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Preface

During ACCV 2010 in Queenstown, New Zealand, a series of eight high-quality
workshops were hold that reflect the full range of recent research topics in com-
puter vision. The workshop themes ranged from established research areas like
visual surveillance (the 10th edition) and subspace methods (third edition) to
innovative vehicle technology (From Earth to Mars), from vision technology for
world e-heritage preservation and mixed and augmented reality to aesthetic fea-
tures in computational photograpy and human computer interaction.

From a total of 167 submissions, 89 presentations were selected by the in-
dividual workshop committees, yielding an overall acceptance rate of 53%. The
reported attendence was quite attractive, between 40 and 60 participants in each
of the workshops, sometimes over 70.

The two-volume proceedings contain a short introduction to each workshop,
followed by all workshop contributions arranged according to the workshops.

We hope that you will enjoy reading the contributions which may inspire you
to further research.

November 2010 Reinhard Koch
Fay Huang



Introduction to the 10th International

Workshop on Visual Surveillance

Visual surveillance remains a challenging application area for computer vision.
The large number of high-quality submissions is a testament to the continu-
ing attention it attracts from research groups around the world. Within this
area, the segmentation of the foreground (moving objects) from the background
(residual scene) remains a core problem. Approximately half of the papers ac-
cepted for publication propose innovative segmentation processes. These include
the modeling of photometric variations using local polynomials, the exploitation
of geometric and temporal constraints, and the explicit modeling of foreground
properties. The segmentation of foregrounds consisting of slowly moving objects
is explored and there are two investigations into the improvements in segmenta-
tion that can be obtained using feedback from a subsequent tracking process.

Nonetheless, there is also an increasing interest in the detection of pedestri-
ans, faces and vehicles using methods that do not rely on foreground–background
segmentation. Several enhancements to the histogram of gradients method for
pedestrian detection are proposed, leading to an improved efficiency and in-
variance of the results under rotations of the image. A method to improve the
efficiency of the boosted cascade classifier is also proposed. A key problem for vi-
sual surveillance scene understanding is the tracking of pedestrians in arbitrarily
crowded scenes across multiple cameras: there are several papers that offer con-
tributions to the solution of this problem, including the modeling of pedestrian
appearance as observed from multiple cameras in a network.

In the 12 years in which the Visual Surveillance workshops have been run-
ning, algorithms have become more sophisticated and more effective, more data
sets have become available and experimental techniques and the reporting of
results have improved. In spite of these advances, many of the classic problems
in computer vision, such as optic flow estimation, object detection and object
recognition, are still as relevant to the visual surveillance community as they
have ever been.

The Workshop Chairs would like to thank the Program Committee for their
valuable input into the reviewing process, and Reinhard Koch and Fay Huang
for providing efficient liaison on behalf of the ACCV. The Chairs would also like
to thank Graeme Jones, who dealt with many of the organizational aspects of
this workshop.

November 2010 James Orwell
Steve Maybank

Tieniu Tan
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Introduction to the Second International

Workshop on Video Event Categorization,
Tagging and Retrieval (VECTaR)

One of the remarkable capabilities of the human visual perception system is to
interpret and recognize thousands of events in videos, despite a high level of
video object clutter, different types of scene context, variability of motion scales,
appearance changes, occlusions and object interactions. As an ultimate goal of
computer vision systems, the interpretation and recognition of visual events is
one of the most challenging problems and has increasingly become very popular
in the last few decades. This task remains exceedingly difficult because of several
reasons:

1. There still remain large ambiguities in the definition of different levels of
events.

2. A computer model should be capable of capturing a meaningful structure
for a specific event. At the same time, the representation (or recognition
process) must be robust under challenging video conditions.

3. A computer model should be able to understand the context of video scenes
to have meaningful interpretation of a video event. Despite these difficulties,
in recent years steady progress has been made toward better models for
video event categorization and recognition, e.g., from modeling events with a
bag of spatial temporal features to discovering event context, from detecting
events using a single camera to inferring events through a distributed camera
network, and from low-level event feature extraction and description to high-
level semantic event classification and recognition.

This workshop served to provide a forum for recent research advances in the
area of video event categorization, tagging and retrieval. A total of 11 papers
were selected for publication, dealing with theories, applications and databases
of visual event recognition.

November 2010 Ling Shao
Jianguo Zhang

Tieniu Tan
Thomas S. Huang
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Introduction to the Workshop on

Gaze Sensing and Interactions

The goal of this workshop is to bring researchers from academia and industry in
the field of computer vision and other closely related fields such as robotics and
human – computer interaction together to share recent advances and discuss fu-
ture research directions and opportunities for gaze sensing technologies and their
applications to human – computer interactions and human – robot interactions.
The workshop included two keynote speeches by Ian Reid at the University of
Oxford, UK, and Chen Yu at Indiana University, USA, who are world-leading
experts on gaze – sensing technologies and their applications for interactions, and
seven oral presentations selected from submitted papers by blind review. This
workshop was supported by the Japan Science and Technology Agency (JST)
and CREST. We would like to thank Yusuke Sugano, Yoshihiko Mochizuki and
Sakie Suzuki for their support in organizing this event.

November 2010 Yoichi Sato
Akihiro Sugimoto
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Hideki Koike

Program Committee

Andrew T. Duchowski Clemson University, USA
Shaogang Gong Queen Mary, University of London, UK
Qiang Ji Rensselaer Polytechnic Institute, USA
Kris Kitani The University of Electro-Communications,

Japan
Yoshinori Kobayashi Saitama University, Japan
Yukie Nagai Osaka University, Japan
Takahiro Okabe University of Tokyo, Japan
Kazuhiro Otsuka Nippon Telegraph and Telephone

Corporation, Japan
Ian Reid University of Oxford, UK
Yusuke Sugano University of Tokyo, Japan
Yasuyuki Sumi Kyoto University, Japan
Roel Vertegaal Queen’s University, Canada



Introduction to the Workshop on

Application of Computer Vision for Mixed and
Augmented Reality

The computer vision community has already provided numerous technical break-
throughs in the field of mixed reality and augmented reality (MR/AR), partic-
ularly in camera tracking, human behavior understanding, object recognition,
etc. The way of designing an MR/AR system based on computer vision research
is still a difficult research and development issue. This workshop focuses on the
recent trends in applications of computer vision to MR/AR systems.

We were proud to organize the exciting and stimulating technical program
consisting of ten oral presentations and five poster presentations. We were very
happy to have a distinguished invited speaker, Hideyuki Tamura, who has led
the MR/AR research field since the 1990s. Finally, we would like to thank all
of the authors who kindly submitted their research achievements to ACVMAR
2010 and all members of the Program Committee for their voluntarily efforts.

ACVMAR 2010 organized in collaboration with SIG-MR(VRSJ) and the
GCOE Program at Keio University.

November 2010 Hideo Saito
Masayuki Kanbara

Itaru Kitahara
Yuko Uematsu
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Introduction to the Workshop on

Computational Photography and Aesthetics

Computational photography is now well-established as a field of research that
examines what lies beyond the conventional boundaries of digital photography.
The newer field of computational aesthetics has seen much interest within the
realm of computer graphics, art history and cultural studies. This workshop
is intended to provide an opportunity for researchers working in both areas,
photography as well as aesthetics, to meet and discuss their ideas in a collegial
and interactive format.

The papers contained in these workshop proceedings make important con-
tributions to our understanding of computational aspects of photography and
aesthetics. The first paper, by Valente and Klette, describes a technique for
blending artistic filters together. Their method allows users to define their own
painting style, by choosing any point within the area of a triangle whose vertices
represent pointillism, curved strokes, and glass patterns. The second paper, by
Sachs, Kakarala, Castleman, and Rajan, describes a study of photographic skill
whose purpose is to establish whether that skill can be identified in a double-blind
manner. They show that human judges who are themselves expert photographers
are able to identify up to four skill levels with statistical significance. The third
paper, by Rigau, Feixas, and Sbert, applies the information theory of Shannon to
model the channel between luminosity and composition. They show how changes
in depth-of-field and exposure are reflected in the information channel, and for-
mulate measures for saliency and“entanglement” in an image. The fourth paper,
by Lo, Shih, Liu, and Hong, describes how computer vision may be applied to
detect a classic error in photographic composition: objects which appear to pro-
trude from a subject’s head. Their method is able to reliably detect protruding
objects in a variety of lighting conditions and backgrounds, with a detection rate
of 87% and false alarm rate of 12%. The fifth paper, by Constable, shows how
traditional drawing methods such as incomplete perimeters, lines that suggest
colors, and lines that suggest form, can inform and improve non-photorealistic
rendering (NPR). This paper provides a valuable artistic perspective to illustrate
how engineering and art work collaboratively in NPR.

The workshop was fortunate to have a keynote presentation by Alfred Bruck-
stein. He described the problem of emulating classic engraving using
non-photorealistic image rendering, and proposed to used level-set-based shape
from shading techniques. The problem contains interesting mathematical chal-
lenges in connecting essential contours in natural, flowing ways, which Professor
Bruckstein described.

November 2010 Ramakrishna Kakarala
Martin Constable
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Introduction to the Workshop on

Computer Vision in Vehicle Technology:
From Earth to Mars

Vision-based autonomous navigation of vehicles has a long history which goes
back to the success story of Dickmanns in Munich and the Mechanical Engineer-
ing Laboratory of MITI in Japan in the 1980th. At the time, DARPA had asked
us to compete with autonomous land vehicles in their GRAND Challenges. To-
day, computer vision techniques provide methodologies to assist in long-distance
exploration projects using visual sensing systems such those with the Mars rover
project. Modern cars are now driven with the assistance of various sensor data.
These assisted driving systems are developed as intelligent transportation sys-
tems. Among the various types of data used for driving assistance and navigation,
we find visual information as the interface between human drivers and vehicles.

Today, data captured by visual sensors mounted on vehicles provide essential
information used in intelligent driving systems. For applications of computer
vision methodologies in exploration, evaluation, and quality-control techniques
in the absence of ground truth information, it is essential to design robust and
reliable algorithms.

In this workshop, we focus on exchanging new ideas on applications of com-
puter vision theory to vehicle technology. In computer vision for driving as-
sistance, tracking, reconstruction, and prediction become important concepts.
Furthermore, real-time and on-board processes for these problems are required.

We received 21 papers and selected 11 papers for publication based on the
reviews by the Program Committee and by the additional reviewer Ali Al-Sarraf.

November 2010 Steven Beauchemin
Atsushi Imiya
Tomas Pajdla
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Introduction to the Workshop on e-Heritage

Digitally archived world heritage sites are broadening their value for preservation
and access. Many valuable objects have been decayed by time due to weathering,
natural disasters, even man-made disasters such as the Taliban destruction of
the great Buddhas in Afghanistan, or the recent destruction by fire of a 600-
year-old South Gate in Seoul. Cultural heritage also includes music, language,
dance, and customs that are fast becoming extinct as the world moves toward a
global village. Furthermore, most of the sites still face a problem of accessibility.
Digital access projects are necessary to overcome those problems.

Computer vision research and practices have, and will continue, to play a
central role in such cultural heritage preservation efforts. The proposed Work-
shop on e-Heritage and Digital Art Preservation aims to bring together computer
vision researchers as well as interdisciplinary researchers that are related to com-
puter vision, in particular computer graphics, image and audio research, image
and haptic (touch) research, as well as presentation of visual content over the
Web and education.

In this workshop, seven contributions to the field of e-heritage were presented,
covering the areas of on-site augmented-reality applications, three-dimensional
modeling and reconstruction, shape and image analysis, and interactive haptic
systems. All submissions were double-blind reviewed by at least two experts. We
thank all the authors who submitted their work. It was a special honor to have
In So Kweon (KASIT, Korea), Hongbin Zha (Peking University, China) and
Yasuyuki Matsushita (Microsoft Research Asia) as the invited speakers at the
workshop. We are especially grateful to the members of the Program Committee
for their remarkable efforts and the quality of the reviews.

November 2010 Katsushi Lkevchi
Takeshi Oishi
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Introduction to the Third International

Workshop on Subspace Methods

We welcome you to the proceedings of the Third International Workshop of
Subspace 2010 held in conjunction with ACCV 2010.

Subspace 2010 was held in Queenstown, New Zealand, on November 9, 2010.
For the technical program of Subspace 2010, a total of 30 full-paper submissions
underwent a rigorous review process. Each of these submissions was evaluated
in a double-blind manner by a minimum of two reviewers. In the end, ten papers
were accepted and included in this volume of proceedings.

The goal of the workshop is to share the potential of subspace-based methods,
such as the subspace methods, with researchers working on various problems in
computer vision; and to encourage interactions which could lead to further devel-
opments of the subspace-based methods. The fundamental theories of subspace-
based methods and their applications in computer vision were discussed at the
workshop.

Subspace-based methods are important for solving many theoretical prob-
lems in pattern recognition and computer vision. Also they have been widely
used as a practical methodology in a large variety of real applications. During
the last three decades, the area has become one of the most successful underpin-
nings of diverse applications such as classification, recognition, pose estimation,
motion estimation. At the same time, there are many new and evolving research
topics: nonlinear methods including kernel methods, manifold learning, subspace
update and tracking. In addition to regular presentations, to overview these de-
velopments, we provided a historical survey talk of the subspace methods.

Prior to this workshop, we successfully organized two international workshops
on subspace-based methods: Subspace 2007 in conjunction with ACCV 2007 and
Subspace 2009 in conjunction with ICCV 2009. We believe that Subspace 2010
stimulated fruitful discussions among the participants and provided novel ideas
for future research in computer vision.

November 2010 David Suter
Kazuhiro Fukui

Toru Tamaki
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Abstract. This paper is aimed at investigating background subtraction
based on second-order polynomial models. Recently, preliminary results
suggested that quadratic models hold the potential to yield superior per-
formance in handling common disturbance factors, such as noise, sudden
illumination changes and variations of camera parameters, with respect
to state-of-the-art background subtraction methods. Therefore, based on
the formalization of background subtraction as Bayesian regression of a
second-order polynomial model, we propose here a thorough theoretical
analysis aimed at identifying a family of suitable models and deriving
the closed-form solutions of the associated regression problems. In addi-
tion, we present a detailed quantitative experimental evaluation aimed
at comparing the different background subtraction algorithms resulting
from theoretical analysis, so as to highlight those more favorable in terms
of accuracy, speed and speed-accuracy tradeoff.

1 Introduction

Background subtraction is a crucial task in many video analysis applications,
such as e.g. intelligent video surveillance. One of the main challenges consists
in handling disturbance factors such as noise, gradual or sudden illumination
changes, dynamic adjustments of camera parameters (e.g. exposure and gain),
vacillating background, which are typical nuisances within video-surveillance sce-
narios. Many different algorithms for dealing with these issues have been pro-
posed in literature (see [1] for a recent survey). Popular algorithms based on sta-
tistical per-pixel background models, such as e.g. Mixture of Gaussians (MoG) [2]
or kernel-based non-parametric models [3], are effective in case of gradual illu-
mination changes and vacillating background (e.g. waving trees). Unfortunately,
though, they cannot deal with those nuisances causing sudden intensity changes
(e.g. a light switch), yielding in such cases lots of false positives.

Instead, an effective approach to tackle the problem of sudden intensity changes
due to disturbance factors is represented by a priori modeling over small image
patches of the possible spurious changes that the scene can undergo. Following
this idea, a pixel from the current frame is classified as changed if the intensity
transformation between its local neighborhood and the corresponding neighbor-
hood in the background can not be explained by the chosen a priori model.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 1–11, 2011.
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Thanks to this approach, gradual as well as sudden photometric distortions do
not yield false positives provided that they are explained by the model. Thus,
the main issue concerns the choice of the a priori model: in principle, the more
restrictive such a model, the higher is the ability to detect changes (sensitivity)
but the lower is robustness to sources of disturbance (specificity). Some propos-
als assume disturbance factors to yield linear intensity transformations [4, 5].
Nevertheless, as discussed in [6], many non-linearities may arise in the image
formation process, so that a more liberal model than linear is often required to
achieve adequate robustness in practical applications. Hence, several other al-
gorithms adopt order-preserving models, i.e. assume monotonic non-decreasing
(i.e. non-linear) intensity transformations [6, 7, 8, 9].

Very recently, preliminary results have been proposed in literature [10,11] that
suggest how second-order polynomial models hold the potential to yield supe-
rior performance with respect to the classical previously mentioned approaches,
being more liberal than linear proposals but still more restrictive than the order
preserving ones. Motivated by these encouraging preliminary results, in this work
we investigate on the use of second-order polynomial models within a Bayesian
regression framework to achieve robust background subtraction. In particular,
we first introduce a family of suitable second-order polynomial models and then
derive closed-form solutions for the associated Bayesian regression problems. We
also provide a thorough experimental evaluation of the algorithms resulting from
theoretical analysis, so as to identify those providing the highest accuracy, the
highest efficiency as well as the best tradeoff between the two.

2 Models and Solutions

For a generic pixel, let us denote as x = (x1, . . . , xn)T and y = (y1, . . . , yn)T the
intensities of a surrounding neighborhood of pixels observed in the two images
under comparison, i.e. background and current frame, respectively. We aim at
detecting scene changes occurring in the pixel by evaluating the local intensity
information contained in x and y. In particular, classification of pixels as changed
or unchanged is carried out by a priori assuming a model of the local photometric
distortions that can be yielded by sources of disturbance and then testing, for
each pixel, whether the model can explain the intensities x and y observed in the
surrounding neighborhood. If this is the case, the pixel is likely sensing an effect
of disturbs, so it is classified as unchanged; otherwise, it is marked as changed.

2.1 Modeling of Local Photometric Distortions

In this paper we assume that main photometric distortions are due to noise,
gradual or sudden illumination changes, variations of camera parameters such as
exposure and gain. We do not consider here the vacillating background problem
(e.g. waving trees), for which the methods based on multi-modal and temporally
adaptive background modeling, such as [2] and [3], are more suitable.

As for noise, first of all we assume that the background image is computed by
means of a statistical estimation over an initialization sequence (e.g. temporal
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averaging of tens of frames) so that noise affecting the inferred background inten-
sities can be neglected. Hence, x can be thought of as a deterministic vector of
noiseless background intensities. As for the current frame, we assume that noise
is additive, zero-mean, i.i.d. Gaussian with variance σ2. Hence, noise affecting
the vector y of current frame intensities can be expressed as follows:

p(y|ỹ) =
n∏

i=1

p(yi|ỹi) =
n∏

i=1

N (
ỹ, σ2

)
=

(√
2πσ

)−n

exp
(
− 1

2σ2

n∑
i=1

(yi − ỹi)2
)

(1)

where ỹ = (ỹ1, . . . , ỹn)T denotes the (unobservable) vector of current frame
noiseless intensities and N (μ, σ2) the normal pdf with mean μ and variance σ2.

As far as remaining photometric distortions are concerned, we assume that
noiseless intensities within a neighborhood of pixels can change due to variations
of scene illumination and of camera parameters according to a second-order
polynomial transformation φ(·), i.e.:

ỹi = φ (xi; θ) = (1, xi, x2
i ) (θ0, θ1, θ2)T = θ0 + θ1xi + θ2xi

2 ∀ i = 1, . . . , n (2)

It is worth pointing out that the assumed model (2) does not imply that the
whole frame undergoes the same polynomial transformation but, more gener-
ally, that such a constraint holds locally. In other words, each neighborhood of
intensities is allowed to undergo a different polynomial transformation, so that
local illumination changes can be dealt with.

From (1) and (2) we can derive the expression of the likelihood p(x,y|θ),
that is the probability of observing the neighborhood intensities x and y given
a polynomial model θ:

p(x,y|θ) = p(y|θ;x) = p(y|ỹ= φ(x;θ)) =
(√

2πσ
)−n

exp
(
− 1

2σ2

n∑
i=1

(yi − φ(xi; θ))2
)
(3)

where the first equality follows from the deterministic nature of the vector x
that allows to treat it as a vector of parameters.

In practice, not all the polynomial transformations belonging to the linear
space defined by the assumed model (2) are equally likely to occur. In Fig-
ure (1), on the left, we show examples of less (in red) and more (in azure) likely
transformations. To summarize the differences we can say that the constant term
of the polynomial has to be small and that the polynomial has to be monotonic
non-decreasing. We formalize these constraints by imposing a prior probabil-
ity on the parameters vector θ = (θ0, θ1, θ2)T , as illustrated in Figure (1), on
the right. In particular, we implement the constraint on the constant term by
assuming a zero-mean Gaussian prior with variance σ2

0 for the parameter θ0:

p(θ0) = N (0, σ2
0) (4)

The monotonicity constraint is addressed by assuming for (θ1, θ2) a uniform
prior inside the subset Θ12 of R2 that renders φ′(x; θ) = θ1 + 2θ2 · x ≥ 0 for all
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∂θ1: θ1 = 0, θ2≥ 0 

∂θ2: θ1 + 2Gθ2 = 0, θ2≤ 0

θ1

θ2

θ0

p (θ0)

k

p(θ1 ,θ2)

0x

y

N (0 ,σ2 )0

x

y

Θ12

Fig. 1. Some polynomial transformations (left, in red) are less likely to occur in practice
than others (left, in azure). To account for that, we assume a zero-mean normal prior
for θ0, a prior that is uniform inside Θ12, zero outside for (θ1,θ2) (right).

x ∈ [0 , G], with G denoting the highest measurable intensity (G = 255 for 8-bit
images), zero probability outside Θ12. Due to linearity of φ′(x), the monotonicity
constraint φ′(x; θ) ≥ 0 over the entire x-domain [0 , G] is equivalent to impose
monotonicity at the domain extremes, i.e. φ′(0; θ) = θ1 ≥ 0 and φ′(G; θ) =
θ1 + 2G · θ2 ≥ 0. Hence, we can write the constraint as follows:

p(θ1, θ2) =
{

k if (θ1, θ2) ∈ Θ12 =
{
(θ1, θ2)∈R2 : θ1≥ 0 ∧ θ1+2Gθ2 ≥ 0

}
0 otherwise

(5)

We thus obtain the prior probability of the entire parameters vector as follows:

p(θ) = p(θ0) · p(θ1, θ2) (6)

In this paper we want to evaluate six different background subtraction al-
gorithms, relying on as many models for photometric distortions obtained by
combining the assumed noise and quadratic polynomial models in (1) and (2),
that imply (3), with the two constraints in (4) and (5). In particular, the six
considered algorithms (Q stands for quadratic) are:

Q∞ : (1) ∧ (2) ⇒ (3) plus prior (4) for θ0 with σ2
0 → ∞ (θ0 free);

Q f : (1) ∧ (2) ⇒ (3) plus prior (4) for θ0 with σ2
0 finite positive;

Q 0 : (1) ∧ (2) ⇒ (3) plus prior (4) for θ0 with σ2
0 → 0 (θ0 = 0);

Q∞, M : same as Q∞ plus prior (5) for (θ1, θ2) (monotonicity constraint);
Q f, M : same as Q f plus prior (5) for (θ1, θ2) (monotonicity constraint);
Q 0, M : same as Q 0 plus prior (5) for (θ1, θ2) (monotonicity constraint);

2.2 Bayesian Polynomial Fitting for Background Subtraction

Independently from the algorithm, scene changes are detected by computing a
measure of the distance between the sensed neighborhood intensities x, y and
the space of models assumed for photometric distortions. In other words, if the
intensities are not well-fitted by the models, the pixel is classified as changed. The
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minimum-distance intensity transformation within the model space is computed
by a maximum a posteriori estimation of the parameters vector:

θMAP = argmax p(θ|x,y) = argmax [p(x,y|θ)p(θ)]
θ ∈ R3 θ ∈ R3 (7)

where the second equality follows from Bayes rule. To make the posterior in (7)
explicit, an algorithm has to be chosen. We start from the more complex one,
i.e. Q f, M . By substituting (3) and (4)-(5), respectively, for the likelihood
p(x,y|θ) and the prior p(θ) and transforming posterior maximization into minus
log-posterior minimization, after eliminating the constant terms we obtain:

θMAP = argmin
[
E(θ;x,y) = d(θ;x,y)+ r(θ) =

n∑
i=1

(yi −φ(xi; θ))2+λθ2
0

]
θ ∈ Θ

(8)

The objective function to be minimized E(θ;x,y) is the weighted sum of a
data-dependent term d(θ;x,y) and a regularization term r(θ) which derive, re-
spectively, from the likelihood of the observed data p(x,y|θ) and the prior of
the first parameter p(θ0). The weight of the sum, i.e. the regularization coeffi-
cient, depends on both the likelihood and the prior and is given by λ= σ2/σ2

0 .
The prior of the other two parameters p(θ1, θ2) expressing the monotonicity con-
straint has translated into a restriction of the optimization domain from R3 to
Θ = R × Θ12. It is worth pointing out that the data dependent term represents
the least-squares regression error, i.e. the sum over all the pixels in the neighbor-
hood of the square differences between the frame intensities and the background
intensities transformed by the model. By making φ(xi; θ) explicit and after sim-
ple algebraic manipulations, it is easy to observe that the objective function is
quadratic, so that it can be compactly written as:

E(θ;x,y) = (1/2)θT H θ − bT θ + c (9)

with the matrix H , the vector b and the scalar c given by:

H = 2

⎛⎝N Sx Sx2

Sx Sx2 Sx3

Sx2 Sx3 Sx4

⎞⎠ b = 2

⎛⎝Sy

Sxy

Sx2y

⎞⎠ c = Sy2 (10)

and, for simplicity of notation:

Sx =
n∑

i=1

xi Sx2 =
n∑

i=1

x2
i Sx3 =

n∑
i=1

x3
i Sx4 =

n∑
i=1

x4
i

Sy =
n∑

i=1

yi Sxy =
n∑

i=1

xiyi Sx2y =
n∑

i=1

x2
i yi Sy2 =

n∑
i=1

y2
i

N = n +λ (11)

As for the optimization domain Θ = R × Θ12, with Θ12 defined in (5) and
illustrated in Figure 1, it also can be compactly written in matrix form as follows:

Θ =
{
θ ∈ R3 : Z θ ≥ 0

}
with Z =

(
0 1 0
0 1 2G

)
(12)
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The estimation problem (8) can thus be written as a quadratic program:

θMAP = argmin
[
(1/2)θT H θ − bT θ + c

]
Z θ ≥ 0

(13)

If in the considered neighborhood there exist three pixels characterized by differ-
ent background intensities, i.e. ∃ i, j, k : xi �= xj �= xk, it can be demonstrated
that the matrix H is positive-definite. As a consequence, since H is the Hessian
of the quadratic objective function, in this case the function is strictly convex.
Hence, it admits a unique point of unconstrained global minimum θ(u) that
can be easily calculated by searching for the unique zero-gradient point, i.e. by
solving the linear system of normal equations:

θ(u) = θ ∈ R3 : ∇E(θ) = 0 ≡ (H/2)θ = (b/2) (14)

for which a closed-form solution is obtained by computing the inverse of H/2:

θ(u) = (H/2)−1(b/2) =
1

|H/2|

⎛⎝A D E
D B F
E F C

⎞⎠⎛⎝ Sy
Sxy
Sx2y

⎞⎠ (15)

where:

A = Sx2Sx4 − (
Sx3

)2
B = NSx4 − (

Sx2
)2

C = NSx2 − (Sx)2

D = Sx2Sx3 − SxSx4 E = SxSx3 − (
Sx2

)2
F = SxSx2 − NSx3

(16)

and
|H/2| = N A + SxD + Sx2E (17)

If the computed point of unconstrained global minimum θ(u) belongs to
the quadratic program feasible set Θ, i.e. satisfies the monotonicity constraint
Z θ ≥ 0, then the minimum distance between the observed neighborhood inten-
sities and the model of photometric distortions is simply determined by substi-
tuting θ(u) for θ in the objective function. A compact close-form expression for
such a minimum distance can be obtained as follows:

E(u) = E(θ(u)) = θ(u)T
(H/2)θ(u) − θ(u)T

b + c = θ(u)T
(b/2)− θ(u)T

b + c

= c − θ(u)T
(b/2) = Sy2− |H/2|−1 (

Sy θ0
(u)+ Sxy θ1

(u)+Sx2y θ2
(u)

)
(18)

The two algorithms Q f and Q∞ rely on the computation of the point of uncon-
strained global minimum θ(u) by (15) and, subsequently, of the unconstrained
minimum distance E(u) = E(θ(u)) by (18). The only difference between the two
algorithms is the value of the pre-computed constant N = n + λ that in Q∞
tends to n due to σ2

0 → ∞ causing λ → 0. Actually, Q f corresponds to the
method proposed in [10].

If the point θ(u) falls outside the feasible set Θ, the solution θ(c) of the con-
strained quadratic programming problem (13) must lie on the boundary of the
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feasible set, due to convexity of the objective function. However, since the mono-
tonicity constraint Z θ ≥ 0 does not concern θ0, again the partial derivative of
the objective function with respect to θ0 must vanish in correspondence of the
solution. Hence, first of all we impose this condition, thus obtaining:

θ0
(c) = (1/N)

(
Sy − θ1Sx − θ2Sx2

)
(19)

We thus substitute θ0
(c) for θ0 in the objective function, so that the original 3-d

problem turns into a 2-d problem in the two unknowns θ1, θ2 with the feasible
set Θ12 defined in (5) and illustrated in Figure 1, on the right. As previously
mentioned, the solution of the problem must lie on the boundary of the feasible
set ∂Θ12, that is on one of the two half-lines:

∂Θ1 : θ1 = 0 ∧ θ2 ≥ 0 ∂Θ2 : θ1 = − 2 Gθ2 ∧ θ2 ≤ 0 (20)

The minimum of the 2-d objective function on each of the two half-lines can be
determined by replacing the respective line equation into the objective function
and then searching for the unique minimum of the obtained 1-d convex quadratic
function in the unknown θ2 restricted, respectively, to the positive (∂Θ1) and
the negative (∂Θ2) axis. After some algebraic manipulations, we obtain that the
two minimums E

(c)
1 and E

(c)
2 are given by:

E
(c)
1 = Sy2− (Sy)2

N
−
⎧⎨⎩

T 2

N B
if T > 0

0 if T ≤ 0
E

(c)
2 = Sy2− (Sy)2

N
−
⎧⎨⎩

V 2

N U
if V < 0

0 if V ≥ 0
(21)

where:
T = N Sx2y − Sx2Sy V = T + 2 GW

W = SxSy − N Sxy U = B + 4G2C + 4GF
(22)

The constrained global minimum E(c) is thus the minimum between E
(c)
1 and

E
(c)
2 . Hence, similarly to Q f and Q∞, the two algorithms Q f, M and Q∞, M rely

on the preliminary computation of the point of unconstrained global minimum
θ(u) by (15). However, if the point does not satisfy the monotonicity constraint
in (12), the minimum distance is computed by (21) instead of by (18). The two
algorithms Q f, M and Q∞, M differ in the exact same way as Q f and Q∞, i.e.
only for the value of the pre-computed parameter N .

The two remaining algorithms, namely Q 0 and Q 0, M , rely on setting σ2
0 → 0.

This implies that λ → ∞ and, therefore, N = (n + λ) → ∞. As a consequence,
closed-form solutions for these algorithms can not be straightforwardly derived
from the previously computed formulas by simply substituting the value of N .
However, σ2

0 → 0 means that the parameter θ0 is constrained to be zero, that is
the quadratic polynomial model is constrained to pass through the origin. Hence,
closed-form solutions for these algorithms can be obtained by means of the same
procedure outlined above, the only difference being that in the model (2) θ0 has
to be eliminated. Details of the procedure and solutions can be found in [11].
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By means of the proposed solutions, we have no need to resort to any iterative
approach. In addition, it is worth pointing out that all terms involved in the
calculations can be computed either off-line (i.e. those involving only background
intensities) or by means of very fast incremental techniques such as Summed
Area Table [12] (those involving also frame intensities). Overall, this allows the
proposed solutions to exhibit a computational complexity of O(1) with respect
to the neighborhood size n.

3 Experimental Results

This Section proposes an experimental analysis aimed at comparing the 6 dif-
ferent approaches to background subtraction based on a quadratic polynomial
model derived in previous Section. To distinguish between the methods we will
use the notation described in the previous Section. Thus, e.g., the approach pre-
sented in [10] is referred to here as Qf , and that proposed in [11] as Q0,M . All
algorithms were implemented in C using incremental techniques [12] to achieve
O(1) complexity. They also share the same code structure so to allow for a fair
comparison in terms not only of accuracy, but also computational efficiency.

Evaluated approaches are compared on five test sequences, S1–S5, charac-
terized by sudden and notable photometric changes that yield both linear and
non-linear intensity transformations. We acquired sequences S1–S4 while S5 is a
synthetic benchmark sequence available on the web [13]. In particular, S1, S2 are
two indoor sequences, while S3, S4 are both outdoor. It is worth pointing out that
by computing the 2-d joint histograms of background versus frame intensities,
we observed that S1, S5 are mostly characterized by linear intensity changes,
while S2–S4 exhibit also non-linear changes. Background images together with
sample frames from the sequences are shown in [10,11]. Moreover, we point out
here that, based on an experimental evaluation carried out on S1–S5, methods
Qf and Q0,M have been shown to deliver state-of-the-art performance in [10,11].
In particular, Qf and Q0,M yield at least equivalent performance compared to
the most accurate existing methods while being, at the same time, much more
efficient. Hence, since results attained on S1–S5 by existing linear and order-
preserving methods (i.e. [5, 7, 8, 9]) are reported in [10, 11], in this paper we
focus on assessing the relative merits of the 6 developed quadratic polynomial

Experimental results in terms of accuracy as well as computational efficiency
are provided. As for accuracy, quantitative results are obtained by comparing
the change masks yielded by each approach against the ground-truths (manu-
ally labeled for S1-S4, available online for S5). In particular, we computed the
True Positive Rate (TPR) versus False Positive Rate (FPR) Receiver Operating
Characteristic (ROC) curves. Due to lack of space, we can not show all the com-
puted ROC curves. Hence, we summarize each curve with a well-known scalar
measure of performance, the Area Under the Curve (AUC), which represents the
probability for the approach to assign a randomly chosen changed pixel a higher
change score than a randomly chosen unchanged pixel [14].
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Fig. 2. Top: AUC values yielded by the evaluated algorithms with different neighbor-
hood sizes on each of the 5 test sequences. Bottom: average AUC (left) and FPS (right)
values over the 5 sequences.

Each graph shown in Figure 2 reports the performance of the 6 algorithms
in terms of AUC with different neighborhood sizes (3×3, 5×5, · · · , 13×13). In
particular, the first 5 graphs are relative to each of the 5 testing sequences,
while the two graphs on the bottom show, respectively, the mean AUC values
and the mean Frame-Per-Second (FPS) values over the 5 sequences. By analyzing
AUC values reported in the Figure, it can be observed that two methods yield
overall a better performance among those tested, that is, Q0,M and Qf,M , as also
summarized by the mean AUC graph. In particular, Qf,M is the most accurate
on S2 and S5 (where Q0,M is the second best), while Q0,M is the most accurate
on S1 and S4 (where Gf,M is the second best). The different results on S3, where
Q∞ is the best performing method, appear to be mainly due to the presence of
disturbance factors (e.g. specularities, saturation, . . . ) not well modeled by a
quadratic transformation: thus, the best performing algorithm in such specific
circumstance turns out to be the less constrained one (i.e. Q∞).

As for efficiency, the mean FPS graph in Figure 2 proves that all methods are
O(1) (i.e. their complexity is independent of the neighborhood size). As expected,
the more constraints are imposed on the adopted model, the higher the computa-
tional cost is, resulting in a reduced efficiency. In particular, an additional
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computational burden is brought in if a full quadratic form is assumed (i.e. not
homogeneous), similarly if the transformation is assumed to be monotonic. Given
this consideration, the most efficient method turns out to be Q0, the least efficient
ones Q∞,M , Qf,M , with Q∞, Q0,M , Qf staying in the middle. Also, the results
prove that the use of a non-homogeneous form adds a higher computational bur-
den compared to the monotonic assumption. Overall, the experiments indicate
that the method providing the best accuracy-efficiency tradeoff is Q0,M .

4 Conclusions

We have shown how background subtraction based on Bayesian second-order
polynomial regression can be declined in different ways depending on the nature
of the constraints included in the formulation of the problem. Accordingly, we
have derived closed-form solutions for each of the problem formulations. Experi-
mental evaluation show that the most accurate algorithms are those based on the
monotonicity constraint and, respectively a null Q0,M or finite Qf,M variance for
the prior of the constant term. Since the more articulated the constraints within
the problem the higher computational complexity, the most efficient algorithm
results from a non-monotonic and homogeneous formulation (i.e. Q0). This also
explains why Q0,M is notably faster than Qf,M , so as to turn out the method
providing the more favorable tradeoff between accuracy and speed.
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Adaptive Background Modeling for Paused

Object Regions

Atsushi Shimad, Satoshi Yoshinaga, and Rin-ichiro Taniguchi

Kyushu University, Fukuoka, Japan

Abstract. Background modeling has been widely researched to detect
moving objects from image sequences. Most approaches have a false-
negative problem caused by a stopped object. When a moving object
stops in an observing scene, it will be gradually trained as background
since the observed pixel value is directly used for updating the back-
ground model. In this paper, we propose 1) a method to inhibit back-
ground training, and 2) a method to update an original background
region occluded by stopped object. We have used probabilistic approach
and predictive approach of background model to solve these problems.
The great contribution of this paper is that we can keep paused objects
from being trained.

1 Introduction

A technique of background modeling has been widely applied to foreground object
detection from video sequences. It is one of the most important issues to construct
a background model which is robust for various illumination changes. Many ap-
proaches have been proposed to construct an effective background model;
pixel-level approaches[1,2,3,4], region-level approaches[5,6], combinational

Moving Stopped Restart

Problem1 Problem2

Over-training Wrong detection

Fig. 1. Problem of blind updating of
background model

approaches[7,8] or so on. Almost of these
approaches have a common process of up-
dating of background model. Actually,
this process is very beneficial to adapt
for various illumination changes. On the
other hand, we can say that the tradi-
tional background model has an ability
to detect “Moving Objects” only. In other
words, it causes FN (false negative) prob-
lem when a foreground object stops in
the scene. This is because the paused
foreground object is gradually learned as
background by blind updating process.
Therefore, we have to handle following problems (also see Fig. 1) in order to
keep detecting the paused object.

1. Over-training of foreground objects
2. Wrong detection of original background regions

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 12–22, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The first problem is caused by blind updating process of background model.
Some researches tried to solve this problem by control learning rate of the back-
ground model. For example, decreasing the learning rate of some regions in
which foreground objects probably stop[9] or utilizing two background model
which have different learning rates[10] has been proposed. However, these ap-
proaches have not resolve the essential problem of over-training since they just
extend the time for being learned as background.

The second problem is caused by a paused foreground object when it starts
to move again. In such a case, an original background region hidden by the
object might be detected wrongly since the paused foreground object has been
included in the background model. Another possibility is that the FP problem
will be caused when some illumination change occur while the foreground object
stops. The hidden region will be detected wrongly since the background model
does not know the illumination change occurred in the hidden region. A study
which considers the illumination changes until a foreground object is regarded
as paused object has been proposed[11], but it does not handle the illumination
change (background change) in the region hidden by the paused foreground
object.

In this paper, we propose a novel approach which use two different kinds
of models; one is a pixel-level background model and the other is a predictive
model. Two problems mentioned above can be resolved by utilizing these two
models efficiently. The characteristics of our study are summarized as follows.

1. Our approach can control over-training of paused foreground objects without
adjusting the learning rate.

2. Our approach can update the original background region hidden by paused
objects.

In addition, our background model is robust against illumination changes by
using two kinds of models in combination.

2 Framework

Probabilistic
Model

Predictive 
Model

Detection of Foreground Region

Input Image

Update of Background Model 
Considering Foreground Region

Step 1

Step 2

Step 3

Fig. 2. Processing flow

The processing flow of our proposed back-
ground model is shown in Fig. 2. At the
first stage, background likelihoods of an
observed image are calculated based on
the probabilistic model(see section 3.1)
and the predictive model(see 3.2). At
the second stage, the foreground region
is determined by integrating two back-
ground likelihoods evaluated by the pixel-
level background model and the predic-
tive model(see section 4). Finally, at the
third stage, the parameters of both models
are updated. Generally, the observed pixel
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value is directly used for updating the parameters. In our approach, meanwhile,
when a pixel is judged as “foreground” at the second stage, we use alternative
pixel value around the pixel which has similar background model. This pro-
cess avoid the foreground object being trained as “background”. We will give a
detailed explanation in section 5.

3 Probabilistic Model and Predictive Model

3.1 Probabilistic Model Base on GMM

We have modified the GMM-based background model[2]. The modified back-
ground model consists of 2 steps; evaluation of background likelihood and update
of model parameters .

Evaluation of Background Likelihood. Let xt
i be a pixel value on a pixel i

at frame t. For simple expression, we omit the notation i when we explain each
pixel process. The background likelihood is represented as

P (xt) =
K∑

k=1

wt
k

(2π)
n
2 |Σ| 12 exp

(
−1

2
(xt − μt)T Σ−1(xt − μt)

)
(1)

The original approach[2] judges whether or not an observed pixel value belongs to
“background”. Our approach does not output such a judgment result explicitly.
Instead, we calculate the background likelihood at this processing stage.

Update of Model Parameters. The model parameters are updated in the
same way as the original method[2].

The weights of the K distributions at frame t, wt
k, are adjusted as follows

wt
k = (1 − α)wt−1

k + αM t
k (2)

where α is the learning rate and M t
k is 1 for the model which matched and 0 for

the remaining models. After this approximation, the weights are renormalized.
Every new pixel value xt is examined against the existing K Gaussian distri-

butions, until a match is found. A match is defined as a pixel value within 2.5
standard deviations of distribution. The parameters of unmatched distributions
remain the same. When a match is found for the new pixel value, the parameters
of the distribution are updated as follows.

μt = (1 − ρ)μt−1 + ρyt, σt = (1 − ρ)σt−1 + ρ(yt − μt)T (yt − μt) (3)

where the ρ is the second learning rate, yt is a pixel value which is used for
update of model parameters. We purposely distinguish the notation yt from xt

since the pixel value yt depends on the judgment result explained in following
section 5.

If none of the K distribution matches the current pixel value, a new Gaussian
distribution is made as follows.

wt
k+1 = W, μt

k+1 = yt, σt
k+1 = σt

k (4)
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where W is the initial weight value for the new Gaussian. If W is higher, the
distribution is chosen as the background model for a long time. After this process,
the weights are renormalized. Finally, when the weight of the least probable
distribution is smaller than a threshold, the distribution is deleted, and the
remaining weights are renormalized.

3.2 Predictive Model Based on Exponential Smoothing

Exponential Smoothing. We use an exponential smoothing method[12] to
acquire a predictive pixel value zt. Exponential smoothing is a technique that can
be applied to time series data, either to produce smoothed data for presentation,
or to make forecasts. The simplest form of exponential smoothing is given by
the following formula.

mt = βxt + (1 − β)mt−1 (5)

where mt is the estimate of the value, xt is the observed value at frame t. β is
the smoothing constant in the range β(0 ≤ β ≤ 1). The forecast function, which
gives an estimate of the series can be written as follows:

zt = mt +
1 − β

β
rt−1, rt = β(zt − zt−1) + (1 − β)rt−1 (6)

where rt is the current slope and zt is the estimate of the value with a trend.

Evaluation of Background Likelihood. The predictive model mentioned
above is used for two purposes. One is for searching a pixel which has a similar
tendency with the pixel hidden by a foreground object, which will be explained
in section 5. The other is for region-level background model explained in this sec-
tion. Some literatures have reported that spatial locality information is effective
for illumination changes[6,13]. This idea derives from a hypothesis that similar
changes will be observed around the pixels when illumination change occurs. In
the proposed method, we use not only the predictive value of target pixel but
also the values of neighbor pixels simultaneously in order to evaluate background
likelihood.

Let R be a set of neighbor pixels around pixel i, the background likelihood
Q(xt) is calculated by following formula.

Q(xt
p) =

∑
i∈R φ(xt

i , z
t
i)

|R| , φ(xt, zt) =

{
1 if |xt − zt| < th

0 otherwise
(7)

The φ(xt, zt) is a range which allows predictive error.

Update of Model Parameters. The parameters of predictive model are up-
dated by an observed pixel value. In the same way with the probabilistic back-
ground model, we decide whether or not to use the observed value directly. The
detailed explanation will be given in section 5.



16 A. Shimada, S. Yoshinaga, and R.-i. Taniguchi

4 Foreground Detection Based on MRF

The background model and foreground model output the evaluation result of
background and foreground likelihood. The final decision whether or not each
pixel is foreground is determined by integrating each evaluation result. We define
an energy function based on Markov Random Field (MRF) and give each pixel
proper label (foreground or background) by minimizing the energy function. Our
energy function is defined as

E(L) = λ
∑
i∈V

G(li) +
∑

(i,j)∈E
H(li, lj) (8)

where L = (l1, . . . , lN ) is the array of labels, and N is the number of pixels.
The V and E represent a set of all pixels and a set of all nearest neighboring
pixel pairs respectively. The G(li) and H(li, lj) represent the penalty term and
smoothing term respectively and they are calculated as follows.

G(li) =
P (xi) + Q(xi)

2
, H(li, lj) =

1
ln(‖xi − xj‖ + 1 + ε)

(9)

We assign proper labels to pixels which minimize the total energy E(L), and it
is solved by a graph cut algorithm[14]. We make a graph which has two terminal
nodes (Source (s) and Sink (t)) and some nodes corresponding to pixels. Edges
are made between nodes. We give each edge a cost u(i, j) defined as follows.

u(i, j) = H(li, lj), u(s, i) = λ(1 − G(li)), u(i, t) = λG(li) (10)

5 Update of Model Parameters

If we directly use observed pixel values for model update process, not only back-
ground regions but also foreground regions are gradually trained by the model.
It will cause FN (false negative) problem when an moving object stops in the
scene (e.g. bus stop, intersection and so on). One of the solutions is to exclude
foreground pixels from update process. However, such ad-hoc process will gen-
erate another problem that background model on the foreground pixel cannot
adapt itself for illumination changes while the foreground object stops. As the
result, when the paused object starts to move again, the occluded region will
be detected wrongly (FP (false positive) problem). To solve this problem, our
approach updates model parameters on the foreground pixels with the help of
neighbor background pixels.

The specific update process of our proposed approach is as follows. Let F
and B be a set of foreground pixels and background pixels judged in section 4
respectively, the pixel value yt

i for model update is calculated as

yt
i =

{
xt

i if i ∈ B

xt
c if i ∈ F

, c = argmin
j∈B

f(Θi, Θj). (11)
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The Θ is a set of parameters of probabilistic model and predictive model on
each pixel’s. In our experiments, we set the Θ to be Θt = {μt

1, m
t, rt}, which

denotes the average background pixel value of the distribution which has the
largest weight μt

1, exponential smoothing mt and the slope of the observed value
rt. The most important contribution in this paper is to use xt

c for model update.
When a pixel is judged as foreground, our approach searches the model which
has the most similar model parameters with the pixel. The similarity between
model parameters is evaluated by the distance function f(Θi, Θj), where we use
the L1 norm in our experiments.

In this way, our approach does not use foreground pixel values to update model
parameters. Alternatively, we use the pixel value on the background pixel whose
model parameters are the most similar with the one on the foreground pixels.
This procedure avoid the foreground object from being trained as background.
Therefore, even if a foreground object stops in the scene, our approach keeps
detecting the foreground object. In addition, the implicit update process of the
background models hidden by the foreground object reduces FP problem when
the paused object start to move again.

6 Experimental Results

We have used several public datasets to investigate the effectiveness of our pro-
posed method. The computational speed of the proposed method was 7fps for
QVGA image size by using a PC with a Core i7 3.07GHz CPU.

According to our preliminary experimental results, we have decided some
parameters as follows; α = 0.5, β = 0.5, th = 15. These parameters were common
to following experiments.

6.1 Evaluation of Implicit Model Update

The dataset used in this section is released at PETS20011 including illumination
changes in the outdoor scene. We have clipped two subscenes from the original
image sequence; one is a scene in which illumination condition changes from
dark to bright, and the other is a scene from bright to dark. The both scenes
consist of about 600 frame images. Moreover, we have selected two 10× 30 pixel
areas; an area with simple background and an area with complex background.
We have conducted a simulation experiment under the condition that the fore-
ground object stopped on the 10 × 30 pixel region and evaluated how effective
the proposed implicit update process mentioned in section 5 was.

Table 1 shows the error value and the number of FP pixels around illumination
changes. The error value means the difference value between the estimate value
of background model and the observed pixel value. Meanwhile, we counted up
the number of pixels whose error value exceeded a threshold as FP pixels. This
situation was under the assumption that paused object started to move again.
1 Benchmark data of International Workshop on Performance Evaluation of Tracking

and Surveillance. ftp://pets.rdg.ac.uk/PETS2001/
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Table 1. Comparison of Model Update Methods: “B to D” denotes Bright to Dark,
“D to B” denotes Dark to Bright

B to D B to D D to B D to B
Simple BG Complex BG Simple BG Complex BG

Without
Update

Error 102.8 60.9 105.5 63.2
FP 250 99 250 106

Traditional
Update

Error 9.2 8.4 12.0 10.0
FP 0 0 0 0

Proposed
Method

Error 14.0 23.8 14.8 29.6
FP 7 6 0 13

We have compared out proposed method with two methods; without model
update (Table 1:without update) and with model update by traditional method
(Table 1:traditional update). Note that traditional method used the observed
pixel value directly for model update.

When we didn’t update model parameters, the error value was large and a lot
of FP pixels were detected wrongly. The traditional update method could adapt
for the illumination changes. As the result, the error value and the number of
FP pixels were very small. On the other hand, our proposed method could also
adapt the illumination changes even though the investigated area was occluded
by the pseudo foreground object. The error value in the complex background
became larger than those in the simple background. However, this didn’t lead to
a sensible increase of the number of FP pixels. These discussions applied to both
scenes; scene from dark to bright and scene from bright to dark. Therefore, we
could conclude that the implicit update process of the background model was
effective to update the region occluded by paused foreground object.

6.2 Accuracy of Paused Object Detection

We have user three outdoor scenes2 to investigate the detection accuracy of
paused foreground object regions. The Scene 1, Scene 2 and Scene 3 in Fig. 3
shows the snapshot of about 100th frame, 60th frame and 150th frame after the
moving object stopped. The illumination condition in Scene 1 is relatively stable
compared with the other scenes. We have compared our proposed method with
two representative methods; GMM based method[2] and fusion model of spatial-
temporal features[7]. The parameters in these competitive methods were set to
be the same as original papers. We have evaluated the accuracy by the precision
ratio, recall ratio and F-measure given by following formulas.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F = 2/

(
1

Precision
+

1
Recall

)
(12)

The F-measure indicates the balance precision and recall. The larger value
means better result. The TP, FP and FN denote the number of pixels detected
correctly, detected wrongly, undetected wrongly respectively.
2 We got ground truth dataset from http://limu.ait.kyushu-u.ac.jp/dataset/
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Input Image

Ground Truth

GMM[3]

Proposed 
Method

Scene 1 Scene 2 Scene 3

Fusion 
Model[8]

Fig. 3. Result of object detection after
the moving object stopped. Scene 1: 100th

frame after stopped, Scene 2: 60th frame
after stopped, Scene 3: 150th frame after
stopped

Input Image

Ground Truth

GMM[3]

Fusion 
Model[8]

Proposed 
Method

Scene 1 Scene 2 Scene 3

Fig. 4. Result of object detection after
the object restarted to move

Fig. 3 shows the evaluated images, and Table 2 shows the evaluation results.
The GMM based method[2] could detect just a few foreground pixels since it
had learned the paused foreground object as “background”. The fusion model[7]
also gradually learned the foreground objects as “background”. This is why the
recall ratios of these methods were very low in all scenes. On the other hand,
our proposed method gave much better recall ratio than competitive methods.
The F-measure was also superior to the others.

Secondly, we have evaluated the precision ratio, recall ratio and F-measure
with another scene in which the paused object had started to move again. The
proposed method gave us better result than the other methods (See Table 3).
The GMM based method[2] detected many FP pixels in the region where the
foreground object had been paused(See Fig. 4). This is because illumination

Table 2. Accuracy evaluation of object
detection after the moving object stopped

Scene 1 Scene 2 Scene 3

GMM[2]
Precision 0.87 0.95 0.86
Recall 0.13 0.05 0.16

F-measure 0.23 0.10 0.27

Fusion
Model[7]

Precision 0.98 0.95 0.94
Recall 0.37 0.69 0.13

F-measure 0.53 0.80 0.24

Proposed
Method

Precision 0.90 0.85 0.87
Recall 0.76 0.99 0.74

F-measure 0.82 0.92 0.81

Table 3. Accuracy evaluation of object
detection after the object restarted to
move

Scene 1 Scene 2 Scene 3

GMM[2]
Precision 0.95 0.93 0.80
Recall 0.22 0.52 0.46

F-measure 0.35 0.66 0.58

Fusion
Model[7]

Precision 0.98 0.93 0.94
Recall 0.48 0.61 0.46

F-measure 0.65 0.73 0.61

Proposed
Method

Precision 0.92 0.78 0.91
Recall 0.78 0.98 0.82

F-measure 0.85 0.87 0.86
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change occurred during the period. Meanwhile, the fusion model[7] and the pro-
posed method didn’t detect the occluded region wrongly. However, the fusion
model could not detect inside of the moving object because of over-training of
foreground object. This is why the recall ratio of the fusion model was lower
than the proposed method.

6.3 Evaluation of Robustness against Illumination Changes

We have used a outdoor image sequence in which illumination condition
had sometimes changed rapidly, which was also used in the section 6.1. We
have selected three images from 5,000 frames for evaluation. The parameters of
background models including competitive methods were set to be the same as
previous experiments.

Table 4. Accuracy evaluation with PETS2001
dataset

# 831 # 1461 # 4251

GMM[2]
FN 0 211 234
FP 1111 133 665

F-measure – 0.76 0.22

Fusion
Model[7]

FN 0 450 311
FP 0 41 1

F-measure – 0.57 0.24

Proposed
Method

FN 0 82 120
FP 0 478 422

F-measure – 0.71 0.47

The recall ratio, precision ra-
tio and F-measure are shown in
Table 4. In the case of FP or
FN to be zero, we showed the F-
measure “–” in Table 4 since it
cannot be calculated. The illumi-
nation condition of scene # 831
was changed around the time. The
GMM based method[2] detected
many FP pixels since it was hard
for GMM to adapt for rapid illu-
mination changes. Meanwhile, our
proposed method didn’t detect any
FP pixels as good as the fusion model[7], which was reported that it is very ro-
bust against various illumination changes. The scene # 1461 included foreground
objects under the stable illumination condition. The fusion model[7] detected the
foreground object in the smaller size than the ground truth. This is because the
fusion process was achieved by calculating logical AND operation between two
kinds of background models. Therefore, the FN became large and the FP be-
came smaller compared with the GMM based method. On the other hand, the
proposed method detected the foreground objects including their shadow region.
Note that shadow regions were not target to detect in the ground truth. This is
why the FP became larger in the proposed method. To solve this problem, we are
going to introduce a shadow detection method such as [15] in the future work.
Finally, the scene # 4251 included foreground objects with illumination changes.
This scene is one of the most difficult scenes for object detection. The proposed
method gave better result than other two competitive methods. Note that the
illumination change was not a factor of FP pixels. It was caused by shadow re-
gions. Through above discussion, we are sure that our proposed method is very
robust for illumination changes.
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7 Conclusion

We have proposed a novel background modeling method. The proposed method
could update a background region even when the region was occluded by a fore-
ground object. This process was very effective for not only implicit background
update but also keeping foreground object to being detected when the foreground
object stopped in the scene. Through several experiments, we have confirmed
the effectiveness of our approach from the viewpoints of robustness against il-
lumination changes, handling of foreground objects and update of background
model parameters. In our future works, we will study about efficiency strategy
of initializing background model, complement of undetected pixels such as inside
of the objects.
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Abstract. Determining motion from a video of the imaged scene rel-
ative to the camera is important for various robotics tasks including
visual control and autonomous navigation. The difficulty of the problem
lies mainly in that the flow pattern directly observable in the video is
generally not the full flow field induced by the motion, but only partial
information of it, which is known as the normal flow field. A few meth-
ods collectively referred to as the direct methods have been proposed to
determine the spatial motion from merely the normal flow field without
ever interpolating the full flows. However, such methods generally have
difficulty addressing the case of general motion. This work proposes a
new direct method that uses two constraints: one related to the direc-
tion component of the normal flow field, and the other to the magnitude
component, to determine motion. The first constraint presents itself as
a system of linear inequalities to bind the motion parameters; the sec-
ond one uses the rotation magnitude’s globality to all image positions to
constrain the motion parameters further. A two-stage iterative process
in a coarse-to-fine framework is used to exploit the two constraints. Ex-
perimental results on benchmark data show that the new treatment can
tackle even the case of general motion.

1 Introduction

A moving object or camera generally induces a certain apparent flow pattern
in the acquired video. How the relative motion in space between the object and
camera can be determined from the apparent flow is a classical problem whose
solution has tremendous applications to autonomous navigation, visual control,
robotics, human action understanding, and intelligent user interface.

Due to the well-known ambiguity between motion speed and object size-and-
depth, from monocular video alone the translation magnitude of motion is gen-
erally not determinable and left as an overall arbitrary scale related to object
depth. In other words, if we describe the spatial motion as consisting of a trans-
lation component t (as a 3D displacement vector) and a rotation component w
(in rotation’s angle-axis form), we are to determine the direction of t and the full
w. However, due to the familiar aperture problem, the full flow induced by the
spatial motion at any image position is observable generally only partially, as a
normal flow. This partial observability makes motion determination a challenge.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 23–32, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Classical solutions to motion determination are largely about establishing ex-
plicit motion correspondences across the image frames. One is the feature-based
track, which tracks the distinct features in the image stream [1, 5]. Another track,
originated from Horn and Schunck [10] as well as Lucas and Kanade [14], tracks
practically all image positions. In [2], the multi-scale approach was extended by
including the gradient constancy assumption to overcome the drawback of us-
ing the grey value constancy assumption. Higher order constancy assumptions
had also been included into the variational model [15]. After estimating the full
flow field, motion parameters are estimated in a subsequent stage. A method of
using constraint lines to estimate the focus of expansion (FoE) was developed
by [12]. However, the rotational component cannot be recovered. Linearity and
divergence properties of the orthogonal cross-section of the projected flow fields
were used in [7]. An iterative approach is used to de-rotate the image by feeding
back the estimated rotational component in the next iterative cycle. A recent
research work presents a linear formulation of the bilinear constraint [16]. It also
pointed out that highly accurate estimate for full flow does not necessarily pro-
vide an accurate estimation of ego-motion because it also depends on the error
characteristic within the estimated full flow field.

A few methods have been proposed to determine camera motion from the
normal flow field directly. Such methods are often referred to as the direct meth-
ods. A classical direct method is [11], in which only camera motion having pure
translation, pure rotation, or a motion with known rotation can be recovered.
Another direct method that is based upon selection of image points that form
global patterns in the image was developed by [8]. They transformed the pa-
rameter estimation problem to a series of boundary extraction problems. The
method needs to determine boundaries between two sparsely labeled regions in
the image domain. Another direct method utilizes a ψ-line searching algorithm
to determine the direction of t [17]. However, only a limited number of normal
flows could participate in the recovery. In a later work, the searching problem
is formulated on the L-space [18]. More normal flows could contribute to the
solution. Yet each set of affine parameters of r on each ψ-line of the L-space are
still estimated by a limited number of normal flows. Both two methods require
the application of minimization over unbounded decision variables.

The direct methods in the literature either cannot tackle the case of general
motion in which both translation and rotation are present and unknown, or have
to deal with the problem of identifying boundaries between image regions that
are only sparsely labeled. In this paper, we describe a direct method that is free
of such limitations. We propose the use of two constraints: one related to the
direction component of the normal flows, and the other to the globality of the
motion magnitude. While the former manifests as a system of linear inequalities
that bind the motion parameters, the latter serves to constrain the motion pa-
rameters further by insisting that every image position must have a component
of normal flow magnitude that is consistent with a global rotation magnitude. A
two-stage iterative voting process, in a coarse-to-fine framework, is implemented
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to determine the motion parameters. Experimental results on benchmark data
show that the method is capable of recovering general motion.

2 The Apparent Flow Direction (AFD) Constraint

An earlier report[4] has laid down the foundation on how normal flow direction
imposes a constraint on the spatial motion parameters. Here we provide a more
geometric intuition of the constraint as well as a more complete formulation of
it. In general, optical flow ṗ at any image position p is not directly observable
from the image because of the well-known aperture problem. Only the projected
component of the flow to the spatial intensity gradient at the position, by the
name of normal flow ṗn, is directly observable, and it is generally computed
from the spatial and temporal derivatives of the intensity profile at p.

The constraint is powerful but simple to state. If normal flow must be a pro-
jected component of full flow, the full flow must have an orientation no different
from that of the observed normal flow by more than 90◦. This restriction on the
direction of the full flow in turn constrains the motion parameters (t, w). The
constraint at p with non-zero full flow and normal flow can be formulated as:

ṗ · ṗn = (ṗ · n)2 > 0 (1)

where n is a unit vector in the direction of the local intensity gradient at p.

2.1 Preliminaries

Consider a camera that has the image plane placed at focal length f from its
optical center. Define a camera-centered coordinate system C, which has the
Z -axis pointing along the optical axis toward the imaged scene. Consider any
object point P = (X, Y, Z )T of the scene with respect to C. Suppose that its
projection onto the image plane is p = (x, y)T . Under perspective projection,

P ∼= p̃ (2)

where ∼= denotes equality up to arbitrary nonzero scale, and p̃ = (x/f, y/f, 1)T

represents projective coordinates of p with f -normalized x and y components.
Suppose that the camera undergoes a general motion with a translation t and

a rotation w. The motion of the point P relative to frame C is:

Ṗ = −t − w × P (3)

Suppose also that the normal flow ṗn of orientation γ in the image space is
observed at image position p. The motion parameters t and w must be such
that they induce a full flow (at p) that has a direction no different from γ by
more than 90◦. A few further algebraic manipulations will turn Equation (1) to:

AFD(p, γ) : t · at/Z − w · aw < 0 (4)

where at = p̃× (sin γ,− cosγ, 0)T , aw = at × p̃ , and Z is the scene depth at p.
This is the constraint imposed by normal flow direction γ. It is expressed in a
form more precise than that in [4]. We refer to it as the Apparent Flow Direction
(AFD) constraint.
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2.2 The Special Case: Pure Translation

Suppose the camera undergoes a pure translation t that has a component toward
the imaged scene. All the optical flows should be pointing away from the focus
of expansion (FoE). The full flow ṗ induced by the FoE could be any vector of
orientation between (γ-90◦) and (γ+90◦) in the image. The case that the camera
undergoes a pure translation that has a component away from the imaged scene
is similar, except that the FoE is replaced by the focus of contraction (FoC).

By setting the w-component to zero in the AFD(p, γ) constraint, the locus
of t’s direction in space (regardless of whether it represents an FoE or FoC) is

AFDt(p, γ) : t̂ · ât < 0 (5)

where t̂ and ât are unit vectors of t and at respectively. In essence, AFDt(p, γ)
is a linear inequality on the direction of t, representing exactly half of the of the
parameter space of t’s direction.

2.3 The Special Case: Pure Rotation

The case of pure rotation is analogous to that of pure translation. Suppose the
camera rotates about an axis w (in the right-hand manner) with an angular
velocity given by the magnitude of w. By setting the t-component to zero in the
AFD(p, γ) constraint, the locus of w imposed by p and γ can be expressed as:

AFDw(p, γ) : ŵ · âw > 0 (6)

where ŵ and âw are unit vectors of w and aw respectively. The locus is again
in the form of a linear inequality that binds the direction of w.

2.4 Solving the System of Linear Inequalities for the Two Special
Cases

Suppose there are m data points (image positions have observable normal flows)
in the image. They will each give rise to an inequality described in either Equa-
tion (5) or Equation (6), about the directions of t and w respectively. Define
At = [ât]m×3,Aw = [−âw]m×3, the entire set of inequalities can be expressed
as either

Att̂ < 0 or Awŵ < 0 (7)

The parameter space of t and w can be parameterized by the spherical co-
ordinates (ρ = 1, φ, θ). With a number of data points available, each supplying
a different locus for t (or w). Here we provide a geometric interpretation of the
task, and supply an alternative solution mechanism that is computationally more
efficient but also more accurate in its solution. The task in hand (as expressed
by Equation (7)) is about seeking a 3-vector n (which is about either t or w)
that makes no acute angle with any row vector of a matrix A (which could be
either At or Aw, depending upon whether it is a case of pure translation or
pure rotation). Notice that only the direction of n, not its magnitude, is desired.
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Fig. 1. Distribution of noisy ât’s and the estimation of translation t.(a) Original
solution. (b) Solution using a resampling-based method. Red and green lines are the
estimated and true directions of t respectively.

If the row vectors of A are viewed as radial vectors of a unit sphere in 3-space,
the solution is about designating a pole n of the sphere, so that if the pole is
regarded as the north pole, a maximal number of the above radial vectors lie
in the sphere’s south hemisphere. In this light, an alternative way of acquiring
the solution to the inequality system could be formulated as an optimization
problem: given A, seek a unit 3-vector n such that

n = arg min
subject to n∈R3,||n||=1

∑
(âi · n) (8)

where ai(i = 1, 2, ...,m) are normalized row-vectors of A.
To avoid solution of local minimum, at the end of each minimization process

we randomly re-sample the space of decision variables around the stabilized val-
ues, and use such sampled values to initialize the decision variables for re-running
the minimization process. We iterate the process until random distribution of
the stabilized decision values does not lower the objective function further. Fig-
ure 1 shows example results of recovering t on a synthetic dataset. The normal
flows were corrupted by an additive white Gaussian noise of 5dB signal-to-noise
ratio. The above resampling-based minimization mechanism was able to supply
a direction of t (Figure 1(b)) much closer to the ground truth than the one
without using resampling-based minimization (Figure 1(a)). The angular error
in t was reduced from 52.9◦ to 1.6◦. The case of pure rotation is similar. It is
omitted here.

2.5 The Case of General Motion

When there are both translation and rotation in the motion, normal flows are
affected by both t and w in unknown proportions. By observing Equation (4),
it can be deduced that it cannot be t · at being positive and w · aw being
negative at the same time, or else the inequality expressed by Equation (4) will
be violated. From the geometric perspective, and in particular the principle of
vector addition, the same conclusion can be reached, as illustrated by Figure 2.
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Fig. 2. Relationship between full flow and normal flow

Consider any image position p where the normal flow is observable. The direction
γ of the normal flow introduces respective bounds, in the form of AFDt(p, γ)
and AFDw(p, γ), to the directions of the vectors ṗt and ṗw, which are optical
flow components induced by the translation t and rotation w of the motion
respectively. As the full flow must have an overall orientation between (γ-90◦)
and (γ+90◦), it is impossible that both the two optical flow components ṗt and
ṗw point to the shaded region shown in Figure 2. This imposes a constraint to
(t,w), in the form of a logical OR operation over AFDt(p, γ) and AFDw(p, γ).
More precisely, each of { t,w } ought to span exactly half of their own direction
space, and with (t,w) (their directions only not magnitudes) considered together,
they span three-quarter of a 4-D parameter space. In other words, the AFD
constraint allows each single normal flow to trim away one-quarter of (t,w)-
direction-space from consideration.

3 The Apparent Flow Magnitude (AFM) Constraint

The AFD constraint is applicable regardless of whether the motion is a specific
one or a general one. However, whether it alone could lead to a unique result of
the motion parameters depend upon how general is the orientation distribution
of the normal flow field, which is a function of the intensity-gradient distribution
of the image. Our experimental results show that for some specific scenes, the
AFD constraint could only restrict the motion parameters to a possible set of
solutions, not a unique one. In this work we explore also how the magnitude
information of the field can be brought in to narrow down the motion values
further.

Consider the case of pure rotation. At any image position p the rotation
w induces an optical flow ṗw. This optical flow ṗw then projects to the local
intensity gradient to form the observable normal flow ṗn. If the angle between̂̇pw (||w||-normalized ṗw) and ṗn is α, we have

||w|| = ||ṗn||/(||̂̇pw|| cosα) (9)

In other words, any hypothesis of the rotation axis ŵ will allow the rotation
magnitude ||w|| to be determined from any image position p where normal flow
is observable. Since this rotation magnitude is a global quantity for the entire
normal flow field, it should have the same value from any particular normal flow
data point. As a consequence, the consistency over ||w|| of the normal flow field
could serve to confirm if the hypothesized rotation axis is correct or not. We refer
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to this constraint on the motion parameters as the Apparent Flow Magnitude
(AFM) constraint.

In our implementation, for any particular hypothesis of the rotation axis ŵ,
the standard deviation (SD) of ||w|| computed from all the normal flow data
points in the image space serves to indicate how likely the hypothesis is correct;
an SD that is too large will make it justifiable to have the particular hypothesis
of ŵ ruled out. Notice that the AFM constraint also supplies the true value of
||w|| once the final answer on the rotation axis ŵ is attained.

It is worth pointing out that, in Equation (9), an α close to 90◦ will amplify
the uncertainty in estimating ||w||. We refer to such normal flow data points as
the degenerate data points. It is necessary that in the above process such normal
flow data points are excluded from computing the SD measure. Figure 3 shows
the distribution of ||w||-estimation in a synthetic data experiment for a ŵ that
is only 0.1◦ away from the ground truth. Yet the SD of the distribution is still
large, due mainly to the fact that the degenerate data points are not excluded
from the estimation process. In the figure, those ||w||-estimates that are from
the degenerate data points are marked with red circles. If such data points are
excluded, the SD can be reduced from 0.183◦ to 0.0253◦.

To extend the use of the AFM constraint to the case of general motion, we
adopt a simple trick. For each particular set of

(
t̂, ŵ

)
(here we use t̂ and ŵ, the

normalized t and w, to denote their directions), we find out which normal flow
data point p has the intensity gradient direction û = ∇I/||∇I|| (where I(x,y)
refers to the intensity distribution in the associated image) orthogonal to the
optical flow component ̂̇pt induced by the particular t̂. At such p’s, the optical
flow ṗ and in turn the normal flow ṗn is solely governed by the optical flow
component ̂̇pw that is induced by ŵ. At such data points the above analysis
could still apply. To summarize, by defining a set Π⊥

(
t̂
)

=
{
p : ̂̇pt⊥û(p)

}
, the

AFM constraint for the case of general motion is expressible as:

AFM :
(
t̂
T
, ŵT

)T

= arg min
t̂,ŵ∈R3, ||̂t||,||ŵ||=1 and p∈Π⊥ (̂t)

SD||w(p)|| (10)

Fig. 3. The distribution of ||w||-estimates in a synthetic data experiment
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4 Putting the Two Constraints Together

We adopt an iterative two-stage process to apply the AFD and AFM constraints
alternately for determining motion. The first stage involves the use of AFD to
constrain the directional components

(
t̂, ŵ

)
of the motion. Such a process could

give rise to unique solution of the directional components, but not always. In
case that it does not, the constrained

(
t̂, ŵ

)
will go through the second stage,

which is about the application of the AFM constraint.
To speed up the processing and to avoid the effect of local minima, a coarse-to-

fine strategy over the bounded
(
t̂, ŵ

)
-parameter space is used. A set of motion

vectors
(
t̂, ŵ

)
parameterized by spherical coordinates φ and θ are first gener-

ated using a coarse sampling resolution. In the first stage, the AFD constraint
is applied to reject impossible combinations of

(
t̂, ŵ

)
. For each of such motion

vectors, the total number of normal flow data points that fulfill the AFD con-
straint is also recorded. Those motion vectors that have too few of such data
points are rejected. The AFM constraint is applied to refine the solution fur-
ther in the second stage. The motion vectors that do not have small enough SD
of ||w|| are rejected. The magnitude of w is also estimated at the same time.
The result is then carried forward to serve as seeds of new sampling points in
the next iteration that adopts a slightly finer resolution. The iterations continue
until motion values of enough precision are attained.

5 Experimental Results on Benchmark Data

Two sets of data are both benchmark data used in the literature, namely the
Fountain sequence (FS) [16] and the very widely used Yosemite sequence (YS).
Both datasets are about general motions. One latest result is that of the method
presented in [16], which makes use of high-accuracy optical flow estimation as
input flow (meaning that the method has to use smoothness constraint of some
sort for interpolating the full flows from the apparent flows), namely the methods
of Brox et al. [2] and Farnebäck [6]. To make our experiments results directly
comparable to those results, the same pair of image frames was used in each
experiment. The ground truth of the FS is t = (-0.6446 0.2179 2.4056)T pixels
and w = (-0.125 0.2 -0.125)T deg/frame [16]. The ground truth of YS is t = (0
0.17 0.98)T× 34.8 pixels andw = (1.33 9.31 1.62)T × 10−2 deg/frame [9].

To determine the normal flow at any particular image position, we simply use
the equality ṗn = −It∇I/||∇I||2. The spatial (∇I) and temporal (It) derivatives
are calculated by the 8-point method described by Horn and Schunck [10]. To
ease the differentiation process, the image data were smoothed by 2D Gaussian
filter beforehand. FS and YS had 16.46% and 26.59% detectable normal flows
respectively. The iterative two-stage process, with a coarse-to-fine strategy, was
then applied to each of the datasets to determine the direction t̂, the rotation
axis ŵ, and the rotation magnitude ||w||. Tables 1 and 2 show the results in
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Table 1. Errors of motion estimation on the Fountain sequence

Technique Ang. error, Absolute error, w [deg/frame]
t [deg] |Δwx| |Δwy | |Δwz|

Raudies et al.[16] (Brox et al.(2D) [2]) 4.395 0.001645 0.0286 0.02101
Raudies et al. [16] 6.841 0.01521 0.05089 0.025
(Farnebäck [6], 100% density)
Raudies et al. [16] 1.542 0.0008952 0.01349 0.003637
(Farnebäck [6], 25% density)
Our method 0.740115 0.0071692 0.010532 0.018084

Table 2. Errors of motion estimation on the Yosemite sequence without clouds

Technique Ang. error, Absolute error, w [deg/frame]
t [deg] |Δwx| |Δwy | |Δwz |

Raudies et al.[16] (Brox et al.(2D) [2]) 4.893 0.02012 0.1187 0.1153
Raudies et al. [16] 4.834 0.03922 0.00393 0.07636
(Farnebäck [6], 100% density)
Lourakis [13] 3.7 0.038732 0.028419 0.011516
Heeger et al. [9] 3.5 0.0568 0.0344 0.0807
Lourakis [12] 3.1
Raudies et al. [16] 1.208 0.007888 0.01178 0.02633
(Farnebäck [6], 25% density)
Raudies et al. [16] 1.134 0.01261 0.008485 0.02849
(Farnebäck[6], 25% density, RANSAC)
Our method 0.988969 0.0037171 0.012006 0.025528

comparison with those reported in the literature. Our method achieved better
result in recovering the translational direction as compared with the existing
methods. On the recovery of rotation, overall speaking, the proposed method
also achieved results comparable to or better than those of the existing methods.
Our method performed slightly less than [16] on estimating w, yet it is worth
noticing that the method reported in [16] is a full flow-based one and requires
to introduce the smoothness assumption somewhere in attaining the full flows,
which could cause a problem for scenes that are not smooth enough.

6 Conclusion and Future Work

We have described two important constraints that allow the normal flow field
to be used directly for motion determination. One constraint is related to the
directional information of the normal flow field, and the other to its magnitude
information. We have also outlined how the two constraints can be used alter-
nately in an iterative fashion to determine the motion parameters. Notice also
that the method, being a direct method itself, does not require the presence of
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distinctly trackable features in the imaged scene, nor does it require to assume
smoothness about the imaged scene for interpolating the full flows. Experimen-
tal results over benchmark datasets show that not only can the method recover
general motion, it also has a performance comparable even to those of methods
that have to bring in the smoothness assumption as well. Future work will ad-
dress how multiple motions in the imaged scene can be detected, and how depth
can be recovered from visual motion.

Acknowledgement. The work described was partially supported by the Chi-
nese University of Hong Kong 2009-2010 Direct Grant (Project No. 2050468).
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Abstract. Pan Tilt Zoom cameras have the ability to cover wide areas
with an adapted resolution. Since the logical downside of high resolution
is a limited field of view, a guard tour can be used to monitor a large
scene of interest. However, this greatly increases the duration between
frames associated to a specific location. This constraint makes most back-
ground algorithms ineffective. In this article we propose a background
subtraction algorithm suitable to cameras with very low frame rate. Its
main interest consists in the resulting robustness to sudden illumination
changes. The background model which describes a wide scene of interest
consisting of a collection of images can thus be successfully maintained.
This algorithm is compared with the state of the art and a discussion
regarding its properties follows.

1 Introduction

While the number of cameras used in public areas constantly increases, a strong
effort is made to develop robust algorithm able to automate scene monitoring.
Background subtraction is a popular pre-processing task often required to intro-
duce scene understanding in video sequences.

Wide angle cameras can be used to monitor a wide scene, their interest is
however limited by their low resolution when it comes to analysing the scene.
Pan Tilt Zoom (PTZ) cameras have two rotation axis and a zoom function which
enable focusing on a part of the scene at any suitable resolution. The obvious
drawback of the PTZ sensor lies in its limited field of view.

When dealing with static camera, one of the usual approaches to issues such
as tracking or object recognition is to build a background model. This model,
which will have to be initialised and updated continuously, allows the detection
of objects of interest by estimating a distance to the current image. As for PTZ
camera, to maintain a whole background model is challenging since the necessary
information is rarely available.

In this article, a PTZ camera performing a guard tour over a wide area is used
to detect objects of interest. The camera follows a predefined set of positions

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 33–42, 2011.
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(pan, tilt, zoom) covering the area at an adapted resolution. For each of these
positions it can be considered that we are in the case of a static camera suffering
a very low frame rate (approximately 1 image every 10 to 20 seconds). Such
a duration between frames constitutes a major difficulty since the background
model will not be continuously updated and show important disparities in terms
of illumination between the model and the current image.

This article presents a thorough study of a very low update rate background
subtraction algorithm. It briefly reviews the related work (section 2), then presents
a previous contribution of the authors (section 3) which has motivated this study.
A comparison between local texture descriptors and the introduction of a more
robust feature descriptor is then presented (section 4.2). A discussion regard-
ing the background model update strategy follows (section 4.3) and additional
experimental results are provided in section 5.

2 Related Work

There exist many background subtraction techniques in the literature, most of
which are designed for static cameras with a frame rate above 12fps. Starting
with basic frame differencing [1], it was soon necessary to build more evolved
frameworks to describe the background. Stauffer and Grimson [2] first introduced
a popular statistical approach based on a mixture of Gaussian distributions
to model the luminance of each pixel. The model is updated at each frame
to account for the variations of the background. An overview of background
subtraction methods based on mixtures of Gaussians is given by Bouwmans et
al. [3]. Elgammal et al. [4] have even achieved greater accuracy by substituting
the MoG model with kernel density estimator.

Single pixel luminance does not carry sufficient information to address the
complexity of outdoor scenes. It was therefore necessary to introduce spatial and
temporal coherence in background subtraction algorithms. In [4], classification
as background was enforced by considering the distribution model of neighbour-
ing pixels. Background description models were also improved to carry dynamic
information based on optical flow estimates [5]. Even when dealing with static
backgrounds, accounting for sets of pixels provide better results. This motivated
the work of Chen et al.’s [6], where texture descriptor is considered based on
the tiling of the image with 8 × 8 blocks. This descriptor encodes a local colour
contrast histogram with 48 parameters and increases robustness to illumina-
tion variations. This methods was proved to very efficient in [7] and is used in
the remainder of this article to compare the performances of our background
subtraction algorithm.

Zhu et al.[8] proposed a background subtraction algorithm based on the ex-
traction of Harris keypoints and SIFT descriptors but which can only detect
moving objects.

In the specific case of PTZ cameras, most approaches are based on the cre-
ation of a mosaic of the scene background. New images from the camera are reg-
istered on the mosaic as a prerequisite to background subtraction model update
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[9,10,11,12]. The drawback of these methods is that there is no global update of
the background model. There is no warranty that the model of an area that has
not been visited for a while is usable. Therefore it turns out that these methods
are more suitable to the tracking or moving object than the complete modelling
of a large scene of interest.

3 Background Subtraction by Keypoint Density
Estimation

In [13] we presented a background subtraction method based on the estimation
of the density of non matching keypoints. The motivation for this method came
from the fact that edge descriptor reveal themselves more robust to illumination
changes than texture descriptors. This algorithm has been proved to be very
effective in the experimental context of a PTZ camera.

We assume that keypoints which cannot be matched from the current image
to the background image belong to objects of interest. Harris keypoints are
extracted from both images and SURF [14] descriptor are computed on both
images. Due to the mechanical error of the PTZ camera images are first registered
using keypoints with the highest Harris score (strong edges).

Because Harris keypoints are not stable, corresponding points may not be
present on both images for matching. We have used the union of keypoint loca-
tion on both images prior to the matching and classification of points based on
the Euclidean distance in the space of SURF descriptors.

Once we have a set of non matching keypoints, we use kernel smoothing
techniques to estimate a continuous density d̂h:

d̂h (x) =
1

Nh

N∑
i=1

K

(‖x − pi‖img

h

)
, (1)

with (p1, . . . , pN ) the set of N non matching keypoints, K a Gaussian kernel
function and h a smoothing parameter which specifies the influence of each
observation on its neighbourhood. Pixels are classified as foreground if Nd̂h > s
and as background otherwise.

Background model is updated according to the following equation:

bgn(x) =

{
bgt−1(x) if Nd̂h > s

bgt−1(x)Nd̂h(x)
s + imgt(x)

(
1 − Nd̂h(x)

s

)
otherwise

(2)

At this point, it is important to note that this approach presents some limi-
tations in terms of implementation:

– SURF Gradient is based on image gradient and normalised to achieve better
robustness to changes in illumination. In poorly textured areas the normal-
isation step amplifies the influence of camera noise and the artefacts due to
image compression. This prevents some keypoints from matching in homo-
geneous areas, which leads to false positives.
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– Harris threshold is chosen especially to prevent keypoints candidates to be
located in homogeneous areas. Setting this value is still empirical and se-
quence dependant.

– Considering a variable set of points for background subtraction has lead
to the use of a plain image as a background model. This is not plainly
satisfactory because the update (eq. 2) actually blurs the model, and might
lead to the creation of ghosts and false detection.

The remainder of the article presents an update to the algorithm in order to
address these limitations.

4 Texture Descriptors for Background Subtraction

We propose a background subtraction algorithm similar to the keypoint which
relies on a regular grid of modified SURF descriptors as a background model
instead of a variable set of keypoints. These descriptors can be computed on
weakly textured areas (sec. 4.1). This algorithm is as effective as the keypoint
density algorithm but Harris feature point extraction and its associated manual
threshold is no longer necessary.

Background subtraction is performed by computing the distance of a descrip-
tor from a point of the grid to the corresponding one in the background model.
Once we have a set of matching and not matching points we use equations 1 as
a post processing to smooth out the classification results. The threshold is set to
avoid false alarms in case of isolated detection. Meanwhile isolated mis-detection
are automatically filled in by the neighbouring detections.

4.1 Weighting the SURF Descriptor

The SURF descriptor has been thought to be discriminative when computed on
textured zones, but the normalisation process renders this inefficient, when in
low textured areas, noise overcomes gradient information.

The intuition is that if there is no gradient information we can’t decide at
a local level whether a pixel is foreground or background. Thus, we arbitrarily
decide that two low textured areas (those where the SURF norm is low) should
match.

To do so, we consider the distribution of the norm of the SURF descriptors on a
set of sequences displaying texture and homogeneous areas (Fig. 1). The resulting
distribution presents two modes. The lowest corresponding to homogeneous, it is
removed with an appropriate weighting function applied to the SURF descriptor
values.

D′
SURF = DSURF ∗ f(‖DSURF ‖) with f(x) =

⎧⎪⎨⎪⎩
0 if x < 120

x − 120
480 − 120

if 120 ≤ x ≤ 480

1 if 480 < x
(3)
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Fig. 1. Left: Histogram of the norm of SURF descriptor before normalisation. Right:
Histogram of the norm of SURF descriptor before normalisation and after applying
equation 3.

As a consequence, if the SURF descriptor is computed on a textured zone its
norm remains 1. If it is computed on a zone which is not textured, it is set to 0,
with a continuous transition between these two cases.

4.2 Evaluating the Quality of the Texture Descriptor

Chen et al.[6] have designed their own texture descriptor to perform background
subtraction. It encodes a histogram of contrast between the different colour
components. However we can question the choice of such a descriptor since there
exists well known other descriptors used in other fields of computer vision.

We have compared the Chen descriptor to the SURF descriptor [14] on a
sequence presenting challenging changes in illumination (Fig. 3a). To assess the
quality of the descriptors only, we performed background subtraction on this
sequence with no post processing of any kind. Descriptors are computed on the
same regular grid and the classification as foreground or background is done only
according to the distance toward the corresponding descriptor on a reference
image (no statistical modelling in the space of descriptors). We Have computed
ROC curves on this sequence with a variation of the classification threshold
(Fig. 2).

Results are very poor if one consider a single frame as a reference (very strong
disparities between images). However the obtained precision with SURF is always
twice as better than the Chen Descriptor. If one considers consecutive images,
there is a global increase in robustness with the use of SURF descriptors and
the modified SURF descriptors.

4.3 Background Update

As descriptors are computed on a regular grid rather than a set of keypoints. It is
now possible to handle the background model update in the space of descriptors
rather than the image space. If DBkg,t is a background descriptor and DImg,t
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Fig. 2. Precision and recall curves of the Chen, SURF and modified SURF (sec. 4.1)
descriptors computed on the sequence from Fig. 3a. Left: comparing two consecutive
images. Right: comparing one specific image to all images of the sequence.

a

b

Fig. 3. Test Sequences. These sequences present important illumination changes, shad-
ows and reflections on a rain-soaked road.

is a descriptor computed from the current image at time t and classified as
background, then we use the following updating rule:

DBkg,t+1 = αDBkg,t + (1 − α)DImg,t (4)

For our application the learning rate α is chosen rather high (α > 0.25). As
we consider sequences with very low frame rate, it is necessary to update the
model quickly to follow the global illumination changes.
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Fig. 4. Detection results on a sequence with very low textured zones and compression
artefacts. First column: original image. Second column: segmentation result using key-
points density with a low threshold on the Harris score (Harris points can be located
in homogeneous areas). Third column: grid of modified SURF descriptors.

Table 1. Comparison of detection results on various sequences

Method Statistic PTZ Train Outdoor1 PETS Outdoor2

Modified SURF grid
Recall 0.74 0.77 0.69 0.75 0.63

Precision 0.74 0.79 0.67 0.75 0.70

Keypoint density
Recall 0.61 0.83 0.53 0.8 0.64

Precision 0.61 0.73 0.58 0.65 0.67

Chen et al.[6]
Recall 0.47 0.63 0.51 0.73 0.55

Precision 0.24 0.61 0.69 0.84 0.60

Stauffer and Grimson
Recall 0.56 0.5 0.22 0.63 0.46

Precision 0.12 0.44 0.46 0.6 0.55

5 Experimental Results

The first part of the experiments is devoted to the comparison of the SURF and
modified SURF descriptor. Figure 4 shows the kind of issue which may arise
on poorly textured areas and how the modified SURF descriptor deals with it.
On these areas, the compression artefact create unstructured gradients which
make the original SURF descriptor ineffective. Figure 4 shows that the modified
SURF descriptor can be computed on uniform areas while not generating false
mismatches. Figure 5 displays ROC curves which confirms quantitatively what
can be observed on figure 4.

Figure 6 presents qualitative results for the case of a PTZ camera performing
a guard tour. The time elapsed between consecutive frames is 24 seconds. Notice
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Fig. 5. Precision and recall curves computed on the light change sequence. The thresh-
old for the keypoint density algorithm is the same as the one used in figure 4.

Fig. 6. PTZ Sequence

the green borders on the image due to the registration between images acquired
during the tour.

The second part of the experiments compares the modified SURF grid back-
ground subtraction algorithm to Chen et al.’s [6] algorithm and our previous
algorithm based on keypoints density estimation [13]. The application to PTZ
cameras performing a Guard tour is equivalent to a fixed cameras with a very low
frame rate. Therefore we have applied the algorithms to fixed cameras presenting
challenging sequences and artificially lowered the frame rate to one image every
20 seconds.

Figure 7 shows qualitative results. Whereas the PETS sequence is not chal-
lenging in terms of illumination variation they show that our algorithm behaves
well on weakly textured scenes. The train sequence is another example sequence
for which our algorithm is stable even when sudden changes in illumination oc-
cur. On these sequences modified SURF grid behaves as well as the keypoint
density algorithm.

Figure 8 shows quantitative results on two sequences where sudden changes in
illumination occur. Table 1 sums up the results from various sequences and shows
that our algorithm is more stable than others. The presented statistics may seem
low at first sight, but these were computed in the most challenging experimental
conditions. Moreover, as can be seen on figure 7, the loss of precision of our
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Fig. 7. Qualitative results obtained in various situations. First row is captured on
board of a train. Second row is a sequence extracted from the PETS 2006 challenge
(http://www.cvg.rdg.ac.uk/PETS2006/). Rows 3 and 4 are consecutive images ex-
tracted from the sequence in Fig. 3a. First column: original image. Second column:
our algorithm. Third column: keypoint density algorithm [13]. Fourth column: Chen
et al.’s algorithm.

Fig. 8. Precision and recall curves. Left: train sequence. Right: light change 2 sequence.



42 C. Guillot et al.

algorithm is inherent to the method and mainly due to the fact that it always
over segment foreground blobs. In no case does it generate actual false alarms.

6 Conclusion

We have propose a simple yet efficient background subtraction algorithm. We
use a modified version of the SURF descriptor which can be computed on weakly
textured areas. We successfully apply our algorithm in the challenging context
of PTZ cameras performing a guard tour and for which illumination issues are
critical. Our algorithm successfully detects blobs with a sufficient accuracy used
as a first step toward object detection application.
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Abstract. In this paper we investigate Bayesian visual tracking based
on change detection. Although in many proposals change detection is
key for tracking, little attention has been paid to sound modeling of the
interaction between the change detector and the tracker. In this work, we
develop a principled framework whereby both processes can virtuously
influence each other according to a Bayesian loop: change detection pro-
vides a completely specified observation likelihood to the tracker and the
tracker provides an informative prior to the change detector.

1 Introduction and Related Work

Recursive Bayesian Estimation (RBE) [1] casts visual tracking as a Bayesian
inference problem in state space given noisy observation of the hidden state.
Bayesian reasoning has been used also to solve the problem of Change Detec-
tion (CD) in image sequences [2], and CD is at the root of many proposals
in visual tracking. Nonetheless, interaction between the change detection and
tracking modules is usually modeled heuristically. This negatively affects the
quality of the information flowing between the two computational levels, as well
as the soundness of proposals. Furthermore, the interaction can be highly influ-
enced by heuristically hand-tuned parameters, such as CD thresholds. Hence,
a first original contribution of this paper is a theoretically grounded and al-
most parameters-free approach to provide an observation likelihood to the RBE
tracker from the posterior obtained by a Bayesian Change Detection (BCD).

Recently, Cognitive Feedback has emerged as an interesting and effective pro-
posal in Computer Vision [3]. The idea is to let not only low-level vision modules
feed high-level ones, but also the latter influence the former. This creates a clo-
sure loop, reminiscent of effects found in psychophysics. This concept has not
been deployed for the problem of visual tracking yet. Nevertheless, it fits surpris-
ingly well in the case of BCD, where priors can well model the stimuli coming
from RBE. Hence, the second original contribution of this paper deals with in-
vestigating on using Cognitive Feedback to create priors from the state of an
RBE tracker in the case of visual tracking based on change detection.

The third novel contribution deals with exploiting the synergy between the
previously presented approaches, so as to obtain a fully Bayesian tracking system.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 43–53, 2011.
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As a preliminary investigation into this novel approach, in this paper we have
conducted the theoretical analysis and the experimental validation only for the
simpler case of single-target tracking.

As for related work, a classical work on blob tracking based on background
subtraction is W4 [4]. In this system the output of the change detector is thresh-
olded and a connected component analysis is carried out to identify moving
regions (blobs). However, the interaction between tracking and change detec-
tion is limited, tracking is not formalized in the context of RBE, CD depends on
hard thresholds, no probabilistic reasoning is carried out to derive a new measure
from the CD output or to update the object position. [5] and [6] are examples
of blob trackers based on change detection where the RBE framework is used
in the form of the Kalman filter. Yet, the use of this powerful framework is im-
poverished by the absence of a truly probabilistic treatment of the CD output.
In practice, covariance matrices defining measurement and process uncertain-
ties are constant, and the filter evolves toward its steady-state regardless of the
quality of the measures obtained from change detection. [7] is one of the most
famous attempt to integrate RBE in the form of a particle filter with a statistical
treatment of background (and foreground) models. The main limitations are the
use of a calibrated camera with reference to the ground plane and the use of a
foreground model learned off-line. While the former can be reasonable,the use of
foreground models is always troublesome in practice, given the high intra-class
variability of human appearances. Moreover, no cognitive feedback is provided
from the Particle Filter to influence the change detection.

2 Models and Assumptions

Recursive Bayesian Estimation [1] allows for hidden state estimation from noisy
measures in discrete-time systems. From a statistical point of view, the problem
of estimating the state translates into the problem of estimating a degree of belief
in its possible values, i.e. its PDF, given all the available information, i.e. the ini-
tial state and all the measurements up to a given moment. The solution is seeked
recursively: given the PDF of the state at time k− 1 conditioned on all previous
measurements, p(xk−1|z1:k−1), and the availability of a new measurement, zk, a
new estimate for the PDF at time k is computed.

We assume a rectangular model for the tracked object, as done in many pro-
posals such as i.e. [8]. Hence, the state of the RBE tracker, xk, comprises at
least four variables

xk =
{
ibk, jb

k, wk, hk, . . .
}

(1)

where (ibk, jb
k) are the coordinates of the barycenter of the rectangle and wk and

hk its dimensions. These variables define the position and size at frame k of the
tracked object. Of course, the state internally used by the tracker can benefi-
cially include other cinematic variables (velocity,acceleration,. . . ). Yet, change
detection can only provide a measure and benefit from a prior of the position
and size of the object. Hence, other variables are not used in the reminder of
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the paper, though they can be used internally by the RBE filter, and are used
in our implementation (Sec. 5).

In Bayesian change detection each pixel of the image is modeled as a categori-
cal Bernoulli-distributed random variable, cij , with the two possible realizations
cij = C and cij = U indicating the event of pixel (i, j) being changed or un-
changed, respectively.

Fig. 1. Model for the change map given a
bounding box

In the following we refer to the
matrix c= [cij ] of all these random
variables as the change mask and to
the matrix p= [p(cij = C)] of proba-
bilities defining the Bernoulli distribu-
tion of these variables as change map.
The change mask and the change
map assume values, respectively,
in the (w × h)-dimensional spaces
Θ = {C,U}w×h and Ω = [0, 1]w×h, with
w and h denoting image width and
height, respectively. The output of a
Bayesian change detector is the posterior change map given the current frame
fk and background model bk, i.e. the value of the Bernoulli distribution param-
eter for every pixel in the image given the frame and the background:

p(cij = C|fk, bk) =
p(fk, bk|cij = C)p(cij = C)

p(fk, bk)
(2)

Clearly, either a non-informative prior is used, such as a uniform prior, or this
information has to flow in from an external module. We assume that the categor-
ical random variables cij comprising the posterior change mask are independent,
i.e. they are conditionally independent given fk, bk.

All the information that can flow from the RBE filter to the BCD and vice
versa is in principle represented in every frame by the joint probability density
function p(xk, c) of the state vector and the change mask. Both information
flows can be formalized and realized as its marginalization:

p(cij) =
∫
R4

∑
cij∈Θij

p(xk, cij , cij) dxk (3) p(xk) =
∑
c∈Θ

p(xk, c) (4)

where cij denotes the change mask without the (i, j)-th element, taking values
inside the space Θij = {C,U}w×h−1. The PDF computed with (3) defines an
informative prior for the BCD algorithm, and the estimation of the state obtained
with (4) can then be used as the PDF of a new measure by the RBE tracker,
i.e. as p(zk|xk). We detail in Sec. 3 and Sec. 4 the solutions for (3) and (4).

As we shall see in next sections, to use the above equations we need a statis-
tical model that links the two random vectors xk and c. In agreement with our
rectangular model of the tracked object, as shown in Fig. 1 we assume

p(cij = C|xk) =
{

K1 if (i, j) ∈ R(xk)
K2 otherwise (5)
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where R(xk) is the rectangular region delimited by the bounding box defined
by the state xk and 0≤K2 ≤K1 ≤ 1 are two constant parameters specifying
the probability that a pixel is changed inside and outside the bounding box,
respectively. Moreover, we assume that the random variables cij are conditionally
independent given a bounding box, i.e.

p(c|xk) =
∏
ij

p(cij |xk) (6)

3 Cognitive Feedback

Given the assumptions of the previous section, we can obtain an exact solution
for (3), i.e. , given the PDF of the state vector p(xk), we can compute a prior
p(cij) for each pixel of the frame that can then be beneficially used by the BCD
algorithm. Starting from (3), we can rewrite it as

p(cij) =
∫
R4

∑
cij∈Θij

p(xk, cij , cij) dxk =
∫
R4

p(xk, cij) dxk =
∫
R4

p(cij |xk)p(xk) dxk (7)

In the final marginalization we can recognize our model of the change map
given a bounding box defined in (5) and the PDF of the state. Therefore, this
equation provides a way to let the current estimation of the state computed by
the RBE module influence the prior for the BCD algorithm, thereby realizing the
Cognitive Feedback. In particular, as discussed above, we will use the prediction
computed for the current frame using the motion model, i.e. p(xk|z1:k−1).

