative can differentiate
recursively. Functional inverses, i.e. f−1(x) can be differentiated in a way com-
patible with defderivative, though through a different process; since a inverse
function involves a single operation rather than an arbitrary combination of
operations, it does not fit cleanly into the architecture of defderivative.

The list of forms does not include subtraction or division. This is because
ACL2 defines these operations by using the corresponding inverses. So f − g is
really handled as f +(−g), and we treat (−g) as the composition of the functions
unary minus and g. Once the derivatives of unary minus and unary division (i.e.,
the multiplicative inverse) are known, defderivative handles subtraction and
division through the functional composition rule.

As defderivative computes the derivatives of functions defined using any of
the given forms, it also proves the theorems that establish that the new expres-
sion is the derivative of the given function. We refer to these theorems as the
derivative theorems. The most important of these theorems relates the function’s
differential between two i-close points to its derivative, which captures the non-
standard notion of derivative. Letting F be the function, F-PRIME its derivative
as found using symbolic differentiation, and DOMAIN-P the domain over which F
is defined and is differentiable, this theorem takes the following form:
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(implies (and (DOMAIN-P x)
(DOMAIN-P y)
(standardp x)
(i-close x y)
(not (equal x y)))

(i-close (/ (- (F x) (F y))
(- x y))

(F-PRIME x)))

The remaining derivative theorems play supporting roles, ensuring that the func-
ton and its derivative are numeric, continuous, and finite.

Readers familiar with ACL2(r) may notice that the formal statement of dif-
ferentiability given above differs from the one used in prior formalizations. There
are two important differences:

– In earlier work, we separated the notions of derivative and differentiability.
So the definition of differentiability was stated entirely in terms of F and not
F-PRIME. The notions are equivalent, of course, but in the context of this
work, the formal statement above is much more convenient, since we already
have F-PRIME.

– The predicate DOMAIN-P describes the domain over which F is differentiable.
In earlier work, we used intervals to define this domain. This has the advan-
tage that we can quantify over intervals in a first-order logic, like ACL2’s.
However, treating this domain as a function adds flexibility and makes it eas-
ier to automate the process of defining the appropriate domain over which
the algebraic differentiation rules are applicable, e.g. f(x) �= 0.

For functions defined according to the forms described above, a calculus text
would prescribe applying differentiation rules such as the sum rule, the product
rule, and the chain rule. Each of these rules expresses the derivative of the whole
(f and g combined) in terms of the derivative of its parts (f and g individually).
I.e, these correspond to theorems involving general functions—higher order logic.
Since it is a first-order logic, ACL2(r) does not deal in higher-order logic directly.
However theorems such as these can be proved using ACL2(r)’s encapsulate
feature. An encapsulate invocation lists function signatures followed by assump-
tions that describe how those functions behave. These assumptions are referred
to as constraints. Proofs about the encapsulated functions can be constructed us-
ing the encapsulated assumptions. Finally, concrete functions can be substituted
into those encapsulated function signatures in whatever proofs were constructed,
as long as the encapsulated assumptions can be shown to hold for the concrete
functions being substituted.

The algebraic differentiation rules are encapsulated as follows. The encapsu-
lated functions are

– f , its derivative, and its domain;
– g, its derivative, and its domain; and
– the combined function (e.g., f + g), its derivative, and its domain.
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The constraints in the encapsulate are as follows:

– f satisfies the derivative theorems.
– g satisfies the derivative theorems.
– The combined function is related to f and g in some way. For example, the

sum rule is encapsulated using the constraint

(equal (f+g x)
(+ (f x) (g x))

– The derivative of the combined function is related to f , g, and their deriva-
tives in some way. For example, in the sum rule, the constraint has the form

(equal (f+g-prime x)
(+ (f-prime x) (g-prime x)))

– The combined function is “type-safe.” I.e., when the combined function (e.g.,
f +g) is evaluated on a number in its domain, its value depends on the value
of the functions f and g applied to numbers on their respective domains.

Using these assumptions, the combination books proceed to prove the derivative
theorems about the combined function. When the derivative of a specific combi-
nation needs to be proved, these theorems can be instantiated with the specific
functions f and g.

This work is similar to the combination rules presented in [7]. In fact, origi-
nally we tried to use the theorems from [7], but we discovered that these were not
amenable to automation. One problem was that the existing theorems allowed
differentiation only over a single interval. That made it impossible to reason au-
tomatically about the derivative of tangent, for example. Another problem was in
ease of application. The combination theorems in [7] never state the derivative
except as the standard part of a small differential. This introduces complex-
ity, since that small differential needs to be shown to behave as a derivative
should. The new composition theorems take an expression for the derivative ex-
plicitly, which greatly simplifies their proofs. This comes at virtually no cost to
defderivative, since it already computes expressions for the derivative.

4.2 Proof Structure

Composition rules are useful, but putting them together to verify the derivative
of a complicated function can be prohibitively tedious. Each function applica-
tion in the expression being differentiated requires several dozen lines of carefully
written theorems to instantiate the appropriate compositions, adding up to hun-
dreds of lines of proof for a typical expression. The root cause of this fact is that
ACL2 has little support for higher-order functions and requires that virtually
every step of a higher-order proof be explicitly pointed out to it. Fortunately,
macros provide a way out. Defderivative composes the theorem code that the
user otherwise would have had to and submits it to ACL2, making differenti-
ation take a few lines rather than a few hundred. At the heart of the system
is a function, named differentiate-fn, which we have added to the theorem
prover. Its signature is (roughly) as follows.
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Inputs:

1. Function expression. For example, this could be (acl2-sqrt (+ 1 (* x
x))).

2. Derivative name. This is the name of differentiated function and serves as a
prefix for the derivative theorems.

Outputs:

1. The function’s derivative.
2. The function’s domain.
3. A proof script of the derivative theorems, showing that the derivative and

domain expressions returned actually represent the function’s derivative.

Recall from the beginning of Sect. 4.1 that there are several forms that a differ-
entiable expression can take. Differentiate-fn has a branch for each of these
cases. The first two cases, where the expression to differentiate is x or a fixed
number, are relatively trivial to implement. Differentiate-fn simply returns
a canned proof of the appropriate theorems, renamed according to the prefix re-
quested, along with a canned derivative (1 or 0, respectively) and domain. The
other cases, which involve f and g, are more interesting. The proofs they return
take the following form.

1. Prove (recursively) the derivative theorems about f .
2. Prove (recursively) the derivative theorems about g.
3. Disable all theorems, except the derivative theorems of f and g. This allows

us to limit ACL2’s proof search, so that we can automate the rest of the
proof.

4. Instantiate the appropriate combination theorems to prove the derivative
theorems of the combined function.

5. These derivative theorems are the only ones introduced by differentiate-fn.

In short, these proofs recursively verify the derivatives of the two functions being
composed and then combine those proofs by instantiating some of the combina-
tion proofs discussed in Sect. 4.1.

The derivative of a function is automatically recognized if the function has
been registered with defderivative. In the following sections, we will describe
how the original set of functions are registered, and how the user can register
new functions.

We conclude this section with a simple example that shows defderivative in
action. Imagine that acl2-sqrt has been registered and defderivative is then
asked to differentiate (acl2-sqrt (+ x 3)). First, defderivative will use the
proofs, provided on registration, concerning acl2-sqrt, its derivative, and its
domain to fill in the first recursive section of the proof structure; this is simply
a matter of renaming those proofs. Second, defderivative will recursively dif-
ferentiate (+ x 3). This will use the differentiation rules for sum, with f(x) = x
and g(x) = 3, and these functions will be differentiated recursively. Of course,
their derivatives are trivial to compute, so defderivative combines them to
find the derivative of (+ x 3). Finally defderivative will use the theorems
about the derivative of f ◦ g(x), using f =

√
x and g = x + 3.
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5 The Path to Elementary Functions

In this section, we will describe how we have seeded defderivative with the
derivatives of several functions from elementary calculus. This list includes ex,
the natural logarithm,

√
x, sine, cosine, arcsine, arccosine, and arctangent. Other

functions, such as tangent, can be derived automatically with defderivative,
since they are defined using elementary operations over the built-in functions,
e.g., tan(x) = sin(x)/ cos(x). The proof effort required to establish the deriva-
tives of these functions was significant. Fig. 1 shows how the proofs are based
on one another.

In tackling these proofs, we used three different approaches. The first was
to prove the derivative from first principles, i.e., algebraic manipulation of the
differential into an expression that approaches the derivative as the difference
becomes small. The second approach was to use earlier, simpler proofs to boot-
strap later ones. For example, because ACL2(r) defines sine and cosine in terms
of exponentials, one can use defderivative to differentiate sine’s definition and
then show that the derivative is cosine. Proofs with these approach tended to
be trivial. The third approach was to take advantage of one function being the
inverse of another. use defderivative to differentiate functions that are defined
as the inverse of a differentiable function, e.g., ln(x).

The most difficult proof was the derivative of ex. In some settings, this is a
trivial result. For example, some calculus books show that the derivative of ax

is proportional to ax, then define e as the unique real number such that the
proportion is equal to 1. Others start by defining ex using its Taylor expansion,
then observe that this infinite series is its own derivative. But neither of these
options were open to us. The function ex is defined in ACL2(r) indirectly, using

Proved from first principles

Proved with defderivative

Proved as a functional inverse

Fig. 1. Dependency graph of the functions built into defderivative. Symbols leading
into a function represent how its derivative theorems were proved.
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partial Taylor sums and the nonstandard transfer principle, so we could not rely
on that proportion being 1 by definition. Moreover, the terms ax that make
up the Taylor expansion are defined in terms of ex, so relying on a proof of the
Taylor expansion’s derivative would be circular. Instead, we had to follow a more
direct approach.

To find the proof, we examined the value of the differential, ex+Δx−ex

Δx . Using
the law of exponents, this reduces to ex eΔx−1

Δx . When x is standard, so is ex, so
it is sufficient to show that eΔx−1

Δx ≈ 1, i.e., is close to 1.
Proving that lemma was the biggest challenge. First, we defined f(x) =∑N
k=0

xk

(k+2)! . Then we showed that this series converged. That is, we showed that
the partial sums are limited whenever x is limited, by comparing the partial sums
with the Taylor expansion of ex, which we had already shown converges. Since f
converges, we can use the transfer principle to define the function g(x) = ∗f(x),
the unique standard function that f converges to pointwise. It follows from the
transfer principle and the definitions of g and ex that eΔx−1

Δx = 1 + Δx · g(Δx).
Finally, we show that whenever Δx ≤ 1, ||g(Δx)|| ≤ ||g(1)|| and therefore
limited. So when Δx is infinitesimal, so is Δx · g(Δx), and it follows that
eΔx−1

Δx = 1 + Δx · g(Δx) ≈ 1.

6 Adding New Derivative Facts: Hyperbolic
Trigonometric Functions

In this section, we show how a user can differentiate expressions involving a func-
tion that is not among those already registered with defderivative. To register
a new function with defderivative, there are essentially two steps. First, the
derivative theorems must be proved about that function. Second, defderivative
must be informed of the new function, its derivative, its domain, and the asso-
ciated proofs through a call to def-elem-derivative. This section provides an
example of going through that process.

This example, in which we make defderivative able to differentiate hyper-
bolic sine and cosine, uses a bootstrapping approach. The hyperbolic functions
are defined in terms of exponential functions, which defderivative already
knows how to differentiate. The strategy will be to use defderivative’s exist-
ing capability to differentiate hyperbolic sine’s definition and then to associate
hyperbolic sine itself with the resulting derivative.

Hyperbolic sine and cosine and their derivatives are defined as follows:

sinh(x) =
ex − e−x

2
d

dx
sinh(x) = cosh(x)

cosh(x) =
ex + e−x

2
d

dx
cosh(x) = sinh(x)

These definitions are trivial to enter in ACL2(r).
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(defun acl2-sinh (x)
(/ (- (acl2-exp x) (acl2-exp (- x)))

2))

(defun acl2-cosh (x)
(/ (+ (acl2-exp x) (acl2-exp (- x)))

2))

Next, we use defderivative to find the derivative of the body of acl2-sinh.

(defderivative acl2-sinh-lemma
(/ (- (acl2-exp x) (acl2-exp (- x)))

2))

As expected, this results in an unsimplified domain and derivative. However, we
can simplify it and introduce the derivative of acl2-sinh with the following
theorem:

(defthm acl2-sinh-derivative
(implies (and (acl2-numberp x)

(acl2-numberp y)
(standardp x)
(i-close x y)
(not (equal x y)))

(i-close (/ (- (acl2-sinh x)
(acl2-sinh y))

(- X Y))
(acl2-cosh x)))

:hints (("Goal" :use (:instance acl2-sinh-lemma))))

That is the most difficult of the proof obligations that the user must prove before
she can register the derivative of hyperbolic sine. The other obligations concern
the remaining derivative theorems, and those are far simpler, such as showing
that values in the domain of hyperbolic sine does not require call outsides the
domain of ex. Once these obligations are established, the user can register the
derivative with the following event:

(def-elem-derivative
acl2-sinh # function to differentiate
elem-acl2-sinh # prefix of theorems’ name
(acl2-numberp x) # domain
(acl2-cosh x)) # derivative

7 Conclusions

In this paper, we described the macro defderivative and its implementa-
tion. This macro symbolically differentiates ACL2(r) expressions involving func-
tions whose derivatives have been established previously, e.g., built-in functions,
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functions derived using defderivative, and functions registered by the user.
The macro also computes the appropriate domain for the function and proves
the required derivative theorems.

In the process of implementing defderivative, we identified some impedi-
ments to automation in our previous treatment of algebraic differentiation rules,
and we addressed those shortcomings as part of this project. The resulting frame-
work is much easier to use, hence more widely applicable. For example, the pre-
vious work was foundational, allowing one to prove (often tediously) when one
function was the derivative of another. There were very few practical results.
While the derivative of xn was formalized in ACL2(r), that of ex was not, nor
were those of the trigonometric functions. We proved the derivative of ex using
techniques similar to the ones used previously with ACL2(r), but the remaining
derivatives were derived automatically.

The macro defderivative can be readily extended to compute partial deriva-
tives. However, the treatment of differentiation in ACL2(r) is derived from non-
standard analysis, and this imposes technical restrictions on the treatment of
free variables. The result is that we must anticipate the number of variables that
will be required. Thus far, we have implemented partial derivatives for functions
of two variables, such as expt, which can represent either ax or xn, depending on
which variable is fixed. To generalize this to functions of three or more variables,
it will be more convenient to use a classical notion of derivative, i.e., one based
on limits instead of standard part. We are currently working on a proof of the
equivalence of these notions in ACL2(r). However, the proof is quite challenging,
because it involves quantifiers and infinite sets, neither of which is supported
well by ACL2(r).
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Abstract. We prove that the seL4 microkernel enforces two high-level
access control properties: integrity and authority confinement. Integrity
provides an upper bound on write operations. Authority confinement
provides an upper bound on how authority may change. Apart from
being a desirable security property in its own right, integrity can be used
as a general framing property for the verification of user-level system
composition. The proof is machine checked in Isabelle/HOL and the
results hold via refinement for the C implementation of the kernel.

1 Introduction

Enforcing access control is one of the primary security functions of an operating
system (OS) kernel. Access control is usually defined as two properties: confiden-
tiality, which means that information is not acquired without read authority, and
integrity, which means that information is not modified without write authority.
These properties have been well studied in relation to classical security designs
such as the Bell-LaPadula model [3]. For dynamic access control systems, such
as the capability system in the seL4 microkernel, an additional property is of
interest: authority confinement, which means that authority may not be spread
from one subject to another without explicit transfer authority.

We have previously verified the functional correctness of seL4 [12]. In this
work we prove that seL4 correctly enforces two high level security properties:
integrity and authority confinement.

We define these properties with reference to a user-supplied security policy.
This policy specifies the maximum authority a system component may have.
Integrity limits state mutations to those which the policy permits the subject
components to perform. Authority confinement limits authority changes to those
where components gain no more authority than the policy permits. The policy
provides mandatory access control bounds; within these bounds access control
is discretionary.

While integrity is an important security property on its own, it is of special
interest in formal system verification. It provides a framing condition for the
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execution of user-level components, telling us which parts of the system do not
change. In a rely-guarantee framework, the integrity property gives us useful
guarantee conditions for components without the need to consult their code.
This is because the kernel, not the component, is providing the guarantee. This
becomes especially important if the system contains components that are other-
wise beyond our means for formal code-level verification, such as a Linux guest
operating system with millions of lines of code. We can now safely and formally
compose such parts with the rest of the system.

Access control properties and framing conditions have been extensively stud-
ied. Proving these properties about a real OS kernel implementation, however,
has not been achieved before [10]. Specifically, the novelty and contributions of
this work are:

– The Isabelle/HOL formalisation and generalisation of integrity and authority
confinement for a real microkernel implementation.

– To the best of our knowledge the first code-level proof of high-level access
control properties of a high-performance OS kernel.

Our proof is connected to reality via refinement to the C implementation. This
means we must deal with all the complexities and corner cases of the kernel we
have, rather than laying out a kernel design which fits neatly with our desired
access control model and hoping to implement it later.

