
Mean Curvature Flow in Higher Codimension:
Introduction and Survey

Knut Smoczyk

Abstract In this text we outline the major techniques, concepts and results in mean
curvature flow with a focus on higher codimension. In addition we include a few
novel results and some material that cannot be found elsewhere.

1 Mean Curvature Flow

Mean curvature flow is perhaps the most important geometric evolution equation
of submanifolds in Riemannian manifolds. Intuitively, a family of smooth sub-
manifolds evolves under mean curvature flow, if the velocity at each point of the
submanifold is given by the mean curvature vector at that point. For example, round
spheres in euclidean space evolve under mean curvature flow while concentrically
shrinking inward until they collapse in finite time to a single point, the common
center of the spheres.

Mullins [63] proposed mean curvature flow to model the formation of grain
boundaries in annealing metals. Later the evolution of submanifolds by their mean
curvature has been studied by Brakke [10] from the viewpoint of geometric measure
theory. Among the first authors who studied the corresponding nonparametric
problem were Temam [82] in the late 1970s and Gerhardt [36] and Ecker [26] in
the early 1980s. Pioneering work was done by Gage [35], Gage & Hamilton [34]
and Grayson [37] who proved that the curve shortening flow (more precisely, the
“mean” curvature flow of curves in R

2) shrinks embedded closed curves to “round”
points. In his seminal paper Huisken [48] proved that closed convex hypersurfaces
in euclidean space R

mC1; m > 1 contract to single round points in finite time
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(later he extended his result to hypersurfaces in Riemannian manifolds that satisfy a
suitable stronger convexity, see [49]). Then, until the mid 1990s, most authors who
studied mean curvature flow mainly considered hypersurfaces, both in euclidean
and Riemannian manifolds, whereas mean curvature flow in higher codimension
did not play a great role. There are various reasons for this, one of them is certainly
the much different geometric situation of submanifolds in higher codimension
since the normal bundle and the second fundamental tensor are more complicated.
But also the analysis becomes more involved and the algebra of the second
fundamental tensor is much more subtle since for hypersurfaces there usually exist
more scalar quantities related to the second fundamental form than in case of
submanifolds in higher codimension. Some of the results previously obtained for
mean curvature flow of hypersurfaces carry over without change to submanifolds
of higher codimension but many do not and in addition even new phenomena
occur.

Among the first results in this direction are the results on mean curvature flow
of space curves by Altschuler and Grayson [2, 3], measure-theoretic approaches to
higher codimension mean curvature flows by Ambrosio and Soner [4], existence
and convergence results for the Lagrangian mean curvature flow [72, 74, 75, 83],
mean curvature flow of symplectic surfaces in codimension two [17, 87] and long-
time existence and convergence results of graphic mean curvature flows in higher
codimension [18, 76, 78, 87, 95]. Recently there has been done quite some work on
the formation and classification of singularities in mean curvature flow [5,11,12,23,
25, 39, 47, 54, 56, 58, 59, 61, 71], partially motivated by Hamilton’s and Perelman’s
[45, 66–68] work on the Ricci flow that in many ways behaves akin to the mean
curvature flow and vice versa.

The results in mean curvature flow can be roughly grouped into two categories:
The first category contains results that hold (more or less) in general, i.e. that are
independent of dimension, codimension or the ambient space. In the second class
we find results that are adapted to more specific geometric situations, like results for
hypersurfaces, Lagrangian or symplectic submanifolds, graphs, etc..

Our aim in this article is twofold. We first want to summarize the most important
properties of mean curvature flow that hold in any dimension, codimension and
ambient space (first category). In the second part of this exposition we will give
a – certainly incomplete and not exhaustive –, overview on more specific results in
higher codimension, like an overview on the Lagrangian mean curvature flow or the
mean curvature flow of graphs (part of the second category). Graphs and Lagrangian
submanifolds certainly form the best understood subclasses of mean curvature flow
in higher codimension.

In addition this article is intended as an introduction to mean curvature flow for
the beginner and we will derive the most relevant geometric structure and evolution
equations in a very general but consistent form that is rather hard to find in the
literature. However, there are several nice monographs on mean curvature flow, a
well written introduction to the regularity of mean curvature flow of hypersurfaces
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is [28]. For the curve shortening flow see [22]. For mean curvature flow in higher
codimension there exist some lecture notes by Wang [92].

Let us now turn our attention to the mathematical definition of mean curvature
flow. Suppose M is a differentiable manifold of dimension m, T > 0 a real number
and F W M � Œ0; T / ! .N; g/ a smooth time dependent family of immersions of M

into a Riemannian manifold .N; g/ of dimension n, i.e. F is smooth and each

Ft W M ! N ; Ft .p/ WD F.p; t/ ; t 2 Œ0; T /

is an immersion. If F satisfies the evolution equation

dF

dt
.p; t/ D �!

H .p; t/ ; 8p 2 M; t 2 Œ0; T /; (MCF)

where
�!
H .p; t/ 2 TF .p;t/N is the mean curvature vector of the immersion Ft at p

(or likewise of the submanifold Ut WD Ft .U / at Ft .p/, if for some U � M , Ft jU is
an embedding), then we say that M evolves by mean curvature flow in N with initial
data F0 W M ! N . As explained in Sect. 2.1, the mean curvature vector field can be
defined for any immersion into a Riemannian manifold (or more generally for any
space-like immersion into a pseudo-Riemannian manifold; in this survey we will
restrict to the Riemannian mean curvature flow) and it is the negative L2-gradient
of the volume functional vol W I ! R on the space I of immersions of M into
.N; g/. Hence mean curvature flow is the steepest descent or negative L2-gradient
flow of the volume functional and formally (MCF) makes sense for any immersed
submanifold in a Riemannian manifold. Therefore, following Hadamard, given an
initial immersion F0 W M ! N one is interested in the well-posedness of (MCF) in
the sense of

1. Does a solution exist?
2. Is it unique?
3. Does it behave continuously in some suitable topology?

In addition, once short-time existence is established on some maximal time interval
Œ0; T /; T 2 .0; 1�, one wants to study the behavior of the flow and in particular of
the evolving immersed submanifolds Mt WD Ft .M / as t ! T . Either singularities
of some kind will form and one might then study the formation of singularities in
more details – with possible significant geometric implications – or the flow has a
long-time solution. In such a case convergence to some nice limit (e.g. stationary,
i.e. a limit with vanishing mean curvature) would be rather expected but in general
will not hold a priori.

In the most simplest case, i.e. if the dimension of M is one, mean curvature
flow is called curve shortening flow. In many contributions to the theory of mean
curvature flow one assumes that M is a smooth closed manifold. The reason is,
that one key technique in mean curvature flow (or more generally in the theory
of parabolic geometric evolution equations) is the application of the maximum
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principle and in absence of compactness the principle of “first time violation”
of a stated inequality simply does not hold. But even for complete non-compact
submanifolds there are powerful techniques, similar to the maximum principle, that
can be applied in some situations. In the complete case one of the most important
tools is the monotonicity formula found by Huisken [50], Ecker and Huisken
[29] and Hamilton [44] and that equally well applies to mean curvature flow in
higher codimension. Ecker [27] proved a beautiful local version of the monotonicity
formula for hypersurfaces and another local monotonicity for evolving Riemannian
manifolds has been found recently by Ecker et al. [31].

There are some very important contributions to the regularity theory of mean
curvature flow by White [93,94] that apply in all codimensions. For example in [93]
he proves uniform curvature bounds of the euclidean mean curvature flow in regions
of space-time where the Gaussian density ratios are close to 1. With this result one
can often exclude finite time singularities and prove long-time existence of the flow
(see for example [62, 87]).

For simplicity and since some techniques and results do not hold for complete
non-compact manifolds we will always assume in this article, unless otherwise
agreed, that M is an oriented closed smooth manifold.

The organization of the survey is as follows: In Sect. 2 we will review the
geometric structure equations for immersions in Riemannian manifolds and we
will introduce most of our terminology and notations that will be used throughout
the paper. In particular we will mention the explicit formulas in the case of
Lagrangian submanifolds in Kähler–Einstein manifolds. For most computations
we will use the Ricci calculus and apply the Einstein convention to sum over
repeated indices. In Sect. 3 we will summarize those results that hold in general
(first category). The section is subdivided into four subsections. In the first Sect. 3.1
we will show that the mean curvature flow is a quasilinear (degenerate) parabolic
system and we will treat the existence and uniqueness problem. In Sect. 3.2
we derive the evolution equations of the most important geometric quantities
in the general situation, i.e. for immersions in arbitrary Riemannian manifolds.
In this general form these formulas are hard to find in the literature and one
can later easily derive all related evolution equations from them that occur in
special situations like evolution equations for tensors that usually appear in mean
curvature flow of hypersurfaces, Lagrangian submanifolds or graphs. In Sect. 3.3
we recall general results concerning long-time existence of solutions. In the final
Sect. 3.4 of this section we explain the two types of singularities that appear in
mean curvature flow and discuss some rescaling techniques. Moreover we will
recall some of the results that have been obtained in the classification of solitons.
Section 4 is on more specific results in higher codimension, the first subsection
treats the Lagrangian mean curvature flow and in the last and final subsection
of this article we give an overview of the results in mean curvature flow of
graphs.
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2 The Geometry of Immersions

2.1 Second Fundamental Form and Mean Curvature Vector

In this subsection we recall the definition of the second fundamental form and mean
curvature vector of an immersion and we will introduce most of our notation.

Let F W M ! .N; g/ be an immersion of an m-dimensional differentiable
manifold M into a Riemannian manifold .N; g/ of dimension n, i.e. F is smooth and
the pull-back F �g defines a Riemannian metric on M . The number k WD n�m � 0

is called the codimension of the immersion.
For p 2 M let

T ?
p M WD f� 2 TF .p/N W g.�; DFjp.W // D 0; 8W 2 TpM g

denote the normal space of M at p and T ?M the associated normal bundle. By
definition, the normal bundle of M is a sub-bundle of rank k of the pull-back bundle
F �TN D S

p2M TF .p/N over M . Using the differential of F we thus have a
splitting

TF .p/N D DFjp.TpM / ˚ T ?
p M :

The differential DF can be considered as a 1-form on M with values in F �TN , i.e.

DF 2 �.F �TN ˝ T �M / DW �1.M; F �TN /;

TpM 3 V 7! DFjp.V / 2 TF .p/N:

The Riemannian metric F �g is also called the first fundamental form on M . In
an obvious way the metrics g and F �g induce Riemannian metrics on all bundles
formed from products of TM; T �M; T ?M; F �TN; TN; and T �N and in the sequel
we will often denote all such metrics simply by the usual brackets h�; �i for an inner
product.