To solve (7) we have to span the space R4 of all possible bounding boxes xk.
We partition R4 into the two complementary sub-spaces Bij and B̄ij = R4 \Bij

of bounding boxes that contain or not the considered pixel (i, j), respectively.
Given the assumed model (5), we obtain

p(cij = C) =
∫
R4

p(cij |xk)p(xk) dxk = K1

∫
Bij

p(xk) dxk + K2

∫
B̄ij

p(xk) dxk

= K2 + (K1 − K2)
∫

Bij

p(xk) dxk . (8)

Since, obviously, Iij =
∫

Bij

p(xk) dxk varies in [0, 1], it follows that p(cij = C) varies

in [K2, K1]: if no bounding box with non-zero probability contains the pixel, we
expect a probability that the pixel is changed equal to K2, if all the bounding
boxes contain the pixel the probability is K1, it is a weighted average otherwise.

By defining new variables iL, jT , iR, jB to represent the current bounding
box, more suitable for the next computations, as

A =
[

1 − 1
2

1 1
2

]
,

[
iL
iR

]
= A

[
wk

ibk

]
,

[
jT

jB

]
= A

[
hk

jb
k

]
(9)
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and assuming the newly defined random variables to be independent, the integral
of the previous equation becomes

Iij =
∫∫∫∫

iL≤i≤iR

jT≤j≤jB

⎫⎬⎭Bij

p(iL)p(iR)p(jT )p(jB) diLdiRdjT djB

=

i∫
−∞

p(iL)diL

+∞∫
i

p(iR)diR

j∫
−∞

p(jT )djT

+∞∫
j

p(jB)djB

= FiL(i)
(
1 − FiR(i)

)
FjT (j)

(
1 − FjB (j)

)
(10)

where Fx stands for the CDF of the random variable x.
This reasoning holds for any distribution p(xk) we might have on the state

vector. If, for instance, we use a particle filter as RBE tracker, we can compute
an approximation of the CDF from the approximation of the PDF provided by
the weighted particles, after having propagated them according to the motion
model and having marginalized them accordingly. In the case of the Kalman
Filter all the PDFs are Gaussians, hence we can define all the factors of the
product in (10) in terms of the standard Gaussian CDF, Φ(·)

Iij = Φ

(
i−μL

σL

)
Φ

(
μR −i

σR

)
Φ

(
j −μT

σT

)
Φ

(
μB −j

σB

)
(11)

where μx and σx stand for the mean and the standard deviation of the random
variable x. The factors of the product in (11) can be computed efficiently with
only 4 searches in a pre-computed Look-Up Table of the standard Φ(·) values.

4 Reasoning Probabilistically on Change Maps

Given the change map p = [p(cij = C)] obtained by the BCD algorithm, we aim
at computing the probability density function p(xk) of the current state of the
RBE filter, to use it as the observation likelihood p(zk|xk). To this purpose, from
the marginalization in (4) we obtain:

p(xk) =
∑
c∈Θ

p(xk, c) =
∑
c∈Θ

p(xk|c)p(c) =
∑
c∈Θ

p(xk|c)
∏
ij

p(cij) (12)

where the last equality follows from the assumption of independence among the
categorical random variables cij comprising the posterior change map computed
by BCD. To use (12), we need an expression for the conditional probability
p(xk|c) of the state given a change mask, based on the assumed model (5),
(6) for the conditional probability p(c|xk) of the change mask given a state.
Informally speaking, we need to find the inverse of the model (5), (6). By Bayes
rule, eq. (6) and independence of the variables cij :

p(xk|c) = p∗(xk)
p(c|xk)
p∗(c)

= p∗(xk)
∏
i,j

p(cij |xk)
p∗(cij)

. (13)
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It is worth pointing out that we have used the notation p∗(xk) and p∗(cij) in
(13) since here these probabilities must be interpreted differently than in (12): in
(12) p(xk) and p(cij) represent, respectively, the measurement and the change
map of the current frame, whilst in (13) both must be interpreted as priors
that form part of our model for p(xk|c), which is independent of the current
frame. Furthermore, using as prior on the state p∗(xk) the prediction of the RBE
filter, as done in the Cognitive Feedback section, would have created a strong
coupling between the output of the sensor and the previous state of the filter, that
does not fit the RBE framework, where measures depend only on the current
state, and could easily lead the loop to diverge. Hence, we assume a uniform
non-informative prior p∗(xk) = 1

α for the state. Instead, the analysis conducted
for the Cognitive Feedback is useful to expand each p∗(cij) in (13). Since we
are assuming a uniform prior on an infinite domain for the state variables, i.e.
a symmetric PDF with respect to x = 0, it turns out that its CDF is constant
and equals to 1

2 :

CDF (x) =
1
α

x +
1
2

α→+∞−−−−−→ 1
2

(14)

Hence, every p∗(cij) in (13) can be expressed using (8) and (10) as:

p∗(cij = C) = K2 + (K1 − K2)
(

1
2

)4

= KC . (15)

By plugging (13) in (12) and defining KU = p∗(cij = U) = 1 − KC :

αp(xk) =
∏
i,j

(
p(C|xk)p(C)

KC
+

p(U|xk)p(U)
KU

)
(16)

where, for simplicity of notation, we use C and U for cij = C and cij =U , respec-
tively. Since we know that p(U)= 1−p(C) and p(U|xk)= 1−p(C|xk), we obtain:

p(xk)
β

=
∏
i,j

(
p(C)

(
p(C|xk)−KC

)
+KC

(
1− p(C|xk)

))
(17)

with β = 1/α(KC(1−KC))w×h. By substituting the model (5) for p(C|xk) and
taking the logarithm of both sides to limit round-off errors, after some manipu-
lations we get:

γ + ln p(xk) = h(xk,p) =
∑

(i,j)∈R(xk)

ln
p(C)K3 +K4

p(C)K5 +K6
(18)

where γ = − ln β −∑
ln

(
p(C)K5 +K6

)
and h(·) is a computable function of the

state vector value xk for which we want to calculate the probability density, of
the change map p provided by the BCD algorithm, and of the constants

K3 = K1 − KC K4 = KC (1 − K1) K5 = K2 − KC K6 = KC (1 − K2) (19)

Hence, by letting xk vary over the space of all possible bounding boxes, (18)
allows us to compute, up to the additive constant γ, a non-parametric estimation
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h(·) of the log-PDF of the current state vector of the RBE tracker. This holds
independently of the PDF of the state.

In the case of the Kalman Filter, the PDF of the state vector (ib, jb, w, h)
is Gaussian. In such a case, the variables (iL, jT , iR, jB) are a linear combi-
nation of Gaussian Random Variables. Moreover, we are assuming that vari-
ables (iL, jT , iR, jB) are independent. Therefore, the variables (iL, jT , iR, jB) are
jointly Gaussian and the mean μ and the covariance matrix Σ of the state vari-
ables are fully defined by the four means μL, μR, μT , μB and the four variances
σ2

L, σ2
R, σ2

T , σ2
B of (iL, jT , iR, jB). To estimate these eight parameters, let us

substitute the expression of the Gaussian PDF for p(xk) in the left-hand side of
(18), thus obtaining:

δ−ln(σLσRσT σB)− (iL−μL)2

2σ2
L

− (iR−μR)2

2σ2
R

− (jT−μT )2

2σ2
T

− (jB−μB)2

2σ2
B

= h(xk,p)

(20)
where δ = γ − 2 ln(2π). The eight parameters of the PDF and the additive
constant δ might be estimated by imposing (20) for a number N > 9 of differ-
ent bounding boxes and then solving numerically the obtained over-determined
system of N non-linear equations in 9 unknowns. To avoid such a challenging
problem, we propose an approximate procedure. First of all, an estimate μ̂ of
the mean of the state vector μ =(μL, μR, μT , μB) can be obtained by observing
that, due to increasing monotonicity of logarithm, the mode of the computed
log-PDF coincides with the mode of the PDF, and that, due to the Gaussianity
assumption, the mode of the PDF coincides with its mean. Hence, we obtain
an estimate μ̂ of μ by searching for the bounding box maximizing h(·). Then,
we impose that (20) is satisfied at the estimated mean point μ̂ and that all
the variances are equal, i.e. σ2

L =σ2
R = σ2

T = σ2
B =σ2, thus obtaining a functional

relationship between the two remaining parameters δ and σ2:

δ = 2 lnσ2 + h(μ̂,p) (21)

By substituting in (20) the above expression for δ and the estimated μ̂ for μ, we
can compute an estimate σ̂2(x) of the variance σ2 by imposing (20) for whatever
bounding box x �= μ̂. In particular, we obtain:

σ̂2(x) =
1
2

‖μ̂ − x‖2
2

h(μ̂,p) − h(x,p)
(22)

To achieve a more robust estimate, we average σ̂2(x) over a neighborhood of the
estimated mean bounding box μ̂. Finally, to obtain the means and covariance
of the measurements for the Kalman Filter, we exploit the property of linear
combinations of Gaussian variables:

μ =
[
A−1 0
0 A−1

]
μ̂ , Σ = σ̂2

[
A−1 0
0 A−1

] [
A−1 0
0 A−1

]T

(23)
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(a) Our proposal

(b) Constant Measurement Covariance Matrix

Fig. 2. The top row shows the frames and the next row the change maps. Along
the sides of every picture we plot the marginal Gaussian probabilities of the four
state variables [iL, iR, jT , jB ]. Around the frames we report (in blue) the marginals
of the Kalman prediction and around the change maps (in red) the marginals of the
observation likelihood (Sec. 4). The means of the PDFs are drawn on the change maps.

5 Experimental Results

We have tested the proposed Bayesian loop on publicly available datasets with
ground truth data: some videos from the CAVIAR1and ISSIA Soccer datasets
[9]. We have used a Kalman Filter with constant velocity motion model as RBE
tracker and the algorithm in [10] as BCD. The detection to initialize the tracker
was done manually from the ground truth.

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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To illustrate the benefits of the probabilistic analysis of the change map, we
discuss some frames of a difficult part of a CAVIAR sequence. In this video, the
tracked subject wanders in and out of the shop, passing in front of a pillar simi-
lar in color to his clothes. Fig. 2(a) shows 3 frames of the sequence, respectively
before, during and after the camouflage. During the camouflage the background
subtraction correctly computes high probabilities that a pixel is changed only
for the pixels lying outside the pillar. Our rectangular model cannot fit such
output and selects only the portion of the person on the left of the column as
the mean of the current PDF (red bounding box). A sensor based on change
detection will always likely fail to handle camouflage. Yet, the RBE tracker is
conceived to work with a noisy sensor, provided that it is possible to evaluate
the uncertainty of its output. Thanks to the procedure of Sec. 4, our method
exploits this trait of the framework: as can be seen in the middle pictures, the
uncertainty of the measure during the camouflage increases and gets similar to
the Kalman prediction uncertainty, for the rectangular model leaves out portions
of the change map with high probabilities of being foreground. With this config-
uration, the correction step of the filter decreases the contribution to the final
state estimation of the shrunk measure coming from BCD with respect to the
predicted state, thus correctly tracking the target. Had a constant uncertainty
model been used (see Fig. 2(b)), by the time of the camouflage the filter would
have reached the steady state and would follow the measures with a constant
amount of confidence in them. This leads to an incorrect prior for the change
detection on the next frame and thus to divergence, as shown in the third frame
of Fig. 2(b) where the system cannot recover from wrong measurements.

Table 1. Performance scores.
(∗) indicates loss of target.

Seq. Full Loop Partial Loop Kalm+MS

CAV1 0.553 0.298 0.208(∗)

CAV2 0.474 0.382 0.010(∗)

CAV3 0.500 0.055(∗) 0.012(∗)

I GK 0.457 0.011(∗) 0.581

I PE 0.474 0.012(∗) 0.492

To demonstrate its capabilities and robust-
ness, the complete system has been used to
track people wondering in a shopping mall us-
ing three sequences from the CAVIAR dataset
and soccer players during a match in the sixth
sequence of the ISSIA dataset. Tracking re-
sults on these video are shown in the supple-
mentary material . Our system does not re-
quire to set a threshold to classify the output
of the change detection, only the model for
p(cij = C|xk) must be set. We used K1 = 0.5, allowing for unchanged pixels
into our bounding box (approximation of the rectangular model) and K2 = 0.1
to allow for a small amount of errors of the BCD out of the bounding box. To
quantitatively evaluate the performance we use the mean ratio over a sequence
between the intersection and the union of the ground truth bounding box with
the estimated bounding box.

As for the CAVIAR dataset, the main difficulties are changes in appearance of
the target due to lightening changes inside and outside the shop, shadows, cam-
ouflage, small size of the target and, for sequence 2, dramatic changes in target
size onto the image plane (he walks inside the shop until barely disappears).
Despite all these nuisances our system successfully tracks all the targets.
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The ISSIA Soccer dataset is less challenging as far as color, lightening and
size variations are concerned, and the players cast practically no shadow. Yet,
it provides longer sequences and more dynamic targets. We used our system to
track the goalkeeper and a player: the goalkeeper allows to test our system on
a sequence 2500 frames long; the player shows rapid motion changes and unpre-
dictable poses (he even falls to the ground kicking the ball). Our tracker was able
to successfully track both targets throughout the whole sequence. Quantitative
evaluation is reported in Table 1. To highlight the importance of the Bayesian
loop, we have performed the same experiments without considering the full PDF
estimated during the change map analysis, but just the mean and a constant co-
variance matrix (i.e. the same settings as in Fig. 2(b)): results achieved by our
proposal are consistently better throughout all the sequences. We also compare
our performance against a Mean Shift tracker used in conjunction with a Kalman
Filter [8]. The CAVIAR sequences are too difficult for a tracker based on color
histograms, because of the reasons discussed above: the tracker looses the target
in all the sequences. On the ISSIA sequences, instead, it obtains slightly better
performances than our proposal. We impute this to the use of gray levels in our
tracker: for example, yellow parts of the tracked players get really similar to the
green background. We are developing a color BCD to solve the problem.

6 Conclusions

A principled framework to model the interaction between Bayesian change detec-
tion and tracking have been presented. By modeling the interaction as marginal-
ization of the joint probability of the tracker state and the change mask, it is
possible to obtain analytical expressions for the PDFs of the tracker observation
likelihood and the change detector prior. Benefits of such interaction have been
discussed with experiments on publicly available datasets.
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Abstract. An original approach for real time detection of changes in
motion is presented, for detecting and recognizing events. Current video
change detection focuses on shot changes, based on appearance, not mo-
tion. Changes in motion are detected in pixels that are found to be active,
and this motion is input to sequential change detection, which detects
changes in real time. Statistical modeling of the motion data shows that
the Laplace provides the most accurate fit. This leads to reliable de-
tection of changes in motion for videos where shot change detection is
shown to fail. Once a change is detected, the event is recognized based on
motion statistics, size, density of active pixels. Experiments show that
the proposed method finds meaningful changes, and reliable recognition.

1 Introduction

Event and activity recognition have become particularly important in the re-
cent years, as they provide valuable information for surveillance, traffic moni-
toring etc. The video segments processed are usually extracted by shot change
detection, or have been segmented before the processing, possibly manually.
Shot detection separates the video into subsequences filmed from the same cam-
era/viewpoint and can achieve very high accuracy, but is based on appearance.
Activity recognition takes place over video segments that are found by shot
change detection in [1]. In practice, this may not always work, as shot detection
is based on appearance, although different activities may take place in subse-
quences with the same appearance. This motivates us to propose a method for
separating a video sequence based on motion, which would provide a more mean-
ingful segmentation. Motion has been used for this in [2], where frames with low
activity are separated from the others using MPEG-7 motion descriptors, but
this is not generally applicable to the case of videos with different activities that
need to be separated from each other.

In this work, binary masks of active pixels (Activity Areas) are initially ex-
tracted using a kurtosis-based method. The illumination variations over active
pixels are processed in the sequel in order to detect changes in them. Statis-
tical modeling of the data shows that the best probability distribution for the
sequential likelihood testing is the Laplace. Sequential change detection is then
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applied to the data to detect changes in it. Since only the currently available
video frames are used, the change detection takes place in real time. Once the
sequence is divided into subsequences containing different motion, recognition of
the action can take place.

This paper is organized as follows. In Sec. 2, the method for extracting the
Activity Areas is presented and the CUSUM change detection algorithm is pre-
sented in Sec. 3. The statistical modeling required for the CUSUM is included
in 3.1. The methods employed for activity/event classification are described in
Sec. 4. Experiments with a wide range of indoors and outdoors videos are ana-
lyzed in Sec. 5. Finally, conclusions and future work are discussed in Sec. 6.

2 Activity Area

A binary mask of the active pixels in the video, the Activity Area, is helpful in
reducing the computational cost of the method and also reducing the possibility
of having false alarms, by limiting the data to the truly active pixels. The Activity
Area can be extracted at each frame by processing the data available until that
moment, i.e. the inter-frame illumination variations until frame k, thus retaining
the real time nature of the system. The data at frame k and pixel r̄ is a 1 ×
k vector that can be written as vk(r̄) = [v1(r̄), ...vk(r̄)], where vn(r̄) is the
illumination variation at frame n, 1 ≤ n ≤ k, caused either by actual motion
or by measurement noise. Each pixel’s illumination variation at frame n can be
modeled by the following hypotheses:

H0 : vn(r̄) = zn(r̄)
H1 : vn(r̄) = un(r̄) + zn(r̄), (1)

where zn(r̄) originates from measurement noise and un(r̄) from actual mo-
tion. Additive measurement noise is often modeled as a Gaussian random vari-
able [3], [4], so the active pixels can be discerned from the static ones as they
are non-Gaussian. A classical non-Guassianity measure is the kurtosis, which
can be employed to separate the active from static pixels, as its value is equal
to zero for Gaussian data. For a random variable y, the kurtosis is given by
kurtosis[y] = E[y4] − 3(E[y2])2. The kurtosis of vk(r̄) is estimated, to form a
“kurtosis mask”, which obtains high values at active pixels, and low values at
the static ones. The kurtosis has been found to be very sensitive to outliers,
and can detect them reliably even for non-Gaussian data [5], [6]. Thus, if the
measurement noise deviates from the Gaussian model, the kurtosis will still lead
to an accurate estimate of the active pixels. The robustness of the kurtosis for
extracting Activity Areas has been analyzed in [7] as well, where it is shown to
provide accurate activity areas even for videos with slightly varying backgrounds
(e.g. backgrounds with moving trees). The activity areas for some videos used in
the experiments in this work are shown in Fig. 1, where it can be seen that the
regions of motion are accurately localized. Other foreground extraction meth-
ods could also be employed to extract activity areas from the video, such as the
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Fig. 1. Activity Areas superposed on frames of videos examined

Gaussian Mixture models of [8], [9]. The method used should be computationally
efficient, like the one proposed here, in order to allow operation in real time.

In practice, there may be errors in an activity area, e.g. a sudden illumination
change may cause the entire video frame to be “active”. This does not nega-
tively affect the results, since in that case static pixels will also be included in
the test, whose flow estimates do not significantly affect the change detection
performance. It is also possible that there may be a local occlusion over a few
frames that introduces errors in the flow estimates. In most cases, the errors
introduced by the occlusion can be overcome because data is collected over a
window of frames in which correct (unoccluded) flow values will also be included
(see Sec. 3). If, nonetheless, a false alarm is caused by this occlusion, it can be
eliminated at a post-processing stage that examines the motion data before and
after each change: in the case of false alarms, the motion before and after the
false alarm remains the same, so that detected change is ignored.

3 Change Detection

Sequential change detection methods are perfectly suited for designing a real time
system for detecting changes, as they are specifically designed for this purpose.
Additionally, methods like the CUSUM have been shown to provide the quickest
detection of changes in the distribution of a data stream [10], [11]. The data used
in this context are the illumination variations of the active pixels in each video
frame, which have been extracted using only the currently available video frames.
The method used here is the CUSUM (Cumulative Sum) approach developed
by Page [12], based on the log-likelihood ratio test statistic at each frame k:

Tk = ln
f1(Vk)
f0(Vk)

. (2)

Here, Vk = [v1(r̄1), ..., v1(r̄N1), ..., vk(r̄1), ..., vk(r̄Nk
)] represents the illumination

of all active pixels over frames 1 to k, assuming that the activity area of each
frame n contains Nn pixels. The data distribution before a change is given by
f0(Vk) and after a change it is f1(Vk), so the test statistic of Eq. (2) becomes:

Tk =
k∑

i=1

Ni∑
j=1

ln
f1(vi(r̄j))
f0(vi(r̄j))

. (3)
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The log-likelihood ratio uses
∑k

i=1 ×∑Ni

j=1 samples. This is a large number of
samples, which provides a good approximation of the data distributions and is
expected to lead to reliable detection performance.

In this problem, neither the data distributions before and after a change, nor
the time of change are known. In order to find the moment of change using
Eq. (2), the distributions f0 and f1 have to be approximated. The initial distri-
bution f0 can be approximated from the first w0 data samples [13], under the
assumption that no changes occur in the first w0 frames. This is a realistic as-
sumption and does not significantly affect the real time nature of the approach,
as errors of 10 frames around a change are almost always difficult to discern vi-
sually. The distribution f1 is approximated at each time instant k using the most
recent data available, namely the w1 most recent frames, in order to avoid a bias
towards the baseline pdf f0. The size of the windows w0, w1 is determined by us-
ing training data, and it is found that w0 = 10, w1 = 1 led to good distribution
approximations and accurate change detection for most videos. These windows
are sufficient in size, because they contain all the pixels inside the activity area,
which lead to a sufficiently large sample size.

The data is assumed to be independent and identically distributed (i.i.d.)
in Eq. 3, an assumption that is common in such problems [14], as joint data
distributions can be quite cumbersome to determine in practice. The CUSUM
algorithm has been shown to be asymptotically optimal even for data that is
not independent [15], so deviations from the i.i.d. assumptions are not expected
to introduce noticeable errors. Indeed, in the experiments changes are detected
with accuracy under the i.i.d. assumption, under which the test can become
computationally efficient, as Eq. 3 obtains the following recursive form:

Tk = max
(

0, Tk−1 + ln
f1(Vk)
f0(Vk)

)
= max

(
0, Tk−1 +

k∑
i=1

Ni∑
j=1

ln
f1(vi(r̄j)
f0(vi(r̄j)

)
. (4)

The test statistic Tk is compared at each frame with a threshold to find if a
change has occurred at that frame. The related literature recommends using
training data to find a reliable threshold for good detection performance [11].
We have found that at each time instant k, the threshold can be estimated from
ηk = mean([Tk−1] + c × std[Tk−1], where mean[Tk−1] is the mean of the test
statistic’s values until frame k − 1 and std[Tk−1] is the standard deviation of
those values. Very reliable detection results are found for c = 5 for the videos
used in these experiments.

3.1 Statistical Data Distribution Modeling

The test of Eq. (3) requires knowledge of the family of data probability distribu-
tions before and after a change. In the literature, the data has been assumed to
follow a Gaussian distribution [3] due to lack of knowledge about its nature. We
propose finding a more accurate model for the pdf, in order to achieve optimal
detection results. The data under consideration are the illumination variations
of each active pixel over time. These variations are expected to contain outliers,
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as a pixel is likely to be inactive over several frames, and suddenly become ac-
tive. Data that contains outliers is better modeled by a heavy-tailed distribution,
such as the Laplace, the generalized Gaussian or the Cauchy, rather than the
Gaussian. We compare the statistical fit achieved by the Laplace and Gaussian
distributions, as their parameters can be estimated quickly, without affecting
the real time character of the proposed approach. The Laplace pdf is given by:

f(x) =
1
2b

exp
(
−|x − μ|

b

)
, (5)

where μ is the data mean and b = σ/
√

2 is its scale, for variance σ2, which can
be directly estimated from the data.

The histogram of the data (illumination variations) is estimated to approxi-
mate the empirical distribution. The data mean and variance are also estimated
and used to estimate the parameters for the Gaussian and Laplace pdfs. The
resulting pdfs are compared both visually and via their mean squared distance
from the empirical distribution for the videos used in the experiments. As Fig. 2
shows for several videos, the empirical data distribution is best approximated by
the Laplace model. This is expected, since the Gaussian pdf does not account
for the heavy tails in the empirical distribution, introduced by the data outliers.
The average mean squared error for the approximation of the data by Gaussian
and Laplace pdfs is 0.04 for the Laplace distribution, while it is 0.09 for the
Gaussian model, verifying that the Laplace is better suited for our data.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Empirical
Laplace
Gaussian

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Empirical
Laplace
Gaussian

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Empirical
Laplace
Gaussian

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Empirical
Laplace
Gaussian

Fig. 2. Statistical modeling using Gaussian, Laplace distributions for traffic videos

The CUSUM test based on the Laplace distribution then becomes:

Tk =
k∑

i=1

Ni∑
j=1

(
ln

b0

b1
− vi(r̄j) − μ1

b1
+

vi(r̄j) − μ0

b0

)
, (6)

so the CUSUM test now is:

Tk = max
(

0, Tk−1 +
k∑

i=1

Ni∑
j=1

(
ln

b0

b1
− vi(r̄j) − μ1

b1
+

vi(r̄j) − μ0

b0

))
(7)

and can be applied to each current data sample after the estimation of the
distribution parameters as described in Sec. 3.
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4 Recognition

For surveillance videos in various setups, the event of interest focuses on the
arrival or departure of people or other entities from the scene. When someone
enters a scene, the activity area becomes larger, and when they exit, the activity
area size decreases. The experiments show that this leads to correct annotation
of such events in a variety of indoors and outdoors scenarios. Additional infor-
mation can be extracted by examining the velocity before and after a detected
change: if it decreases, the activity taking place is slowing down, and may even
come to a stop if the velocity after a change becomes zero. Similarly, an increase
of speed can easily be detected after a change.

For traffic videos, the events to be recognized are transitions between heavy,
medium and light traffic. When there is heavy traffic, the activity area consists of
many small connected components, originating from the small vehicle motions.
Here, connected component refers to active pixels that are continuous in space,
forming coherent groups of pixels. During light traffic, the cars move fast, so the
activity areas comprise of fewer connected components. Medium traffic leads
to more connected components than light traffic, but fewer than heavy traffic.
Training videos of traffic are examined, and it is determined that heavy traffic
occurs when there are more than 60 connected components in the activity area,
there are 30 − 60 for medium traffic, and less than 30 for light traffic (Fig. 3).
This indeed leads to recognition of the varying traffic conditions, and can be
achieved in real time.

(a) (b) (c) (d) (e) (f)

Fig. 3. Light, medium and heavy traffic. The connected components of the active
regions increase as the traffic gets heavier.

5 Experiments

Experiments take place with various videos to examine the accuracy of the
change detection results, for surveillance and traffic applications. The method is
also compared to shot change detection.

Surveillance
A variety of surveillance videos, indoors and outdoors, from banks, entrances,
train stations and others, are examined for detection of changes. In all cases, the
change points are detected correctly. Figs. 4(a),(b) show the frames before and
after a new robber enters to rob an ATM (video duration 1 min 39 sec, at 10
fps). Figs. 4(c),(d) show a security guard before and after he jumps over a gate
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Frames before/after a change. ATM robbery: new robber enters. Guard: guard
enters, jumps over gate. Train station: train appears, slows down, stops.

(video duration 9 sec, at 10 fps). In Figs. 4(e), (f) a train station is shown before
and after the train enters, and Figs. 4(g), (h) show the train before and after it
slows down (video duration 10 sec, at 10 fps). The examined videos can be seen
in the supplementary material, with the moments of change highlighted in red,
showing that the changes are correctly detected.

In these videos, recognition consists of finding whether a moving entity is en-
tering or exiting the scene, and if its speed changes. An entrance is detected when
the size of the activity area increases in the frames after the detected change,
while an exit occurs if the activity area decreases in size. This makes intuitive
sense, since more pixels become active as someone enters a scene, and vice versa,
and leads to the correct annotation of these events, as can be seen in the sup-
plementary material. Additional information about the activity taking place can
be extracted by examining the motion magnitude before and after a change. For
the video with the train entering the station, after the fist change, it is found to
be slowing down, and after the second change, it stops completely. This method
leads to correct annotations that can be seen in the corresponding result videos
in the supplementary material. For high-level annotations, additional informa-
tion about the scene needs to be known, for example context information that
the video is of a bank and the location of the ATM can help identify a robbery.
Such information can be provided a priori, or extracted from the scene with
additional visual processing. In practice, it is likely that contextual information
will be available, as a system is designed for a particular application.

Traffic
Traffic videos (of duration 10 sec at 10 fps) are also examined, to detect changes
between heavy, medium and light traffic. As can be seen in Fig. 5 the test statis-
tics provide a clear indication of the moment of change. Videos of the highway
traffic with these changes highlighted in red are provided in the supplementary
material. The proposed method detects the changes correctly: as seen in Fig. 5,
the frames before and after the change point clearly contain a different amount
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Fig. 5. First column: CUSUM test statistic. Columns 2-4: frames before/after changes.

of traffic. It finds two changes in the last video, although the last two subse-
quences in it both contain heavy traffic. This error is introduced because they
are filmed in very different weather conditions: the second video is filmed on a
rainy day, which changes the motion estimates significantly. However, the recog-
nition stage that follows corrects this false alarm by correctly characterizing both
segments as having heavy traffic. The recognition of the type of traffic in each
video subsequence takes place based on the number of connected components
in the corresponding activity area, as described in Sec. 4, and leads to correct
results in all cases.

Comparison with shot change detection
The usefulness of the proposed approach can be better determined when com-
paring it to traditional shot change detection methods, such as that of [1]. Shot
change detection can find changes between shots introduced by variations in ap-
pearance, rather than in motion. We apply this method to the videos on which
sequential change detection is performed. The ground truth for the changes in
motion is found by visually observing the videos. Table 1 shows that the shot
change detection is unable to detect most changes in the motion, even when
these have caused a slight change in the video appearance. For example, in traf-
fic videos the change from light to heavy traffic may be accompanied by the
appearance of more cars in the scene. Nonetheless, shot change detection can-
not discern this change, whereas the proposed approach finds it. Similarly, when
robbers enter or exit the scene, the proposed method finds these changes, but
shot change detection does not. In the last two traffic videos, there are some
significant appearance changes that coincide with the motion changes (see sup-
plementary material). These changes are detected by the shot change detection
as well, as expected.
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Table 1. Comparison with shot change detection

Video True Changes Our method Shot ch. det.

ATM robbery 38, 55, 100, 450, 520, 651 42, 58, 102, 458, 530, 654, -

ATM robbery 685, 729, 790, 814, 891, 908 690, 733, 794 , 818, 896, 913 -

Police Station 20, 35, 100, 140, 167, 210 21, 37, 110, 145, 170, 216 -

Train station 8, 100, 232 10, 104, 237 -

Heavy-Light 50 51 -

Heavy-Medium 50 51 -

Light-Heavy 51 52 51

Light-Heavy-Medium 50, 100 52, 104 103

Finally, the proposed approach has a lower computational burden than tradi-
tional shot change detection. It runs completely in real time, whereas the shot
change detection requires several minutes to run on the same videos, in C++.
The results for both methods and the corresponding ground truth presented in
Table 1 demonstrate that the sequential change detection approach correctly
finds frames at which changes occur in the video. This can be used to signal
alarms in a security setup, or divide the video into subsequences which can be
used at a latter stage as input to an event recognition system.

6 Conclusions

In this work, a novel, real time approach for separating videos into meaningful
subsequences with different events is proposed. The active regions of the video
are localized using higher order statistics, and a binary mask, the activity area,
is produced. Only the motion in pixels inside the activity area is processed, in
order to minimize computational cost and probability of false alarms. Sequen-
tial change detection, specifically the CUSUM method, is applied to the motion
vectors of the video, to detect changes in them in real time. The Laplace model
is used to describe the motion vectors, as it accurately describes the outliers in
them. Once the video is separated into subsequences containing different activi-
ties, recognition is applied to the subsequences to characterize the events taking
place in them. The recognition uses information from the activity areas, as well
as the motion taking place in them. Comparisons take place with shot change
detection, where it is shown that they are unable to detect changes in motion,
and therefore different events, which the proposed method can find. Addition-
ally, shot change detection requires significant computational time, whereas the
system presented here operates in full time. Experiments with surveillance and
traffic videos demonstrate that it provides reliable detection of changes and
recognition of the events taking place, making it a reliable tool for numerous
applications. Future work includes working with more complex sequences, con-
taining more than one activities which undergo changes.
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Abstract. Boosted cascade proposed by Viola and Jones is applied to
many object detection problems. In their cascade, the confidence value
of each stage can only be used in the current stage so that interstage
information is not utilized to enhance classification performance. In this
paper, we present a new cascading structure added SVM stages which
employ the confidence values of multiple preceding Adaboost stages as
input. Specifically, a rejection hyperplane and a promotion hyperplane
are learned for each added SVM stage. During detection process, negative
detection windows are discarded earier by the rejection SVM hyperplane,
and positive windows with high confidence value are boosted by promo-
tion hyperplane to bypass the next stage of cascade. In order to construct
the two distinct hyperplanes, different cost coefficients for training sam-
ples are chosen in SVM learning. Experiment results in UIUC data set
demonstrate that the proposed method achieve high detection accuracy
and better efficiency.

1 Introduction

Object detection is popular and significant issue in computer vision and pat-
tern recognition. Examples include vehicle, face, and pedestrian detection. Many
approaches have been proposed to solve detection problem in different circum-
stance. The majority of them use machine learning to construct a detector from
a large number of training examples. Then the detector is scanned over the en-
tire input image in order to find a pattern of intensities which is consistent with
the target object. In smart video surveillance systems, object detection are usu-
ally integrated with object tracking and the methods for the two tasks can be
facilitated by each other. In order to provide a real-time assistance for tracking
process, a both accurate and rapid detection method is essential in integration
object detector into a tracking algorithm.

A great number of algorithms have been proposed to address the problem
of object detection. At the beginning, some researchers present models based
on background subtraction to solve detection task, but it is difficult for them
to identify a special class object from a crowd foreground. In [1], Viola and
Jones describe a boosted cascade based on haar features for rapid face detec-
tion. Rotated haar-like features is introduced by Lienhart and Maydt [2] for
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better detection. Viola and Jones also improve their proposal by integrating im-
age intensity information with motion information. Wang and Jia [3] propose a
cascading structure using boosted HOG features. There work focus on boosting
classification performance by improving feature pool, but optimization in cas-
cade structure is ignored. Wu and Brubaker [4] present a asymmetric learning
for cascade to reduce the training time of detector. Chen [5] speed up detection
process by combining cascade Adaboost with linear SVM, their framework im-
prove the efficiency of negative detection windows but take no action for positive
windows.

In this paper, we describe a new boost cascaded classifier added SVM stages
which can reduce the detection time. Each efficient SVM stage is composed of
a rejection hyperplane and a promotion hyperplane, which are both learned by
SVM, but with different cost coefficients for positive examples and negative ex-
amples. Some negative detection windows are discarded earlier by the rejection
SVM hyperplane to save the time in rejecting negatives. With the help of pro-
motion hyperplane, those positive windows with high confidence don’t enter the
next stage as normal, but jump to the following one of the next stage so that
they can be detected faster through bypassing some stages. The experiment
results show that the proposed method can get better efficiency and achieve
approximate accuracy in detection.

The paper is organized as follows. In section 2, we review the Viola and Jones’s
cascading structure and SVM learning. In Section 3, we introduce our improving
cascading structure and discuss the training process of rejection hyperplane and
promotion hyperplane. The experiment results are reported in section 4. Finally,
we summarize and conclude the paper in Section 5.

2 Preliminaries

2.1 Basic Cascading Classifier

Viola and Jones’s detector based on cascade structure (see Fig. 1) is extensively
used in many researcher’s work. The cascade consists of several Adaboost clas-
sifiers which are arranged in order of complexity. In this cascade structure, the
output of previous stage classifiers is used as the input of the subsequent stages
of cascade, and each successive classifier is trained only those samples which pass
through the preceding stages. Detection windows are thought to be positive only
when they can pass all the stages of cascade. While those windows do not contain
object are rejected in the early stage of cascade.

The cascade can achieve real-time in detection, which is because that if at
any point in the cascade a classifier rejects the sub-window under inspection,
no further processing is performed and the search moves on to the next sub-
window. The cascade therefore has the form of a degenerate decision tree. The
performance of the entire cascade is closely related with each individual stage
classifier, because the activation of each stage depends completely on the behav-
ior of its predecessor. The overall detection rate D and false positive rate F for
an entire cascade can be estimated as follows:
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Fig. 1. Schematic depiction of basic cascading classifier, where “A” denotes the Ad-
aboost stages. The output of previous stage classifiers is used as the input of the
subsequent stages of cascade.

D =
n∏
i

di (1)

D =
n∏
i

fi (2)

where n denotes the number of stages in this cascade, di and fi denote the
detection rate and false positive rate of the ith stage, respectively.

2.2 Adaboost Learning

Generally, the stage classifier of cascade is constructed by strong learning algo-
rithms, which are used to select a small set of features and enhance the per-
formance of classifier. Adaboost learning algorithm is proposed by Freund and
Schapire [6] and is proved that the learning error of the strong Adaboost classifier
approaches zero exponentially in the number of training rounds.

Adaboost learning is an adaptive machine learning algorithm in the sense that
subsequent classifiers built are tweaked in favor of those examples misclassified
by previous classifiers. A few weak classifiers are selected by Adaboost learner in
a series rounds. Given example images {xi, yi}, i=1,. . . ,n, where n is the number
of examples, yi= -1,1 for negative and positive examples respectively. Weights
of each example w1,i is initialized to be 1

n . For week classifier j, the threshold
classification function is hj(xi), and the error is evaluated as follows:

ej =
∑

i

1
2
wi | hj(xi) − yi | (3)

On every round, the classifier with lowest error ek is extracted from weak
classifier set. Then update and normalize the weights of each examples as follows:

wk+1,i = wk,iγ
1−ai

k (4)

wk+1,i =
wk+1,i∑n
i=1wk+1,i

(5)
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where k denotes the kth round, ai = 0 if example xi is classified correctly, ai = 1
otherwise, and γk = ek

1−ek
. According to the adaptive process of weights adjust-

ment, the week classifier selected in the next round focuses more on incorrect
samples. Hence, each round of the boosting process, which selects a new weak
classifier, can be viewed as a feature selection process. Adaboost provides an
effective learning algorithm and strong bounds on generalization performance
[7][8].

3 Improving Cascade through SVM

In Viola and Jones’s cascade structure, the classification result relies on the
confidence value of the stage classifier for data. During detection process, each
stage classifier compares the confidence value for a detection window with its
threshold, and then decides to accept or reject the detection window. Normally,
the decision of the current stage is only related with its corresponding confidence
value, which can not be used by other stages. In that case, interstage information
is not utilized by cascade to make decision of classification.

Actually, it is feasible to exploit both stage-wise information and cross-stage
information to boost the performance of detector, which is implemented by creat-
ing some new stages for original cascade, and the input vector of each new stage
is composed of the confidence values of multiple preceding Adaboost stages. In
order to own ability to make a further decision to those detection windows which
have passed the preceding stages, the new stage added after several Adaboost
stages in original cascade will be trained to be high precision based on SVM. In
the following of this paper, the new high precision stage is called “H” stage.

3.1 Improving Cascading Structure

An efficient cascade added one “H” stage after every two Adboost stages is il-
lustrated in Fig. 2. The cascade structure is defined as ”AAHAHAH. . . AH”.
In this structure, we employ the interstage cross-reference information of neigh-
boring stages to boost the detection performance. The confidence values of the
preceding two Adaboost classifiers are used as the input of the “H” classifier.

In our algorithm, “H” stage makes a decision with three choices by learning
two SVM hyperplanes, which are formulated as H− : w− · x + b− = 0 , and
H+ : w+ · x + b+ = 0, respectively. We add a new “jump” choice besides simply
accepting and rejecting windows. The decision of “H” stage is based on the SVM
confidence value of “H” stage for detection window x. We will give a detailed
discussion about cost coefficients selection strategy in next section.

3.2 Optimization of “H” Stage

For each stage of our cascade, we need train two different SVM hyperplanes to
further reject negative samples and accelerate positives to pass cascade classifier.
Unbalanced cost coefficients for positive and negative training examples are used
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Fig. 2. Illustration of a efficient cascade structure. In the cascade, “A” denotes the
Adaboost stages and “H” denotes the high efficiency SVM stages. The confidence
value of the preceding two Adaboost stages are as the input of “H”stage. Red arrows
show that detection window is promoted to bypass the next stage, and purple lines
demonstrate that detection window is rejected in advance.

for finding most efficient negative rejection hyperplanes and positive promotion
hyperplane. The training of this two hyperplanes can be formulated as:

min
w,b,xi

1
2
‖ w ‖2 + C+

n+∑
k=1

ξi + C−
n−∑
k=1

ξi (6)

s.t. : yi[K(w,xi) + b] − 1 ≥ −ξi (7)
ξi ≥ 0, for i = 1 . . . n (8)

In our implementation, we expect that the rejection hyperplane to allow all
the positive training samples to be classified correctly and get highest rejection
rate for negatives. In order to achieve the expectation, training positives exam-
ples are given a large cost coefficient C+, while negative examples are given a
quite small cost coefficient C−, which means C+ � C−. Therefor, any training
positives located in incorrect side of rejection hyperplane will bring a bigger
penalty for objective function Eq. 6, while negatives located in wrong side bring
minor penalty. As show in Fig. 3 (a), all positive data are above the rejection hy-
perplane trained in this condition of unbalanced cost coefficients, while negatives
are distributed in both sides of the rejection hyperplane.

Accelerating positives examples to go through cascade classifier can save time
in detecting positive windows. Because of only positives with quite high confi-
dence value have potential to bypass the next stage. In training of promotion
hyperplane, incorrect decision for negative will be penalized greatly but misclas-
sification of positives makes a little sense. The unequally importance of samples
motivate us to set the small cost coefficient C+ for positives but give negatives
a quite big cost coefficient C− , which means C− � C+. As show Fig. 3 (b),
all negatives examples are below the promotion hyperplane, while positives are
distributed in both sides of the hyperplane.
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Positive samples

Negative samples

Rejection hyperplane

Positive samples

Negative samples

Promotion hyperplane

(a) (b)

Fig. 3. SVM hyperplane learning in “H” stage. (a) Rejection hyperplane, red box
denote positive samples, and blue box denote negatives. (b) Promotion hyperplane,
red box denote positive samples, and blue box denote negatives.

3.3 Training Process of Improving Cascading Structure

In our proposal, there are two steps in training the improving cascading struc-
ture. The first step is training of original Viola and Jones’s boosted cascade
classifier. The second step is construction of novel “H” stage based on SVM.
Table. 1 is the input parameters for the whole training process. The pseudo-
code for learning the improving cascading structure is given in algorithm 1 and
algorithm 2.

Table 1. Input parameters for training original cascade and “H” stage

notation definition or explanation

dmin Minimal desired hit rate of Adaboost stage
fmax Maximal desired false alarm rate of Adaboost stage
Foverall Overall false positive rate of cascade
fi Current alarm rate of Adaboost stage
ϕi Current threshold of Adaboost stage
N The number of cascading stages
Vi,j Confidence value of Adaboost stage
xi,j Input data of “H” stage
dH

min Minimum detection rate of “H” stage

fH
max Maximum false alarm rate of “H” stage

dH
i Detection rate of “H” stage

fH
i False alarm rate of “H” stage

αi Ratio of cost coefficient in rejection hyperplane
βi Ratio of cost coefficient in promotion hyperplane
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Algorithm 1. Training of Original Cascade
Initilization: N = logFoverall

fmax
, fi = 1.

for i=1:N
� while(fi > fmax)

•Add a week learner to the Adaboost classifier, and make sure it
have lowest error as Eq. 3.

•Update the threshold ϕi to guarantee detection rate dmin is sat-
isfied.

•Calculate the false alarm rate fi.
•Modify the weights of each training samples and normalize them
according to Eq. 4 and Eq. 5 respectively.

end for

Algorithm 2. Training of “H” Stage
(1) Train Reject SVM separating hyperplane
Initialization: C+

i = α1C
−
i , α1 = 5.

for i=1:N-1
�Use the confidence value of preceding two stages as the input of
current SVM stage, xi,j = (Vi,j , Vi+1,j).
� while(dH

i > dH
min)

•Training SVM separating hyperplane H+
i using optimization

function.
•Recalculate detection rate dH

i for H+
i .

•Modify αi: αi ← 1.5αi.
(2) Train Reject SVM separating hyperplane
Initialization: C−

i = β1C
+
i , β1 = 5.

for i=1:N-1
�Use the confidence value of preceding two stages as the input of
current SVM stage, xi,j = (Vi,j , Vi+1,j).
� while(fH

i > fH
max)

•Training SVM separating hyperplane H−
i using optimization

function.
•Recalculate false positive rate fH

i for H−
i .

•Modify βi: βi ← 1.5βi.
end for

4 Experiment Results

In order to evaluate our efficient cascade classifier, we applied it in a challenging
data set, the UIUC Image Database for car detection in our experiment. In total,
we use 550 positive car samples and 550 non-car samples in training process. The
size of all training images is 50×20. In addition, a test dataset which contain car
images or non-car images is used to analyze performance of our classifier.Both
the training dataset and test dataset are appropriate for our experiment, they
contain cars in distinct backgrounds and different categories negative samples.
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Haar rectangle features, including horizontal-edge, vertical-edge and titled
rectangle features, are emplyed for our detector. This is because Haar features
can acquire the crucial information of object and be calculated quickly through
the integral-image. The feature set for our experiment consists of 344630 features
for each 50 × 20 detection window.

Intel OpenCV library and Lin Chih-Jen’s LIBSVM are employed to construct
our experiment system. In the following, we will demonstrate the benefits of the
presented approach by comparing our improving cascade with basic cascade. At
the beginning, we set the minimum detection rate dmin of each Adaboost stage
classifier to be 99.95% and the maximum false positive rate fmax of each Ad-
aboost classifier to be 50%, and original Adaboost cascade is created using Viola
and Jones’s method. Ratio α for rejection hyperplane and ratio β for promotion
hyperplane are initialized to be 5. Then, we adjust α and β to construct “H”
stages with the optimal rejection hyperplane and promotion hyperplane.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
-4

0.66
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0.74

0.76

0.78

0.8
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0.84

FP

R
R

Basic Cascade
Improving Cascade

Fig. 4. Accuracy Performance contrast of basic cascade structure and improving cas-
cade, where the horizontal axis denotes false positive rate, the vertical axis denotes
recall rate. Blue curve and red curve denote the performance of basic cascade and
improving cascade, respectively.

We show the superiority of our method by comparing the accuracy and ef-
ficiency performance of two kinds of cascade structure. We use the recall rate
(RR) versus false positive rate (FP) curve to reflect the accuracy of the detec-
tor. The recall rate describes the ratio of the number of positives samples that
were correctly classified to the total number of objects, whereas the false positive
rate describes the ratio of the negatives that were incorrectly classified to the
total number of testing negative windows. The accuracy performance of various
detectors is demonstrated in Fig. 4.
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Table 2. Efficiency performance contrast of basic cascade and improving cascade. BN
and IN are the number of desired stages to reject all negative windows for basic cascade
and improving cascade, respectively. BP and IP are the number of desired stages to
detect all positive windows for basic cascade and improving cascade, respectively. Δ1
and Δ2 are the reduced stages for using our cascade.

Image BN IN Δ1 BP IP Δ2

Image 1 640 588 52 140 92 48

Image 2 425 388 37 70 46 24

Image 3 592 535 57 70 48 22

Image 4 467 422 45 98 64 34

Image 5 388 363 25 98 67 31

Image 6 736 689 47 126 84 42

Fig. 5. Some detection results in UIUC data set

There are several positive windows and negative windows in each test image
in UIUC. We compare the efficiency performance of basic cascade and improving
cascade according to the number of desired stage classifiers for all positive and
negative windows in one image. In our experiment, we use BN and IN to denote
the number of desired stages to reject all negative windows in one image for
basic cascade and improving cascade, respectively, and use BP and IP to denote
the number of desired stages to detect all positive windows in one image for
basic cascade and improving cascade, respectively. Δ1 and Δ2 are the reduced
stages for using our cascade to reject negatives and detect positives, respectively.
The efficiency contrast of our detector with basic cascading structure for several
images in UIUC is demonstrated in Table. 2.

In average for totally 170 test images, 6.9% stages are reduced for using rejec-
tion hyperplane, and 20.9% stages are reduced for using promotion hyperplane.
The experiment results show that our cascade structure with “H” stage achieve
approximately the same detection accuracy as basic cascade classifier and better
efficiency performance. Some detection results are illustrated in Fig. 5.
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5 Conclusion

In this paper, we present a new cascaded structure by added high efficient stages,
each of them provide a rejection hyperplane and a promotion hyperplane for
vehicle detection. The structure can help keep the detection accuracy and have
better detection efficiency. The efficient structure can also be applied to other
object detection problems. In future, we will try to extend this structure to
multiclass classification and integrate our detection method with some tracking
algorithms.
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Estimation Using Multiple Birth-and-Death Dynamics
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Abstract. This paper presents a novel tool for localizing people in multi-camera
environment using calibrated cameras. Additionally, we will estimate the height
of each person in the scene. Currently, the presented method uses the human
body silhouettes as input, but it can be easily modified to process other widely
used object (e.g. head, leg, body) detection results. In the first step we project all
the pixels of the silhouettes to the ground plane and to other parallel planes with
different height. Then we extract our features, which are based on the physical
properties of the 2-D image formation. The final configuration results (location
and height) are obtained by an iterative stochastic optimization process, namely
the multiple birth-and-death dynamics framework.

1 Introduction

Detecting and localizing people are key problems in many surveillance applications
and are still challenging tasks in cluttered, crowded scenes due to the high occlusion
rate caused by other people and static scene objects. Therefore, one object silhouette
mask cannot be assumed to belong to only one person, and body masks can also break
apart. Under such conditions single view localization or tracking might be impossible.
The presented method is capable of accurately localizing individuals on the 3-D ground
plane using multiple cameras. Hence, it can be used for many other high level machine
vision tasks, such as scene understanding, multiple object tracking, or group/crowd
behavior analysis. In addition, our method will also estimate the height of each individ-
ual. The proposed method assumes that the scene is monitored by multiple calibrated
cameras, and the extracted human body silhouettes are available. These silhouettes are
projected on the ground and multiple parallel planes. The presented method does not
use any color or shape models for distinguishing multiple people in the scene. Instead,
we will exploit the advantage of multiple cameras, and from the result of the multi-
camera projection two similar geometric features are extracted in each 2-D position:
one on the ground plane, and one on the other planes. Finally, the extracted features are
used in a stochastic optimization process with geometric constraints to find the optimal
configuration of multiple people.

The rest of the paper is organized as follows. In Sec. 2 we briefly present the related
work in multi-camera people detection. The proposed method is discussed in Sec. 3.
In Sec. 4 we evaluate our method using a public dataset. Finally, Sec. 5 concludes the
paper.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 74–83, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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2 Related Work

In the last decades single-camera person detection and tracking has undergone a great
evolution. See [1] for an extensive review of state-of-the-art methods. However, all of
these methods have limited ability to handle crowded and cluttered scenes, where the
occlusion rate is high. In such situations multi-view approaches provide a better so-
lution, that can accurately estimate the position of multiple people. Mikic et al. [2]
proposed a blob based approach (one object is represented by one blob on each view),
where they estimated the 3-D centroid of an object by deriving a least squares solution
of an over-determined linear system, where the measurements were the image coordi-
nates of multiple views. [3] models the appearance (color) and locations of the people,
to segment people on camera views. This helps the separation of foreground regions
belonging to different objects. [4] extracts moving foreground blobs, and calculates the
centroid of the blob’s lowest pixels, which is projected on the ground plane. This infor-
mation, in addition to the 2-D bounding box corners, is then used in a motion model.
The method in [5] assumes that the objects are observed by multiple cameras at the
head level. The ground plane is discretized into a grid, and from each grid position a
rectangle (having the size of an average pedestrian) is projected to the camera views
to model human occupancy. The method in [6] fuses evidence from multiple views to
find image locations of scene points that are occupied by people. The homographic oc-
cupancy constraint is proposed, which fuses foreground likelihood information from
multiple views to localize people on multiple parallel planes. This is performed by se-
lecting one reference camera view and warping the likelihoods from the other views.
Multi-plane projection is used to cope with special cases, when occupancy on the scene
reference plane is intermittent (e.g. people running or jumping). In our method we also
use multi-plane projection, but with a different purpose. We use the foreground masks
from each camera, which are projected to the ground plane and to other parallel planes,
and are used for feature extraction. Our hypothesis on the person’s location and height
is always a combination of evidences from two planes, the ground and the hypothetical
head plane to form a discriminative feature. This is done by utilizing the 2-D image
formation of the projected 3-D object. The method in [7] applies long–term statistical
learning to make the spatial height distribution, which is used to estimate the height
of a moving object. In our method such a long–term learning process is not needed,
since the height of each person will be estimated during the optimization along with the
position.

Another important issue is related to object modeling. Direct techniques construct
the objects from primitives, like silhouette blobs [8] or segmented object parts. Al-
though these methods can be fast, they may fail if the primitives cannot be reliably
detected. On the other hand, inverse methods [9] assign a fitness value to each possible
object configuration and an optimization process attempts to find the configuration with
the highest confidence. In this way, flexible object appearance models can be adopted,
and it is also straightforward to incorporate prior shape information and object interac-
tions. However, search in the high dimensional population space has a high computa-
tional cost and the local maxima of the fitness function can mislead the optimization.

In the proposed model we attempt to merge the advantages of both low level and
object level approaches. The applied Multiple Birth-and-Death (MBD) technique [9]
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evolves the population of objects by alternating object proposition (birth) and removal
(death) steps in a simulated annealing framework and the object verification follows the
robust inverse modeling approach.

3 Proposed Method

The input of the proposed method consists of human body silhouette masks extracted
from multiple calibrated camera views (using Tsai’s camera model[10]), monitoring the
same scene. In our current implementation the foreground masks are obtained by first
estimating a mixture of Gaussians (MoG) in each pixel [11], then the resulting models
are used in the method of [12] without updating the model parameters. The main idea
of our method is to project the extracted silhouettes both on the ground plane, and on
the parallel plane shifted to the height of the person (see Fig. 1). This projection will
create a distinct visual feature, and is visible from a virtual top viewpoint in the ground
plane direction. However, no prior information of the persons height is known, and
the height of different people in the scene may also be different. Therefore, we project
the silhouette masks on multiple parallel planes with heights in the range of typical
human height. In crowded scenes the overlapping rate is usually high, which would
corrupt our hypothesis. We will solve this problem by fusing the projected results of
multiple camera views on the same planes. The proposed method can be separated into
the following three main steps and will be discussed in the subsequent sections in detail:

1. Multi-plane projection: The silhouettes are projected to the ground and to several
parallel planes at different height.

2. Feature extraction: At each location of each plane we extract features that provide
positive output for the real height and real location by using the physical properties
of the 2-D image formation.

3. Stochastic optimization: We search for the optimal configuration in an iterative
process using the extracted features and geometrical constraints.

3.1 Multi-plane Projection

Let us denote by P0 the ground plane, and by Pz the parallel plane above P0 at distance
z. In the first step of the proposed method we project the detected silhouettes to P0 and

Fig. 1. Silhouettes are projected on the ground plane (blue) and on parallel planes (red)
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(a) Projection for z equals to
the person’s real height

(b) Projection for z lower
than the person’s real height

(c) Projection for z higher
than the person’s real height

Fig. 2. Our features are based on the 2-D image formation properties and on the multi-plane
projection representation. The ground plane projection of one silhouette is marked with blue, and
the Pz plane projection for three different z values (z is the distance from the ground) with red.

to different Pz planes (with different z > 0 offsets) by using the model of the calibrated
cameras. As shown Fig. 1, this can be efficiently performed by projecting on P0 only,
then using the following relationship. Let (xc, yc) denote the position of an arbitrary
camera and hc its height, and let (x0, y0) denote the position of a selected point of the
silhouette projected to the ground plane (i.e. h0 = 0). Then the (xz, yz) position of the
same point projected on a parallel plane at z height can be expressed as

xz = x0 − (x0 − xc) z/hc (1)

yz = y0 − (y0 − yc) z/hc (2)

In Fig. 1 and later in the text the projection of the silhouette to the P0 ground plane is
marked with blue, and to one Pz plane with red color.

3.2 Feature Extraction

Our hypothesis on the location and height of a person is based on the physical properties
of the 2-D image formation of a 3-D object. Consider the person with height h presented
in Fig. 1, where we projected the silhouette on the P0 ground plane (marked with blue)
and the Pz plane with the height of the person (i.e. z = h, marked with red). Also
consider the v vertical axis of the person that is perpendicular to the P0 plane. We can
observe that from this axis, the silhouette points projected to the Pz|z=h plane lie in the
direction of the camera, while the silhouette print on P0 is on the opposite side of v. For
more precise investigations, in Fig. 2 the scene is visualized from a viewpoint above
Pz , looking down on the ground plane in a perpendicular direction. Here, the silhouette
prints from Pz and P0 are projected to a common x− y plane and jointly shown by red
and blue colors, respectively (overlapping areas are purple). We can observe in Fig. 2(a),
that if the height estimation is correct (i.e. z = h), the two prints just touch each other in
the p = (x, y) point which corresponds to the ground position of the person. However,
if the z distance is underestimated (i.e. z < h), the two silhouette prints will overlap as
shown in Fig. 2(b), and when the distance is overestimated (i.e. z > h), the silhouettes
will move away, see Fig. 2(c).

Next, we derive a fitness function which evaluates the hypothesis of a proposed scene
object with ground position p = (x, y) and height h, using the information from mul-
tiple cameras. Let (xi

c, y
i
c) denote the projected position of the ith camera on the P0
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ground plane. We describe with angle ϕi(p) the horizontal direction of the ith camera
from p in the ground plane, calculated as:

ϕi(p) = arctan
(

y − yi
c

x − xi
c

)
. (3)

We will also use the definition of ‘opposite’ direction ϕ̄i(p) = ϕi(p) + π. The two
directions are illustrated in Fig. 3(a).

Based on the above observations, an object hypothesis (x, y, h) is relevant according
to the ith camera data if the following two conditions hold. Firstly, we should find
projected silhouette points on the P0 plane (i.e. blue prints) around the p = (x, y) point
in the ϕ̄i(p) direction, but penalize such silhouettes points in the ϕi(p) direction of the
same neighborhood. Considering these constraints, we define the f i

0(p) ground plane
feature as:

f i
0(p) =

Area
(
Ai

0 ∩ S(ϕ̄i(p), Δ, p, r)
)− α · Area

(
Ai

0 ∩ S(ϕi(p), Δ, p, r)
)

Area
(
S(ϕ̄i(p), Δ, p, r)

) , (4)

where Ai
0 denotes the set of silhouettes projected to plane P0 using the ith camera

model; S(ϕ̄, Δ, p, r) and S(ϕ, Δ, p, r) denote the circular sectors with center p in the
[ϕ̄−Δ; ϕ̄+Δ] resp. [ϕ−Δ; ϕ+Δ] angle range (marked with green on Fig. 3(a)), and
r is a constant radius parameter being set a priori.

With notations similar to the previous case, we introduce the f i
z(p) feature on the Pz

plane around the p = (x, y) point in the ϕi(p) direction as:

f i
z(p) =

Area
(
Ai

z ∩ S(ϕi(p), Δ, p, r)
)− α · Area

(
Ai

z ∩ S(ϕ̄i(p), Δ, p, r)
}

Area
(
S(ϕi(p), Δ, p, r)

) . (5)

Both f i
0(p) and f i

z(p) are then truncated to take values in the [0, f̄ ] range, and are nor-
malized by f̄ . Here, f̄ controls the area ratio required to produce the maximal output.

If the object defined by the (x, y, h) parameter set is fully visible for the ith camera,
both the f i

0(p) and f i
z(p) features should have high values in point p = (x, y) and

height z = h. Unfortunately in the available views, some of the legs or heads may be
partially or completely occluded by other pedestrians or static scene objects, which will
strongly corrupt the feature values. Although f i

0(p) and f i
z(p) features are weak in the

individual cameras, we can construct a strong classifier if we consider all the camera
data simultaneously and calculate the product of the average of the calculated feature
values over the different views, i.e.

f(p, z) =

√√√√ 1
N

N∑
i=1

f i
0(p) × 1

N

N∑
i=1

f i
z(p) . (6)

After the above feature definition, finding all the pedestrians in the scene is done by
a global optimization process. Since the number of people is also unknown, and each
person should be characterized by its x, y and h parameters, the configuration space has
a high dimension, therefore an efficient optimization technique should be applied.



Multi-camera People Localization and Height Estimation 79

(a) (b)

Fig. 3. (a) Notations and areas used for the calculation of the f i
0(p) and f i

z(p) features. (b) Sil-
houette prints to P0 and Pz at a given z distance from a scenario with two people. Person 1’s
height has been accurately found (h1 = z), however Person 2’s one is underestimated (z < h2).

3.3 Marked Point Process Model

Our goal is to detect and separate the people in the scene, and provide their position and
height parameters. For this reason, we will use a simplified object model: we describe
the people by their bounding cylinders in the 3-D space. Let us assume that the ground
plane is flat and the people are standing on the ground. Thus, a given object-cylinder u
is defined by its x(u) and y(u) coordinates in the ground plane and the h(u) height of
the cylinder, as shown in Fig. 4(a).

Let H be the space of u objects. The Ω configuration space is defined as [9]:

Ω =
∞⋃

n=0

Ωn, Ωn =
{{u1, . . . , un} ∈ Hn

}
. (7)

Let ω denote an arbitrary object configuration {u1, . . . , un} in Ω. We define a ∼ neigh-
borhood relation in H: u ∼ v if the cylinders intersect. We refer to the global input data
with D in the model which consists in the foreground silhouettes in all camera views
and the camera matrices.

We introduce a non-homogeneous input-dependent energy function on the configu-
ration space: ΦD(ω), which assigns a negative likelihood value to each possible object
population. The energy is divided into data dependent (JD) and prior (I) parts:

(a) (b)

Fig. 4. (a) Cylinder objects are used to model persons in the 3-D space. Their ground plane po-
sition and height will be estimated. (b) Intersection of cylinders in the 3-D space is used as
geometrical constraint in the object model.
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ΦD(ω) =
∑
u∈ω

JD(u) + γ ·
∑

u,v∈ω
u∼v

I(u, v) , (8)

where JD(u) ∈ [−1, 1], I (u, v) ∈ [0, 1] and γ is a weighting factor between the two
terms. We derive the optimal object configuration as the maximum likelihood configu-
ration estimate, which can be obtained as ωML = arg minω∈Ω

[
ΦD(ω)

]
.

The next key task is to define the I prior and JD data-based potential functions ap-
propriately so that the ωML configuration efficiently estimates the true group of people
in the scene. First of all, we have to avoid configurations which contain many objects
in the same or strongly overlapping positions. Therefore, the I(u, v) interaction poten-
tials realize a prior geometrical constraint: they penalize intersection between different
object cylinders in the 3-D model space (see Fig. 4(b)) :

I(u, v) = Area
(
u ∩ v

)
/Area

(
u ∪ v

)
. (9)

On the other hand, the JD(u) unary potential characterizes a proposed object candi-
date segment u = (x, y, h) depending on the local image data, but independent of other
objects of the population. Cylinders with negative unary potentials are called attractive
objects. Considering (8) we can observe that the optimal population should consist of
attractive objects exclusively: if JD(u) > 0, removing u from the configuration results
in a lower ΦD(ω) global energy.

At this point we utilize the fu = f(p(u), h(u))|p(u)=(x(u),y(u)) feature in the MPP
model, which was introduced in Sec. 3.2. Let us remember, that the fu fitness function
evaluates a person-hypothesis for u in the multi-view scene, so that ‘high’ fu values
correspond to efficient object candidates. For this reason, we project the feature domain
to [−1, 1] with a monotonously decreasing function (see also Fig. 5):

JD(u) = Q(fu, d0, D) =

⎧⎨⎩
(
1 − fu

d0

)
if fu < d0

exp
(
− fu−d0

D

)
− 1 if fu ≥ d0

(10)

where d0 and D are parameters. Consequently, object u is attractive according to the
JD(u) term iff fu > d0, while D performs data-normalization.

3.4 Optimization by Multiple Birth-and-Death Dynamics

We estimate the optimal object configuration by the Multiple Birth and Death Algorithm
[9] as follows:

Fig. 5. Plot of the Q(fu, d0, D) function
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Initialization: start with an empty population ω = ∅, and fit a 2-D pixel lattice to the
P0 ground plane. Let s denote a single pixel of this lattice.

Main program: set the birth rate b0, initialize the inverse temperature parameter β =
β0 and the discretization step δ = δ0, and alternate birth and death steps.

1. Birth step: Visit all pixels on the ground plane lattice one after another. At each
pixel s,if there is no object with ground center s in the current configuration ω,
choose birth with probability δb0.
If birth is chosen at s: generate a new object u with ground center [x(u), y(u)] :=
s, and set the height parameter h(u) randomly between prescribed maximal and
minimal height values. Finally, add u to the current configuration ω.

2. Death step: Consider the configuration of objects ω = {u1, . . . , un} and sort it
by decreasing values of JD(u). For each object u taken in this order, compute
ΔΦω(u) = ΦD(ω/{u}) − ΦD(ω), derive the death rate as follows:

dω(u) =
δaω(u)

1 + δaω(u)
, with aω(u) = e−β·ΔΦω(u)

and remove u from ω with probability dω(u).

Convergence test: if the process has not converged yet, increase the inverse temper-
ature β and decrease the discretization step δ with a geometric scheme, and go back to
the birth step. The convergence is obtained when all the objects added during the birth
step, and only these ones, have been killed during the death step.

4 Experiments

To test our method we used the City center images of the PETS 2009 dataset [13] con-
taining 400 video frames, and selected cameras with large fields of view (View 001,
View 002, and View 003). In our experiments the projections were limited to a manu-
ally selected rectangular area on the ground plane, visible from all cameras. The MoG
background model was defined in the CIE L
U
V
 color space, and after the parameter
estimation process the covariances were manually increased to have a minimum value
of 25.0 (chroma channels) or 49.0 (luma channel) to reduce the effects of cast shadow.
Finally, to separate the foreground from the background the technique of [12] was used
with the following settings: modality parameter T = 0.6, matching criterion I = 3.0.

In the feature extraction step (Sec. 3.2) we assumed that r = 25cm, Δ was set to con-
stant 30◦, the penalty parameter to α = 1.0, and the area ratio threshold to f̄ = 0.75.
To set the parameters of the optimization process we assumed that at least one view
should correctly contain the feet and another one the head of a person, which implies
a d0 = 1/3 threshold for object candidate acceptance. However, due to the noisy fore-
ground masks, in our experiments we used a less restrictive value of d0 = 0.28. D was
set to constant 8, and we assumed a minimum distance constraint of 50cm between two
people (i.e. the radius of the cylinder in Fig. 4(a)). As for the parameters of the Multiple
Birth and Death optimization process, we followed the guidelines provided in [9], and
used δ0 = 20000, β0 = 50, and geometric cooling factors 1/0.96. For each video frame
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Fig. 6. Top: result of the foreground-background separation. Bottom: estimated ground position
and height of each person represented by a line. The monitored area is represented by a red
rectangle.

we limited the optimization process to a maximum of 20 iterations, and did not use the
result for the subsequent time step. For visualizing the results, we backprojected the es-
timated positions on the first camera view and draw a line between the ground plane and
the estimated height (see Fig. 6 bottom), the monitored area boundary is represented by
a red rectangle. Figure 6 top contains the results of the foreground-background sepa-
ration. Finally, we visually evaluated the inaccuracy rate of the results (i.e. of positive
detections with under- or overestimated height, being 6.27%), and we also calculated
the rate of missed detections (being 1.75%). Further experimental results may be found
at http://web.eee.sztaki.hu/˜ucu/vs10-location-results.avi.

5 Conclusion

In this paper we presented a novel method to localize people in multiple calibrated cam-
eras. For this tasks we extracted a feature, which is based on the physical properties of
the 2-D image formation, and produces high response (evidence) for the real position
and height of a person. To get a robust tool for cluttered scenes with high occlusion
rate, our approach fuses evidences from multi-plane projections from each camera. Fi-
nally, the positions and heights are estimated by a constrained optimization process,
namely the Multiple Birth-and-Death Dynamics. In the current implementation we use
foreground-background separation [12] to extract foreground pixels. For evaluation we
used the images of a public outdoor dataset, containing three camera views. According
to our tests, the proposed method produces accurate estimation, even in cluttered envi-
ronment, where full or partial occlusion is present. In the future we will investigate the

http://web.eee.sztaki.hu/~ucu/vs10-location-results.avi
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effects of the different parameter settings of the feature extraction and the optimization
steps. Moreover, we will examine the advance of using the optimization result for the
estimation process of the subsequent time step. Another possible improvement might
be the use of a robust body part detector (e.g. [14]) for creating evidence. This can be
easily integrated in the proposed algorithm with minimal modification.
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Abstract. This paper addresses the problem of automatically learning
common behaviors from long time observations of a scene of interest,
with the purpose of classifying actions and, possibly, detecting anoma-
lies. Unsupervised learning is used as an effective way to extract infor-
mation from the scene with a very limited intervention of the user. The
method we propose is rather general, but fits very naturally to a video-
surveillance scenario, where the same environment is observed for a long
time, usually from a distance. The experimental analysis is based on
thousands of dynamic events acquired by three-weeks observations of a
single-camera video-surveillance system installed in our department.

1 Introduction

A primary goal of research in the video-surveillance field is to devise methods
able to cope automatically with variable scene complexities and with environ-
ment changes. Within this ambitious framework, this paper presents a modular
approach to learning common behaviors from an observed scene, starting from an
unlabeled set of dynamic events gathered during a training phase. The proposed
pipeline is entirely driven by data and starts from an intermediate representation
of temporal data based on the use of strings, whose main aim is to make the
learning process independent from the specific initial description. Then, a re-
cursive implementation of spectral clustering allows us to learn behavior models
and controlling their complexity. At run time we associate new observations to
the estimated behaviors, if possible. An updating procedure allows us to evolve
the behavior models when the percentage of associated events degrades.

We test the method on a single-camera video-surveillance system installed in
our department; the monitored environment is rather complex (a public hall,
illuminated by both natural and artificial lights) and hosts a variety of dynamic
events. The data ambiguity caused by the loss of information of a single-camera
acquisition system is attenuated by the adoption of a multi-cue initial data
representation. The experimental assessment is carried out on a set of thousands
of data gathered over three weeks observations: such data are used to first build
an initial model and then to keep it updated, allowing for anomaly detection with
respect to the current model during the day and an appropriate batch analysis
and update during night hours. The reported experiments show the capability
of the proposed method to (i) model frequent motion patterns, (ii) highlight
anomalies, and (iii) deal with changes caused by scene variations.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 84–93, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Event analysis and recognition to the purpose of obtaining ”intelligent” video-
surveillance solutions have been addressed by many authors [1]. Learning from
examples is a rather conventional way to deal with data complexity. If the avail-
able examples are labeled, i.e., to each one of them we may associate a label of
a known behavior, then supervised algorithms lead to effective behavior catego-
rization methods [2,3]. Since labeled data are not always available the general
(unsupervised) goal is to model normal behaviors from (possibly big) sets of un-
labeled observations. Among the first contributions relevant to behavior analysis,
[4] proposes an approach based on learning from data a codebook derived from
data quantization. More recent works specifically focusing on video-surveillance
field are [5,6,7] where the reference applications is traffic monitoring, therefore
the amount of variability on the potential behaviors is limited. Among the dif-
ferent tasks related to behavior analysis, anomaly detection has been constantly
focus of attention in the last years [5,6,7,8].

From the algorithmic standpoint a reference to temporal series clustering may
be found in [9,10,11], while [12] offers a complete survey to the topic of finding a
good similarity measure for time-series. A rather complete account of the open
issues related to events classification in an unsupervised setting is reported in
[13]. Also, it is worth mentioning that recently clustering algorithms able to
adapt to evolutions of the available data have been presented [14,15].

For what concerns clustering performance evaluation issues, there is no stan-
dard way to assess the obtained clusters both with respect to the initial set of
data and with respect to possible future observations. Most of the work is based
on the use of a ground-truth [16,17] .

This work contributes to the behavior analysis literature in many ways: it
discusses the use of clustering methods for multi-cue data endowed with a rather
characteristic internal structure induced by temporal coherence. It suggests a
practical solution for model selection in the unsupervised case. Also, it proposes
an effective strategy for updating the dataset used to model behaviors, which
feeds updated information to a stable set of previous observations. Finally, from
the application standpoint it suggests a very modular video mining pipeline
that can be effectively applied on top of rather general low level video analysis
modules with the final aim of classifying common events and anomalies.

2 The Proposed Method for Behavior Analysis

This section summarizes the proposed method, highlighting the behaviors mod-
eling phase, the data pruning phase, and finally the behaviors update phase.

2.1 Batch Training Phase

This phase aims at obtaining an initialization of models of common behaviors
in the observed scene, from unlabeled data. An early version of this phase was
presented in [18,19]. The method, entirely data-driven, is organized in two ab-
straction levels: (i) we automatically compute a (set of) alphabet(s) that allows
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us to obtain a representation of the temporal series which does not depend from
the original measurements; (ii) then we represent the time series with respect to
the alphabet(s) and estimate groups of coherent temporal sequences, leading to
a model of frequent behaviors.

We start from a set of video sequences (e.g. a few days of observations) to
initialize our behavior models. Dynamic events (trajectories of moving objects)
are extracted by a motion analysis module and represented as temporal series
xi of instantaneous observations xt

i. Each observation is a feature vector in the
input space Rd describing the object at time t: in our case xt

i = [Pt
i, S

t
i , M

t
i , D

t
i ]

where Pt
i represents the 2-dim object position on the image plane, St

i the object
size at time t, M t

i and Dt
i velocity magnitude and direction at time t.

Alphabet construction. We start from a set of N temporal series X =
{xi}N

i=1, where each xi is a sequence of ki vectors in some Euclidean space Rd,
i.e. xi = (x1

i , x
2
i , . . . , x

ki

i )T and xt
i ∈ Rd, t = 1, . . . , ki. An appropriate alphabet

can be built automatically by partitioning the input space, where each state of
the partition will represent a character of the alphabet. We partition the space
by clustering training data with spectral clustering, using a recursive version of
[20]. The procedure recursively bipartites the similarity graph until a condition
on the normalized cut is reached. The granularity of the solution is controlled
by a threshold, τpts, in the range [0, 1].

To handle the fact that different measurements of the feature vector may
take values on different value ranges, instead than data normalization, we use
a convex combination of kernels on sub-sets of coherent cues (multi-cue kernel
[19]): given two observations in Rd, x and y, their similarity is computed as
K(x, y) =

∑Nf

i=1 WiKi(xi, yi, θi) where Nf is the number of sub-sets Nf ≤ d, and
Wi sum up to 1, θi are the parameters of kernel Ki. In this work we use Gaussian
kernels and the multi-cue kernel is defined as G(x1, x2) = wP GP (P 1, P 2) +
wSGS(S1, S2)+wMGM (M1, M2)+wDGD(D1, D2). By associating a label to each
state in the partition an alphabet is finally obtained. Changing the values of the
weights vector W = [wP , wS , wM , wD] relates to considering different alphabets,
i.e. different views on the same data set. Optimal values for the weights can be
chosen either with prior information or with a model selection procedure (in Sec.
3.1 we discuss the latter).

Behaviors clustering. Once an alphabet is built, a temporal series xi may be
translated into a string s with an association of each element xt

i ∈ Rd to the state
of the partition it belongs to. To obtain compressed descriptions that capture the
peculiarities of each behavior we consider only transitions between states (e.g.
“aaabcc” becomes “abc”). After all training trajectories have been represented
as strings, spectral clustering is applied to them to identify the most meaningful
clusters corresponding to frequent and well defined behaviors, according to the
initial representation, the alphabet chosen, and a cut threshold τstr which, again,
controls the granularity of the solution. The similarity matrix is built by using
a string kernel, the P-spectrum kernel KP [21] that counts how many substrings
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of fixed length P the two strings have in common. Since we focus on transitions
between atomic symbols of the alphabet, we set P = 2.

The clusters detected via this clustering step represent frequent motion pat-
terns in the input data, and can thus be interpreted as our behavioral models.

Association of new data. Given the behavioral models we need a procedure
to associate new (test) data to one of the clusters in real time. Instead of interpo-
lation methods (such as Nystöm) that are usually computationally expensive, we
adopt a very efficient method based on computing a cluster candidate, selected
as follows: let Ck = {si}nk

i=1 be a cluster with nk strings. For each string si we
define a voting function vi such that vi(sj) = KP (si, sj), sj ∈ Ck, j �= i. The
string s∗i voted by si can now be selected as s∗i = v∗i (S) = argmaxsj∈Ck,i�=j vi(sj).
By putting together the contributes of all strings in the cluster, the candidate is
the one receiving the highest number of votes. Thus the NB behavioral models
{Bi}NB

i=1 are described by a set of candidate strings {s∗i }NB

i=1, one for each cluster.
This technique allows for a rapid visual inspection of the obtained results,

since archetypical sequences can be easily visualized and compared with data
waiting to be associated with clusters. Given a new string st for each behavior
model we compute Simil(st) = {KP (st, s

∗
j )}N

i=1 and then we associate to st the
label of the candidate with the highest similarity if it is greater than a given
threshold τt. Otherwise, it is classified as an anomaly.

Data pruning. This step is motivated by the purpose of controlling the size of
the training set as time goes by and new observations need to be inserted. Also,
it is well known that an appropriate data pruning can actually improve general-
ization performances [22]; in the unsupervised case this relates to the ability of a
given data partitioning to reflect the probability distribution that generated the
data. The procedure we follow for pruning data in our unsupervised setting aims
at improving the clusters compactness according to the following procedure:

– We train a multi-class classifier (we used Regularized Least Squares - RLS)
on the data labeled according to the clustering results (i.e. by associating a
label to each cluster which is inherited by the trajectories associated to it).

– We apply Leave One Out (LOO) cross validation to classify each datum,
associating to it the most probable estimated label.

– Then we discard data whose label, estimated by the classifier, do not cor-
respond to the ones estimated by clustering. We order the remaining data
with respect to the classifier output in descending order.

– Finally, we discard the last p percent of the sorted data.

We first observe that using the labels induced by the clustering within a super-
vised approach we are implicitly relying on the quality of the clusters. The first
data discarded by the pruning procedure are the ones that do not fit entirely the
estimated clusters. Then, as p grows, we should eliminate redundant elements,
and later we should be deleting important information. p is selected considering
average LOO error and the compactness of the pruned clusters. This procedure
is applied after both initialization and updates of behavior models. At the end
of pruning clusters candidates will be recomputed on the survived data.
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2.2 Behavior Models Update

The estimated behavior models are used at run time to build statistics on the
observed behaviors and to highlight unusual events. As time goes by such behav-
iors could become obsolete and would need to be updated. In an unsupervised
setting there is no direct way to evaluate performance degradation. We estimate
it indirectly by monitoring the amount of data associations to known behaviors
— if the scenario is stable this percentage should also be stable. A severe de-
crease might testify that static changes occurred in the environment and thus the
models need to be updated. Also, we experimentally observed a slow degradation
occurring over time. To address these events we update the learned behaviors
during night hours (or when the density of dynamic events is small) by updating
the behavioral models applying spectral clustering to a set of old and new data.
We first refer to the previously selected alphabet: if, after update, the percentage
of associated events does not improve, we also update the alphabet.

3 Application to a Video-Surveillance Scenario

In this section we experimentally evaluate the proposed method on a video-
surveillance system monitoring a busy hall of our department (Fig. 1, above) 1 .
Our experiments consider events occurring at peak times over three consecutive
weeks. The first week (Fig. 1, above, left) has been used to initialize the behavior
models. The other two weeks are used to collect test data on which the models
are evaluated and updated, if needed. On the second week the scene conditions
do not change, so that the dynamic events that are observed remain rather
pertaining to the models. Instead, on the first days of the third week a special
event occurred (the department opened to high school students and the hall was
used as a meeting point) and the scene layout changed (panels have been added
and desks moved) as well as the expected behaviors (Fig. 1, above, middle). At
the end of the week, the scene goes back to the usual regime with some stable
changes with respect to the original layout (observe, for instance, the desk in
the bottom right zone - Fig. 1, above, right).

3.1 Training and Model Selection via Loose Annotation

We first consider the batch training phase performed of data from one week
acquisitions (see Fig. 1, below, right). In this phase the set of parameters to be
tuned comes from both alphabet construction and the actual behavior modeling
phase. In unsupervised learning model selection is a hard problem [23] unless
a ground truth is available (which is not the case in real applications). Lack-
ing a proper ground truth (and after we verified the inappropriateness of most
quality indices available in the literature for our rather complex model selection
procedure) we propose to start from a manual annotation of the environment,

1 The Imanalysis suite, we obtained within a technology transfer program with the
company Imavis srl, http://www.imavis.com/
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Fig. 1. Above, sample frames describing the environment changes over the three weeks
considered. Below: left, regions selected with the manual environment annotation and
used as source/sink regions to loosely annotate the training trajectories, shown on the
right, according to the 8 patterns denoted as red arrows.

performed by a user and guided by prior knowledge on the presence of natural
source and sink points such as doors and rest areas (see Fig. 1, below, left).
The environment annotation induces a loose annotation on the data, grouped
accordingly to first and last points. The term loose refers to two main aspects:

– Since the coherence criteria depends only on first and last points of trajec-
tories, very different patterns can belong to the same group.

– The manual annotation reflects the spatial properties of the trajectories, thus
from the point of view of the other features (target size, velocity expressed
in terms of magnitude and direction of motion) the obtained groups are
heterogeneous.

The derived annotation is a coarse ground truth that we only use for model
selection, thus on a verification stage. It is not included in the modeling pipeline
which is entirely unsupervised. In our training set, made of 1205 events, 8 main
behavioral patterns have been annotated (see Fig. 1, below, left). The parameters
participating to model selection are the kernel weights W and spectral clustering
cut thresholds τpts and τstr . After a qualitative analysis of the similarity matrix,
the values in W are chosen in [0, 1] with sampling step Δ = 0.1 so that they
sum up to 1. τpts and τstr are chosen in [0.6, 1.]. We experimentally observed
that values lower than 0.6 result in small alphabets and, thus, poor behavioral
patterns.
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Fig. 2. Top row: the 7 estimated common behaviors from the initialization phase.
Below: clusters induced by the association of test data.

We evaluate a clustering instance Ci produced by a selection of parameters
by solving the assignment problem among estimated and (loosely) annotated
clusters via the Hungarian algorithm and computing the Correct Clustering
Rate (CCR) [13]: CCR(Ci) =

∑ni

j=1 cj where ni is the number of clusters of
instance Ci and cj is the number of trajectories of cluster j correctly associ-
ated. When computing the rate we admit that a loosely annotated behavior
might correspond to more than one clusters, and vice-versa. This is because
properties not modeled by the loose annotation (which just derived from spa-
tial coherence) could be captured by the clustering. Model selection is finally
performed as C∗ = argmaxi=1...Nc

CCR(Ci). In our experiments, this process
selects a clustering instance with 7 patterns of activities with the parameters
W = [0.3, 0, 0.3, 0.4], τpts = 0.9 and τstr = 1 that produced the best CCR (equal
to 76.2%). Fig 2 (top row) shows the data associated to the estimated clus-
ters. Notice that this visualization is purely based on spatial information (for
instance behaviors 1 and 4 look similar but their average velocity are 2.9 and
3.8 respectively, with small standard dev).

3.2 Experiments on Data Pruning

To test the appropriateness of data pruning, first, we recompute the candidates
with an increasing percentage p of pruned data, and evaluate the percentage of
associated events on the training set (an event of the training set is associated
if the highest similarities of its string representation is with the candidate of
the cluster it was associated to). The trend, shown in Fig. 3, left above, proves
that the performances remain rather stable and slightly higher around p = 40%.
This suggests an appropriate value for p and gives a coarse estimate of the noisy
information included in the training set that can be profitably discarded without
loosing in discriminative power of the candidates.

A second analysis relies on evaluating the trend of intra-clusters cohesiveness,
as follows. Given a cluster C, let mC be the number of all possible pair-wise
similarities among elements of C. The cohesiveness of C is estimated by the ratio
of the number of similarities above a given threshold (t = 0.8 in our experiment)
to mC . The plot in Fig 3, left below, nicely shows how mean and standard
deviation of the quality index improves as p increases.
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Fig. 3. Left, evaluation of data pruning: above, percentages of associated trajectories
as p increases; below, mean and standard deviation of intra-cluster cohesiveness. Right,
the roc curve describing the performance of the binary classifier of normal/abnormal
events on the validation set.

3.3 Model Evolution

We finally evaluate the proposed pipeline at run-time following the procedure
described in Sec. 2.1. To choose the threshold, τt, we gather a validation set
including 570 events, equally distributed between known patterns (coherent with
the training set) and anomalies. The ROC curve (Fig. 3) shows the performance
of discriminating between common behaviors and anomalies we obtain on the
validation set by varying τt. We select the threshold corresponding with the
equal error rate (e.e.r.), τt = 0.65.

Fig. 4 summarizes the association percentages over the three weeks. The first
week (training period) is drawn in black and give us an intuition on the amount
of noise in the observed scene, and an estimate of the percentage of association
to known behaviors that we may expect at run time (the green lines describe
mean and standard deviation of the associations). Blue plot refers to the test
analysis performed with a fixed model. During the first test week the percentages
are affected by a physiological decreasing due to the time evolution. However,
between days 6 and 14, the percentages are rather stable. At days 15 and 16
an abrupt variation can be observed (caused by the start of the special event).
With the fixed behavior model, when the event ends (day 17) the association
percentage goes back to normal. The decreasing number of associations of day 15
suggests that an evolution of the model might be advisable. A new training set
is thus collected which is composed of (i) trajectories belonging to the current
training set that overcome the pruning process, and (ii) trajectories observed
during the last day. If the association process is replicated employing this new
model (red plot) the percentage of associated events reaches the usual trend,
testifying the capability of the evolved model of appropriately describing the
current scenario. Fig. 2 (bottom) shows the trajectories correctly associated by
the evolving method over the test period (only a random sampling of the data
is shown for readability).
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Fig. 4. Trend of the association percentages over the 3 weeks considered in our experi-
ments. Blue plot refers to the adoption of a fixed model, that shows inappropriateness
when the video content significantly changes. If the model is evolved accordingly to
our pipeline, it shows the capability of being adaptive to temporal changes.

4 Discussion

This paper presented a method for modeling common behaviors from long-time
observations and keeping this model up-to-date with respect to an evolving ref-
erence scenario. We refer specifically to an unsupervised setting, therefore the
available data do not need to be labeled, but will be automatically analyzed by
a spectral clustering algorithm, after a mapping on an appropriate feature space
(the space of strings). Thanks to this intermediate description, provided that an
appropriate low-level video analysis module is available, the devised pipeline can
be applied to rather general data and scenarios.

Once a behavioral model is estimated, it can be applied to new data and used
at run time to check the presence of unusual events. To counter the fact that
such model would become obsolete due to scene changes or simple environment
conditions (due to seasonal changes, for instance, if the environment is naturally
illuminated), an update process to be run batch is provided. An experimental
validation of the proposed method is shown on rather complex data coming from
a commercial video-surveillance system.

References

1. Special issue on event analysis in videos. IEEE Trans on Circuits and Systems for
Video Technology 18 (2008)

2. Pittore, M., Campani, M., Verri, A.: Learning to recognize visual dynamic events
from examples. IJCV (2000)

3. Bashir, F., Khokhar, A., Schonfeld, D.: Object trajectory-based activity classifica-
tion and recognition using hidden markov model. IEEE Trans. on IP 16 (2007)

4. Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking.
IEEE Transactions on PAMI 22 (2000)



Unsupervised Video Surveillance 93

5. Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning
statistical motion patterns. IEEE Trans on PAMI 28 (2006)

6. Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event de-
tection. IEEE Trans on Circuits and Systems for Video Technology 18 (2008)

7. Anjum, N., Cavallaro, A.: Multifeature object trajectory clustering for video anal-
ysis. IEEE Trans. on Circuits and Systems for Video Technology 18 (2008)

8. Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Colenam, G.: Detection
and explanation of anomalous activities: representing activities as bags of event
n-grams. In: Proc. CVPR (2005)

9. Jebara, T., Song, Y., Thadani, K.: Spectral clustering and embedding with hidden
markov models. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin,
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Multicamera Video Summarization from

Optimal Reconstruction
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Abstract. We propose a principled approach to video summarization
using optimal reconstruction as a metric to guide the creation of the
summary output. The spatio-temporal video patches included in the
summary are viewed as observations about the local motion of the orig-
inal input video and are chosen to minimize the reconstruction error
of the missing observations under a set of learned predictive models.
The method is demonstrated using fixed-viewpoint video sequences and
shown to generalize to multiple camera systems with disjoint views,
which can share activity already summarized in one view to inform the
summary of another. The results show that this approach can signifi-
cantly reduce or even eliminate the inclusion of patches in the summary
that contain activities from the video that are already expected based
on other summary patches, leading to a more concise output.

1 Introduction

Many domains, from surveillance to biology, can benefit from collecting large
quantities of video data. However, long recordings over many deployed cameras
can easily overwhelm a human operator’s ability to review, preventing the data
from being as useful as possible. In many applications with stationary cameras,
much of the recorded video is uninteresting, so time spent having a human review
it is wasted. Video summarization aims to highlight the most important segments
of an input video, helping to focus reviewing time where it is most beneficial.

The concept of extracting the important portions of a video is not usually well
defined, since importance is a subjective notion. While looking at motion or color
contrast can serve as an approximation to importance, these methods take an
indirect approach to the summarization problem. Instead, we propose a method
that formulates the problem in a more principled way that easily generalizes to
multiple cameras.

Videos from within a single camera or from close-by cameras in a network also
exhibit redundancy in what they display, since activities in one region are often
closely related to activities in another. For example, refer to Figure 1(a), which
shows a network of two cameras positioned along a bike path. When a person
leaves the view of camera 1 traveling to the right, it is expected that they will
appear in camera 2 after a delay. If the delay does not greatly deviate from the
average trip time observed over many people, showing the person in both views 1
and 2 is redundant; if a human observer sees the person in one view, they already

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 94–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Multicamera Video Summarization from Optimal Reconstruction 95

(a) (b)

Fig. 1. Layout of the two-camera network used for the experiments and a sample
spatio-temporal patch drawn from camera 1 to be highlighted in the summary

have a good understanding of what happened in the other. In this case, a good
summary should devote less time to the appearance of the person in one view
after establishing the person’s presence in the other. However, if the travel time
does significantly differ from what is expected, the summary should spend extra
time presenting this anomaly. This shows that a good summary would respond
not just to motion, but also to whether that motion is already expected.

We view the output summary video as a set of observations on the original
input video. Since the summary video is a reduced form of the input video,
many possible observations are missing. The best set of observations to chose
for the summary can be understood as those that, taken alone, would allow
us to best reconstruct the missing data. These observations take the form of a
spatio-temporal patch highlighted in the summary output, such as the example
patch in Figure 1(b). Reconstruction requires a predictive model to describe how
an observation at one spatio-temporal location influences the state at others,
which the system can learn over local regions of the video itself since the camera
viewpoint is static. This captures the intuition that if a reviewer is familiar with
what normally occurs within a scene, they have effectively learned a predictive
model themselves. As such, a summary consisting of the observations that give
the best reconstruction of the missing data, or the rest of input video, would
also give a reviewer the best mental reconstruction of what occurred.

2 Related Work

Video summarization, as well as the related problem of video anomaly detection,
has been well studied in the literature, so we discuss only a subset of the past
work here. Approaches tend to be divided between methods using tracked object
paths and those that use features that do not rely on tracking. Systems that use
tracking [1,2,3] attempt to extract the trajectories of objects of interest within
a scene, then cluster those trajectories to identify outliers. Objects following
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unusual trajectories are then assumed to be interesting. In visually challenging
scenes, however, extracting suitable object trajectories may be difficult, degrad-
ing performance.

Many other systems rely on determining the similarity between frames using
other features. Examples include gradient orientations [4,5], local motion [6], and
color and texture [7,8]. Another approach is to apply seam carving techniques to
videos [9] to remove regions with smooth colors. While these systems can yield
satisfying results, they are not directly attempting to make the most interesting
or representative portions of the input video appear in the summary, instead
relying on related indicators.

The system of Simakov et al.[10] does approach the summarization problem
more directly by trying to choose patches of the input video to include in the
summary to simultaneously maximize measurements of completeness, or how
much data from the input is present in the output, and coherence, or that every-
thing in the output was also in the input. This takes the viewpoint that a good
summary is one that includes as much of the input data as possible within a
constrained space without introducing artifacts, whereas our proposed approach
considers a good summary as one that best allows for data missing from the
summary to be inferred, thus representing the entire input.

3 Approach

Our goal is to analyze a set of input videos and determine the subset of spatio-
temporal patches from them that would best summarize their contents. These
can be packed into a shorter output video for a human operator to review. The
first step is a scene decomposition to group camera views into regions, followed
by feature clustering and region linking to cluster activities occurring in each
region and determine region topology. The system learns occurrence models for
the activities and then uses a genetic algorithm to seek the summary that best
represents the activity sequence occurring in a region. Here, a summary refers
to any selected subset of key patches. The algorithm grades the fitness of a
candidate summary by finding the error of the resulting reconstruction, defined
as the estimate of the complete sequence of activity labels given the subset in
the candidate summary.

3.1 Scene Decomposition

Our system starts with a scene decomposition to spatially divide the input videos
into regions that tend to move similarly, based on the work by Loy[11]. We follow
their approach except for a change in the activity feature used. Unlike the low
framerate videos presented in those experiments, the videos used here have an
average frame rate around 15-20 fps. This allows the use of optical flow as the
activity feature instead of the features used by Loy to accommodate low temporal
resolution. We calculate the affinity matrix A between the 10x10 pixel, non-
overlapping subblocks with sufficient activity in the video. Spectral clustering
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Fig. 2. Discovered links and time shifts to region 0. (Best viewed in color).

on A by the method presented by Zelnik-Manor[12] gives the segmented regions.
An example segmentation for a video in our data set appears in Figure 2. Notice
that the segmentation has separated the regions covering the bike path from the
pedestrian areas on either side, giving the regions semantic meaning.

3.2 Feature Clustering and Region Linking

With the scene decomposition done, the average optical flow vector over a region
can be calculated at each frame and then clustered by fitting a GMM. The num-
ber of clusters Ki for the ith region is determined automatically using the Akaike
information criterion[13]. Now the activity in each region can be succinctly rep-
resented by a single sequence yi with yi,t ∈ [0, Ki) consisting of cluster indices
over time.

This representation also allows discovery of the linkages between regions and
the typical time lag between activity in one region leading to activity in another.
For a proposed linkage between regions i and j for time lag τ , we can calculate
the Time Delayed Mutual Information[14]:

Ii,j(τ) =
∑
yi

∑
yj

p(yi,t, yj,t+τ ) ln
[

p(yi,t, yj,t+τ )
p(yi,t)p(yj,t+τ )

]
(1)

The probability distributions are estimated by counting activity occurrences over
the length of the videos. For each local maxima of Ii,j(τ) for τ ∈ [−τmax, τmax]
that exceeds a threshold Imin, define a link between regions i and j with a time
shift of τ . We do not consider regions within a camera view differently from
regions appearing in different camera views, so this linkage discovery naturally
extends to a multicamera network. As an example, we use video segments col-
lected from the two cameras shown in Figure 1(a). Figure 2 shows the resulting
linkages from region 0, in the lower left corner of the first camera, to all other
regions. The labels show the relative time shift τ in seconds for the link between
that region and region 0; regions without labels are not connected to region 0.
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3.3 Learning Occurrence Models

The system uses the set of component index sequences {yi∀i} to learn a set of oc-
currence models. For each region, estimate p(yi,t), p(yi,t+1|yi,t), and p(yj,t+τ |yi,t)
over (j, τ) ∈ L(i), the set of regions and corresponding time shifts that form links
to region i. From these, compute the negative-log costs for assigning indices to
patches:

cp
i (q) = − ln(p(yi,t = q))

cf
i (r|q) = − ln(p(yi,t+1 = r|yi,t = q)) (2)

cl
ij,τ (r|q) = − ln(p(yj,t+τ = r|yi,t = q)) (j, τ) ∈ L(i)

cp is the prior cost, or the cost of assigning component index q to a patch without
knowledge of surrounding patches. cf is the forward cost, or the cost of assigning
index r to a patch when its temporal predecessor has index q. Finally, cl is the
lateral cost, or the cost of assigning index r to a patch in region j when it is
linked with time shift τ to a patch in region i that has index q.

3.4 Single Region Activity Reconstruction

Our goal is to reconstruct an index sequence by selecting a subset of the patches
from the corresponding region to include in the summary. Selected key patches
in the sequence act as observed states, while the remaining patches act as miss-
ing observations. As such, the system uses a modified Viterbi algorithm with the
prior and forward cost models to choose the most likely sequence of indices that
explain the chosen observations. This Viterbi lattice is illustrated in Figure 3(a),
where the columns correspond to steps in time and the rows correspond to the
possible activity indicies for the region in the range [0, Ki). The costs defined in
the previous section determine the costs used to label the lattice edges. Specif-
ically, for region i, the edge from the starting node to the node for activity q
in the t=0 layer is labeled using cp

i (q). For an edge from the node for activity
q to activity r in the next layer, use cf

i (r|q). In this example, the optimal path
through the lattice is shown in bold.

Choosing a patch as a key patch amounts to forcing a step in the lattice to
take the state seen in the input video, as in Figure 3(b). This choice updates
the optimal path between states. Call ŷi|Pi

the reconstructed sequence after
choosing to force the patches of region i in set Pi to their correct values. The
error for this choice of key patches is:

Ei(Pi) =
∑

t

ec(yi,t = q, ŷi,t|Pi
= r) (3)

ec(q, r) =
√

μi,qC
−1
i,q μi,r

where the error cost ec of reconstructing a patch as having index r when it was
actually q is the Mahalanobis distance from the correct GMM cluster, with mean
μi,q and covariance Ci,q, to μi,r, the mean of the classified cluster.
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(a) Viterbi lattice (b) Lattice with forced step

Fig. 3. Viterbi lattice for region activity reconstruction before and after forcing.
Columns represent time and rows represent cluster indices. The optimal path is shown
in bold.