We make one kind of simplifying assumption: we place restrictions on the
policy. These forbid some kinds of interaction between components which are
difficult for us to reason about. Although we have not yet applied the theorem
to a large system, our choice of assumptions has been guided by a previous case
study [2] on a secure network access device (SAC), with a dynamic and realistic
security architecture.

We are confident that a significant variety of security designs will, after some
cosmetic adjustments, comply with our restrictions. We support fine grained
components, communication between them via memory sharing and message
passing, delegation of authority to subsystems and dynamic creation and dele-
tion of objects. We support but restrict propagation of authority and policy
reconfiguration at runtime.

In the following, Sect. 2 gives a brief introduction to access control in general
and to the seL4 access control system in particular. Sect. 2 also introduces a
part of the aforementioned SAC system as a running example. Sect. 3 gives a
summary of the formalisation as well as the final Isabelle/HOL theorems and
Sect. 4 discusses the results together with our experience in proving them.

2 Access Control Enforcement and seL4

This section introduces relevant concepts from the theory of access control and
our approach to instantiating them for seL4. For ease of explanation we will
first introduce a running example, then use it to describe the seL4 security
mechanisms available, and then compare to the theory of access control.
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Fig. 1. System snapshot, routing between data D and back-end B network

2.1 Example

The secure access controller (SAC) was designed in an earlier case study of ours
[2] and will serve as a running example in this work. The purpose of the SAC is
to switch one front-end terminal between different back-end networks of separate
classification levels. The security goal of the system is to avoid information flow
between the back-end networks.

Fig. 1 shows the main components of the SAC as nodes and their logical
authority connections as edges. To the outside, the SAC provides four network
interfaces: two back-end networks A and B, one control network C, and one
data network D. Networks C and D are attached to a front-end terminal. The
purpose of the SAC is to connect either A to D or B to D at a time without
information flow between A and B. Internally, we have four components: a timer
T, a controller user interface CTR, the router manager RM, and a router in-
stance R. The router manager RM will upon a switch request, tear down R,
remove all access from it, create and start a fresh R component, and connect it
to the requested networks. RM is a small, trusted component and has access to
all networks. Verification needs to show that it does not abuse this access. The
router R, on the other hand, is a large, untrusted instance of Linux. It will only
ever be given access to one of the back-end networks during its lifetime.

In previous work [2], we have shown that, assuming a specific policy setup, as-
suming correct behaviour of RM, and assuming that the kernel correctly enforces
access control, the security goal of the system will be enforced.

The work in this paper helps us to discharge the latter two assumptions: we
can use the integrity property as a framing condition for verifying the behaviour
of RM, and we can use the same property to make sure that R stays within
its information flow bounds. To complete the verification, we would additionally
need the confidentially side of access control as well as a certified initial policy
set up. Both are left for future work.

2.2 seL4

The seL4 microkernel is a small operating system kernel. As a microkernel, it pro-
vides a minimal number of services to applications: interprocess communication,
threads, virtual memory, access control, and interrupt control.
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As mentioned, seL4 implements a capability-based access control system [6].
Services, provided by a set of methods on kernel implemented objects, are in-
voked by presenting to the kernel a capability that refers to the object in question
and has sufficient access rights for the requested method. For the purposes of
this paper, the following four object classes are the most relevant.

CNodes. Capabilities are stored in kernel-protected objects called CNodes.
These CNodes can be composed into a CSpace, a set of linked CNodes, that
defines the set of capabilities possessed by a single thread. CNode methods
allow copying, insertion and removal of capabilities. For a thread to use a
capability, this capability must be stored in the thread’s CSpace. CNodes
can be shared across CSpaces. The links in Fig. 1 mean that the collective
CSpaces of a component provide enough capabilities to access or communi-
cate with another component.

Virtual Address Space Management. A virtual address space in seL4 is
called a VSpace. In a similar way to CSpaces, a VSpace is composed of objects
provided by the microkernel. On ARM and Intel IA32 architectures, the root
of a VSpace consists of a Page Directory object, which contains references to
Page Table objects, which themselves contain references to Frame objects
representing regions of physical memory. A Frame can appear in multiple
VSpaces, and thereby implement shared memory between threads or devices
such as the SAC networks.

Threads. Threads are the unit of execution in seL4, the subjects in access
control terminology. Each thread has a corresponding TCB (thread control
block), a kernel object that holds its data and provides the access point
for controlling it. A TCB contains capabilities for the thread’s CSpace and
VSpace roots. Multiple threads can share the same CSpace and VSpace or
parts thereof. A component in the SAC example may consist of one or more
threads.

Inter-process Communication (IPC). Message passing between threads is
facilitated by Endpoints (EP). The kernel provides Synchronous Endpoints
with rendezvous-style communication, and Asynchronous Endpoints (AEP)
for notification messages. Synchronous endpoints can also be used to transfer
capabilities if the sender’s capability to the endpoint has the Grant right. The
edges in the SAC example of Fig. 1 that are physical communication links,
are implemented using endpoints.

The mechanisms summarised above are flexible, but low-level, as customary in
microkernels. Fig. 2 shows parts of the implementation of the link between the
CTR and RM components of Fig. 1. The link is implemented via a synchronous
endpoint EP. The CTR and RM components both consist of one main thread,
each with a CSpace containing a capability to the endpoint (among others),
and each with a VSpace containing page directories (pd), page tables (pt), and
frames fn implementing private memory.

These mechanisms present a difficulty for access control due to their fine
grained nature. Once larger components are running, there can easily exist hun-
dreds of thousands of capabilities in the system. In addition, seL4 for ARM has
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Fig. 2. SAC capabilities (partial)

15 different capability types, several of which have specific rights and variations.
We will prune this complexity down by making some simplifying observations.
One such observation is that many kinds of capabilities will not be shared with-
out the sharing components trusting each other. For example sharing part of a
CSpace with an untrusted partner makes little sense, as seL4 does not provide
a mechanism for safely using a capability of unknown type.

2.3 Access Control Enforcement

An access control system controls the access of subjects to objects [14], by re-
stricting the operations that subjects may perform on objects in each state of
the system. As mentioned above, in seL4 the subjects are threads, the objects
are all kernel objects, including memory pages and threads themselves.

The part of the system state used to make access control decisions, i.e., the
part that is examined by the kernel to decide which methods each subject may
perform on which object, is called the protection state. In seL4, this protection
state is mostly represented explicitly in the capabilities present in the CSpace
of each subject. This explicit, fine-grained representation is one of the features
of capability-based access control mechanisms. In reality, however, some implicit
protection state remains, for instance encoded in the control state of a thread,
or in the presence of virtual memory mappings in a VSpace.

The protection state governs not only what operations are allowed to be per-
formed, but also how each subject may modify the protection state. For instance,
the authority for capabilities to be transmitted and shared between subjects is
itself provided by CNode or endpoint capabilities.

As seen previously in Fig. 2, the protection state of a real microkernel can be
very detailed, and therefore cumbersome to describe formally. It is even more
cumbersome to describe precisely what the allowed effects of each operation are
at this level. Hence we make use of the traditional concept of a policy which can
be seen as an abstraction of the protection state: we assign a label to each object
and subject, and we specify the authority between labels as a directed graph. The
abstraction also maps the many kinds of access rights in seL4 protection states
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Fig. 3. SAC authority (except self-authority)

into a simple enumerated set of authority types. This simplifies the setup in three
ways: the number of labels can be much smaller than the number of objects in
the system, the policy is static over each system call whereas the protection state
may change and, finally, we can formulate which state mutations are allowed by
consulting the policy, rather than the more complex protection state.

The abstraction level of the policy is constrained only by the wellformedness
assumptions we make in Sect. 3. Within these bounds it can be chosen freely
and suitably for any given system.

Fig. 3 shows an abstract policy, only mildly simplified for presentation, that
corresponds to a possible protection state of the SAC at runtime. The objects
in the system are grouped by labels according to the intention of the component
architecture. The RM label, for instance, includes all objects in the RM box of
Fig. 2. The communication endpoints between components have their own label
to make the direction of information flow explicit. The edges in the figure are
annotated with authority types described in Sect. 3.

Correct access control enforcement, with respect to a security policy, can be
decomposed into three properties about the kernel: integrity, confidentiality and
authority confinement. The two former properties are the same as introduced
in Sect. 1, only the notion of what is permitted is taken from the policy rather
than the protection state. The latter property ensures the current subject cannot
escalate its authority (or another subject’s) above what the policy allows.

Note that we may have some components in the system, such as RM in the
SAC, which have sufficient authority to break authority confinement. The au-
thority confinement theorem will assume these components are not the current
subject, and we will be obliged to provide some other validation of their actions.

3 Formalisation of Integrity Preservation

This section sketches our Isabelle/HOL formalisation of the integrity and au-
thority confinement properties. While it is impossible in the space constraints
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of a paper to give the full detail, we show the major definitions and the top
level theorems to provide a flavour of the formalisation. For formal details on
the kernel-level concepts beyond our description below we refer the interested
reader to the published Isabelle/HOL specification of the kernel [1] that the
definitions here build on.

We have already introduced the notion of a policy, an upper bound on the
protection state of the system, and an accompanying abstraction, a mapping
from detailed subject and object names up to a smaller set of component labels.
We roll these objects together with a subject label into the PAS record (policy,
abstraction, subject) which is an input to all of our access control predicates.

record ′l PAS = pasPolicy :: ( ′l × auth × ′l) set
pasObjectAbs :: obj-ref ⇒ ′l

pasIRQAbs :: irq ⇒ ′l
pasASIDAbs :: asid ⇒ ′l
pasSubject :: ′l

The type parameter ′l here is any convenient type for component labels. The pol-
icy field is a graph (a set of triples ′l × auth × ′l), whose vertices are policy labels
and whose edges are authority types from the type auth which will be discussed
shortly. Abstraction functions are provided for seL4’s namespaces: objects (i.e.
system memory), interrupt request numbers and address space identifiers. Each
of these is mapped up to a policy label.

The subject in the PAS record identifies the label of the current subject. We
must associate all (write) actions with a subject in order to define the integrity
property we are proving. We will pick the subject associated with any kernel
actions at kernel entry time, choosing the label of the currently running thread.
This coarse division of actions between subjects causes some problems for mes-
sage transfers, as will be discussed below.

The identification of a subject makes all of our access control work subjective.
The integrity property depends on which subject carries out an action, because
whether that action is allowed or not depends on the allowed authority of the
subject performing it. Wellformedness of PAS records, encapsulating our policy
assumptions, will be defined in a subjective manner as well, so for any given
system and policy the authority confinement proof may be valid only for less-
trusted subjects which satisfy our policy assumptions.

3.1 Authority Types

We made the observation in Sect. 2 that most kinds of objects in seL4 are not
shared by mutually distrusting components. We found that the objects that could
be safely shared were those where authority to that object could be partitioned
between capabilities. Endpoints are a good example: Capabilities to endpoints
can be send-only or receive-only. Every endpoint in the SAC has a single send-
ing component and a single receiving component, as is typical in seL4 system
architectures. Memory frames may also be read only or read-write and a typical
sharing arrangement has a single writer, though possibly many readers.
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This led us to our chosen formalisation of authority types.

datatype auth = Receive | SyncSend | AsyncSend | Reset | Grant
| Write | Read | Control

The Receive, Read and Write authorities have been described above. We distin-
guish endpoint types via SyncSend and AsyncSend. This distinction anticipates
future work on confidentiality, where synchronous sends spread information in
both directions. Capabilities to endpoints may also have the Grant right which
permits other capabilities to be sent along with messages. The Reset authority is
conferred by all capabilities to endpoints, since these capabilities can sometimes
cause an endpoint reset even if they have zero rights. Finally, the Control au-
thority is used to represent complete control over the target; it is a conservative
approximation used for every other kind of authority in the system.

3.2 Subjective Policy Wellformedness

We aim to show authority is confined by a policy. This will not be true for all
kinds of policies. If a policy gives the subject a Grant authority to any other
component in addition to some authority which the other component should not
have, that policy can clearly be invalidated. We define wellformedness criteria on
policies, and thereby system architectures, given a specific subject, as follows. In
our example Fig. 3, we would expect the policy to be wellformed for the subjects
CTR, T, and R, but not RM.

policy-wellformed policy irqs subject ≡
(∀ a. (subject , Control, a) ∈ policy −→ subject = a) ∧
(∀ a. (subject , a, subject) ∈ policy) ∧
(∀ s r ep.

(s, Grant, ep) ∈ policy ∧ (r , Receive, ep) ∈ policy −→
(s, Control, r) ∈ policy ∧ (r , Control, s) ∈ policy) ∧

(∀ i∈irqs. ∀ p. (i , AsyncSend, p) ∈ policy −→ (subject , AsyncSend, p) ∈ policy)

The first requirement is that the subject cannot have Control authority over
another component. If it did there would be no point in separating these compo-
nents, as the subject might coerce the target into taking actions on its behalf.

The second requirement is that the subject has all kinds of authority to itself.
We always consider components permitted to reconfigure themselves arbitrarily.

The Grant restriction observes that successful capability transfers over mes-
sages are as problematic for access control as Control authority. In each direction
this restriction could be lifted if we introduced more complexity.

In the sending direction the problem is that the sender can transfer an arbi-
trary capability into the receiver’s capability space, giving the sender the new
authority to rescind capabilities from the receiver’s capability space in the future.
It may be possible in seL4 for a receiver to partition its capability space to make
this safe, but we know of no use case that justifies the resulting complexity.

In the receiving direction the problem is in the way we fix the subject of
the message send. Synchronous sends in seL4 complete when both sender and



seL4 Enforces Integrity 333

receiver are ready. If the sender is ready when our subject makes a receive
system call, it may appear that the receiver has broken authority confinement by
magically acquiring new authority. In fact the authority belonged to the sender,
which was involved as a subject in some sense, but not in a manner that is easy
to capture.

The final policy assumption relates to interrupts. Interrupts may arrive at any
time, delivering an asynchronous message to a thread waiting for that interrupt.
We must allow the current subject to send this message. We hope to revisit our
simple notion of the current subject in future work.

3.3 Policy/Abstraction Refinement

We define a kernel state s as being a refinement of the policy p as follows.

pas-refined p s ≡
policy-wellformed (pasPolicy p) (range (pasIRQAbs p)) (pasSubject p) ∧
irq-map-wellformed p s ∧
auth-graph-map (pasObjectAbs p) (state-objs-to-policy s) ⊆ pasPolicy p ∧
state-asids-to-policy p s ⊆ pasPolicy p ∧
state-irqs-to-policy p s ⊆ pasPolicy p

The kernel state refines the policy if the various forms of authority contained
within it, when labelled by the abstraction functions, are a subset of the policy.
The full definitions of the extraction functions for authority from the kernel state
are too detailed to describe here. In summary, a subject has authority over an
object for one of these reasons:

– it possesses a capability to the object.
– it is a thread which is waiting to conclude a message send. For performance

reasons the capability needed to start the send is not rechecked on comple-
tion, and thus the thread state is an authority in its own right.

– it possesses the parent capability in the capability derivation tree (cdt) of a
capability stored in the object.

– the page tables link the subject to the object.
– the active virtual address space database names the object as the page di-

rectory for an address space identifier the subject owns.
– the interrupt despatch mechanism lists the object as the receiver for an

interrupt request number the subject owns.

Note that none of this authority extraction is subjective. The pas-refined pred-
icate is subjective only because it also asserts policy-wellformed. The reason for
this is convenience: these properties are almost always needed together in the
proof.

3.4 Specification of Integrity

We define access control integrity subjectively as follows:
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integrity p s s ′ ≡
(∀ x . object-integrity p (pasObjectAbs p x) (kheap s x) (kheap s ′ x)) ∧
(∀ x . memory-integrity p x (tcb-states-of-state s) (tcb-states-of-state s ′)

(auth-ipc-buffers s) (memory-of s x) (memory-of s ′ x)) ∧
(∀ x . cdt-integrity p x (cdt s x , is-original-cap s x) (cdt s ′ x , is-original-cap s ′

x))

This says that a transition from s to s ′ satisfies access control integrity if all kernel
objects in the kernel object heap (kheap s), user memory and the capability
derivation tree (cdt s) were changed in an acceptable manner.

The object level integrity predicate is defined by eight introduction rules. The
following three rules are representative:

x = pasSubject p
object-integrity p x ko ko ′

ko = ko ′

object-integrity p x ko ko ′

ko = Some (TCB tcb) ko ′ = Some (TCB tcb ′)
∃ ctxt ′. tcb ′ = tcb(|tcb-context := ctxt ′, tcb-state := Running|)

receive-blocked-on ep (tcb-state tcb) auth ∈ {SyncSend, AsyncSend}
(pasSubject p, auth, pasObjectAbs p ep) ∈ pasPolicy p

object-integrity p l ′ ko ko ′

These cases allow the subject to make any change to itself, to leave anything
unchanged, and to send a message through an endpoint it has send access to
and into the registers (called the tcb-context here) of a waiting receiver. Note
that it is guaranteed that the receiver’s registers are changed only if the message
transfer completes and that the receiver’s state is changed to Running. It is
likewise guaranteed by memory-integrity that a receiver’s in-memory message
buffer is changed only if the message transfer completes, which is the reason for
the complexity of the arguments of the memory-integrity predicate above.