Similarly the Levi-Civita connection r on .N; g/ induces connections on the
bundles TM; T �M; T ?M; F �TN and products hereof. Since the precise definition
of these connections will be crucial in the understanding of the second fundamental
form, the mean curvature vector and later also of the evolution equations, we will
briefly recall them. The connection rTM on TM can be obtained in two equivalent
ways: either as the Levi-Civita connection of the induced metric F �g on TM or
else by projection of the ambient connection to the tangent bundle, more precisely
via the formula

DF.rTM
X Y / WD r>

DF .X/DF.Y / ; X; Y 2 TM ;

where > denotes the projection onto DF.TM / and DF.Y / is an arbitrary (local)
smooth extension of DF.Y /. The connection rT �M on T �M is then simply given
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by the dual connection of rTM . Similarly one obtains the connection rF �TN on
F �TN via the formula

rF �TN
X V WD rDF .X/V ;

for any smooth section V 2 �.F �TN / and finally the connection r? on the normal
bundle is given by projection

r?
X� WD

�
rF �TN

X �
�?

for � 2 �.T ?M / � �.F �TN /. Since the connections rTM , rT �M , rF �TN

and their associated product connections on product bundles over M formed from
the factors TM; T �M; F �TN are induced by r, it is common (and sometimes
confusing) to denote all of them by the same symbol r. Since T ?M is a sub-
bundle of F �TN , one can consider a section � 2 �.T ?M / also as an element
of �.F �TN / and hence one can apply both connections r? and r D rF �TN

to them, i.e. we will write rX � (D rF �TN
X �), if we consider � as a section in

F �TN and r?
X �, if � is considered as a section in the normal bundle T ?M . The

same holds, if we consider sections in product bundles that contain T ?M as a
factor.

If we apply the resulting connection r on F �TN ˝T �M to DF , we obtain – by
definition – the second fundamental tensor

A WD rDF 2 �.F �TN ˝ T �M ˝ T �M / :

It is then well known that the second fundamental tensor is symmetric

A.X; Y / D .rXDF /.Y / D .rY DF /.X/ D A.Y; X/ (1)

and normal in the sense that

hA.X; Y /; DF.Z/i D 0 ; 8X; Y; Z 2 TM : (2)

Therefore in particular A 2 �.T ?M ˝ T �M ˝ T �M /.
Taking the trace of A gives the mean curvature vector field

�!
H WD trace A D

mX

iD1

A.ei ; ei / ; (3)

where .ei /iD1;:::;m is an arbitrary orthonormal frame of TM . Hence, since A is

normal, we obtain a canonical section
�!
H 2 �.T ?M / in the normal bundle of the

immersion F W M ! N .
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2.2 Structure Equations

The second fundamental tensor is a curvature quantity that determines how curved
the immersed submanifold F.M / given by an immersion F W M ! N lies within
the ambient manifold .N; g/. According to this we have a number of geometric
equations that relate the second fundamental tensor to the intrinsic curvatures of
.M; F �g/ and .N; g/.

Let r be a connection on a vector bundle E over a smooth manifold M . Our
convention for the curvature tensor RE;r 2 �2.M; E/ w.r.t. r is

RE;r.X; Y /� WD .rX rY � rY rX � rŒX;Y �/� ; 8X; Y 2 TM; � 2 �.E/ :

Moreover, if E is a bundle with bundle metric h�; �i, then we set

RE;r.�; �; X; Y / WD h�; RE;r.X; Y /�i ; 8X; Y 2 TM; �; � 2 E :

We denote the curvature tensors RTM;r and RTN;r by RM resp. RN . Letting

.rX A/.Y; V / WD rX .A.Y; V // � A.rX Y; V / � A.Y; rXV /;

the Codazzi equation is

.rX A/.Y; V / � .rY A/.X; V /

D RN .DF.X/; DF.Y //DF.V / � DF.RM .X; Y /V / : (4)

Note that r denotes the full connection, i.e. here we consider A as a section
in F �TN ˝ T �M ˝ T �M and not in T ?M ˝ T �M ˝ T �M . Later we will
sometimes consider A as a section in T ?M ˝ T �M ˝ T �M and then we will
also use the connection on the normal bundle instead, so that in this case we write
.r?

X A/.Y; V / D ..rX A/.Y; V //?. In terms of r? the Codazzi equation becomes

.r?
X A/.Y; V / � .r?

Y A/.X; V / D
�
RN .DF.X/; DF.Y //DF.V /

�?
: (5)

From
hA.Y; V /; DF.W /i D 0 ; 8Y; V; W 2 TM

we get
h.rXA/.Y; V /; DF.W /i D �hA.Y; V /; A.X; W /i : (6)

From these equations we obtain Gauß equation (Theorema Egregium):

RM .X; Y; V; W / D RN .DF.X/; DF.Y /; DF.V /; DF.W // (7)

C hA.X; V /; A.Y; W /i � hA.X; W /; A.Y; V /i :
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Finally, we have Ricci’s equation. If � 2 T ?M and X; Y 2 TM then the
following holds:

R?.X; Y /� D .RN .DF.X/; DF.Y //�/?

�
mX

iD1

�h�; A.X; ei/iA.Y; ei / � h�; A.Y; ei /iA.X; ei/
�

; (8)

where .ei /iD1;:::;m is an arbitrary orthonormal frame of TM and R? D RT ?M;r?

denotes the curvature tensor of the normal bundle of M . Note that the Codazzi
equation is useless in dimension one (i.e. for curves) and that Ricci’s equation is
useless for hypersurfaces, i.e. in codimension one.

2.3 Tensors in Local Coordinates

For computations one often needs local expressions of tensors. Whenever we use
local expressions and F W M ! N is an immersion we make the following general
assumptions and notations:

(1) .U; x; �/ and .V; y; ƒ/ are local coordinate charts around p 2 U � M and
F.p/ 2 V � N such that FjU W U ! F.U / is an embedding and such that
F.U / � V .

(2) From the coordinate functions

.xi /iD1;:::;m W U ! � � R
m ; .y˛/˛D1;:::;n W V ! ƒ � R

n;

we obtain a local expression for F ,

y ı F ı x�1 W � ! ƒ ; F ˛ WD y˛ ı F ı x�1; ˛ D 1; : : : ; n:

(3) The Christoffel symbols of the Levi-Civita connections on M resp. N will be
denoted

� i
jk ; i; j; k D 1; : : : ; m ; resp. �˛

ˇ� ; ˛; ˇ; � D 1; : : : ; n :

(4) All indices referring to M will be denoted by Latin minuscules and those
related to N by Greek minuscules. Moreover, we will always use the Einstein
convention to sum over repeated indices from 1 to the respective dimension.

Then the local expressions for g; DF; F �g and A are

g D g˛ˇ dy˛ ˝ dyˇ ;
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DF D F ˛
i

@

@y˛
˝ dxi ; F ˛

i WD @F ˛

@xi
;

F �g D gij dxi ˝ dxj ; gij WD g˛ˇ F ˛
i F

ˇ

j
;

and

A D Aij dxi ˝ dxj D A˛
ij

@

@y˛
˝ dxi ˝ dxj ;

where the coefficients A˛
ij are given by Gauß’ formula

A˛
ij D @2F ˛

@xi @xj
� �k

ij

@F ˛

@xk
C �˛

ˇ�

@F ˇ

@xi

@F �

@xj
: (9)

Let .gij / denote the inverse matrix of .gij / so that gikgkj D ıi
j gives the

Kronecker symbol. .gij / defines the metric on T �M dual to F �g. For the mean
curvature vector we get

�!
H D H ˛ @

@y˛
; H ˛ WD gij A˛

ij : (10)

Gauß’ equation (7) now becomes

Rijkl D R˛ˇ�ıF ˛
i F

ˇ

j
F

�

k
F ı

l C g˛ˇ .A˛
ikA

ˇ

jl
� A˛

ilA
ˇ

jk
/ ; (11)

where the notation should be obvious, e.g.

Rijkl D RM

�
@

@xi
;

@

@xj
;

@

@xk
;

@

@xl

�

and

R˛ˇ�ı D RN

�
@

@y˛
;

@

@yˇ
;

@

@y�
;

@

@yı

�

:

Note that the choice of the indices already indicates which curvature tensor is used.
In addition we write

rA D riA
˛

jk

@

@y˛
˝ dxi ˝ dxj ˝ dxk ;

so that

.r @

@xi
A/

�
@

@xj
;

@

@xk

�

D ri A
˛

jk

@

@y˛
:

Similar notations will be used for other covariant derivatives, e.g. ri rj T k
l

will
denote the coefficients of the tensor r2T with T 2 �.TM ˝ T �M / D End.TM /.
The Codazzi equation in local coordinates is
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ri A
˛

jk � rj A˛
ik D R˛

ˇ�ıF
ˇ

k
F

�
i F

ı
j � Rl

kij F ˛
l ; (12)

where here and in the following all indices will be raised and lowered using the
metric tensors, e.g.

R˛
ˇ�ı D g˛�R�ˇ�ı ; R

i j

k l
D gipgjqRkplq :

Finally, if .�A/AD1;:::;kWDn�m, �A D �˛
A

@
@y˛ , is a local trivialization of T ?M ,

then

R?
�

@

@xi
;

@

@xj

�

�A DW .R?/B
Aij �B

and Ricci’s equation becomes

.R?/B
Aij �˛

B D R˛
ˇ�ı�

ˇ
AF

�
iF

ı
j � gkl R�

ˇ�ıg�� �
ˇ
AF

�
iF

ı
j F �

k

�gˇ� gkl .�
ˇ
AA

�

ik
A˛

jl � �
ˇ
AA

�

jk
A˛

il/ : (13)

Using the rule for interchanging covariant derivatives and the structure equations
one obtains Simons’ identity

rkrlH
˛ D 	A˛

kl C
�
r�R˛

ˇ�ı C r� R˛
ıˇ�

�
F �

i F
ˇ

l
F

�

k
F ıi

CR˛
ˇ�ı

�
2A

ˇ

ik
F

�

l
F ıi C 2A

ˇ

il
F

�

k
F ıi

CH ıF
ˇ

l
F

�

k
C A

�

lk
F

ˇ

i
F ıi

�

�
�
rkR

p

l
C rl R

p

k
� rpRkl

�
F ˛

p

C2R
i j

k l
A˛

ij � R
p

k
A˛

pl � R
p

l
A˛

pk ; (14)

where Rij D gkl Rikjl denotes the Ricci curvature on M . If one multiplies Simons’
identity (14) with 2A kl

˛ D 2g˛�gkmglnA�
mn, one gets

2hA; r2�!
H i D 	jAj2 � 2jrAj2

C2
�r�R˛ˇ�ı C r� R˛ıˇ�

�
F �

i F
ˇl F �kF ıiA˛

kl

C2R˛ˇ�ıA˛kl
�
4A

ˇ

ik
F

�

l
F ıi C H ıF

ˇ

l
F

�

k
C A

�

lk
F

ˇ

i
F ıi

�

C4Rkilj hAij ; Akl i � 4Rij hAik; A
k

j i

and then since
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ri Akl D r?
i Akl C gpqhriAkl ; FpiFq