3.5 Key Patch Selection

To form the summary, we would ideally like to find Pi such that:

Pi = argmin
P′

i

Ei(P ′
i) (4)

However, there are many possible choices for Pi; even a one minute sequence
from our data set has about 1200 frames, so choosing 10% of them to include
in a summary would give around 10168 choices. Since it is not imperative that
we find the globally best Pi instead of a merely good one, a genetic algorithm
is an appropriate way to examine such a large search space. A proposed Pi can
be naturally represented as a binary string with length equal to the number
of frames and ones in the positions corresponding to patches included in the
summary, so this problem maps directly to a genetic approach. We use a modi-
fied version of the CHC algorithm[15], which stands for cross-generational elitist
selection, heterogeneous recombination, and cataclysmic mutation. The CHC al-
gorithm employs an aggressive search that ensures non-decreasing fitness of the
best solution between generations, offset by periodic reinitialization of the pop-
ulation of solutions to discourage convergence on local maxima. For a proposed
Pi, we evaluate its fitness as:

F(Pi; α, β) =
Ei(Ø) − Ei(Pi)

|Pi| · exp
(
− (α − |Pi|)2

2β2
· 1(μ − |Pi|)

)
(5)

This consists of two terms. The first is an efficiency term, which rates solutions
higher that have achieved a large reduction in the reconstruction error per patch
that it has forced. The second is a falloff term that penalizes solutions that are
more concise than the target level of summarization α, but has no effect on
longer solutions. Empirically, shorter solutions tend to be more efficient, so this
term prevents selective pressure from creating a summary that is much more
concise that the user wishes. Instead, we favor solutions that spend extra forced
patches reducing the reconstruction error even modestly instead of forgoing them
all together. The factor β controls how steep this penalty should be and is set
such that

√
2β = α/10 for all of our experiments.
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3.6 Extension to Multiple Regions

If two regions i and j were found to be linked in the preceding steps, then knowing
the activity present in i should also tell a human viewer something about the
activity occurring in j, with some possible time shift. In our example videos, if
the generated summary for region 6 establishes that a bicyclist is traveling to
the left along the path, the viewer already assumes that the same bicyclist will
shortly appear in region 0; if this occurs, the summary does not need to choose
as many patches in region 0 to make this clear. This intuition naturally extends
across cameras as well; after seeing the bicyclist leave region 0, the viewer can
expect to see the same person again in region 11. If the reappearance happens
close to the time shift discovered for that region link, showing that activity is
largely redundant. If the actual delay differs significantly from τ , then something
unusual may have happened, and the summary should spend additional summary
patches illustrating this.

Formally, we can incorporate information coming from a linked region within
the lattice framework by altering the transition costs for a time step using the
lateral cost models learned earlier:

ci,t(r) = cf
i (r|yi,t−1) +

∑
(j,τ)∈L(i)

cl
ji,−τ (r| ˆyj,t−τ ) (6)

This represents the cost for selecting cluster label r for frame t in region i. The
first term in the sum is the existing cost based on the intra-region forward model.
The second term has been added to account for influence from other regions on
the current region’s lattice solution, based on the inter-region lateral model.

Fig. 4. Single region summarization for region 0 for a 5% target length. Top: Actual
sequence. Middle: Reconstructed sequence. Bottom: Chosen summary patches.
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4 Experiments

4.1 Single Region

Figure 4 shows the resulting summaries generated by the system for a one minute
sample of the video corresponding to region 0 for a 5% summary length target.
The top row shows the actual activity sequence for the region and the second
row shows the reconstructed sequence. The third row shows spikes corresponding
to the patches chosen for the summary. These are the observations in time used
to generate the reconstruction. Notice that the density of the spikes is great-
est where the activity indicies change, which corresponds to bicyclists moving
through the region in the original video.

Fig. 5. Summarization of region 15 with and without information from region 0. Row
1: Actual sequence. Row 2: 5% reconstruction of region 15 in isolation. Row 3: Patches
chosen for the reconstruction in the row above. Row 4: Reconstruction of region 15
incorporating information from region 0. No patches from region 15 have have been
chosen. Row 5: Reconstruction of region 15 with region 0 information and choosing
patches to give error equal to 5% reconstruction in isolation. Row 6: Patches chosen
for the reconstruction in the row above.
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Fig. 6. Difference in reconstruction error versus summary length when excluding and
including information from region 0. Left plot is for region 4, right plot is for region 15.

4.2 Multiple Regions

Figure 5 shows the effect on a neighboring region’s information on the recon-
struction of region 15. The first row shows the actual activity sequence for region
4. The second and third rows show the single region reconstruction of region 15
with a 5% length target and the chosen patches, as in the previous section. The
fourth row shows the unforced reconstruction of region 15, or the reconstruction
before any key patches have been chosen from 15 when its link to region 0 is in-
cluded in the costs calculated from Equation 6. To produce this, we first generate
the 5% length reconstruction for region 0 as shown in the previous section and
then use the resulting ŷ0 in Equation 6 to determine the optimal path through
the lattice for region 15. This shows that even if the summary did not include
any patches from region 15, seeing region 0, which is in a different camera view,
has already provided an idea of its activity. The fifth and sixth rows show the
reconstruction and chosen patches of region 15 incorporating information from
region 0 and choosing enough patches to make the total error equal to that
from the reconstruction in isolation seen in the second row. Here, the system
can provide observations on region 15 to correct deviations in its activity from
what would be predicted by region 0. In this example, the system reaches the
same total error as it did with 60 patches in isolation with only 6 patches when
inter-region information is incorporated.

The benefit gained from considering information from linked regions reaches
a saturation point as the algorithm includes additional patches in the summary.
Figure 6 shows the total reconstruction error for regions 4 and 15 versus the
summary target length, both when no inter-region information is included and
when region 0 is included. Notice that using inter-region information helps pro-
vide a lower error reconstruction for a given summary length. However, since the
system only needs to correct deviations from expected activity when using infor-
mation from region 0’s summary, it experiences less benefit by allowing a longer



Multicamera Video Summarization from Optimal Reconstruction 103

summary. The horizontal distance between the two curves shows the decrease in
the number of frames that need to be displayed to the user after including inter-
region information. Notice that for region 4, the unforced reconstruction using
region 0’s summary already has lower error than a reconstruction in isolation for
many target lengths, so it could be excluded from the summary completely.

5 Conclusion

We proposed a technique for video summarization that takes a principled ap-
proach to creating an output summary video. By viewing the spatio-temporal
patches that are retained for the output summary as observations of the local
motion of the input video, our system attempts to optimally construct the sum-
mary to best allow inference of the missing input data. This allows it to choose
key patches not just based on motion, but on a viewer’s expectation of what mo-
tion will occur. Our results show the validity of this approach and its ability to
generalize to camera networks with disjoint views by allowing motion shown in
one region to inform what is shown in another, creating a more concise summary.
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Abstract. Network cameras are becoming increasingly popular as
surveillance devices. They compress the captured live video data into
Motion JPEG and/or MPEG standard formats, and they transmit them
through the IP network. MPEG-coded videos contain motion vectors
that are useful information for video analysis. However, the motion vec-
tors occurring in homogeneous, low-textured, and line regions tend to
be unstable and noisy. To address this problem, the noisy motion vector
elimination using vector-based zero comparison and global motion esti-
mation was proposed. In this paper, we extend the existing elimination
method by introducing a novel bi-directional vector-based zero compari-
son to enhance the accuracy of noisy motion vector elimination, and we
propose an efficient algorithm for zero comparison. We demonstrate the
effectiveness of the proposed method through several experiments using
actual video data acquired by an MPEG video camera.

1 Introduction

Surveillance cameras are being widely employed both commercially and pri-
vately to safeguard property and to monitor suspicious activities. Previously,
analog cameras, which output analog video signals, were used for video surveil-
lance. In recent years, network cameras that connect to the IP network are going
widespread use owing to their high flexibility and scalability. Network cameras
capture live video data, and they generally compress the captured video data
into Motion JPEG and/or MPEG standard formats; the compressed video data
is then transmitted through the IP network. As network cameras prevail, oppor-
tunities to directly handle the compressed data increase.

The Moving Pictures Experts Group (MPEG) was established in 1988, and
the MPEG standards have been extensively adopted worldwide for the compres-
sion of multimedia data. MPEG-coded videos contain motion vectors to com-
press video data by using motion compensation. These motion vectors contain
useful information for video analysis, and a number of video analysis meth-
ods using motion vectors have been proposed [1,2,3,4,5]. However, the motion
vectors occurring at low-textured, homogeneous, and line regions are noisy for
motion analysis. Although these noisy motion vectors adversely affect motion
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analysis, effective reduction is not always adopted in conventional motion anal-
ysis methods. Colace et al. proposed noisy motion vector reduction for camera
parameter estimation by using the discrete cosine transform (DCT) coefficients
of MPEG video data [6]. They assumed that the energy of homogeneous and
low-textured regions is concentrated at low frequencies of the DCT coefficients,
and they eliminated them by thresholding. Hessel and Eickeler also employed
the DCT coefficients to detect low-textured areas [7]. Eng and Ma proposed a
trajectory extraction method [8] whereby a standard vector median filter and
fuzzy set approach are adopted for the reduction of irregular motion vectors.
The methods described above can reduce the noisy motion vectors occurring in
homogeneous and low-textured regions, but they cannot reduce the ones occur-
ring in line regions. To address this shortcoming, Yokoyama et al. proposed a
method [9] for elimination of noisy motion vectors occurring in all the homoge-
neous, low-textured, and line regions by introducing global motion estimation
[10] and zero comparison [11]. By using this method, it is possible to obtain
stable local motion vectors and to estimate global motion, which can be used
for the motion analysis of video data acquired by a moving camera.

In this paper, we propose a novel bi-directional vector-based comparison to en-
hance the accuracy of noisy motion vector elimination. In the proposed method,
we introduce an additional region to enable bi-directional examination of the
target region movement; this enhances the accuracy of noisy motion vector elimi-
nation. We also propose an efficient algorithm for bi-directional zero comparison.

2 Noisy Vector Elimination

In this section, we briefly introduce a noisy motion vector elimination method
using global motion estimation and zero comparison [9]. Figure 1 shows the two
main processes and the flow of motion vector sets in this elimination method.
The global motion estimation can utilize the motion vectors that correctly reflect
global motion even occurring at homogeneous and low textured regions. The n-
th frame input motion vector set MVn is separated into the motion vector set
ĜMVn for estimating the global motion parameter set mn and other motion vec-
tors. As a result of global motion estimation, the global motion vector set GMVn

is generated by the estimated parameter set mn, and the tentative local motion
vector set L̂MVn is obtained by subtracting GMVn from MVn. L̂MVn includes
both useful local motion vectors and noisy motion vectors for motion analysis.
Therefore, the vector-based zero comparison process eliminates the noisy motion
vectors NMVn from L̂MVn on the basis of their movement, and it outputs the
stable local motion vectors LMVn.

2.1 Zero Comparison

The original zero comparison method [11] is used to determine whether a tar-
get region is moving or stationary without any prior knowledge or assumption
regarding the moving object. It searches the best matched region for the target
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MVn: motion vectors (input)

LMVn: stable local motion vectors (output)

GMVn: global motion vectors

ĜMVn: vectors used for estimation

L̂MVn: tentative local motion vectors

NMVn: noisy motion vectors

�

Global motion estimation

Vector-based zero comparison

Fig. 1. Main processes and flow of motion vectors in noisy motion vector elimination

region out of the next frame and examine the difference distributions (i.e., a
correlation map) are examined. When a target region that is neither homoge-
neous nor low-textured is moving, the correlation map tends to have a peak at
a different position from zero (i.e., the origin of the map). The zero comparison
method checks this fact by calculation of two distances D0 and D1; D0 is the
sum of absolute distances (SAD) between the target region Ro and its corre-
sponding region Rn in the next frame, and D1 is the SAD between Ro and its
best match region Rb in the next frame (see Fig. 2). If the difference between D0

and D1 exceeds a predefined threshold value tz, the correlation map has a peak
at a different position from zero due to its movement (Fig. 2(b)). Otherwise, we
can conclude that the target region is stationary, homogeneous, or low-textured.
If the target region Rt is stationary, both the position of D0 and D1 become
equal as shown in Fig. 2(a). If the target region is homogeneous or low textured
whether moving or not, the difference between D0 and D1 becomes low due to
their region property.

2.2 Vector-Based Zero Comparison

The vector-based zero comparison method proposed in [9] is developed by ex-
tending the original zero comparison method in order to adapt motion vectors
including global motion. Figure 3 shows an example: a stationary line is falsely
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Fig. 2. Correlation map examples

vi

li

gi

Rti : target region

Rbi : base region Rzbi
: zero region

Previous line Current line

Fig. 3. Abstract of vector-based zero comparison under pseudo motion of a stationary
line caused by global motion due to camera movement

moving to right by a global motion due to camera movement. In this case, an
MPEG encoder outputs vi that connects a current frame region Rti and its ref-
erence frame region Rbi . In the vector-based zero comparison method, the target
region to be examined its movement is Rti , and Rbi corresponding to the region
Ro in the original zero comparison method becomes a base region for calculating
distances D0 and D1. The motion vector vi is decomposed into a local motion
vector li and its global motion vector gi by the global motion estimation process.
If the norm of li exceeds zero or a predefined threshold value, it can be assumed
that Rti is moving despite the whole line is not moving. The global motion shifts
Rbi from its current frame position to Rzbi

position that corresponds to Rn in
the original method. Therefore, we calculate D0 and D1 as follows:

D0 = d(Rbi , Rzbi
), (1)

D1 = d(Rbi , Rti). (2)

If D0 − D1 ≤ tz, we can conclude that the target region Rti is stationary,
homogeneous or low-textured. When D0 − D1 > tz, we can conclude that Rti

has local motion. By applying this vector-based zero comparison method to
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vi

li

gi

−gi

Rti : target region

Rbi : base region Rzbi
: zero region

Rzti
: zero region

Obstacle

Previous line Current line

Fig. 4. Abstract of bi-directional zero comparison under pseudo motion of a stationary
line caused by global motion due to camera movement; the zero region corresponding
to the base region is affected by obstacle

L̂MVn, we can identify and eliminate the motion vectors occurring in stationary,
homogeneous, and low textured regions.

3 Bi-directional Vector-Based Zero Comparison

In the original vector-based zero comparison, three regions Rti , Rbi , and Rzbi

are used to determine whether the target region is stationary or moving. The bi-
directional method is a simple expansion of the original zero comparison method
by addition of one examined region Rzti

in the previous frame and calculation
of the distance

D′
0 = d(Rti , Rzti

). (3)

Here, Rzti
is a backward shifted region from the Rti position by the global motion

gi. The effectiveness of this expansion can be explained using the example shown
in Fig. 4. In this figure, we assume that an obstacle overlaps with the region Rzbi

.
The distance D0 = d(Rbi , Rzbi

) increases due to the presence of the obstacle,
and we incorrectly conclude that the target region has local motion because
D0 −D1 > tz. However, the distance D′

0 = d(Rti , Rzti
), which is the zero region

corresponding to Rti in backward direction, decreases; hence, we can correctly
conclude that the target region is stationary because D′

0 − D1 ≤ tz.
We also propose an early termination strategy for zero comparison. Rbi and

Rti , which are directly connected by vi, constitute the best match region pair.
The distance between Rbi and Rti becomes smaller than that between other
regions; this implies that D1 ≤ D0 and D1 ≤ D′

0. Therefore, D0 and D′
0 should

be calculated before D1 because we can conclude that the target region doesn’t
have local motion when D0 ≤ tz or D′

0 ≤ tz .
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Bi-directional vector-based zero comparison algorithm:

Give the tentative local motion vectors {vi}i=1...m and their previously estimated
global motion vector {gi}i=1...m as inputs. Apply the following steps to each
vector vi that connects the target region Rti in the current frame and the base
region Rbi in the previous frame:

1. Calculate the distance D0 = d(Rbi , Rzbi
).

2. If D0 ≤ t, the motion vector vi is stationary; terminate the process.
3. Calculate the distance D1 = d(Rti , Rbi).
4. If D0 − D1 ≤ t, vi is stationary; terminate the process.
5. Calculate the distance D′

0 = d(Rti , Rzti
).

6. If D′
0 ≤ t, vi is stationary; terminate the process.

7. If D′
0 − D1 ≤ t, vi is stationary; else vi has local motion.

Steps 1, 2, 3, and 4 analyze motion in forward direction, whereas Steps 5, 6 and
7 analyze motion in the backward direction. Steps 1, 3, and 5 are calculate the
distance between regions. Steps 2, 4, and 6 denote termination of the process for
each vector.

4 Experiments

In this section, we show the experimental results obtained by the proposed
method; we used an actual video recording of three walkers acquired by an
MPEG-4 camera with pan, tilt, zoom-in, and zoom-out movements. The video
data contains 716 frames; each frame encoded by the MPEG-4 simple profile
has a resolution of 640 × 480 pixels and frame rate of 30 fps. We used C/C++
environments for system implementation: gcc 4.4.1 on Linux 2.6.31-22-generic
with FFmpeg SVN-r13022 and OpenCV 1.0 libraries. FFmpeg is an audio/video
codec library, and OpenCV is a computer vision library that we used to display
video sequences and matrix operations. All experiments were performed on a
laptop computer with a 1.66 GHz Intel Core Duo CPU L2400 and 1.0 GB RAM.

Figure 5 shows the processed motion vectors drawn on the original frame. In
this figure, all the lines show the tentative local motion vectors L̂MVn obtained
after global motion estimation; the red lines denote the noisy motion vectors
NMVn eliminated by the proposed elimination process, and the yellow lines
denote the local motion vectors LMVn. Figure 5(e) shows incorrect elimination
from the failure of global motion estimation due to suddenly movements of the
camera, which occurred between Frames #332 and #333. In following frame
#334, global motion estimation was captured by global motion estimation, and
the elimination results were improved as shown in Fig. 5(f). From the results
presented above, we can visually confirm that the proposed method effectively
eliminated the noisy motion vectors occurring in the background.

Table 1 lists the processing details for each tentative local motion vectors.
In this table, “Forward” denotes the same processing as the original method;
whereas “Backward” denotes the additional processing of the proposed method.
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(a) Frame #102 (b) Frame #265 (c) Frame #322

(d) Frame #332 (e) Frame #333 (f) Frame #334

(g) Frame #400 (h) Frame #472 (i) Frame #600

Fig. 5. Elimination result examples

Table 1. Processing details

Forward Backward
Step 2 Step 4 Step 6 Step 7 Moving

Calls 51,745 45,400 39,100 36,456 –
Outputs 6,345 6,300 2,644 4,108 32,348
Output ratio to the function calls 0.123 0.122 0.051 0.079 0.625

0.245 0.130
Output ratio to the stationary outputs 0.327 0.325 0.136 0.212 –

0.652 0.348

For 13.0% of the total function calls, the backward processing determined that
target region is stationary. This implies that backward processing reduced the
noisy motion vectors that could not be examined by the original method. For
17.4% of the total function calls, early termination occurred. Thus, the early
termination strategy was effective. The duration of the video data was 24 s.
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Table 2. Performance of moving region detection

Original Bi-Directional

Recall 0.833 (0.132) 0.814 (0.144)
Precision 0.661 (0.133) 0.715 (0.121)
F-measure 0.728 (0.120) 0.753 (0.115)

The processing time for elimination was measured as 2.5 s by the gettimeofday
function.

We evaluated the performance of the proposed elimination method through
motion region detection. The detection results were obtained by the method
[12] that was adapted to evaluate the performance of the original zero compar-
ison based elimination method. We manually generated the ground truth and
evaluated the detection results on the basis of three performance indices: recall,
precision, and F-measure. Table 2 shows the performance of the moving region
detection results using stable local motion vectors obtained by the original zero-
comparison method and the proposed bi-directional zero comparison method.
As seen in the table, the recall performance was slightly worse because of the
excess elimination of motion vectors occurring in the homogeneous regions inside
moving objects (see the eliminated motion vectors on the back of the walking
person in Fig. 5(c)). However, the proposed method outperformed the original
method in terms of precision and F-measure.

5 Conclusion

In this paper, we have proposed a method to eliminate noisy motion vectors by
using bi-directional zero-comparison. The original vector-based zero comparison
is useful to determine whether the target region is stationary or moving without
any prior knowledge or assumption. We improved upon the original method by
introducing a bi-directional mechanism and an effective algorithm to implement
it. We demonstrated the elimination process in details and the effectiveness of
the proposed method through a moving region detection application. We also
confirmed that the proposed method is a potential alternative to the original
elimination method. Furthermore, we believe that the proposed method for noisy
motion vector elimination can be one of the fundamental pre-processing frame-
works for MPEG video analysis using motion vectors. In the future, we plan
to enhance the performance of the proposed method by introducing concepts of
mathematical morphology in order to recover the incorrectly eliminated motion
vectors of moving object regions.
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Abstract. We introduce a procedure for calibrated multi camera setups
in which observed persons within a realistic and, thus, difficult surround-
ing are determined as foreground in image sequences via a fully automatic
purely data driven segmentation.

In order to gain an optimal separation of fore- and background for
each frame in terms of Expectation Maximization (EM), an algorithm is
proposed which utilizes a combination of geometrical constraints of the
scene and, additionally, temporal constraints for a optimization over the
entire sequence to estimate the background. This background informa-
tion is then used to determine accurate silhouettes of the foreground.

We demonstrate the effectiveness of our approach based on a qualita-
tive data analysis and compare it to other state of the art approaches.

1 Introduction

Image based analysis of movements of gymnasts during their exercises at World
Championships is a challenging goal for many applications, e.g. automatic judge-
ment of the performances, objective comparisions between rivals, evaluation of
training improvement, and visualization possiblilities during television broad-
cast. Markerless pure image based pose and movement analysis is highly de-
sireable in the above mentioned scenarios. Unfortunately, in realistic scenarios,
the image data of the gymnasts is affected by a lot of surrounding noise, e.g.
movement of spectators and judges and changing lighting conditions which do
not appear in laboratory like environments. Additionally, the recorded sequences
are usually short and the distracting background in the recordings is often not
exactly known a priori because of a possible permanently changing environment
with potential occlusions and other disturbances. Thus, algorithms have to be
developed which can cope with the above mentioned influences by identifying
and removing the perturbances to allow for precise results in later steps.

Markerless video based human motion capture is an extensively studied area
of interest. Many approaches try to reconstruct the 3d pose of the observed
humans with monocular [1], stereo [2], multi view [3] or multi view stereo setups
[4]. Different approaches are used to segment humans in the image data. One

� This work was partially supported by a grant from the Ministry of Science, Research
and the Arts of Baden-Württemberg.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 113–122, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



114 T. Feldmann

idea is to separate fore- and background by differencing over time [3,5]. Another
idea is to use the color coherence of the surrounding with [6] or without an
explicit human model [7].

In case of image differencing, the fore- and background is usually modeled
by Codebooks [8] or statistically with e.g. Gaussian Mixture Modells (GMM) [9]
and EM update schemes, where the discrimination between fore- and background
depends on temporal thresholds [10]. This can be extended by the integration
of topological knowledge via graphcuts to estimate nonstationary backgrounds
as presented in [11,12]. In [13] a method has been proposed which exploits geo-
metrical constraints in terms of disparity maps of stereo setups to cope e.g. with
lighting influences in surveillance tasks. To overcome problems with non-moving
foreground objects and moving backgrounds [14] proposed a method which re-
places temporal thresholds by utilizing the geometric constraints of multi cam-
era setups for foreground/background adaption and probabilistic segmentation.
When using multi camera setups, the information of all cameras is usually uti-
lized to create a probabilistic 3d reconstruction [15,16,17] for further analysis of
the surface and pose of observed objects or humans.

2 Contribution

The main focus of this paper is on segmentation of gymnasts in short im-
age sequences in realistic, often cluttered and uncontrolled environments with
partially moving backgrounds using a multi camera setup. Although usual fore-
ground/background segmentation algorithms often produce artifacts due to dis-
turbances of the surrounding, Feldmann et al. showed in [14] that by using
geometric constraints this approach leads to proper segmentation results.

The approach in [14] needs empty background images of the scene during
intialization. Perfect empty background images are not available in many cases
in environments where gymnasts usually perform their exercises. Thus, our ap-
proach is motivated by the idea of spatio-temporal optimization to examine if
it is possible to determine per frame optimal fore- and background models by
examining all frames of given video sequences back and forth in time. We show
that this is possible given a) a roughly matching background image, e.g. created
by the approach in [11], b) an image sequence including the foreground and c)
geometric constraints regarding to the reconstruction area (cf. Fig. 1).

Proposed Method OutputInput

Optimization
Spatio−Temporal

Multi camera image sequence
Optimal background model per frame

Optimal foreground silhouette per frame

Coarse background model with errors

Geometric constraints

Fig. 1. Input data, proposed optimization method and output data
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We demonstrate that our approach leads to improved silhouettes in which on
the one hand wrongly classified foreground will be removed, and on the other
hand erroneous silhouette holes have a chance to get closed by learning better
differentiation models.

3 Spatio-temporal Optimization

Spatio-temporal optimization for foreground segmentation is based on an idea
of two nested loops. The idea of the first loop is: First, foreground in image data
is used to generate a 3d reconstruction; Second, the 3d reconstruction leads the
approach to identify foreground in other images. While operating the first loop,
knowledge about the fore- and background can be accumulated. If the input
data at the beginning does not fit well, this first loop alone gives only mediocre
results. Now the second closed loop comes into play: Roll the first loop back and
forth in time to aquire knowledge of the past and the future and try to optimize
the solution for each frame and all camera views. In contrary to the common
use of temporal constraints, where time is used to detect changes and label it as
foreground, in our approach time is additionally used to describe the context of
the background over time.

Several building blocks are needed for the inner loop. First of all, models
for the representation of fore- and background (cf. section 3.1) are necessary.
Furthermore, a strategy is needed to update these models. Hence, a link has to be
found, to geometrically distinguish foreground and background (cf. section 3.2).
Finally, temporal coherence has to be used for the outer loop, to integrate all
other building blocks in a reasonable manner (cf. section 3.3).

3.1 Fore- and Background Models

We introduce the random variable F ∈ {0, 1} to decide, whether a pixel at a
given time t is fore- (F = 1) or background (F = 0). Given a color value c, the
probability distributions p(c|F = 1) and p(c|F = 0) are used to model fore- and
background color distributions which are used to infer the conditional probability
P (F = 1|c) that an observation of the color c belongs to the foreground.

The foreground segment of the image sequence is modeled by a per frame
Gaussian Mixture Model (GMM) with the gaussian density function η(c, μ, Σ)
where c is a color value and μk and Σk are mean and variance of the kth

component of the mixture (cf. eq. 1).

p(c|F = 1) = (1 − PNF)
K∑

k=1

ωkη(c, μk, Σk)︸ ︷︷ ︸
learned fg GMM

+PNF U(c)︸︷︷︸
unknown fg

. (1)

Additionally, a weight ωk for each component is introduced. Assuming, that the
pixels of the foreground segment are known, the k-means algorithm is used to
partition the foreground colors and to derive mean, variance and weight of the
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components. Unless the foreground may change very fast due to new foreground
objects, and the color distribution is, thus, unknown, two new variables will be
introduced. 1. The probability of new foreground: PNF which couples already
learned and new unknown foreground. 2. The distribution of new colors, which
are distributed uniformly: U(c). This foreground model is updated continuously
by clustering the foreground colors during consecutive frames of the sequence.

To model the background we again use a GMMs with a gaussian density
function η(c, μ, Σ), where μk,d

t and Σk,d
t are mean and variance of the dth color

channel with d ∈ {1, 2, 3}, cd
t is the current color and k is the gaussian component

of the mixture to model the color distribution of the image background. Each
component has an additional weight ωk

t (cf. eq. 2). Since we have a static camera
setup, we model the color distribution (in contrast to the foreground) of each
pixel position as a separate GMM.

The model is extended by a directly integrated shadow and highlight model to
be independent from illumination changes, where St ∈ {0, 1} models the change
of the illumination (cf. eq. 2).

The background color model and the highlight/shadow model are used to
compose the complete background model. Both parts of the model are coupled by
the probability of shadow PS which we set to PS = 1

2 . The complete background
model is, hence, defined by

p(ct|Ft = 0) = (1 − PS)
K∑

k=1

ωk
t η(ct, μ

k
t , Σk

t )︸ ︷︷ ︸
learned bg GMM

+PS

K∑
k=1

ωk
t p(ct|Sk

t = 1)︸ ︷︷ ︸
shadow/highlight model

. (2)

The highlight/shadow model is built analogously to the background color
model. The weightings of the color model are reused for the components of
the shadow model. The definition of highlights and shadows is performed in
the YUV colorspace. The luminance ratio λ is calculated in the Y channel by
λ = Yt

YB
= c1

t

μk,1
t

and then using simple thresholds of the luminance ratio with
τS < 1 for shadows and τH > 1 for highlights. The density of a certain component
k of the highlight/shadow model is then defined by

p(ct|Sk
t = 1) =

⎧⎨⎩
1

(τH−τS)μk,1
t

∏
d=2,3

η(cd
t , μ

′k,d
t , Σk,d

t ) if τS ≤ λk
t ≤ τH

0 else
, (3)

where 1

(τH−τS)μk,1
t

is a scale factor to achieve the density’s integration to be 1.
The background model needs to be updated in case of changes. Assuming

that we are able to identify regions which are definitely not foreground and
differ from the background model (cf. section 3.2), the GMMs of the associated
locations have to be updated. The update process is done continuously over time
by utilizing the online Expectation Maximization (EM) approach from [10].
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3.2 3d Reconstruction by Probabilistic Fusion

As stated in section 3.1, a method is needed to identify the foreground in camera
images. We think methods exploiting the strong prior of geometric coherence
should be used in case of multiple views. Thus, we use the already estimated fore-
and background models and infer a probabilistic voxel reconstruction analogue
to [16]. This means that the space between all cameras is discretized into a 3d
voxel space. For each voxel V ∈ {0, 1}, the probability of occupation is infered
by using a shape from silhouette approach based on the probabilities of fore- and
background in each camera image. The probabilistic approach helps to overcome
problems caused by misclassified pixels in certain camera images. The causal
chain of voxel reconstruction is given by V → Fn → Cn where Fn is the random
variable of foreground in nth view and Cn the random variable of a pixel’s color in
nth view. The causal chain implies that the voxels have to be projected into the
images for voxel reconstruction in order to determine whether they are occupied
by foreground or not. For simplification of the following steps, we assume that
a voxel projects to exactly one pixel.

To model errors, which might apear during reconstruction, additional prob-
abilities are introduced for the probabilistic reconstruction. The probability,
whether a voxel is occupied or not is initially set to P (V) = 1

2 . Furthermore,
three erroneous cases are considered.

First case: The voxel should be occupied, but is erroneously not. This proba-
bility of a detection failure PDF is caused by an erronously classified background
in camera n, i.e. V : P (Fn = 0|V = 1). Second case: The voxel should not be occu-
pied, but is erroneously occupied. This probability of a false alarm PFA is caused
by an erronously classified foreground in camera n, i.e. V : P (Fn = 1|V = 0).
Third case: The voxel should not be occupied, but is erroneously occupied be-
cause another voxel on the same line of sight is occupied. This is defined as the
probability PO of an obstruction.

The conditional probability of foreground of an unoccupied voxel is, hence,
V : P (Fn = 1|V = 0) = PO(1 − PDF) + (1 − PO)PFA and of background of an
unoccupied voxel it is V : P (Fn = 0|V = 0) = 1 − [PO(1 − PDF) + (1 − PO)PFA].

The voxel occupation can now be marginalized (c.f. [14] for more details) over
the unknown variables Fn by observing the colors c1, . . . , cN at the correspond-
ing pixels in the images of the cameras 1, . . . , N by calculating

P (V = 1|c1, . . . , cN ) =
N∏

n=1

∑
f∈{0,1}

P (Fn = f |V = 1)p(cn|Fn = f)

∑
v∈{0,1}

N∏
n=1

∑
f∈{0,1}

P (Fn = f |V = v)p(cn|Fn = f)
.

(4)

The resulting voxel reconstruction is then used to identify fore- and back-
ground segments in the camera images in the next model update step (c.f. 3.1).
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3.3 Integrating Iterations

The proposed method needs a rough initialization of the background model.
Hence, an image with a somewhat similar content is used for initialization. The
foreground model is initially distributed equally.

After the initialization phase, the iteration phase starts. The idea is derived
from a global bundle adjustment. Other than in a bundle adjustment, the itera-
tions in this approach are bound to the constraints predefined by the continuity
of time. Hence the optimization can not be done by skipping in between dif-
ferent time steps, but only by running along the image sequence (forward and
backward). Each eradication of one direction is defined as to be one iteration
step. The following five consecutive steps are executed in each iteration as long
as additional images in this direction are available:

1. Use the current foreground and background model and the current images
to calculate a 3d reconstruction by probabilistic fusion (cf. subsection 3.2).

2. Project the probabilistic reconstruction into each camera image to generate
foreground masks.

3. Use the thresholded, inverted foreground mask to update the background
(cf. subsections 3.1-3.1) at positions far from the foreground.

4. Use the current foreground and background model and the current images
to calculate a probabilistic segmentation.

5. Use a logical AND operation on the segmentation result and the probabilis-
tic projection to generate a mask to learn the current foreground in the
foreground model (cf. subsection 3.1).

The iterations are repeated until the number of pixels in each camera image
reach a stable state, i.e. the absolute difference of the number of foreground
pixels of two consecutive iterations is smaller than a given epsilon. We define a
state to be stable if 99.99% of the pixels do not change any more between two
consecutive steps.

4 Evaluation

In a first step, we evaluated the algorithm qualitatively on a series of 200 se-
quences recorded in a gym. A gymnast is performing exercises, e.g. back hand-
springs along the floor mat, while others inside the same room take care of the
recordings. We used a static calibrated camera system with seven VGA cameras
which were set up in a circle like configuration. We present the results on the
images of one randomly chosen recording with 204 images per camera. We show
the first frame of the camera 4 with the most disturbances to demonstrate the
effectiveness of our algorithm.

In Fig. 2 the gymnast can be seen in the foreground of the scene. Additionally,
the image for background initialization is shown which was used to generate
the initial background model. Please note that the background in the first two
images differs in many details because the background image was taken after the
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Fig. 2. Images of camera 4, from left to right: 1. First image of scene with gymnast
(foreground), 2. Input background image recorded earlier, 3. Automatically generated
most probable background

Fig. 3. First image of test sequence, from left to right: 1. Difference between input fore-
and background images (binary threshold), 2. Proposed algorithm after one iteration
without spatio-temporal optimization (gray values correspond to infered probabilities),
3. Result of proposed algorithm with spatio-temporal optimization after two iterations

recordings. However, these errors do not compromise our algorithm. To show this,
we present the automatically generated most probable background generated
automatically by our algorithm after two iterations as the third image of Fig. 2.
Please note the shadows on the floor, which are mostly probable in the first
frame due to the temporal constraints and the shadow model of our approach.

The results of the foreground segmentation are presented in Fig. 3. The left-
most image shows a simple binarized difference between the first and second
image of Fig. 2. All changes between the input images now become obvious.
In the second image, we present the results of our algorithm, after one itera-
tion. It is visible that many artifacts still appear even though the result is much
better than the simple differencing. The third image finally shows the results
of the proposed algorithm. It is obvious that the gymnast has been identified
very precisely as foreground and all previous artifacts have been removed. The
second and third images contain gray values which correspond directly to the
probability of the pixel to be foreground scaled between 0 . . . 255.

Holes in the silhouette of the foreground (Fig. 3, left) could be closed in
many cases with our approach. The data driven hole closing is possible, because
by identifing the foreground utilizing the geometrical and temporal constraints,
the color distributions of fore- and background could be learned more precisely
over time. Unfortunately, there are still locations where the background looks
exactly like the foreground. In these cases, our purely data driven approach has
no knowledge about higher level information, like connected components etc. and
thus, has no chance to close such holes (even though this could be done in an
additional post processing step). We decided to present the results of the second
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Fig. 4. On the gymnast sequence, the proposed algorithm obtains a stable state after
two iterations (sharp bend at iteration 2)

Cam 2, Iteration 1 Cam 2, Iteration 6 Cam 7, Iteration 1 Cam 7, Iteration 6

Fig. 5. Example silhouettes from camera 2 and 7 at first and sixth iteration to reason
decreasing and increasing foreground pixels during iterations (cf. Fig. 4). Camera 2:
Erroneous foreground gets removed. Camera 7: Silhouette holes are getting closed.

iteration firsthand, because we found the algorithm to reach a stable state very
fast after two iterations in all seven cameras as it can be seen in Fig. 4.

Pixels with a probability higher than 75% have been counted as foreground.
Two cases of optimizations can be seen in the plot. The first case is a drastical
reduction of false positives pixels e.g. in camera 2 (cf. Fig. 5, left two images)
due to background changes which our method removes almost completely within
2 iterations. The contrary case is the removal of false negatives, e.g. in camera 7
(cf. Fig. 5, two images on the right), where due to ambiguities a lot of foreground
pixels have been erroneously labeled as background initially. After only a few
iterations, the proposed method is able to learn better models and is hence able
to identify the foreground more correctly.

In a second evaluation we compared our algorithm with the approaches of [8]
and [10]. The results of random frames of a randomly selected camera 3 can be
seen in Fig 6. It is obvious that the proposed algorithm outperforms the other ap-
proaches regarding the foreground silhouette extraction in difficult scenarios. The
algorithm of [8] is not able to adopt over time in a meaningful manner. The algo-
rithm of [10] is able to cope with the intially wrong backgrounds but also learns the
correct foreground into the background model. Thus, in contrast to the proposed
approach, only fast motions can be segmented as expected and motions of persons
in the background result in additional unintentional foreground segments.

Summing up we were able to show, that the presented approach works reliable
in realistic, difficult scenarios and is able to greatly enhance the segmentation
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Codebook [8], Frame 1 GMM [10], Frame 1 Own approach, Frame 1

Codebook [8], Frame 100 GMM [10], Frame 100 Own approach, Frame 100

Fig. 6. Top row: Results of frame 1. Bottom row: Results of frame 100. From left to
right: Results of the algorithm of [8], [10] and the results of our own approach.

results over time. Compared to state of the art approaches, we found that only
our algorithm gains satisfying results in such realistic but difficult scenarios. For
scientific purposes and better verifiability, we provide two demo sequences and
an implementation of the algorithm at http://human.informatik.kit.edu

5 Conclusion

We presented a fully automatic approach to segment fore- and background in
recorded video sequences by using a calibrated environments instead of artifi-
cial laboratory environments. In contrast to other approaches, our method is
completely data driven and does neither make assumptions about homogenous
backgrounds which are often not the case, nor does it need an explicit model
of humans, no matter if these are shape models or kinematic and/or volumet-
ric models. Hence, our approach could also be used for silhouette extraction in
similar scenarios with objects inside a camera volume where no explicit model
of the observed object is available.

We combined spatial constraints defined by the camera setup and temporal con-
straints in our approach.Wewere able to showthatbetter backgroundmodels could
be learned with our approach and that we can find a stable state very fast after only
a few iterations as well as it leads to locally optimal results in the sense of EM.

We tested the algorithm on over 200 sequences and found it to produce very
good results in foreground segmentation as shown in an exemplary qualitative
data analysis. We found the proposed approach to significantly improve the
segmentation results. Additionally, the presented approach gains better results
as state of the art algorithms in realistic scenarios. We think, that our approach
should be, thus, prefered in multi camera setups recording realistic video footage.

http://human.informatik.kit.edu
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Abstract. Background subtraction is often one of the first tasks in-
volved in video surveillance applications. Classical methods use a statis-
tical background model and compute a distance between each part (pixel
or bloc) of the current frame and the model to detect moving targets. Seg-
mentation is then obtained by thresholding this distance. This commonly
used approach suffers from two main drawbacks. First, the segmentation
is blinded done, without considering the foreground appearance. Sec-
ondly, threshold value is often empirically specified, according to visual
quality evaluation; it means both that the value is scene-dependant and
that its setting is not automated using objective criterion.

In order to address these drawbacks, we introduce in this article a fore-
ground model to improve the segmentation process. Several segmentation
strategies are proposed, and theoretically as well as experimentally com-
pared. Thanks to theoretical error estimation, an optimal segmentation
threshold can be deduced to control segmentation behaviour like hold an
especially targeted false alarm rate. This approach improves segmenta-
tion results in video surveillance applications, in some difficult situations
as non-stationary background.

1 Introduction

In many computer vision systems, moving object detection is often a required
task before higher level processes like event understanding. Background (here
after noted BG) removal techniques are then used to obtained a first moving
object extraction before adding temporal consistency, e.g. involving a tracking
step. According to [1], the commonly used BG removal processes are composed of
three main steps: an optional pre-processing task, a BG modeling and updating
step, and a FG (Foreground) detection.

A large number of BG representations are proposed in the literature, as re-
cently summarized in [1,2]. Beside non-recursive techniques which involve a com-
ponent selection from a temporal buffer (frame differencing, average, median,
. . . ), some statistical algorithms are proposed, aiming to model the probabilistic
data distribution. Wren et al. [3] describe each BG pixel by a single Gaussian
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distribution. This modelisation, well adapted to static BG, does not handle dy-
namic BG nor illumination changes. In [4], Stauffer and Grimson used a mixture
of K Gaussian distributions, updated by a recursive version of the EM algo-
rithm. When data can not be handled by Gaussian distribution, non-parametric
BG modeling can be considered. Elgammal et al. [5] propose using Kernel density
estimators. This method involves high computational cost and needs to specify
parameters (mainly kernel distribution). When BG is correctly modeled, the
next main step consists in segmenting images and detecting moving object. This
is usually processed by thresholding a data probability, a specific distance to BG
model, or an error to a predictive model. This threshold, often set empirically,
is specific to each scene.

In this work, a FG model is considered in addition to common BG model. This
combined information is jointly used in the segmentation formulation in order
to improve segmentation results. This allows to specify an automatic threshold
according to statistic rates (true positive rate, accuracy, precision, . . . )

This paper is organized as follows: in the next Section, some recent related
works are presented on both FG modeling associated to Bayesian criterion and
automatic threshold computation. Section 3 details the proposed approach and,
in particular, a mathematical computation of some statistical rates with applica-
tion to Gaussian modelisation. In this Gaussian case, two segmentation strategies
are presented and compared. The following Section presents an extension of the
proposed approach to a more generic FG/BG data modeling, as well as another
possible use of the error analysis. The proposed algorithms are evaluated in
Sections 5 and 6.1, based on, respectively, synthetic and real sequences. Finally,
we conclude on the proposed method and present promising extensions.

2 Related Works

Although the most largely used approaches for BG subtraction remains the sole
use of a BG model, some recent papers consider both FG and BG models. For
example Elgammal et al [5] use a KDE-based blob model for each people in the
sequence. In this work, FG models are not used in the segmentation process, but
only in a posterior tracking phase. A FG model has also been introduced with
Bayes criterion in a probabilistic classification framework [6,7,8,9,10]. In [6], the
observation probability of each pixel according to BG/FG models is compared
in order to set parameters according to misclassification rate. But, like in [9],
a basic uniform pdf 1 is used instead of a real FG model. Consequently this
segmentation is equivalent to the common thresholding process. In [8], a FG
model is built thanks to a recursive spatial analysis of segmentation. It allows
authors to obtain a FG probability that improves segmentation results. However,
the FG probability is not linked to the true FG appearance but to a recursive
segmentation analysis, limiting the potential enhancement. In [10] a Gaussian
FG model is used and updated under low motion assumption, leading, for each
new observation, to accurate probabilities. But, again, a threshold equivalent to
1 Probability density function.
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an a priori probability is necessary to take the decision and is manually tuned.
A FG model is also introduced in [7] and a full Bayes criterion is formulated to
deduce the posterior probabilities.

The use of a FG model seems to improve segmentation results by adding lo-
cal appearance adjustment. However, the probabilistic segmentation formulation
requires the knowledge of an prior probability that is often not available. The
choice of arbitrary values is not highly suitable because of the intrinsic scene
dependency. As this specification is often critical in terms of performances, some
works, like [11,12,13], focus on an automatic threshold tuning according to mis-
classification. The main idea is to extract some parameters that directly control
detection result quality. In [11], Gao and Coetzee propose a full modeling of the
BG subtraction process (BG modeling, segmentation process, unknown post-
processing, . . . ) and analyze the error. According to a specific scene, this allows
to plot theoretical ROC curves and choose the best parameters. But this method
requires intensive computation and is a pure off-line learning approach, aiming
to get a global threshold. This one is optimized according to a particular learn-
ing scene, and is not updated during the sequence to take into account scene
changes. For satellite imagery detection, Smith and Annoni evaluate in [12] some
distances between two Gaussian probabilistic distributions. The error analysis
allows selecting the optimal threshold that leads to equal misdetection and false
alarm rates. This approach is also inline used in [13] to tune threshold and en-
sure a given false-alarm rate. However the classification is processed without
considering FG model and then important information is ignored.

Our objective in this paper is to simultaneously exploit all these information.
We are motivated by the fact that FG model improves the segmentation pro-
cess, especially if it is associated to an adaptive threshold setting, which can be
specified thanks to the theoretical error estimation.

To evaluate the improvement of the proposed approach, a comparison with
the well known Stauffer and Grimson methods [4] is proposed. That is equivalent
to threshold the commonly used Mahalanobis distance where only BG model is
available. For a Gaussian BG distribution, N (μB, σ2

B),the observed data x is
classified as BG according to the threshold Th if:

μB − Th ∗ σB < x < μB + Th ∗ σB (1)

3 The Proposed Approach

In this section, under the assumption that data follows a Gaussian distribution,
some suitable characteristics are deduced. For simplicity purposes, we mainly
focus this work on one dimensional data as for instance brightness or special
gradient, but we expected that this study could be quite easily extended to
N-dimensional models.

This method is based on a Bayesian decision criterion including both BG and
FG models like in [6,9]. Then, x is classified as BG if :

PB(x) > β.PF (x) (2)
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where β > 0, PB(x) and PF (x) are the BG and FG observed data probabilities,
respectively. If (2) is not satisfied, x is classified as FG.

BG subtraction, or BG/FG segmentation, can be actually formulated as a
binary classification of the observation in FG or BG labels. To evaluate classi-
fication performance, some statistical measures are usually computed like false
alarm rate or sensitivity.

Let pB(x) and pF (x) denote the pdf of the BG and FG data distribution
respectively and Ω(T, pB, pF ) the subspace of the parameter T. It is possible
to define, from this information, some detection rates, as for example the true
positive rate (Sensitivity) defined by the FG distribution part correctly classified:

TPR =
∫

Ω(T,pB ,pF )

pF (x).dx (3)

With the same statement, True Negative Rate (specificity), False Positive Rate
and False Negative Rate can be computed:

TNR =
∫

Ω(T,pB ,pF )
pB(x).dx FPR =

∫
Ω(T,pB ,pF )

pB(x).dx

FNR =
∫

Ω(T,pB ,pF ) pF (x).dx
(4)

If FG and BG data distributions are available, all the error rates only depend on
the classification parameter T. Then, for each BG/FG couple, this parameter can
be locally determined according to a given detection rate. In a general case, the
computation is quite expensive but this complexity can be significantly decreased
with some modeling assumptions.

First we need to specify the data subspace where the segmentation process
generates a BG classification Ω(β, pB, pF ). Solving PB(x) > β.PF (x) is equiva-
lent to resolve the second order equation :

a.x2 + b.x + c > 0 with

⎧⎪⎨⎪⎩
a=σ2

B − σ2
F

b=2.
(
μB.σ2

F − μF .σ2
B

)
c=μ2

F .σ2
B − μ2

B.σ2
F − 2.σ2

B .σ2
F . ln

(
β.σB

σF

) (5)

Solving this equation allows us to find Ω(β, pB , pF ) and determine the TPR:

TPR =

⎧⎪⎪⎨⎪⎪⎩
if σB > σF

{
FF (x1) − FF (x2) if β > βl

0 if β ≤ βl

if σB < σF

{
1 + FF (x1) − FF (x2) if 0 < β < βl

1 if β ≥ βl

(6)

where x{1,2} denote the roots of (5) and FF (x) the repartition function of the
Foreground Gaussian distribution :

x{1,2} = μF .
σ2

B

σ2
B
−σ2

F
− μB .

σ2
F

σ2
B
−σ2

F
{+,−} σF .σB

σ2
B
−σ2
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.
√

(μF − μB)2 + 2.(σ2
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σF

)
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μF .σ2
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σ2
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σB

exp
(

−(μB−μF )2

2.(σ2
B
−σ2

F
)

)
(7)
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FF (x) = 1
2

(
1 + erf

(
x−μF√

2.σf

))
with erf(x) = 2√

π

∫ x

0 e−t2dt (8)

From this error analysis, two segmentation strategies are proposed which in-
volve the BG/FG model mentioned above.

3.1 First Segmentation Strategy: Targeted TPR or TNR

In the first segmentation strategy the detection threshold is estimated for each
image part (pixel, bloc) in order to satisfy a given error rate according to BG
and FG models, for example finding the threshold β (equation 2) that targets a
fixed true positive rate:

TPR = γ ⇔ β = argβ solve (γ − (0 + FF (x1) − FF (x2)) = 0) if σB > σF

argβ solve (γ − (1 + FF (x1) − FF (x2)) = 0) if σB < σF
(9)

Since formulation of the optimized threshold is not trivial, an optimization
routine has been proposed. This is however not a major issue since the expression
can be differentiated and then the solution is found with fast solving routine.

This strategy, that allows controlling a statistical rate, requires specifying a
parameter (for example the TPR goal). This formulation is however preferable
than the traditional ones (aiming to specify β) because the new specified param-
eter is scene independent.

3.2 Second Segmentation Strategy: Best TNR/TPR Ratio

The previous formulation can be easily extended to obtain a fully-automatic
detection. For example, β can be set to minimize the distance to a perfect seg-
mentation (TNR = 1, TPR = 1) in the ROC space:

β = argβ min
(
(1 − TNR(β))2 + (1 − TPR(β))2

)
(10)

This allows us to reach a fully automated segmentation strategy which is locally
tuned to achieve the best compromise between TPR and TNR. With this new
strategy, the TPR is then different for each pixel. This formulation can also be
tuned with specific weight on TNR and TPR

4 Extension to More General Data Distribution

The presented approach can be easily extended to any kind of distribution using
histograms. The problem is then reduced to the distance estimation between
histograms that can be efficiently performed. Let HB[i] and HF [i] are the N-
bins normalized histograms describing pB(x) and pF (x) respectively, and n(x)
the application allowing to select the histogram bin. The proposed segmentation



128 C. Gabard et al.

strategy compares the corresponding bin of BG and FG histograms, according
to a parametric factor:

x ∈ B ⇔ HB[n(x)] > β ∗ HF [n(x)] (11)

All the previously expressed rates can be easily computed as for example :

TNR(β) =
N∑

i=1

1+(HB[i] − β ∗ HF [i]) ∗ HB[i] (12)

with 1+(x) = 1 when x ≥ 1, and 0 otherwise. Then the optimization process
becomes quite simple and efficient using histogram modelisation.

5 Validation on Synthetic Sequences

In order to determine which method provides the best results, their performances
are evaluated using equivalent input conditions, for instance, reach a given TNR.
General formal demonstration seems to be quite difficult to achieve, so, in or-
der to get an overview of the comparative performances, we conducted intensive
and exhaustive simulations. Results emphasize that, for a given TNR, the FNR
of the proposed method is always smaller or equal to the FNR of the classical
one. In Figure 1, the FNR difference, between the classical Stauffer and Grimson
approach and the proposed one is plotted for a same TNR = 0.9 and different
parameters of BG/FG models (In the Stauffer and Grimson formulation, speci-
fying a TNR is close to select a common threshold Th =

√
2.erf−1(TNR)). To

achieve this, known Gaussian BG and FG models are used. Then, for each couple
of BG/FG models, some statistical rates are computed, like the TPR. First, we
verify that the new strategy has always at least the same result than the first
one. Then computations highlight that when the BG model has a higher variance
than the FG model, the new segmentation strategy provides a significant gain.

The concept is then evaluated on a synthetic sequence. A BG image with
different mean and noise values is generated. On the abscissa axis of the BG
image, the intensity value ranges from 0 to 255 to cover all grey levels. Gaussian
noise whose standard deviation increases from 1 to 70 (ordinate axis of the BG
image) is added. A FG mobile square, moving in all the space is then included.
It follows a Gaussian distribution with μF = 127 and σF = 25. A TNR is
set to 0.9 for both methods and long time statistics are estimated. Models are
assumed to be known by the segmentation process. The added object is really

Table 1. Results of the first proposed method with a TNR to 0.9

Method TNR TPR Accuracy Precision

Traditional 0.90 0.548 0.724 0.846
Proposed method 0.90 0.686 0.793 0.873
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present 50% of the time at each pixel. Statistical results presented in Table 1
show that the TNR is properly equal to 0.9, validating the proposed segmentation
strategy. Furthermore, for all statistical measures, the new segmentation strategy
improves results since the TPR is greater. Moreover, the gains locally obtained
correspond to those simulated in Figure 1.

Fig. 1. FNR1−FNR2 for TNR1 = TNR2. Left axis is the ratio of standard deviation:
σB/σF . Right axis is relative mean difference: (μB − μF )/σF .

6 Results on Real Sequences

Algorithms have also been tested on real video. Two sequences are presented
here. First the classical “bottle on water”. This sequence is of great interest since
BG is not stationary, thus increasing the segmentation complexity. Secondly a
sequence, from [14], where people are moving inside a room. On these sequences,
we evaluate the improvements of the proposed method compared to the Stauffer
and Grimson one, thanks to the ground truth on the whole sequences.

6.1 Classification Improvement

Some results are presented in Figure 2 with a Gaussian modelisation of data
distribution. For each sequence, a complete ROC curve is drawn and some seg-
mented frames are presented. For the first segmentation strategy, ROC curves
are drawn by setting different TPR. For the second method, weight associated
to TNR and TPR are modified to get a complete ROC curve. The point with
the same weight on TNR and TPR is drawn with a circle. TPR and FPR on
ROC curve axis are obtained with complete ground truth on whole sequences.
Experiment show that the two proposed segmentation strategies lead to better
results than the traditional Stauffer and Grimson approach. For a same FPR,
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(a) (b) (a) (b)

(c) (d) (c) (d)

Fig. 2. Gaussian data distribution: Left: ”Bottle on water”, Right: sequence from
[14]. Top : ROC curve, Bottom: Example of segmented frames. (a) Source frame, (b)
Stauffer & Grimson, (c) Targeted TPR, (d) best unweighted ratio.

new segmentation strategy allows gains about 3-4%. It can be noticed that, in
these experiments, a single Gaussian was used to model the target which is a
rough approximation since it is composed of several colors. Nevertheless, new
segmentation strategies improve the results, thus emphasizing the robustness of
the proposed approach.

Same results are presented in Figure 3 for Histogram data distribution. They
are close to the previous one with small improvement due to a better model
estimation. For the same FPR, new segmentation strategy allows gains about
4-5%.

6.2 Targeting Rate

The proposed method is not only interesting to improve segmentation results.
Another interesting setting is its ability to select threshold according to a target
statistical rate (and not an arbitrary and scene-dependant threshold, as usually).
For example the first proposed strategy allows to control the TPR of the detec-
tion. With Gaussian data modelisation, on all these experiments, for a targeted
TPR Θ, resulting TPR are on the range [Θ−1%, Θ+15%]. With Histogram data
modelisation, the target rates are on the range [Θ − 0.05%, Θ + 2%]. Gaussian
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(a) (b) (a) (b)

(c) (d) (c) (d)

Fig. 3. Histogram data distribution: Left: ”Bottle on water”, Right: sequence
from [14]. Top : ROC curve, Bottom: Example of segmented frames. (a) Source frame,
(b) Stauffer & Grimson, (c) Targeted TPR, (d) best unweighted ratio.

models are less accurate than Histogram models because real data don’t verify
a Gaussian distribution.

7 Conclusion

In this article, we proposed a new BG subtraction algorithm that combines
BG and FG models and performs an automatic threshold selection for each
pixel of the image. The optimal threshold is estimated on each pixel in order
to reach a targeted global detection error. In a first step, considering Gaussian
distributions, we theoretically evaluated the improvement due to the combinated
FG and BG approach, in comparison to the conventional pure BG approach.
This demonstration has been validated on synthesis sequences simulating all
possible configurations of Gaussian parameters, by varying gray level and noise
in the image. Another benefit of the proposed method is that the threshold can
be estimated according to several statistical rates (TPR, accuracy, precision,...),
depending on the application, while traditional methods work only with the true
negative rate or without any statistical links. For more complex sequences where
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the Gaussian assumption fails, the proposed method has been extended to more
general distributions using histograms.

This new method has been validated on both synthetic and real sequences.
Results emphasize that, when models are correctly estimated, gains are obtained
using a FG model in the segmentation process. Moreover, these results have
validated the automated threshold selection based on statistical error prediction.

Future works will be focused on extending the proposed approach to multidi-
mensional image descriptors, which capture more robust information.
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Abstract. Modelling the dynamic behaviour of moving objects is one of the
basic tasks in computer vision. In this paper, we introduce the Object Flow,
for estimating both the displacement and the direction of an object-of-interest.
Compared to the detection and tracking techniques, our approach obtains the ob-
ject displacement directly similar to optical flow, while ignoring other irrelevant
movements in the scene. Hence, Object Flow has the ability to continuously focus
on a specific object and calculate its motion field. The resulting motion represen-
tation is useful for a variety of visual applications (e.g., scene description, object
tracking, action recognition) and it cannot be directly obtained using the existing
methods.

1 Introduction

Visual applications often rely on the information extracted by the moving objects inside
a scene (e.g. cars, humans, machines etc.) These objects usually interact with other
objects or the environment, thus modelling their dynamic behaviour is one of the basic
tasks in computer vision.

The estimation of the motion field for the whole scene is typically performed using
optical flow methods. Works on optical flow start in the early 80’s [1,2] and target on
establishing region correspondence between subsequent images1. Over the years a sig-
nificant progress has been made, both in improving computational speed (e.g., [5]) and
in dealing with large region displacements, (e.g., [6]). Recently, learning (e.g., [7]) and
context [8] based approaches are taken into account in order to overcome the limitations
of the classical optical flow formulation. In general, optical flow techniques have many
possible applications, such as motion segmentation [9], object tracking [10], collection
of statistics of the scene [11] or acting as human computer interface [12].

On the other hand, detection and tracking of individual objects (e.g., persons, cars) is
important for several real-life applications including visual surveillance and automotive
safety (e.g., [13]). In the last years, a lot of attention is paid to tracking by detection ap-
proaches (e.g., [14,15]). Hereby, a pre-trained object detector is applied on every frame

1 Analogous to optical flow, where images are aligned based on a temporal adjacency, SIFT flow
[3] can be exploited to match similar structures across different scenes. Recently it has been
shown that parametric models such as affine motion, vignetting, and radial distortion can be
modelled using the concept of Filter Flow [4].

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 133–142, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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(a) image pairs (b) object det. (c) optical flow (d) Object Flow

Fig. 1. Video captured at Abbey road in London (a). An appearance based object detector (b) can
localize the human, however gives no information about its movement. On the other hand, optical
flow (c) approaches cannot distinguish between object movement and other irrelevant movements
in the scene. Hence, we propose a motion representation (d), which has the ability to focus only
on moving objects-of-interest in the scene.

and then the obtained detections are associated together across images. Furthermore,
on-line learning methods (e.g., [16]) can be also used to dynamically update the object
model and to cope with the variations of the object appearance. The data association
problem is further simplified, since a discriminative model is trained in advance, for
distinguishing the object appearance from its surrounding background. However, due to
the self-learning strategy in place, such approaches might suffer from drifting (see [17]
for a recent discussion).

Contribution. We introduce a method for obtaining the displacement of an object –
the Object Flow – directly whereas other irrelevant movements inside the scene (e.g.,
other objects or moving background) are ignored (see Fig. 1). Since no on-line learning
is performed during runtime, the results are stable (i.e. do not suffer from drifting).
Hence, the resulting motion representation is useful for a variety of visual applications
and cannot be directly obtained using the existing methods such as optical flow or object
detection/tracking.

The remainder of the paper is organized as follows. Firstly, the idea of training a clas-
sifier on object displacement is described in detail at Section 2. Then the experimental
results and the conclusions are elaborated at Sections 3 and 4 respectively.

2 Object Flow

In this section, we first formulate the learning problem for training a model (classifier),
which is then used to deliver the Object Flow.

2.1 Problem Formulation and Learning

The goal of object detection is to find a required object in an image. Most state-of-
the art methods (e.g., [18]), train a classifier with the appropriate samples in order to
distinguish the object-of-interest from the background, i.e. formulate the task as a binary
classification problem. In comparison with the typical object detection approaches, we
consider the problem of detecting the displacement and the direction of a moving object
locally, i.e. within a certain region Ω, (see Fig. 2). Within this region, pairs of patches
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(a) object detection (b) Object Flow

Fig. 2. Object detection (a) is usually formulated as a binary classification problem distinguishing
the object of interest from the background class. In contrast, Object Flow considers the problem
of learning object displacement locally.

from different time intervals are classified. Nevertheless, the size of the search region
Ω has its own role in the fulfilment of the object localization and direction estimation
task. Especially in the case of abrupt motion or low frame rate video (see Sec. 3.1) an
optimal estimation can be achieved by having a quite large search region. However, this
size comes in contrast with the required computational complexity and might yield to
ambiguities when more than one object are present in the scene.

Problem Formulation. We formulate the learning problem as a problem of learning
a distance function, (see [19] for a recent overview). Our technique was inspired by
the work of Hertz et al. [20], which learns a distance function for image retrieval by
training a margin-based binary classifier (such as Support Vector Machines or Boosting
methods) using pairs of samples. Positive pairs derived from the ”same” class whereas
negative pairs are samples drawn from two ”different” classes. The learning problem
is then formulated on the product space, i.e., C : X × X → Y = [−1 , 1]. Thus, the
trained classifier C(x1, x2) is supposed to give high confidence if the two samples x1

and x2 are similar, and low confidence otherwise.

Learning Object Flow. The overall learning approach is depicted at Fig. 3. For training
a maximum margin classifier on object displacement in an off-line manner, a pool of
appropriate samples has to be created. These samples should contain temporal informa-
tion from pairs of images from the positive X+ and the negative X− set respectively.

Positive set X+. A positive sample contains information about the way that object
appearance transforms through time. Therefore, this sample is created by collecting
two patches that derive from two different frames and contain the object under study
i.e.

X+ = {〈x

t , x


t+1〉 | x

t , x


t+1 ∈ Ω(i) and correspond to an object} (1)

The labelling of the object represented by the rectangles x
 and x

t+1 can be accom-

plished using some reliable information, such as human labelling (ground truth), or the
output from a high precision/recall detector or tracker.
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Fig. 3. Learning object’s displacement is achieved by training a classifier with positive and nega-
tive labelled samples, which are locally extracted and contain temporal information

Negative set X−. The negative set is divided into two subsets, i.e. X− = X−
obj ∪X−

back.
The first subset of negative samples contains the object in the current frame with a patch
that contains a portion of it in a different frame i.e.

X−
obj = {〈x


t , x(i)
t+1〉 | x


t , x(i)
t+1 ∈ Ω(i) and x


t+1 correspond to an object} (2)

These training samples assist the classifier to suppress local maxima around the real
object region. On the other hand, the second subset of negative samples contains regions
from the background. These samples are particularly useful, when dealing with difficult
scenarios, since they can force the classifier to respond with low confidence values on
empty regions i.e.

X−
back = {〈x(i)

t , x(j)
t 〉 | x(i)

t , x(j)
t ∈ Ω(i)} (3)

Examples of a positive and negative samples are depicted in Fig. 4.

Classifier. In this paper we use the approach of boosting for feature selection. A classi-
fier can be trained in an off-line [21] or in an on-line [16] manner. In order to use pairs
of images as an input, we follow the empirical tests of possible adaptations, proposed
by Hertz et al. [20]. An approach for learning how the object appearance alters through

(a) pos. samples X+ (b) neg. samples X−
obj (c) background samples X−

back

Fig. 4. Illustrative example of the typical training samples for training a classifier on Object Flow
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time is the concatenation of the two patches. Another intuitive approach is by finding
the absolute difference of the vectors representing the two patches. Our empirical tests
indicate that this classifier works better with the first approach. As features we use the
classical Haar-like features [21].

2.2 Flow Estimation

Object Flow is a vector field. In order to estimate it, for each point x, y in the image a
local image patch x is extracted and the displacement magnitude Dobj(x) and the angle
φobj(x) can be calculated. More specifically, let C(x, x′) be the classifier response for
a pair of patches, where x is a patch in the current image and x′ is a patch belonging
to the neighbourhood region of local patches Ω in the previous image. We define the
displacement Δx and Δy of an object on the x and y directions respectively, as the
weighted sum of distances within the local region Ω. More formally,(

Δxobj(x)
Δyobj(x)

)
=

1∑
x′∈Ω C(x, x′)

∑
x′∈Ω

C(x, x′)
(

dx
dy

)
(4)

where, dx and dy are the x and y axis distances of the patch x from x′. Based on this,
magnitude and angle can be calculated as,

Dobj(x) =
√

Δxobj(x)2 + Δyobj(x)2, φobj(x) = tan−1

(
Δyobj(x)
Δxobj(x)

)
. (5)

In order to reduce outliers, local region displacements within the region Ω have to
extend a significant positive classifier response i.e.,

¯Cobj(x) =
1

|Ω|
∑
x′∈Ω

Ĉ(x, x′)2, where Ĉ(x, x′) = max(0, C(x, x′)). (6)

Summarizing, Object Flow is only reported, if the average classifier response is
above some user defined threshold, which controls the sensitivity, i.e., C̄obj(x) > θ.

Illustrative Example. Fig. 5 depicts the Object Flow and the details for two specific
regions. The trained classifier is evaluated on pairs of patches, using a reference patch at
time t and patches from the corresponding local regions, Ω(1) and Ω(2), respectively at
time t+1. We use a grid of overlapping patches of the same size, centred at the reference
patch. As we can observe in the resulting 3-D plot for the region Ω(2), high confidence
values represent the regions, on which the object is likely to occur at time t + 1. On
the other hand, the confidence values are very low for the region Ω(1), since there are
no objects inside. For visualizing the angle φobj(x) and the displacement Dobj(x) (see
Eq. (5)), we use the hue and saturation channel from HSV color space respectively.

3 Experimental Results

In this section we present qualitative and quantitative experimental results of the Object
Flow on different objects and datasets, including walking pedestrians, faces and moving
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(a) input images (b) Object Flow

(c) detail for Ω(1) (blue) (d) detail for Ω(2) (red)

Fig. 5. Classifier responses for the regions Ω(1) and Ω(2) (a). Low classification responses are
obtained if no object is present (c). In contrast, a clear peak, which shows the displacement of a
particular object, is shown (d). The final Object flow field (b) is based on these local responses.

coffee mugs. The efficiency of our approach is demonstrated using difficult scenarios
that involve low frame rate and motion blurring from a moving camera. Furthermore,
we compare our results with common methods, such as an object detector, tracker and
optical flow. The proposed motion representation can be used either in a static or in
a moving camera configuration. Throughout the experiments we use a dense Grid that
comprises of 81×81 overlapping and equally sized cells and we set a threshold θ = 0.35
(see Sec. 2.2). All experiments are performed on a 2.67 GHz PC with 4 GB RAM.

3.1 Object Flow for Pedestrians

We captured a dataset from a public camera located on Abbey road in London2, which
consists of 49, 000 frames. This dataset, obtained at a resolution of 384 × 284, is a
challenging low frame rate scenario (∼ 6 fps) that contains a complex background
with various moving objects (e.g., cars). Therefore, we use a region Ω that comprises
of 12 × 12 cells, since object motion is quite abrupt due to low frame rate. The first
40, 000 frames of this dataset are used for collecting the appropriate training samples
(see Sec. 2.1) and the remaining ones are used for evaluation. More specifically, the
results described in this section can be produced using a single classification approach
that is trained off-line using a pool of |X+| ≈ 2, 000 positive, |X−

obj | ≈ 15, 000 negative

object samples and numerous negative samples X−
back from the background.

2 http://www.abbeyroad.com/webcam/, 2010/03/03.

http://www.abbeyroad.com/webcam/
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Fig. 6. In this experiment we present the benefits of Object Flow. Optical flow approaches dis-
orient when similar objects are moving in the same/different direction with the object-of-interest
(third row). In addition, human detection approaches do not have a constant detection rate (fourth
row). Object tracking also suffers from drifting in complex environments (fifth row). Object Flow
(second row) can simulate the motion field of a moving object correctly, by being able to focus
only on the object under study.

We perform illustrative comparisons with optical flow, human detection and object
tracking methods. We use the approach described at [5] to calculate optical flow, in order
to evaluate its performance against the proposed Object Flow technique. For human
detection and tracking we adopt the approaches described at [22] and [16] respectively.
All the competing techniques are used without modifying any of the input parameters
given in their original implementation.

As it can be observed at Fig. 6, our approach has a good performance in human lo-
calization. In addition, direction estimation for the moving objects-of-interest (second
row) is the same with the one provided by the aforementioned optical flow approach,
which focuses in all the moving objects in the scene (e.g. cars, third row). On the other
hand, combining optical flow with an object detection approach (fourth row) may lead
to possible pitfalls, since detection approaches do not have a constant detection rate, and
thus have limited effectiveness in difficult environments. Similarly, tracking approaches
(fifth row) disorientate on complex backgrounds, since objects of similar color or struc-
ture may appear inside the scene.
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Fig. 7. In this experiment we train the classifier to deliver Object Flow for different object classes
including faces and a coffee mug. The first and third row depict frames from different test
sequences (camera movement, motion blur and multiple objects). The second and fourth row
present the estimated Object Flow, respectively. (Video is available at the authors’ web-page.)

3.2 Object Flow for Different Objects

The performance of Object Flow is also tested using two different object classes, i.e.
faces and a specific mug. The algorithm is evaluated on scenarios that contain abrupt
motion and on a moving camera configuration. In detail, we use three different video
sequences that consist of 1, 200 frames, where 1, 000 frames are used for training the
classifier and 200 frames for testing. Two sequences were captured from a moving
indoor camera and contain a moving face and mug respectively. Another sequence was
captured from a static indoor camera and contains two moving faces. These datasets
were taken at 25 fps with a 704 × 576 resolution using an AXIS 213 PTZ camera.

We evaluate our approach for each patch x using a region Ω that comprises of 6 × 6
cells. For the mug and the face sequence the classifier was trained using a pool of
|X+| ≈ 1, 000 positive, |X−

obj | ≈ 4, 000 negative object samples and numerous neg-
ative samples from the background. For creating face samples, an off-the-shelve face
detection approach is adopted3.

Illustrative results are depicted in Fig. 7. As it can been seen, the Object Flow has
the ability to remain focused on the face and the mug even in cases of abrupt camera

3 http://opencv.willowgarage.com/wiki/, 2010/04/28

http://opencv.willowgarage.com/wiki/
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motion (second and fourth row). Furthermore, the proposed method can deal with more
than one objects-of-interest present at the same scene (see Fig. 7 first and second row,
in third and fourth column).

3.3 Quantitative Comparison

We adopt the coffee mug dataset, which is a moving camera scenario and consists of 200
frames (see Sec. 3.2). On this sequence, ground truth is created by manually labelling
the values for the angle and the displacement. For each frame we calculate the absolute
error between the ground truth and the values provided by our approach. Since there is
only one object-of-interest in the scene, we consider the angle φobj(x) and displacement
magnitude Dobj(x) of the patch x, for which the classifier has the maximum response

¯Cobj(x), according to Eq.(6).
For comparison we also implemented a simple baseline approach that combines ob-

ject detection and optical flow. In that case, the displacement and angle are estimated
by finding the average optical flow within the region of a detection (i.e. if a detec-
tion is present). Therefore, we first, train a classifier [21] using 1, 000 positive samples
for the object and a negative set that contains numerous object-free samples from the
background. The resulting detections are fused together by applying non-maximal sup-
pression. Finally, Lucas-Kanade method [2] for optical flow estimation is adopted.

For all the frames in the sequence, we calculate the mean absolute displacement
and angle error. More specifically, the average displacement error is decreased from 12
pixels for the baseline approach to 9 pixels using our approach. Similarly, the mean
angle error is decreased from 75◦ to 62◦, respectively. The angle error seems to be
quite large, which is quite reasonable, by taking into account that the object and camera
change abruptly their direction in the chosen test sequence.

4 Conclusions

In this paper, we present the Object Flow, a method for estimating the displacement
of an object-of-interest directly. Our approach is similar to optical flow, but it has the
additional ability to ignore other irrelevant movements in the scene. This is achieved by
training a classifier on the object displacement.

Experimental results demonstrate that the proposed approach achieves robust perfor-
mance for different object classes, including pedestrians and faces. We are confident
that Object Flow is useful for a variety of applications, such as object tracking or scene
understanding. However, one current limitation is the computational complexity, which
is going to be addressed in a future work.
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Abstract. In the past decade, there have been many proposed tech-
niques on human detection. Dalal and Triggs suggested Histogram of
Oriented Gradient (HOG) features combined with a linear SVM to han-
dle the task. Since then, there have been many variations of HOG-based
detection introduced. They are, nevertheless, based on an assumption
that the human must be in upright pose due to the limitation in geo-
metrical variation. HOG-based human detections obviously fails in mon-
itoring human activities in the daily life such as sleeping, lying down,
falling, and squatting. This paper focuses on exploring various features
based on HOG for rotation invariant human detection. The results show
that square-shaped window can cover more poses but will cause a drop
in performance. Moreover, some rotation-invariant techniques used in
image retrieval outperform other techniques in human classification on
upright pose and perform very well on various poses. This could help in
neglecting the assumption of upright pose generally used.

1 Introduction

Because of the demand of smart surveillance system, the research on human
detection has gained more attention. Not only is it a fundamental function re-
quired in most of surveillance system but also a challenging task in computer
vision. In the past decade, there have been many proposed techniques on human
detection. Enzweiler and Gavrila [1] review and decompose human detection
into three stages: the generation of initial object hypotheses (ROI selection),
verification (Classification) and temporal integration (Tracking). They also eval-
uate the state-of-the-art techniques in human detection: Haar wavelet-based Ad-
aBoost cascade [2], Histogram of Oriented Gradient (HOG) features combined
with a linear Suport Vector Machine (SVM) [3], neural network using local re-
ceptive fields [4] , and combined hierarchical shape matching and texture-based
Neural Network using local receptive fields classification [5]. In this paper, we
focus on studying characteristic of features passed to classifiers in the stage of
classification.

In 2005, Dalal and Triggs [3] suggested to use HOG features combined with
a linear SVM to handle the human body detection. Since then, there have been
many variations of HOG-based detection introduced. They are, however, all
based on a major assumption that the target human must be in upright pose.
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It is mentioned in [3] that HOG descriptor is limited to a certain range of ge-
ometrical variation not bigger than the bin size. While the transition variation
can be solved by scanning detection windows through whole image and scale
variation can be managed by multi-scale methods, rotation variation is still in
doubt. Therefore HOG-based body detection is limited to only such applications
as detecting human in group photos, detecting and tracking human walking in
the scene, and detecting human actions in upright pose [6]. This is why the
HOG-based human detection fails in the task of monitoring human activities in
the daily life such as sleeping, lying down, falling, and squatting.

This paper is focusing on exploring various HOG-based descriptors on rota-
tion invariant human detection. Section 2 briefly explains HOG and discusses
why its variations can not be invariant to rotation transformation. A review of
rotation invariant features is described in Section 3. Finally, exploratory exper-
iments on various HOG-based features for rotation invariant human detection
are illustrated in Section 4 5 and 6 before they are discussed and concluded in
section 7.

2 HOG: Histogram of Oriented Gradients

In 2005 [3], Navneet Dalal and Bill Triggs proposed a descriptor representing
local object appearance and shape in an image, called Histogram of Oriented
Gradient (HOG). The HOG descriptor is described by the distribution of edge
directions in the histogram bins. The common implementation begins by divid-
ing the detection window into small a square pixels area, called cells, and for
each cell estimating a histogram of gradient directions for those pixels within the
cell. The final descriptor is the combination of all histograms in the detection
window. In [3], Dalal and Triggs suggest to use 64x128 pixel detection window
and 8x8 pixel cell. For detecting human in an image, Support Vector Machine
(SVM) is introduced to handle the task of human/non-human classification in
each detection window by training SVM with human and non-human images.
Since HOG was introduced in CVPR 2005, it has been widely used for detect-
ing human, modified to obtain a better performance and extended to various
applications [7,6,8,9]. Though there have been many variations of HOG human
detectors proposed, those techniques assume the upright position of human be-
cause they can not handle the rotation variation. Here we suggest two possible
explanations why HOG-based techniques are not rotation invariant: the features
change a lot when image is rotated and the shape of detection window does not
support the oriented version of object.

In [3], Dalal and Triggs also explain that they chose to define the detection
window at 64 x 128 pixels, a rectangle shape because it includes more or less
16 pixels around the person from every side. They have shown that the size of
border is important to the performance as it is expected to provide the right
amount of context which can help in detection. They tried to reduce the size
of pixels around the person from 16 to 8 and obtain the detection window of
size 48 x 112 pixels. They have found that the performance of the detector with
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48 x 112 detection window is 6% worse than detection window of size 64 x 128
pixels. They also tried to maintain the size of window at 64 x 128 pixels while
increasing the person size in it and they have found that it also causes a similar
drop of performance. Later, every work on HOG follows this idea of the shape
and the size of detection window.

The upright rectangle shape of detection window is obviously a reason why
HOG can not handle rotation transformation because this shape can not contain
other poses of human inside especially rotated version of human such as sleeping,
lying down and falling. In this paper, we suggest to use square-shaped detection
window as the square window can contain more variations of human. However,
we have to be awared that the area of context pixels of square shape will be more
than that of upright rectangle. We studied how the bigger amount of context
information would effect the performance in 5.

3 Review of Rotation Invariant Features

Though not many techniques tackling on orientation in human detection have
been proposed, there have been many suggestions on rotation invariant features
on other objects especially for the task of image retrieval. Mavandadi et.al [10]
suggest to construct a rotation invariant features from magnitude and phase of
Discrete Fourier Transform of polar-transformed image. Islam et.al [11] trans-
form image using curvelet transform, an extended of 2-d ridgelet transform. Then
the transformed features were aligned to the main dominant direction to gener-
ate the output which is invariant to the rotation of image. Jalil et.al [12] align
the features by maximise the probability of the vectors obtained from Radon
Transform(RT) and Discrete Differential Radon Transform(DDRT). Marimon
and Ebrahimi [13] introduce Circular Normalised Euclidean Distance(CNED) to
help in aligning the image orientation based on histogram of gradient orientation.
Izadinia et.al [14] assume the boundary of object is clearly given and then using
relative gradient angles and relative displacement vectors to construct a look
up table (R-table) in Hough Transform, which is rotation-invariant. Arafat et.al
[15] study the geometrical transformation invariance of several descriptors in the
task of logo classification. Four features compared in this paper are Hu’s Invari-
ant Moment[16], Hu’s moments of log-polar transformed image, Fourier trans-
formation of log-polar transformed image and Gradient Location-Orientation
Histogram (GLOH, a SIFT descriptor on log-polar coordinate). The similarity
measure used in this paper is Euclidean Distance. Peng [17] applies Discrete
Fourier Transformation (DFT) on HOG to reduce the circular shift in the image
and measure the similarity by L1 metric distance equation.

Pinheiro introduces Edge Pixel Orientation Histogram (EPOH) in [18]. This
technique divides each image into NxN subimages. On each subimage, HOG is
applied to extract the distribution and then feature vector of each subimage is
concatenated to construct the final feature. In this technique, the angle consid-
ered is within 0 and 180 degree. Therefore, the pixel of edge orientation outside
this range will be counted in the bin of opposite angle and the normalised by
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the number of edge pixels in the subimage. EPOH is quite similar to HOG but
they are different in the number of blocks and the way to construct histogram.
Later in [18], they suggest to use Angular Orientation Partition Edge Descriptor
(AOP) in image retrieval as it is invariant to rotation and translation. Given a
centre point of image, AOP divides the gradient image into N angular sectors of
the surrounding circle. In each angular division, the orientation of edge pixel is
adjusted by using the angle of the radial axis as the reference to construct local
angular orientation. Hence, the radial axis is the line drawn from centre point of
the image to the centre point of the sector. Next, histogram is applied to each
angular division to extract the local distribution of angular orientation before
the feature vector of each angular sector is concatenated to construct 2-D vector
f(n0, na) where n0 is the bin of local angle and na is the angle of the radial axis
for each sector. The final descriptor will be the absolute value of 1-D Fourier
Transform of f(n0, na) relatively to the angular dimension na.

In this paper, we studied on five HOG-based techniques as follows:

HOGwoBlk: Histogram of Oriented Gradients without block division
HOGwoBlk-FFT: Amplitude of Fourier Coefficients of HOGwoBlk[17]
HOGwoBlk-FFTp: Phase of Fourier Coefficients of HOGwoBlk[17],
EPOH: Edge Pixel Orientation Histogram[18].
AOP: Angular Orientation Partition Edge Descriptor[18].

Hence, in our implementation, HOGwoBlk does not divide image in blocks and
cell as in [3] because EPOH is considered a kind of HOG with divisions. This is for
studying the effect of structural information on the performance. Additionally, on
upright rectangle window, AOP was divided into 2 x 4 block divisions instead of
angular divisions. However, the idea of angular sector and the idea of distribution
of local orientation were still maintained by assigning the radial axis of each block
to be the line drawn from centre point of the image to the centre point of the
block. The rest of process remained the same as the original AOP in [18].

4 Various Features on Rotation Invariance

Here we assume that if the feature is rotation invariant, the extracted features
of the target image and any of rotated versions should be very similar. In this
section, the similarity between the target image and rotated versions of images
is studied through various features. Here we selected six square images, 128 x
128 pixels, shown in the top line of figure 1. Five features mentioned in 3 were
then extracted and used as reference features. Next, each image was rotated 15
degree counter clockwise and processed to obtain the features. In this section,
each image was rotated for 24 times, 15 degree counter clockwise each time, to
reach 360 degree. Finally, similarity values between reference images and rotated
images on five different features were measured, recorded and plotted against the
number of time they were rotated in figure 1. The similarity measurement used in
this section is 1D correlation as this measure is similar to the way a linear SVM
classifier constructs kernel matrix. In figure 1, the diagrams of original image and
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image subtracted foreground are very similar on both upright and lying down
images while they are very much different from those of image subtracted back-
ground. Clearly, the background information dominate in the feature vectors. It
is also noticed that HOGwoBlk-FFT and AOP can highly conserve the similarity
over the change of orientation, EPOH is more sensitive than HOGwoBlk-FFT
and AOP while HOGwoBlk and HOGwoBlk-FFTp can barely maintain the sim-
ilarity when rotated. This explains and supports that only histogram of oriented
gradients alone is not rotation invariant and why most of work assume upright
pose but adding some strutural information like EPOH or AOP can improve the
performance. Moreover, Figure 1 provides some hints that HOGwoBlk-FFT and
AOP would make better features in human detection in the scenario of activities
in daily life as they could handle the variation on rotation.
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Fig. 1. The correlation between reference image and rotated images, over 24 step of
15 degree, on various HOG-based features

5 Effect of Shape of Detection Window on
Presence/Absence of Human Classification

Mentioned previously, the square shape of detection window can cover more
poses of human than upright rectangle. In this section, the comparison between
upright rectangle and square shape of detection window is studied on a linear
SVM classifier for the task of Presence/Absence of human classification. For each
image, the image was cropped and resized into two difference shapes of image,
64x128 rectangle and 128x128 square. For positive images, the cropped area is
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based on centroid and boundary where annotations come with the database. For
negative images, the windows were randomly cropped and resized. Next, five se-
lected processors mentioned in previous section were applied to extract features
from cropped images before the features were used to train and test on classifi-
cation. Then, the performance of each processors on diffefent shapes of detection
window was measured and shown in figure 2 via ROC curve and accuracy of clas-
sification in table 1. The database used in this section is called INRIA Person
database [3]. The database includes two sets of upright photos, for training and
for testing and each set is consist of positive images and negative images. Each
positive image was flipped around vertical axis for increasing number of possible
images. However, some images were discarded in this section because the square
window, expanded from upright rectangle, covers the area outside the image
where there is no pixel info. Therefore the number of images used for training
is 2258 images in total, of which 1040 images are positive and 1218 images are
negative while the number of images used for testing is 963 images, 510 positive
and 453 negative. Some of cropped and resized images used in this section are
shown in figure 2. In figure 2(a) and table 1, it is noticed that EPOH and AOP
are nearly perfect in the classification when using upright rectangle detection
window. When using square-shaped detection window, the performance in fig-
ure 2(b) and table 1 show that HOGwoBlk-FFT and HOGwoBlk-FFT phase are
worse than others. The performance of HOGwoBlk, EPOH and AOP are overall
so close to each other but AOP is significantly sensitive as it does not perform
well on negative images. The results show that using square-shaped window can
cause a drop in overall performance on HOG-based human classification. Prob-
ably, the increase of context information in square-shaped window adds more
variations in the features and makes the task more difficult to classify for clas-
sifiers. Though AOP is slightly better than EPOH when using rectangle-shaped
window, EPOH is overall better than AOP when using square-shaped window.

(a)Rectangular-cropped images

(b)Square-cropped images

Fig. 2. Examples of cropped and resized positive images from INRIA Person Database
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Table 1. Percentage of correct classification(True Positive(TP) and True Negative(TN)

Type Rectangle Square

TP TN Total TP TN Total

HOGwoBlk 87.84% 80.13% 84.22% 78.04% 76.16% 77.15%

HOGwoBlk-FFT 87.84% 71.74% 79.96% 73.53% 68.65% 71.24%

HOGwoBlk-FFTp 57.25% 79.47% 67.71% 37.45% 77.26% 56.18%

EPOH 98.24% 98.01% 98.13% 78.82% 84.77% 81.62%

AOP 100% 100% 100% 82.35% 68.21% 75.70%

(a)Rectangle window (b)Square window

Fig. 3. ROC of the classification on INRIA person data

6 Rotation Invariant Classification of the Presence of
Human

In this section, five focused features will be tested on images of various poses of
the activities in daily life, here called CVIU LAB. While INRIA person database
was used to train the classifiers as in section 5, the set of various poses used for
testing was recorded and annotated by the author, shown in figure 4. In thispart,
each image was cropped and resized into square shape of image, 128x128 pixels.
Positive images in the test set were sampled from a sequence of human doing a
normal daily activities such as stretching arms, falling, lying down and squatting.
The cropped area is based on centroid and boundary of foreground obtained from
the background subtraction algorithm by Eng [19]. There are 118 images with
horizontal flipped versions of them experimented, 236 images in total. For the 220
negative images, the windows were randomly cropped and resized from images
without human. After cropped and resized, the feature vector of each selected
technique was extracted and pass to pre-trained linear SVM classifiers to decide
whether there is a human inside. Then, the performance of classification was
measured, shown in figure 5 and discussed.

Figure 5 shows that AOP and EPOH can handle image of various poses when
the HOGwoBlk is completely lost. The performance of features can be ranked
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Fig. 4. Examples of cropped and resized images of various poses

(a) (b)

Fig. 5. ROC of the classification on CVIU LAB data

from the best as follows: AOP, EPOH, HOGwoBlk-FFT, HOGwoBlk-FFTp, and
HOGwoBlk but HOGwoBlk-FFT is more sensitive in classifying human and non-
human. This rank corresponds to the figure 1 showing that AOP, EPOH, and
HOG-FFT can maintain similarity over rotation transformation and HOGwoBlk-
FFTp and HOGwoBlk change much when image is rotated. Figure 5 displays
the images which AOP missed in detecting human inside. It is still in doubt why
the AOP can not detect human inside these image while it can handle the other
similar images in the data set such as images in figure 4. Hence, all of images in
figure 4 are the those AOP could handle.
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7 Discussion and Conclusion

Hitogram of orientation of gradients alone can not be used on rotation invariant
human detection because of the shape of windows and the significant change of
feature over rotation variation. Here we suggest to use square shape of detection
window and other kind of features to allow human detection to detect human in
various poses. Though it causes a drop in performance.

Applying Fourier Transform relatively to the angular dimension to edge-
orientation seems to be about to make edge-orientation features tolerant to
rotation change when the similarity is measure by 1-D correlation.

Dividing image into subimages either in angular divisions or blocks can im-
prove overall performance. Probably dividing allows features to include global
structural information and the local distribution of edge orientation. This could
be a reason why EPOH and AOP outperform other features in human
classification.

AOP is the only feature in this study applyinh fouriere transform to reduce the
effect of rotation and divided into subimages. This could be the reason why AOP
outperform others in the human classification on both upright pose and various
poses. Its performance convinces that features these characteristics could help
neglecting the assumption of upright pose generally used in human detection.
Though AOP looks nearly perfect to be used for human detection, AOP have
higher rate in false positive than EPOH with square-shape window. Presumably,
AOP is sensitive to context information in background.
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Abstract. We propose a fast and accurate pedestrian detection frame-
work based on cascaded classifiers with two complementary features.
Our pipeline starts with a cascade of weak classifiers using Haar-like fea-
tures followed by a linear SVM classifier relying on the Co-occurrence
Histograms of Oriented Gradients (CoHOG). CoHOG descriptors have
a strong classification capability but are extremely high dimensional.
On the other hand, Haar features are computationally efficient but not
highly discriminative for extremely varying texture and shape informa-
tion such as pedestrians with different clothing and stances. Therefore,
the combination of both classifiers enables fast and accurate pedestrian
detection. Additionally, we propose reducing CoHOG descriptor dimen-
sionality using Principle Component Analysis. The experimental results
on the DaimlerChrysler benchmark dataset show that we can reach very
close accuracy to the CoHOG-only classifier but in less than 1/1000 of
its computational cost.

1 Introduction

Detecting pedestrians is a fundamental problem in image surveillance and anal-
ysis, it is essential in many applications such as automatic driver assistance. Ex-
tensive variety of postures, color and style of pedestrian clothing, illumination
and weather conditions make this problem challenging. It can provide an initial-
ization for human segmentation. More importantly, robust pedestrian identifica-
tion and tracking are highly dependent on reliable detection and segmentation
in each frame [8,6].

Recently, Watanabe et al. [13] reported one of the most accurate approaches
for pedestrian detection using the “Co-occurrence histograms of oriented gra-
dients (CoHOG)” feature descriptor. The CoHOG can precisely express local
and global shape information at multiple scales since its building blocks have an
extensive vocabulary. However, the CoHOG is an extremely high dimensional
pattern descriptor, thus very computationally expensive and not suitable for
real time applications.

On the other hand, Viola and Jones presented a fast and robust face detector
using Haar-like features and AdaBoost [11] which has been applied to pedes-
trian detection [12] in the form of a static detector and also a dynamic one
based on both motion and appearance information to detect a walking person.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 153–163, 2011.
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Although the Haar-like features are so simple and computationally efficient, it
faces problems when representing data with high range of textural variations.

Therefore, our motivation was to get over the drawback of high dimensionality
in CoHOG descriptor by reducing its computational cost and needed resources
while preserving its accurate detection results.

In this paper, we propose a pipeline of classifiers for pedestrian detection
with two contributions. The first contribution is combining the joint Haar-like
features [9] and the CoHOG descriptors [13] to achieve a fast and accurate
pedestrian detection system. This idea has been successfully reported in cat
face detection [7]. So, our contribution here is introducing it to the pedestrian
detection problem. Our second contribution is reducing the CoHOG descriptor
dimensionality with Principle Component Analysis (PCA).

The rest of this paper is organized as follows: Section 2 surveys briefly the
related work with focus on CoHOG descriptors and Joint Haar-like features
with AdaBoost. Section 3 explains our proposed pedestrian detection approach.
Section 4 shows experimental results on the DaimlerChrysler benchmark dataset,
and we conclude in section 5.

2 Related Work

Many types of feature descriptors have been proposed for pedestrian detection.
Viola and Jones proposed Haar-like features with a cascaded AdaBoost classifier
[11] and extended them using appearance and motion features for pedestrian de-
tection [12], which have improved detection accuracy. Dollar proposed a feature
mining paradigm for image classification and used Haar wavelet with AdaBoost
[3] to get better accuracy.

Recently, using gradient-orientation-based feature descriptors is a trend in
pedestrian detection; Dalal et al. proposed “Histograms of Oriented Gradients
(HOG)” in combination with SVM classifier [2] and also HOG is extended to
motion feature descriptors with excellent detection ability. Watanabe et al. pro-
posed a multiple-gradient-orientation-based feature descriptor “Co-occurrence
histograms of oriented gradients (CoHOG)” [13]. Lin proposed a shape-based,
hierarchical part-template matching approach to simultaneous human detection
and segmentation [8] combining local part-based and global shape-template-
based schemes. Yamauchi et al. presented a pedestrian detector based on co-
occurrence of appearance and spatio-temporal features [10].

The rest of this section will briefly review studies that utilize the two main
building blocks of our pedestrian detection framework, the CoHOG descriptors
[13] and joint Haar-like features with AdaBoost [9].

2.1 CoHOG Descriptors

The CoHOG descriptor is based on a co-occurrence matrix which is constructed
from a 2D histogram of pairs of gradient orientations [13]. The co-occurrence
matrix expresses the distribution of the paired gradient orientations at a given
offset over an image (see Fig. 1).
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Fig. 1. Example of the co-occurrence matrix of gradient orientations with offset (3, 1)

The gradient orientations are extracted at each pixel by

θ = arctan
v

h
(1)

where v and h are vertical and horizontal gradient respectively. The orienta-
tion labels are divided into eight orientation groups at 45 degree intervals. An
input pattern is divided into small regions. The co-occurrence matrices are calcu-
lated for each region with various offsets (x, y) and the paired orientations (i, j)
are voted into the corresponding component of the co-occurrence the matrix
C(x,y)(i, j) [13].

The offsets are chosen within a 4 pixel radius and the number of the combi-
nations is 30 after redundant offsets are removed. Therefore, 31 co-occurrence
matrices are obtained after including a zero offset per each small region [13] and
the dimensionality of the CoHOG descriptor is (30 × 64 + 8) × N × M for an
input pattern divided into N × M small regions.

2.2 Joint Haar-Like Features with AdaBoost

Haar-like features have been successfully applied to many problems, e.g., face
detection [11], and pedestrian detection [12]. Those features are usually arranged
in a form of cascade of weak classifiers trained by AdaBoost.

A cascade of classifiers is like a decision tree where a classifier is trained at
each stage to detect objects of interest (pedestrians) and reject a fraction of the
non-pedestrian patterns [12] (see Fig. 3).

AdaBoost is a powerful machine learning algorithm that can learn a strong
binary classifier H(x) based on a linear combination of T weak classifiers, ht(x)
by re-weighting the training samples:

H(x) = sign

(
T∑

t=1

αtht(x)

)
(2)

where αt is the weight of the training data, and t is number of round.
The joint Haar-like feature is based on the co-occurrence of Haar-like features

which are quantized to binary values [9]. The joint Haar-like feature is repre-
sented by a F-bit binary number which combines the binary variables computed



156 A. Leithy, M.N. Moustafa, and A. Wahba

…..

Feature co-occurrence selection

Zi,1 Zi,2 Zi,3

(b)(a)

Fig. 2. Haar-like features [12]: (a) example of rectangle Haar-like features relative to
the enclosing detection window. The sum of the pixels which lie within the white
rectangles are subtracted from the sum of pixels in the black rectangles. (b) A joint
Haar-like feature hi(x).

from F Haar-like features: (Zt,1, Zt,2, . . . , Zt,F ) as shown in Fig. 2 (for more
details see [11,12,9]).

3 The Proposed Pedestrian Detection System

Fig. 3 depicts our proposed pipeline of features and classifiers highlighting our
two main contributions for pedestrian detection. The first contribution is to
reduce the high dimensional CoHOG descriptors [13] with PCA. The second
contribution is to combine the joint Haar-like features [9] and the CoHOG de-
scriptors in a single cascade.

3.1 CoHOG Descriptors with PCA

In this paper, we divided each input pattern into 3 × 6 small regions to extract
the CoHOG feature descriptor and chose the offsets within a 4 pixel radius.
Therefore, the dimensionality of the CoHOG descriptor is (30×64+8)×3×6 =
34, 704. Consequently, the CoHOG is an extremely high dimensional pattern
descriptor precisely captures local shape information at multiple scales and has
a strong classification capability. Therefore the CoHOG feature vectors which
are strongly correlated could be reduced by conventional Principle Component
Analysis (PCA) as shown in Fig. 4.

In the training process, the training samples are passed to the CoHOG de-
scriptor block to calculate CoHOG features. Subsequently, we build the PCA

CoHOG
features

CoHOG feature
descriptor

Projection into
PCA space

Linear SVM
classifier

Pedestrian/
Non pedestrian

Projected
features

Haar-like features &
AdaBoost classifier

Possible
pedestrian candidates

All
Sub-windows

(Optional)

Fig. 3. Process flow of our pedestrian detection system. PCA block is optionally used.
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CoHOG
features

CoHOG feature
descriptor

Projection into
PCA space

Linear SVM
classiifer

Pedestrian/
Non pedestrian

Projected
features

All
Sub-windows

Fig. 4. Process flow of CoHOG features descriptor and PCA

Fig. 5. Cascading distinct classifiers with two heterogeneous features. (a) Extract pos-
sible pedestrian candidates by simple joint Haar-like features. (b) Verify each candidate
by high dimensional CoHOG descriptors.

space using b eigen vectors. After building the PCA space, the CoHOG features
of training samples are projected into PCA space and then the projected Co-
HOG features are used to train a linear classifier obtained by Support Vector
Machines (SVM) [1], e.g., LIBLINEAR [4] or MATLAB SVM classifier [14].