The additional object-integrity cases include a broadly symmetric case for re-
ceiving a message and resuming the sender, for resetting an endpoint and evicting
a waiting sender or receiver, for updating the list of threads waiting at an end-
point, and for removing a virtual address space the subject owns from the active
virtual address space database.

The cdt-integrity predicate limits all cdt changes to the subject’s label.
The crucial property about integrity is transitivity:

Lemma 1. integrity p s0 s1 ∧ integrity p s1 s2 −→ integrity p s0 s2

This must be true at the top level for our statement about a single system call
to compose over an execution which is a sequence of such calls.

Integrity is also trivially reflexive:

Lemma 2. integrity p s s
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3.5 Top Level Statements

Both integrity and pas-refined should be invariants of the system, which can
be demonstrated using Hoare triples in a framework for reasoning about state
monads in Isabelle/HOL. We have previously reported on this framework in
depth [5]. In summary, the precondition of a Hoare triple in this framework is a
predicate on the pre-state, the post condition is a predicate on the return value
of the function and the post-state. In the case below, the return value is unit
and can be ignored in the post condition. The framework provides a definition,
logic, and automation for assembling such triples.

Theorem 1 (Integrity). The property integrity pas st holds after all kernel
calls, assuming that the protection state refines the policy, assuming the general
system invariants invs and ct-active (current thread is active) for non-interrupt
events, assuming the policy subject is the current thread, and assuming that the
kernel state st is the state at the beginning of the kernel call. In Isabelle:

{|pas-refined pas ∩ invs ∩ (λs. ev �= Interrupt −→ ct-active s) ∩
is-subject pas ◦ cur-thread ∩ (λs. s = st)|}

call-kernel ev
{|λ-. integrity pas st |}

We have shown in previous work [12] that the preconditions invs and ev �=
Interrupt −→ ct-active s hold for any system execution at kernel entry.

Theorem 2 (Authority Confinement). The property pas-refined pas is in-
variant over kernel calls, assuming again the general system invariants invs and
ct-active for non-interrupt events, and assuming that the current subject of the
policy is the current thread.

{|pas-refined pas ∩ invs ∩ (λs. ev �= Interrupt −→ ct-active s) ∩
is-subject pas ◦ cur-thread|}

call-kernel ev
{|λ-. pas-refined pas|}

We discuss the proof of these two theorems in the next section.
Via the refinement proof shown in previous work [12], both of these properties

transfer to the C code level of the kernel. The guarantees that integrity pas
st makes about user memory transfer directly, but the guarantees pas-refined
pas and integrity pas st make about kernel-private state are mapped to their
image across the refinement relation, which means we may lose some precision.
The protection state of the kernel maps across the refinement relation precisely,
the only difference between the model-level and C-level capability types being
encoding.

The remainder of the system state does not translate so simply, but we contend
that this does not matter. We envision the integrity theorem being useful mainly
as a framing rule, with a component programmer appealing to the integrity
theorem to exclude interference from other components and to the kernel model
to reason about the component’s own actions. In this case the programmer is
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interested not in the precise C state of the private kernel data, but about the
related kernel model state. The integrity theorem will then provide exactly what
is needed.

For proving confidentiality in the future, we may have to be more careful,
because abstraction may hide sources of information that exist in the C system.

4 Proof and Application

4.1 Proof

The bulk of the proof effort was showing two Hoare triples for each kernel func-
tion: one to prove pas-refined as a postcondition, and one to prove integrity. These
lemmas are convenient to use within the Hoare framework as we can phrase them
in a predicate preservation style. In the case of the integrity predicate, we use a
form of the Hoare triple (the left hand side of the following equality) which encap-
sulates transitivity and is easy to compose sequentially. This form is equivalent
to the more explicit form (the right hand side) as a consequence of reflexivity
and transitivity:

∀P . (∀ st . {|λs. integrity pas st s ∧ P s|} f {|λrv . integrity pas st |}) =
(∀ st . {|λs. s = st ∧ P s|} f {|λrv . integrity pas st |})

The proof was accomplished by working through the kernel’s call graph from bot-
tom to top, establishing appropriate preconditions for confinement and integrity
for each function. Some appeal was made to previously proven invariants.

The proof effort generally proceeded smoothly because of the strength of the
abstraction we are making. We allow the subject to change arbitrarily anything
with its label, we map most kinds of access to the Control authority, and we
require anything to which the subject has Control authority to share the subject’s
label. These broad brushstroke justifications are easy to apply, and were valid
for many code paths of the kernel.

For example, CSpace updates always occur within the subject. As precon-
ditions for various functions such as cap-move and cap-insert we assert that
the address of the CSpace node being updated has the subject’s label and, for
pas-refined preservation, that all authority contained in the new capabilities be-
ing added is possessed by the subject in the policy. These preconditions are
properties about the static policy, not the dynamic current state, which makes
them easy to propagate through the proof.

The concept of a static policy gave us further advantages. By comparison, we
had previously attempted two different variations on a proof that seL4 directly
refines the take-grant security model [15]. These proof attempts were mired in
difficulties, because seL4 execution steps are larger than take-grant steps. In
between the take-grant steps of a single seL4 kernel call, their preconditions may
be violated because capabilities may have moved or disappeared, and so the steps
could not be composed easily. This seemed particularly unfortunate considering
that the take-grant authority model has a known static supremum. Comparing
against this static graph instead yields something like our current approach.
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Another advantage we have in this proof effort is the existing abstraction from
the C code up to our kernel model. The cdt (capability derivation tree) and
endpoint queues described already must be implemented in C through pointer
linked datastructures. In C the cdt is encoded in prefix order as a linked list.
When a subject manipulates its own capabilities it may cause updates to pointers
in list-adjacent capabilities it does not control. In the abstract kernel model the
cdt is represented as a partial map from child to parent nodes, making all of
our subject’s CSpace operations local. It would be possible to phrase an integrity
predicate on the C level which allowed appropriate pointer updates, but we think
it would be extremely difficult to work with.

The combined proof scripts for the two access control properties, including
the definitions of all formalisms and the SAC example, comprise 10500 lines
of Isabelle/HOL source. The proof was completed over a 4 month period and
consumed about 10 person months of effort. Relative to other proofs about the
kernel model this was rapid progress. Modifications to this proof have also been
fast, with the addition of the cdt-integrity aspect of the integrity property being
finished in a single day.

During the proof we did not find any behaviour in seL4 that would break
the integrity property nor did we need to change the specification or the code
of seL4. We did encounter and clarify known unwanted API complexity which
is expressed in our policy wellformedness assumption. One such known problem
is that the API optimisation for invoking the equivalent of a remote procedure
call in a server thread confers so much authority to the client that they have
to reside in the same policy label. This means the optimisation cannot be used
between trust boundaries. An alternative design was already scheduled, but is
not implemented yet.

We have found a small number of access control violations in seL4’s specifica-
tion, but we found them during a previous proof before this work began. These
problems related to capability rights that made little sense, such as read-only
Thread capabilities, and had not been well examined. The problem was solved
by purging these rights.

4.2 Application

The application scenario of the integrity theorem is a system comprising trusted
as well as untrusted components such as in the SAC example. Such scenarios are
problematic for purely mandatory access control systems such as subsystems in
a take-grant setting [15,7], because the trusted component typically needs to be
given too much authority for access control alone to enforce the system’s security
goals (hence the need for trust). Our formulation of integrity enforcement per
subject provides more flexibility. Consider a sample trace of kernel executions
on behalf of various components in the SAC.

T CTR RM R Ts0 s1 s2 s3 s4

The example policy in Fig. 3 satisfies our wellformedness condition for the com-
ponents R, T, and CTR. It does not satisfy wellformedness for RM. This means,
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given the initial state s0, we can predict bounds for authority and state mutation
using our theorems up to s2 before RM runs. Since RM is the trusted component,
we do not apply the integrity theorem, but reason about its (known) behaviour
instead and get a precise characterisation of s3. From here on, the integrity the-
orem applies again, and so on. Suitably constructed, the bounds will be low
enough to enforce a system wide state invariant over all possible traces which in
turn, if chosen appropriately, will imply the security goal.

As hinted at in Sect. 2, at state s2, the RM component could use its excessive
authority to reconfigure the system such that a new R is now connected to
networks A and D. This setup would be incompatible with the policy applied
to the transitions before, but a new policy reflecting the reconfiguration can be
constructed that applies from there on. If that new policy and the reconfiguration
are compatible with the system invariant we can conclude the security goal for
a system that dynamically changes its high-level policy even if the integrity
theorem itself assumes a static policy per kernel event.

For reasoning about such systems, it is convenient to lift wellformedness and
therefore pas-refined to sets of allowed subjects instead of a single current actor.
This means the same instantiation of the theorem can be applied and chained
over traces without further proof. We have formulated and proved the lifted
version, but omit the details here. They add no further insight.

The set versions of integrity and pas-refined are also useful in a more restricted,
but common scenario where the kernel is employed as a pure separation kernel
or hypervisor. In this scenario, all components would be considered untrusted,
and there can be one system-wide policy that is wellformed for the set of all
components. Wellformedness can be shown once per system and the subjective
integrity theorem collapses to a traditional access control formulation of integrity
that applies to all subjects.

4.3 Limitations

The limitations of the theorem as presented mostly reflect API complexities that
we circumvented by making assumptions on the policy.

The strongest such assumption is that we require two components with a Grant
connection to map to the same label. This is no more than what a traditional
take-grant analysis amounts to [7], but in our subjective setting there would
be no strong reason to forbid Grant from trusted to untrusted components if
the authority transmitted is within policy bounds. The difficulties with this and
with interrupt delivery were discussed in Sect. 3.2. Trusted components can still
delegate capabilities via shared CNodes, which appear in our graph as Control
edges. This is the approach taken by the RM component of the SAC.

Another limitation is that the theorem provides relatively coarse bounds. This
is required to achieve the level of abstraction we are seeking, but it is imagin-
able that the bounds could be too high for a particular frame condition that
is required. In this case, one could always fall back to reasoning about the pre-
cise kernel behaviour for the event under consideration, but it was of course the
purpose of the theorem to be able to avoid this.
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5 Related Work

Security properties have been the goal for OS verification from the beginning:
the first projects in this space UCLA Secure Unix [19] and PSOS [8] (Provably
Secure OS) were already aiming at such proofs. For a general overview on OS
verification, we refer to Klein [11] and concentrate below on security in particular.

A range of security properties have been proven of OS kernels and their access
control systems in the past, such as Guttman et al’s [9] work on information
flow, or Krohn et al [13] on non-interference. These proofs work on higher-level
kernel abstractions. Closest to our level of fidelity comes Richards [17] in his
description of the security analysis of the INTEGRITY-178B kernel in ACL2.
Even this model is still connected to source code manually.

As mentioned, seL4 implements a variant of the take-grant capability sys-
tem [15], a key property of which is the transitive, reflexive, and symmetric
closure over all Grant connections. This closure provides an authority bound
and is invariant over system execution. Similar properties hold for a broader
class, such as general object-capability systems [16].

We have previously proved in Isabelle that the take-grant bound holds for an
abstraction of the seL4 API [7,4]. The EROS kernel supports a similar model
with similar proof [18]. However, these abstractions were simpler than the one
presented here and not formally connected to code.

Compared to pure take-grant, our subjective formulation of integrity is less
pessimistic: it allows certain trusted components, which are separately verified,
to possess sufficient Control rights to propagate authority beyond that allowed
by the policy.

6 Conclusions

In this paper, we have presented the first formal proof of integrity enforce-
ment and authority confinement for a general-purpose OS kernel implementation.
These properties together provide a powerful framing condition for the verifica-
tion of whole systems constructed on top of seL4, which we have argued with
reference to a case study on a real example system.

We have shown that the real-life complexity in reasoning about a general-
purpose kernel implementation can be managed using abstraction. In particular,
our formalisation avoids direct reasoning about the protection state, which can
change over time, by representing it via a separate policy abstraction that is
constant across system calls. Integrity asserts that state mutations must be per-
mitted by this policy, while authority confinement asserts that the protection
state cannot evolve to contradict the policy.

This work clearly demonstrates that proving high-level security properties of
real kernel implementations, and the systems they host, is now a reality. We
should demand nothing less for security-critical applications in the future.

Acknowledgements. We thank Magnus Myreen for commenting on a draft of
this paper.
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Abstract. There are numerous textbooks on regular languages. Nearly all of
them introduce the subject by describing finite automata and only mentioning
on the side a connection with regular expressions. Unfortunately, automata are
difficult to formalise in HOL-based theorem provers. The reason is that they need
to be represented as graphs, matrices or functions, none of which are inductive
datatypes. Also convenient operations for disjoint unions of graphs and func-
tions are not easily formalisiable in HOL. In contrast, regular expressions can
be defined conveniently as a datatype and a corresponding reasoning infrastruc-
ture comes for free. We show in this paper that a central result from formal lan-
guage theory—the Myhill-Nerode theorem—can be recreated using only regular
expressions.

1 Introduction

Regular languages are an important and well-understood subject in Computer Science,
with many beautiful theorems and many useful algorithms. There is a wide range of
textbooks on this subject, many of which are aimed at students and contain very detailed
‘pencil-and-paper’ proofs (e.g. [7]). It seems natural to exercise theorem provers by
formalising the theorems and by verifying formally the algorithms.

There is however a problem: the typical approach to regular languages is to introduce
finite automata and then define everything in terms of them. For example, a regular lan-
guage is normally defined as one whose strings are recognised by a finite deterministic
automaton. This approach has many benefits. Among them is the fact that it is easy
to convince oneself that regular languages are closed under complementation: one just
has to exchange the accepting and non-accepting states in the corresponding automaton
to obtain an automaton for the complement language. The problem, however, lies with
formalising such reasoning in a HOL-based theorem prover, in our case Isabelle/HOL.
Automata are built up from states and transitions that need to be represented as graphs,
matrices or functions, none of which can be defined as an inductive datatype.

In case of graphs and matrices, this means we have to build our own reasoning in-
frastructure for them, as neither Isabelle/HOL nor HOL4 nor HOLlight support them
with libraries. Even worse, reasoning about graphs and matrices can be a real hassle
in HOL-based theorem provers. Consider for example the operation of sequencing two
automata, say A1 and A2, by connecting the accepting states of A1 to the initial state
of A2:

A1 A2 ⇒ A1 A2
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On ‘paper’ we can define the corresponding graph in terms of the disjoint union of the
state nodes. Unfortunately in HOL, the standard definition for disjoint union, namely

A1 0 A2
def
= {(1, x) | x ∈ A1} ∪ {(2, y) | y ∈ A2} (1)

changes the type—the disjoint union is not a set, but a set of pairs. Using this definition
for disjoint union means we do not have a single type for automata and hence will not be
able to state certain properties about all automata, since there is no type quantification
available in HOL (unlike in Coq, for example). An alternative, which provides us with
a single type for automata, is to give every state node an identity, for example a natural
number, and then be careful to rename these identities apart whenever connecting two
automata. This results in clunky proofs establishing that properties are invariant under
renaming. Similarly, connecting two automata represented as matrices results in very
adhoc constructions, which are not pleasant to reason about.

Functions are much better supported in Isabelle/HOL, but they still lead to similar
problems as with graphs. Composing, for example, two non-deterministic automata in
parallel requires also the formalisation of disjoint unions. Nipkow [9] dismisses for this
the option of using identities, because it leads according to him to “messy proofs”. He
opts for a variant of (1) using bit lists, but writes

“All lemmas appear obvious given a picture of the composition of au-
tomata. . . Yet their proofs require a painful amount of detail.”

and

“If the reader finds the above treatment in terms of bit lists revoltingly con-
crete, I cannot disagree. A more abstract approach is clearly desirable.”

Moreover, it is not so clear how to conveniently impose a finiteness condition upon
functions in order to represent finite automata. The best is probably to resort to more
advanced reasoning frameworks, such as locales or type classes, which are not available
in all HOL-based theorem provers.

Because of these problems to do with representing automata, there seems to be no
substantial formalisation of automata theory and regular languages carried out in HOL-
based theorem provers. Nipkow [9] establishes the link between regular expressions and
automata in the context of lexing. Berghofer and Reiter [2] formalise automata working
over bit strings in the context of Presburger arithmetic. The only larger formalisations
of automata theory are carried out in Nuprl [4] and in Coq [5].

In this paper, we will not attempt to formalise automata theory in Isabelle/HOL, but
take a different approach to regular languages. Instead of defining a regular language
as one where there exists an automaton that recognises all strings of the language, we
define a regular language as:

Definition 1. A language A is regular, provided there is a regular expression that
matches all strings of A.

The reason is that regular expressions, unlike graphs, matrices and functions, can be
easily defined as inductive datatype. Consequently a corresponding reasoning infras-
tructure comes for free. This has recently been exploited in HOL4 with a formalisa-
tion of regular expression matching based on derivatives [11] and with an equivalence
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checker for regular expressions in Isabelle/HOL [8]. The purpose of this paper is to
show that a central result about regular languages—the Myhill-Nerode theorem—can
be recreated by only using regular expressions. This theorem gives necessary and suffi-
cient conditions for when a language is regular. As a corollary of this theorem we can
easily establish the usual closure properties, including complementation, for regular
languages.