D r?
i Akl � gpqhAkl ; ri FpiFq

D r?
i Akl � gpqhAkl ; AipiFq

implies
jrAj2 D jr?Aj2 C hAij ; Akl ihAij ; Akl i

we obtain with Gauß’ equation the second Simons’ identity

2hA; r2�!
H i D 	jAj2 � 2jr?Aj2

C2hAij ; AklihAij ; Akl i � 4hAkj ; Ai lihAij ; Akli
�4h�!H; Aij ihAik; A

k
j i C 4hAi l ; A

j

l
ihAik; A

k
j i

C4R˛ˇ�ıF ˛
kF

ˇ

i
F

�

l
F ı

j

�
hAij ; Akli � gkl hAip; A j

p i
�

C2R˛ˇ�ıA˛kl
�
4A

ˇ

ik
F

�

l
F ıi C F

ˇ

l
F

�

k
H ı C F

ˇ

i
A

�

lk
F ıi

�

C2
�r�R˛ˇ�ı C r� R˛ıˇ�

�
F �

i F
ˇ

l
F

�

k
F ıiA˛kl :

The second and third line can be further simplified , so that we get

2hA; r2�!
H i D 	jAj2 � 2jr?Aj2 (15)

CˇˇhAij ; Akl i � hAi l ; Ajkiˇˇ2 C ˇ
ˇA˛

ikA
ˇ k

j
� A

ˇ

ik
A

˛ k
j

ˇ
ˇ2

C2
ˇ
ˇh�!H; Aij i � hAik; A

k
j iˇˇ2 � 2

ˇ
ˇh�!H; Aij iˇˇ2

C4R˛ˇ�ıF ˛
kF

ˇ

i
F

�

l
F ı

j

�
hAij ; Akli � gkl hAip; A j

p i
�

C2R˛ˇ�ıA˛kl
�
4A

ˇ

ik
F

�

l
F ıi C F

ˇ

l
F

�

k
H ı C F

ˇ

i
A

�

lk
F ıi

�

C2
�r�R˛ˇ�ı C r� R˛ıˇ�

�
F �

i F
ˇ

l
F

�

k
F ıiA˛kl :

This last equation is useful to substitute terms in the evolution equation of jAj2 (see
Sect. 3.2 below).

2.4 Special Situations

2.4.1 Hypersurfaces

If F W M ! N is an immersion of a hypersurface, then n D m C 1 and one can
define a number of scalar curvature quantities related to the second fundamental
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tensor of M . For simplicity assume that both M and N are orientable (otherwise
the following computations are only local). Then there exists a unique normal vector
field � 2 �.T ?M / – called the principle normal – such that for all p 2 M :

(1) j�jpj D 1, �jp 2 T ?
p M ,

(2) If e1; : : : ; em is a positively oriented basis of TpM , then

DF.e1/; : : : ; DF.em/; �jp

forms a positively oriented basis of TF .p/N .

Using the principle normal �, one defines the (scalar) second fundamental form
h 2 �.T �M ˝ T �M / by

h.X; Y / WD hA.X; Y /; �i

and the scalar mean curvature H by

H WD trace h;

so that
A D � ˝ h ;

�!
H D H� :

The map
[ W TM ! T �M ; V 7! V[ WD hV; �i

is a bundle isomorphism with inverse denoted by

] W T �M ! TM:

This musical isomorphism can be used to define the Weingarten map

W 2 End.TM / ; W .X/ WD .h.X; �//]:

Since h is symmetric, the Weingarten map is self-adjoint and the real eigenvalues
of W are called principle curvatures, often denoted by 
1; : : : ; 
m, so that e.g. H D

1C� � �C
m. Note, that in the theory of mean curvature flow H is not the arithmetic
means 1

m

Pm
iD1 
i (which would justify its name) as is often the case in classical

books on differential geometry. In local coordinates we have

A˛
ij D �˛hij

and then the equations of Gauß and Codazzi can be rewritten in terms of hij . For
example, since j�j2 D 1 we have hri�; �i D 0 and then

ri � D hri�; F miFm D �h�; riF
miFm D �h m

i Fm :
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This implies

ri A
˛

jk D ri .�
˛hjk/

D �h m
i hjkF ˛

m C ri hjk�˛ :

Multiplying with �˛ yields

hriAjk ; �i D ri hjk :

Interchanging i; j and subtracting gives

ri hjk � rj hik D hri Ajk � rj Aik; �i
(12)D R˛ˇ�ı�˛F

ˇ

k
F

�
i F

ı
j D RN .�; Fk ; Fi ; Fj / :

Similarly we get Gauß equation in the form

Rijkl D RN .Fi ; Fj ; Fk ; Fl/ C hikhjl � hi lhjk

and since the codimension is one, we do not have a Ricci equation in this case.

2.4.2 Lagrangian Submanifolds

Let .N; g D h�; �i; J / be a Kähler manifold, i.e. J 2 End.TN / is a parallel complex
structure compatible with g. Then N becomes a symplectic manifold with the
symplectic form ! given by the Kähler form !.V; W / D hJ V; W i. An immersion
F W M ! N is called Lagrangian, if F �! D 0 and n D dim N D 2m D 2 dim M .
For a Lagrangian immersion we define a section

� 2 �.T ?M ˝ T �M / ; � WD JDF ;

where J is applied to the F �TN -part of DF . � is a 1-form with values in T ?M

since by the Lagrangian condition J induces a bundle isomorphism (actually even
a bundle isometry) between DF.TM / and T ?M . In local coordinates � can be
written as

� D �idxi D �˛
i

@

@y˛
˝ dxi

with

�i D JFi D J ˛
ˇ F

ˇ

i

@

@y˛
; �˛

i D J ˛
ˇ F

ˇ

i
:

Since J is parallel, we have

r� D J rDF D JA :
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In contrast to hypersurfaces, we may now define a second fundamental form as a
tri-linear form

h.X; Y; Z/ WD h�.X/; A.Y; Z/i :

It turns out that h is fully symmetric. Moreover, taking a trace, we obtain a 1-form
H 2 �1.M /, called the mean curvature form,

H.X/ WD trace h.X; �; �/ :

In local coordinates

h D hijkdxi ˝ dxj ˝ dxk ; H D Hi dxi ; Hi D gkl hikl :

The second fundamental tensor A and the mean curvature vector
�!
H can be

written in the form
A˛

ij D h
k

ij �˛
k ;

�!
H D H k�k :

Since J gives an isometry between the normal and tangent bundle of M , the
equations of Gauß and Ricci coincide, so that we get the single equation

Rijkl D RN .Fi ; Fj ; Fk; Fl / C hikmh
m

jl
� hi lmh

m

jk
:

Since rJ D 0 and J 2 D � Id we also get

ri �
˛

j D ri .J
˛
ˇ F

ˇ

j
/ D J ˛

ˇ ri F
ˇ

j
D J ˛

ˇ A
ˇ

ij
D J ˛

ˇ �
ˇ

k
h

k
ij D �h

k
ij F ˛

k:

Similarly as above we conclude

ri hjkl � rj hikl D ri hAjk; �li � rj hAik; �li
.r�l 2DF .TM//D hriAjk � rj Aik; �li

(12)D RN .�l ; Fk; Fi ; Fj / :

Taking a trace over k and l , we deduce

ri Hj � rj Hi D RN .�k; F k; Fi ; Fj /

and if we take into account that N is Kähler and M Lagrangian, then the RHS is a
Ricci curvature, so that the exterior derivative dH of the mean curvature form H is
given by

.dH/ij D riHj � rj Hi D � RicN .�i ; Fj /:

If .N; g; J / is Kähler–Einstein, then H is closed (since RicN .�i ; Fj / D c �
!.Fi ; Fj / D 0) and defines a cohomology class on M . In this case any (in general
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only locally defined) function ˛ with d˛ D H is called a Lagrangian angle. In
some sense the Lagrangian condition is an integrability condition. If we represent
a Lagrangian submanifold locally as the graph over its tangent space, then the m

“height” functions are not completely independent but are related to a common
potential. An easy way to see this, is to consider a locally defined 1-form 
 on M

(in a neighborhood of some point of F.M /) with d
 D !. Then by the Lagrangian
condition

0 D F �! D F �d
 D dF �
 :

So F �
 is closed and by Poincaré’s Lemma locally integrable. By the implicit
function theorem this potential for 
 is related to the height functions of M (cf.
[74]). Note also that by a result of Weinstein for any Lagrangian embedding M � N

there exists a tubular neighborhood of M which is symplectomorphic to T �M with
its canonical symplectic structure ! D d
 induced by the Liouville form 
.

2.4.3 Graphs

Let.M; gM /, .K; gK/ be two Riemannian manifolds and f W M ! K a smooth
map. f induces a graph

F W M ! N WD M � K ; F.p/ WD .p; f .p// :

Since N is also a Riemannian manifold equipped with the product metric
g D gM � gK one may consider the geometry of such graphs. It is clear that
the geometry of F must be completely determined by f , gM and gK . Local
coordinates .xi /iD1;:::;m, .zA/AD1;:::;k for M resp. K induce local coordinates
.y˛/˛D1;:::;nDmCk on N by y D .x; z/. Then locally

Fi .x/ D @

@xi
C f A

i .x/
@

@zA
;

where similarly as before f A D zA ı f ı x�1 and f A
i D @f A

@xi . For the induced

metric F �g D gij dxi ˝ dxj we get

gij D gM
ij C gK

ABf A
if

B
j :

Since this is obviously positive definite and F is injective, graphs F W M !
M � K of smooth mappings f W M ! K are always embeddings. From the
formula for DF D Fi dxi and the Gauß formula one may then compute the second
fundamental tensor A D rDF . Since the precise formula for A is not important in
this article, we leave the details as an exercise to the reader.
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3 General Results in Higher Codimension

In this section we focus on results in mean curvature flow that are valid in any
dimension and codimension and that do not depend on specific geometric situations.

3.1 Short-Time Existence and Uniqueness

Consider the mean curvature vector field
�!
H D �!

HŒF � as an operator on the class of
smooth immersions

I WD fF W M ! N W F is a smooth immersiong :

We want to compute the linearized operator belonging to
�!
H . To this end we need

to look at the symbol and therefore we consider the locally defined expression

L
˛Iij
ˇ

WD @H ˛

@F
ˇ
ij

;

where F
ˇ
ij is shorthand for @2F ˇ

@xi @xj and locally
�!
H D H ˛ @

@y˛ .