In the testing process, all testing sub-windows are passed to CoHOG descrip-
tor block and then CoHOG features are projected into PCA space. Finally, the
simple linear SVM classifier is used to classify the projected CoHOG features
whether they representing pedestrian or non-pedestrian.

3.2 Cascading Haar and CoHOG Descriptors

Our second contribution mainly consists of concatenating the CoHOG (and op-
tionally the PCA compressed) classifier and the popular Haar features cascade.
These two classifiers have complementary characteristics and give us the desirable
outcomes. The first classifier consists of joint Haar-like feature with AdaBoost,
which is used to extract possible pedestrian candidates from an input image as
shown in Fig. 5. The second classifier uses the high dimensional (or optionally the
PCA compressed) CoHOG descriptors with linear SVM classifier to verify and
evaluate each detected candidate from the first classifier. This idea has been suc-
cessfully reported in cat face detection [7] without assuming any cat-specific char-
acteristics. So, our contribution here is about introducing it to the pedestrian de-
tection problem in addition to applying the PCA dimensionality reduction.

The joint Haar-like feature can be computed very fast due to the integral image
technique [11]. A strong classifier is learned by cascading multiple weak classifiers
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selecting the joint Haar-like features according to the AdaBoost algorithm. The
first classifier in pipeline allows small number of false positives (non-pedestrians)
without missing true candidates (pedestrians). In our implementation, we have
set the first classifier performance goal as a minimum hit rate of 0.995 and a
maximum false alarm rate of 0.35 at each stage and built a 10-stage detector.
Therefore we built a detector in the first step with an estimated overall hit rate
of (0.995)10 ≈ 0.951 and an estimated overall false alarm rate of (0.35)10 ≈
2.759 × 10−5 (see Fig. 3).

The CoHOG descriptor is calculated from co-occurrence matrices for only
samples that pass through the Haar cascade. The overall computational cost
for CoHOG descriptors in our system are expected to be minor since they are
extracted for only a small fraction of the total search space. Final classification
decision is taken by the linear SVM classifier [4,14].

4 Experiments

In this section, we describe the experiments done to evaluate the performance
of our proposed methods.

4.1 Experimental Setup

We evaluated the performance of our proposed methods against the benchmark
DiamlerChrysler dataset [5]. The details of this dataset are shown in Tab. 1.

In CoHOG descriptor training, we used 22,000 images (18 × 36 pixels) of
DiamlerChrysler dataset; images are divided into 3 × 6 small regions. Thus
the dimension of our feature is 34,704. We used a 2.33 GHz Intel Xeon proces-
sor. While in AdaBoost classifier training, 30,560 images were used of the same

Table 1. DaimlerChrysler pedestrian detection benchmark dataset. (a) Benchmark
training data used to train the CoHOG and Haar-AdaBoost classifiers. (b) Benchmark
testing data sets used to evaluate the performance.

(a) Training dataset

CoHOG Classifier Haar-AdaBoost Classifier

Training data 4,000 x 3 Pedestrian 15560 Pedestrian
5,000 x 2 Non-Pedestrian 15000 Non-Pedestrian

Image Size 18 x 36 pixels (cut-outs) 14 x 28 pixels (cut-outs)
Distribution site http://www.science.uva.nl/research/isla/downloads/pedestrians/

(b) Testing dataset

Test set(1) Test set(2)

Test data 4,800 x 2 Pedestrian 21790 (full images): 14132 fully
5,000 x 2 Non-Pedestrian visible pedestrian labels and

37236 partial pedestrian labels.
Image Size 18 x 36 pixels (cut-outs) 640 x 480 pixels
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dataset (resized into 14 × 28 pixels). We trained a 10 stage detector on a 2.66
GHz Intel Core 2 Duo processor.

To evaluate the performance of our method in terms of accuracy and com-
putational cost, two testing sets were used from DiamlerChrysler dataset. Test
set (1) contains 19600 cropped images (18 × 36 pixels) while test set (2) con-
tains 21790 full images (640 × 480 pixels). In order to achieve scale and shift
invariant detection in test set (2), we built a pyramid using different templates
from 230 × 460 to 14 × 28 with scaling factor 1.1, shift in y-direction equals to
max(1, 0.1 × template-height) and shift in x-direction equals to max(1, 0.1 ×
template-width). Therefore, each image in test set (2) is decomposed into 196622
samples. In the case of test set (2), we measured the detection accuracy based
on the area of overlap between a detected region Ad and a ground truth region
Agt. The correct detection is defined as determining whether the overlap ratio
(Ad ∩ Agt)/(Ad ∪ Agt) exceeds 50% [15].

We compare our proposed methods to CoHOG of Watanabe [13] as it produces
the most accurate results on the DaimlerChrysler benchmark dataset. We also
include the static detector of simple Haar-like features and AdaBoost of Viola
[12] as a baseline, and the more accurate version of Haar wavelet and AdaBoost
of Dollar [3].

Our performance comparisons are shown in Tab. 2 in terms of computational
cost and in Fig. 6 and Fig. 7 in terms of accuracy. We will discuss those results
in the rest of this section.

Table 2. Average computational cost (measured in milliseconds) per testing image

Test set 1 Test set 2
(cut-outs 18×36) (full images 640×480)

No. of Images 19600 21790
Samples/Images 1 196622

CoHOG features 4.80 943.79 ×103

CoHOG [13] SVM Classifier 2.49 488.64 ×103

Total time/Image 7.29 1432 ×103

Haar Cascade [12] Total time/Image 2.32 ×10−3 456

CoHOG + CoHOG features 4.80 943.79 ×103

PCAb500 PCA Projection 0.35 68.28 ×103

(Proposed) SVM Classifier 31.02 ×10−3 6100
Total time/Image 5.18 1018 ×103

Harr Cascade 1.65 ×10−3 324.65
Harr + CoHOG CoHOG features 2.23 547.20
(Proposed) SVM Classifier 1.15 283.86

Total time/Image 3.38 1155.71

Harr Cascade 1.65 ×10−3 324.65
Harr + CoHOG + CoHOG features 2.23 547.20
PCAb500 PCA Projection 0.16 39.60
(Proposed) SVM Classifier 14.29 ×10−3 3.55

Total time/Image 2.41 915
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Fig. 6. CoHOG + PCA compared to CoHOG with different number of eigen basis

4.2 CoHOG with PCA

We mentioned that CoHOG descriptor is used with a dimension of 34,704, when
a PCA dimensionality reduction is applied with a number of eigen basis b of 500,
the feature dimension is reduced to 500 and the processing time of SVM classifi-
cation in CoHOG will be replaced by the time for PCA projection added to SVM
classification in our method. The computational cost, as shown in Tab. 2, will
be reduced by 84.8% in SVM classification step and by 28.9% in total processing
time. While the accuracy is still comparable to the standalone ‘CoHOG [13]’
(the true positive rate (TPR) is reduced from 92.1% to 91.2% at false positive
rate (FPR) of 0.05%) as shown in Fig. 6. The ROC curve of our ‘CoHOG +
PCA’ method is still better than ’Haar wavelet + AdaBoost [3]’.

We tested the ‘CoHOG + PCA’ method using different values for the number
of eigen basis b (500, 400 and 300). As expected, we got the best ROC curve for
this method at b = 500 as shown in Fig. 6. In the training process, we needed
only 41.96 MB (compared to 2.84 GB of the standalone CoHOG) allocated for
training samples and the time needed for training is reduced by 79.6%.

4.3 AdaBoost with CoHOG

The joint Haar-like features extract possible pedestrian candidates and the Co-
HOG descriptors accurately eliminate false positives. We evaluated the perfor-
mance of ‘Haar + CoHOG’ method on both testing sets.

The number of pedestrian candidates per image in test set (2) is 114 on
the average (only 0.06% of the total testing samples per image). Only those
samples succeed to pass from the Haar cascade and fed to the CoHOG classifier
which takes about 831 msec (547 msec to extract CoHOG features and 284 msec
for SVM classifier) to process them. Thus the total processing time for a full
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Fig. 7. Performance of proposed methods in comparison to the previous state-of-the-
art methods

image (640 × 480 pixels) is reduced to about 1.1 sec which is about 0.1% of the
23.87 minutes needed for the standalone ‘CoHOG [13]’.

The number of pedestrian candidates in test set (1) is about 9091 (46.4%
of the total testing samples), the CoHOG classifier takes about 1.1 minutes to
process them which is larger in comparison to test set (2) due to the larger
number of positive samples (about 49% of the total testing samples) in test
set (1). Thus the total processing time in test set (1) is reduced by 53.6% in
comparison to ‘CoHOG [13]’ method and also by 34.8% in comparison to the
proposed ‘CoHOG + PCA’ method with b=500. The accuracy of our ‘Haar +
CoHOG’ method is still near and comparable to ‘CoHOG [13]’ method (TPR is
reduced from 92.1% to 91.6% at FPR of 0.05%) as shown in the ROC in Fig. 7.

Adding the proposed PCA dimensionality reduction to the pipeline, we get the
ROC curve of ‘Haar + CoHOG + PCA’ shown in Fig. 7, which is less accurate
than our two proposed methods while it reduced the computational cost by
67% in test set (1) and by more than 99% in test set (2) in comparison to the
standalone ‘CoHOG [13]’. In summary, the results show that our two proposed
contributions can improve the computational cost of CoHOG method with a
little loss in accuracy. Meanwhile, we still perform better than other pyrevious
the state-of-the-art methods.

5 Conclusions

We proposed two methods for an efficient pedestrian detection framework based
on the high-dimensional CoHOG feature descriptor. The first proposed method,
‘CoHOG + PCA’, uses Principle Component Analysis (PCA) to reduce the high
dimensionality of CoHOG. The second proposed method, ‘Haar + CoHOG’,
cascades distinct classifiers with two heterogeneous features, the first one is the
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joint Haar-like feature with AdaBoost, which is fast to compute and enables
to extract possible positions of pedestrian candidates from an input image at
multiple scales, and then the second feature is the CoHOG descriptor which has
a strong classification capability with a linear classifier and accurately eliminates
false positives.

We compared the performance of our method and other previous methods in
terms of computational cost and accuracy on the benchmark DaimlerChrsysler
pedestrian dataset. The experimental results show that by applying our two
proposed contributions, the computational cost can be reduced to 1/1000 of the
standalone CoHOG while experiencing very close accuracy and still better than
the other state-of-the-art methods.

It should be mentioned that our cascade pipeline can be easily applied to
other detection problems because it is quite general and does not assume any
specific characteristics for pedestrians.

Future work involves extending our experiments to another famous benchmark
dataset like INRIA dataset[16], and replacing simple Haar features in our cascade
with the more descriptive Haar feature mining of Dollar [3].
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Abstract. In video surveillance and long term scene monitoring applications, it 
is a challenging problem to handle slow-moving or stopped objects for motion 
analysis and tracking. We present a new framework by using two feedback 
mechanisms which allow interactions between tracking and background 
subtraction (BGS) to improve tracking accuracy, particularly in the cases of 
slow-moving and stopped objects. A publish-subscribe modular system that 
provides the framework for communication between components is described. 
The robustness and efficiency of the proposed method is tested on our real time 
video surveillance system. Quantitative performance evaluation is performed on 
a variety of sequences, including standard datasets. With the two feedback 
mechanisms enabled together, significant improvement in tracking performance 
are demonstrated particularly in handling slow moving and stopped objects. 

Keywords: video surveillance, slow-moving and stopped object tracking, 
motion analysis, interaction, background subtraction. 

1   Introduction 

Automatic video surveillance is a rapidly expanding field, driven by increases in the 
affordability of technology and the perceived need for security. Demand and the 
constrained domain make it one of the most commercially viable application areas for 
computer vision technology. Many applications in the field require the tracking of 
moving objects (usually people and vehicles), so that events (such as entering a secure 
zone) can be detected or those objects can be found through a search interface. 

In most automatic surveillance systems, objects of interest are first detected, 
usually by background subtraction (BGS) which will find moving objects [2, 3, 17]. 
Detected objects are then tracked by a tracking module [1, 4]. Most surveillance video 
analysis systems operate in a feed-forward manner to pass detections from 
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background subtraction to the tracker and then tracks are stored or processed further, 
for instance by behavior analysis modules. Such a system provides an efficient 
mechanism for detecting moving objects, but practical implementations suffer from a 
number of limitations when exposed to particular conditions (lighting variations, 
weather, heavy occlusion, crowding, non-rigid objects). A rich literature attempts to 
deal with each of these problems. In this paper, we concern the problems that arise in 
scenes with slow moving objects and where objects stop for significant periods of 
time. In particular these scenes challenge the fundamental assumption of a strict 
differentiation between foreground and background, and the pragmatic choice of 
using motion, or its proxies, to distinguish between the two. A given object may 
change from foreground to background and vice versa. For instance, a moving car 
may park and for all practical purposes needs to be treated as “background” — at least 
until it starts moving again. 

Background subtraction algorithms are generally designed to be adaptive to be able 
to deal with scene changes (changing lighting; backgrounds whose appearance 
changes, such as trees and water; static objects). However, a slow moving, or stopped, 
object can lead to just such repeated observations, and result in the object being 
adapted piecemeal into the background. This leads to errors in tracking, as the object 
dissolves into multiple fragments, and false “ghost” fragments appear where the 
background contains the object after it moves away. 

The tracking process usually treats groups of pixels collectively, as unitary objects, 
and this higher-level information derived by the tracker can be used to inform the 
process of background subtraction. The tracker explicitly models the objects, whose 
behaviors are subject to physical constraints (such as rigid motion) in ways different 
to the physical constraints that control the appearance of individual pixels. Many 
object tracking techniques focus on handling occlusions but neglect how to track slow 
moving or stopped objects. Boult et al. [4] describe a system that performs well at 
detecting slow moving objects. 

There have been a few systems that have investigated the possibility of feedback 
from the tracker to the background subtraction module. In order to improve the 
robustness and efficiency of background subtraction methods, some papers [3, 5, 6] 
introduced feedback from the frame level and some papers employed the feedback 
from the tracker [7–11]. Abbott et al. [7] proposed a method to reduce computational 
cost in visual tracking systems by using track state estimates to direct and constrain 
image segmentation via background subtraction and connected components analysis. 
Harville [8] used application-specific high level feedback (frame level, person 
detector and tracker, and non person detector) frame to locally adjust sensitivity to 
background variation. Senior [12] suggests recalculating the background and 
foreground segmentation using the model of the tracked object after the background 
subtraction stage. Wang et al. [11] proposed a unified framework to address detection 
and tracking simultaneously to improve the detection results. They feed the tracking 
results back to the detection stage. 

The interaction between the tracking and background subtraction can also be used 
to improve the tracking of the slow moving and stopped objects. Venetianer et al. [13] 
examine a way of pushing foreground objects into the background and vice versa. 
Yao and Odobez [14] use a similar layered background mechanism to remember 
stopped objects. Taycher et al. [15] proposed an approach that incorporates 
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background modeling and object tracking to prevent stationary objects fading into the 
background. Our approach is most closely related to that of Pnevmatikakis and 
Polymenakos [9], who to overcome the problem of stationary targets fading into the 
background, propose a system combining a mixture of Gaussians background 
subtraction algorithm and a Kalman tracker in a feedback configuration. They control 
the learning parameters of the background adaptation on a pixel level in elliptical 
regions around the targets based on the tracking states from the Kalman tracker. A 
smaller learning parameter was used for a slow moving object. However, this 
mechanism will fail when the targets stay stationary for a long period. They will 
gradually fade into the background even with very small learning parameters. 

In contrast, we create two feedback mechanisms that allow the tracker to suppress 
background updating for slow moving objects that are being tracked. Further, we 
introduce an active, tracker-driven, object-level healing process where whole objects 
are pushed to the background to solve the challenges in tracking caused by the 
stopped objects. 

 

Fig. 1. Diagram of the interaction of background subtraction and tracking, showing the passing 
of metadata messages 

2   Interaction between BGS and Tracking 

2.1   Feedback Mechanisms for Interactions between BGS and Tracking 

In order to improving tracking accuracy, we create two feedback mechanisms that 
allow interactions between BGS and tracking. The feedback required to handle slow 
and stopped objects are implemented by adding information to metadata of tracking 
observations which are accessible by BGS processing through following three 
requests: 1) “heal request”—tracking requests BGS to push the region back to 
background model; 2) “unheal request” ”—tracking requests BGS to convert the 
background model of a healed region back to that before the heal happened; 3) “hold 
in foreground”—tracking requests BGS to hold a region without updating.  Figure 1 
shows the diagram of the interaction between BGS and tracking with the passing of 
metadata messages. 
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2.2   BGS Adaption Suppression for Tracking Slow Moving Objects 

Slow Moving Objects Tracking Problem: Slow moving objects can present a 
significant problem to conventional background subtraction algorithms. In multiple 
Gaussian mixtures based BGS algorithms [2, 5], on which many current systems are 
based, each pixel is modeled by a mixture of Gaussians distribution. Observations of a 
pixel’s color are assigned to the closest mode of the mixture, or to a newly created 
mode (replacing the least observed previous mode). The most frequently observed 
mode is considered the “background” mode, and observations matching that are 
considered to be background. Other values are flagged as foreground. When an object 
moves slowly or stops, any pixel may fall on the object for many frames and, if it is of 
a consistent color, that pixel will eventually be considered background. If multiple 
pixels are affected in the same way, parts of the object will be considered to be 
background and the object will progressively be “lost”. 

Previous systems have partially addressed this problem by detecting groups of 
foreground pixels that are being adapted into the background, and actively push the 
whole group in to the background [5]. Here, however the problem is that the detection 
may come only after some pixels have already been adapted into the background, and 
may only affect part of the object. Thus, while the switch to background is no-longer 
independent for each pixel, it may still occur in several fragments, and results in part 
of an object being background and part being foreground. 

BGS Adaption Suppression: To deal with this situation, we institute a feedback 
mechanism that allows the tracker to suppress background updating for slow moving 
objects that are being tracked. When the tracker detects a slow-moving object (based 
on conditions of centroid movement ≤ 3 pixels in 0.5s; number of observations > 30, 
and no recent splitting behavior), it flags the object observations as “slow moving” 
and the background subtraction algorithm suppresses the adaptation in the region 
where the slow moving object was observed (as indicated by a mask passed in the 
metadata). 

Typically adaptation will already have been carried out by the background 
subtraction (as the video frame was received), although some algorithms may wait 
until the video frame processing has completed. According to the algorithm used, 
adaptation is suppressed in the region of a slow moving object by copying pixels from 
a copy of the model saved before adaptation, or by carrying out the inverse operation 
on those pixels (for instance decreasing the observation counts). 

Suppressing adaption in this way has the effect of maintaining the tracked object in 
the foreground, and uses object level information from the tracker — that the pixels 
belong to a known object that is moving slowly and has been reliably detected and 
tracked for some period — to which the background subtraction module by itself does 
not have access. 

A drawback of this mechanism is that it inhibits the process by which false alarm 
foreground objects are removed. For instance a shadow or a reflection which appears 
but is tracked for a while, would ordinarily quickly be forgotten as the background 
model adapts, but, if the “hold in foreground” method engages then these objects can 
be preserved indefinitely. However, the following mechanism can prevent this from 
happening. 
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2.3   Tracking-Based BGS Healing for Stopped Objects 

Stopped Objects Tracking Problem: Stopped objects lead to a different problem, 
and a dilemma for the design of a tracking system. Background modeling needs to 
adapt to changes in order to ignore “irrelevant” changes such as lighting. In a simple 
adaptive background subtraction system, when an object stops, as with slow moving 
objects above, then it will become part of the background and cease to be tracked. 
However the object is still present in the scene, and for some purposes (for instance 
the query “show me all cars present at 3p.m.”) the system needs to explicitly represent 
that presence. A further problem is that since background subtraction algorithms 
typically operate independently on each pixel, then different pixels of the object will 
be declared background at different times, resulting in a progressive fragmentation as 
the object is incorporated into the background. 

 

Fig. 2. Selected frames demonstrate ghosting. The car starts in the background and moves 
forward, leading to multiple foreground fragments and ultimately a large “ghost” or “hole” 
where it had been covering up the “true” background by using mixture of Gaussians BGS 
method. 

When a static object starts moving, the background subtraction algorithm detects 
difference regions around the edges of an object, and as the original background is 
revealed, those pixels are detected as “foreground regions” and a “ghost” of revealed 
background is detected as foreground along with the true moving object, as shown in 
Figure 2. Toyama et al. describe this as the “waking person” problem, and conclude that 
it is not solvable in a self-contained background subtraction module. This presents 
several challenges to a tracking algorithm: (1) the object appears as many small 
foreground fragments; (2) the growing object is made up of a moving component and a 
static region; (3) the true object eventually separates from the static “ghost” region. 
Some background subtraction methods explicitly tackle this problem [3]. 

Tracking-based BGS Healing: With the adaptation-inhibition described in Section 
II.B, slow moving and stationary objects are not adapted into the background at all, so 
healing and fragmentation are no longer a problem. However static objects will now 
be held indefinitely in the foreground. As a parking lot fills slowly with cars, the 
number of “tracked” objects increases and their interactions and mutual occlusions 
become progressively more complex and unmanageable. 
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Consequently, we introduce an active, tracker-driven, object-level healing process 
where whole objects are pushed to the background. In this process, the tracker tracks 
whole objects and monitors their movement. When an object is stationary for a 
sufficient period (dependent on the scene context, for example dependent on the 
amount of activity in the scene and typical behaviors — whether objects stop for long 
or short periods) then the tracker determines that the object can be pushed to the 
background. The tracker sends a “heal request” message to the background 
subtraction algorithm, including a foreground mask indicating which pixels belong to 
the object. 

On receiving the message, the BGS algorithm takes the selected pixels and adjusts 
the background model so that the currently observed pixels become categorized as 
background. The original contents of the region’s background model are sent back to 
the tracker in a “heal” message. The heal message can also incorporate a 
categorization of the region, indicating whether it looks like a foreground object or a 
hole, based on integral of the edges in the object perimeter. On receiving the heal 
message, the tracker can optionally keep the track in a suspended state, ready to be 
reactivated if the object moves again. Alternatively (if the region was classified as a 
“hole”) the entire track can be discarded as a false positive. 

In this manner, stopped objects are quickly pushed to the background and cease to 
need active tracking. This reduces the complexity of the tracking problem since fewer 
tracked objects leads to fewer occlusions and difficult tracking situations, and also 
reduces the computational load by not “tracking” objects once they are stationary. 

When the stopped object begins to move, the background subtraction will detect 
motion in the region and generate one or more foreground regions in or around the 
object. Any otherwise unexplained foreground region is compared to the stack of 
suspended tracks and if a matching track is found it is popped. The background 
subtraction module is sent an “unheal” request, with the old, stored background 
appearance, which is pushed into the background model, causing the entire object to 
again be detected as foreground in the following frame, and thus avoiding the 
ghosting of Figure 2. 

Depending on the scene and typical behavior, the suspended “parked” tracks can be 
maintained indefinitely or forgotten when too old, invalid or too numerous. A grocery 
parking lot with rapid turnover may warrant keeping the suspended tracks until a car 
moves again, but an airport lot where cars are parked for days will not. Lighting 
changes can lead to significant changes in the background appearance while a stopped 
object is present, and make the stored background patches invalid. The age of a 
suspended track may also be of interest — for instance picking out parking violations 
or understanding parking behavior. 

This layered approach will also fail in complex environments. Consider an oblique 
view, looking along a row of vehicles in a parking lot. As vehicles come and go, 
many different foreground layers will obscure a particular pixel, and the background 
exposed by an object’s departure may be different from the background that was 
covered by its arrival. A more complex management of layers is imaginable for this 
scenario, but was not thought likely to be robust. 
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3   Interaction Mechanisms Implementation 

In this section we describe a publish-subscribe architecture that supports the feedback 
mechanisms described above. The system processes video through a number of self-
contained modules that are linked together through a publish-subscribe framework. 
Each component receives and transmits metadata packets exclusively through a “first-
in, first-out” queue of messages managed by the framework. A metadata packet is 
taken from the front of the queue and is offered in turn to each of the components for 
processing before being discarded. While a component is processing a piece of 
metadata, it may add result metadata to the end of the queue. Most metadata packets 
are ignored by most components, and many packets will only be relevant to one other 
“downstream” component, but the architecture allows for considerable flexibility for 
broadcasting and feedback mechanisms in addition to a simple pipeline model. 
Components are able to request a priority, which allows the correct ordering of 
processing for metadata that is processed by multiple components. 

The publish-subscribe system encapsulates the functionality of each component 
and allows for great flexibility in customizing processing on each channel of video, 
independently selecting one or more detection, tracking and classification algorithms 
and allowing optional components, such as camera stabilization or performance 
analysis modules to be added. 

In practice the system processes multiple channels of video on a single machine, and 
each channel is handled by a single “engine” operating in a separate thread but with all 
engines managed by a single framework. The framework thus scales automatically to 
multiple processors, and can also handle load-sharing onto embedded coprocessors. The 
architecture also makes some processing amenable to pipelining of video frames (e.g. 
running BGS on one frame while tracking is executing on the previous frame in a 
separate thread), though the feedback mechanisms complicate this. Network relaying of 
selected metadata between processors permits multi-camera operations on a distributed 
system such as camera hand-off and multi-camera compound alerts. 

The framework initiates processing of video by sending a “grab frame” message, 
which is handled by the video source, which responds by putting a video frame onto 
the queue. Where appropriate the first component may be stabilization which 
compensates for motion of the camera (from vibration, wind or active control) and 
can suspend other processing operations when motion is too great. The background 
subtraction algorithm operates on the video frame and outputs a foreground mask to 
the back of the queue. References to the video frame are held by all the components 
that will subsequently need it, but most other components require further metadata to 
begin their processing. 

The tracker can begin processing when it receives the foreground mask, and it 
outputs a variety of result metadata, including “track start”, “track end” and “track 
observation”. Subsequent plug-ins such as object classifier, color classifier and alert 
detector all process the output of the background subtraction and tracker, and finally 
the index writer plug in sends information to be stored in a database. 

Before issuing another “grab frame” message, the framework will issue an “end of 
sample” message to allow components to clean up before the next frame. 

As shown in Figure 1, the feedback required to handle slow and stopped objects 
has been implemented by adding “heal request” and “unheal request” metadata to the 
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original architecture. “hold in foreground” was implemented by adding a flag to the 
existing “track observation” metadata which were previously ignored by the 
background subtraction system, but are now acted upon when flagged in this way. 

4   Experimental Results 

The feedback mechanism of interactions between BGS and tracking is tested and 
evaluated on our surveillance system. The quantitative evaluation is performed on a 
set of six video sequences include four videos from the PETS2001 dataset [16] of cars 
and pedestrians crossing a university campus (about 2800 frames each) and two our 
own sequences: a top-down view of a four way intersection with cars stopping and 
waiting for a traffic light to change (Figure 3(a)) and an overhead view of a retail 
store taken through a fish-eye lens (Figure 3(b)). 

 

                    (a)                                      (b) 

Fig. 3.  Camera views of the test data with tracker output. (a) the traffic intersection (3400 
frames, 64 tracks), (b) the store view (3100 frames, 23 tracks). The paths of object centroids are 
shown, fading from blue to red from start to finish. 

The feedback mechanism was tested using simple tracking performance metrics 
comparing the tracker output to hand-labeled ground truth. The ground truth for each 
sequence consists of bounding boxes drawn around each object approximately every 30 
frames, with labeling to associate a particular object’s bounding boxes over time. Since 
the task requires tracking, evaluation is based on track-level rather than BGS level. 

The performance analysis processing matches each ground truth track to the 
tracker’s outputs by comparing the distance between the object centroids at each 
frame (linearly interpolating between the sparse ground truth points), with hysteresis. 
When at any time t, an object lies close to a ground truth track (within r, here 20, 
pixels) then the tracks are considered to match for the entire period around t where the 
tracks lie within 2r pixels. Trivial matches (where the match interval between an 
output track and ground truth track is a subset of the match for another output track, 
for instance when two tracks cross) are removed. 

The track matching was verified to correctly match intervals of output tracks to 
ground truth tracks. The performance tool produces a variety of statistics, including 
the number of false positives (output tracks not corresponding to any ground truth 
track) and false negatives (ground truth tracks that have no corresponding output 
track); the “underrepresentation”—the proportion of ground truth track frames with 
no correspondence in an output track (e.g. because the object was not detected); and 
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the fragmentation — the average number of output tracks matched to each ground 
truth track (because of gaps in detection, or identity confusion during occlusions). 

Quantitative analysis results of performance on six sequences of video, from PETS 
2001 and two proprietary datasets for particular scenarios, are shown in Table 1. The 
comparison between experimental results and ground truth averaged across all the six 
sequences shows that there is a 39% reduction in false negatives (ground truth tracks 
that are not matched in the tracker output) with a 2.7% increase in the number of false 
positives (tracker output tracks that do not match any ground truth). 

Table 1. Tracking performance results on 4 sequences from the PETS2001 dataset and two 
other datasets. “Under” is the percentage of ground truth frames missing and “Frag” is the 
average number of tracks matched to a ground truth track. 

Without feedback With feedback 
Sequences Under% Frag Under% Frag 
PETS D1 C1 21.2 1.56 8.1 1.22 
PETS D1 C2 27.8 1.36 12.3 1.36 
PETS D2 C1 20.3 1.93 17.6 2.27 
PETS D2 C2 8.1 1.50 4.6 1.50 
Intersection 33.7 1.04 24.3 1.00 
Retail Store 13.1 2.38 14.5 1.90 

Errors come from a variety of sources: (1) objects that are too small to be detected, 
particularly in the store and PETS sequences D1C2 and D2C1 which have distant 
objects labeled; (2) in the intersection sequence several cars are in the scene at the 
beginning and ghosting effects mean that their tracks are not matched. (3) Failure to 
resolve occlusions correctly leads to multiple matches for some ground truth tracks. 

 

Fig. 4. Selected frames from a PETS2001 video sequence and corresponding foreground 
regions, demonstrating BGS adaptation without feedback from tracking (middle column) and 
with the feedback mechanisms (right column). Note the fragmentation (fr.2500) and ghosting 
(fr.2600) on the middle column. The central stopped car is lost on the middle, but maintained 
on the right. 
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Qualitative results are shown in Figure 4. This shows how the interaction between 
BGS and tracking prevents adaptation and fragmentation of the slowly moving and 
stopped vehicles, and prevents “ghosts” when they move away. 

5   Conclusions  

The two feedback mechanisms for handling slow moving and stopped objects work 
together to improve the results (in terms of underrepresentation, fragmentation and 
false negatives, with a small increase in false positives) on the tested sequences. The 
inhibition of background updates for tracked objects successfully prevents slow 
moving and stopped objects from being absorbed into the background. This inhibition 
interferes with existing healing mechanisms and requires the addition of the “active 
healing” controlled by the tracker. With the two mechanisms enabled together, the 
system shows significant improvement in tracking performance, particularly in the 
proportion of ground truth tracks that are detected and in reduced fragmentation. 
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Abstract. We propose a method of frontal face generation from mul-
tiple low-resolution non-frontal faces for face recognition. The proposed
method achieves an image-based face pose transformation by using the
information obtained from multiple input face images without consider-
ing three-dimensional face structure. To achieve this, we employ a patch-
wise image transformation strategy that calculates small image patches
in the output frontal face from patches in the multiple input non-frontal
faces by using a face image dataset. The dataset contains faces of a large
number of individuals other than the input one. Using frontal face images
actually transformed from low-resolution non-frontal face images, two
kinds of experiments were conducted. The experimental results demon-
strates that increasing the number of input images improves the RMSEs
and the recognition rates for low-resolution face images.

1 Introduction

Quality of face images captured by surveillance cameras tends to be poor. Be-
cause of restrictions on the installation position and the number of cameras,
most of them would be in low-resolution and would not capture a face from
desirable angles for person identification. These conditions make it difficult for
both humans and computers to identify a person from the obtained face images.
Aiming to overcome the difficulty due to low resolution, Baker and Kanade [1]
have proposed a “Face Hallucination” method that obtains a high-resolution
face image from a low-resolution face image. Since then, many studies related to
super-resolution of face images have been reported [2,3,4,5].

Even if we could obtain high-resolution face images from the cameras, an-
other problem still remains that poses of a face in the images are not necessarily
desirable. Methods which utilize a 3D face model directly or indirectly to trans-
form face poses have been reported [6,7]. However, it is difficult to apply them to
low-resolution face images because they require a large number of accurate point
correspondences between a face image and a face model to fit the image to the
model. Approaches based on image-based pose transformation have also been re-
ported. A view-transition model (VTM) proposed by Utsumi and Tetsutani [8]

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 175–183, 2011.
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Fig. 1. Frontal face generation from two non-frontal faces

transforms views of an object between different postures by linear transforma-
tion of pixel values in images. For each pair of postures, a transformation matrix
is calculated from image pairs of the postures of a large number of objects.
Another work also took a similar approach [2]. Chai et al. [9] have proposed
a Locally Linear Regression (LLR) method for pose-invariant face recognition,
which generates a virtual frontal view from a single relatively high-resolution
non-frontal face image by applying a patch-wise image transformation method.

Aiming to improve the accuracy of pose transformation and face recognition
for low-resolution face images by using the information obtained from multiple
input images, we propose a method for frontal face generation from multiple
low-resolution non-frontal faces. The proposed method transforms multiple non-
frontal input face images to a frontal face as shown in Figure 1. To achieve this,
the proposed method uses a general image dataset consisting of faces of a large
number of individuals viewed from various angles other than the input individual.
The face pose transformation is achieved not by considering its three-dimensional
structure, but by synthesizing a face image with a different pose from partial
face image patches calculated from a large number of general individual’s faces.
This patch-wise image transformation, which we name Local VTM (LVTM), is
achieved based on the VTM method.

2 Frontal Face Generation from Multiple Non-frontal
Faces

The proposed method can be applied to frontal face recognition by using not
only two input images but also one or any number of input images. However, in



Frontal Face Generation from Multiple Low-Resolution Non-frontal Faces 177

Fig. 2. Synthesis of face patches

the interest of simplicity, we describe a frontal face generation algorithm for two
non-frontal face input images.

As shown in Figure 1, the proposed method transforms two input non-frontal
face images vθ1 and vθ2 to an output frontal face image vφ. Here, θ1 and θ2

represent poses of the input faces, and φ represents the frontal pose of the output
face. To achieve this, the proposed method uses a dataset that contains vn

θ1
, vn

θ2

and vn
φ (n = 1, ..., N). Here, n represents an individual in the dataset.

Faces of two persons have similar parts although these faces are not totally
similar. Transforming the input face image using the information of the entire
face image of other individuals might degrade the characteristics of the input
individual’s face. Therefore, instead of directly transforming the entire face im-
age, we transform face patches that are partial images of a face image for each
location in the face image. Then, as shown in Figure 2, an output frontal face
image is synthesized from the transformed patches. The proposed method is
summarized as follows.

1. Establish the correspondence of each patch position between frontal and
non-frontal poses.

2. Transform each pair of images in two non-frontal patches to the correspond-
ing frontal patch using LVTM.

3. Synthesize the transformed patches to obtain the entire frontal face image
as shown in Figure 2.

We describe each step in detail below.
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Fig. 3. Patch pφ in vφ

2.1 Face Patch Correspondence

The proposed method transforms an entire face by patch-wise image transfor-
mation. Therefore we have to find the correspondence of similar facial texture
patches between different poses. There are some algorithm to achieve this. For
example, the LLR method [9] employs a cylinder face model for finding the corre-
spondence between different poses. In our case, we employ a simple affine model
calculated from three points that are the centers of the eyeballs and the lower
tip of the nose. In other words, patch correspondences between different poses
are found by transforming facial images so that the three points are located at
the same positions.

2.2 Patch-Wise Face Image Transformation

A face patch is represented as pφ, which is located in the output frontal image
vφ(Figure 3). Similarly, we represent the face patches corresponding to pφ in
input non-frontal images vθ1 and vθ2 as pθ1 and pθ2 , respectively. On the other
hand, we represent face patches in vn

θ1
, vn

θ2
and vn

φ in the dataset as qn
θ1

, qn
θ2

,
and qn

φ (n = 1, ..., N), respectively. The size of each patch is W × H pixels. We
summarize below the symbols for the patches used in the algorithm.

Patch Symbols
Input pθ1 , pθ2

Output pφ

Dataset qn
θ1

, qn
θ2

, qn
φ (n = 1, ..., N)

This method transforms pθ1 and pθ2 to pφ using a transformation matrix T
based on the VTM method [8]. The LVTM method proposed here, transforms
each local area of an image while the VTM method transforms the entire area
of an image.

The LVTM method calculates pφ as follows:

pφ = T
[
pθ1

pθ2

]
, (1)
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where p also represents the vector form of the patch image, which is a column
vector that has pixel values of the image as its elements. T is a WH × 2WH
matrix which transforms pθ1 and pθ2 to pφ. We calculate beforehand T using the
dataset patches for each face patch position by solving the following equation:[

q1
φ · · · qN

φ

]
= T

[
q1

θ1
· · · qN

θ1

q1
θ2

· · · qN
θ2

]
, (2)

in the same manner as in [8].

2.3 Synthesis of Frontal Face

For each face patch position, the proposed method calculates pφ using the input
patches and the dataset patches. After this, the proposed method synthesizes
vφ from all pφ. The pixel values of regions where face patches are overlapped
are calculated by averaging the pixel values of the overlapped patches.

3 Experiment

To demonstrate the effectiveness of the proposed method, two experiments were
conducted. In the first experiment, we transformed non-frontal face images to a
frontal face image. Then we calculated the RMSE between each transformed face
and the ground-truth frontal face while changing the number of input images
and the input poses. In the second experiment, we input the transformed images
to a system that recognizes individuals from the frontal face images. From the
results, we evaluated the effectiveness of using multiple input images for frontal
face generation from low-resolution non-frontal faces.

3.1 Frontal Face Generation

We used a face image dataset provided by SOFTPIA JAPAN [10], which contains
face images of 300 individuals taken from horizontal angles of 0 (front), ±10, ±20,
±30 and ±40 degrees. We transformed all images by affine transformation with
three points (the centers of the eyeballs and the lower tip of the nose) to find
the patch correspondences between different poses. Figure 4 shows samples of
images used for frontal face generation. The image size was 32 × 32 pixels and
the face patch size was set to 16× 16 pixels. Face images of 150 individuals were
used for LVTM’s training set and others were transformed. For the quantitative
evaluation, we calculated the average RMSE to the ground-truth frontal faces
in the cases of 1, 2 and 3 inputs.

3.2 Face Recognition

We input the transformed images to a recognition system that recognizes a
person from a frontal face. The eigenspace method [11] was employed as the
recognition strategy. We constructed an eigenspace from 150 actual frontal face
images of the same individuals used for the input images. For the purpose of
comparison, we calculated the average recognition rate in the cases of 1, 2 and
3 inputs.
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Fig. 4. Samples of images used for frontal face generation

Table 1. Overall average of RMSEs and recognition rates

Number of inputs 1 2 3

RMSE 19.1 17.7 16.7

Recognition rate [%] 61 73 77

4 Result and Discussion

Table 1 shows the average RMSEs and recognition rates. These averages were
calculated from 150 individuals and all combinations of the input degrees for
the cases of 1, 2 and 3 inputs. These results show that the more input images
were used, the better RMSE and recognition rate were obtained. From this,
we confirmed the effectiveness of the proposed method that uses multiple input
images for frontal face generation. Figure 5 shows samples of the transformed

Table 2. RMSEs and recognition rates for each set of input degrees

(a)RMSE

Input angle[◦] −40 −30 −20 −10 +10 + 20 +30 +40

−40 21.0 19.1 17.9 17.3 17.1 17.3 17.7 18.6
−30 - 19.5 18.0 17.2 17.0 17.2 17.8 18.0
−20 - - 18.6 17.0 16.2 16.5 17.0 17.4
−10 - - - 17.6 15.9 16.2 16.7 16.8
+10 - - - - 18.0 17.0 17.0 17.0
+20 - - - - - 19.0 18.0 17.9
+30 - - - - - - 19.0 18.7
+40 - - - - - - - 20.2

(b)Recognition rate [%]

Input angle[◦] −40 −30 −20 −10 +10 +20 +30 +40

−40 45 55 69 73 73 71 67 65
−30 - 55 67 76 77 74 70 67
−20 - - 68 79 83 80 75 69
−10 - - - 72 82 80 81 77
+10 - - - - 70 80 80 72
+20 - - - - - 70 70 67
+30 - - - - - - 60 59
+40 - - - - - - - 46
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The number of input 1 2 3 Ground truth

RMSE 15.1 13.6 13.5 0.0

(a)Results with input angles of +30 for 1 input, ±30 for 2 inputs, and ±30 and −20
for 3 inputs

Ground truth

Transformed face

RMSE 19.6 21.5 14.8 17.2

(b)Results for various persons in the 2 input case with input angles of ±30

Input degree[] +10 +20 +30 +40 Ground truth

RMSE 14.8 16.3 21.5 17.5 0.0

(c)Results for various input angles in the 1 input case

Fig. 5. Examples of transformed facial images
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frontal face images and their RMSEs. The samples of the results for each of the
1, 2 and 3 input cases are shown in Figure 5 (a). On the other hand, Figure 5
(b) and (c) show the samples of the results for various individuals and various
input angles, respectively. Additionally, Table 2 shows the average RMSEs and
face recognition rates for each set of input degrees in the cases of 1 and 2 inputs.
In the tables, the values in the fields where two input angles are the same are the
1 input case. These results show that the inputs with angles close to the front
tend to achieve small RMSEs and high recognition rates. Increasing the number
of input images increases the information of the input individual for frontal face
generation. However, some cases where adding another input image degraded the
accuracy were observed. For example, the recognition rate of the input degrees
30 and 40 was 59%, while that of the input degree 30 was 60%. Such situations
were also observed in the case of 3 inputs. This is because appropriate patch
correspondences would be difficult to obtain by the simple method when two
poses are distant. The inappropriate patch correspondences might degrade the
accuracy of the frontal face generation.

5 Conclusion

We proposed a method for frontal face generation from multiple low-resolution
non-frontal faces for face recognition. The proposed method achieves the image-
based face pose transformation by using the information obtained from mul-
tiple input face images without considering three-dimensional face structure.
Using frontal face images actually transformed from low-resolution non-frontal
face images, two kinds of experiments were conducted. The experimental results
demonstrated that increasing the number of input images generally improves the
RMSEs and the recognition rates for low-resolution face images.

Future work includes making use of the knowledge on the movement of face
parts according to face pose change in order to obtain appropriate correspon-
dences between face patches.
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Abstract. Color histograms are widely used for visual tracking due to
their robustness against object deformations. However, traditional his-
togram representation often suffers from problems of partial occlusion,
background cluttering and other appearance corruptions. In this paper,
we propose a probabilistic index histogram to improve the discrimina-
tive power of the histogram representation. With this modeling, an input
frame is translated into an index map whose entries indicate indexes to a
separate bin. Based on the index map, we introduce spatial information
and the bin-ratio dissimilarity in histogram comparison. The proposed
probabilistic indexing technique, together with the two robust measure-
ments, greatly increases the discriminative power of the histogram rep-
resentation. Both qualitative and quantitative evaluations show the ro-
bustness of the proposed approach against partial occlusion, noisy and
clutter background.

1 Introduction

Appearance model is one of the most important issues in object tracking. Gener-
ally speaking, the appearance model can mainly be divided into two types: his-
togram [1] and non-parametric description [2],[3],[4],[5], [6],[7]. Histogram-based
models, which naturally capture the global statistic information of the target re-
gion, are one of the most popular models. This is due to their robustness against
target deformation and noises.

However, because the color histogram is a statistic description of the target
region, it loses the spatial information and not robust to background disturbance
and occlusion. Also the traditional ways obtain the histogram bin by equally di-
viding the color space. However this division can neither accurately nor efficiently
encode the color distribution of the target region.

The above drawbacks of histogram representation limit its application in vi-
sual tracking. In order to address the above issues, we propose a probabilistic

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 184–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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index histogram with spatial distance and cross bin-ratio dissimilarity measure-
ment. The main contributions of the proposed algorithm are summarized as
follows:

1. We propose a probabilistic index histogram as the appearance model. In-
stead of obtaining the histogram bins by equally dividing the color space, we
define each bin adaptively as a palette. Using the palette indexing theory [8],
each bin is considered as a color probabilistic distribution. An image is then
translated into an index map whose entries are the bin number the pixels
fall in.

2. For the probabilistic index histogram, we propose an efficient spatial distance
between two bins. The spatial distance improves the matching accuracy by
capturing spatial layout for the histogram.

3. Instead of using traditional distances (e.g., Bhattacharyya distance) for com-
paring two histograms, we use the cross bin-ratio dissimilarity, which is pre-
viously proposed for category and scene classification [9], to improve the
robustness to background clutters and partial occlusion.

2 Related Work

Vast works have been done to increase the robustness of the histogram represen-
tation. In [10], oriented kernels are adopted to take the spatial information into
consideration. Birchfiled et al. [11] introduce the spatial mean and covariance
of the pixel positions of the given bin. In [12], Earth Mover’s Distance (EMD)
which is robust to illumination changes is employed to weighted the similarity of
two histograms. In [13], object is represented by multiple image fragments and
the histograms are compared with the corresponding image patch histogram.

Our method is different from the above histogram representations in both
representation and similarity measurement. We model each bin as a palette and
propose a new probabilistic histogram. Our probabilistic histogram code the
color distribution more accurately than equally dividing the color space as his-
togram bin. With this modeling, an input frame is translated into an index
map. Based on the index map, we introduce a spatial distance to compare spa-
tial layout of the pixels falling in the same histogram bin. We also introduce
the cross bin-ratio dissimilarity to compute the similarity of two histograms.
This measurement together with the spatial distance enhances the robustness of
histogram representation against occlusion, noisy and background cluttering.

The rest of this paper is structured as follows. In Section 3, the proposed al-
gorithm is detailed. Experimental results are presented in Section 4, and Section
5 is devoted to conclusions.

3 Index Histogram

3.1 Palette Indexing

An efficient way to represent an image is to define it as an index matrix. Each
entry in the matrix indicates index to a separate palette. The palettes are pos-
sible colors of the target region. By the definition of index matrix, image pixels
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corresponding to a palette share the same index. The image structure is better
captured by carefully analyzing the index map. Let I be a M × N image and
{Ls}m

s=1 be the palettes. The index for each pixel xi,j is represented as di,j , where
i, j is the location of the pixel. The palette L is a table of m color or feature.
For the color image, {Ls} = μs can be an [RGB] vector. The index di,j of each
pixel points to the palette the pixel belongs to.

Instead of including all the image color in the palette, each palette Ls is
defined as a Gaussian distribution and the probability of a pixel xi,j belonging
to a certain palette Ls is formulated by a Gaussian distribution:

p(xi,j |Ls) = φ(xi,j : μs, Σs) (1)

where μs, Σs are the mean and covariance of Gaussian distribution φ(.). Through
maximizing the probability each pixel belongs to all the palettes, each entry in
the index map can be obtained.

3.2 Probabilistic Indexing Histogram

Following the idea of palette indexing, we model each histogram bin as a color
palette. Let Bs be the sth histogram bin, di,j indicate the bin the pixel xi,j

falls in. Given an image I, the learning process aims to obtain the di,j and Bd

simultaneously. These two parameters can be obtained through maximizing the
posterior probability p(x|d, B). After treating the index variable d as hidden
variables and bin B as the model parameters, p(x|d, B) can be expressed as:
p(x|B) =

∑
d p(x, d|B). Unfortunately, this optimization is intractable, an ap-

proximate method is needed. The most popular approximation method is the
variational method [14]. In the method, an alternative cost, free energy E, is
defined instead of directly maximizing p(x|d, B):

E =
∑

d

q(d) log
q(d)

p(x, d|B)
=

∑
d

q(d) log q(d) −
∑

d

q(d) log p(x, d|B) (2)

where q(d) can be an arbitrary distribution. If we define q(d) as p(x|B, d), E

equals to −log p(x|B). Using the Jensen’s inequality, it can be shown that E ≥
−log p(x|B). So the lower bound of E is the posterior probability p(x|d, B) that
we need to optimize. Using the variational method in [14], the free energy can
be efficiently optimized using an iterative algorithm.

In order to minimize the free energy E, we fix p and optimize q under the
constraint

∑
i,j q(di,j) = 1. After minimizing the free energy E, q is obtained as

q(di,j) ∝ p(di,j)p(xi,j |di,j , B) (3)

where p(di,j) is the prior distribution, and p(xi,j |di,j , B) is defined in Equ.(1).
Then the bin parameters B = {μs, Σs}m

s=1 are estimated by minimizing the free
energy E while keeping q(di,j) fixed:
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Fig. 1. Probabilistic index histogram

μs =

∑
i,j q(di,j = s)xi,j∑

i,j q(di,j = s)
(4)

Σs =

∑
i,j q(di,j = s)[xi,j − μs][xi,j − μs]T∑

i,j q(di,j = s)
(5)

These two steps are conducted iteratively until convergence. The results are
probabilistic histogram whose bins are modeled as B = {μs, Σs}m

s=1. The index
of the pixel xi,j can be obtained through minimizing the Mahalanobis distance
between each pixel xi,j and the histogram bin:

di,j = argmin
s

((xi,j − μs)Σ−1
s (xi,j − μs)) (6)

Fig.1 illustrates the result of probabilistic histogram and index map. Each
color in the palette represents the mean of each histogram bin. For the clarity
of illustration, each histogram bin is assigned a distinctive color instead of the
original mean. Different color in the target region corresponds to different bins
the pixels belong to. From Fig.1, the image can accurately be coded with the
probabilistic index histogram.

3.3 Spatial Distance

The histogram representation provides rich statistic information at the cost of
losing spatial layout of pixels falling into the same histogram bin. However, the
index map of the target region obtained using Equ.(5)(6) captures the image
structure. Specifically, the distribution of pixel position of the same index is an
efficient way to represent the spatial layout of the histogram bin. Motivated by
this observation, we model the spatial layout of the sth histogram bin using the
spatial mean μT

a,s and covariance ΣT
a,s of the pixel position ai,j of index s,

μT
a,s =

∑
i,j ai,jδ(di,j − s)∑

i,j δ(di,j − s)

ΣT
a,s =

∑
i,j [ai,j − μT

a,s]
T [ai,j − μT

a,s]δ(di,j − s)∑
i,j δ(di,j − s)

(7)
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where δ is the Kronecker function such that δ(di,j − s) = 1 if di,j = s and
δ(di,j − s) = 0 otherwise.

The weight of each histogram bin contributes to the whole spatial distance is
proportional to the number of pixels in the index:

ωs =

∑
i,j δ(di,j − s)∑

s

∑
i,j δ(di,j − s)

(8)

Given a candidate region, the spatial mean μC
a,s and covariance ΣC

a,s of the
sth bin can be computed accordingly. The spatial distance between the target
histograms HT and a candidate histograms HC is formulated as follows:

SD(HT , HC) =
∑

s

ωs exp{−1
2
[μC

a,s − μT
a,s]

T ((ΣT
a,s)

−1 + (ΣC
a,s)

−1)[μC
a,s − μT

a,s]}
(9)

3.4 Cross Bin-Ratio Dissimilarity

A widely used method to compare the target histogram HT and candidate his-
togram HC is the Bhattacharyya distance (e.g., in [1]):

ρ(HT , HC) =
m∑

u=1

√
hT (u)hC(u) (10)

However, this measurement only considers bin to bin information and loses the
cross bin interaction. In addition, as the target region is usually represented
with a rectangle, it is often corrupted by the background clutters and occlusion
part that are irrelevant to the target. As shown in Fig.1, the histogram bin
represented with blue is obviously the background and the pixels falling into this
bin account for a large portion of the target region. Such background information
and occluded part will introduce noises into histogram representation and which
in turn brings the inaccurate matching. In order to overcome these drawbacks,
we introduce a cross bin-ratio dissimilarity measurement.

Let h be an m-bin histogram. A ratio matrix W is defined to capture the
cross bin relationship. Each element in the matrix is (hu/hv) which measure the
relation between bin h(u) and h(v). The whole ratio matrix is written as follows:

W =
(

hu

hv

)
u,v

=

⎡⎢⎢⎣
h1
h1

h2
h1

... hm

h1
h1
h2

h2
h2

... hm

h2

... ... ... ...
h1
hm

h2
hm

... hm

hm

⎤⎥⎥⎦ (11)

With the definition of the ratio matrix, we compare the vth bin between two
histogram HT and HC using dissimilarity Mv. Mv is defined as the sum of
squared difference between the vth rows of corresponding ratio matrix:

Mv(HT , HC) =
m∑

u=1

(
hT

u

hT
v

− hC
u

hC
v

)/(
1

hT
v

+
1

hC
v

) (12)
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where 1
hT

v
+ 1

hC
v

is normalization term to avoid the instability problem when hT
v

and hC
v close to zero. From the above definition, the influence of the clutter or

occlusion part bin is weakened by the ratio operation. Thus this measurement
is robust to background clutter and occlusion.

We simplify Mv using the L2 normalization
∑m

k=1 h2(k) = 1 and formulate
the cross bin-ratio dissimilarity M between histogram HT and HC as follows:

M(HT , HC) =
m∑

v=1

Mv(HT , HC) =
m∑

v=1

(1 − hT
v hC

v

(hT
v + hC

v )2
‖HT + HC‖2

2) (13)

3.5 Bayesian State Inference for Object Tracking

In this paper, the object is localized with a rectangular window and its state is
represented using a six dimension affine parameter Xt = (tx, ty, θ, s, α, β) where
(tx, ty) denote the 2-D translation parameters and (θ, s, α, β) are deforming pa-
rameters. Given the observation It, the goal of the tracking is to infer Xt. This
inference can be cast as a Bayesian posterior probability inference process [15],

p(Xt|It) ∝ p(It|Xt)
∫

p(Xt|Xt−1)p(Xt−1|It−1)dXt−1 (14)

where p(It|Xt) is the observation model and p(Xt|Xt−1) represents the dynamic
model. A particle filter [15] is used to approximate the posterior probability with
a set of weighted samples. We use a Gaussian distribution to model the state
transition distribution. The observation model p(It|Xt) reflects the similarity
between the candidate histogram of state Xt and target histogram:

p(It|Xt) = exp{− 1
2σ2

(1 − SD(HT , HC)} ∗ exp{− 1
2σ2

∗ αM(HT , HC)} (15)

where σ is the observation variance and α is a weighting factor to balance the
influence of spatial distance and cross bin-ratio dissimilarity. If we draw particles
from the state transition distribution, the weight Wt of each sample Xt can be
evaluated by the observation likelihood p(It|Xt). Then we use a maximum a
posterior (MAP) estimate to obtain the state of the object at each frame.

4 Experiments

In order to validate the effectiveness of our proposed method, we perform a num-
ber of experiments on various sequences. Comparisons with other algorithms are
also presented to further show the superiority of our approach. To give a fair com-
parison with the mean shift algorithm which can only deal with scale changes,
we only consider the scale change of the affine parameter. The parameters are
set to Σ = diag(52, 52, 0.012, 0, 0.0012, 0), and 420 particles are used.

Experiment 1. The first experiment is conducted to test the influence of the
spatial distance and cross bin-ratio dissimilarity respectively. Also comparison
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(a) Mean shift

(b) The spatial distance only

(c)The cross bin-ratio dissimilarity only

(d) The proposed algorithm

Fig. 2. The tracking results of Experiment 1

with the color histogram based mean shift algorithm [1] is presented. The se-
quence is a woman partially occluded by cars. The cars and some background
are similar in appearance to the woman. Fig.2 (a) shows the tracking results of
mean shift. Obviously the mean shift algorithm is distracted by the cars and
similar background and can not deal with partial occlusion well. The results in
Fig.2 (b) and Fig.2 (c) illustrate that both spatial distance and cross bin-ratio
dissimilarity improve the tracking results. However, only one term can not always
provide satisfying results. From the tracking results in Fig.2 (d), our proposed
algorithm which combines the spatial distance and cross bin-ratio dissimilarity
successfully tracks all the frames and provides accurate results.

A quantitative evaluation of four algorithms is presented in Table.1. We com-
pute the RMSE (root mean square error) between the estimated position and the
groundtruth. Here the groundtruth is marked by hand. The results in Table.1

Table 1. Quantitative results for Experiment 1

Tracking approach Mean shift Spatial only Cross bin-ratio only Our approach

RMSE of Position 14.7018 7.9759 6.6581 3.2451
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(a) Mean shift

(b) AMOG

(c) Our proposed algorithm

Fig. 3. The tracking results of the Experiment 2

validate that our algorithm with spatial distance and cross bin-ratio dissimilarity
achieve the most accurate results.

Experiment 2. In the second experiment, we test the performance of our algo-
rithm in handling partial occlusion and background distraction. We compare our
algorithm with other two algorithms. One is the color histogram based mean shift
[1] algorithm which only consider the statistical information of object. The other
one is a popular parametric description algorithm [5], which adopts an adaptive
mixture of Gaussians (AMOG) as the appearance model. From Fig.3(a), the
mean shift algorithm is distracted away by another face with similar color and
can not recover anymore. The AMOG also can not provide good results. On the
contrary, our algorithm is capable of tracking the object through all the frames
even though the face endures severely occlusion and background distraction.

Experiment 3. The third experiment aims to test the robustness of our algo-
rithm against clutter background and scene blurring. As shown from Fig.4(a),
the mean shift algorithm quickly drifts away and can not capture the object any
more. This is mainly because the nearby background and the object share the

Table 2. Quantitative results for last three sequences

Tracking approach Mean shift AMOG Our approach

Evaluation method RMSE STF RMSE STF RMSE STF

Second sequence 20.8207 14/56 6.4717 43/56 2.5356 56/56

Third sequence 85.8135 1/100 92.2919 4/100 5.5866 100/100

Fourth sequence 15.6012 3/183 18.5673 27/183 3.7865 183/183
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(a) Mean shift

(b) AMOG

(c) Our proposed algorithm

Fig. 4. The tracking results of Experiment 3

(a) Mean shift

(b) AMOG

(c) Our proposed algorithm

Fig. 5. The tracking results of Experiment 4

similar color histogram statistics. The tracking results in Fig.4(b) show that the
AMOG also can not tackle the clutter background. However the good tracking
results in Fig.4(c) illustrate that our algorithm is robust against clutter back-
ground and scene blurring.

Experiment 4. In the last experiment, we test our algorithm on a more
challenging sequence. In this sequence, a car moves in a noisy background.
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The nearby background is so noisy that the car can not easily be located even
by eyes. Fig.5 presents the tracking results of three algorithms. As shown in
Fig.5(c), the noisy background poses no challenges for our algorithms. However
both mean shift and AMOG encounter troubles in the extremely noisy back-
ground.

A quantitative evaluations of the last three sequences are also given in
Table 2 to further demonstrate the superiority of our algorithm. The evalu-
ation is comprised of the following two aspects: RMSE, STF( the number of
successfully tracked frames and the tracking is defined as failure if the center
of the window is not in the object). From the results in Table 2, we make the
following conclusions: (1) The mean shift and the AMOG algorithm are only
suitable for the tracking when the appearance of the object is different from the
background. Both these two algorithms can not deal with occlusion, noisy and
clutter background well; (2) The spatial distance and the cross bin-ratio dissim-
ilarity based on the probabilistic index histogram make our approach robust to
occlusion, noisy and clutter background. As a result, our proposed approach is
an effective way to improve the discriminative power of the traditional histogram
representation.

5 Conclusions

In this paper, we propose a probabilistic index histogram to increase the robust-
ness of the color histogram representation. Our new histogram representation,
together with spatial distance and cross bin-ratio dissimilarity, greatly increase
the discriminative power of the histogram representation. In experiments on
several challenging sequences validate the claimed contributions.

Acknowledgement. This work is partly supported by NSFC (Grant No.
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(Grant No. 2009AA01Z318).
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Abstract. We present a novel online method to model independent fore-
ground motion by using solely traditional structure and motion (S+M)
algorithms. On the one hand, the visible static scene can be reconstructed
and on the other hand, the position and orientation (pose) of the observer
(mobile camera) are estimated. Additionally, we use 3D-outlier analy-
sis for foreground motion detection and tracking. First, we cluster the
available 3D-information such that, with high probability, each cluster
corresponds to a moving object. Next, we establish a purely geometry-
based object representation that can be used to reliably estimate each
object’s pose. Finally, we extend the purely geometry-based object rep-
resentation and add local descriptors to solve the loop closing problem
for the underlying S+M algorithm. Experimental results on single and
multi-object video data demonstrate the viability of this method. Ma-
jor results include the computation of a stable representation of moving
foreground objects, basic recognition possibilities due to descriptors, and
motion trajectories that can be used for motion analysis of objects. Our
novel multibody structure and motion (MSaM) approach runs online
and can be used to control active surveillance systems in terms of dy-
namic scenes, observer pose, and observer-to-object pose estimation, or
to enrich available information in existing appearance- and shape-based
object categorization.

1 Introduction

Multibody Structure and Motion (MSaM) extends existing Structure and Motion
(S+M) or Simultaneous Localization and Mapping (SLAM) algorithms, because
MSaM provides (i) the detection and tracking of rigid or sparsely rigid objects
by spatial-temporal trajectories, (ii) the reconstruction of the (unknown) scene
structure, and (iii) the pose estimation of the moving camera (observer). Hence,
MSaM enables mobile and active surveillance systems.

This paper presents in detail our novel MSaM algorithm, which uses con-
ventional S+M outlier information to model rigid and sparsely non-rigid object
foreground motion, as well as experimental results. The main goal of our work is
to provide both observer pose and observer-to-object(s) pose in real-time, using
affordable hardware, e.g. a tablet or handheld PC with low CPU power.

3-D outlier information, gathered by an S+M algorithm, is the initial per-
frame input of our online algorithm. Meanshift-clustering separates the outliers
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into sets of moving objects. At each step, the current clustering information has
an impact on future clustering, which prevents point features to change randomly
between nearby objects. Thus, the interface between the S+M algorithm and the
clustering procedure can be seen as feedback control system.

A stable object centered representation is computed per object, which con-
stitutes the core of our algorithm. Based on a stable reference point, the object
centered representation allows motion analysis and enables motion prediction
based on position, velocity, and acceleration (Kalman Filter). For each object,
rotation and translation information is gained over the tracked time. Finally, to
solve loop-closing, an update routine for previously lost and re-appeared point
features (e.g. after occlusion or self-rotation) is implemented.

Online MSaM is needed in mobile surveillance, augmented reality, or naviga-
tion, and it can enable active surveillance, replacing the human-in-the-loop.

2 Related Work

S+M and SLAM algorithms rely on point features and can simultaneously re-
construct 3-D scene information and observer motion. Both S+M (in computer
vision) and SLAM (in robotics terminology) are general approaches because they
are purely geometry-based, but SLAM requires real-time performance. Both ap-
proaches do not need prior model information, but their range of applications
is limited to stationary scenes only. S+M/SLAM fails or produces erroneous re-
construction results in case of (dominant) independent foreground motion in the
scene. S+M/SLAM algorithms can roughly be categorized into continuous track-
ing approaches [1, 2, 3] and keyframe-based approaches [4, 5, 6]. Latest work by
Newcombe et al. [7] introduces the combination of state-of-the-art components
to solve real-time monocular dense reconstruction of cluttered natural scenes.
By combining SLAM with variational optical flow, accurate depth maps are
generated. However, this approach is computationally expensive, as it needs a
Desktop PC with a GPU.

In MSaM, Schindler et al. [8] distinguish between algebraic methods including
factorization-based algorithms (e.g. [9, 10, 11]), and non-algebraic methods that
combine rigid S+M with segmentation. Non factorization-based methods han-
dling multi-view perspective sequences in dynamic scenes are addressed by [12,
13,8,14]. But most existing MSaM methods are computationally expensive and
thus not applicable in real-time. Online MSaM systems, such as Leibe et al. [15]
and Ess et al. [16] differ from basic S+M because their approaches are not purely
geometry-based and require quite elaborated object detection algorithms. Fur-
thermore, they are restricted to the processing of certain classes of objects only
(cars and people).

Compared to the above non-factorization and factorization-based algorithms,
our algorithm is applicable in real-time. Our work processes 3-D information,
Schindler et al. [8] and Ozden et al. [14] cluster in the image plane. In contrast
to Leibe et al. [15] and Ess et al. [16], our approach is not restricted to a certain
class of object. Instead, it works for any rigid or sparsely rigid object.
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3 Algorithm Overview

Our algorithm consists of three parts: (i) S+M information gathering briefly
discussed in section 3.1, (ii) online clustering of outlier data as introduced in
section 3.2, and (iii) an object-centered representation explained in section 3.3.
In part (i) and (ii), state-of-the-art components are used. The main contribution
of this paper - the rigid object representation for online tracking - is introduced
in part (iii) and discussed in-depth in section 4.

3.1 Information Gathering by S+M

We start by reconstructing the scene and estimating the observer pose using
an S+M algorithm that requires point correspondences. Typically, S+M recon-
structs the static scene from an inlier point set, whereas instable points and
noise are considered as outliers. Conventional S+M algorithms can reconstruct
the static scene and the observer pose in case of up to 50% outliers. Our con-
tribution is to analyse these outliers as candidates for independent foreground
motion.

Several current S+M algorithms might be considered. Newcombe and Davi-
son [7] use monocular S+M for scene reconstruction and observer pose estima-
tion, but they neglect the outlier information. The most prominent contribution
is certainly by Klein et al. [6, 5, 4], but their concept relies on keyframes and is
inherently unable to handle significant changes in the scene (as posed by sig-
nificant foreground motion). We decided to build on the S+M algorithm for
general cameras by Schweighofer et al. [3]. The available implementation uses
a calibrated stereo-rig, which eases the initialization process significantly (ini-
tial experiments with Klein’s algorithm [6] failed on our video sequences, due
to limited camera motion). But we want to emphasize, that the main focus of
our paper is not on the S+M algorithm. We can use any algorithm that reliably
reconstructs the observer motion, and provides access to 3D-inlier and outlier
information gathered over time.

3.2 Motion Clustering

In conventional stable structure scenarios, outliers are mostly related to noise.
In scenes with foreground motion, groups of consistently moving outliers can
provide hypotheses on independently moving foreground objects. For each out-
lier, we build online a 3D-trajectory according to its 3D-coordinate in the scene.
Having enough information (in our case: a trajectory with a length of minimum
five frames), the trajectory’s coordinates are passed to a clustering table. One
column of the clustering table has the form [Xt, Xt−1, . . . , Xt−4]T where X is the
3D-coordinate and t is the current frame. Xt−1 is not necessarily the previous
frame, it addresses the frame where the outlier was visible the last time. This
also applies for Xt−2 . . . Xt−4. Figure 1(a) shows examples of 3D-outlier trajec-
tories gathered by S+M at two different time steps in experiment 1 (cf. fig. 2).
At first, only the cup (moving from left to right) contributes outliers, later, the
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(a) (b)

Fig. 1. (a) Example x/z-plots of 3D-outlier-trajectories. (b) Scene representration:
Global scene coordinate system Xs attached to the static background structure; Local
coordinate systems Xk attached to each independently moving cluster of outliers; One
moving observer.

cow (moving from right to left) comes into view. For better legibility only the
x/z-coordinates of the 3D-trajectories are plotted. Once the clustering table is
set up, it is passed to a meanshift-clustering-algorithm [17,18]. To gain hypothe-
ses for moving objects, we cluster the passed 3D-information online by position
and by trajectory behavior. We do not use mean-corrected coordinates, as we
want to preserve the trajectories’ positions in the scene.

3.3 Maintaining the Object Centered Representation

For each previously gathered cluster, we establish a local object coordinate sys-
tem, which can move independently with respect to the global scene coordinate
system that is attached rigidly to the static background structure (see fig. 1(b)).
For all moving objects, the origins of their object coordinate systems are selected
as reference points. Thus, we link the object’s representation and motion to one
single reference point per object (in contrast to point cloud matching) without
neglecting any object information. The core task of our algorithm is to stably
maintain this reference point, as described in detail below in section 4.

4 Online Rigid Object Representation

In this section, we introduce a stable, purely geometry-based object representa-
tion that enables us to model the object behavior online, without prior knowledge
of the scene. We obtain the object coordinate system by establishing difference
vectors of available neighboring point features per object. The point features per
object are determined by the online clustering-procedure described in section 3.2.
When a cluster contains enough point features, a reference point is computed.
Motion, i.e. rotation and translation of the object, is estimated according to each
object’s reference point. Finally, this geometry-based representation is extended
by salient point descriptors to solve the loop-closing problem.
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4.1 Initialization of the Object Centered Representation

Once t ≥ 4 (at least four points are needed for pose estimation) point features
are available on an object, the reference point is computed as the mean values of
the available point coordinates. Thus, it coincides with a first rough estimation
of the object’s center of gravity. We define this reference point as the object’s
coordinate center and store its position in scene coordinates. The coordinates of
all point features on the object are stored in object centered coordinates, i.e. the
difference vectors Δdi from point feature i to the reference point.

In case of temporary invisibility of an object, a 9-state Kalman Filter (KF)
provides prediction for the reference point based on its position, velocity, and
acceleration.

4.2 Update

Once the initialization process has been successfully finished, the updating pro-
cedure is continuously performed. The actual update process consists of three
parts described below.

(i) In every subsequently processed frame, each point feature on an object
provides one hypothesis1 for the reference point. We require a feature set con-
taining the same point features in two successive frames for pose estimation.
Required point features can disappear over time (e.g. self-occlusion due to ob-
ject rotation). If all point features of an object disappear, prediction by the KF
is the only possibility, as no point feature provides a hypothesis for the reference
point. However, if a subset of the object disappears temporarily, computing the
reference point is still possible. The remaining r ≥ 1 point features provide valid
hypotheses for the reference point. Additionally, at every new frame j, available
new point features provide new hypotheses for the object’s reference point.

(ii) The self-rotation ΔR between two successive frames has to be estimated
for each object. The difference vectors Δdi created in the initialization process
do not provide information on rotation. To estimate the rotation ΔR between
the current frame j and the previous frame j − 1, we proceed as follows:

1. In frame j−1, the reference has already been established by n ≥ 4 neighbor-
ing point features. Thus, for each point feature i ∈ n, a difference vector Δdi

exists, indicating the position of the point feature w.r.t. reference point.
2. In frame j, the position of the reference point is assumed unchanged. Addi-

tionally, we know the scene coordinates of the same n point features i1 . . . in
found in frame j−1. In case of object motion between frames j−1 and j, the
scene coordinates of the point features will be slightly different. We can com-
pute a rotation matrix ΔR from these 3D point correspondences between
frames j − 1 and j.

3. The rotation with matrix ΔR is applied to all point features’ difference
vectors to obtain the relative position to the reference point in frame j. We
update both “active” and “inactive” point features as well as all lost point

1 A hypothesis is the difference vector from a point to the reference point.
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features. To be robust against imprecise rotation estimations, the current
position of point feature i is computed as mean of all past difference vectors.

4. Now, each point feature of the object provides a hypothesis for the new
position of the reference point considering the inter-frame rotation. The mean
of all hypotheses per object is used as new reference point, i.e. in our case
the origin of the object-centered coordinate system.

(iii) To provide a stable reference point, we need a confidence measure that
can distinguish between “active” and inactive” point features. We allow “active”
point features to provide hypotheses for a reference point, whereas “inactive”
point features must not. For each object, we generate the confidence measure
by computing the median in x, y, and z direction of all hypotheses (i.e. median
of 3D-coordinates of visible point features). Then, a certain range around the
median values is chosen. In our case, this is 2 times the standard deviation. All
point features within this adjusted range in all three directions are set “active”.
All other point features are set “inactive”. If no hypothesis is available (i.e. no
point feature is within the selected range) we increase the range stepwise, until
a valid hypothesis emerges. Once the new reference point has been computed,
the difference vectors from all point features are updated.

4.3 Re-mapping of Re-appeared Point Features

To handle the loop-closing problem of the underlying S+M algorithm, we extend
this purely geometry-based algorithm by descriptors that are generated for each
point feature on an object. Furthermore, we keep track of the visibility of all
point features. In case of invisibility, continuous difference vector update can not
be performed. Instead, a position estimation routine is used. While our focus is
on loop-closing for object motion, the same method can be applied to stable
background features to perform loop-closing for the static scene.

S+M performs continuous tracking, so that a temporarily lost point feature
is not recognized on re-appearance. Providing (i) a stable reference point, (ii) a
reliable object coordinate system, and (iii) descriptive information, re-mapping
is possible. Upon re-mapping, descriptor and difference vector of a point feature
are updated, as both are similar, but not equal.

Currently, we use the Pyramid Histogram of Oriented Gradients (PHOG)
descriptors2, because of their sufficient descriptive power.

5 Experimental Results

We present three selected experiments. All sequences were captured with two
μeye 1220C USB cameras with 6.5 mm Cosmicar lenses mounted on a stereo
rig and a baseline of approximately 30 cm. We used a constant frame rate of
20 Hz. The algorithm has been tested on an Intel Core 2 Quad PC with 2.8
2 A. Bosch and A. Zissermann: Pyramid Histogram of Oriented Gradients (PHOG);

available at http://www.robots.ox.ac.uk/∼vgg/research/caltech/phog.html
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Fig. 2. Experiment 1 (row 1): 3D-output back-projected to the left image of the
stereo-rig. Bounding boxes of each cluster (yellow); point features (colored circles):
supporting a hypothesis (red), not supporting a hypothesis (magenta), lost (cyan); 2D
projection of reference point (yellow), and of KF (green). (a) Output at frame 61. (b)
Frame 109. First detection of the cow. (c) Frame 122. Not enough point features on
the cow, only KF estimation is possible. (d) Frame 145. The cow is clustered correctly
again. Experiment 2 (row 2): 3D-output back-projected to the left image of the
stereo-rig at frames 48 (a), 60 (b), 87 (c), and 93 (d). Experiment 3 (row 3):
3D-output back-projected to the left image of the stereo-rig at frames 30 (a), 95 (b),
121 (c), and 150 (d).

GHz and 1 GB RAM using Matlab 7.6 on a 32 bit version of Ubuntu 9.10.
However, Matlab was run on one core only. Online processing depends on the
number of objects (i.e. clusters) and point features (descriptor generation) in
the scene. The purely geometry-based model is very efficient at approximately
2 and 4 frames/second for 2 and 1 objects, respectively. Adding the Matlab
implementation of the PHOG descriptor decreases this performance depending
on the number of point features. However, this performance decrease is relevant
to frames with descriptor generation only. In fact, the Matlab implementation
of the PHOG descriptor is quite slow. A native C/C++ implementation would
accelerate the online processing considerably.

In contrast to Ozden et al. [14] who require 1 minute/frame, our approach
is applicable in real-time. However, their approach provides higher accuracy in
object events like splitting or merging due to the high amount of hypotheses
they are maintaining for each frame.

Experiment 1: The scene consists of 180 frames and shows static, textured
background and two moving objects (a toy cow and a coffee cup that slide on a
table by pulling them on a string) in the foreground. Figure 2 (row 1) shows the
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output of our algorithm at frames 61, 109, 122, and 145. In this scene, estimation
works well in most parts. This is due to the low noise level in this scene. Fig. 3
shows the resulting motion trajectories of the reference points, in a 2D x/z plot
(a) and in 3D (b). The KF prediction and its lag are shown as red trajectory.

In contrast to experiment 1 which was set up in our lab, experiments 2 and
3 are highly relevant to mobile surveillance. Both experiments show a moving
person along with static background and a moving observer.

Experiment 2: The scene consists of 99 frames and shows static, textured
background and the upper part of a walking person. Fig. 2 (row 2) shows the
output of our algorithm at frames 48, 60, 87, and 93. Fig. 4 presents a 2D plot
of the motion trajectory of the reference point.

Experiment 3: The scene consists of 161 frames and shows static, textured
background and one moving person. Fig. 2 (row 3) shows the output of our

(a) (b)

Fig. 3. Experiment 1: Computed reference point of cup over all frames (blue), cow
(black), and the static structure (yellow). The KF output smooths the estimation (red).
The motion is relative to the scene coordinate system initialized at the first observer
view. (a) x/z-plot of 3D motion analysis. (b) 3D-plot of the same output.

Fig. 4. Experiment 2: x/z-plot of
the 3D-trajectory of the person.
The motion is relative to the scene
coordinate system initialized at
the first frame.

Fig. 5. Experiment 3: the algorithm re-
detects the person after loss. Too many
points are lost, re-detection and re-mapping
of point features is not feasible, resulting
in two (black, blue) trajectories for one
person.
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Table 1. Quantitive evaluation of the the algorithm

Frames Features Outliers Valid Outliers Objects Points/Obj. Detection in %

Exp. 1 180 820 200 131 2 12.6/6.2 91.5/54.5
Exp. 2 99 615 107 87 1 5.7 64.6
Exp. 3 161 564 128 108 1 7.8 79.4

algorithm at frames 30, 95, 121, and 150. Fig. 5 presents the motion trajectories
of the reference points.

Table 1 shows a quantitative evaluation of our algorithm. Besides the number
of frames per experiment, it contains the total number of point features (inliers
and outliers). Furthermore, the number of outliers is listed separately. Valid
outliers indicates outliers that lie on a moving object with high probability. The
column Points/Obj. lists the average number of point features on the detected
object(s). Each experiment was run three times, the average point amount has
been taken. In experiment 1, the first number refers to the cup, the second to the
cow. Finally, the detection rate for moving objects is shown in percent. Again,
in experiment 1, the first number refers to the cup.

6 Conclusions

3-D reconstruction of dynamic scenes and tracking of independent foreground
motion play an important role in application areas such as video surveillance,
robotics, or augmented reality. In mobile surveillance, moving cameras substitute
stationary ones, and pose estimation of the observing camera is an essential task
for such kind of systems.

We have introduced a novel method to model foreground motion by extend-
ing an existing S+M environment [3] towards MSaM by 3D-outlier analysis. Our
algorithm is purely geometry-based. The stable reference point per object and
the positions of point features on the object w.r.t. the reference point provide
strong information on the object pose and its motion behavior. A confidence
measure in the update process improves the stability of the reference point. This
object representation could be applied to any other multibody S+M or SLAM
approach, such as [8]. Appearance- and shape-based object categorization algo-
rithms can benefit from our geometry-based object model in conjunction with
local descriptors. Both local descriptors and geometric information, including
motion trajectories and motion patterns, can be very discriminative. So we com-
bine both, available geometric information and local descriptors, to a higher level
semantic descriptor.

Higher level semantic reasoning for stationary background point features could
bring further improvement. Currently, more than 50% stable and reliable back-
ground is required, due to the underlying S+M algorithm [3]. Otherwise, the
results of the proposed method deteriorate. A confidence measure introduced by
higher level semantic reasoning could discriminate reliable and well detectable
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from weak background point features. Thus, the need for more than 50% back-
ground point features could be eliminated. As a first implementation of “strong
background” selection, that could be seen as a kind of “good features to track”
in the spirit of Shi and Tomasi [19], we consider a similar approach as for the
confidence measure introduced in the reference point update routine.
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Abstract. In this paper, we present a new solution to the problem of
person re-identification. Person re-identification means to match obser-
vations of the same person across different time and possibly different
cameras. The appearance based person re-identification must deal with
several challenges such as variations of illumination conditions, poses
and occlusions. Our proposed method inspires from the spirit of self-
similarity. Self-similarity is an attractive property in visual recognition.
Instead of comparing image descriptors between two images directly, the
self-similarity measures how similar they are to a neighborhood of them-
selves. The self-similarities of image patterns within the image are mod-
eled in two different ways in the proposed Global Color Context (GCC)
method. The spatial distributions of self-similarities w.r.t. color words
are combined to characterize the appearance of pedestrians. Promising
results are obtained in the public ETHZ database compared with state-
of-art performances.

1 Introduction

Object Recognition has received tremendous interests in the communities of
computer vision and pattern recognition. The general object recognition refers
to categorization of objects that belong to the same class. Different from object
recognition, object identification [1] aims to distinguish visually very similar
objects from one class. In this paper, we fix the category of object identification
to pedestrians and consider the problem of matching observations of the same
person across different time and possibly different cameras. Identifying people
separated in time and locations is known as person re-identification in [2, 3]
which is of great interest in applications such as long term activity analysis [4]
and continuously tracking across cameras [5].

Person re-identification is a difficult problem. Since the observations of people
may come from different cameras, no spatial continuity information can be ex-
ploited in person re-identification. The appearance based person re-identification
must deal with several challenges such as variations of illumination conditions,
poses and occlusions across time and cameras. In addition, different people may
dress quite similar. For example, one can hardly tell two people dressed in ho-
mogenous black apart solely by color information. Thus, a successful person
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re-identification algorithm should be able to discriminate visually very similar
objects while preserving invariance across different time and cameras.

Self-similarity is an attractive property in visual recognition [6, 7]. Instead
of comparing image descriptors between two images directly, the self-similarity
measures how similar they are to a neighborhood of themselves despite that
the image patterns generating those self-similarities may be dramatically dif-
ferent across images [7]. The spirit of self-similarity is desirable in person re-
identification since image patterns of the same person across time and cameras
appear differently at pixel level. Many work have exploited the spirit of self-
similarity in applications such as texture classification [8], image matching [7]
and activity recognition [6]. In this paper, we mainly exploit the spatial distribu-
tions of self-similarities of features w.r.t. visual words to represent the appearance
of pedestrians. The self-similarities of image patterns within the image are mod-
eled in two different ways in the proposed Global Color Context (GCC) method.
Experimental results on public benchmark dataset ETHZ [3,9] demonstrate the
effectiveness of the proposed method.

The rest of the paper is organized as follows. An overview of related work
is in Section 2. We briefly introduce our Global Color Context (GCC) method
in Section 3. Experimental results and conclusions are given in Section 4 and
Section 5, respectively.

2 Related Work

Many methods have been put forward to address the problem of person re-
identification [3, 9, 10, 11]. Color cue is widely used in person re-identification
since the color of clothing provides information about the identity of the indi-
vidual. Farenzenna et al. [3] combined HSV histogram, Maximally Stable Color
Regions and recurrent patches together to get a description inside the silhouette
of individuals. Those color features are weighted by their distances to the y-
axis of symmetry of torso and legs. However, color based features are subject to
variations of illumination conditions. To this end, various color invariants were
proposed in [12, 13, 14]. The invariance properties of color descriptors depend
on the types of illumination and the dataset used. An alternative solution to
compensate illumination variations is by finding a transformation matrix [10] or
a mapping function [11] which maps the appearance of one object to its appear-
ance under another view. However, either transformation matrix or mapping
function may not be unique in uncontrolled illumination conditions.

On the other hand, texture and edge features are exploited as complementary
information to solely color information. Two families of texture filters, Schmid
and Gabor, were explored in Gray and Tao [2]. Edge information was captured
by histograms of oriented gradients (HOG) in Schwartz and Davis [9]. One im-
age per person is required in [9] to obtain a high-dimensional feature vector
composed of texture, gradient and color information for partial least square
reduction [15]. Takala et al. [16] employed adaptive boosting on a wide collec-
tion of image features (shape, pose, color, texture, etc) to construct appearance
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models for tracked objects. It is shown that the overall performance of person
re-identification is largely improved when combining multiple cues together.

As can be inferred from the name of our proposed method, GCC only con-
siders the global layouts of self-similarities w.r.t. color words in the visual code-
book. Any other color descriptors [12] and texture descriptors [8] can be easily
plugged in our framework to further improve the performance. We employ color
invariants [13] as features in this paper to handle the illumination variations
in person re-identification. The self-similarities of image patterns are derived
through computing their distances to color words in the codebook. Promising
results are obtained in the public ETHZ dataset compared with state-of-art per-
formances [3, 9].

3 Global Color Context

An overview of the proposed Global Color Context method can be seen from
Figure 1. We first group visually similar color features to obtain a color codebook.
The color codebook is obtained by k-means clustering at densely sampled image
locations where color features are computed in a 3×3 neighborhood. Then, given
a new image, the color features (Section 3.1) from the new image are assigned
to color codebook (Section 3.2). Finally, the spatial occurrence distributions of
self-similarities w.r.t. color words are learned and combined to characterize the
appearance of pedestrians (Section 3.3).

Fig. 1. An overview of the proposed method. Local color features (Section 3.1) are
extracted densely and clustered to form a color codebook. Then, the assignments of
color features to color words in the codebook are explored in Section 3.2. Color features
from the same visual color word are marked with the same color in Figure 1(b). For each
color word in the codebook, the spatial occurrence distributions of color self-similarities
are learned in Section 3.3(Figure 1(c)).
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3.1 Color Descriptors

A wide range of color descriptors have been proposed in [12, 13, 14]. The invari-
ance properties of color descriptors are summarized in van de et al. [12]. It is
shown that the distinctiveness of color descriptors and their invariance prop-
erties are data-specific. In this section, we briefly review two color descriptors,
hue histogram and opponent histogram from Van de Weijer and Schmid [13].
The two descriptors are chosen due to their superior performances on the ETHZ
dataset we used.

Hue Histogram. In HSV color space, hue is proven to be both lighting geome-
try and specular invariant [13,12]. However, hue becomes unstable near the grey
axis. To this end, Van de Weijer and Schmid [13] applied an error analysis to the
hue. The error analysis is based on the fact that the certainty of hue is inversely
proportional to the saturation. Small values of saturation bring uncertainties in
the computation of hue. Therefore, hue with small value of saturation should
count less in histogram. In the construction of hue histogram, each sample of
hue is weighted by its saturation [13, 12]. Hue and saturation can be computed
from opponent colors [13, 12]:

hue = arctan(
O1

O2
) = arctan(

√
3(R − G)

R + G − 2B
) (1)

saturation =
√

O2
1 + O2

2 =

√
2
3
(R2 + G2 + B2 − RG − RB − GB) (2)

where O1 and O2 are two components from opponent color space:

O1 =
1√
2
(R − G) (3)

O2 =
1√
6
(R + G − 2B) (4)

Finally, the hue histogram is divided into 36 bins according to Van de Weijer
and Schmid [13].

Opponent Histogram. According to Van de Weijer and Schmid [13], the op-
ponent angle angO

x in opponent color space is supposed to be specular invariant.
The opponent angle angO

x is defined as:

angO
x = arctan(

O1x

O2x
) (5)

where O1x denotes the first order derivative of O1, etc. Similar to the error
analysis of hue histogram, Van de Weijer and Schmid [13] also applied an error
analysis to the opponent angle. Here, ∂angO

x is defined as the weight for the
opponent angle:

∂angO
x =

1√
O2

1x + O2
2x

(6)

The opponent histogram is also quantized to 36 bins.
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3.2 Color Word Assignment

After extracting local color features at densely sampled image locations, we
then group color features together to obtain color words (prototypes) of local
appearances by k-means clustering. K-means clustering is a popular method in
the Bag-of-Features framework due to its computational simplicity. A histogram
of the visual words is usually obtained to characterize the appearance of an image
in the Bag-of-Features framework. In this paper, we mainly exploit the spatial
distributions of self-similarities of color features w.r.t. color words to represent
the appearance of pedestrians.

It is known that the main deficiency of k-means clustering lies in the user needs
to specify the number of clusters in advance. However, the number of clusters
affects the performance of final person re-identification. Some color features may
lie in-between several cluster centers which results in ambiguity in color word
assignment. We mainly discuss two methods for color word assignment, hard
assignment and soft assignment in this section where self-similarities are modeled
in two different ways.

Hard Assignment. In hard assignment, each color feature is assigned to ex-
actly one color word in the codebook learned by k-means clustering. Hard as-
signment explicitly models the self-similarities of image patterns w.r.t. one visual
word to binary. It is assumed in hard assignment that two image patterns are
similar to each other only if they are assigned to the same visual word. In the hard
assignment, the occurrence frequency of each color word is computed as [17]:

Count(w) =
N∑

i=1

{
1 if w = argmin

v∈V
(D(fi, v))

0 otherwise
(7)

where w is the color word in the codebook. N is the number of local image
regions. fi is the color feature computed in image region. D(fi, v) is the Euclidean
distance between color word v in codebook V and color feature fi. Since the
assignments of color words can be done once and for all, we do not need to
compute the pairwise sum of squared differences (SSD) as in Schechtman and
Irani [7]. Thus computing self-similarities of image patterns based on their visual
words is computationally more efficient.

Soft Assignment. In the hard assignment, we assume that each color feature
can be well represented by one single word in the codebook. However, it is often
the case that a color feature has multiple candidates in the visual codebook which
gives rise to visual word ambiguity [17]. In addition, as we mentioned before, the
classification performance is closely related to the size of the codebook. While
larger values of k bring rich representations over a wide variety of colors, they
lead to overfitting in k-means clustering. On the other hand, small numbers of
visual words are generally not representative of all local features. Soft assignment
of visual words provides a tradeoff for this problem.

Furthermore, in computing the self-similarities of image patterns, the assump-
tion in the hard assignment that two color features are similar to each other only
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if they are assigned to the same word provides strict constraints for matching
pedestrians while soft assignment allows for appearance variations within the im-
age to be compared. The soft assignment method assigns color words according
to:

Count(w) =
N∑

i=1

exp(−D(fi, w)
σ

) (8)

where σ is a parameter controlling the smoothness of the self-similarities w.r.t.
color word w. Figure 2 shows an example of hard assignment and soft assignment.
Here, we compute the self-similarities of the clothing of the pedestrian. It can be
seen from Figure 2 that hard assignment models the self-similarities w.r.t. the
word occurred to binary while soft assignment provides a more smooth spatial
distribution of the occurred visual word.

Fig. 2. An example of hard assignment and soft assignment. (a) Original pedestrian
image. (b) The self-similarities w.r.t. color word occurred by hard assignment. (c) The
self-similarities w.r.t. color word occurred by soft assignment.

3.3 Global Color Context

In previous section, we have explored two different ways of modeling self-
similarities of image patterns within the image. In this section, we will learn
how these self-similarities are distributed in the spatial domain. For each visual
word in the codebook, we compute its occurrence frequency in a log-polar grid.
The log-polar grid is partitioned into 32 bins (8 angles and 4 radial intervals)
centered at the image center. The log-polar representation accounts for pose
variations across images. To alleviate the influence of background clutters, each
pixel is weighted by a Gaussian function in Figure 3(b) where pixels near the im-
age center count more. The spatial distribution of each color word is normalized
to one to characterize the appearance of pedestrians.

We name our method Global Color Context (GCC) since our method captures
the self-similarities of image patterns w.r.t. color words in the entire image. Each
pedestrian image has k color contexts in total where k equals to the number of
color words in the codebook. Each color context records the spatial distribution
of self-similarities w.r.t. the specific word in 4×8 bins. The similarity between two
images is computed as the mean Chi-Square distance of k color contexts. Finally,
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Fig. 3. The occurrence frequency of color words are computed in a log-polar grid in (a).
To alleviate the influence of background clutters, each pixel is weighted by a Gaussian
function in (b) where pixels near the image center count more.

the correspondences between pedestrian images are determined according to
nearest neighbor classifier.

4 Experimental Results and Analysis

We evaluate our proposed GCC method on the public ETHZ dataset [18]. ETHZ
dataset [18] was originally used for human detection. Schwartz and Davis [9]
cropped pedestrian images by the ground truth locations of people in videos
for person re-identification. The cropped ETHZ dataset contains three video
sequences. Information about the cropped dataset is summarized in Table 1. The
number of images per person varies from a few to hundreds. The main challenges
of ETHZ dataset lie in variations in pedestrian’s appearances and occlusions.
Some sample images of ETHZ dataset are shown in Figure 4. Schwartz and
Davis [9] carried out experiments on the ETHZ dataset to test their Partial
Least Squares (PLS) method [15]. Recently, Farenzenna et al. [3] also tested
their algorithms on the ETHZ dataset. We follow the evaluation methods of
Farenzenna et al. [3] to validate the effectiveness of the proposed method.

According to Farenzenna et al. [3], the problem of person re-identification
can be divided into two cases, single-shot case and multiple-shot case. The first
situation matches people across time and locations based on one single image
while multiple-shot case employs sequences of images for identification. In the
single-shot case, we randomly select one image for each pedestrian as the gallery
image while another randomly selected image forms the probe set. The proce-
dure is repeated 10 times according to Farenzenna et al. [3]. The multiple-shot

Table 1. The ETHZ Dataset

SEQ 1 SEQ 2 SEQ 3

Num of People 83 35 28

Total Num of Images 4857 1936 1762
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Fig. 4. Sample images from ETHZ dataset

case is carried out on N = 2, 5 for multiple-shot vs single-shot(MvsS) with 100
independent times [3] where N = 2, 5 numbers of images are used as gallery
set and one image forms the probe set. In this paper, the averaged cumulative
matching characteristic curve (CMC) [2, 3] is used to evaluate the performance
of person re-identification. In CMC curve, rank i performance is the rate that
the correct person is in the top i of the retrieved list.

In learning the color codebook, we carry out k-means clustering on VIPeR
dataset [2]. The CMC curves of multiple choices of k, k = 30, 50, 80 on ETHZ
dataset by hue histogram method are shown in Figure 5. Only the results of
one-shot case are reported in Figure 5. In Figure 5, Hue80Hard denotes the per-
formance of hard assignment of k = 80 by hue histogram, etc. In soft assignment,
the parameter σ is set to 0.02 in all experiments. We can see from Figure 5 that
assigning color words by soft assignment method generally performs better than
hard assignment method under various choices of k. For simplicity, we fix the
size of codebook k to 30 and only consider the performances of soft assignment
in the following experiments.

The CMC curves of hue histogram and opponent histogram by soft assignment
method are shown in Figure 6 and Figure 7, respectively. We compare our
proposed method with the PLS method in Schwartz and Davis [15] and the
SDALF method in Farenzenna et al. [3]. The results of the PLS method and
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Fig. 5. The CMC curves of multiple choices of k, k = 30, 50, 80 on ETHZ dataset of
hue histogram
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Fig. 6. The CMC curves of hue histogram on ETHZ dataset
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Fig. 7. The CMC curves of opponent histogram on ETHZ dataset

SDALF method are taken directly from [9] and [3], respectively. In Figure 6
and Figure 7, N = 1 denotes single-shot case in Farenzenna et al. [3]. MvsS,
N = 2 and MvsS, N = 5 are different choices of N in multiple-shot case. We
can see from Figure 6 and Figure 7 that our proposed GCC method achieves
promising results in most cases. One possible reason for our success is that the
pose variation is relatively small in ETHZ dataset. Our proposed GCC method
captures the spatial distributions of color self-similarities well. Furthermore, the
influence of background clutters is minimized through Gaussian weighting while
Schwartz and Davis [9] exploited all foreground and background information in
their PLS method.

5 Conclusions

In this paper, we have presented an approach to person re-identification in-
spired from the spirit of self-similarity. Experimental results on the public ETHZ
dataset demonstrate the effectiveness of the proposed method. Our proposed
method only considered the self-similarities w.r.t. color words. Future work will
focus on exploring more texture descriptors in the current framework to further
improve the performance of person re-identification.
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Abstract. In this paper, we propose a new visual object tracking ap-
proach via one-class SVM (OC-SVM), inspired by the fact that OC-
SVM’s support vectors can form a hyper-sphere, whose center can be
regarded as a robust object estimation from samples. In the tracking ap-
proach, a set of tracking samples are constructed in a predefined search-
ing window of a video frame. And then a threshold strategy is proposed
to select examples from the tracking sample set. Selected examples are
used to train an OC-SVM model which estimates a hyper-sphere encir-
cling most of the examples. Finally, we locate the center of the hyper
sphere as the tracked object in the current frame. Extensive experiments
demonstrate the effectiveness and robustness of the proposed approach
in complex background.

Keywords: Object tracking, One-class SVM, Tracking sample set.

1 Introduction

Object tracking has been becoming one of the most popular research topics and
playing an important role in many video applications, such as video-based hu-
man computer interaction systems [3], automatic driving systems [14], intelligent
video surveillance [6] and robotics [16]. However, owing to the difficulties aris-
ing from the object motion state variation, the appearance variation of either
object or background and the occlusions, the performance of tracking algorithm
remains to be improved.

Object tracking is to automatically find the same object in adjacent video
frames after the object’s location is initialized. That is to accurately calculate
the object’s location(u, v) and scale s in a new video frame, even when the ob-
ject’s motion state varies or its appearance is affected by noise, occlusion or
clutter background during the tracking process. In the existing object track-
ing researches, lots of methods and strategies have been proposed to deal with
the noise, occlusion, and background clutter problems. In these methods, SVM
(support vector machine) based method is attracting more and more atten-
tions [2, 20, 7, 17, 18, 10].
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There are totally three types of SVM, namely support vector classification
(SVC), support vector regression (SVR) and distribution estimation (one-class
SVM), which have been exploited for object tracking in previous literatures
[2, 20, 7, 17, 18, 10]. In [2], Avidan proposes Support Vector Tracking method,
which integrates SVM classifier with an optic-flow based tracker by maximiz-
ing the SVM classification score. In [20] [7], the authors combine SVM with
different types of tracking filters, particle filter and adaptive Kalman filter for
efficient visual tracking, while in [17, 18] the authors treat object tracking as a
foreground/background classification problem, and use SVM as a classifier to
distinguish an object from its background. And in [10] Kabaoglu applied SVR
to multiple targets tracking, where combining SVR with particle filters, they can
obtain an effective probability distribution of multiple targets for tracking.

As Zhou et al. has proposed [19], ”Many Could Be Better Then All” is a proved
theory learning algorithms, and can also be extended to tracking problems. Con-
sidering the basic issue of tracking is to find the object in video frames, we can
reasonably make a hypothesis that the object can be well estimated by ”many”
object examples inside the searching window. One-class SVM (OC-SVM) is pro-
posed to find a tighter hyper-sphere encircling ”many” given examples [15], so we
can represent the tracked object with ”many” selected examples and the center
of the hyper-sphere can be regarded as a robust location estimation of tracked
object.

As shown in Fig.1, the solid dots and small boxes respectively represent ex-
amples and tracking template. After the OC-SVM training process performed
on these solid dots, we can obtain the center (hollow circle) and the hyper-
sphere encircling ”many” of those dots, with the noise examples excluded by the
hyper-sphere. The center of the hyper-sphere can be regarded as a robust object
estimation for tracking.