Contributions: There is an extensive literature on regular languages. To our best knowl-
edge, our proof of the Myhill-Nerode theorem is the first that is based on regular ex-
pressions, only. We prove the part of this theorem stating that a regular expression has
only finitely many partitions using certain tagging-functions. Again to our best knowl-
edge, these tagging-functions have not been used before to establish the Myhill-Nerode
theorem.

2 Preliminaries

Strings in Isabelle/HOL are lists of characters with the empty string being represented
by the empty list, written []. Languages are sets of strings. The language containing
all strings is written in Isabelle/HOL as UNIV. The concatenation of two languages is
written A · B and a language raised to the power n is written An. They are defined as
usual

A · B
def
= {s1 @ s2 | s1 ∈ A ∧ s2 ∈ B} A0 def

= {[]} An+1 def
= A · An

where @ is the list-append operation. The Kleene-star of a language A is defined as the

union over all powers, namely A� def
=
⋃

n An. In the paper we will make use of the
following properties of these constructions.

Proposition 1.
(i) A� = {[]} ∪ A · A�

(ii) If [] /∈ A and s ∈ An+1 then n < |s|.
(iii) B · (

⋃
n An) = (

⋃
n B · An)

In (ii) we use the notation |s| for the length of a string; this property states that if [] /∈ A
then the lengths of the strings in An+1 must be longer than n. We omit the proofs for
these properties, but invite the reader to consult our formalisation.1

The notation in Isabelle/HOL for the quotient of a language A according to an equiv-
alence relation ≈ is A �≈. We will write [[x]]≈ for the equivalence class defined as
{y | y ≈ x}.

Central to our proof will be the solution of equational systems involving equivalence
classes of languages. For this we will use Arden’s Lemma [3], which solves equations of
the form X = A · X ∪ B provided [] /∈ A. However we will need the following ‘reverse’
version of Arden’s Lemma (‘reverse’ in the sense of changing the order of A · X to
X · A).

Lemma 1 (Reverse Arden’s Lemma)
If [] /∈ A then X = X · A ∪ B if and only if X = B · A�.

1 Available at http://www4.in.tum.de/∼urbanc/regexp.html

http://www4.in.tum.de/~urbanc/regexp.html
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Proof For the right-to-left direction we assume X = B · A� and show that X = X · A ∪
B holds. From Prop. 1(i) we have A� = {[]} ∪ A · A�, which is equal to A� = {[]} ∪ A�

· A. Adding B to both sides gives B · A� = B · ({[]} ∪ A� · A), whose right-hand side is
equal to (B · A�) · A ∪ B. This completes this direction.

For the other direction we assume X = X · A ∪ B. By a simple induction on n, we
can establish the property

(∗) X = X · An+1 ∪ (
⋃

m∈{0..n} B · Am)

Using this property we can show that B · An ⊆ X holds for all n. From this we can infer
B · A� ⊆ X using the definition of �. For the inclusion in the other direction we assume
a string s with length k is an element in X. Since [] /∈ A we know by Prop. 1(ii) that s /∈
X · Ak+1 since its length is only k (the strings in X · Ak+1 are all longer). From (∗) it
follows then that s must be an element in

⋃
m∈{0..k} B · Am. This in turn implies that

s is in
⋃

n B · An. Using Prop. 1(iii) this is equal to B · A�, as we needed to show. ��

Regular expressions are defined as the inductive datatype

r ::= NULL | EMPTY | CHAR c | SEQ r r | ALT r r | STAR r

and the language matched by a regular expression is defined as

L(NULL)
def
= ∅

L(EMPTY)
def
= {[]}

L(CHAR c)
def
= {[c]}

L(SEQ r1 r2)
def
= L(r1) · L(r2)

L(ALT r1 r2)
def
= L(r1) ∪ L(r2)

L(STAR r)
def
= L(r)�

Given a finite set of regular expressions rs, we will make use of the operation of gen-
erating a regular expression that matches the union of all languages of rs. We only need
to know the existence of such a regular expression and therefore we use Isabelle/HOL’s
fold graph and Hilbert’s ε to define +rs. This operation, roughly speaking, folds ALT
over the set rs with NULL for the empty set. We can prove that for a finite set rs

L(+rs) =
⋃

(L ‘ rs) (2)

holds, whereby L ‘ rs stands for the image of the set rs under function L.

3 The Myhill-Nerode Theorem, First Part

The key definition in the Myhill-Nerode theorem is the Myhill-Nerode relation, which
states that w.r.t. a language two strings are related, provided there is no distinguishing
extension in this language. This can be defined as a tertiary relation.

Definition 2 (Myhill-Nerode Relation). Given a language A, two strings x and y are
Myhill-Nerode related provided

x ≈A y
def
= ∀ z. (x @ z ∈ A) = (y @ z ∈ A)
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It is easy to see that ≈A is an equivalence relation, which partitions the set of all strings,
UNIV, into a set of disjoint equivalence classes. To illustrate this quotient construction,
let us give a simple example: consider the regular language containing just the string
[c]. The relation ≈{[c]} partitions UNIV into three equivalence classes X1, X2 and X3

as follows

X1 = {[]} X2 = {[c]} X3 = UNIV − {[], [c]}

One direction of the Myhill-Nerode theorem establishes that if there are finitely many
equivalence classes, like in the example above, then the language is regular. In our
setting we therefore have to show:

Theorem 1. If finite (UNIV�≈A) then ∃ r. A = L(r).

To prove this theorem, we first define the set finals A as those equivalence classes from
UNIV�≈A that contain strings of A, namely

finals A
def
= {[[s]]≈A | s ∈ A} (3)

In our running example, X2 is the only equivalence class in finals {[c]}. It is straightfor-
ward to show that in general A =

⋃
finals A and finals A ⊆ UNIV�≈A hold. Therefore

if we know that there exists a regular expression for every equivalence class in finals A
(which by assumption must be a finite set), then we can use + to obtain a regular
expression that matches every string in A.

Our proof of Thm. 1 relies on a method that can calculate a regular expression for
every equivalence class, not just the ones in finals A. We first define the notion of one-
character-transition between two equivalence classes

Y
c

�=⇒ X
def
= Y · {[c]} ⊆ X (4)

which means that if we concatenate the character c to the end of all strings in the equiv-
alence class Y, we obtain a subset of X. Note that we do not define an automaton here,
we merely relate two sets (with the help of a character). In our concrete example we

have X1
c

�=⇒ X2, X1
d

�=⇒ X3 with d being any other character than c, and X3
d

�=⇒ X3 for
any d.

Next we construct an initial equational system that contains an equation for each
equivalence class. We first give an informal description of this construction. Suppose
we have the equivalence classes X1,. . . ,Xn, there must be one and only one that contains
the empty string [] (since equivalence classes are disjoint). Let us assume [] ∈ X1. We
build the following equational system

X1 = (Y11, CHAR c11) + . . . + (Y1p, CHAR c1p) + λ(EMPTY)
X2 = (Y21, CHAR c21) + . . . + (Y2o, CHAR c2o)

...
Xn = (Yn1, CHAR cn1) + . . . + (Ynq, CHAR cnq)
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where the terms (Yij , CHAR cij) stand for all transitions Yij
cij
�=⇒ Xi. There can only be

finitely many terms of the form (Yij , CHAR cij) in a right-hand side since by assump-
tion there are only finitely many equivalence classes and only finitely many characters.
The term λ(EMPTY) in the first equation acts as a marker for the initial state, that is the
equivalence class containing [].2 Overloading the function L for the two kinds of terms
in the equational system, we have

L(Y, r)
def
= Y · L(r) L(λ(r))

def
= L(r)

and we can prove for X2..n that the following equations

Xi = L(Yi1, CHAR ci1) ∪ . . . ∪ L(Yiq, CHAR ciq). (5)

hold. Similarly for X1 we can show the following equation

X1 = L(Y11, CHAR c11) ∪ . . . ∪ L(Y1p, CHAR c1p) ∪ L(λ(EMPTY)). (6)

The reason for adding the λ-marker to our initial equational system is to obtain this
equation: it only holds with the marker, since none of the other terms contain the empty
string. The point of the initial equational system is that solving it means we will be able
to extract a regular expression for every equivalence class.

Our representation for the equations in Isabelle/HOL are pairs, where the first com-
ponent is an equivalence class (a set of strings) and the second component is a set of
terms. Given a set of equivalence classes CS, our initial equational system Init CS is
thus formally defined as

Init rhs CS X
def
= if [] ∈ X

then {(Y, CHAR c) | Y ∈ CS ∧ Y
c

�=⇒ X} ∪ {λ(EMPTY)}
else {(Y, CHAR c) | Y ∈ CS ∧ Y

c
�=⇒ X}

Init CS
def
= {(X, Init rhs CS X) | X ∈ CS}

(7)

Because we use sets of terms for representing the right-hand sides of equations, we can
prove (5) and (6) more concisely as

Lemma 2. If (X, rhs) ∈ Init (UNIV�≈A) then X =
⋃

L ‘ rhs.

Our proof of Thm. 1 will proceed by transforming the initial equational system into one
in solved form maintaining the invariant in Lem. 2. From the solved form we will be
able to read off the regular expressions.

In order to transform an equational system into solved form, we have two operations:
one that takes an equation of the form X = rhs and removes any recursive occurrences of

2 Note that we mark, roughly speaking, the single ‘initial’ state in the equational system, which
is different from the method by Brzozowski [3], where he marks the ‘terminal’ states. We
are forced to set up the equational system in our way, because the Myhill-Nerode relation
determines the ‘direction’ of the transitions—the successor ‘state’ of an equivalence class Y
can be reached by adding a character to the end of Y. This is also the reason why we have to
use our reverse version of Arden’s Lemma.
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X in the rhs using our variant of Arden’s Lemma. The other operation takes an equation
X = rhs and substitutes X throughout the rest of the equational system adjusting the
remaining regular expressions appropriately. To define this adjustment we define the
append-operation taking a term and a regular expression as argument

(Y, r2) � r1
def
= (Y, SEQ r2 r1) λ(r2) � r1

def
= λ(SEQ r2 r1)

We lift this operation to entire right-hand sides of equations, written as rhs � r. With
this we can define the arden-operation for an equation of the form X = rhs as:

Arden X rhs
def
= let

rhs ′ = rhs − {(X, r) | (X, r) ∈ rhs}
r ′ = STAR (+{r | (X, r) ∈ rhs})

in rhs ′ � r ′

(8)

In this definition, we first delete all terms of the form (X, r) from rhs; then we calculate
the combined regular expressions for all r coming from the deleted (X, r), and take
the STAR of it; finally we append this regular expression to rhs ′. It can be easily seen
that this operation mimics Arden’s Lemma on the level of equations. To ensure the
non-emptiness condition of Arden’s Lemma we say that a right-hand side is ardenable
provided

ardenable rhs
def
= ∀Y r. (Y, r) ∈ rhs −→ [] /∈ L(r)

This allows us to prove a version of Arden’s Lemma on the level of equations.

Lemma 3. Given an equation X = rhs. If X =
⋃
L ‘ rhs, ardenable rhs, and finite rhs,

then X =
⋃
L ‘ (Arden X rhs).

Our ardenable condition is slightly stronger than needed for applying Arden’s Lemma,
but we can still ensure that it holds troughout our algorithm of transforming equations
into solved form. The substitution-operation takes an equation of the form X = xrhs
and substitutes it into the right-hand side rhs.

Subst rhs X xrhs
def
= let

rhs ′ = rhs − {(X, r) | (X, r) ∈ rhs}
r ′ = +{r | (X, r) ∈ rhs}

in rhs ′ ∪ (xrhs � r ′)

We again delete first all occurrences of (X, r) in rhs; we then calculate the regular
expression corresponding to the deleted terms; finally we append this regular expression
to xrhs and union it up with rhs ′. When we use the substitution operation we will arrange
it so that xrhs does not contain any occurrence of X.

With these two operations in place, we can define the operation that removes one
equation from an equational systems ES. The operation Subst all substitutes an equa-
tion X = xrhs throughout an equational system ES; Remove then completely removes
such an equation from ES by substituting it to the rest of the equational system, but first
eliminating all recursive occurrences of X by applying Arden to xrhs.
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Subst all ES X xrhs
def
= {(Y, Subst yrhs X xrhs) | (Y, yrhs) ∈ ES}

Remove ES X xrhs
def
= Subst all (ES − {(X, xrhs)}) X (Arden X xrhs)

Finally, we can define how an equational system should be solved. For this we will
need to iterate the process of eliminating equations until only one equation will be left
in the system. However, we do not just want to have any equation as being the last one,
but the one involving the equivalence class for which we want to calculate the regular
expression. Let us suppose this equivalence class is X. Since X is the one to be solved, in
every iteration step we have to pick an equation to be eliminated that is different from
X. In this way X is kept to the final step. The choice is implemented using Hilbert’s
choice operator, written SOME in the definition below.

Iter X ES
def
= let

(Y, yrhs) = SOME (Y, yrhs). (Y, yrhs) ∈ ES ∧ X �= Y
in Remove ES Y yrhs

The last definition we need applies Iter over and over until a condition Cond is not
satisfied anymore. This condition states that there are more than one equation left in
the equational system ES. To solve an equational system we use Isabelle/HOL’s while-
operator as follows:

Solve X ES
def
= while Cond (Iter X) ES

We are not concerned here with the definition of this operator (see Berghofer and Nip-
kow [1]), but note that we eliminate in each Iter-step a single equation, and therefore
have a well-founded termination order by taking the cardinality of the equational sys-
tem ES. This enables us to prove properties about our definition of Solve when we ‘call’
it with the equivalence class X and the initial equational system Init (UNIV�≈A) from
(7) using the principle:

invariant (Init (UNIV�≈A))
∀ES. invariant ES ∧ Cond ES −→ invariant (Iter X ES)
∀ES. invariant ES ∧ Cond ES −→ card (Iter X ES) < card ES
∀ES. invariant ES ∧ ¬ Cond ES −→ P ES

P (Solve X (Init (UNIV�≈A)))

(9)

This principle states that given an invariant (which we will specify below) we can prove
a property P involving Solve. For this we have to discharge the following proof obliga-
tions: first the initial equational system satisfies the invariant; second the iteration step
Iter preserves the invariant as long as the condition Cond holds; third Iter decreases the
termination order, and fourth that once the condition does not hold anymore then the
property P must hold.

The property P in our proof will state that Solve X (Init (UNIV�≈A)) returns with a
single equation X = xrhs for some xrhs, and that this equational system still satisfies the
invariant. In order to get the proof through, the invariant is composed of the following
six properties:
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invariant ES
def
= finite ES (finiteness)
∧ ∀ (X, rhs)∈ES. finite rhs (finiteness rhs)
∧ ∀ (X, rhs)∈ES. X =

⋃
L ‘ rhs (soundness)

∧ ∀X rhs rhs ′. (X, rhs) ∈ ES ∧ (X, rhs ′) ∈ ES −→ rhs = rhs ′

(distinctness)
∧ ∀ (X, rhs)∈ES. ardenable rhs (ardenable)
∧ ∀ (X, rhs)∈ES. rhss rhs ⊆ lhss ES (validity)

The first two ensure that the equational system is always finite (number of equations
and number of terms in each equation); the second makes sure the ‘meaning’ of the
equations is preserved under our transformations. The other properties are a bit more
technical, but are needed to get our proof through. Distinctness states that every equa-
tion in the system is distinct. Ardenable ensures that we can always apply the Arden
operation. The last property states that every rhs can only contain equivalence classes
for which there is an equation. Therefore lhss is just the set containing the first compo-
nents of an equational system, while rhss collects all equivalence classes X in the terms

of the form (X, r). That means formally lhss ES
def
= {X | (X, rhs) ∈ ES} and rhss rhs

def
=

{X | (X, r) ∈ rhs}.
It is straightforward to prove that the initial equational system satisfies the invariant.

Lemma 4. If finite (UNIV�≈A) then invariant (Init (UNIV�≈A)).

Proof. Finiteness is given by the assumption and the way how we set up the initial
equational system. Soundness is proved in Lem. 2. Distinctness follows from the fact
that the equivalence classes are disjoint. The ardenable property also follows from the
setup of the initial equational system, as does validity. ��

Next we show that Iter preserves the invariant.

Lemma 5. If invariant ES and (X, rhs) ∈ ES and Cond ES then invariant (Iter X
ES).

Proof. The argument boils down to choosing an equation Y = yrhs to be eliminated and
to show that Subst all (ES − {(Y, yrhs)}) Y (Arden Y yrhs) preserves the invariant. We
prove this as follows:

∀ ES. invariant (ES ∪ {(Y, yrhs)}) implies invariant (Subst all ES Y (Arden Y yrhs))

Finiteness is straightforward, as the Subst and Arden operations keep the equational
system finite. These operations also preserve soundness and distinctness (we proved
soundness for Arden in Lem. 3). The property ardenable is clearly preserved because
the append-operation cannot make a regular expression to match the empty string. Va-
lidity is given because Arden removes an equivalence class from yrhs and then Subst all
removes Y from the equational system. Having proved the implication above, we can
instantiate ES with ES − {(Y, yrhs)} which matches with our proof-obligation of
Subst all. Since ES = ES − {(Y, yrhs)} ∪ {(Y, yrhs)}, we can use the assumption to
complete the proof. ��
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We also need the fact that Iter decreases the termination measure.