Let gki;j WD @gki =@xj . We start with

@gkt;m

@F
ˇ
ij

D @

@F
ˇ
ij

�
gı�;�F ı

kF �
t F

�
m C gı�.F ı

kmF �
t C F ı

kF �
tm/
�

D gˇ�ı
j

m.F �
tı

i
k C F �

kıi
t / :

From this we then obtain

@�s
km

@F
ˇ
ij

D 1

2
gst gˇ�

�
.ıi

kı
j

m C ıi
mı

j

k
/F �

t

C.ıi
t ı

j
m � ıi

mı
j

t /F
�
k C .ıi

t ı
j

k
� ıi

kı
j

t /F
�
m

�
:

Since by Gauß’ formula

H ˛ D gkmA˛
km D gkm.F ˛

km � �s
kmF ˛

s C �˛
ˇ� F

ˇ

k
F �

m/

we obtain
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L
˛Iij
ˇ

D gkm
�
ı˛

ˇ ıi
kı

j
m � 1

2
gst gˇ�

�
.ıi

kı
j

m C ıi
mı

j

k
/F �

t

C.ıi
t ı

j
m � ıi

mı
j

t /F
�
k C .ıi

t ı
j

k
� ıi

kı
j

t /F
�
m

�
F ˛

s

�

D ı˛
ˇ gij � gst gˇ�gij F �

tF
˛
s � .gkj gsi � gki gsj /gˇ�F �

kF ˛
s :

For an arbitrary nonzero 1-form � D �i dxi we define the endomorphism L D
.L˛

ˇ
/˛;ˇD1;:::;n by

L˛
ˇ WD L

˛Iij
ˇ

�i �j :

We compute

L˛
ˇ D .ı˛

ˇ � gˇ�gst F �
t F

˛
s/j�j2 :

Applying this to a tangent vector Fl D F
ˇ

l
@

@yˇ we get

L˛
ˇ F

ˇ

l
D 0 :

If � D �ˇ @
@yˇ is normal, then

gˇ��ˇ F �
t D 0

and hence
L˛

ˇ �ˇ D j�j2�˛ :

Consequently L is degenerate along tangent directions of F and elliptic along
normal directions, more precisely for � 2 T �

p M we have

Ljp D j�j2�jp ;

where �jp W TF .p/N ! T ?
p M is the projection of TF .p/N onto T ?

p M . The reason

for the m degeneracies is the following: Writing a solution F W M ! N of
�!
H D 0

locally as the graph over its tangent plane at F.p/, we see that we need as many
height functions as there are codimensions, i.e. we need k D n�m functions. On the
other hand the system H ˛ D 0; ˛ D 1; : : : ; n consists of n coupled equations and
is therefore overdetermined with a redundancy of m equations. These m redundant
equations correspond to the diffeomorphism group of the underlying m-dimensional
manifold M . This means the following:

Proposition 3.1 (Invariance under the diffeomorphism group). If F W M �
Œ0; T / ! N is a solution of the mean curvature flow, and  2 Diff.M / a fixed
diffeomorphism of M , then QF W M � Œ0; T / ! N , QF .p; t/ WD F..p/; t/ is
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another solution. In particular, the (immersed) submanifolds QMt WD QF .M; t/ and
Mt WD F.M; t/ coincide for all t .

Thus the mean curvature flow is a (degenerate) quasilinear parabolic evolution
equation. The following theorem is well known and in particular forms a special
case of a theorem by Richard Hamilton [42], based on the Nash–Moser implicit
function theorem treated in another paper by Hamilton [41].

Proposition 3.2 (Short-time existence and uniqueness). Let M be a smooth
closed manifold and F0 W M ! N a smooth immersion into a smooth Riemannian
manifold .N; g/. Then the mean curvature flow admits a unique smooth solution on
a maximal time interval Œ0; T /, 0 < T � 1.

Besides the invariance of the equation under the diffeomorphism group of M

the flow is isotropic, i.e. invariant under isometries of the ambient space. This
property follows from the invariance of the first and second fundamental forms
under isometries.

Proposition 3.3 (Invariance under isometries). Suppose F W M � Œ0; T / ! N is
a smooth solution of the mean curvature flow and assume that  is an isometry of
the ambient space .N; g/. Then the family QF WD  ı F is another smooth solution
of the mean curvature flow. In particular, if the initial immersion is invariant under
, then it will stay invariant for all t 2 Œ0; T /.

We note that the short-time existence and uniqueness result stated above is not
in the most general form. For example, it is not necessary to assume smoothness
initially, it suffices to assume Lipschitz continuity. We note also that in general the
short-time existence and uniqueness result for non-compact complete manifolds
M is open but there exist important contributions in special cases. Based on
interior estimates, Ecker and Huisken [30] proved – requiring only a local Lipschitz
condition for the initial hypersurface –, a short-time existence result for the mean
curvature flow of complete hypersurfaces. In that paper the authors also show that
the mean curvature flow smoothes out Lipschitz hypersurfaces (i.e. the solution
becomes smooth for t > 0). This short-time existence result has been improved
in a paper by Colding and Minicozzi [24] where one only needs to assume a local
bound for the initial height function. The smoothing out result by Ecker and Huisken
has been extended by Wang to any dimension and codimension in [89] provided the
submanifolds have a small local Lipschitz norm (which cannot be improved by an
example of Lawson and Osserman) and the ambient space has bounded geometry.
Recently Chen and Yin [14] proved that uniqueness for complete manifolds M still
holds within the class of smooth solutions with bounded second fundamental tensor,
if the ambient Riemannian manifold .N; g/ has bounded geometry in a certain
sense. Chen and Pang [19] considered uniqueness of unbounded solutions of the
Lagrangian mean curvature flow equation for graphs.
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3.2 Evolution Equations

Suppose F W M � Œ0; T / ! N is a smooth solution of the mean curvature flow

d

dt
F D �!

H :

In this subsection we want to state and prove evolution equations of the most
important geometric quantities on M , like the first and second fundamental forms.

To this end we will compute evolution equations for various sections � in vector
bundles E over M . We will use the index notation introduced in Sect. 2.3. In
particular, we will consider those cases, where � is a section in a vector bundle
Et which itself depends on time t . If for example �t is the principal normal vector
field of a hypersurface F W M ! N , then �t is a section in Et WD F �

t TN . In this
case the mere computation of the total derivative of �t w.r.t. t will be insufficient
since this would only make sense in local coordinates (local in space and time). To
overcome this difficulty we just need to define a connection r on F �TN , where F

is now considered as a smooth map (in general no immersion) from the space-time
manifold M � Œ0; T / to N . A time derivative then becomes a covariant derivative in
direction of d

dt
, for example for a time dependent section � 2 F �TN we have in

local coordinates

�.x; t/ D �˛.x; t/
@

@y˛

r d
dt

� D
 

d�˛

dt
C �˛

ˇı

dF ˇ

dt
�ı

!
@

@y˛
D
�

d�˛

dt
C �˛

ˇıH ˇ �ı

�
@

@y˛
;

where �˛
ˇı

are the Christoffel symbols of the Levi-Civita connection on N and .y˛/

are local coordinates on N . On the other hand, if � is a section in a bundle E and E

does not depend on t , then the covariant derivative r d
dt

� coincides with d
dt

� . For

example for the induced metric F �
t g 2 �.T �M ˝ T �M / we have

F �
t g D gij .x; t/dxi ˝ dxj

and

r d
dt

F �
t g D d

dt
gij .x; t/dxi ˝ dxj

since T �M does not depend on t . Likewise, for the second fundamental tensor A

(considered as a section in F �TN ˝ T �M ˝ T �M , which makes sense since for
QM D M � Œ0; T / we have T � QM D T �M ˚ T �

R) we get

r d
dt

A˛
ij D d

dt
A˛

ij C �˛
ˇ�

dF ˇ

dt
A

�
ij D d

dt
A˛

ij C �˛
ˇ� H ˇ A

�
ij : (16)
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Lemma 3.4. If F W M � Œ0; T / ! .N; g/ evolves under the mean curvature flow,
then the induced Riemannian metrics F �

t g D gij .x; t/dxi ˝ dxj 2 �.T �M ˝
T �M / evolve according to

r d
dt

gij D d

dt
gij D �2h�!H; Aij i : (17)

Proof. We have
gij D g˛ˇ F ˛

iF
ˇ

j

and thus

r d
dt

gij D r� g˛ˇ
„ƒ‚…

D0

dF �

dt
F ˛

i F
ˇ

j
C g˛ˇ

�
r d

dt
F ˛

iF
ˇ

j
C F ˛

ir d
dt

F
ˇ

j

�

D g˛ˇ

 

ri

dF ˛

dt
F

ˇ

j
C F ˛

irj

dF ˇ

dt

!

D g˛ˇ

�
ri H

˛F
ˇ

j
C F ˛

i rj H ˇ
�

; (18)

where we have used that r� g˛ˇ D 0 (since r is metric) and r d
dt

F ˛
i D ri

dF ˛

dt
.

This last identity holds since the second fundamental tensor QA 2 �.F �TN ˝
T � QM ˝ T � QM/ of the map F W QM ! N is symmetric, so that

QA
�

@

@xi
;

d

dt

�

D ri

dF ˛

dt

@

@y˛
D r d

dt
F ˛

i

@

@y˛
D QA

�
d

dt
;

@

@xi

�

:

Now since g˛ˇ H ˛F
ˇ

j
D 0, we get

0 D ri .g˛ˇ H ˛F
ˇ

j
/

D r� g˛ˇ F
�
i H

˛F
ˇ

j
C g˛ˇ .ri H

˛F
ˇ

j
C H ˛ri F

ˇ

j
/

D g˛ˇ .ri H
˛F

ˇ

j
C H ˛A

ˇ

ij
/

since ri F
ˇ

j
D A

ˇ

ij
. If we insert this into (18), then we obtain the result. ut

Corollary 3.5. The induced volume form d�t on M evolves according to

r d
dt

d�t D d

dt
d�t D �j�!H j2d�t : (19)

Proof. In local coordinates we have
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d�t D p
det gkl dx1 ^ � � � ^ dxm :

Since
d

dt
.det gkl / D

�

gij d

dt
gij

�

det gkl

the claim follows easily. ut
Corollary 3.6. The Christoffel symbols �k

ij of the Levi-Civita connection on M

evolve according to

d

dt
�k

ij D �gkl
�
rih�!H; Ajl i C rj h�!H; Ai li � rl h�!H; Aij i

�
: (20)

Proof. This follows directly from

�k
ij D 1

2
gkl

�
gi l;j C gjl;i � gij;l

�
;

the evolution equation of the metric and the fact that d
dt

�k
ij is a tensor (though �k

ij

is not). ut
Next we compute the evolution equation for the second fundamental tensor A D

A˛
ij

@
@y˛ ˝ dxi ˝ dxj

Lemma 3.7. The second fundamental tensor A evolves under the mean curvature
flow by

r d
dt

A˛
ij D ri rj H ˛ � C k

ij F ˛
k C R˛

ı��F ı
j H � F �

i ; (21)

where C k
ij D d

dt
�k

ij .

Proof. Since

A˛
ij D @2F ˛

@xi @xj
� �k

ij F ˛
k C �˛

ˇ� F
ˇ

i
F

�
j

we get

d

dt
A˛

ij D @2H ˛

@xi @xj
� �k

ij

@H ˛

@xk
C �˛

ˇ�

 
@H ˇ

@xi
F

�
j C F

ˇ

i

@H �

@xj

!

� d

dt
�k

ij F ˛
k C �˛

ˇ�;ıH ıF
ˇ

i
F

�
j : (22)

To continue we need some covariant expressions. For a section V D V ˛ @
@y˛ 2

� .F �TN / we have

rj V ˛ D @V ˛

@xj
C �˛

ˇ� F
ˇ

j
V �

and then
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ri rj V ˛ D @

@xi

�
@V ˛

@xj
C �˛

ˇ� F
ˇ

j
V �

�

� �k
ij

�
@V ˛

@xk
C �˛

ˇ� F
ˇ

k
V �

�

C�˛
ˇ� F

ˇ

i

�
@V �

@xj
C �

�

ı�
F ı

j V �

�

D @2V ˛

@xi @xj
C �˛

ˇ�;ıF ı
iF

ˇ

j
V � C �˛

ˇ�

@2F ˇ

@xi @xj
V � C �˛

ˇ� F
ˇ

j

@V �

@xi

��k
ij

�
@V ˛

@xk
C �˛

ˇ� F
ˇ

k
V �

�

C �˛
ˇ� F

ˇ

i

�
@V �

@xj
C �

�

ı�
F ı

j V �

�

D @2V ˛

@xi @xj
� �k

ij

@V ˛

@xk
C �˛

ˇ�

 
@V ˇ

@xi
F

�
j C F

ˇ

i

@V �

@xj

!