In this paper, inspired by the property of OC-SVM and the characteristics
of tracking, we propose an approach to model object tracking problem by find-
ing the center of the hyper-sphere of OC-SVM. In our tracking system, a set
of tracking samples are constructed in a predefined searching window of a new

Fig. 1. Illustration of OC-SVM hyper-sphere. The solid black dots, small boxes, and
hollow circles respectively represent the examples, tracking template, and center of
hyper-sphere.
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video frame, and then tracking examples are selected from the set using thresh-
old method. Because of the limited size of the searching window and our set
construction strategy, a relatively small number of tracking examples will be left
to represent the object. Different from the previous work [2,20,7,17,18,10], OC-
SVM in our method is directly used to estimate the distribution in feature space
and then to locate object for tracking, instead of transferring part of tracking
problem into SVM classification or SVR regression problem.

The rest of this paper is organized as follows. Section 2 describes the pro-
posed OC-SVM based tracking approach in details. Experiments are presented
in section 3, and conclusions and future work are presented in section 4.

2 Object Tracking Based on OC-SVM

The flow chart of the proposed tracking approach is shown in Fig.2. In the
following sections, we will present the details of the steps in the flow chart.

Fig. 2. Flow chart of our tracking approach based on OC-SVM

2.1 Tracking Sample Set Construction

In the current video frame, a sample set is constructed by extracting image
blocks (sub-windows) from a searching window, which is a rectangle of size W ×
H surrounding the previous tracking results in the new tracking frame (the
black rectangle in Fig.3a). This window can be determined with a Kalman filter
method with constant velocity motion model. And each sample in the set is
defined as a sub-window of the searching window (the rectangle) in Fig.3b).
A sample rectangle is specified by r = (x, y, s, α) with 0 < x < W, 0 < y <
H, s > 0, 0◦ ≤ α ≤ 360◦.This sample set is (almost) infinitely large. For practical
reasons, it is reduced as follows:

1. The (x, y) varies with the step of n pixels in horizontal and vertical
orientations;
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2. The s is uniformly range from 0.8 to 1.2 times of the tracked object’s size;
3. The α is set as 0◦ in our approach, for rotation of the samples is not

considered.

These restrictions lead to a reasonable number of samples in the set. Suppose
that totally K samples are extracted to construct a set

{−→
Si

t : i = 1, · · · , K
}

for
the tth video frame, it can be seen that most of the samples are associated with
the background, and only a few of them are parts or the whole of object (shown
in Fig.3c).

To represent the object and samples, we extract a composite feature set in-
cluding location (x, y), scale s and HOGC [9], which is a 120 dimension vector

including both color and gradient histograms, to represent each sample
−→
Si

t in the
set. HOGC can capture both the color and local contour characteristics. Then
we can obtain a set At =

{
Ai

t : i = 1, · · · , K
}

for all the samples at frame t, in
the composite feature space.

Fig. 3. (a) The searching window in which sample set is constructed. (b) A sample.
(c) Some samples in the sample set.

2.2 Examples Selection for OC-SVM

As the input of OC-SVM, most of the tracking examples should be from one
class. The samples which are quite different with the tracking object should
be discarded. Therefore, we propose a scheme to select tracking examples by
calculating the similarity between the instantaneous tracking samples in the
constructed set and the tracked object. The similarity is determined by the
Bhattacharyya similarity coefficient [11] of the feature as follows:

Bhat(F, Ai
t) =

M∑
j=1

√
F (j)Ai

t(j) (1)

where F, Aj
t are respectively the feature of the tracked object and the ith sample−→

Si
t in the composite feature space, and M is the number of feature dimension. The
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similarity between the tracked object with each sample in the set constructed at
frame t is shown in Fig.4.

After the similarity between the instantaneous tracking samples and the previ-
ous tracked object is calculated, a threshold method is used to select the tracking
examples from the whole sample set. We use some dynamic value between the
maximum and minimum as a threshold, which is calculated as follow:

Threshold = ϕ∗ max +(1 − ϕ)∗ min (2)

where ϕ is a ratio parameter between 0 and 1, and we choose ϕ = 0.2 or 20%
as division point following the eighty twenty rule, which can include most of the
information, and prove to be best choice in our experiments. Then, we obtain
the tracking examples

−→
Si

t in frame as follows:{
Bhat ≥ Threshold; sample ∈ {examples}
Bhat < Threshold; sample /∈ {examples} (3)

Fig. 4. The similarity between the tracked object template and 100 samples in the
sample set at frame t. The maximum, minimum, and their threshold calculated using
formula (2) can be found and marked in the graph. The samples above the threshold
line are chosen as examples to construct the OC-SVM.

2.3 Object Tracking Based on OC-SVM

After we obtain the examples, OC-SVM is employed to estimate a hyper-plane
encircling the most of a given examples without any class information, to locate
object for tracking.

Given the tracking example set
{−→

Si
t : i = 1, · · · , K

}
and their corresponding

At =
{
Ai

t : i = 1, · · · , K
}
, the hyper-plane (R, c) that encircles the most of ex-

amples can be given by solving the following quadratic optimization
procedure [15]:
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min
R∈,ε∈,c∈,

R2 +
1

vK

∑
i

εi (4)

Subject to
∥∥∥∥pos(

−→
Si

t

∗
) − c

∥∥∥∥2

≤ R2 + εi, εi ≥ 0 (5)

where R is the radius of the hyper-plane, [0, 1] acts as the proportion of the

examples inside the hyper-plane to all examples, pos(
−→
Si

t

∗
) is the position of the

ith selected example, c is the center of the hyper-plane or object position in

current frame, and εi represents the distance of example
−→
Si

t

∗
apart from the

hyper-plane, and equals to zero when the example is inside the hyper-plane.
From (4) and (5), it can be seen that a hyper-plane (R, c) calculated by

OC-SVM is used to encircle most of examples
{−→
Si

t : i = 1, · · · , K
}

as much as
possible. After solving the quadratic optimization problem (4) and (5), we will
obtain the object location c in current frame.

3 Experiments and Results

We carried out a variety of experiments with widely used videos from VIVID
[4], CAVIAR [8] and SDL data set [1] to validate the proposed approach. The
test videos consist of a variety of cases, including occlusions, lighting changes,
scale variations, object rotations and complex backgrounds. Some of the videos
are captured on moving platforms. The objects include moving humans and
vehicles. Experimental results on three video clips of them are shown in Fig.5.
For all sequences, video objects in the first frame are manually labeled and then
initialized for tracking.

As is shown in Fig.5, the larger images on the left are the tracking scenes
(the first frame that we track), and the smaller ones on the right are the track-
ing results using our approach (top row) and classical mean-shift approach [13]
(bottom row). Since all the target regions on the right are small compared to
the whole scene, only image patches that contain target regions are shown. Red
rectangle is the result of tracking experiments, while the manually labeled blue
ellipse is the actual location of the tracked object.

In the first video clip from VIVID data set, the car loops around on a runway,
and the appearance varies largely from the initial state because of vehicle rota-
tions (405th, 448th, 479th frames). Fig.5a shows that the stable tracking results
based on our proposed approach for object rotations compared with mean-shift
algorithm.

The second video clip from VIVID data set is quite challenging. Two groups of
similar vehicles travel in opposite directions and then intersect with each other.
Because of the similarity of the tracked vehicle and partial occlusions of the
other vehicles, tracking errors happen in this case. Fig.5b presents the tracking
results based on our proposed approach and mean-shift algorithm, which shows
the robustness of our method in object rotations, mimic objects and similar
background.



222 L. Li et al.

Fig. 5. Three examples of tracking experiments. The larger images on the left are the
tracking scenes (the first frame that we track), and the smaller ones on the right are
the tracking results using our approach toprow and classical mean-shift approach [1]
bottomrow. Since the target regions on the right are small compared to the whole scene,
only image patches that contain target regions are shown. Red rectangle is the result
of tracking experiments, while the manually labeled blue ellipse is the actual location
of the tracked object.
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Fig. 6. Average DER of three methods

The third video clip in Fig. 5c from the SDL data set is very challenging.
There are serious occlusions on the object, and the background has the similar
color to the object (a person in small size) and there are some small trees which
are quite similar to the object in shape. Our approach can track the object
correctly. The tracking results of this video show that the proposed approach
can effectively deal with partial occlusions, appearance variations and similar
color and contour.

Besides contrast experiments, tracking efficiency is another evaluation cri-
terion for a real-time tracking application. In the experiments, we find that
our proposed tracking approach can work almost real time on a computer with
Core(TM) 2 Duo CPU (2.53GHz) and 3GB memory. To quantitatively evaluate
the proposed approach, relative displacement error rates (DER) is defined as
follows.

DER =
Displacement error betweern tracked object position and groundtruth

Size of the object
(6)

In the experiments we use the average DER of 10 video clips from the above
3 data sets to reflect the performance of each method. The lower the average
DER is, the better the tracking performance is. We compare our method with
other three representative ones, including single template tracking method with
SIFT feature [12] and adaptive single template tracking method of Collins [5].
The results of three methods are shown in Fig.6. It can be seen from the figures
that the average DER of our method (about 0.03 to 0.12) is smaller than that
of the other two methods in almost the whole tracking process.

4 Conclusions and Future Works

In this paper, we propose a new object tracking approach via OC-SVM. The
basic idea of this paper is that object tracking is to automatically find the same
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object in adjacent video frames. Based on this idea, the tracking sample set is
firstly constructed, and then tracking examples are chosen from the tracking sam-
ple set as input of OC-SVM. We can obtain object location in each frame from
previous frame information using OC-SVM for tracking. Experiments validate
the effectiveness of the tracking approach in complex backgrounds. Comparisons
indicate that object tracking with OC-SVM outperforms some of the represen-
tative tracking methods. The proposed approach can be extended to multiple
object tracking in the future work.
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(A-SIR) Algorithm for Object Tracking
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Abstract. This paper presents a newly developed attenuating resam-
pling algorithm for particle filtering that can be applied to object track-
ing. In any filtering algorithm adopting concept of particles, especially
in visual tracking, re-sampling is a vital process that determines the
algorithm’s performance and accuracy in the implementation step.It is
usually a linear function of the weight of the particles, which decide the
number of particles copied. If we use many particles to prevent sam-
ple impoverishment, however, the system becomes computationally too
expensive. For better real-time performance with high accuracy, we in-
troduce a steep Attenuated Sequential Importance Re-sample (A-SIR)
algorithm that can require fewer highly weighted particles by introduc-
ing a nonlinear function into the resampling method. Using our proposed
algorithm, we have obtained very impressive results for visual tracking
with only a few particles instead of many. Dynamic parameter setting
increases the steepness of resampling and reduces computational time
without degrading performance. Since resampling is not dependent on
any particular application, the A-SIR analysis is appropriate for any
type of particle filtering algorithm that adopts a resampling procedure.
We show that the A-SIR algorithm can improve the performance of a
complex visual tracking algorithm using only a few particles compared
with a traditional SIR-based particle filter.

1 Introduction

Particle filter is the combination of two main elements: sequential importance
sampling (SIS) [1,2] and resampling. This combination of SIS and resampling
is called sequential importance resampling (SIR). In SIS algorithm, after some
iterations, only very few particles have non-zero importance weights. This phe-
nomenon is often represented as weight degeneracy or sample impoverishment.
An intuitive solution is to multiply the particles with high normalized impor-
tance weights, and discard those with low normalized importance weights, which
can be done in the resampling step. In practical situation, however, present re-
sampling algorithm can not really prevent the weight degeneracy problem, it
just saves further calculations time by discarding the particles associated with
insignificant weights. In this proposed A-SIR algorithm, we change the conven-
tional resampling principle of SIR by using a nonlinear function that attenuates
particles and uses fewer more effective and higher-weighted particles. The con-
ventional resampling method in SIR replaces the high important weights with

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 226–235, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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many replicates of particles, thus introducing high correlation between particles.
the attenuating parameter in A-SIR, can control the number of best particles
based on weight. So in A-SIR based system, using only few numbers of effective
particles are able to give impressive result than conventional SIR. Resampling
usually (but not necessarily) occurs between two importance sampling steps. It
can be taken at every step or only taken if regarded necessary. In our proposed
A-SIR algorithm, resampling schedule has been used as deterministic instead of
dynamic way. In deterministic framework, resampling is taken at every k time
step (usually k = 1). In a dynamic schedule, a sequence of thresholds (constant of
time varying) is set up and the variance of the importance weight is monitored;
resampling is taken only when the variance is over the threshold. The strength
of resampling step in SIS algorithm has been verified by many researchers as de-
scribed in [7], since resampling step also bring some extra variation, some special
schemes are needed.

Further more, the performance of a tracking system depends highly on the tar-
get object representation and the similarity measurement between the target and
the reference object which can be called the measurement model or the obser-
vation model. Most of the proposed tracking algorithms are mainly application
dependent [4,5]. Many of them rely on a single cue as for example color, which
can be chosen according to the application context. Color based tracker has some
advantages, but in some cases, there are some disadvantages to having an object
in plain color. An efficient color based target representation can be made with
multiple regions of the color histogram by multiple integral image [3], which can
be termed as Multi-Part Histogram (MPH) method and it is very helpful to deal
with occlusions. In this paper our A-SIR based object tracking method is driven
by MPH based measurement technique. The most weighted particles are found
in the central region of the target by a weighting function, because the other
areas of the target are not as important as the center. To calculate the similarity
of the multi-region histogram the Bhattacharyya coefficient [6] has been used as
the metric.

The rest of paper is organized as follows: Section 2 describes about the related
work of our current study of this paper. Section 3 presents the brief about
particle filter and resampling algorithm. Sections 4 introduce the proposed A-
SIR algorithm. Section 5 presents the proposed human body descriptor used for
tracking with MPH. The experimental results using various real time videos with
severe occlusions are discussed in Section 6. An evaluation and comparison study
are presented in this part. The concluding remarks are addressed in Section 7.

2 Related Work

There are several approaches have been done to improve resampling strategy
in visual tracking. In [8], they propose systematic resampling with adaptive
template for visual tracking. The systematic resampling already was established
in [1] and this is still linear type function. In [9], they propose a sampling strategy
aiming at reducing computational complexity in particle filtering framework.
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This strategy combines the particle filtering with the transition prior and the
unscented Kalman filter. Our approach is different to them which is non-linear
type and ideally suited for visual tracking for real time performance with high
accuracy. In this article, we use a non-linear function to change this resampling
algorithm for choosing only few number of the best particle with high weight
by reducing search area. All high weight particles are concentrated gently on
the tracked object and reduce the failure possibility and enhancing performance
significantly.

3 Particle Filter

In particle filtering, we want to compute the filtered estimates of xt that is,
p(xt|yt) based on the set of all the available measurements up to time t. Ac-
cording to the Bayesian estimation, it recursively computes p(xt|yt), that is, in
terms of the posterior density at previous time step p(xt−1|yt−1). Particle filter
algorithm uses a set of weighted samples drawn from the posterior distribution
to approximate integrals as discrete sums. Given a set of S random samples
{xi

1:t−1, w
i
1:t−1}i=1,2,...,N , where, wi

1:t−1is corresponding weights and y1:t−1 are
available measurements up to time t. According to SIS strategy, the posterior
distribution can be computed as

p(xt|y1:t) ≈
N∑

i=1

wi
tδ(xt − xi

t), (1)

where δ(.) is the Driac delta function in Equ. 1. It is not usually not possible to
sample from the posterior distribution directly. This matter can be resolved by
drawing samples from a proposal distribution q(x1:t−1|y1:t−1). It is a significant
step by choosing proper proposal distribution when using importance sampling
algorithm. The most popular choice of proposal distribution is the prior distri-
bution because of the convenience in calculating it. The proposal distribution
can be expressed as

p(xt|xt−1) = q(xt|xt−1, yt)i=1,2,...,N . (2)

Selecting the prior distribution as proposal distribution, the importance weight
calculation can be simply expressed as

wi
t = wi

t−1

p(yt|xi
t)p(xt|xt−1)

q(xt|xi
1:t−1, y1:t)

. (3)

The mean state of an object is estimated at each time step by

Ê[xt] =
N∑

i=1

wi
tx

i
t. (4)

But this straightforward algorithm creates some problem which is called weight
degeneration. Resampling algorithm has been applied to overcome this problem.
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4 Non-linear Resampling Algorithm

We basically modified SIR based particle filter by changing the resampling func-
tion as non-linear function. In our real time visual tracking case, the SIR filter
works well, but the effective particle sorting with higher weight in every iter-
ation is computationally expensive. Mean while the tracking failure possibility
increases. Our ultimate goal can be divided in two parts. First is, we want to use
less number of the best weighted particle and second one is, by reducing particle
number we want to get the best tracking output. Our proposed method saves
more calculation time and use the lowest number of the highest weight particle
by attenuating function. The attenuating parameter also can control the best
used particle number as our desire which is mainly application dependent. The
traditional resampling algorithm is linear mapping function to copy or replace
particle with high weight which can be expressed as

IN = wi
t.n, (5)

where, w in associated weight and n is the particle number. We can copy the
more effective particle by discarding the particles associated with insignificant
weights by the following equation

W = a(exp(b(wi
t))) + c, (6)

where, b is the attenuating factor and a and c is the arbitrary constant (a and
b �= 0). The number of particle copies for resampling can be controlled by the
parameter b as shown in figure 1. We can see from this figure, that, this non-
linear mapping helps to attenuate particles by discarding low weight particle
which is better than linear mapping in conventional resampling. To normalize
Equ. 6, we can write the equation as

Wi
t =

W∑N
i=1 wi

t

. (7)

Fig. 1. Effect of attenuating parameter b in resampling step based on weight
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Finally the Equ. 5 can be re-written with the help of Equ. 7 as

IN = round(Wi
t.n). (8)

5 Multi-Part Histogram (MPH) Based Measurement

5.1 Object Feature Descriptor

In this paper the tracked human body is considered to be a composition of some
regions, as shown in figure 2. We introduce the Multi-Part Histogram (MPH)
using integral image based representation [3] which characterizes the human
body using its detailed spatial information. As we see from figure 2, the shadow
(a) region is the most important part during tracking; it almost keeps the same
structure with low variance. The remaining (b) region of figure 2 has a high
variance during the tracking period. That means the centre region histogram
of the bounded rectangle is the most weighted and as the distance increases
the whole rectangle center can be assigned smaller weights by employing the
weighting function

wt
i(d) =

{
1 − d2 d < 1
0 otherwise

(9)

where, d is the distance from center to rectangle boundary. Now we denote the
human body parts as

R = {ri, p, w, h}i=1,2,...,L (10)

where, r, p, w and h are the single region, the position, the width, and the height
of the whole rectangle, respectively. All the parts of the rectangle are formed with
a color integral histogram from the target intensity image I and the reference
template image T , which can be denoted as mI(ri) and mT (ri) respectively. The
distance between the reference template image T and the target intensity image
I over time t is given by:

Φ(m) = [
L∑

i=1

(mT (ri) − mt
I(ri))2]

1
2 (11)

5.2 Color Measurement Model

We adopt the Gaussian density for the likelihood function of the measured color
histogram as follows:

p(qt|xt) ∝ N(Dt; 0, σ2) =
1√
2πσ

exp{−D2
t

2σ2
} (12)

where Dt = dist[p, qt] is the distance between the reference histogram p of the
objects to be tracked and the histogram qt computed from image zt in the
region defined by the state vector xt. If we consider p = {p(u)}u=1,2...,m and
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Fig. 2. By using the multiple region histogram of the target by integral image-based
representation, we can get accurate spatial information specific to human tracking. The
integral image base representation is computationally less expensive than the direct
pixel method.

qt = {qt(u)}u=1,2...,m are the two histograms calculated over m bins, then we
adopt the distance Dt between two histograms from the Bhattacharyya similarity
coefficient [6] as:

Dt =

√√√√1 −
m∑

u=1

√
p(u)qt(u) (13)

We have compared the similarity of the histogram for each corresponding region
between the reference and the target image. If we have N regions, then we
calculate the similarity by the Bhattacharyya coefficient N times for N regions;
each region has {(bin1), (bin2), ..., (bini)} number of integral images. Finally the
Bhattacharyya similarity coefficient calculation is given by:

DT =

∑N
j=1 Dtj

N
(14)

6 Experiments and Results

In this section, we show the single object tracking performance by our new
proposed resampling based algorithm in particle filtering framework. The per-
formance is verified using our own video sequences, in which we aim to track a
pre-selected moving person. In this sequence, circleocc (500 frames), there are
two persons are walking towards each other from opposite sides. They meet,
shake hands, circle each other and our subject is completely occluded more than
three times. Figure 3 shows the comparison performance of circleocc between
our proposed re-sample based algorithm with traditional algorithm using 100
particles. For this comparison we use same frame number 71, 99, 109, 181, 296
and 480 in all testing purpose. Our proposed system even works well with only
10 particles because of its effectiveness, which is shown in figure 3(c). The track-
ing failure possibilities drastically reduced using only 10 particles. The overall
performance can be verified by the red bars in the all frames which are shown
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Fig. 3. Tracking result of circleocc with traditional and proposed resamlping using
100 and 10 particles. The overall performance can be verified by the red bars in the
all frames which are shown horizontally and vertically. These red bars represent as
probability densities of the estimated state.

horizontally and vertically. These red bars represent as probability densities of
the estimated state. From figure 3(b), we can see that, the probability densities
become scattered to find the best weighted particle for the next state estimation.
This works well sometimes but using only large number of particles. However
the tracking failure possibility still remains due to the many real time challenges
in visual tracking.

6.1 The Error Metric the Performance Evaluation

Basically the evaluation of our proposed system is measured qualitatively. Also,
the root mean squared error (RMSE) method in the state space has been used
to evaluate the performance of our developed algorithm. The RMSE can be
formulated by:

RMSE(t) =
√

0.5((gt − ĝt)2 + (ht − ĥt)2) (15)

where, (ĝt, ĥt) stands for the upper-left corner coordinates of the tracking box
determined by the central position, corresponding to the state estimated by the
particle filter in the frame . The ground truth states (gt, ht) correspond to the
true positions of the object and have been generated by manually creating the
tracking box surrounding the object in the test videos. We evaluate our proposed
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(a) (b)

Fig. 4. Performance analysis with different attenuating parameter b using 100 particle.
(a) attenuating paramneter from b = 1 to 5000, (b) attenuating parameter b = 1000
to 60000.

system with 100 particles using different attenuating parameter to observe the
tracking output. The RMS error graph of this video stream at different attenu-
ating parameter is shown in figure 4(a) and 4(b). From this figure we can see,
that the range of b between 1,000 to 10,000, the tracking performance are almost
remain same and it is better than below b = 1,000. The more numeric analysis
we can find from table 1. From this table 1 we can see that, b = 1,000 to 10,000
is better region than others. In the mean time we compare our result with con-
ventional SIR filter. Our proposed A-SIR is much better than SIR. For example,
when b = 1000, the maximum RMS error and average error are 17.73 and 7.2
respectively. On the other hand in conventional SIR, the maximum RMS error
and average error are 24.95 and 8.15 respectively. Also we can see from the last
row of this table as the number of used best particle (P) at different attenuating
parameter (att. par.) b.

The more we increase b the used particle will decrease. It saves our further
calculation time and our system become more faster without any tracking per-
formance degradation. We chose our perfect attenuating factor based on the
tracking environment and desire. The graph as shown in figure 5 shows the

Table 1. Performance evaluation with differrent attenuating parameter b using 100
particles btween proposed resampling and SIR filter

Att.Par. b 1 100 500 1000 2000 5000 10000 30000 60000 Trad. SIR

Max RMSE 68.43 73.25 22.47 17.73 18.5 20.5 22.6 24.1 24.2 24.95

Min RMSE 4.43 1.41 2.82 1 0.7 0 0 0.7 0 0

Avg. RMSE 34.25 25.3 10.3 7.2 6.8 6.5 6.4 6.5 6.37 8.15

P 100 99 95 87 75 57 43 22 12 N/A
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(a) (b)

Fig. 5. (a)Performance comparison between proposed A-SIR and conventional SIR
filter, (b) performance comparison between proposed A-SIR and SIR with 100 and 10
particles

performance analysis between proposed A-SIR and conventional SIR filter. Our
proposed algorithm works well with only 10 particles, where, SIR based particle
filter totally fail to track the object with 10 particles. Also the graph as shown
in figure 5(b) represent the performance analysis with 10 and 100 particles be-
tween proposed A-SIR and SIR based particle filter. Table 2 summarizes the
RMS error at different attenuating parameter with only 10 particles. The last
column of this table also shows the correspondence tracking performance with
conventional SIR based particle filter.

Table 2. Performance evaluation with different attenuating parameter b using 10 par-
ticles between proposed resampling and SIR filter

Att.Par. b 1 100 500 1000 2000 5000 Trad. SIR

Max RMSE 78.93 23.1 24.7 27.6 29.2 27.7 107.9

Min RMSE 1.6 0 0 0 0.7 0 0.7

Avg. RMSE 36.15 8.2 6.87 6.82 7.0 6.78 36.2

P 10 9 6 4 3 2 N/A

7 Conclusion

A new re-sample based A-SIR algorithm has been proposed in this paper in
the particle filtering framework. This proposed re-sample design issues related
with efficient control of best weighted particle in attenuating form. The attenu-
ating factor can control the high weight particle as our desire and also it saves
the further calculation time during tracking and only few particles can give the
satisfactory tracking result. This A-SIR algorithm boost up the object tracking
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performance than conventional SIR based filter. The proposed non-linear type
resampling can find out the most important particle and attenuate the other par-
ticle in very efficient way. Also, from the all results and tables, we can conclude
that this proposed algorithm minimizes the real time performance degradation,
and their complexity is reduced remarkably.
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Abstract. Robust identity inference is one of the biggest challenges in current 
visual surveillance systems. Although, face is an important biometric for generic 
identity inference, it is not always accessible in video-based surveillance systems 
due to the poor quality of the video or ineffective viewpoints where the captured 
face is not clearly visible. Hence, taking advantage of additional features to 
increase the accuracy and reliability of these systems is an increasing need. 
Appearance and clothing are potentially suitable for visual identification and 
tracking suspects. In this research we present a novel approach for recognition of 
upper body clothing, using local binary patterns (LBP) and colour information, as 
an assistive tool for identity inference. 

Keywords: Local Binary Patterns, Colour Histogram, Object Recognition, 
Ensemble-Learning. 

1   Introduction 

Vision based surveillance systems are widely used in public spaces in many 
metropolitan cities. The increasing number of cameras and pervasiveness of CCTV 
networks have created new possibilities of automated or assistive security monitoring. 
While some of the tasks of the security personnel such as tracking an individual when 
in a multi-camera network may seem trivial, it is an exhaustive task. Therefore any 
assistive or automated method that can reduce the search will save resources and more 
importantly may save time. 

The London bombings on July 7th 2005, were a series of coordinated suicide 
attacks to the city’s public transport. There was initially a great deal of confusing 
information from police sources about the origin, method, and even timings of the 
explosions. But London's network of closed-circuit TV (CCTV) cameras helped 
investigators track down those responsible for the terrorist bomb attacks within 24 
hours. Police examined about 2,500 items of CCTV footage and forensic 
evidence from the scenes of the attacks and finally investigators identified four men 
whom alleged had been the suicide bombers. 

It is obvious that performing the above task in a timely manner is a matter of 
national security, and any delay in decision making can have huge impacts on the 
society.  The main challenge in such scenarios always is allocating a sufficient 
number of expert people to perform the task. It is a common knowledge that the huge 
volume of recorded data always makes “human resource” the main bottleneck in 
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performing a pervasive search on wide-area surveillance video. Therefore any 
assistive or automated method that can reduce the search space will save resources 
and time. 

2   Research Background 

Tracking is one of the first steps in active visual surveillance. An active visual 
surveillance system must be able to handle challenges like occlusion, splitting and 
merging which are the results of moving objects in the scene [1, 2]. Although, face can 
be considered as a reliable attribute for people tracking, face recognition on video 
surveillance is an extremely challenging task. The quality of video footage and the 
distance of the subject from the camera are instances which make ‘face’ poorly suited 
to identity inference. An example is shown in Fig. 1. 

  

Fig. 1. Face extracted from video surveillance 

Upper body clothing is a good assistive feature for tracking individuals in 
surveillance footage for security personnel. Upper body is considered a more reliable 
clue, in comparison to lower body. Firstly it is more observable through surveillance 
footage, and secondly it has more variety of colours and textures which makes it more 
discriminative for recognition and tracking.  

In order to overcome the many complicated challenges in a tracking environment, 
one should take advantage of multiple image properties, such as texture, colour, etc 
[1]. Several content-based methods use visual information as suitable features for 
retrieval of similar images to a given query image [3]. In this paper we are 
investigating the usability of Local Binary Pattern (LBP) features for describing 
human’s clothing textural properties. 

One important property of the LBP operator is its robustness to illumination 
variation. Moreover, its computational simplicity makes it usable for real-time 
applications [4]. 

The LBP operator was first introduced in 1996 by Ojala [5]. The basic LBP 
operator is based on the comparison of the eight neighbours of each pixel, presented 
as a binary sequence, or a binary pattern. The histogram of the binary patterns 
represents the local spatial structure of an image [6]. Since transformation of an image 
from RGB to greyscale has no effect on patterns, LBP texture operator is defined as a 
greyscale invariant texture measure [7]. In 2002 an extended version of LBP was 
introduced by Ojala. To reduce the size of the binary pattern and the computational 
costs, two other extensions of LBP were proposed subsequently. The first one was 
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“uniform LBP” based on the fact that some features occur more frequently than others 
and the second one was “Rotation Invariant LBP”. To remove the effect of rotation, a 
unique identifier is assigned to each rotation invariant local binary pattern [8]. In 2004 
two further extensions of LBP were introduced [9, 10]. 

Since the introduction of LBP it has made a significant contribution to texture 
analysis [4, 7]. It has also been a powerful feature in some computer vision 
applications which might not be considered as texture problems such as face analysis. 
In addition to face and facial expression recognition, LBP has been used for iris and 
finger print recognition [11-14]. 

Another visual attribute can be used for tracking is “Colour” which is an intrinsic 
attribute of an image. Hence, it could be helpful for this purpose. The most well known 
colour descriptor is the colour histogram which has been used for tracking in many 
situations [15-17]. In these methods, similarity is measured by the distance between 
matching bins of histogram [18]. Although histogram-based methods have been widely 
used, they have a serious limitation since they do not include spatial information. There 
has been some approaches based on Colour Coherent Vector (CCV) to represent spatial 
information with colours but they are computationally complex [19]. The proper choice 
of colour space would be important in this context. Using proper colour spaces may 
help in achieving invariance against illumination changes. In HSI (Hue Saturation 
Intensity Colour Space)  chromaticity and intensity information are separated which 
provides intensity invariant chromaticity measures [20]. 

Since none of these attributes are invariant to different imaging conditions and 
each of them has pros and cons, using a collection of properties can potentially 
enhance the performance of the tracking system [1]. Clothing can be roughly 
categorised into plain and complex textures, and be classified using a texture analyser 
in combination with a colour descriptor is very efficient.  

Paschos et.al proposed a monitoring system based on colour and texture 
information. Their approach was based on extending greyscale algorithms to colour 
images where each colour band is processed separately by applying greyscale texture 
analysis techniques. It has been used in colour texture segmentation and classification 
[21]. In this context, colour and texture can be processed jointly or separately. In 
separate use of colour and texture, textural information is derived from the luminance 
plane along with pure colour features. This is particularly useful for segmentation 
[22]. In some of these works texture features were extracted from greyscale images 
and then combined with colour histograms and moments. Some other methods have 
investigated a combination of colour bands to extract better features [23]. 

In this paper we demonstrate a novel approach in applying LBP features and colour 
information compared to the existing methods for upper body recognition. To achieve 
more robustness against some of the tracking challenges such as partial occlusion, 
pose variation and so on, an ensemble of colour and LBP classifiers are employed. 
Appearance-based descriptors like LBP, SIFT and many others are specifically 
designed for grey level images. One way to extend these descriptors to colour images 
is applying them over all colour channels. Though this method has been successful in 
some applications, no specific framework has been proposed to address this problem. 
In this paper we introduced a rule-based machine to overcome the aforementioned 
problem.This paper is organised as follows: In section 3 our approach is described. 
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The experiments and results are presented in section 4. Finally, conclusion, 
limitations of the proposed method, and future work are described in section 5. 

3   Proposed Method 

Intuitively colour and local appearance are important factors for clothing recognition. 
Several local descriptors exist such as LBP and SIFT. LBP gives us useful textural 
information which suits our application. Unlike LBP, SIFT is not an appropriate 
choice as a local descriptor. Fig.2 shows some examples of SIFT applied on clothing 
images. As it is shown, descriptors work well for clothing with specific trademarks 
(image on the right) and not for plain ones (image in the middle). 

 

Fig. 2. Samples for SIFT descriptor 

In our recognition model, clothing in still images is to be recognized. Fig.3 gives a 
brief description of our approach. 

 

Fig. 3. The proposed clothing recognition model 

Based on the study in [24], HSI colour space is chosen as the colour model here. 
HSI colour space decouples the intensity component from colour carrying information 
in a colour image, making Hue and Saturation components less sensitive to intensity 
changes. A well-known fact about HSI space is the instability of the Hue channel near  
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Fig. 4. Random local blocks description 

 

the grey axis [25]. Hence, in our classifier, when intensity is low and saturation is 
close to zero, Hue information is removed from the descriptor. To avoid the curse of 
dimensionality and reduce the computational load of the algorithm, colours are 
quantized accordingly. When intensity is used, the values are divided into six levels, 
and when Hue is used values are divided into 36 levels. Based on this allocation, we 
have 42 distinct colours bins which are computed based on HSI values (Fig. 5).  

 

Fig. 5. Colour based feature vector 

After colour quantization, clothing image are divided into 10 vertical and 10 
horizontal stripes to use informative patterns in both directions and building the 
colour histogram for the colour quantized image based on the 42 existing colour 
indices. The concatenation of resulted histograms from 20 stripes gives the colour 
feature vector of the image. Using stripes rather than using histogram of the whole 
image helped us to include spatial information in the classification method. 

As one of our objectives is to provide a more robust algorithm to the existing 
challenges in tracking such as occlusion, we computed colour descriptors for several 
random blocks in the clothing image. This method overcomes partial occlusion and 
would be helpful in identification, in presence of specific patterns on the clothing. The 
result is a series of classifiers based on colour descriptors. 

The last stage is the aggregation. The notion of Ensemble Learning is to aggregate 
several predictions using multiple learners. Ensemble learning can be also intuitively 
defined as solving a hard classification problem through breaking it down into smaller 
ones. Computer vision applications usually encounter high-dimensional feature vectors 
with only a small number of training samples (compared to the data dimensionality). As 
a result, it is extremely difficult, if not impossible, to construct an efficient single 
classification rule. To solve such issues, ensemble learning techniques have become 
very popular over the last few years in computer vision applications. In fact, several 
studies even showed that ensemble of classifiers significantly outperform their single 
base counterparts. Since the outputs of the base classifiers are just class-labels, the 



 An Appearance-Based Approach to Assistive Identity Inference 241 

simplest way to combine classifiers is the majority voting. In majority voting, votes for 
each class over the input classifiers are counted and the class with the maximum number 
of votes is selected as the winner. 

It is important to be mentioned that to do the similarity measurement for two 
feature vectors , … , , , … ,  we used the following metric:   

 | | 
In addition, we evaluated each classifier by computing the percentage of correct 

recognitions (True Positives) out of total number of recognitions (True Positives + 
False Positives).   

4   Experiments 

To evaluate the proposed classification framework, we designed an experimental data 
collection setting to collect the required data samples. For this purpose we recorded 
12 subjects in four locations, when walking through a gate. In each location, three 
different, synchronized cameras were recording the subjects. Camera set up is shown 
in Fig. 6. 

 

1. Camera #1 (25 fps): Height: 3m; Distance to the door: 1.9m 
2. Camera #2 (18 fps): Height: 1.8m; Distance to the door: 1.7m 
3. Camera #3 (30 fps): Height: 1.8m; Distance to the door: 1.8m 

In order to have some illumination variation in the sequences, the recordings were 
conducted in three different locations to allow some changes in lighting conditions. 
Samples are shown in Fig. 7. The recorded data was then used for experimentation.  
 

 

Fig. 6. Camera set up 
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parameters would give us multiple classifiers with different recognition rates. The 
following figures present the recognition rates of LBP classifiers based on multiple 
parameter values. These values are selected, since it is a good trade-off between 
recognition performance and feature vector length. 

After running random block sampling, Fig.9 shows the average value and standard 
deviation of the resulted recognition rates for colour based classifiers.  

 

Fig. 9. Average and standard deviation value of recognition rate for our proposed colour based 
method 

As the last step, we used “Majority Voting” approach for the aggregation stage and 
combined all the classifiers’ outputs. In this context, a comparable work to our 
approach is Choi et al. [24]. In their method unlike ours, they only used colour 
descriptor as a classification and in their feature extraction process, they have 
considered three vertical and horizontal stripes from the input image. The achieved 
result for their algorithm was 0.51. Table.1 demonstrates the recognition accuracy of 
the proposed methods against some benchmark algorithms. RGB and HSI histogram 
are holistic methods, i.e. the histogram was computed for the whole image. For LBP 
the best obtained result is shown. The last two rows show the recognition accuracy of 
the proposed colour descriptor and the ensemble of colour and LBP classifiers. Table.1 
reveals that the proposed algorithm outperforms the other studied methods. It comes as 
no surprise that holistic approaches do not perform satisfactory as the studied dataset 
presents substantial illumination and pose variations. Comparing to Choi’s method that 
is specifically designed for clothing recognition, our ensemble approach shows 50% 
improvement. 

Table 1. Comparison of recognition rates 

Method Maximum recognition rate 
RGB histogram [25] 0.28 

HSI histogram 0.34 
LBP [5] 0.67 

Choi’s method [24] 0.51 
Proposed Colour descriptor 0.70 

Proposed ensemble method 0.77 
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5   Conclusion 

In this paper, we proposed a novel approach to recognise clothing from images 
captured by CCTV cameras. Appearance-based descriptors like LBP, SIFT and many 
others are specifically designed for grey level images. The normal way to extend 
these descriptors for colour images is to apply them over all colour channels. Though 
some ad hoc methods are successful in specific applications, no generic framework 
has been proposed to address the general problem; extending appearance-based 
descriptors for colour images. In this paper we introduced a rule-based machine to 
incorporate colour information along with LBP descriptors. To make the approach 
more robust to tracking challenges such as partial occlusion, pose variation and so on 
which affect CCTV footage, an ensemble of colour and LBP classifiers are employed. 

Experimental results on a new dataset showed that the proposed approach 
improves the recognition accuracy significantly compared to existing benchmark 
methods. We plan to investigate the performance of our algorithm on other popular 
tracking datasets in the future.  
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Abstract. We present an approach to 3D vehicle class recognition
(which of SUV, mini-van, sedan, pickup truck) with one or more fixed
video-cameras in arbitrary positions with respect to a road. The vehi-
cle motion is assumed to be straight. We propose an efficient method
of Structure from Motion (SfM) for camera calibration and 3D recon-
struction. 3D geometry such as vehicle and cabin length, width, height,
and functions of these are computed and become features for use in a
classifier. Classification is done by a minimum probability of error recog-
nizer. Finally, when additional video clips taken elsewhere are available,
we design classifiers based on two or more video clips, and this results in
significant classification-error reduction.

1 Introduction

Vehicle class recognition requires the measurement of features used in a classifier.
The images in the frames of a video clip are quite noisy and may contain con-
siderable clutter that can change from frame to frame. As such, highly reliable
recognition requires multiple images to extract features. 3D-based recognition
makes it possible to relate and incorporate information from multiple frames in
a video clip coherently. It may facilitate a 3D model for a vehicle and a 3D es-
timation of the vehicle position in each image frame. This paper presents a new
3D-based system for recognizing vehicle classes from video clips that are taken by
multiple cameras under varying conditions. Recognition utilizes 3D geometrical
information via a newly-developed Structure from Motion (SfM) method with
cross ratio invariance. When multiple video clips are combined, the experiment
shows better recognition performance.

1.1 Vehicle Recognition Literature

There are plenty of vehicle recognition related works and most of them use
view-based methods. Ikeuchi developed an system based on local-feature config-
uration, which is a generalization of the Eigen-window method [1]. This system
works on the training images made from 3D computer graphic (CG) model.
Ozcanli developed contour and appearance based method [2]. They construct
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a dense correspondence between the interior regions of two shapes using a mu-
tual information paradigm. They need good vehicle boundary segmentation for
recognition. Few authors have dealt with the problem of detecting and recogniz-
ing 3D objects in images primarily from their shape information. Jolly and Jain
used 2D geometric models by deformable parametric vehicle template [3] [4].
They showed 91.9% recognition rate. All of the above view-based methods re-
quire a fixed camera viewpoint since viewpoint change will result in appearance
variation in 2D image.

Vehicle Recognition using 3D. 2D or 3D geometric vehicle model has been
used for the tracking [5] or the recognition [6], [7]. Ferryman fitted a 3D wire
model onto single image and showed 92.2% recognition rate on training data and
much lower recognition rate on test set [8]. Koller [7] projected a 3D polyhedral
model on video sequence and recursively estimate the parameters to recognize
vehicle class. A generic vehicle model, represented by a 3D polyhedral model
described by 12 length parameters, was used to cover the different shapes of
road vehicles (Fig. 1). This work is closely related to our approach since video
sequence is used and camera parameter is roughly used for the alignment of the
image projection of the 3D model (For comparison, our method can be regarded
as bottom-up process while Koller’s method is top-down). However, Koller did
not show enough experiment results to show the capability of recognition [7]. 3D
based methods for vehicle recognition have not shown comparable results to the
view-based methods, yet.

Fig. 1. 3D model for Sedan
with 24 line segments

Fig. 2. Vehicle examples used in the experiments: (a)-
(d) show cropped examples

1.2 System Overview

Our solution to the problem of vehicle classification based on a single video clip
is: 1. Compute the sequence of approximate silhouette using Grimson’s back-
ground modeling algorithm [9] and morphological filter (usually the silhouette
is in considerable error). 2. Estimate epipole. 3. Estimate the position of the ve-
hicle, on this straight-line trajectory, using robust invariant method (New SfM
using cross ratio invariance). 4. With calibration of N -virtual cameras, triangu-
late 3D locations on the vehicle at apparent contours. 5. Use the features from 4.
in a Bayesian Recognition. If two or more video clips are available with cameras
in arbitrary positions and maybe not viewing common backgrounds, then: 6.
Combine the results of processing the video clips individually to obtain a more
accurate classification.
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2 Structure from Motion Using Cross Ratio Invariance

2.1 Epipolar Geometry for Our Problem

When the camera is fixed and the object is moving, it can be thought of that
the object is fixed and the camera is moving as in Fig. 3. The moving camera at
the positions corresponding to the image frames are called ’Virtual Cameras’.

Fig. 3. Virtual cameras and illustration of cross ratio invariance

For the short intervals, the assumption of straight-line trajectory is good, i.e.,
covers essentially all of the 200 clips recorded. For the long intervals, straight-
line trajectory is usually a good approximation since the system automatically
segment the sequence of vehicle locations into sub-intervals in each of which the
vehicle trajectory is straight, and has been assumed in this project.

2.2 Cross Ratio Invariance

We assume camera internal parameters are estimated from known 3D points in
the scene. In Fig. 3, a box is traveling along straight line and observed at three
locations t = t0, t1, t2, denote the position of the fixed point A on the box at
location t = t0 = 0, A′ at t = t1, and A” at t2. a, a′, a′′ are mappings of A, A′, A′′,
and b, b′, b′′ are mapping of B, B′, B′′, respectively.

Homogeneous Equations which relate real 3D coordinate system and image
projection in 1D are (

a
1

)
=

(
p1 p2

p3 1

)(
0
1

)
⇒ a = B (1)

(
a′

1

)
=

(
p1 p2

p3 1

)(
t1
1

)
⇒ a′ =

p1t1 + p2

p3t1 + 1
(2)

(
a′′

1

)
=

(
p1 p2

p3 1

)(
t2
1

)
⇒ a′′ =

p1t2 + p2

p3t2 + 1
(3)

where the projection matrix
(

p1 p2
p3 1

)
is already known.



Vehicle Class Recognition Using Multiple Video Cameras 249

From the definition of cross ratio invariance, we have

r(cross ratio = const.) =
a′ − a

a′′ − a

a′′

a′ =
b′ − b

b′′ − b

b′′

b′
(4)

Solving Eq. (1)-(4) for the five unknown A0, B0, C0, t1, t2 results in

t1 = rt2, (5)

where r is the cross ratio and t1 and t2 are the translation distances multiplied
by an unknown scale constant. This is true for all the points on a moving object.

2.3 Histogram Method for Cross Ratio Invariance

The cross ratio is estimated by computing histogram of cross ratios based on all
edges inside of approximate silhouettes shown red as in Fig. 5.

Let Ei, Ej , Ek be edge maps of any 3 frames indexed i, j, k among all N frames
and e is the estimated vanishing point. Also, let the points p1 ∈ Eθ

i , p2 ∈ Eθ
j and

p3 ∈ Eθ
k, then let d1, d2, d3 be the distances between p1, p2, p3 and the epipole e,

respectively. Then Eq. (4) just becomes r = d2−d1
d3−d1 · d3

d2 . For every combination
of edge points p1, p2, p3, r value is computed. Fig. 6 shows the examples of
histogram. The peak of each histogram corresponds to the estimation of cross
ratio r̂ for each group of three frames.

Fig. 4. Estimate of epipole using approxi-
mate contours and epipolar line lθ

Fig. 5. Edges inside of approximate
contour (red) are used

2.4 N frames and Scale Factor

With N frames, there are N − 1 translations between N frames (t1,2, ..ti,i+1,

..tN−1,N) and we can find M =
(

N
3

)
= N !

3!(N−3)! = N(N−1)(N−2)
6 cross ra-

tios among N frames taken 3 at a time, where ti,j is the translation distance
between frames Ni and Nj. To determine all of the translations ti,j for the
entire sequence N frames, we have to solve M linear equations. Generally,
there will be more homogeneous equations than unknown parameters and will
be computed in the least square sense. Each t̂i,i+1 of the estimation (T̂ =
t̂1,2, ...t̂i,i+1, t̂i+1,i+2, ...t̂N−1,N) describes the translation ratio between adjacent
2 frames of N frames.

P i =

⎛⎝p0
11 p0

12 p0
13 p0

14 + S · e(0)
∑i−1

k=1 t̂k,k+1

p0
21 p0

22 p0
23 p0

24 + S · e(1)
∑i−1

k=1 t̂k,k+1

p0
31 p0

32 p0
33 p0

34 + S
∑i−1

k=1 t̂k,k+1

⎞⎠ , (6)
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Fig. 6. All of the cross ratio histograms used for a video clip calibration

where e(0), e(1) are x,y coordinate of the epipole, and t̂k,k+1 is the translation
ratio between k, k + 1 frames. With all t̂i,j ’s, Eq. (6) is the final result of our
camera calibration. The epipole e determines the direction of T̂ via T̂ ∝ K−1e,
where K−1 is the inverse of intrinsic camera matrix.

Fig. 7. points cluster on the ground Fig. 8. Example: 3D reconstructed points

Without knowledge of scale constant (i.e., with arbitrary scale), 3D points are
reconstructed. The clustered points on the ground determine the scale constant
S. Given initial camera matrix P 0, the center of camera is null vector of P 0,
i.e., P 0C = 0 ([10]) and the height(z) of the center is C[2]/C[3]. The equation
S = cam height/(cam height − min z) gives the scale constant S where min z
represents the clustered shadow cast points on the ground (Z = 0) (Fig. 7). Even
on a cloudy day where shadows are not clearly defined, this scheme of finding
scale shows successful results in our experiments.

Dense 3D points on the vehicle contour generator are estimated. Given a line
through the vanishing point (epipolar line), the sequence of intersections of that
line with the sequence of apparent contours is taken as a sequence of observations
of the same 3D point on the vehicle surface.
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2.5 Recognition Using 3D Information: Reconstruction Error

Regardless of the benefit using 3D for recognition, triangulation error appear
due to uncertainty of the image correspondence as shown in Fig. 9. The error
of stereo vision system [11] and the accuracy of N -ocular vision system [12]
are studied to analyze such errors. In general, the stereo localization error is
described by an error ellipsoid in 3D space bounded by the down range and
cross range errors of ΔR and ΔC. (Reconstruction using N -views will be similar
to those of stereo case.) The down range error increases as the square of the range
while the cross range error increases linearly. As the range increases, the down
range error along the line of sight is dominant. Such analyses explain the elliptical
shape of points spread in SfM method shown as in Fig. 10. The estimated camera
positions (black asterisks) are also shown. Virtual cameras are about 60 feet (19
m) away from a vehicle and the maximum camera baseline is about 10 feet (3
m). Red and blue dots are triangulated points from all the pairs of 7 cameras.
Outliers are removed (blue dots) and red points (14 points) are used for the
point estimation ([-20.83, -1.91, 2.98]). Its covariance (using only red ones) is[

0.2183 −0.0545 0.0255
−0.0545 0.0136 −0.0064
0.0255 −0.0064 0.0030

]
. The clustered 14 red points lie within 1.8 feet range

and are elliptically shaped. In Fig. 8, all of the points are reconstructed by such
procedure. 3D reconstruction results are manually compared to manufacturers’

σΔR
∼= (R2/fB)σΔd = (R2/fB)σΔl−Δr

σΔC
∼= (R/f)σ(Δxi+Δxr)/2

Fig. 9. Stereo localization. ΔR and ΔC define the error ellipsoid with σΔR and σΔC .

Fig. 10. Example of a point reconstruction P=[-20.83, -1.91, 2.98]
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specification. The error in height was small (less than one foot) but the length
of a vehicle can vary 3-5 feet. There exists non-negligible amount of error in
reconstruction. 68 cases of 3D reconstructions on sedans are investigated. The
length of 68 sedans has the mean 14.7 (feet) and the standard deviation 3.39.
The height has the mean 4.5 and the std 0.39.

Features from Estimated 3D Points. Features and a probe used are shown
in Fig. 11. Features are extracted from 3D points on the vehicle apparent contour
through use of 3D probes. Probes are the 3D templates for estimating feature
positions (Shown in top right corner).

Fig. 11. Examples of 3D points and detected probes (features) using 3D probe model

3 Bayesian Recognition

The discriminant for vehicle class j (ωj) is as follow. The class conditional prob-
ability given a video clip can be represented as P (ωj |Ī) for vehicle class j (ωj)
and a full Bayesian classifier should compute

P (ωj |Ī) = P (ωj)P (Ī|ωj)/P (Ī)
∝ P (ωj)P (Ī|ωj) = P (ωj)P (F̄|ωj) (7)

where P (ωj) is relative frequency of occurrence of vehicle class j and regarded
as equal for all 4 categories (i.e., = 1/4). Ī = {I1, I2, ..., IN} represents N images
frames in a video clip. F̄ = {f1, f2, ..., fM} is M -primitive or compound features,
in our experiment M = 3).

Prior probability P (F̄|Ī; ωj) (= P (F̄|ωj) ) is the probability of features de-
tected from 3D reconstruction of a vehicle given class j. The vector F̄ denotes the
primitive and compound features and P (F̄|ωj) is trained from learning samples.

One set of three features are selected based on their apparent discriminatory
power together, which are: Height, (Rear of vehicle - Rear of cabin), (Cabin
Center- Vehicle Center)). Those 3 dimensional feature vectors cluster in the
feature space and its 2D subspace projections are shown in Fig. 12 and 13. Note
that SUV’s and mini-vans are overlapped (not separable).

When two video clips are combined, the discriminant used for vehicle class j
is (independence assumption)

P (F̄|ωj) = P (F̄1, F̄2|ωj) = P (F̄1|ωj)P (F̄2|ωj) (8)
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Fig. 12. Learning samples for the fea-
tures ”Height” (x-axis) and ”Rear of ve-
hicle - Rear of cabin” (y-axis) with a
Gaussian fit

Fig. 13. Learning samples for the fea-
tures ”Height” (x-axis) and ”Cabin
Center- Vehicle Center” (y-axis) with a
Gaussian fit

• legend: blue - sedan, red - SUV, green - minivan, black cross - pickup truck.

where F̄1, F̄2 are feature vectors from 3D point reconstructions based in 2 video
clips and F̄ = [F̄1, F̄2]. For L video clips, P (F̄|ωj) =

∏L
i=1 P (F̄i|ωj).

4 Recognition Experiments

200 single video clips were collected from the street at various times (summer or
winter, day or dusk, cloudy, sunny, or snowy days). Among the 200 video clips,
there are 66 pairs of video clips where each camera in a pair captures the same
vehicle (a total of 132 video clips with 68 single clips remaining). Two different
tests were conducted.

Test 1: Learn and test data are separated. 15 training samples for each class are
selected (a total of 60 learn data). The recognizer was run on 140 test sets.

Test 2: 15 training sets as in Test 1, then the recognizer was run on all 200 video
clips (learn+test data).

Each test consists of the following sub-tests: (a) Classify each single video
clip individually. (b) Treat the clips in sub-test (c) as individual single clips and
classify each individual clip. (c) Classify each pair of video clips together. The
results are shown in Table 1-6 as confusion matrices.

4.1 Recognition Using Pairwise Video Clips

Camera positions for a pairwise video clips and 3D reconstruction’s of them are
shown in Fig. 15. Image frames by such a video camera set-up are also shown in
Fig. 14. Table 3 and 6 show pairwise video clips recognition confusion matrix. For
table 2 and 3, 32 pairs are used. For Test 1 (b) (table 2), the 32 pairs are treated
as independent 64 single video clips and the recognition was performed. Those
32 pairs were tested combined in Test 1 (c) (table 3). It shows the increment of
correct recognition rate from 89% to 94%. Similarly, Test 2 (b) and Test 2 (c)
show the correct recognition rate from 86% to 91%. Both Test 1 and 2 show the
5% increment in the correct recognition rate when the information of pairwise
video clips is combined.
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Table 1. Test 1 (a):
140 single test sam-
ples. 81%.

classification
C0 C1 C2 C3

C0 47 1 5
C1 2 48 6 1
C2 11 9
C3 1 9

Table 2. Test 1 (b):
64 singles in 32 pairs.
89%.

classification
C0 C1 C2 C3

C0 26 1 3
C1 1 26 1
C2 1 1
C3 4

Table 3. Test 1 (c):
32 pairs. 94%.

classification
C0 C1 C2 C3

C0 28 2
C1 26 2
C2 2
C3 4

In Test 1 ,
140 test video clips

consist of 32 pairwise
video clips (64) + 76

single video clips

Table 4. Test 2 (a):
200 all samples. 82%.

classification
C0 C1 C2 C3

C0 61 1 6
C1 3 59 8 2
C2 15 20
C3 1 1 23

Table 5. Test 2 (b):
132 singles in 66
pairs. 86%.

classification
C0 C1 C2 C3

C0 41 1 4
C1 3 36 4 1
C2 5 15
C3 1 21

Table 6. Test 2 (c):
66 pairs. 91%.

classification
C0 C1 C2 C3

C0 44 2
C1 2 36 6
C2 2 18
C3 22

In Test 2 ,
200 test video clips

consist of 66 pairwise
video clips (132) +
68 single video clips

† C0- sedan, C1- SUV, C2- minivan, C3- pickup truck.
‡ 60 learning samples (15 for each class).

Fig. 14. Two video clips from camera 0
and 1 in Fig. 15

Fig. 15. Camera positions and 3D recon-
struction from two video clips in Fig. 14

5 Conclusion

A new method using cross ratio invariance for Structure from Motion is devel-
oped and can be used as the input of Bundle Adjustment.

When SUV’s and mini-vans are treated as one class, the recognition rate
increases from 82% to 97% for the 200 single video clips test while reaching to
98% for the pairwise clip test. The experiment result combining two video clips
shows an significant improvement on the recognition rate (from 86% to 91% for
test 2, and from 89% to 94% for test 1). The recognition rate will increase with
more video cameras.

In overall, our classification rate is comparable to view-based methods [1], [3],
although a comprehensive comparison to other systems is not performed due to
the differences of individual system set-up.
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Efficient Head Tracking Using an Integral

Histogram Constructing Based on Sparse Matrix
Technology
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Abstract. In this paper, a sparse matrix technology-based integral his-
togram constructing is applied to a particle filter for efficient head track-
ing, which can significantly enhance the performance of the particle filter
of large number of particles in terms of speed. Also, by exploiting the
integral histogram constructing, a novel orientation histogram matching-
based proposal is proposed for head tracking based on a circular shift ori-
entation histogram matching, which is robust to in-plane rotation. The
proposed head tracking is validated on S.Birchfields image sequences.

1 Introduction

Detecting and tracking of objects using their appearances play an important role
in numerous computer vision applications such as video surveillance and human
computer interaction. Fast appearance feature extraction is very important for
the real-time requirement of object tracking[1].

Recently, the integral image representation is generalized to the integral his-
togram representation [1] to speed up search algorithms which are based on
histogram-comparison. At a frame, the integral histograms are computed and
stored beforehand. The histogram for any rectangular region is extracted with
the pre-computed integral values at its four corner points. Therefore, the inte-
gral histogram technique has gained popularity in many domains for its high
efficiency. For a large image, however, integral histogram extraction still de-
mands significant computational resources because it is required to operate on
the large number of pixels of the entire image. In this paper, the sparse matrix
technology-based integral histogram constructing is applied to head tracking in
a particle filter framework. For readability, this integral histogram constructing
is referred to as SMIHC in the rest of the paper. As can be seen in Section 4, the
performance of the particle filter tracker in terms of execution time is greatly
enhanced by exploiting the SMIHC for calculation of box type filters during the
particle sample phase. In this phase, a detection proposal is devised to generate
particles based on matching gradient orientation histograms between the refer-
ence target and each candidate target in the current frame. Incorporating the
up to date detection observation in the proposal distribution allows for stable
head tracking with small number of particles. The proposed head tracking has

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 256–265, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Illustration of the efficient integral image constructing with sparse matrices

been tested on S.Birchfields image sequences and some promising results have
been achieved.

The remainder of this paper is organized as follows. The use of the SMIHC for
extracting orientation histograms will be described in Section 2. In Section 3, the
orientation histogram matching-based head tracking using particle filters will be
discussed. Some experimental results will be reported in Section 4. Finally, a
brief summary will be given in Section 5.

2 Efficient Orientation Histogram Extraction

Integral histogram representation can speed up search algorithms which are
based on histogram-comparison[1]. We follow the idea to use integral images
for speeding up the extraction of gradient orientation histograms for fast head
tracking.

In general, a gradient image is first thresholded to suppress noises. Then, the
gradient orientation histograms are constructed with this threshold gradient im-
age. Therefore, the gradient image used is very sparse and the gradient image of
each orientation bin is even sparser. This sparseness property can be exploited to
make the integral histogram constructing efficient, thus resulting in an improve-
ment of orientation histogram extraction efficiency.The efficient integral image
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constructing is described as follows. For an orientation bin, its full gradient mag-
nitude image is first converted to sparse form by squeezing out any zero rows
and columns. These rows and columns contain only zeros and do not have any
contributions to the integral image. But operating on them will consume signif-
icant computational resources. Therefore, the integral image for the orientation
bin can be constructed based on this compressed image with small size. In Fig.1,
the basic steps for constructing the integral image are illustrated. We start the
pixel number from the upper left corner and count down to the bottom of the
first column, and then start counting again at the top of the next column. The
white pixels have zero values. The color pixels contain the non-zero values. The
non-zero gradient magnitude pixels are labeled in sky blue. The non-zero inte-
gral pixels are labeled in green. The original image contains the magnitudes of
gradients whose orientations falling into the bin. There are five typical steps in
the process. First, extracting the compressed image by removing the zero rows
and columns of the original image; second, computing its integral image with the
traditional image integrating; third, substituting the original magnitude values
in the original image with their integral values yielding the sparse integral image
; fourth, duplicating the integrated rows to the down zero rows; finally, operating
on the last obtained matrix and duplicating the integrated columns to the right
zero columns. In this process, the zeros in the zero rows are not involved in the
row accumulating and the zeros in the zero columns are also not involved in the
column accumulating.At the first step, the original image and its indices of the
nonzero rows and columns are obtained with the sparse matrix technology. In
the integrating of the compressed image, however, the row and column accumu-
lating are implemented with the full matrix, for the accumulators may not be
sparse vectors any more after the first several accumulations. It is not that all
the zero elements in the matrix are removed but that the zero rows and columns
are removed, which is different from the sparse matrix technology. At current
frame, the integral histogram is calculated only for once and used throughout the
histogram matching in the object searching. The histogram of any rectangular
region in the frame can be constructed by indexing and arithmetic intersecting
the integral histogram values at its four corner points. Please see [1] for more
details.

3 Proposed Head Tracking

3.1 Head Detecting with a Circular Shift Orientation Histogram
Matching

In this paper, we use detection responses to guide the tracker to the most likely
region for further tracking. The detection response map is constructed by com-
paring the reference orientation histogram with that of each candidate target in a
brute force search manner. In the search, only the candidate regions centered on
a subset of nodes of a regular grid (see Fig.2 (d)) are considered. The brute force
search is made practical by the integral histogram representation. We compare
these candidate histograms with the reference histogram with a circular shift
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orientation histogram matching. Then, the candidate with the highest similarity
score can serve as the crude detecting result.

We extract the reference model from the tracking head from early frames.
But the tracking head has different orientations in the frames as rotating con-
tinually, as shown in Fig.2. To remove the effect of rotation, therefore, each
candidate region should be rotated back to the reference patch before matching
their orientation histograms.

To this end, image warping may demand significant computational resources.
In fact, after extracting the histogram, all we need to do is to permute it with a
circular shift histogram matching, which yields the same result as having rotated

10 20 30

0.02

0.04

0.06

0.08

0.1 
 Reference histogram
Circular shifting histogram
of the detecting result

10 20 30 36
0   

0.02

0.04

0.06

0.08
 Histogram of the detecting result

Fig. 2. Illustration of the head detection by comparison of gradient orientation his-
tograms. (a) The reference gradient image (from frame 160). (b) The current gradient
image (frame 172) and detecting result. (c) Illustration of the circular shift orientation
histogram matching.(d)The detection response map and particles.



260 J.-T. Qiu, Y.-S. Li, and X.-Q. Chu

the image patch by the width of the associated number of angular bins (see
Fig.2(c)).

Therefore, the histogram similarity between each circular shifted version of the
original candidate histogram and reference histogram must be first measured.
Then, the minimum over all the distances is chosen as the final distance be-
tween the candidate and reference regions. Let href = {hu,ref}u=1,...,Bdenote
the reference orientation histogram , with B denoting the number of histogram
bins. Within a candidate region X i =

{
xi, yi, wi, hi

}
in some later frames, with

(xi, yi),wi, and hi denoting the location, width, and height respectively, the ori-
entation histogram is denoted by hXi =

{
hu,Xi

}
u=1,...,B

. Let hs
X denote a

circular shifted version of the original candidate histogram hX ,with s denoting
the number of bins that is shifted. For readability, we have omitted the su-
perscript of X i.The frequency contained in the new bin un in hs

X is updated
by that of its corresponding old bin uo in hX , which can be computed by
uo = mod(un − s + B − 1, B) + 1, with the modulus function mod {A, D} re-
turning the residue after A divided by D . We borrow the distance metric on
histogram models defined in [2] to compute the distance between the hs

X and
href , as

D(href ,hs
X) =

√√√√1 −
B∑

u=1

√
hu,ref , hs

u,X (1)

Based on this distance, we finally define a circular shift distance, as

d(href ,hX) = min
0�s<B

D(href ,hs
X) (2)

Where d(href ,hX) denotes the circular shift distance between the href and hX . In
general, there are many distance functions to compare orientation histograms, the
L2-norm distance [3], for instance. According to [4], the symmetric KL-divergence
can also be well suited for the comparison of orientation histograms. In fact, the
circular shifted orientation histogram is still the orientation histogram of the as-
sociated rotated patch. As shown in Fig.2(c), the proposed distance metric per-
forms well in comparing the reference histogram with that of the in-plane rotated
patches. Figure 2 illustrates an example of orientation histogram matching be-
tween the reference histogram and shifted versions of each candidate histogram by
using Eq.(2). In this case, the sequence seq-sb is used. The reference gradient im-
age of the tracking head (from frame 160) and current gradient image (from frame
172) are shown in Fig.2 (a) and Fig.2 (b), respectively. The solid blue graph in
Fig.2 (c) shows the reference histogram extracted from the reference gradient im-
age. We use 36-bin orientation histograms throughout the paper. The histograms
of rectangular candidate regions are extracted from the current gradient image.
The rectangular candidates are centered on the nodes of the regular grid (see Fig.2
(d)). All of them have the fixed size of the estimate state of previous frame. Fig-
ure 2 (d) shows the detection response map which is constructed via computing
histogram distances using Eq.(2). The detecting result is labeled with rectangles.
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The small crosses around the large one represent the particles. The dash graph
at the bottom of Fig.2 (c) shows the original histogram of the detecting result,
which is extracted from the rectangular region in Fig.2 (b). In Fig.2 (c), the solid
red graph shows its shifted version that is the most similar to the reference his-
togram. Obviously, the rotated head can be accurately detected via performing
orientation histogram comparisons in this case.

3.2 Head Tracking Using the Orientation Histogram
Matching-Based Proposal

In this paper, the proposed head tracking follows the particle filter[2,5] frame-
work.The basic steps of particle filtering described in [2] are followed. We define
the hidden state as X i =

{
xi, yi, wi, hi

}
, which corresponds to its associated

candidate region. Particle filters can be described as follows. Starting with a
weighted set of samples

{
X

(i)
t−1, π

(i)
t−1

}
i=1,...,N

approximately distributed ac-

cording to p
(
xt−1 | y1:t−1

)
, new samples are generated from a suitably designed

importance function (also called proposal). The new importance weights are
computed with a recursive equation , as

π
(i)
t ∝ π

(i)
t−1

p
(
yt | x(i)

t

)
p
(
x
(i)
t | x(i)

t−1

)
q(x(i)

t | x(i)
t−1, yt)

∑
i

π
(i)
t = 1 (3)

The new particle set
{

X
(i)
t , π

(i)
t

}
i=1,...,N

is then approximately distributed ac-

cording to p (xt | y1:t). Monte Carlo techniques can then be used to obtain ap-
proximations to the desired point estimates . Color histograms are used for the
construction of the color likelihood model that we use. The orientation histogram
matching described in Section 3.1 is implemented for the construction of a pro-
posal distribution to utilize the current observation data, enhancing the tracker’s
robustness to peaked likelihoods. The proposal distribution is constructed by
evaluating the histogram similarity measure on a subset of locations over the
image. Firstly, the orientation histograms of the candidate regions centered on
the subset of nodes of the regular grid (see Fig.2(d)) are extracted. Secondly,
each candidate orientation histogram is circularly shifted back to the reference
histogram and the distance between them is computed by using Eq.(2), result-
ing in a detection response map (see Fig.2(d)). Thirdly, the response values
are thresholded according to d(href ,hX) < τ ,which is followed by computing
non-minimum suppression. In this way the extrema of high similarity scores are
detected . Based on locations of these extrema, denoted by pj = {xj , yj} ,with
j = 1,...,Np, we define an orientation histogram matching-based proposal for
the head location, as:

q(xt, yt | xt−1, yt−1, yt) = ξN((xt, yt)|(xt−1, yt−1), (σ2
x, σ2

y))

+
(1 − ξ)

Np

Np∑
j=1

N((xt, yt)|pj , (σ
2
x, σ2

y)) (4)
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where the first term at the right-hand side of Eq.(4) is the prior density. The
second term is a mixture-of-Gaussians containing the current observation infor-
mation. As a result, this proposal allows for jumping in the state space to regions
of high similarity scores. In this paper, the mixture coefficient ξ is set to be 0.2.
An example of generating particles by using the proposed proposal is illustrated
in Fig.2 (d). The reference histograms are extracted from the tracking head from
early frames. The reliabilities of the reference histograms are judged by aligning
them with a few pre-selected key frame templates, which are carefully extracted
from the head under different poses without being polluted by the background
pixels. The key templates are also used as reference models in themselves. This
will help when the head undergoes large rotations and new parts of it come into
view.

4 Experimental Results

4.1 Evaluation of the Proposed Head Tracking

In this Section, some experimental results are reported. The effectiveness of
the proposed method had been tested on several image sequences provided by
S.Birchfield [6]. Both the sequence seq-mb and seq-sb contain 500 frames. The
sequence seq-dt has 150 frames. All the sequences have the resolution of 128x96.
To verify the efficiency improvements brought by the proposed method, we had
resized them to 512x384.

The robustness of the circular shift histogram matching to in-plane rotation
was tested with seq-mb, as illustrated in Fig.3. The head in frame 290 had an
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Fig. 3. Illustration of the performance of the circular shift distance metric
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Fig. 4. Comparison of the rectangular results of the detecting and tracking meth-
ods. The Detecting:red rectangles. the mean-shift:yellow rectangles. the proposed:blue
rectangles. Top row: seq-mb. Middle row: seq-dt. Bottom row: seq-sb.

upright posture and its orientation histogram served as the reference template
for detecting head during frames 295-354. The distances between the head his-
tograms of these frames and the reference histogram are shown. The thick blue
graph shows the distances measured with the conventional distance metric with-
out compensating the in-plane rotation. The thin black graph shows the distances
measured using the proposed distance metric for compensating the in-plane ro-
tation. As can be seen, the head at frames 320,334 and 349 had the histograms
which are most similar to the reference histogram when taking upright postures.
The head in the frames 310,331 and 344 showed the most divergence when rotat-
ing large angles from the upright posture. Clearly, the proposed distance metric
on orientation histogram models had a better performance than the conventional
one when the head underwent in-plane rotations.

Fig.4 shows some samples of tracking results. As can be seen, the proposed
algorithm had a better performance than the traditional mean-shift algorithm in
some challenging conditions such as head rotation, large appearance changes, and
illuminating changes. The crude detecting results and the final tracking results
also conformed to each other at most frames. This implies that the circular shift
histogram matching-based proposal had a good performance. The performance
of the proposed method was also evaluated by comparing the tracking results
with the ground truth locations provided by S.Birchfield [6]. This is shown in
Fig.5. The errors of the crude detecting results and the tracking errors of the
traditional mean-shift are also shown. As can been seen from Fig.5(a), the tra-
ditional color mean-shift was failure as the girl rotated her head causing large
appearance changes. From Fig.5(b), we can see that it also did not perform
well for sequence seq-sb at frame 177 when the head experienced illumination
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Fig. 5. Comparison between the tracking results and the ground truth and errors of
different methods. (a) The errors for seq-mb. (b) The errors for seq-sb.

changes. The proposed head tracking, however, could lock on the head through-
out the image sequence. The proposed tracking could also have large error values
at some frames. But the head was in general well tracked, for the average head
size in the image sequence is 140x180. It can also be seen that the crude detecting
results basically conformed to the final tracing results.

4.2 Running Time Analysis

The simulation was accomplished with 2.0 GHz CPU, without any hardware
acceleration.We list the processing time for five algorithm steps.

For integrating the gradient images for the integral orientation histogram, the
traditional integrating consumed around 407.38 ms while the SMIHC required
196.41 ms. Furthermore, the SMIHC method provided just the same result. The
processing time comparison between the SMIHC-based head tracking and the
one with the straightforward histogram extracting was also performed, as shown
in Table 1. It is impractical to implement the brute force search step with the
conventional histogram extracting. In our experiments both the two used the
integral histogram technical to perform the brute force search. To evaluate the
performance of the proposed tracker in terms of speed when large number of
particles were used, we had tested it by using 25, 50,100,200 particles. The color
likelihood computation exploited the conventional histogram extraction method.
If a larger number of particles were used, computing the color likelihood with
integral histogram representation would significantly improve the efficiency of
the tracker . It can be seen that the particle sample and brute force search steps
only made up a small portion of the overall computation time by exploiting the
SMIHC. The SMIHC-based particle filter tracker yielded a speedup of 1.2X over
the one with the straightforward histogram extracting when using 200 particles.
If a larger number of particles were used the speedup would be more satisfactory.
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Table 1. Efficiency comparison between the proposed integral histogram-based head
tracking and the one with the straightforward histogram extracting(unit:ms)

Stage 25 par. 50 par. 100 par. 200 par.

Sample(conventional) 46.92 89.38 176.91 353.16
Sample(proposed) 1.11 1.76 3.44 8.24
Likelihood 47.97 91.83 180.97 358.79
Gradient 71.80
Search 11.54

5 Conclusions

In this paper, the SMIHC is applied to particle filters for efficient head track-
ing. The SMIHC is around two times faster than the traditional orientation
histogram integrating. Therefore, a brute force search can be implemented using
the SMIHC for the construction of the orientation histogram matching-based
proposal. Experimental results showed that the proposed head tracking had a
good performance when the head underwent rotations and experienced illumi-
nation changes compared with the traditional color mean-shift algorithm.
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Abstract. This work presents a unique new dataset and objectives for
action analysis. The data presents 3 key challenges: tracking, classifica-
tion, and judging action quality. The last of these, to our knowledge,
has not yet been attempted in the vision literature as applied to sports
where technique is scored.

This work performs an initial analysis of the dataset with classifica-
tion experiments, confirming that temporal information is more useful
than holistic bag-of-features style analysis in distinguishing dives. Our
investigation lays a groundwork of effective tools for working with this
type of sports data for future investigations into judging the quality of
actions.

1 Introduction

For sports as well as rehabilitation, quality control, security, and interfaces, the
ability to make a critical judgment about how a particular action is performed
can be imperative. With a significant portion of recent work focused on classifi-
cation and detection of action categories, we instead propose focusing on analysis
in domains where small details of temporal phenomena are the key informative
elements. To this end, we have collected footage from a diving competition in
which each dive is scored for technique irrespective of dive type or difficulty.

The convenience of working with a sport like diving is that it naturally avoids
some of the early action dataset perils such as forced or exaggerated actions or
loosely defined categories like “dance”. All dive types are strictly defined and
recorded in competition. Although the dive types vary, their quality is evalu-
ated independently of type, meaning there are subtle universal details that are
important and must be discovered.

In this work we evaluate representations for the diving data on the more
familiar classification task to build our intuitions about the dataset. In particular,
if a representation is not useful in discriminating between different dives, we can
hardly expect it to capture the minutiae that might have a significant influence
on a score for technique.

In the process we make incremental modifications to background subtraction
and setup a feature extraction pipeline suited for individual performance sports
captured at relatively high frame rates. Our methods are able to overcome notice-
ably compressed video with significant motion blur, a highly deforming subject,
and changing illumination.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 266–276, 2011.
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Fig. 1. Mean raw scores for all dives, shown with one standard deviation. The overall
average of mean raw scores is shown in green. It is interesting to note that the most
variance in scores took place during the middle of the competition: this is typically
when divers take the most risks to try to get ahead.

1.1 Related Work

The most notable recent foray into sports footage in the literature was a broad-
cast sports dataset collected by [1]. However the dataset was a mixture of many
different sports captured at highly variable angles and the task was limited to a
categorization exercise. People have also demonstrated detection on particular
ice skating or ballet moves, but to our knowledge none of the sports datasets
available to date have provided a corresponding set of performance scores de-
scribing the quality with which the actors executed their moves.

In this preliminary work, our investigation focuses on classification exper-
iments to test our intuition about suitable features and inference techniques.
Notably we draw upon the success of descriptors based on gradient orientation
histograms [2,3,4] in person detection, and adopt a variant thereof to encode
pose.

We explore classification, drawing from both the holistic philosophy of treating
the entire video as a bag of features [5,6,7] (which in our case encode poses), and
from the temporal analysis perspective [8,9,10] of comparing multidimensional
time series or their features.

2 The FINA09 Diving Dataset

We introduce a new dataset gathered from the finals of the men’s 3 meter spring-
board diving event at the 13th FINA World Championships which took place
in Rome, Italy on July 23, 2009. The dataset is gathered with the intent of mo-
tivating a new action analysis application of judging action quality, however, it
presents a challenge for tracking and classification as well.
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The dataset includes 12 different divers, each performing 6 unique dives. Each
dive is recorded with two synchronized high speed cameras from orthogonal
viewpoints. The first camera captures the dive head-on while the second records
video from the side. Unfortunately 4 videos were partially omitted in the avail-
able footage, thus we only have 68 total samples. Example frames are shown in
Fig. 2. The dive types and their distribution of scores are also shown in Table 1
and Fig. 1.

2.1 How Diving Is Scored

In the diving competition, each dive was given a raw score for technique by
7 independent judges. The scores are in the range from 1 to 10, and must be
expressed in increments of 0.5 (ex: 6.0 and 6.5 are acceptable scores, 6.2 is not).
The 2 highest and 2 lowest scores are discarded. The total raw score explaining
how well the dive was executed is obtained by summing the remaining 3 scores.
To obtain the final dive score this sum is then multiplied by the difficulty of the
dive. Dive difficulties are constants assigned to each dive type agreed upon by
FINA (the organization overseeing the competition).

As an end goal we are interested in evaluating the quality of a dive, irrespective
of its difficulty class. However, in this work we explore the issue of representation
in the context of the more familiar task of classification.

3 Background Subtraction and Tracking

When considering representations our intuition steers us towards a person-centric
frame of reference, since factors such as symmetry and pose typically have high
significance in perception of technique. We do however, take the time to compare
classification performance with a representation requiring minimal preprocess-
ing, which represents a video as a collection of spatial-temporal interest points
with histogram of oriented gradients (HoG) and histogram of optical flow (HoF)

Table 1. Distribution of Dives by Type

Dive Type ID Num Samples Description

107B 11 forward 3.5 somersaults
205B 11 back 2.5 somersaults
307C 11 reverse 3.5 somersaults
405B 3 inward 2.5 somersaults
407C 9 inward 3.5 somersaults
5154B 9 forward 2.5 somersaults 2 twists
5156B 1 forward 2.5 somersaults 3 twists
5253B 2 back 2.5 somersaults 1.5 twists
5353B 10 reverse 2.5 somersaults 1.5 twists
5355B 1 reverse 2.5 somersaults 2.5 twists
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Fig. 2. Sample synchronized frame pairs from various dives, exemplifying the type of
color and shape irregularity, as well as effects of motion blur, compression, and regions
of background with similar statistics to the foreground object

descriptors [11] (see Table 2). A person-centric representation implies tracking
over the entire duration of the video. Throughout each video a diver under-
goes significant deformations and passes through zones with varying shadows
and lighting, while the background motions at high frame rate remain relatively
small. Therefore we choose to model the background instead of the appearance
of the diver for tracking purposes. In this section we explain our pipeline and
underscore any adaptations made to existing works due to the unique challenges
and properties of our data.

3.1 Robust Registration

In order to fix the small variation in scale and viewpoint between frames, we
register sequential frames with an affine transform. We have found that simply
applying RANSAC [12] to matching SIFT keypoints [2] works satisfactory in
our sequences if we add correspondences with the frame at time t − 5 to the
constraints in the least-squares estimation. Sample results are shown in Fig. 3.

3.2 Background Subtraction

In addition to stabilizing the video and allowing us to express events in a canoni-
cal reference frame, registration enables the construction of an initial background
model (from mosaics Fig. 3). Since the videos in our dataset are recorded at “In-
ternet streaming quality” they are plagued with compression artifacts that create
constant jitter. These quantization artifacts are an additional nuisance on top of
the already existing small background motions in the audience, and motion blur
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Fig. 3. Typical median mosaic results from the sequential affine registration

due to fast motion of the camera or actor. To maximize our robustness to such
nuisances we select the background subtraction method of [13], which models the
background with a color histogram at each pixel taking into account a spatial
and temporal neighborhood. We use a neighborhood radius of 4 (9× 9 window),
with color quantized via k-means to 32 bins. An update rate of α = 0.1 is used
to keep the background current. Local pixel histograms are compared with the
Bhattacharyya Coefficient measure of similarity.

Improving foreground coherence. In the above background subtraction ap-
proach a threshold is typically selected on the Bhattacharyya Coefficient to sep-
arate foreground pixels from background pixels (0.76 in our case, determined
emprically). An artifact of thresholding is that regions belonging to a solid ob-
ject often get fragmented. This is most evident when the foreground object passes
over an area where the color distribution in the background model is very similar
to a region on the object. To encourage better label consistency we augment the
above approach by constructing a Random Field on the pixel lattice V, E:

ĉ = argmin
c

∑
xi∈V

Ψ(ci|xi) + λ
∑

xi,xj∈E

Φ(ci, cj |xi, xj), (1)
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where ci is the binary label assigned to a given pixel, and each pixel xi ∈ V is
connected to its 4 vertical and horizontal neighbors via the edges, E, represented
as tuples xi, xj .

The unary term is simply the Bhattacharyya Coefficient resulting from the
background subtraction approach, which ranges between 0 and 1. For the pair-
wise potential we use a function of the Euclidean distance between pixel color
values in LUV space. This way the pairwise cost is highest when neighboring
pixels have different labels but are similar in color, and low if different labels are
assigned to neighboring pixels with a large difference in color:

Ψ(ci|xi) = BCi, Φ(ci, cj|xi, xj) =
1

1 + ‖xi − xj‖ [ci �= cj ]. (2)

3.3 Foreground Object Tracking

Once we have established a background subtraction method to apply sequentially
to each frame, we then have to find correspondences between foreground regions
to obtain time series of region properties.

Naive Correspondence. We first try the naive correspondence approach by
matching the nearest region with similar area in consecutive frames. However
this approach breaks down when background subtraction fails to produce a single
coherent region. Once a mismatch occurs in a noisy background subtraction
result, the correspondence may continue to drift and produce nonsensical results.

Kalman Filtering in 3D. We leverage the orthogonal viewpoints in our
dataset to implement a Kalman Filter in three dimensions to track the center of
mass of the diver. The state includes the location, velocity, and acceleration of
the center of mass and uses a random walk as the motion model. The observa-
tions are the naive correspondences described above.

We have manually annotated the time of the frames at which the diver begins
receiving the final lift from the springboard and the time of impact with the
water. In our experiments we do not use information before the diver starts
being lifted by the springboard and stop tracking at the time of impact with the
water to capture the angle of entry and splash. In classification experiments, the
post-entry information is also discarded, and only the time spent in the air is
considered.

4 Representation

4.1 Describing Pose with Gradient Orientation Histograms

The works of [2,3] and many others have shown variations on gradient orienta-
tion histograms to be highly successful in object recognition as well as person
detection. Taking a cue from the above works, we encode diver poses by com-
puting a SIFT descriptor [2,14] at a fixed scale and orientation centered at the
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Fig. 4. Our diver-centered unsmoothed SIFT feature in various frames, computed with-
out and with background subtraction for comparison. Notice in the descriptors using
background subtraction that even frames with discontinuities and false foreground
patches produce seemingly little noise in responses.

diver’s tracked location. However, instead of smoothing the image to the scale
of the descriptor before computing gradients as typically done in SIFT, we take
the suggestion of [3] and skip the smoothing to capture finer level gradient infor-
mation. The scale is selected so that it spans a square window size of 250× 250
pixels. We have found empirically that the default 4×4 spatial bin configuration
with 8 bins for orientation works sufficiently well for this dataset.

4.2 Leveraging Background Subtraction

We choose to incorporate background information into the descriptor by masking
the gradient responses before descriptor computation. Since the descriptor en-
coding is designed with insensitivity to noise in mind, it overcomes frames where
the background subtraction result was less than ideal. Notice in the examples in
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Fig. 4 that even frames with discontinuities and false foreground patches pro-
duce seemingly little noise in responses. We compare the performance gained by
incorporating background subtraction in Table 2 by running classification exper-
iments both with descriptors computed before (1-SIFT) and after (1-SIFT-fg)
applying the foreground mask.

5 Classifying Time Series

By extracting a diver centered descriptor, as described above, at each frame in
both viewpoints, we obtain a 256 dimensional time series encoding the sequence
of the diver’s poses. We approach the classification task in 2 ways: without regard
for temporal ordering of poses using a bag method, and with a dynamic time
warping based kernel that keeps the sequence in tact during comparison.

5.1 Bag of Poses

The first approach, disregarding temporal ordering, uses the familiar bag-of-
features pipeline. Since our representation has one feature per frame centered
around the diver, this method essentially represents each dive as an unordered
collection of poses.

To construct the pose dictionary we randomly sample features from dives in
the training set (15 per dive sample) and compute a k-means clustering of a
predetermined size. For each dive, we then project the descriptor in every frame
to a given dictionary and represent the full dive sequence as a single histogram
of pose occurrences. To discriminate between histograms we train a χ2-SVM.
We also experiment with the RBF-χ2 kernel, but find that the former performs
better in our case. Table 2 shows our results over a range of parameters.

5.2 Dynamic Time Alignment Kernel (DTAK)

To preserve the sequential nature of the dives while comparing time series and
still get the benefit of using SVMs we can use the Dynamic Time Alignment
Kernel (DTAK) proposed by Shimodaira et al. [15,16]. The DTAK kernel be-
tween two time series, X = (x1, . . . ,xn) and Y = (y1, . . . ,ym), is defined as:

KDTAK(X,Y) =
pn,m

n + m
, (3)

pi,j = max

⎧⎨⎩
pi−1,j + k(xi,yj)
pi−1,j−1 + 2k(xi,yj)
pi,j−1 + k(xi,yj)

(4)

where k(xi,yj) = e−
1

2σ2 ‖xi−yj‖2
.

When using the DTAK kernel, we bypass the dictionary construction stage
used in the bag of poses framework and compare descriptors directly. That is,
X,Y are sequences of descriptors taken from each frame of two different dives.
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To add a level of robustness when comparing pose descriptors, similar to that
offered by the dictionary creation stage in the bag pipeline, we do a reduced
dimensionality approximation of the descriptors in each frame via PCA. De-
scriptors for PCA analysis were selected randomly from the training data in the
same way as for k-means clustering in the bag approach. In our experiments
we chose to represent each frame with 25 principal components, which capture
approximately 43% of the variance of the data.

We apply the DTAK kernel on sequences of these reduced dimensionality
descriptors and feed the computed kernel into an SVM.

6 Classification Experiments and Results

For our classification experiments we select the set of dive types to consist of
those of which we have at least 6 samples. Referring back to Table 1, this leaves us
with 6 unique dive types. We perform our tests by leave-one-out cross validation,
where 1 dive sample is left out each round as the test sample, while all the other
dives serve as training data. Dictionaries and principal components are always
recomputed at each iteration to avoid training and testing on the same data.

Table 2 summarizes our results using various descriptors, parameters, and
classification approaches. The top section of Table 2 demonstrates that without
incorporating background subtraction, a person centric representation which re-
quires tracking provides little gain if the classification is performed without re-
gard for temporal order. We do notice a boost in performance when we classify
the person-centric representation as a sequence. For this comparison we used the
binaries provided by [11] to extract features from our videos.

Comparing results computed without incorporating background subtraction
into the descriptor (1-SIFT) to those where the descriptor was masked to keep

Table 2. Mean Classification Accuracies for All Experiments

Tracking Representation Classifier Mean Accuracy

none [11]:HoG+HoF bag (k=500) χ2-SVM 58.67
3d-KF 1-SIFT bag (k=200) χ2-SVM 47.73
3d-KF 1-SIFT bag (k=500) χ2-SVM 58.13
3d-KF 1-SIFT PCA (npc=25) dtak-SVM (σ = 500) 62.19

3d-KF 1-SIFT-fg bag (k=10) χ2-SVM 51.06
3d-KF 1-SIFT-fg bag (k=50) χ2-SVM 64.01
3d-KF 1-SIFT-fg bag (k=100) χ2-SVM 75.10
3d-KF 1-SIFT-fg bag (k=200) χ2-SVM 74.26
3d-KF 1-SIFT-fg bag (k=500) χ2-SVM 80.81
3d-KF 1-SIFT-fg bag (k=100) RBF-χ2-SVM 73.59
3d-KF 1-SIFT-fg bag (k=500) RBF-χ2-SVM 75.77
3d-KF 1-SIFT-fg PCA (npc=25) dtak-SVM (σ = 500) 91.75
3d-KF 1-SIFT-fg PCA (npc=25) dtak-SVM (σ = 750) 91.75
3d-KF 1-SIFT-fg PCA (npc=25) dtak-SVM (σ = 250) 81.84
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foreground (1-SIFT-fg) we see the benefit of this procedure. It boosts perfor-
mance by almost 30% for the best performing classifier. Also, notice that DTAK
kernel based classification shows significantly better performance and appears
fairly stable with respect to changes in its σ parameter. The bag performance
could be improved with temporal binning to include some sequential informa-
tion, but the point was to compare both methods at their basic level. We also
noticed that in our case there was no benefit to be had from using the RBF-χ2

kernel.

7 Conclusion

We have presented a preliminary analysis of a new diving dataset and constructed
an effective pipeline of tools for processing video of individual technique-based
sports. Our results confirm that temporally constrained analysis is preferable
for distinguishing dives, and that a gradient orientation histogram based pose
representation is effective in the classification task. The question left open for
our future investigations is whether these techniques will also hold true for dive
quality score estimation. The diving dataset will be made publicly available on
the website of the authors.
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Abstract. Facial expression recognition is one of the most challenging
research area in the image recognition field and has been studied actively
for a long time. Especially, we think that smile is important facial ex-
pression to communicate well between human beings and also between
human and machines. Therefore, if we can detect smile and also estimate
its intensity at low calculation cost and high accuracy, it will raise the
possibility of inviting many new applications in the future. In this pa-
per, we focus on smile in facial expressions and study feature extraction
methods to detect a smile and estimate its intensity only by facial ap-
pearance information (Facial parts detection, not required). We use Lo-
cal Intensity Histogram (LIH), Center-Symmetric Local Binary Pattern
(CS-LBP) or features concatenated LIH and CS-LBP to train Support
Vector Machine (SVM) for smile detection. Moreover, we construct SVM
smile detector as a cascaded structure both to keep the performance and
reduce the calculation cost, and estimate the smile intensity by poste-
rior probability. As a consequence, we achieved both low calculation cost
and high performance with practical images and we also implemented
the proposed methods to the PC demonstration system.

1 Introduction

The visual information plays a very important role in our everyday life. Es-
pecially, in regard to communication between human beings, we can come to
understand deeply and smoothly each other to pay attention to behaviors and
facial expressions as well as languages. Facial expression analysis has been ap-
proached by several research fields, for example in psychology[1], brain science,
etc. In engineering[2] too, many researchers have tried to analyze and estimate
facial expressions and human emotions by face images, by voice signals, by bio-
signals, etc. for a long time. But, it is still difficult to recognize facial expressions
only by face images automatically, because there are many problems such as
inconsistencies in individuals, lack of criterion to judge facial expressions, dis-
parities between simulation data and practical data and a mismatch between the
expressions and the emotions. Therefore, there is no critical solution to work well
under the practical environment and active research is still much in progress.
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In particular, smile (In a wide sense, facial expressions, which are observed
when human beings derive pleasure) is one of the most important facial expres-
sion used to communicate well between human beings and also between human
and machines. If we can automatically detect smile on real-time and at high
accuracy, it will serve a useful function to existing applications like digital still
camera and HMI (Human Machine Interface), and also raise the possibility of
inviting new applications like rehabilitation and welfare in the near future. Fur-
thermore, we think that such applications, which contain a camera should work
on-the-fly, because of privacy issues.

In general, there are two major approaches to detect smile. One is feature-
based method[3] and the other is appearance-based method[4]. Feature-based
method has the robustness for the variation of face positions and angles, because
it can normalize those and analyze more detailed information around facial parts.
But it generally requires to find some facial parts such as eyes, mouth, etc. So, if
it does not find those facial parts, it can’t provide the result. On the other hand,
appearance-based method does not need to find facial parts and can provides
the result of smile detection without facial parts detection. As a result, although
it is susceptible to the position of facial parts and the variation of face angle, it
has low calculation cost.

In this paper, we study the method to detect smile and estimate its intensity
using only facial appearance information on real-time and high performance,
which is robust to the position gap of facial parts and face angle within approxi-
mately ±30 degrees of frontal. We have also implemented our proposed methods
to on-the-fly PC demonstration system.

2 Smile Detection and Intensity Estimation

We try to detect smile and estimate smile intensity using 256 gray values, where
the size of face is 40 x 40 pixels. That means it is not necessary to identify
facial parts in our method. Fig. 1 shows the process flow of our smile detection
and smile intensity estimation. In this paper, we study three feature extractions,
namely such as Local Intensity Histogram (LIH), Center-Symmetric Local Bi-
nary Pattern (CS-LBP)[5] and LIH+CS-LBP, which combines the above two
features as facial appearance information. In addition, we consist SVM smile
detector as cascaded structure like face detector proposed in [6]. It consists of
sub detector, which has a small number of support vectors by applying Reduced
Set Method (RSM)[7] and main detector, which consists of all support vectors.

Fig. 1. Smile detection and intensity estimation flow
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This cascaded structure has the ability to keep high performance, while reducing
the calculation cost.

At the end, we estimate smile intensity based on the posterior probability
estimated by the output from SVM smile detector.

2.1 Feature Extraction

Generally, face detector does not insure the accuracy of the detected face po-
sitions, means that positions of facial parts such as eyes, mouth and etc., are
not always corresponding for each detected face. Therefore, the robust features
for facial parts positions and face angles are necessary to detect smile only by
appearance information, accurately. In this paper, we divide the face image into
some grid cells and extract local features for each cell, after that we build the fi-
nal feature by concatenating all local features. We use Local Intensity Histogram
(LIH) and Center-Symmetric Local Binary Pattern (CS-LBP) as local feature
and describe how to extract those features in the following subsections.

Local Intensity Histogram (LIH). LIH is build by concatenating the inten-
sity histograms in local regions and the extraction steps are as follows:

1. Divide face image into M x N cells
2. Build an intensity histogram with L bins for each cell
3. Normalize the histogram for each cell
4. Build the final feature by concatenating the normalized intensity histograms

of all cells to form a (M x N x L) dimensional vector

Fig. 2. Example of feature extraction by LIH (8 x 8 cells, 8 bins)

Fig. 2 shows the processing example, where face image is divided into 8 x 8 cells
and 8 bins.

Center-Symmetric Local Binary Pattern (CS-LBP). CS-LBP is a simple
method and it is also has the ability to extract features, which has robustness for
illumination changes. Additionally, it can also represent a texture information
as more compact binary patterns. CS-LBP is calculated by,

CS − LBPR,N,T (x, y) =
(N/2)−1∑

i=0

s(ni − ni+(N/2))2i, s(x) =
{

1 x > T
0 otherwise

(1)
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where T is an encoding threshold, ni and ni+(N/2) correspond to the gray values
of center symmetric pairs of pixels of N equally spaced pixels on a circle of radius
R. In this paper, N is fixed to 8 and R is fixed to 1. The following steps show
the process to extract CS-LBP feature:

1. Divide face image into M x N cells
2. Calculate a CS-LBP for each cell and build a CS-LBP histogram
3. Buid the final feature by concatenating the CS-LBP histograms of all cells

to form a (M x N x 16) dimensional vector.

Fig. 3 shows the processing example, where face image is divided into 5 x 5 cells.

Fig. 3. Example of feature extraction process by CS-LBP (5 x 5 cells)

2.2 Detection and Intensity Estimation

In this paper, we use SVM with RBF kernel function. RBF kernel function is
defined as,

K(xi,xj) = exp(−‖xi − xj‖
2σ2

) (2)

where σ is a kernel parameter. Then the decision function with kernel is given
as,

y =
∑
i∈S

αiK(xi,x) − h (3)

where S and xi means a set of support vectors and support vector, K is a kernel
function, x is the input vector. Here, αi shows weight for support vector and
h represent the bias term. In smile detection case, If y ≥ 0 implies smile and
non-smile, otherwise.

In addition, we estimate smile intensity to evaluate the posterior probability
of SVM outputs. Using sigmoid function, smile intensity is defined as,

si =
1

1 + exp(−λy)
(4)

where si is smile intensity that ranges from 0 to 1 and λ is the gain. In this
paper, we fix λ to 5.

Furthermore, we construct cascaded smile detectors described in Sec. 2. It
consists of sub smile detector, which is reduced the number of support vectors
constructed by RSM and main smile detector, which has all the set of support
vectors.
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3 Data Preparation

We constructed the original image database, which consisted of sports games
TV programs to train and test our smile detector. In such TV programs, the
spectators are often shooted and their expressions and emotions vary with the
outcome of games. It is good for us, because the most spectators show same facial
expressions with the outcome of their supporting athletes or teams. Therefore, we
can collect smile and non-smile images with a high degree of efficiency. Moreover,
face direction, gender and age of spectators are so various that we can evaluate
the practical performance of our proposed method. As a result, our original
smile/non-smile database contained 6,460 faces, which consisted of 2,730 smile
samples and 3,730 non-smile samples.

In addition, we also used the pubic databases, ”Facial Expression and Emotion
Database (FEED)”[8], to evaluate the smile intensity estimation method.

4 Experiments

In this paper, we tested our system by 5-fold cross validation, which was one of
several approaches commonly used for evaluation purpose. We compared each
performance by Area Under the Curve (AUC), which was obtained by Receiver
Operating Characteristics (ROC) Analysis.

4.1 Performance Evaluation by LIH

With respect to LIH, we investigated the optimal number of cells and bins. We
first compared the performance according to the number of cells with the fixed
number of bins, which is 8 (See Fig. 4 (Left)). Here, we used our original database
and smile detector, which consisted of all support vectors (not cascaded). When
increasing the number of cells, AUC was gradually improved. So, 8 x 8 cells
showed the best performance. Next, we compared AUC by varying the number
of bins, while keeping the number of cells constant as 8 x 8 (See Fig. 4 (Right)).

Fig. 4. Comparison of performance by LIH
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4 and 8 bins showed almost the same better performance, but 4 bins provided
the best. It means that we need just 4 gray values to detect smile in this ex-
periment. As a result of these experiments, with respect to LIH, the optimal
parameters were 8 x 8 cells and 4 bins (That is a 256 dimensional vector) and
that performance provided 0.979522 for AUC.