Lemma 6. If invariant ES and (X, rhs) ∈ ES and Cond ES then card (Iter X ES) <
card ES.

Proof. By assumption we know that ES is finite and has more than one element. There-
fore there must be an element (Y, yrhs) ∈ ES with (Y, yrhs) �= (X, rhs). Using the
distinctness property we can infer that Y �= X. We further know that Remove ES Y yrhs
removes the equation Y = yrhs from the system, and therefore the cardinality of Iter
strictly decreases. ��

This brings us to our property we want to establish for Solve.

Lemma 7. If finite (UNIV�≈A) and X ∈ UNIV�≈A then there exists a rhs such that
Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X, rhs)}.

Proof. In order to prove this lemma using (9), we have to use a slightly stronger in-
variant since Lem. 5 and 6 have the precondition that (X, rhs) ∈ ES for some rhs. This
precondition is needed in order to choose in the Iter-step an equation that is not X = rhs.
Therefore our invariant cannot be just invariant ES, but must be invariant ES ∧ (∃ rhs.
(X, rhs) ∈ ES). By assumption X ∈ UNIV�≈A and Lem. 4, the more general invariant
holds for the initial equational system. This is premise 1 of (9). Premise 2 is given by
Lem. 5 and the fact that Iter might modify the rhs in the equation X = rhs, but does not
remove it. Premise 3 of (9) is by Lem. 6. Now in premise 4 we like to show that there
exists a rhs such that ES = {(X, rhs)} and that invariant {(X, rhs)} holds, provided the
condition Cond does not holds. By the stronger invariant we know there exists such a
rhs with (X, rhs) ∈ ES. Because Cond is not true, we know the cardinality of ES is 1.
This means ES must actually be the set {(X, rhs)}, for which the invariant holds. This
allows us to conclude that Solve X (Init (UNIV�≈A)) = {(X, rhs)} and invariant {(X,
rhs)} hold, as needed. ��

With this lemma in place we can show that for every equivalence class in UNIV�≈A
there exists a regular expression.

Lemma 8. If finite (UNIV�≈A) and X ∈ UNIV�≈A then ∃ r. X = L(r).

Proof. By the preceding lemma, we know that there exists a rhs such that Solve X
(Init (UNIV�≈A)) returns the equation X = rhs, and that the invariant holds for this
equation. That means we know X =

⋃
L ‘ rhs. We further know that this is equal to⋃

L ‘ (Arden X rhs) using the properties of the invariant and Lem. 3. Using the validity
property for the equation X = rhs, we can infer that rhss rhs ⊆ {X} and because the
Arden operation removes that X from rhs, that rhss (Arden X rhs) = ∅. This means
the right-hand side Arden X rhs can only consist of terms of the form λ(r). So we can
collect those (finitely many) regular expressions rs and have X = L(+rs). With this we
can conclude the proof. ��

Lem. 8 allows us to finally give a proof for the first direction of the Myhill-Nerode
theorem.
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Proof (of Thm. 1). By Lem. 8 we know that there exists a regular expression for every
equivalence class in UNIV�≈A. Since finals A is a subset of UNIV�≈A, we also know
that for every equivalence class in finals A there exists a regular expression. Moreover
by assumption we know that finals A must be finite, and therefore there must be a finite
set of regular expressions rs such that

⋃
finals A = L(+rs). Since the left-hand side is

equal to A, we can use +rs as the regular expression that is needed in the theorem. ��

4 Myhill-Nerode, Second Part

We will prove in this section the second part of the Myhill-Nerode theorem. It can be
formulated in our setting as follows.

Theorem 2. Given r is a regular expression, then finite (UNIV�≈L(r)).

The proof will be by induction on the structure of r. It turns out the base cases are
straightforward.

Proof (Base Cases). The cases for NULL, EMPTY and CHAR are routine, because we
can easily establish that

UNIV�≈∅ = {UNIV}
UNIV�≈{[]} ⊆ {{[]}, UNIV − {[]}}
UNIV�≈{[c]} ⊆ {{[]}, {[c]}, UNIV − {[], [c]}}

hold, which shows that UNIV�≈L(r) must be finite. ��
Much more interesting, however, are the inductive cases. They seem hard to solve di-
rectly. The reader is invited to try.

Our proof will rely on some tagging-functions defined over strings. Given the induc-
tive hypothesis, it will be easy to prove that the range of these tagging-functions is finite

(the range of a function f is defined as range f
def
= f ‘ UNIV). With this we will be able to

infer that the tagging-functions, seen as relations, give rise to finitely many equivalence
classes of UNIV. Finally we will show that the tagging-relations are more refined than
≈L(r), which implies that UNIV �≈L(r) must also be finite (a relation R1 is said to
refine R2 provided R1 ⊆ R2). We formally define the notion of a tagging-relation as
follows.

Definition 3 (Tagging-Relation). Given a tagging-function tag, then two strings x and
y are tag-related provided

x =tag= y
def
= tag x = tag y .

In order to establish finiteness of a set A, we shall use the following powerful princi-
ple from Isabelle/HOL’s library.

If finite (f ‘ A) and inj on f A then finite A. (10)

It states that if an image of a set under an injective function f (injective over this set) is
finite, then the set A itself must be finite. We can use it to establish the following two
lemmas.

Lemma 9. If finite (range tag) then finite (UNIV�=tag=).



352 C. Wu, X. Zhang, and C. Urban

Proof. We set in (10), f to be X → tag ‘ X. We have range f to be a subset of Pow
(range tag), which we know must be finite by assumption. Now f (UNIV�=tag=) is
a subset of range f, and so also finite. Injectivity amounts to showing that X = Y under
the assumptions that X, Y ∈ UNIV �=tag= and f X = f Y. From the assumptions we
can obtain x ∈ X and y ∈ Y with tag x = tag y. Since x and y are tag-related, this in turn
means that the equivalence classes X and Y must be equal. ��

Lemma 10. Given two equivalence relations R1 and R2, whereby R1 refines R2. If finite
(UNIV�R1) then finite (UNIV�R2).

Proof. We prove this lemma again using (10). This time we set f to be X → {[[x]]R1
| x

∈ X}. It is easy to see that finite (f ‘ UNIV�R2) because it is a subset of Pow (UNIV�
R1), which is finite by assumption. What remains to be shown is that f is injective on
UNIV�R2. This is equivalent to showing that two equivalence classes, say X and Y, in
UNIV�R2 are equal, provided f X = f Y. For X = Y to be equal, we have to find two
elements x ∈ X and y ∈ Y such that they are R2 related. We know there exists a x ∈ X
with X = [[x]]R2

. From the latter fact we can infer that [[x]]R1
∈ f X and further [[x]]R1

∈ f
Y. This means we can obtain a y such that [[x]]R1

= [[y]]R1
holds. Consequently x and y

are R1-related. Since by assumption R1 refines R2, they must also be R2-related, as we
need to show. ��

Chaining Lem. 9 and 10 together, means in order to show that UNIV�≈L(r) is finite,
we have to find a tagging-function whose range can be shown to be finite and whose
tagging-relation refines ≈L(r). Let us attempt the ALT-case first.

Proof (ALT-Case). We take as tagging-function

tagALT A B x
def
= ([[x]]≈A , [[x]]≈B)

where A and B are some arbitrary languages. We can show in general, if finite (UNIV�
≈A) and finite (UNIV�≈B) then finite (UNIV�≈A × UNIV�≈B) holds. The range
of tagALT A B is a subset of this product set—so finite. It remains to be shown that
=tagALT A B= refines ≈A ∪ B. This amounts to showing

tagALT A B x = tagALT A B y −→ x ≈A ∪ B y

which by unfolding the Myhill-Nerode relation is identical to

∀ z. tagALT A B x = tagALT A B y ∧ x @ z ∈ A ∪ B −→ y @ z ∈ A ∪ B (11)

since both =tagALT A B= and ≈A ∪ B are symmetric. To solve (11) we just have to
unfold the definition of the tagging-function and analyse in which set, A or B, the string
x @ z is. The definition of the tagging-function will give us in each case the information
to infer that y @ z ∈ A ∪ B. Finally we can discharge this case by setting A to L(r1) and
B to L(r2). ��

The pattern in (11) is repeated for the other two cases. Unfortunately, they are slightly
more complicated. In the SEQ-case we essentially have to be able to infer that

. . . x @ z ∈ A · B −→ y @ z ∈ A · B



Myhill-Nerode Using Regular Expressions 353

using the information given by the appropriate tagging-function. The complication is to
find out what the possible splits of x @ z are to be in A · B (this was easy in case of A ∪
B). To deal with this complication we define the notions of string prefixes

x ≤ y
def
= ∃ z. y = x @ z x < y

def
= x ≤ y ∧ x �= y

and string subtraction:

[] − y
def
= [] x − []

def
= x cx − dy

def
= if c = d then x − y else cx

where c and d are characters, and x and y are strings.
Now assuming x @ z ∈ A · B there are only two possible ways of how to ‘split’ this

string to be in A · B:

x ′ x − x ′ z

x z

x @ z ∈ A · B

(x − x ′) @ z ∈ Bx ′∈ A

x z ′ z − z ′

x z

x @ z ∈ A · B

x @ z ′∈ A (z − z ′) ∈ B

Either there is a prefix of x in A and the rest is in B (first picture), or x and a prefix of z
is in A and the rest in B (second picture). In both cases we have to show that y @ z ∈ A
· B. For this we use the following tagging-function

tagSEQ A B x
def
= ([[x]]≈A , {[[(x − x ′)]]≈B | x ′≤ x ∧ x ′ ∈ A})

with the idea that in the first split we have to make sure that (x − x ′) @ z is in the
language B.

Proof (SEQ-Case). If finite (UNIV �≈A) and finite (UNIV �≈B) then finite (UNIV �
≈A × Pow (UNIV�≈B)) holds. The range of tagSEQ A B is a subset of this product
set, and therefore finite. We have to show injectivity of this tagging-function as

∀ z. tagSEQ A B x = tagSEQ A B y ∧ x @ z ∈ A · B −→ y @ z ∈ A · B

There are two cases to be considered (see pictures above). First, there exists a x ′ such
that x ′∈ A, x ′≤ x and (x − x ′) @ z ∈ B hold. We therefore have

[[(x − x ′)]]≈B ∈ {[[(x − x ′)]]≈B | x ′≤ x ∧ x ′∈ A}
and by the assumption about tagSEQ A B also

[[(x − x ′)]]≈B ∈ {[[(y − y ′)]]≈B | y ′≤ y ∧ y ′∈ A}
That means there must be a y ′ such that y ′∈ A and [[(x − x ′)]]≈B = [[(y − y ′)]]≈B . This
equality means that x − x ′≈B y − y ′ holds. Unfolding the Myhill-Nerode relation and
together with the fact that (x − x ′) @ z ∈ B, we have (y − y ′) @ z ∈ B. We already know
y ′∈ A, therefore y @ z ∈ A · B, as needed in this case.

Second, there exists a z ′ such that x @ z ′ ∈ A and z − z ′ ∈ B. By the assumption
about tagSEQ A B we have [[x]]≈A = [[y]]≈A and thus x ≈A y. Which means by the
Myhill-Nerode relation that y @ z ′∈ A holds. Using z − z ′∈ B, we can conclude also in
this case with y @ z ∈ A · B. We again can complete the SEQ-case by setting A to L(r1)
and B to L(r2). ��
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The case for STAR is similar to SEQ, but poses a few extra challenges. When we analyse
the case that x @ z is an element in A� and x is not the empty string, we have the
following picture:

x ′
max x − x ′

max za zb

x z

x @ z ∈ A�

(x − x ′
max) @ za ∈ Ax ′

max ∈ A� zb ∈ A�

(x − x ′
max) @ z ∈ A�

We can find a strict prefix x ′ of x such that x ′∈ A�, x ′< x and the rest (x − x ′) @ z ∈ A�.
For example the empty string [] would do. There are potentially many such prefixes, but
there can only be finitely many of them (the string x is finite). Let us therefore choose
the longest one and call it x ′

max. Now for the rest of the string (x − x ′
max) @ z we

know it is in A�. By definition of A�, we can separate this string into two parts, say
a and b, such that a ∈ A and b ∈ A�. Now a must be strictly longer than x − x ′

max,
otherwise x ′

max is not the longest prefix. That means a ‘overlaps’ with z, splitting it
into two components za and zb. For this we know that (x − x ′

max) @ za ∈ A and zb ∈
A�. To cut a story short, we have divided x @ z ∈ A� such that we have a string a with
a ∈ A that lies just on the ‘border’ of x and z. This string is (x − x ′

max) @ za.
In order to show that x @ z ∈ A� implies y @ z ∈ A�, we use the following tagging-

function:

tagST AR A x
def
= {[[(x − x ′)]]≈A | x ′ < x ∧ x ′∈ A�}

Proof (STAR-Case). If finite (UNIV �≈A) then finite (Pow (UNIV �≈A)) holds. The
range of tagST AR A is a subset of this set, and therefore finite. Again we have to show
injectivity of this tagging-function as

∀ z. tagST AR A x = tagST AR A y ∧ x @ z ∈ A� −→ y @ z ∈ A�

We first need to consider the case that x is the empty string. From the assumption we can
infer y is the empty string and clearly have y @ z ∈ A�. In case x is not the empty string,
we can divide the string x @ z as shown in the picture above. By the tagging-function
we have

[[(x − x ′
max)]]≈A ∈ {[[(x − x ′)]]≈A | x ′ < x ∧ x ′ ∈ A�}

which by assumption is equal to

[[(x − x ′
max)]]≈A ∈ {[[(y − y ′)]]≈A | y ′ < y ∧ y ′∈ A�}

and we know that we have a y ′ ∈ A� and y ′ < y and also know x − x ′
max ≈A y − y ′.

Unfolding the Myhill-Nerode relation we know (y − y ′) @ za ∈ A. We also know that
zb ∈ A�. Therefore y ′ @ ((y − y ′) @ za) @ zb ∈ A�, which means y @ z ∈ A�. As the
last step we have to set A to L(r) and complete the proof. ��
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5 Conclusion and Related Work

In this paper we took the view that a regular language is one where there exists a reg-
ular expression that matches all of its strings. Regular expressions can conveniently be
defined as a datatype in HOL-based theorem provers. For us it was therefore interesting
to find out how far we can push this point of view. We have established in Isabelle/HOL
both directions of the Myhill-Nerode theorem.

Theorem 3 (The Myhill-Nerode Theorem)
A language A is regular if and only if finite (UNIV�≈A).

Having formalised this theorem means we pushed our point of view quite far. Using this
theorem we can obviously prove when a language is not regular—by establishing that
it has infinitely many equivalence classes generated by the Myhill-Nerode relation (this
is usually the purpose of the pumping lemma [7]). We can also use it to establish the
standard textbook results about closure properties of regular languages. Interesting is
the case of closure under complement, because it seems difficult to construct a regular
expression for the complement language by direct means. However the existence of
such a regular expression can be easily proved using the Myhill-Nerode theorem since

s1 ≈A s2 if and only if s1 ≈A
s2

holds for any strings s1 and s2. Therefore A and the complement language A give rise
to the same partitions. Proving the existence of such a regular expression via automata
using the standard method would be quite involved. It includes the steps: regular ex-
pression ⇒ non-deterministic automaton ⇒ deterministic automaton ⇒ complement
automaton ⇒ regular expression.

While regular expressions are convenient in formalisations, they have some limita-
tions. One is that there seems to be no method of calculating a minimal regular expres-
sion (for example in terms of length) for a regular language, like there is for automata.
On the other hand, efficient regular expression matching, without using automata, poses
no problem [10]. For an implementation of a simple regular expression matcher, whose
correctness has been formally established, we refer the reader to Owens and Slind [11].

Our formalisation consists of 780 lines of Isabelle/Isar code for the first direction
and 460 for the second, plus around 300 lines of standard material about regular lan-
guages. While this might be seen as too large to count as a concise proof pearl, this
should be seen in the context of the work done by Constable at al [4] who formalised
the Myhill-Nerode theorem in Nuprl using automata. They write that their four-member
team needed something on the magnitude of 18 months for their formalisation. The esti-
mate for our formalisation is that we needed approximately 3 months and this included
the time to find our proof arguments. Unlike Constable et al, who were able to follow
the proofs from [6], we had to find our own arguments. So for us the formalisation was
not the bottleneck. It is hard to gauge the size of a formalisation in Nurpl, but from
what is shown in the Nuprl Math Library about their development it seems substan-
tially larger than ours. The code of ours can be found in the Mercurial Repository at
http://www4.in.tum.de/∼urbanc/regexp.html.

Our proof of the first direction is very much inspired by Brzozowski’s algebraic
method used to convert a finite automaton to a regular expression [3]. The close

http://www4.in.tum.de/~urbanc/regexp.html
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connection can be seen by considering the equivalence classes as the states of the min-
imal automaton for the regular language. However there are some subtle differences.
Since we identify equivalence classes with the states of the automaton, then the most
natural choice is to characterise each state with the set of strings starting from the ini-
tial state leading up to that state. Usually, however, the states are characterised as the
strings starting from that state leading to the terminal states. The first choice has con-
sequences about how the initial equational system is set up. We have the λ-term on our
‘initial state’, while Brzozowski has it on the terminal states. This means we also need
to reverse the direction of Arden’s Lemma.