C�˛
ˇ�

@2F ˇ

@xi @xj
V � � �k

ij �˛
ˇ� F

ˇ

k
V � C �˛

ˇ��
ˇ

ı�
F �

i F
ı
j V �

C�˛
ˇ�;ıF ı

i F
ˇ

j
V �

D @2V ˛

@xi @xj
� �k

ij

@V ˛

@xk
C �˛

ˇ�

 
@V ˇ

@xi
F

�
j C F

ˇ

i

@V �

@xj

!

C�˛
ˇ� V � A

ˇ

ij
C
�
�˛

ˇ��
ˇ

ı�
� �˛

ˇ� �
ˇ

ı�

�
F �

iF
ı
j V � C �˛

ˇ�;ıF ı
i F

ˇ

j
V � ;

where we have used �˛
ˇ�

D �˛
�ˇ

several times.
Applying this to V ˛ D H ˛ we conclude

d

dt
A˛

ij D rirj H ˛ � d

dt
�k

ij F ˛
k C �˛

ˇ�;ıH ıF
ˇ

i
F

�
j

��˛
ˇ� H � A

ˇ

ij
�
�
�˛

ˇ��
ˇ

ı�
� �˛

ˇ� �
ˇ

ı�

�
F �

iF
ı
j H � � �˛

ˇ�;ıF ı
i F

ˇ

j
H �

D rirj H ˛ � d

dt
�k

ij F ˛
k � �˛

ˇ� H � A
ˇ

ij

C
�
�˛

�ı;� � �˛
�ı;� � �˛

ˇ��
ˇ

ı�
C �˛

ˇ� �
ˇ

ı�

�
F �

i F
ı
j H �

D rirj H ˛ � d

dt
�k

ij F ˛
k � �˛

ˇ� H � A
ˇ

ij
C R˛

ı��F �
iF

ı
j H � :

The result then follows from (16). ut
Corollary 3.8. Under the mean curvature flow the mean curvature satisfies the
following evolution equations:

r d
dt

H ˛ D 	H ˛ � gij C k
ij F ˛

k C R˛
ı��F �

iF
ıi H � C 2hAkl ;

�!
H iA˛kl (23)
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r d
dt

j�!H j2 D 	j�!H j2 � 2jr�!
H j2 C 4hAij ;

�!
H ihAij ;

�!
H i

C2R˛ˇ�ıH ˛F
ˇ

i
H � F ıi (24)

D 	j�!H j2 � 2jr?�!
H j2 C 2hAij ;

�!
H ihAij ;

�!
H i

C2R˛ˇ�ıH ˛F
ˇ

i
H � F ıi (25)

Proof. The first equation follows from H ˛ D gij A˛
ij , (17), (21) and

r d
dt

gij D �gikgjl r d
dt

gkl :

The second equation then follows from j�!H j2 D g˛ˇ H ˛H ˇ , g˛ˇ F ˛
i H

ˇ D 0

and
r d

dt
g˛ˇ D r� g˛ˇ H � D 0 :

Finally, (25) follows from

rk

�!
H D r?

k

�!
H C gij hrk

�!
H ; Fi iFj

D r?
k

�!
H � gij h�!H; rkFiiFj

D r?
k

�!
H � gij h�!H; Aki iFj

and hr?
k

�!
H ; Fj i D 0. ut

From the evolution equation of A˛
ij we obtain in the same way

r d
dt

jAj2 D 2hr2�!
H; Ai C 4h�!H; Aij ihAik; A

k
j i

C2R˛ˇ�ıA˛kl F
ˇ

k
H � F ı

l : (26)

Applying Simons’ identity (15) we get

r d
dt

jAj2 D 	jAj2 � 2jr?Aj2

CˇˇhAij ; Akli � hAi l ; Ajkiˇˇ2 C ˇ
ˇA˛

ikA
ˇ k

j
� A

ˇ

ik
A

˛ k
j

ˇ
ˇ2

C2
ˇ
ˇh�!H; Aij i � hAik; A

k
j iˇˇ2 � 2

ˇ
ˇh�!H; Aij iˇˇ2

C4R˛ˇ�ıF ˛
kF

ˇ

i
F

�

l
F ı

j

�
hAij ; Akl i � gkl hAip; A j

p i
�

C2R˛ˇ�ıA˛kl
�
4A

ˇ

ik
F

�

l
F ıi C F

ˇ

l
F

�

k
H ı C F

ˇ

i
A

�

lk
F ıi

�
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C2
�r�R˛ˇ�ı C r� R˛ıˇ�

�
F �

iF
ˇ

l
F

�

k
F ıi A˛kl

C4h�!H; Aij ihAik; A
k

j i
C2R˛ˇ�ıA˛klF

ˇ

k
H � F ı

l

D 	jAj2 � 2jr?Aj2

C2
ˇ
ˇhAij ; Akl i

ˇ
ˇ2 C ˇ

ˇA˛
ikA

ˇ k

j
� A

ˇ

ik
A

˛ k
j

ˇ
ˇ2

C4R˛ˇ�ıF ˛
kF

ˇ

i
F

�

l
F ı

j

�
hAij ; Akl i � gkl hAip; A j

p i
�

C2R˛ˇ�ıA˛kl
�
4A

ˇ

ik
F

�

l
F ıi C F

ˇ

i
A

�

lk
F ıi

�

C2
�r�R˛ˇ�ı C r� R˛ıˇ�

�
F �

iF
ˇ

l
F

�

k
F ıi A˛kl :

Thus we have shown

Corollary 3.9. Under the mean curvature flow the quantity jAj2 satisfies the
following evolution equation:

r d
dt

jAj2 D 	jAj2 � 2jr?Aj2

C2
ˇ
ˇhAij ; Akl i

ˇ
ˇ2 C ˇ

ˇA˛
ikA

ˇ k

j
� A

ˇ

ik
A

˛ k
j

ˇ
ˇ2

C4R˛ˇ�ıF ˛
kF

ˇ

i
F

�

l
F ı

j

�
hAij ; Akli � gklhAip; A j

p i
�

C2R˛ˇ�ıA˛kl
�
4A

ˇ

ik
F

�

l
F ıi C F

ˇ

i
A

�

lk
F ıi

�

C2
�r�R˛ˇ�ı C r� R˛ıˇ�

�
F �

i F
ˇ

l
F

�

k
F ıi A˛kl : (27)

These general evolution equations simplify in more special geometric situa-
tions. E.g., if the codimension is one, then A˛

ij D �˛hij (cf. Sect. 2.4.1) implies

jr?Aj2 D jrhj2, jAj2 D jhj2 and

r d
dt

jhj2 D 	jhj2 � 2jrhj2 C 2jhj2.jhj2 C Ric.�; �//

�4.hij h
m

j
NR l

mli � hij hlm NRmilj /

C2hij . Nrj
NR l

0li C Nrl
NR l

0ij / ; (28)

where

NRmilj WD R˛ˇ�ıF ˛
mF

ˇ

i
F

�

l
F ı

j ; Ric.�; �/ WD R˛ˇ�ı�˛F
ˇ

i
�� F ıi

and
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Nrl
NR l

0ij WD r˛Rˇ�ı�F ˛
l �

ˇ F
�
iF

ı
j F �l :

Equation (28) is Corollary 3.5 (ii) in [49]. Note that there is a plus sign in the last
line of (28) since our unit normal is inward pointing and the unit normal in [49] is
outward directed.

3.3 Long-Time Existence

In general long-time existence of solutions cannot be expected as the following well-
known theorem shows:

Proposition 3.10. Suppose F0 W M ! R
n is a smooth immersion of a closed m-

dimensional manifold M . Then the maximal time T of existence of a smooth solution
F W M � Œ0; T / ! R

n of the mean curvature flow with initial immersion F0 is finite.

Proof. The proof easily follows by applying the parabolic maximum principle to
the function f WD jF j2 C 2mt which satisfies the evolution equation

d

dt
f D 	f :

Hence T � 1
2m

max jF0j2 and the inequality is sharp since equality is attained
for round spheres centered at the origin. ut

This result is no longer true for complete submanifolds since for example for
entire m-dimensional graphs in R

mC1 one has long-time existence (see [29]). In
addition, the result can fail, if the ambient space is a Riemannian manifold since in
some cases one gets long-time existence and convergence (for example in [38, 75,
76, 78, 84, 87]).

The next well known theorem holds in any case:

Proposition 3.11. Let M be a closed manifold and F W M � Œ0; T / ! .N; g/ a
smooth solution of the mean curvature flow in a complete (compact or non-compact)
Riemannian manifold .N; g/. Suppose the maximal time of existence T is finite.
Then

lim sup
t!T

max
Mt

jAj2 D 1 :

Here, Mt WD F.M; t/.

Remark 3.12. The same result also holds in some other situations. For example one
can easily see that under suitable assumptions on the solution one can allow N to
have boundary.

Proof. The theorem is one of the “folklore” results in mean curvature flow for which
a rigorous proof in all dimensions and codimensions has not been written up in detail
but can be carried out in the same way as the corresponding proof for hypersurfaces.
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This has been done by Huisken in [48, 50] and is again based on the maximum
principle. The key observation is, that all higher derivatives rkA of the second
fundamental tensor are uniformly bounded, once A is uniformly bounded. This can
be shown by induction and has originally been carried out for hypersurfaces using
Lp-estimates in [48]. For compact hypersurfaces there exists a more direct argument
involving the maximum principle applied to the evolution equations of jAj2 in (27)
and jrkAj2. The method can be found in the proof of Proposition 2.3 in [50] and
works in the same way in any codimension and in any ambient Riemannian manifold
with bounded geometry. ut

A corollary is

Corollary 3.13. Let M be a closed manifold and F W M � Œ0; T / ! N a smooth
solution of the mean curvature flow on a maximal time interval in a complete
Riemannian manifold .N; g/. If supt2Œ0;T / maxMt

jAj < 1, then T D 1.

Note that long-time existence does not automatically imply convergence. For
example, consider the surface of revolution N � R

3 generated by the function
f .x/ D 1 C e�x . A circle � of revolution moving by curve shortening flow on
N will then exist for all t 2 Œ0; 1/ with uniformly bounded curvature but it will
not converge since it tends off to infinity. Some results on the regularity of curve
shortening flow in high codimension have been derived in [15].

However, in some geometries once long-time existence is established one can
use the Arzela–Ascoli theorem to extract convergent subsequences.

3.4 Singularities

If a solution F W M � Œ0; T / ! N of the mean curvature flow exists only for finite
time, then Proposition 3.11 implies the formation of a singularity. The question then
arises how to understand the geometric and analytic nature of these singularities.
From Proposition 3.11 we know that

lim sup
t!T

max
Mt

jAj2 D 1 :

One possible approach to classify singularities is to distinguish them by the blow-
up rate of maxMt

jAj2. The next definition originally appeared in [50] in the context
of hypersurfaces in R

mC1 but can be stated in the same way for arbitrary mean
curvature flows.