4.2 Performance Evaluation by CS-LBP

With respect to CS-LBP, we investigated the optimal number of cells and the
encoding threshold. We first compared the performance according to the number
of cells with constant encoding threshold equal to 0.00 (See Fig. 5 (Left)). Here,
we used our original database and smile detector, which consisted of all support
vectors (not cascaded). As increasing the number of cells, AUC was higher, but
too match cause to degraded the performance. In this experiment, 5 x 5 cells
gave the best. Next, we compared AUC according to the encoding threshold
with constant 5 x 5 cells (See Fig. 5 (Right)). Almost the same performances
were shown, but in this experiment, the encoding threshold of 0.02 provided
the best AUC. As a result of these experiments, with respect to CS-LBP, the
optimal parameters were 5 x 5 cells and encoding threshold of 0.02 (That is a
400 dimensional vector) and it provided 0.979423 for AUC.

Fig. 5. Comparison of performance by CS-LBP

4.3 Performance Evaluation by LIH+CS-LBP

In this section, we describe the experiments with LIH+CS-LBP feature, which
is combined LIH and CS-LBP. Here, the parameters of LIH were set to 8 x 8
cells and 4 bins and the parameters of CS-LBP were set to 5 x 5 cells and the
encoding threshold of 0.02 from the above experimental results. LIH+CS-LBP,
which was a 656 (= 256 (LIH) + 400 (CS-LBP)) dimensional vector, improved
the performance. Here, it provided 0.982320 for AUC and it was better than
using only LIH or CS-LBP (See Fig. 6).
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Fig. 6. Performance comparison of all the three features

4.4 Performance of Cascaded SVM Smile Detector

In this section, we describe the comparison of the performance and calculation
cost, with our cascaded SVM smile detectors. Here, we used LIH+CS-LBP fea-
tures and the parameters of LIH were set to 8 x 8 cells and 4 bins and the
parameters of CS-LBP were set to 5 x 5 cells and the encoding threshold of 0.02
according to the results of Sec 4.1∼ 4.3. The number of support vectors of sub
smile detector were reduced either to 32, 64, 128, 256, 512 or 1024 by RSM.
And we also adjusted a bias term (h in Equ. 3) of sub smile detector lower to
suppress the miss rejection cases at the sub smile detector. In this paper, we
adjusted a bias to achieve True Positive Rate as well as main smile detector’s
one in advance. Fig. 7 shows the performance according to the several cascaded
SVMs. When the number of support vectors of sub smile detector decreased,
the performance degraded. But it kept to provide over 0.98 for AUC with 1024
support vectors in this experiment.

Fig. 7. Performance of cascaded SVMs (feature extraction is LIH+CS-LBP)
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Table 1. Comparison of the number of SVs, AUC and calculation speed (Mat-
lab@3.0GHz Core 2 Quad)

At the end of this section, we showed a comparison of AUC and calculation
speed for each smile detector structure (See Table 1).

Cascaded SVMs with 1024 support vectors in sub smile detector achieved
comparable in performance (AUC > 0.98) to normal SVM (non-cascaded), while
reducing over 20% in the calculation cost. As a result of these experiments, our
proposed cascaded SVM smile detectors could reduce calculation cost with a
little performance degradation.

4.5 Smile Intensity Estimation

The FEED database is suitable to evaluate a change of a certain facial expres-
sion, because it has 100 ∼ 150 image sequences, which contain the variation
from neutral face to a certain facial expression for each subject. Fig. 8 showed
the results of our smile intensity estimator to ”happy” expression of Subject
#0001. This result proved that our smile intensity estimator could track the
transition from neutral to smile well. Especially, it could represent the subtle
facial expression changes as shown in red rectangle area in Fig. 8.

Fig. 8. Smile intensity estimation result of ”happy” sequence #1 of Subject #0001

5 Demonstration System

In this section, we introduce the PC demonstration system, which was imple-
mented according to the methods proposed in this paper. Fig. 9 (Top) shows
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Fig. 9. Process flow of the PC demonstration system (Top) and examples of detection
results (Bottom)

the process flow. At first, we detect face from the input image by face detec-
tor and crop, scale and normalize the influence of illumination changes by the
histogram equalization. After that, we extract LIH+CS-LBP features as facial
appearance information and detect smile and estimate its intensity by cascaded
SVMs. Fig. 9 (Bottom) shows examples of detection results by our demonstra-
tion system. Our demonstration system roughly spends 48ms for face detection
and 8ms for smile intensity estimation per face on the average (on a Core 2
Quad at 3GHz). It shows that our system can detect face and estimate its smile
intensity from input image on semi real-time.

6 Conclusion

In this paper, we studied how to detect smile and estimate smile intensity only
by facial appearance information, and proved the validity of our proposed system
through several experiments. We also built the semi real-time PC demonstra-
tion system, which was implemented according to our proposed smile intensity
estimation methods.

We constructed original smile/non-smile practical database from sports games
TV programs, which contained various spectators in both indoor and outdoor.
We investigated the optimal parameters for LIH and CS-LBP to detect smile
with the above database and compared the performance of smile detection using
LIH, CS-LBP and LIH+CS-LBP. In our result, with respect to LIH, we achieved
0.979522 for AUC with 8 x 8 cells and 4 bins and for CS-LBP, achieved 0.979423
with 5 x 5 cells and the encoding threshold of 0.02. Combined feature, LIH+CS-
LBP worked better among all the three features. That produced a AUC value
of 0.982320 as the best performance. This result indicates that our proposed
system is robust and works well even under the practical environment.

In addition, we constructed cascaded SVMs for smile detector, which was
composed of a sub detector, consisted of small number of support vectors and a
main detector consisted of all support vectors. As a result, we could keep AUC
higher than 0.98, while delivering about 20% reduction in the calculation cost.
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With respect to smile intensity estimation, we showed that our estimator
could track the subtle expression changes from neutral to smile using the FEED
database.

In the future, we plan to detect the other facial expressions and estimate those
intensities based on the proposed methods described in this paper.
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5. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local
binary patterns. Pattern Recogn. 42(3), 425–436 (2009)

6. Shimada, K., Noguchi, Y., Sasahara, H., Yamamoto, M., Tamegai, H.: Detection
of driverfs face orientation for safety driving assistance. Transactions of JSAE 41,
775–780 (2010)

7. Scholkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods. The MIT
Press, Cambridge (1998)

8. Wallhoff, F.: Facial expressions and emotion database (2006),
http://www.mmk.ei.tum.de/~waf/fgnet/feedtum.html

http://www.mmk.ei.tum.de/~waf/fgnet/feedtum.html


Detecting Frequent Patterns in Video Using

Partly Locality Sensitive Hashing

Koichi Ogawara, Yasufumi Tanabe, Ryo Kurazume, and Tsutomu Hasegawa

Kyushu University

Abstract. Frequent patterns in video are useful clues to learn previ-
ously unknown events in an unsupervised way. This paper presents a
novel method for detecting relatively long variable-length frequent pat-
terns in video efficiently. The major contribution of the paper is that
Partly Locality Sensitive Hashing (PLSH) is proposed as a sparse sam-
pling method to detect frequent patterns faster than the conventional
method with LSH. The proposed method was evaluated by detecting
frequent everyday whole body motions in video.

1 Introduction

Detection of previously learned human actions in video [1,2,3] or detection of
irregular, i.e. not learned, human actions in video [4,5] have been an active
research topic because they can be applied to various tasks including content-
based retrieval from video, surveillance, etc.

For this, a human action database is usually built in advance in a supervised
way by manually annotating a large collection of videos. To accelerate this pro-
cess, several methods have been proposed to detect frequent human actions in
video based on frequent data mining techniques [6,7,8,9]. This line of research
can be grouped into 2 approaches. In the first approach, a large number of
spatio-temporal patches are extracted from video and are classified into differ-
ent actions [10,11], however it lacks the ability to detect relatively long actions.
In the second approach, dynamic programming is employed to detect relatively
long actions [12], however the computational complexity becomes O(N2) where
N is the length of a video, thus it is not appropriate to deal with a long video.

To decrease the computational time, Meng et al. proposed a method that
finds data similar to the data at t from the entire input time series by Locality
Sensitive Hashing (LSH) [13] for all t and connects them along the time axis
so as to detect frequent actions from a motion capture data in O(N1+1/α) [14].
The problem is that there is a large overlap between the found data at successive
times, thus the search is redundant.

In this paper, we propose a novel method for detecting frequent patterns
in video efficiently where the redundancy in [14] is resolved. In the proposed
method, detected nearby data in the first frame are maintained by a linked list
and are updated along the time axis. However, dynamic change of nearby data is
not handled correctly, thus the linked list is modified based on a small number of
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data sparsely sampled in each frame, whereas nearby data are densely sampled
in every frame in [14] which results in a large computational time.

As a sparse sampling method, Partly Locality Sensitive Hashing (PLSH) is
proposed which is an extension to LSH. Experimental results show that the
proposed method can detect frequent patterns in video much faster than the
conventional method with LSH.

2 Overview of the Proposed Method

The purpose of this study is to detect unknown frequent patterns appeared in a
d-dimensional time series. Frequent patterns are a set of subsequences of a time
series where minor variation of shape and length is allowed.

Fig. 1 shows a 2D slice of a d-dimensional time series. If a data point o(t)
observed at t is on a frequent pattern, many similar shaped patterns exist at
around o(t). So, if a sequence of data has many other data in its neighborhood,
it can be considered as a good candidate for a frequent pattern.

Here, terminology is defined as follows. ”Neighborhood” is defined as the inside
of a hyper sphere of radius R in d-dimensional space. ”Segment” is defined as
a subsequence of a time series bounded by a hyper sphere. ”Data density” is
defined as the total length of segments in a hyper sphere. Then, the data density
at t is calculated as

D(t) =
∑

i∈S(t)

‖o(i) − o(i + 1)‖ (1)

where S(t) = {i; ‖o(i) − o(t)‖ ≤ R}.

Data density is used to evaluate the existence of frequent patterns in each
frame. However, it takes quadratic time in total to calculate data density exactly
in all frames even if a tree-like data structure is used.

To overcome this problem, data density is calculated efficiently by an al-
gorithm outlined in Table 1 using the proposed approximate nearest neighbor
search scheme named PLSH.

At t = 1, a linked list is initialized by checking all N data so that each element
in the linked list holds the endpoints, i.e. the start time (st) and the end time
(ed), of all the segments as in Fig. 1 (a).

From t = 2 to N , the linked list is updated along the time axis. Firstly, the
endpoints of the segments found in the previous frame are shifted so that they
lie on the boundary of the current hyper sphere as in Fig. 1(b). The amount
of shift between neighboring frames is usually very small, so the time taken to
update the linked list can be considered as a constant when the total number
of elements in the linked list is limited. When a segment goes out of the sphere,
it is removed from the linked list. When 2 segments are connected together, the
corresponding elements in the linked list are merged as in Fig. 1 (c).

However, newly appeared segments cannot be detected immediately by the
update method above, so they have to be found and added to the linked list
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separately as in Fig. 1 (d). For this, instead of checking all N data which results
in quadratic time in total, nearby data are sparsely sampled in the proposed
method. If a sample is inside the hyper sphere and is not included in the linked
list yet, the segment including that sample are added to the linked list. A new
segment is not necessarily detected at the time it enters into the hyper sphere,
because it will be detected in the subsequent frames if it is sufficiently similar
to the segment at t. When a new segment is detected later, the data density in
the past can be modified at that time.

Then, it is important to select nearby data sparsely and efficiently. To achieve
this, Partly Locality Sensitive Hashing (PLSH) is proposed in Section 3.

Another problem is that divided segments cannot be detected immediately
by the update method above, so they also have to be found separately as in
Fig. 1 (e). For this, nearby data at around t−Tdelay are sparsely sampled in the

Table 1. Algorithm to find frequent patterns

1. At t = 1:
Initialize a linked list that maintains segments in the hyper sphere. (Fig. 1(a))

2. From t = 2 to N :
Update the linked list. (Fig. 1(b),(c))
Detect new segments by PLSH and modify the linked list. (Fig. 1(d))
Detect divided segments by PLSH and modify the linked list. (Fig. 1(e))

3. From t = 1 to N :
Detect frequent patterns by a global optimization method.
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proposed method. If a sample is outside the current hyper sphere and is included
in the linked list, the segment including that sample are divided. In this case, a
divided segment is not necessarily detected at the time the hyper sphere divides
it, because it will be detected in the subsequent frames if division is persistent.
When a divided segment is detected later, the data density in the past can be
modified at that time.

Finally, frequent patterns are detected by a global optimization method using
Dynamic Programming as explained in Section 4.

3 Partly Locality Sensitive Hashing

Partly Locality Sensitive Hashing (PLSH) is an extension to Locality Sensitive
Hashing (LSH) [13] which is an approximate nearest neighbor search algorithm.

3.1 Combining Locality Sensitive and Insensitive Hash Functions

In PLSH, a set of hash functions gl(p) (1 ≤ l ≤ L) are defined as

gl(p) =< hsl,1(p), . . . , hsl,Ks(p), hil,1(p), . . . , hil,Ki(p) > .

where hsl,k(p) is an arbitrary locality sensitive hash function hsl,k : Rd → U ,
while hil,k(p) is an arbitrary locality insensitive hash function hil,k : Rd → U .
In a projection-based scheme as in Fig. 2, these functions can be defined as

hsl,k(p) = �(asl,k · p + bsl,k)/wsl,k ,
hil,k(p) = �(ail,k · p + bil,k) mod wil,k,

where a, b are randomly chosen to satisfy a ∈ Rd, ||a|| = 1, 0 ≤ b < w for each
hash function.

Approximate nearest neighbor search proceeds as follows. Firstly, L hash val-
ues are calculated for all N data by applying L hash functions and they are stored
in the corresponding hash buckets in L hash spaces. Given an input query p, L
hash values are calculated in the same way and the data in the corresponding
hash buckets in L hash spaces are examined.

3.2 Sparse Sampling Using PLSH

LSH is not appropriate to select nearby data inside a hyper sphere sparsely
and efficiently because the data in a hash bucket are densely examined as in
Fig. 3(a) [14].

PLSH is useful in this case. In PLSH, an input data point is defined as d + 1
dimensional vector (p1, . . . , pd, t)T where the first d elements represent an original
data point and the last 1 element represents the time when the data point is
observed.

A hash function gl(p) is composed of Ks locality sensitive hash functions
and a single locality insensitive hash function. As for the locality sensitive hash



Detecting Frequent Patterns in Video Using PLSH 291

s
w

i
w

s
a
r

i
a
r

)(hs p
k

)(ih p
k

Locality sensi�ve hash func�on

Locality insensi�ve hash func�on

projec�on vector

Fig. 2. Partly locality sensitive hash functions

)(to

Trajectory

Hash Bucket

(a) LSH

Sampled data point

(b) PLSH

LIH width

)(to )(to

(c) LSH with data reduc�on (d) PLSH with data reduc�on

)(toReduc�on width

Fig. 3. Difference between LSH and PLSH

functions, the last value of as is always 0 and ws is R. As for the locality
insensitive hash function, the first d values of ai is 0 and the last value is 1 so
that data points in neighboring frames never collide in a same hash bucket. This
means the data are scattered to wi (= LIH width) hash spaces.

In this way, data are selected from different and independent hash spaces
in neighboring frames as in Fig. 3(b). The number of data in a hash bucket is
reduced by 1

wi
and the computational time is reduced similarly without affecting

the probability of detecting new segments or divided segments because all data
are examined anyway.

In LSH, similar reduction rate of 1
wr

can be achieved by sampling a time
series in wr intervals (= Reduction width) beforehand as in Fig. 3 (c). However,
reduction rate of 1

wi·wr
is achieved in PLSH by combining data reduction ( 1

wr
)

and data scattering ( 1
wi

) as in Fig. 3 (d).

4 Detection of Frequent Patterns

Given a time series O = (o(1), · · · , o(N)), frequent patterns are detected in 2
steps:

1. Detection of frequent patterns using data density
2. Classification of frequent patterns



292 K. Ogawara et al.

4.1 Detection of Frequent Patterns Using Data Density

Firstly, frequent patterns are detected from O irrespective of types of patterns.
This problem is formulated as a combinatorial optimization problem in that
each frame is assigned binary labels as X = (x1, · · · , xN ) where xt ∈ {1 =
frequent pattern, 0 = not frequent pattern}. This problem is re-formulated as to
find X that minimizes the energy function defined as

E(O, X) = Ev(O, X) + Ed(O, X) + Es(X). (2)

The energy function is composed of 3 terms: velocity term, data density term
and smoothing term.

Velocity term Ev(O, X) penalizes data points with small velocity and is de-
fined as

Ev(O, X) =
∑

t

− log(1 − exp (− |ȯxt(t)|
< |ȯxt(t)| >

))

where < |ȯxt(t)| > is the mean value of |ȯxt(t)|.
Data density term Ed(O, X) penalizes data points with small data density

and is defined as

Ed(O, X) =
∑

t

− log(1 − exp(− Dxt(t)
< Dxt(t) >

))

where < Dxt(t) > is the mean value of Dxt(t).
Smoothing term Es(X) penalizes different neighboring labels to reject short

patterns and is defined as

Es(X) =
∑

t

T (xt �= xt+1) · Csmooth

where Csmooth is a constant and T (s) is defined as T (true) = 1, T (false) = 0.
Because all the terms in Eq. (2) satisfies the first order Markovian property,

the energy function can be minimized analytically by Dynamic Programming.

4.2 Classification of Frequent Patterns

Because different types of actions are mixed in the detected frequent patterns,
an agglomerative clustering technique is applied to classify them by iteratively
grouping 2 patterns together whose average distance is smaller than the radius
R of the hyper sphere.

5 Experimental Results

The proposed method was evaluated by detecting frequent whole body motions
in video. To evaluate the sparse sampling methods for detecting new segments
and divided segments, PLSH was compared with LSH. L is fixed to 8 and Ks is
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(a) Bye (b) Stretch

(c) Stand-up (d) Drink

Fig. 4. 4 whole body motions
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Fig. 5. Estimation of data density

fixed to 3 in both PLSH and LSH for all the experiments. All the experiments
were performed on a Xeon 3.0GHz PC.

2 videos were prepared that contain several of 4 types of whole body motions
as in Fig. 4. Video 1 contains 5 Byes, 6 Stretches and 5 Stand-ups. Video 2
contains 7 Byes, 7 Stretches, 8 Drinks and 4 noisy motions. Cubic Higher-order
Local Auto Correlation (CHLAC) [15] is used as an image descriptor to represent
patterns in video in a position invariant way.

5.1 Evaluation of Sampling Methods in Data Density Estimation

As described in Section 3.2, the sparse sampling method using PLSH achieves
reduction rate of 1

wi·wr
by combining data reduction ( 1

wr
) and data scattering

( 1
wi

).
Because the computational time is roughly proportional to 1

wi·wr
, the optimal

wi, wr that does not degrade the detection rate of frequent patterns, i.e. accuracy
in data density estimation, should be determined.

Fig. 5 shows the accumulated data density for different pairs of wi, wr. The
vertical axis represents the accumulated data density and the horizontal axis
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Table 2. Evaluation of video 1 [2700 frames]

Action Bye Stretch Stand-up False False Precision Recall Time
Presented # 5 6 5 Positive Negative [msec]

(1)LSH (wr=1) 5.00 5.00 5.00 0.00 1.00 1.00 0.94 5807
(2)LSH (wr=15) 5.00 5.00 5.00 0.00 1.00 1.00 0.94 512
(3)LSH (wr=70) 5.00 4.90 0.00 0.00 6.10 1.00 0.62 198
(4)PLSH 5.00 5.00 5.00 0.00 1.00 1.00 0.94 224

Table 3. Evaluation of video 2 [3600 frames]

Action Bye Stretch Drink False False Precision Recall Time
Presented # 7 7 8 Positive Negative [msec]

(1)LSH (wr=1) 7.00 6.00 8.00 1.00 1.00 0.95 0.95 13499
(2)LSH (wr=15) 7.00 4.00 8.00 1.00 3.00 0.95 0.86 1134
(3)LSH (wr=70) 4.00 0.00 7.20 0.30 10.80 0.97 0.51 338
(4)PLSH 7.00 3.00 8.00 1.00 4.00 0.95 0.82 482

represents wi. The polygonal lines in the figure connect the pairs where 1
wi·wr

is
the same. NP (Non Propagation) means data density in the past is not modified
when new segments or divided segments are detected.

In Fig. 5 (b), data density exceeds the ground truth for some pairs. This is
because divided segments were not detected well in those parameters.

The left most point in each polygonal line, i.e. wi is 1 which means data are
not scattered, represents the case where LSH is applied. From the figure, we can
see that data density is estimated better when wi increases from 1 when 1

wi·wr

is a constant, however data density moves away from the ground truth when wi

increases further. This is because data are not sampled sufficiently when one of
wi and wr takes a large value that decreases detection rate of frequent patterns.

The red circles in Fig. 5 (a) and (b), i.e. wi is 10 and wr is 7, were chosen as
the best parameters and were used in the following experiments.

5.2 Detection Rate of Frequent Patterns

4 different sampling methods were evaluated: (1) LSH (wr = 1, no data reduc-
tion)(2) LSH (wr = 15, experimentally chosen to achieve the same accumulated
data density as PLSH)(3) LSH (wr = 70, same reduction rate as PLSH)(4) PLSH
(wi · wr = 70). The detection rate of frequent patterns were summarized in Ta-
ble 2 and Table 3. To evaluate the results, Precision and Recall were calculated
as

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

where TP means True PositiveFP means False Positive and FN means False
Negative. Each experiment was evaluated 10 times and the average is shown
because the parameters of hash functions were determined randomly,
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Similar detection rate to PLSH was achieved with (1) and (2), but the compu-
tational time became longer because the reduction rate was worse. On the other
hand, the detection rate with (3) was considerably bad while the computational
time was slightly better. From these results, we see that PLSH can be better in
both computational time and detection rate than LSH.

5.3 Computational Time vs. Amount of Data

10 videos of different length were generated by simply concatenating the video in
Table 2 with Gaussian noise added. The same 4 methods were applied to these
videos and the results are shown in Fig. 6.

The figure shows the computational time is drastically reduced by data reduc-
tion and data scattering of PLSH because the number of data in a hash bucket
is reduced.

6 Conclusions

This paper presents a method for detecting relatively long variable-length fre-
quent patterns efficiently from video.

Partly Locality Sensitive Hashing (PLSH) is proposed by combining locality
sensitive hash functions and locality insensitive hash functions. Data reduction
and data scattering of PLSH enables faster and much accurate detection of
frequent patterns than the conventional method with LSH.
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Foot Contact Detection for Sprint Training

Robert Harle, Jonathan Cameron, and Joan Lasenby

University of Cambridge

Abstract. We introduce a new algorithm to automatically identify the
time and pixel location of foot contact events in high speed video of
sprinters. We use this information to autonomously synchronise and over-
lay multiple recorded performances to provide feedback to athletes and
coaches during their training sessions.

The algorithm exploits the variation in speed of different parts of the
body during sprinting. We use an array of foreground accumulators to
identify short-term static pixels and a temporal analysis of the associated
static regions to identify foot contacts.

We evaluated the technique using 13 videos of three sprinters. It suc-
cessfully identifed 55 of the 56 contacts, with a mean localisation error of
1.39±1.05 pixels. Some videos were also seen to produce additional, spu-
rious contacts. We present heuristics to help identify the true contacts.

1 Introduction

High speed video (100 fps or greater) is used extensively for detailed performance
review in sports training. With high speed motion, the camera captures more
detail than the human eye and allows more specific feedback to be given to the
athlete. Unfortunately, the sheer volume of information captured by such video
makes in-field video review cumbersome with the result that feedback is not
available when it may be of most use.

We present a simple but robust machine vision technique that identifies foot
contact events in high speed videos of sprinters. We use this information to
autonomously synchronise and composite two videos of sprint repetitions to
facilitate feedback.

2 Domain-Specific Constraints

Arbitrary event identification within video is a difficult and as-yet unsolved prob-
lem. In order to get robust event identification, we make a number of simplifying
assumptions about the video being recorded as follows:

Static camera. The camera viewpoint does not change, either during or be-
tween repetitions. This is appropriate for sprint training, as different view-
points would complicate comparison of two repetitions.

Sprinter moves across the frame. The sprinter must have a significant com-
ponent of motion perpendicular to the camera axis. A view from the side of
the track is a natural viewpoint for review of sprint technique.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 297–306, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Single athlete. Whilst the technique could be adapted for multiple simulta-
neous sprinters, here we concentrate here on creating a system for a single
sprinter.

Fast but not real time. The nature of sports training means that live feed-
back is rarely useful. Instead we concentrate on supporting in-field review
within 60 s of the end of a repetition (this is less time than it typically takes
for an athlete to return to their start).

3 Identifying Foot Contacts

To usefully composite two videos we need to synchronise them both temporally
and spatially. We analyse the video to identify the times and locations of foot
contacts and use one such event from each video to provide an estimate of the
temporal and spatial offsets between them.

3.1 Properties of a Contact Event

The sprinting movement can be viewed as a series of short ground contacts,
interspersed with longer periods of flight. During a contact, the foot is rooted to
the ground and used to propel the rest of the body forwards.

Sports scientists identify foot-down and toe-off events. Figure 1 illustrates a
foot contact. First the fore of the foot contacts the ground, forming the foot-
down event. Thereafter the foot flattens (the heel may never touch the ground),
before ‘peeling’ away from the floor. This peeling action means that the last
contact between foot and ground occurs at the toe, forming the toe-off event.
Unlike the foot-down event, the toe-off is very localised spatially, making it a
good candidate for spatiotemporal synchronisation.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Fig. 1. A captured foot contact sequence. The foot-on event occurs in (c), the centre
of mass then passes over the foot, which is ‘peeled’ off the ground towards the toe-off
event (not shown).

3.2 Recognising the Toe-off Event

During a contact, the foot is pushing against the ground without slip and must
therefore be stationary. It is, in fact, the only stationary part, since the rest of the
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body is propelled forward and is in constant motion. Our technique to identify
the toe-off exploits this invariant by searching for foreground pixels whose values
are not significantly changing. We divide the method into four phases:

1. Background subtraction;
2. Static foreground accumulation;
3. Create candidate toe-offs from temporal analysis of accumulations;
4. Select toe-offs from candidates.

We now address each in turn.

3.3 Background Subtraction

The technique we present relies on being able to segment the runner (or at least
their feet) from the background. There have been many background subtraction
algorithms proposed [1] and most are sufficient for this task.

Our dataset shows athletes training outdoors, with natural lighting and little
background distraction. After some experimentation, we favour the background
subtraction algorithm of [2]. Regardless of the background subtracter choice, we
do not assume a noise-free estimate of the foreground. We do, however, assume
that the runner’s feet are identified as foreground throughout a contact.

3.4 Static Foreground Accumulation

Working with each foreground pixel, we accumulate the number of frames since
it last changed value significantly. Any accumulator associated with a changing
pixel or a background pixel is reset to zero. More formally, for the nth frame, In,
we identify the set of foreground pixels, Fn, and we maintain an accumulator
array An for each pixel (x, y) as follows:

An,x,y =

{
An−1,x,y + 1, if (x, y) ∈ Fn AND compare (In,x,y, In−1,x,y)
0, otherwise

(1)

where

compare(In,x,y, In−1,x,y) =

{
true if

∑
k=R,G,B(Ik

n,x,y − Ik
n−1,x,y)2 < K2

false otherwise
(2)

for threshold K, a Euclidean distance in RGB colour space. We have not found
this threshold to be particularly sensitive — in our experiments we set K = 20.

Figure 2 shows the development of the accumulator values throughout the
sprint cycle. Non-zero accumulations occur for foot contacts (since the foot is
stationary); for background marked incorrectly as foreground (noise); and for
false accumulations, which occur when a single-coloured object moves through
the field of view. This is particularly observable at the top back of the upper leg
in Figure 2.
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Fig. 2. Visualisation of the accumulator values during the sprint action. Accumulation
values are in units of frames; this video was captured at 370 fps. Notice that the
accumulators rarely reach 40 or higher, except at toe-off.

3.5 Identifying Candidate Toe-off Events

Let us temorarily assume ideal foreground extraction whilst considering the foot
contact itself. Ideally the accumulation at the foot begins with the foot-on event
and continues as the foot flattens mid-contact. Thereafter, the peeling motion
described above means that the greatest accumulations are associated with pixels
imaging the toe. Just before the toe-off event, only those few pixels remain static;
just after the event the entire foot is moving and no significant accumulation
should be observable.

A foot contact is thus associated with the appearance of a significant localised
accumulation in the accumulation array that grows before shrinking to zero. We
label a given pixel location as static if its accumulator value exceeds a threshold
value, T i.e. a static pixel is one whose value has not significantly changed in T
frames.

Sensitivity to T . The threshold T , above which we label a pixel static, is
chosen to capture the foot pixels as static during a contact but not the moving
body. The duration of a sprint contact lies between 90 ms and 150 ms. At a
frame rate of 370 fps this corresponds to approximately 30 frames, during which
the rest of the athlete’s body should have moved significantly. This suggests a
threshold of T =30. In fact, since the body moves so much in comparison to the
foot, the threshold is not particularly sensitive.

Figure 3 shows the variation of |S| throughout a foot contact for various
choices of T . Small values of T introduce more false accumulations that can
mask those associated with the foot. Values of T that significantly exceed the
foot contact time result in an empty set S. We conclude that an appropriate
threshold can be chosen on the basis of expected contact time and framerate
and that it is not particularly sensitive.

Handling Background Subtraction Errors. As background subtraction is
never perfect in practice, we perform temporal and spatial region growing on
the set of static pixels for each frame. Each region of static pixels is monitored
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contact

individually, preventing foreground noise from masking the disappearance of a
set of static pixels that might indicate a toe-off event.

Stationary pixels are first grouped in a frame using an efficient region grower [3].
The spatial regions are then merged through time using the criterion of spatial
overlap between neighboring frames, resulting in a set of region histories. Each
history consists of a list of sets of static pixels, one such set for each frame of
the underlying video in which the region is present.

3.6 Toe-off Selection

Having applied this analysis, we are left with a set of candidate toe-off events.
These candidates may be from genuine toe-offs, from false accumulations or even
from foreground noise if the foreground filtering has failed. Here we present two
filters that may assist in identifying the true toe-offs.

Sample Consensus. With a sprinter we expect toe-off events to occur with
an approximately fixed period and in an approximately straight line in space,
mapping under the assumption of a relatively long focal length lense (fish-eye
lenses are of little use in sports training) to a straight line in the image.

This pair of constraints can be used to form a model suitable for application
of the RANSAC algorithm [4]. In fact the small number of contacts detected
(typically < 50) make complete evaluation of sample sets trivial.

Each pair of contact points provide estimates of the spatial line near which
contacts should occur and the period of contacts.

Votes are tallied for each contact pair based on a spatial threshold on the
distance of a contact from the line and a temporal threshold to the nearest
multiple of the period. Multiple hits for a particular step (caused by two close
contacts) are suppressed by selecting the one that agrees best with the predicted
contact time. The set of inliers found for the pair with the highest number of
votes are identified as the contact times.

Running Cycle Phase. As an additional hint, if we are able to estimate
where in the running cycle the sprinter is, we can estimate when contacts might
(and might not) be expected. This phase can be estimated from the foreground
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silhouette of the runner. With a side-on view as above, the silhouette expands
and contracts as the arms and legs merge and diverge during the running action.
Figure 4 illustrates the variation in the size of the foreground silhouette through-
out the running cycle. A low-pass filter applied to these data produces a smooth
signal with maxima during a flight period and minima during a contact. We can
use this to exclude any candidate toe-off events occuring between a maximum
and the subsequent minimum. Our algorithm uses the slope of this foreground
size trend to decide whether we are approaching a maximum or a minimum and
hence whether to allow toe-off events.

Fig. 4. The variation in the number of foreground pixels identified in each frame for a
sample video. The short vertical lines indicate where toe-off events occur in the video.

4 Evaluation and Results

4.1 Video Capture System

We collected video data using custom software that captured the raw Bayer im-
age from an AVT Pike IEEE1394b camera1. This camera is capable of 205 fps
at a resolution of 640×480. We chose to window the camera output to 640×240
to achieve a faster framerate of 370 fps, which better represents what can be
found in a typical training environment today. Unlike typical solutions of today,
however, our system streams the data over a firewire connection rather than
storing it locally on the camera for later download. This means it is immediately
available for processing once the repetition is complete. The bandwidth limita-
tions of the firewire bus mean that we can only support the lower resolution of
640×240. However, coaches have responded well to the data present even at the
lower resolutions we have used here.

When processing the Bayer video frames [5], we used a custom implementa-
tion of the AHD demosaicing algorithm [6] running on an Nvidia GPU using
the CUDA parallel processing framework. The AHD algorithm is the de-facto
1 http://www.alliedvisiontec.com
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demosaicing algorithm for Bayer images but is processor-intensive and the use of
the parallel processing capabilities of the GPU allowed the demosaicing to occur
fast enough to process the entire video within the allowed timeframe of 30 s.

4.2 Results

We collected a set of 13 videos containing 56 toe-off events from three different
runners: two male sprinters and one female, all wearing spiked running shoes.
The videos were collected at an outdoor running track in a variety of condi-
tions including strong sun, wind, intermittent cloud cover and overcast skies.
The background was empty of any major distractions, although many videos
contained distant athletes and swaying vegetation.

The low resolution of the video meant it was not possible to reliably identify
(by eye or automatically) the single nearest frame to the toe-off, although each
toe-off could be bracketed to within three or four frames. Because of this rela-
tively high error in our temporal ground truth, we present results based on the
locations of the events.

Our core algorithm returns a set of candidate toe-off events. The set of all
candidates contained 266 possible event, including 55 of the 56 toe-off events (as
well as additional, unwanted events). For those 55 correctly identified toe-offs,
the average spatial error was 1.39±1.05 pixels.

Figure 5 provides an example set of candidate toe-offs, annotated for clarity.
Note from that many of the noise candidates come from pixels that are not imag-
ing the ground: these could be masked out if the camera position and orientation
is known in advance, dramatically reducing the set of candidates. However, we
trialed both the Sampling Consenses and the cycle phase filters without such
masking. Figure 6 shows an example result from the Sampling Consensus, which
produced consistently good results.

The cycle filter was also successful in discarding many incorrect events, al-
though it depended on a good foreground extraction result. Figure 7 shows a
failed background subtraction where skin tones of the lower leg are confused
with the track surface, resulting in an unexpected foreground silhouette that
adversely impacts the size trend. Although the broad trend remains, there is

Fig. 5. The candidate events generated for single video
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Fig. 6. Example showing the result of the Sample Consensus algorithm. Circles are
drawn to highlight the single pixels that mark the locations. The spatial threshold was
10 pixels and the temporal 10 frames. A video of this dataset, rob.avi is included as
supplementary material.

(a) (b)

Fig. 7. (a) An example of background subtraction failure. (b) The resultant variation
in the number of foreground pixels (c.f. Figure 4).

now a double peak between frame 700 and 800, even after smoothing. For this
reason we favour the Sampling Consensus approach.

5 Related Work

Much of the existing literature in sports event detection is concerned with large
scale classification of moves or activities, or easily detected events such as a ball
crossing the goal line or identifying where a ball hit the ground.

The market leaders in the case of ball sports is Hawk-Eye2. Whilst it would
be possible to apply a similar technique to that presented here, the typical ball
tracking problem is actually considerably simpler. As long as the ball is traveling
in the air it’s trajectory is relatively predictable and it is distinctive and well
localised assisting foreground segmentation. This allows contact points to be
estimated from the intersection of the ball trajectory with the ground.

Similar problems occur in the classification / video understanding literature.
This is a substantial field so here we will just pull out a few representative
2 http://www.hawkeyeinnovations.co.uk/



Foot Contact Detection for Sprint Training 305

Fig. 8. An example of a blended pair of videos done using toe off information. A video
of this sequence is available in the supplementary material (blend.avi).

works. Most of these works use relatively low level features, applying classifi-
cation techniques on the output. Compressed videos allow the use of available
block motion vectors from which various features are extracted [7]. [8] has some
elements in common with the method presented here (background subtraction,
spatial segmentation and region tracking). However the region tracking has to
be considerably more complex as the work is primarily concerned with moving
regions whereas ours points of interest are stationary. [9] uses the evolution of a
2D shape over time to identify events. The foreground size approach used above
is a very simple version of this. [10] use a derived template to perform motion
recognition on aerobics exercise. A general review can be found in [11].

Most methods are directed at the handling of more general motion and as
such cannot take advantage of the domain specific elements used in this paper.

6 Conclusions

We have presented a novel technique to identify the time and pixel locations
of foot contacts within videos of sprint training. The algorithm was able to
identify foot contacts within 640×240, 370 fps video to within 1.39±1.05 pixels.
An example of a resulting video overlay is shown in Figure 8.
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Abstract. Integration of information from different systems support
enhanced functionality however it requires a rigorous pre-determined
results for the fusion. This paper proposes a novel approach for de-
termining the integration criteria using Particle filter for the fusion of
hand gesture and posture recognition system at decision level. For de-
cision level fusion, integration framework requires the classification of
hand gesture and posture symbols in which HMM is used to classify the
alphabets and numbers from hand gesture recognition system whereas
ASL finger spelling signs (alphabets and numbers) are classified by pos-
ture recognition system using SVM. These classification results are input
to integration framework to compute the contribution-weights. For this
purpose, Condensation algorithm approximates the optimal a-posterior
probability using a-prior probability and Gaussian based likelihood func-
tion thus making the weights independent of classification ambiguities.
Considering the recognition as a problem of regular grammar, we have
developed our production rules based on context free grammar (CFG) for
the restaurant scenario. On the basis of contribution-weights, we mapped
the recognized outcome over CFG rules and infer meaningful expressions.
Experiments are conducted on 500 different combinations of restaurant
orders with the overall 98.3% inference accuracy which proves the signif-
icance of proposed approach.

1 Introduction

Human Computer Interaction (HCI) is emerged as a new field which aims to
bridge the communication gap between humans and computers. An intensive re-
search has been done in computer vision to assist HCI particularly using gesture
and posture recognition [1]. Many pioneering techniques have been proposed to
address the issues of effective interaction-interface but a natural mean of inter-
action still remains and yet to solve. Gesture and posture recognition are the
application areas in HCI to communicate with computers. In gesture recogni-
tion, Yoon et al. [2] developed a hand gesture system in which combination of
location, angle and velocity is used for the recognition. Liu et al. [3] developed
a system to recognize 26 alphabets by using different HMM topologies. Hunter
et al. [4] used HMM for recognition where Zernike moments are used as image
features for hand gesture sequences.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 307–317, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In posture recognition, Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
model is used for the recognition of Arabic Sign Language [5]. However, the
use of colored gloves avoids the segmentation problem and helps the system
to obtain good features. Elliptic Fourier Descriptor (EFD) is used by Malas-
siotis and Strintzis [6] for 3D hand posture recognition. Similarly, Licsar and
Sziranyi [7] used Fourier coefficients to represent hand shape in their system
which enables them to analyze hand gestures for the recognition. Handouyahia
et al. [8] presents a recognition system based on the shape description using
size functions for International Sign Language (ISL). Freeman and Roth [9] used
orientation histogram for the classification of gesture symbols, but huge training
data is used to solve the orientation problem.

Integration of different systems is used to enhance the performance and results
in better recognition of subjects under observation. In this context, integration of
different modalities have been used to improve the recognition (i.e. identification
of a human by combining face and voice traits [10]) in the field of biometrics.
Similarly, for multi-modal biometric systems, fusion takes place at different lev-
els which includes sample level, feature level, match score level and decision level
fusion [11]. Particularly in computer vision, improvement in performance of face
recognition system is proposed by Chang et al. [12] in which the fusion of 2D
and 3D information of the face images is done. Kumar et al. [13] performed
fusion at feature level and match score level to combine the palm prints and
hand geometrical features. Similarly, Wu et al. [14] proposed a multi-model sys-
tem to combine the gait recognition with face recognition system for the human
recognition. However, it is observed that the main motivation of exploiting dif-
ferent modalities is to achieve better performance and to cop the limitations of
uni-modal approach.

According to our knowledge, integration of gesture and posture recognition
system is not addressed yet. In this paper, our principle objective is the integra-
tion of these systems which allows us to design an effective interaction-interface
for HCI. Moreover, proposed integration framework enables us to extract multi-
ple inferences from gesture and posture recognition systems at decision level by
estimating contribution-weights using particle filter. These contribution-weights
are exploited for the combination of extracted symbols which results in the inter-
pretation of new meaningful expressions from the developed lexicon database.

2 Proposed System

The proposed framework is staged in several phases to integrate and infer from
the gesture and posture recognition systems as shown in Fig. 1. First, we start
with the image acquisition phase from Bumblebee2 camera and extract the ob-
jects of interest (i.e. hands and face) using the color and depth information. Sec-
ond, gesture and posture feature vectors are computed by exploiting different
properties of hand. In classification process, HMM recognizes the gesture symbols
from alphabets and numbers whereas SVM is used for finger-spelling ASL signs
in posture recognition. Third, a novel particle filter system is proposed for the
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Fig. 1. Presents the process flow of the proposed framework

integration of gesture and posture system by computing the contribution-weights
thus determining the integration-criteria . After computing the contribution-
weights, the interpretation is performed by processing the Context Free Gram-
mar production rules which results in the inference of meaningful expression.

3 Pre-processing

The image acquisition is done by Bumblebee2 camera which gives 2D images
and depth images. The depth image sequences are exploited to select region of
interest for segmentation of objects (i.e. hands and face) where the depth lies in
range from 30 cm to 200 cm (i.e. in our experiments) as shown in Fig. 2(a). In this
region, we extract the objects (i.e. hands and face) from skin color distribution
which is modeled by normal Gaussian distribution characterized by mean and
variance as shown in Fig. 2(b). We have used Y CbCr color space because skin
color lies in a small region of chrominance components where as the effect of
brightness variation is reduced by ignoring the luminance channel. After that,
skin color image is binarized and the contours are extracted by computing chain
code representation for detection of hands and face as shown in Fig. 2(c).

HL

HR

Face

(b) (c)(a)

Fig. 2. (a) Original Image with selected depth region (b) Results of Normal Gaussian
distribution using the depth Information (c) Detected hands and face

4 Feature Extraction and Classification

In this section, feature extraction and classification approaches used for gesture
and posture system are briefly described to build an understanding about the
proposed approach. However, the details can be found in [15].
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4.1 Feature Extraction

Feature extraction is an essential phase for the classification in which the selec-
tion of optimal features play a significant role. Hand gesture and posture features
are extracted for the recognition which are described as follows.

Hand Gesture Features. Orientation is used as a main feature for gesture
recognition and for its computation; centroid points of the hands are computed.
The orientation is determined between two consecutive centroid points when
drawing gesture path. The equation used to compute the orientation θt is:

θt = arctan
(

yt+1 − yt

xt+1 − xt

)
; t = 1, 2, ..., T − 1 (1)

where T represents length of gesture path. xt and yt are centroid point at frame
t. The computed angle θt is quantized in range from 1 to 18 by dividing it by
20 degrees. These quantized values give us discrete vector Fgesture = θt which is
used in HMM to classify gesture symbols.

Hand Posture Features. Two types of feature vectors are computed for pos-
ture recognition namely statistical and geometrical feature vectors. For statistical
feature vectors, Hu-Moments [16] are used which are derived from basic moments
and describe the properties of objects shape statistically (i.e.area, mean, vari-
ance, covariance and skewness). Hu [16] derived a set of seven moments which are
translation, orientation and scale invariant. Feature vectors of Hu-Moment are
written as Fstat = (φ1, φ2, φ3, φ4, φ5, φ6, φ7)

T in which φ1 is the first Hu-Moment
and so on. The geometrical feature vectors (i.e.circularity and rectangularity) are
computed by exploiting the hand geometry from the standard shapes such as
circle and rectangle. Geometrical feature vector Fgeo = (Cir, Rect)T set varies
from symbol to symbol and is useful to recognize the alphabets and numbers.

Statistical and geometrical feature vector set are combined together to form
a set of feature set Fposture. It is denoted as:

Fposture = Fstat ∧ Fgeo, Fposture = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, Cir, Rect)T (2)

4.2 Classification

Gesture and posture feature vectors are classified using HMM and SVM re-
spectively. In gesture classification, HMM recognizes the gesture symbols from
alphabets (A-Z) and numbers (0-9) whereas SVM classifies the finger-spelling
ASL signs in the posture recognition. Baum-Welch algorithm (BW) is used for
the training of HMM parameters by discrete vector θt. We have used Left-Right
banded model with 9 states for hand motion recognition of gesture path. Clas-
sification of hand gesture path is done by selecting the maximal observation
probability of the gesture model by Viterbi algorithm. SVM classifier learns
from statistical and geometrical features of the hand using Radial Basis Func-
tion (RBF) as the Gaussian kernel. For the gesture and posture classification
results, please refer this [15].
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5 Integration

The basic idea in the proposed integration framework is to parallelly interpret
multiple signs from gesture and posture recognition systems. The goal behind
integration is to combine signs which are driven from different approaches (i.e.
gesture and posture system) and results in the inference of new symbols at any
instance of time. Integration (Intgr) of gesture and posture systems fused at
decision level is formulated as:

Intgr = αgstr ∗ Rechmm ∧ αpstr ∗ Recsvm (3)

where Rechmm and Recsvm are the classification results of gesture and posture
system. αgstr and αpstr are the contribution-weights associated with gesture and
posture system which acts as a reliability criteria for fusion of these systems.
These weights are computed as follows.

5.1 Particle Filter System

Condensation algorithm [17] approximates the contribution-weights optimally
for the fusion of gesture and posture systems. The key functionality of Conden-
sation algorithm is to approximate a-posteriori probability (i.e. contribution-
weight) by a set of random samples called particles to simulate the probabilistic
model of the system. We have proposed a particle filter system which consists of
two separate particle filters (i.e. for gesture and posture), explained as follows.

Initialization.The classification outcome of both gesture and posture system
is input to separate particle filter. A vector S(n) is constructed to initialize the
Condensation process which is represented as follows:

S(n) = {s(gstr)
k , s

(pstr)
k } (4)

A set of N (i.e. 100) random points called particles xn
k with weights wn

k denotes
the initial distribution of particles at time k for both gesture and posture systems.
These particles are denoted as:

s
(gstr|pstr)
k = {xn

k , wn
k}n=1

N (5)

(Note. From this point on, the same notation is used for both the particle filters
(i.e. gesture and posture), except when stated otherwise).

Prediction. The a-priori probability p (xk|zk−1) is computed from previous a-
posteriori probability p (xk−1|zk−1) and the dynamic model p (xk|xk−1) as shown
in Fig. 3. The formulation is represented as:

p(n) (xk|zk−1) = p(n) (xk|xk−1) p(n) (xk−1|zk−1) (6)

Updation. The a-posteriori probability (i.e. contribution-weights) of the state
is calculated from the a-priori probability p(xk|zk−1) and the likelihood function
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Particle Filter System for Gesture
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Fig. 3. Shows the proposed particle filter system for gesture and posture system from
frame 42 in Fig.4(a). The top-graphs presents a-priori and Gaussian likelihood function
of gesture and posture system whereas bottom-graphs show a-posteriori probability (i.e.
contribution-weights) for fusion of these system.

p(zk|xk) by incorporating the new measurement data zk as shown in Fig. 3.
Likelihood function is formulated as follows:

p(n) (zk|xk) = π
(n)
k = e−((zk−xn

k )2)/(2σ2) (7)

where σ is the standard deviation of particle weights. The contribution-weights
αgstr|pstr or a-posteriori probability p(xk|zk) for gesture and posture system is
computed as follows:

p (xk|zk) =
∑N

n=1 p(n) (zk|xk) p(n) (xk|zk−1)∑N
n=1 p(n) (zk|xk)

(8)

Using N values of p(zk|xk), we have built a probability distribution for the whole
space at any time instant. The conditional probability acts as a weighting factor
for its corresponding state with successive iterations. The normalized weighting
probabilities are calculated as follows:

π
(n)
k =

p(n) (zk | xk)∑N
n=1 p(n) (zk | xk)

(9)

In this way, we obtain the contribution-weights which defines the integration-
criteria for the fusion of these systems.

5.2 Lexicon and Regular Language

Before making the interpretation and inferences from contribution-weights com-
puted above, first we describe the proposed structure of the language. We con-
sider the recognition as a problem of regular langauge therefore, we mapped the
recognition outcome over the context free grammar (CFG) rules. The grammar
is defined as a 4-tuple in CFG and is written as Grammar = (V, T, S, R) where
V is the set of objects and contains non-terminals as well as terminals symbols,
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T is the set of teminals, S is start symbol and it is a subset of V (i.e. S ∈ V ),
and R is the set of production rules. We have presented integration results in
the form of CFG rules as follows:

V = {S, PostureAlphabet,X, GestureAlphabet,Alphabet,

PostureDigit, Y, Digit, 0p|1p, ..., 9, ag|bg , ..., zg, ap|bp, ..., zp}
T = {0p|1p, ..., 9p, ag|bg , ..., zg, ap|bp, ..., zp}

S → PostureAlphabet X

PostureAlphabet → Alphabet PostureAlphabet | Alphabet

X → PostureDigit Y

PostureDigit → Digit PostureDigit | Digit

Y → GestureAlphabet PostureDigit

Digit → 0p|1p|2p, ..., 9p

Alphabet → ap|bp|cp, ..., zp

GestureAlphabet → ag|bg|cg , ..., zg

In the above CFG production rules, PostureAlphabet computes set of rec-
ognized posture alphabet signs, GestureAlphabet results in recognized gesture
symbols and PostureDigit is the set of recognized numbers. Different symbols
can be devised in integration process depending upon the lexicon as shown in
Table 1.

Table 1. Lexicon of Gesture Symbols

Gesture ⇒ Order Gesture ⇒ Order Gesture ⇒ Order

A⇒Apple, Apricot J⇒Jackfruit, Jambolan S⇒Star Fruit, Strawberry
B⇒Blueberry, Banana K⇒Kaffir Lime, Kiwi T⇒Tangerine, Tart Cherry
C⇒Cherry, Cantaloupe L⇒Lemon, Lychee U⇒Ugli Fruit, Uniq Fruit
D⇒Date, Dewberry M⇒Mango, Melon V⇒Voavanga
E⇒Elderberry, Eggfruit N⇒Nectarine W⇒Watermelon, Wolfberry
F⇒Fig, Farkleberry O⇒Orange, Oval Kumquat X⇒Xigua
G⇒Grapes, Gooseberry P⇒Pear, Peach Y⇒Yunnan Hackberry
H⇒Honeymelon, Hackberry Q⇒Quince Z⇒Zinfandel Grapes
I⇒Imbe R⇒Raspberry, Rambutan

5.3 Interpretation and Inference

In this module, contribution-weights whose threshold is above 70% are selected
for the fusion process and is written as:

(αgstr |αpstr) ≥ T

To infer from gesture recognition system, HMM classifier and its states model
recognizes the alphabets and numbers after processing some frames. However,
posture recognition system recognizes the symbol at every frame because a sin-
gle frame is sufficient to recognize ASL symbols in finger spelling domain. Be-
sides, integration is carried out from contribution-weights of gesture and posture
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symbols at any time frame after passing the threshold criteria. In this regard,
different approaches are proposed for the fusion of different systems which in-
cludes AND/OR combination, majority voting, behavior knowledge method and
weighted voting method [18]. However, we have used AND/OR combination for
gesture and posture recognition symbols. Integration (Integ) is formulated as:

Integ = (αgstr ∗ Rechmm ∧ αpstr ∗ Recsvm)
Integ = (αgstr ∗ Rechmm ∧ {αpstr ∗ Recsvm, αpstr ∗ Recsvm, ..., αpstr ∗ Recsvm})
The combination of CFG rules yield us to the integration of gesture and posture
recognition in which multiple posture symbols are combined with the gesture
symbol. To make inferences of results from CFG, the possible derivation of pos-
ture results is PostureAlphabet followed by PostureDigit whereas
GestureAlphabet yield to only one possible outcome in the integration. The
inference which is derived from CFG rules is as follows:

S → PostureAlphabet GestureAlphabet PostureDigit

Different interpretations can be devised for integration process which includes:

– The ideal case of integration, both gesture and posture systems recognize
the symbol at any time frame.

– Gesture system does not classify any symbol because HMM is not activated
when gesture drawing process starts. However, posture system recognizes a
symbol based on classification results and weight computation above thresh-
old.

– There are some predictions about gesture symbols dependent upon the in-
ference from HMM states. In this case, gesture symbol is still incomplete
and it gives a clue about user’s intention while drawing the gesture symbol.
Intentions are predicted if weight computation result is above the threshold.

– No match has occurred from gesture and posture systems. In this way, the
symbols are not present in the lexicon.

6 Experimental Results

In the proposed approach, input sequence is captured by Bumblebee2 stereo
camera with 240*320 pixels image resolution. The proposed concept of integra-
tion is tested on a real-time scenario which is in our case, the restaurant lexicon.
We have chosen 45 different fruits for this choice as shown in Table. 1 and make
different (i.e. currently our system supports 500 combinations) orders for it by
combining gestures and postures. The integration concept is defined as the first
and second alphabet of the fruit from gesture and ASL posture respectively and
then combined it with another posture number, thus making an order.

Fig. 4(a and b) shows an interpretation based on fusion of gesture and posture
recognition system. In this sequence Fig. 4(a), posture system firstly recognizes
the alphabet “A”. However, gesture recognition system did not recognize any
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Fig. 4. (a) Shows the recognized gesture symbol “D” whereas the classified postures
are alphabet “A” and Number “2”. The meaningful expression “Two Date Juices”
is inferred from this sequence. (b) Second meaningful expression is “Two Blueberries
Juices” which results from recognized gesture symbol “B” and classified posture alpha-
bet “L” and Number “2”. (c) Graph shows the recognition rate along with contribution-
weights from particle filter system. Graph(d) presents gesture and posture results along
with their integration.

symbol during the initial frames. The next posture symbol recognized is “2”
which indicates the quantity of order. From frames 38 to 48, gesture recognition
system computes the probability of possible signs which the user can draw de-
pending on HMM states and most likely candidates for the gesture recognition.
Moreover, it selects the highest probability element and mark it the “best” ele-
ment for recognition. At frame 48, first gesture ends and the recognized symbol
is “D”, thus completing the order (i.e. Recpstr = “A”, Recpstr = “2”, Recgstr =
“D”). The rise and decay of the contribution-weight for both systems for the
integration is shown in Fig. 4 (c and d).

The next interpretation starts from frame 49 in which the user draws the
posture symbol “L”. The next posture recognized is the number which describes
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the quantity as “2” and finally the gesture symbol which has been recognized
is the symbol “B” (i.e. Recpstr = “L”, Recpstr = “2”, Recgstr = “B”). Gesture
and posture recognition works optimally and recognizes the signs correctly.

Fig. 4(c) presents the classification and weight-contribution results of gesture
and posture recognition for the whole sequence. Moreover, the recognition of
gesture and posture system after applying the threshold is presented in Fig. 4(d)
along with the integration of these systems. In this sequence, the recognized
gesture elements for the first order is Date = “D”, PostureAlphabet = “A”
which means Date and from the posture recognized symbol, it is “2”. It means
TwoDateJuices. The second order is TwoBlueberryJuices. By changing the
lexicon, the proposed approach can be used in other scenarios.

We have tested our proposed approach on the restaurant lexicon database
with the overall 98.3% inference accuracy. It is observed that the classification
inaccuracies does not effect the performance due to particle filter based weight
computation technique. One of the potential reasons is, the particle filter works
on the principle of prediction and updation mechanism, therefore, the continuous
inferencing of meaningful expression is achieved successfully.

7 Conclusion and Future Work

In this paper, a novel approach is proposed for the integration of gesture and
posture recognition in which contribution-weights are computed using Particle
filter. The proposed approach is tested on restaurant lexicon which successfully
integrates both systems and enables to interpret multiple inferences at the same
instance of time. The future research is focused on the words recognition for
gesture and posture systems along with their integration.
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Abstract. This paper proposes a robust object movement detection
method via a classifier trained by mis-detection samples. The mis-detec-
tion are related to the environment, such as reflection on a display or
small movement of a curtain, so learning the patterns of mis-detections
will improve the detection precision. The mis-detections are expected
to have several features, but selecting manually optimal features and
thresholds is difficult. In order to acquire optimal classifier automatically,
we employ a ensemble learning framework. The experiment shows the
method can detect object movements sufficiently by constructing the
classifier automatically by the proposed framework.

1 Introduction

Managing objects in the intelligent household environments can give information
of “where the object is now” or “when the object used”, and it enables the
systems tell people where the lost objects are, and support people by observing
human-object interactions [1]. To realize object management, we first need to
know “where and when the object moved” - especially, “object placement” and
“object removal”. This paper deals with a object movement detection method
in the indoor environments.

As object movement detection methods with fixed cameras in the indoor en-
vironments, methods with the background subtraction method are commonly
used [2,3,4,5]. To achieve robust object movement detection, the method needs
to handle static human (e.g. a person is sitting down and reading book) and
non-object movements, such as small shift of furniture or background clutters
(e.g. small shift of sofa, shadow). Our previous work [3] handles these problems
by detecting “stable changes of the images” and setting some thresholds for
detected object regions. However, the method needs to set various thresholds
manually to classify the non-object movements, so it is very difficult to decide
optimal thresholds and to add the features for classification.

In this paper, we propose a robust object detection method by classifying ob-
ject movements and non-object movements via a strong classifier trained by mis-
detection samples. Some non-object movements are related to the environment
(e.g. small movement of curtain, reflection on a display), so by learning these
mis-detections caused by non-object movements, the method can improve its

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 318–327, 2011.
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detection performance automatically. To handle automatically various features
such as shape or color difference, the proposed method employs the framework
of feature selection via ensemble learning.

The structure of this paper is organized as follows. The rest of this section dis-
cusses the related works. Section 2 describes an overview of the object movement
detection method via the stable changes of the images. Section 3 provides the
details of the ensemble learning framework and the method of classifying the ob-
ject movement candidates into object movements and non-object movements. In
section 4, the experimental results show that the proposed framework can detect
object movements sufficiently via the object movement classifier constructed by
the correct object movement detection results and mis-detected results. Finally,
conclusions are presented in section 5.

1.1 Related Works

Handling small background clutters with unexpected small shift of objects is
also big problem when extracting changes via background subtraction methods.
The adaptive background subtraction method [4,5,6] handle the small clutters
by constructing the background models dynamically. Though the adaptive back-
ground subtraction method can handle gradual changes, but the method update
its background models automatically regardless of whether the changed regions
are object or not, so it is not suitable for detecting objects.

The feature selection via ensemble learning has made great progress in several
computer vision areas [7,8,9]. By classifying object movements and non-object
movements via learning with stored mis-detections in the framework of ensemble
learning, the proposed method detects object movements robustly.

2 Overview of the Proposed Method

In this work, we follow mainly our object movement detection method via the
stable image changes [3]. Fig. 1 depicts an overview of the object movement
detection method. The method has two major stages: attentive region detection
and object detection.

First, the method extracts changed regions by a background subtraction
method with energy optimization [10], and then tracks the extracted regions
(“attentive region detection” stage in Fig. 1). In this stage, (1) the method ex-
tracts changed pixels by a background subtraction technique and categorizes
them into “something inserted” state, called the foreground state, and “some-
thing removed” state, called removed-layer state. (2) The method then employs
the blob detection algorithm to the pixels and extracts changed regions. After
extracting the changed regions, (3) the method tracks the extracted regions.

Second, the method categorizes the extracted regions into non-objects and ob-
jects via their motion, and finally detects object placement and object removal.
In this stage, (4) the method detects object movement candidate regions by dis-
criminating between the non-object state and the object state via the regions’
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Fig. 1. Overview of the object movement detection method

motion detection result for past some frames (this motion detection results are
called as “motion history”). (5) The method classifies the object movement can-
didates into object movements and non-object movements, and detects object
placement and object removal. Finally, (6) the method updates its background
model according to the object detection result.

The method detects object movements from stable changes extracted by
a background subtraction method. Common background subtraction methods
have only one background model, so these background subtraction methods
have only “changed” state, called foreground state, and “not changed” state,
called background state. To detect object movements, we need to classify “ob-
ject placement” and “object removal” from the “changed” state, so the method
adopt a multiple-layered background model [2,4] (called “layered background
model”). Moreover, the method adopts an object placement / removal classifica-
tion method based on edge subtraction, to handle “object removal which exists
in the initial state”, which the method only with the layered background model
cannot handle properly.

When object movement detection is performed, non-objects such as humans
also exist in the images. So the method needs to categorize objects and non-
objects to detect objects robustly. The object movement detection method cat-
egorizes objects and non-objects via the stable image changes. The stable image
change is the state that the region is changing from the recorded state but the
change is settled. For example, when a book is placed on the sofa, the region
of the book is changing the “sofa” region. The changed region caused by object
movement don’t move, so the “stable changed” regions are different from those
caused by non-objects such as human. To detect the stable changes, the method
extracts motion of the extracted regions for several frames, called motion history,
and categorizes them into objects and non-objects by the state machine which
is driven by the motion history.

The method via the stable changes works well for classifying non-objects with
movement such as humans even if the human region is occluded. But, the method
cannot handle properly the stable changes caused by non-object movements,
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Fig. 2. Overview of the object movement classification. The object candidates ex-
tracted by the stable image changes are classified into object movements and non-object
movements. In the training phase, the method trains the classifier via the labeled ob-
ject movement detection results extracted by the stable image changes. In the working
phase, the method classifies the object movement candidates by the learning results.

such as small shift of furniture or shadow, because the non-object movements
also make the stable changes. In the next section, we provide a method to reject
the stable changes without object movements via the classifier constructed by
the mis-detections.

3 Rejection of the Stable Changes without Object
Movements via Learning by Mis-detections

3.1 Classification Framework

The proposed method classifies the object movement candidate regions detected
by the stable changes (Fig. 1 (4)) by the object candidate classifier. Fig. 2 depicts
an overview of the object movement classification.

The proposed method has two phases: the training phase and the working
phase. In the training phase, the method gathers the object movement candi-
dates by the detection method by the stable changes, and give class labels (object
movement or non-object movement). The class labels of the candidates are ac-
quired manually. Then, the method trains the object candidate classifier by the
labeled candidates. In the working phase, the method detects the object move-
ments by the stable changes, and then classifies them into object movements
and non-object movements by the classifier acquired in the training phase.
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The non-object movements are expected to have several features in their ap-
pearance: small color difference between the input image and in the background
image, long narrow shape, low contrast in the region boundary. To handle sev-
eral features properly, we adopt the AdaBoost framework utilized in such as a
face detector [7], and construct a strong object movement classifier by choosing
effective features from the feature sets.

The original AdaBoost algorithm is a supervised learning algorithm designed
to construct a strong binary classifier. The input of the algorithm is a set of
training examples (yn, zn), n = 1, ..., Ntrain, where each yn is an example and
zn is an boolean value indicating whether yn is a positive or negative example.
AdaBoost improves the classification performance by combining a collection of
a set of weak classifiers, which are associated with each feature. In each train-
ing step, the AdaBoost algorithm acquires an optimal weak classifier via the
weighted training examples, and re-weights the weights of the training samples
to increase the importance of the samples which were classified incorrectly by
the previous weak classifier. The final strong classifier takes the forms of the
Perceptron. The method assigns large weights to the weak classifiers with good
classification performance whereas small weights to those with poor classification
performance.

In our implementation, aweak classifierhi(y) has the formof threshold function.

hi(y) =
{

1 if pifi(y) < piθi

0 otherwise. (1)

where θi is a threshold and pi is the value which represents the direction of
the inequality (pi is -1 or 1). The optimal values for θi and pi are chosen by
minimizing the sum of the weight of the misclassified training examples as shown
Eq. (2).

(pi, θi) = argmin
(pi,θi)

Ntrain∑
n=1

wi,n|hi(yn) − zn| (2)

where wi,n is the weight of nth training sample in the training step i. In our im-
plementation, the same weak classifier may be repeatedly chosen in the different
learning steps. The resulting algorithm is given by Table 1.

3.2 Feature Set of Weak Classifiers

In our experiments, the stable image changes caused by non-object movements
has mainly three features: shape, color difference, contrast. The proposed method
extracts the features shown in Table 2 from the object candidate region R.

As the HSV color histogram, we employ Pérez’s method [11]. For the met-
ric of color histograms, we use Bhattacharrya distance. Bhattacharrya distance
dh(q(Ei), q(Eb)) between a histogram q(Ei) and a histogram q(Eb) is calculated
as follows.
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Table 1. The AdaBoost algorithm
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dh(q(Ei), q(Eb)) =

√√√√1 −
N∑

k=1

√
q(Ei; k)q(Eb; k) (3)

where q(E; k) is the kth bin of the histogram q(E).
When using simple color histograms, noise affects largely if the number of the

sampled points is small. The object regions on the input images are sometimes
small, so the method must be robust even if the object candidate region is small.
We also employ the smoothed color histograms (feature type 5, 7 in Table 2) as
well as the simple color histograms (feature type 4, 6 in Table 2). The smoothed
color histogram q(R) of the object candidate region R is calculated as follows
[12]:

q(E; k) =
NB(k, R) + C

NT (R) + K × C
(4)

where NB(k, R) is the histogram bin value of the kth bin, NT (R) is the number
of pixels in the R, K is the number of bins and C is a constant value (in our
implementation, C = 1). The smoothed histogram is robust for noise even if the
sampled points are few because of the smoothing term C. At the same time, be-
cause of the smoothing term, the difference between the smoothed histograms is
small when the number of the sampled points is small, so the smoothed histogram
is affected by the shape (especially, the size of R) as well as color difference.
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Table 2. The feature set

The average edge difference of the input image and the background image

on the contour of R.
9

The average edge value on the contour of R. 

To calculate edge value, 

the input image and the background image are used 

when R is classified as object placement and object removal, respectively.

8

The Bhattacharrya distance between the smoothed HSV color histogram

of the input image and the one of the background image in R.

The Bhattacharrya distance between the HSV color histogram 

of the input image and the one of the background image in R.
6

The Bhattacharrya distance between the smoothed RGB color histogram 

of the input image and the one of the background image in R.

The Bhattacharrya distance between the RGB color histogram

of the input image and the one of the background image in R.
4

The average width of R.3

The ratio of major axis and minor axis of R

when R is approximated to a ellipse.
2

The size of R.1
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4 Experiments

We evaluate the object movement detection performance of proposed method
with 6 video sequences which are captured in 4 viewpoints (total 24 different
video sequences, total 7516 frames). These evaluation video sequences consist
of the images of 320 × 240 resolution recorded at 7.5 fps. The evaluation video
sequences contain 69 object placement and 41 object removal (total 110 events).

In the experiment, the object candidate classifier is trained by 2 video se-
quences which are captured in 4 viewpoints (total 8 different video sequences,
total 2808 frames). The classifier is trained by 42 object movements and 43 non-
object movements (total 83 object movement candidate samples) extracted by
the object candidate detector. The method does not have classifiers specified in
the each viewpoint, but the method has only one classifier trained by the all
samples, to avoid to be affected by the distance between the objects and the
cameras. The number of weak classifiers was 50.

The object detection method was implemented on a PC with an Intel Core 2
Duo 2.5 GHz processor. The method ran with single-thread processing.

In this experiment, we implement false positive and recall as performance
evaluation measures, as defined below:

false positive = 1 − correctly detected object movements
total detected object movements

(5)
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Fig. 3. ROC curves of the proposed method. The broken line: by the proposed method.
The solid line: by manual thresholds with our previous method [3].

recall =
correctly detected object movements
total object movements in the images

(6)

In this experiment, we calculated performance of the proposed method under
variant threshold parameter To of AdaBoost. We compare the proposed method
with our previous object movement detection method with manual thresholds [3].

Fig. 3 shows the resulting detection performance in various parameters. As can
be seen from the graph, the performance of the proposed method is almost the
same of the result by manually determined threshold or is slightly improved. The
proposed method has only 1 threshold parameter, though our previous method
has 5 threshold parameters, so the proposed method can be tuned easily.

Fig. 4 shows some sample detection results (these results are taken with
To = 0.5 when false positive = 0.04 and recall = 0.85). In the images, rect-
angles are overlaid on the object candidate regions and are given different colors
according to the classification result (blue: object placement, red: object removal
and yellow: non-object movement). (a) and (b) in Fig. 4 are when the object
candidate detector detects correct object movements, and (c) and (d) are when
the object candidate detector wrongly detects non-object movements. As can
been seen from Fig. 4, the object candidate detector sometimes wrongly de-
tects non-object movements, but the proposed object candidate classifier rejects
non-object movements.

The average calculation time was roughly 120[ms/frame]. The calculation time
is almost same by our previous method with manual thresholds [3], so the pro-
posed method works in sufficient frame rates.

4.1 Discussion

Selected features in the object candidate classifier. The object candidate
classifier acquired in the experiment selected the first three features from the
average edge value (feature type 8, with sum of weights = 0.30) ,the Bhattachar-
rya distance of the smoothed HSV color histograms (feature type 7, with sum
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Background
Image

Input Image

(a) (b) (c) (d)

Fig. 4. Examples of detection results. The top row and the bottom row are the input
images and the background images when object movement candidates are detected,
respectively. Rectangles are overlaid on the object candidate regions of the images
(blue: object placement, red: object removal, yellow: non-object movement). (a) is
when placement of a box is detected, (b) is when removal of a phone is detected,
and (c) and (d) are when non-object movements are wrongly detected by the object
candidate detector. The object candidate detector sometimes wrongly detects non-
object movements, but the proposed method classifies the object movements correctly.

of weights = 0.28) and the average width (feature type 3, with sum of weights
= 0.13) while the classifier gave no weights to the features of the size and the
ratio of major axis and minor axis (feature type 1, 2). One reason of this feature
selection is considered that the features has same elements (the smoothed HSV
histogram has some elements of the size and the average width and the ratio of
major axis and minor axis have the element of “thickness”).

Limitations. The proposed framework works well for long-term small back-
ground clatters, but has several limitations. First, the proposed framework ob-
viously cannot handle the large changes for the whole image with strong illu-
mination changes. To handle strong illumination changes, the method need to
be improved in the primary process, especially in the background subtraction
methods. Second, the proposed method cannot handle large shift of furniture
(e.g. opening or closing of a door, large movement of a sofa). However, han-
dling the large shift would be beyond the scope of this paper, because detecting
these large shift has benefits in some applications, so handling the large shift of
furniture should be done by detecting the state of “large shift”.

5 Conclusion

This paper proposed an robust object movement detection method via the clas-
sifier trained by the mis-detection results. The classifier automatically selects
optimal features of shape, color difference and contrast. Our experiment shows
the proposed method has similar or improved detection performance compared
to the classifier with manual thresholds.
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One of the future tasks is constructing a system which manages “where what
object is now” and “what the person is doing with the managed objects” by
integrating object recognition and behavior recognition.
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Abstract. Modeling and recognition of complex activities involving multiple,
interacting objects in video is a significant problem in computer vision. In this
paper, we examine activities using relative distances in phase space via pairwise
analysis of all objects. This allows us to characterize simple interactions directly
by modeling multi-object activities with the Multiple Objects, Pairwise Analysis
(MOPA) feature vector, which is based upon physical models of multiple inter-
actions in phase space. In this initial formulation, we model paired motion as a
damped oscillator in phase space. Experimental validation of the theory is pro-
vided on the standard VIVID and UCR Videoweb datasets capturing a variety of
problem settings.

1 Introduction

Motion underlies all activities; human activities, in fact, are defined by motion. The
rigorous study of motion has been the cornerstone of physics for the last 450 years,
over which physicists have unlocked its deep, underlying structure. In this paper, we
exploit the physics of motion to understand interactions between objects by utilizing
relative distance in phase space with a pairwise analysis of all the interacting objects. In
this initial formulation, we model paired motion as a damped oscillator in phase space.

2 Related Work and Contributions

We build liberally upon theoretical thrusts from several different disciplines, including
Analytical Hamiltonian Mechanics and human activity recognition [1], especially for
multiple activities [2]. Human activities, in fact, can be categorized into four classes:
kinesics, haptics, proxemics, and chronemics. Most work in activity recognition [1]
deals with actions of individuals (walking, running, waving, hugging, shaking hands,
etc.) that, even for multiple activities [3,2], fall in the domain of kinesics and haptics.
Our approach, on the other hand, rests in the domain of proxemics and chronemics
since we model the spatio-temporal relationships between multiple, interacting objects.
In particular, we capture the proxemics and chronemics by examining relative distances
between objects in phase space with respect to time.

Others, such as [4], have utilized relative distances within a coupled HMM but our
methodology does not require an external stochastic framework and can characterize
motion directly from tracks without requiring training or classifiers. In addition, they

� Both authors were supported by the DARPA VIRAT program at UCR. The first author was
also partially supported by NSF Award 1019343/Sub Award CIF-B-17 at UCLA.
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interpret pedestrian actions only and create prior models of human behaviour by using
synthetic agents that encapsulate their assumptions for simple actions that are atomic in
nature and only look at single interaction detections. Our approach, on the other hand,
looks at complex activities betwen multiple, interacting objects of any variety without
the need for synthetic agents or prior models of the objects. Also, unlike the heuristic
examination of simple activities in a single domain using relative distances in [5], we
create a consistent framework to derive and unify different representations of motion
for activity recognition. All these previous approaches also rely on a classifier (coupled
HMM in [4] and a simple hypothesis testing framework based on two-class nearest
neighbor classification with extensive parameterizations and thresholds in [5]) whereas
our approach uses our physics-based models to do the recognition directly.

In recent years, there has been some work in leveraging results from physics to the
analysis of videos. For example, Energy-Based Models (EBMs) [6] capture dependen-
cies between variables for image recognition by associating a scalar energy to each
configuration of the variables. Others [7] take local and global optical flow approaches
and compute confidence measures while in [8], they recognize single-person activities
using a pseudo-Hamiltonian, which is a scalar or multi-dimensional time-series that
represents the motion of an object over the course of an activity. In this paper, however,
we formalize the idea of using scalar energies and pseudo-Hamiltonians to a gener-
alized phase space analysis by applying the physics-based methodology to modeling
multi-object activities in phase space. The phase space of a system consists of all pos-
sible values of the coordinates, which is usually represented as the space of position vs
momentum (x, p) or position vs velocity (x, v) but can be any set of coordinates like the
relative distance vs time, (r, t) or the generalized coordinates and Hamiltonian values
discussed in detail below.

Our approach also draws inspiration from the method employed in [9], which detects
global motion patterns by constructing super tracks using flow vectors for tracking high-
density crowd flows in low-resolution. Our methodology in this paper, on the other
hand, works in both high- and low-resolution and for densely- and sparsely-distributed
objects since all it requires is the (x, y, t) tracks for the various objects’ motion analysis
in phase space, as shown in Figure 1.

Specifically, we develop physical models of complex interactions in phase space by
doing a Multiple Objects Pairwise Analysis (MOPA) in which we model paired mo-
tion as a damped oscillator in phase space using relative distances. MOPA thus contains
phase space features for paired activities, with physical models of complex interactions
in phase space.

Our method starts with the input containing multiple, interacting objects. We then
use a detector and tracker, as discussed in Section 4, to find objects and their tracks.

Fig. 1. From Tracks to Phase Space: the phase space of a system consists of all possible values of
the coordinates, which can be (q,p) or (q,p,t), for example; we may also look at modified phase
plots of (H,t), (H,q,p), etc.
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We then analyze all individual objects pairwise and iteratively do a pairwise analysis of
all pairs and individuals. Finally, we recognize different activities based on the above
model for all tracks in the video, as shown in Table 2.

3 Modeling Multi-Object Activities

Hamiltonian Dynamics is an elegant and powerful alternative formulation of classical
mechanics that not only gives the equations of motion for a system but, more impor-
tantly, provides greater, and often more abstract, insight about the system. It provides a
framework based upon the Principle of Least Action that can be extended to other laws
of physics; in fact, almost all fundamental laws of physics can be expressed in terms
of a least action principle. Hamilton’s equations, using the Hamiltonian H, are equiva-
lent to the Euler-Lagrange equations; Hamilton’s equations are primarily of interest in
establishing basic theoretical results, rather than determining the motions of particular
systems. The Hamiltonian is usually stated most compactly, in generalized coordinates,
as [10]:

H(q, p, t) =
∑

i

piq̇i − L(q, q̇, t) (1)

where H is the Hamiltonian, p is the generalized momentum, and q̇ is the time derivative
of the generalized coordinates, q, and L is the Lagrangian. This defines the dynamics
on the system’s phase space, in which the qi and pi are regarded as functions of time
[11,12]. The phase space of a system consists of all possible values of the generalized
coordinate variables qi and the generalized momenta variables pi. If the Hamiltonian is
time-independent, then phase space is 2-dimensional, (q,p); if the Hamiltonian is time-
dependent, then phase space is 3-dimensional, (q,p,t) [8]. In general, the phase space of
a system consists of all possible values of the coordinates, which can be (q,p) or (q,p,t),
for example; we may also look at modified phase plots of (H,t), (H,q,p), etc.

In this section, we do a pairwise analysis of multiple objects. In particular, we
develop physical models of complex interactions in phase space and do a Multiple
Objects Pairwise Analysis (MOPA) in which we model paired motion as a damped
oscillator in phase space using relative distances. MOPA thus contains phase space fea-
tures for paired activities, with physical models of complex interactions in phase space.

We start with the problem of trying to categorize the motion of two objects in video
and to see if their motion is correlated (this is taken as a simple example and can be
generalized further). We hypothesize that the motion of two objects can be modeled
as an oscillation with the envelope of that oscillation, as seen in the under-damped
oscillator in Figure 2, being the average distance over time between the two. We thus
calculate the relative distance with respect to time between these two objects and use
that as the envelope for the oscillation.

To further elucidate our method, let us consider two people walking. In order to
model the motion of two people walking, we consider the three possibilities: they can
walk towards each other, they can walk away from each other, or they can walk parallel
to each other [4]. These three situations are shown in Figure 3 where we model all three
types of motion as an oscillator. In Figure 3a, two people walking towards each other
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Fig. 2. An Under-damped Oscillation Envelope

Fig. 3. Modeling Paired Motion: a) Two people walking towards each other is modeled as a
Damped Oscillator; b) Two people walking away from each other is modeled as a Resonant
Driven Oscillator; c) Two people walking parallel to each other is modeled as an Un-driven SHO

is modeled as a Damped Oscillator; in Figure 3b, two people walking away from each
other is modeled as a Resonant Driven Oscillator; in Figure 3c, two people walking
parallel to each other is modeled as an Un-driven Simple Harmonic Oscillator (SHO).

A damped oscillator is described by the following second order differential equation
of motion, which can represent all three cases and can model mass and damping; in
addition, we set the spring constant to zero since we do not model it here but it should
be considered in the more general case. Thus, setting the restoring force to zero yields
the following second order differential equation:

mẍ + cẋ = 0 (2)

where c is the damping constant. This leads to

x(t) = A1 + A2e
−γt (3)

where γ = c
m is the damping factor with mass m and A1 and A2 are the coefficients.

For an under-damped oscillator, this gives x(t) = Ae−γt with amplitude A.
Thus, the damping is determined by γ, which is determined by the coefficients, and,

as in systems theory, x need not only be the position. This damping is pictured in Figure
2 along with the envelope, which is given by Ae−γt. This gives the Hamiltonian for the
damped oscillator as [13]:

H(x, p) =
p2

2m
+

1
2
mω2

0x
2 =

1
2
mẋ2 +

1
2
mx2 (4)
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The change in energy is then given as:

dH

dt
= −cẋ2 (5)

The under-damped oscillator is also shown in the (x, v), (H, t), and (dH
dt , t) modified

phase space plots in Figure 4.
The damping ratio, ζ, determines whether the damping is critical, under-, or over-

damping. Logarithmic decrement, δ, is used to find the damping ratio of an under-
damped system in the time domain. The logarithmic decrement is the natural log of the
amplitudes of any two successive peaks:

δ =
1
n

ln
x0

xn
(6)

where x0 is the greater of the two amplitudes and xn is the amplitude of a peak n
periods away. The damping ratio is then found from the logarithmic decrement as:

ζ =
1√

1 + (2π
δ )2

(7)

When two people are walking as in Figure 3, we can thus estimate the kind of oscil-
lation via the damping factor, γ; in particular, we do an exponential fit to the average
distance between the two people with respect to time in order to determine the damp-
ing factor. We then conclude SHO if γ = 0, driven resonant oscillator if γ < 0, and
damping if γ > 0. To further qualify the damping, we utilize the quality factor, Q. We
could use the damping time, τ = m

γ , to define Q = ω0τ provided ω0τ � 2π. Q is also
defined as:

Q =
1
2ζ

(8)

We can then use (8) to determine the kind of damping as critical damping when
Q = 1

2 ; over-damping when Q < 1
2 ; and under-damping when Q > 1

2 .

3.1 Advantages

The advantages of our approach over a simple linear fit are manifold. One of the main
is the robustness in tracking: short-term tracking errors would not affect our method
since we fit to a model. In addition, the utilization of the Q-factor lets us determine the
extent of the motion (if an object is headed for another, this lets us characterize if they
head directly there or meander and go back and forth, instead). Finally, the formalism
afforded by our method provides a framework that is extensible with more complex
models to an even wider variety of situations and domains.

3.2 Application to Activity Modeling

For example, we model two people walking towards each other, as in Figure 3a, as
an under-damped oscillator. We thus use the logarithmic decrement, δ, to estimate the
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damping ratio, ζ, by estimating n in (6). We use this damping ratio to compute the
quality factor, Q, and determine the specific kind of damping. We can also use the
damping ratio to get the angular frequency, ω, and then plot x vs ω or use ω directly.
Finally, we can use average distance and ω to get average velocity since v = rω. In
fact, it is also possible to estimate Q from the (x, v) phase space plot, as in Figure 4a
(under-damped oscillations spiral in SHO is an ellipse, e.g.), or to use an exponential fit
on the (H, t) or (dH

dt , t) phase space plot, as in Figure 4b.

a) b)

Fig. 4. Modified phase space plots of an under-damped oscillator in a) (x, v) and b) (H, t) and
( dH

dt
, t) phase space plots

3.3 Generalization

The proposed method is also generalizable to many other cases of arbitrary motion
interactions. For example, it can be applied to deal with intersections since intersections
imply a transition from over-damped to under-damped or critically damped. In fact, it
can be generalized to more than two objects by considering pairwise combinations (as
seen in Figure 5 and Figure 7) and future work can consider more efficient methods
than this combinatorial approach.

This generalization can also be extended to more complex interactions, as shown in
Figure 5a. Here, we see interactions that are not atomic, direct interactions; instead, we
might observe interactions like people milling together, where they alternately approach
and recede from each other. Similarly, they might interact with a static object, like
a car or a building, by meandering around it, rather than approaching it directly and
then becoming static in its vicinity. In video of activities in the “wild”, as in the UCR
Videoweb dataset, these are exactly the kinds of activities observed, as shown in Figure
5b, where we see how convoluted the trajectories of individual objects can seem. When
two objects interact, there’s a temporal overlap to their trajectories, as shown in Figure
5c, where we see the overlap of frames between all the objects in a scene.

Thus, in these complex situations, people don’t generally exhibit the simple, direct
motions examined in [4,5]. Instead, there are multiple turning points of their motion
as they might alternate between approaching each other or moving away from each
other; these turning points are characterized as the extrema of the (r, t) plot between
two objects, as shown in Figure 5d. Thus, in order to model these behaviours, we do
a pathwise MOPA analysis between all the turning points by using the extrema of the
path to indicate the turning points for each segment.
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a1) a2)

a3) a4)

b) c) d)

Fig. 5. Multi-Object Activity Modeling. a) Sample frames representing complex interactions cap-
tured by our approach: construction site, courtyard, and parking lot; (b) Sample trajectories in
space (time is parameterized along the curve) for the courtyard and parking lot; (c) Temporal
overlap of objects’ trajectories; (d) Turning points for a single trajectory.

4 MOPA Experimental Results

We experimented with videos consisting of people, vehicles, and buildings, which en-
compasses a large class of possible activities. We used a 15-minute combined dataset
of high-resolution and low-resolution video from standard datasets like the UCR Vide-
oweb (http://vwdata.ee.ucr.edu/) and VIVID (https://www.sdms.afrl.af.mil/request/
data_request.php) datasets.

For object detection and tracking, we utilized the methodology we have developed
in an alternate paper [14]; in this approach, we analyze the statistical properties of
tracklets (short-term tracks) and develop associations between them to come up with
longer tracks via a stochastic optimization step that considers the statistical properties of
individual tracklets, as well as the statistics of the targets along each proposed longterm
track. We then used these (x, y, t) tracks to compute the relative distance trajectories,
(r, t), with which we subsequently compute the MOPA.

http://vwdata.ee.ucr.edu/
https://www.sdms.afrl.af.mil/request/data_request.php
https://www.sdms.afrl.af.mil/request/data_request.php
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In this section, we show the results of modeling a paired activity from the UCR
Videoweb dataset. In Figure 6a, we see three representative samples from a video of a
person walking to their car. We model this as a paired activity where the stationary track
of the car finally intersects the dynamic track of the person. In Figure 6b, we plot the
average distance between the two tracks with respect to time and then do an exponential
fit to that curve. The results are analyzed further in Table 1, where we see the analysis
of Section 3 applied to the video and chart represented in Figure 6. We find a value for
γ of 0.007, which indicates Damping; subsequent analysis yields a Q-factor of 37.878,
thus indicating Under-Damping and showing that the two tracks eventually converge.

a)

b)

Fig. 6. Person-Car Paired Activity Modeling. In a) we see three representative samples from a
video of a person walking to their car. In b) we plot the average distance between the two tracks
with respect to time and then do an exponential fit.

Table 1. Person-Car Paired Activity Values. We find a value for γ of 0.007, which indicates
Damping; subsequent analysis yields a Q-factor of 37.878, thus indicating Under-Damping and
showing that the two tracks eventually converge.

Factor Value Result

γ 0.007 Damping
δ 0.083
ζ 0.013

Q-Factor 37.878 Under-Damping

In addition, we apply our method to a video of two people running away from each
other and towards a car. By doing a pairwise plot of the average distance between the
tracks for each pair with respect to time and then doing an exponential fit to each curve,
we find its value for γ. As can be seen in Figure 7a, we do an exponential fit to the curve
of the two people running away from each other to see a driven oscillator, exactly as
expected for such a case; while in Figure 7b and Figure 7c, we see the motion of each
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person running towards the car as being a damped oscillator, where subsequent analysis
yields a Q-factor greater than 1

2 , thus indicating Under-Damping and showing that the
two tracks eventually converge.

a) b) c)

Fig. 7. Two People and A Car: in a) we plot the average distance between the two people with
respect to time and then do an exponential fit to that curve to see a driven oscillator while in b) and
c) we see the motion of each person running towards the car is modeled as a damped oscillator

We also apply our modelling methodology to activity recognition by testing it within
a query-based retrieval framework. We use a combined database from the UCR Vide-
oweb and VIVID datasets and the results are shown in Table 2, where we see the preci-
sion/recall values for this experiment of database query and retrieval. As shown in the
table, the detection rate for the two-object activity “People Walking Together” is lower
because, as can be seen in the video, the participants tend to walk parallel to each other
and the start and end frames for the multi-object activities are occasionally ambiguous.

Robustness of Tracking: Short-term tracking errors would not affect our method since
we fit to a model. This is the advantage of using an exponential fit over a simple linear
fit. Long-term tracking errors also would not affect the transtions (the formations and
dispersals of the pairs). Although tracking and object detection fail when objects are
close together, our method works with both.

Table 2. Precision/Recall Values for DB query and retrieval using the combined VIVID and UCR
Videoweb database

Activity Precision Recall Total
Fetched

True
Positive

Ground
Truth

Person Entering Building 1 1 9 9 9
Person Exiting Building 1 1 7 7 7
Person Entering Vehicle 0.9 0.9 11 10 10
Person Exiting Vehicle 1 1 6 6 6
People Walking Together 1 0.71 5 5 7
People Coming Together 0.86 0.86 7 6 6
People Going Apart 0.8 1 5 4 5
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5 Conclusions and Future Work

Our formulation takes an altogether novel approach whereby we attempt to create a the-
oretical framework rooted in physics to gain insight into the problem of activity recog-
nition in video. The framework we present provides a structured approach for activity
recognition that only requires tracks for the motion; it can be generalized across dif-
ferent application domains and even applied to coupled systems, interactions between
sparse objects, and other systems without requiring separate heuristics for each. Future
work will study how to obtain robust physics-based features, develop more complex
physics models (e.g., determine driving forces for the driven oscillator, use field theory,
etc.), and use shape or learning algorithms to determine mass and potentials.
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Abstract. We present a method for segmenting an arbitrary number of
moving objects in image sequences using the geometry of 6 points in 2D
to infer motion consistency. The method has been evaluated on the Hop-
kins 155 database and surpasses current state-of-the-art methods such as
SSC, both in terms of overall performance on two and three motions but
also in terms of maximum errors. The method works by finding initial
clusters in the spatial domain, and then classifying each remaining point
as belonging to the cluster that minimizes a motion consistency score.
In contrast to most other motion segmentation methods that are based
on an affine camera model, the proposed method is fully projective.

1 Introduction

Motion segmentation can be defined as the task of separating a sequence of
images into different regions, each corresponding to a distinct rigid motion. There
are several strategies for solving the motion segmentation problem, some of which
are based on first producing a dense motion field, using optical flow techniques,
and then analyzing this field. Examples of this approach are [1] where the optic
flow is given as a parametric model and the parameters are determined for each
distinct object, or the normalised graph cuts by [2].

Other approaches are instead applied to a sparse set of points, typically in-
terest points that are tracked over time, and their trajectories analysed in the
image. A common simplifying assumption is that only small depth variations
occur and an affine camera model may be used. The problem can then be solved
using the factorization method by [3]. This approach has attracted a large inter-
est in recent literature, with the two current state-of-the-art methods, relative
to standard datasets such as Hopkins 155 [4], being Sparse Subspace Clustering
(SSC) [5] and Spectral Clustering of linear subspaces (SC) [6].

Other common methods in the literature are based on Spectral Curvature
Clustering (SCC) [7], penalised MAP estimation of mixtures of subspaces using
linear programming (LP) [8], Normalised Subspace Inclusion (NSI) [9], Non-
negative Matrix Factorisation (NNMF) [10], Multi-Stage unsupervised Learn-
ing (MSL) [11], Local Subspace Affinity (LSA), Connected Component Search
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(CCS) [12], unsupervised manifold clustering using LLE (LLMC) [13], Agglomer-
ative Lossy Compression (ALC) [14], Generalised Principal Component Analysis
(GPCA) [15], or on RANdom SAmple Consensus (RANSAC) [4].

In this paper we describe a motion segmentation method for sparse point tra-
jectories, which is based on the previous work on six point consistency (SPC) [16],
but with the additional novelties and improvements: (i) an alternative method
for estimating the vector s (Sec. 2.2), (ii) a new matching score (Sec. 2.3), and
(iii) a modified classification algorithm (Sec. 3).

2 Mathematical Background

Our proposed method uses the consistent motion in the image plane generated by
6 points located on a rigid 3D object. The mathematical foundation of this theory
was formulated by Quan [17] and later extended by other authors [18,19,20]. A
similar idea was presented in [21], and later used for motion segmentation in [16].
[21] shows that the consistency test can be formulated as a constraint directly
on the image coordinates of the 6 points and that, similarly to epipolar lines
emerging from the epipolar constraint, this 6-point constraint generates 6 lines
that each must intersect its corresponding point.

More formally, we consider a set of six 3D points, with homogeneous coor-
dinates xk, projected onto an image according to the pinhole camera model:

yk ∼ C T xk, k = 1, . . . , 6, (1)

where yk are the corresponding homogeneous image coordinates, C is the 3×4
camera matrix, and ∼ denotes equality up to a scalar multiplication. T is a
4 × 4 time dependent transformation matrix that rotates and translates the set
of 3D points from some reference configuration to the specific observation that
produces yk. This implies that also yk is time dependent. The problem addressed
here is how we can determine if an observed set of image points yk really is given
by (1) for a particular set of 3D points xk but with C and T unknown.

In general, the homogeneous coordinates of the 3D points can be transformed
by a suitable 3D homography Hx to canonical homogeneous 3D coordinates
x′=Hx x, and similarly, for a particular observation of the image points we
can transform them to canonical homogeneous 2D coordinates y′

k=Hy yk. The
canonical coordinates are given by:

(x′
1 x′

2 x′
3 x′

4 x′
5 x′

6)∼∼

⎛⎜⎜⎝
1 0 0 0 1 X
0 1 0 0 1 Y
0 0 1 0 1 Z
0 0 0 1 1 T

⎞⎟⎟⎠ , (y′
1 y′

2 y′
3 y′

4 y′
5 y′

6)∼∼
⎛⎝1 0 0 1 u5 u6

0 1 0 1 v5 v6

0 0 1 1 w5 w6

⎞⎠ .

Here ∼∼ denotes equality up to an individual scalar multiplication on each col-
umn. Hx and Hy depend on the 3D points x1,...,x5 and on the image points
y1,...,y4, respectively, and after these transformation are made the relation be-
tween 3D points and image points is given by y′

k∼Hy C T H−1
x x′

k. One of the
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main results in [17] is that from these transformed coordinates we can compute
a set of five relative invariants of the image points, denoted ik, and of the 3D
points, denoted Ĩk, according to:

z =

⎛⎜⎜⎜⎜⎝
i1
i2
i3
i4
i5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
w6(u5 − v5)
v6(w5 − u5)
u5(v6 − w6)
u6(v5 − w5)
v5(w6 − u6)

⎞⎟⎟⎟⎟⎠ , s =

⎛⎜⎜⎜⎜⎝
Ĩ1

Ĩ2

Ĩ3

Ĩ4

Ĩ5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
XY − ZT
XZ − ZT
XT − ZT
Y Z − ZT
Y T − ZT

⎞⎟⎟⎟⎟⎠ (2)

such that they satisfy the constraint z · s = i1 Ĩ1 + i2 Ĩ2 + i3 Ĩ3 + i4 Ĩ4 + i5 Ĩ5 = 0.
To realize what this means, we notice that this constraint includes scalars

derived from the reference 3D coordinates xk (before they are transformed) and
observed image points yk (after the transformation T is made), but neither C
nor T are explicitly included. Therefore, the constraint is satisfied regardless
of how we transform the 3D points (or move the camera), as long as they are
all transformed by the same T. As long as the observed image coordinates are
consistent with (1), the corresponding relative image invariants z must satisfy the
constraint for a fixed s computed from the 3D reference points. The canonical
transformations Hx and Hy can conveniently be included into the unknowns
C and T. In short, the above constraint is necessary but not sufficient for the
matching between the observed image points and the 3D reference points.

2.1 The 6-Point Matching Constraint

The matching constraint is expressed in terms of the relative invariants z and s
that have been derived by transforming image and 3D coordinates. In particular,
this means that it cannot be applied directly onto the image coordinates, similar
to the epipolar constraint. The transformation Hy is not a linear transformation
on the homogeneous image coordinates since it also depends on these coordinates
(see the Appendix of [17]). If however, we make an explicit derivation of how z
depends on the 6 image points, it turns out that it has a relatively simply and
also useful form:

z = α

⎛⎜⎜⎜⎜⎝
D126D354

D136D245

D146D253

D145D263

D135D246

⎞⎟⎟⎟⎟⎠ ,

α =
D123

D124D234D314
,

Dijk = (yi × yj) · yk = det
(
yi yj yk

)
.

(3)

Since z can be represented as a projective element, the scalar α can be omitted
in the computation of z. An important feature of this formulation is that each
element of z is computed as a multi-linear expression in the 6 image coordinates.
This can be seen from the fact that each point appears exactly once in the
computations of the two determinants in each element of z.

This formulation of z allows us to rewrite the constraint as z · s=l1 · y1= 0
with

l1 = l26D354Ĩ1 + l36D245Ĩ2 + l46D253Ĩ3 + l45D263Ĩ4+ l35D246Ĩ5 (4)
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where lij=yi×yj. l1 depends on the five image points y2,...,y6 and on the ele-
ments of s. A similar exercise can be made for the other five image points and in
general we can write the matching constraint as z ·s=lk ·yk=0 where lk depends
on s and five image points: {yi, i �=k}. With this description of the matching
constraint it makes sense to interpret lk as the dual homogeneous coordinates
of a line in the image plane. To each of the 6 image points, yk, there is a corre-
sponding line, lk, and the constraint is satisfied if any of the 6 lines intersects its
corresponding image point. The existence of the lines allows us to quantify the
matching constraint in terms of the Euclidean distance in the image between a
point and its corresponding line. Assuming that yk and lk have been suitably
normalized, their distance is given simply as

dk = |yk · lk| (5)

2.2 Estimation of s

s can be computed from (2), given that 3D positions are available, but it can also
be estimated from observations of the 6 image points based on the constraint.
For example, from only three observations of the 5-dimensional vector z, s can
be restricted to a 2-dimensional subspace of R5. From this subspace, s can be
determined using the internal constraint [17]. This gives in general three solutions
for s, that satisfy the internal constraint and are unique except for degenerate
cases. This approach was used in [16].

Alternatively, for B ≥ 4 observations of z a simple linear method finds s as a
total least squares solution of minimizing ‖Z s‖ for ‖s‖=1, where Z is a B × 5
matrix consisting of the observed vectors z in its rows. z is then given by the right
singular vector of Z corresponding to the smallest singular value. This approach
has the advantage of producing a single solution for s which, on the other hand,
may not satisfy the internal constraint. However, this can be compensated for
by including a large number of observations, B, in the estimation of s. This is
the estimation strategy we use in this paper and it works well, provided that
there are enough images in each sequence.