We briefly considered using the method Brzozowski presented in the Appendix of [3]
in order to prove the second direction of the Myhill-Nerode theorem. There he calcu-
lates the derivatives for regular expressions and shows that for every language there
can be only finitely many of them (if regarded equal modulo ACI). We could have
used as tagging-function the set of derivatives of a regular expression with respect to
a language. Using the fact that two strings are Myhill-Nerode related whenever their
derivative is the same, together with the fact that there are only finitely such derivatives
would give us a similar argument as ours. However it seems not so easy to calculate
the set of derivatives modulo ACI. Therefore we preferred our direct method of using
tagging-functions. This is also where our method shines, because we can completely
side-step the standard argument [7] where automata need to be composed, which as
stated in the Introduction is not so easy to formalise in a HOL-based theorem prover.
However, it is also the direction where we had to spend most of the ‘conceptual’ time,
as our proof-argument based on tagging-functions is new for establishing the Myhill-
Nerode theorem. All standard proofs of this direction use arguments over automata.
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LCF-Style Bit-Blasting in HOL4

Anthony C.J. Fox
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Abstract. This paper describes a new proof tool for deciding bit-vector
problems in HOL4. The approach is based on “bit-blasting”, wherein
word expressions are mapped into propositional formulas, which are then
handed to a SAT solver. Significantly, the implementation uses the LCF
approach, which means that the soundness of the tool is guaranteed by
the soundness of HOL4’s logical kernel.

1 Introduction

Interactive theorem provers are often used in areas such as hardware design, com-
puter architectures, compilers, operating systems, protocols and cryptography.
Inevitably these domains provide an abundant source of bit-vector problems,
and users would like the ability to prove these goals automatically. For example,
consider the formula

(a(:32) && 3 = 0) ⇒ ((a + 4) && 3 = 0)

where a(:32) indicates that a is a 32-bit word and && is bitwise-and. This
theorem shows that adding four to a word aligned memory address does not
break the alignment property. Such goals are potentially challenging for HOL4
users, but this goal can now be solved fully automatically and quickly (0.05 s).

The tool presented here uses an established technique called bit-blasting. Al-
though the implementation is much simpler than highly advanced bit-vector de-
cision procedures (such as [3]), the tool is implemented in an LCF style, which
is of great advantage with respect to ensuring logical soundness. The principle
design objective was to produce a simple tool that can handle many “small but
somewhat tricky” bit-vectors problems that often arise during interactive proofs.
In this sense the tool has already been very successful. Recently it has been used
to great effect by Magnus Myreen during machine code verification as part of
the Jitawa project, see [5].

There will be bit-vector problems that are too complex for the tool to handle
quickly. Nevertheless, complex problems can often be tackled with some human
guidance.1 As with provers such as PVS and Isabelle, HOL4 users can also call
external high-performance proof tools, treating these tools as oracles. Recently
Tjark Weber has integrated SMT solvers with bit-vector capabilities into HOL,
see [2]. Theorems that are tagged as coming from oracles are considered unde-
sirable in HOL, since they do not offer the high assurance of LCF-style proofs.
Weber uses our new LCF procedure to safely reconstruct SMT bit-vector proofs.
1 Users can discover and apply helpful abstractions, case-splits and simplifications.

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 357–362, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Representation of Bit-Vectors

Bit-vectors can be represented as finite Cartesian products Bn where n is the
finite, fixed width (or length) of the bit-vector. At first glance, it does not seem
possible to directly represent the set Bn using HOL4’s simple type system. How-
ever, in [4] John Harrison showed that parametric polymorphism can be used to
specify vector widths. Using Harrison’s approach bit-vectors are represented by
the type bool[α] and the word length is given by the term dim(:α), where α is
a type variable. Readers are referred to Harrison’s paper for the details of this
approach.

Note that HOL4’s parser and pretty-printer support numeric types, which
makes it easy to work with concrete bit-vector instances. For example, 32-bit
words are represented by bool[32] and we have dim(:32) = 32.

This representation of bit-vectors has been used in HOL4 since 2005 and
has worked well in practice. In particular we gain the benefits of exploiting
HOL4’s well established support for parametric polymorphism. There are some
limitations — the type system is not intelligent with regard to result type of word
extraction and concatenation, but some extra parsing tool support is provided
to help address this drawback.

3 Bit-Vector Operations

Having defined a representing type for bit-vectors, one can define a collection of
standard operations. These generally split into three camps:

1. Arithmetic operations: +, unary −, binary −, ×, ÷, mod, <, ≤, >, and ≥.
In some cases there are signed (2’s complement) and unsigned variants.

2. Bitwise/logical operations : ¬ (bitwise NOT), && (bitwise AND), ‖ (bitwise
OR), ⊕ (bitwise XOR), shifts and rotations.

3. Casting maps : unsigned maps to and from N (w2n and n2w), signed maps
to and from Z (w2i and i2w), unsigned and signed word-to-word maps (w2w
and sw2sw), and word extraction and concatenation.

These and other operations are defined through the use of a finite Cartesian
product binder FCP:

( FCP ) : (num → β) → β[α]

and a projection function

( ′ ) : β[α] → num → β .

For bit-vectors, β is specialised to bool. The FCP binder constructs a Cartesian
product from a function.2 The bitwise operators are easy to define; for example,
bitwise conjunction && : bool[α] → bool[α] → bool[α] is defined as follows:

a && b =def FCP i. (a ′ i) ∧ (b ′ i) .

2 In HOL4, the binder syntax FCP i. f i is used to denote FCP (λi. f i).
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It is also easy to prove that

∀a, b : bool[α] i : num. i < dim(:α) ⇒ ((a && b) ′ i = (a ′ i) ∧ (b ′ i)) .

The arithmetic operations are defined using the maps w2n and n2w. For
example, addition is defined as follows:

a + b =def n2w(w2n(a) + w2n(b)) .

Here bit-vector addition is on the left-hand side and natural number addition is
on the right-hand side. The natural number mappings are defined as follows:

w2n(a : bool[α]) =def

∑
0≤i<dim(:α)

if a ′ i then 2i else 0

and
n2w(n) =def FCP i. (n div 2i) mod 2 = 1 .

To facilitate bit-blasting, the following theorems are proved:

 ∀x y. x + y = FCP i. Sum i (λi. x ′ i) (λi. y ′ i) ⊥
 ∀x y. x− y = FCP i. Sum i (λi. x ′ i) (λi. ¬(y ′ i)) "

 ∀x y. x(:α) < y = ¬(Carry (dim(:α)) (λi. x ′ i) (λi. ¬(y ′ i)) ")

where " represents true, ⊥ is false, < is unsigned less-than (<+ in HOL4) and

Carry, Sum : num → (num → bool) → (num → bool) → bool → bool

are primitive recursive, circuit-like specifications for a ripple-carry adder. At
present bit-blasting of division is not supported and general multiplication has
been constrained to small word sizes (at the moment less than nine bits). How-
ever, multiplication by a constant is supported at all word lengths, e.g. 3 · x.

4 Bit-Blasting

Many common bit-vector problems can be readily solved using simplification,
where collections of algebraic equations and rules are applied as rewrites. This
approach works especially well when working with bit-vector operations that
come exclusively from one category, i.e. all arithmetic or all bitwise. For example,
the following are automatically proved via standard word simplification:

b · 2 + 4 · a− b + a− b = 5 · a,

a⊕ (b ‖ a ‖ ¬b) = (¬(a && ¬a) ‖ a ‖ b) && ¬a .

Things get harder when operations are freely mixed, for example:

((a(:32) + w2w(b(:8)))[7 : 0] = a[7 : 0] + b,

¬(x ′ 0) ⇒ ((17 · x(:8)) && 6 = 7 · x)

Here, w2w : bool[α] → bool[β] is a word-to-word mapping (this zero extends
on expansion and truncates on contraction) and x[i : j] represents extraction
over a bit range. These are the sorts of goals that users may find hard to prove
manually but that bit-blasting can handle with ease.
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Implementation. As with many proof procedures in HOL4, the underlying
LCF implementation is in the form of a conversion, which converts a term into
an equality theorem, where the original term occurs on the left-hand side. A
decision procedure succeeds if the right-hand side after conversion is ".

To demonstrate the implementation, the following example formula is used:

(a(:2) < b) ∧ (b < c) ∧ (c < d) ⇒ (a ‖ (3 · d) = 1) .

The domain is 2-bit words (i.e. {0,1,2,3}). The chain of orderings in the an-
tecedent imply that a must be the infimum 0 and d must be the supremum 3
and hence the equality is known to hold (since 0 ‖ (3 · 3) = 1).

The decision procedure calls the conversion BBLAST_CONV, which starts by
applying standard bit vector simplifications.3 The next stage is identifying sub-
terms that are amenable to bit-blasting — here there are four such sub-terms:

a < b b < c c < d a ‖ (3 · d) = 1

The inequalities are expanded as follows:

a(:2) < b → ¬(Carry 2 (λi. a ′ i) (λi. ¬(b ′ i)) ")
→ ¬(a ′ 1 ∧ ¬b ′ 1 ∨ (a ′ 1 ∨ ¬b ′ 1) ∧ (a ′ 0 ∨ ¬b ′ 0)) .

The equality (consequent) sub-term is more complicated. The multiplication
by a constant is eliminated using the conversion 3 · x → x 1 1 + x where
1 is logical shift-left. The term is then rewritten, introducing the FCP binder
wherever possible. For example, we use the definition of shift-left:

x(:α) 1 n =def FCP i. i < dim(:α) ∧ n ≤ i ∧ (x ′ (i− n)) .

The result at this stage is of the form:

(a ‖ (3 · d) = 1) → (FCP i. a ′ i ∨ (FCP i. Sum i . . . ) ′ i) = (FCP i. i = 0) .

In general, word equalities will be converted into the form FCP f = FCP g for
some pair of functions f, g : num → bool. The next stage is to use the theorem:

(FCP f)(:2) = FCP g ⇔ (f(0) = g(0)) ∧ (f(1) = g(1)) .

We now try to symbolically evaluate f and g at each bit position. Care is taken to
perform this evaluation efficiently – there is a preliminary stage that iteratively
generates sets of rewrites for Sum and Carry sub-terms.4 With our example,
the evaluation at position zero gives us: f(0) = a ′ 0 ∨ d ′ 0 and g(0) = ".
If f(0) = g(0) rewrites to false then we can quit early, knowing that the entire
word equality is false, but with this example we move on to the next bit position.
After some basic Boolean simplification, we have the conversion:

(a ‖ (3 · d) = 1) → (a ′ 0 ∨ d ′ 0) ∧ ¬(a ′ 1 ∨ (d ′ 0 ⇔ ¬d ′ 1)) .

3 Simplification does not alter our example goal. However, at best simplification will
convert terms to � or ⊥, in which case bit-blasting will not occur.

4 Note that Sum terms can be nested, so the order of rewrite generation is important.
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A SAT solver is called on this proposition, which reveals that it is contingent, i.e.
we cannot rewrite it to " or ⊥. Having converted all of the original sub-terms,
we are left with the proposition:

¬(a ′ 1 ∧ ¬b ′ 1 ∨ (a ′ 1 ∨ ¬b ′ 1) ∧ (a ′ 0 ∨ ¬b ′ 0)) ∧
¬(b ′ 1 ∧ ¬c ′ 1 ∨ (b ′ 1 ∨ ¬c ′ 1) ∧ (b ′ 0 ∨ ¬c ′ 0)) ∧
¬(c ′ 1 ∧ ¬d ′ 1 ∨ (c ′ 1 ∨ ¬d ′ 1) ∧ (c ′ 0 ∨ ¬d ′ 0)) ⇒

(a ′ 0 ∨ d ′ 0) ∧ ¬(a ′ 1 ∨ (d ′ 0 ⇔ ¬d ′ 1)) .

This time calling the SAT solver gives us " and the decision procedure succeeds.
A very useful facility of this SAT based decision procedure is the ability to

print counterexamples. For example, calling the procedure on a ≤ a + b(:4) gives
the counterexample a → 12 and b → 4.

Performance. Unsurprisingly, bit-blasting decision procedures can encounter
severe complexity problems. Figure 1 illustrates a worst-case scenario, showing
the time required to apply BBLAST_CONV to the following sequence of terms:

x = a + b, x = a + b + c, x = a + b + c + d, x = a + b + c + d + e .

The second term took just over four minutes to convert for 128-bit words using a
2.5 GHz Core 2 Duo machine with 4 GB of RAM. The resulting theorem is very
large and calling the SAT solver (to no avail) took up 82 s.5 However, this gives
a false impression. In practice, run-times are typically much more respectable.
Consider, the following equations:

(193 · a) && 7 = 7 && a (1)
(a && b) + (a ‖ b) = a + b (2)

(8 · a + (b && 7))≫ 3 = a &&(−1≫ 3) (3)

where ≫ is logical shift-right. Figure 2 shows the timings for these problems.
Equation 1 has two nested additions (from multiplying by 193) but this time the
128-bit case takes around 45 s to solve. The difference here is that we can rewrite
to " at each bit position, and this avoids passing on a large term to the SAT
solver. In Equation 2 we have two additions but this time they are not nested, so
the goal is less complex. In Equation 3 we have one addition, with that addition
becoming “simple” after bit position three (the bit value of the second argument
becomes false). Equation 3, and goals without additions, scale very well to large
word sizes. When working with typical machine word sizes (i.e. 32-bit and 64-bit
words), the run-times for all three problems are in the order of seconds.

5 Summary

This paper has demonstrated that it is possible to implement a useful, practical
and efficient LCF-style proof procedure for bit-vectors in HOL4. The source code
5 The timings do not include the printing of terms. For obvious reasons the maximum

print-depth must be limited when working with very large terms.
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Fig. 1. Nested additions (conversion) Fig. 2. Typical problems

is distributed with HOL4. This development has been made possible through
the work of Hasan Amjad and Tjark Weber in integrating modern SAT solvers
(zChaff and MiniSat) into HOL provers using the LCF approach, see [1]. Michael
Norrish’s DPLL based proof procedure (described in the HOL4 Tutorial, see
hol.sf.net) is also used to quickly handle small propositions.

There are circumstances when bit-blasting is not appropriate and users will
find that traditional methods (simplification and lemma construction) are re-
quired — either for efficiency reasons or when proving general results, i.e. for
arbitrary word sizes. The proof technique relies on formulating and symbolically
evaluating a bit-stream function f : num → bool. It is this requirement that
ultimately determines the scope of the procedure. For example, goals involving
x[m : n], w2n(w), w2i(w), n2w(n) and i2w(i), where m, n and i are not con-
stant values, will require reasoning over N or Z. Nevertheless, the tool does have
excellent coverage and it automatically handles many common goals that users
could easily waste many hours solving manually. The tool can even handle basic
existential goals, e.g. it proves ∃x y. (x ·y = 12(:8))∧x < y in 2.3 s. One possible
area for performance improvements is to automatically introducing abstractions,
e.g. replacing “costly but non-critical” sub-expressions with variables.

Many thanks to Mike Gordon, Magnus Myreen and Tjark Weber for helpful
feedback and assistance.
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Abstract. Many ITP developments exist in the context of a single
prover, and are dominated by proof effort. In contrast, when applying
rigorous semantic techniques to realistic computer systems, engineering
the definitions becomes a major activity in its own right. Proof is then
only one task among many: testing, simulation, communication, commu-
nity review, etc. Moreover, the effort invested in establishing such defi-
nitions should be re-usable and, where possible, irrespective of the local
proof-assistant culture. For example, in recent work on processor and
programming language concurrency (x86, Power, ARM, C++0x, Com-
pCertTSO), we have used Coq, HOL4, Isabelle/HOL, and Ott—often
using multiple provers simultaneously, to exploit existing definitions or
local expertise.

In this paper we describe Lem, a prototype system specifically
designed to support pragmatic engineering of such definitions. It has
a carefully designed source language, of a familiar higher-order logic
with datatype definitions, inductively defined relations, and so on. This
is typechecked and translated to a variety of programming languages
and proof assistants, preserving the original source structure (layout,
comments, etc.) so that the result is readable and usable. We have al-
ready found this invaluable in our work on Power, ARM and C++0x
concurrency.

1 Motivation

Mechanised proof assistants such as ACL2 [1], Coq [6], HOL4 [9], HOL Light [8],
Isabelle/HOL [10], PVS [12], and Twelf [19] are becoming important tools for
Computer Science. In many applications of these tools, the majority of effort is
devoted to proof, and that is rightly a main focus of their developers. This focus
leads each of these systems to have its own logic, various mechanisms for making
mathematical definitions, and extensive support for machine-checked interactive
and/or automated reasoning.

In some applications, however, the definitions themselves, of types, functions,
and relations, are a major focus of the work. This is often the case when mod-
elling key computational infrastructure: network protocols, programming lan-
guages, multiprocessors, and so on. For example, we have worked on TCP [4,13],
Optical Networking [3], Java Module Systems [18], the semantics of an OCaml
fragment [11], concurrency for C and C++ [2,5,16], and the semantics of x86,
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POWER and ARM multiprocessors [14,15]; and there are numerous examples
by other groups (far too many to cite here). In each of these cases, considerable
effort was required to establish the definitions of syntax and semantics, including
analysis of informal specifications, empirical testing, and proof of metatheory.
These definitions can be large: for example, our TCP specification is around
10 000 non-comment lines of HOL4. At this scale, the activity of working with
the definitions becomes more like developing software than defining small calculi:
one has to refactor, test, coordinate between multiple people, and so on, and all
of this should, as far as possible, be complete before one embarks on any proof.