Definition 3.14. Suppose F W M � Œ0; T / ! N is a smooth solution of the mean
curvature flow with T < 1 and

lim sup
t!T

max
Mt

jAj2 D 1 :



Mean Curvature Flow in Higher Codimension: Introduction and Survey 257

(a) A point q 2 N is called a blow-up point, if there exists a point p 2 M such that

lim
t!T

F.p; t/ D q ; lim
t!T

jA.p; t/j D 1 :

(b) One says that M develops a singularity of Type I, if there exists a constant c > 0

such that
max
Mt

jAj2 � c

T � t
; 8t 2 Œ0; T / :

Otherwise one calls the singularity of Type II.

So if q is a blow-up point then for t ! T a singularity of Type I or Type II will
form at q 2 N (and perhaps at other points as well).

In this context it is worth noting that the flow need not have a blow-up point in
the sense of Definition 3.14, even if the second fundamental form blows up, e.g. the
ambient space might have boundary or the singularity might form at spatial infinity.
For this and other reasons it is appropriate to come up with more definitions. In [81],
Stone introduced special and general singular points.

Definition 3.15. (a) A point p 2 M is called a special singular point of the mean
curvature flow, as t ! T , if there exists a sequence of times tk ! T , such that

lim sup
k!1

jAj.p; tk/ D 1:

(b) A point p 2 M is called a general singular point of the mean curvature flow,
as t ! T , if there exists a sequence of times tk ! T and a sequence of points
pk ! p, such that

lim sup
k!1

jAj.pk; tk/ D 1:

The reason to introduce the blow-up rate in Definition 3.14 is that for closed
submanifolds in euclidean space one always has an analog inequality in the other
direction, i.e.

max
Mt

jAj2 � Qc
T � t

(29)

for some positive number Qc (note that this does not necessarily hold, if the ambient
space N differs from R

n). So in some sense singularities of Type I have the best
controlled blow-up rate of jAj2. Because of (29) one may actually refine the defini-
tion of special and general singular points for the mean curvature flow in R

n, as was
originally done by Stone in [81]. Instead of requiring lim supk!1 jAj.pk; tk/ D 1
one can define a general singular point p 2 M such that there exists some ı > 0

and a sequence .pk; tk/ ! .p; T / with

jAj2.pk; tk/ � ı

T � tk
:
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A sequence .pk ; tk/ with this property is called an essential blow-up sequence.
Although (29) gives a minimum blow-up rate for maxp2M jAj2.p; t/ in the
euclidean space, as t approaches T , this does not rule out the possibility that, while
jAj2.p; t/ � ı

T �t
in some part of M , the blow-up of jAj2 might simultaneously

occur at some slower rate (say like .T � t/�˛ ; ˛ 2 .0; 1/) somewhere else. Such
”slowly forming singularities” would not be detected by a Type I blow-up procedure
(see below) since the rescaling would be too fast. It is therefore interesting to
understand, if this phenomenon occurs at all. As was recently shown by Le and
Sesum [58] this does not happen in the case of Type I singularities of hypersurfaces
in R

mC1 and all notions of singular sets defined in [81] coincide. In particular they
prove that the blow-up rate of the mean curvature must coincide with the blow-up
rate of the second fundamental form, if a singularity of Type I is forming. We also
mention that there exist many similarities between the formation of singularities
in mean curvature flow and Ricci flow (see [32] for a nice overview on Type I
singularities in Ricci flow).

Type I: Let us now assume that q 2 R
n is a blow-up point of Type I of F W M �

Œ0; T / ! R
n and that dim M D m. Huisken introduced the following rescaling

technique in [50] for hypersurfaces, but obviously it can be done in the same way for
any codimension in R

n: Define an immersion QF W M � Œ�1=2 log T; 1/ ! R
n by

QF .�; s/ WD .2.T � t//�1=2.F.�; t/ � q/ ; s.t/ D �1

2
log.T � t/ :

One can then compute that QF satisfies the rescaled flow equation

d

ds
QF D Q�!

H C QF :

Since by assumption jAj2 � c=.T � t/ the second fundamental tensor QA of
the rescaling is uniformly bounded in space and time. To study the geometric and
analytic behavior of the rescaled immersions QMs D QF .M; s/, Huisken proved a
monotonicity formula for hypersurfaces in R

n moving by mean curvature. The
corresponding result in arbitrary dimension and codimension is as follows: For
t0 2 R let

� W Rn � R n ft0g WD 1

.4�.t0 � t//
m
2

e
� jyj

2

4.t0�t/ :

Then �jRm�Rnft0g is the backward heat kernel of Rm at .0; t0/ and the following
monotonicity formula holds

Proposition 3.16 (Monotonicity formula (cf. Huisken [50])). Let F W M �
Œ0; T / ! R

n be a smooth solution of the mean curvature flow and let M be closed
and m-dimensional. Then
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d

dt

R
M �.F.p; t/; t/d�.p; t/

D �
Z

M

ˇ
ˇ
ˇ
ˇ
�!
H .p; t/ C F ?.p; t/

2.t0 � t/

ˇ
ˇ
ˇ
ˇ

2

�.F.p; t/; t/d�.p; t/ ;

where d�.�; t/ denotes the volume element on M induced by the immersion F.�; t/

and F ? denotes the normal part of the position vector F .

The proof is a simple consequence of

d

dt
� D

 
m

2.t0 � t/
� jF j2

4.t0 � t/2
� hF;

�!
H i

2.t0 � t/

!

�

and

	� D
 

� m

2.t0 � t/
C jF >j2

4.t0 � t/2
� hF;

�!
H i

2.t0 � t/

!

�

so that by the divergence theorem and from d
dt

d� D �j�!H j2d� we get

d

dt

Z

M

�d� D
Z

M

.
d

dt
� C 	� � j�!H j2�/d� D �

Z

M

ˇ
ˇ
ˇ
ˇ
�!
H C F ?

2.t0 � t/

ˇ
ˇ
ˇ
ˇ

2

�d� :

Though the proof is easy, it is not obvious to look at the backward heat kernel
when studying the mean curvature flow. This nice formula was used by Huisken to
study the asymptotic behavior of the Type I blow-up and he proved the following
beautiful theorem for hypersurfaces which again holds in arbitrary codimension

Proposition 3.17 (Type I blow-up (cf. Huisken [50])). Suppose F W M �Œ0; T / !
R

n is a smooth solution of the mean curvature flow of a closed m-dimensional
smooth manifold M . Further assume that T < 1 is finite and that 0 2 R

n is a
Type I blow-up point as t ! T . Then for any sequence sj there is a subsequence
sjk

such that the rescaled immersed submanifolds QMsjk
converge smoothly to an

immersed nonempty limiting submanifold QM1. Any such limit satisfies the equation

Q�!
H C QF ? D 0 : (30)

Note that by Proposition 3.3 it is no restriction to assume that the blow-up point
coincides with the origin. In general the limiting submanifold QM1 need not have the
same topology as M , for example compactness might no longer hold. In addition it
is unclear, if all solutions of (30) occur as blow-up limits of Type I singularities of
compact submanifolds.

A solution of (30) is called a self-similar shrinking solution (or self-shrinker for
short) of the mean curvature flow. Namely, one easily proves that a solution of (30)
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shrinks homothetically under the mean curvature flow and that there is a smooth
positive function c explicitly computable from the initial data and depending on the
rescaled time s such that Q�!

H s C c.s/ QF ?
s D 0 :

There exists another interesting class of self-similar solutions of the mean
curvature flow. These are characterized by the elliptic equation

�!
H � F ? D 0 (31)

and are called self-expanders. In [29] Ecker and Huisken proved that entire graphs in
R

mC1 (in codimension 1) approach asymptotically expanding self-similar solutions
if they satisfy a certain growth condition at infinity. Later Stavrou [80] proved the
same result under the weaker assumption that the graph has bounded gradient and a
unique cone at infinity. Furthermore, he gave a characterization of expanding self-
similar solutions to mean curvature flow with bounded gradient.

A classification of self-shrinking or self-expanding solutions is far from being
complete. However there are some special situations for which one can say
something. Self-shrinking curves have been completely classified by Abresch and
Langer in [1]. Though their proof has been carried out for the curve shortening flow
in R

2 the result also applies to arbitrary codimension since (30) becomes an ODE
for m D 1 and the solutions are uniquely determined by their position and velocity
vectors so that all 1-dimensional solutions of (30) must be planar. For hypersurfaces
there exists a beautiful theorem by Huisken in [51] that describes all self-shrinking
hypersurfaces with nonnegative (scalar) mean curvature. Later this result could be
generalized by the author in the following sense

Proposition 3.18 ([77]). For a closed immersion M m � R
n, m � 2 are

equivalent:

(a) M is a self-shrinker of the mean curvature flow with nowhere vanishing mean

curvature vector
�!
H and the principal normal vector � WD �!

H =j�!H j is parallel in
the normal bundle.

(b) M is a minimal immersion in a round sphere.

In the same paper one finds a similar description for the non-compact case.
Type I singularities usually occur when there exists some kind of pinching of

the second fundamental form and such situations occur quite often (cf. Sect. 4). It is
therefore surprising that there are situations, where one can exclude Type I singular-
ities at all. In [74, Theorem 2.3.5] it was shown that there do not exist any compact
Lagrangian solutions of (30) with trivial Maslov class m1 D ŒH=�� D 0. Wang [86]
and Chen and Li [17] observed that finite time Type I singularities of the Lagrangian
mean curvature flow of closed Lagrangian submanifolds can be excluded, if the
initial Lagrangian is almost calibrated in the sense that � Re.d zjM / > 0. The
condition to be almost calibrated is equivalent to the assumption that the Maslov
class is trivial and that the Lagrangian angle ˛ satisfies cos ˛ > 0. The difference
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of the results of Wang, Chen and Li in [17, 86] w.r.t. the result in [74] is, that the
blow-up need not be compact any more. Later Neves [64] extended this result to the
case of zero Maslov class, i.e. to the case where a globally defined Lagrangian angle
˛ exists on M , thus removing the almost calibrated condition. In [39, Theorem 1.9]
we proved a classification result for Lagrangian self-shrinkers and expanders in case
they are entire graphs with a growth condition at infinity. In these cases Lagrangian
self-similar solutions must be minimal Lagrangian cones.

Therefore when we study the Lagrangian mean curvature flow of closed
Lagrangian submanifolds with trivial Maslov class we need to consider singularities
of Type II only.