2.3 Matching Score

In the case of motion segmentation we want to be able to consider a set of 6
points, estimate s, and then see how well this s matches to the their trajectories.
The matching between s and observations of the 6 points over time is measured
as follows. For each observation (at time t) of the 6 points y1(t),...,y6(t) we
use s to compute the 6 corresponding lines, l1(t),...,l6(t), and then compute the
distances dk from (5). Finally, we compute a matching score Ẽ of the 6 point
trajectories:

Ẽ(P1, . . . , P6) = median
t

[
d2
1(t) + . . . + d2

6(t)
]1/2

, (6)

where Pk denotes image point k, but without reference to a particular image
position in a particular frame. The median operation is used here in order to
effectively reduce the influence of possible outliers.
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Create spatial clusters using k-means;
foreach point Pk do

foreach cluster Cj do

Select 6 points {Pk, P j
2 , ..., P j

6 }. ;
Calculate score E(Pk, Cj) from (6). ;

end
Assign Pi to cluster with min(E(Pk, Cj)). ;

end
Reject inconsistent clusters. ;
Initial NBC merging. ;
Final refinement merging. ;

Algorithm 1. Motion segmentation pseudocode

Fig. 1. A K-means initialisation example on the left. On the centre the classification
result before the merging, and the final merged results on the left.

3 A Motion Segmentation Algorithm

In this section we describe a simple yet effective algorithm that can be used for
the segmentation of multiple moving rigid 3D objects in a scene. The input data
is the number of motion segments and a set of N point trajectories over a set of
images in an image sequence. Our approach includes: a spatial initialisation step
for establishing the initial motion hypotheses (or seed clusters), from which the
segmentation will evolve; a classification stage, whereby each tracked point Pk,
is assigned to the appropriate motion cluster; and a merging step, that combines
clusters based on their similarity, to form the final number of moving objects in
the scene.

Initialisation: The first step is the generation of initial 6-point clusters, each
representing a 3D motion hypothesis. For this we use spatial K-means clustering
in the image domain (see Fig. 1). The initial clustering is carried out in an
arbitrary frame from each sequence (usually the first or the last). We define a
seed cluster Cj={P j

1 ,...,P j
I } as the I points at minimum distance to each K-

means center. From the subsequent computations it is required that I≥5, and
we use I=6.

Point classification: Following the initialisation step, we assign the remaining
points to the appropriate seed cluster. For each of the unclassified points Pk

and for each seed cluster Cj , we estimate s according to Sec. 2.2 and compute
a point-to-cluster score E from (6) as E(Pk, Cj)=Ẽ(Pk, P j

2 ,...,P j
6 ). This gives
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M(N -6M) score calculations in total, and produces an M × (N -6M) matrix
A=[aik] , with column k referring to particular point Pk and element aik as the
index of the cluster that has the i-th smallest score relative to Pk. We employ a
“winner takes all” approach with Pk assigned to the cluster that produces the
lowest score, i.e., to the cluster index a1k. This implies that the clusters will
grow during the classification step, however, it should be noted that the scores
for a particular point are always computed relative to the seed clusters. Note
also that there is no threshold associated with the actual classification stage.
A typical classification result can be seen in Fig. 1. The growth of the clusters
is independent of the order that the points are classified, so the latter may be
considered in parallel, leading to a very efficient and fast implementation.

Cluster merging and rejection: This is the final stage of our method, and
results in the generation of motion consistent clusters each associated with a
unique moving object in the scene. This stage consists of a quick cluster rejection
step; an initial merging step using redundant classification information; and a
final merging or refinement step where intermediate clusters are combined using
agglomerative clustering based on some similarity measure.

-Cluster rejection: Any clusters that contain very few points (e.g. ≤7) are
indicative of seed initialisation between motion boundaries, and represent unique
and erroneous motion hypotheses. Therefore, any such clusters are promptly
removed and their points re-classified with the remaining clusters.

-Initial merging: A direct result of the classification in Sec. 3 is the matrix
A, where so far we have only used the top row in order to classify points.
However, A provides also information on cluster similarity, which we can exploit
to infer initial merge pairings. We call this “Next-Best Classification” (NBC)
merging and we now look at the cluster with the second best score for each point,
since it contains enough discriminative power to accurately merge clusters. NBC
merging involves generating the zero-diagonal sparse symmetric M×M matrix
L=[lij ] that contains the merging similarity between the clusters. Its elements
are defined as:

lij =
N−6M∑

k=1

[
1(k, i, j)

E(Pk, Cj)
+

1(k, j, i)
E(Pk, Ci)

]
, (7)

where the summation is made over the N − 6M points not included in the seed
clusters. 1(k, i, j) is an indicator function that takes the value 1 when a1k=i and
a2k=j and 0 otherwise. In other words, this function is =1 iff Pk is assigned to
cluster i and has cluster j as second best option.

The matrix L describes all the consistent pairings inferred by the NBC merg-
ing. However, since usually inconsistent clusters will generate non-zero entries in
L we need to threshold out low response entries due to noise. Using a threshold
τ we obtain the sparser adjacency matrix L∗. From L
 we can then construct
an undirected graph G which contains the intermediate clusters as disconnected
sub-graphs. If L∗ is insufficient to provide the final motion clusters, due to for ex-
ample noisy data, then a final refinement step may be required. The result of the
cluster rejection and initial merging steps is a set of M̃≤M clusters C̃1,...,C̃M̃ .
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Table 1. 2 motion results

GPCA LSA RANSAC MSL ALC SSC SCC SPC SC LP NNMF NSI LLMC CCS MSPC

Checkerboard: 78 sequences

Mean: 6.09 2.57 6.52 4.46 1.55 1.12 1.77 4.49 0.85 3.21 - 3.75 4.37 16.37 0.41

Median: 1.03 0.27 1.75 0.00 0.29 0.00 0.00 3.69 0.00 0.11 - - 0.00 10.62 0.00

Traffic: 31 sequences

Mean: 1.41 5.43 2.55 2.23 1.59 0.02 0.63 0.22 0.90 0.33 0.1- 1.69 0.84 5.27 0.09

Median: 0.00 1.48 0.21 0.00 1.17 0.00 0.14 0.00 0.00 0.00 0.– - 0.00 0.00 0.00

Articulated: 11 sequences

Mean: 2.88 4.10 7.25 7.23 10.70 0.62 4.02 2.18 1.71 4.06 10.– 8.05 6.16 17.58 0.95

Median: 0.00 1.22 2.64 0.00 0.95 0.00 2.13 0.00 0.00 0.00 2.6- - 1.37 7.07 0.00

All: 120 sequences

Mean: 4.59 3.45 5.56 4.14 2.40 0.82 1.68 3.18 0.94 2.20 - - 3.62 12.16 0.37

Median: 0.38 0.59 1.18 0.00 0.43 0.00 0.07 1.08 0.00 0.00 - - 0.00 0.00 0.00

-Refinement merging: The last step involves the merging of the intermediate
clusters, (resulting from the NBC merging), into the final clusters each repre-
senting a distinct motion hypothesis. This is achieved by pairwise agglomerative
clustering and a maximum similarity measure between clusters. Assume that we
wish to merge two clusters, say C̃1 and C̃2. We can generate K 6-point mixture
clusters C̃′ by randomly selecting 3 points each from C̃1 and C̃2. If C̃1 and C̃2

belong to the same motion-consistent object and there is little noise present, we
expect the scores Ẽ calculated for each selection of C′ to be grouped near zero,
with little variation and few outliers. Conversely, if C̃1 and C̃2 come from differ-
ent objects, Ẽ should exhibit a larger dispersion and be grouped further away
from zero. Instead of defining the similarity based on location and dispersion of
sample statistics, we fit a parametric model to the sample data (using Maximum
Likelihood Estimation) and compute the statistics from the model parameters.
This allows for a much smaller number of samples and a more accurate estimate
than what can be obtained from sample statistics (e.g. mean and variance).
Given therefore that the scores in (6) should generally group around a median
value with a few extremal outliers and assuming that the distances dk in (5) are
i.i.d., then the score distribution may be well approximated by a Generalised
Extreme Value (GEV) distribution [?]. A robust indication of average location
in a data sample with outliers is the mode, which for the GEV model can be
computed by:

m̃ = μ + σ
[
(1 + ξ)−ξ − 1

]
/ξ for ξ �= 0, (8)

where μ, σ and ξ are the location, scale and shape parameters respectively
recovered by the MLE. Using this as a similarity metric we can merge two clusters
when (8) is small or reject them when it is large. The clustering proceeds until
we reach the pre-defined number of motions in the scene. The overall method is
included in pseudocode in Algorithm 1.
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Table 2. 3 motion results

GPCA LSA RANSAC MSL ALC SSC SCC SPC SC LP NNMF NSI LLMC CCS MSPC

Checkerboard: 26 sequences

Mean: 31.95 5.80 25.78 10.38 5.20 2.97 6.23 10.71 2.15 8.34 - 2.92 10.70 28.63 1.43

Median: 32.93 1.77 26.01 4.61 0.67 0.27 1.70 9.61 0.47 5.35 - - 9.21 33.21 1.25

Traffic: 7 sequences

Mean: 19.83 25.07 12.83 1.80 7.75 0.58 1.11 0.73 1.35 2.34 0.1- 1.67 2.91 3.02 0.71

Median: 19.55 23.79 11.45 0.00 0.49 0.00 1.40 0.73 0.19 0.19 0.– - 0.00 0.18 0.36

Articulated: 2 sequences

Mean: 16.85 7.25 21.38 2.71 21.08 1.42 5.41 6.91 4.26 8.51 15.– 6.38 5.60 44.89 2.13

Median: 28.66 7.25 21.38 2.71 21.08 0.00 5.41 6.91 4.26 8.51 15.– - 5.60 44.89 2.13

All: 35 sequences

Mean: 28.66 9.73 22.94 8.23 6.69 2.45 5.16 8.49 2.11 7.66 - - 8.85 26.18 1.32

Median: 28.26 2.33 22.03 1.76 0.67 0.20 1.58 8.36 0.37 5.60 - - 3.19 31.74 1.17

4 Experimental Results

We have carried out experiments on real image sequences from the Hopkins 155
database [4]. It includes motion sequences of 2 and 3 objects, of various degrees
of classification difficulty and is corrupted by tracking noise, but without any
missing entries or outliers. Typicall parameter settings for these experiments
were: M=10-40 K-means clusters at the first or last frame of the sequence, reject
clusters of ≤7 points, and K=50-100 mixture samples for the final merge (where
necessary). Our results for 2 and 3 motions and the whole database are presented
and compared with other state-of-the-art and baseline methods in Tables 1–3.

Our approach (Multiple Six Point Consistency - MSPC) outperforms every
other method in the literature overall, in 2 and 3 motions and for all sequences
combined. We achieve an overall classification error of 0.37% for two motions, less
than 1/2 than the best reported result (SSC); an overall error of 1.32% for three
motions, about 2/3 of the best reported result (SC); and an overall error of 0.59%
for the whole database, less than 1/2 than the best reported result (SC). We also
come first for the checkerboard sequences constituting the majority of the data,
with almost 1/2 the classification errors reported by the SC method. For the
articulated and traffic sequences (which are problematic for most methods) we
perform well, coming a very close second to the best performing SSC or NNMF.

From the cumulative distributions in Fig. 2 we see that our method outper-
forms all others (where available) with only the SSC being slightly better (be-
tween 0.5-1% error) for 20-30% of the sequences. However, SSC soon degrades
quite rapidly for the remaining 5-20% of the data with an error differential be-
tween 15-35% relative to MSPC. Furthermore, our method degrades gracefully
from 2 to 3 motions as we do not have misclassification errors greater than 5%
for any of the sequences, unlike SSC which produces a few errors between 10-20%
and 40-50%. This is better illustrated in the histograms in Fig. 3.
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Table 3. All motion results (italics are approximated from Tables 1 and 2)

GPCA LSA RANSAC MSL ALC SSC SCC SPC SC LP NNMF NSI LLMC CCS MSPC

Checkerboard: 104 sequences

Mean: 12.55 3.37 11.33 5.94 2.47 1.58 2.88 6.05 1.17 4.49 - 3.54 5.95 19.43 0.66

Median: - - - - 0.31 - - 5.27 0.00 - - - - - 0.25

Traffic: 38 sequences

Mean: 4.80 9.04 4.44 2.15 2.77 0.12 0.71 0.31 0.98 0.70 0.1- 1.68 1.22 4.85 0.20

Median: - - - - 1.10 - - 0.00 0.00 - - - - - 0.00

Articulated: 13 sequences

Mean: 5.02 4.58 9.42 6.53 13.71 0.74 4.23 2.91 2.10 4.74 10.76 7.79 6.07 21.78 1.13

Median: - - - - 3.46 - - 0.00 0.00 - - - - - 0.00

All: 155 sequences

Mean: 10.34 4.94 9.76 5.03 3.56 1.24 2.46 4.38 1.20 3.43 - - 4.8 15.32 0.59

Median: 2.54 0.90 3.21 0.00 0.50 0.00 - 1.95 0.00 - - - - - 0.00

Fig. 2. Cumulative distributions of the errors per sequence for two and three motions

Fig. 3. Histograms of the errors per sequence for two and three motions

5 Conclusion

We have presented a method for segmenting moving objects using the geometry
of 6 points to infer motion consistency. Our evaluations on the Hopkins 155
database have shown superior results than current state-of-the-art methods, both



Sparse Motion Segmentation Using Multiple Six-Point Consistencies 347

in terms of overall performance and in terms of maximum errors. The method
finds initial cluster seeds in the spatial domain, and then classifies points as
belonging to the cluster that minimizes a motion consistency score. The score is
based on a geometric matching error measured in the image, implicitly describing
how consistent the motion trajectories of 6 points are relative to a rigid 3D
motion. Finally, the resulting clusters are merged by agglomerative clustering
using a similarity criterion.
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Abstract. In the last decade, we observed a great interest in evaluation of local
visual features in the domain of images. The aim is to provide researchers guid-
ance when selecting the best approaches for new applications and data-sets. Most
of the state-of-the-art features have been extended to the temporal domain to al-
low for video retrieval and categorization using similar techniques to those used
for images. However, there is no comprehensive evaluation of these. We provide
the first comparative evaluation based on isolated and well defined alterations of
video data. We select the three most promising approaches, namely the Harris3D,
Hessian3D, and Gabor detectors and the HOG/HOF, SURF3D, and HOG3D de-
scriptors. For the evaluation of the detectors, we measure their repeatability on
the challenges treating the videos as 3D volumes. To evaluate the robustness of
spatio-temporal descriptors, we propose a principled classification pipeline where
the increasingly altered videos build a set of queries. This allows for an in-depth
analysis of local detectors and descriptors and their combinations.

1 Introduction

The bag-of-words approach, has been successfully adapted to the use of visual vocabu-
laries describing images [1]. One central question for this approach is the choice of the
right visual features. For set of local features the aim is to describe visual data success-
fully in a discriminative and robust way. Additionally, the data to be processed should
be reduced as much as possible and should lead to a robust representation of the video.
Video features based on local 3D patches are a popular representation for videos in
tasks in retrieval, recognition and categorization (e.g. [2,3,4,5]). The most promising
approaches for spatio-temporal features are corner detectors [6], blob detectors [7], pe-
riodic spatio-temporal features [8], volumetric features [9], and spatio-temporal regions
of high entropy [10].

Recent work [11] points out that throughout the literature many experiments are not
comparable. As such, the justification of specific properties of detectors and descrip-
tors advocated in the literature is often insufficient. For example, results are frequently
presented for different data-sets such as the KTH data-set [8,12,13,4,5,7,14], the Weiz-
mann data-set [15] or the aerobic actions data-set [10]. Nevertheless, in that evaluation

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 349–358, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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30 classes of
1710 videos

Visual codebook
of length 10000

kV
o

Quantization to 
1710 signatures

30 SVM models
of orig. videos

8 challenges
of 7 levels

56 query sets of
30 signatures

Classification

Fig. 1. Experimental setup to test the description’s robustness against visual alterations

paper, combinations of detectors and descriptors are only measured on their final clas-
sification accuracy on the mentioned data-sets. A principled evaluation of every step of
a matching framework, as is successfully done in “2D” images (e.g. [16]), is missing
for “3D” video matching so far.

Therefore, we propose a new way for the evaluation of video retrieval approaches:
We divide the evaluation of detectors and descriptors into two independent tasks. For
detection, we use a repeatability measurement in 3D similar to [7]. For the descriptions
we propose a pipeline to identify the robustness of local spatio-temporal descriptions
in a principled way. These two tasks are measured by their performance under alter-
ations of the visual input data. Therefore, we use a publicly available dedicated on-line
data-set1 providing 30 classes of videos [17]. Every video undergoes 8 types of trans-
formations denoted as challenges. Each challenge is applied at 7 levels of increasing
impact on the video leading to 1710 videos in total (compare Fig. 1). We use the orig-
inal videos as ground-truth and observe to what extent the features change under the
challenges. Example frames can be found in Fig. 2.

(a) HD movie (b) surveillance
video

(c) TV show

Fig. 2. Example videos and example transformations

We follow [11] and use the best performing approaches Harris3D, Hessian3D and
the Gabor detector and HOG/HOF, SURF3D (also referred to as extended SURF) and
HOG3D for our evaluation on videos. We use the same parameters and the same imple-
mentations.

The paper is organized as follows. The chosen features are described in more detail
in Section 2. The experimental setup is described in Section 3. Results are given in
Section 4. Section 5 gives a critical discussion and conclusions.

1 www.feeval.org

www.feeval.org
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2 Spatio-Temporal Features

An extension of the Harris corner detector [18] is the Harris3D detector [6]. The au-
thors compute a spatio-temporal second-moment structure tensor at each video point
using independent spatial and temporal scale values σ, τ , a separable Gaussian smooth-
ing function G, and space-time gradients L. Extending the scale space to the temporal
domain, we add the temporal variance τ2 to get Lx,σ2,τ2 = Gx,σ2,τ2 ∗ f t

x and use the
image data of the corresponding video frame f t. The spatio-temporal Gaussian kernel
is defined as

Gx,σ2,τ2 =
1

2πσ4τ2
e−

x2+y2

2σ2 − t2

2τ2 (1)

It is separable and thus can be calculated for each dimension on its own and in parallel.
This extension gives then the structure tensor M for every location and scale. The final
locations are extracted by applying H = det(M) − k · trace2(M) and extracting the
positive maxima of the corner function H . Points are extracted at multiple scales based
on a regular sampling of the scale parameters s, t as suggested by the authors. We use
the original implementation3 and its settings k = 0.0005, s2 = 4, 8, 16, 32, 64, 128,
t2 = 2, 4 with a detection threshold of 10−9.

The Hessian3D detector [7] is the spatio-temporal extension of the Hessian blob
detector [19]. The saliency of a location is given by the determinant of the 3D Hessian
matrix. For efficiency, box-filter operations are applied on an integral video structure on
multiple scales. Each octave is divided into 5 scales, with a ratio between subsequent
scales in the range [1.2; 1.5] for the inner 3 scales. A non-maximum suppression algo-
rithm selects the common extrema over space, time and scales: (x,y, t,s, τ ). It is defined
by the structure tensor Γ

Γ =

⎛⎝ L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

⎞⎠ (2)

where the strength S of an interest point is given by its tensor determinant S = |det(Γ )|.
We use the authors’ implementation4 with the suggested parameters.

The Gabor detector is a set of spatial Gaussian convolutions and temporal Gabor fil-
ters [8]. The Gabor filters give a local measurement focusing not only on local changes
in the temporal domain, but prioritize repeated events of a fixed frequency. The function
gives Rxtστω = (f t

xσ ∗ Gxσ ∗ Hev
tτω)2 + (f t

xσ ∗ Gxσ ∗ Hod
tτω)2 where the 2D Gaussian

smoothing is only applied in the spatial domain, whereas the two filters Hev and Hov

are applied in the temporal domain only. Hev and Hov are the quadrature pair of 1D
Gabor filters. The set of functions is available on-line as a toolbox2. As suggested and
used in previous evaluations, we chose σ = 3 and τ = 4.

To describe the detected patches by local motion and appearance, [4] compute his-
tograms of spatial gradients and optical flow accumulated in space-time neighborhoods
of detected interest points referred to as HOG/HOF. HOG results in a descriptor of
length 72, HOF in a descriptor of length 90. For proper performance they are simply

2 vision.ucsd.edu/˜pdollar/toolbox/doc/index.html

vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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concatenated. The descriptor size is defined by Dx(σ) = Dy(σ) = 18σ, Dt(τ) = 8τ .
The approach is inspired by the SIFT descriptor. In the experiment, the grid parameters
nx, ny = 3, nt = 2 as suggested in [4]. The binaries are available online3.

Willems et al. [7] proposed the SURF3D (ESURF) descriptor which extends the
image SURF descriptor to videos. An image patch is represented by a 288 dimensional
vector of weighted sums of uniformly sampled responses of Haar-wavelets. The binaries
are also available4. 3D patches are divided into nx × ny × nt cells. The size of the 3D
patch is given by Dx(σ) = Dy(σ) = 3σ, Dt(τ) = 3τ . For the feature descriptor, each
cell is represented by a vector of weighted sums v = (

∑
dx,

∑
dy,

∑
dt) of uniformly

sampled responses of the Haar-wavelets dx, dy , dtalong the three axes.
For the third descriptor in the evaluation we use the HOG3D [13]. This is based

on histograms of 3D gradient orientations efficiently computed using an integral video
representation. It leads to a descriptor of length 960.

3 Experimental Setup

In this section, the experimental set-up used throughout the evaluation is described .
Section 3.1 presents an overview of the evaluation data-set used. In Section 3.2, the
methodology for the detector evaluation is given. The pipeline and the parameters of
the classification task for the descriptor evaluation is described in detail in Section 3.3.

3.1 Video Data-Set and Features

Our experiments aim to quantify the robustness of the state-of-the-art spatio-temporal
features described in the previous section. We challenge the robustness of these ap-
proaches on the FeEval data-set [17]1, which consists of 1710 videos of about 20 sec-
onds each. Starting with 30 short clips from HDTV shows, Hollywood movies of a full
HD resolution of 1920×1080, and surveillance videos, the full FeEval dataset is created
as follows: (1) Every video undergoes 8 types of systematic alterations denoted as chal-
lenges. The challenges are noise, increasing lightness, decreasing lightness (darkness),
median filtering, compression, scale and rotation, and reduction in frames per second.
(2) Each challenge is applied at 7 levels of increasing impact, and encoded by a pa-
rameter (see Fig. 2). The parameters and the challenge abbreviations used throughout
the experiments are given in Tbl. 1. This leads to about 34 Gigabytes (GB) of H.264
compressed video material.

3.2 Detector Evaluation

To evaluate the robustness of the three detectors Harris3D, Hessian3D, and Gabor, we
measure their robustness or repeatability for each altered video with respect to its cor-
responding original video. Each of the 30 original video is regarded as a boolean 3D
volume Voi , i = 1, 30, sized according to the frame resolution and the total number of
frames. Voi = 1 if a voxel is being detected by a feature or 0 otherwise. Every of the

3 www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
4 homes.psat.kuleuven.be/˜gwillems/research/Hes-STIP/

www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
homes.psat.kuleuven.be/~gwillems/research/Hes-STIP/
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Table 1. Video transformations for each of the 30 videos

Transformation Abbreviation Range
Gaussian blur: σ in pixels blur 3 - 21
H.264 compression compr 60 - 0
Noise in % noise 5 - 35
Median Filter: σ in pixels median 2 - 8
Increasing lightness in % lighten +30% - +90%
Decreasing lightness in % darken -30% - -90%
Frames per Second fps 20 - 3
Scale + Rotation in degrees scalerot 90% & 10◦ - 30% & 70◦

m detected feature ξc,1..m in an altered video is defining a cuboid in space. Per repeata-
bility test, we map the cuboid ξc,j to Vo to get its position and expanion in the original
video’s volume Vo denoted as ξ′c,j . This is done by applying its homography matrix Ω
to Vo ← Ω ∗ Vc For the challenge of scale and rotation, we use the provided “2D”
matrices defined by the parameters given in Tbl. 1, as the alteration is per frame only
and does not affect the temporal configuration. For the challenge of decreasing frames
per second, we regard it as a simple scaling in the temporal direction and apply it on the
t expansion of Vc only. Overlap � of feature j is then defined by

� =
Vo ∩ ξ′c,j

υ(ξt,i)
(3)

where υ(ξt,i) is the volume of the transformed feature’s cuboid. The final repeatability
score of a video is defined by the number of matched features divided by the total
number of features in the challenge video.

3.3 Descriptor Evaluation

We want to test the ability of state-of-the art spatio-temporal descriptors to what extent
they maintain their robustness under alteration of their input videos. We aim to test their
performance in a large scale video classification experiment where the training data
consists of 30 original videos forming 30 classes of challenges. For the three descriptors
HOG/HOF, SURF3D and HOG3D and the combination with the detectors we carry out
the following set-up:

We form a visual codebook of 10000 words by clustering all the features of the
data-set with the kshift [20]5 algorithm. In contrast to many other clustering implemen-
tations, the data-set can be larger than the memory. For every cluster center, it is only
necessary to have the next feature in the memory, not the whole data-set. It is feasible
to cluster 45 GB of 960 dimensional features within 20 hours using 2 X5560@2.8GHz
processors (4 cores each). A video’s signature is built by quantizing its features to the
codebook by the cluster center with the nearest Euclidean distance. For the training set,
we use the 30 original videos with their normalized signatures of a length of 10000 each
as ground truth classes. For every class, we train a linear one-against-all SVM model
equally weighting every class. For this setup, the model is similar to a nearest neighbor

5 www.cogvis.at

www.cogvis.at
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classification. We are using the well known LibSVM library6 with default parameters.
For the 8 challenges with 7 levels, we build 56 test sets of equal size to be evaluated.
The experimental question is then until which alteration the description is still able to
discriminate against the other videos and under which circumstances it fails. When an
altered video is successfully classified as its original video, the description is regarded
as robust to the alteration. In this context, the classification performance according to
the alterations gives then the descriptor robustness in the challenge.

4 Results

Starting with the repeatability experiments in the following Section 4.1 we are able to
evaluate the robustness of the detections of state-of-the-art spatio-temporal features. In
Section 4.2 the three descriptors are evaluated in a classification experiment.

4.1 Detector Evaluation

Regarding the overall repeatability performance the Hessian3D detector outperforms
the Harris3D detector, whereas the Gabor detector shows to be significantly less robust.
The mean results on varying � are given in Fig. 3. The single-scale Gabor detector is
not much affected by the change of the overlap criterium, as the large number of small
features tends to be matched almost perfectly or not at all. This is of course different for
the multi-scale approaches Harris3D and Hessian3D, where different sizes of features
are matched.
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Fig. 3. Mean repeatability results for the whole data-set over varying overlap �

Hessian3D has the best mean repeatability and performs best throughout the exper-
iments. However, it provides a richer representation as its coverage is almost 10 times
larger than Harris3D, thus making the probability for a geometrical match higher. Still,
Harris3D performs comparably similar, which coincides closely to the evaluation of
their 2D counterparts in [16] As we observe in Fig. 4(a), Harris3D and Hessian3D
are almost equally robust to increasing blur. This also holds for increasing compres-
sion shown in Fig. 4(b). The two detectors are very robust to increasing compression,

6 www.csie.ntu.edu.tw/˜cjlin/libsvm

www.csie.ntu.edu.tw/~cjlin/libsvm
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showing similar results on 2D images [16]. This is an important observation, since the
spatio-temporal structure tensor has more degrees of freedom and a much bigger data-
set than it has been done for 2D repeatability. In contrast to 2D detectors, the Harris3D
and Hessian3D show to be very sensitive to change of lightness (see Fig. 4(e) and 4(f)).
The number of features decreases rapidly with the decrease of contrast. This is the only
challenge where the Gabor detector outperforms the other approaches in robustness at
level 7. The decrease of frames per second (see Fig. 4(g)) can be seen as scaling in the
temporal domain. As the approaches are not scale invariant, they perform worse than
their 2D counterparts. Hessian3D regarding the most scales of the approaches evaluated
remains rather stable until level 3, which is the reduction from 25fps to 13fps. Therefore
the standard sampling rate of 2 for the Hessian3D approach can be easily set to 4 with-
out a significant loss in performance, disregarding 50% of the data right away. For scale
and rotation, Gabor and Harris perform poorly compared to the Hessian3D which is
able to maintain a repeatability rate of 0,41 for a video scaled by a factor of 0.3 and ro-
tated by 70 degrees. Harris3d and Gabor are very sensitive to noise, Hessian3D remains
stable showing a repeatability of 0,62 with 35% of noise in the video. For increasing
median filtering, Harris3D is equally robust as the Hessian3D.

Following these results, the following for noisy video data is proposed: Gaussian
blur degrades the detections severely therefore it should not be used in pre-processing
videos. Hessian3D on noise performs more robust than on blurred data. Gabor detec-
tions are neither reliable on noisy or blurred data. When using the Harris3D detector, it
is recommended to use the median filter to remove the noise in advance.

(a) blur (b) compression (c) noise (d) median

(e) increasing light (f) decreasing light (g) fps (h) scale and rotation

Fig. 4. Mean repeatability (� = 0.6) of 30 videos per challenge. Legend is found in (a).

4.2 Descriptor Evaluation

Summary results are shown in Tbl. 2 Results per challenge are shown in Fig. 5. In Fig. 6
results of the experiments using the HOG3D descriptor are given. The combination of
Harris3D and HOG3D outperforms other approaches.

As already argued in the previous section, Gaussian blur decreases the representa-
tion of the videos significantly. As seen in Fig. 5(a), the classification accuracy goes



356 J. Stöttinger et al.

Table 2. Overview experimental results descriptor evaluation

Classification accuracy Mean precision Mean recall
Harris3D Hessian3D Gabor Harris3D Hessian3D Gabor Harris3D Hessian3D Gabor

HOG/HOF 23,57 - - 19,40 - - 23,57 - -
SURF3D - 39,52 - - 40,46 - - 44,80 -
HOG3D 49,76 37,96 34,75 42,40 38,80 28,15 49,76 42,20 35,30

(a) blur (b) compression (c) noise (d) median

(e) increasing light (f) decreasing light (g) fps (h) scale and rotation

Fig. 5. Classification accuracy with increasing alterations of the query images with suggested
descriptor and detector combinations. Legend is found in (a).

towards the prior probability of 3%. This is different for the HOG3D descriptor. For
all detectors, there is a significant gain in classification performance, especially for the
Harris3D+HOG3D raising to a mean accuracy of 54,76%.

Similar behavior is observed for change of lightness: For HOG/HOF and SURF3D,
the classification accuracy goes down rapidly, whereas the HOG3D descriptor provides
a stable description on data of varying contrast. Gabor+HOG3D outperforms these ap-
proaches (see Fig. 5(e) and 6(e)). When combining the detectors with HOG3D, we
observe a correlation with the repeatability experiments of changing lightness. With a
more stable descriptor, the more repeatable representation influences the classification
performance. This does not hold for the fps challenge (see Fig. 5(g) and 6(g)). There
is no correlation between detector robustness and classification performance. This sug-
gests that none of the descriptors is scale invariant to a satisfying extent.We deduce that
for performance reasons, detectors can be applied on a reduced data-set but the local
description has to be performed on full resolution.

Descriptors revealed to be more robust to increasing noise than the local detectors.
Worst performing Harris3D+HOG/HOF reaches a mean accuracy of 51,43%. Hes-
sian3D + SURF3D remains almost stable throughout the challenge (see Fig. 5(c)).
HOG3D shows to be more robust than HOG/HOF (see Fig. 6(c)), but decreases the
performance for the Hessian3D. It is shown that SURF3D is more robust to noise
than HOG3D in this context. Regarding noise reduction using the median filter (see
Fig. 5(d) and 6(d)) performance decreases more than for the noise challenge. HOG/HOF
and HOG3d are sensitive to the filtering, SURF3D performs best coherent to the re-
peatability rate of its detector. Increasing compression does not affect the description
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(a) blur (b) compression (c) noise (d) median

(e) increasing light (f) decreasing light (g) fps (h) scale and rotation

Fig. 6. Classification accuracy with increasing alterations of the query images with detectors and
HOG3D descriptor. Legend is found in (a).

performance of the HOG3D and the SURF3D descriptor. Even strong JPEG artifacts
are described in a stable and discriminative way (see Fig. 5(b) and 6(b)). For level 7 of
the challenge, the data is compressed up to 10% of the original file size.

To sum up the evaluation, we interpret the results categorizing them to simple votes
according to the challenges. ‘-’ denotes sensitivity, ‘+’ robustness to the challenge. ‘+/-’
refers to undecided decision or room for improvements in the algorithmic details of the
approach. Our final suggestions are given in Tbl. 3.

Table 3. Final suggestions based on the evaluation

Detector Robustness Descriptor Robustness
Harris3D Hessian3D Gabor HOG/HOF SURF3D HOG3D

Gaussian blur +/- +/- - - - +/-
H.264 compression + + - - + +
Noise - + - +/- + +
Median Filter + + - - +/- +/-
Increasing lightness +/- +/- +/- - - +
Decreasing lightness +/- +/- +/- - - +
Frames per Second - + - +/- +/- +/-
Scale & Rotation - + - +/- +/- +/-

5 Conclusion

In this work, we perform the first principled evaluation of spatio-temporal features using
comparative challenges inspired by prior evaluation of local 2D image features. For
detector robustness, we experienced comparable results for spatio-temporal features
with their image counterparts. Generally, it showed to be worse to reduce noise in input
data than to let the features take care of it on their own. For change of lightness, both the
Harris3D and the Hessian3D are more sensitive than their 2D counterparts. Description
is most stable using the HOG3D descriptor, outperformed by the SURF3D descriptor in
the challenges of compression, noise and median filtering. The high dimensionality of
the HOG3D descriptor of 960 compared to 288 of the SURF3D descriptor is a drawback
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in terms of the complexity of all succeeding operations and should be considered when
choosing the most appropriate descriptor.
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Abstract. A novel latent variable modeling technique for image anno-
tation and retrieval is proposed. This model is useful for annotating the
images with relevant semantic meanings as well as for retrieving images
which satisfy the users query with specific text or image. The framework
of two-step latent variable is proposed to support multi-functionality of
the retrieval and annotation system. Furthermore, the existing and the
proposed image annotation models are compared in terms of their an-
notating performance. Images from standard databases are used in the
comparison in order to identify the best model for automatic image an-
notation, using precision-recall measurement. Local features, or visual
words, of each image in the database are extracted using Scale-Invariant
Feature Transform (SIFT) and clustering techniques. Each image is then
represented by Bag-of-Features (BoF) which is a histogram of visual
words. Semantic meanings can then be related to each BoF using latent
variable for annotation purposes. Subsequently, for image retrieval, each
image query is also related to semantic meanings. Finally, image retrieval
results are obtained by matching semantic meanings of the query with
those of the images in the database using a second latent variable.

1 Introduction

Due to the fact that the digital multimedia recording and storage devices be-
come common. The number of digital multimedia, such as digital image and
digital video, is also increased considerably. Therefore, to efficiently access the
image/video collection requires a system to handle search and organization of
this information. Such system is called image/video retrieval system. The ideal
retrieval system should be designed to support intuitively search for the user,
and requires minimal amount of human interaction and to be is applicable to
large collections. In practical, the prevalent approach to image retrieval falls
into two main categories: text-based and content-based image retrieval. In text-
based image retrieval system, images are firstly annotated with text, and the
traditional text retrieval techniques can be used to perform image retrieval. The
main advantages of text-based retrieval are its simplicity and its conveniently di-
rect adoption of mature textual information retrieval techniques. In addition, it

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 359–369, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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is easy to use text to express textual characteristic related to images. In general,
there are two strategies to associate image with text. One strategy is to annotate
image by human. These annotations provided by people usually are close to the
actual semantic of images. However, this strategy suffers two drawbacks. First, it
is very tedious and time-consuming to annotate image manually, especially when
the size of image collection is huge. Although manual annotation involves a sub-
stantial amount of work, and often results in considerable cost, there is a system
that utilizes a collaborative system approach called LabelMe [1] which takes ad-
vantage of its member as annotators. Secondly, these annotations are usually
subjective because different people may give different descriptions to the same
image. Another strategy automatically annotates image with terms, or words.
The main advantage of this strategy is the complete automatic process of image
annotation without human interference. Recently, automatic image annotation
techniques are proposed to address the semantic gap problem. Automatic image
annotation is the process by which a computer system automatically assigns
keywords to a digital image. The primary purpose of a practical Content-Based
Image Retrieval (CBIR) system is to discover images relating to a given con-
cept in the absence of reliable metadata. In contrary to CBIR, annotations can
facilitate image search through the use of semantic meaning such as text. This
methodology assures the good performance of image retrieval that if the results
of mapping between images and words are reasonable, text-based image retrieval
system can be semantically more meaningful than search using CBIR. However,
this technique is still in its infancy and is not sophisticated enough to extract
perfect semantic concepts. Moreover, many experiments show that current im-
age annotation techniques still have poor performance in the context of image
retrieval because of the irrelevant keywords associated with images often lessen
image retrieval performance.

2 Literature Reviews and Related Works

Different models and machine learning techniques are developed to learn about
the correlation between low-level features and textual words from the examples
of annotated image and then apply such correlation to predict words for new
images. In this section we review some pioneer works about automatic image
annotation which divided into two major categories namely, generative model
and discriminative model. The basic idea of generative model [2,3,4,5,6,7] is to
construct a model from joint probability of image features and words, and then
use Bayes rule and marginalization of probability to estimate the conditional
probability of words given by image features. But in the discriminative model,
the model is directly being constructed the conditional probability of words given
image features.

Co-occurrence Model [15]: is to count words and image features matrix, and
use its matrix to predict annotated image words for images. In [8], Duygulu et
al. proposed the improved co-occurrence model by utilizing machine translation
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models. In this method, it considers image annotation as a process of transla-
tion from visual feature to texts and collects the co-occurrence information by
estimation of translation probability.

Relevance Model: some researchers used relevance language model which has
been successfully applied to automatic image annotation. The essential idea is
to firstly find annotated images which are similar between images and then use
the words shared by the annotations of the similar images to annotate to an
unlabeled image. There are two subcategories in relevance model, namely dis-
crete variable, and continuous variable. In discrete variable, it is the basic idea of
cross-media relevance model. This model is to improve the co-occurrence model
described in [10], Jeon et al. assumes a one-to-one correspondence between blobs
and words in images. Images are considered as a set of words and blogs, which
are assuming independent. The conditional probability of word given a training
image is estimated by the count of word in this image smoothed by the average
count of this word in training set. These posterior distributions allow the estima-
tion of the probability of a potential caption (set of words) and unseen blobs as
an expectation over all training images. Multiple-Bernoulli relevance model [12]
is based on Cross-media relevance model but it is different in the word distribu-
tion hypothesis. Cross-media relevance assumes that annotation words for any
given image follow a multinomial distribution, while this model uses Bernoulli
process to generate words. While the cross-media relevance model is to count-
ing word in given training set that is discrete random variable techniques, but
same authors considered blogs correspond to word which called Continuous-
space relevance Model described in [11]. Annotation quality of the Cross-media
relevance model is very sensitive to clustering errors, and depends on being able
to priori select the right cluster granularity. Too many clusters will results in
extreme sparse of the space, while too few will lead us to confuse different ob-
jects in the images. Continuous relevance model does not rely on clustering and
consequently does not suffer from the granularity issues. Currently P. Huang
et al [13] proposed combining three co-occurrence models including translation
model, Cross-media relevance model and Multiple Bernoulli relevance model.
They showed the comparison performance between individual model and com-
bining models. The combining model gives the better performance for image
annotation.

Latent Semantic Analysis Model: another way of capturing co-occurrence in-
formation is to introduce latent variables to associate visual features with words.
Standard latent semantic analysis (LSA) and probabilistic latent semantic analy-
sis (pLSA), are applied to automatic image annotation [2,3,4]. A significant step
forward in this approach was proposed by Hofmann [2], who presented the prob-
ability LSA model, also known as the aspect model, as an alternative to LSI, which
has used for text retrieval research. By this approach, Money et al [3,4] have
extended the experiments to bigger collection of 8000 images and achieved encour-
aging results to using pLSA model. Some works extended pLSA model to annota-
tion images. Blei and Jordan [5] extended the aspect model as the latent Dirichlet
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Allocation (LDA) model and proposed a correlation LDA (CORR-LDA) model.
This model assumes that a Dirichlet distribution can be used to generate a mix-
ture of latent factors. This mixture of latent factors is then used to generate words
and regions. Fei-Fei and Perona [6] modified LDA model and have extended the
experiments to learn natural scene categories. Their algorithm provides a princi-
ple approach to learn relevant intermediate representation of scenes automatically
and without supervision to what humans would to do. The aspect model approach
is extended by Zhang et al [9] who proposed the aspect model as Gaussian mix-
ture distribution. They assumed a latent aspect as the connection between the
visual feature and the annotation words to explicitly exploit the synergy among
the modalities. In [14], Pham et al. studied the effect of Latent Semantic Analy-
sis on two different tasks namely image retrieval task and automatic annotation
task. This result ensures that LSA model when combining to image retrieval sys-
tem can improve automatic annotation image. Because the previous models are
designed for an individual task, for instance, the co-occurrence model is useful for
automatic annotation but it is not suitable for image retrieval task. While the la-
tent semantic analysis is designed for image retrieval task but it is not suitable
for automatic image annotation. So the model is not suitable for image retrieval.
Therefore, to design a novel image retrieval system, the generative mode should
be adopted as the expert system, i.e., a joint probability among low-level image
features, semantic word feature vectors and image document terms. Our model
can automatically annotate new images which will be added into that system and
can also retrieve images by users query with text or image. So, in this work, we
propose a new model, called the two latent aspects PLSA model, which can sup-
port multifunctionalities, including of image retrieval function and automatically
image annotation for image retrieval system.

3 Two-Probabilistic Latent Analysis Model

In this section, we propose a novel model based on PLSA for image annotation
and retrieval. We will call this new model, Two-Probabilistic Semantic Analysis
model (Two-pLSA), because we use two hidden random variables, the first latent
aspect is used for representing that the images on a corpus relate their word, and
the second latent aspect is used for representing visual features of each image
relating with their word. The graphical model is shown in Fig. 1. First, we define
the following notations:

Fig. 1. Two-Probabilistic Latent Analysis Model (Two-pLSA Model)
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– Images are represented by a observed random discrete variable D that can
take the value di, i ∈ {1, ...D}, where is the number of document in training
data set.

– Words on each image can be represented by observed random variable W that
can take the value wj , j ∈ {1, , T } where T is the size of a word vocabulary
including of several words that are used for labeling an image in image
annotation task, and are used for searching images by texts in image retrieval
task.

– Bag-of-Features, being basis unit in our approach, are presented by a ob-
served visual random variable X that can take the value xn, n ∈ {1, , N},
where N is the size of visual vocabulary, constructed by K-Mean algorithm,
and are used for image annotation and retrieval.

– The first latent variables L to which is refered as a visual latent aspect can
take the values lm, m ∈ {1, , M}, where M is the number of visual aspects.

– The second hidden variable Z to which is refered as a word latent aspect can
take the values zk, k ∈ {1, , K}, where K is the number of word aspects.

Thus, the joint probability P (di, wj , xn) of all observed di, wj and xn is given
by the marginalization over all the possible values zk and lm: P (di, wj , xn) =∑K

k=1

∑M
m=1 P (di, zk, wj , lm, xn). By the probabilistic graphical model in Fig.

1, the joint probability of all random variables including of observation and
non-observation can expressed in P (di, zk, wj , lm, xn) = P (di)P (wj | zk)P (zk |
di)P (xn | lm)P (lm | wn). Therefore, the joint probability distribution of all
observed variable can rewrite as P (di, wj , xn) = P (di)

∑K
k=1 P (wj | zk)P (zk |

di)
∑M

m=1 P (xn | lm)P (lm | wj). where, the first term descripes each image di

as a mixture of word latent aspects, defined by the multinomial distribution
P (z | di). Each word latent aspect zk is defined by the multinomial distribution
P (w | zk) which gives the probability of each word wj given by each word aspect
zk. Moreover, it also indicates that each wn as a mixture of visual latent aspects,
defined by the multinomial distribution P (l | wj), where each visual latent aspect
is defined by the multinomial distribution P (x | lm) which gives the probability
of each visual word xn

3.1 Learning Parameters Using EM Algorithm

Our model consists of four conditional probabilities, P (wj | zk), P (zk | di),
P (xn | lm), and P (lm | wj) which are assumed as multinomial distribution.
Their parameters are estimated by the Expectation Maximization Algorithm.
For word vocabulary of T different words, P (w | z) is a T -by-K table that stores
the parameter of word latent aspects K being multinomial distribution. And the
K-by-D table stores the parameters of the D multinomial distribution P (z | di)
that describes the training document di. Moreover, for visual vocabulary of N
different visual words, P (x | l) is a N -by-L table that stores the parameter
of visual word latent aspects L, which still is multinomial distribution. On the
contrary, the L-by-T table is relative between visual word and word, as it stored
the parameter of T multinomial distribution P (l | wd) that describes the training
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words of word vocabulary. In order to learning these parameters, in this work, we
use EM algorithm including of 2 steps: E-step complete posterior probabilities of
two dimension latent aspects and M-step four parameters are updated based on
expectation of the posterior probabilities of E-step. For E-step, the probability
of two latent aspects depending on all observation can simply applies Bayes rule
that can rewrite as

P (zk, lm | di, wj , xn) =
P (wj | zk)P (zk | di)P (xn | lm)P (lm | wn)∑K

k=1 P (wj | zk)P (zk | di)
∑M

m=1 P (xn | lm)P (lm | wj)
(1)

For the M-step, we have to maximize the expected complete data log-likelihood
E(Lc) by Eq. (2).

E(Lc) =
∑K

k=1

∑M
m=1

∑D
i=1

∑T
j=1

∑N
n=1(n(di, wj , xn) ln (P (wj | zk)P (zk | di)))

+
∑K

k=1

∑M
m=1

∑D
i=1

∑T
j=1

∑N
n=1(n(di, wj , xn) ln(P (xn | lm)P (lm | wj)))

, (2)

where n(di, wj , xn) is the count of element xn correspond to word wj in doc-
ument di. After applying the Lagrange multipliers, we can obtain the M-step
re-estimation equations:

P (zk | di) =

∑T
j=1 n(di, wj)P (zk | di, wj)

n(di)
, (3)

P (wj | zk) =
∑D

i=1 n(di, wj)P (zk | di, wj)∑T
j=1

∑D
i=1 n(di, wj)P (zk | di, wj)

, (4)

P (lm | wj) =
∑N

n=1 n(wj , xn)P (lm | wj , xn)
n(wj)

, (5)

P (xn | lm) =

∑T
j=1 n(wj , xn)P (lm | wj , xn)∑N

n=1

∑T
j=1 n(wj , xn)P (lm | wj , xn)

, (6)

where n(di, wj) =
∑N

n=1 n(di, wj , xn) and n(wj , xn) =
∑D

i=1 n(di, wj , xn).

3.2 Annotating an Unlabeled Image

Given a new BoF extracted from a new image and the previously estimated
P (lm | wj). By this process, firstly, the new BoF is matched with P (x | lm),
being the parameter of each cluster in latent variable lm, to estimate the sim-
ilarity measurement between BoF and visual latent variable. And secondly, in
the cluster lm, the probability of words P (lm | wj) from learning process is used
for selecting the set of word by the criterion in Eq. (7).

P (wj | x1, x2, ..., xn) ≈
M∑

m=1

[
N∏

n=1

P (xn | lm)BoFnew(xn)]P (lm | wj) (7)
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The parameters P (xn | lm), and P (lm | wj) are estimated by the learning
process. These parameters are the conditional probability, grouping words into
a latent variable lm to estimate the probability of the words. Based on Bayes
rule, the probabilities of words are ranked by increasing of their probability to
annotate a new image.

3.3 Querying by Words

Given a query words, which may be 1 or more, the Bag-of-Word (BoW) can
compute from counting users word in our word vocabulary. This BoW is clustered
into a latent variable zk. And the a set of retrieved image at the clustered latent
variable zk is ranked by their conditional probability the latent variable zk given
di which each di is estimated from learning process by Eq. (8).

P (di | w1, w2, ..., wT ) ≈
K∑

k=1

[
T∏

j=1

P (wj | zk)BoWnew(wj)]P (zk | di) (8)

4 Performance Measurement

The performance measure is used in this work is the mean average precision
(mAP)[16]. The ability of mAP is to summarize the performance in a meaningful
way. To compute mAP, the average precision (AP) of a query q is firstly defined
as the sum of the precision of correctly retrieved words at rank i , divided
by the total number of relevant images rel(q) for this query when AP (q) =∑

i∈relevant precision(i)/rel(q). Afterward, the average precision measure of a
query is sensitive to the entire ranking of images in term of words. Thus the
mAP of entire image Mq is calculated by Eq. (9) to summarize the performance
of annotation system.

mAP =

∑
Mq

AP (q)

Mq
. (9)

Another performance measurement used in this paper is the processing time
which measures the time from annotation of testing dataset per an image.

5 Simulation Results

5.1 Dataset and Simulation Condition

In this paper, we used the PASCAL 2008 database [17] which contains a total
number of 4,340 annotated images, and 20 words. An image contains at least
one word. The data from training/validation are divided into training and test-
ing process by the ratio of 50%. Table 1 summarizes the number of words and
images. In Table 1, the PASCAL 2008 dataset is an unbalance dataset, which
unequally contains the number of word. The word Person is the highest num-
ber of both image and word than the others. In this simulation, the PASCAL
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Table 1. Statistics of PASCAL 2008 Image dataset

Words #image #word Words #image #word

Aeroplane 236 316 Diningtable 105 110
Bicycle 192 269 Dog 388 477
Bird 305 476 Horse 198 285
Boat 207 336 Motorbike 204 272
Bottle 243 457 Person 2002 4168
Bus 100 129 Pottedplant 180 361
Car 466 840 Sheep 64 145
Cat 328 378 Sofa 134 151

Chair 351 623 Train 151 166
Cow 74 130 Tvmonitor 215 274

2008 dataset is divided into 2 separated sets; 50% for training to construct the
models, and the remaining for testing purpose. SIFT feature of training data
set is extracted from images by Hessian Affine detection. Then, these SIFT fea-
tures are used for constructing visual vocabulary or BoF prototype by K-mean,
and Images are represented into BoF prototype as new features. BoF of entire
training dataset are used for input feature to construct the model namely Naive
Bayes, CMRM, pLSA and two-pLSA. To measure the performance among these
models, the testing dataset is used for image annotation by mAP and processing
time and mAP in each word to measure the efficiency of the models.

5.2 Image Annotation: mAP Performance and Processing Time

In this experiment, we investigate the annotating algorithms by varying the
number of visual words which are constructed from K-mean algorithm ranging
from 100, 300, 600 and 1000. For pLSA, the number of latent variable is equal
to 5 variables, and for two-pLSA model, the number of latent variables K and
M are equal to 10 and 100 variables, respectively. So the comparison results are
shown in Table 2. From Table 2, in the case of N = 1000, the Naive Bayes
model obtains the lowest mAP which equals to 0.438. Thus, this method is not
suitable for annotation. When investigating the CMRM, its mAP performance
is better than that Naive Bayes model. For our model,two-pLSA model, its mAP
value is still less than CMRM and pLSA, but more than Naive Bayes Model.

Table 2. Mean Average Precision Performance of Image Annotation

Models N = 100 N = 300 N = 600 N = 1000

Naive Bayes 0.369 0.391 0.420 0.438
CMRM 0.489 0.491 0.492 0.492
pLSA(K = 10) 0.486 0.488 0.491 0.493
Two-pLSA(K = 10, M = 100) 0.420 0.440 0.459 0.470
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Table 3. Processing time per an image Performance of Image Annotation

Models N = 100 N = 300 N = 600 N = 1000

Naive Bayes ≤ 0.1 0.4 1.3 1.8
CMRM 10.0 30.0 55.0 80.2
pLSA(K = 10) 12 24 54 101
Two-pLSA(K = 10, M = 100) 0.5 2.3 4.0 7.2

When increasing the number of latent variables K of pLSA, its performance is
slowly increased by the number of latent variable. This implies that the number
of latent variable is not a necessary factor to increase the mAP performance
for an imbalance dataset. But, the mAP of two-pLSA is increased by raising the
number of visual word, we obtain its mAP that equals to 0.470, where N = 1000.
Moreover, we compare the processing time per image of the annotation of each
algorithm, as shown in Table 3. For every algorithm, when increasing the number
of visual words, the processing time is increased according to their number. The
processing time of Naive Bayes Model is the lowest. The processing time of two-
pLSA model is 7.2 msec per an image, which is lower than pLSA and CMRM
respectively.For the results of processing time, although the mAP of two-pLSA
is less than that of CMRM and pLSA, but the two-pLSA model can annotate
an image faster than that of CMRM and pLSA.

5.3 Text-Based Image Retrieval: mAP and Processing Time

In this experiment, the performance of image retrieval by searching with text
are evaluated by varying the number of visual word as 100,300, 600, and 1000
respectively. the algorithms of text-based image retrieval are performed namely
CMRM, and two-pLSA model. In the experimental results, it indicates that our
proposed model can obtain better performance in both mAP and processing
image which are shown in Table 4 and 5. CMRM model obtains mAP value
being around 0.11 and its processing time increases when the number of visual
words are increased. The processing time of pLSA and two-pLSA are a constant
time, 350 and 50 msec respectively. Their constant times occur from the set of
captions, which are estimated by annotation process, stored in the file format,
and the estimated captions are used them for the text-based image retrieval.
The mAP of our model is about 0.55, and obtains a constant time being 50 msec

Table 4. Mean Average Precision on text-based image retrieval

Models N = 100 N = 300 N = 600 N = 1000

CMRM 0.11 0.12 0.11 0.11
pLSA(K = 10) 0.14 0.14 0.16 0.16
Two-pLSA(K = 10, M = 100) 0.55 0.54 0.55 0.55
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Table 5. Processing time (msec) on text-based image retrieval

Models N = 100 N = 300 N = 600 N = 1000

CMRM 200 450 800 11500
pLSA(K = 10) 350 350 350 350
Two-pLSA(K = 10, M = 100) 50 50 50 50

which is faster than CMRM, and pLSA Model, So that its mAP is better than
both.

6 Conclusions

In this paper, we investigate the image annotation and retrieval namely Naive
Bayes model, Cross Media relevance model, and pLSA model which are compared
to our proposed model, two-pLSA. From the annotation results, pLSA model
achieves the best efficient mAP performance closed to our proposed model while
our proposed model has faster processing time. Moreover, in text-based image
retrieval, our propose model obtains better performance than CMRM in term
of mAP and processing time, 0.55 for mAP and 50 msec per a given search.
This indicates that our model can support multi-functionality of the retrieval
and annotation system.
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Abstract. The governing behaviors of individuals in crowded places of-
fer unique and difficult challenges. In this paper, a novel framework is
proposed to investigate the crowd behaviors and to localize the anoma-
lous behaviors. Novelty of the proposed approach can be revealed in three
aspects. First, we introduce block-clips by sectioning video segments into
non-overlapping patches to marginalize the arbitrarily complicated dense
flow field. Second, flow field is treated as a 2d distribution of samples in
block-clips, which is parameterized by using mixtures of Gaussian keep-
ing the generality intact. The parameters of each Gaussian model, par-
ticularly mean values are transformed into a sequence of Gaussian mean
densities for each block-clip namely a sequence of latent-words. A bank
of Conditional Random Field model is employed, one for each block-clip,
which is learned from the sequence of latent-words and classifies each
block-clip as normal and abnormal. Experiments are conducted on two
challenging benchmark datasets PETS 2009 and University of Minnesota
and results show that our method achieves higher accuracy in behavior
detection and can effectively localize specific and overall anomalies. Be-
sides, a comparative analysis is presented with similar approaches which
demonstrates the dominating performance of our approach.

1 Introduction

Crowd behavior analysis is an attractive research for computer vision with chal-
lenging issues due to jumble of objects, dynamics and self-organizing behaviors
of crowds [1]. Some earlier approaches [2] [3] attempted to detect and track ob-
jects across the intervals to investigate object’s activities. Performance of these
approaches is not promising in the crowded scenes due to heavy occlusions, clut-
tering and varying proximity of objects. Therefore, to address the challenging
aspects of crowd behavior analysis new methodologies are being devised by ex-
ploiting crowd-specific sociological studies [4].

The objectives of crowd behavior analysis are very diversified, for example,
from sparse-level (i.e. scene level) [5] crowd density analysis to coarse level (i.e.
subject level) [6] analysis. In recent attempts, Andrade et al. [7] built a genera-
tive model (i.e. ergodic HMM) at a sparse level for normal motion patterns and
events of low probability from the defined threshold are equated as anomalous

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 370–379, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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a) Normal b) Abnormal

Fig. 1. (a). An example scene showing normal behavior whereas the detection re-
sults(bottom) are marked with green. (b). shows a sample frame for abnormal event
and the red squares depict the abnormal behavior.

behaviors. In similar aspect, Kratz et al. [8] proposed spatio-temporal gradients
in cuboid where the dominant patterns of inactivity are detected by modeling
their statistics on coupled HMM in dense crowds. In contrast, Mehran et al. [9]
combined the social force model with the optical flow based particle advection
and simulate the normal forces of particles implicitly to detect the deviations.
Another work is presented by Chan et al. [10] to holistically model the crowd
flow in the scene using the dynamic texture model where Support Vector Ma-
chines (SVM) is used as classifier along with other classification techniques to
detect the crowd events.

Unlike the above reviewed approaches, Albio et al. [11] maintain the proba-
bilities of optical flow at corner points and constitutes histogram to detect the
abnormalities on PETS 2009 dataset. In the same context, Benabbas et al. [12]
build online probabilistic models of both density and orientation of flow pat-
terns to detect the crowd activities. It can be notice that a dense field of flow
is observed in crowded scenes, which needs to be marginalized prior to model
for effective analysis of underlying crowd behaviors. However the suggested un-
supervised approaches [11] [12] offer very specific solutions to this problem. In
contrast, for generative modeling approaches such as HMM and LDA, strin-
gent conditional independence over expanded space of observed flow field is an
essential requirement for more tractable joint distributions. Consequently, it is
challenging when modeling the dense and correlated flow patterns which indicate
the likely situations.

In this paper, the problem of modeling and learning the crowd behaviors (i.e.
normal and abnormal) is addressed as shown in Fig. 1. A novel top-to-down
framework is constructed in which we begin by finding foreground regions. Later,
the video sequence is sectioned into video segments to form the block-clips. The
introduction of our block-clips thereby allows us to form the prototypes of dense
flow vectors which are extended over an interval in video segments containing
significantly correlated and uncorrelated flow field. There on, without losing
generality, the computed flow vectors inside each block-clip are treated as a 2d
distribution of observed data and are assigned to specific linearly superimposed
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Fig. 2. a) Presents the sectioning of video sequence into video segments. b) M × N
block-clips are formed in each video-segment. c) demonstrates the observed flow field
where green points highlight the normal behavior and red points indicate the abnormal
behaviors ( Also, arrows indicate the respective crowd behaviors). d) shows the resulting
mixtures of Gaussian fitted over the point cloud as shown in (c), whereas colors of the
mixtures of Gaussian show the respective orientation of the flow field ( please zoom-in
for the better visibility).

components of the Gaussian mixture model. Expectation Maximization (EM)
is used to find the maximum likelihood estimators in the flow vectors. The pa-
rameter values obtained by the Gaussian models are interpreted as a sequence
of latent words of flow patterns for each block-clip which we term as latent-
words for simplicity. A bank of Conditional Random Field (CRF) models are
constructed, one for each block-clip to model the sequence of latent-words with
corresponding label sequence to characterize the crowd behavior at the specific
and global level in an unconstrained environment.

The main contributions of the paper are twofold: 1) first, we characterize
both the recurrent and non-recurrent behaviors of the crowd using a bank of
CRF models unlike the work proposed by Andrade et al. [7] using ergodic HMM
for severely limited environments. Typically, crowd data contains dense and cor-
related flow features, which are highly difficult to model directly using HMM.
In the above referenced literatures [7] [9], parametric and clustering approaches
are employed to form the analytical representation of flow field keeping the gen-
erality of data intact but still severely limited to address the issues of generality.
Second contribution of our paper is the introduction of block-clips and perform-
ing the parametric modeling of the flow vectors in each block-clip by fitting
mixtures of Gaussian. As a results, we obtained a sequence of latent-words with
corresponding label which is modeled with CRF to the analyse the underlying
crowd behaviors. Our proposed approach demonstrates promising results and
outperforms when compared with other approaches [10] [9].

The rest of the paper is structured as: section 2 explains the proposed method-
ology in detail. Section 3 presents the results of our proposed approach, and
concluding remarks are sketched in section 4.

2 The Methodology

Abrupt and independent activities in crowded scenes result in incoherency, which
defines the overall self-organizing mechanism of the underlying crowded scenes.
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The proposed framework is staged in several phases to model and characterize
the crowd behaviors. Our proposed approach begins by extracting the region of
interest (ROI) through segmentation, thus limiting the information redundancy
and computational time unlike the holistic approach used in [9] [5]. In parallel,
a grid of two by two is mapped over the ROI in each frame and optical flow is
computed. Then, we introduce the concept of block-clips in which at first video
sequence is fragmented into equal sized segments. We divide each video segment
into non-overlapping blocks which result in spatio-temporal block-clips. Flow
vectors inside block clips are modeled using the mixtures of Gaussian resulting
in a sequence of latent-words. It acts as a sequential data for each of our block-
clips with corresponding label sequence for learning of CRF parameters during
the training and the crowd behaviors are inferred on test samples. The details
are presented in the following:

2.1 Pre-processing

In pre-processing, we build an initial background model which is generated
by using Gaussian Mixture Model (GMM). Foreground is extracted robustly
with background subtraction, whereas background model is updated through
MDI [13] for each time step (currently, the problem shadows is not addressed).

2.2 Creating Block-Clips

Each frame is sectioned into N × M blocks of size (i.e. size = 16), selected after
conducting empirical studies over the dataset (i.e. PETS 2009). In parallel, a
grid of two by two is placed over the detected ROI which we refer as points of
interest (POI) and the optical flow is computed associated with these POIs as
presented in Fig. 2(a and b). The observed dense flow field is transformed into
a flow vector f = (vx, vy). Where vx and vy represent the velocities along the
horizontal and vertical axis of the motion field.

As, it is observed that in crowded scenes the occupancy regions in each
frame are equally important and provide distinctive attributes. So, we begin
by marginalizing the video sequence into equally sized segments (i.e. video seg-
ments). The selection of video segment sk size (i.e. K) depends upon the dataset
and the frame rate of the video sequence. After this, we obtained the block clips
cl,k,t inside each video segments as follows:

V = [s1, ..., sK ], sk =
{
c(1,1,1), ..., c(L,K,T )

}
and c(l,k,t) = (f1, ..., fP )

where V is the video sequence, sk are the segmented clips of the sequence which
contains L block-clips in K-th segment at time t. Each block-clip keeps P cloud
of flow vectors which serves as a fundamental information for the analysis of
crowd behaviors as shown in Fig. 2(c).

2.3 Mixture Model

We can define our 2d flow vectors (i.e. f = (vx, vy)) in each block-clip as random
variables which are extended over certain frames (i.e. K) in the corresponding
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video segment. Since, the flow points present in the block-clip can be signifi-
cantly different and correlated, therefore, it is required to glean the information
by applying the parametric approximation. Now, our objective is to learn the
parameters and model the mixtures of Gaussian for this 2d distribution. The
principle objective of using Gaussian mixture model is that it provides a the-
oretically straightforward way to model our data and forms a comprehensive
representation of the flow vectors field inside each block-clip which we as latent-
words in respective video segment. These latent-words in each block-clip are used
to train and test CRF model for crowd behavior analysis.

Given our 2d distribution of flow vectors in each block-clip, a fairly informal
way to initialize the model randomly followed by EM, an elegant optimization
function for finding the maximum likelihood solution for our distributions. Par-
ticularly, parameters of the distribution are estimated to transform the obser-
vations (i.e. flow vectors in each block-clip) into G Gaussian models (i.e. G = 3
which is found empirically and optimal for our experiments) as illustrated in
Fig. 2(d). The Gaussian mixture distribution can be written as:

p(x) =
G∑

g=1

πgN (x |μg , Σg)

where the G represents the number of Gaussian models, πg is the weight, μ is
the mean and covariance

∑
are the parameters of each component of Gaus-

sian model. The μg of the mixtures of Gaussian contains parameters for each
dimension of the sample flow vectors (i.e. f). We compute the mean density for
these mixtures of Gaussian, thus form a sequence of latent-words for each block-
clip, which is to be processed by CRF whereas the length of the latent-word
sequence (i.e. Seq or x̄) is directly proportional to G. We can write as:

μg = (μgvx , μgvy ), dμg =
√

μ2
gvx

+ μ2
gvy

, and Seq = x̄ = {dμ1 , .., dμG}

2.4 Conditional Random Field and Crowd Behavior Detection

Conditional Random Field is a discriminative modeling technique for labeling
the sequential data and a special case of log linear model. CRF provides a prob-
abilistic framework to specify the probability of particular label sequence given
the observation sequence, a nice description on CRF is provided by Wallach et
al. [14]. Specifically, x̄ is our input sequence (i.e. x̄ = x1...xw) of w latent-words
and ȳ is the corresponding label sequence (i.e. ȳ = y1...yw) of respective be-
haviors. Here, we assume that both sequences x̄ and ȳ have the same length. As
defined by Lafferty et al. [15], the probability of label sequence given observation
sequence can be:

p(ȳ |x̄ ; θ) =
1

Z(x̄, θ)
exp

∑
i

θiFi(x̄, ȳ) (1)

The numerator Fi(x̄, ȳ) is the feature function which represents the paired map-
ping Fi : X × Y −→ ! of the data space X and the label space Y at different
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level of granularity. Therefore, the feature function can be arbitrarily correlated
and can be defined as follows:

Fi(x̄, ȳ) =
∑

j

fi(yj−1, yj , x̄, j) (2)

where fi is the low level feature function which is influenced by the subset of the
above entities such as previous label yj−1, current label yj , observation sequence
x̄, and current position j.

The denominator in Eq.1 is the partition function commonly termed as a
normalization factor which ranges over all the label sequence, but we assume that
the feature-function can depend on at most two labels. So, instead of enumerating
all possible ȳ, this assumption allows us to enumerate the possible ȳ efficiently.
The formulation of Z is as follows:

Z(x̄, θ) =
∑

ȳ

exp
∑

i

θiFi(x̄, ȳ) (3)

Training CRF. We perform training using stochastic gradient methods based
on gradient of conditional likelihood function for nonlinear optimization. The
goal of learning task is to compute parameter θ (i.e. weights) values of our model
and learns the Conditional log-likelihood (CLL) of the training sequences. Our
objective is to maximize CLL, we have used stochastic gradient ascent method
for training. The formulation is defined as follows:

∂

∂θilogp(y |x ; θ)
= Fi(x, y) − ∂

∂θi
logZ(x, θ) (4)

In the above equation, for each θi, the partial derivative of CLL is evaluated for
single training sequences (i.e. one wight for each feature-function). Precisely, the
partial derivative with respect to θi is the, i-th value of the feature function for
its true label y, minus the averaged feature-function values for all possible labels
ȳ. So, above equation can be rewritten as:

∂

∂θi
logp(y |x ; θ) = Fi(x, y) − Eȳ≈p(ȳ|x ;θ) [Fi(x, ȳ] (5)

In practice, the function log(θ) does not maximize in a closed form solution.
Therefore, we invoke BFGS (Broyden Fletcher Goldfarb Shanno) as an opti-
mization routine to estimate curvature numerically from the first derivative of
CLL avoiding the requirement of exact Hessian inverse computation [16] with
stochastic gradient ascent.

Inferencing CRF. Given the test sequence of latent-words for each block-clip x̄
and the learned parameter values of θ from the training data, the corresponding
label for the sequence is obtained as:

ȳ∗ = argmaxȳp(ȳ |x̄ ; θ) = argmaxȳ

∑
i

θiFi(x̄, ȳ) (6)
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Using the definition of feature function in Eq.2, we get:

ȳ∗ = argmaxȳ

∑
i

θi

∑
j

fi(yj−1, yj, x̄, j) (7)

Each label sequence is aggrandize from < start, end > states of labels (i.e. y0 to
yn +1), so, for efficient computation an alternative choice is to employ matrices.
For this, gj is a q × q matrix where q is the cardinality of the set vectors in the
label sequence ȳ and is defined over each pair of labels yj−1 and yj as follows:

gj(yj−1, yj |x̄) = exp(
∑

i

θifi(yj−1, yj, x̄, j)) (8)

For each j, we will get different gj function which depends on weight θ, test
observation sequence x̄ and the position j. The sequence probability of the label
ȳ given observation sequence x̄ can be rewritten in compact manner as follows:

p(ȳ |x̄ ; θ) =
1

Z(x̄, θ)

∏
j

gj(yj−1, yj |x̄ ) (9)

Z(x̄, θ) =
∏
j

gj(yj−1, yj) (10)

Our main contention in obtaining the local sequence of latent-words in each
block-clip is that by interpreting the motion flow field globally (i.e. at a video
segment level), it is difficult to reveal the required level of detail, which can
differentiate the coherent and incoherent dynamics. Therefore, in the above sec-
tions, we are able to acquire the intrinsic flow patterns in a compact manner
that faithfully characterizes the behavior of the crowd dynamics. The mixtures
of Gaussian are invoked to parameterize dense flow vectors into a sequence of
latent-words, which are modeled with CRFs to characterize the normal and ab-
normal behaviors in the crowds.

3 Experiments and Discussion

The proposed approach is tested on publicly available benchmark datasets from
PETS 2009 [17] and University of Minnesota (UMN) [18]. Ideally, the normal sit-
uation is represented by the usual walk of large number of people. In contrast, the
abnormal situations such as running, panic, and dispersion are observed when
individuals or group of individuals deviate from the normal behavior. There is a
major distinction between these two datasets. For example, in PETS 2009, the
abnormality begins gradually unlike UMN dataset making PETS more challeng-
ing due to the transitions from normal to abnormal situations.

We conducted our test experiments on PETS S3 dataset, comprises of 16
outdoor sequences containing different crowd activities such as walking, running
and dispersion. To evaluate the diversity of proposed approach, we conduct ex-
periments on UMN crowd dataset which contains 11 videos of different scenarios
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108

222

337

0

0

0

GT

DR

GT

DR

GT

DR

Events Normal Abnormal

Normal 97.3 2.7

Abnormal 3.1 96.9

Methods Results(%)

Our Methods 97.1

Mehran et al.  [9] 96

Chan et al. [10] 81

Table 1. Confusion Matrix

Table 2. Comparative Analysis

Fig. 3. Presents the quantitative analysis on PETS 2009. The left frames indicate
absolute normal (green) behavior and the right frames depict absolute abnormal (red)
behaviors along the time-line (gray) in each row.

showing normal and escape cases. The training is performed on PETS S0 and
S1 scenarios. However, the UMN sequences are tested without special training.

We have demonstrated a qualitative analysis of the test sequences. Fig. 3
presents ground truth (GT) and detection result (DR) in each row for normal
and abnormal situations in the sequences. The left and right frame in each
row depict the normal and abnormal behavior of the crowds. Thin color bars
(i.e. green and red) in each row show the GT, whereas thick bars indicate the
detection results. Colors of the bars define crowd behaviors and timings of the
occurrences. Meanwhile, incorrect localization of the crowd behaviors are marked
with respective colors of false detections in Fig. 3.

Fig. 4(left) demonstrates the detection results of crowd behaviors on PETS
2009. Normal behaviors are marked as green patched and abnormal behaviors are
highlighted with red patches. Results in Fig. 4(right) demonstrate the detection
of crowd behaviors for normal and panic situations in UMN crowd sequences.
Results show that the proposed approach is capable of detecting the governing
dynamics of crowd and able to capture the transition’s period (normal to ab-
normal) successfully. Table. 1 shows the confusion matrix of the probabilities of
normal and abnormal behaviors for each class in crowds. The diagonal elements
in the confusion matrices represent the percentage probability of each class in
the group. Misclassification between the classes is shown by the non-diagonal
elements which are observed due to the prominent motion field at the objects
leg’s parts as compared to body and head.
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(a) (b)

Fig. 4. a) Shows detection results on PETS 2009 and b) presents behaviors detection
on UMN datasets. Left frames show the normal behavior detection indicated by green
patches and right frames depict the abnormal behaviors marked with red patches.

To analyze the performance of our proposed approach in detecting the crowd
dynamics effectively, we have made a comparative analysis from two recent pro-
posed techniques [9] [10]. In the first approach, the computed social forces are
model with LDA, whereas in the second approach, SVM is used to classify dif-
ferent categories of crowd behaviors (Note. we consider the results of specific
categories which define the abnormal crowd behaviors). As it can be seen in
Table. 2, performance of our method is promising and achieves higher detection
rate for the detection of the crowd behaviors in specific and overall manner when
compared with related approaches.

4 Conclusion

We propose a novel approach for detecting crowd behaviors by modeling com-
puted sequence of latent-words using Conditional Random Field. We define
block-clips as non-overlapping spatio-temporal patches and parameterize the
flow vectors in each block-clip with mixtures of Gaussian to obtain a sequence
of latent-words. Block-clip specific sequence of latent-words allows an effective
representation of features. CRF is learned from these sequences to characterize
the behaviors. The presented results demonstrate promising performance and
outperform when compared with the related work.
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Abstract. The central tenet of this paper is that by determining where
people are looking, other tasks involved with understanding and
interrogating a scene are simplified. To this end we describe a fully auto-
matic method to determine a person’s attention based on real-time visual
tracking of their head and a coarse classification of their head pose. We
estimate the head pose, or coarse gaze, using randomised ferns with de-
cision branches based on both histograms of gradient orientations and
colour based features. We use the coarse gaze for three applications to
demonstrate its value: (i) we show how by building static and temporally
varying maps of areas where people look we are able to identify interest-
ing regions; (ii) we show how by determining the gaze of people in the
scene we can more effectively control a multi-camera surveillance system
to acquire faces for identification; (iii) we show how by identifying where
people are looking we can more effectively classify human interactions.

1 Introduction

This paper summarises work in the Active Vision Group in which we have devel-
oped methods for estimating the gaze of individuals from low resolution video,
and a variety of applications based on that idea. In particular, we observe that
by determining where people are looking, other tasks involved with understand-
ing and interrogating a scene can often be simplified. Humans are remarkably
good at inferring where others are looking, even from brief views, or from very
small image fragments in video, and it is clearly an important cue: consider, for
instance, a car driver approaching a pedestrian about to cross the road; if the
pedestrian has not been seen to look towards the driver then more caution may
be exercised.

While there is a substantial body of work on finding gaze for human computer
interaction, this is a relatively controlled scenario in which the face is close to
the camera and more often than not facing it. In contrast, there has been little
work on finding people’s gaze automatically using passive visual sensing in the
case of visual surveillance, for instance, where the face may occupy only a very
small fraction of the image. To our knowledge the earliest work on trying to
find gaze from low resolution images is [1] (and a more advanced version of the
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same work [2]). At a similar time [3] investigated estimation of coarse eye-line.
Subsequently [4] proposed using a combination of segmentation and randomised
tree classification, and refined the tree decisions in [5]. [6] proposed a different
technique based on template matching and SVM classification and showed this
to be superior to [1]. We compare the methods of [6] and [5] in section 2.

In this paper we draw together three pieces of work, bonded by the common
theme of using estimates of coarse gaze. In the first application, first published
in [5] we show how by monitoring the gaze of two or more individuals we can de-
termine areas that are of collective interest. The second application [7] combines
gaze estimation with our work on active surveillance. Active cameras cooperate
to obtain facial images of all individuals in a scene; this is achieved by monitoring
the head pose (the coarse gaze direction) and choosing pan, tilt and zoom values
for each camera to maximise the information gained by looking at each person.
The final application, first published in [8] shows how using head pose informa-
tion can aid in the discovery and recognition of interactions in video. Knowledge
of head pose yields a degree of viewpoint invariance since descriptions about
the local vicinity of a person can be made with reference to their gaze, and
furthermore can be used to hypothesize and verify local interactions, under the
assumption that people interacting usually look at each other. We discuss these
applications briefly in sections 3, 4 and 5 (though the reader is referred to the
respective publications for full details). Prior to this, in the following section we
introduce our method for estimating the gaze from low resolution video.

2 Coarse Gaze Estimation

Here we briefly describe our method for tracking people and estimating their
coarse gaze direction. More details appear in [5].

The first stage requires each pedestrian in a scene to be tracked, with the
purpose of providing stable head images for the following pose estimation step.
We track only the heads of pedestrians rather than their entire bodies for two
reasons. The first is that security cameras are generally positioned sufficiently
high to allow pedestrian’s faces to be seen, so their heads are rarely obscured.
The second is that the offset between the centre of a pedestrian’s body and their
head changes as they walk, so tracking the head directly provides more accu-
rately positioned head images. The general approach we adopt is one of tracking
by repeated detection. We use Dalal and Trigg’s HOG detection algorithm [9]
trained on cropped head images to provide detections. In each frame of video,
sparse optical flow measurements from KLT feature tracking [10] are used to
predict the head location and the head detections provide absolute observations
which are fused with the predictions using a Kalman filter. The resulting loca-
tion estimates provide stable head images which are used for gaze estimation (see
figure 1). The 2D image locations are converted into a 3D location estimates by
assuming a mean human height of 1.7 metres using the camera calibration with
a ground plane assumption. This knowledge of the ground plane also permits
us to restrict the set of scales over which the head detector must be evaluated
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(e.g. large head will not appear near the horizon). This restriction in scale, to-
gether with our CUDA-based implementation of HOG [11] mean that we achieve
real-time tracking on full 480p Standard Definition video.

We address finding the coarse gaze of a person as a multi-class classification
problem. We make use of so-called randomised ferns, a simplified version of the
randomised decision trees that have previously been successfully applied to tasks
in object detection and classification from small image patches [12]. A single fern
comprises a fixed set of binary decisions, which are typically chosen randomly
(with the assumption that by considering a large enough set of such decisions,
sufficient informative ones will be included). Interrogation of an image patch
using such a fern results in a binary string (each bit is the outcome of one
decision), which can be considered as an index into a set of histograms. Each
histogram encodes the relative frequency with which the binary string is selected
by patches of each class. These histograms are quickly and easily trained by
presenting many examples to the fern and accumulating the relative frequencies.
Likewise, at query time, the fern is applied to the query image patch to yield
an index, and the likelihood read directly from the indexed histogram. The
classification accuracy can be improved by combining the output from several
ferns (i.e. a forest).

Fig. 1. Sample head images with the corresponding gaze estimations

To estimate the head pose we discretise the gaze direction by dividing the
full 360 ◦ range into a fixed set of 8 classes, and learn a forest of ferns classifier
from a large corpus of pre-labelled heads of 16x16 pixels. The choice of what
sort of decisions to use within the ferns is very important; decision outcomes
must be able to recognise general properties of each direction class irrespective
of the large variations in appearance between people. We make use of decisions
based on two different feature types, both of which compare values from different
image locations against one another, rather than against a fixed threshold. This
yields a degree of robustness to brightness variations and colour tints.

The first decision type is based on normalised histograms of gradient orienta-
tions. A fern decision is then a simple comparison between the sizes of a pair of
histograms bins. The second type of decision is based on Colour Triplet Compar-
isons (CTCs). Each CTC decision samples colours from pixels at three different
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locations within the tracked head region and makes a binary decision based on
whether the first and second colours are more similar than the second and third
colours in RGB colourspace.

Since few other authors have considered the question of finding gaze from such
low resolution data, direct comparisons with the state-of-the-art are difficult.
Orozco et al. [6] describe a competing method for low resolution gaze, based on
templates and Support Vector Machines, in which heads are localised using a
combination of HOG detection and background subtraction (note that unlike
that work, we do not assume that background subtraction is possible). Their
work showed remarkable improvement relative to early work in the field [2].
We tested our method against theirs (using our own implementation of their
algorithm) while varying the nature of the training and testing data sets. Table
1 summarises our findings. Each entry in the table gives the percentage of the test
data that was classified to the correct class. Where the testing and training sets
are the same, ninety percent of the data was used for testing and the remaining
ten percent for testing. In all cases, both our method and Orozco’s perform
significantly better than random (which would be 12.5% for an 8 class problem),
but it is noticable that the performance figure closest to that cited in [6] is
in the biased scenario of testing and training on the same data. The “Photo
dataset” comprises a set of still image of people harvested from the web, manually
classified, and scaled to the standard size of 16x16. “Hand-cropped video” is data
taken from a variety of video sources, observing many individuals, but with many
exemplars from the same individuals. “i-LIDS” data are taken from the standard
UK Home Office dataset (from UK Home Office Scientific Development Branch,
i-LIDS: Image Library for Intelligent Detection Systems).

Table 1. Each cell gives the testing performance as a percentage of correctly classified
testing examples, based on training from one of the three datasets, for either the method
of [5] or [6]

Test data

Training data

Photo dataset Hand-cropped Tracked i-LIDS
Video

[5] [6] [5] [6] [5] [6]

Photo dataset 44 36 30 26 26 23

Hand-cropped Video 49 36 86 82 29 32

Tracked i-LIDS 23 23 30 29 63 50

3 Measuring Attention Using Coarse Gaze

In [5] we combined the tracking and head-pose to make a fully automatic system
for measuring the amount of attention received by different areas of a scene.
Over the course of an entire video, the locations and gaze directions of the
pedestrians are projected onto the ground plane and used to build up an attention
map representing the amount of attention received by each square metre of the



384 I. Reid et al.

(a) (b)

Fig. 2. (a)A frame showing the gaze direction estimates and the paths along which
pedestrians were tracked. The lower images show the resulting attention map and the
result of projecting it onto a video frame, identifying the shop window as a popular
subject of attention. The blue lines on the attention map show the edges of the road.
(b) Sequence showing how the attention map can be used to highlight transient areas
of interest. The left column shows video frames with annotated gaze directions, the
middle column shows the corresponding attention maps and the third column shows
the video frame modulated with the projected attention map, under the assumption
that the subject of interest is between 0 and 2 metres above the ground.

ground. The projected attention density is reduced linearly with the distance
from the pedestrian to correct for the increasing field of view width.

In one experiment we analyse a video of a busy town centre street with up to
thirty pedestrians visible at a time over twenty-two minutes. The results from
tracking approximately 2200 people are shown in figure 2(a). A second appli-
cation is to use the estimated gaze to identify a transient source of interest. In
particular here we are interested in finding areas of the image that are simultane-
ously viewed by two individuals. The resulting intersection, shown in figure 2(b)
identifies the subject of attention. Further experiments and details can be found
in [5] .

4 Using Gaze Estimates for Camera Control

Face recognition in surveillance situations usually requires high resolution face
images to be captured from remote active cameras. Since the recognition accu-
racy is typically a function of the face direction – with frontal faces more likely to
lead to reliable recognition – we propose a system which optimises the capturing
of such images by using coarse gaze estimates from a static camera. This work
builds on ideas we have been pursuing for some time based on the idea that a
set of pan-tilt-zoom cameras can achieve cooperative surveillance of an scene by
choosing their PTZ values to make the most informative sensor readings [13].
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Fig. 3. Sample images showing the operation of the live system at three different times
(left to right). The top row shows images from the static camera. The tracked heads
are annotated with boxes and their gaze direction represented by a circular section.
The second row shows a schematic of the camera control method. The active cameras
are depicted as cones. The objective function for pan, tilt and zoom settings for each
camera is marked in red, with darker representing higher expected information gain.
Each ring shows variation of expected information gain with pan value, while the
concentric rings represents varying zoom. Active targets are circled, and the target
with the most information gain for the left camera is green. The trajectories of all
targets from the last 30 seconds are drawn. The third row shows the images recorded
by the left active camera, and the last row contains images from the right camera.

More formally, we define a probabilistic model of the scene, which naturally en-
codes uncertainty (for example, distributions over the locations of all targets,
distributions over the identities of each target, the possibility that new targets
have appeared, etc). The uncertainty in this model can be quantified formally
as the entropy; our goal then becomes to choose actions that lead to greatest
expected decrease in entropy, or in other words, the greatest expected gain in
mutual information.

In the task at hand, we seek to choose the PTZ parameters for a pair of
cameras which are most likely to result in acquisition of face images suitable for
identification (i.e. close to frontal views). To that end we develop an abstract
model of a face identification system in terms of its true/false positive/negative
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rates. While we omit the details (and refer the reader to [7]), the key notion
is that the identification performance of the system is a function of the gaze of
the individual, and that the longer we observe an individual, the more likely
we are to make a positive identification. The expected gain in information is
then a function of the field of view of each camera, the observed gaze direction,
and our prior confidence about the identity given our previous observations.
Detailed formulae, along with a thorough evaluation, are given in [7]. In this
overview paper, we restrict ourselves to the intuitive result that a person facing
away, outside the field of view, or someone already identified yields very little
information gain, while acquisition of a frontal image of an unidentified person
potentially yields high information.

A supervisor camera runs the tracking and gaze estimation algorithm from
section 2, and two active cameras are controlled according to the the information
theoretic objective function. The parameters of the active cameras are pan, tilt
and zoom, meaning the search space has six dimensions. We conduct a full search
over discretised 6D parameter space, in which we evaluate the information gain
by summing the gain for each target observed. This exhaustive search runs at two
frames per second per camera. Sample frames from the live system are shown in
figure 3. While the behaviour of the system is difficult to convey in still images,
the main result from this live system is that, as desired, the cameras follow the
targets, trying to keep the targets that look towards the camera centred in the
field of view.

5 Understanding Human Interactions via Attention

In this work, published first in [8], we make use of coarse gaze classification in
order to simplify the problem of recognising human interactions in TV shows.
More specifically, we are interested in classifying video as containing one, or none
of the interactions: handshake, hug, kiss, and high-five, in spite of background
clutter, camera movement, shot changes, arbitrary lighting, etc. We make use
of coarse gaze in two novel ways. The first is to achieve a weak view invariance
in a local descriptor of the appearance and motion in the vicinity of a person;
this is because we reference the descriptor relative to the facial orientation.
The second is based on the assumption that people generally face each other
while interacting. We use this to learn a structured SVM [14] that learns the
spatial relations between actors for each action class, and is trained to obtain the
best joint classification of a group of people in frame. Using structured learning
improves the retrieval results over those obtained when classifying each person
independently.

Unlike the work described in the two preceding sections, here we use a slightly
different classification scheme and classifier for obtaining the coarse gaze. This
is because the heads/faces in TV shows generally occupy a larger fraction of the
image than in surveillance data, and also because we are content to have an even
coarser classification into one of five classes: profile left and right, inclined left
and right, and facing away (note that in TV shows it is very rare for a face to
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(a) (b)

Fig. 4. (a) Upper body detections and estimated discrete head orientation are shown
above, while the below shows the grid indicating dominant gradients per cell and
significant motion (red cells) for a hand shake. (b) Motion weights outside upper body
detection (blue square) learnt by a linear SVM classifier trained to discriminate between
hand shakes and high fives. Higher weights are indicated by lighter areas. As expected,
the more important motion regions are in lower locations for hand shakes and in higher
ones for high fives. These also follow the direction of the face.

be absolutely frontal in a scene). We train a one-vs-rest linear SVM classifier to
distinguish these five gaze classes.

Interaction recognition proceeds as follows: using a combination of upper-
body and head detections together with local feature tracking we track each
person in a scene [15]. For each person track, and for each frame of video we
then classify the gaze and create a local descriptor of motion, as illustrated in
figure 4(a) (details are given in [8]). The descriptor is then used as a data vector
for training a linear SVM classifier for interaction class. An illustrative example
of the results that we obtain, figure 4(b), shows the motion regions (outside the
upper body detection) learnt by a linear SVM classifier trained to discriminate
between hand shakes and high fives. As expected, important motion regions are
correlated with the head orientation and occur in lower locations for hand shakes
and higher ones for high fives.

Each of these simple one-vs-all SVM interaction classifiers returns a score,
and we then aim to improve the classification; to that end we learn relative
locations of people given both their head orientation and an interaction label,
in a structured learning framework similar to the one described in [16]. The
goal is simultaneously to estimate the best joint classification for a set of de-
tections in a video frame rather than classifying each detection independently.
We first define a set of spatial neighbourhood relations, and then learn the
weights for these spatial relations using the SV M struct package [17]. The weights
learned this way using this method can be seen in figure 5. Examples of the re-
trieval results using the system are shown in figure 6. The reader is referred to
[8] for the detail of the structured SVM implementation and a more thorough
evaluation.
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Fig. 5. (a) Spatial relations used in our structured learning method. The black square
at the centre represents the head location inside an upper body detection. (b) Weights
learnt for each interaction class and head orientation combination. Lighter intensity
indicates a higher weight.

handshake high-five hug kiss handshake high-five hug kiss

Fig. 6. Highest ranked true positives (left) and false positives (right) for each interac-
tion obtained using the automatic method. The red squares indicates negative videos.

6 Conclusions

In this paper we have reviewed our previous work on and related to the problem
of estimating the head pose, or coarse gaze, of people in video. We described
a method for finding coarse gaze in real-time that includes real-time tracking,
and real-time classification and showed that it performs at the current state of
the art. We then briefly described three applications that demonstrate both the
efficacy of the method, and also the value of being able to estimate gaze from
video.

The accuracy with which we can obtain the gaze is a limiting factor and falls
well below what humans can achieve with the same stimuli. We hope to inves-
tigate methods for improving the accuracy, such as better use of local motion
information, and also methods for reducing the training effort by moving to un-
supervised learning techniques. While randomised ferns are certainly fast and
expedient, we do not propose them as the only solution and other classification
techniques, or possibly even regression techniques, may well yield better results.

We believe that there is a wide variety of other applications yet to be ex-
plored. Driver (or pedestrian) assistance is one clear application alluded to in the
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introduction, in which gaze can be used as a powerful cue in automated braking
situations. A further intriguing possibility would be to monitor patterns of gaze
within a crowd to detect anomalous behaviour.
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Abstract. A novel method for distinguishing classes of viewers from their ag-
gregated eye movements is described. The probabilistic framework accumulates
uniformly sampled gaze as Gaussian point spread functions (heatmaps), and mea-
sures the distance of unclassified scanpaths to a previously classified set (or sets).
A similarity measure is then computed over the scanpath durations. The approach
is used to compare human observers’s gaze over video to regions of interest
(ROIs) automatically predicted by a computational saliency model. Results show
consistent discrimination between human and artificial ROIs, regardless of either
of two differing instructions given to human observers (free or tasked viewing).

1 Introduction

A compelling means of analysis of human visual perception is drawn from the collec-
tion of eye movements over dynamic media, i.e., video. The video stream can either
be a scene captured by a forward-facing camera worn during the performance of some
natural task [1], or of film presented to the viewer [2]. Analysis of the former leads to
improved understanding of how humans function in the world, and in particular, how
vision is used in concordance with basic motor actions such as walking or reaching [3].
Analysis of the latter leads to better understanding of how artistic media is perceived,
and in turn, how its design and production can be altered to affect its perception.

Analysis of eye movements over dynamic media has largely been performed manu-
ally, e.g., by hand-coding saccadic events as they occur in relation to events present in
the media such as scene cuts [4]. What is needed, and what this paper addresses, is an
automatic means of classification of disparate viewing patterns, or scanpaths—defined
as the temporal sequence of gaze or fixation coordinates cast over the stimulus.

This paper contributes a means of classification of scanpaths accumulated over tem-
poral event samples. Event samples happen to coincide with video frames in this in-
stance, but the technique can assume any sampling rate and is thus also applicable to
still imagery presented for extended viewing durations [5]. Applications of the approach
include gaze-based discrimination between classes of human viewers (e.g., experts from
novices—eye movements are known to be task-dependent [6]), or discrimination be-
tween human gaze and artificially predicted regions of interest, or ROIs. The paper
focuses on the latter, in a manner differing from previous work with images [7], distin-
guishing between perceptually salient and computationally salient gaze coordinates.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 390–399, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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2 Background

Scanpath comparison can be classified as either content- or data-driven. The former
is largely based on regions of interest, or ROIs, identified a priori in the stimulus and
subsequently by associating those regions with fixations, leading to analysis of image
regions or elements fixated by the viewer. The latter approach, in contrast, is made on
scanpaths directly, independent of whatever was presented as the stimulus. An impor-
tant advantage of the latter is that it obviates the need for establishing a reference frame
within which the ROI stipulation must take place.

Consider two recent approaches to the scanpath comparison problem. The vector-
based similarity measure is content-driven, as it relies on the quantization of the stim-
ulus frame into an arbitrarily-sized 5×5 grid which serves as the method’s source of
ROI labeling [8]. A label is added to the scanpath stream whenever a fixation is present
within a grid cell. In contrast, the revisited string-editing approach is data-driven, as it
operates directly on scanpaths [9]. String (ROI) labels are determined by overlapping
fixation clusters. Both approaches consider fixation durations and are therefore poten-
tially suitable for analysis of gaze collected over dynamic media, however, their means
of scanpath aggregation are derived from pairwise vector or string comparisons. For
groups of viewers, considerable additional organization is required.

As an alternative to string-editing approaches, heatmaps have become a common
tool for visualization of eye tracking data [10,11]. To our knowledge, to date they have
not been successfully used for quantitative classification of aggregate eye movements.

Perhaps most similar to the present work are two previous efforts of calculation of
the “average scanpath” [12] and of the computation of the scanpath distance via the
Earth Mover’s Distance [13]. The former was based on string-based multiple sequence
alignment, although the derivative notion of variance (distance from the average) was
omitted. The latter relied on the conceptualization of a scanpath composed of “piles of
earth”, with a comparison scanpath represented by “holes”. The minimum amount of
energy required to move earth from piles to holes gave the scanpath similarity.

The present paper extends a framework for multiple scanpath comparison and clas-
sification [5]. Although the previous approach was inspired by dynamic media, it was
only implemented over still images viewed for very short durations. In this paper the
analysis framework is applied to dynamic media for which it was originally conceived,
namely video sequences. The resultant procedure may be conceptualized as a measure
of deviation, over time, of one or more scanpaths of unknown classification from a set
of scanpaths of known classification. This is similar to a prior effort based on machine
learning, which was also intended to act as a classifier, although its aim was to classify
content (i.e., image regions) [14], whereas the present approach is directed at classifi-
cation of the data (i.e., scanpaths).

3 Classification Framework

Following Airola et al.’s nomenclature [15], let D be a probability distribution over
the sample space Z = X × Y , with input space X and output space Y = {−1, 1},
where y ∈ Y denotes the labeling of the input x ∈ X as a non-class (x−∈X−) or class
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member (x+∈X+), respectively. We define a classifier as a function CZ(x) that outputs
a set of threshold-based decisions Z = {z1, . . . , zm} ∈ Zm where zi = (xi, yi), for
the training set of m training examples X = {x1, . . . , xm} ∈ Xm.

There are three steps to building and evaluating the real-valued prediction function
CZ produced by a learning algorithm developed with fixed training set Z . First, sim-
ilarity scores are extracted from X . Second, a discrimination threshold h is computed
from the similarity scores assigning the positive class X+ to x if CZ(x) > h and the
negative class X− otherwise. Third, classifier reliability is gauged by the conditional
expected AUC, or AUC, the area under Receiver Operating Characteristic (ROC) curve,
A(CZ) = Ex+∼D+,x−∼D− [H(CZ(x+) − CZ(x−))] where H(a) is the Heaviside step
function, which returns 1 when a > 0, 1/2 when a = 0, and 0 when a < 0. In practice,
because the probability distribution D cannot be accessed directly, the AUC estimate Â
is calculated e.g., via cross-validation, or by the Wilcoxon-Mann-Whitney statistic:

Â(S, CZ) =
1

|S+||S−|
∑

xi∈S+

∑
xj∈S−

H(C{i}(xi) − C{j}(xj))

where S+ ⊂ S and S− ⊂ S are the positive and negative examples of the set S, and
C{i}(xi) is the classifier trained without the ith training example.

Along with AUC, classifier accuracy is reported by evaluating CZ(w) on test data
w ∈ W , assumed to be disjoint from X . Accuracy is defined as the ratio of correctly
classified examples of W (true positives and true negatives) to all classified examples.

Accuracy and AUC measures can be seen to correspond to two different metrics of
interest. The former is related to the quality of the learning algorithm, i.e., how well
on average CZ generalizes to new test and training data. The latter addresses how well
CZ(x) generalizes to future test examples once learned from the given training set. In
the present context, the latter is more of interest as it provides a better indication of
the discriminability of the given training data set against the test set or sets, i.e., does a
given scanpath class differ from another class or classes of scanpath sets.

3.1 Extracting Similarity Scores

The classifier’s similarity measure computes a scanpath’s deviation from a probabilis-
tic model of one (or more) class(es) of scanpaths classified a priori. Scanpath classes
can be operationalized arbitrarily, e.g., based on some characterization of viewers. The
classifier functions over dynamic stimuli, i.e., video, which may be considered as a
collection of static stimuli, i.e., frames. Scanpath similarity metrics developed for static
stimuli can thus be applied on a frame-by-frame basis and aggregated in some way (e.g.,
averaged). The trouble with prior vector- or string-based approaches is their reliance on
pairwise comparisons for aggregation. This leads to rather complicated bookkeeping
requirements for pairwise organization, e.g., labeling each pair as local, repetitive, id-
iosyncratic, or global based on the dyadic permutations of viewer and stimulus [7].

Presently, each frame is composed of a sampled set of gaze points (or fixations), sam-
pled from as many sets as there are scanpath classes, with each set composed of scan-
paths collected from multiple viewers. A per-frame similarity measure is then derived
and averaged over the duration of the video sequence to compute the total similarity of
an unclassified scanpath to the one or more sets of classified scanpaths.
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Fig. 1. Heatmap of a classified scanpath set S at a discrete timestamp. As yet unclassified scan-
paths’ (gray circles not used in heatmap generation) similarities are calculated as the average
Gaussian similarity, e.g., d(A,S) < d(B, S) in this example.

With video acting as the temporal reference frame, a scanpath s(t) is parametrized
by the frame timestamp t, such that s(t) = {(i(t), j(t)) | t ∈ [t − w, t + w]} for some
window w, with w = 0 identifying a single frame, yielding the scanpath’s 0+ gaze
points over a video frame at t1. This event-driven model, effectively samples a scanpath
at a single point in time, and affords notational interchangeability between a gaze point,
fixation, and scanpath, when considered on a per-event, or in this case per-frame, basis.
A set of scanpaths S(t) = {s1(t), s2(t), . . . , sm(t)} is similarly parametrized to define
the combined set of gaze points over frame t from the scanpath set collected from m
viewers. Over each frame, multiple sets are represented, e.g., S+ member and S− non-
member sets (in the experiment described below, three such sets are established).