Moreover, in such work a proof assistant is just one piece of a complex project,
involving production typesetting, testing infrastructure, code generation, and
tools for embedding source-language terms into the prover. Sometimes there is
no proof activity, but great benefits arise simply from working in typechecked
and typeset mathematics; sometimes there is mechanised symbolic evaluation or
code generation for testing and prototyping; sometimes there is hand proof or a
mixture of hand and mechanised proof; and sometimes there is the classic full
mechanised proof supported by provers.

Ideally, the results of such work should be made widely available in a re-
usable form, so that other groups can build on them and so that the field can
eventually converge on standard models for the relatively stable aspects of the
computational environment in which we work. Unfortunately, at present such
re-use is highly restricted for two reasons. Firstly, the field is partitioned into
schools around each prover: the difficulty in becoming fluent in their use means
that very few people can use more than one tool effectively. Indeed, even within
some of our own projects we have had to use several provers due to differing local
expertise. This variation makes it hard to compare the results of even carefully
specified benchmarks, such as the POPLmark challenge.

Secondly, the differences between the provers mean that it is a major and
error-prone task to port a development—or even just its definitions—from one
system to another. In some cases this is for fundamental reasons: definitions
which make essential use of the dependent types of Coq may be hard or impossi-
ble to practically port to HOL4. However, many of the examples cited above are
logically undemanding: they have no need for dependent types, the differences
between classical and constructive reasoning are not particularly relevant, and
there is often little or no object-language variable binding (of course this does not
apply for formalisation of rich type theories). They do make heavy use of basic
discrete mathematics and “programming language” features: sets and set com-
prehensions; first-order logic; and inductive types and records with functions and
relations over them. Thus, the challenge is one of robustly translating between
the concrete syntax and definition styles of the different proof assistants.

2 Portable Definitions with Lem

We have designed a language, Lem, for writing, managing, and publishing large
scale semantic definitions, for use as an intermediate language when generating
definitions from domain-specific tools, and for use as an intermediate language
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for porting definitions between existing provers. Our implementation can cur-
rently typecheck Lem sources, and generate HOL4, Isabelle/HOL, OCaml, and
LATEX (the latter drawing on Wansborough’s HOLDoc tool design). Develop-
ment of a Coq backend is in progress. We are already using Lem in our research:
we developed a semantics for multiprocessor concurrency on the POWER archi-
tecture [14] in Lem, and our semantics for C++0x [2,5] concurrency has been
ported from Isabelle/HOL to Lem.

Semantically, we have designed Lem to be roughly the intersection of common
functional programming languages and higher-order logics, as we regard this as a
sweet spot: expressive enough for the applications we mention above, yet familiar
and relatively easy to translate into the various provers; there is intentionally
no logical novelty here. Lem has a simple type theory with primitive support
for recursive and higher-order functions, inductive relations, n-ary tuples, alge-
braic datatypes, record types, type inference, and top-level polymorphism. It
also includes a type class mechanism broadly similar to Isabelle’s and Haskell’s
(without constructor classes). It differs from the internal logics of HOL4 or Is-
abelle/HOL principally in having type, function and relation definitions as part
of the language rather than encoded into it: the Lem type system is formally
defined (using Ott [17]) in terms of the user-level syntax.

The novelty is rather in the detailed design and implementation, to ensure the
following four important pragmatic properties. We can achieve all of these goals
more easily than one could in context of a prover implementation because we
are not constrained to use an intermediate representation suitable for the imple-
mentation of a proof kernel (e.g., explicitly typed lambda terms), and because
we are building a lightweight stand-alone tool, without a large legacy codebase.

1. Readability of source files. Lem syntactically resembles OCaml and F#,
giving us a popular and readable syntax. It includes nested modules (but not
functors), recursive type and function definitions, record types, type abbrevia-
tions, and pattern matching. It has additional syntax for quantifiers, including
restricted quantifiers (∀x ∈ S. Px), set comprehension, and inductive relations.
For example, here is an extract from our POWER model:

let write_reaching_coherence_point_action m s w =

let writes_past_coherence_point’ =

s.writes_past_coherence_point union {w} in

(* make write before other writes to this address not past coherence *)

let coherence’ = s.coherence union

{ (w,wother) | forall (wother IN (writes_not_past_coherence s))

| (not (wother = w)) && (wother.w_addr = w.w_addr)} in

<| s with coherence = coherence’;

writes_past_coherence_point = writes_past_coherence_point’ |>

let sem_of_instruction i ist =

match i with

| Padd set rD rA rB -> op3regs Add set rD rA rB ist

| Psub set rD rA rB -> op3regs Sub set rD rB rA ist (* swap args *)

end
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We do not always follow OCaml: for example, Lem uses curried data constructors
instead of tupled ones, and it uses <| and |> for records, saving { and } for set
comprehensions. Type classes provide principled support for overloading.

Lem does not at present include support for arbitrary user-defined syntax,
as provided by Ott [17] and (to a greater or lesser extent) by several proof
assistants. Lem and Ott have complementary strengths: Ott is particularly useful
for defining semantics as inductively defined relations over a rich user syntax,
but has limited support for logic, sets, and function definitions, whereas Lem is
the converse. We envisage refactoring the Ott implementation, which currently
generates Coq, HOL, and Isabelle/HOL code separately, to instead generate Lem

code and leave the prover-specific output to the Lem tool. In the longer term, a
metalanguage that combines both is highly desirable.

2. Taking the source text seriously. Explaining the definitions is a key
aspect of the kind of work we mention above. We need to produce production-
quality typesetting, of the complete definitions in logical order and of various
excerpts, in papers, longer documents, and presentations. As all these have to
be maintained as the definitions evolve, the process must be automated, without
relying on cut-and-paste or hand-editing of generated LaTeX code. Moreover, it
is essential to give the user control of layout. Here again the issues of large-scale
definitions force our design: in some cases, especially for small definitions, pretty
printing from a prover internal representation can do a good enough job, but
manual formatting choices were necessary to make (e.g.) our C++0x memory
model readable. Accordingly, we preserve all source-file formatting, including line
breaks, indentation, comments, and parentheses, in the generated code. This lets
us generate corresponding LaTeX code, e.g. for the previous example:
let write reaching coherence point action m s w =
let writes past coherence point ′ =
s.writes past coherence point ∪ {w} in

(* make write before other writes to this address not past coherence *)
let coherence ′ = s.coherence ∪
{(w , wother )|∀wother∈(writes not past coherence s)
| (¬ (wother = w)) ∧ (wother .w addr = w .w addr)} in

〈[s with coherence = coherence ′;
writes past coherence point = writes past coherence point ′]〉

let sem of instruction i ist =
match i with
| Padd set rD rA rB → op3regs Add set rD rA rB ist
| Psub set rD rA rB → op3regs Sub set rD rB rA ist (* swap args *)
end

It also ensures that the generated prover and OCaml code is human-readable in
its own right.

3. Support for execution. Exploring such definitions, and testing con-
formance between specifications and deployed implementations (and between
specifications at different levels of abstraction), is also a central aspect of our
work; both need some way to make the definitions executable. In previous work
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with various colleagues we have built hand-crafted symbolic evaluators within
HOL4 [3,4,13,15], interpreters from code extracted from Coq [16], and mem-
ory model exploration tools from code generated from Isabelle/HOL [2]. Lem

supports several constructs which cannot in general be executed, e.g., quantifica-
tion in propositions and set comprehensions, but Lem can generate OCaml code
where the range is restricted to a finite set (otherwise OCaml generation fails).
This has been invaluable for our POWER memory model exploration tool [14].

4. Quick parsing and type checking with good error messages. This
is primarily a matter of careful engineering, using conventional programming-
language techniques. Lem is a batch-mode tool in the style of standard compilers,
rather than focussed on interactive use, in the typical proof-assistant style.

3 Implementation

Our Lem implementation is written in OCaml, using Ott to specify the concrete
syntax, and it loosely follows the architecture of a traditional compiler. The
central data structure is a typed abstract syntax tree (AST), and processing
follows 4 phases: (1) source files are lexed and parsed into untyped ASTs; (2) the
untyped ASTs are type checked and converted into typed ASTs; (3) typed-AST-
to-typed-AST transformations remove language features that are not present in
the target (e.g., the removal of type classes by introducing dictionary passing
for OCaml and HOL4); and (4) the transformed, typed AST is printed in the
target language syntax. We try to make the printing step as simple as possible,
and uniform across the various back-ends, by handling all of the complexities of
translation in (3). The untyped and typed ASTs contain all of the whitespace
(both indentation and line breaks) and comments of the original source file; the
step (4) printer uses these instead of a pretty printing algorithm for layout.

The logical design of Lem makes the basic translation to a variety of targets
straightforward. The standard libraries of our various targets have differing data
representations and interfaces. For each desired feature (e.g., finite maps, or bit
vectors), we design an interface for Lem, and specify how that interface is to be
translated for each target. This is similar to Ott’s hom functionality; however,
here we typecheck the translation specifications to ensure that the generated
code is well-formed.

4 Future work

We are actively developing Lem: our immediate goal is to finish and polish the
existing backends (including the in-progress Coq backend). Also of interest is a
HOL4-to-Lem translation (allowing us to automatically port, for example, Fox’s
detailed ARM instruction semantics [7] to other provers) and we would like Coq-
to-Lem and Isabelle/HOL-to-Lem translations, which will need expertise in the
front-end implementations of those systems. Lem does not currently support
OCaml generation for inductively defined relations (although one can sometimes
use the Isabelle backend and then apply its code generation mechanism). Ulti-
mately, we would like to directly generate OCaml that searches for derivations;
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this will be particularly useful in conjunction with Ott, for running test and
example programs directly on an operational semantics.

Although Lem is primarily a design and engineering project, it would benefit
from a rigorous understanding of exactly how the semantics of the source and
target logics relate to each other, for the fragments we consider. In particular,
when multiple provers are used to verify properties of a Lem-specified system,
we would like a semantic justification that the resulting definitions have the same
meaning, and that a lemma verified in one prover can be used in another. There
have been several projects that port low-level proofs between provers (a very
different problem to the readable-source-file porting that we consider here); while
this approach yields the right guarantees, we expect it would be very challenging
because the various backends can transform the same definition differently (e.g.,
keeping type classes for Isabelle, but not for HOL4).

References

1. ACL2 Version 4.2 (2011), http://www.cs.utexas.edu/~moore/acl2/
2. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-

currency. In: POPL 2011, pp. 55–66. ACM, New York (2011)
3. Biltcliffe, A., Dales, M., Jansen, S., Ridge, T., Sewell, P.: Rigorous protocol design

in practice: An optical packet-switch MAC in HOL. In: ICNP 2006, pp. 117–126.
IEEE, Los Alamitos (2006)

4. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and Sockets. In: SIGCOMM 2005, pp. 265–276. ACM,
New York (2005)

5. Blanchette, J.C., Weber, T., Batty, M., Owens, S., Sarkar, S.: Nitpicking C++
concurrency. In: PPDP 2011. ACM, New York (to appear, 2011)

6. The Coq proof assistant, v.8.3 (2011), http://coq.inria.fr/
7. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-

struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

8. Harrison, J.: HOL Light (2011), http://www.cl.cam.ac.uk/~jrh13/hol-light/
9. The HOL 4 system, Kananaskis-6 release (2011), http://hol.sourceforge.net/

10. Isabelle 2011 (2011), http://isabelle.in.tum.de/
11. Owens, S.: A sound semantics for OCamllight. In: Drossopoulou, S. (ed.) ESOP

2008. LNCS, vol. 4960, pp. 1–15. Springer, Heidelberg (2008)
12. PVS 5.0 (2011), http://pvs.csl.sri.com/
13. Ridge, T., Norrish, M., Sewell, P.: A rigorous approach to networking: TCP, from

implementation to protocol to service. In: Cuellar, J., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 294–309. Springer, Heidelberg (2008)

14. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI 2011. ACM, New York (to appear, 2011)

15. Sarkar, S., Sewell, P., Zappa Nardelli, F., Owens, S., Ridge, T., Braibant, T.,
Myreen, M.O., Alglave, J.: The semantics of x86 multiprocessor machine code.
In: POPL 2009, pp. 379–391. ACM, New York (2009)

http://www.cs.utexas.edu/~moore/acl2/
http://coq.inria.fr/
http://www.cl.cam.ac.uk/~jrh13/hol-light/
http://hol.sourceforge.net/
http://isabelle.in.tum.de/
http://pvs.csl.sri.com/


Lem: A Lightweight Tool for Heavyweight Semantics 369
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Abstract. We describe a framework to integrate discovery engines with
interactive theorem proving, and define an algebra for composing them.
Discovery engines can be tailored to specific domains and invoked con-
currently as the user writes the proof. The engines collaborate with
the user by inferring facts from the current goal context, and provid-
ing new theorems to advance the proof. We have developed the sys-
tem in HOL Light [1], and have used it in a non-trivial setting, namely
incidence-reasoning for geometry theorem proving.

1 Introduction

Most interactive proof assistants are user-driven. Procedures and tactics are
called upon to automatically build up a justification tree or construct a proof
term. However, while the procedures can be combined in powerful ways, there
is, as yet, no framework to build discovery tools. These could explore the proof-
space independently and report back to the user, helping the user better under-
stand the domain or solve the goal outright.

By working independently, such a framework can exploit the wasted processor
cycles as the user works out the proof. To some extent, such idle-time has been
exploited by Isabelle’s [5] Sledgehammer [4] interface to run external first-order
provers as background processes. However, the user does not have the same
fine-grained control and composability of these tools as with tactics.

2 Framework

In Figure 1, we show how discovery can be integrated with theorem prov-
ing. Here, we are interested in declarative proof, where the hypotheses in the
goal-state are just intermediate facts that reflect the proof written so far, and
evolve to bring the system closer to the goal theorem. In our framework, these
facts are generally pulled in by a primitive component in our discovery algebra
called “Monitor”. This primitive is composed with other primitives to yield a
single domain-specific discoverer. The composite discoverer outputs to a fact
database, whose contents can be applied by the user via a new declarative
language primitive: obviously.
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Fig. 1. Integration of Discovery with Interactive Proof

In this framework, the discovery tool and user collaborate independently in a
feedback loop. By writing the proof script, the user is implicitly adding facts to
the goal-state, helping direct the discovery. In turn, the discovery helps the user
to understand the shape of the proof-space, and offers facts which can be used
to write more of the proof. Moreover, the two systems run simultaneously, with
the discoverer exploiting idle-time as the proof-script is written.

3 Composition

Ultimately, the discovery system outputs one or more theorems, which we can
represent as a lazy list. We have favoured lists because of their ubiquity and
support in functional programming languages such as Ocaml, a language whose
top-level serves as the interface to the HOL Light theorem prover.

The key structure we identify on lists is a monad [9], which allows us to
combine a list with a data-dependent list, to produce a single list. However,
the standard list monad only works for finite search spaces, whereas the monad
we consider here is intended for infinite streams. Its basic implementation is
described in detail elsewhere [8], but the key part of the implementation is a
join function, which converts a list of lists into a single concatenated list.

In our interpretation, a list is a stream of outputs produced by a discoverer, so
the join function transforms a discoverer which outputs discoverers into a single
flattened discoverer. This has a simple computational interpretation: each inner
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discoverer is forked where it appears in the output of the outer discoverer. Its
results are then merged in parallel with all other forked discoverers.

This gives our basic algebra to describe theorem-discovery and combine
theorem-discoverers. The way that discoverers are combined is much as it is for
the list monad: all possible pairs of data are combined. But in theorem proving,
we are often interested in how the space of facts partitions during case-analysis,
so we choose to add a tree structure inside the streams. We can retain the overall
monad structure if trees also constitute a monad and can be combined.

3.1 Trees

Our trees represent case-analyses. We give an example of such a tree in Figure 2,
where we use Latin letters (P, Q, R, . . .) to represent branch labels, and Greek
letters (φ, ψ, χ, . . .) to represent node formulas. The branch-labels identify the
assumptions of case-analyses, while the nodes contain lists of facts inferred on
the strength of the assumptions along the root path. So the tree in Figure 2
represents the formula:

φ1 ∧ φ2 ∧ · · · ∧ φn ∧ (P → ψ1 ∧ ψ2 ∧ · · · ∧ ψn) ∧ (Q → χ1 ∧ χ2 ∧ · · · ∧ χn

∧ (R → α1 ∧ α2 ∧ · · · ∧ αn) ∧ (S → β1 ∧ β2 ∧ · · · ∧ βn))

The principal operation on trees is a sum function which is analogous to the
append function for lists, combining all values from two trees. We combine case-
analyses by nesting them, replacing the leaf nodes of one tree with copies of the
other tree. For definiteness, we always nest the right tree in the left.