Type II: To study the shape of the submanifold near a singularity of Type II one
can define a different family of rescaled flows. Following an idea of Hamilton [45]
one can choose a sequence .pk; tk/ as follows: For any integer k � 1 let tk 2
Œ0; T � 1=k�; pk 2 M be such that

jA.pk; tk/j2.T � 1

k
� tk/ D max

t � T � 1=k

p 2 M

jA.p; t/j2.T � 1

k
� t/ :

Furthermore one chooses

Lk D jA.pk; tk/j ; ˛k D �L2
ktk ; !k D L2

k.T � tk � 1=k/ :

If the singularity is of Type II then one has

tk ! T ; Lk ! 1 ; ˛k ! �1 ; !k ! 1 :

Instead of jAj one may use other quantities in the definition of these sequences,
if it’s known that they blow-up with a certain rate as t ! T . For example, in [53]
the mean curvature H was used in the case of mean convex hypersurfaces in R

mC1.
Then one can consider the following rescaling: For any k � 1, let Mk;� be the

family of submanifolds defined by the immersions

Fk.�; �/ WD Lk.F.�; L�2
k � C tk/ � F.pk; tk// ; � 2 Œ˛k ; !k � :

The proper choice of the blow-up quantity (jAj; H or similar) in the definition
of the rescaling will be essential to describe its behavior. Besides this rescaling
technique there exist other methods to rescale singularities and the proper choice
of the rescaling procedure depends on the particular situation in which the flow is
considered. A nice reference for some of the scaling techniques is [28].

If M is compact and develops a Type II singularity then a subsequence of the
flows Mk;� converges smoothly to an eternal mean curvature flow QM� defined for
all � 2 R. Then a classification of Type II singularities depends on the classification
of eternal solutions of the mean curvature flow.



262 K. Smoczyk

In R
2 the only convex eternal solution (up to scaling) of the mean curvature flow

is given by the “grim reaper”

y D � log cos x=� :

The grim reaper is a translating soliton of the mean curvature flow, i.e. it satisfies
the geometric PDE �!

H D V ?

for some fixed vector V 2 R
n. A translating soliton moves with constant speed in

direction of V .
In [8] the authors constructed some particular solutions of the mean curvature

flow that develop Type II singularities. In R
2 examples of curves that develop a

Type II singularity are given by some cardioids [7]. Using a Harnack inequality,
Hamilton [46] proved that any eternal convex solution of the mean curvature flow
of hypersurfaces in R

mC1 must be a translating soliton, if it assumes its maximal
curvature at some point in space-time. In [20] the authors study whether such
convex translating solutions are rotationally symmetric, and if every 2-dimensional
rotationally symmetric translating soliton is strictly convex.

Various different notions of weak solution have been developed to extend the flow
beyond the singular time T , including the geometric measure theoretic solutions of
Brakke [10] and the level set solutions of Chen et al. [21] and Evans and Spruck
[33], which were subsequently studied further by Ilmanen [55]. In [54] Huisken and
Sinestrari define such a notion based on a surgery procedure.

4 Special Results in Higher Codimension

In this chapter we mention the most important results in mean curvature flow that
depend on more specific geometric situations and we will focus on results in higher
codimension, especially on graphs and results in Lagrangian mean curvature flow.

4.1 Preserved Classes of Immersions

Definition 4.1. Let I be the class of smooth m-dimensional immersions into a
Riemannian manifold .N; g/ and suppose F � I is a subclass. We say that F is
a preserved class under the mean curvature flow, if for any solution Ft W M ! N ,
t 2 Œ0; T / of the mean curvature flow with .F0 W M ! N / 2 F we also have
.Ft W M ! N / 2 F for all t 2 Œ0; T /.

Preserved classes of the mean curvature flow are very important since one can
often prove special results within these classes. Many classes can be expressed in
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terms of algebraic properties of the second fundamental form and in general it is a
hard problem to detect those classes. We give a number of examples

Example 4.2. (a) F1 WD fConvex hypersurfaces in R
mC1g

(b) F2 WD fMean convex hypersurfaces in R
mC1, i.e. H > 0g

(c) F3 WD fEmbedded hypersurfaces in Riemannian manifoldsg
(d) F4 WD fHypersurfaces in R

mC1 as entire graphs over a flat planeg
(e) F5 WD fLagrangian immersions in Kähler–Einstein manifoldsg

To prove that classes are preserved one often uses the parabolic maximum
principle (at least in the compact case). Besides the classical maximum principle
for scalar quantities there exists an important maximum principle for bilinear forms
due to Richard Hamilton that was originally proven in [42] and improved in [43].

Another very important property is the pinching property of certain classes of
immersions in R

n.

Definition 4.3. Let F W M ! R
n be a (smooth) immersion. We say that the second

fundamental form A of F is ı-pinched, if the inequality

jAj2 � ıj�!H j2

holds everywhere on M .

From

0 �
ˇ
ˇ
ˇ
ˇA � 1

m

�!
H ˝ F �g

ˇ
ˇ
ˇ
ˇ

2

D jAj2 � 1

m
j�!H j2

with m D dim M we immediately obtain that ı is bounded from below by 1=m.
For hypersurfaces in R

mC1 it is known:

Proposition 4.4. Let ı � 1=m. The class of closed ı-pinched hypersurfaces in
R

mC1 is a preserved class under the mean curvature flow.

Proof. This easily follows from the maximum principle and the evolution equation
for f WD jAj2=H 2. ut
It can be shown that an m-dimensional submanifold in R

n is 1=m-pinched, if
and only if it is either a part of a round sphere or a flat subspace. Therefore
closed pinched submanifolds are in some sense close to spheres. In some cases
this pinching can improve under the mean curvature flow. To explain this in more
detail, we make the following definition: Let F be a nonempty class of smooth m-
dimensional immersions F W M ! R

n, where M is not necessarily fixed, and set

ıF WD supfı 2 R W jAF .p/j2 � ıj�!H F .p/j2 ; 8p 2 M; 8.F W M ! R
n/ 2 F g ;
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where AF and
�!
H F denote the second fundamental form and mean curvature vector

of the immersion F W M ! R
n. Then ıF � 1

m
and ıF is finite, if and only if F

contains an immersion F W M ! R
n for which

�!
H F does not vanish completely.

Definition 4.5. Let F be a preserved class of smooth m-dimensional immersions
with ıF < 1 and suppose ı is some real number with ı > ıF . We say that F is
ı-pinchable, if for any � with 0 � � < ı � ıF the class

F� WD f.F W M ! R
n/ 2 F W jAF .p/j2 � .ıF C �/j�!H F .p/j2 ; 8p 2 M g

is a preserved class under the mean curvature flow.

Example 4.6. (a) It follows from Theorem 4.4 that the class F .m; m C 1/ of
smooth m-dimensional closed immersions into R

mC1 is ı-pinchable for any
ı � 1=m D ıF.m;mC1/ and that the pinching constant ıF.m;mC1/ is attained if
and only if the immersion F W M ! R

n is a round sphere or a flat plane (or
part of).

(b) A beautiful result recently obtained by Andrews and Baker [6] shows that the
class F .m; m C k/ of smooth m-dimensional closed immersions into R

mCk

is ı-pinchable with ı D 1=.m � 1/, if m � 4 and with ı D 4=3m for
2 � m � 4. Here ıF.m;mCk/ D 1=m. They prove that ı-pinched immersions
contract to round points. Thus for such immersions one has M D Sm and they
are smoothly homotopic to hyperspheres.

We will now show that the class L .m/ of smooth closed Lagrangian immersions
into C

m is not ı-pinchable for any ı.

Theorem 4.7. Let L .m/ be the class of smooth closed Lagrangian immersions
into C

m, m > 1. Then ıL .m/ D 3=.m C 2/ and L .m/ is not ı-pinchable for any ı.

Proof. Given a Lagrangian immersion F W M ! C
m we have

0 �
ˇ
ˇ
ˇ
ˇhijk � 1

m C 2
.Hi gjk C Hj gki C Hkgij /

ˇ
ˇ
ˇ
ˇ

2

D jAj2 � 3

m C 2
j�!H j2 ;

where Hidxi is the mean curvature form. This implies ıL .m/ � 3
mC2

. On the other
hand equality is attained for flat Lagrangian planes and for the Whitney spheres.
These are given by restricting the immersions

QFr W RmC1 ! C
m ; QFr .x1; : : : ; xmC1/ WD r.1 C ixmC1/

1 C .xmC1/2
.x1; : : : ; xm/; r > 0

to Sm � R
mC1, i.e. Fr WD QFrjSm W Sm ! C

m is a Lagrangian immersion

of the sphere with jAj2 D 3
mC2

j�!H j2. The number r is called the radius of the
Whitney sphere. This shows ıL .M/ D 3

mC2
. It has been shown by Ros and Urbano



Mean Curvature Flow in Higher Codimension: Introduction and Survey 265

in [69] that Whitney spheres and flat Lagrangian planes are the only Lagrangian

submanifolds in C
m, m > 1, for which jAj2 D 3

mC2
j�!H j2. Now if L .M / would

be ı-pinchable for some ı, then in particular the Lagrangian mean curvature flow

would preserve the identity jAj2 D 3
mC2

j�!H j2. This is certainly true for the flat
planes but for the Whitney sphere this cannot be true. Because the result of Ros and
Urbano implies that under the assumption of ı-pinchability a Whitney sphere would
then stay a Whitney sphere under the Lagrangian mean curvature flow and the radius
of the spheres would decrease. In other words, the Whitney sphere would have to
be a self-similar shrinking solution of the Lagrangian mean curvature flow. This is
a contradiction to the well-known result (first shown in [74, Corollary 2.3.6]), that
there are no self-shrinking Lagrangian spheres in C

m, if m > 1. ut

4.2 Lagrangian Mean Curvature Flow

In this subsection we will assume that F W M ! N is a closed smooth Lagrangian
immersion into a Kähler manifold .N; g; J /. It has been shown in [72] that the
Lagrangian condition is preserved, if the ambient Kähler manifold is Einstein.
This includes the important case of Calabi–Yau manifolds, i.e. of Ricci flat Kähler
manifolds. Recently a generalized Lagrangian mean curvature flow in almost Kähler
manifolds with Einstein connections has been defined by Wang and the author in
[79]. This generalizes an earlier result by Behrndt [9]. The Einstein condition is
relevant in view of the Codazzi equation which implies that the mean curvature form
is closed, a necessary condition to guarantee that the deformation is Lagrangian.
To explain this in more detail, observe that the symplectic form ! induces an
isomorphism between the space of smooth normal vector fields along M , and the
space of smooth 1-forms on M . Namely, given � 2 �1.M / there exists a unique
normal vector field V 2 �.T ?M / with � D !.�; V /. If F W M � Œ0; T / ! N is
a smooth family of Lagrangian immersions evolving in normal direction driven by
some smooth time depending 1-forms � 2 �1.M / we have

0 D d

dt
F �! D d.!.

d

dt
F; �// D �d�

and consequently � must be closed. Since the mean curvature form is given by

H D !.�; �!
H/

we obtain that the closeness of H is necessary to guarantee that the mean curvature
flow preserves the Lagrangian condition, and it is indeed sufficient ([72, 74]). In
the non-compact case this is open in general, but in some cases (like graphs over
complete Lagrangian submanifolds with bounded geometry) this can be reduced
to the existence problem of solutions to a parabolic equation of Monge–Ampère
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type. The Lagrangian condition can be interpreted as an integrability condition. For
example, if M is a graph in C

m D R
m ˚ iRm over the real part, i.e. if M is the

image of some embedding

F W Rm ! C
m ; F .x/ D x C iy.x/ ;

where y D yi dxi is a smooth 1-form on R
m, then M is Lagrangian if and only

if y is closed. Consequently there exists a smooth function u (called a generating
function) such that y D du. Assuming that M evolves under the mean curvature
flow and that all subsequent graphs Mt are still Lagrangian one can integrate the
evolution equation of y D du and obtains a parabolic evolution equation of Monge–
Ampère type for u. Conversely, given a solution u of this parabolic Monge–Ampère
type equation on R

m one can generate Lagrangian graphs F D .x; du/ and it can be
shown that these graphs move under the mean curvature flow (cf. [74]). The same
principle works in a much more general context, namely if the initial Lagrangian
submanifold lies in some Kähler–Einstein manifold and the Lagrangian has bounded
geometry. The boundedness of the geometry is essential for the proof since this
allows to exploit the implicit function theorem to obtain the existence of a Monge–
Ampère type equation similar as above.