Modeling a classified scanpath s by a normally distributed point spread function
f(s) = 1/

√
2πσ2 exp

(−s2/2σ2
)

produces the well-known heatmap scanpath visual-
ization (on a per-frame basis; see Fig. 1), typically visualized with the Gaussian kernel’s
support truncated beyond 2σ for computational efficiency [16]. Extending kernel sup-
port also defines the scanpath’s first moment μs =

∫∞
−∞ sf(s)ds so that the (Gaussian)

similarity of an unclassified scanpath s′ to s is estimated by its deviation

g(s′, μs) =
1√

2πσ2
exp

(
− (s′ − μs)

2

2σ2

)

with frame timestamp t made implicit and σ set to the expected eye tracker error,
as illustrated in Fig. 1. In practice, the above model is necessarily discrete and s is

1 With a 50 Hz eye tracking sampling rate and a common video refresh rate of 30 Hz, it is
assumed that a scanpath will yield at most two gaze point samples per frame; alternatively, if
operationalized by a sequence of fixations, a scanpath will yield a single fixation coordinate
per frame (or none if the frame happened to sample an inter-fixation saccade).
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understood to be two-dimensional, s(t) = (i(t), j(t)), s(t) ∈ R2, with t denoting the
frame timestamp and (i, j) the image (video frame) coordinates.

The similarity of s′ to a set of classified scanpaths S (at t) is defined as

d(s′, S) =
1
|S|

∑
s∈S

g(s′, μs)

where the weighting factor 1/|S| is used for similarity score normalization. The mea-
sure d(s′, S) is averaged over the entire video sequence to estimate the mean similarity
of an unclassified scanpath to the classified scanpath set, d̄(s′, S) = 1/T

∑
t d(s′, S)

with t ∈ T , the sequence duration. The resultant mean similarity lies between 0 and 1,
but tends to fall near 0. Its value, however, is not as important as the probability that the
score lies within the expected distribution of scores for a specific class.

3.2 Computing the Classification Threshold

Gaussian similarity scores serve as input to the classification mechanism that estimates
an optimal discrimination threshold for scanpaths of unknown classification. An un-
classified scanpath is accepted by the classifier if its similarity score is higher than the
computed threshold.

The ROC curve plots the true positive response against the false positive response
of the threshold at each threshold level and provides two convenient facilities. First, it
facilitates the choice of an optimal threshold, by selecting the level at which the thresh-
old is closest to (0, 1), where the ratio of false positives to true positives is balanced.
Second, AUC indicates the classifier’s discriminative capability. Ideally, AUC should
equal unity (1), while a completely random classifier yields AUC close to 0.5. AUC
represents the probability of an arbitrarily-chosen class member obtaining a similarity
score greater than some arbitrarily-chosen non-class member.

3.3 Estimating Classifier Performance via Cross-Validation

A typical strategy used for estimating the performance, or reliability, of a classifier,
when operating in a small sample setting, is cross-validation2. Specifically, leave-pair-
out cross-validation, or LPOCV, is adopted since the intent is to estimate the conditional
AUC as an indicator of the classifier’s performance while avoiding the pitfalls associ-
ated with pooling and averaging of LOOCV (leave-one-out cross-validation) [15].

Cross-validation is performed by repeatedly partitioning the data set into two non-
overlapping parts: a training set and a hold-out set. For each partitioning, the hold-out
set is used for testing while the remainder is used for training. Accuracy is computed as
the percentage of hold-out sets successfully classified. For each partitioning, LPOCV
leaves out at a time from the training set each possible positive-negative pair of training
examples. With LPOCV, AUC is estimated as

Â(X, CZ) =
1

|X+||X−|
∑

si∈X+

∑
sj∈X−

H(C{i,j}(si) − C{i,j}(sj))

2 Scanpath data sets generally number in the tens, whereas classifiers tend to operate on data
sets numbering in the thousands.
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(a) Seq. A, chosen for its mis-
placed pair of modern sneakers

(b) Seq. B, chosen for its
unfamiliarity

(c) Seq. C, chosen for its large
number of prominent faces

Fig. 2. Frames from stimulus sequences. Seqs. A and C were excerpts from Sofia Coppola’s Marie
Antoinette © 2006, Columbia Pictures and Sony Intl., obtained with permission for research
purposes by the Universitat Autònoma de Barcelona. Seq. B shows the mouse vasculature in
the spinal cord at 0.6×0.6×2 μm resolution with blood vessels stained black, as obtained by a
knife-edge microscope (courtesy of Texas A&M).

where X+ ⊂ X and X− ⊂ X are the positive and negative examples of the training
set X , C{i,j}(si) is the classifier trained without the ith and jth training examples, and

H(a) is the Heaviside step function. Because AUC estimate Â(X, CZ) is equivalent to
the Wilcoxon-Mann-Whitney U statistic, AUC > 0.7 is generally considered a statisti-
cally significant indicator of discriminability, although a test of significance should be
performed by computing the standardized value under assumption of normality of class
distributions.

The training data generally consists of multiple classes, very often two, but possi-
bly more. The current approach generates multiple classifiers, each trained to a single
class, with all other classes acting as non-class training data. Generally, when there are
more than two classes, a “one-to-many” comparison may be carried out first, with all
non-class training data pooled into the negative class set. Should the classifier AUC be
significant, “one-to-one” comparisons can then be performed, in a manner analogous to
ad-hoc pairwise t-tests following ANOVA.

4 Empirical Evaluation

The classifier was applied to scanpaths drawn from three classes: two from human ob-
servers distinguished by differing tasks, and the third from a bottom-up saliency model
(simulating artificial observers), developed by Itti et al. [17]. The model is part of iLab’s
Neuromorphic Visual C++ Toolkit and is freely available online3. At the model’s core
is a neuromorphic simulation that predicts elements of a visual scene that are likely to
attract the attention of human observers. This has wide applications in machine vision,
e.g., automated target detection in natural scenes, smart image compression, etc. The
model was compared to human scanpaths captured over video sequences.

3 http://ilab.usc.edu/bu/, last accessed Aug., 2010.

http://ilab.usc.edu/bu/
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Stimulus. Stimuli consisted of three video sequences, named A, B, and C, shown to hu-
man observers in Latin square counterbalanced order, with approximately each third of
the viewers seeing the sequences in order {A, B, C}, {B, C, A}, or {C, A, B}. Seq. A
contained a misplaced modern pair of sneakers in an 18th century setting, while a mod-
ern popular song played in the background. Seq. C was from the same feature film,
with scenes containing a large number of human faces. Seq. B was composed of CT-
like scans of the mouse vasculature in the spinal cord. Select frames from the clips are
shown in Fig. 2.

Apparatus. Eye movements were captured by a Tobii ET-1750 eye tracker, a 17 inch
(1280 × 1024) flat panel with built-in eye tracking optics. The eye tracker is binocular,
sampling at 50 Hz with 0.5◦ accuracy.

Participants. Twenty-seven college students volunteered in the study (seven male,
twenty female). Participants’ ages ranged from 18 to 21 years old.

Procedures. Participants sat in front of the eye tracker at about 60 cm distance. Follow-
ing 9-point calibration, subjects were asked to naturally watch the first of two viewings
of each of the three sequences (amounting to “free viewing”). They then received view-
ing instructions prior to the second viewing of the same sequence. For seq. A, they were
asked to look for anything unusual (they were meant to notice the sneakers). For seq. B,
they were asked to focus on the vascular stains (they were meant to avoid the aberrant
artifacts at the top and sides of the frames). For seq. C, they were asked to avoid looking
at faces (they were meant to simulate autism, since autistic viewers have been shown to
exhibit reduced face gaze [18]).

Artificial gaze points over video were generated by the iLab Neuromorphic Toolkit.
The toolkit contains a program called ezvision that can be executed on static images to
produce a primary point of focus that is expected to match the visual attention of a hu-
man viewing the scene, followed by other salient points in the scene that are connected
by a trajectory depending on the exposure time stipulated. However, the model also
operates in video mode by extracting images from the video at the video frame rate.
This causes the algorithm to be forced to find a salient point within the frame within the
frame’s exposure duration. For a typical video, this means the algorithm has only 33 ms
to arrive at a salient viewpoint in the frame.

To compare the model’s prediction with gaze points captured from human observers
ezvision was run in video mode with the timestep set to 33 ms for the faces and shoes
video, and 40 ms for the mouse video. Itti’s algorithm is able to produce predictions
with small amounts of noise added to the predictions [17]. This helped simulate results
for 27 hypothetical users, by running ezvision on each video 27 times with random noise
added to the predictions made each time.

5 Results

Classifier AUC and accuracy shows significantly consistent discriminability (AUC >
0.7) between perceptual (top-down) and computational (bottom-up) saliency (see Tab. 1).
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Table 1. Results composed of classifier accuracy (ACC) and area under ROC curve (AUC) for
one-to-many and one-to-one comparisons of two classes of viewers (“free viewing” and tasked)
vs. the computational model for each of the three video stimuli

One-to-many Cross-Validation One-to-one Cross-Validation
Perceptual (pooled)

vs. computational saliency
Perceptual “free viewing”
vs. computational saliency

Perceptual tasked
vs. computational saliency

A B C A B C A B C
ACC 1.000 1.000 0.997 1.000 0.999 0.999 0.999 1.000 1.000
AUC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Consistency refers to the evaluation of the Heaviside step function H(a), where the
classifier correctly discriminates between human and artificial scanpath classes in all of
the m×(m−2) cross-validation partitionings, over all frames of each of the three video
stimuli. The classifier is not as consistent in distinguishing between the two human
scanpath classes, able only to distinguish between them in two of the three cases (Seq. B
and C; these results are discussed at length elsewhere [19]).

Human observers tend to exhibit extreme preferential behavior over Seq. C, i.e.,
when free viewing, heatmap visualization (see Fig. 3) suggests most viewers fixate
faces, particularly in “close shots”. Tasked viewers, in contrast, who were told to avoid
faces, did so, but without apparent agreement on scene elements. Both strategies employ
top-down directives that are apparently different from the strategy employed by the
computational saliency model. The model fails to match human scanpaths over Seq. B
even though it seems well suited to this stimulus (high contrast elements and sudden
onset stimulus). Visualization suggests that both the model’s and free viewers’ gaze fell
atop the sudden onset aberrant artifacts at the video frame edges. However, once humans
were tasked to avoid these artifacts, they did so, whereas the model was not privy to
this top-down goal-directed information. In either case, insufficient gaze overlap was
detected over the length of this short video clip to diminish classifier output below unity.
Seq. A yields similarly consistent discriminability results. Verbal instructions had little

(a) Seq. A (b) Seq. B (c) Seq. C

Fig. 3. Heatmap visualizations of two excerpted video frames viewed freely (top row), with task
(middle row) or by the saliency model (bottom row)
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impact on perturbing human gaze (tasked scanpaths were not discriminable from free
viewers’ scanpaths by the classifier). Seq. A appears sufficiently complex to foil the
saliency model from accurately predicting features selected by human observers.

6 Discussion

The saliency model works well on simple videos/images of traffic signals, or on tracks
of single or multiple persons moving against fairly non-complex backgrounds, or in
interactive visual environments [20]. However, for complex video segments with multi-
ple objects of interest in the foreground and background and with rapid motion between
the frames such as the Marie Antoinette videos, the bottom-up saliency model’s gaze
selection differs from that of natural viewing by humans. Two hypothetical parame-
ters describe the extent of success/failure of the model: (1) the complexity of a single
frame in the video, and (2) the amount of motion (apparent or real) between frames.
When the two are low (simple images with small motion between frames), the model is
likely to match human gaze points. However, when the complexity of the image and/or
inter-frame motion increase(s), results diverge. The model could probably be used to
describe the human visual system’s tropism to salient points in a video, but only under
fairly simple conditions. Once video complexity increases, bottom-up saliency can be
clearly distinguished from tasked as well as natural viewing.

Given sufficiently clear instructions (e.g., avoid looking at faces), the tropism of the
human visual system, driven by top-down cognitive processes, differs from free view-
ing such that it can generally be distinguished by the classifier. The saliency model is,
in contrast, task-independent and models bottom-up processes. Although it is possible
to modify the relative feature weights in the construction of the saliency map with su-
pervised learning to achieve some degree of specialization, it is at present unlikely that
such specialization is sufficient to adequately model top-down visual processes.

7 Conclusion

A classification algorithm was developed to distinguish scanpaths collected over dy-
namic media. The algorithm successfully discriminated between perceptual and com-
putational saliency over video sequences, illustrating the disparity between top-down
visual processes and their bottom-up computational models.
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Abstract. One of the most crucial techniques associated with Computer
Vision is technology that deals with the automatic estimation of gaze ori-
entation. In this paper, a method is proposed to estimate horizontal gaze
orientation from a monocular camera image using the parameters of Ac-
tive Appearance Models (AAM) selected based on several model selection
methods. The proposed method can estimate horizontal gaze orientation
more precisely than the conventional method (Ishikawa’s method) because
of the following two unique points: simultaneous estimation of horizontal
head pose and gaze orientation, and the most suitable model formula for
regression selected based on each model selection method. The validity of
the proposed method was confirmed by experimental results.

1 Introduction

The human gaze is thought to be effective for understanding or measuring the
degree of his / her interest or attention because the information from the gaze
is the most vital for humans to understand their environment. Thus, estimating
gaze orientation automatically is expected to be applied not only to robot vision,
artificial intelligence, and human interaction but also to the analysis of image and
video content, and analysis and retrieval based on human percipient models [1,2].

In order to estimate gaze orientation, two main types of methods have been
proposed. One approach employs a special device (such as an infrared camera) as
proposed by Ohno [3]. This approach can estimate gaze orientation with a high
degree of accuracy. The other approach processes monocular camera images. The
advantage of this approach is that gaze orientation can be estimated inexpen-
sively because only a monocular camera is required. From this view point, we
employ the latter approach in this study.

Many methods have been proposed for estimating gaze orientation from a
monocular image. For instance, Yamazoe proposed the use of the Lukas-Kanade’s
feature tracking method [4] and 3D-eyeball model[5]. Gaze can be estimated
stably by this method, even if the subject is not included in the training data.
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However, the precision is not so accurate because the gaze orientation is esti-
mated after the head pose estimation.

Ishikawa proposed the use of 3D AAM (Active Appearance Models) to extract
the coordinates of the feature points, and the gaze orientation was estimated by
the 3D eyeball model. The gaze orientation can be computed more precisely than
Yamazoe’s method due to the improvement of head pose estimation error using
this method. However, the positioning error of the feature points causes the gaze
estimation error because gaze orientation is computed using the coordinates of
the feature points relative to the eye [6].

Thus, there were few methods that address the relationship between head
pose and gaze orientation simultaneously. This is the reason why we propose a
method in this paper to estimate them simultaneously using regression-based
AAM parameters.

Moreover, the feature parameters extracted by AAM contain unessential infor-
mation for the estimation. To select the essential feature parameters, we employ
the model selection method (e.g. AIC[10], MDL[11], BIC[12]).

The rest of this paper is organized as follows. In Section 2, the method to esti-
mate horizontal gaze orientation is proposed. Experimental results are presented
in Section 3, followed by concluding remarks in Section 4.

2 Proposed Method

In this section, the method to estimate horizontal gaze orientation is proposed.
Fig. 1 shows a processing flow of the proposed method. First, the facial area
in the test image is detected using AdaBoost based on Haar-like features for
stable AAM performance. Next, the feature parameters are extracted by AAM
on this facial area. Finally, the head pose and the horizontal gaze orientation
are simultaneously estimated using a regression model that is selected based on
AIC (Akaike Information Criterion), MDL (Minimum Description Length), and
BIC (Bayes Information Criterion).

2.1 Facial Area Search

The performance of AAM feature extraction depends on the initial search points.
To make AAM search performance more stable, the facial area in an image is
roughly computed using AdaBoost based on Haar-like features proposed by Viola
[7]. Haar-like features for face detection are based on the difference between the
sums of the pixels within two rectangular regions of the same size and shape
that are adjacent to one another horizontally or vertically.

Since the total number of Haar-like features is far larger than the number
of pixels on the image, simple and efficient classifiers can be constructed by
selecting a small number of important features using AdaBoost from a huge
library of potential features.

Actually, we employed “haarcascase frontalface′′ in OpenCV library for search-
ing facial area.
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Fig. 1. Processing flow of the proposed method

2.2 Active Appearance Models

Cootes proposed AAM to represent shape and texture variations of an object
with a low dimensional parameter vector c [8]. Vector c can represent various
facial images with arbitrary orientation of face and gaze using the training images
that contain varying faces and gazes.

Since AAM is constructed statistically from training images, some elements
of vector c represent the information related to the variance in face and gaze
orientation. Therefore, this parameter vector c is employed as the feature param-
eter for the estimation of gaze orientation because parameter vector c is thought
to be linearly associated with the displacement of the feature points caused by
changes in head pose and gaze orientation.

In the AAM framework, shape vector s and texture vector g of the face are
represented as shown in Eq. (1) and Eq. (2), respectively. In particular, shape
vector s indicates the coordinates of the feature points, and texture vector g
indicates the gray-level of the image within the shape,

s(c) = s̄ + PsW−1
s Qsc (1)

g(c) = ḡ + PgQgc (2)

where s̄ and ḡ are the mean shape and mean texture of training images, respec-
tively. Ps and Pg are a set of orthogonal bases of shape and texture variation,
respectively. Qs and Qg are eigen matrices (including the eigenvectors). Ws

is a diagonal weight matrix for each shape parameter, allowing for the differ-
ence in units between the shape and texture models. c is a vector of parameters
controlling both the shape and gray-levels of the model.
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Fig. 2. 43 feature points for construction of AAM

In this paper, AAM is constructed using 43 shape points as shown in Fig. 2.
On the test image I, the goal of the AAM search is to minimize the error e(p, c)

as shown in Eq. (3) with respect to parameter vector c and pose parameter
vector p.

e(p, c) = || g(c) − I(W(p)) || (3)

where W denotes the Affine warp function, p denotes the pose parameter vector
for Affine warp (translation, scale, rotation), and I(W(p)) indicates the Affine-
transformed image controlled by the pose parameter p on the test image I. g(c)
is given in Eq. (2).

Thus, we can extract the most optimized parameter vector c as feature pa-
rameters from the test image.

2.3 Regression Analysis and Model Selection Method

The head pose and gaze orientation are estimated by regression analysis using
the feature parameters extracted by AAM. In order to estimate horizontal face
orientation φ, Cootes proposed a face rotation model [9]. In this paper, we pro-
pose a nobel method for simultaneous estimation of horizontal face orientation φ
and horizontal relative gaze orientation θ based on the relationship between the
displacement of feature points and rotation angles φ or θ by expanding Cootes’s
method.

In the proposed method, the regression formula to estimate horizontal facial
orientation φ and horizontal gaze orientation θ can be represented by Eq. (4).

y = a0 + Ac (4)

where y =
(
φ, θ́

)T ∈ R2×1 is the vector of the objective variable. θ́ is the
total orientation of facial orientation φ and gaze orientation θ (θ́ = φ + θ),
which means the horizontal gaze orientation relative to the image plane. a0 =(
a1,0, a2,0

)T ∈ R2×1 is the constant vector of regression. c =
(
c1 . . . cd

)T ∈
Rd×1 is the parameter vector (explanatory variable) as given in Eq. (1) and
Eq. (2). A ∈ R2×d is the matrix of the regression coefficients as given in Eq. (5).

A =
(

a1,1 . . . a1,d

a2,1 . . . a2,d

)
(5)

where d is the dimension of parameter vector c.
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Some components of parameter vector c are thought to be unessential when
estimating horizontal facial orientation and horizontal gaze orientation because
they sometimes cause over estimation when learning the regression coefficient
matrix A.

To solve this problem and improve the precision of this method, in this paper,
the model selection method is employed to select the most suitable formula. In
Eq. (4), for example, θ́ can be represented as in Eq. (6).

θ́ = a2,0 +
d∑

i=1

a2,ici + ε(0, σ2) (6)

where estimation error ε is assumed to have Gaussian distribution with mean 0
and variance σ2. We want to select only the essential components of parameter
vector c, but there are many combinations of the components. Therefore, we
make Sk denote a set of the components among the following 2d − 1 sets.

S1 =
{
c1

}
S2 =

{
c2

}
S3 =

{
c1, c2

}
...

S2d−1 =
{
c1, . . . , cd

}
Then, the regression formula for Sk given in Eq. (6) can be represented as

follows.
θ́k = a2,0 +

∑
i∈Sk

a2,ici + ε(0, σ2
k) (7)

After learning the regression coefficients using the least squared method among
k = 2d − 1, the least scored model is selected as the most suitable model.

Akaike Information Criterion[10] (AIC) is one of model selection methods in
regression analysis, which indicates generalization capability of regression for-
mular using training data.

The maximum log-scaled likelihood l(Θk; X) and the degrees of freedom of
the model are evaluated by AIC as shown in Eq. (8).

AICk = −2l(Θk; X) + 2 dim(Θk) (8)

l(Θk; X) = −n

2
(1 + log(2πσ2

k)) (9)

where n denotes the number of training images. Θk denotes the model parameters
given in Eq. (7), and maximum log-scaled likelihood l(Θk; X) is assumed to be
given in Eq. (9). The lower the AIC score, the better the evaluation of the model.
This means that AIC gives an answer with a trade-off between the complexity
of the model and the variance σ2

k of the fitting error ε to the training image set
X as given in Eq. (9).



Gaze Estimation Using Regression Analysis 405

In a similar way, Minimum Description Length[11] (MDL), and Bayesian In-
formation Criterion[12] (BIC) are respectively defined as shown in Eq. 10, and
Eq. 11.

MDLk = −l(Θk; X) +
dim(Θk) ln n

2
(10)

BICk = −2l(Θk; X) + dim(Θk) ln n (11)

Thus, matrix A and vector a0 are trained in the above mentioned methods.
Horizontal gaze orientation relative to the image plane can be estimated as shown
in Eq. (12) using the parameter vector c of the test image.

k = arg min
k

⎧⎨⎩AICk

MDLk

BICk

(12)

3 Experiment

To confirm the validity of our method in estimating horizontal gaze orientation,
we conducted the following experiment.

3.1 Experimental Conditions

Since there was no open dataset with variation of face and gaze orientation, we
prepared a dataset by asking each subject to look at each of the markers on a
wall in turn. The markers were placed horizontally on the wall at every 5 degrees.
The variations of head pose and gaze orientation were in the horizontal direction
and ranged from approximately -20 degrees to +20 degrees relative to the front.
The dataset contained 4 subjects, 63 training images and 252 test images with
640 x 480 pixels for each subject, as shown in Table 1.

Table 1. Overview of our dataset for each subject (“Training” means the number of
training images, and “Test” means the number of test images)

Face [deg] Gaze [deg] Training Test

0(Frontal) ± 20, ± 15, ± 10, ± 5, 0 9 36

5 +20, +15, ± 10, ± 5, 0 7 28

-5 -20, -15, ± 10, ± 5, 0 7 28

+10 +20, +15, ± 10, ± 5, 0 7 28

-10 -20, -15, ± 10, ± 5, 0 7 28

+15 -20, -15, ± 10, ± 5, 0 7 28

-15 -20, -15, ± 10, ± 5, 0 7 28

+20 -20, -15, -10, ± 5, 0 6 24

-20 -20, -15, -10, ± 5, 0 6 24

In total 63 252



406 M. Takatani, Y. Ariki, and T. Takiguchi

In this experiment, we used AAM parameters with up to 95% cumulative
contribution ratio. In fact, the number of dimensions were about 10-20.

AAM construction and regression analysis were performed for each subject.
The proposed method was evaluated by comparing it with the method proposed
by Ishikawa et al (a conventional method). The horizontal gaze orientation esti-
mation method was evaluated by means of absolute error degree (MAE).

Moreover, we conducted this experiment with the purpose of showing the
validity and the contribution of the two unique points of the proposed method.

At first, we compared the proposed method with the Ishikawa et al.’s method.
In our method, we didn’t use any model selection methods. On the other hand,
we gave true coordinates of AAM shape points in Ishikawa’s method because it
required a lot of time for us to implement 3D AAM. Through this comparison,
the validity of our method can be confirmed.

Next, we compared the difference between simultaneous method and sequen-
tial method. In the sequential method, the angle θ of the gaze in relation to
the face is described in Eq. (4). After regression analysis, total horizontal gaze
orientation θ́ is computed as φ + θ. Through this comparison, the validity of
“simultaneous” estimation can be confirmed.

Finally, we compared AIC with other methods of model selection. MDL (Min-
imum Description Length) [11] and BIC (Bayesian Information Criterion) [12]
are well-known methods for selecting the model in recent years. Thus, the va-
lidity of “model selection by AIC” can be confirmed by comparing it with MDL
and BIC.

3.2 Results

Fig. 3 shows the experimental results. We can confirm the validity of s̈imultaneous
m̈ethod. The graph shows the average estimation error [deg]. Though the dif-
ference among these methods seems small, a significant difference is confirmed
with significance level of 95%.

This graph shows that our approach contributes the improvement of the gaze
estimation error from 4.2 [deg] to 2.7 [deg]. I think there is no critical difference
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Fig. 3. Experimental results (Mean estimation error)
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Fig. 5. Experimental results (estimation error) of subject No. 2 in each face angle
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Fig. 7. Experimental results (estimation error) of subject No. 4 in each face angle

among three model selection methods. But it is important to reduce the dimension
of the feature vector using model selection method.

Next, We analyzed the performance of our approach (e.g. AIC) in each face
direction. Fig. 4, Fig. 5, Fig. 6, and Fig. 7 respectively show that the mean
estimation error in each face angle and each subject. From these graph, we can
confirm the face angle robustness of the proposed method.

From these experimental results, the validity of the proposed method to esti-
mate horizontal gaze orientation from monocular images was confirmed. Also, it
was confirmed that the model selection by AIC contributes the most to reducing
the degree of error.

4 Conclusion

In this paper, the nobel method was proposed in which horizontal gaze orien-
tation is estimated by using model selection method to select the necessary pa-
rameters from to the AAM parameters and then carrying out regression analysis
on those paramters. This method contributes to the improvement of horizontal
gaze estimation error from 4.2 [deg] to 2.7 [deg].

In near future research, we will address the problem of AAM adaptation to
an unseen subject for a wide range of gaze estimation applications.
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Estimating Human Body and Head Orientation

Change to Detect Visual Attention Direction
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Abstract. This paper presents a method to estimate human body and
head orientation change around yaw axis from low-resolution data. Body
orientation is calculated by using Shape Context algorithm to match the
outline of upper body with predefined shape templates within the ranges
of 22.5 degrees. Then, motion flow vectors of SIFT features around head
region are utilized to estimate the change in head orientation. Body
orientation change and head orientation change can be added to the
initial orientation to compute the new visual focus of attention of the
person. Experimental results are presented to prove the effectiveness of
the proposed method. Successful estimations, which are supported by a
user study, were obtained from low-resolution data under various head
pose articulations.

1 Introduction

Visual focus of attention analysis of humans has recently attracted remarkable
interest from many researchers. To evaluate a given scene, detection or tracking
of humans are not enough any more. More semantic understanding of human
motions in the scene is required. In this respect, estimating gaze direction of
humans in a given scene has become an important problem to detect focus of
attention and social interactions in the scene.

In case of low-resolution data, gaze direction estimation becomes a challenging
problem. It is very difficult to detect and locate facial features of a human from
a low-resolution data, such as when head region size has resolution in the ranges
between 20x20-pixels and 40x50-pixels. Especially, locating eye balls accurately
to detect gaze direction becomes impossible. In such cases, a person’s body and
head orientations [1] can provide a hint about where the person is looking at in
the scene. Hence, visual focus of attention and intention of the person can be
understood, and social interactions in the scene can be interpreted.

In this work, we present an algorithm to estimate body and head orientation
change of humans walking in an environment from low-resolution data. Esti-
mated orientation change can be added to the initial orientation to calculate
gaze direction in the next step. Our work was inspired by the work of Ozturk et
al. [2] for body orientation calculation and builds a new head orientation change
estimation algorithm on the top of it. To determine the body orientation, out-
line of human head-shoulder region is extracted as an edge contour. First of
all, various appearances of the upper human body are studied and divided into
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Fig. 1. (a)Human body and head orientation estimation.(b)Overflow diagram.

7 clusters within the ranges of 22.5 (π/8) degrees. A representative outline of
the upper body for each cluster is constructed by studying edge-contours. Then,
human body orientation for a given case is estimated by matching the outline
of head-shoulder region seen from the camera to the corresponding orientation
class. Shape Context [3] is utilized in our framework. After detecting body orien-
tation in a coarse level, head orientation change is estimated, which is later added
to the body orientation to estimate gaze direction. Head orientation change is
calculated by examining local motion changes in motion flow vectors of SIFT
[4] features around head region. SIFT features are chosen because they can be
tracked robustly under complex motions compared to other features such as KLT
[5], SURF [6], corner-based features, etc.

In our work, the environment is monitored by a single camera mounted suffi-
ciently high above to provide a top-view of the scene. Human appearance reso-
lution in the captured data varies from 70x90 to 100x150 pixels with the head
region in the ranges of 20x20 to 40x50 pixels.

Related Work Until now, there have been many researches inspecting hu-
man body and/or head orientation problem from various aspects. The earlier
researches used multi-camera systems or a combination of camera and sensors
[7,8,9,10,11] to detect body orientation or gaze direction. In [7,8,9,11], Voit et al.
deal with the problem of head pose estimation in low-resolution images by using
multiple-cameras to analyze dynamic meeting scenarios. Glas et al. [12] study
the orientation estimation problem by combining video data and laser scanner
data. Their work extracts the position of the arms and the head from a top-view
appearance and finds the orientation of the human body in the scene. By using
a laser scanner system, head orientation can not be detected, where head shape
is extracted as a circle.

A big group of researchers have dealt with the problem of detecting facial
features [13,14,15,16,17,18] by using high-resolution images and established the
geometric localization. Then, they used relative positions of facial features to
estimate the gaze orientation. Chutorian and Trivedi [19] give a comprehensive
recent survey of head pose estimation. Most of the work in this topic utilizes
medium or high-resolution images, captured from a close distance.
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A few researches have attempted to solve head orientation estimation with
low-resolution data [20,21,22], but they assumed different problem settings such
as side-view camera. In [20], Shimizu and Poggio study body orientation esti-
mation of walking people captured from a side-view camera. Body orientation
of a person is divided into 16 groups with ranges of 22.5 degrees. They use
Haar wavelet responses of each image to generate feature vectors and classify
them with Support Vector Machines (SVM). They do not consider the head
orientation of the person. Gandhi and Trivedi follow an approach similar to us
[21]. They use Histogram of Gradients (HOG) as feature descriptors and SVM
for classification. However, they group the orientation of a person very roughly
without distinguishing between body and head. They form an orientation set
of 45 degrees range for in-plane rotation only. Benfold and Reid [22] proposes a
head pose classification algorithm by segmenting the head into skin and non-skin
pixels, they try to estimate the head pose in low-resolution images within the
ranges of 45 degrees. The work of Zhao et al. [23] is very close to our approach
and their result supports the effectiveness of SIFT features. They utilize SIFT
feature tracking between two head images to estimate the motion change of the
head in 3D with an additional dimension coming from the range image. They
work with high-resolution images.

The contribution of the proposed work is that it introduces a framework to
estimate both body and head orientation change of humans from low-resolution
data employing only a single camera. The proposed algorithms can classify body
orientation within 22.5 degrees and estimate the head orientation change within
five degrees error range. Also, another advantage is that unlike most of the other
methods it avoids the necessity of distinguishing between skin or non-skin pixels.

2 System Overview

Figure 1 shows overview of the proposed idea with sample images. To estimate
body and head orientation, hence visual focus of attention, the key idea is based
on two main processes. The first one is calculating the body orientation; the
second one is calculating the change in the head orientation. In other words,
starting with an initial orientation of the body, the orientation of the head is
calculated at some intervals by adding the orientation change during that interval
to the previous orientation. Initially, it is assumed that head orientation is in
accordance with the body orientation, which is correct for general cases.

We calculate the initial body orientation of the person by using the Shape
Context [3] method. Then, at some intervals we calculate the orientation change
of the head by analyzing motion flows of SIFT[4] features around head region.
In our work, we propose and show that examining the motion changes of local
features around head region for short intervals can help us to describe the motion
of the head. Simultaneously, body orientation is also checked to detect major
body orientation changes, which is also added while calculating the new gaze
direction. In addition, motion flow vector of the center of mass is utilized to
find the direction of the global motion and its effects on local motions. In our
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Fig. 2. Body orientation categories calculated from head-shoulder region

dataset, human appearance resolution in the captured data varies from 70x90 to
100x150 pixels with the head region in the ranges of 20x20 to 40x50 pixels.

3 Estimating Body Orientation

Detection of the body orientation correctly is significant at two points. First,
body orientation determines the initial state of the orientation calculation which
serves as a reference to the successive gaze direction estimation. Second, body
orientation estimation is repeated at certain intervals to calculate the change in
body orientation, which is later added to the total orientation change.

In our work, to match the appearance of the upper body to the corresponding
body orientation, first, the outer contour of the head-shoulder region is extracted
by detecting edges on the boundary. The outer contour composed of edge points
forms the representative shape of the upper body appearance. Canny edge detec-
tion algorithm is used to detect the edges. Figure 2 shows various appearances
of upper body and the representation of an example upper body image in terms
of edges on the boundary. In our experiments, camera monitors the scene from
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a very high place. In Figure 2, two types of placement of a camera are shown.
We use the placement with the camera at a side. If the camera was placed in
a central position on the ceiling, the number of categories would be doubled to
include the other half. There are seven groups (-3pi/8, -pi/4, -pi/8, 0, pi/8, pi/4,
3pi/8) in the set, which is used to categorize all possible cases of head region.
Shape Context matching algorithm is used to find the correspondence between
the input image and the orientation category.

During body orientation estimation step, when an image of the upper body
of the person is given, the edge map of the image is compared to the edge maps
in the category set in Figure 2. The best three results from the output of Shape
Context matching are chosen to vote for the estimated orientation and the winner
of the majority voting is selected as the orientation. This helps to improve the
matching results by combining various possibilities when the edge contour is
insufficient or includes noise. Global motion flow vector is used to define the
direction of the body along the estimated orientation. Direction information is
important during the estimation of the gaze direction later.

4 Head Orientation Change Estimation

A head has more flexibility in terms of motion types (yaw, pitch, roll) and
head orientation of a person can change easily and frequently depending on
the person‘s intent. Our aim is to estimate the head orientation change around
yaw axis (assuming that the person is turning his/her head right or left). The
orientation change of the head combined with the orientation of the body and
global motion, can be used to find the object that the person is paying attention.

To track the orientation change, our key idea is to make use of the motion
change in SIFT features around head region. Figure 4 gives the starting point
of our estimation method. Considering the ideal case, top-view of a human head
can be represented by a circle. SIFT features coming from head region (face, hair,
etc.) are represented by the points traveling along the circumference whenever
the person rotates his/her head around yaw axis. When ÂMC represents the
orientation change of the person head, the feature A moves to C. Orientation
change of the motion flow of the feature is represented by ẐAC. Table 1 gives

(a) (b) (c)

Fig. 3. SIFT flow vectors for interval lengths of: (a)1-frame (b)3-frames (c)5-frames
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Table 1. Orientation change of a center point affected by the motion of a point moving
around on a circle

Motion of feature point Motion change: ẐAC Orientation change: ÂMC

From A to B goes to b goes to x
From A to C goes to (b+a) goes to (x+2a)
From A to D goes to pi/2 goes to pi

some orientation changes of the head and motion flow of A. Considering ẐAM =
π/2, B̂AM + ÂBM + ÂMB = π, (2 ∗ (π/2− b) + x = π), it can be derived that
x = 2b. This shows that orientation change of the head can be estimated as two
times of the orientation change of the motion flow of the feature. This is the
ideal case and it is assumed that previous motion flow vector of A is tangent to
the circular motion. This case inspires us to approximate the effect of orientation
change of head on the orientation change of motion flow of the feature as 1/2
times. Experimental results show close estimations by using this idea.

SIFT features around head region are tracked at some intervals and their
motion flow vectors are constructed as in Figure 4. Motion flow vector of the
ith SIFT feature at time t is represented by Hi

t . αi
t,t+1 is the angle showing

the orientation difference between two motion flow vectors of the ith feature
between time t and t+1. In the same way, center of mass of the person‘s body is
also tracked and motion flow vector is constructed and represented by Ct. βt,t+1

is the angle showing the orientation difference between two motion flow vectors
of center of mass. The average orientation change of SIFT features around head
region between time t and t+1 is estimated by the equation 1. The effect of
global motion on each feature is suppressed by subtracting βt,t+1 from each
αt,t+1. k is the threshold value to eliminate noisy data, n is the number of valid
features.

ΔOt,t+1 =

n∑
i=1

(αi
t,t+1 − βt,t+1)

n
, if |αi

t,t+1| ≥ k, |βt,t+1| ≥ k (1)
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ΔV OCn+N
n = 2 ×

n+N∑
t=n

ΔOt,t+1 + ΔBn+N
n (2)

To obtain useful information, the tracking interval between t and t+1 is im-
portant. Figure 3 shows the resultant motion flow vectors, when the interval
length is one, three and five. When the interval length is one, motion flow vec-
tors are too short to represent a robust orientation change. When the interval
length is five, it becomes harder to keep the continuous tracking of SIFT fea-
tures, and only a few vectors are obtained. In our method three is chosen to be
the interval length, which empirically gives the best results.

N is the length of the duration of observation step. We set observation length
to nine or multiples of nine, which gives the best results for various cases. Head
orientation change is estimated by the following equation. For example, if N
is three, it corresponds to nine frames of video sequence observation, since the
interval length between t and t+1 is three. ΔBn+N

n symbolizes the orientation
change coming from body orientation change. As a result, equation 2 is used to
estimate the overall orientation change in the visual attention direction of the
person.

5 Experimental Results

Data used in the experiments was captured from a market place in an airport.
People are ordinary customers wandering in the area. Camera is placed 12m
above the ground. Data was captured in HD mode, with 1440x1080 pixels reso-
lution. Size of the human appearance varies from 70x90 to 100x150 pixels with
the head region in the ranges of 20x20 to 40x50 pixels. To validate the exper-
imental results a user study was conducted. 17 people participated in the user
study to evaluate the head orientation change.

In the experiments, interval length to construct the motion flows and observa-
tion length to evaluate the orientation change are important. In our experiments,
interval length is three and observation length is 18 frames. Figure 5 shows head
orientation change results of a person walking in the market place. He is turn-
ing his head towards left, changing his direction of attention from one place to
another. Head region size(including face and hair) is about 25x45 pixels. During
18 frames of motion, the user study gives the orientation change as 27 with the
standard deviation of 4.5. Our algorithm calculates the orientation change as 32.

In Figure 6, a woman is wandering in the environment. She is paying attention
to an object on her left, and then she switches her attention to another object
far in front of her on the right. She turns her head towards right and continues to
walk in that direction. Between frames 330 and 342, the user study says that head
orientation change is 41.5 with standard deviation of 8. Our algorithm calculates
the orientation change as 48 between frames 330-342. It gives 70.5 orientation
change between frames 330-348 when the 22.5 body orientation change between
frames 342-348 is also added.
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(a)  fr: 70 (b)  fr: 76 (c)  fr: 82 (d)  fr: 88

50x50-pixels

Fig. 5. Experimental results 1

(a)  fr: 330 (b)  fr: 336 (c)  fr: 342 (d)  fr: 348

50x50-pixels

Fig. 6. Experimental results 2

Figure 7 shows one of the exceptional cases. The man turns his head away
from the camera and the face of the man is not seen most of the time. Enough
number of SIFT features can not be obtained. Hence, only body orientation
estimation part works for this case. Body orientation is estimated as -3π/8,
-π/4,-3π/8,3π/8, respectively from (a) to (d).

In our work, the cases where people wear bags or hats which occlude head-
shoulder region are eliminated. In some other cases, when face is not seen most
of the time, SIFT features cannot be tracked. Dark hair region does not provide
distinctive image features to track. These situations are challenging for all of the
researchers and should be studied further.
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(a)  fr: 588 (b)  fr: 574 (c)  fr: 568 (d)  fr: 534

Fig. 7. An example of body orientation change of a walking person

6 Conclusions

In this work, orientation change estimation methods for human body and head
orientation from low-resolution images, have been presented to detect gaze direc-
tion. With the proposed methods gaze direction change of a walking human can
be calculated and new visual focus of attention can be determined. We have as-
sumed a top-view single camera set-up which resulted in low-resolution data with
a wide range of human appearances. Shape Context matching of head-shoulder
region is used to find the corresponding body orientation. Then, orientation
changes in motion flow vectors of SIFT features around head region are utilized
to estimate head orientation change. Experimental results on real-world data
show the successful estimation of gaze direction change within the error range
of five degrees.
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Abstract. The validity of using conventional saliency map models to
predict human attention was investigated for video captured with an
egocentric camera. Since conventional visual saliency models do not take
into account visual motion caused by camera motion, high visual saliency
may be erroneously assigned to regions that are not actually visually
salient. To evaluate the validity of using saliency map models for ego-
centric vision, an experiment was carried out to examine the correlation
between visual saliency maps and measured gaze points for egocentric
vision. The results show that conventional saliency map models can pre-
dict visually salient regions better than chance for egocentric vision and
that the accuracy decreases significantly with an increase in visual mo-
tion induced by egomotion, which is presumably compensated for in the
human visual system. This latter finding indicates that a visual saliency
model is needed that can better predict human visual attention from
egocentric videos.

1 Introduction

Our visual focus of attention is an important clue for inferring our internal
state and therefore can be used effectively for developing human-centric media
such as interactive advertising, intelligent transportation systems, and attentive
user interfaces. Since our visual focus of attention is closely related to our gaze,
many gaze sensing techniques based on various approaches have been developed.
However, it is still a difficult task to measure our gaze in unconstrained settings.

An alternative way of estimating the visual focus of attention is to use a vi-
sual saliency map model. Inspired by psychological studies of visual attention [1],
Koch and Ullman proposed the concept of the saliency map model [2]. Itti et
al. subsequently proposed a computational model [3] for predicting which image
locations attract more human attention. Since then, many types of saliency map
models have been proposed [4,5,6,7,8,9]. The models have been applied not only
to static images but also to video clips by incorporating low-level dynamic image
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features such as motion and flicker [4]. Studies based on actual gaze measure-
ment [10,11,12] have demonstrated that such saliency maps match distributions
of actual human attention well. However, those studies considered only recorded
images and videos. The saliency maps were computed from images shown to hu-
man subjects, and their effectiveness was evaluated against the gaze coordinates
on the display. While such visual saliency map models can be used for certain
applications such as image editing, they lack an important aspect: consideration
of the visual motion caused by motion of the observer, i.e., visual motion seen
in a static scene captured by a moving camera.

Egocentric vision refers to a research field analyzing dynamic scenes seen
from egocentric perspectives, e.g., taken from a head-mounted camera. Ego-
centric perspective cameras are well suited for monitoring daily ego activities.
Accurate prediction of visual attention in egocentric vision would prove useful
in various fields, including health care, education, entertainment, and human-
resource management. However, the mechanism of visual attention naturally dif-
fers significantly in egocentric perspectives. For instance, visual stimuli caused
by egomotion are compensated for in egocentric vision, but such a mechanism
is not considered in conventional saliency map models. Since conventional mod-
els have not been examined for egocentric videos, whether they are valid for
such videos is unclear. We have investigated the validity of using conventional
saliency map models for egocentric vision. Egocentric videos were captured using
a head-mounted camera, and gaze measurements were made using a wearable
gaze recorder. The performances of several saliency models and features were
quantitatively determined and compared, and the characteristics of human at-
tention in egocentric vision were discussed. To the best of our knowledge, this is
the first experimental evaluation of the performance of saliency map models for
egocentric vision.

2 Related Work

In this section, we first introduce background theory on visual saliency and
briefly review previous work on computational saliency map models.

Due to a person’s limited capacity to process incoming information, the amount
of information to be processed at a time must be limited. That is why a mechanism
of attention is needed to efficiently select and focus on an important subset of
the available information [13]. The same holds true for the human visual system;
visual attention is necessary to enable a person to handle the large amount of
information received through the eyes.

A key to understanding the mechanism of visual attention is feature integra-
tion theory [1]. The human visual system first divides incoming images into sim-
ple visual features [14]. Since natural objects usually have two or more features,
after processing each simple feature separately, the visual system reintegrates the
incoming image information. Treisman et al. concluded from their studies that
the human mechanism of visual attention includes integration of such visual cues.
On the basis of this theory, Koch and Ullman proposed the concept of a visual
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Fig. 1. Procedure for computing saliency maps for videos

saliency map: a two-dimensional topographic map that encodes saliency values
for a scene [2]. Those values are generated by integrating simple visual features,
and they represent how strongly the region attracts a person’s attention.

Itti et al. [3] proposed and developed a fully bottom-up computational saliency
map model. They introduced procedures for extracting simple visual features
from images; the saliency values are computed through procedures for imitating
visual receptive fields. The input is static images, and the output is saliency maps
corresponding to the input images. The model was later extended by adding two
dynamic features, motion and flicker, so that it can deal with dynamic scenes [4].

Other approaches to saliency map modeling have been proposed. For instance,
in the recently introduced graph-based approach [7,8,9], graph representations
of input images are generated by defining dissimilarity functions and distance
functions between nodes. Saliency values are computed through steady-state
analysis of the graphs. Studies using this approach focused mainly on the proce-
dures for computing the saliency values from simple image features rather than
on validating the efficiency of the image features used in the models.

3 Procedure for Computing Saliency Maps for Videos

In this study, we used two representative saliency map models to evaluate the
validity of using saliency map models for egocentric vision. One is Itti et al.’s
model [4] which is based on the center-surround mechanism, and the other is
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Harel et al.’s graph-based model [7]. We first introduce the computational pro-
cedure of Itti et al.’s model, and then explain Harel et al.’s model.

Figure 1 illustrates the procedure which consists of three main stages. In the
first stage, feature decomposition generates Gaussian pyramids of feature images
from an input frame. In the second stage, “center-surround” mechanism gener-
ates feature maps from feature images; i.e., saliency maps are computed from
each feature. In the third stage, the feature maps are normalized and integrated
into a single saliency map.

In the first stage, the input image is decomposed into five types of visual fea-
ture images using simple linear filters. The features are typically intensity, color
and orientation as static features, and motion and flicker as dynamic features.
The intensity feature image is obtained as the average of the red, green, and blue
channels of the input images. Itti et al. used two difference images generated
by sets of two color channels, i.e., red-green and blue-yellow, for the color fea-
ture images. In contrast, we use the Derrington-Krauskopf-Lennie (DKL) color
space [15] as color features instead of these difference images. The DKL color
space is defined physiologically by three channels used for color processing in the
retina and thalamus. Orientation feature images are computed from the intensity
image using four oriented (0◦, 45◦, 90◦, 135◦) Gabor filters.

Two input frames are required for obtaining flicker and motion feature images.
The flicker feature image is computed from the absolute difference between the
intensity feature images in the current and previous frames. The motion feature
images are obtained from the spatially shifted differences between every four
orientation feature images of the current and previous frames. As a result, 12
feature images are obtained: one for intensity, two for color, four for orientation,
one for flicker, and four for motion. Next, nine spatial scales (scale zero = 1:1
to scale eight = 1:256) are created using dyadic Gaussian pyramids [16] for each
feature image.

In the next stage, feature maps are computed from these Gaussian pyramids
using the center-surround mechanism. We made six sets of two different sizes of
Gaussian pyramids. Six feature maps were computed from each feature image
using across-scale image subtraction, which is obtained by interpolation to the
finer scale and point-wise subtraction.

In the last stage, the final saliency map is obtained by combining the 72 nor-
malized feature maps (six for intensity, 12 for color, and 24 for orientation, six for
flicker, 24 for motion). The normalization is performed by globally multiplying
each feature map by (M − m̄), where M is the map’s global maximum and m̄ is
the average of its other local maxima. This normalization process suppresses the
feature maps with more peaks and thus enhances the feature maps with fewer
peaks.

Harel et al.’s model [7] follows the graph-based approach in the second and
the third stages. The feature maps and final saliency map are generated by
computing the equilibrium distributions of Markov chain graphs. For the second
stage, they defined a dissimilarity function and a distance function between
nodes and multiplied them together to obtain the weight of each node. In the
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Scene camera

IR light sources

  Eye cameras

(a) (b)

Fig. 2. (a) EMR-9 [17], mobile eye tracking system developed by NAC Image Technol-
ogy. EMR-9 has two eye cameras and two IR light sources to measure gaze movements
at 240 [Hz]. It captures egocentric video at 30 [fps] using head-mounted scene cam-
era. Horizontal view angle of scene camera is 121◦, and resolution of recorded video is
640 × 480. (b) Example video frame captured the scene camera during experiment.

last stage, they obtained the weight of each node by multiplying the value of the
location on the feature maps by the distance function.

4 Experiment

As summarized above, conventional saliency map models use simple, low-level
image features as sources to compute saliency maps. They are designed to com-
pute visual saliency for recorded images and videos, but no consideration is given
to dealing with visual motion induced by camera motion. To evaluate the validity
of using conventional models for egocentric vision, we conducted an experiment.

4.1 Experimental Procedure

To enable us to evaluate the validity of saliency map models for egocentric vision,
we designed an experiment that would enable us to determine the correlation
between the actual gaze points and the saliency maps for videos captured with
a head-mounted camera.

We used the EMR-9 mobile eye tracking system developed by NAC Image
Technology [17] to determine the gaze points and to capture egocentric videos.
As shown in Figure 2(a), the EMR-9 has two eye cameras and two IR light
sources for measuring gaze movement at 240 [Hz]. The scene camera attached to
the head captures egocentric video at 30 [fps]. The horizontal view angle of the
scene camera was 121◦, and the resolution of the recorded video was 640× 480.

We used the saliency map models of Itti et al. [4] and Harel et al. [7] as baseline
models. The experiment was conducted in a room. Four human subjects (one at
a time) sat on a chair while another person walked randomly around the room.
The subjects were asked to look around the room by moving their head freely
for one minute. Figure 2(b) shows an example video frame captured by the scene



Can Saliency Map Models Predict Human Egocentric Visual Attention? 425

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

False positive rate

T
ru

e 
po

si
ti

ve
 r

at
e

 

 

Intensity
Color
Orientation
Motion
Flicker
Chance

(a) Each feature/Itti Et al. [4]
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(b) Each feature/Harel et al. [7]
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(d) Combined features/Harel et al. [7]

Fig. 3. ROC curves for each feature ((a) Itti et al. [4], (b) Harel et al. [7]) and for static,
dynamic, and all features ((c) Itti et al. [4], (d) Harel et al. [7]). Curves were calculated
by changing saliency threshold values from minimum to maximum. Horizontal axis
indicates false positive rate, i.e., rate of pixels above threshold. Vertical axis indicates
true positive rate, i.e., rate of gaze points for which saliency value of corresponding
point on saliency map was higher than threshold.

camera. We obtained about 12,000 gaze points for each subject after removing
errors caused by eye blinks.

Human attention is affected by performing a task, but the high-level mecha-
nism of attention cannot be treated efficiently with conventional saliency map
models. Since the purpose of our study was to examine the validity of saliency
map models for egocentric vision, and thus, we did not assign a task to the
subjects.

4.2 Results

To examine how each feature contributes to the accuracy of estimating attention,
we compared the correlation between each feature saliency map, computed using
only one feature, and the actual gaze points. The curves in Figure 3 are the
average receiver operating characteristic (ROC) curves, which were calculated
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Fig. 4. Examples of gaze trajectory of subject facing moving object (walking person).
Images are overlaid with motion feature saliency maps. Crosses show gaze points.

by changing the saliency threshold values from minimum to maximum. The
horizontal axis indicates the false positive rate, i.e., the rate of pixels on the
map above a threshold. The vertical axis indicates the true positive rate, i.e.,
the rate of gaze points for which the saliency value of the corresponding point
on the saliency map was higher than the threshold.

Figures 3 (a) and (b) compare the feature saliency maps explained in Sec-
tion 3. Figure 3 (a) shows the results of using Itti et al.’s model [4], and Figure 3
(b) shows the results of using Harel et al.’s model [7]. Figures 3 (c) and (d)
compare the static, dynamic, and standard saliency maps. The static maps were
computed using only the static features (intensity, color, and orientation), and
the dynamic maps were computed using only dynamic features (motion and
flicker). The standard maps were computed using all the features. Figure 3 (c)
shows the results of using Itti et al.’s model [4], and Figure 3 (d) shows the re-
sults of using Harel et al.’s model [7]. The areas under the curves (AUC) of these
three curves, a measure of prediction performance, are shown in Table 1. These
results indicate that these saliency map models can predict human egocentric
visual attention better than chance. However, with both models, the dynamic
features did not contribute to performance. In fact, they even reduced accuracy.

Table 1. AUC of combined saliency maps for two models

Static features Dynamic features All features

Itti et al. [4] 0.803 0.615 0.778

Harel et al. [7] 0.838 0.690 0.793

4.3 Discussion

Our experimental results show that the performance of the dynamic features,
motion and flicker, significantly degrades prediction performance for egocentric
vision. However, during the experiment, we observed situations in which dy-
namic visual stimuli attracted the subject’s attention. Figure 4 shows examples
of the gaze trajectory when the subject was facing a moving object (walking
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Fig. 5. Example of the scene in which object quickly changed its color (laptop monitor).
Images are overlaid with flicker feature saliency maps. Crosses show gaze points.

person). Figure 5 shows an example scene in which an object quickly changed
its color (laptop monitor). In these cases, the subject paid attention to the dy-
namic changes of the visual features; however, large saliency values are given to
the other locations which did not dynamically change. Hence, previously pro-
posed features could not capture dynamic visual stimuli appropriately in our
experimental situation.

Unlike the case with recorded images and videos, the case in which we are
interested includes the effects of egomotion. While human beings have the ability

(a)Small egomotion,
motion feature map

(b)Small egomotion,
flicker feature map

(c)Large egomotion,
motion feature map

(d)Large egomotion,
flicker feature map

Fig. 6. Examples of dynamic feature saliency maps with and without effect of egomo-
tion. (a) and (b) show video frames with small egomotion, and (c) and (d) show frames
with large egomotion. (a) and (c) are motion feature saliency maps, and (b) and (d) are
flicker feature saliency maps. Images in the top row are input images, those in middle
row are feature saliency maps, and those in bottom row are input images overlaid with
feature saliency maps.
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to compensate for egomotion [18], conventional saliency map models do not have
a mechanism for such compensation, so high saliency values appear in dynamic
feature saliency maps regardless of whether they are caused by egomotion.

Figure 6 shows example dynamic feature saliency maps with and without
the effect of egomotion. Figure 6 (a) and (b) shows video frames with small
egomotion, and (c) and (d) show ones with large egomotion. Figure 6 (a) and
(c) are motion feature saliency maps, and (b) and (d) are flicker feature saliency
maps. The images in the top row are input images, those in the middle row are
feature saliency maps, and those in the bottom row are input images overlaid
with feature saliency maps. As shown in Figures 6 (a) and (b), many peaks
appear within dynamic feature saliency maps when the egomotion is small. Since
they are suppressed by the normalization in the last combining step, explained
in Section 3, these peaks do not substantially affect the final saliency map. In
contrast, as shown in Figures 6 (c) and (d), large saliency values are given to the
locations with large disparity and to the edges of large intensity difference caused
by large egomotion. These feature saliency maps can greatly affect the final
saliency map. This indicates that, to model dynamic visual stimuli efficiently, it
is necessary to compensate for large egomotion.

5 Conclusion and Future Work

We have investigated the validity of using saliency maps computed from videos
captured from an egocentric perspective by experimentally examining the cor-
relation between saliency maps and gaze points. The results show that saliency
map models can predict human egocentric visual attention better than chance;
however, the dynamic features decreased their performance for egocentric vision
because these models cannot model the way a person compensates for the effects
of egomotion. The models thus need to be improved to enable them to deal with
egocentric videos.

We plan to conduct more experiments under various conditions, e.g., in out-
door scenes and with walking subjects. We also plan to develop a motion compen-
sation mechanism so that the dynamic feature maps work better for egocentric
vision.
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Abstract. Human attention control simply means that the shifting of
one’s attention from one direction to another. To shift someone’s
attention, gaining attention and meeting gaze are two most important
pre-requisites. If a person would like to communicate with another, the
person’s gaze should meet the receiver’s gaze, and they should make eye
contact. However, it is difficult to set up eye contact when the two peo-
ple are not facing each other in non-linguistic way. Therefore, the sender
should perform some actions to capture the receiver’s attention so that
they can meet face-to-face and establish eye contact. In this paper, we fo-
cus on what is the best action for a robot to attract human attention and
how human and robot display gazing behavior each other for eye contact.
In our system, the robot may direct its gaze toward a particular direction
after making eye contact and the human will read the robot’s gaze. As a
result, s/he will shift his/her attention to the direction indicated by the
robot gaze. Experimental results show that the robot’s head motions can
attract human attention, and the robot’s blinking when their gaze meet
can make the human feel that s/he makes eye contact with the robot.

1 Introduction

Attention attraction or control is a fundamental skill in human social interac-
tion and cognition. People direct their gaze at each other to signal that their
attention directed at the other [1]. Therefore, we may define attention control
as a means of gaze control in which one can shift/control someone’s gaze from
one direction to the direction of his/her interest. Control one’s attention plays
a critical role in a wide range of social behaviors: it sets the stage for learning,
facilitates communication, and supports inferences about other people’s current
and future activities, both in overt and covert. A major challenge is to develop
robots that can behave like and interact with humans. In order to fully under-
stand what humans do or intend to do, robots should be capable of detecting
and understanding many of the communicative cues used by humans.

R. Koch et al. (Eds.): ACCV 2010 Workshops, Part I, LNCS 6468, pp. 430–439, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In the case of human-robot interaction, the perception of robots is important
because it facilitates a bi-directional flow of information: robots must understand
what is being conveyed by human’s attention behavior, as well as direct their own
verbal and non-verbal behavior to humans in an appropriate manner. Current
robot researchers developed some robotic systems for eye-contact [2] and joint
attention that uses several social cues (for example, gaze [3,4], head and gaze [5],
reference term and pointing [6,7]. Most of the previous work assumed that the
human faces to the robot when their interaction starts. However, this assumption
may not be practical in natural human-robot communication. Therefore, our
major concern is how the robot can make eye contact with a human if s/he is
not facing to the robot, in other words, if the robot cannot capture his/her eyes
or whole face due to the spatial arrangements of the person and the robot.

Humans may use appropriate actions depending on the situation. Although
there might be various situations, basic situations can be classified into the
following four cases . Case 1 (Fig. 1 (a)): A human subject (H) is not paying
his/her attention to any particular thing, and is just looking around by moving
his/her head and gaze without any intention. Robot (R) tries to communicate
with H. Case 2 (Fig. 1 (b)): While H is concentrating on some object, R tries to
contact with H. Case 3 (Fig. 1 (c)): While H1 and H2 are communicating each
other, R tries to communicate with one of them (say, H1). Case 4 (Fig. 1 (d)):
H is facing the back and R cannot capture the face of H.

In any case, H is not looking at the robot. Therefore, if R would like to
start communicating with H, R should perform some action to make H turn
his/her face toward R and to gain his/her attention. However, what kind of
action is appropriate or effective to attract human attention is solely depends
on the social situation. Humans can easily understand the social situation of
others by using the social cues and perform an appropriate action based on
the situation [8]. Generally, humans use verbal and non-verbal means to attract
others’ attention. For example, one can attract another’s attention simply by
calling his/her name if s/he knows it, or using hand movements, head movements,
eye movements and reference term. Therefore, robots also need to perform an
effective action according to the social situation. However, to the best of our
knowledge, there have been no systems that address these issues: how robots
can attract human attention and what actions can be effective in a particular
situation before establishing eye contact. Thus, we have developed robot heads
that can move and on which the eyes generated by CG are projected. Then, we
have performed experiments using human participants to examine these issues.

2 Robot Behavior and Architecture

2.1 Robot Behaviors

The purpose of our research is to develop a robot system that can control human
attention. We would like to realize a robot that can pick up a particular person
and make him/her turn his/her gaze in the direction where the robot would
like him/her look. To do so, the robot should first attract the person’s attention
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Fig. 1. Possible cases. H is not looking at R in any case.

by some action. The appropriate action may depend on the person’s current
situation as mentioned in the introduction. Thus, the robot should recognize
the current situation to determine its action. In this paper, however, we assume
that a target person is in Case 1 situation. Situation recognition is left for future
work.

We consider only non-verbal actions since voice or sound may tend to attract
attention of others than that of the target person. Although non-verbal actions
in general may also gain others’ attention, we may be able to design such ac-
tions that only the target person may feel that they are intended to him/her.
A person’s eyes are attracted by the objects in her environment. That is, Eyes
are attracted by moving objects and tend to pursue them [9]. In this paper, we
consider head and eye movements as robot’s non-verbal actions.

Fig.2 illustrates our robot action design to control human attention in Case 1.
In Case 1, the person is looking around without any particular attention target
(Step 1). If the robot makes some action such as moving its head (Step 2), s/he
may notice it and turn his/her head toward the robot (Step 3). The important
thing for the robot is to turn its head toward the person at this time. Now the
person and the robot face each other. Then, the robot performs some action,
blinking in the current implementation, to show the awareness (Step 4). The
person will feel that s/he has made eye contact with the robot, and mutual
gaze is expected to start. Thus, the robot looks in the direction where it wants
him/her to pay attention (Step 5), he/she will look in the direction (Step 6).

We have confirmed that the above scenario can work by developing robot
heads and performing experiments using human participants with them.

2.2 Hardware Configuration

We have developed two identical robot heads for human-robot interaction ex-
periments. Fig. 3 shows an overview of our robot head. Each head consists of
a spherical 3D mask, an LED projector (Bit AD-MP15A), and a pan-tilt unit
(PTU-D46). The 3D mask and projector are mounted on the pan-tilt unit. The
projector projects CG generated eyes on the mask as proposed in [10]. Thus,
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Fig. 2. How to attract and shift participant’s attention in Case 1
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Fig. 3. System overview: (a)Robot configuration consists of three software modules,
one USB camera and a robot head (b) Prototype of robot head with a pan-tilt unit
PTU-D46, an LED projector and a 3D mask

the robot head can show non-verbal behaviors by its head movement and eye
movement. A USB camera (Logicool Inc. Qcam) is installed to track a human
head. In the current implementation, the camera is put on a tripod placed at an
appropriate position for observing the human.

2.3 Software Configuration

The system has three main software modules: the head detection and track-
ing module (HDTM), eye-contact module (ECM), and the pan-tilt unit control
module. The last module controls the head movement based on the output of
the first module. We use FaceAPI [11] to detect and track a human face. It also
computes the head direction.

The robot head continuously moves to track the target person’s face and
to compute its direction. If the face direction is toward the robot, the robot
considers that the person looks at it. The robot should show gaze awareness
to complete eye contact. In the current implementation, we use eye blinking to
show gaze awareness. Since the eyes are CG images, the robot can easily blink
the eyes in response to the human’s gazing at it. Fig. 4 shows some screenshots
of eye behaviors of the robot.
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(a) (b) (c)

Fig. 4. Eye behaviors of the robot: (a) Fully opened eyes b) Partially opened eyes (c)
Closed eyes

3 Experiments

We performed three experiments using human participants to examine if our
proposed robot actions can attract and gain human attention.

3.1 Experiment 1: To Attracts Human Attention

In Case 1, the person is looking around without any particular attention target.
Although existence of robots may attract his/her attention to some extent, some
robot movements, head motion in the current implementation, may help attract
more his/her attention. Although this might be apparent, we performed the first
experiments to confirm this hypothesis.

Experimental procedure: As mentioned in the previous section, we prepared two
identical robot heads. In this experiment, we programmed each to show different
behaviors. One is programmed as a static robot (RS). RS does not move at all,
just stays as in the initial condition. The second is a moving robot (RM). It is
initially static as RS. After some time, however, it starts head movements about
3 seconds, and then becomes static again.

We prepared the experimental settings as shown in Fig. 5.
We hanged five pictures on the wall at the same hight (a bit above the eye

level of participants sitting on the chair). We placed two robot heads to the left
of the leftmost picture and to the right of the rightmost picture. One of the robot
heads worked as RS and the other as RM. The roles of the left and right robot

(a) (b)

P1 P2 P3 P4 P5

R1

R2

0.5m

2.5m2.5m

2m

0.9m

cameras

participant

0.9m 0.9m0.9m

Fig. 5. Experimental settings: (a) Five pictures are hanged on the frontal wall above
the eye level. Positions of human, RS and RM are fixed (b) Experimental scene.
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heads were exchanged randomly so that the number of participants experienced
each case could be almost the same.

We used 12 Japanese students at Saitama University as participants. We
instructed them just to look around the pictures. Each experimental session
for a participant lasted 60 seconds. We divided the session into two parts (i)
static period (first 30 seconds): RS and RM were static, (ii) moving period (last
30 seconds): RM moved several times (3 seconds/motions) depending on the
participants head locations and then stopped while RS remained static.

We videotaped all sessions to analyze human behaviors.

Experimental Results: Fig. 6 shows the experimental results. Fig. 6 (a) shows the
average numbers of participants’ gazing behaviors toward each robot in the static
and moving periods. The average number toward RM is significantly greater than
that toward RS (t-test, p < 0.05). However, participants sometimes ignored the
RM’s motions due to mental inertia. We measured participants response from
their head direction only. Though most of times participants response well by
shifting their head and eyes together, sometimes response via eyes only. Fig. 6(b)
shows the response rate of each participant, that is, the number of times that the
participant turns toward the robot divided by the number of times of the robot
movements in each RM session. As it is observed, the proportion of participants
responses varied from 50% to 86%. Participants shift their gaze overall 69% of
times after getting motion signal from RM. Although sometimes participants
ignore the RM’s motions, most of the times moving the head is effective to
attract human attention than the static head.
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Fig. 6. Attention attraction experiment: (a) Average numbers of participant’s gaze
actions at the robot during static and moving periods (b) Rate of each participant’s
response against actions of RM

3.2 Experiment 2: Eye-Contact Experiment

The first experiment has confirmed that robot head motion can attract human
gaze. However, if the robot does not look toward the human direction at the time
of human’s gazing at it, the human will not think that the robot really wants
to contact with him/her. Thus, we have developed robot heads as described in
the previous section to detect and track the person’s face and to move its head
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toward the person synchronously when s/he turns his/her head toward it. We
designed the second experiment to verify the effectiveness of this robot head
action.

Experimental procedure: In this experiment, the participants and the experimen-
tal settings were the same as in the first experiments except in the behaviors
of two robots. We programmed the robot heads in two ways. (i) Gaze Avoiding
Robot, RA: if participants look toward the robot, the robot directs gaze in an-
other direction, i.e., they never meet face-to-face, and (ii) Gaze Tracking Robot,
RT: the robot tracks the participant’s face. If s/he looks at the robot in response
to its motions, the robot also directs its gaze (head) to the human, which ensures
their face-to-face orientation.

As in the first experiment, participants were asked to look around the pic-
tures in front of them. RT placed in the right position starts tracking action
when the participant directs his/her gaze toward P1 (the leftmost picture). This
means that RT and the participant are not in face-to-face initially. If the partic-
ipant notices the robot action, s/he will direct his/her gaze toward RT. RT also
reorients its head orientation toward the participant so that they can meet face-
to-face. Then, the robot performs eye blinking action to show gaze awareness.
Some snapshots in the experimental scene are depicted in Fig. 7. After making
eye contact, the robot turns its head toward a particular direction.

(a) (b)

Fig. 7. Eye contact experiment scenes

After the session, we asked the participants to rate each robot by answering
the following two questions: (i) “Did you feel that the robot try to attract your
attention?” and (ii) “Did you feel that you made eye contact with the robot after
observing the robot’s gaze behavior?” on a seven-point Likert scale. We made
two predictions in designing these questions:Prediction 1: participants feel that
RT is trying to attract their attention much more, and Prediction 2: participants
feel that they made eye contact with RT.

Experimental Results: Fig. 8 (a) shows the average scores for the first question.
Comparing the 12 resultant pairs with the Wilcoxon rank sum test gives a p-value
of 0.000012 for the first question results. Participants rated RA and RT with an
average accuracy of 13.2% (SD=13.2%) and 84.5% (SD=22.9%). The Wilcoxon
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rank sum test for the second question results gives also a p-value of 0.000019.
Fig. 8 (b) illustrates this result. The Scheffe test shows that there are significant
differences between the two robots in attracting participant’s attention as well
as in making them to feel eye contact (p < 0.05).

We have proposed and developed the robot head to detect and track a target
person and to turn its face toward the target person when s/he notices the
robot and turns toward the robot. The experimental results confirm that the
proposed robot can effectively attract a target person’s attention and establish
a communication channel between him/her and the robot.
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Fig. 8. Eye contact experiment: (a) Participants rating of different actions of robot
in terms of effectiveness to attract their attention (b) Comparison of how participants
perceived eye contact for the gaze behaviors of RA and RT

3.3 Experiment 3

In this paper, we have mainly considered head movement. However, gaze direc-
tion, which can be indicated by the pupil position in the whole eye, is also known
as an important communicative non-verbal behavior. Since our robot head uses
CG images to display the eyes, it can easily change its gaze direction. Fig. 9
shows some photographs in which the robot is changing its gaze direction.

In the third experiment, we examined preliminarily effect of gaze movement,
i.e, eye movement. We programmed the robot head in three motion modes: when
the robot detects a human face, (i) it turns only head toward the face,(ii) it
turns only eyes toward the face, and (iii) it first turns eyes toward the face, then
head motion follows to turn toward the face. Fig. 10 (a) shows the experimental

(a) (b) (c)

Fig. 9. Some snapshots of robot’s gaze changing behavior: (a) Gaze at right (b) Gaze
forward (c) Gaze at left
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setting. A participant is asked to sit down on the chair and to look at the robot.
However, the robot head does not face to the participant. The robot shows three
motion modes in random order. After the session, we ask participants, “Which
robot motion made you feel most that the robot really looked at you?”. We used
54 undergraduate students at Saitama University as participants.

Fig. 10 (b) shows the result of the experiments. Psychological studies [12] show
that usually the eyes move first and the head follows when something attracts
a person. Thus, we had expected the third would be most supported by the
participants. However, the experimental result show that the second mode gained
the most votes. This might be because we used the verb ”look” in the question.
Actually, the CG eye images were well designed and made feel people that the
robot looked at them. Although we need to further study the combination of head
and eye movements, this experimental result confirms that the eye movement is
an effective means in attention control.
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Fig. 10. Eye motions experiment: (a) Participants observed robot’s gaze behavior
from the fixed position (b) Proportion of participants choices on three actions of the
robot

4 Discussion and Conclusion

The main goal of our work is to develop a robot that can shift a particular
human’s attention from one direction to another. If the human and the robot
have already started communication, this turns to be a mutual gaze problem.
In this case, since the communication channel has been already established, the
robot can control the human’s attention easily. The human usually looks in the
direction where the robot looks. The robot can further control his/her attention
if it uses pointing gestures. In this study, however, we consider the necessary
robot actions that bring the person and the robot to such a situation. That is,
the robot first gains a little attention of the person, then holds his/her attention
completely to establish their communication channel. We have hypothesized that
the robot head motion is effective for the first part and that making eye contact
by turning its head when the person turns his/her head toward it can achieve
the second part. Then, we have developed two identical robot head systems that
can be programmed to show the proposed actions and others. Finally, we have
verified the hypotheses through experiments using human participants with the
robot heads programmed to show various actions.
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We have considered the case where the person does not pay attention to a
particular target in this paper. If s/he is paying attention to a particular object
or talking with another person, the robot needs to use some other actions than
non-verbal behaviors, such as voice and patting. There might be other useful
actions even in the case treated in this paper. These are left for our future work.
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Abstract. Using gaze information in designing tone-mapping operators
has many potentials over traditional global tone-mapping operators. In
this paper, we evaluate a recently proposed real-time tone mapping op-
erator based on gaze information and show that it is highly dependent
on the input scene. We propose an important modification to the evalu-
ated method to relief this dependency and to enhance the appearance of
the resultant images using smaller processing area. Experimental results
show that our method outperforms the evaluated technique.

1 Introduction

With recent advances in systems and techniques that can capture high dynamic
range (HDR) images, the need for smart techniques that can handle such images
is gaining increasing attention due to their importance for a variety of applica-
tions such as digital photography and realistic rendering [6]. Since most of the
current display devices have a limited dynamic range which can not accommo-
date the wide range of intensities of the HDR images, different tone mapping
operators have been proposed to scale down the wide range of intensities of HDR
images to the narrow range of intensities of such displays. Most of these opera-
tors are based on human visual models and traditional photography. A thorough
survey of many tone mapping operators for HDR images can be found in [1].

The vast majority of tone-mapping techniques treat all parts in the HDR
images equally. However, since people are more interested in image parts they
are looking at, some researchers have proposed to use gaze information in tone-
mapping. It has been shown that image quality is highly influenced by quality
of the gazing area [3]. Therefore, integrating gaze information in tone-mapping
techniques is expected to improve the performance achieved using conventional
global tone-mapping methods. Rahardja et al. [4] proposed a dynamic approach
for displaying HDR images on low-dynamic-range displays that adapt itself inter-
actively based on the user’s view. More recently, We [2] implemented a real-time
tone-mapping system for HDR images, which is based on the global tone map-
ping operator proposed by Reinhard et al. [5], taking into account information of
the gazing area and showed the superiority of our approach over the conventional
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global tone-mapping operator. However, We did not investigate the impact of
variations in content and size of input scenes on the performance of Our system.

In this paper, our previous method in [2] is evaluated using different gazing
areas and different scenes. We show that the appearance of the displayed image
is highly dependent on the content of the input image. Moreover, based on this
evaluation, we propose an important modification to our method in order to
relief this dependency and to get more realistic appearance of the displayed
image using smaller processing area.

The rest of this paper is organized as follows. In Section 2, we give a brief
overview of the global tone mapping operator proposed by Reinhard et al. [5]. This
operator is the basis of the gaze information-based modification is presented. In
Section 5, we illustrate the effectiveness of our method compared to the other two
techniques using several experiments. Section 6 concludes the paper.

2 Reinhard’s Global Tone Mapping Operator

Reinhard et al. [5] proposed a tone mapping method for HDR images by simulating
AnselAdams’ zone system in traditional photography.The zone system, illustrated
in Fig.1, predicts how the scene intensities would map to a set of print zone. A print
zone is defined as a region of the scene luminance. There are eleven zones, ranging
from pure black (zone 0) to pure white(zone X). The middle gray is the subjective
middle brightness region of the scene, which is mapped to print zone V.

Fig. 1. Mapping from dynamic range of a real scene to print (or display) zones. Scene
dynamic range is separated to the scene zones decided by coefficient x and luminance
L (reproduced from [5]).

Based on the framework of the zone system, Reinhard et al. assumed the
log-average of luminance values as an approximation to the middle gray. This
quantity is computed according to the following equation:
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L̄HDR = exp

(
1
N

∑
x,y

log (δ + LHDR (x, y))

)
(1)

x, y ∈ VGlobal

where LHDR(x, y) is the luminance of an HDR image for pixel (x, y), N is the
total number of pixels in the HDR image, and δ is a constant that prevent a log
value to a minus. VGlobal denotes all pixels of the HDR image.

Accordingly, the luminance of an HDR image is scaled using the following
formula:

L (x, y) =
a

L̄HDR
LHDR (x, y) (2)

where L(x, y) is the scaled luminance of an HDR image, and a is a constant
(∈ [0, 1]) specified by the user to allow him to map the log-average to different
values of a. The displayed luminance on display is given by:

Lscale (x, y) =
L (x, y)

1 + L (x, y)
(3)

This global operator expands low luminance levels and compresses high lumi-
nance levels.

3 Gazing Area Based Tone Mapping Operator

We proposed a real-time tone mapping system using gaze information [2].
Figure 2 shows the flow diagram of this system.

First, the eyes of the observer are captured by the eye-camera system, and
the coordinate of the gazing point on the display is computed from the captured
image. Then, the gazing area is determined by the adjacent region of gazing
point. Then, based on the global method described in the previous Section,

Fig. 2. The real-time gaze information based tone mapping approach presented in [2]
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The middle gray is computed by the log-average of the luminance values within
the gazing area. The quantity is computed by:

PHDR(t) = exp

(
1

N ′
∑
x,y

log (δ + LHDR (x, y, t))

)
(4)

x, y ∈ VEye

where LHDR , and δ are as in Eq.(1), N ′ is the total number of pixels in the
gazing area, The gazing area is set to the region corresponding to 4 visual degree
in [2], t is the frame number, and VEye denotes all pixels within the gazing area
of a still HDR image. VEye varies with the change of the gazing point while
viewing the HDR image.

If only the current frame t is used to compute the parameter PHDR(t), the
luminance of the displayed still image would unexpectedly change by cascade.
For addressing this problem, we suggested to calculate PHDR(t) using several
previous frames as follows:

P̄HDR (t) = PHDR (t) × W (t) + PHDR (t − 1) × W (t − 1) +
... + PHDR (t − n) × W (t − n) (5)

where W is a weighting function, and n is the number of the considered previous
frames. In our previous paper [2], W was a linear function and n was set to 9.
Now, the scaling luminance of a still HDR image is computed by the following
Equation:

L (x, y, t) =
a

P̄HDR (t)
LHDR (x, y) (6)

where a is constant as described in Eq.(1). After this calculation, the mapping
luminance is given by Eq.(3). Finally, the displayed luminance Ld is given by
following normalization:

Ld (x, y, t) =
Lscale (x, y, t) − Lmin

Lmax − Lmin
(7)

4 Proposed Method

In this section, we describe an extension of our gazing area based tone map-
ping operator. The middle gray of our previous operator runs from very low
luminance through very high luminance. It allows dynamic changes of image ap-
pearance, but it causes unrealistic appearance. On the other hand, Reinhard’s
global operator assumes middle gray very well. Therefore, we introduce an im-
portant modification to our previous method by imposing a simple constraint
on the way of considering the middle gray value. First, we compute the middle
gray the same way as in Eq. 4:
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(a) Proposed operator (b) Previous operator (c) Reinhard’s operator

Fig. 3. Result images of each method when looking at the sun (high luminance area)

Fig. 4. Input - Output for each algorithm in Fig.3

P ′
HDR(t) = exp

(
1

N ′
∑
x,y

log (δ + LHDR (x, y, t))

)
(8)

x, y ∈ VEye

Then, according to the following condition, the considered middle gray is
either the one calculated using Reinhard’s global method [5] or the one calculated
using our previous gaze information based approach [2]:

PHDR (t) =
{

P
′
HDR (t) P

′
HDR (t) < L̄HDR × σ

L̄HDR × σ otherwise
(9)

where LHDR is the middle gray of Reinhard’s global tone mapping operator
(see Eq.1), and σ is a constant that should be > 1.0. In this paper, σ is set to
2.0 in this study. After this condition is applied, the displayed luminance Ld is
computed using equations 5 - 7 in the same way.

Eq.9 aims to restrict the sliding range of middle gray based on global middle
gray. Fig.3 and fig.5 shows tone mapped examples for each algorithm. When
looking at a high luminance region, our method(Fig.3(a)) works like Reinhard’s
global operator(Fig.3(c)). Our previous operator(Fig.3(b)) acts like linear scale
mapping due to too high middle gray(Fig.4) ,which causes an unrealistic apper-
ance. When looking at a low luminance region, our proposed method improves
apperance of dark area like our previous method(Fig.5).
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(a) Proposed operator (b) Previous operator (c) Reinhard’s operator

Fig. 5. Result images of each method when looking at the rock (low luminance area)

5 Experiments and Results

5.1 Experimental Conditions

All experiments were performed in a dark surround. The total number and age
range of observers are given in Table 1. We chose five HDR images (Fig. 7) Their
images include indoor scenes, outdoor scenes, a scene with people. The long-
dimensions of images were approximately 800 pixels. The tone-mapped images
were displayed on a 21.5-inch LCD Display(1920×1080 pixels). The images were
presented on a 20% gray background. Color normal observers sat on three times
the image height from the display.

Gaze information was acquired by using the commercial eye tracking system
(EMR-NL8B, nac Image Technology Inc.). The main components of this system
include an eyeball photography camera which houses an infra-red LED illumina-
tor and an eye camera, a controller, a LED power supply box, a signal conversion
box, and a chin level. Eye movement is detected by calculating the distance be-
tween the image of pupil and the reflected image of an infra-red LED illuminator
on the cornea.

Table 1. Statistics of each experiment

Numbers of observers Age range

Experiment 1 10 21-24
Experiment 2 10 21-24
Experiment 3 10 21-23

5.2 Experiment 1: Checking Suitable Processing Area on Previous
Operator

We decided 4 visual degrees for the processing area in computing the middle
gray, but the suitable processing area is considered to be dependent on the
ratio by size of processing area to image size, image content or display size.
Therefore, we conducted the subjective experiment aimed to check the suitable
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St. George People

Falls Cathedral Memorial

Fig. 6. Experimental images courtesy of High Dynamic Range Imaging [Reinhard,
Ward et al]

processing area on our previous method for each image. We conducted the paired-
comparison. This method is a frequently-used technique for generating interval
scales of algorithm performance, which are derived using Thurstone’s law of
comparative judgement [7]. For each pair, observers make a dichotomous choice
to which image was preferred in a comprehensive manner. From these comparison
data, An interval value is computed based on Z-value.

Figure 8 is the preference scores of experiment 1. The result shows that the
suitable processing area is scene dependant and we cannot fix the processing
area as 4 visual degree. Two visual degree suited for the scene “People” but not
suited for three scenes. 4 visual degree is good for the scene “Falls”. 10 visual
degree is good for “St.George”.

5.3 Experiment 2: Checking Processing Area for Proposed Method

We conducted the suitable processing area on proposed method in the same
way as Experiment 1. Figure 9 shows the results of experiment 2. It shows
that the suitable processing area is scene dependant too, but 10 visual degree
was not chosen. So we can fix the narrower degree than the previous method.
Thanks to using narrower visual degree, Proposed method can map the tone
more adaptively than the previous method.
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Fig. 7. Preference scores of our previous method in [2]

Fig. 8. Preference scores of proposed method

5.4 Preference Comparison of Algorithm Performances

In this experiment, we conducted two comparison to verify the advantage of our
proposed method. In the first comparison we confront proposed method fixed
2 visual degree with the previous method fixed 4 visual degree. In the second
comparison we confronts proposed method fixed 2 visual degree with the previous
method suited the best degree for each scene. We used the same analysis method
as in [2], which is one of subjective ratings. Observer answered the subjective
score from -3 to 3. Plus score means that observers preffered the tone-mapped
images. From these comparison data, we got algorithm scores.

Figure 9 is a result of the first comparison, and Figure 10 is a result of the
second comparison. They show that the proposed method is better than the
previous method in image preference.
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Fig. 9. Proposed method fixed 2 visual degree vs. Previous method fixed 4 visual
degree

Fig. 10. Proposed method fixed 2 visual degree and the previous method suited the
best visual degree. 2 visual degree is suited for “People” and “Cathedral”, 4 visual
degree is suited for “Falls” and “Memorial”, 10 visual degree is suited for “St.George”.

6 Discussion

In this paper, we evaluated our real-time tone mapping technique based on
gaze information. The experimental result shows that the size of processing area
assumed by previous method is not particularly suited, the value is highly scene
dependant. Based on this evaluation, we proposed a modification in order to
reduce scene dependency. Modification is simple, we add a binary selection when
computing the middle gray. It effected not only to reduce scene dependency but
also to achieve better appearance, which implies that it is very important to
assume the middle gray too. Our proposed method can use smaller processing
area than our previous method, so we can map the tone more adaptively.
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We impose an upper limit on computing the middle gray in this paper, so we
will investigate the influence of imposing a lower limit. We focused on real-time
tone mapping for still HDR images, it is interesting to extend our work to cover
HDR videos in the future.
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Abstract. The modern computer vision systems usually scan the im-
age over positions and scales to detect a predefined object, whereas the
human vision system performs this task in a more intuitive and efficient
manner by selecting only a few regions to fixate on. A comprehensive
understanding of human search will benefit computer vision systems in
search modeling. In this paper, we investigate the contributions of the
sources that affect human eye scan path while observers perform a search
task in real scenes. The examined sources include saliency, task guid-
ance, and oculomotor bias. Both their influence on each consecutive pair
fixations and on the entire scan path are evaluated. The experimental
results suggest that the influences of task guidance and oculomotor bias
are comparable, and that of saliency is rather low. They also show that
we could use these sources to predict not only where humans look in the
image but also the order of their visiting.

1 Introduction

The recognition and localization of objects in complex visual scenes is still a
challenge problem for computer vision systems. Most modern computer vision
algorithms [1,2] scan the image over a range of positions and scales. However,
humans perform this task in a more intuitive and efficient manner by selecting
only a few regions to focus on (Figure 1 shows the scan paths of two observers on
one stimulus [3]). A comprehensive understanding of human search will benefit
computer vision systems in search modeling.

Many studies have been engaging in exploring the mechanisms underlying the
human eye movement [4,5,6]. Several sources were considered as its impetuses.
Itti et al. considered the role of top-down and bottom-up in visual searching and
combined them to speed up the search [7]. Malcolm et al. investigated how the vi-
sual system combines multiple types of top-down information to facilitate search
and their results indicated either a specific target template or scene context can
facilitate search [8]. Considering that there are some biases in oculomotor be-
haviors (e.g., saccades in horizontal directions are more frequent), Tatler et al.
showed that incorporating an understanding of oculomotor behavioral biases
into models of eye guidance is likely to significantly improve the prediction of
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Fig. 1. The scan paths of two observers on one stimulus

fixations [9]. Kollmorgen et al. quantified the influences of several sources in a
set of classification tasks [10].

Although there are abundant works in understanding the human visual pro-
cessing, the experimental stimuli and tasks they used were only designed for
their purposes that were far from real applications. e.g. searching a red circle in
the background consists of messy green triangles. The main purpose of our work
is to evaluate the relative importance of the saliency, task guidance and oculo-
motor biases as impetuses of scan path generation on data collected by Ehinger
et al. They recorded observers’ eye movements while they searched pedestrians
in outdoor scenes [3]. The task is a nature human behavior and the scenes
are the challenges for some computer systems, so the conclusion we got can be
see as a valuable consultant for human eye movement prediction designing and
can be extended to real applications. We concentrate on the sequential proper-
ties of fixations. Specifically, the location of nth fixation is depended on a ”guide
map” generated based on the location of the n-1th fixation. The contributions of
the three sources, saliency, task guidance, oculomotor bias, are examined within
each fixation. In addition, computational scan paths are produced to evaluate
the predicting power of the model with all of these sources.

The paper is organized as follows. The three kinds of sources and the evalua-
tion framework are introduced In Section 2. Section 3 evaluates the performances
of the sources as the impetuses of scan path. Computational scan paths are pro-
duced to evaluate the predicting power of the model as well in this section.
Section 4 concludes the paper.

2 The Impetus of Scan Path Generation

2.1 Database

The contributions of saliency, task guidance and oculomotor bias are evaluated
on the data collected by Ehinger et al. that is available online. The eye move-
ments were collect as 14 observers searched for pedestrians in 912 scenes. Half
the images are target present and half are target absent. The image contents
include parks, streets and buildings which are close to our daily lives and real
applications. Observers were asked to search pedestrians in each trail as quickly
as possible and respond whether pedestrians appeared. More details about the
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database can be found in [3].We excluded the data of which the responding cor-
rect rates were lower than 70%. The data with wrong bounding boxes were also
excluded.

2.2 Saliency Map

It is widely accepted that in the early stage of visual processing, attention mech-
anisms bias observer towards selecting stimuli based on their saliency. Saliency is
an important bottom-up factor and is regarded as the impetus for the selection
of fixation points, especially in free viewing.

In this work, the saliency maps were generated by using the toolbox devel-
oped by Itti et al. which computes the color, intensity, orientation features then
combines the results of center-surround difference on these features to generate
a saliency map [11]. Examples are shown in Figure 2. The second column is the
saliency maps. The lighter regions are regarded as salient regions.

(a) Original Image (b) Saliency Map (c) Target Map (d) Guide Map

Fig. 2. Examples of the saliency maps, the target maps and their combinations. The
lighter regions have higher probabilities to be fixated on.

It could be observed that saliency finds the regions that differ from their sur-
roundings. People who appear on the road, grass, horizon and other homogeneous
scenes will be found efficiently with saliency.

2.3 Task Guidance

Task is the high-level information on eye movement guidance. Many studies have
already proved that in a search task saccades would be directed to the image
regions similar to the target, e.g., an item has a rectangular shape, a circle on the
top, and some complexional regions would catch more fixations in a searching
people task.
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In this work we employ a ”target map” to implement the guidance of the task. A
targetmap is a matrix of which each value measures how likely the target locates at
that point. The more similar an item to the target, the more likely it will be chosen
as the next fixation. The target map finds out all the target-like items including
both target and distracters. We used the output of detector developed by Dalal
and Trigger [2] which were publicized with the eye data by Ehinger et al.. Some
examples are shown in the third column of Figure 2.

(a) present (b) absent

Fig. 3. The preferred saccade amplitude modes learned from the validation sets for
the pedestrians present and absent. Each saccade start point was aligned to the figure
center and the saccade end point was plotted on the figure according to the saccade
length and angle. All the points were convolved by a Gaussian.

2.4 Oculomotor Bias

It has been noticed that there are some biases in oculomotor behaviors, e.g.,
saccades in horizontal directions are more frequent. Oculomotor biases guide
the eye movement mainly depend on spatial constrains and properties of human
oculomotor system rather than any outside information. Many studies observed
that people tend to view the image with preferred saccade lengths and angles.
It could reflect the ways that people deal with information in their daily lives
which are ”trained” for several years.

We counted the first six saccades for each scan path over images and observers
in the validation set consisting of 120 images half with pedestrians and half
without to learn the saccade amplitude that people preferred. Figure 3 shows
the preferred range of saccade which is irrespective of the image contents. For
each case (with pedestrian or without pedestrian), we aligned all the beginning
points of saccades to the center. Then each end point was plotted on the figure
according to the relative position to the corresponding beginning point (which
is controlled by saccade length and angle). All saccades were put on one figure.
The final figure was found by convolving a Gaussian over all the end points.

It can be found that in both the target present case and target absent case
people tend to saccade horizontally and the center is preferred in Figure 3.
Lack of the target attraction, the ranges of saccades are more uniformly in the
horizontal direction in the target absent case.
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Fig. 4. The flow of fixation sequence generation. The saliency map and target map
are combined at the first stage. Within each round of fixation choosing, the combined
map is adjusted by oculomotor biases then the points with the highest value pop-out.
An Inhibition of Return mechanism also takes part in.

2.5 Scan Path Generation Flow

In visual search task, eye movement employs not only parallel processing but
also serial fixation choosing [12]. Thus we modeled the generation process of
scan path by sequentially choosing fixations as shown in Figure 4. As stated in
[13], within each fixation all the points in the view compete for being biased as
next fixation. A guide map(Gui) which is the combination of target map(Tar)
and saliency map(Sal) can be regarded as the basis of the competition among
all the points. The combination was described as follows:

Gui(x, y) = Sal(x, y)γ1 · Tar(x, y)γ2 (1)

The two exponents (γ1, γ2) are constants confined in range[0, 1], their value(γ1 =
0.95, γ2 = 0.05) were selected by various tests on the validation set consisting of
120 images to make the guide map best predicted the fixation distribution.Two
examples of combined results are shown in the last column in Figure 2.

Within each fixation, the guide map will be adjusted by oculomotor bias as
Equation 2, where OB represents the oculomotor bias map.After that the new
fixation with the highest value pops-out and a new round of fixation selection
starts. This iteration operates until the selected fixation land on the target.

Ĝui(x, y) = Gui(x, y) · OB(x, y) (2)

3 The Performances of the Sources on Scan Path
Generation

We compared the several combinations of the target map, saliency map and
oculomotor bias with recorded human fixations to evaluate the contributions
of the sources. The combinations were achieved by integrating or removing the
related modules in Figure 4. The ROC curves were employed to measure the
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predicting power of the attended sources by comparing the corresponding guide
map to the following fixation.

This process was done for each fixation number and the results were averaged
over the observers and images. Then a series of ROC curves corresponding to
each fixation number were attained. Because the observers used 3.5 fixations to
land on the target averagely, for each combination the AUC was computed and
averaged over the first four fixation numbers.

Computational scan paths were produced to evaluate the performance of the
model with all the sources on whole scan path generation. The Edit Distance
was introduced to evaluate the performance.

3.1 Single and Combined Sources

We measured the performance for each source at first. The results are shown
in Table 1. We use T , S, and O to represent Target map, Saliency map and
Preferred saccade amplitude respectively for short.

Table 1. The mean AUC for the first four fixations for each source

Impetus Present Absent Impetus Present Absent

T 0.8115 0.7529 T+O 0.8178 0.8540
S 0.6282 0.5792 S+O 0.7939 0.8283
O 0.7886 0.8469 T+S+O 0.8201 0.8568

We attain the following observations.

(1)All the sources outperform the chance (AUC=0.5) ,which indicates that these
sources can be seen as the impetuses of human eye movement. (2)Comparing
with the target map and oculomotor bias, saliency map performs worst. It sug-
gests that in searching task, the contribution of saliency is limited. Saliency is
important but not crucial. (3) Without the target, eye movements are largely
controlled by oculomotor bias whereas when targets are present, the eye move-
ments highly connect to the target.

We also examined the performance of combined sources. Shown in the righter
columns of Table 1.

In conjunction with the previous observations, Table 1 suggests that the com-
binations with oculomotor bias perform better than single source . As shown in
the righter columns of Table 1 the performance of the model with all the sources
is highest in both the target present and target absent. Figure 5 shows ROC
curves.

In Figure 5,the performance goes down from the fourth fixation in the target
present case. It coincides with the fact that observers used 3.5 fixations to find
the pedestrians averagely. After reaching the pedestrians, the fixations are less
controlled by the the sources. However,in the target absent case, there are not
obvious differences among the fixation numbers. It suggests that the observers
stayed at the ”searching” condition for a longer time.
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Fig. 5. ROC curves for each fixation number.For each case, all the three sources take
part in . The mean AUC for the first four fixations is 0.8201 for target present and
0.8568 for target absent.

3.2 Whole Scan Path

As discussed in the last section, the model with all the sources performs best. In
this section we evaluate the model combining all the source on whole scan path
generation. Edit Distance [14] was used to measure the similarity between the
computational scan paths and recorded scan paths.

Edit Distance is a useful measurement for describing the similarity of two
strings of characters. Different string manipulations (Insert, Delete, Replace and
None) are appointed to different costs. We used Edit Distance to plan operation
serial which costs least to transform one scan path into another.

Before comparing, the scan paths were discretized into strings of chars based
on the location of each fixation. The images were meshed and the fixations in
the same grid were tagged identically. The mesh size is 3 degree visual angels.
The fixations closed to each other were regarded as the same points even they
located in different grids. Then the scan paths were translated into the stringed
tags of its fixations.

The computational scan paths were generated for each image and compared
with the recorded scan paths of the 14 observers. Because the standard Edit
Distance calculation returns the total costs, we averaged it to the cost of each
manipulation. Similarity is defined as the reciprocal of the normalized Edit Dis-
tance and averaged over the observers and images. The final result is 0.3138 for
pedestrians present and 0.2198 for pedestrians absent by averaging the value
over all the images.

For comparison we examined the inter-observer consistency on the data as the
upper bound. For each stimulus, we used scan paths of all-except-one observers
to predict scan path of the excluded observer. Then the values were averaged
over the observers and images. As for the lower bound, we generated a set of
scan paths by randomly selecting several points as fixations. The consistency
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Fig. 6. The artificial fixation sequences generated by our model for the two cases. The
red dots wrapped by yellow circles denote the fixation of collected human eye data and
the green dots wrapped by blue circles denote the artificial fixations generated by our
model. Two time adjacent points are connected by red or blue edges. The red rectangle
in (a) denotes the ground truths (pedestrians).
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Table 2. The performance of the artificial model

Impetus Present Absent

Human consistency 0.3616 0.2850
Computational scan paths 0.3138 0.2198

Random 0.1919 0.1919

among the random paths was also computed. The results are shown in Table 2.
Figure 6 show some examples of the computational scan paths.

In Table 2,the human consistency is higher than the random paths in both
the two cases. It indicates that the scan paths of observers’ visiting are similar.
The consistency in target present case outperforms the target absent case shows
that with the target, the ways people visit the images are more alike.

As for the performance of the combined sources, there are two observations.
First, it outperforms the random scan paths. This indicates that these sources
could be used in modeling the scan paths of human eye movement. In addition, in
target present case, it achieves 86% of human consistency and in the target absent
case, the number is 76%. The difference of the two numbers suggests that in the
target absent cases, there maybe some other sources controlling the scan paths e.g.
context, semantic interpretation of the objects beside the sources we considered.

4 Conclusions and Future Work

In this work, we mainly evaluated the performances of the target map, saliency
map and oculomotor bias as the impetuses of scan path generation. Several com-
binations were considered. We found that in target present case, the task guidance
performs best and the oculomotor bias takes the second place whereas in the tar-
get absent case, the oculomotor bias plays best and the task guidance takes the
second place. In both the two cases, saliency performs somewhat lower. We also
evaluated their performances on the whole scan path generation. The result shows
that these sources could be used in modeling the human eye movements.

However, the visual processing is a complicated system that a lot of factors
may contribute to it. Although we proved that the three sources can be seen as
the impetuses, they are still imperfect. Many other sources should be introduced
to make the model performs better such as context, the past experiences of the
observers, people habits and so on.

A significant work in the future is to use the analyses to real applications
to improve efficiency and accuracy. Many studies such as image understand-
ing, image and video compression will be benefited from the eye movement in
searching.
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