We also simplify the resulting tree in the following ways: first, we close branches
when there is no data in their subtrees; second, if data appears at the root of
two subtrees, it is promoted into the parent node — a move which corresponds
to disjunction elimination; third, if a case is introduced which has already been
considered in a parallel branch further up the tree, it can be dropped; finally, if
a branch label already appears on the root path, then its subtree can be merged
into the parent — a move which corresponds to weakening. We illustrate these
rules in Figure 3.

[φ1, φ2, . . . , φn]
P Q

[ψ1, ψ2, . . . , ψn] [χ1, χ2, . . . , χn]
R S

[α1, α2, . . . , αn] [β1, β2, . . . , βn]

Fig. 2. Tagged Proof-trees
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xs
P Q
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R S

zs
T U

+

ts us vs ws

xs′

X P

ys′

T Q

zs′

R S

ts′ us′ vs′ ws′

xs + xs′

P Q

= ys + zs′

R S

zs
T U

ts + vs′ us + ws′ vs
X

ws
X

ys′ + ts′ + us′ ys′ + us′

Fig. 3. Proof tree combination and simplification. The highlighted subtrees are com-
bined with the most simplification, yielding a subtree with the same topology.

Primitive Meaning

merge Combine the results of two chains.
: α chain → α chain → α chain

null Identity of merge.
: α chain

iterate iterate fx accumulates the results
: (α chain → α chain) of x, f x, f (f x), . . . .

→ α chain → α chain

monitor The chain whose elements are drawn from
: thm chain the goal state.

gen Attempt to universally quantify a free
: term→ thm chain → thm chain variable across all facts in a chain.

consider Convert existential facts to
: thm chain → thm chain facts hypothesised on a witness.

conjuncts Split conjuncts across a chain.
: thm chain → thm chain

disj elim Given a chain of disjunctions and a chain
: thm chain → thm chain → thm chain of cases-splits, perform disjunction

elimination.

rewrite Use a chain of conversions to rewrite
: conv chain → thm chain→ thm chain the facts in another chain.

mp Apply a chain of implications to a chain
: thm chain → thm chain → thm chain of antecedents.

Fig. 4. Some additional primitives and functions of chains
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3.2 Chains

With the sum operation defined, we can define a natural join for trees, and
thereby define a monad for trees. As we remarked in §3, this means that streams
of these trees also constitute a monad, hereafter referred to as chains.

Applicative Functor. An applicative functor [3] is less expressive than a
monad, in that it does not allow for data-driven search strategies [6]. However,
we have a special implementation in which we can make stronger guarantees
than the monad as to whether search has reached a fixpoint. If a user needs to
detect fixpoints, and does not need search to be data-driven, then they might
prefer to build a discoverer with combinators for the applicative functor.

Of these combinators, the main one allows us to apply a chain of functions
to a chain of arguments, running all combinations to produce a chain of results.
We can achieve this with the monad transformations, but with the applicative
functor we have more flexibility in choosing when elements are combined. In
our implementation, if f and x are the mth and nth elements of two chains,
then the combined tree f x will always appear at index max (m, n). Thus, if two
chains become empty at the same index, the user can guarantee that no further
combination is possible, and can stop drawing elements.

Primitives and Transformations. In addition to the basic algebra, we list
some other useful chain transformations and primitives in Figure 4.

4 Results

We have implemented our chain language in HOL Light and integrated it with
the Mizar Light declarative language [10]. We then used it to define a theorem-
discoverer to help formalise Hilbert’s Foundations of Geometry [2]. Our earlier
formalisations of this text [7] showed that complex reasoning about unstated
incidence properties dominates the proof text, particularly the existence of lines,
triangles and planes which are needed to apply a complex axiom due to Pasch
and reason about its disjunctive conclusion.

By using our algebra, we were able to define separate chains to discover trian-
gles, lines and planes and represent their interdependencies via mutual recursion.
A final chain applied Pasch’s axiom, automatically performing a case-analysis
on its conclusion.

The discoverer found interesting alternative ways to apply Pasch’s axiom,
including a completely alternative proof for Hilbert’s fourth Theorem. In general,
it reduced the number of formalised proof steps by a factor of 10.

5 Conclusion

We have outlined and implemented a declarative language for describing and
composing concurrent discovery engines. The engines are integrated into a frame-
work in which the discovery system collaborates with a user writing a forward
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declarative-style proof, exploiting wasted CPU cycles that arise when proofs are
first formalised. Engines can be readily composed via a rich set of transforma-
tions which control search, case-splitting, existential reasoning and rewriting,
allowing them to be crafted to handle specific domains. Indeed, we have a pro-
totype engine which automates incidence reasoning in Hilbert’s Foundations of
Geometry [2].

For now, we have a straightforward interface, but we intend to build a more
sophisticated customisable front-end for users. Since chains just produce lazy
lists of facts, it is relatively easy to perform additional filtering and computation
on the discovered results for presentation to the user.

As yet, the language does not provide any functions to perform lemma specu-
lation of, say, inductive hypotheses. This, we believe, is not because the approach
is limited. We have only avoided it because incidence-reasoning in Foundations of
Geometry was our initial concern and only needs ground facts. The basic chain
data-type defined is polymorphic and not specific to theorem-proving, so finding
ways to search for speculative lemmas should just be a matter of deriving the
appropriate chains. We hope to see this through with more case-studies.

Such case-studies will help us find new abstractions and derived transfor-
mations, and so make it easier to write chains. It will also help us investigate
performance issues. As of now, there is a great deal of rewriting used by default
that may cause a bottleneck in some searches. There are likely to be various
optimisations we can make to improve this, even before we start thinking of
enriching the underlying data-structures.
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Abstract. We present an interactive heterogeneous theorem proving
framework, which performs formal reasoning by arbitrarily mixing dia-
grammatic and sentential proof steps.

We use Isabelle to enable formal reasoning with either traditional sen-
tences or spider diagrams. We provide a mechanisation of the theory of
abstract spider diagrams and establish a formal link between diagram-
matic concepts and the existing theories in Isabelle/HOL.

1 Introduction

Diagrams are often employed as illustrations in “pen and paper” reasoning. In
the past, they frequently formed essential parts of proofs. Eventually, with advent
of proof theory, their role became almost exclusively that of a visual help. Still,
the intuitive nature of diagrams motivated the design of formal diagrammatic
reasoning systems – for example, spider diagrams [6] and constraint diagrams [3].
Consequently, some purely diagrammatic theorem provers have been developed,
Diamond [8], Edith [10] and Dr.Doodle [13] are some examples.

Heterogeneous reasoning was the next step in the development of diagram-
matic reasoning systems. It merged the diagrammatic and sentential modes of
reasoning and allowed proof steps to be applied to either diagrammatic, senten-
tial or mixed formulae. In the paper Reasoning with Sentences and Diagrams [5],
Hammer laid the formal foundations for such heterogeneous reasoning systems.

Later, Barwise [2], Barker-Plummer [1] and Shin [9] investigated heteroge-
neous reasoning software. The result was a framework called Openproof [1],
which uses diagrammatic representation as an input method. The diagrammatic
part of the framework is not formalised within the logic of the sentential rea-
soner. Therefore, the diagrammatic and sentential components remain logically
separated.

Our goal is to enable formal interactive heterogeneous reasoning in a general
purpose theorem prover. We investigate three aspects of interactive heteroge-
neous reasoning: a) the direction of proofs (e.g., from a diagrammatic assump-
tion to a sentential conclusion and vice versa), b) expression of statements that
contain mixed sentential and diagrammatic terms, and c) mixed application of
diagrammatic, sentential, and heterogeneous inference steps.

Our key motivation is to provide different points of view on formulae and
to enable reasoning about diagrams sententially or vice versa. We believe that

M. Van Eekelen et al. (Eds.): ITP 2011, LNCS 6898, pp. 376–382, 2011.
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heterogeneous reasoning will not only serve as a pedagogical tool for introduc-
tion to logic, it may also improve intuitiveness and readability of formulae (and
proofs) in specific domains of verification – analogous to other domain specific
languages. Another motivation for heterogeneous reasoning is the ability to aug-
ment diagrams with sentential reasoning wherever diagrams fall short.

In contrast to the approach of Openproof our aim is not to keep the two
reasoning systems separated, but to integrate them using heterogeneous repre-
sentation and reasoning. In addition, we want to formalise diagrams and some of
their inference rules in the logic of an LCF-style [4] higher-order theorem prover.
With this we aim to enable certified proof reconstruction of heterogeneous proofs.

In order to build a heterogeneous reasoning framework, we first chose an
existing diagrammatic reasoning language called spider diagrams (see Section
2). The second part is the sentential reasoner, for which we chose Isabelle [12].

We formalised the theory of spider diagrams in Isabelle/HOL (see Section 3.1).
This enabled sentential reasoning about diagrams and also simplified translation
from spider diagrams to sentences (see Section 3.2). Translation from sentences
to diagrams, proof automation, and proof reconstruction, however, is still work
in progress. Diagrammatic reasoning will be done in Speedith, our own external
reasoner, which is currently in development (see Section 4).

2 The Diagrammatic Language

We have picked the language of spider diagrams [7] as the diagrammatic part of
our heterogeneous reasoner because it has a formally defined syntax and seman-
tics. Spider diagrams are equivalent to first-order monadic logic and are equipped
with a number of purely diagrammatic inference rules, which have been shown
to be sound1.

Spider diagrams consist of the following basic

Fig. 1. A spider diagram
featuring all the basic di-
agrammatic language ele-
ments

elements (see Figure 1):

Contours represent named sets. They are drawn
as labelled circles (e.g., circles A, B and C in Figure
1).

Zones are also outlined areas and denote specific
subsets of contours and their complements (Figure
1 contains 8 zones).

Spiders are single existentially quantified ele-
ments. One spider is a finite collection of dots that
are connected with lines. The dots are called feet,
which indicate the zones in which the spider may live.

Shaded zones indicate that a zone is a subset of its spiders (i.e., the set this
zone represents may contain only spiders with a foot in it).

1 For more detail see Spider Diagrams [7] by Howse et al, and The expressiveness of
spider diagrams augmented with constants [11] by Stapleton et al.
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Contours and zones are both outlined shapes representing sets. Contours are
labelled with alphabetical letters. Zones are not labelled and represent intersec-
tions and complements of contours.

Zones are defined as ordered pairs, say Z = (Γ, Δ). The first element of the
pair, Γ , is a set of contours which contain the zone. The second element, here Δ,
is a set of contours which do not contain the zone (the zone lies entirely outside
of these). The set described by the zone (Γ, Δ) is defined as

set of(Z) =
⋂

Ai∈Γ

set of(Ai) \
⋃

Bi∈Δ

set of(Bi), (1)

where set of(Ai) is the set represented by countour Ai. For example, the spider
diagram in Figure 1 contains 8 zones (note that zone ({} , {A, B, C}) lies outside
all contours). However, not all zones have to be drawn. They may be omitted if
they play no role in the statement.

Spiders represent single elements. Spiders are dots which may optionally be
connected with a line. Dots are the feet of the spider and define its habitat.
As an example, Figure 1 contains three spiders: spiders s1 and s2 reside in zone
({B} , {A, C}), spider s3 resides in a region of three zones. Regions are collections
of zones, with corresponding sets defined as follows:

set of(R) =
⋃

Zi∈R

set of(Zi) (2)

The following is an illustration of the semantics of the diagram in Figure 1:

∃s1 s2 s3. distinct(s1, s2, s3) ∧ (s1 ∈ B \A ∪ C) ∧ (s2 ∈ B \A ∪C) ∧
(s3 ∈ (A \ C) ∪ (A ∩B ∩ C)) ∧ (B \A ∪ C) ⊆ {s1, s2}

(3)

A compound spider diagram is a

Fig. 2. A diagrammatic statement in the
language of spider diagrams

diagram that consists of spider dia-
grams, which are called unitary spi-
der diagrams, coupled with logical
connectives. Figure 2 is an example
of a compound spider diagram. For-
mula 4 illustrates the semantics of
the diagram in Figure 2:

∃s1 s2. distinct(s1, s2) ∧ (s1 ∈ A ∪B \A ∩B) ∧ (s2 ∈ A ∩B)
→

∃s1 s2. (s1 ∈ A) ∧ (s2 ∈ B)
(4)

Note that spider names are local to unitary spider diagrams, whereas contour
names are global.

Figure 3 shows a purely diagrammatic proof of the example in Figure 2. Note
that the proof involves applications of three sound diagrammatic inference rules
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Fig. 3. A purely diagrammatic proof of the example in Figure 2

(from [7]): split spiders (removes lines connecting feet of a spider and creates a
case-split for each foot), add feet (puts a new dot into a zone and connects it to
an existing spider in a foreign region), and idempotency. Our goal is to enable
mixing of these and other diagrammatic inference rules with sentential ones.

3 Sentential Reasoner

Our first step was to provide a formalisation of the theory of spider diagrams
within Isabelle/HOL (files available from http://gitorious.net/speedith).
This not only makes the translation between the two representations easier, but
also allows for direct proof reconstruction within Isabelle.

3.1 Formalisation of Diagrams in Isabelle/HOL

We formalise the basic elements of spider diagrams as follows:

Contours are identifiers of type contour = nat (natural numbers).
Zones are sets of contours (sets of natural numbers). Internally, zones are of

the following type: zone = contour set (or equivalently zone = nat set ).
Regions are sets of zones: region = zone set (or equivalently region =

(nat set) set ).
Spiders are identifiers of type spider = nat .

The interpretation of each of the above diagrammatic elements is provided by
their corresponding mapping functions. These functions take the above identifiers
and return sets (or elements – for spiders) that correspond to them. Figure 4
shows the map function for zones:

fun zmap :: "(’e, ’a) SD_scheme ⇒ zone ⇒ ’e set" where
"zmapd cs = (

⋂
c ∈ cs. cmapd c) - (

⋃
c ∈ (-cs). cmapd c)"

Fig. 4. The definition of the zone map which maps a zone to its set

http://gitorious.net/speedith
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lemma add_feet: " [[ smap s ∈ rmap r; r ⊆ r’ ]] =⇒ smap s ∈ rmap r’"

Fig. 5. The sentential equivalent of the add feet diagrammatic inference rule

lemma: "(∃ s s’. s �= s’ ∧ smap s’ ∈ rmap {{0}, {1}} ∧ smap s ∈ rmap {{ 0, 1 }}) −→
(∃ s s’. s �= s’ ∧ smap s ∈ rmap {{0}, {0, 1}} ∧ smap s’ ∈ rmap {{1}, {0, 1}})"

Fig. 6. A sentential translation of the example in Figure 2

We also provide proofs for relevant lemmas of the theory of abstract spider
diagrams (from [7]), e.g.: disjointness of zones, additivity of the region map
over unions, intersections and complements. In addition to these, we have also
formalised the diagrammatic inference rules mentioned above (i.e., split spiders,
add feet and idempotency). Figure 5 shows the formalised add feet rule.

3.2 Translation

The lemma in Figure 6 is the sentential translation of the diagrammatic state-
ment in Figure 2.

Translation from diagrams to sentences currently generates n existentially
quantified first-order variables, a conjunction of n(n−1)

2 inequalities and n set-
inclusion predicates, where n is the number of spiders. Using the higher-order
quantification provided in Isabelle/HOL, we can existentially quantify over a
single set of spiders. With a single predicate, say distinct , we can also remove
the inequalities and make translation to diagrams easier. We aim to translate as
many MFOL formulae to diagrams as possible.

Heterogeneous proof automation, proof reconstruction, and translation of sen-
tences to diagrammatic representation is work in progress.

4 Heterogeneous Integration

Ultimately, we want to enable formal graphical reasoning as is depicted in
Figure 7. Sentential expressions are drawn as diagrams if the translation is feasi-
ble. More importantly, the external diagrammatic reasoner can be invoked in an
interactive mode within the proof body like any other tactic in Isabelle. These
tactics will invoke our diagrammatic reasoner, which in turn will return a proof
trace for proof reconstruction.

We also want to enable visual and interactive diagram construction and ap-
plication of diagrammatic inference steps. For this purpose we will use Speedith
(sources available from http://gitorious.net/speedith) both as a standalone
reasoning tool as well as a visual add-on to Isabelle’s graphical user interfaces.

The user will be able to invoke the diagrammatic reasoner at any time during
the proof, with an option to do so in an interactive or fully automated mode.
Additionally, the currently active statement (lemma or proof obligation) will be
automatically visualised as a diagram in an embedded window of the GUI.

http://gitorious.net/speedith
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Fig. 7. A heterogeneous proof outline of the example in Figure 2

Discussion. We outline a work-in-progress of an integration of a diagrammatic
language with diagrammatic inference rules into a sentential theorem prover.
This enables formal heterogeneous reasoning with mixed diagrams and sentences.

We provide a formalisation of spider diagrams with translation to sentential
formulae. Heterogeneous proof automation, and a translation from first-order
monadic formulae to spider diagrams is still work in progress.

The goal of this project is to provide a proof-of-concept heterogeneous reasoner
– to show that heterogeneous reasoning is feasible. Ultimately, we plan to extend
the heterogeneous framework to other domains with new diagrammatic systems
(e.g.: constraint diagrams, UML, diagram chasing etc.).

In summary, we believe that heterogeneous reasoning can improve the ease of
working with specific domains of verification in general purpose theorem provers.

Acknowledgments. We would like to thank Thomas Tuerk and Lawrence
Paulson for invaluable input.
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