This integrability property has one important consequence. In general, given
a second order parabolic equation, one would need uniform C 2;˛-bounds of the
solution in space and uniform C 1;˛-estimates in time to ensure long-time existence,
as follows from Schauder theory. For the mean curvature flow these estimates are
already induced by a uniform estimate of the second fundamental form A (see
Corollary 3.13), so essentially by C 2-estimates. In the Lagrangian mean curvature
flow F W M � Œ0; T / ! N one may instead use the parabolic equation of
Monge–Ampère type for the generating function u and consequently one just needs
C 1;˛-estimates in space and C 0;˛ estimates in time for F which itself is of first
order in u. In some situations this principle has been used successfully, for example
in [76,78]. There it was shown that Lagrangian tori M D T m in flat tori N D T 2m

converge to flat Lagrangian tori, if the universal cover possesses a convex generating
function u. We also mention a recent generalization to the complete case by Chau
et al. [13].

The evolution equations for the Lagrangian mean curvature flow have been
derived in [74] (see also [72]) and can also be obtained directly from our general
evolution equations stated in Sect. 3.2. Besides the evolution equation for the
induced metric the equation for the mean curvature form H D Hi dxi is perhaps
the most important and is given by

r d
dt

H D dd 	H C S

2m
H ; (32)

where S denotes the scalar curvature of the ambient Kähler–Einstein manifold, m

is the dimension of the Lagrangian immersion and d 	H D ri Hi . In particular it
follows that the cohomology class ŒHe� S

2m t � is invariant under the Lagrangian mean
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curvature flow and in a Calabi–Yau manifold the Lagrangian immersions with trivial
first Maslov class m1 (we have m1 D 1



ŒH �) form a preserved class. This also shows

that if the scalar curvature S is nonnegative, then a necessary condition to have long-
time existence and smooth convergence of the Lagrangian mean curvature flow to
a minimal Lagrangian immersion is that the initial mean curvature form is exact.
Exactness of the mean curvature form will then be preserved and a globally defined
Lagrangian angle ˛ with d˛ D H exists for all t . This last result also holds for
general scalar curvature S and after choosing a proper gauge for ˛ one can prove
[73, Lemma 2.4] that ˛ satisfies the evolution equation

d

dt
˛ D 	˛ C S

2m
˛ : (33)

It is then a simple consequence of the maximum principle that on compact
Lagrangian submanifolds M with trivial Maslov class in a Calabi–Yau manifold
there exist uniform upper and lower bounds for the Lagrangian angle given by its
initial maximum resp. minimum. In particular, the condition to be almost calibrated,
i.e. � Re.d zjM / D cos ˛ > 0 is preserved. Here d z denotes the complex volume
form on the Calabi–Yau manifold and it is well known that the Lagrangian angle
˛ satisfies

d zjM D ei˛d� ;

where d� is the volume form on M . Almost calibrated Lagrangian submanifolds in
Calabi–Yau manifolds have some nice properties under the mean curvature flow. As
was mentioned earlier, from the results in [17,64,74,86] we know that singularities
of the Lagrangian mean curvature flow of compact Lagrangian immersions with
trivial Maslov class in Calabi–Yau manifolds cannot be of Type I and therefore a
big class of singularities is excluded. So far one cannot say much about singularities
of Type II and in particular, one does not know if they occur at all in the case
of compact almost calibrated Lagrangians (though some authors have some rather
heuristic arguments for the existence of such singularities). It is worth noting that
there do not exist any compact almost calibrated Lagrangian immersions inR2m (but
in T

2m they exist). In [75, Theorem 1.3] it was shown that there exists a uniform
(in time) lower bound for the volume of a compact almost calibrated Lagrangian
evolving by its mean curvature in a Calabi–Yau (and more generally in a Kähler–
Einstein manifold of non-positive scalar curvature).

An interesting class of Lagrangian immersions is given by monotone
Lagrangians. A Lagrangian immersion F W M ! R

2m is called monotone, if

ŒH � D �ŒF �
� ; (34)

for some positive constant � (called monotonicity constant). Here 
 is the Liouville
form on R

2m D TR
m. In [39] we proved several theorems concerning monotone

Lagrangian immersions. ¿From the evolution equations of H and F �
 one derives
that monotonicity is preserved with a time dependent monotonicity constant �.t/.
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Gromov [40] proved that given an embedded Lagrangian submanifold M in R
2m

there exists a holomorphic disk with boundary on M . On the other hand, from the
evolution equations of H and F �
 we get that the area of holomorphic disks with
boundary representing some fixed homology class in M is shrinking linearly in time.
If the Lagrangian is monotone, then the shrinking rate for the area of holomorphic
disks is the same for all homology classes.

Unfortunately it is unknown, if embeddedness of Lagrangian submanifolds
is preserved under mean curvature flow (in general, embeddedness in higher
codimension is not preserved but self-intersection numbers might be). Suppose
F W M �Œ0; T / ! R

2m is a Lagrangian mean curvature flow of a compact monotone
Lagrangian with initial monotonicity constant � > 0 and suppose 0 < Te � T is the
embedding time, i.e. the maximal time such that Ft W M ! R

2m is an embedding
for all 0 � t < Te. Then we proved [39, Theorem 1.6 and Theorem 1.11] that
Te � 1

�
: Moreover

T D 1

�
;

in case Te D T and if M develops a Type I singularity as t ! T . We note that this
result is rather unique in mean curvature flow. Usually it is not possible to explicitly
determine the span of life of a solution and to determine it in terms of its initial data.
In the same paper we also proved the existence of compact embedded monotone
Lagrangian submanifolds (even with some additional symmetry) that develop Type
II singularities and consequently it is not true that monotone embedded Lagrangian
submanifolds must develop Type I singularities, as was conjectured earlier by some
people.

Lagrangian submanifolds appear naturally in another context. If

f W M ! K

is a symplectomorphism between two symplectic manifolds .M; !M /, .K; !K/

then the graph
F W M ! M � K ; F.p/ D .p; f .p//

is a Lagrangian embedding in .M � K; .!M ; �!K//.
If .M; !M ; J M ; gM / and .K; !K ; J K ; gK/ are both Kähler–Einstein, then the

product manifold is Kähler–Einstein as well and one can use the Lagrangian
mean curvature flow to deform a symplectomorphism. In [75] symplectomorphisms
between Riemann surfaces of the same constant curvature S have been studied
and it was shown (Lemmas 10 and 14) that Lagrangian graphs that come from
symplectomorphisms stay graphs for all time. The same result was obtained
independently by Wang in [85] (the quantities r in [75, Lemma 10] and � in
[85, Proposition 2.1] are the same up to some positive constant). In [75] the
graphical condition was then used in the case of non-positive curvature S and
under the angle condition cos ˛ > 0 (almost calibrated) to derive explicit bounds
for the second fundamental form and to establish long-time existence and smooth
convergence to a minimal Lagrangian surface. Wang used the graphical condition
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in [85] to obtain long-time existence without a sign condition on S by methods
related to White’s regularity theorem and then proved convergence of subsequences
to minimal Lagrangian surfaces. Later he refined his result and proved smooth
convergence in [91]. In a recent paper by Medos and Wang [62] it is shown that
symplectomorphisms of CPm for which the singular values satisfy some pinching
condition can be smoothly deformed into a biholomorphic isometry of CPm.

In a joint paper [78] (see also [76]) Wang and the author studied Lagrangian
graphs in the cotangent bundle of a flat torus and proved that Lagrangian tori with
a convex generating function converge smoothly to a flat Lagrangian torus. In this
case the convexity of the generating function u implies that the Monge–Ampère
type operator that appears in the evolution equation of u becomes concave and then
results of Krylov [57] imply uniform C 2;˛-estimates in space and C 1;˛-estimates
in time and long-time existence and convergence follows. A similar result holds for
non-compact graphs [13].

4.3 Mean Curvature Flow of Graphs

As the results mentioned at the end of the last subsection show, mean curvature flow
of graphs behaves much “nicer” than in the general case. There are many results
for graphs moving under mean curvature flow. The first result in this direction was
the paper by Ecker and Huisken [29] where long-time existence of entire graphs
in R

mC1 (hypersurfaces) was shown. Convergence to flat subspaces follows, if
the growth rate at infinity is linear. Under a different growth rate they prove that
the hypersurfaces converge asymptotically to entire self-expanding solutions of the
mean curvature flow. The crucial observation in their paper was that the angle
function v WD h�; Zi (scalar product of the unit normal and the height vector Z)
satisfies a very useful evolution equation that can be exploited to bound the second
fundamental form appropriately.

Many results in mean curvature flow of graphs have been obtained by Wang. For
example in [87] he studied the graph induced by a map f W M ! K between to
Riemannian manifolds of constant sectional curvatures. Under suitable assumptions
on the differential of f and the curvatures of M resp. K he obtained long-time
existence and convergence to constant maps. In [84] the authors consider a graph in
the product M � K of two Riemannian manifolds of constant sectional curvatures.
A map f W M ! K for which the singular values 
i of f satisfy the condition

i
j < 1 for all i ¤ j is called an area decreasing map. The main theorem in their
paper states long-time existence of the mean curvature flow and convergence to a
constant map under the following assumptions:

1. the initial graph of f is area-decreasing;
2. �M � j�K j; �M C �K > 0 and dim M � 2,

where �M ; �K denote the sectional curvatures of M resp. K . In particular area
decreasing maps from Sm to Sk are homotopically trivial for m � 2.
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In [60] graphs in Riemannian products of two space forms have been studied and
under certain assumptions on the initial graph long-time existence was established.
In [90] two long-time existence and convergence results for the mean curvature
flow of graphs induced by maps f W M ! K between two compact Riemannian
manifolds of dimension m D dim M � 2 and dim K D 2 are given. In the first
theorem M and K are assumed to be flat, and in the second theorem, M D Sm

is an m-sphere of constant curvature k1 > 0 and K a compact surface of constant
curvature k2 with jk2j � k1. The key assumption on the graph is expressed in terms
of the Gauß map, i.e. the map which assigns to a point p its tangent space. The latter
is an element of the bundle of m-dimensional subspaces of TN , N D M � K and it
is shown that there exists a sub-bundle G of TN which is preserved along the mean
curvature flow. The same author proved a beautiful general theorem for the Gauß
map under the mean curvature flow (see [88]).
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